
Enhancing layered enterprise architecture development 
through conceptual structures

POLOVINA, Simon <http://orcid.org/0000-0003-2961-6207>, VON ROSING, 
Mark, LAURIER, Wim and ETZEL, Georg

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/24239/

This document is the Accepted Version [AM]

Citation:

POLOVINA, Simon, VON ROSING, Mark, LAURIER, Wim and ETZEL, Georg 
(2019). Enhancing layered enterprise architecture development through conceptual 
structures. In: ENDRES, Dominik, ALAM, Mehwish and ŞOTROPA, Diana, (eds.) 
Graph-based representation and reasoning: 24th International Conference on 
Conceptual Structures, ICCS 2019, Marburg, Germany, July 1–4, 2019, proceedings.
Lecture Notes in Computer Science, 11530 . Cham, Springer. [Book Section] 

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html


Enhancing Layered Enterprise Architecture
Development through Conceptual Structures

Simon Polovina1, Mark von Rosing2, Wim Laurier3 and Georg Etzel4

1 Conceptual Structures Research Group, Communication and Computing Research
Centre & Department of Computing, Sheffield Hallam University, Sheffield, UK

2 Global University Alliance, Chateau Du Grand Perray, La Bruere Sur Loir, France
3 Université Saint-Louis – Bruxelles, Belgium

4 LEADing Practice ApS, 86157 Augsburg, Germany
S.Polovina@shu.ac.uk, mvr@globaluniversityalliance.org,

wim.laurier@usaintlouis.be, ge@leadingpractice.com

Abstract. Enterprise Architecture (EA) enables organisations to align
their information technology with their business needs. Layered EA De-
velopment (LEAD) enhances EA by using meta-models made up of
layered meta-objects, interconnected by semantic relations. Organisa-
tions can use these meta-models to benefit from a novel, ontology-based,
object-oriented way of EA thinking and working. Furthermore, the meta-
models are directed graphs that can be read linearly from a Top Down
View (TDV) or a Bottom Up View (BUV) perspective. Conceptual
Structures through CG-FCA (where CG refers to Conceptual Graph
and FCA to Formal Concept Analysis) is thus used to traverse the TDV
and BUV directions using the LEAD Industry 4.0 meta-model as an il-
lustration. The motivation for CG-FCA is stated. It is discovered that
CG-FCA: a) identifies any unwanted cycles in the ‘top-down’ or ‘bottom-
up’ directions, and b) conveniently arranges the many pathways by which
the meta-models can be traversed and understood in a Formal Concept
Lattice. Through the LEAD meta-model exemplar, the wider appeal of
CG-FCA and directed graphs are also identified.

1 Introduction

Enterprise Architecture (EA) enables organisations to align their information
technology with their business needs. In common with certain other Enterprise
Architecture (EA) frameworks, models or approaches (e.g. The Open Group Ar-
chitecture Framework, TOGAF [6]), Layered Enterprise Architecture Develop-
ment (LEAD) has developed meta-models that formally depict best current and
future business practices as reusable patterns by organisations. By reusing what
is already known, organisations avoid reinventing the wheel thus freeing them to
concentrate their limited resources on best serving their clients rather than in-
curring unnecessary costs and risks. LEAD is a layered EA because it articulates
an organisation’s business, information and technology domains according to 87
elements or ‘meta-objects’ in layers and sub-layers1. The 87 meta-objects are

1 www.polovina.me.uk/publications/iccs2019 has a ‘periodic table’ of the 87 elements.



interconnected by semantic relations that collectively make up the meta-models
provided by LEAD. Through the LEAD practitioners’ body LEADing Practice
and the non-profit Global University Alliance (GUA) academic and research
community, organisations and academia benefit from a novel, ontology-based
and object-oriented way of EA thinking and working [11,14].

