
Investigation into Swarm-based Cooperative Behaviour in Execution of Open Field
Agricultural Tasks

JANANI, Alireza

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/24182/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.

The content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the author.

When referring to this work, full bibliographic details including the author, title, awarding
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/24182/ and http://shura.shu.ac.uk/information.html for
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html

Investigation into Swarm-based Cooperative Behaviour in Execution of
Open Field Agricultural Tasks

Alireza Janani

A doctoral project report submitted in partial fulfilment of the requirements of
Sheffield Hallam University

for the degree of Doctor of Professional Studies Doctor of Philosophy

Sheffield Hallam Univeristy
Materials and Engineering Research Institute

UK
March 2018

Abstract

Because of the significant drop in the number of farmers and increase in the earth

population, the use of autonomous farming units including unmanned tractors is be-

coming more and more popular. However, relying on a single autonomous farming

unit to carry out the entire task on a large field is inefficient. Using multiple au-

tonomous tractors bring more efficiency, however, without cooperation this attempt

will fail (Mataric et al., 1995). This cooperation can be achieved by an appropriate

task allocation and coordination mechanism between the participating units. The

current trend in this field is to use direct forms of communication in any form of

directional or broadcasting meaningful messages among the group. The messages

assist the group to identify the state of the task, assigned workload, collision and

congestion avoidance, and etc. These forms of approaches are fast and efficient when

units are within the communicating signal range.

In this thesis, we aim to investigate the feasibility of cooperative execution of open

field farming task including spraying and ploughing while inter-team interaction

is other than direct communication methods. For every task, an algorithm is sug-

gested and an appropriate mathematical model is presented. Then, using ROS Stage

simulation environment, each algorithm is implemented and multiple tests are con-

ducted. Finally, the simulation results and the correspondent mathematical results

are compared and appropriate modifications are suggested.

Candidate’s Statement

I declare that this work has been conducted in accordance with the regulations of

Sheffield Hallam University and is the author’s own work apart from where indicated

by specific reference to other sources. The work has not been submitted as part of

any other award or presented to any other institution.

Alireza Janani 20/01/2018.

Acknowledgement

I would like to, firstly, thank my wife who supported me through thick and thin in

this journey. I couldn’t complete this program without her support and patience.

My gratitude goes to my Director of Studies, Prof. Jacques Penders, for his contin-

ued invaluable support, advice and guidance and with whom my robotic life began.

I am also grateful to Dr Lyuba Alboul, my Doctoral supervisor, who challenged my

thinking and made me realise the importance of each small achievement. Both of

you have been inspirational and this journey would not have been possible without

you. Finally, I would like thank my sister and parents, who also supported me in

this journey.

Contents

Contents . i

List of Figures . vi

List of Tables . ix

1 AGRICULTURE AND ROBOTICS: TRENDS AND CHALLENGES 1

1.1 Agriculture: Everlasting Tension . 1

1.2 Agriculture: Current Trends and Methods 3

1.2.1 Mechanisation . 3

1.2.2 Precision Farming . 4

1.2.3 Multi Robot Approach . 5

1.3 Research Question, Aim and Objectives 8

1.4 Thesis Contribution . 8

1.5 Thesis Layout . 10

1.6 Research Location . 11

2 LITERATURE REVIEW . 13

2.1 From Multi Agent System to Multi Robot System 13

2.2 Multi Robot System . 14

2.3 Application Domain of Multi Robot System 15

2.3.1 Foraging . 15

2.3.2 Area Coverage and Exploration 15

2.3.3 Multi-Target Observation . 16

2.3.4 Object Transportation . 16

2.3.5 Flocking . 17

i

2.3.6 Soccer . 17

2.4 Team Characteristics . 17

2.4.1 Control Structure . 18

2.4.2 Differentiation . 21

2.4.3 Communication Structure . 23

2.4.4 Representative Architecture 27

2.5 Main Questions in Multi Robot System 29

2.5.1 Task Partitioning and Allocation 30

2.5.2 Coordination . 32

2.5.3 Congestion Avoidance and Clearance 34

2.6 Cooperative Farming: Review and Analysis 36

2.6.1 Agricultural Tasks . 37

2.6.2 Analysis of the Related Works 38

2.6.3 The Problem of Localisation in Agricultural Robotics 42

2.7 Conclusion . 48

3 COOPERATIVE PLOUGHING: DESIGN AND IMPLEMEN-

TATION . 49

3.1 Ploughing Analysis . 49

3.1.1 Ploughing Patterns . 50

3.1.2 Ploughing Restrictions . 52

3.1.3 Ploughing Mouldboards and Furrow Transitioning 52

3.1.4 Ploughing Cost . 54

3.2 Design Requirements and Considerations 56

3.3 Interaction Model . 58

3.3.1 Furrow Detection . 58

3.3.2 Vision Based Furrow Detection 60

3.3.3 Accuracy of the Vision Based Furrow Detection 61

3.4 Points of Failure . 63

3.5 Congestion Clearance . 63

3.5.1 Spatial Resource Conflict . 64

ii

3.5.2 Proposed Solution to Spatial Resource Conflict 64

3.5.3 Collision Avoidance . 67

3.6 Challenges in Obstacle Detection Implementation 70

3.6.1 Differentiation between other team members and the rest of

the obstacles in the environment 70

3.6.2 Entering the Field due to Collision Avoidance 78

3.6.3 Combination of Collision and Congestion Avoidance 78

3.7 Team Ploughing . 79

3.8 Furrow Transitioning . 80

3.8.1 Ploughing with a Reversible Mouldboard: First-In, First-Out . 81

3.8.2 Ploughing with a Reversible Mouldboard: Last-In, First-Out . 88

3.8.3 Comparison and Discussion 94

3.9 Ploughing Optimisation . 99

3.9.1 Issues with FIFO and LIFO 100

3.9.2 Toward Self-Organising Ploughing 101

3.10 Conclusion . 106

4 COOPERATIVE SPRAYING: DESIGN AND IMPLEMENTA-

TION . 107

4.1 Motivation Behind Further Investigation 107

4.2 Spraying Analysis . 111

4.2.1 Single Robotic Sprayer . 112

4.3 Cooperative Spraying: Design Description 115

4.3.1 Task Partitioning Analysis . 117

4.3.2 Task Allocation Analysis . 118

4.3.3 Task Initiation Analysis . 121

4.3.4 Spraying Time Analysis . 121

4.3.5 Design Limitations . 122

4.4 Implementation and Testing . 126

4.4.1 Mathematical Results . 126

4.4.2 Simulation Results . 128

iii

4.5 System Optimisation . 132

4.5.1 Dynamic vs Static Checkpoints 132

4.5.2 Optimum Team . 132

4.5.3 Large Team and Fewer Checkpoints 133

4.6 Conclusion . 138

4.7 Critiques and Future Work . 140

5 Discussions, Conclusions and Future Works 141

5.1 Research Recap . 141

5.2 Region-based vs Self-organised, FIFO, LIFO 145

5.2.1 Execution Time Comparison 146

5.2.2 Scalability, Flexibility and the Required Coordination 147

5.2.3 Resilience Toward Failure . 149

5.3 Application Scope . 152

5.3.1 Seeding . 152

5.3.2 Harvesting . 153

5.3.3 Multi-Robotic De-mining and Mine Field Mapping 157

5.3.4 Cooperative Beacon Distribution 158

5.4 Conclusion and Future Directions of Research 160

5.4.1 Recovering from Failure During Task Execution 163

5.4.2 Hybrid Approaches . 163

References . 165

Appendix A Spraying Optimum Team Size 190

Appendix B C++ Code for Artificial Potential Field Using ROS . 195

Appendix C C++ Code for Cluster Class 200

Appendix D C++ Code for Cluster Finding 202

Appendix E C++ Code for Chilitag Fiducial Finding 209

Appendix F C++ Code for Color-based Pattern Recognition . . . 212

iv

Appendix G C++ Code for FIFO Task Handler 218

Appendix H C++ Code for LIFO Task Handler 228

Appendix I C++ Code for Self-organised Task Handler 236

Appendix J C++ Code for Region-based Task Handler Using ROS 242

Appendix K C++ Code for Reach Point Using ROS 252

v

List of Figures

3.1 Ploughing in action . 50

3.2 Ploughing Patterns . 50

3.3 Furrow Transitioning in Action . 51

3.4 Ploughing Mouldboards . 53

3.5 Ploughing Patterns Using Conventional Mouldboards 54

3.6 Ploughing Patterns Using Reversible Mouldboards 55

3.7 Furrow Detection Results . 61

3.8 Congestion Demonstration . 65

3.9 Congestion From Different Direction 65

3.10 Division of Field of View . 66

3.11 Artificial Potential Field(APF) Demonstration 68

3.12 Demonstration of Local Minima Issue in APF 69

3.13 QR-code Tracking . 73

3.14 Flickering Pixel Effect . 75

3.15 RGB-LED Feature Localisation . 76

3.16 RGB-LED Feature Based Localisation Camera View 77

3.17 RGB-LED Feature Based Localisation Noise Removal 77

3.18 Field View for Combining Collision and Congestion Avoidance 79

3.19 Ideal Position of the Robot for Ploughing 81

3.20 FIFO Furrow Transitioning Demonstration 83

3.21 Ploughing with a Reversible Mouldboard FIFO - Flow Chart 87

3.22 LIFO Furrow Transitioning Demonstration 91

3.23 Ploughing with a Reversible Mouldboard LIFO - Flow Chart 93

3.24 FIFO vs LIFO Productivity Comparison 95

vi

3.25 FIFO vs LIFO Processing Time Comparison 96

3.26 FIFO vs LIFO Travelled Distance Comparison 97

3.27 Software System Diagram for Ploughing 98

3.28 FIFO and LIFO Difference between Simulation and Mathematical

Results . 99

3.29 The Self-Organised Approach Demonstration 102

3.30 Furrow Transitioning in the Self-Organised approach 102

3.31 Self-organised ploughing flowchart . 104

3.32 Self-Organised Ploughing Required Travelling Distance 105

3.33 Time Analysis of Ploughing Methods 105

4.1 Shortcoming of Ploughing Interaction Method in Spraying 108

4.2 Excessive Spraying Demonstration . 109

4.3 Shortcoming of Static Task Allocation in Spraying 110

4.4 Spraying in Action . 112

4.5 Irrigation Robot . 113

4.6 Hortibot Robot . 114

4.7 Spraying Task Allocation Demonstration 116

4.8 Spraying Task Initiation Demonstration 117

4.9 Spraying Time Analysis . 119

4.10 Spraying Time Analysis Checkpoint Occupation 120

4.11 Spraying Task Allocation Breaking Point Demonstration 123

4.12 Spraying Successful Task Initiation Condition Demonstration 124

4.13 Spraying Task Allocation Failure Demonstration 124

4.14 Detection Range Issue with Spraying Approach 125

4.15 Team Size for Different Field Size . 127

4.16 Spraying Time Comparison . 128

4.17 Spraying Software Diagram . 129

4.18 Region-based Task Handler Flowchart 130

4.19 Region-based Simulation vs Mathematical Results Comparison 131

4.20 Modification on Spraying Checkpoint Distance 133

vii

4.21 Spraying Task Initiation with Patrol Robot 135

4.22 Patrol Robot Excessive Execution Prevention 136

4.23 The Effect of Patrol Robot on the Rest of the Team 136

4.24 Spraying Task Completion . 137

5.1 Execution Time Comparison for Different Team Sizes 147

5.2 Seeding Patterns . 153

5.3 Harvesting Carrot . 154

5.4 Different Harvesting Machines . 154

5.5 Single Harvester in the Region-based Approach 156

5.6 Single Harvester in Self-organising Approach 156

5.7 Current Di-mining Approaches . 158

viii

List of Tables

3.1 Variation in tag position and observer position vs Distance to the tag 74

3.2 List of parameters for simulation and mathematical visualisation . . . 94

ix

CHAPTER 1

AGRICULTURE AND ROBOTICS: TRENDS AND
CHALLENGES

This chapter presents the research motivation and background, and
the research aim and objectives. The main aim of this chapter is
to assure that the reader comprehends the urge for human inde-
pendent approaches to perform agricultural tasks. A global and
epidemic issue in agriculture which jeopardizes the future of food
industry is discussed in 1.1. The current trends aiming to compen-
sate the raised issue are presented in 1.2. The direction of research
and aim and objectives of the research are listed 1.3. Finally, the
thesis layout is explained in 1.5

1.1 Agriculture: Everlasting Tension

Agriculture is defined as domestication of animals and plants. There are various

tasks to consider in the field of agriculature. Chandrasekaran et al. (in 2010) classi-

fied agricultural branches into various categories including, Crop Production (deal-

ing with production of various food crops), Horticulture (dealing with production

of flowers, fruits, and vegetables), Forestry (dealing with large scale cultivation of

perennial trees for supplying wood), Animal Husbandry (dealing with maintenance

of various types of livestock for direct energy), Fishery Science, and Home Science.

The archaeological excavations date back agriculture to 10,000 years ago. Since then,

human beings have used agriculture mainly to provide food. However, nowadays

agricultural products are demanded by various industries including pharmaceutical,

energy and fashion. (Chandrasekaran et al., 2010).

1

As population increases, the demand for food increases too. Between 1960 and

2000 the population of the earth was doubled. In return, agricultural productivity

improved by 2.4% annually between 1969 and 1989, but this fell to only 2% between

1989 and 2000 (Fao, 2002). By 2050, it is estimated that the population of the earth

will reach 9.15 billion by which time the overall demand for agricultural products is

expected to grow at 1.1% per year (Alexandratos and Bruinsma, 2012). To satisfy

this level of demand, the agricultural productivity has to be improved by 25% of

the current rate (Fao, 2009).

This everlasting tension has always forced farmers to invent more efficient cultivation

methods. However, recent researches are suggesting that the future improvements

may not be easily achievable. The main reason is the shortage of input labour force.

In Japan, the number of farmers is decreasing, and every year more rice paddies are

abandoned, while the average age of the farmers is increasing (Noguchi and Barawid,

2011). In addition, studies reveal that the younger generations are not interested in

agricultural activities. According to Bloss (2014), 60% of the farmers in Japan are

over 65 years of age.

The shortage in input labour force is a global issue, and it is not limited to a

particular region. For instance, in United States of America, less than 1% of people

are engaged in agricultural activities (Bloss, 2014), and in Europe (EU-27), 24.9%

of agricultural labour dropped(Eurostat, 2015) since 2000.

The main reason is that agriculture is a labour intensive activity with mediocre to

low level income. In addition, traditional and conventional farming methods, for

example relying on seasonal rain for watering the crop, endangers the end products

(Golait, 2007). In this era where demand for food is continuously increasing, the

shortage of manpower makes achieving the targeted improvement in agricultural

2

methods much more difficult.

1.2 Agriculture: Current Trends and Methods

Over the years, more efficient tools and techniques have been developed to improve

productivity of agricultural processes. However, the proposed methods require one

common parameter: Human Labour. In recent decades, various approaches have

been developed to minimise dependency to human input labour force. As a result,

two main trends have been identified: (I) Mechanisation and (II) Precision Farming

(Zhang et al., 2002).

1.2.1 Mechanisation

Mechanisation in agriculture refers to “the application of tools, implements, and

powered machineries as inputs to achieve agricultural production” (Clarke, 1997).

The main advantage of agricultural mechanisation is that the technology satisfies

the real need of the farmers while the prices are affordable (Houmy et al., 2013).

Generally, agricultural machineries can be powered from three sources of energy:

manpower (or manual), animal, and motorised (using fossil fuel or electric power).

A manpower source produces 0.1 Hp (Horsepower) over a limited period. However

by harnessing power of animals, the productivity increases by 6 to 7 fold per animal.

By invention of combustion engine, the productivity was increased even more, up

to 10 fold. Today, agricultural tractors boost this efficiency up to 450 kW (612 Hp)

or more (Shearer and Pitla, 2013). But, even with the introduction of tractors still

a human is required for operation. A human has to drive the machineries through

a large field for various purposes during cultivation period.

In open field farming, one popular trend to reduce field processing time is to process

3

larger portions of the field at a time. This requires the machines to become larger

and heavier, and this will lead to occurrence of soil compaction.

Soil compaction occurs whenever an external stress or pressure exceeds the internal

soil strength, also known as pre-compression stress value (Horna et al., 1995). Soils

level of stress depends on the soil type, the climate, and varies from one location

to another. Soil compaction results in reduction of soil pore volume which causes

reduction in space for air and water in the soil, and consequently reduction in soil

water infiltration (Graves et al., 2015). As a result, less rainwater can penetrate

into the compacted soil which either increases the potential of erosion and runoff,

or may cause the water to remain on the soil surface for longer period of time,

especially in wheel tracks (Wolkowski and Lowery, 2008). Other impacts of soil

compaction are limited root growth, reduction in nutrient uptake by roots, and re-

duction in micro-organism and earthworm activity (Graves et al., 2015). Recovering

from soil compaction is time consuming, and it increases the cost of cultivation by

90% (Blackmore, 2012).

1.2.2 Precision Farming

Even though by mechanisation the productivity is boosted significantly, the need

for a human as an operator constrains further progress. However in recent decades,

progress in search for human independent approaches has led to invention of au-

tonomous unmanned robotic vehicles.

The search for autonomous robots in agriculture started in 1920 when furrows

were used to guide tractors across the fields with reduced effort from the operator

(Mousazadeh, 2013), (Shearer et al., 2010). However the concept of fully autonomous

agricultural vehicles dates back to the 1950s and 1960s where unmanned agricul-

4

tural vehicles navigated throughout the field using leader cable guidance (Ming

et al., 2009). Today, autonomous agricultural robots are applied for various tasks.

Grift et al. (2008) classified advancement in agricultural robotics into four main ar-

eas: (1) Plant Oriented Robotics, (2) Animal Robotics, (3) Controlled Environment

Robotics, and (4) Field Robotics. Significant advances have been made in recent

decades in each of these application areas.

Even though robotic systems are slow in speed, they can operate consistently with

high precision for a long period of time in different weather conditions while reducing

the labour cost. In fact, autonomous dedicated farming units increase efficiency and

yield (Sukkarieh, 2012). This has convinced many countries to invest in autonomous

agricultural approaches (Tarannum et al., 2015). For instance in 2014, the Japanese

government announced plans to fund the development of unmanned farm tractors

(Bloss, 2014).

Although unmanned autonomous robotic approaches have succeeded at reducing

the labour force, they still require human observation for maintenance and failure

recovery (Noguchi and Barawid, 2011). Moreover, the current autonomous tractors

are costly, and only a narrow margin of farmers can afford them.

1.2.3 Multi Robot Approach

The idea of true human independent farming (not even as a supervisory role) led

to the invention of a new approach: multi robot system. Multi robot system is a

well-known topic in the robotics community in which a team of low-cost robots is

deployed into the field to cooperatively execute the given task.

Multi robotic approaches have several potential advantages over single robotic ap-

proaches. With the use of multiple simple and low cost robots, the total execution

5

cost of the system can be reduced (Jones and Mataric, 2005). In addition, a team

of robots can increase system flexibility and robustness by taking advantage of in-

herent parallelism and redundancy (Liu and Wu, 2001). Furthermore, multi robotic

approaches have better system reliability and scalability (Yan et al., 2013). Finally,

they have the potential to become completely human independent (Noguchi and

Barawid, 2011).

However, the main drawback of this approach is system complexity. Deploying mul-

tiple robotic units, which do not interact with each other, in a field to execute the

same task is insufficient, and often it results in complete failure (Jones and Mataric,

2005). The key parameter to an effective and successful team of robots is coop-

eration. Cooperation emerges from individual cooperative behaviour. Cooperative

behaviour of robots has to be planned and designed accurately so that unwanted

competition among robots is prevented (Jones and Mataric, 2005).

In order to have a cooperative team of robots, first characteristics of the team have

to be identified. These characteristics define robots’ limitations and capabilities,

and sometimes are referred to as group architecture (Uny Cao et al., 1997). These

characteristics are as follows:

• Communication or Interaction Structure: explicit vs implicit.

• Control Structure: centralised vs decentralised.

• Differentiation: homogeneous vs heterogeneous.

Next, three main questions have to be answered:

1. How to divide the complex global task into smaller manageable subtasks (i.e.

task partitioning)?

6

2. How to distribute and assign each subtask to each participating robot (i.e. task

allocation)?

3. How robots can attend their assigned task in a shared environment without any

collision and congestion (i.e. coordination)?

Consequently, by answering these three questions, cooperation could emerge from

a team of robots. The emerged cooperation can be scaled and quantified with

the following parameters: scalability, robustness, self-organisation, and coordination

strength (Barca and Sekercioglu, 2013), (Farinelli et al., 2004). These terminologies

will be discussed in more details in Chapter 2.

The current trend in multi robotic approaches in the field of agriculture is to achieve

cooperation through a dedicated coordinator via explicit forms of interaction. In ex-

plicit forms of interaction, each robot deliberately broadcasts its intentions to other

members or an individual in the team. These messages could be transmitted via

Wi-Fi, Bluetooth, or via any other types of signalling including blinking LED, ul-

trasounds, vibration, and etc (Uny Cao et al., 1997). With explicit forms of interac-

tion, “robots’ behaviours can be planned according to a complete prior knowledge”

Barca and Sekercioglu (2013). However, these approaches are susceptible to the loss

of communicating signal while the computational cost increases with the increase

in the number of participating robots. In addition, they have limited scalability,

robustness, and self-organisation (Parker, 1993) (Lumelsky and Harinarayan, 1997).

However, in implicit forms of interaction, robots intentions are observed and inter-

preted either by changes in the environment created as a result of robots movement

or task execution or local interaction among robots (Uny Cao et al., 1997). This

form of interaction is unintentional, and hence it is referred to as indirect form of

interaction (Barca and Sekercioglu, 2013). With implicit forms of interaction, the

7

system can become scalable, robust, and highly self-organised. Besides, the loss of

communicating signal can no longer affect the success of the team.

1.3 Research Question, Aim and Objectives

To this date, there have been no approaches in the field of agriculture in which coop-

eration is achieved through implicit forms of interaction. This research is conducted

to investigate the feasibility of cooperation via implicit forms of interaction

in a large team of robots for various agricultural tasks which are executed

in an open field.

The main aim of this research is to develop cooperative behaviour mechanism

by which a team of robots can execute an agricultural task (e.g. plough-

ing, spraying, and harvesting) in a large environment without the use of

explicit forms of communication or central organiser.

To obtain this aim, the following objectives have been foreseen:

• Description of the team architecture and the cooperative model.

• Review and analysis of related works.

• Analysis of the targeted tasks.

• Description and modelling of cooperative approaches.

• Simulation of the proposed approaches.

• Implementation and Validation of the designed approaches.

1.4 Thesis Contribution

Implicit Forms of Communication in Swarm in Open Field Farming

8

To this point, there have been no attempt in open field farming in which a coopera-

tive behaviour emerges in a team of robots as a result of implicit interaction. All of

the related works in the application of open field farming have been accomplished

using explicit forms of communication. In this thesis, the proposed approaches are

based on implicit forms of communication. In other words, robots do not transmit

their intentions intentionally using explicit forms of interaction.

Spatial Congestion Clearance Using Implicit Form of Interaction In gen-

eral, when operating in a shared environment, robots may aim to navigate to a

shared coordinate in space. In this situation, congestion is inevitable. Normally, a

central unit coordinates the robots to prevent congestion. Alternatively, a conges-

tion is resolved between two robots using some form of signalling. Both approaches

require explicit form of interaction. In this thesis, an approach is suggested that

only relies on implicit form of interaction.

9

1.5 Thesis Layout

The layout of this thesis are as follows:

Chapter 1: This chapter presents the research motivation and background, and

the research aim and objectives. The main aim of this chapter is to assure

that the reader comprehends the urge for human independent approaches to

perform agricultural tasks. In the first section, a global and epidemic issue in

agriculture which jeopardizes the future of food industry is discussed. Next,

current trends aiming to compensate the raised issue are presented. Finally,

the direction of research and aim and objectives of the research are listed.

Chapter 2: In this chapter, the terminology introduced previously are discussed.

Next, with the defined terminology, the architecture of the team which is

considered in this thesis is introduced. Finally, similar works are described

and analysed.

Chapter 3: In this chapter, ploughing with a team of robots is discussed. First,

the task of ploughing is analysed to determine the design considerations and

requirements. Next, the recognised problems are addressed, and two coopera-

tion models are presented. Further, the results obtained from analysing these

models are presented, compared, and criticised. Finally, to improve the system

and compensate the identified drawbacks, an optimised method is presented,

analysed, and compared with the previous cooperation models.

Chapter 4: In this chapter, spraying with a team of robots is discussed. This

includes analysis and identification of design consideration and requirements

of the task of spraying, comparison with ploughing, description of the cooper-

10

ative model, implementation and discussion regarding the obtained simulation

results.

Chapter 5: This chapter presents conclusions and discussions over the obtained

results. Moreover, it aimed to identify the future research axis to this research.

1.6 Research Location

The research is carried out in Sheffield Hallam University, Materials and Engineering

Research Institute (MERI), Centre for Automation and Robotics Research (CARR).

Numerous robotic researches have been conducted in this centre in variety of robotic

fields from human robotic interaction to multi robotic systems and swarm robotics.

The related projects in multi robotics and swarm robotics include GUARDIAN

(Guardian, 2010) and I-SWARM (ISwarm, 2006). In the GUARDIAN project, a

team of robots provide vital environmental information (including obstacles, partic-

ular toxic gas level, and etc) to a fire fighter who is surrounded by the team through

the modified oxygen mask. On the other hand, the aim of I-SWARM is the real-

isation of collective intelligence of swarm of microrobots, in terms of cooperation

and collective perception using knowledge and methods of pre-rational intelligence,

machine learning, swarm theory and classical multi-agent systems (ISwarm, 2006).

In addition to swarm related projects, the research centre hosts projects from other

areas in the field of robotics. In human robot interaction area, CARR hosts En-

gineering and Physical Sciences Research Council (EPSRC) funded project called

REINS (REINS, 2011). In REINS, the focus is to develop a semi-autonomous mo-

bile robot with sensory capabilities that transfer environmental information to the

attached fire fighter via haptic and tactile interaction methods in a smoked filled

environment in which the visibility is as low as none.

11

The supervisory team, Prof Jacques Penders and Dr. Lyuba Alboul, were involved

in the mentioned projects along with other related research projects which are not

mentioned in here.

12

CHAPTER 2

LITERATURE REVIEW

The main aim of this chapter is to demonstrate that the current
approaches in the agricultural robotics are not reliable and sufficient
for future development and expansion. The relevant definitions in
multi robot system are discussed in 2.1 and 2.2. The application
domain in multi robot system is reviewed in 2.3. Multi-robotic
team characteristics are reviewed in 2.4 and design questions in
any multi-robotic team is mentioned in 2.5. Finally, the previous
contributions in multi-robotic farming is reviewed in 2.6.

2.1 From Multi Agent System to Multi Robot System

The modern approach to artificial intelligence is centred around the concept of au-

tonomous agents (Vlassis, 2003). According to Wooldridge and Jennings (1995), an

entity can be counted as an agent if it has the following properties:autonomy : to

make decisions without the direct intervention of others, reactivity : to perceive

the surrounding environment (e.g. the physical world or a graphical user interface)

and to provide appropriate response. pro-activeness : to exhibit goal-directed be-

haviours by taking the initiative. social abilities : to interact with other entities

via some kind of agent-communication language. Inter-agent communication has

utmost importance in multi agent systems in which multiple autonomous agents

aim to solve a problem cooperatively.

The concept of an agent in computer science, generally is applied to software as it

entails all the aforementioned characteristics. However, robots can be counted as

agents too since robots perceive their surrounding environment through sensors and

13

act upon that environment through actuators in a goal-directed behaviour while

they can communicate with other robots in the environment (Russell and Norvig,

2003). Therefore, the existing concepts and solutions in agent-based systems can be

applied (if applicable) to robotic-based and multi robotic-based problems.

2.2 Multi Robot System

In the past decades, single robot systems have been applied to numerous application

domains. As tasks become more and more complex, the robotic units are designed

more complex to fit the given task. However, there are tasks which a single robot,

regardless of how sophisticated the robot design is, is either incapable to carry out

successfully or it requires a long time to complete the process. Consider a search and

rescue scenario in which a robot is given a map of the environment and it is required

to search for injured human beings and to act appropriately upon detection. Clearly,

time is an important asset in this example, and it is preferred to perform the task

as fast as possible. If a single robotic unit is deployed, despite how fast it performs

at every single point on the map, the maximum efficiency cannot be reached. In

addition, the success of the task is susceptible to the loss of the single robot. In

other words, if the robot fails in the middle of the operation, the task cannot be

completed and the robot has to be recovered.

These weaknesses of single robotic units have led to the deployment of multiple

robots. In this approach, a group of robots functions together to complete a shared

goal. The key to success of the given task is the presence of some form of cooperation

among the individuals in the group. In other words, it is not possible to achieve

success within a group of non-cooperative single robotic units.

14

2.3 Application Domain of Multi Robot System

The concept of multi robot systems is being applied to various new tasks every year.

In this section, we provide a brief overview of the current application domains for

multi robot systems.

2.3.1 Foraging

In foraging, the aim is to pick up and gather objects which are scattered in the

environment (Farinelli et al., 2004). This application domain is inspired by the

behaviour of ants that search for food sources distributed around their nest Sahin

et al. (2008). The main challenge in this domain is to implement an optimised

search strategy to maximise the ratio of the returned food. There are various tasks

which require foraging including search and rescue (Beck et al., 2016), toxic waste

cleaning, mine cleaning, and service robots (e.g. (Jung and Zelinsky, 2000);(Jeon

et al., 2016)).

2.3.2 Area Coverage and Exploration

Similarly to foraging, in area coverage, the aim is to visit or analyse all the free

points in space as efficiently as possible (Choset, 2001). Various tasks including

demining (Santana et al., 2005), snow ploughing (Saska et al., 2013), line searching

(Marjovi et al., 2010), open field processing (Noguchi et al., 2004); (Batalin and

Sukhatme, 2002), beacon distributing (Howard et al., 2002), lawn mowing (Zheng

et al., 2005), and car-body painting (Graca et al., 2016) are categorised in area

coverage application domain.

In a slightly different area of application, robots are aimed to explore and analyse

an unknown environment. This task is also referred to as exploration. The main

15

difference between exploration and area coverage application domains is that in area

coverage the map of the environment may or may not be given to the robots prior

to execution, whereas in area exploration the field is completely unknown to the

robots. Therefore, the main issue in area exploration is to generate a global map of

the environment cooperatively and use the map for further navigation or processing

(e.g. (Simmons et al., 2000); (Thrun and Liu, 2005); (Koch et al., 2015)).

2.3.3 Multi-Target Observation

In multi-target observation, also known as CMOMMT: Cooperative Multi-robot

Observation of Multiple Moving Targets (Farinelli et al., 2004), first introduced by

Parker (1999), a team of robots are required to detect and track a group of moving

targets cooperatively. Multi-Robot Target Observation has many connections with

security, surveillance and recognition problems (Werger and Mataric, 2000) where

targets moving around in a bounded area must be observed.

2.3.4 Object Transportation

In this application domain, robots are required to transport objects from point A

to point B. Depending on the size of the objects and capabilities of the robots, the

approaches could further be classified into (i) cooperative pulling/pushing and (ii)

individual object transportation. In cooperative pulling/pushing, individuals are

incapable to transport an object from A to B. Instead, they cooperatively push or

pull (sometimes the combination of both) the object (e.g. (Mataric et al., 1995);(Jose

and Pratihar, 2016);(Weber et al., 2015);(Vig and Adams, 2006);(Yamada and Saito,

1999)). In object transportation, however, the robots are capable to pick up and

carry an object from one location and deliver it to another location individually (e.g.

(Wu et al., 2016a); (Barrientos et al., 2016)).

16

2.3.5 Flocking

In the flocking task, the goal is to navigate together while particular formation is

maintained in the team. This application domain is inspired by formation control

of a flock of flying birds. Cooperation among the individuals is also used to localise

each other, and to fuse information acquired from the environment. Similar to

exploration, map building of unknown environments is a common task tackled in

this application domain, though the difference is that in exploration, there may or

may not be a particular formation among the team. The problem of exploration

and flocking is related to several applications such as transshipment operations in

harbours, airports and marshalling yards (Arbanas et al., 2016), motion coordination

in industrial applications and exploration of dangerous environments (Solovey et al.,

2015).

2.3.6 Soccer

In recent decades, robotic soccer has become an interesting test bed for research

in cooperative multi agent and multi robot system (Kitano et al., 1997). This is

because the environment in which the robots operate is dynamic, and hostile by

which coordination becomes extremely challenging (Farinelli et al., 2004).

2.4 Team Characteristics

Before proposing any design or approach, the characteristics of the team have to be

identified. These characteristics determine the individual and the team level control

structure, strategies or steps to distribute the subtasks and to allocate the required

resources. In this section, important team characteristics are reviewed.

17

2.4.1 Control Structure

The most fundamental decision that has to be made in defining characteristics of a

multi robotic team is how individuals in the team perform decision making. Decision

making is referred to as a “cognitive process resulting in the selection of a course

of action among several alternative scenarios” (Yan et al., 2013). In a multi robot

system, decision making is carried out in centralised or decentralised manner.

Centralised: In a centralised team of robots, there must be at least one robot

or computer which has a complete global information of the environment, other

robots, and the state of the task. This centralised unit is needed to perform task

allocation and coordination among the participating robots in the team (Barca and

Sekercioglu, 2013).

The centralised approach has been studied extensively in various fields of applica-

tion. Tang and Parker (2005) developed a centralised based system by which a

collection of heterogeneous robots reorganise into subteams as needed depending

upon the requirements of the application tasks and the sensory, perceptual, and

effector resources available to the robots. Tang and Parker then applied the system

to the task of box pushing and object transportation. The reason that robots have

to form particular formation at the beginning of the task is that not all robots in the

team have localisation system. The formation will assist the robots without locali-

sation to navigate. Khan et al. (2016) proposed a centralised system for formation

control of nonholonomic mobile robots for obstacle avoidance in a cluttered envi-

ronment. Khan et al. tackled the problem by using “proportional-integral average

consensus estimators”, whereby information from each robot diffuses through the

communication network. Banfi et al. (2016) provides another example of centralised

18

control for multi robot exploration application. In this approach, robots connect to

the base station only when making new observations so the communication is per-

formed more effectively. In exploration in known environment application, Yan et al.

(2010) developed an online sampling-based graph, by which the optimal path is cal-

culated for the robots. Wurm et al. (2008) proposes a coordination mechanism

for a team of exploring robots using segmentation of the environment to determine

exploration targets for the individual robots. The central unit assigns each robot to

a separate segment, thus a balanced distribution of the robots over the environment

is achieved. Yan et al. (2012) developed an empirical-based heuristic planning strat-

egy for the goods transportation by multiple robots. In here, the focus is to plan the

transportation task for each robot by estimating the production rate of goods based

on multi-robot coordination. The centralised approach is also used for multi robot

path planning. Luna and Bekris (2011) present an efficient and complete approach

for multi-robot path planning problems using graph-theory. In there, the central

unit performs the calculations and assigns the paths to each robot.

Decentralized A decentralized architecture is categorized as either distributed or

hierarchical (Uny Cao et al., 1997). In a distributed approach, there is no central

agent to perform decision making, and individuals are equal from the control the

point of view, and each participating individual performs decision making completely

autonomously. In a hierarchical architecture, robots are divided into smaller groups,

and decision making in each group is carried out by local decision makers (Uny Cao

et al., 1997). Yan et al. (2013) refers to this approach as hybrid since it has

properties of both the centralised and decentralised approaches.

Decentralised systems are applied in various multi robot applications. In search

and rescue, Penders et al. (2011) developed a cooperation mechanism for a team

19

of homogeneous robots by which a fire-fighter is guided through a smoked field

environment. In this example, robots always maintain their distance toward the fire-

fighter and each other. All the decision making is carried out individually and robots

utilise only the information collected by their sensors. In area coverage application

domain, Ranjbar-Sahraei et al. (2012) presents an intelligent approach by which

a team of robots covers an area cooperatively. In this example, robots mark their

territory by dispensing pheromone-like materials at the border of the claimed area.

Upon detection of another robots’ pheromone, they perform simple navigational

movement (e.g. turn left/right). In formation control application domain, Lopez-

Gonzalez et al. (2016) proposes a formation scheme, based on Lyapunov techniques,

if the orientation and distance information for each robot is available locally.

Discussion Although, with a centralised system, an optimal plan based on the

global knowledge can be planned, the efficiency drops significantly as the size of the

team increases. Besides, it is not robust in relation to dynamic environments or

failure in communications and other uncertainties (Yan et al., 2013). Moreover, a

centralised architecture is a leader dependent approach which means with failure of

the central unit the system will be incapable of operating (Parker, 1993).

On the other hand, using a decentralized system carries advantages including the

decrease in delay and impracticalities associated with centralized processing, inde-

pendence of computational complexity and size of the team, increase of robustness

toward the loss of the leader, and efficient use of parallelism. The only drawback

of a decentralized architecture is limited awareness of individuals about the global

knowledge (Barca and Sekercioglu, 2013).

20

2.4.2 Differentiation

It is important to decide whether the individuals in a team of robots have the same

capabilities or not since this will greatly affect how the underlying control schemes

will operate (Barca and Sekercioglu, 2013).

A team of robots could be either homogeneous or heterogeneous. In a homogeneous

team, individuals are identical meaning that they have the same hardware and

control software (Uny Cao et al., 1997). Various examples involving homogeneous

team of robots are in cooperative path planning (Habibi et al., 2016), cooperative

localisation (Tsai et al., 2015), search and rescue (Balta et al., 2015); (Couceiro,

2015), cooperative exploration in an unknown environment (Wang and Olson, 2016),

and target tracking (Zheng and Tan, 2015); (Senanayake et al., 2016).

In a heterogeneous team of robots, individuals have different designs and functional-

ities which compliment each other Barca and Sekercioglu (2013). Like homogeneous

teams of robots, heterogeneous teams of robots have been deployed in various ar-

eas of application including topological map-building (Ramaithitima et al., 2016),

search and rescue (Beck et al., 2016);(Gunn and Anderson, 2015), cooperative area

coverage (Pierson and Schwager, 2016), formation control (Sen et al., 2016), cooper-

ative exploration in an unknown environment (Dai et al., 2016), foraging (Castello

et al., 2016); (Prorok et al., 2016),and target tracking (Robin and Lacroix, 2016).

It is important to note that heterogeneity introduces more complexity to the system

due to (1) highly complex task allocation and (2) more dependency on modelling

other robots in the team (Uny Cao et al., 1997). Individuals in a heterogeneous team

of robots have different capabilities. To quantify this, a concept called task coverage

is introduced. Task coverage (in individual level) measures “the ability of an agent or

a member of a team to achieve a given task” (Parker, 1994a). At the team level, task

21

coverage determines the level of cooperation in the team. When the task coverage

is high, task can be accomplished without cooperation, but otherwise, cooperation

is necessary. In the homogeneous teams of robots, the task coverage is maximal

and decreases as the group becomes more heterogeneous. Unlike homogeneous, in

the heterogeneous team of robots task coverage is determined based on individual

capabilities hence more parameters should be considered in the calculation of task

coverage (Uny Cao et al., 1997).

One common trend for task allocation in a homogeneous team of robots is through

role assignment which will be allocated either at design-time or arises dynamically

in real-time (Uny Cao et al., 1997). Numerous researches have been conducted

in this field and different task allocation and role assignment algorithms and tech-

niques have been developed for homogeneous teams of robots including Contract Net

Protocol (Smith, 1980), Dynamic token generation (Cottefoglie et al., 2004), Game

theoretic approach (Arslan et al., 2007), etc. There are also approaches which

do not rely based on any well-known algorithm. Mendoza et al. (2016) applied

role assignment-based task allocation to a homogeneous team of robots deployed in

ROBOCUP 2015 soccer competition. In this particular example, robots task, which

is covering particular zone in the field, is carried out by a dynamic zone selection

algorithm in which robots select specific zones in the field according to the flow of

the game.

But is it possible for a team of homogeneous robots to turn into a heterogeneous

one? In theory, a homogeneous team of robots is a team in which individuals are

identical in terms of software and hardware. However, in various scenarios in which

robots have learning and self-designing algorithms (e.g. (Li et al., 2002), Luke et al.

(1998)) or structure reconfiguration capabilities (e.g. (Murphy, 2000)), with the

22

suggested definition, a homogeneous team becomes heterogeneous. In this scenario,

the task allocation could be carried out in both ways depending on the application.

2.4.3 Communication Structure

Another important characteristic in any team of robots is how the team share their

knowledge about the task and the environment. This is referred to as communication

structure or interaction structure. Over the past decades, various classifications

are proposed. Uny Cao et al. (1997) classified multi robot communication into

three categories: (i)interaction via environment, (ii) interaction via sensing, and

(iii) interaction via communication.

Later, a more abstract classification was used to describe interaction models. In

this classification, interactions are either implicit, which encompasses interaction

through sensing other robots and through the shared environment, or explicit, which

encompasses interaction through communication, (Yan et al., 2013).

Interaction via environment In this approach, robots utilise the available hints

in the shared environment created by other robots as a result of their execution to

extract necessary information. This form of interaction is inspired by the complex

nest building behaviours in ants and termites first described by Grassé (1959). More-

over, since the information is perceived and not intentionally transmitted, this form

of interaction is categorised as an indirect form of interaction.

This form of interaction is extremely popular in the multi robotic and swarm com-

munity, and there are several examples in which cooperation among robots is merged

as a result of their indirect interaction. Parker et al. (2003) presents a robust al-

gorithm for collective robotic construction. In here, the robots, which are equipped

with a force sensitive plough and collision sensors, aim to clear a designated field

23

of any rubbles with an algorithm called blind bulldozing. In this three state finite

state machine algorithm, the robots wander around the field and plough the existing

rubbles into the field borders. When the material that the robot is pushing exerts

a force which is beyond certain threshold, the robot reorient its heading and con-

tinues as before. The similar reorientation occurs if the robot collides with another

robot. Willmann et al. (2012) presents another scalable and robust cooperative

team using only indirect form of communication. In this example, the autonomous

flying vehicles are given the blueprint of the structure and the location where they

can pick the building materials. In this sequential construction, robots place the

building materials right next to the last placed building block. In this way, robots

interaction is through the constructed building.

In (Ranjbar-Sahraei et al., 2012), a team of robots mark their territory by dispensing

particular pheromone. Upon detection marks of another robot, the robot deviates

its path. In this way, robots can cover the entire area cooperatively. Zedadra

et al. (2016) demonstrates a multi agent foraging algorithm named Cooperative

Switching Algorithm for Foraging (C-SAF) inspired from the classical ant system.

In this approach, robots, while searching for food, mark their trail by dispensing

detectable forms of pheromones. In the meantime, “robots create simultaneously

and synchronously a pheromone wave front expansion from the nest to the food and

can use the negative gradient to go back to nest”(Zedadra et al., 2016).

Interaction via sensing In an alternative approach, the necessary information is

perceived by sensing other robots in the team. This approach is inspired by forma-

tion control in flocking birds described by Reynolds (1987). This form of interaction

is also classified as an indirect form of interaction since there is no intention in con-

veying the information. One key requirement in this approach is that each robot has

24

to differentiate and recognise other robots from other objects in the environment

which demands a modelling. The main application is those that require some form

of formation control for example cooperative guidance of a firefighter in smoke filled

environment (Saez-Pons et al., 2010). Saez-Pons et al. presents a cooperative team

of robots that surrounds the firefighter and provide environmental information back

to the firefighter. In this approach, robots aim to maintain their formation while

navigating using the attached range sensors. In (Saska et al., 2013), the robots,

which are performing snow ploughing the roads at the airport, monitor each others’

behaviour and trail with the attached range sensor to adjust their trajectory.

Interaction via communication In this approach, robots transmit their inten-

tions directly to another robot or broadcast via explicit forms of communication

including RF messages (e.g. Bluetooth, Wi-Fi), visual signals (e.g. blinking LED,

RGB LEDs), and other methods including ultrasound messages (Uny Cao et al.,

1997). This often requires a dedicated onboard communication module (Yan et al.,

2013). An interesting taxonomy based on communication presented by Dudek et al.

(1996) classifies multi robotic teams according to their communication range, com-

munication topology, and communication bandwidth. Since conveying information

is intentional, this form of interaction is referred to as a direct form of interaction.

Extensive works have been carried out in this form of interaction in various ap-

plication domains. Simmons et al. (2000) demonstrates how a team of robots can

cooperatively create a global map of the environment. In this example, the mapping

problem is decomposed in a modular, hierarchical fashion: Each robot maintains its

own local map. A central module receives the local maps and combines them into

a single, global map. Rao et al. (2016) presents an algorithm for cooperative ex-

ploration in which robots exchange the required information with each other rather

25

than a central module. In this approach, Utility Based Return (UBR) is used to

perform collaborative exploration. All vehicles start moving from a unique base sta-

tion and spread out by performing frontier-based exploration. Frontiers are selected

based on a utility value which is a trade-off between the expected information gain

at the frontier and the cost to get to it. The vehicles in the vicinity of each other

assign these frontiers among themselves based on the utility value so as to maximise

the total utility of the exploration. The vehicles sense obstacles and map the area

according to the obstacles found, while detecting new frontiers to decide where to

move. When in range with other vehicles, the exploration decision is collaborative

and each vehicle chooses a different frontier to explore in order to avoid more than

one vehicle exploring the same area.

Discussion Although with explicit forms of communication high level of accu-

racy can be achieved, the overall computational cost of the system increases as the

number of participating robots increases. With implicit forms of communication,

although perception and interpretation of information are more complex, the sta-

bility, flexibility, and fault tolerance of the system are better than with explicit

forms of communication. However, various researches suggest that systems in which

interaction is carried out by the combination of both implicit and explicit forms

of communication simultaneously can have both approaches’ advantages. Various

pieces of literature refer to this form of interaction as a hybrid form of interaction

including (Barca and Sekercioglu, 2013);(Yan et al., 2013);(Sahin et al., 2008) to

name a few.

26

2.4.4 Representative Architecture

Any multi robot system inevitably needs to define the aforementioned parameters

prior to system level design or individual behaviour design. In fact, these axes

determine the type of behaviours required for individuals. For instance, if a team of

robots is homogeneous, individuals can model each with unified dimensions. Over

the past decade, several architectures have been developed for different applications.

Few of these architectures are so well-defined that they are adopted as sub-categories

and directions in multi robot system. In this section, few of these architectures are

reviewed.

CEBOT (Cellular roBOTics system): First introduced by Fukuda and Kawauchi

(1990). It is a decentralised hierarchical architecture. A CEBOT team is divided

into smaller groups with local leaders. The leader robots are responsible to allo-

cate subtasks and communicate with other leaders. A distinctive characteristic of

CEBOT is that robots dynamically reconfigure their formation by changes in the

environment as the architecture is inspired by the cellular organisation of biological

entities (Cao et al, 1997).

SWARM: It is a distributed, decentralised, autonomous large groups of robots

(n > 10) that normally interact with each other through the environment. Swarm

robotics inspired mostly by swarm intelligence. Swarm intelligence is defined as col-

lective intelligence that emerges from interactions among large groups of autonomous

individuals (Barca and Sekercioglu, 2013). Sahin (2004) defines “Swarm robotics as

the study of how a large number of relatively simple physically embodied agents can

be designed such that a desired collective behaviour emerges from the local inter-

actions among the agents and between the agents and the environment”. In swarm

robotics, the main inspirations stem from the observation of social insects (Sahin

27

et al., 2008). Robustness, flexibility, and scalability are built in characteristics of a

swarm.

GOFER: It is first developed by Caloud et al. (1990) to study distributed problem

solving in indoor environment in a team of mobile robots (Uny Cao et al., 1997).

In this approach, a central unit, which has a global view of the given task and the

rest of the robots, generate a plan structure which contains task distribution and

team scheduling. The GOFER architecture was successfully used with three physical

robots for tasks such as following, box-pushing, and wall tracking in a corridor.

ACTRESS (ACTor-based Robot and Equipment Synthetic System): First intro-

duced by Asama et al. (1989), and inspired by Universal Modular ACTOR Formal-

ism (Hewitt et al., 1973). This architecture consists of three heterogeneous robots

each responsible for different task along with three workstations. In the deployed

application domain, individuals are not capable to perform the given task (e.g. push-

ing a box) alone, and they have to cooperate with each other. The cooperation and

coordination are achieved through negotiation among robots, hence the focus of this

approach is to improve the efficiency of the communication among robots.

ALLIANCE: Introduced by Parker (1994b), ALLIANCE is developed originally

to study cooperation in a heterogeneous, small-to-medium-sized team of robots.

ALLIANCE is a hybrid in communication architecture since the information is per-

ceived from the environment as well as broadcast messages in the environment.Although

with explicit forms of communication high level of accuracy can be achieved, the

overall computational cost of the system increases as the number of participating

robots increases. With implicit forms of communication, although perception and

interpretation of information are more complex, the stability, flexibility, and fault

tolerance of the system are better than with explicit forms of communication. How-

28

ever, various researches suggest that systems in which interaction is carried out by

combination of both implicit and explicit forms of communication simultaneously

can have both approaches’ advantages. Numerous pieces of literature refer to this

form of interaction as hybrid (Barca and Sekercioglu, 2013);(Yan et al., 2013);(Sahin

et al., 2008).

2.5 Main Questions in Multi Robot System

The multi robot system is a group of autonomous agents which have a shared goal

and work together to achieve the given task. From the psychological point of view,

robots are selfish, utility-driven agents (Uny Cao et al., 1997) which only aim to

succeed at the given task. In this situation, competition rather cooperation emerges

in a group of single robot systems to access the shared resources in the environment

(Jones and Mataric, 2005). It could be said that the key element that separates

multi robot teams from a group of single robot systems is cooperation (Jones and

Mataric, 2005).

Cooperation requires three main elements: task partitioning, task allocation, and

coordination. In any multi robot application, the global task has to be analysed,

and if necessary the global task has to be divided into manageable portions referred

to as sub-tasks. This process is referred to as task partitioning. Next, each subtask

is distributed to one or more individuals in the team. This process is referred to

as task allocation. Finally, robots attending sub-tasks require resources (including a

point in space) which have to be accessed while any probable congestion is avoided.

This process is referred to as coordination. In this section, these research elements

and current trends to resolve them are reviewed.

29

2.5.1 Task Partitioning and Allocation

The problem of task allocation is to respond to the question of “which robot is doing

which task?”. In order to answer this question, the global task has to be decomposed

into two or more sub-tasks. Task allocation and task partitioning are strongly inter-

twined together. According to Dias et al. (2006), there are two common approaches

for the aforementioned question. In one approach, the task is first decomposed and

then sub-tasks are allocated to the robots (also refer to as decompose-then-allocate)

(Caloud et al., 1990), or the global task is given to all individuals, and each robot

individually decomposes it to smaller manageable pieces (also known as allocate-

then-decompose) (Botelho and Alami, 1999);(Pini et al., 2011).

Task partitioning (or decomposition) also depends on the characteristics of the task

and the capabilities of the robots. According to the taxonomy provided in (Gerkey

and Mataric, 2004), a team of robots and a task can be classified based on few

characteristics:

(I) Single Task robots versus Multi Task robots: Multi Task refers to robots

which are capable of executing multiple tasks at a time, and Single Task refers

to robots which are capable of executing only one task at a time.

(II) Single Robot task versus Multi Robot task: A Single Robot task refers

to a task which require only one robot, whereas a Multi Robot task refers to

a task which require more than one robot to be completed.

(III) Instantaneous Assignment versus Time extended Assignment: Instan-

taneous Assignment means that the task can be allocated to individuals in-

stantaneously and without any extra information. Time Extended refers to

tasks in which task allocation demands more information regarding the envi-

30

ronment, the team, or the completion state of the task.

There are various methods that the global task can be divided and distributed among

a team of robots. In here, the reviewed task allocation methods are divided into two

main approaches: (I) Static Task Allocation, and (II) Dynamic Task Allocation.

In static task allocation, prior to task execution, the task is divided into smaller man-

ageable sub-tasks and distributed to each individual in the team at the design time.

For instance in applications related to processing an open field, the environment is

first divided and distributed among robots in a way so that robots’ navigation are

minimised using various theories and algorithms including graph theory (Sungjun

et al., 2015), (Fazeli et al., 2010), and (Ahmadi and Stone, 2006). Although static

allocation is fast and efficient, it does not tolerate any real-time changes that could

occur in the environment.

In dynamic task allocation, the task will be distributed among robots during the task

execution. According to Karla and Martinoli (2006) The dynamic task allocation

can further be classified into two sub-categories: threshold-based and market-based

task allocation. In threshold-based approaches, the robots utilise the changes in the

environment to identify the state of the global task and what is required to be done

next. A robot resumes its search for hints in the environment until it reaches the

conclusion that the global task is completed. Threshold-based task allocation has

been applied to various application domain including foraging (Krieger et al., 2000)

and aggregation (Agassounon and Martinoli, 2002).

In market-based approaches, robots act as self-interested agents in pursuit of indi-

vidual profit. Tasks often are distributed through auctions held by an auctioneer.

The auctioneer is either a supervisor agent or one of the robots. “Each robot lo-

cally plans the achievement of the available task, computes its cost of execution,

31

and encapsulate the cost in the bids” (Dias et al., 2006). Depending on the task,

the auctioneer selects the highest or the lowest bidder (Karla and Martinoli, 2006).

Sometimes, instead of allocating particular task, such as shoot the ball or cover

a specific area, roles are assigned to the robots. Roles define a collection of re-

lated actions or behaviour (Dias et al., 2006). Auction-based task-allocations have

been applied to cooperative exploration (Zlot et al., 2002) and object manipulation

(Gerkey and Mataric, 2002).

2.5.2 Coordination

Coordination is the core element of a multi robot system by which the overall perfor-

mance of the system is affected directly (Yan et al., 2013). Various works have been

carried out in this area. In here, we review the available two important categories

of coordination systems in multi robot systems: Dynamic and Static.

Dynamic vs Static In one classification, coordination can be carried out stati-

cally, or dynamically. In static coordination, which is also known as deliberative or

offline coordination (Todt et al., 2000);(Iocchi et al., 2000), robots adapt series of

conventions prior to engaging in the task (Yan et al., 2013). Kato et al. in (Kato

et al., 1992) coordinates a team of robots by simply applying few navigational rules

(e.g. “keep right” or “stop at an intersection”, etc). Although coordination can be

achieved efficiently and quickly, it requires detailed analysis of the given task, and

it can easily fail by radical changes in the given task or the environment.

Dynamic coordination, which is referred to as online or reactive coordination (Todt

et al., 2000);(Iocchi et al., 2000), is carried out during execution of a task and is

based on “analysis and synthesis” of information which can be obtained by means of

communication (Yan et al., 2013). As discussed in section 2.4.3, information among

32

robots is conveyed explicitly or implicitly. Accordingly, dynamic coordination is

performed either by transferring intentional messages (i.e. explicit coordination

(Gerkey and Mataric, 2004)) or as a result of robots local interacting with the other

robots or the shared environment (i.e. implicit coordination). Dynamic coordination

can well adapt to changes in the environment in real-time, however, coordination is

becoming more complex by the increase in complexity of the task.

Taxonomy Based on Individual Knowledge and Awareness In another clas-

sification introduced by Farinelli et al. (2004), coordination in the team can be cat-

egorised according to individuals’ knowledge and awareness. In this classification, a

multi robot system is one of the following:

Unaware in which individuals have no information about other robots in the team

while they execute their share of the task. Since robots have no knowledge about

each other, the communication among the robots cannot be direct. Unaware teams

are easily scalable, thus they are adopted for swarm robotic applications.

Aware, not coordinate systems in which robots of the team have the knowledge

of the presence of other robots in the environment, and act together in order to

accomplish the same global goal. However, a robot may not take into account the

actions performed by other robots in order to accomplish its task.

Weakly coordinated systems in which individuals follow explicit predefined co-

ordination protocols. In here, coordination protocols refer to the explicit predefined

rules that select particular

Strongly coordinated, strongly centralized systems in which a robot plays the

role of the leader and it coordinates other robots in the environment. This method

requires explicit messages to be transferred among robots. This method suffers from

robustness since the coordination is susceptible to the loss of communicating signal.

33

Strongly coordinated, weakly centralized systems in which the leader is se-

lected in prior, and it will be selected during execution time. In weakly centralised

approaches, the interaction architecture is hybrid. This means that the robots ex-

change information via explicit and implicit forms of communication. Noreils (1993)

and Simmons et al. (2001) are two examples in which the coordination is achieved

by means of hybrid interaction architecture.

Strongly coordinated, distributed systems in which each individual in the team

executes a coordination protocol, and takes its decision completely autonomous.

These systems are generally more robust to communication failures and robot mal-

functioning, even though these problems may affect the overall performance of the

team in the accomplishment of the task. “The strongly coordinated distributed

approach entails that some kind of communication has to be used, and leaves un-

constrained the other System Dimensions” (Farinelli et al., 2004).

2.5.3 Congestion Avoidance and Clearance

The goal of coordination is to prevent or resolve probable congestions during task

execution. There are two sources of congestion in a multi robot system: collisions

and resource conflicts. Resource conflicts occurs when multiple requests targeting

the same resource arrive simultaneously (Yan et al., 2013). The problem of re-

source conflict is not specific to robotic applications. In distributed computing and

multi-access networking, where a single resource is accessed by different processes,

a resource conflict occurs (Uny Cao et al., 1997).

In multi robot system, a resource conflict arises when two or more robots need

to access a shared space, communication media, or to manipulate an object (e.g.

object transportation). The current trend to avoid or resolve resource conflicts is

34

to coordinate robots (Yan et al., 2013). As mentioned in section 2.5.2, robots in a

team can be coordinated statically, or dynamically. In static coordination, probable

congestions are avoided from the beginning of the task by “adoption of a convention”

(Yan et al., 2013). Kato et al. in 1992 coordinate a team of robots to avoid collision

and congestion by simply applying few navigational rules (e.g. “keep right” or “stop

at the intersection”, etc).

In dynamic coordination, robots resolve their congestion avoidance during execution

time. Various approaches have been applied to resolve resource conflicts in a team

of robots during execution time. However, the proposed approaches either aim

to resolve the resource conflict via a central decision maker or by letting robots

negotiate. In central approaches, the central unit, which has the global view of

the environment, observes the trajectory of the robots and plans the trajectories

of the robots so that any deadlock is prevented. This approach is inspired by the

flight controls at the airport. At the airport, the flight control, which has the global

position of each airplane, controls the landing and takeoff of each airplane to prevent

collisions.

In negotiation-based methods, robots, at the point of conflict, exchange information

to resolve the congestions. The decision making of the robots and further motion

planning are completely decentralised and in parallel. Jager and Nebel in 2001

described a decentralised method to resolve a spatial resource conflict by which

robots exchange information about their planned trajectories whenever the distance

between two robots drops below a certain value. Using the exchanged information,

robots can determine whether they are in danger of a collision/congestion or not.

In case of detection of a possible collision, robots monitor each others trajectory,

and if necessary they introduce time delays in certain points of their movements.

35

On the other hand, if a deadlock is detected, each robot plans different trajectories

until the congestion is resolved. Marcolino and Chaimowics in 2009b proposed

another method for avoiding congestion and collision in a swarm of robots moving in

opposite direction. In their method, each robot perceives the possibility of collision

and warns their teammates through local sensing and intentional communication.

Upon receiving the warning, the following robots change their trajectories to avoid

congestion. In another research (Marcolino and Chaimowicz, 2009a), a coordination

algorithm is proposed for a scenario in which robots try to access the same target.

The algorithm defines an action based on a probabilistic finite state machine and

relies on the local sensing and communication.

The current trend in multi robot system and swarm robotic is to resolve the con-

gestion via explicit forms of communication. To the best of our knowledge, there is

not any systematic approach which relies only on implicit forms of communication

to resolve resource conflicts.

2.6 Cooperative Farming: Review and Analysis

Although multi robot system and swarm robotic have been around for decades, these

topics are still fresh in agricultural robotics. Agricultural tasks, particularly those

related to open farms, have similarities with the previous area of application covered

in swarm robotics and multi robot systems. Hence, many of the experienced gained

in these examples can be used for cooperative farming. Liekna and Grundspenkins

(2014) match the areas of application in swarm robotic and multi robot system with

the task of cereal cultivation. In here, the author suggests that a team of robots,

which are capable of harvesting and transportation, are required to:

aggregate : to achieve the starting point of the mission.

36

form patterns, self-deployment, area coverage : to effectively cover the entire

field.

self-assemble : with the transporter.

object clustering and assembling : to mow cereal to a particular point of the

fields, and to store goods effectively in the warehouses.

forage : to go into the field, and bring back the goods from the field.

In this section, a short summary of the tasks considered in this thesis is provided,

and similar application domains and questions are identified. Next, the environment

in which the robots are assumed to be operating is described. Finally, the related

works are reviewed.

2.6.1 Agricultural Tasks

In multi robot systems, it is necessary to analyse the global task before any fur-

ther development is performed. Task analysis helps to identify design questions,

requirements, and solution boundaries.

Tasks in open field agricultural robotics can be categorised in two classifications;

(1) Those in which the field can be processed from different points at the same

time, hereafter referred to as independent tasks. (2) Those in which the field has to

be processed sequentially, hereafter referred to as sequential tasks. In independent

tasks, the result of execution of one robot will not affect others.

In this thesis, three agricultural tasks are considered: ploughing (or seed-bed prepa-

ration), spraying (of chemicals), and harvesting. These tasks are different in nature

and require different cooperative mechanisms. In the task of ploughing, the field

is processed sequentially, and in a particular order. This is because the result of

37

execution of the current part of the field depends on the results of the previous

ones. In the task of spraying, the field is processed independently, meaning that the

field can be processed from both directions and from different locations in the field.

However, it has to be carried out in a restricted number of times. In harvesting, the

redundancy in execution does not affect the results, and the field can be processed

in any order. Other tasks including seedings, seed mapping, and etc belong to one

of these three categories, and they can utilise the implemented approaches. Even

though all tasks are executed within the same framework, each task has different

properties and characteristics, hence different cooperative mechanisms are required.

2.6.2 Analysis of the Related Works

As mentioned, there are few examples in which agricultural tasks are tackled by a

team of cooperative robots. One example of such system is RHEA (Robot Fleets for

Highly Effective Agriculture and Forestry Management) European project (RHEA,

2014). The RHEA project is aimed to improve product quality by diminishing

chemical usage in weed control (Drenjanac and Tomic, 2013). During execution,

robots have to continuously report their status and position to the base station. At

the base station, the transmitted status and position of the robots are analysed.

Once all the required information is received, area decomposition algorithm divides

a working area into cells which are then dynamically assigned to robots (Drenjanac

et al., 2014). The RHEA presents a robust and scalable system, however, one main

issue of this approach is that robots have to be within the communicating signal

and that will limit the area that the team can cover during execution.

Anil et al. (2015) presents another swarm system for agricultural application. In

this example, low cost multi-functional team of robots are developed. Each robot is

38

capable to reconfigure itself so that it can carry out different agricultural processes

such as ploughing, seeding, spraying, and harvesting. Robots are equipped with ap-

propriate tools to carry out each task. In addition, each robot is also equipped with

a ZigBee transceiver for communication with the central unit. In case of ploughing,

first, few robots are sent out for scouting the area. Then the next group of robots is

sent to plough the field based on the obtained scouting data in the central unit. In

the presented work, the task allocation is carried out based on the initial position of

the robots as well as the received data from the central unit. The presented system

is robust and scalable, but the individuals are sharing their information by a central

unit. This makes the system vulnerable to the loss of the central unit.

Li et al. (2015) presents another central-based cooperative model for a heterogeneous

team of ground robots applied in citrus harvesting activity in a known environment.

In this example, a robot team is divided into multiple smaller groups with local

leaders, and each group is sent to different tree locations. At each location, the

robots in each team are divided into two groups: one to shake the tree, and one to

collect the fruits. At the beginning of the task, when the initial signal is received by

any individual in the team, the central unit, which knows the position of all robots

and the tasks, selects an appropriate formation from a predefined collection and

chooses the leader in the team based on their positions in the selected formation.

Once the leader is determined by the central unit, the position of the followers also

are determined based on the selected formation. Again, if the central unit fails the

entire unit will fail.

Noguchi et al. (2004) developed a master-slave team of two robots that constantly

communicate over Wi-Fi for distance commanding and distance adjustment. The

leader robot makes the decisions and transmits appropriate commands to the fol-

39

lower robot. The non-leader robot follows the leader and sends its status in terms

of current location back to the leader at the frequency of 2Hz. The cooperative

execution is carried out by two behaviour-based algorithms: FOLLOW and GOTO.

In GOTO algorithm, the leader requests the follower to go to a specific location in

the field, and in FOLLOW algorithm, the leader wants the non-leader unit to simply

follow the leader at a specific distance with a specific angle.

Similarly, Zhang and Noguchi (2016) presents a cooperation mechanism for a team of

two driverless tractors for cooperative navigation in an open field. In this approach,

a robot is either client or server. The server robot receives the information from the

client robot via Bluetooth messages, and it performs series of calculations to obtain

the correct velocity and path for itself and the client robot. It is worth noting that

the paths are predetermined and they are given to both robots.

Roldan et al. (2016) developed a heterogeneous team of two robots for the purpose of

greenhouse monitoring. The team consists of an Unmanned Ground Vehicle (UGV)

and an Unmanned Arial Vehicle (UAV). the UGV carries the UAV on a platform

while it develops its tasks, and when it is required, the UAV takes-off, performs some

tasks and lands on the UGV (Roldan et al., 2016). To increase the robustness, a

charging pad on the UGV is mounted so the UAV can be recharged while it is being

carried, also, there are charging locations in the greenhouse for refuelling the UGV.

The UAV carries the required monitoring sensors (including humidity, CO2, and

Temperature), and the team travels to particular locations to measure the required

variables.

Arguenon et al. in 2006 developed a multi agent system in simulation for transport-

ing grapes in vineyard. The proposed system is for a heterogeneous team of robots.

There are two types of robots in the team: large transportation robots and small

40

transportation robots. Large transportation robots have three different behaviours:

move to one of the transport robots, move to the transportation centre, or wait for

instruction. Small transportation robots also have three rules: move to one of the

transport robots, move to one of the harvesting robots, or wait for instructions. Each

robot, regardless of their size, must have some displacement strategies or behaviours:

ReachTarget which defines the desired location for the robot, Perception which is a

procedure consisted of obtaining some information about the neighborhood of the

robot from the different sensors available and Avoid whenever an obstacle is detected

and the desired location of the robot can be called into question, as for example when

it cannot move. Arguenon (2006) utilised a centralised system to provide a global

view of the farm to transportation robots over Wi-Fi by sending specific messages

whenever it is requested. Each message consists of four main components: a state

which refers to the context of the message, recipient which corresponds to the ID of

the robot that should receive the message, transmitter which corresponds to an ID

of the robot that sends the message, and location which refers to the location of the

transmitting robot.

In a similar application, Kong et al. (2006) presents a cooperative mechanism by

which a team of autonomous and homogeneous lawn mowers processes a field. The

robots in this approach are assumed to have communication capabilities. At the

beginning, the field is decomposed into smaller pieces, and each is allocated statically

to a robot. As robots are processing the allocated section, they regularly share their

information to optimise their performance and determine where to process next

using customised task selection protocols.

Saska et al. (Saska et al.) presents a homogeneous team of robots for a snowplough

application at the airport. The system aimed to control the robots in the sweeping

41

and moving modes. In the sweeping mode, the snowplough formations are capable to

completely cover the surface of runways by following their axes. The moving mode is

important for the autonomous design of manoeuvres required for displacement of the

formation into the position of the next sweeping task. Besides, the turning on the

spot in a scattered environment is enabled for large formations in the moving mode.

This is an important skill of the system that enables to turn the sweeping formations

at the end of blind runways or in a case of runways blocking. The demonstrated

approach utilises the leader-follower method in which non-leader robots track the

leaders trajectory in a predefined spacing as if they interact with each other using

the environment, and robots maintain their relative distance to the leader in a

curvilinear coordinate system.

2.6.3 The Problem of Localisation in Agricultural Robotics

In autonomous open-field farming in which agricultural tasks such as ploughing and

spraying need to be performed in a large area, the need for navigation and localisa-

tion is prominent. Without localisation, mobile robots will lose their orientation and

global position in the farm which result in the failure of the operation. Numerous

researches have been conducted and as a result, different localisation systems in the

farm have been developed and successfully field tested.

Generally, localisation and position measurement can be divided in two main groups:

relative (also known as dead-reckoning) and absolute (also known as reference-based)

position measurements. In relative localisation, positions can be measured relatively

using Odometry and inertial navigation sensors such as Gyroscope and Accelerom-

eter (Borenstein et al., 1997). However, relative approaches (standalone) do not

provide sufficient accuracy for agricultural purposes. For instance, odometry, which

42

is inexpensive with good short-term accuracy with the high sampling rate, consists

of systematic and un-systematic errors (Borenstein and Feng, 1996). Systematic

errors are resulted from kinematic imperfections of the robot and are measurable

using UMBmark test. The source of unsystematic errors is the floor that the robot

is moving on, so measuring such error is not useful especially in the farm where

the tracks and roads are bumpier and slippage and sticking are more probable. On

the other hand, inertial-based navigation systems which do not need any external

references are subject to drift over time (Borenstein et al., 1997).

Alternatively, robots position can be obtained using reference-based techniques. Ac-

cording to Borenstein et al. (1997), these techniques can be categorized as follows:

Magnetic Compasses, Active Beacons, Global Positioning Systems, Landmark Nav-

igation, and Model Matching.

Global Positioning System: Nowadays GPS is widely being used to obtain the

absolute position of the robots in an open field. Researchers at Stanford Univer-

sity successfully guided a John Deere 7800 tractor on prescribed straight row courses

with headland turns (Bell, 2000). Although the results were promising, the accuracy

wasnt enough for precision farming. Instead, real-time kinematic version of GPS (or

GPS-RTK) brought enough accuracy for the localisation problem in agriculture. Lo-

calisation systems demonstrated by (Stoll and Kutzbach, 2000) and (Thuilot et al.,

2001) capable of navigating a vineyard or orchard using GPS-RTK are the examples

of such localisation system. This navigational technique is suitable for open fields

due to the fact that GPS signals could not be interfered by RF signals in the field.

Navigational Landmark-based Localisation system: The lack of GPS avail-

ability due to environmental conditions such as large canopies need for prior sur-

veying of the area, and unreliable connectivity in certain areas compels to search

43

for GPS-free localisation techniques. Marden and Whitty (2014) introduced a GPS-

free approach for navigating in a vineyard. The system utilizes LiDAR sensor to

extract point clouds from the environment and perform simultaneous localisation

and mapping (SLAM). In this work, Localisation and mapping is performed by ex-

tracting features from the rows in the vineyard in an EKF-SLAM framework. Then,

RANSAC (RANdom Sample Consensus) is used to extract lines from the 2D Li-

DAR laser scan data and parametrised in polar coordinates. Then the navigation

is achieved by the specific control law. The system has been tested intensively in

simulation only. The results of the system promise 2.5 meters accuracy which is

enough for the field of application. Nonetheless, the localisation accuracy slowly

drifts over time. However, in open field area in which landmarks are scarce, this

technique cannot be utilised.

Vision-Based Localisation System: In another GPS-free approach, tractors are

able to localise themselves in the farm using artificial landmarks. Imou et al. (2009)

describes a system in which an Omni-directional camera is used to trilaterate the

position of a robot in the farm. The key advantage of this approach is the robot has

a panoramic view of its environment, which makes it possible to create features that

are variant to the robots orientation, yet each tractor requires direct line of sight

with all available landmarks, so this approach is not suitable for multi robot system

as one robot could block each other’s view.

RFID Localisation System: The recent advances in RFID (Radio Frequency

IDentification) have made this particular technology more useful for agricultural

industry. The most important characteristics of RFID tags is that they do not

require line of sight to be read, hence they are suitable in the crowded environment

or in multi robot scenario. Moreover, having longer range readability (even more

44

than 100 meters), fast reading rate (up to 100 tags per second), and data storing

capabilities (up to 4KB in passive mode and up to 1 MB in active mode) will make

them even more suitable for multi robot and agricultural applications (Ruiz-Garcia

and Lunadei, 2011).

RFID can be used in food traceability, animal identification and tracking, livestock

application, and precision agriculture. In precision farming, RFID tags can be used

for localisation purposes, however, the accuracy of the localisation results depends

completely on the type of RFID that is being used. Generally, there are two types of

RFID tags: Active and Passive. A passive RFID tag comprises a micro-circuit and

an antenna, and they are active whenever they are within the range of RFID readers.

Active RFID tag, however, is integrated with an external power source which gives

the active tag the capability to transmit information about itself at the greater range

either by constantly transmitting information or whenever it is prompted. One great

advantage that active RFID tags could bring to the system is that they require very

low signal strength from the reader to initiate their operation. This means that

they can operate in the noisy environment and/or long range. Moreover, their range

could go to 100 meters which make them suitable for trilateration based localisation

for outdoor applications. It is worth mentioning that trilateration is a method to

determine the position of an object based on simultaneous range measurements from

three reference nodes at a known location using only the magnitude of the received

signal also known as RSSI (Received Signal Strength Indicator) (Chung and Lau,

2007).

Yet, different researches have utilised passive RFID tags in localisation application.

In (Choi et al., 2009), a system is developed to use the properties of PASSIVE UHF

RFID such as RSSI (Received Signal Strength Indicator) to localise a robot in an

45

outdoor environment. The result was not satisfactory as the RSSI value can be

easily changed by the environment. Active RFID tags, on the other hand, provides

more accurate and consistent localisation information as demonstrated in various re-

searches. In (Huang et al., 2006), a cost-effective probabilistic approach is simulated

via MATLAB with errors less than 7 meters. Chawla and Robins (2011) proposed

an accurate, scalable and reliable RFID-based approach for localising objects by

deploying four active RFID tags in the environment and used RSSI and intersecting

circle technique to estimate the location. They also calibrated the tags to overcome

the problem raised by Choi et al..

Hybrid Approaches: Despite shortcomings of relative positioning sensors (odom-

etry, Accelerometer, and Gyroscope), results of infusion of dead reckoning solutions

with other techniques (including low-cost GPS receivers) are to some extend promis-

ing. In (Oksanen et al., 2005), a tractor guiding system is developed by infusing

IMU (Inertial Motion Unit) data with coordinates obtained from a low-cost GPS

receiver via first order Kalman filter. It was concluded that the system is reliable for

short distances as short time noise type errors in positions can be eliminated, but

longtime bias type error is impossible to eliminate. In another example, coordination

obtained from a low-cost global positioning system is infused with low cost inertial

sensors and a technique for vision-based row tracking (English et al., 2013). Vehicle

roll and pitch is estimated with the infusion of visual horizon detection and IMU

data which are combined with a simple Kalman filter. As a result, the positioning

system is capable of handling long correction GPS signal dropouts.

In the current research, we are not considering the problem of localisation in the

team since the current results from the related works can successfully provide the

required information. The currently available localisation systems for agricultural

46

applications can provide up to centimetre precision and they are commercially avail-

able. One example of such navigation system is AutoDrive developed by ATC (Au-

tonomous Tractor Corporation). AutoDrive is an autonomous navigation system

which does not suffer from dead spot or no reception like the GPS-based system

and it is not affected by sun-spots. One advantage of AutoDrive is its integrability

to any autonomous tractors. John Deere, an agricultural machinery company, has

developed an autonomous tractor which utilises AutoDrive. The current direction

of research in this field is aimed to reduce the cost of the proposed approaches while

maintaining high accuracy up to few centimetres.

47

2.7 Conclusion

In this chapter, we reviewed the main problems, which is occur in every coopera-

tive team of robots, possible directions to resolve them, and analysis of the related

solutions. Our investigation suggests that the current trend in multi robot systems

in the agricultural application domain is to resolve the cooperation solutions via ex-

plicit forms of communication. This is insufficient and unreliable because depending

on explicit forms of communication makes the system vulnerable to the loss of the

communicating signal, limits the area of coverage, limits team flexibility to the dy-

namic changes that could occur during execution, and increases the computational

complexity of the system. Instead, the current research aims to resolve the coop-

eration related problems via implicit forms of communication. Specifically, it aims

at developing a fully autonomous self-organising robotic team that does not depend

on the number of participating robots (scalable), does not require neither central

unit nor explicit negotiation, is affected by loss of a participating robot (robust),

and can be further improved or integrated with different teams (heterogeneous and

flexible). To the best of our knowledge, such system does not exist in the community

of agricultural robotics and it is the first of its kind.

In the following chapters, we look into three different tasks: ploughing, spraying,

and harvesting. As mentioned, these tasks provide different constraints to the team

of robots, thus robots have to behave differently.

48

CHAPTER 3

COOPERATIVE PLOUGHING: DESIGN AND
IMPLEMENTATION

In this chapter, ploughing in a team of robots is discussed. In 3.1
the task of ploughing is analysed, and the design considerations
and requirements are described in 3.2. Potential issues including
inter robot interaction model between robots for task allocation us-
ing local data acquired from 2D-camera (3.3), congestion avoidance
(3.5) using pre-defined navigational conventions and flee-opposite
algorithm, and collision avoidance (3.6) using artificial potential
functions are described in words along with appropriate flow charts
and the implemented C++ codes in appendix sections. Two team
level cooperative algorithms (FIFO and LIFO) for ploughing are
described in two different sections: the main ploughing (3.7), and
the furrow transitioning (3.8). The proposed approaches are anal-
ysed and an optimised approach (self-organised) is described, and
compared with other approaches in (3.9).

The points of this chapter have been published in the following:
Janani, A., Alboul, L. and Penders, J., 2016, May. Multi-agent cooper-
ative area coverage: case study ploughing. In Proceedings of the 2016
International Conference on Autonomous Agents and Multiagent Sys-
tems (pp. 1397-1398). International Foundation for Autonomous Agents
and Multiagent Systems.

3.1 Ploughing Analysis

Ploughing is part of the seedbed preparation process, and it is carried out by drag-

ging a ploughing mouldboard across the field. The ploughing mouldboard digs deep

into the soil and disperses the soil in one direction. Ploughing removes soil com-

paction, buries the weed, and brings up the nutrient materials to the surface.

Ploughing creates a two-part pattern: (1) A narrow trench referred to as furrow,

and (2) a hill-top soil which is called ridge. The dimensions of the furrows depend

49

on various environmental factors (including soil type, the frequency of rain, and etc)

and the type of crop that will be harvested. However, the distance between two

consecutive furrows ranges between 25 cm and 50 cm.

Figure 3.1: A farmer is ploughing a field using tractor equipped with conventional

mouldboards (Fao, 1997).

3.1.1 Ploughing Patterns

Ploughing determines the amount of crop that can be harvested. There are two

patterns by which a field can be ploughed: straight ploughing (Figure 3.2(a)),

and zigzag ploughing (Figure 3.2(b)).

Figure 3.2: Ploughing patterns: (a) Straight ploughing, (b) Zigzag ploughing.

Both approaches provide the same area for ploughing given the following:

50

L×W = wf

K∑
1

lfi (3.1)

In here, the length and width of the field are represented by L and W respectively,

wf is the width of a furrow, K is the number of furrows ploughed in a field, and lf

is the length of a furrow.

However, between the two ploughing patterns, straight ploughing distributes the

same cultivable (meaning farmable) area with the lower number of furrows which

also means less turning at the end of each round of ploughing.

Every time a furrow is completed, the ploughing unit has to travel to the beginning

of the next furrow. This stage is referred to as furrow transitioning in which the

ploughing unit uses the top side or bottom side of the field to travel to the next

furrow (see Figure 3.3). The area that is used for furrow transitioning is called

headland. Headlands are unprocessed areas that should be kept as small as possible

since they limit the length of cultivable area (h1 and h2 in Figure 3.5 and 3.6).

Figure 3.3: Ploughing units are performing furrow transitioning (Estate, 2015)

This allows future field processing (including seeding, spraying, harvesting, and etc)

to be executed faster. Furthermore, since in straight ploughing the furrows are

51

created homogeneously, the field can be processed simultaneously. Whereas, with

zigzag ploughing each furrow has to be processed separately. Therefore, straight

ploughing is the most popular and commercially endorsed ploughing pattern. Thus

in this research, only ploughing in straight lines is considered.

3.1.2 Ploughing Restrictions

When a furrow is created, a ridge is also created. During ploughing, the ploughing

unit uses the previously created furrow to navigate while the soil removed to create

a furrow is turned up and dumped in the previous furrow (see Figure 3.1). In order

to keep this pattern, three rules have to be followed: (i) a location can be ploughed

if and only if the previous location is ploughed, (ii) furrows can be created only

once, and (iii) furrows cannot be created simultaneously. These restrictions make

ploughing a sequential and dependent task.

3.1.3 Ploughing Mouldboards and Furrow Transitioning

Besides the restrictions caused by the nature of ploughing, the type of ploughs

constrains the task execution even more. There are various types of ploughs (e.g.

Chisel, Ridge, Disk, and etc), but plough mouldboards are the popular and widely

used ploughs. Plough mouldboards can be classified into two categories: (1) con-

ventional mouldboards by which the soil is dispersed in one fixed direction, and (2)

reversible mouldboards by which the dispersion of the soil can be set in two opposite

directions. Traditionally, a plough would have single mouldboard by which only a

single furrow could be created at a time. However, nowadays ploughs have multiple

mouldboards and few furrows can be created at a time. This reduces the ploughing

time, but the mouldboard weight increases significantly, and in return, they require

stronger and bigger tractors to drag them across the field.

52

Figure 3.4(a) and (b) demonstrates 4-plough conventional and reversible mould-

boards respectively.

Figure 3.4: Plough mouldboards: (a) 4-plough conventional mouldboard, (b) 4-

plough reversible mouldboard. (Agriavis, 2015)

A ploughing unit is capable of creating a limited number of furrows at a time, so

it has to repeat ploughing until the field is completely ploughed: maximum number

of furrows are created. Maximum number of furrows in a field can be calculated as

follows:

K = bW
df
c (3.2)

In here, W is the width of the field, df is the width of a furrow, and bW
df
c represents

the largest previous integer.