The rest of the paper is structured as follows. Section 2 introduces the LEAD
meta-model and how it was formalised and analysed. Section 3—the method
section—explains why CG-FCA (where CG refers to Conceptual Graph and
FCA to Formal Concept Analysis) was applied to this meta-model. Section 4
shows the resulting Formal Concept Lattice (FCL). Section 5 provides further
discussion about the cycles that may emerge during this process, as well as
related and future research. Section 6 concludes the paper.

2 The Meta-model Diagram

Like TOGAF and others, the LEAD meta-models are visualised as UML Class
Diagrams with one compartment for the meta-object’s name as the class type
with two-way directed associations called semantic relations that run to-and-
from each meta-object. As such, each semantic relation describes how a given
meta-object can be viewed from its associated meta-object, and vice versa. The
meta-models are thus two-way directed graphs that can be read linearly from
top to bottom (i.e. ‘top-down’) or bottom to top (‘bottom-up’) depending on
the meta-object’s position in the meta-model.

Fig. 1: LEAD Industry 4.0 meta-model, illustrated with levels

Fig. 1 is an extract of the LEAD meta-model for Industry 4.0 that is not
shown here due to lack of space. It also needs to be viewed as an enlarged,
readable version that’s bigger than the page size of the paper. The whole meta-
model can thus be retrieved from: www.polovina.me.uk/publications/iccs2019. It



consists of a layered meta-model composed of a subset of the 87 meta-objects i.e.
33 meta-objects, and 54 semantic relations. Its layers are: Business Architecture,
Information Architecture (shown in Fig. 1) and Technology Architecture.

Each layer has a sub-layer e.g. Information Architecture has ‘Application
Architecture’ as its sub-layer. Fig. 1 illustrates this layer and sub-layer. It also
shows the levels within the layers of the Industry 4.0 meta-model. These levels
(as opposed to layers) are stereotype (level 2), type (level 3), and sub-type (level
4). As these lower levels are subclasses or instances of level 1—the meta-object—
they can substitute the meta-object and inherit its semantic relations with other
meta-objects. Similar substitutions for populating a model from a meta-model
have also been demonstrated in CGs [5]. They follow Liskov’s substitution prin-
ciple, thereby bringing the polymorphism that object-orientation offers into the
meta-model [8].

The focus of this paper is however on the meta-objects (level 1). Conse-
quently, the levels in Fig. 1 were included to illustrate how a meta-object might
be populated with objects having more specific content. These subclasses and
instances are nonetheless dependent on the meta-object (again after Liskov). It
is also important that the meta-model is useful, after Box’s remark that “All
Models are Wrong, but Some are Useful” [4]. The aim therefore is for the meta-
models to be as expressive and useful as possible rather than perfect. They must
still avoid being useless or harmful; inaccuracies may have an adverse impact on
the organisation as it populates the model with its subclasses or instances of the
meta-objects.

3 Analysing the Meta-Model with CG-FCA

CG-FCA brings to the meta-models the mathematical rigour of FCA [3, 12]. A
formal concept in FCA is the result of when certain conditions are met in a
formal context:

– A formal context is a ternary relation K = (G ,M , I ), where G is a set of
objects, M is a set of attributes, and I ⊆ G × M is a binary (true/false)
relation that expresses which objects have which attributes.

– A pair (A,B) is a formal concept of a context (G ,M , I ) provided that A ⊆ G ,
B ⊆ M , A′ = B , and B ′ = A, where A′ = {m ∈ M | gIm for all g ∈ A}, and
B ′ = {g ∈ G | gIm for all m ∈ B}.

– (A,B) is thus a formal concept precisely when:

• every object in A has every attribute in B ,
• for every object in G that is not in A, there is some attribute in B that

the object does not have,
• for every attribute in M that is not in B , there is some object in A that

does not have that attribute.