The attached mouldboards determine where to plough next. With conventional

mouldboards, ploughing is carried out in loops, and either starts from one side of

the field, and ends in the middle (Figure 3.5 (a)), or starts in the middle and ends

on one side of the field (Figure 3.5 (b)). Whereas with reversible mouldboards,

ploughing starts in one side of the field and ends on the other side of the field(see

Figure 3.6). With a reversible mouldboard, furrows are created in a consistent

pattern (i.e. a ridge will always accompany a furrow). However, with conventional

mouldboard, the created pattern on the field is inconsistent, meaning that in one

53

half of the field the soil is dispersed into one direction and on the other half the

soil is dispersed on the opposite direction. Consequently, this will result in either

“Closing Furrow” (two consecutive furrows) or “Opening Crown” (two consecutive

ridges) in the middle of the field.

Figure 3.5: Pattern of ploughing with conventional mouldboard: (a) ploughing starts

on one side and ends in the middle, (b) ploughing starts in the middle and ends on

one side.

3.1.4 Ploughing Cost

The task of ploughing can be re-expressed as a navigational task in which a ploughing

unit has to travel between series of coordinates. While navigating, the ploughing

unit is either ploughing or furrow transitioning. With this, a ploughing cost function

can be expressed in terms of the travelled distance as follows:

54

Figure 3.6: Pattern of ploughing with a reversible mouldboard: ploughing starts

from one side and ends on the other side.

PC = distpl + distft (3.3)

Where, PC is the ploughing cost, distpl is the required travelled distance during

ploughing, and distft is the required travelled distance for furrow transitioning.

If only one furrow can be ploughed at a time, regardless of the attached plough

mouldboard, the required travelled distance during ploughing of K number of fur-

rows with lf as the length of a furrow can be obtained as follows:

Dpl = K.lf (3.4)

However, the type of the attached ploughing mouldboard determines how far the

ploughing unit is required to travel during furrow transitioning period. With con-

ventional mouldboard, the required travelling distance during furrow transitioning

55

is determined as follows:

Dft =
K

2
(W − df) (3.5)

Whereas, with a reversible mouldboard the required distance for furrow transitioning

is:

Dft = (K − 1).df (3.6)

Where, Dft is the required travelling distance for furrow transitioning, K is the

number of furrows, and df is the distance between two adjacent furrows.

Comparing 3.5 and 3.6, it can be concluded that ploughing with a reversible mould-

board is more cost effective since the travelling distance required during furrow

transitioning is reduced significantly.

3.2 Design Requirements and Considerations

Section 3.1 considers generic ploughing with a single unit (equipped with a sin-

gle plough mouldboard). In the current section, ploughing by a team of robots

is discussed. But before we proceed, the term cooperation within the context of

cooperative ploughing has to be defined.

Definition 3.1 A field is cooperatively ploughed if the sum of furrows ploughed by

each participating individual is equal to the total number of furrows in the field (K):

K =
n∑
i=1

ki (3.7)

To perform ploughing in a team within the mentioned restrictions, an order has to

emerge among the participating robots. However, as it is demonstrated in Figure

3.5 and 3.6, depending on the attached mouldboard, the furrows are to be ploughed

56

in a particular order. This demands different ordering among robots.

In cooperative ploughing, there are two main questions to address: (1) How to

identify the first furrow to plough? and (2) Where to plough next after completing

the first furrow?

There are various approaches to divide and distribute furrows among robots. Clearly,

to assure that furrows are ploughed consecutively, furrows cannot be statically dis-

tributed among robots. This is because robots may be scattered initially around

the field, and attend their assigned furrow locations at different instances of time.

This will violate the ploughing order discussed before. Therefore, the distribution

of furrows has to be carried out in real-time.

As mentioned in Chapter 2, a popular trend for real-time and dynamic task al-

location and coordination in multi robot system is to utilise a central unit. The

central unit could be a dedicated stationary unit or one of the participating robots.

Clearly, robots are required to communicate with the central unit via explicit forms

of communication to exchange information. One major problem with this approach

is the susceptibility to the loss of contact with the central unit. The success of the

system depends on the state of the central unit. If the central unit fails, no furrows

will be ploughed. Furthermore, robots have to be within signal coverage distance

at the time of task allocation, otherwise, they cannot contribute to the task. This

normally occurs when robots are scattered around a large field. This approach may

be suitable for small size fields, but for large size fields (bigger than the signal cov-

erage distance), which is normally the case, the central unit fails to communicate

with other robots. Therefore, cooperative ploughing task allocation should not rely

on explicit forms of communication.

So, what are the characteristics of the appropriate approach for task allocation and

57

coordination in cooperative ploughing? The proposed approach has to be scalable

(independent of the number of participating robots), distributed (no central co-

ordinator: robots make their own decisions based on the collected information),

self-organised (the cooperative behaviour should emerge as a result of their local

interaction and not based on negotiation), independent of any initial position (e.g.

robots should not be at particular location) so that the same team can contribute

to other farming tasks (e.g. spraying, or harvesting).

3.3 Interaction Model

For task allocation and coordination, robots have to interact with each other. As

mentioned, robots have to rely on their local information to perform task alloca-

tion, collision-free navigation, and congestion clearance. This includes detecting

and differentiating other robots from the rest of the objects in the environment and

extracting marks or hints that other robots left in the environment as a result of

their execution. But what kind of information can be extracted from ploughing? and

how should they be interpreted?. In brief, if a robot can determine whether a location

is ploughed or not, then it can find out by itself where it is required to plough next.

3.3.1 Furrow Detection

As mentioned before, as a result of ploughing two-part pattern is created: furrows

and ridges. Participating individuals could use previously created furrows as an in-

dication to determine whether a location is ploughed or it is required to be ploughed.

Previous works suggest that it is possible to analyse the soil to detect any existing

pattern. One of the widely common approaches for furrow detection is via vision

sensors.

58

In various single robotic agricultural works, furrows and ridges are used to guide

unmanned vehicles within the field. Vision based furrow and ridge detection has

been applied in real world application including cauliflower (Marchant and Brivot,

1995), cotton (Billingsley and Schoenfisch, 1997; Slaughter et al., 1996), tomato and

lettuce (Slaughter et al., 1996), sugar beet (Marchant, 1996),and cereal (Hague and

Tillett, 2001; Sgaard and Olsen, 2003).

In the early works, near-infrared images were popular to extract the desired features.

In Tillett et al. (2002), a guidance system for navigation between sugar beet rows

is described. Tillett et al. utilised band-pass filter to extract lateral crop row loca-

tion. In another example, Astrand and Baerveldt (2002) applied grayscale Hough

transform on images provided by near-infrared camera to detect sugar beet rows.

In recent years, by the development of high-quality inexpensive cameras, vision-

based furrow and ridge detection become even more popular since image processing

can be carried out simpler, quicker, and more accurately. Tang et al. (2013) presents

a real-time row detection method for an autonomous weeding robot to robust de-

tection of wheat row based on pixel histogram. This method involves two steps

segmentation of grey scale image and wheat row detection based on after segmenta-

tion. In Zhang and F. (2013), color images are transformed into saturation images

and binary images sequentially. Using Radon transform and the position of the

robot, the furrows lines are located. In Tian et al. (2014), navigation paths are

extracted by simply applying image segmentation and morphological filters using

MATLAB software.

59

3.3.2 Vision Based Furrow Detection

In order to examine the feasibility of furrow detection, a vision based approach

is developed and implemented. Analysing the close-up images of freshly ploughed

field reveals that the main difference between a ploughed and unploughed field is

the pixel intensity of the soil. The ploughed area contains darker pixels, compared

to the unploughed area of the field.

In the implemented approach, an inexpensive camera is bundled in the front of the

robot. At each ploughing location, the robot stops and analyse the ploughing lo-

cation for the existence of a furrow. The furrow detection procedure is as follows:

First, the captured RGB-image is converted to gray-scale colour space. Then, a bi-

nary image is created with the threshold value obtained from the histogram analysis

of the grayscale image. Next, the image is inverted so that the area of interest is

represented as white spots. To remove the noise from the image, morphological fil-

ters are applied on the image. The image is eroded using a rectangular sized matrix

(10 X 3), and then it is dilated with the same matrix. The matrix is chosen in this

shape because it is similar to the shape of a furrow from the perspective of the robot.

The proposed vision system is applied to various images taken from the field with

different background light condition (see Figure 3.7). Although the results obtained

from these analyses are not sufficient for guidance purposes within the field, it is

enough to determine if a location is ploughed or not.

60

Figure 3.7: The vision based furrow detection algorithm can successfully separate

furrows from the background environment under various light conditions.

3.3.3 Accuracy of the Vision Based Furrow Detection

Using the online resources, various ploughing picture similar to the ones displayed in

Figure 3.7 were collected and passed through the implemented vision algorithms. As

a result the accuracy of 70.35 percent was achieved (i.e. from 200 testing pictures,

furrows in 141 pictures were successfully detected). This is because of the nature

of the approach. As mentioned, the approach first finds the histogram of pixel in-

tensities, then looks for local maxima with the neighbour gradients higher than a

threshold in the resulted histogram as they are considered to be furrows. Now, if

the furrow pixels’ intensity are not dark enough, the peak of the local maxima drops

below the threshold and it cannot be identified as a furrow. One main factor in this

phenomenon is the depth of the ploughed furrow. If the ploughed furrow is not deep

61

enough the required properties cannot be achieved and the detection will fail. In

other words, the deeper the furrows, the more accurate the detection. This is the

key reason that the reviewed approaches are successful. For instance, the reviewed

methods including (Marchant and Brivot, 1995), (Billingsley and Schoenfisch, 1997),

(Slaughter et al., 1996), (Marchant, 1996), (Hague and Tillett, 2001), (Sgaard and

Olsen, 2003) in which the furrow detection is used as a method for guiding the au-

tonomous units, unanimously claim errors less than 20mm and less than 2.0 degrees

in heading. In all mentioned approaches, there is a significant change in pixel in-

tensity between the crop and the surrounding soil, therefore it is easily detectable

with traditional image processing techniques including the method presented in this

thesis (i.e. Histogram Analysis).

Due to this shortcoming, more reliable detection methods should be applied. One

available solution is to use machine learning approaches and in particular deep learn-

ing. By providing negative and positive examples, a model can be trained (i.e. a

convolution neural network in the deep learning) with which high accuracy in clas-

sification and detection can be achieved. The accuracy depends on the number of

provided positive and negative examples, how different the examples are from one

another, and the type of convolution neural network used.

However, one major drawback of deep learning approaches is how expensive the

process is computationally. Deep learning approaches requires extensive amount of

computational resources. It is so demanding that, for optimization, the models are

normally run on NVIDIA graphic cards, and this will increase the cost of the system.

62

3.4 Points of Failure

Distributed team of robots operating in a shared environment raises certain concerns

with which failure in the team becomes inevitable and therefore they have to be

addressed. In here, these problems are briefly described.

In general, the failure could be happening either outside of the field (during task allo-

cation) or during the actual individual task execution (e.g. ploughing, or spraying).

The latter, in case of sequential tasks such as ploughing, requires further planning

and it is outside of the scope of this research. It is recommended as one future work

to this project. Therefore, only the failures outside of the field is considered.

Let’s consider the scenario in which a team of robots are distributed around a large

field randomly. When the task is started, all available robots navigate toward the

field entrance point. At this stage, any collision with static and dynamic obstacles

in the environment will result in the elimination of that unit from the team.

In addition, as all robots are targeting one shared location in space, congestion due

to acquiring the spacial target simultaneously will prevent the robot to proceed the

field and will result in the team failure.

In the following sections, more details for the mentioned issues are provided and

appropriate solutions are listed.

3.5 Congestion Clearance

Since robots operate in a shared environment, the occurrence of congestion in the

field becomes inevitable. The congestion has to be resolved or avoided otherwise it

will result in the failure of the given task. In this research, congestion results from

two main sources: congestion as a result of spatial resource conflict, and congestion

as a result of a collision with dynamic and static obstacles in the environment. In

63

this section, the solutions for overcoming both congestions are described.

3.5.1 Spatial Resource Conflict

Robots have to approach and analyse ploughing locations one by one to determine

the state of the task (i.e. the location which is required to be ploughed next). Since

robots are initially scattered around the field, they approach the ploughing locations

from various directions. Clearly, robots should not pass through the field as they

are unaware of the state of the task (i.e. robots do not know how much of the field

is ploughed). Figure 3.8 illustrates the permitted directions of approach to the first

ploughing location.

When approaching the first ploughing location, two or more robots could reach the

targeted location at the same time from different directions (Figure 3.9 demonstrates

the possible direction of approaches to the first ploughing location). The question

that has to be addressed is which robot will take the priority in movement? (i.e.

spatial resource conflict).

3.5.2 Proposed Solution to Spatial Resource Conflict

To resolve the probable resource conflict, a robot has to decide to either give priority

to another robot or to ignore the existence of others and takes the path. This decision

has to be made only on the basis of the local information of the robot.

For this, first the field of view of the robot is divided into three regions: Left Region

(LR), Front Region (FR), and Right Region (RR) (see Figure 3.10 (a)). Then,

using the following conventions, a robot can decide whether to take priority or not.

• Left Convention: If another robot is detected on the left region (LR), ignore

and take the priority.

64

Figure 3.8: Robots approach the ploughing locations from different directions.

Robots should not pass through the field to examine the ploughing locations as

the state of the task is unknown.

Figure 3.9: different direction congestion: robots approaching the same location

from different side of the target.

• Right and Front Convention: If a robot is detected in front (FR) or on

the right region (RR), wait (i.e. stop with zero velocity) and give priority to

the detected robot.

However, sensors are subject to noise, and they cover only a limited range. This,

sometimes, leads to not detecting robots in the regions of interest. This is common

when robots are very close to the shared location. To rectify this, a threshold dis-

tance is defined on the left region. With this, the detected robots will be considered

65

on the left region if the distance becomes less than a certain threshold distance. The

region of interest in the field of view of a robot is demonstrated in Figure 3.10 (b).

Figure 3.10: Robots are assumed to have a limited field of view. (a) The field of view

of the robot is divided into three regions: LR (Left Region), FR (Front Region),

and RR (Right Region). (b) Applied conventions on the regions.

The conventions are only effective when robots are approaching from the same di-

rection. However, it is completely ineffective when robots are approaching from

opposite directions since both robots stop for the path to be cleared.

There are two reasons why congestion still occurs: (I) The defined conventions

make the robots to wait for another robot to take initiatives to clear the path.

(II) Robots behave homogeneously (i.e. robots behave the same upon encountering

another robot in the aforementioned regions).

In order to break the homogeneity in robots’ behaviour, instead of waiting at the time

of detection, robots move reversely with random velocity until the triggered region

is cleared (i.e. the robot is no longer in sight). This idea is inspired by flee-opposite

which is a straightforward obstacle avoidance method described in (Penders, 1999).

The simulation video for the proposed solution is available in (Janani, 2018c) 1.

1Congestion Avoidance Video Link:

66

3.5.3 Collision Avoidance

Besides resource conflicts, collisions with dynamic and stationary obstacles in the

environment also result in congestion. To avoid collisions, in this research, Artificial

Potential Field (APF), first introduced by (Khatib, 1986), is implemented on each

robot. According to Arkin (1998), APF is the most common continuous response

method approach in which only overview of the surroundings of the robot is consid-

ered. The APF is fast, computationally inexpensive, and easy to implement (Wu

et al., 2016b).

The Artificial Potential Field is inspired by the particles interaction model. Particles

with the same polarity repel each other, whereas particles with the opposite polarity

attract one another (see Figure 3.11). As a result, the potential function is the sum

of the corresponding attraction and repulsions fields and it can be expressed as

follows:

U(q) = Uatt(q) +
∑

Urep(q) (3.8)

In robotic terminology, a robot is considered to be in the opposite polarity with

the goal, and in the same polarity with other obstacles in the environment. Conse-

quently, the robot is always attracted to the goal location while moving away from

the surrounding obstacles.

A popular and widely used attractive potential function is quadratic well (Park

et al., 2001). It is simple and provides a linear control law with constant gain. The

quadratic well attraction field is expressed as follows:

Uatt(q) =
1

2
ωa|q − qd|2 (3.9)

Where ωa is the attraction gain, q is the position vector of the goal, and qd is the

67

Figure 3.11: In Artificial Potential Field, the goal, which is in the opposite polarity

of the robot, attracts the robot and the obstacles, which are in the same polarity as

the robot, repel (Safadi, 2007).

position vector of the robot. The attraction force is the gradient of the attraction

field:

Fatt = −∇Uatt(q) = −Ka|q − qd| (3.10)

Unlike attraction force, it has generally been recognised that a repulsive potential

should have limited range of influence. This prevents an object from affecting the

motion of the robot when it is far away from the object. The repulsion field and the

corresponding force are expressed as follows:

Urep(q) =


1
2
Kr(

1
ρ
− 1

ρo
)2 ρ ≤ ρ0

0, ρ > ρ0

(3.11)

Frep = −∇Urep =


Kr(

1
ρ
− 1

ρo
)(1
ρ0

) ρ ≤ ρ0

0, ρ > ρ0

(3.12)

68

Artificial Potential Function suffers from oscillation and local minima. Oscillation

and local minima occur when the attractive force and the sum of repulsive forces are

equal or almost equal and collinear but in the opposite direction moving to the goal

location (Li et al., 2012). Zero-sum force causes the robot to oscillate (see Figure

3.12(a) and (c)). When local minima occurs near the goal, the robot cannot reach

the target (see Figure 3.12(b))

Figure 3.12: Local minima (Li et al., 2012).

Overcoming local minima and oscillation have been investigated extensively, and as a

result, various methods have been suggested. Okamoto and Akella (2016) classified

the proposed solutions into two categories: (i) solutions which aim to eliminate

the local minima by using special potential functions including navigation function

(Koditschek and Rimon, 1990) and harmonic function (Connolly and Grupen, 1993).

And (ii) solutions which aim to resolve the local minima after the robot is trapped.

There are a variety of approaches in this category including applying additional

forces (Li et al., 2011), Regression search method (Li et al., 2012), placing a virtual

obstacle (Park and Lee, 2003), virtual goal (Yang and Dong, 2012), and applying

random movement direction (Lee et al., 2012). These approaches provide promising

results, and they can be applied to the current research.

The cpp code for collision avoidance with the artificial potential function using laser

69

range finder in ROS can be accessed in Appendix B. The code is implemented in

Stage simulation environment (Janani, 2017) 2 and on Pioneer-3AT robot (Janani,

2018a) 3 and (Janani, 2018b) 4.

3.6 Challenges in Obstacle Detection Implementation

When implementing the artificial potential function collision avoidance in the team,

few team-level concerns appear which have to be addressed.

3.6.1 Differentiation between other team members and the rest of the

obstacles in the environment

This valuable piece of information assists robots to decide more efficiently on the

required action when encountering other robots. In other words, by recognising

other robots in the field, robots can understand other robots intention and perform

collision avoidance in a more efficient way.

There are various approaches with or without direct communication to assist robot

to differentiate between other robots and obstacles in the environment. However,

two communication free approaches are identified. These two approaches utilise

2APF Simulation Video Link:

3APF in Action Video Link:

4APF in Action Video Link:

70

the attached sensory system (i.e. laser range finder and 2D camera), hence do not

require to add any more hardware to each individual.

Object Profiling Using Laser Range Finder Laser rangefinders return data

in a dense format. For example, Hokuyo RG-04LX-UG01 returns 683 beams in 240o

field of view meaning that the angle between two consecutive beams is 0.3515625o.

(Hokuyo, 2009). When encountering an object multiple range points will represent

the object. The objective in here is to classify these points into different objects

and correlate the objects with pre-defined models and separate those that are close

to the definition of other robots.

One of the most popular approaches is clustering. Clustering is one of the most

widely used techniques for exploratory data analysis (Shalev-Shwartz and Ben-

David, 2014). Shalev-Shwartz and Ben-David in 2014 describe in details various

methods for clustering. In here, connectivity-based cluster finding is implemented

since the number of points is limited.

In this approach, first, the acquired range data, which is returned in the polar

system of coordinate, is converted into pointclouds, which are in the 2D Carte-

sian system of coordinate. Forming the first cluster at point zero p[0], for ev-

ery point, Euclidean distance to the next immediate neighbour is calculated. If

the distance to the next neighbour is smaller than a pre-defined parameter called

maximum cluster distance, the point will be included in the current clusters, oth-

erwise, the previous cluster will be closed and a new cluster will be created. The

closed cluster will be discarded if the size of the cluster, i.e. the number of points

in the cluster, is less than another predefined parameter called min cluster size.

Cluster finding class and other laser analysis ros-package is available in github

through https://github.com/ajanani85/laser_analysis.git. In addition, the

71

https://github.com/ajanani85/laser_analysis.git

cpp code for cluster finding is in Appendix C and D.

Team-mate Recognition Using 2D Camera In teammate recognition using

2D vision sensor, robots search for specific 2D features on their acquired images.

The feature could be a mounted artificial feature (e.g. QR Code, Fiducial Tag, etc)

or predefined 2D template of the operating robots. They bring different benefits

and drawbacks. One main common benefit of both approaches is that with the help

of OpenCV solvePnP and Rodriguez function, you can get distance and orientation

of the detected feature.

Using QR-Code, Fiducial Tag recognition (including Chilitags (Q. Bonnard and

Dillenbourg, 2013), Apriltags (Wang and Olson, 2016), Aruco (Garrido-Jurado et al.,

2014), and etc), or any other artificially mounted features one can identify and

distinguish the robots from each other while increasing the design time. This in

the future can benefit the team if, for example, the group aimed to be divided into

smaller ones and masters are required. In this scenario, the robots can find their

masters by searching for particular tag id.

On the other hand, template finding approaches, including SIFT, SURF, FAST,

and BRIEF algorithms requires minimum design time, however, it does not provide

differentiation between robots in a homogeneous team of robots and it is, in terms

of computation time, expensive.

In this research, two approaches have been implemented and tested:

Chilitags and QR-Code: In separate approaches, the Chilitags and QR-Codes

were mounted on the body of the robots as demonstrated in (3.13) and upon

detection, the robot be able to find the position of the tag using solvePnP and

Rodriguez (in OpenCV) in the attached camera’s frame of reference. Since,

QR-codes, specifically, can carry up to 4000 characters, certain messages could

72

be encoded with which certain behaviour could be triggered on other robots.

Figure 3.13: The displayed QR-code is causing the rear robot to follow the front one

The main problem with both the QR-code and fiducial tags is that both have

limited range of detection and they require a direct line of sight. In particular,

using 15 cm by 15 cm fiducial tag, the detection range with VGA resolution

camera (480 X 640) is only 3.0 meters at detection frequency of 20 Hz. Series

of tests conducted in different lighting conditions proving the claim.

On the other hand, as the distance increases, error in the evaluated orienta-

tion resulted from cv::solvePnP and cv::Rodriguez increases. This is due to the

flickering of one or more pixels at the corners which will result in different 3D

orientation estimation. As it is demonstrated in 3.14, a mistakenly included

or excluded pixel in either direction (x or y) will result in a different 3D repre-

sentation of a 2D image. This will be intensified if the observer is in motion.

The impact of this phenomena is highlighted when it is used to determine the

position of the observer. Generally, to the position of the observer (or in this

case the camera) can be determined using the following:

73


Xo

Yo

Zo

 = R−1 ∗


Xt

Yt

Zt

 (3.13)

Where, o refers to the observer, t is the perceived tag position, and R is the

perceived rotation matrix of the tag.

Series of tests have been conducted to estimate the variation in the estimated

position of the observer and the tag. In this test, the camera is set at particular

distances toward the tag and a software record the position of the tag and

calculate the corresponding camera position using the equation 3.13. The

results of the field test is demonstrated in Table 3.1.

As it can be seen, the phenomena a significant effect in X and Y direction on

camera pose estimation and at 3.00 meters it varies more than 50 cm.

Table 3.1: Variation in tag position and observer position vs Distance to the tag

Distance (m) Variation in Tag Position (m) Variation in Camera Position (m)
∆X ∆Y ∆X ∆Y

0.50 0.0007 0.0007 0.001 0.001
1.00 0.0009 0.0008 0.010 0.0090
1.50 0.0012 0.0011 0.025 0.030
2.00 0.0020 0.0017 0.050 0.045
2.50 0.0030 0.0025 0.120 0.100
3.00 0.0057 0.0060 0.65 0.50

74

Figure 3.14: The flickering pixels at corners will cause different orientation estima-

tion in 3D

With this consideration, it is recommended to rely only on the 3-DOF position

of the tag. However, if one aims to utilise the orientation of the tag in the

calculation, including estimating the orientation of the vehicle or position of

the observer, either the camera has to be fixed with a gimbal so that the

camera motion is compensated or a synchronized IMU has to be fused with

the captured image.

RGB-LED pattern Recognition: Fiducial tags are passive features, meaning

that the detection result is sensitive toward changes in environmental lighting.

Using active source features will reduce this effect and improves the detec-

75

tion. To test this idea, RGB-LED-based patterns are created and mounted

on robots, and appropriate software is designed to detect the pattern (refer to

Appendix F).

This form of feature detection is implemented in indoor localisation project

described in (Prez, 2016) supervised by the author and Dr. Lyuba Alboul at

Sheffield Hallam University. In this project, a particular RGB-LED pattern

demonstrated in Figure 3.15, is mounted on top of the Khepera III robot(K-

Team, 2017).

Figure 3.15: RGB-LED Feature Localisation: (a) The Pattern contains a big-cluster

and small-cluster, (b) The feature configuration on Khepera III robot

The vision system consists of a 1080p Logitec camera c920 mounted on the ceil-

ing and a detection software. The feature detection software and localisation,

which is based on the HSV color detection, first converts the acquired RGB

image to the HSV colorspace. Due to the noise in the environment, the result-

ing image contains many points with the similar filtered color characteristics

(Figure 3.16.b).

76

Figure 3.16: RGB-LED Feature Based Localisation Camera View: (a) 1080p Logitec

camera c920 mounted on the ceiling, (b) HSV-based color detection result contains

noise

To remove the small white spots, morphological filters are applied and the

image is opened: that is to erode the image (Figure 3.17.a) first followed by

dilation (Figure 3.17.b).

Figure 3.17: RGB-LED Feature Based Localisation Noise Removal: (a) Erosion

result, removing small white spots from the frame (b) Dilation result, emphasising

the small spots left after erosion.

According to Prez (2016), the maximum errors in position is 6.9352 (mm),

and 1.6183 degrees in the heading.

77

3.6.2 Entering the Field due to Collision Avoidance

As robots get closer and closer to the field, the resulting collision avoidance sum

vector may force them to enter the field. This is unacceptable and has to be avoided

because of two main reasons: 1. robots in the field are not performing collision

avoidance, and 2. the already created patterns on the soil will be run over. As

robots are performing the task of ploughing, they are not performing APF-based

collision avoidance. This is due to the fact that any evasive manoeuvre inside the

field will make the robots exiting their trajectory, destroying the created pattern,

and running over the ploughed section. Therefore, this is non-ploughing robots’

responsibility to take action.

To prevent robots from entering the field, an artificial repulsion force is applied at

the borders of the field. Any robots that are closer than a particular threshold

distance to the borders will consider this force. Therefore, the sum force near the

field borders will look like the following:

Fsum = Fatt −
n∑
i=1

FREPi − FBRep (3.14)

3.6.3 Combination of Collision and Congestion Avoidance

It is clear that robots have to avoid collision and resource conflict at the same time.

However, there is one more problem: robots have to apply the resource conflict

clearance behaviour only when they encounter another robot. In other words, in

order for this approach to be successful, robots have to differentiate each other from

other objects in the environment. But, this is still not sufficient since a faulty robot

might create congestion in the field. Therefore, the status of the detected robot has

to be determined too.

78

Surely, if robots had the capabilities to broadcast their status to the nearby robots,

the problem becomes trivial. But robots are only capable to interact with each

other via implicit forms of communication. One way to resolve this is to analyse

the behaviour of the detected object by monitoring its activities using the attached

range sensors. This approach is noise prone and may not always lead to success.

Another method is to avoid collision until certain distance toward the shared location

is reached, and switch to resource conflict clearance while within this threshold

distance (see Figure 3.18). In this research, the latter approach is implemented.

Figure 3.18: The field applies repulsion to prevent robots from entering while ap-

proaching the first ploughing location. Robots in the blue region avoid collisions

only. Robots in the green region avoid resource conflicts only.

3.7 Team Ploughing

Regardless of the type of ploughing mouldboard, furrows are created the same way.

As mentioned, ploughing is a two-dimensional navigational process. If a robot

ploughs a field at a constant speed, the required time for a robot to complete plough-

ing a furrow is

79

tp =
lf
v

(3.15)

Where lf is the length of a furrow and v is the constant velocity of the robot.

When in a team, the robots have to plough in a queue as illustrated in Figure 3.19.

This is because furrows have to be created consecutively. Assuming that robots

are informed where to plough, they have equal length (λ), and there is an equal

minimum distance between robots (ε), they plough the field with equal constant

velocity, v. Thus applying a team introduces a delay time, as each robot except the

first one has to wait for its predecessor. The delay time required for each robot can

be calculated as follows:

tdelayi =
(i− 1)(λ+ ε)

v
(3.16)

This delay is generated only once and propagates through to the following round of

ploughing. Therefore, ploughing time for a robot is obtained as follows:

Corollary 1: The time to plough the ploughable area is

Tploughing = K.tp + tdelayn

3.8 Furrow Transitioning

How to determine the first location to plough is one problem, but where to plough

next is another. As emphasised in section 3.1.4, with reversible mouldboards it is

possible to plough the field more efficiently as furrows can be created consecutively

from both sides. Let’s assume that robots are equipped with reversible mouldboards,

and they are capable of ploughing from both directions. In order to utilise this capa-

80

Figure 3.19: Team of n robots are aiming to plough. In the best case scenario, if

the robots have formed the queue initially.

bility, upon finishing ploughing a location, robots have to standby in the headland

area waiting for the last participating robot to complete its current furrow. In this

situation, where to plough next depends directly on how robots behave in headland

during furrow transitioning. In other words, furrow transitioning dictates how to

distribute furrows among robots. According to this, two furrow transitioning models

have been identified, and they are presented in the following sections.

3.8.1 Ploughing with a Reversible Mouldboard: First-In, First-Out

Let’s assume that there is an initial order in a team of n robots. The order for the

first shift is roboti is assigned with furrowi. In FIFO, robots aim to maintain the

original order throughout execution. As the number of robots is smaller than the

number of furrows (n < K), robots may need to plough more than one furrow. If

robots aim to maintain the original order in the team and if the task is distributed

among robots always from r1 to rn, then the number of times that ri has to perform

ploughing can be obtained as follows:

81

ki =


dK
n
e if i ≤ (K mod n)

bK
n
c if i > (K mod n)

(3.17)

In here, dK
n
e represents the smallest following integer, and bK

n
c represents the largest

previous integer.

Knowing ki is necessary but it is not sufficient as the ploughing locations allocated

to ri are distributed throughout the field and they are not next one another. For

that, if R is the set of robots, R = {ri|i ∈ {1, 2, ..., n}}, and F is the set of furrow

numbers in the field, F = {fl|fl ∈ {1, 2, ..., K}}, and Gi is the set of ploughing

locations allocated to ri, where

|Gi| = ki, and

∪
∀i|i∈{1,2,...,n}

Gi = F , and

Gα ∩
α,β∈{1,2,...,n},α 6=β

Gβ = φ,

then ploughing locations (or furrow number) allocated to ri is:

Gi = {fi+jn|j ∈ {0, 1, ..., (ki − 1)}} (3.18)

During FIFO headland navigation, robots have to achieve three goals: (1) maintain-

ing the original order, (2) reaching the next ploughing location, and (3) adjusting

the heading by 180◦. As fj always have to be processed before fj+1, the robot that

is responsible for processing fj+1 is not allowed to enter the field before the robot

which is allocated with fj. This means that r1 cannot start the ploughing before rn

exited the field.

To maintain the original order, in FIFO, robots stack behind r1 until rn exits the

field. To achieve this, the robots have to form a loop, as illustrated in Figure 3.20.

Upon completing a furrow, each robot joins the queue in the direction of the (virtual)

82

point A in Figure 3.20. Then the robot turns to B and C respectively. Where C is

in the line of the next furrow. Ploughing starts at point D, as soon as there is space

(the last robot has left, or rj−1 has begun).

Figure 3.20: First-In, First-Out Furrow Transitioning: (A) Move to the last position

of r1. (B) Approach orthogonal projection of point A on headland. (C) Move to

your next starting point orthogonal projection on the margin of the field. (D) Next

Starting point for r1.

Time analysis of furrow transitioning is carried out in two stages: The time for a

robot to travel the designated distance (tffti), and the waiting period during furrow

transitioning (twi).

In the first case, where there is no traffic to affect robots’ locomotion, duration of

furrow transitioning for a robot can be obtained from the sum of all 2-dimensional

locomotion at each stage. For that, let’s break down the distance that a robot travels

during each stage. In the first stage, a robot travels to the position of the first robot.

83

This position is df .(i − 1) meters away from the current position of the ri where

i is the rank of the robot obtained during task allocation, and df is the distance

between two consecutive furrows. r1 can skip this stage since it is already at point

(A). In stage 2, robots have to travel for the distance of h2 meters, until they reach

the lowest or the highest margin of the field. In stage 3, robots have to travel to

their next allocated furrow in Gi. This position is df .(n + i− 1) meters away from

point B for ri. Finally, in stage 4, robots travel for another h2 meters to reach the

beginning of the ploughing location. Figure 3.20 demonstrates the described furrow

transitioning pattern.

Considering that furrow transitioning has to be repeated on both sides of the field,

it could be assumed that the width of the headland on both sides are equal (h2 =

h1 = H). With this, the overall travelled distance that a robot needs to take for

furrow transitioning without considering the impact of traffic is:

dfti = dstage1 + dstage2 + dstage3 + dstage4

dfti = 2H + df .(n+ 2i− 2) (3.19)

Where, H refers to the minimum required headland, and it can be obtained as

follows:

H = (λ+ ε)(n− bdf .(2n− 1)

λ+ ε
c) (3.20)

Derivation: Let’s assume that the length of all robots are equal, and it is denoted

by λ. Let’s also assume that the threshold distance between two robots is denoted

by ε. If a team of 10 robots is transiting their furrows, between the position of last

robot (r10) and point (A) there are 9 furrows. Also, between point (B) and point

84

(C), which is the next furrow position for r1, there are 10 furrows. Therefore, the

sum of distances in both stages is 19.df meters. With this, it is possible to identify

the number of robots that can fit in these two sides: b19.df
λ+ε
c. The length that the rest

of the robots, n− b19.df
λ+ε
c, require to fit between point (A) and (B) is the minimum

width for the headland, (λ+ ε)bn− df .(2n−1)
λ+ε

c.

When dfti is known, it is possible to evaluate the time required for a robot to perform

furrow transitioning in a traffic-free manner.

tffti =
dfti
v

(3.21)

As mentioned, robots have to wait in the headland area until the last robot exited

the ploughing area. This means rn has a direct impact on the waiting period of

each robot. In order to determine the effect of rn’s ploughing time on r1’s furrow

transitioning time, one needs to take into account that during the time that rn is

ploughing, r1 is also performing ploughing and furrow transitioning, and by the time

r1 reaches its waiting point (which is point C in Stage 3), rn has already completed

some portion of its task. If the task is performed without any collision or congestion

and at a constant speed, the effect of the ploughing time of rn on furrow transitioning

time of r1 can be evaluated as follows:

tw1 = tpn − tp1 −
H + n.df

v
(3.22)

In here,
H+n.df

v
refers to stage 2 and stage 3 of furrow transitioning performed by

r1, v is the velocity of the robot, tpn and tp1 are the ploughing period for robot rn

and r1 respectively.

Other robots, ri>1, will travel shorter distances as they stack behind r1. With this

85

consideration standby time, twi , for robots can be obtained as follows:

twi = tpn − tpi −
H + n.df − (i− 1)(λ+ ε)

v
(3.23)

From both, the furrow transitioning and traffic effect time, it is possible to determine

the overall time required for a robot to perform furrow transitioning in a team with

n robots in one round.

tfti = twi + tffti (3.24)

If ri is required to plough ki furrow, it has to perform furrow transitioning for ki− 1

times. Therefore, ri’s overall furrow transitioning duration is (ki − 1).tfti .

Figure 3.21 demonstrates the described algorithm in the form of flow chart.

86

Figure 3.21: Ploughing with a Reversible Mouldboard FIFO - Flow Chart

87

3.8.2 Ploughing with a Reversible Mouldboard: Last-In, First-Out

It can be seen in equation 3.20 that the width of the headland depends heavily on

the number of robots in the team: the size of the ploughable area will shrink by the

increase in the number of participating robots. This is a major drawback of FIFO

since it affects the profitability of the field (there are many other applications which

can still utilise this model with the current results). Therefore, we sought for an

alternative approach by which the more headlands could be limited.

In LIFO, the main aim is to preserve more headlands. One way to improve FIFO

approach is to introduce a more flexible task allocation method. Similar to FIFO,

let’s assume that the order of the first round of ploughing among n robots is roboti

is assigned with furrowi. Instead of maintaining this order for next round, robots

aim to reverse this order by letting the last robot to start first. This means that

robots will change their order in the team to their n − i + 1 ranks. For example,

if the original rank of a robot is 2 (i = 2) in a team of 5 robots (n = 5), in the

next round of ploughing its rank will change to 4. As robots will be assigned with

different ranks in the team, the number of furrows that each robot has to process

(ki) and members of robots’ furrow sets (Gi) have to be redefined to compensate this

change. Like FIFO, task is distributed from the r1 to rn. Therefore ki is determined

as follows:

if bK
n
c ∈ {2, 4, 6, ...}:

ki =


dK
n
e if i ≤ (K mod n)

bK
n
c if i > (K mod n)

(3.25)

88

and if bK
n
c ∈ {1, 3, 5, ...}:

ki =


bK
n
c if i ≤ (K mod n)

dK
n
e if i > n− (K mod n)

(3.26)

Also, members of Gi can be identified by the following:

∀j ∈ {1, 2, ..., ki}

fj =



i if j = 1

fj−1 + 2(n− i) + 1 if j = 2p, p ∈ Z

fj−1 + 2i− 1 if j = 2p+ 1, p ∈ Z

(3.27)

With order of a robot changing at every round, the ploughing time of a robot also

is affected:

∀j ∈ {1, 2, ..., ki}

tpi =



lp−2H+(i−1)(λ+ε)
v

if j = 2p+ 1, p ∈ Z

lp−2H+(n−i)(λ+ε)
v

if j = 2p, p ∈ Z

(3.28)

The furrow transitioning that satisfy this condition requires that ri instead of stack-

ing behind of ri−1, stack in front of it. With this, the robot that was originally

assigned with rank i will be re-ordered in the team by n − i + 1. For example, r1

becomes rn in every other round.

To implement this, a three-stage procedure is designed, and robots as long as their

order during the ploughing are not the last robot in the team (i 6= n) has to comply

89

with these stages. In the first stage, robots have to keep rotating to the left (during

furrow transitioning at h1) until their heading difference becomes 90◦. If the length

of a robot and its extension is denoted by λ, then a location with (xc − λ, yc + λ)

coordinate could be assigned as a target for the robot (where (xc, yc) is referring to

the furrow ending coordinate). This location is marked by (A) in Figure 3.22.

In stage 2, the robot maintains its heading and moves for double of its length

reversely. This point can be addressed by (xc + 2λ, yc + λ) coordinate in the field

(refer to (B) in Figure 3.22. During its approach to point B, a robot does not

necessarily have to observe the behind area. Instead, a robot that has already

reached the point (B), scans for any critically closing objects. Upon detection of a

reversely approaching robot, the detector robot will move reversely to maintain the

critical distance. The last robot that joins the queue is rn−1. In addition to moving

reversely, a robot that reached point B has to monitor the behaviour of the front

robot for initiation of stage 3. This could be carried out by a range based sensor or

a simple camera.

Stage 3 starts when rn−1 detects that rn which becomes the first robot for a new

round clears the path. rn, instead of complying with the stages, can directly access

its next ploughing starting coordinate as there are no other robots in the field.

Once rn moves out of the field of view of rn−1, it starts approaching its next round

of ploughing. Other robots behave the same as soon as they detect such behaviour

from the front robot.

During Stage 1, robots travel equal distances if they have equal dimensions. The

travelled distance at this stage can be evaluated as follows (let λ be the length of

the robot and):

90

Figure 3.22: Three stage procedure of ploughing with a reversible mouldboard LIFO

dstage1i = λ.
√

2 (3.29)

In Stage 2, each robot will travel two different sets of distances: (1) distance to reach

the designated point B, and (2) distance to avoid collision with the front robot(s).

In the first part of stage 2, each robot has to travel 2λ meters to reach the location

of point B. However, in order to obtain the travelled distance in part 2, a deeper

analysis is required. The initial distance difference between two consecutive robots

is equal to the distance between two adjacent furrows (df). And as point A and

B’s coordinates for robots are relative to their end ploughing locations, then point

A and B of two consecutive robots are df meters away from each other. If distance

between two consecutive furrows, df , is smaller than the length of the robots, λ, and

the threshold distance between two robots is denoted by ε, then the total distance

that a robot with complementary rank i has to travel is:

dstage2i = (n− 1− i)(ε+ df) + 2λ (3.30)

91

In stage 3, once the path is cleared, robots have to travel to their next starting point.

The travelling distance consists of the travelled distance during stage 2 to reach to

the initial point, and the distance to reach the new ploughing location:

dstage3i = dstage2i − λ+ df .(n+ i+ 1) (3.31)

With travelled distances at each stage known, it is possible to identify the duration

for ri to perform furrow transitioning without consideration of traffic effect:

tffti =
dstage1i + dstage2i + dstage3i

v
(3.32)

Like FIFO, robots execution affects one another. However, this effect is compensated

by the time that each robot spends to reach stage 2 of furrow transitioning. Because

of the re-ordering, the effect of the traffic will also change for each robot. This effect

for each robot can be evaluated as follows:

∀j ∈ {1, 2, ..., ki}

twi =



tpn − tpi − tstage1i − tstage2i if j = 2p+ 1

tp1 − tpn−i+1
− tstage1n−i+1

− tstage2n−i+1
if j = 2p

(3.33)

With this approach, robots require less heading width for obtaining the required

orientation:

H = ζ + λ (3.34)

Where ζ is the width and λ is the length of the robot. Figure 3.23 demonstrates the

described algorithm in the form of flowchart.

92

Figure 3.23: Ploughing with a Reversible Mouldboard LIFO - Flow Chart

93

3.8.3 Comparison and Discussion

In the previous section, two furrow transitioning method (FIFO and LIFO) along

with the corresponding task partitioning and allocation were discussed. The pro-

ductivity and efficiency of the proposed approaches can be indicated via three pa-

rameters: (i) the length of the ploughed furrow (lp), (ii) team ploughing execution

time, and (iii) the required travelled distance. (i) indicates the amount of crop that

can be grown in the field (yield), whereas (ii) and (iii) indicate the ploughing cost.

For mathematical visualisation and simulation purposes, a series of environmental

parameters have to be set. The details of the field are demonstrated in Table 3.2.

Table 3.2: List of parameters for simulation and mathematical visualisation

Parameter Name Values

Field Dimension (W × L) 20(m)× 26(m)

Distance Between Two Consecutive Furrows (df) 40(cm)

Length of a Furrow (lp) 20(m)

Robot’s Dimension (ζ × λ) 0.5(m)× 0.5(m)

Threshold Distance between Two Robots 0.25(m)

Furrow Analysis Period 5(s)

Robot Velocity 0.5(m/s)

Furrow transitioning is performed in the headland area at both ends of the field.

The width of the headland affects the length of the ploughed furrow:

lf = L− 2H (3.35)

Where, lf is the length of the ploughed furrow, L is the length of the field, and H

94

is the width of the headland (assuming h1 = h2 = H). This means that the wider

the headland, the shorter the length of the furrow, hence smaller cultivation area.

Therefore, the productivity of a furrow transitioning method in terms of the length

of the furrow can be expressed as follows:

%Prod =
lp
L
× 100 (3.36)

Using equations 3.20 and 3.34, the required headland, and the corresponding pro-

ductivity can be predicted in different team sizes. A script is developed to calculate

the productivity in both methods, and the results are demonstrated in Figure 3.24.

Figure 3.24: FIFO vs LIFO impact on productivity of the ploughing. By increase

of number of participating robots in the team, the productivity in FIFO furrow

transitioning method drops significantly. This is because the headland depends

on the team size as described in equation 3.20. Whereas in LIFO, robots require

consistent width for headland navigation, hence productivity remains uninfluenced

by the team size.

According to Figure 3.24, the productivity in FIFO drops significantly by increase

95

in number of participating robots. Whereas, the productivity remains consistent in

LIFO regardless of the team size (Only in a team of three robots FIFO becomes

more productive).

Furthermore, the total ploughing execution time in the team and the maximum

travelled distance that an individual will take during execution can be estimated

and compared in different team sizes. Total ploughing execution time refers to the

duration between the time that the first robot enters the field and the time that the

last robot leaves the field. With this, series of simulations have been conducted to

estimate the total execution time for both furrow transitioning methods in different

team sizes.

As it is demonstrated in Figure 3.25 and Figure 3.26, in LIFO, robots perform

furrow transitioning faster while travelling shorter distances. This reduces the cost

of ploughing compare to FIFO furrow transitioning method.

Figure 3.25: Ploughing time visualisation: team size ∈ [3, 20]. With LIFO, the

team can plough the field much faster. The results are obtained from simulation

conducted in Matlab.

96

Figure 3.26: Ploughing distance visualisation: team size ∈ [3, 20]. In FIFO, robots

have to travel longer distances for furrow transitioning. This increases the cost of

ploughing.

Simulation In addition to mathematical visualisation, series of simulations were

conducted in Stage simulation environment (Gerkey et al., 2003) in conjunction

with ROS (Robot Operating System) (Quigley et al., 2009). In the robot simulation

model, each robot is equipped with a forward facing Hokuyo laser range finder

with 180.0 degrees field of view, a 32 x 32 pixel 2D camera facing forward pitched

45.0 degrees downwards, a localisation system providing the 3DOF (three degree of

freedom) position of the unit in world model (x, y, yaw in radian), and a receiver

unit for receiving task initiation signal. The simulation begins by broadcasting the

start signal throughout the system.

The behaviour of each robot is being controlled by three C++ programs: task-

handler.cpp which is responsible for decision making and selecting the target lo-

cations for the robot navigation, reach-point.cpp which utilises the information

provided by the localisation system and the range sensor information to guide the

robot to the requested location by avoiding collisions and resolving resource con-

97

flict. And image-analyser.cpp which is responsible for furrow detection. The

task-handler.cpp communicates with other modules through ROS interprocess com-

munication API. Figure 3.27 demonstrates the overview of the simulation control

system.

Figure 3.27: Overview of Stage simulation control system for each robot.

The videos for the simulations are in (Janani, 2015b) 5 for FIFO and (Janani, 2015a)

for LIFO 6. The simulations are run for different team sizes ([3 15]). Robots start

the task simultaneously as soon as the programs start. During simulation, the time-

stamp along with the position of the robots are recorded separately while the robots

are within 40 × 40 meters area. This is to observe the effect of simultaneous field

accessing while robots are outside of the field. As demonstrated in Figure 3.28, the

simulation results indicate similarities with results obtained from the mathematical

description. However, there are differences between simulation results and math-

ematical visualisation which is due to the fact that mathematical descriptions do

5FIFO Simulation Video Link:

6LIFO Simulation Video Link:

98

not consider: the initial position of the robots, the existence of random velocity for

congestion avoidance, and limited area of consideration (1600m2 for simulations and

520m2 for mathematical visualisation).

Figure 3.28: FIFO and LIFO Difference between Simulation and Mathematical Re-

sults: (a) FIFO Simulation (black colour) and Mathematical(red colour) Results. (b)

LIFO Simulation (black colour) and Mathematical(red colour) Results. The blue

line indicates the difference between simulation results and the results obtained from

mathematical description.

All in all, if ploughing with a reversible mouldboard is desired, LIFO approach will

provide faster and cheaper furrow transitioning while it maintains a fixed headland

for different team size.

3.9 Ploughing Optimisation

The results obtained from FIFO and LIFO confirm the feasibility of cooperative

ploughing. However, the proposed approaches have a few drawbacks. In this section,

first, these drawbacks are discussed. Next, a new method is described by which

cooperative ploughing becomes more resilient towards the dynamic changes that

could occur during ploughing.

99

3.9.1 Issues with FIFO and LIFO

In FIFO and LIFO, in order for robots to perform furrow transitioning, robots have

to consider the number of participating robots. In other words, the team size is

fixed during execution time, and it can only be updated during the design period.

This makes both approaches vulnerable to dynamic changes in the environment.

Specifically, the loss of an individual during execution time results in incomplete

ploughing. In other words, the system is not robust and it is susceptible to the loss

of an individual. The worst case scenario occurs when the last robot fails. In both

FIFO and LIFO, the last robot dictates when a new round of ploughing should be

restarted as the rest of the team is standing by at the headland. In this situation, if

the last robot fails to reach the headland, the rest of the team maintain their status.

As a result, a significant portion of the field remains unploughed.

Moreover, the number of participating robots cannot be increased during ploughing

either (i.e. the system is not scalable in real-time). For instance, if one robot is added

to a team of 10 robots, without updating the other robots, ploughed locations will

be redundantly ploughed. Therefore, increasing the team size during execution time

has no impact on the processing time.

These limitations are due to the lack of communication among robots. Since the

information regarding the team size cannot be updated during execution time, any

changes in the team size (including increase or decrease) will impair the results.

Robots should be able to find their next ploughing location independent of the

team size.

In addition, robots are assumed to be equipped with only reversible mouldboards.

This means that the system cannot tolerate any heterogeneity in the team. However,

reversible mouldboards may not always be available. The system should be flexible

100

enough to adapt to these insignificant changes and tolerate heterogeneity in the

team.

With these new design considerations, a new approach has to be investigated. An

approach which is more flexible toward changes that could occur during execution.

Instead of ploughing in a highly coordinated method, the cooperation should emerge

as a result of individual executions. This is referred to as emergent cooperation. In

emergent cooperation, robots do not explicitly work together (whereas in FIFO and

LIFO, robots furrow transitioning depends on each other), but cooperation emerges

as a result of their interactions with each other and the world and it is independent

of team size (Gerkey et al., 2003).

3.9.2 Toward Self-Organising Ploughing

As mentioned, the most important drawback of FIFO and LIFO is task allocation’s

dependency on the number of participating robots which make the system suscepti-

ble to the loss of a single robot. Robots utilise the information about the team size

to determine where to plough next. If robots plough the field from only one side

(instead of both sides in FIFO and LIFO), the answer to the question of where to

plough next? can be responded independently of the number of participating robots.

In this approach, robots plough the field only from one side. After completion of a

furrow, robots navigate back to the first ploughing location using the width of the

field (see Figure 3.29).

As robots analyse the ploughing locations, their understanding of the task increases.

For example, if a robot ploughs the third ploughing locations (f3), for the next round

it does not need to re-analyse the field up to the third ploughing location. Instead,

the robots directly approach the fourth ploughing location (f4).

101

Figure 3.29: The self-organised approach: robots plough the field from one side only.

These learnings not only prevents redundant field analysis, but also it assists the

robot to select the shortest path to the next ploughing location. If robot determines

that the next ploughing location to analyse belongs to the second half of the field,

it selects the opposite side of the field to reach to the targeted ploughing location

(see Figure 3.30).

Figure 3.30: By building up the understanding of the environment, robots can select

the shortest path to the next ploughing location.

A robot concludes that a field is ploughed when it finds the last ploughing location

102

processed. As soon as this conclusion is made, the robot clears the path for others

to process to prevent congestion. Figure 3.31 demonstrates the flow chart of the

self-organised ploughing, and Appendix I contains C++ task handler for the self-

organised ploughing. (Janani, 2016) 7 contains the link to the video of simulation

for self-organised ploughing.

In this approach, the task allocation is carried out in real-time and independent of

the number of participating robots. Thus, the team becomes more robust toward

the failure of one or more individual.

Also, the approach is more scalable since by increasing the number of participating

robots, the individual behaviour will not be affected. In addition, this approach is

independent of the attached ploughing mouldboard. Robots could be equipped with

reversible or conventional mouldboard and yet they can contribute to the task.

However, one major drawback of this approach is that robots have to travel long

distances for furrow transitioning to reach the next ploughing location. As a result,

the cost of ploughing increases significantly. Using the same control architecture as

FIFO and LIFO (Figure 3.27), series of simulations were conducted. As it is demon-

strated in Figure 3.32, using the optimised ploughing approach robots have to travel

farther distances. This increases the cost of ploughing significantly. However, by in-

crease in the number of participating robots, this difference is reduced considerably.

It could be concluded that the optimised ploughing approach has better efficiency

when applied to a large team.

7Self-Organised Simulation Video Link:

103

Figure 3.31: Self-organised ploughing flowchart

104

Figure 3.32: With the self organised method, robots have to travel longer distances.

This increases the cost of ploughing.

Figure 3.33: Time Analysis of Ploughing Methods: The impact of improvement on

execution time (a single robot can plough the same field in tsingle = 2854.4(sec)).

By increase of number of robots in the team, the self organised ploughing method

has better response.

105

3.10 Conclusion

In this chapter, the feasibility of cooperative ploughing in a team of robots is in-

vestigated. As a result, three cooperative ploughing approaches (FIFO, LIFO, Self-

organised) are described, analysed and compared. In FIFO and LIFO, the aim is

to utilise the capability of reversible mouldboard and perform ploughing from both

sides of the field. The task allocation depends on the number of participating robots

in the team, and this makes both approaches susceptible to the loss of a single robot.

Since both approaches are not real-time scalable and robust system, any changes in

the team size (including removal or increase of an individual) affect the end result. It

could be said that FIFO and LIFO are effective only when the success of individuals

can be guaranteed.

Therefore, the self-organising approach is proposed in which task allocation is car-

ried out independent from the number of participating robots. The self-organising

approach is not affected by changes in the team size (both increasing and decreasing

the team size will not affect the system).

Even though the self-organising approach is more reliable, it increases the cost of

ploughing since the robots have to travel relatively farther distances to reach the

next ploughing location. The obtained results from simulation suggest that this

effect becomes insignificant as the number of participating robots increases.

106

CHAPTER 4

COOPERATIVE SPRAYING: DESIGN AND
IMPLEMENTATION

In this chapter, the feasibility of spraying a large field with a dis-
tributed team of robots is investigated. The motivation behind this
chapter is presented in 4.1. The task of spraying is described and
analysed in 4.2. The proposed approach for spraying in a team of
robots are described in words, flow charts, and the implemented
C++ codes in 4.3. The proposed approach is analysed, criticised ,
and an optimised approach is described in 4.5.

The points described in this chapter is published in the following:
Janani, A., Alboul, L. and Penders, J., 2016, June. Multi robot co-
operative area coverage, case study: spraying. In Conference Towards
Autonomous Robotic Systems (pp. 165-176). Springer International
Publishing.

4.1 Motivation Behind Further Investigation

In the previous chapter, a scalable distributed cooperative algorithm was suggested

for the task of ploughing. At first glance, it seems that the proposed solution can be

applied to all agricultural tasks despite being classified as independent or sequential.

One important point which is taken into consideration in cooperative ploughing is

the physical changes that ploughing creates on the soil (i.e. ridges and furrows).

Such patterns do not come into existence with other agricultural tasks.

Let’s consider the task of spraying which starts after the task of ploughing. In

this task, the furrows (which are now crop rows) are already created. If the same

interaction method is applied(i.e. robots rely on detection of furrows to indicate if a

location is processed), the spraying will never be initiated as robots perceive that the

107

task is completed, bear in mind that the existence of furrows are the indication for

this. In other words, for spraying, the detected furrows carry insufficient information

for concluding the state of completion of the task (see Figure 4.1).

Figure 4.1: The ploughing interaction method cannot be applied to spraying or

seeding since the furrows are already created.

In order to use the same cooperative algorithm, the considered task needs to have

permanent and detectable effects on the soil which are different than the one that

already exists. Let’s assume a team of robots in which individuals are equipped

with appropriate sensors to determine the level of chemical on certain locations.

As mentioned in the initial condition in chapter 3, the robots are assumed to be

scattered around the field, and thus the robots will access the field at different

instances of time. If so, it is possible that by the time a robot is analysing a location

to determine the level of chemicals, it concludes that the location has not been yet

sprayed as the chemicals are evaporated. As a result, that particular location will

be sprayed more than once (see Figure 4.2).

The tasks including spraying (the sprayed chemicals could be evaporated and it be-

comes untraceable) and seeding (the seeds might be covered with soil) create changes

which are either temporary or time-consuming to detect.This creates another level

of failure for each task as multiple robots could spray or seed certain area of the

108

field more than once.

Figure 4.2: Any mistake in detecting the chemicals will result in excessive spraying.

It could be concluded that the solutions presented in the chapter 3 is only valid for

tasks by which there will be permanent and detectable changes in the environment,

and therefore it is inappropriate for tasks such as spraying and seeding.

One obvious solution is to divide the field into smaller regions and assign each region

to a robot during design. With this solution, task allocation is carried out really

safely and fast as excessive spraying is prevented. However, since robots have no

information about the status of other participating robots, and since there are no

explicit forms of communication the spraying will start asynchronously and in an

uncoordinated fashion. As a result, even if the direction of execution is unified

(i.e. robot spray the field in the same direction), it will be possible that two robots

process two consecutive tracks from opposite directions. As a result, robots will

reach congestions in the middle of the field. This is undesirable since robots cannot

navigate in other directions as there are crops in the environment.

109

Figure 4.3: With static task allocation, congestions in the middle of the field are

inevitable as spraying is uncoordinated.

These points are the motivations to investigate a new cooperative behaviour for a

large team of robots by which a large field can be sprayed at different stages of

cultivation. Although the targeted task is spraying, the provided solution should be

applicable for similar tasks including seeding, re-seeding, seed mapping, and etc.

110

4.2 Spraying Analysis

Spraying is the process of dispensing Plant Protection Products (PPP) on the crop at

different stages during cultivation. PPP includes herbicides, pesticides, fungicides,

and growth fertilizers. According to Faivre et al. (in 2008) it is common to mix PPPs

with water pumped through the irrigation system. For example, liquid fertiliser

and/or insecticides can be drawn into the stream of water which is pumped from a

water source such as a river or well. Proper application of the chemicals allows the

crops to be grown with a bit more certainty since nutrient problems and/or insect

infestations can be addressed while the crop is growing (Faivre et al., 2008).

The definition of spraying also encompasses water irrigation. The earliest archaeo-

logical evidence of irrigation in farming dates to about 6000 B.C. while the earliest

pictorial representation of irrigation is from Egypt around 3100 B.C (Sojka et al.,

2002).

Traditional irrigation methods vary from using natural flood cycles of the local

rivers, in which the natural river stream was guided to the furrows (or crop rows)

throughout a field to direct moisture to the plants therein, to trickle or drip irriga-

tion methods, in which a small amount of water is applied to the plants to reduce

evaporation of the water (Faivre et al., 2008). When high-pressure delivery systems

became available, spray irrigation became popular because of the distance that it

could cover.

The spray irrigation may additionally utilise machinery that relocates the spray

nozzles throughout different portions of the field in a controlled manner. Conven-

tionally, a tractor with a spraying unit is driven through the field and the PPPs are

gradually dispensed on the crop. The task of spraying can be initiated from any

point in the field and the tracks can be sprayed in any order (see Figure 4.4).

111

Figure 4.4: Spraying unit is driven on the tracks while PPPs are gradually dispensed

on the crop (AAPlus, 2017).

Spraying is distinguished from other agricultural tasks in that of redundancy of

processing. In other agricultural tasks (e.g. ploughing, seeding, and harvesting),

even though redundancy in processing (that is processing a point in the field more

than once) increases the cost of execution, the final result is still acceptable. In

spraying, any location in the field has to be processed only once, since excessive

PPPs dispensing will destroy the crop. Moreover, in spraying, the direction of field

processing is fixed. The sprayer unit is allowed to navigate through the field via

gaps between the crop rows referred to as tracks (since spraying is carried in various

stages of cultivation, furrows may or may not exist, therefore they are referred to as

tracks). Any other motions or manoeuvres are prohibited since the crop will be run

over.

4.2.1 Single Robotic Sprayer

In the recent years, automated spraying system has been improved significantly,

and today there are variety of spraying units from time-based static sprayers to

autonomous mobile sprayers.

112

One of the well-known autonomous spraying units is Irrigation Robot developed by

John Deer (Figure 4.5). The Irrigation Robot can move in two directions and spray

the field uniformly. Although the Irrigation robot can be extended or reduced in

size for different field sizes (Faivre et al., 2008), the field has to be relatively flat

with minimal rough terrain. Besides, the accuracy of the spraying unit is relatively

low since the dispense of the materials is from a long distance.

Figure 4.5: Irrigation Robot (tarmakbir, 2017)

Accuracy in spraying motivated various researchers to apply mobile robots in this

field. For example, Aarhus University in Denmark developed a semi-autonomous

mobile robot for weed removing (see Figure 4.6). Using an ECODAN camera, GPS

system, and a gyro sensor, the robot navigates the entire field. While in the field,

the robot continuously captures pictures of the ground and sprays only the detected

weed. The robot can detect up to 25 different types of weed, and as a result, it saves

the usage of herbicides by 75 percent (Sujaritha et al., 2016). Using a vision system

to detect and distinguish the existing weed from the crop is a popular approach in

113

weed control robots. (Bakker, 2009), (Choi et al., 2015), (Sabanci and Aydin, 2017)

and (Aiswarya et al., 2016) are few examples of vision based spray robot.

Figure 4.6: Hortibot made by Aarhus University in Denmark

Even though these robots are very soil friendly, they are considerably slow (Sujaritha

et al., 2016). One way to reduce time in this approach is to increase the number

of participating spray robots in the field. In the past few years, there have been

very few attempts. Hansen et al. (in 2013) designed and implemented a cooperative

structure for a team of two robots to spray herbicides on a large field. The described

team consists of a UAS (Unmanned Aerial System) and a UGV (Unmanned Ground

Vehicle) along with a Task Manager. The job of the task manager is to decompose

the overall task in such a way that the UGV and the UAS perform the execution in

the fastest and least resource-demanding fashion. The task manager continuously

is communicating with the participating units, thus its success is prone to success

in communication. Again, there has not been a cooperative system in which robots

rely only on their local information.

114

4.3 Cooperative Spraying: Design Description

In this section, the proposed cooperative spraying is described by first describing

the process of task allocation.

In spraying, task allocation has to guarantee that each location in the field is visited

only once. In addition, task allocation has to be carried out in real-time, and only

the local information of the robots is available. Therefore, a mechanism is required

by which robots are informed about the state of the task. Note that this information

cannot be conveyed with explicit forms of communication.

The proposed strategy is to divide the field into regions (while each region consists

of a few tracks), with the aim to process each region by only one robot. For this, the

robots have to identify unattended regions and claim their share of task. Each robot

claims processing a region by occupying a particular location, hereafter referred

to as checkpoint, whose locations are common knowledge among robots. In here,

checkpoints are set to be the last track of each region. Spraying a region starts from

this location and tracks are processed consecutively to the first track in the region.

There is no restriction on which track is selected as a checkpoint or the direction of

region processing. However, the direction of region execution has to be unified. In

other words, spraying from first to last or last to first.

Note: if a region consists of tracks between track number n and n+ k − 1, k is the

number of tracks on the region, n+ k− 1 is the last track and n is the first track in

that region.

Therefore, robots have to check each checkpoint to see if the region is occupied.

If an unoccupied location is found, the robot proceeds and occupies the location

(see Fig. 4.7). Once occupied, the robots should not initiate the spraying to assure

that all other robots are informed about the state of that region. All robots have

115

to standby at the occupied checkpoint except the last robot. Since there is no

other unattended region, the task can be initiated. During this process, robots keep

count of the number of visited (with occupied status) checkpoints. Knowing the

total number of checkpoints, one can determine whether the current investigating

checkpoint location is the last checkpoint.

.

Figure 4.7: A team of 8 robots are performing task allocation. r1, r2, and r3 have

found unoccupied checkpoints. In the meantime, other robots are examining every

checkpoint.

Once the task allocation is completed, other robots have to be informed otherwise

they will never start spraying the field. To solve this, when a robot occupies a

checkpoint, it poses itself in a way that it continuously monitors the next checkpoint.

The last robot does not need to comply with this, and instead, it starts the task

right after it occupies the last checkpoint. rn−1 which is contentiously monitoring

the behaviour of rn, identifies that rn is appears and disappears from its field of

view. This is the signal which indicates task start. Thus, rn−1 starts spraying once

rn is no longer detected. With this, robots start spraying one after another, and the

first robot will be the last to start spraying(see Fig. 4.8).

116

Figure 4.8: Task initiation stage for a team of 8 robots; Spraying task starts when-

ever r8 reaches checkpoint on the last region. r7 starts spraying once it perceives r8

decision.

4.3.1 Task Partitioning Analysis

As mentioned, in the proposed approach the field should be divided into regions each

of which consists of a set of adjacent tracks. Also, since regions are divided among

the participating robots, the number of regions should be equal to the number of

robots (or the team size). Therefore, if there are n robots and K tracks in the field,

the number of tracks in each region, ki, can be determined as follows:

ki =


dK
n
e if i ≤ K mod n

bK
n
c if i > K mod n

(4.1)

In here, dK
n
e represents the smallest following integer, and bK

n
c represents the largest

previous integer.

Next, it is important to identify the track numbers within each region. Robots

require this to locate the checkpoints. Let’s assume that TR is the set of track

numbers in the field, TR = {trl|l ∈ {1, 2, ..., K}}, and R is the set of robots,

R = {ri|i ∈ {1, 2, ..., n}}, then track numbers allocated to ri, can be determined as

117

follows:

Gi = {trj|j ∈ {m+ 1,m+ 2, ...,m+ ki}} (4.2)

Where m is the last track number assigned to the previous robots, and it can be

calculated as follows:

m =
i−1∑
j=1

kj (4.3)

4.3.2 Task Allocation Analysis

The proposed task allocation mechanism consists of redundant checkpoint analysis.

As the number of robots increases, the number of locations that the robot has to

check also increases. To determine the time required for the team to complete task

allocation, let’s first define the duration of task allocation for a robot.

Definition 1. Task allocation duration for a robot is the period from initial position

until the time that the robot detects an unoccupied checkpoint.

With this definition, time analysis becomes complex since robots are initially scat-

tered around the field. To simplify estimation, let’s assume that robots have formed

a queue behind a location outside of the field. This location is referred to as alpha.

Before robots access the first checkpoint, they first have to access alpha. However,

the distance that a robot has to travel to reach alpha depends on the robot’s posi-

tion in the queue. The length of the queue for each robot is (λ + ε)(i + 1) meters.

In here, λ is the length of a robot, and ε(epsilon) is the minimum distance between

two consecutive robots (see Figure 4.9).

Once a robot reaches alpha, regardless of their position in the line, it has to analyse

the first checkpoint, and hence all robots have to travel a fixed distance between

alpha and the first checkpoint, dα,l1 . Also, except the first robot, other robots have

118

Figure 4.9: Illustration of robots queueing for accessing α. Robots have the same

length, λ, and the distances between robots, ε, are equal.

to travel to other checkpoints, dlj−1,lj . For example, r2 has to travel distance between

the first and second checkpoint to reach its destination.

Once a robot reaches a checkpoint, it takes a period of time to draw a conclusion on

the status of the checkpoint. This period is denoted by τ and it will be propagated

in the queue since robots have to wait for the path to be cleared. The total delay

for a robot is (2i− 1)τ .

This is easy to see. Let’s consider a team of three robots which are lined up behind

a point outside the field (α)(Figure 4.10).i). r1 analyses only the first checkpoint,

hence spends only a τ seconds. Consequently, the rest of the team wait τ seconds as

well (Figure (4.10).ii). Once the path is cleared for r2, it will analyse checkpoint one

and as a result another τ seconds of delay is propagated to r3 (Figure (4.10).iii). r2

resumes its analysis to checkpoint two and spend another τ seconds on checkpoint

two. During this period, r2 creates no effect on the rest of the team since by this

time, r3 is already performing analysis on the first checkpoint (Figure (4.10).iv).

r3 resumes checkpoint analysis on checkpoint two (.Figure (4.10).v) and the last

119

checkpoint (Figure (4.10).vi).

Figure 4.10: The redundant checkpoint analysis propagates delay in the team. (i)

robots are in a queue behind α. (ii) r1 is processing the first checkpoint, all other

robots have to wait until r1 completed its analysis. (iii) r2 is analysing the first

checkpoint, another delay is affecting the unassigned robots. (vi) r2 is processing

the second checkpoint, however there is no effect on r3 as it is processing the first

checkpoint. (v) r3 is checking the second checkpoint. (iv) r3 also needs to check the

last checkpoint.

If the velocities of all robots are equal and robots move with constant speed, task

allocation duration for a robot (ri) can be evaluated as follows:

ttai =
dαl1
v

+ (2i− 1)τ +
(λ+ ε)(i− 1)

v
+

i∑
j=2

dlj−1lj

v
(4.4)

120

4.3.3 Task Initiation Analysis

Task allocation for a robot is completed when it identifies the first unoccupied

checkpoint, but the task is not yet initiated since the robot has to assure that all

other robots are informed about the status of the occupied region. Before any further

analysis, let’s define task initiation duration.

Definition 2. Task initiation duration for a robot is the period that a robot has to

remain at a checkpoint until the initiation signal is detected.

Since spraying will not start for all robots until the last robot has occupied the last

region, the task initiation time for a robot will be affected by the last robots task

allocation time. However, this impact is partially compensated by the robot’s task

allocation period. With this, if τinit is the constant time to perceive task initiation

event (that is appearing and disappearing of the next region robot), the standby

period for a robot before it starts its task is evaluated from the following:

tsti = ttan − ttai + τinit(n− 1) (4.5)

With this strategy, r1 is the first robot that completes the task allocation, but it is

the last robot to initiate spraying. Therefore, (4.5) can also be expressed as follows:

tst = tst1 = ttan − tta1 + τinit(n− 1)

In here, tst refers to total spraying execution time, and tst1 is the first robot spraying

time.

4.3.4 Spraying Time Analysis

Right after the task is initiated, robots start spraying. Spraying is a two-dimensional

navigation task which is performed asynchronously (i.e. during spraying robots only

121

concentrate on the allocated region. Plus they do not require any information from

other participating robots during this stage). If the velocity of a robot is denoted

by v, and the length of a track is denoted by lp, then spraying time for a robot after

the task initiation can be evaluated as follows:

tsprayingi =
1

v
(kilp + (ki − 1)df) (4.6)

In here, tsprayingi refers to the spraying time for robot i, df corresponds to the

distance between two consecutive tracks. Bear in mind that a robot has to repeat

spraying as many as ki times, obtained from (4.1). In addition, as part of spraying,

a robot also has to switch between tracks for ki − 1 times.

The total system execution time including all three steps (task allocation, task

initiation and spraying) is the sum of maximum in each task. The field is partitioned

from the first regions, therefore it is safe to conclude that the first region always has

the highest number of rows to cover and the maximum spraying time (ts1). It is the

last robot that has the longest task allocation time ttan , but it is the first robot that

has the longest task initiation time tts1 .

t = ts1 + ttan + tts1 (4.7)

4.3.5 Design Limitations

The proposed strategy promises that a group of robots can spray a large field coop-

eratively relying only on their local sensing. However, there are few limitations in

the system, and this section is dedicated to review them.

Extreme Sensitivity: One main limitation of the designed system is that in order

for the task to begin, all checkpoints have to be occupied. But what if one or more

122

robots fail during the process of task allocation? As a result, (since the number of

robots and number of regions are equal) the task will not begin and the field will

never be sprayed (see Figure 4.11).

This flaw could simply be compensated by increasing the number of participating

robots. But how far can the system tolerate this increase?

In particular, if Rm represents the number of participating robots, and Regn repre-

sents the number of available regions:

ifRegn < Rm < 2 ∗ Regn the field will be sprayed once, but the system will be

inefficient as there will be robots which are not participating (see Figure 4.12).

ifRm ∈ {2 ∗Regn, 3 ∗Regn, 4 ∗Regn, ...} → the field will be sprayed more than once

(see Figure 4.13).

Figure 4.11: Rn < Regn: The spraying task will never initiated

123

Figure 4.12: Regn < Rn < 2 ∗ Regn: The spraying begins, and there are robots

which will never participate in spraying, but they have to perform redundant task

allocation stage.

Figure 4.13: Rn ∈ {2 ∗Regn, 3 ∗Regn, 4 ∗Regn, ...}: The field will be sprayed more

than once.

Limited Range of Perception: Robots rely on their local sensing for task alloca-

tion particularly during task initiation period (see Figure 4.8). However, robots can

perceive only a limited range. Let’s denote this range by Γ. If the distance between

two consecutive checkpoints (i.e. the distance between two consecutive robots dur-

ing task initiation period) is greater than Γ, the robots will not be able to detect

the initiation signal as they are not able to observe the behaviour of the adjacent

124

robot. As a result, only the last region will be sprayed because the last robot is not

required to observe any other robots. Figure 4.14 demonstrates this situation.

Figure 4.14: If the distance between two consecutive checkpoints is greater than the

detection range of the robot, it cannot monitor the behaviour of the adjacent robot.

Thus, the task will never begin for that particular robot.

Since the maximum distance between two consecutive robots cannot exceed the

detection range of the robots, it is possible to determine the minimum number of

regions which are required to prevent spraying a field.

nmin = bW
Γ
c (4.8)

Physical Dimension Limitation: Robots have physical dimensions (λ× ζ), and

similar to ploughing they need free space to perform track transitioning after one

cycle of spraying, and for actual spraying in opposite direction. This will limit how

close the checkpoint can be appointed. The minimum required distance between two

consecutive regions is λ + ε. In here, ε is the threshold collision distance between

two robots. The minimum distance defines the maximum number of participating

125

robot:

nmax = b W

λ+ ε
c (4.9)

4.4 Implementation and Testing

In this section, we present both numerical results based on mathematical consider-

ation and the results obtained from the Stage simulation environment.

4.4.1 Mathematical Results

Since the allowed number of participating robots depends on the dimension of the

field, first the boundaries of the team sizes have to be identified. In here, a few

parameters about the environment have to be fixed.

We assumed that there are 50 to 250 tracks available in the field and the distance

between two consecutive tracks is 0.2(m), and the length of each track (lp) is 20(m).

Robots have equal dimensions with length (λ) equal to 0.5(m). The threshold dis-

tance (ε) between two robots is set to be 0.3(m), and all robots are assumed to move

at constant velocity equal to 0.5(m/s). The checkpoint analysis duration (τ) and

robot behaviour analysis duration (τinit) is fixed to 5(s).

From equations (4.8) and (4.9), it is possible to identify the maximum and the

minimum number of robots allowed in various field sizes, since W = Kdf . Figure

(4.15) demonstrates the results of Matlab simulation for various field sizes and their

appropriate field team sizes. In Figure (4.15) the red line indicates the maximum

team size and the blue line indicates the minimum number of participating robots.

Note: The definition of a team in a multi robot system fixes the minimum number

of robots to be greater than three (nmin ≥ 3).

For a field with hundred tracks (K = 100), the number of participating robots could

126

Figure 4.15: Number of participating robots against number of tracks in the field

vary between four and forty (n ∈ [4, 40]). Consequently, task allocation and task

initiation time can be predicted (see Fig 4.16).

As the number of participating robots increases, the duration for both task allocation

and task initiation increases by which the total execution time increases. In a field

with 100 tracks, K = 100, if appropriate team sizes are applied (n ∈ [4, 40]), the

total execution time opposes with what is expected from the nature of a multi robot

system (see Fig.4.16). It could be concluded that the applied strategy is not efficient

enough to receive positive effects from an increase in the number of robots.

127

Figure 4.16: Region-based Approach Time Analysis. The resulted graph is obtained

via Matlab

4.4.2 Simulation Results

On the other hand, a series of simulations were conducted in Stage simulation envi-

ronment in ROS (Robot Operating System). Similar to the simulation environment

described in Section 3.8.3, each robot is equipped with a model of a Hokuyo Laser

Range Finder, and a fixed camera which both are placed at the front of the robot.

The current location of the robot in the global frame of coordinates is provided by

the simulation environment. However, during the trials, no robot is aware of the

position of other robots in the team.

Behaviours on each robot are controlled by collaboration between three C++ mod-

ules (see Figure 4.19): (1) Task Handler, (2) Reach Point, and (3) Camera Analyser.

All three modules are communicating via ROS specific messages via namedPipes.

128

Figure 4.17: Spraying Software Overview

The Task Handler is responsible to trigger specific behaviours in the robot: setting

a new target for Reach Point module, activating Camera Analyser, analysing the

field, and executing the cooperative procedures. Figure 4.18 demonstrates Task

Handler flowchart, and Appendix J contains C++ implementation.

Reach Point is responsible to guide the robot to the requested coordinate in a

collision-free manner. As explained in chapter 3, Artificial Potential Field is used

for navigation. The exact same module can be reused in here.

Camera Analyser is responsible for (a) determining if checkpoints are occupied,

and (b) determining when to initiate the task. This can solely be carried out if

other robots can be distinguished from all other objects in the environment. In here,

robots are assumed to have a different colour than other objects in the environment.

Therefore, the camera analyser performs colour detection upon the task handler

request.

(Janani, 2015c) 1 contains a link to the video for the simulation of the cooperative

spraying.

1Spraying Simulation Video Link:

129

Figure 4.18: Region-based Task Handler Flowchart

130

Trials conducted for a field with 51 tracks (K = 51), and various team sizes were

deployed (n ∈ [3, 10]). In all team sizes, robots performed task allocation and task

initiation successfully. During simulation, position and time of robots are recorded.

Data recording for a robot initiates when the robot passes α, and it stops as soon

as the robot exits the margin of the field. The maximum execution time then is

plotted and compared with the equivalent corresponding numerical prediction (see

Figure 4.19). It can be seen that there is a slight difference between Stage simulation

results and the numerical results. This difference is due to the field exiting duration

which has not been considered in the mathematical description.

Figure 4.19: Comparison between results collected during simulation and numerical

visualisation.

131

4.5 System Optimisation

The proposed cooperative method relies solely on local sensing of the robots. With

local sensing comes certain limitations. These limitations have impacts on the sys-

tem performance. In here, we review these impacts and implement further actions

to overcome these restrictions.

4.5.1 Dynamic vs Static Checkpoints

The proposed method is confined by the detection range of the robots. This in return

limits the width of regions that a fixed number of robots can spray. Let’s consider

a large field (100m × 100m). Let’s also assume that there are only 5 participating

robots. According to subsection 4.3.5, this team size is inappropriate for this field

and the field cannot be sprayed. In this section, the aim is to demonstrate a simple

solution with which a small team can spray a large field.

The source of this issue is the position of consecutive checkpoints. With the current

solution, the checkpoints are appointed according to the last track of each region. As

the allocated regions are widened the distance between two consecutive checkpoints

increases. In order to use a small number of robots for a large field, the distance

between two consecutive checkpoints has to be within the robot’s range of vicinity

(see Figure 4.20).

4.5.2 Optimum Team

Referring to figure 4.16, it is clear that by increasing the number of participating

robots despite being within the permitted range, demonstrated in figure 4.15, the

overall spraying time will not decrease. This is due to the presence of two increasing

linear functions and one decreasing hyperbolic function in formula (4.7). Therefore

132

Figure 4.20: Check points are set outside of the field and the distance between them

is reduced so that few robots are enabled to spray a large field.

the resulting function will have a global minimum. This is the optimal team size

that could be deployed to the given field and it can be obtained as follows:

nopt =

√
K(lp + df)

2τv + τinitv + λ+ ε
(4.10)

In here, K is the number of tracks, lp is length of the track, df is the distance between

two consecutive tracks, τ is the image processing delay for checkpoint analysis, τinit

is task initiation image processing delay, λ is the length of the robot, and ε is the

threshold collision distance between two consecutive robots. Derivation of 4.10 is

provided in Appendix A.

The optimal number of robots corresponding to the minimum time from the start

of time allocation and the completion of spraying depends on the parameters in the

expression is 15.6. So the optimised number of robots is either 15 or 16.

4.5.3 Large Team and Fewer Checkpoints

As mentioned, the main target in task allocation is that all checkpoints have to be

occupied. The proposed solution has limited flexibility. If a robot fails during this

stage, the team will fail to initiate the task, and the field will never get sprayed. This

133

is due to the nature of the solution as there is no central controller to monitor robots

behaviour, and there is no explicit communication between the robots to receive the

latest updates. One way to reduce the probability of team failure is to increase the

number of participating robots. However, the system is designed in a way that by the

increase of the team size excessive spraying will occur if the number of participating

robots is at least double the number of checkpoints (Nrobots ≥ 2∗Ncheckpoints). When

the first wave of robots start the task, the second wave of robots have no information

about the status of the task, and hence the robots resume the process. This situation

is demonstrated in Figure 4.13.

It is clear that some form of coordination between the robot that occupies the

last checkpoint and other robots which have not occupied any checkpoints needs to

prevent any excessive spraying. One way to coordinate them is to use the last check-

point robot as an indication for others that their participation is no longer needed.

Originally, the last checkpoint robot initiates the task right after last checkpoint

occupation, but in this method, the last robot remains at its location until another

robot is in place (see Figure 4.21). Once the robot, hereafter referred to as Patrol

Robot, is in place, others can proceed with the rest of the task.

134

Figure 4.21: Last checkpoint robot does not start its task until Patrol Robot is in

place.

The Patrol Robot, knowing that the task is fully partitioned and distributed, occu-

pies the last checkpoint region upon task initiation with which any further execution

will be prevented. As further waves of robots complete occupying the rest of the

checkpoints, one by one, robots are notified that the last checkpoint is occupied

earlier. If the first wave, the event perceived from the vision system indicating

task initiation is Undetected-Detected-Undetected of the last checkpoint, however

in this situation the event will be Detected-Detected-Detected meaning that the last

checkpoint was occupied before the robot attendance (Figure 4.22). The conclusion

is drawn that the task has started already and hence they return back. Upon this

action, going home, the robot occupying the previous checkpoint perceive the direc-

tion by which the action is performed and consequently it concludes that the task is

completed. This information is propagated down the line until the first checkpoint

(Figure 4.23).