The formal concepts can then be presented in a lattice, namely a Formal
Concept Lattice (FCL), as will be demonstrated in section 4. CG-FCA allows



FCA to be applied to the meta-models through the CGtoFCA ternary relation-
to-binary relation algorithm and its implementation in the CG-FCA software2.
The motivation for this approach will be elaborated as part of the related re-
search discussion in subsection 5.2 of section 5 below. Whereas CG-FCA for-
merly converted Conceptual Graphs (CGs) only, it can now read 3-column CSV
files thereby (primitively) allowing any form of ternary relations to benefit from
CG-FCA [3].

3.1 Discovering Pathways

The purpose of stating the meta-model as directed graphs is to discover the
pathways from one meta-object to all other meta-objects that it is semantically
associated with through the semantic relations. These semantic associations can
both be direct (i.e. Meta-Object, semantic relation, Meta-Object) and indirect
(i.e. Meta-Object, semantic relation, ...3, semantic relation, Meta-Object). These
pathways allow us to define a meta-object’s view, which is the set of all meta-
objects that can be associated with the meta-object defining the view through
direct and indirect associations in a single direction (i.e. top-down or bottom-up).

Each view represents how that meta-object views itself in relation to its asso-
ciated meta-objects. For example, reading from top to bottom: Data Component,

implemented by, Application Function states that from the Data Compo-
nent’s point of view it sees itself as being implemented by an Application Func-
tion4, and reading from bottom-to-top, Application Function, implements,

Data Component states the association from Application Function’s point of
view (i.e. an Application Function views itself as implementing a Data Compo-
nent). The two views are thus complementary to each other. For convenience,
we shall refer to these linear directions as the a) Top-Down View (TDV) and b)
Bottom-Up View (BUV).

3.2 Managing Cycles

However if we navigate from both points of view (i.e. TDV and BUV), then
we end up in an immediate cycle whereby the meta-objects cycle with each
other rather than traverse the whole meta-model linearly. Fig. 2 illustrates the
evident cycle for the Application Function, implements, Data Component,

implemented by, Application Function example above. As the dotted line in
CGs represent co-referent links thereby meaning that the CG concepts (meta-
objects) are identical, Fig. 2 shows the actual CG join on the right-hand CG

2 https://sourceforge.net/projects/cgfca/
3 These dots can either be replaced a Meta-Object or by a chain of any number of

Meta-Object, semantic relation, Meta-Object triples
4 Note the reference to ‘a’ and ‘an’ in this statement; as will be elucidated by CGs

shortly we refer to instances (called ‘referents’ in CGs terminology) stating that we
are referring to the objects instantiated by the meta-objects, even when a meta-
object points to itself, which is also described in subsection 5.1 of section 5.



hence the cycle. Consequently, we must navigate from one view being either
TDV or BUV, not both. Incidentally, we call these ‘top-down’ or ‘bottom-up’ as
a convenient term to suggest the initial direction of the view traversal. Typically
therefore, going ‘top-down’ (TDV) suggests choosing a starting (or source) meta-
object that is somehow seen as higher up in the layers (and vice versa for ‘bottom-
up’, BUV). This can easily be subjective, as for example with meta-objects next
to each other in the same sub-layer which one of them may be the ‘higher’?
Furthermore, semantic relations that initially start top-down may turn bottom-
up as associated meta-objects are navigated in turn. Our reference to top-down
or bottom-up is thus a working definition rather than a perfect one, especially
for our models to be useful [4].

Fig. 2: CG Views of Data Component and Application Function

3.3 Applying CG-FCA to the exemplar

Going back to the complete version of Fig. 1 as our industrial exemplar of a
meta-model with bidirectional associations, CG-FCA is applied to the ternary
relations that make up directed graphs thereby turning them into binary re-
lations. The meta-object → semantic relation → meta-object ternary relations
that make up the complete version of Fig. 1 are saved in a simple CSV file. This
file has as its the first column the (source) meta-object, the second the seman-
tic relations, and third the (target) meta-object. For example, reading from top
to bottom: Data Component, implemented by, Application Function and
from bottom to top: Application Function, implements, Data Component.