But what is the effect of this procedure on the overall execution time? With this

additional procedure, as if another checkpoint is added to the collection. That is if

135

there are n number of regions, there need to be n + 1 corresponding checkpoints.

Therefore, task initiation required time obtained in 4.3.3 can be re-written as:

tst = tst1 = ttan+1 − tta1 + τinit(n) (4.11)

Figure 4.22: The presence of the Patrol Robot in the last checkpoint before the

robot at n− 1 checkpoint indicates that the field is already being processed and no

further action is required.

Figure 4.23: Upon detecting the presence of the Patrol Robot, other robots one by

one leave the area.

Once spraying the field is completed, the Patrol Robot is informed to leave the

136

checkpoint by the participating robots passing from its vicinity (see Figure 4.24).

With this modification, the robustness of the system will be increased as the system

becomes independent of the number of participating robots.

Figure 4.24: The movement of other robots within the vicinity of the Patrol Robot

is an indication of task completion.

137

4.6 Conclusion

As mentioned, the restrictions defined by the task of spraying do not allow the

cooperative approach designated to the task of ploughing to be applied for the task

of spraying. Specifically, the method that robots interact with each other to obtain

necessary information is only appropriate in ploughing since the execution result of

ploughing does not exist in spraying.

The main idea of this project is to use the same robotic team for various open field

related tasks including ploughing, spraying, harvesting, and etc. Therefore, another

interaction and coordination method have to be investigated for spraying. Since

explicit forms of communications do not exist in the robot, indirect methods are

only considered. However, spraying has temporary impact on the environment, thus

stigmergy-based interactions are inappropriate. Thus robots can only interact with

each other by monitoring each others behaviour. This was the focus of this chapter:

to answer cooperative-related questions including task allocation, and coordination

with a specific form of indirect interaction.

In the proposed approach, the task allocation is carried out in real-time and dur-

ing the execution time in which robots occupy designated locations referred to as

checkpoints. While uncertain about their share of the task, the robots search for an

empty checkpoint to occupy. The checkpoints are appointed during design period

and all robots are aware of them. Once a checkpoint is occupied, the robot remains

at the location to assure that no other robots will spray the region corresponding to

that location, otherwise, excessive spraying of chemicals will ruin the crop. During

this stage, they continuously monitor the adjacent checkpoint. The task will be ini-

tiated once the last checkpoint is occupied. The event of occupying and leaving the

checkpoint by the last robot triggers the initiation task for the n−1 robot. This will

138

propagate down to all checkpoints and robots one after another initiate the task.

While spraying, the interaction among robots will be reduced to simple collision

avoidance as they need no other information to execute the rest of the task. The

robots in the proposed solution face similar issues as in ploughing. This includes

mainly spacial congestion and collision avoidance. The implemented solutions in

ploughing can be transferred to spraying with minor to none modification.

139

4.7 Critiques and Future Work

Robots in this approach rely solely on their local sensing with which there will

be certain limitations. The limitations are reviewed and appropriate actions are

taken, and as a result, the robustness of the system is improved to a certain extent.

However, there are still few points which result in total failure of the team.

Firstly, even though Patrol Robot prevents the overspray of the field and prevents

the other robots to initiate the extra round of spraying, the proposed update still

does not entail how this is prevented when the Patrol Robot has left the checkpoint.

Robots are scattered around the field, and field accessing is asynchronous, thus one

or more robots may access the field when the task is finished. Consequently, the

field may be resprayed if enough robots are present.

Moreover, as robots do not interact with each other during the task of spraying, if

a robot fails in the middle of the field, how would other robots be informed about

this situation. Somehow, this information has to be propagated through the team

so further actions can be taken.

These points have been identified as shortcomings of the proposed approach for

cooperative spraying, and they are suggested as further research directions.

140

CHAPTER 5

Discussions, Conclusions and Future Works

In this chapter, a review of the research and the proposed ap-
proaches is provided 5.1. All proposed solutions in different aspect
are compared in 5.2. The applicability of the proposed approaches
and their outcomes in other fields of application is discussed in 5.3.
And finally, the research is criticised, and the future directions of
the research and conclusion are presented in 5.4.

5.1 Research Recap

The main goal of this research was to achieve the required cooperation using only

the local information of each robot. In this way, task allocation and coordination

among robots can be achieved independent of the existence of a central unit and

communicating signal. However, the algorithm depends on the given task.

In open field farming, tasks are either sequential or concurrent. In sequential tasks,

the field is processed in a particular and strict order, and any violation of the exe-

cution order cannot be tolerated and the results are considered failure. Ploughing

is an example of sequential tasks. In furrow (narrow trench) and ridge (hill-top

soil) type of ploughing, the plough creates a furrow by depositing to soil on a ridge.

When creating the next furrow the soil should be deposited in the previous furrow.

Violating the order will result in valleys (two consequent furrows) or crowns (two

consequent ridges). This in return will cause irregularities in irrigation throughout

141

the process. On the other hand, in concurrent tasks, the field can be processed in

any desired order. Spraying is categorised as concurrent.

In our field investigation, it was revealed that the task of ploughing is carried out

using two types of ploughing mouldboard: reversible (with which the ploughing

mould board can be rotated) and conventional (with which the direction of the

ploughing mouldboard is fixed). Using conventional mouldboard, the field could be

ploughed in one direction in order to maintain the mentioned pattern. However,

with reversible mouldboard, the field could be ploughed from both ends of the field.

This could benefit the ploughing cost as the ploughing units would require to travel

less distances to cover the entire field.

With this in mind, first, two approaches were proposed for the task of ploughing

(FIFO and LIFO) in which the robots were assumed to be equipped with reversible

mouldboards. In both described approaches, the main idea was to carry out the

majority of cooperation during the design time by performing offline task allocation:

to allocate series of ploughing locations to each robot once robots found an order

in the team. Knowing the number of participating robots, to find the order, robots

move to the first ploughing location assuming they are the first robot in the order.

With the use of the front-facing 2D-camera, they could identify the status of that

location (whether it is ploughed or not). If it was ploughed, they move on to the

next ploughing location and increment their order in the team. Once an unploughed

location is identified, they would know their rank and could identify the sets of

ploughing locations that is allocated to them.

Since the ploughing is carried out in both sides, robots could not plough the next

location unless all robots have completed their ploughing. That is necessary to

guarantee the required sequential ploughing pattern. This means that a delay from

142

a single robot will be propagated throughout the entire team. Even worse, if a robot

fails during or before task execution, the entire system would fail.

With this newly learned point in mind, the self-organised approach was introduced.

In this approach, the idea of benefiting from the reversible ploughing mouldboard

and the knowledge of the participating robots are ignored. The task allocation is

performed in real-time in which robots have to seek for a new ploughing location

every time. In this way, if a robot fails after a round of ploughing or before even

starting the ploughing the team can recover from this failure and complete the task.

Although redundancy in the self-organising approach is higher, it is more robust

toward failure of a single robot.

The self-organised approach for the task of ploughing works only because the process

of task allocation can be carried out through changes made by other robots in the

environment (i.e. robots can detect and resume the task which is done by others).

However, this feature does not exist in other open farm tasks. Hence, the self-

organised approach will fail if such feature does not exist. The task of spraying is

an example of these tasks.

Therefore, for spraying, a new approach is proposed in which robots perform the

process of task allocation relying only on monitoring each others behaviour. Spraying

can be categorised as a concurrent task. This means that the field can be processed

from multiple locations independently. Using this characteristic, in the proposed

strategy, the field is divided into smaller manageable regions.

The strategy is to spray each region by a unique robot so that excessive spraying is

prevented. Then, for each region, a representative location is designated outside of

the field called checkpoints. The checkpoints are appointed during the design time

and they are made known to all robots. The robots, one after another, examine

143

the checkpoints one by one to find the first unoccupied checkpoint. Once an un-

occupied location is identified, the robot occupies it and position itself so that the

very next checkpoint can be observed. In this way, the robots will inform others by

their presence that the correspondent region is claimed, also they can monitor any

activities of the adjacent neighbour. In theory, the robots have to remain in their

position until all checkpoints are occupied. Once a robot finds the last checkpoint

unoccupied, it proceeds but instead of remaining in the location, the robot resumes

the task. In the meantime, the adjacent robot monitoring this behaviour, appearing

and disappearing in the vicinity, concludes that the task is initiated, hence it starts

the task. This propagates through all robots, and they initiate the task one after

another.

In all four proposed approaches, two shared problems have been identified: collision

avoidance, and resource conflict. For collision avoidance, the artificial potential

function is implemented. Also, to prevent the robots to enter the field as a result of

the collision avoidance, an artificial potential force is applied if the distance to the

field is less than a threshold.

To resolve the resource conflict, a robot has to decide to either give priority to

another robot or to ignore the presence of others and takes the path. This decision

has to be made only on the basis of the local information of the robot. For this,

first the field of view of the robot is divided into three regions: Left Region (LR),

Front Region (FR), and Right Region (RR). Then, using the following conventions,

a robot can decide whether to take priority or not.

• Left Convention: If another robot is detected on the left region (LR), ignore

and take the priority.

• Right and Front Convention: If a robot is detected in front (FR) or on

144

the right region (RR), wait (i.e. stop with zero velocity) and give priority to

the detected robot.

However, sensors are subject to noise, and they cover only a limited range. This,

sometimes, leads to robots remaining undetected in the regions of interest. This is

common when the robots are very close to the shared location. To rectify this, a

threshold distance is defined on the left region. With this, the detected robots will

be considered on the left region if the distance becomes less than a certain threshold

distance.

The conventions are only effective when the robots are approaching from the same

direction. However, it is in-effective when the robots are approaching from opposite

directions since both robots stop for the path to be cleared.

There are two reasons why congestion still occurs in this situation: (I) The defined

conventions make the robots to wait for another robot to take initiatives to clear

the path. (II) Robots behave homogeneously (i.e. robots behave the same upon

encountering another robot in the aforementioned regions). In order to break the

homogeneity in robots’ behaviour, instead of waiting at the time of detection, the

robots move reversely with random velocity until the triggered region is cleared (i.e.

the robot is no longer in sight).

5.2 Region-based vs Self-organised, FIFO, LIFO

In this research, four cooperative area coverage algorithms are introduced for two

different methods of interaction. In one, the group interacts via changes in the

environment as a result of execution of the task (chapter 3), and in the other, via

sensing and monitoring one another (chapter 4).

The considered applications (spraying and ploughing) had limitations which did not

145

allow for both approaches to be implemented. However, there are other applications

in which both approaches can be applied. For example, in beacon distribution

application, robots can either collect information by observing each others behaviour

or by detecting the planted beacons in the environment. In this situation, which

approach is more appropriate? In this section, all proposed approaches are compared

with each other.

5.2.1 Execution Time Comparison

One of the main elements of comparison is execution time. That is the amount

of time required to cover and process the entire field. This includes both the task

allocation and execution.

In all four proposed approaches, robots have to identify their share of the task in

real-time and during execution time. This process is repeated for each robot at the

end of each turn in self-organising ploughing approach. Whereas in FIFO, LIFO

and spraying (hereafter refer to as the region-based), it occurs only once and at the

beginning of the task. This decreases the overall execution time for the region-based

approach.

However, as the number of robots increases, the task allocation duration for the

region-based, FIFO, and LIFO approach increases. This is due to the fact that task

allocation in these three approaches is performed sequentially and the resulted delay

accumulates and propagates over the system. Subsequently, all four approaches will

have more or less the same execution time.

The results obtained from the simulation of both systems in the Stage simulation

environment using ROS API suggest that for smaller team sizes (between 3 and

10), using the region-based approach, a field with 51 process locations (furrows or

146

tracks) can be covered and processed at shorter period of time (see Figure 5.1).

However, with larger team sizes (between 11 and 20), this advantage goes away and

both approaches perform equally.

Note that during data collection, the robots’ initial positions were fixed around the

field. It started when the first robot reached the first point of interest (first ploughing

location for the self-organised ploughing, and first checkpoint for the region-based).

The data collection stops when the last robot completes the current task and leaves

the field.

Figure 5.1: Comparison between the self-organised, FIFO, LIFO, and the region-

based in terms of execution time for team sizes between 3 and 20 robots. Number

of furrows in the field = 51. The Stage simulation results plotted using Matlab.

5.2.2 Scalability, Flexibility and the Required Coordination

Another element of comparison is scalability and flexibility. That is the level of

tolerance when a single or a group of robots are added or removed during execution

time. The level of scalability and flexibility of the system can be determined by the

amount of adjustment after the change is made. The main area of impact when

147

a robot is added or removed is task allocation. In other words, when such change

is made, the following question has to be answered: which robot(s) will cover the

unallocated portion of the task?

In FIFO and LIFO, the task allocation occurs only once (at the first round of

execution) with a fixed number of robots in the team. Any changes in team size at

any point during execution (e.g. a robot joins the team, or a faulty robot breaks

down and get removed from the team) cannot be tolerated and the field will never

get processed. It could be said that both FIFO and LIFO are not flexible, and any

changes to the team requires design time adjustments.

In the region-based approach, robots also perform task allocation only once at the

beginning. However, unlike FIFO and LIFO in which robots in advance have team

size as global knowledge, in the region-based the team size is unknown to the par-

ticipating robots. This improves the flexibility of the system to a certain extent.

However, if a robot is removed from the team after the task allocation is completed,

part of the field will require extra and separate attention as no other robots will en-

ter the field. It could be concluded that the region-based approach is flexible before

task allocation, however, the system cannot recover itself if a robot is removed after

task allocation is completed. On the other hand, adding a robot will not create ma-

jor impact on the performance of the team, meaning that if a robot is added before

task allocation, the robot may even be useful and replace a faulty robot, but after

the task allocation, it has zero impact on the performance as it cannot participate

in the task.

The self-organised approach has better scalability and flexibility compared to other

approaches since the task allocation is occurring more than once for each robot (i.e.

a robot’s understanding of the task and the environment is refreshed at the end of

148

every round of execution) as task allocation and task execution are intertwined. In

addition, like the region-based, the number of participating robots is not considered

for task allocation. Therefore, at any point during task execution, while the robots

are outside the field, if a new robot or a group of robots join the process, the overall

execution time will decrease. This is the same with removing a robot or a group of

robots during execution. In either case, no changes are required to be made on the

behaviour of the robots and the system can fully recover if a robot is removed or

added.

5.2.3 Resilience Toward Failure

In the real world, robots may fail due to various environmental causes, and it is

important to consider how does a team can adapt to the new situation and complete

the task. In the considered applications, for each proposed cooperative algorithm,

the adaptability of the system is viewed based on the location where the failure has

occurred.

The points of failure could be listed as follows:

1. failure during task allocation : robots failure to be part of the team and fail

to identify its share of the task. This could be before task allocation or shortly

after task allocation.

2. failure during task execution : robots fail to complete the allocated share of

the task. At this point, the task is initiated.

The focus of this section is to view the flexibility of the proposed algorithms during

and shortly after the task allocation. In any of the proposed approaches, failure

during task execution has not been discussed. This is due to the limitations of both

tasks (spraying and ploughing) thus robots are not allowed to evade any traffic while

149

in the field (reminder: while in the field, evasive manoeuvres of the robots causes

the already processed part of the field to be run over. This will destroy the crop (in

spraying) and the soil pattern (in ploughing)).

However, the effect of this failure is different. If any robot fails while performing

the actual task of ploughing, the following robots will fail to resumes as the robots

cannot manoeuvre and pass the faulty robot. In other cases, the other robots can

treat the faulty one as a static obstacle and perform normal obstacle avoidance while

switching the processing track. In the task of spraying, since the robots process

independent sections of the field, if a robot fails during the execution, other robots

can successfully complete their share of the task. Therefore, the failure tolerance is

slightly higher.

In both the FIFO and LIFO approaches, the team size is part of the common knowl-

edge (i.e. every robot in the team knows and relies on the number of participating

robot). Using this information, robots in both approaches estimate where to plough

next. Since in ploughing there is the sequential limitation (i.e. one furrow has to be

followed by a ridge), robot will never be able to successfully create this pattern on

the ground if the predefined team size is violated. This is because the execution ini-

tiation signal of a robot comes from the previous robot’s execution result (i.e. each

robot has to make sure that the previous robot either has completed the current

ploughing or already started a new round of ploughing). Therefore, any failures in

individuals execution (including sudden death of a robot, or addition of robots) will

be propagated throughout the team, and the field will not be ploughed.

Unlike FIFO and LIFO, in the self-organised approach, the task allocation does not

depend on the number of participating robots. In other words, when losing one or

more robots at any point during task allocation others can resume the task and

150

obtain where to plough next.

In the region-based approach, the task allocation is dependent. In other words, if a

robot fails during this stage, the task may never be initiated. However, once the task

has begun, the failure of one robot during execution does not affect other robots.

151

5.3 Application Scope

In this thesis, two cooperative algorithms are suggested for the area coverage ap-

plications which rely only on local sensing. The considered field applications are

spraying and ploughing. There are more field applications (in area coverage cate-

gory) which can benefit from the proposed algorithms including seeding, harvesting,

de-mining, beacon distribution, aggregation and etc. But which algorithm is suit-

able for these field of applications? that is the question that is going to be answered

in this section.

5.3.1 Seeding

According to Fao in 1997, “the location of plants In a furrow system is not fixed

but depends on the natural circumstances”. In areas with heavy rainfall, the plants

should stand on top of the ridge in order to prevent damage as a result of waterlog-

ging (Figure 5.2(a)). If water is scarce, the plants may he put in the furrow itself,

to benefit more from the limited water (Figure 5.2(b)). As salts tend to accumulate

in the highest point, a crop on saline soils should be planted away from the top of

the ridge. Usually it is planted in two rows at the sides (Figure 5.2(c)). For winter

and early spring crops in colder areas, the seeds may be planted on the sunny side

of the ridge (Figure 5.2(d)). In hotter areas, seeds may be planted on the shady side

of the ridge, to protect them from the sun.

152

Figure 5.2: Seeding Methods (Fao, 1997): (a) ridge seeding. (b) furrow seeding. (c)

side ridge seeding. (d) side ridge seeding sun movement

In some seeding approaches, it is possible to detect seeds after it is planted, and in

others this feature does not exist. Depending on seed detecting feature, either of

the self-organised, or the region-based approach can be applied. Note that in the

self-organised approach, the robots, instead of searching for soil pattern changes,

search for existence of seeds at particular pre-defined locations.

5.3.2 Harvesting

Harvesting is the process of gathering a ripe crop from the fields. This involves

navigation of the harvesting unit throughout the field. The navigation pattern of

the harvesting unit depends on the crop. Root crops including onions, potatoes,

carrots, and beat roots are harvested in rows. In this approach, the harvester has

to follow the rows and lift the crop out of the soil (Figure 5.3). Whereas when

harvesting grains, the harvester unit can navigate in any direction.

153

Figure 5.3: Harvesting Carrot (Radu, 2014): the harvesting machine moves through

the rows and dig out carrots

In this process for each group of crops, different harvesting tools are required which

in return expects a different form of behaviour. Generally, harvesting machineries

can be classified into three different categories: Human-Machine Cooperation in

which human is involved in actual picking of the crop (Figure 5.4(a)), Machine-

Machine Coordination in which there is at least one harvester in cooperation with

a group of containers (Figure 5.4(b)), and Self-Containing Machine Harvesters in

which there is only one group of machines involved in the process (Figure 5.4(c)).

Figure 5.4: Harvesting Machines: (a) human-machine cooperation harvesting (Hay-

grove, 2017). (b) machine-machine cooperation (Deere, 2014). (c) self-contained

harvesters (Landwirt, 2017)

154

Heterogeneous Team for Harvesting A visit has been made to Noord Oost

Polder in the Netherlands during carrot and beet roots harvesting period. Interviews

were conducted with the farmers and the harvesting operation was observed. Based

on our field investigation, when harvesting carrots or beet roots (to name a few),

normally a harvester along with a group of container units are deployed into the

field. The harvester takes the lead and navigates through the field. The containers,

one after another, pose themselves in a way that they can receive the load from the

harvester. Only when the container robot is in position the harvester resumes with

the operation.

From a multi robotic perspective, this is a heterogeneous team since there are two

kinds of robots in the team (i.e. they are different in software and hardware).

Although the considered team in the proposed approaches (the region-based and

the self-organised approach) is homogeneous (i.e. the participating robots have the

same hardware and software), with slight modification the self-organised approach

can be applied in here. As there is only one harvester and it processes the field

sequentially, the region-based approach is less efficient and inappropriate.

The reason is the limitation in the participation of robots. Unlike spraying and

ploughing in which robots can participate with no self-defined limitations, in har-

vesting robots can participate as much as the container capacity. In spraying and

ploughing, robots can resume the task for the entire region or furrow, whereas their

capacity may force them to leave the task after a short period of participation. In

this situation, the more efficient approach is the one in which there are other robots

to replace the full-capacity robot and fill the delay gap.This delay cannot be cov-

ered using the region-based approach, as it is demonstrated in Figure 5.5. Whereas,

robots in self-organising approach can recover each other (see Figure 5.6).

155

Figure 5.5: Single Harvester Region-based Approach: robots on other regions cannot

contribute to the task when other regions are being processed

Figure 5.6: Single Harvester Self-organising Approach: task progress does not de-

pend on the progress of another region or track. All robots can participate at any

location in the field if the harvester is available.

156

Homogeneous Team for Harvesting When each harvester becomes capable

to harvest and store the crop within itself, from the multi robotic perspective, it

becomes a homogeneous team (since there is only one role in the team and hence

the required software and hardware is the same). In this situation, all available

approaches can be applied. Note that redundancy in the harvesting has no negative

effect on the crop, unlike spraying.

5.3.3 Multi-Robotic De-mining and Mine Field Mapping

Landmines have killed more than one million people since 1975 (Baudoin et al.,

1999). It is estimated that every year between 15000 and 25000 people are maimed

or killed by landmines (Walsh and Walsh, 2003). Interesting to know that the cost of

making one landmine is $3 - $10 whereas deactivating one cost between $300 - $1000.

Demining operations are deadly operations. According to Baudoin et al. (1999)

for every 5000 cleared mines, there is one deminer killed. In order to clear some

60,000,000 mines, we could count some 12,000 deminers killed. This logic attracted

many human free operations including human-rat cooperation (Nanayakkara et al.,

2008), and teleoperated robotics such as Uran-6 (Army-Technology, 2016) developed

by the Russian army.

During the de-mining operation, the field is investigated for TNT signatures and

depending on the approach either the location is pinpointed or the mine is disarmed.

Since the unit has to deal with explosives, the failure is highly probable, hence multi

robot system and redundancy in the approach increases the chance of success.

157

Figure 5.7: human-free demining: (a) Rats are trained to detect mines (Sumocake-

walk, 2015). (b) Uran-6, the latest Russian demining unit deployed in Syria which

can tolerate upto 20 KG TNT explosion (More, 2016).

Since landmine deactivation is an open field operation, and redundancy is an ad-

vantage as the chances of losing an agent due to dealing with explosives is high,

the use of the region-based algorithm is recommended. This is solely due to the

fact that the region-based approach has higher flexibility and tolerance toward loss

of an agent during task execution. In other proposed approaches including FIFO,

LIFO and the self-organised method, the failure of an agent has impact on the task

progress, thus they are not appropriate for this task.

5.3.4 Cooperative Beacon Distribution

Another important field operation that can benefit from the proposed approaches is

the distribution of beacons in an open field. In this application, a group of robots has

to distribute themselves (if they are the sensor) or they loaded sensors throughout

the field. One example of this application is localisation for underwater robotics.

Underwater robotic requires localisation system since GPS signals cannot be reached

under the water. One method is to distribute GPS beacons on the surface of the

water as GPS receiving points.

158

At the first glance, it seems that both approaches can be applied in this application.

But with a slight modification: instead of detecting pattern on water (furrow-ridge),

the approach should look for beacons. But there is one major drawback which

prevents this approach to work. The movement on the surface of the water makes

the self-organise approach to be less reliable due to movement on the surface of the

water. However, the region-based approach provides more reliable result compare

to the self-organised approach since does not require analysis of the changes in the

environment at particular locations.

159

5.4 Conclusion and Future Directions of Research

In this research, we provided four cooperative algorithms with which a team of robots

can cover an open field cooperatively with restrictions defined by two fundamentally

different tasks, spraying, and ploughing. In the design of each cooperative algorithm

we aimed to answer the following questions:

Task Allocation and Interaction : Which robot is processing which part of the

field? and how does each robot is informed about the state of the task and

the field?

Coordination and Interaction : How robots detects and avoid obstacles? and

how robots reach the targeted location one by one without congestion? (i.e.

In case two or more robots want to access the same coordinate at the same

time, which one will get there first?)

Methods using explicit forms of communication for coordination and interaction was

not an option. This is due to the fact that these extensively studied approaches suf-

fer from losing the central organiser or the communicating signal, and short range

of signal coverage which makes them inappropriate for large fields. Also, they all

assume that initially robots are located within the communication range which be-

comes invalid if robots are distributed around the field executing other tasks prior

to the execution time.

Instead, the focus was to answer these research questions relying only on robot local

sensing (i.e. interaction through the environment and through agent detection).

However, a single approach could not be applied for both considered tasks since

different task have different characteristics. In ploughing, for example, as a result of

execution, a particular pattern is created on the soil. This pattern exists in seeding

160

or spraying from the beginning, and if the ploughing interaction method is applied in

spraying, it will cause destructive results (reminder: excessive chemical spraying on

a same location). Therefore the logic behind team interaction could be in two ways:

either robots detect previous robots trail at particular locations, or they monitor

each other behaviour throughout the process.

As a result of ploughing, a 2D vision-based algorithm was developed to detect

the created pattern on the soil at particular locations. And in ploughing, a 2D

vision-based and laser-based algorithm were developed to detect robots behaviours

throughout the process.

Artificial Potential Field (APF) method is applied with which robots utilise the head-

mounted laser range finder to navigate through the field while avoiding obstacles.

Using this method, robots also prevented to enter the field as the state of the task

may be unknown to the robots. For this, massive artificial repulsion force is assigned

to the border of the field which redirects the resultant sum force.

It also understood that relying solely on the APF is not sufficient for navigation as

all robots aim to reach the same location at once. This is a known problem and it is

referred to as Spatial Resource Conflict. To solve this issue, an algorithm, Random

Reverse Velocity (RRV), was developed and infused with APF.

Combining these algorithms, four approaches was introduced: FIFO, LIFO, and the

self-organised for ploughing and the region-based approach for spraying. In FIFO,

LIFO and the self-organised approaches, the task allocation is carried out based on

robots visiting ploughing locations and monitoring for a particular pattern (furrow-

ridge) on the soil. The key difference between FIFO, LIFO and the self-organised

approach is the knowledge of the number of participating robots. In FIFO and

LIFO, the number of participating robots is fixed in other words it has no real-time

161

scalability characteristics. That makes the task allocation really fast, but at the

same time makes the approaches fragile since it needs every single robot to perform

at their best. Therefore, if the approach is applied in other applications in which the

state of the robots can be guaranteed, FIFO and LIFO provide faster performances.

The self-organised approach, on the other hand, is more reliable for tasks in which

robots cannot be trusted as it provides more flexibility toward loss of an agent during

task allocation.

In the region-based approach, the task allocation is carried out by claiming particular

locations outside of the regions which are known to all robots. The robots visiting

these locations see if the location is free. In this case, they proceed to occupy the

location otherwise they move on to the next location. They continuously monitor

the robot in the next location to determine when to start their task. Once the task

is started, the robots resume the process independently. This makes the region-

based approach more flexible towards loss of an agent during task execution in

contrast with other three approaches in which failure in the middle of execution

prevents the task to be completed. However, it is less flexible that the self-organised

approach toward loss of an agent during task allocation process as task allocation

is a dependent task in the region-based approach.

The proposed approaches are not solely designed for spraying and ploughing and

they can be applied to other applications including seeding, harvesting, de-mining,

line searching, aggregation, beacon distribution and any other open field operations

which require a team.

Even though the simulation results in stage simulation environment with ROS is

promising, there are certain factors which are missing when simulating. These im-

proving factors are considered as the future direction of research and they are listed

162

below:

5.4.1 Recovering from Failure During Task Execution

System optimisations introduced in chapter 3 and 4 make both the self-organised

and the region-based approach more resilient toward certain failure during task

allocation. However, if a robot fails during task execution in the middle of the

field, the task will never be completed successfully. Somehow other robots have to

be informed about this situation and an appropriate action has to be taken. For

applications other than ploughing, evading the faulty robot and resuming the task

could be an option, but the outcome is undesirable (now you are left with a processed

field with a faulty robot in the middle).

5.4.2 Hybrid Approaches

From the beginning of this research, the main aim was to obtain the cooperation

without the use of direct communication. Despite the promising results, one cannot

deny and ignore the impact of direct communication in the performance of the team.

Although relying on direct communication for task allocation is still recommended

to be avoided due to initial assumption mentioned in chapter 3, short range direct

communication (e.g. via RGB LED signals, ultrasound messaging) can still be

integrated for coordination and error correction purposes.

The followings are the foreseen areas in which short-range direct communication can

improve:

Localisation Correction: robots can correct their positioning system in case of

losing the GPS signal or whenever their confidence is dropped.

Region-based Task Allocation Optimisation: The region-based approach they

163

can reduce the region analysis time by broadcasting the region number corre-

sponding to the occupying checkpoint.

Self-organising Knowledge Update: In the self-organised approach, each robot

builds its own knowledge since they solely rely on their field investigation.

With the help of short-range communication, robots which are spending more

time in the field can broadcast their knowledge (e.g. the last location number

or coordinate that was processed, or the field has completely processed no need

for analysis) to whichever robot nearby. In this way, the field can be processed

much quicker and more cost-effectively.

Recovering From Failure During Task Execution: More importantly, short range

direct communication can be a quick solution for recovering from a failure dur-

ing task execution, particularly in ploughing. Since in ploughing, robots are

operating close to each other, robots which are trapped or stuck in the mid-

dle of the field can benefit from short range direct communication to ask for

assistance. The message can be propagated throughout the field and appro-

priate strategies can take place. However, short-range direct communication

cannot resolve this issue if happens in the region-based approach since robots

are regions apart from each other. Unless the field is partitioned in a way that

robots can be in communication range.

164

References

AAPlus (2017). Pest control courses.

Agassounon, W. and Martinoli, A. (2002). Efficiency and robustness of threshold-

based distributed allocation algorithms in multi-agent systems. pages 1090–1097.

Agriavis (2015). Mouldboards. http://www.agriavis.com/

famille-115-charrues-1.html.

Ahmadi, M. and Stone, P. (2006). A multi-robot system for continuous area sweep-

ing task. In Proceeding of the IEEE International Conference on Robotics and

Automation (ICRA), pages 1724–1729.

Aiswarya, M., Farza, P., Kumar, S. S., Sneha, S., and Varughese, T. A. (2016).

Automatic weed detection system and smart herbicide sprayer robot for corn

fields. IJRCCT, 5(2):055–058.

Alexandratos, N. and Bruinsma, J. (2012). World agriculture towards 2030/2050:

The 2012 revision. Food and Agriculture Organization of the United Nations, pages

1–154.

Anil, H., Nikhil, K., Charitra, V., and Gurusharan, B. (2015). Revolutionizing farm-

ing using swarm robotics, modelling and simulation. 6th International Conference

on Intelligent Systems, 19(3):141–147.

165

http://www.agriavis.com/famille-115-charrues-1.html
http://www.agriavis.com/famille-115-charrues-1.html

Arbanas, B., Ivanovic, A., Car, M., Haus, T., Orsag, M., Petrovic, T., and Bogdan,

S. (2016). Aerial-ground robotic system for autonomous delivery tasks. pages

5463–5468.

Arguenon, V., Bergues-Lagarde, A., Rosenberger, C., Bro, P., and Smari, W. (2006).

Multi-agent based prototyping of agriculture robots. pages 282–288.

Arkin, R. (1998). Behaviour-based Robotic. The MIT Press, 1 edition.

Army-Technology (2016). Uran-6 mine-clearing robot, russia.

Arslan, G., Marden, J., and Shamma, J. (2007). Autonomous vehicle-target assign-

ment: A game-theoretical formulation. Journal of Dynamic Systems, Measure-

ment, and Control, 129(5):584–596.

Asama, H., Matsumoto, A., and Ishida, Y. (1989). Design of an autonomous and

distributed robot system: Actress. IROS, 89:283–290.

Astrand, B. and Baerveldt, A. (2002). An agricultural mobile robot with vision-

based perception for mechanical weed control. Autonomous Robots, 13(1):21–35.

Bakker, T. (2009). An Autonomous Robot for Weed Control.

Balta, H., Bedkowski, J., Govindaraj, S., Majek, K., Musialik, P., Serrano, D.,

Alexis, K., Siegwart, R., and Cubber, G. (2015). Integrated data management for

a fleet of searchandrescue robots. Journal of Field Robotics.

Banfi, J., Li, A. Q., Basilico, N., Rekleitis, I., and Amigoni, F. (2016). Asynchronous

multirobot exploration under recurrent connectivity constraints. 2016 IEEE In-

ternational Conference on Robotics and Automation (ICRA), pages 5491–5498.

Barca, J. C. and Sekercioglu, Y. A. (2013). Swarm robotics reviewed. Robotica,

13:345–359.

166

Barrientos, A. G., Lopez, J. L., Espinoza, E. S., Hoyo, J., and Palomo, G. V. (2016).

Object transportation using a cooperative mobile multi-robot system. IEEE Latin

America Transactions, 14(3):1184–1191.

Batalin, M. A. and Sukhatme, G. S. (2002). Spreading out: A local approach to

multi-robot coverage. pages 373–382.

Baudoin, Y., Acheroy, M., Piette, M., and Salmon, J. (1999). Humanitarian demi-

ning and robotics. Mine Action Information Journal issue on Machine Assisted

Demining, 3(2).

Beck, Z., Teacy, L., Rogers, A., and Jennings, N. (2016). Online planning for

collaborative search and rescue by heterogeneous robot teams. In Proceedings of

the 2016 International Conference on Autonomous Agents and Multiagent Systems

- International Foundation for Autonomous Agents and Multiagent Systems, pages

1024–1033.

Bell, T. (2000). Automatic tractor guidance using carrier-phase differential gps.

Computers and electronics in agriculture, 25(1):53–66.

Billingsley, J. and Schoenfisch, M. (1997). The successful development of a vi-

sion guidance system for agriculture. Computers and electronics in agriculture,

16(2):147–163.

Blackmore, S. (2012). Robotic agriculture: Designing systems for the farm of

tomorrow. https://www.innovateuk.org/c/document_library/get_file?

groupId=2828839&folderId=7196297&title=3+Simon+Blackmore+Robotic_

Agriculture.pdf.

Bloss, R. (2014). Robot innovation brings to agriculture efficiency, safety, labor

167

https://www.innovateuk.org/c/document_library/get_file?groupId=2828839&folderId=7196297&title=3+Simon+Blackmore+Robotic_Agriculture.pdf
https://www.innovateuk.org/c/document_library/get_file?groupId=2828839&folderId=7196297&title=3+Simon+Blackmore+Robotic_Agriculture.pdf
https://www.innovateuk.org/c/document_library/get_file?groupId=2828839&folderId=7196297&title=3+Simon+Blackmore+Robotic_Agriculture.pdf

savings and accuracy by plowing, milking, harvesting, crop tending/picking and

monitoring. Industrial Robot: An International Journal, 41(6):493–499.

Borenstein, J., Everett, H. R., Feng, L., and Wehe, D. (1997). Mobile robot

positioning-sensors and techniques.

Borenstein, J. and Feng, L. (1996). Measurement and correction of systematic

odometry errors in mobile robots. IEEE Transactions on robotics and automation,

12(6):869–880.

Botelho, S. C. and Alami, R. (1999). M+: a scheme for multi-robot cooperation

through negotiated task allocation and achievement. 2:1234–1239.

Caloud, P., Choi, W., Latombe, J. C., Le Pape, C., and Yim, M. (1990). Indoor au-

tomation with many mobile robots. Intelligent Robots and Systems’ 90.’Towards a

New Frontier of Applications’, Proceedings. IROS’90. IEEE International Work-

shop on, pages 67–72.

Castello, E., Yamamoto, T., Dalla Libera, F., Liu, W., Winfield, A., Nakamura, Y.,

and Ishiguro, H. (2016). Adaptive foraging for simulated and real robotic swarms:

the dynamical response threshold approach. Swarm Intelligence, 10(1):1–31.

Chandrasekaran, B., Annadurai, K., and Somasundaram, E. (2010). A Textbook of

Agronomy. New Age International, 1 edition.

Chawla, K. and Robins, G. (2011). An rfid-based object localisation framework.

International journal of radio frequency identification technology and applications,

3(1-2):2–30.

Choi, J. S. S., Lee, H., Elmasri, R., and Engels, D. W. (2009). Localization systems

using passive uhf rfid. pages 1727–1732.

168

Choi, K. H., Han, S. K., Park, K. H., Kim, K. S., and Kim, S. (2015). Vision based

guidance line extraction for autonomous weed control robot in paddy field. 2015

IEEE International Conference on Robotics and Biomimetics (ROBIO), pages

831–836.

Choset, H. (2001). Coverage for robotics–a survey of recent results. Annals of

mathematics and artificial intelligence, 31(1-4):113–126.

Chung, W. and Lau, E. (2007). Enhanced rssi-based real-time user location tracking

system for indoor and outdoor environments. pages 1213–1218.

Clarke, L. (1997). Agricultural mechanization strategy formulation, concepts and

methodology and the roles of the private sector and the government. AGST, Food

and Agriculture Organisation (FAO), 7:143–147.

Connolly, C. and Grupen, R. (1993). The applications of harmonic functions to

robotics. Journal of Robotic Systems, 10(7):931–946.

Cottefoglie, F., Farinelli, A., Iocchi, L., and Nardi, D. (2004). Dynamic token

generation for constrained tasks in a multi-robot system. Systems, Man and

Cybernetics, 2004 IEEE International Conference on, 1:911–917 vol.1.

Couceiro, M. (2015). An overview of swarm robotics for search and rescue applica-

tions. Handbook of Research on Design, Control, and Modeling of Swarm Robotics,

page 345.

Dai, X., Jiang, L., and Zhao, Y. (2016). Cooperative exploration based on supervi-

sory control of multi-robot systems. Applied Intelligence, pages 1–12.

Deere, J. (2014). John deere announces certified pre-owned equip-

ment program. https://investor.deere.com/our-company/

169

https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx

investors-relations/news-releases/news-releases/2014/

John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/

default.aspx.

Dias, M. B., Zlot, R., Kalra, N., and Stentz, A. (2006). Market-based multirobot

coordination: A survey and analysis. Proceedings of the IEEE, 94(7):1257–1270.

Drenjanac, D. and Tomic, S. (2013). Middleware challenges in robotic fleets for

precision agriculture. In Recent Advances in Robotics and Mechateronics, pages

23–34.

Drenjanac, D., Tomic, S., Klausner, L., and Kuhn, E. (2014). Harnessing coher-

ence of area decomposition and semantic shared spaces for task allocation. In

Information Processing in Agriculture, pages 23–34.

Dudek, G., Jenkin, M. R., Milios, E., and Wilkes, D. (1996). A taxonomy for

multi-agent robotics. Autonomous Robots, 3(4):375–397.

English, A., Ball, D., Ross, P., Upcroft, B., Wyeth, G., and Corke, P. (2013). Low

cost localisation for agricultural robotics. pages 1–8.

Estate, W. P. (2015). Three tractors ploughing together. https://www.youtube.

com/watch?v=IcWuVXUvj9w.

Eurostat (2015). Agricultural labour input. http://ec.europa.eu/eurostat/

statistics-explained/index.php/Archive:Agricultural_labour_input.

Faivre, S., Anderson, N., and Stelford, M. (2008). Agricultural automation system

with field robot. US Patent App. 11/498,392.

Fao (1997). Chapter 3. furrow irrigation. http://www.fao.org/docrep/s8684E/

s8684e04.htm.

170

https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://investor.deere.com/our-company/investors-relations/news-releases/news-releases/2014/John-Deere-Announces-Certified-Pre-Owned-Equipment-Program/default.aspx
https://www.youtube.com/watch?v=IcWuVXUvj9w
https://www.youtube.com/watch?v=IcWuVXUvj9w
http://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Agricultural_labour_input
http://ec.europa.eu/eurostat/statistics-explained/index.php/Archive:Agricultural_labour_input
http://www.fao.org/docrep/s8684E/s8684e04.htm
http://www.fao.org/docrep/s8684E/s8684e04.htm

Fao (2002). World agriculture: towards 2015/2030 Summary report. FOOD AND

AGRICULTURE ORGANIZATION OF THE UNITED NATIONS, 1 edition.

Fao (2009). Global agriculture towards 2050. High Level Expert Forum, pages 1–4.

Farinelli, A., Iocchi, L., and Nardi, D. (2004). Multirobot systems: a classification

focused on coordination. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics), 34(5):2015–2028.