These ternary relations are amongst the ternary relations that, when joined
together, make up the complete version of Fig. 1 and, incidentally, reveal the
two-way nature of the semantic relations. Each ternary relation forms a new
row in the CSV file. All the ternary relations can then in turn be read by

the CG-FCA software converting it to meta-objectasemantic relation → meta-
object binary relations. For example the ternary relation: Data Component,

implemented by, Application Function becomes the binary: Data Componentaimplemented
by → Application Function. The binary relations are subsequently re-joined
in an FCL as illustrated in section 4. From the reports generated by CG-FCA,



applying CG-FCA to the meta-model allowed for identifying any bi-directional
relation cycles between two related meta-objects with unwanted cycles.

3.4 More Cycles

All legitimate cycles originating in the bidirectional nature of the associations
should be eliminated by separating the directed graphs into TDV and BUV.
CG-FCA still however identifies the following cycles in the complete version of
Fig. 1’s TDV and BUV respectively:

TDV
Cycle: Business Service - contributes value in support of - Mission

- threatened by - Risk - mitigated by - Security - protects - Business

Service

Cycle: Business Service - contributes value in support of - Mission

- threatened by - Risk - mitigated by - Security - protects - Location

- delivers - Business Service

Cycle: Business Service - contributes value in support of - Mission

- threatened by - Risk - influences the design of - Business Channel

- serves - Business Service

BUV
Cycle: Mission - supported by - Business Service - protected by - Security

- mitigates - Risk - threatens - Mission

Cycle: Mission - supported by - Business Service - delivered at - Location

- protected by - Security - mitigates - Risk - threatens - Mission

Cycle: Mission - supported by - Business Service - served by - Business

Channel - design influenced by - Risk - threatens - Mission

At this point it is worth reiterating that putting EA meta-models together is a
manual activity. The risk of the human modeller making mistakes in producing
the meta-model is always present. This likelihood was demonstrated for CG-
based models so could equally happen to the LEAD meta-model [3]. Recognising
this possibility is one of the key motivators for using CG-FCA’s automated
capacities to capture manual errors in the LEAD meta-models.

The cycles above highlight this issue: The TDV and BUV semantic relations
between the Mission and Risk meta-objects could be under the wrong view and
simply need to be swapped over. The modeller (e.g. an Enterprise Architect or
Business Analyst) could also have chosen other candidates to swap instead, such
as the semantic relations between Business Service and Mission but from the
feedback given by CG-FCA’s report decides on Mission and Risk. In practice the
modeller may want to explore the other candidates, further informed by the FCL
in section 4. CG-FCA and the FCL thus augments the expertise of the modeller
through these subsequent iterations towards a more useful meta-model [4].

Remaining with the modeller’s at least initial choice, the TDV ‘threatened

by’ semantic relation from Mission to Risk is thus changed to a BUV, and the



Fig. 3: CG changing the order of TDV and BUV semantic relations

corresponding BUV ‘threatens’ semantic relation is changed to a TDV. Fig.
3 formally describes this swap in CGs by re-depicting ‘threatens’ as a TDV
sub-relation, ‘threatened by’ as a BUV sub-relation and vice versa. When
CG-FCA is re-run on the corrected TDV of the meta-model and the corrected
BUV of the meta-model, the cycles disappear.

Another Cycle: Well, almost. In the BUV report there were other cycles:
Cycle: Platform Device - hosts - Application Service - specializes as

- Platform Service - instantiates - Platform Device

Cycle: Platform Service - hosts - Application Service - specializes

as - Platform Service

As there are no ‘complementary’ cycles in the TDV report that would sug-
gest a TDV would need to be swapped with a BUV, this finding was suspect.
It emerges that there was a classic human error—i.e. a typo—in the CSV file
i.e.: Application Service, specializes, Platform Service. By correcting
it to: Infrastructure Service, specializes as, Platform Service those
remaining rogue cycles were gone. We are of the view that legitimate cycles in
the meta-models though conceivable would be exceptional. They would always
require special investigation rather than simply accepting them, as the later
subsection 5.1 in section 5 further highlights.

4 Visualising the Complex Pathways in the FCL

We now explore and interpret the FCL from the FCA formal context that was
generated by CG-FCA as first described in section 3. To do so, the FCA for-
mal context file (.cxt) file produced by CG-FCA is read into Concept Explorer
(https://sourceforge.net/projects/conexp/) from which the FCL can be gener-
ated. Fig. 4 visualises the result for the TDV of the meta-model. It is one of
the linear views; there is also an FCL for the BUV view going in the opposite
direction but that is not shown due to space limitations in this paper. However
as it is complementary to the TDV (i.e. simply going in the other direction), we
can refer to the TDV FCL for demonstrating the BUV FCL as well5.

5 www.polovina.me.uk/publications/iccs2019 has the BUV FCL.



Fig. 4: TDV FCL



Fig. 5: TDV FCL showing extent and intent of Business Process



Fig. 4 formalises the UML-based LEAD Industry 4.0 meta-model diagram
(of which Fig. 1 is an extract) as a TDV lattice with one formal concept at
the top, called the top-most concept and one formal concept as the bottom,
called the bottom-most concept. The top-most concept has the Infrastructure

Component, Platform Component, Application Module, Organisational Capability,
Value Proposition, Driver and Force meta-objects as part of its extent.

Traversing down the lattice, the meta-objects relative dependencies are re-
vealed. For example, Business Process, which is highlighted in Fig. 5. All the
meta-objects in the pathways below the formal concept for the meta-object
Business Process are dependent on it. They are said to be in the extent of
the Business Process meta-object. The bottom-most formal concept (at the
very bottom of the lattice) has no meta-objects attached to it (i.e. an empty
extent).

We can also refer to the intent of a formal concept, based on the attributes
of the formal context that was set out in the definition of a formal concept
at the beginning of section 3 earlier. (The extent refers to the objects in that
definition.) For example the intent of the Business Process meta-object are
all the attributes above it in the lattice. Hence, the Business Process meta-

object depends on the entire meta-objectasemantic relation set of attributes
above it. The dimmed component parts in Fig. 5 show those meta-objects and
semantic relations that are not in the extent and intent of Business Process.
The top-most formal concept has no attributes attached to it (i.e. an empty
intent).

All in all by elucidating the pathways, intents and extents the FCL elicits
information that: a) is not evident in the UML-based meta-model diagram, b)
empowers our understanding of the meta-models and their usefulness, and c)
empowers the organisation’s EA through this deeper understanding.

5 Discussion

5.1 Cycles to the Same Meta-Object

Returning to cycles, the semantic relation ‘composed of or contained within’

isn’t in the Industry 4.0 meta-model illustration. It does however appear in an-
other LEAD meta-model from which this semantic relation is taken. It is explic-
itly referred to here as it reveals another form of cycle to which this semantic
relation is applied—i.e. one than can point to the same meta-object. In fact,
although they have the same meta-object name they aren’t the same instance.
They are different business processes6. In CGs this distinction is conveniently
made. Fig. 6 shows this directed ternary relation (view) in CGs, which are based
on existential logic that assumes a different referent (instance) unless told other-
wise [10]. In CGs to make them the same we have to express them as having the
same referent—i.e. co-referent—as illustrated by the variable ‘*a’ in Fig. 7’s

6 Differentiated by the names given at levels 1 to 4, akin to the example of Fig. 1.



CG7. The onus is thus to override the default behaviour of CGs, thereby feeding
back to us to check cycles rather than accept them at the outset.