Fazeli, P., Davoodi, A., and Pasquier, A. (2010). Fault-tolerant multi-robot area cov-

erage with limited visibility. Proceedings of the ICRA 2010 Workshop on Search

and Pursuit/Evasion in the Physical World: Efficiency, Scalability, and Guaran-

tees.

Fukuda, T. and Kawauchi, Y. (1990). Cellular robotic system (cebot) as one of

the realization of self-organizing intelligent universal manipulator. Robotics and

Automation, 1990. Proceedings., 1990 IEEE International Conference on, pages

662–667.

Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., and Maŕın-Jiménez, M.

(2014). Automatic generation and detection of highly reliable fiducial markers

under occlusion. Pattern Recognition, 47(6):2280–2292.

Gerkey, B. and Mataric, M. J. (2004). A formal analysis and taxonomy of task

allocation in multi-robot systems. The International Journal of Robotics Research,

23(9):939–954.

Gerkey, B., Vaughan, R., and Howard, A. (2003). The player/stage project: Tools

for multi-robot and distributed sensor systems. In Proceedings of the 11th inter-

national conference on advanced robotics, 1:317–323.

171

Gerkey, B. P. and Mataric, M. J. (2002). Sold!: Auction methods for multirobot

coordination. IEEE transactions on robotics and automation, 18(5):758–768.

Golait, R. (2007). Current issues in agriculture credit in india: An assessment.

Reserve Bank of India Occasional Papers, 28:1–22.

Graca, R. A., Xiao, D., and Cheng, S. (2016). Multi-arm robotic painting process

synchronization. US Patent 9,227,322.

Grassé, P.-P. (1959). La reconstruction du nid et les coordinations interindividuelles

chezbellicositermes natalensis etcubitermes sp. la théorie de la stigmergie: Essai

d’interprétation du comportement des termites constructeurs. Insectes sociaux,

6(1):41–80.

Graves, A., Morris, J., Deeks, L., Rickson, R., Kibblewhite, M., Harris, J., Farewell,

T., and Truckle, I. (2015). The total costs of soil degradation in england and

wales. Ecological Economics, 119:399–413.

Grift, T., Zhang, Q., Kondo, N., and Ting, K. (2008). A review of automation and

robotics for the bio-industry. Journal of Biomechatronics Engineering, 1:37–54.

Guardian (2010). Guardian project. https://bit.ly/2Qp2zdL.

Gunn, T. and Anderson, J. (2015). Dynamic heterogeneous team formation for

robotic urban search and rescue. Journal of Computer and System Sciences,

81(3):553–567.

Habibi, G., Xie, W., Jellins, M., and McLurkin, J. (2016). Distributed path planning

for collective transport using homogeneous multi-robot systems. In Distributed

Autonomous Robotic Systems: Springer Japan, pages 151–164.

172

https://bit.ly/2Qp2zdL

Hague, T. and Tillett, N. (2001). A bandpass filter-based approach to crop row

location and tracking. Mechatronics, 11(1):1–12.

Hansen, K. D., Garcia-Ruiz, F., Kazmi, W., Bisgaard, M., la Cour-Harbo, A., Ras-

mussen, J., and Andersen, H. J. (2013). An autonomous robotic system for map-

ping weeds in fields. IFAC Proceedings Volumes, 46(10):217–224.

Haygrove (2017). Pic-king 5 series. http://www.haygrove.co.za/

harvesting-machinery/harvest-rigs/pic-king-5-series/.

Hewitt, C., Bishop, P., and Steiger, R. (1973). A universal modular actor formalism

for artificial intelligence. Proceedings of the 3rd international joint conference on

Artificial intelligence, pages 235–245.

Hokuyo (2009). hokuyo-urg-04lx-ug01 data sheet. http://www.robotshop.com/

media/files/pdf/hokuyo-urg-04lx-ug01-specifications.pdf.

Horna, R., Domialb, H., Slowihka-Jurkiewiczb, A., and Van-Ouwekerk, C. (1995).

Soild compaction processes and their effects on the structure of arable soils and

the environment. Soil and Tillage Research, pages 23–36.

Houmy, K., Clarke, L. J., Ashburner, J. E., and Kienzle, J. (2013). Agricultural

Mechanisation in Sub-Saharan Africa Guidlines for preparing a strategy. Food

and Agriculture Organisation.

Howard, A., Mataric, M. J., and Sukhatme, G. S. (2002). Mobile sensor network

deployment using potential fields: A distributed, scalable solution to the area

coverage problem. pages 299–308.

Huang, X., Janaswamy, R., and Ganz, A. (2006). Scout: outdoor localization using

active rfid technology. pages 1–10.

173

http://www.haygrove.co.za/harvesting-machinery/harvest-rigs/pic-king-5-series/
http://www.haygrove.co.za/harvesting-machinery/harvest-rigs/pic-king-5-series/
http://www.robotshop.com/media/files/pdf/hokuyo-urg-04lx-ug01-specifications.pdf
http://www.robotshop.com/media/files/pdf/hokuyo-urg-04lx-ug01-specifications.pdf

Imou, K., Tani, S., and Yokoyama, S. (2009). Localization of agricultural vehicle

using landmarks based on omni-directional vision.

Iocchi, L., Nardi, D., and Salerno, M. (2000). Reactivity and deliberation: a survey

on multi-robot systems. In Balancing reactivity and social deliberation in multi-

agent systems, 4:9–32.

ISwarm (2006). Guardian project. https://www.shu.ac.uk/research/

specialisms/materials-and-engineering-research-institute/

what-we-do/projects/automation-and-robotics/

iswarm-intelligent-small-world-autonomous-robots-for-micro-manipulation.

Jager, M. and Nebel, B. (2001). Decentralized collision avoidance, deadlock de-

tection, and deadlock resolution for multiple mobile robots. Intelligent Robots

and Systems, 2001. Proceedings. 2001 IEEE/RSJ International Conference on,

3:1213–1219.

Janani, A. (2015a). Ros-stage mrs area coverage, implicit form of interaction (lifo).

https://bit.ly/2OoUdFp.

Janani, A. (2015b). Ros-stage mrs ploughing (with reversible moldboard) team of

8 robots (laser and camera) appraoch 1. https://bit.ly/2y7Gzwa.

Janani, A. (2015c). Ros-stage mrs spraying team of 10 robots (laser and camera).

https://bit.ly/2DKVtyI.

Janani, A. (2016). Self-organising ploughing. https://bit.ly/2OoRZWz.

Janani, A. (2017). Artificial potential field ros stage simulation environment. https:

//bit.ly/2OruUTh.

Janani, A. (2018a). Apf on pioneer 3at and hokuyo lidar. https://bit.ly/2xPuRXX.

174

https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/iswarm-intelligent-small-world-autonomous-robots-for-micro-manipulation
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/iswarm-intelligent-small-world-autonomous-robots-for-micro-manipulation
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/iswarm-intelligent-small-world-autonomous-robots-for-micro-manipulation
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/iswarm-intelligent-small-world-autonomous-robots-for-micro-manipulation
https://bit.ly/2OoUdFp
https://bit.ly/2y7Gzwa
https://bit.ly/2DKVtyI
https://bit.ly/2OoRZWz
https://bit.ly/2OruUTh
https://bit.ly/2OruUTh
https://bit.ly/2xPuRXX

Janani, A. (2018b). Apf on pioneer 3at and hokuyo lidar(2). https://bit.ly/

2OrvS1R.

Janani, A. (2018c). congestion avoidance: flee-opposite algorithm (with random

reverse velocity). https://bit.ly/2RcwBm2.

Jeon, S., Jang, M., Lee, D., Cho, Y., Kim, J., and Lee, J. (2016). Multiple robots

task allocation for cleaning and delivery. pages 195–214.

Jones, C. and Mataric, M. J. (2005). Behavior-based coordination in multi-robot

systems. Autonomous Mobile Robots: Sensing, Control, Decision-Making, and

Applications, pages 1–40.

Jose, K. and Pratihar, D. K. (2016). Task allocation and collision-free path planning

of centralized multi-robots system for industrial plant inspection using heuristic

methods. Robotics and Autonomous Systems, 80:34–42.

Jung, D. and Zelinsky, A. (2000). Grounded symbolic communication between het-

erogeneous cooperating robots. Autonomous Robots, 8(3):269–292.

K-Team (2017). Khepera iii. https://www.k-team.com/

mobile-robotics-products/old-products/khepera-iii.

Karla, N. and Martinoli, A. (2006). A comparative study of market-based and

threshold-based task allocation. 8th Symposium on Distributed Autonomous

Robotic Systems, pages 91–101.

Kato, S., Nishiyama, S., and Takeno, J. (1992). Coordinating mobile robots by

applying traffic rules. Intelligent Robots and Systems, 1992., Proceedings of the

1992 lEEE/RSJ International Conference on, 3:1535–1541.

175

https://bit.ly/2OrvS1R
https://bit.ly/2OrvS1R
https://bit.ly/2RcwBm2
https://www.k-team.com/mobile-robotics-products/old-products/khepera-iii
https://www.k-team.com/mobile-robotics-products/old-products/khepera-iii

Khan, M. H., Li, S., Wang, Q., and Shao, Z. (2016). Distributed multirobot forma-

tion and tracking control in cluttered environments. ACM Trans. Auton. Adapt.

Syst., 11(2):1–22.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots.

Int. J. of Robotics Research, 5.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., and Matsubara, H.

(1997). Robocup: A challenge problem for ai. AI magazine, 18(1):73.

Koch, P., May, S., Schmidpeter, M., Kühn, M., Pfitzner, C., Merkl, C., Koch,

R., Fees, M., Martin, J., and Nüchter, A. (2015). Multi-robot localization and

mapping based on signed distance functions. pages 77–82.

Koditschek, D. and Rimon, E. (1990). Robot navigation functions on manifolds

with boundary. Advances in Applied Mathematics, 11(4):412–442.

Kong, C. S., Peng, N., and Rekleitis, I. (2006). Distributed coverage with multi-

robot system. Proceedings 2006 IEEE International Conference on Robotics and

Automation, 2006. ICRA 2006., pages 2423–2429.

Krieger, M. J. B., Billeter, J., and Keller, L. (2000). Ant-like task allocation and

recruitment in cooperative robots. Nature, 406:992–995.

Landwirt (2017). Grimme kartoffelroder se 260. https://www.landwirt.

com/berichtdiashow/Agritechnica_2013_News_Erntetechnik,13,

Grimme-Kartoffelroder-SE-260.html.

Lee, J., Nam, Y., Hong, S., and Cho, W. (2012). New potential functions with

random force algorithms using potential field method. Journal of Intelligent and

Robotic Systems, 66(3):303–319.

176

https://www.landwirt.com/berichtdiashow/Agritechnica_2013_News_Erntetechnik,13,Grimme-Kartoffelroder-SE-260.html
https://www.landwirt.com/berichtdiashow/Agritechnica_2013_News_Erntetechnik,13,Grimme-Kartoffelroder-SE-260.html
https://www.landwirt.com/berichtdiashow/Agritechnica_2013_News_Erntetechnik,13,Grimme-Kartoffelroder-SE-260.html

Li, G., Yamashita, A., Asama, H., and Tamura, Y. (2012). An efficient improved arti-

ficial potential field based regression search method for robot path planning. 2012

IEEE International Conference on Mechatronics and Automation, pages 1227–

1232.

Li, L., Martinoli, A., and Y.S., A.-M. (2002). Emergent specialization in swarm

systems. Third International Conference Manchester, UK, August 12-14, 2002

Proceedings, pages 261–266.

Li, N., Remeikas, C., Xu, Y., Jayasuriya, S., and Ehsani, R. (2015). Task assignment

and trajectory planning algorithm for a class of cooperative agricultural robots.

Journal of Dynamic Systems, Measurement and Control, 137(5):1–9.

Li, Q., Wang, L., Chen, B., and Zhou, Z. (2011). An improved artificial potential field

method for solving local minimum problem. Proceedings of 2011 2nd International

Conference on Intelligent Control and Information Processing, pages 420–424.

Liekna, A. and Grundspenkins, J. (2014). Towards practical application of swarm

robotics: overview of swarm tasks. In Proceedings of the 13th International Con-

ference Engineering for Rural Development, pages 271–277.

Liu, J. and Wu, J. (2001). Multi-Agent Robotic Systems. CRC Press, 1 edition.

Lopez-Gonzalez, A., Ferreira, E., Hernandez-Martinez, E., Flores-Godoy, J.,

Fernandez-Anaya, G., and Paniagua-Contro, P. (2016). Multi-robot formation

control using distance and orientation. Advanced Robotics, pages 1–13.

Luke, S., Hohn, C., Farris, J., Jackson, G., and Hendler, J. (1998). Co-evolving

soccer softbot team coordination with genetic programming. Third International

Conference Manchester, UK, August 12-14, 2002 Proceedings, pages 398–411.

177

Lumelsky, V. and Harinarayan, K. (1997). Decentralized motion planning for mul-

tiple mobile robots: The cocktail party model. Journal of Autonomous Robots,

4:121–135.

Luna, R. and Bekris, K. E. (2011). Efficient and complete centralized multi-robot

path planning. In Proceedings of IROS’11, pages 3268-3275, San Francisco, CA,

USA.

Marchant, J. (1996). Tracking of row structure in three crops using image analysis.

Computers and Electronics in Agriculture, 15(2):161–179.

Marchant, J. and Brivot, A. (1995). Real-time tracking of plant rows using a hough

transform. Real-Time Imaging, 1(5):363–371.

Marcolino, L. and Chaimowicz, L. (2009a). Traffic control for a swarm of robots:

Avoiding target congestions. 2009 IEEE/RSJ International Conference on Intel-

ligent Robots and Systems, pages 1955–1966.

Marcolino, L. S. and Chaimowicz, L. (2009b). Traffic control for a swarm of robots:

Avoiding group conflicts. 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 1949–1954.

Marden, S. and Whitty, M. (2014). Gps-free localisation and navigation of an un-

manned ground vehicle for yield forecasting in a vineyard.

Marjovi, A., Nunes, J. G., Marques, L., and de Almeida, A. (2010). Multi-robot fire

searching in unknown environment. pages 341–351.

Mataric, M. J., Nilsson, M., and Simsarin, K. T. (1995). Cooperative multi-robot

box-pushing. 3:556–561.

178

Mendoza, J., Biswas, J., Cooksey, P., Wang, R., Klee, S., Zhu, D., and Veloso, M.

(2016). Selectively reactive coordination for a team of robot soccer champions.

Proceedings of AAAI-16 (2016, to appear).

Ming, L., Imou, K., Wakabayashi, K., and Yokoyama, S. (2009). Review of research

on agricultural vehicle autonomous guidance. International Journal of Agric Biol

Eng, 2:1–16.

More, R. Q. (2016). Russia’s mine-clearing uran-6 robots to help get rid of hidden

explosives in palmyra (videos).

Mousazadeh, H. (2013). A technical review on navigation systems of agricultural

autonomous off-road vehicles. Journal of Terramechanics, 50:211–232.

Murphy, R. R. (2000). Marsupial and shape-shifting robots for urban search and

rescue. IEEE Intelligent Systems and their Applications, 15(2):14–19.

Nanayakkara, T., Dissanayake, T., Mahipala, P., and Sanjaya, K. G. (2008). A

human-animal-robot cooperative system for anti-personal mine detection.

Noguchi, N. and Barawid, O. (2011). Robot farming system using multiple robot

tractors in japan agriculture. Preprints of the 18th IFAC World Congress Milano,

18(1):633–637.

Noguchi, N., Will, J., Reid, J., and Zhang, Q. (2004). Development of a master–

slave robot system for farm operations. Computers and Electronics in agriculture,

44(1):1–19.

Noreils, F. R. (1993). Toward a robot architecture integrating cooperation between

mobile robots: Application to indoor environment. The International Journal of

Robotics Research, 12(1):79–98.

179

Okamoto, M. and Akella, M. (2016). Avoiding the local-minimum problem in multi-

agent systems with limited sensing and communication. International Journal of

Systems Science, 47(8):1943–1952.

Oksanen, T., Linja, M., and Visala, A. (2005). Low-cost positioning system for

agricultural vehicles. pages 297–302.

Park, M., Jeon, J., and Lee, M. (2001). Obstacle avoidance for mobile robots using

artificial potential field approach with simulated annealing. Industrial Electronics,

2001. Proceedings. ISIE 2001. IEEE International Symposium on, 3:1530–1535.

Park, M. and Lee, M. (2003). Artificial potential field based path planning for

mobile robots using a virtual obstacle concept. Proceedings of 2003 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, pages 735–740.

Parker, C. A. C., Zhang, H., and Kube, C. R. (2003). Blind bulldozing: multiple

robot nest construction. Intelligent Robots and Systems, 2003. (IROS 2003).

Proceedings. 2003 IEEE/RSJ International Conference on, 2:2010–2015.

Parker, L. (1993). Designing control laws for cooperative agent teams. Proceedings of

the IEEE International Conference on Robotics and Automation, Hidden Valley,

Pennsylvania.

Parker, L. (1994a). Heterogeneous multi-robot cooperation (no. ai-tr-1465). Mas-

sachusetts Inst of Tech Cambridge Artificial Intelligence Lab.

Parker, L. E. (1994b). Alliance: An architecture for fault tolerant, cooperative con-

trol of heterogeneous mobile robots. Intelligent Robots and Systems’ 94.’Advanced

Robotic Systems and the Real World’, IROS’94. Proceedings of the IEEE/RSJ/GI

International Conference on, 2:776–783.

180

Parker, L. E. (1999). Cooperative robotics for multi-target observation. Intelligent

Automation and Soft Computing, 5(1):5–19.

Penders, J. (1999). The practical art of moving physical objects. Doctoral thesis.

Penders, J., Alboul, L., Witkowski, U., Naghsh, A., Saez-Pons, J., Herbrechtsmeier,

S., and El-Habbal, M. (2011). A robot swarm assisting a human fire-fighter.

Advanced Robotics, 25(1-2):93–117.

Pierson, A. and Schwager, M. (2016). Adaptive inter-robot trust for robust multi-

robot sensor coverage. In Robotics Research: Springer International Publishing,

pages 167–183.

Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., and Birattari, M. (2011).

Task partitioning in swarms of robots: An adaptive method for strategy selection.

Swarm Intelligence, 3(3-4):283–304.

Prorok, A., Hsieh, M., and Kumar, V. (2016). Adaptive distribution of a swarm of

heterogeneous robots. Acta Polytechnica, 56(1):67–75.

Prez, F. J. L. (2016). Autonomous Navigation in an Indoor environment.

Q. Bonnard, S. Lemaignan, G. Z. A. M. S. C. N. L. and Dillenbourg, P. (2013).

Chilitags2: Robust fiducial markers for augmented reality and robotics. CHILI,

EPFL, Switzerland.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R., and

Ng, A. (2009). Ros: an open-source robot operating system. In ICRA workshop

on open source software, 3(3.2):5.

Radu, M. (2014). Automated carrot harvester machines are mesmerizing

to watch in action. https://s1.cdn.autoevolution.com/images/news/

181

https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg
https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg

automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_

1.jpg.

Ramaithitima, R., Whitzer, M., Bhattacharya, S., and Kumar, V. (2016). Auto-

mated creation of topological maps in unknown environments using a swarm of

resource-constrained robots. IEEE Robotics and Automation Letters, 1(2):746–

753.

Ranjbar-Sahraei, B., Weiss, G., and Nakisaee, A. (2012). A multi-robot coverage

approach based on stigmergic communication. German Conference on Multiagent

System Technologies, pages 126–138.

Rao, A., F., A. B., Lindgren, A., and Ziviani, A. (2016). Team communication

strategy for collaborative exploration by autonomous vehicles. 2016 IEEE Inter-

national Conference on Communications (ICC), pages 1–6.

REINS (2011). Reins project. https://www.shu.ac.uk/research/specialisms/

materials-and-engineering-research-institute/what-we-do/projects/

automation-and-robotics/the-reins-project.

Reynolds, C. W. (1987). Flocks, herds and schools: A distributed behavioral model.

ACM SIGGRAPH computer graphics, 21(4):25–34.

RHEA (2014). Rhea project, robot fleets for highly effective agriculture and forestry

management. http://www.rhea-project.eu/.

Robin, C. and Lacroix, S. (2016). Multi-robot target detection and tracking: tax-

onomy and survey. Autonomous Robots, 40(4):729–760.

Roldan, J. J., Garcia-Aunon, P., Garzon, M., de Leon, J., del Cerro, J., and Barri-

182

https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg
https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg
https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg
https://s1.cdn.autoevolution.com/images/news/automated-carrot-harvester-machines-are-mesmerizing-to-watch-in-action-video-89947_1.jpg
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/the-reins-project
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/the-reins-project
https://www.shu.ac.uk/research/specialisms/materials-and-engineering-research-institute/what-we-do/projects/automation-and-robotics/the-reins-project
http://www.rhea-project.eu/

entos, A. (2016). Heterogeneous multi-robot system for mapping environmental

variables of greenhouses. Sensors, 16(7):1018.

Ruiz-Garcia, L. and Lunadei, L. (2011). The role of rfid in agriculture: Applications,

limitations and challenges. Computers and Electronics in Agriculture, 79(1):42–

50.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: a Modern Approach.

Prentice Hall, 2 edition.

Sabanci, K. and Aydin, C. (2017). Smart robotic weed control system for sugar

beet. Journal of Agricultural Science and Technology, 19(1):73–83.

Saez-Pons, J., Alboul, L., Penders, J., and Nomdedeu, L. (2010). Multi-robot team

formation control in the guardians project. Industrial Robot: An International

Journal, 37(4):372–383.

Safadi, H. (2007). Local path planning using virtual potential field. http://www.

cs.mcgill.ca/~hsafad/robotics/.

Sahin, E. (2004). Swarm robotics: From sources of inspiration to domains of appli-

cation. pages 10–20.

Sahin, E., Girgin, S., Bayindir, L., and Turgut, A. (2008). Swarm robotics. In

Natuarl Computing Series, chapter Swarm Intelligence, pages 87–100.

Santana, P., Barata, J., Cruz, H., Mestre, A., Lisboa, J., and Flores, L. (2005). A

multi-robot system for landmine detection. 1:8–pp.

Saska, M., Vonásek, V., and Přeučil, L. (2013). Trajectory planning and control for

airport snow sweeping by autonomous formations of ploughs. Journal of Intelli-

gent & Robotic Systems, 72(2):239–261.

183

http://www.cs.mcgill.ca/~hsafad/robotics/
http://www.cs.mcgill.ca/~hsafad/robotics/

Sen, A., Sahoo, S., and Kothari, M. (2016). A cooperative target-centric formation

with bounded acceleration. IFAC-PapersOnLine, 49(1):425–430.

Senanayake, M., Senthooran, I., Barca, J., Chung, H., Kamruzzaman, J., and Mur-

shed, M. (2016). Search and tracking algorithms for swarms of robots: A survey.

Robotics and Autonomous Systems, 75:422–434.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning:

From theory to algorithms. Cambridge university press.

Shearer, S. A. and Pitla, S. K. (2013). Field crop production automation. Agricul-

tural Automation, pages 99–124.

Shearer, S. A., Pitla, S. K., and Luck, J. (2010). Trends in the automation of agri-

cultural field machineries. Biosystems and Agricultural Engineering, University

of Kentucky, Lexington, USA, pages 1–21.

Simmons, R., Apfelbaum, D., Burgard, W., Fox, D., Moors, M., Thrun, S., and

Younes, H. (2000). Coordination for multi-robot exploration and mapping. pages

852–858.

Simmons, R., Singh, S., Hershberger, D., Ramos, J., and Smith, T. (2001). First

results in the coordination of heterogeneous robots for large-scale assembly. Ex-

perimental Robotics VII, pages 323–332.

Slaughter, D., Chen, P., and Curley, R. (1996). Vision guided precision cultivation.

Precision Agriculture, 1(2):199–217.

Smith, R. (1980). The contract net protocol: high-level communication and control

in distributed problem solver. IEEE Trans. Computers, C-29(12):1104–1113.

184

Sojka, R., Bjorneberg, D., and Entry, J. (2002). Irrigation: A historical perspective.

Marcel Dekker, Inc.

Solovey, K., Salzman, O., and Halperin, D. (2015). Finding a needle in an expo-

nential haystack: Discrete rrt for exploration of implicit roadmaps in multi-robot

motion planning. pages 591–607.

Stoll, A. and Kutzbach, H. D. (2000). Guidance of a forage harvester with gps.

Precision Agriculture, 2(3):281–291.

Sujaritha, M., Lakshminarasimhan, M., Fernandez, C. J., and Chandran, M. (2016).

Greenbot: A solar autonomous robot to uproot weeds in a grape field. Interna-

tional Journal of Computer Science and Engineering, 4(2):1351–1358.

Sukkarieh, S. (2012). Automated agriculture. http://sydney.edu.au/news/84.

html?newsstoryid=10737.

Sumocakewalk (2015). Cambodia imports african rats for demining work.

Sungjun, A., Youdan, K., and Jaemyung, A. (2015). Area allocation algorithm

for multiple uavs area coverage based on clustering and graph. 1st IFAC Work-

shop on Advanced Control and Navigation for Autonomous Aerospace Vehicles

ACNAAV’15, 45(9):204–209.

Sgaard, H. and Olsen, H. (2003). Determination of crop rows by image analysis

without segmentation. Precision Agriculture, 38(2):141–158.

Tang, F. and Parker, L. E. (2005). Asymtre: Automated synthesis of multi-robot

task solutions through software reconfiguration. Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, pages 1501–1508.

185

http://sydney.edu.au/news/84.html?newsstoryid=10737
http://sydney.edu.au/news/84.html?newsstoryid=10737

Tang, J., Geng, N., Zhang, Z., and Zhu, Z. (2013). A vision-based method of wheat

row detection for agricultural robot. International Journal of Digital Content

Technology and its Applications, 7(5):129.

Tarannum, N., Rhaman, K. M., Ahmed Khan, S., and Shakil, R. (2015). A brief

overview and systematic approach for using agricultural robot in developing coun-

tries. Journal of Modern Science and Technology, 3:88–101.

tarmakbir (2017). Last day for grant support in irrigation systems 14 feburary

(sulama sistemlerinde hibe destei in son gn 14 ubat). US Patent App. 11/498,392.

Thrun, S. and Liu, Y. (2005). Multi-robot slam with sparse extended information

filers. pages 254–266.

Thuilot, B., Cariou, C., Cordesses, L., and Martinet, P. (2001). Automatic guidance

of a farm tractor along curved paths, using a unique cp-dgps. 2:674–679.

Tian, Z., Junfang, X., Gang, W., and Jianbo, Z. (2014). Automatic navigation path

detection method for tillage machines working on high crop stubble fields based on

machine vision. International Journal of Agricultural and Biological Engineering,

7(4):29.

Tillett, N., Hague, T., and Miles, S. (2002). Inter-row vision guidance for mechanical

weed control in sugar beet. Computers and Electronics in Agriculture, 33(3):163–

177.

Todt, E., Rausch, G., and Suarez, R. (2000). Analysis and classification of multiple

robot coordination methods. Robotics and Automation, 2000. Proceedings. ICRA

’00. IEEE International Conference on, 4:3158–3163.

186

Tsai, C., Chan, C., and Tai, F. (2015). Cooperative localization using fuzzy de-

centralized extended information filtering for homogenous omnidirectional mobile

multi-robot system. New Trends on System Science and Engineering: Proceedings

of ICSSE 2015, 276:343.

Uny Cao, Y., Fukunaga, A. S., and Kahng, A. B. (1997). Cooperative mobile

robotics: Antecedents and directions. Autonomous Robots, 4:1–23.

Vig, L. and Adams, J. A. (2006). Multi-robot coalition formation. IEEE transactions

on robotics, 22(4):637–649.

Vlassis, N. (2003). A Concise Introduction to Multiagent Systems and Distributed

AI. Universiteit van Amsterdam, 1 edition.

Walsh, N. E. and Walsh, W. S. (2003). Rehabilitation of landmine victims: the

ultimate challenge. Bulletin of the World Health Organization, 81(9):665–670.

Wang, J. and Olson, E. (2016). Apriltag 2: Efficient and robust fiducial detection.

pages 4193–4198.

Weber, J., Kaufmann, C., Hache, C., and Schmidt, M. (2015). Solving the box-

pushing problem using a spherical robot. pages 7–11.

Werger, B. and Mataric, M. J. (2000). Broadcast of local eligibility for multi-target

observation. pages 347–356.

Willmann, J., Augugliaro, F., Cadalbert, T., D’Andrea, R., Gramazio, F., and

Kohler, M. (2012). Aerial robotic construction towards a new field of architectural

research. International journal of architectural computing, 10(3):439–459.

Wolkowski, R. and Lowery, B. (2008). Soil compaction: Causes, concerns, and cures.

University of Wisconsin, pages 1–7.

187

Wooldridge, M. and Jennings, N. (1995). Intelligent agents: Theory and practice.

The Knowledge Engineering Review, 10(2):115–152.

Wu, M. H., Ogawa, S., and Konno, A. (2016a). Symmetry position/force hybrid

control for cooperative object transportation using multiple humanoid robots.

Advanced Robotics, 30(2):131–149.

Wu, Z., Hu, G., Feng, L., Wu, J., and Liu, S. (2016b). Collision avoidance for

mobile robots based on artificial potential field and obstacle envelope modelling.

Assembly Automation, 36(3).

Wurm, K. M., Stachniss, C., and Burgard, W. (2008). Coordinated multi-robot ex-

ploration using a segmentation of the environment. 2008 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1160–1165.

Yamada, S. and Saito, J. (1999). Adaptive action selection without explicit commu-

nication for multi-robot box-pushing. 3:1444–1449.

Yan, Z., Jouandeau, N., and Cherif, A. A. (2010). Sampling-based multi-robot

exploration. pages 1–6.

Yan, Z., Jouandeau, N., and Cherif, A. A. (2012). Multi-robot heuristic goods

transportation. pages 409–414.

Yan, Z., Jouandeau, N., and Cherif, A. A. (2013). A survey and analysis of multi-

robot coordination. International Journal of Advanced Robotic Systems, 10:1–18.

Yang, J. and Dong, M. (2012). Design of a time-varying continuous control to

solve the potential field local minima problem. Applied Mechanics and Materials,

130-134:2465–2469.

188

Zedadra, O., Seridi, H., Jouandeau, N., and Fortino, G. (2016). A cooperative

switching algorithm for multi-agent foraging. Engineering Applications of Artifi-

cial Intelligence, 50:302–319.

Zhang and F. (2013). Detecting crop rows for automated rice transplanters based

on radon transform. Sensor Letters, 11(6-7):1100–1105.

Zhang, C. and Noguchi, N. (2016). Cooperation of two robot tractors to improve

work efficiency. Adv Robot Autom, 5(146):2.

Zhang, N., Wang, M., and Wang, N. (2002). Precision agriculturea worldwide

overview. Computers and Electronics in Agriculture, 36(2-3):113–132.

Zheng, X., Jain, S., Koenig, S., and Kempe, D. (2005). Multi-robot forest coverage.

pages 3852–3857.

Zheng, Z. and Tan, Y. (2015). Mobile target tracking of swarm robotics in unknown

obstructive environment. Handbook of Research on Design, Control, and Modeling

of Swarm Robotics, 26:397.

Zlot, R., Stentz, A., Dias, M. B., and Thayer, S. (2002). Market-driven multi-robot

exploration.

189

Appendix A

Spraying Optimum Team Size

Referring to the total required time for spraying:

Given a field and the task of spraying, what is the most optimum team size with

which spraying can be carried out as fast as possible?

t = max
1≤i≤n

(tsi + ttai + tsti) (A.1)

Where:

ttai is the task allocation time for robot i.

ttai =
dαl1
v

+ (2i− 1)τ + (λ+ε)(i−1)
v

+
i∑

j=2

dlj−1lj

v

tsti is the amount of time required for a robot to start its task.

tsti = ttan − ttai + τinit(n− i)

tsi is the time that takes for robot i to spray the allocated region.

tsi = 1
v
(kilp + (ki − 1)df)

In here, ki is the number of tracks in a region, df is the distance between two

consecutive regions, lp is the length of a furrow, and v is the velocity of the robot.

Re-writing A.12:

t = max
1≤i≤n

(tsi + ttai + ttan − ttai + τinit(n− i))

190

t = max
1≤i≤n

(tsi + ttan + τinit(n− i))

t = max
1≤i≤n

(1
v
(kilp + (ki− 1)df) +

dαl1
v

+ (2n− 1)τ + (λ+ε)(i−1)
v

+
i∑

j=2

dlj−1lj

v
+ τinit(n− i))

The total task allocation time for all robots is:

ttatot =
dαl1
v

+ (2n− 1)τ +
(λ+ ε)(n− 1)

v
+

n∑
i=2

dlj−1
lj

v
(A.2)

In here,
n∑
i=2

dlj−1
lj

v
refers to the width of the field W . Hence, A.2 can be re-written

as:

ttatot =
dαl1
v

+ (2n− 1)τ +
(λ+ ε)(n− 1)

v
+
W

v
(A.3)

Also, W = K.df , therefore:

ttatot =
dαl1
v

+ (2n− 1)τ +
(λ+ ε)(n− 1)

v
+
K.df
v

(A.4)

Re-arranging A.4:

ttatot =
dαl1
v

+
K.df
v
− (

(λ+ ε)

v
+ τ) + (2τ +

(λ+ ε)

v
)n (A.5)

We denote the constant
dαl1
v

+
K.df
v
− ((λ+ε)

v
+ τ) as C, and the coefficient by n as A,

then Equation A.5 will be represented as:

ttatot = C + An (A.6)

Equation A.6 is a linear equation, and it is clear that with the number of robots the

total allocation time with be increasing.

The total initiation time (until the moment the last robot start spraying) is ttitot =

191

τinit(n− 1) or:

ttitot = −τinit + τinitn (A.7)

Equation A.7 also shows a simple linear relationship between the number of robots

and total time for task initiation.

If we consider now the total spraying time, we can notice that part of this time

comprises the total allocation time + time needed for spraying by the last robot.

This time (spraying time for the last robot) is:

tsn =
1

v
(knlp + (kn − 1)df) (A.8)

Bearing in mind that kn = dK
n
e, we can rewrite A.8 as follows:

tsn =
1

v
(dK
n
elp + (dK

n
e − 1)df) (A.9)

Or

tsn =
1

v
(dK
n
e(lp + df))−

df
v

(A.10)

Note. We use dK
n
e (which is the smallest integer greater or equal to K

n
), as this is

the number of tracks assigned to the last robot, according to our construction.

The relation A.10 between time and the number of the robots is hyperbolic, and

time decreases with the number of robots.

The total spraying time is, therefore,

ttstot = ttitot + tsn (A.11)

192

And the total time for robots from the task allocation to completing spraying is:

ttot = ttatot + ttitot + tsn (A.12)

This equation consists of two increasing linear functions (which can be presented as

one linear increasing function) and one decreasing hyperbolic function. Therefore the

resulting function will have a global minimum. In order to determine this minimum,

without the loss of generality, instead of integer n, we use real number x, x > 0.