Fig. 6: CG of Business Process

Fig. 7: CG of Business Process that is a Cycle

(a) No Cycle (b) Cycle

Fig. 8: FCL for Business Process

Fig. 8 highlights how Fig. 6 and 7 are thereby respectively displayed as a
FCL8. In an FCL, the circles are the formal concepts. Notably, in the cycle FCL
it doesn’t point to another formal concept—i.e. the second Business Process.
Rather, CG-FCA expresses the cycle by simply denoting it in the same formal
concept. (The semantic relation in the Fig. is shortened from ‘composed of or

contained within’ to ‘composed’ for convenience.)

7 Equivalent to the dotted lines denoting co-referents in Figs. 2 and 3.
8 The CGs in this paper were drawn in CharGer (http://charger.sourceforge.net/)

then for these Figs. converted to CGIF (Conceptual Graphs Interchange Format),
which is part of the ISO/IEC 24707:2007 Common Logic Standard. The CGIF file
is then read in by CG-FCA, which generates the formal context (.cxt) file that can
be turned into an FCL.



For comparison, to show cycles generally in an FCL from CG-FCA the Fig. 9
shows an extract from a larger FCL with the earlier ternary relation that was de-
scribed under ‘Another Cycle:’ in 3.4 of section 3—i.e. Application Service,

specializes, Platform Service before it was corrected to: Infrastructure
Service, specializes as, Platform Service. It caused Platform Service

to have a cycle that, in this case, was unwanted due to it being a typo.

Fig. 9: CG of Business Process that is a Cycle

5.2 Related research

Earlier we remarked on the motivation for CGtoFCA and CG-FCA. Interrelating
CGs and FCA has been a subject of much interest e.g. [9]. CGtoFCA arose from
Wille’s (and others’) long-standing work on Concept Graphs, and identifying
certain shortcomings with Concept Graphs—which Wille distinguished from CG
(Conceptual Graphs)—and how they are overcome with CGtoFCA [2,15]. To test
its value, CGtoFCA was implemented in computer software i.e. CG-FCA9 and
its use and benefits published (e.g. [3, 5, 11]).

Similar work was also investigated. Relational Concept Analysis (RCA) ex-
plores the attributes found in three compartment UML class diagrams [13].
CGtoFCA however works with single component UML class diagrams where
the class name (the meta-object in our case) alone is of interest. This also re-
flects that CGtoFCA is more in-keeping with Concept Graphs, from which it

9 https://sourceforge.net/projects/cgfca/



derives. The approach applied (in our case to cycles) in subsection 3.4 of sec-
tion 3 also touches upon similar work on ontological patterns, anti-patterns and
pattern languages for conceptual modelling [7].

5.3 Future research

In our ongoing research, we need to understand what else FCA (through CG-
FCA and the FCL) may be telling us. We are in the process of streamlining
the process by integrating CG-FCA and the FCL into the Enterprise Modelling
tool Enterprise Plus (E+, www.enterpriseplus.tools). Whereas we only remained
with the modeller’s initial choices (e.g. in rectifying the unintended cycles), such
a streamlined process would allow the efficient explorations of alternatives only
indicated in this paper.

Another area of interest is whether the bottom-most formal concept should
have its own object. In previous work, populating this formal concept with a
meta-object was presented as pertinent to the validity of the meta-model [11].
But as we are currently evaluating the validity of such a claim, that assertion is
not made in this paper.

The information gathered by CG-FCA and the FCL of the meta-model com-
plements lucidly the UML-based meta-model diagram, serving our present pur-
poses. There may however be even more lucid ways of visualising the CG-FCA
results. The validity of our approach may spur others to research such visuali-
sations. As one alternative, we are evaluating formal concept trees [1]. Given its
proximity to CGtoFCA, we also maintain an interest in RCA and to explore it
in more depth.

As CG-FCA can be applied to any directed graph beyond the meta-models
that we’ve described here, there is potentially a wider remit for its use in the real-
world. Previously it was applied to Conceptual Graphs (CGs), and now to single
compartment UML class diagrams with directed associations. RDF, RDF(S),
OWL are examples of future candidates. Further research in these and other
hitherto unidentified areas would be of interest. Meanwhile our work remains
focussed in LEAD and the usefulness of EA meta-models for organisations and
their clients, given there is more to discover in this focussed area of our research.

6 Conclusion

By applying CG-FCA to LEAD, we have shown how directed graphs can con-
tribute to a better understanding of LEAD (and other EA) thus lead to a more
meaningful EA for organisations. LEAD articulates how the classes—i.e. meta-
objects—and two-way associations—i.e. semantic relations—can best be identi-
fied and related, and LEADing Practice including its association with the GUA
has built a comprehensive set of reusable reference content based on it. CG-FCA
thus helps to: a) deepen our understanding of this content, b) check human error
given that meta-model development is a manual process hence inherently error
prone, c) unpick the complexity in the meta-models, and d) relate it back to our
human understanding through the FCL.



References

1. Simon Andrews and Laurence Hirsch. A Tool for Creating and Visualising Formal
Concept Trees. In CEUR Workshop Proceedings, volume 1637, pages 1–9, 2016.

2. Simon Andrews and Simon Polovina. A Mapping from Conceptual Graphs to For-
mal Concept Analysis. In Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol-
ume 6828 LNAI, pages 63–76, 2011.

3. Simon Andrews and Simon Polovina. Exploring, Reasoning with and Validating
Directed Graphs by applying Formal Concept Analysis to Conceptual Graphs. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), pages 3–28. Springer, 2017.

4. George EP Box and Norman R Draper. Empirical model-building and response
surfaces. John Wiley & Sons, 1987.

5. Jamie Caine and Simon Polovina. From Enterprise Concepts to Formal Concepts:
A University Case Study. In Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
pages 84–96. Springer, 2018.

6. The Open Group. 30. Content Metamodel, 2018.
http://pubs.opengroup.org/architecture/togaf92-doc/arch/chap30.html.

7. Giancarlo Guizzardi. Ontological Patterns, Anti-Patterns and Pattern Languages
for Next-Generation Conceptual Modeling. In ER, 2014.

8. Barbara H. Liskov and Jeannette M. Wing. A Behavioral Notion of Subtyping.
ACM Trans. Program. Lang. Syst., 16(6):1811–1841, November 1994.

9. Guy Mineau, Gerd Stumme, and Rudolf Wille. Conceptual structures represented
by conceptual graphs and formal concept analysis. In Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics), 1999.

10. Simon Polovina. An Introduction to Conceptual Graphs. In Uta Priss, Simon
Polovina, and Richard Hill, editors, Conceptual Structures: Knowledge Architec-
tures for Smart Applications, pages 1–14, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

11. Simon Polovina and Mark von Rosing. Using Conceptual Structures in Enterprise
Architecture to Develop a New Way of Thinking and Working for Organisations.
In Peter Chapman, Dominik Endres, and Nathalie Pernelle, editors, Graph-Based
Representation and Reasoning, pages 176–190, Cham, 2018. Springer International
Publishing.

12. Uta Priss. Formal Concept Analysis in Information Science. Annual Rev. Info. Sci
& Technol., 40(1):521–543, December 2006.

13. Mohamed Rouane-Hacene, Marianne Huchard, Amedeo Napoli, and Petko
Valtchev. Relational concept analysis: Mining concept lattices from multi-relational
data. Annals of Mathematics and Artificial Intelligence, 2013.

14. Mark von Rosing and Wim Laurier. An Introduction to the Business Ontology.
International Journal of Conceptual Structures and Smart Applications (IJCSSA),
3(1):20–41, 2015.

15. Rudolf Wille. Conceptual Graphs and Formal Concept Analysis. In Dickson
Lukose, Harry Delugach, Mary Keeler, Leroy Searle, and John Sowa, editors, Con-
ceptual Structures: Fulfilling Peirce’s Dream, pages 290–303, Berlin, Heidelberg,
1997. Springer Berlin Heidelberg.