Then we rewrite A.10 as tsn = 1
v
(dK

n
e(lp + df))− df

v
and re-arrange as:

tsn =
K

n
(lp + df)

1

x
− df

v
(A.13)

Denoting K
v

(lp + df) as B, and
df
v

as D, we get

tsn = B 1
x
−D

Then, Equation A.12 takes the form of:

ttot = C + Ax+ τinitx− τinit +B
1

x
−D (A.14)

Or

ttot = (A+ τinit)x+B
1

x
+ C −D − τinit (A.15)

Differentiating A.15 with respect to x, and we get

t′tot = (A+ τinit)−B
1

x2
(A.16)

To find the extrema, we equate the right-hand side to zero, we get

(A+ τinit)−B 1
x2

= 0

As we interested only in positive x, we get the following value for x at the minimum:

193

x =

√
B

A+ τinit
(A.17)

Substituting corresponding expressions for B and A into A.17:

x =

√
K
v

(lp + df)

2τ + λ+ε
v

+ τinit
(A.18)

and re-arranging it we have:

x =

√
K(lp + df)

(2τ + τinit)v + λ+ ε
(A.19)

194

Appendix B

C++ Code for Artificial Potential Field Using ROS

1 #include <ro s / ro s . h>
2 #include <sensor msgs /LaserScan . h>
3 #include <nav msgs/Odometry . h>
4 #include <geometry msgs/Twist . h>
5 #include <t f / t f . h>
6 #include <geometry msgs/Quaternion . h>
7 #include <s t d i o . h> /* printf, scanf, puts, NULL */

8 #include <s t d l i b . h> /* srand, rand */

9 #include <time . h> /* time */

10 #include <s t r i ng>
11 #include <sstream>
12
13 using namespace std ;
14
15 #define PI 3.14159265359
16 #define Rad2Deg 57.2957795
17 #define Deg2Rad 0.0174532925
18 #define PITCH 0.3522504892367
19 #define DistanceTh 0 .2
20 #define DistanceCrt 1 .5
21 #define DistanceCrtTwo 0 .5
22 #define MaxVel 0 . 5
23
24 void stop (void) ;
25 struct po int
26 {
27 float x ;
28 float y ;
29 float theta ;
30 } ;
31 struct f o r c e
32 {
33 float mag ;
34 float theta ;
35 float x ;
36 float y ;
37 } ;
38 po int target , cur r ent ;
39
40 bool target I sReached = false ;
41
42 ros : : Pub l i sher ve l pub ;
43 geometry msgs : : Twist v e l ;
44 int r obo t i d = 0 ;
45 class APFClass
46 {

195

47 public :
48 APFClass () ;
49 private :
50 ros : : NodeHandle nh ;
51
52 ros : : Subsc r ibe r l a s e r s ub ;
53 ros : : Subsc r ibe r pose sub ;
54
55 void laserCB (const sensor msgs : : LaserScan : : ConstPtr &scan) ;
56 void poseCB(const nav msgs : : Odometry : : ConstPtr &pose) ;
57 } ;
58
59 APFClass : : APFClass ()
60 {
61 ros : : NodeHandle n("~") ;
62 n . getParam ("robot_id" , r obo t i d) ;
63 o s t r ing s t r eam ss ;
64 s s << "robot_" ;
65 s s << r obo t i d ;
66 s t r i n g la se r p ipename = ss . s t r () + "/base_scan" ;
67 s t r i n g pose pipename = ss . s t r () + "/base_pose_ground_truth" ;
68 s t r i n g velcmd pipename = ss . s t r () + "/cmd_vel" ;
69
70 l a s e r s ub = nh . subscr ibe<sensor msgs : : LaserScan>
71 (laser p ipename ,10 ,&APFClass : : laserCB , this) ;
72 pose sub = nh . subscr ibe<nav msgs : : Odometry>
73 (pose pipename ,10 ,&APFClass : : poseCB , this) ;
74 ve l pub = nh . adve r t i s e<geometry msgs : : Twist>
75 (velcmd pipename , 1 0) ;
76 t a r g e t . x = 0 . 0 ;
77 t a r g e t . y = 0 . 0 ;
78 }
79
80 void APFClass : : laserCB
81 (const sensor msgs : : LaserScan : : ConstPtr &scan)
82 {
83 float beams [5 1 2] ;
84 po int dir , obj new [5 1 2] , obj [5 1 2] ;
85 f o r c e a t t r a c t i on , r epu l s i on [5 1 2] , sum ;
86 int RotCoef = 1 ;
87 sum . x = 0 . 0 ;
88 sum . y = 0 . 0 ;
89 int beamCounter = 1 ;
90 d i r . x = ta rg e t . x − cur rent . x ;
91 d i r . y = ta rg e t . y − cur rent . y ;
92 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
93 float distanceToTarget = sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) ;
94 float R[2] [2] = {{ cos ((90− cur rent . theta)∗Deg2Rad) ,
95 −1∗ s i n ((90− cur rent . theta)∗Deg2Rad)} ,
96 { s i n ((90− cur rent . theta)∗Deg2Rad) ,
97 cos ((90− cur rent . theta)∗Deg2Rad)}} ;
98 if (distanceToTarget >= DistanceTh)
99 {
100 for (int i =0; i <=511; i++)
101 {
102 if (scan−>ranges [i] < 4 .5)
103 {
104 beams [i] = scan−>ranges [i] ;
105
106 obj [i] . x = beams [i]∗ cos ((i ∗PITCH)∗Deg2Rad) ;

196

107 obj [i] . y = beams [i]∗ s i n ((i ∗PITCH)∗Deg2Rad) ;
108 beamCounter++;
109 }
110 else if (scan−>ranges [i] == 4 . 5)
111 {
112 beams [i] = 0 . 0 ;
113 obj [i] . x = 0 . 0 ;
114 obj [i] . y = 0 . 0 ;
115 }
116 }
117
118 //form the orientation matrix

119 for (int i =0; i<= 511 ; i++)
120 {
121 if (beams [i] > 0 .0 && beams [i] < 4 . 5)
122 {
123
124 r epu l s i on [i] . x = obj [i] . x ;
125 r epu l s i on [i] . y = obj [i] . y ;
126
127 //remember: repulsion force is 180 degrees mirrored of the

128 //vector describing the object and the robot

129 if (beams [i] <= DistanceCrt && beams [i] > DistanceCrtTwo)
130 {
131 r epu l s i on [i] . x = 20∗ obj [i] . x ;
132 r epu l s i on [i] . y = 20∗ obj [i] . y ;
133 RotCoef = 10 ;
134 }
135 if (beams [i] <= DistanceCrtTwo)
136 {
137 r epu l s i on [i] . x = 100∗ obj [i] . x ;
138 r epu l s i on [i] . y = 100∗ obj [i] . y ;
139 RotCoef = 100 ;
140 }
141 if (beams [i] > DistanceCrt)
142 {
143 r epu l s i on [i] . x = obj [i] . x ;
144 r epu l s i on [i] . y = obj [i] . y ;
145 RotCoef = 1 ;
146 }
147 r epu l s i on [i] . mag = 1/ sq r t (r epu l s i on [i] . x∗ r epu l s i on [i] . x
148 +r epu l s i on [i] . y∗ r epu l s i on [i] . y) ;
149 r epu l s i on [i] . theta = atan2 (r epu l s i on [i] . y , r e pu l s i on [i] . x) ;
150 }
151 else if (beams [i] == 0 . 0)
152 {
153 r epu l s i on [i] . x = 0 . 0 ;
154 r epu l s i on [i] . y = 0 . 0 ;
155 r epu l s i on [i] . mag = 0 . 0 ;
156 r epu l s i on [i] . theta = 0 . 0 ;
157 }
158
159 sum . x = sum . x + r epu l s i on [i] . x ;
160 sum . y = sum . y + r epu l s i on [i] . y ;
161 }
162
163 float rx = sum . x∗ cos (180∗Deg2Rad) − sum . y∗ s i n (180∗Deg2Rad) ;
164 float ry = sum . x∗ s i n (180∗Deg2Rad) + sum . y∗ cos (180∗Deg2Rad) ;
165 sum . x = rx∗R[0] [0] − ry∗R [0] [1] ;
166 sum . y = −rx∗R[1] [0] + ry∗R [1] [1] ;

197

167 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
168 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
169
170 //applying robot’s orientation

171
172
173 //attraction force

174 a t t r a c t i o n .mag = sq r t (d i r . x∗ d i r . x+d i r . y∗ d i r . y) ;
175 a t t r a c t i o n . theta = Rad2Deg∗atan2 (d i r . y , d i r . x) ;
176 a t t r a c t i o n . x = d i r . x ;
177 a t t r a c t i o n . y = d i r . y ;
178
179 //sum force

180 int Krep = 7 ;
181 int Katt = 20 ;
182 sum . x = sum . x + Katt∗ a t t r a c t i o n . x ;
183 sum . y = sum . y + Katt∗ a t t r a c t i o n . y ;
184 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
185 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
186
187 /*Here is where you assign speed to the motors*/

188 if (abs (sum . theta−cur rent . theta) < 180)
189 {
190 ve l . angular . z = RotCoef ∗0 .02∗ (sum . theta−cur rent . theta) ;
191 }
192 else if ((sum . theta−cur rent . theta > 180)
193 | | (sum . theta−cur rent . theta < −180))
194 {
195 ve l . angular . z = RotCoef ∗−0.02∗(sum . theta−cur rent . theta) ;
196 }
197 ve l . l i n e a r . x = sum .mag ;
198 //limiting the linear speed to 0.75 m/s

199 if (v e l . l i n e a r . x >= MaxVel)
200 {
201 ve l . l i n e a r . x = MaxVel ;
202 }
203 if (v e l . l i n e a r . x <= −1∗MaxVel)
204 {
205 ve l . l i n e a r . x = −1∗MaxVel ;
206 }
207 ve l pub . pub l i sh (ve l) ;
208
209 }
210 else if (distanceToTarget < DistanceTh)
211 {
212 stop () ;
213 }
214 }
215 void APFClass : : poseCB
216 (const nav msgs : : Odometry : : ConstPtr &pose)
217 {
218 cur rent . x = pose−>pose . pose . p o s i t i o n . x ;
219 cur rent . y = pose−>pose . pose . p o s i t i o n . y ;
220 cur rent . theta = Rad2Deg ∗
221 t f : : getYaw(pose−>pose . pose . o r i e n t a t i o n) ;
222 }
223 void stop (void)
224 {
225 ve l . l i n e a r . x = 0 . 0 ;
226 ve l . l i n e a r . y = 0 . 0 ;

198

227 ve l . l i n e a r . z = 0 . 0 ;
228 ve l . angular . x = 0 . 0 ;
229 ve l . angular . y = 0 . 0 ;
230 ve l . angular . z = 0 . 0 ;
231 ve l pub . pub l i sh (ve l) ;
232 }
233 int main (int argc , char∗∗ argv)
234 {
235 ros : : i n i t (argc , argv , "mrs_apf") ;
236 APFClass apfc ;
237 ros : : sp in () ;
238 return 0 ;
239 }

199

Appendix C

C++ Code for Cluster Class

1 #include<ro s / ro s . h>
2 #include<c l u s t e r e x t r a c t o r / c l u s t e r . h>
3 #include<sensor msgs /PointCloud . h>
4 #include<u t i l i t y >
5 #include<math . h>
6 #include<vector>
7
8 using namespace std ;
9
10
11 Clus te r : : C lus te r ()
12 {
13
14 }
15 Clus te r : : ˜ C lus te r ()
16 {
17
18 }
19 void Clus te r : : addMember(geometry msgs : : Point32 p)
20 {
21 members . po in t s . push back (p) ;
22 sum x += p . x ;
23 sum y += p . y ;
24 sum x2 += p . x ∗ p . x ;
25 sum y2 += p . y ∗ p . y ;
26 sum xy += p . x ∗ p . y ;
27 }
28 void Clus te r : : getMembers (sensor msgs : : PointCloud &p)
29 {
30 p = members ;
31 }
32 s i z e t C lus te r : : s i z e ()
33 {
34 return members . po in t s . s i z e () ;
35 }
36 pair<double , double> Clus te r : : getTrend ()
37 {
38 x bar = sum x / members . po in t s . s i z e () ;
39 y bar = sum y / members . po in t s . s i z e () ;
40
41 s l ope = (sum xy − y bar ∗ sum x − x bar ∗ sum y +
42 members . po in t s . s i z e () ∗ x bar ∗ y bar)
43 / (sum x2 − 2 ∗ x bar ∗ sum x + members . po in t s . s i z e ()
44 ∗ x bar ∗ x bar) ;
45 y i n t e r c e p t = y bar − s l ope ∗ x bar ;
46

200

47 ang l e w i t h x ax i s = (atan (s l ope) ∗ 180 .0 / M PI) + 90 . 0 ;
48 return std : : make pair (s lope , y i n t e r c e p t) ;
49 }
50 void Clus te r : : c l e a r ()
51 {
52 members . po in t s . c l e a r () ;
53 s l ope = 0 . 0 ;
54 y i n t e r c e p t = 0 . 0 ;
55 x bar = 0 . 0 ;
56 y bar = 0 . 0 ;
57 sum x = 0 . 0 ;
58 sum y = 0 . 0 ;
59 sum x2 = 0 . 0 ;
60 sum xy = 0 . 0 ;
61 le ftBound = 0 ;
62 rightBound = 0 ;
63 d i s tanceToLe f tC lus t e r = 0 . 0 ;
64 d i s tanceToRightCluster = 0 . 0 ;
65 }
66 double Clus te r : : ge tS lope ()
67 {
68 return s l ope ;
69 }
70 double Clus te r : : ge tYIntercept ()
71 {
72 return y i n t e r c e p t ;
73 }
74 double Clus te r : : getAngleWithXAxis ()
75 {
76 return ang l e w i t h x ax i s ;
77 }

201

Appendix D

C++ Code for Cluster Finding

1 #include<ro s / ro s . h>
2 #include<sensor msgs /LaserScan . h>
3 #include<sensor msgs /PointCloud . h>
4 #include<geometry msgs/Point32 . h>
5 #include<c l u s t e r e x t r a c t o r / Lase rC lu s t e r s . h>
6
7 #include<math . h>
8 #include<u t i l i t y >
9
10 #include<c l u s t e r e x t r a c t o r / c l u s t e r . h>
11 #include<c l u s t e r e x t r a c t o r / l o c a l . h>
12 #include<c l u s t e r e x t r a c t o r / l a s e r a n a l y s i s . h>
13 using namespace std ;
14
15
16 void l a s e r a n a l y s i s : : r e c t i f y (const sensor msgs : : LaserScan
17 &src , sensor msgs : : LaserScan &des)
18 {
19 des = s r c ;
20 for (int i = 0 ; i < des . ranges . s i z e () ; i++)
21 {
22 if (des . ranges [i] < des . range min)
23 {
24 des . ranges [i] = des . range min ;
25 }
26 else if (des . ranges [i] > des . range max)
27 {
28 des . ranges [i] = des . range max ;
29 }
30 }
31 }
32
33 int l a s e r a n a l y s i s : : getIndex (double angu la r r e s , double beam angle)
34 {
35 return ((beam angle + 45 . 0) / angu l a r r e s) ;
36 }
37 double l a s e r a n a l y s i s : : getAngle (double angu la r r e s , int beam index)
38 {
39 return ((beam index ∗ angu l a r r e s)− 4 5 . 0) ;
40 }
41 pair<int , int> l a s e r a n a l y s i s : : getBoundar ies
42 (const sensor msgs : : LaserScan &src , double f rontFie ldOfViewAngle)
43 {
44 double min angle = (s r c . angle min ∗ 180 .0 / M PI) ;
45 double max angle = (s r c . angle max ∗ 180 .0 / M PI) ;
46 double ang le inc rement = s r c . ang l e inc rement ∗ 180 .0 / M PI ;

202

47 double correctAng = (max angle − min angle) − 180 . 0 ;
48
49 return make pair (getIndex (ang le increment ,
50 (correctAng + (frontFie ldOfViewAngle / 2))) ,
51 getIndex (ang le increment ,
52 (correctAng − (f rontFie ldOfViewAngle / 2)))) ;
53 }
54 void l a s e r a n a l y s i s : : convertLaserScanToPointCloud
55 (const sensor msgs : : LaserScan &l , sensor msgs : : PointCloud &pc)
56 {
57 pc . header = l . header ;
58
59 int r a n g e s i z e = (int) l . ranges . s i z e () ;
60 double ang le inc rement = l . ang l e inc rement ;
61 double angle min = l . angle min ;
62 double max range =l . range max ;
63 double min range = l . range min ;
64
65 for (int i = 0 ; i < l . ranges . s i z e () ; i++)
66 {
67 if (l . ranges [i] >= min range && l . ranges [i] <= max range)
68 {
69 geometry msgs : : Point32 p ;
70 p . x = l . ranges [i] ∗ cos ((i ∗ ang le inc rement) + angle min) ;
71 p . y = l . ranges [i] ∗ s i n ((i ∗ ang l e inc rement) + angle min) ;
72 p . z = 0 . 0 ;
73
74 pc . po in t s . push back (p) ;
75 }
76 }
77 }
78 void l a s e r a n a l y s i s : : convertLaserScanToPointCloud
79 (const sensor msgs : : LaserScan &l , sensor msgs : : PointCloud &pc ,
80 bool rangeFi l te r I sOn , double maxRange , double f r o n t f i e l d o f v i e w)
81 {
82 pc . header = l . header ;
83
84 pair<int , int> boundar ies = getBoundar ies (l , f r o n t f i e l d o f v i e w) ;
85
86 int r a n g e s i z e = (int) l . ranges . s i z e () ;
87 double ang le inc rement = l . ang l e inc rement ;
88 double angle min = l . angle min ;
89
90 double max range = 0 . 0 ;
91 double min range = l . range min ;
92 if (rangeF i l t e r I sOn)
93 {
94 max range = maxRange ;
95 }
96 else

97 {
98 max range = l . range max ;
99 }
100
101 for (int i = boundar ies . second ; i <= boundar ies . f i r s t ; i++)
102 {
103 if (l . ranges [i] >= min range && l . ranges [i] <= max range)
104 {
105 geometry msgs : : Point32 p ;
106 p . x = l . ranges [i] ∗ cos ((i ∗ ang le inc rement) + angle min) ;

203

107 p . y = l . ranges [i] ∗ s i n ((i ∗ ang l e inc rement) + angle min) ;
108 p . z = 0 . 0 ;
109
110 pc . po in t s . push back (p) ;
111 }
112 }
113 }
114
115 void l a s e r a n a l y s i s : : g e tC lu s t e r s
116 (const sensor msgs : : PointCloud &src , vector<Cluster> &res ,
117 double max c lu s t e r d i s t ance , int min c l u s t e r s i z e)
118 {
119 Clus te r l c l u s t e r ;
120 l c l u s t e r . d i s tanceToRightCluster = 0 . 0 ;
121 for (int i = 0 ; i < s r c . po in t s . s i z e () − 1 ; i++)
122 {
123 geometry msgs : : Point32 p = s r c . po in t s [i] ;
124 geometry msgs : : Point32 pn = s r c . po in t s [i +1] ;
125 double dx = p . x − pn . x ;
126 double dy = p . y − pn . y ;
127 double distanceToNeighbour = sq r t (dx∗dx + dy∗dy) ;
128 if (distanceToNeighbour < max c lu s t e r d i s t anc e)
129 {
130 //This is the right index

131 if (l c l u s t e r . s i z e () == 0)
132 {
133 l c l u s t e r . rightBound = i ;
134 l c l u s t e r . addMember(p) ;
135 }
136 if (i == s r c . po in t s . s i z e () − 2)
137 {
138 l c l u s t e r . le f tBound = i ;
139 l c l u s t e r . d i s tanceToLe f tC lus t e r = 0 . 0 ;
140 l c l u s t e r . getTrend () ;
141 l c l u s t e r . addMember(p) ;
142 if (l c l u s t e r . s i z e () >= min c l u s t e r s i z e)
143 {
144 r e s . push back (l c l u s t e r) ;
145 }
146
147 }
148 else

149 {
150 l c l u s t e r . addMember(p) ;
151 }
152 }
153 else

154 {
155 l c l u s t e r . le f tBound = i ;
156 l c l u s t e r . addMember(p) ;
157 l c l u s t e r . d i s tanceToLe f tC lus t e r = distanceToNeighbour ;
158 l c l u s t e r . getTrend () ;
159
160 if (l c l u s t e r . s i z e () >= min c l u s t e r s i z e)
161 {
162 r e s . push back (l c l u s t e r) ;
163 }
164 //reseting the local cluster

165 l c l u s t e r . c l e a r () ;
166 l c l u s t e r . rightBound = i +1;

204

167 l c l u s t e r . d i s tanceToRightCluster = distanceToNeighbour ;
168 }
169 }
170 }
171 void l a s e r a n a l y s i s : : c l u s t e r s S i z e F i l t e r
172 (vector<Cluster> &src , vector<Cluster> &des , int s i z e t h)
173 {
174 for (int i = 0 ; i < s r c . s i z e () ; i++)
175 {
176 if ((int) s r c [i] . s i z e () >= s i z e t h)
177 {
178 des . push back (s r c [i]) ;
179 }
180 }
181 }
182 void l a s e r a n a l y s i s : : g e tLa rge s tC lu s t e r
183 (vector<Cluster> &src , C lus te r &des)
184 {
185 int s i z e = 0 ;
186 int index = 0 ;
187 for (int i = 0 ; i < s r c . s i z e () ; i++)
188 {
189 if ((int) s r c [i] . s i z e () > s i z e)
190 {
191 index = i ;
192 }
193 }
194 des = s r c [index] ;
195 }
196 void l a s e r a n a l y s i s : : pub l i s hC lu s t e r s
197 (vector<Cluster> &src , ro s : : Pub l i she r &pub ,
198 const s t r i n g &frame id , int seq ,
199 double max c lu s t e r d i s t ance , int min c l u s t e r s i z e)
200 {
201 c l u s t e r e x t r a c t o r : : La s e rC lu s t e r s l c s ;
202 l c s . header . f rame id =frame id ;
203 l c s . header . seq = seq ;
204 l c s . header . stamp = ros : : Time : : now () ;
205 l c s . max c l u s t e r d i s t anc e = max c lu s t e r d i s t anc e ;
206 l c s . m i n c l u s t e r s i z e = m i n c l u s t e r s i z e ;
207
208 for (int i = 0 ; i < s r c . s i z e () ; i++)
209 {
210 c l u s t e r e x t r a c t o r : : Lase rC lus t e r l c ;
211 sensor msgs : : PointCloud p ;
212 s r c [i] . getMembers (p) ;
213 l c . po in t s = p . po in t s ;
214 l c . rightBound = s r c [i] . rightBound ;
215 l c . le f tBound = s r c [i] . l e f tBound ;
216 l c . d i s tanceToLe f tC lus t e r = s r c [i] . d i s tanceToLe f tC lus t e r ;
217 l c . d i s tanceToRightCluster = s r c [i] . d i s tanceToRightCluster ;
218 l c . s l ope = s r c [i] . g e tS lope () ;
219 l c . y i n t e r c e p t = s r c [i] . ge tYIntercept () ;
220 l c . c l u s t e r I ndex = i ;
221 l c . a ng l e w i t h x ax i s = s r c [i] . getAngleWithXAxis () ;
222
223 l c s . c l u s t e r s . push back (l c) ;
224 }
225 pub . pub l i sh (l c s) ;
226 }

205

227 void l a s e r a n a l y s i s : : s earchForLoca l s (const sensor msgs : : PointCloud &src ,
228 vector<Local> &des , int n search , bool searchForMinima)
229 {
230 for (int cnt = n search + 1 ; cnt < s r c . po in t s . s i z e () − n search ; cnt++)
231 {
232 vector<geometry msgs : : Point32> temp ;
233 bool i s I t L o c a l = true ;
234 geometry msgs : : Point32 p = s r c . po in t s [cnt] ;
235 double mag = sq r t ((p . x)∗ (p . x) + (p . y)∗ (p . y)) ;
236
237 int lowBound = cnt − (n search / 2) ;
238 int highBound = cnt + (n search / 2) ;
239
240 for (int i = lowBound ; i <= highBound ; i++)
241 {
242 if (i == cnt) continue ;
243
244 geometry msgs : : Point32 p i = s r c . po in t s [i] ;
245 temp . push back (p i) ;
246 double nmag = sq r t ((p i . x)∗ (p i . x) + (p i . y)∗ (p i . y)) ;
247 if (searchForMinima && mag > nmag)
248 {
249 i s I t L o c a l = false ;
250 break ;
251 }
252 if (! searchForMinima && mag < nmag)
253 {
254 i s I t L o c a l = false ;
255 break ;
256 }
257 }
258 if (i s I t L o c a l)
259 {
260 Local lm ;
261 lm . s e tLoca l (temp , searchForMinima) ;
262 des . push back (lm) ;
263 }
264 }
265 }
266 void l a s e r a n a l y s i s : : s earchForLoca l s (C lus te r &src ,
267 vector<Local> &des , int n search , bool searchForMinima)
268 {
269 sensor msgs : : PointCloud members ;
270 s r c . getMembers (members) ;
271 for (int cnt = n search + 1 ; cnt < (int) s r c . s i z e () − n search ; cnt++)
272 {
273 vector<geometry msgs : : Point32> temp ;
274 bool i s I t L o c a l = true ;
275 geometry msgs : : Point32 p = members . po in t s [cnt] ;
276 double mag = sq r t ((p . x)∗ (p . x) + (p . y)∗ (p . y)) ;
277
278
279 int lowBound = cnt − (n search / 2) ;
280 int highBound = cnt + (n search / 2) ;
281 for (int i = lowBound ; i <= highBound ; i++)
282 {
283 if (i == cnt) continue ;
284 geometry msgs : : Point32 p i = members . po in t s [i] ;
285 temp . push back (p i) ;
286 double nmag = sq r t ((p i . x)∗ (p i . x) + (p i . y)∗ (p i . y)) ;

206

287 if (searchForMinima && mag > nmag)
288 {
289 i s I t L o c a l = false ;
290 break ;
291 }
292 if (! searchForMinima && mag < nmag)
293 {
294 i s I t L o c a l = false ;
295 break ;
296 }
297 }
298 if (i s I t L o c a l)
299 {
300 Local lm ;
301 lm . s e tLoca l (temp , searchForMinima) ;
302 des . push back (lm) ;
303 }
304 }
305 }
306 void l a s e r a n a l y s i s : : AverageMagnitudeFi lter
307 (vector<Local> &src , vector<Local> &res , double a v g c o e f l im i t)
308 {
309 double avg = 0 . 0 ;
310 for (Local l o c a l : s r c)
311 {
312 avg += l o c a l . getMagnitude () ;
313 }
314 avg = avg / s r c . s i z e () ;
315
316 for (int i = 0 ; i < s r c . s i z e () ; i++)
317 {
318 if (s r c [i] . getMagnitude () >= avg ∗ a v g c o e f l im i t)
319 {
320 r e s . push back (s r c [i]) ;
321 }
322 }
323 }
324 void l a s e r a n a l y s i s : : n e i ghbourD i s tanceF i l t e r
325 (vector<Local> &src , vector<Local> &res ,
326 double ThresholdDistance , double Error Th)
327 {
328 double sm th = 0 . 1 ;
329 for (int i = 0 ; i < s r c . s i z e () ; i++)
330 {
331 int inRangeNeighbours = 0 ;
332 for (int j = 0 ; j < s r c . s i z e () ; j++)
333 {
334 if (i == j) continue ;
335
336 double n d i s t = abs (s r c [i] . c en t r e . y − s r c [j] . c en t r e . y) ;
337 //double n_dist = abs(p.points[src[i].pc_index].y - p.points[src[j].pc_index].y);

338 if ((n d i s t <= ThresholdDistance + Error Th
339 && n d i s t >= ThresholdDistance − Error Th) | |
340 (n d i s t <= 2∗(ThresholdDistance + Error Th)
341 && n d i s t >= 2∗(ThresholdDistance − Error Th)))
342 {
343 inRangeNeighbours++;
344 }
345 }
346 if (inRangeNeighbours >= 1)

207

347 {
348 s r c [i] . inRangeNeighbours = inRangeNeighbours ;
349 r e s . push back (s r c [i]) ;
350 }
351 }
352 }
353 //}

208

Appendix E

C++ Code for Chilitag Fiducial Finding

1 #include<iostream>
2 #include<s t r i ng>
3 #include<s t d i o . h> //for popen();

4 #include<sstream>
5
6 //ROS includes

7 #include<sensor msgs /Image . h>
8 #include<sensor msgs / image encodings . h>
9 #include<image t ranspor t / image t ranspor t . h>
10 #include<cv br idge / cv br idge . h>
11 #include<ro s / ro s . h>
12 #include <brain box msgs /TargetPoseArray . h>
13 #include<brain box msgs /TargetPose . h> //for publishing fiducial locations

14 #include<brain box msgs /Point2 . h>
15
16 //opencv includes

17 #include<opencv2/opencv . hpp>
18 #include<opencv2/ h ighgu i . hpp>
19 #include<opencv2/ imgproc . hpp>
20 #include<opencv2/ imgcodecs . hpp>
21
22 //third party library includes

23 #include<c h i l i t a g s . hpp>
24
25 using namespace std ;
26 using namespace cv ;
27
28 struct gui component
29 {
30 int max ;
31 int handler ;
32 float g l oba l ;
33 } ;
34
35 //MODE BOOL

36 bool readCamera = false ;
37
38 bool running = true ;
39
40 //thread handler

41 pthread t f r ame c o l l e c t i n g t h r e ad ;
42
43 // First, we set up some constants related to the information overlaid

44 // on the captured image

45 const static cv : : Sca l a r COLOR(255 , 0 , 255) ;
46 // OpenCv can draw with sub-pixel precision with fixed point coordinates

209

47 static const int SHIFT = 16 ;
48 static const float PRECISION = 1<<SHIFT ;
49 int nat ive image width ;
50 int na t i v e image he i gh t ;
51 int dev i c e = −1;
52
53 gui component br ightnes s , contras t , sharpen , gray , f r ame cont ro l ;
54
55 ros : : Pub l i sher pos pub ;
56
57 //this function gets the cv source frame and

58 r e tu rn s a v a i l a b l e c h i l i t a g s on the s c r e en
59 inline void c h i l i t a g s d e t e c t (cv : : Mat &src ,
60 c h i l i t a g s : : TagCornerMap &tags)
61 {
62 // The tag detection happens in the Chilitags class.

63 c h i l i t a g s : : Ch i l i t a g s c h i l i t a g s ;
64 /* The detection is not perfect,

65 so if a tag is not detected during one frame,

66 the tag will shortly disappears , which results in flickering.

67 To address this, Chilitags "cheats" by keeping tags for n frames

68 at the same position. When tags disappear for more than 5 frames,

69 Chilitags actually removes it.

70 Here, we cancel this to show the raw detection results.

71 */

72 c h i l i t a g s . s e t F i l t e r (0 , 0 . 0 f) ;
73 // Detect tags on the current image;

74 // The resulting map associates tag ids (between 0 and 1023)

75 // to four 2D points corresponding to the corners positions

76 // in the picture.

77 tags = c h i l i t a g s . f i nd (s r c) ;
78 }
79
80 /*

81 a function to change brightness and contrast of the image

82 new_image(i,j) = brightness_coef * old_image(i,j) + contrast_coef

83 */

84
85
86 void ZEDimgCB(const sensor msgs : : ImageConstPtr &img)
87 {
88 brain box msgs : : TargetPoseArray bbPoses ;
89 cv br idge : : CvImagePtr cv pt r ;
90 try

91 {
92 cv pt r = cv br idge : : toCvCopy (img , sensor msgs : : image encodings : :BGR8) ;
93 cv : : Mat output image = cv ptr−>image ;
94 c h i l i t a g s : : TagCornerMap tags ;
95 //actual detection

96 c h i l i t a g s d e t e c t (output image , tags) ;
97 for (const std : : pa ir<int , c h i l i t a g s : : Quad> & tag : tags)
98 {
99 brain box msgs : : TargetPose tagPose ;
100 tagPose . t a r g e t i d = tag . f i r s t ;
101 int id = tag . f i r s t ;
102 // We wrap the corner matrix into a datastructure that allows an

103 // easy access to the coordinates

104 const cv : : Mat <cv : : Point2f> co rne r s (tag . second) ;
105 // We start by drawing the borders of the tag

106 for (s i z e t i = 0 ; i < 4 ; ++i)

210

107 {
108 brain box msgs : : Point2 bbPoint ;
109 bbPoint . x = corne r s (i) . x ;
110 bbPoint . y = corne r s (i) . y ;
111 tagPose . o u t l i n e . push back (bbPoint) ;
112 cv : : l i n e (
113 output image ,
114 PRECISION∗ co rne r s (i) ,
115 PRECISION∗ co rne r s ((i +1)%4) ,
116 #i f d e f OPENCV3
117 COLOR, 1 , cv : : LINE AA, SHIFT) ;
118 #else
119 COLOR, 1 , CV AA, SHIFT) ;
120 #end i f
121 }
122 cv : : Po int2 f c en t e r = 0 .5 f ∗(co rne r s (0) + corne r s (2)) ;
123 cv : : putText (output image , cv : : format ("%d" , id) ,
124 center , cv : : FONT HERSHEY SIMPLEX, 1 .0 f , COLOR) ;
125 //ROS_INFO("Detected ID: %d",id);

126 bbPoses . poses . push back (tagPose) ;
127 }
128 pos pub . pub l i sh (bbPoses) ;
129 imshow("chilitags" , output image) ;
130
131 }
132 catch (cv br idge : : Exception& e)
133 {
134 ROS ERROR("cv_bridge exception: %s" , e . what ()) ;
135 return ;
136 }
137 if (waitKey (1) >= 0) ; //Do not act when a key is pressed as SIGINT is being caught.

138 }
139
140 int main (int argc , char∗∗ argv)
141 {
142 ros : : i n i t (argc , argv , "chilitags_zed_subscribe") ;
143
144 ros : : NodeHandle nh ;
145 pos pub = nh . adve r t i s e<brain box msgs : : TargetPoseArray>
146 ("/chilitags/position" , 1 0 0) ;
147 image t ranspor t : : ImageTransport i t (nh) ;
148 image t ranspor t : : Subsc r ibe r img sub =
149 i t . sub s c r i b e ("/left/image_rect_color" , 10 , &ZEDimgCB) ;
150
151 namedWindow("chilitags" ,WINDOWNORMAL) ; //creating a window for display

152 ros : : sp in () ;
153 return 0 ;
154 }

211

Appendix F

C++ Code for Color-based Pattern Recognition

1 #include <ro s / ro s . h>
2 #include <image t ranspor t / image t ranspor t . h>
3 #include <cv br idge / cv br idge . h>
4 #include <sensor msgs / image encodings . h>
5 #include <opencv2/ imgproc/ imgproc . hpp>
6 #include <opencv2/ h ighgu i / h ighgu i . hpp>
7 #include <s t r i ng>
8 #include <t inyxml . h>
9 #include <math . h>
10 #include <iostream>
11 #include <vector>
12 #include <geometry msgs/Pose2D . h>
13
14 #define PI 3.14159265
15 #define FltTh 1
16
17 using namespace std ;
18 using namespace cv ;
19
20 struct ColorParam
21 {
22 int lHue ;
23 int hHue ;
24 int l Sa t ;
25 int hSat ;
26 int lVa l ;
27 int hVal ;
28 s t r i n g fMode ;
29 int erode ;
30 int d i l a t e ;
31 } ;
32
33 struct Blob
34 {
35 int x ;
36 int y ;
37 int he ight ;
38 int width ;
39 double area ;
40 float x c ;
41 float y c ;
42 } ;
43
44 /*struct Pose

45 {

46 float x;

212

47 float y;

48 float th;

49 };*/

50 geometry msgs : : Pose2D robot pose ;
51 //Pose robot_pose;

52 Blob sb , bb ;
53 ColorParam cp ;
54 int medianCount = 0 ;
55 double t t ime p ;
56 int f r e q = 0 ;
57 double headingSum ;
58 double c x sum , c y sum ;
59 int loadColorParam (s t r i n g COLORCODE) ;
60 double StableData (vector<double> raw) ;
61 vector<double> raw (FltTh) ;
62 class ImageConverter
63 {
64 ros : : NodeHandle nh ;
65 image t ranspor t : : ImageTransport i t ;
66 image t ranspor t : : Subsc r ibe r image sub ;
67 ros : : Pub l i sher po s pub l i s h e r ;
68 public :
69 ImageConverter () : i t (nh)
70 {
71 //Subscrive to input video feed and publish output video feed

72 image sub = i t . sub s c r i b e
73 ("/usb_cam/image_raw" , 1,& ImageConverter : : imageCb , this) ;
74 po s pub l i s h e r = nh . adve r t i s e<geometry msgs : : Pose2D>("/RED/pose" , 5) ;
75 }
76 ˜ ImageConverter ()
77 {
78 }
79 void imageCb (const sensor msgs : : ImageConstPtr& msg)
80 {
81 ros : : Time newTime = ros : : Time : : now () ;
82 double t t ime = newTime . s ec + double (newTime . nsec)/1000000000 ;
83 //ROS_INFO("Now = %f" ,t_time);

84 cv br idge : : CvImagePtr cv pt r ;
85 /*1. convert the ros_image to opencv_image*/

86 try

87 {
88 cv pt r = cv br idge : : toCvCopy
89 (msg , sensor msgs : : image encodings : :BGR8) ;
90 }
91 catch (cv br idge : : Exception& e)
92 {
93 ROS ERROR("cv_bridge exception: %s" , e . what ()) ;
94 return ;
95 }
96 Mat hsv , img , thresh ;
97 img = cv ptr−>image ;
98
99 //Convert the captured frame from BGR to HSV

100 cvtColor (img , hsv , COLOR BGR2HSV) ;
101 //Extract Threshold based on the appropriate color range

102 inRange (hsv , Sca l a r (cp . lHue , cp . lSat , cp . lVal) ,
103 Sca l a r (cp . hHue , cp . hSat , cp . hVal) , thresh) ;
104
105 //Apply the selected Morphological filter

106 if (cp . fMode . compare ("open") == 0)

213

107 {
108 if (cp . erode != 0)
109 {
110 erode (thresh , thresh ,
111 getStructur ingElement (MORPH ELLIPSE,
112 S i z e (cp . erode , cp . erode))) ;
113 }
114 if (cp . d i l a t e != 0)
115 {
116 d i l a t e (thresh , thresh , getStructur ingElement
117 (MORPH ELLIPSE, S i z e (cp . d i l a t e , cp . d i l a t e))) ;
118 }
119 }
120 if (cp . fMode . compare ("close") == 0)
121 {
122 if (cp . d i l a t e != 0)
123 {
124 d i l a t e (thresh , thresh , getStructur ingElement
125 (MORPH ELLIPSE, S i z e (cp . d i l a t e , cp . d i l a t e))) ;
126 }
127 if (cp . erode != 0)
128 {
129 erode (thresh , thresh , getStructur ingElement
130 (MORPH ELLIPSE, S i z e (cp . erode , cp . erode))) ;
131 }
132 }
133
134 //Apply Contour to the obtained threshold

135 Mat th r e sh c l on e = thresh . c l one () ;
136 std : : vector<std : : vector<cv : : Point> > contours ;
137 std : : vector<cv : : Vec4i> h i e ra r chy ;
138 cv : : f indContours (th r e sh c l one ,
139 contours ,
140 hierarchy ,
141 CV RETR TREE,
142 CV CHAIN APPROX SIMPLE,
143 cv : : Point (0 , 0)) ;
144 std : : vector<std : : vector<cv : : Point> > contour s po ly (contours . s i z e ()) ;
145 std : : vector<cv : : Rect> boundRect (contours . s i z e ()) ;
146
147 //Filter 1: There must be only two blobs in the frame.

148 if (contours . s i z e () == 2)
149 {
150 for (int i = 0 ; i < contours . s i z e () ; i++)
151 {
152 cv : : approxPolyDP (cv : : Mat(contours [i]) , c ontour s po ly [i] , 3 , true) ;
153 boundRect [i] = cv : : boundingRect (cv : : Mat(contour s po ly [i])) ;
154 }
155 //Sorting blobs: Compare areas - contour changes order of detection

156 if (boundRect [0] . area () < boundRect [1] . area ())
157 {
158 bb . x = boundRect [1] . x ;
159 bb . y = boundRect [1] . y ;
160 bb . area = boundRect [1] . area () ;
161 bb . he ight = boundRect [1] . he ight ;
162 bb . width = boundRect [1] . width ;
163
164 sb . x = boundRect [0] . x ;
165 sb . y = boundRect [0] . y ;
166 sb . area = boundRect [0] . area () ;

214

167 sb . he ight = boundRect [0] . he ight ;
168 sb . width = boundRect [0] . width ;
169 }
170 else if (boundRect [0] . area () > boundRect [1] . area ())
171 {
172 sb . x = boundRect [1] . x ;
173 sb . y = boundRect [1] . y ;
174 sb . area = boundRect [1] . area () ;
175 sb . he ight = boundRect [1] . he ight ;
176 sb . width = boundRect [1] . width ;
177
178 bb . x = boundRect [0] . x ;
179 bb . y = boundRect [0] . y ;
180 bb . area = boundRect [0] . area () ;
181 bb . he ight = boundRect [0] . he ight ;
182 bb . width = boundRect [0] . width ;
183 }
184
185 //Calculating the centre of the blobs

186 bb . x c = f l o o r (bb . x + bb . width /2) ;
187 bb . y c = f l o o r (bb . y + bb . he ight / 2) ;
188
189 sb . x c = f l o o r (sb . x + sb . width /2) ;
190 sb . y c = f l o o r (sb . y + sb . he ight / 2) ;
191
192 //Obtaining the center of the robot

193 Moments oMoments = moments (thresh) ;
194 robot pose . x = f l o o r (oMoments .m10/oMoments .m00) ;
195 robot pose . y = f l o o r (oMoments .m01/oMoments .m00) ;
196 robot pose . theta = atan2 ((int) (sb . y−bb . y) , (int) (sb . x−bb . x))∗180/PI ;
197
198 po s pub l i s h e r . pub l i sh (robot pose) ;
199 f r e q++;
200 }
201
202 if (t t ime − t t ime p >= 1 . 0)
203 {
204 ROS INFO("Frequency = %d" , f r e q) ;
205 t t ime p = t t ime ;
206 f r e q = 0 ;
207 }
208 imshow("Image" , thre sh) ;
209 if (waitKey (30) == 27)
210 {
211 cout << "esc key is pressed by user" << endl ;
212 }
213 }
214 } ;
215
216 double StableData (vector<double> raw)
217 {
218 double r e s = 0 . 0 ;
219 int max = 0 ;
220 int temp [1 0] ;
221 //1. search

222 for (int i =0; i<raw . s i z e () ; i++)
223 {
224 temp [i] = 0 ;
225 for (int j =0; j<raw . s i z e () ; j++)
226 {

215

227 if (raw [i] == raw [j])
228 {
229 temp [i]++;
230 }
231 }
232 }
233 //2. find max

234 for (int i =0; i<raw . s i z e () ; i++)
235 {
236 if (temp [i] > max)
237 {
238 r e s = raw [i] ;
239 max = temp [i] ;
240 }
241 }
242 return r e s ;
243 }
244
245 int loadColorParam (s t r i n g COLORCODE)
246 {
247 TiXmlDocument doc
248 ("/home/robot/catkin_ws/src/localisation_system/src/image_param.xml") ;
249 if (! doc . LoadFi le ())
250 {
251 c e r r << doc . ErrorDesc () << endl ;
252 return −1;
253 }
254 TiXmlElement∗ c o l o r = doc . FirstChi ldElement () ;
255 if (c o l o r == NULL) return −1;
256 for (TiXmlElement∗ elem = co lor−>FirstChi ldElement () ;
257 elem != NULL; elem = elem−>NextSibl ingElement ())
258 {
259 s t r i n g elemName = elem−>Value () ;
260 const char∗ a t t r ;
261 if (elemName == COLORCODE. c s t r ())
262 {
263 elem−>Attr ibute ("lHue" ,&cp . lHue) ;
264 elem−>Attr ibute ("hHue" ,&cp . hHue) ;
265 elem−>Attr ibute ("lSat" ,&cp . l Sa t) ;
266 elem−>Attr ibute ("hSat" ,&cp . hSat) ;
267 elem−>Attr ibute ("lVal" ,&cp . lVal) ;
268 elem−>Attr ibute ("hVal" ,&cp . hVal) ;
269 cp . fMode = elem−>Attr ibute ("mode") ;
270 elem−>Attr ibute ("erode" ,&cp . erode) ;
271 elem−>Attr ibute ("dilate" ,&cp . d i l a t e) ;
272 return 1 ;
273 }
274 }
275 }
276
277 int main (int argc , char∗∗ argv)
278 {
279 int parsingCheck = loadColorParam ("RED") ;
280 if (parsingCheck == 1)
281 {
282 ROS INFO("HUE: low = %d, high = %d" , cp . lHue , cp . hHue) ;
283 ROS INFO("SAT: low = %d, high = %d" , cp . lSat , cp . hSat) ;
284 ROS INFO("VAL: low = %d, high = %d" , cp . lVal , cp . hVal) ;
285 ROS INFO("Filter: mode = %s, erode = %d, dilate = %d" ,
286 cp . fMode . c s t r () , cp . erode , cp . d i l a t e) ;

216

287 }
288 else

289 {
290 ROS INFO("Problem parsing paramters. Check image_param.xml") ;
291 return EXIT FAILURE;
292 }
293 namedWindow("Image" ,CVWINDOWAUTOSIZE) ;
294 ros : : i n i t (argc , argv , "red_localiser") ;
295 ImageConverter i c ;
296 ros : : sp in () ;
297 return EXIT SUCCESS ;
298 }

217

Appendix G

C++ Code for FIFO Task Handler

1 #include <ro s / ro s . h>
2 #include <p l o u gh i n g r e v e r s i b l e / task . h>
3 #include <p l o u gh i n g r e v e r s i b l e /ReachPoint . h>
4 #include <p l o u gh i n g r e v e r s i b l e / occupied . h>
5 #include <s t r i ng>
6 #include <std msgs /Bool . h>
7
8 #define hX 14.0000
9 #define hY 9.0000
10
11
12 using namespace std ;
13
14 struct pose
15 {
16 float x ;
17 float y ;
18 } ;
19
20 //Method Signitures

21 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t) ;
22 pose getComponent (l i s t <pose> l i s t , int i) ;
23 int getIndex (l i s t <pose> l i s t , pose pose) ;
24 //Variables

25 pose alpha ,A,B,C,D, lastKnownPose ;
26 l i s t <pose> furCoordAB , furCoordCD , homeCD, homeAB;
27 float fu rDis t , furTransAB , furTransCD ;
28 s t r i n g taskCmd="" , pointName="" ;
29 int teamSize=0, rank=1, fu rTota l ;
30 bool taskIsCompleted = false ,
31 target I sReached = false ,
32 iAmConfident = false ,
33 fur rowTrans i t ing = false ,
34 pathIsCleared = false ;
35 p l o u gh i n g r e v e r s i b l e : : ReachPoint reach ;
36 p l o u gh i n g r e v e r s i b l e : : occupied checkPoint , updatePoint ;
37 std msgs : : Bool imageRes ;
38 class TaskHandler
39 {
40 public :
41 TaskHandler () ;
42 private :
43 ros : : NodeHandle nh ;
44 ros : : Subsc r ibe r task cmd sub ;
45 ros : : Subsc r ibe r r e a ch po i n t s t a t u s s ub ;
46 ros : : Subsc r ibe r f i e l d s u b ;

218

47 ros : : Pub l i sher reach po int pub ;
48 ros : : S e r v i c eC l i e n t a s k r e f e r e n c e ;
49 ros : : S e r v i c eC l i e n t upda t e r e f e r enc e ;
50
51 void taskCmdCallback (const
52 p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg) ;
53
54 void reachPointStatusCa l lback
55 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s) ;
56 void f i e l dCa l l b a c k (const std msgs : : Bool : : ConstPtr &imgStatus) ;
57 } ;
58 //Class Constructor

59 TaskHandler : : TaskHandler ()
60 {
61 task cmd sub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : : task>
62 ("task_cmd" ,5 ,&TaskHandler : : taskCmdCallback , this) ;
63
64 f i e l d s u b = nh . subscr ibe<std msgs : : Bool>
65 ("field_status" ,10 ,&TaskHandler : : f i e l dCa l l ba ck , this) ;
66
67 r e a ch po i n t s t a t u s s ub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : :
68 ReachPoint>("p1/reach_point_status" , 100 ,
69 &TaskHandler : : reachPointStatusCal lback , this) ;
70
71 reach po int pub = nh . adve r t i s e<p l o u gh i n g r e v e r s i b l e : :
72 ReachPoint>("p1/requested_point" , 1 0) ;
73
74 a s k r e f e r e n c e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : :
75 occupied>("check_coordinate") ;
76
77 upda t e r e f e r enc e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : :
78 occupied> ("add_coordinate") ;
79
80 }
81
82
83
84 //a method to receive the staus of reach point.

85 void TaskHandler : : r eachPointStatusCa l lback
86 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s)
87 {
88 pointName = status−>hint ;
89 pose newPose ;
90 //case of reaching alpha

91 if (pointName . compare ("alpha") == 0)
92 {
93 //go to first coordinate in AB set.

94 newPose = getComponent (furCoordAB , 0) ;
95 reach . po int . x = newPose . x ;
96 reach . po int . y = newPose . y ;
97 reach . h int = "ab" ;
98 reach . s t a tu s = false ;
99 reach po int pub . pub l i sh (reach) ;
100 iAmConfident = false ;
101 }
102 //if my rank is known

103 if (iAmConfident)
104 {
105 pose reachedPoint ;
106 reachedPoint . x = status−>po int . x ;

219

107 reachedPoint . y = status−>po int . y ;
108 /*

109 furrow transitioning:

110 stage1-> go back to the last position taken by the first rank robot.

111 stage2-> go to same x but y + furrowDistance.

112 stage3-> go to next target x but next target y + furrowDistance

113 stage4-> go to your starting point

114 resume your ploughing.

115 */

116 if (s tatus−>hint . compare ("cd") == 0)
117 {
118 lastKnownPose . x = status−>po int . x ;
119 lastKnownPose . y = status−>po int . y ;
120 //continue to furrow transitioning

121 if (getIndex (furCoordCD , lastKnownPose)+teamSize <= furTota l −1)
122 {
123 newPose = getComponent (furCoordCD ,
124 getIndex (furCoordCD , reachedPoint)−rank+1);
125
126 reach . po int . x = newPose . x ;
127 reach . po int . y = newPose . y ;
128 reach . h int = "stage1_cd" ;
129 reach . s t a tu s = false ;
130 reach po int pub . pub l i sh (reach) ;
131
132 }
133 //go back home

134 if (getIndex (furCoordCD , lastKnownPose)+teamSize > furTota l −1)
135 {
136 newPose = getComponent (furCoordCD ,
137 getIndex (furCoordCD , reachedPoint)−rank+1);
138
139 reach . po int . x = newPose . x ;
140 reach . po int . y = newPose . y ;
141 reach . h int = "home_cd_init" ;
142 reach . s t a tu s = false ;
143 reach po int pub . pub l i sh (reach) ;
144 }
145 }
146 if (s tatus−>hint . compare ("home_cd_init") == 0)
147 {
148 reach . po int . x = reachedPoint . x ;
149 reach . po int . y = reachedPoint . y + furTransCD ;
150 reach . h int = "home_cd" ;
151 reach . s t a tu s = false ;
152 reach po int pub . pub l i sh (reach) ;
153 }
154 if (s tatus−>hint . compare ("stage1_cd") == 0)
155 {
156 reach . po int . x = reachedPoint . x ;
157 reach . po int . y = reachedPoint . y+furTransCD ;
158 reach . h int = "stage2_cd" ;
159 reach . s t a tu s = false ;
160 reach po int pub . pub l i sh (reach) ;
161 }
162 if (s tatus−>hint . compare ("stage2_cd") == 0)
163 {
164 newPose = getComponent (furCoordCD ,
165 getIndex (furCoordCD , lastKnownPose)+teamSize) ;
166

220

167 reach . po int . x = newPose . x ;
168 reach . po int . y = newPose . y+furTransCD ;
169 reach . h int = "stage3_cd" ;
170 reach . s t a tu s = false ;
171 reach po int pub . pub l i sh (reach) ;
172 }
173 if (s tatus−>hint . compare ("stage3_cd") == 0)
174 {
175 /*If the you are the first in rank,

176 then wait for the path to cleared*/

177 if (rank == 1 && teamSize > 1)
178 {
179 if (! pathIsCleared)
180 {
181 newPose = getComponent (furCoordCD ,
182 getIndex (furCoordCD , lastKnownPose)+teamSize) ;
183
184 reach . po int . x = newPose . x ;
185 reach . po int . y = newPose . y+furTransCD ;
186 reach . h int = "stage3_cd" ;
187 reach . s t a tu s = false ;
188 reach po int pub . pub l i sh (reach) ;
189 }
190 if (pathIsCleared)
191 {
192 newPose = getComponent (furCoordCD ,
193 getIndex (furCoordCD , lastKnownPose)+teamSize) ;
194
195 reach . po int . x = newPose . x ;
196 reach . po int . y = newPose . y ;
197 reach . h int = "stage4_cd" ;
198 reach . s t a tu s = false ;
199 reach po int pub . pub l i sh (reach) ;
200 }
201 }
202 if (rank != 1 | | teamSize == 1)
203 {
204 newPose = getComponent (furCoordCD ,
205 getIndex (furCoordCD , lastKnownPose)+teamSize) ;
206
207 reach . po int . x = newPose . x ;
208 reach . po int . y = newPose . y ;
209 reach . h int = "stage4_cd" ;
210 reach . s t a tu s = false ;
211 reach po int pub . pub l i sh (reach) ;
212 }
213 }
214 if (s tatus−>hint . compare ("stage4_cd") == 0)
215 {
216 pathIsCleared = false ;
217 newPose = getComponent (furCoordAB ,
218 getIndex (furCoordCD , lastKnownPose)+teamSize) ;
219
220 reach . po int . x = newPose . x ;
221 reach . po int . y = newPose . y ;
222 reach . h int = "ab" ;
223 reach . s t a tu s = false ;
224 reach po int pub . pub l i sh (reach) ;
225 }
226 else if (s tatus−>hint . compare ("ab") == 0)

221

227 {
228 lastKnownPose . x = status−>po int . x ;
229 lastKnownPose . y = status−>po int . y ;
230 //continue to furrow transitioning

231 if (getIndex (furCoordAB , lastKnownPose)+teamSize <= furTota l −1)
232 {
233 newPose = getComponent (furCoordAB ,
234 getIndex (furCoordAB , reachedPoint)−rank+1);
235
236 reach . po int . x = newPose . x ;
237 reach . po int . y = newPose . y ;
238 reach . h int = "stage1_ab" ;
239 reach . s t a tu s = false ;
240 reach po int pub . pub l i sh (reach) ;
241 }
242 //go back home

243 if (getIndex (furCoordAB , lastKnownPose)+teamSize > furTota l −1)
244 {
245 newPose = getComponent (furCoordAB ,
246 getIndex (furCoordAB , reachedPoint)−rank+1);
247
248 reach . po int . x = newPose . x ;
249 reach . po int . y = newPose . y ;
250 reach . h int = "home_ab_init" ;
251 reach . s t a tu s = false ;
252 reach po int pub . pub l i sh (reach) ;
253 }
254 }
255 if (s tatus−>hint . compare ("home_ab_init") == 0)
256 {
257 reach . po int . x = reachedPoint . x ;
258 reach . po int . y = reachedPoint . y−furTransAB ;
259 reach . h int = "home_ab" ;
260 reach . s t a tu s = false ;
261 reach po int pub . pub l i sh (reach) ;
262 }
263 if (s tatus−>hint . compare ("stage1_ab") == 0)
264 {
265 reach . po int . x = reachedPoint . x ;
266 reach . po int . y = reachedPoint . y−furTransAB ;
267 reach . h int = "stage2_ab" ;
268 reach . s t a tu s = false ;
269 reach po int pub . pub l i sh (reach) ;
270 }
271 if (s tatus−>hint . compare ("stage2_ab") == 0)
272 {
273 newPose = getComponent (furCoordAB ,
274 getIndex (furCoordAB , lastKnownPose)+teamSize) ;
275
276 reach . po int . x = newPose . x ;
277 reach . po int . y = newPose . y−furTransAB ;
278 reach . h int = "stage3_ab" ;
279 reach . s t a tu s = false ;
280 reach po int pub . pub l i sh (reach) ;
281 }
282 if (s tatus−>hint . compare ("stage3_ab") == 0)
283 {
284 /*If the you are the first in rank, then wait for the path to cleared*/

285 if (rank == 1 && teamSize > 1)
286 {

222

287 if (! pathIsCleared)
288 {
289 newPose = getComponent (furCoordAB ,
290 getIndex (furCoordAB , lastKnownPose)+teamSize) ;
291
292 reach . po int . x = newPose . x ;
293 reach . po int . y = newPose . y−furTransAB ;
294 reach . h int = "stage3_ab" ;
295 reach . s t a tu s = false ;
296 reach po int pub . pub l i sh (reach) ;
297 }
298 if (pathIsCleared)
299 {
300 newPose = getComponent (furCoordAB ,
301 getIndex (furCoordAB , lastKnownPose)+teamSize) ;
302
303 reach . po int . x = newPose . x ;
304 reach . po int . y = newPose . y ;
305 reach . h int = "stage4_ab" ;
306 reach . s t a tu s = false ;
307 reach po int pub . pub l i sh (reach) ;
308 }
309 }
310 if (rank != 1 | | teamSize == 1)
311 {
312 newPose = getComponent (furCoordAB ,
313 getIndex (furCoordAB , lastKnownPose)+teamSize) ;
314
315 reach . po int . x = newPose . x ;
316 reach . po int . y = newPose . y ;
317 reach . h int = "stage4_ab" ;
318 reach . s t a tu s = false ;
319 reach po int pub . pub l i sh (reach) ;
320 }
321 }
322 if (s tatus−>hint . compare ("stage4_ab") == 0)
323 {
324 pathIsCleared = false ;
325 newPose = getComponent (furCoordCD ,
326 getIndex (furCoordAB , lastKnownPose)+teamSize) ;
327
328 reach . po int . x = newPose . x ;
329 reach . po int . y = newPose . y ;
330 reach . h int = "cd" ;
331 reach . s t a tu s = false ;
332 reach po int pub . pub l i sh (reach) ;
333 }
334 }
335 //If the robot is not sure what rank it has

336 if (! iAmConfident && ! fur rowTrans i t ing)
337 {
338 if (pointName . compare ("ab") == 0)
339 {
340 pose temp = getComponent (furCoordAB , rank−1);
341 checkPoint . r eque s t . x = temp . x ;
342 checkPoint . r eque s t . y = temp . y ;
343 if (a s k r e f e r e n c e . c a l l (checkPoint))
344 {
345 //if the requested point is occupied

346 if (checkPoint . r e sponse . s t a tu s == true)

223

347 {
348 //update your rank

349 rank++;
350 //go to the next ploughing target

351 newPose = getComponent (furCoordAB , rank−1);
352 reach . po int . x = newPose . x ;
353 reach . po int . y = newPose . y ;
354 reach . h int = "ab" ;
355 reach . s t a tu s = true ;
356 reach po int pub . pub l i sh (reach) ;
357 }
358 //if the requested point is not occupied

359 else if (checkPoint . r e sponse . s t a tu s == false)
360 {
361 //update reference

362 pose temp = getComponent (furCoordAB , rank−1);
363 updatePoint . r eque s t . x = temp . x ;
364 updatePoint . r eque s t . y = temp . y ;
365 if (upda t e r e f e r enc e . c a l l (updatePoint))
366 {
367 //start plouging

368 newPose = getComponent (furCoordCD , rank−1);
369 reach . po int . x = newPose . x ;
370 reach . po int . y = newPose . y ;
371 reach . h int = "cd" ;
372 reach . s t a tu s = false ;
373 reach po int pub . pub l i sh (reach) ;
374 iAmConfident = true ;
375 fur rowTrans i t ing = true ;
376 }
377 }
378 }
379 }
380 }
381 //Going back to home position through cd sideline

382 if (s tatus−>hint . compare ("home_cd") == 0)
383 {
384 pose reachedPoint ;
385 reachedPoint . x = status−>po int . x ;
386 reachedPoint . y = status−>po int . y ;
387 if (getIndex (homeCD, reachedPoint)−1 > −1)
388 {
389 newPose = getComponent (homeCD,
390 getIndex (homeCD, reachedPoint)−1);
391
392 reach . po int . x = newPose . x ;
393 reach . po int . y = newPose . y ;
394 reach . h int = "home_cd" ;
395 reach . s t a tu s = false ;
396 reach po int pub . pub l i sh (reach) ;
397 }
398 if (getIndex (homeCD, reachedPoint)−1 == −1)
399 {
400 reach . po int . x = hX;
401 reach . po int . y = hY;
402 reach . h int = "home" ;
403 reach . s t a tu s = false ;
404 reach po int pub . pub l i sh (reach) ;
405 }
406 }

224

407 //Going back to home position through ab sideline

408 if (s tatus−>hint . compare ("home_ab") == 0)
409 {
410 pose reachedPoint ;
411 reachedPoint . x = status−>po int . x ;
412 reachedPoint . y = status−>po int . y ;
413 if (getIndex (homeAB, reachedPoint)−1 > −1)
414 {
415 newPose = getComponent (homeAB,
416 getIndex (homeAB, reachedPoint)−1);
417
418 reach . po int . x = newPose . x ;
419 reach . po int . y = newPose . y ;
420 reach . h int = "home_ab" ;
421 reach . s t a tu s = false ;
422 reach po int pub . pub l i sh (reach) ;
423 }
424 if (getIndex (homeAB, reachedPoint)−1 == −1)
425 {
426 reach . po int . x = hX;
427 reach . po int . y = hY;
428 reach . h int = "home" ;
429 reach . s t a tu s = false ;
430 reach po int pub . pub l i sh (reach) ;
431 }
432 }
433 }
434 //a method to receive status of the field

435 void TaskHandler : : f i e l dCa l l b a c k (const
436 std msgs : : Bool : : ConstPtr &f i e l d S t a t u s)
437 {
438 //to avoid unwanted reading during

439 //other stages of the process

440 if (pointName . compare ("stage3_ab") == 0
441 | | pointName . compare ("stage3_cd") == 0)
442 {
443 pathIsCleared = f i e l dS t a t u s−>data ;
444 ROS INFO("Image Response Received") ;
445 }
446 }
447 //a method to receive the task command

448 void TaskHandler : : taskCmdCallback (const
449 p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg)
450 {
451 //loading data to appropriate variables

452 taskCmd = msg−>task ;
453 alpha . x = msg−>alpha . x ;
454 alpha . y = msg−>alpha . y ;
455 A. x = msg−>a . x ;
456 A. y = msg−>a . y ;
457 B. x = msg−>b . x ;
458 B. y = msg−>b . y ;
459 C. x = msg−>c . x ;
460 C. y = msg−>c . y ;
461 D. x = msg−>d . x ;
462 D. y = msg−>d . y ;
463 fu rD i s t = msg−>f u r r ow d i s t anc e ;
464 furTransAB = msg−>t r a n s i t i o n a r e a ab ;
465 furTransCD = msg−>t r a n s i t i o n a r e a c d ;
466 teamSize = msg−>t eam s i z e ;

225

467 // calculate furrow coordinates

468 furCoordAB = fu r r owLoca l i z e r (A,B, f u rD i s t) ;
469 furCoordCD = fur rowLoca l i z e r (C,D, f u rD i s t) ;
470 furTota l = furCoordCD . s i z e () ;
471 //calculating homing coordinates

472 C. y = C. y + furTransCD ;
473 D. y = D. y + furTransCD ;
474 A. y = A. y − furTransAB ;
475 B. y = B. y − furTransAB ;
476 homeCD = fu r rowLoca l i z e r (C,D, f u rD i s t) ;
477 homeAB = fur rowLoca l i z e r (A,B, f u rD i s t) ;
478
479 /*the first step is to go to alpha*/

480 reach . po int . x = alpha . x ;
481 reach . po int . y = alpha . y ;
482 reach . h int = "alpha" ;
483 reach . s t a tu s = false ;
484 reach po int pub . pub l i sh (reach) ;
485
486 }
487
488 //main method

489 int main (int argc , char∗∗ argv)
490 {
491 ros : : i n i t (argc , argv , "r1_task_handler") ;
492 TaskHandler th ;
493 ros : : sp in () ;
494 return 0 ;
495 }
496 //a method to map the furrow coordinates.

497 //it collects all calculated coordinates in a list.

498 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t)
499 {
500 l i s t <pose> c r e a t edL i s t ;
501 pose currentPose = s t a r t ;
502 while (currentPose . x >= end . x)
503 {
504 /*

505 push_back -> add element at the end, last element.

506 push_front -> add element to the front, element 0.

507 */

508 c r e a t edL i s t . push back (currentPose) ;
509 currentPose . x −= d i s t ;
510 }
511 return c r e a t edL i s t ;
512 }
513 //a method to get particular component in a given list.

514 pose getComponent (l i s t <pose> l i s t , int i){
515 l i s t <pose > : : i t e r a t o r i t = l i s t . begin () ;
516 for (int i =0; i< i ; i++){
517 ++i t ;
518 }
519 return ∗ i t ;
520 }
521 int getIndex (l i s t <pose> l i s t , pose pose)
522 {
523 int index = −1;
524 pose temp ;
525 for (int i =0; i< l i s t . s i z e () ; i++)
526 {

226

527 temp = getComponent (l i s t , i) ;
528 if (temp . x == pose . x && temp . y == pose . y)
529 {
530 index = i ;
531 }
532 }
533 return index ;
534 }

227

Appendix H

C++ Code for LIFO Task Handler

1 #include <ro s / ro s . h>
2 #include <p l o u gh i n g r e v e r s i b l e / task . h>
3 #include <p l o u gh i n g r e v e r s i b l e /ReachPoint . h>
4 #include <p l o u gh i n g r e v e r s i b l e / occupied . h>
5 #include <s t r i ng>
6 #include <std msgs /Bool . h>
7 #include <s t d i o . h>
8 #include <iostream>
9
10 #define hX 14.0000
11 #define hY 9.0000
12 #define tranX 0 .8
13 #define tranY 1
14
15
16 using namespace std ;
17
18 struct pose
19 {
20 float x ;
21 float y ;
22 } ;
23
24 //Method Signitures

25 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t) ;
26 pose getComponent (l i s t <pose> l i s t , int i) ;
27 int getIndex (l i s t <pose> l i s t , pose pose) ;
28 //Variables

29 pose alpha ,A,B,C,D, lastKnownPose , nextPose ;
30 l i s t <pose> furCoordAB , furCoordCD , homeCD, homeAB;
31 float fu rDis t , furTransAB , furTransCD ;
32 s t r i n g taskCmd="" , pointName="" ;
33 int teamSize=0, rank=1, furTota l ,
34 ploughingTurn = 0 ,
35 ploughingRound = 0 ;
36 bool taskIsCompleted = false ,
37 target I sReached = false ,
38 iAmConfident = false ,
39 fur rowTrans i t ing = false ,
40 pathIsCleared = false ;
41 p l o u gh i n g r e v e r s i b l e : : ReachPoint reach ;
42 p l o u gh i n g r e v e r s i b l e : : occupied checkPoint , updatePoint ;
43 std msgs : : Bool imageRes ;
44 class TaskHandler
45 {
46 public :

228

47 TaskHandler () ;
48 private :
49 ros : : NodeHandle nh ;
50 ros : : Subsc r ibe r task cmd sub ;
51 ros : : Subsc r ibe r r e a ch po i n t s t a t u s s ub ;
52
53 ros : : Pub l i sher reach po int pub ;
54 ros : : S e r v i c eC l i e n t a s k r e f e r e n c e ;
55 ros : : S e r v i c eC l i e n t upda t e r e f e r enc e ;
56
57 void taskCmdCallback (const
58 p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg) ;
59
60 void reachPointStatusCa l lback (const
61 p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s) ;
62
63 void f i e l dCa l l b a c k (const
64 std msgs : : Bool : : ConstPtr &imgStatus) ;
65 } ;
66 //Class Constructor

67 TaskHandler : : TaskHandler ()
68 {
69 task cmd sub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : : task>
70 ("task_cmd" ,5 ,&TaskHandler : : taskCmdCallback , this) ;
71
72 r e a ch po i n t s t a t u s s ub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : :
73 ReachPoint> ("p1/reach_point_status" ,100 ,&TaskHandler : :
74 reachPointStatusCal lback , this) ;
75
76 reach po int pub = nh . adve r t i s e<p l o u gh i n g r e v e r s i b l e : :
77 ReachPoint>("p1/requested_point" , 1 0) ;
78
79 a s k r e f e r e n c e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : :
80 occupied>("check_coordinate") ;
81
82 upda t e r e f e r enc e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : :
83 occupied>("add_coordinate") ;
84 }
85
86 //a method to receive the staus of reach point.

87 void TaskHandler : : r eachPointStatusCa l lback (const
88 p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s)
89 {
90 pointName = status−>hint ;
91 pose newPose ;
92 //Step 2-1: Enter the field by going

93 //to the coordinate of the first furrow

94 if (pointName . compare ("alpha") == 0)
95 {
96 //go to first coordinate in AB set.

97 newPose = getComponent (furCoordAB , 0) ;
98 reach . po int . x = newPose . x ;
99 reach . po int . y = newPose . y ;
100 reach . h int = "ab" ;
101 reach . s t a tu s = false ;
102 reach po int pub . pub l i sh (reach) ;
103 iAmConfident = false ;
104 }
105 if (iAmConfident)
106 {

229

107 //It is important to keep track of the current

108 // position of the robot when it is confident

109 pose reachedPoint ;
110 reachedPoint . x = status−>po int . x ;
111 reachedPoint . y = status−>po int . y ;
112 //Next stage depends on the reached position of the robot (CD OR AB)

113 if (s tatus−>hint . compare ("cd") == 0)
114 {
115 //Now this location will be saved as reference location

116 lastKnownPose . x = status−>po int . x ;
117 lastKnownPose . y = status−>po int . y ;
118 /*

119 Depending on round number different

120 equations will be used to determine next furrow.

121 Round number is either even or odd.

122 */

123 //check if the next round is available

124 if (getIndex (furCoordCD , lastKnownPose)+
125 2∗(teamSize − rank)+1 <= furTota l −1)
126 {
127 nextPose = getComponent (furCoordCD ,
128 getIndex (furCoordCD , lastKnownPose)+2∗(teamSize − rank)+1);
129
130 if (rank != teamSize)
131 {
132 reach . po int . x = reachedPoint . x − tranX ;
133 reach . po int . y = reachedPoint . y + tranY ;
134 reach . h int = "stage1_cd" ;
135 reach . s t a tu s = false ;
136 reach po int pub . pub l i sh (reach) ;
137 }
138 else if (rank == teamSize)
139 {
140
141 reach . po int . x = nextPose . x ;
142 reach . po int . y = nextPose . y ;
143 reach . h int = "stage3_cd" ;
144 reach . s t a tu s = false ;
145 reach po int pub . pub l i sh (reach) ;
146 }
147 }
148 else if (getIndex (furCoordCD , lastKnownPose)
149 +2∗(teamSize − rank)+1 > furTota l −1)
150 {
151 reach . po int . x = reachedPoint . x ;
152 reach . po int . y = reachedPoint . y + tranY ;
153 reach . h int = "home_cd" ;
154 reach . s t a tu s = false ;
155 reach po int pub . pub l i sh (reach) ;
156 }
157 }
158 if (s tatus−>hint . compare ("ab") == 0)
159 {
160 //Now this location will be saved as reference location

161 lastKnownPose . x = status−>po int . x ;
162 lastKnownPose . y = status−>po int . y ;
163 /*

164 Depending on round number different equations

165 will be used to determine next furrow.

166 Round number is either even or odd.

230

167 */

168 //when round is even (because the task is start from ab,

169 //when the robot reaches ab ploughingRound is always even)

170 //check if the next round is available

171 if (getIndex (furCoordAB , lastKnownPose)+2∗rank−1 <= furTota l −1)
172 {
173
174 //log the next starting point before start ploughing

175 nextPose = getComponent (furCoordAB ,
176 getIndex (furCoordAB , lastKnownPose)+2∗rank−1);
177 //If robot rank is not the first in the team,

178 //then the robot is compelled to perform manuevering

179 if (rank != 1)
180 {
181 reach . po int . x = reachedPoint . x − tranX ;
182 reach . po int . y = reachedPoint . y − tranY ;
183 reach . h int = "stage1_ab" ;
184 reach . s t a tu s = false ;
185 reach po int pub . pub l i sh (reach) ;
186 }
187 else if (rank == 1)
188 {
189
190 reach . po int . x = nextPose . x ;
191 reach . po int . y = nextPose . y ;
192 reach . h int = "stage3_ab" ;
193 reach . s t a tu s = false ;
194 reach po int pub . pub l i sh (reach) ;
195 }
196 }
197 else if (getIndex (furCoordAB , lastKnownPose)+2∗rank−1 > furTota l −1)
198 {
199 //starting going home

200 reach . po int . x = reachedPoint . x ;
201 reach . po int . y = reachedPoint . y − tranY ;
202 reach . h int = "home_ab" ;
203 reach . s t a tu s = false ;
204 reach po int pub . pub l i sh (reach) ;
205 }
206 }
207 //execute the second stage of furrow transitioning on CD side

208 else if (s tatus−>hint . compare ("stage1_cd") == 0)
209 {
210 reach . po int . x = reachedPoint . x + 2∗ tranX ;
211 reach . po int . y = reachedPoint . y ;
212 reach . h int = "stage2_cd" ;
213 reach . s t a tu s = false ;
214 reach po int pub . pub l i sh (reach) ;
215 }
216 else if (s tatus−>hint . compare ("stage1_ab") == 0)
217 {
218 reach . po int . x = reachedPoint . x + 2∗ tranX ;
219 reach . po int . y = reachedPoint . y ;
220 reach . h int = "stage2_ab" ;
221 reach . s t a tu s = false ;
222 reach po int pub . pub l i sh (reach) ;
223 }
224 //wait until a message is received from

225 //horizon detector module is received

226 else if (s tatus−>hint . compare ("go_cd") == 0)

231

227 {
228 //log the next starting point before start ploughing

229 nextPose = getComponent (furCoordCD ,
230 getIndex (furCoordCD , lastKnownPose)+2∗(teamSize − rank)+1);
231
232 //nextPose logged from stage1_cd.

233 reach . po int . x = nextPose . x ;
234 reach . po int . y = nextPose . y ;
235 reach . h int = "stage3_cd" ;
236 reach . s t a tu s = false ;
237 reach po int pub . pub l i sh (reach) ;
238 }
239 else if (s tatus−>hint . compare ("go_ab") == 0)
240 {
241 nextPose = getComponent (furCoordAB ,
242 getIndex (furCoordAB , lastKnownPose)+2∗rank−1);
243 //nextPose logged from stage1_ab.

244 reach . po int . x = nextPose . x ;
245 reach . po int . y = nextPose . y ;
246 reach . h int = "stage3_ab" ;
247 reach . s t a tu s = false ;
248 reach po int pub . pub l i sh (reach) ;
249 }
250 //when you reached the starting point,

251 //find your next target in AB set and plough.

252 //the target in AB set is mirror of the reached CD.

253 else if (s tatus−>hint . compare ("stage3_cd") == 0)
254 {
255 nextPose = getComponent (furCoordAB ,
256 getIndex (furCoordCD , reachedPoint)) ;
257
258 reach . po int . x = nextPose . x ;
259 reach . po int . y = nextPose . y ;
260 reach . h int = "ab" ;
261 reach . s t a tu s = false ;
262 reach po int pub . pub l i sh (reach) ;
263 ploughingRound++;
264 }
265 else if (s tatus−>hint . compare ("stage3_ab") == 0)
266 {
267 nextPose = getComponent (furCoordCD ,
268 getIndex (furCoordAB , reachedPoint)) ;
269
270 reach . po int . x = nextPose . x ;
271 reach . po int . y = nextPose . y ;
272 reach . h int = "cd" ;
273 reach . s t a tu s = false ;
274 reach po int pub . pub l i sh (reach) ;
275 ploughingRound++;
276 }
277 //Going back to home position through cd sideline

278 if (s tatus−>hint . compare ("home_cd") == 0)
279 {
280 pose reachedPoint ;
281 reachedPoint . x = status−>po int . x ;
282 reachedPoint . y = status−>po int . y ;
283 if (getIndex (homeCD, reachedPoint)−1 > −1)
284 {
285 newPose = getComponent (homeCD,
286 getIndex (homeCD, reachedPoint)−1);

232

287
288 reach . po int . x = newPose . x ;
289 reach . po int . y = newPose . y ;
290 reach . h int = "home_cd" ;
291 reach . s t a tu s = false ;
292 reach po int pub . pub l i sh (reach) ;
293 }
294 if (getIndex (homeCD, reachedPoint)−1 == −1)
295 {
296 reach . po int . x = hX;
297 reach . po int . y = hY;
298 reach . h int = "home" ;
299 reach . s t a tu s = false ;
300 reach po int pub . pub l i sh (reach) ;
301 }
302 }
303 //Going back to home position through ab sideline

304 if (s tatus−>hint . compare ("home_ab") == 0)
305 {
306 pose reachedPoint ;
307 reachedPoint . x = status−>po int . x ;
308 reachedPoint . y = status−>po int . y ;
309 if (getIndex (homeAB, reachedPoint)−1 > −1)
310 {
311 newPose = getComponent (homeAB,
312 getIndex (homeAB, reachedPoint)−1);
313
314 reach . po int . x = newPose . x ;
315 reach . po int . y = newPose . y ;
316 reach . h int = "home_ab" ;
317 reach . s t a tu s = false ;
318 reach po int pub . pub l i sh (reach) ;
319 }
320 if (getIndex (homeAB, reachedPoint)−1 == −1)
321 {
322 reach . po int . x = hX;
323 reach . po int . y = hY;
324 reach . h int = "home" ;
325 reach . s t a tu s = false ;
326 reach po int pub . pub l i sh (reach) ;
327 }
328 }
329 }
330 //robot will be confident whenever it finds an unploughed furrow

331 else if (! iAmConfident)
332 {
333 if (pointName . compare ("ab") == 0)
334 {
335 pose temp = getComponent (furCoordAB , rank−1);
336 checkPoint . r eque s t . x = temp . x ;
337 checkPoint . r eque s t . y = temp . y ;
338 if (a s k r e f e r e n c e . c a l l (checkPoint))
339 {
340 //if the requested point is occupied

341 if (checkPoint . r e sponse . s t a tu s == true)
342 {
343 //update your rank

344 rank++;
345 //go to the next ploughing target

346 newPose = getComponent (furCoordAB , rank−1);

233

347 reach . po int . x = newPose . x ;
348 reach . po int . y = newPose . y ;
349 reach . h int = "ab" ;
350 reach . s t a tu s = true ;
351 reach po int pub . pub l i sh (reach) ;
352 }
353 //if the requested point is not occupied

354 else if (checkPoint . r e sponse . s t a tu s == false)
355 {
356 //update reference database for the next robot

357 pose temp = getComponent (furCoordAB , rank−1);
358 updatePoint . r eque s t . x = temp . x ;
359 updatePoint . r eque s t . y = temp . y ;
360 if (upda t e r e f e r enc e . c a l l (updatePoint))
361 {
362 //start ploughing

363 newPose = getComponent (furCoordCD , rank−1);
364 reach . po int . x = newPose . x ;
365 reach . po int . y = newPose . y ;
366 reach . h int = "cd" ;
367 reach . s t a tu s = false ;
368 reach po int pub . pub l i sh (reach) ;
369 iAmConfident = true ;
370 ploughingRound++;
371 }
372 }
373 }
374 }
375 }
376 }
377
378 //a method to receive the task command

379 void TaskHandler : : taskCmdCallback (const
380 p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg)
381 {
382 //loading data to appropriate variables

383 taskCmd = msg−>task ;
384 alpha . x = msg−>alpha . x ;
385 alpha . y = msg−>alpha . y ;
386 A. x = msg−>a . x ;
387 A. y = msg−>a . y ;
388 B. x = msg−>b . x ;
389 B. y = msg−>b . y ;
390 C. x = msg−>c . x ;
391 C. y = msg−>c . y ;
392 D. x = msg−>d . x ;
393 D. y = msg−>d . y ;
394 fu rD i s t = msg−>f u r r ow d i s t anc e ;
395 teamSize = msg−>t eam s i z e ;
396 // calculate furrow coordinates

397 furCoordAB = fu r r owLoca l i z e r (A,B, f u rD i s t) ;
398 furCoordCD = fur rowLoca l i z e r (C,D, f u rD i s t) ;
399 furTota l = furCoordCD . s i z e () ;
400 //calculating homing coordinates

401 C. y = C. y + tranY ;
402 D. y = D. y + tranY ;
403 A. y = A. y − tranY ;
404 B. y = B. y − tranY ;
405 homeCD = fu r rowLoca l i z e r (C,D, f u rD i s t) ;
406 homeAB = fur rowLoca l i z e r (A,B, f u rD i s t) ;

234

407 //Step 1: Go to point alpha

408 reach . po int . x = alpha . x ;
409 reach . po int . y = alpha . y ;
410 reach . h int = "alpha" ;
411 reach . s t a tu s = false ;
412 reach po int pub . pub l i sh (reach) ;
413 }
414
415 //main method

416 int main (int argc , char∗∗ argv)
417 {
418 ros : : i n i t (argc , argv , "pra1_th") ;
419 TaskHandler th ;
420 ros : : sp in () ;
421 return 0 ;
422 }
423 //a method to map the furrow coordinates.

424 //it collects all calculated coordinates in a list.

425 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t)
426 {
427 l i s t <pose> c r e a t edL i s t ;
428 pose currentPose = s t a r t ;
429 while (currentPose . x >= end . x)
430 {
431 /*

432 push_back -> add element at the end, last element.

433 push_front -> add element to the front, element 0.

434 */

435 c r e a t edL i s t . push back (currentPose) ;
436 currentPose . x −= d i s t ;
437 }
438 return c r e a t edL i s t ;
439 }
440 //a method to get particular component in a given list.

441 pose getComponent (l i s t <pose> l i s t , int i){
442 l i s t <pose > : : i t e r a t o r i t = l i s t . begin () ;
443 for (int i =0; i< i ; i++){
444 ++i t ;
445 }
446 return ∗ i t ;
447 }
448 int getIndex (l i s t <pose> l i s t , pose pose)
449 {
450 int index = −1;
451 pose temp ;
452 for (int i =0; i< l i s t . s i z e () ; i++)
453 {
454 temp = getComponent (l i s t , i) ;
455 if (temp . x == pose . x && temp . y == pose . y)
456 {
457 index = i ;
458 }
459 }
460 return index ;
461 }

235

Appendix I

C++ Code for Self-organised Task Handler

1 #include <ro s / ro s . h>
2 #include <iostream>
3 #include <sstream>
4 #include <nav msgs/Odometry . h>
5 #include <p l o u gh i n g r e v e r s i b l e /ReachPoint . h>
6 #include <p l o u gh i n g r e v e r s i b l e / occupied . h>
7 #include <s t d i o . h> /* printf, scanf, puts, NULL */

8 #include <s t d l i b . h> /* srand, rand */

9 #include <time . h> /* time */

10
11 using namespace std ;
12
13 int r obo t i d = 0 ;
14 s t r i n g robot name ;
15 float cpX , cpY ;
16 bool sysIsReady = false ;
17 int p index = 0 ;
18 struct pose
19 {
20 float x ;
21 float y ;
22 } ;
23
24 //Method Signitures

25 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t) ;
26 pose getComponent (l i s t <pose> l i s t , int i) ;
27 int getIndex (l i s t <pose> l i s t , pose pose) ;
28 void map in it (void) ;
29 //Variables

30 pose alpha ,A,B,C,D, lastKnownPose , newPose , topAd , bottomAd , l e f tAd ;
31 l i s t <pose> furCoordAB , furCoordCD , homeCD, homeAB;
32 float fu rDis t , furTransAB , furTransCD ;
33 int fu rTota l ;
34 p l o u gh i n g r e v e r s i b l e : : ReachPoint reach ;
35 p l o u gh i n g r e v e r s i b l e : : occupied checkPoint , updatePoint ;
36
37 ros : : Pub l i sher reach po int pub ;
38
39
40 class THClass
41 {
42 public :
43 THClass () ;
44 private :
45 //a normal node handle for general tasks

46 ros : : NodeHandle n ;

236

47 ros : : Subsc r ibe r pose sub ;
48 ros : : Subsc r ibe r r e a ch po i n t s t a t u s s ub ;
49
50 ros : : S e r v i c eC l i e n t a s k r e f e r e n c e ;
51 ros : : S e r v i c eC l i e n t upda t e r e f e r enc e ;
52
53
54 void reachPointStatusCa l lback (const p l o u gh i n g r e v e r s i b l e
55 : : ReachPoint : : ConstPtr &reached po in t) ;
56 void poseCB(const nav msgs : : Odometry : : ConstPtr &pose) ;
57 } ;
58
59 THClass : : THClass ()
60 {
61 //a private node handle for collecting parameters

62 ros : : NodeHandle nh("~") ;
63 o s t r ing s t r eam ss ;
64 nh . getParam ("robot_id" , r obo t i d) ;
65 s s << "robot_" ;
66 s s << r obo t i d ;
67 robot name = ss . s t r () ;
68 s t r i n g pose pipename = robot name+"/base_pose_ground_truth" ;
69 s t r i n g pointreq pipename = robot name + "/requested_point" ;
70 s t r i n g po intres po intname = robot name + "/reach_point_status" ;
71 pose sub = n . subscr ibe<nav msgs : : Odometry>
72 (pose pipename ,10 ,&THClass : : poseCB , this) ;
73 r e a ch po i n t s t a t u s s ub = n . subscr ibe<p l o u gh i n g r e v e r s i b l e : : ReachPoint>
74 (pointres po intname ,100 ,&THClass : : reachPointStatusCal lback , this) ;
75 reach po int pub = n . adve r t i s e<p l o u gh i n g r e v e r s i b l e : : ReachPoint>
76 (pointreq pipename , 1 0) ;
77 a s k r e f e r e n c e = n . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : : occupied>
78 ("check_coordinate") ;
79 upda t e r e f e r enc e = n . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : : occupied>
80 ("add_coordinate") ;
81 }
82 void THClass : : poseCB(const nav msgs : : Odometry : : ConstPtr &pose)
83 {
84 cpX = pose−>pose . pose . p o s i t i o n . x ;
85 cpY = pose−>pose . pose . p o s i t i o n . y ;
86
87 if (sysIsReady && reach po int pub . getNumSubscribers () != 0)
88 {
89 if (cpX <= C. x && cpY >= C. y)
90 {
91 reach . po int . x = topAd . x ;
92 reach . po int . y = topAd . y ;
93 reach . h int = "ab1-adjust" ;
94 reach . s t a tu s = false ;
95 reach po int pub . pub l i sh (reach) ;
96 }
97 else if (cpX <= B. x && cpY >= B. y && cpY <= D. y)
98 {
99 reach . po int . x = bottomAd . x ;
100 reach . po int . y = bottomAd . y ;
101 reach . h int = "ab1-adjust" ;
102 reach . s t a tu s = false ;
103 reach po int pub . pub l i sh (reach) ;
104 }
105 else

106 {

237

107 newPose = getComponent (furCoordAB , 0) ;
108 reach . po int . x = newPose . x ;
109 reach . po int . y = newPose . y ;
110 reach . h int = "ab1" ;
111 reach . s t a tu s = false ;
112 reach po int pub . pub l i sh (reach) ;
113 }
114 sysIsReady = false ;
115 }
116 }
117
118 void THClass : : r eachPointStatusCal lback
119 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &reached po in t)
120 {
121 s t r i n g target name = reached po int−>hint ;
122 pose r e a ch ed l o c a t i on ;
123 r e a ch ed l o c a t i on . x = reached po int−>po int . x ;
124 r e a ch ed l o c a t i on . y = reached po int−>po int . y ;
125 if (target name . compare ("ab1-left") == 0)
126 {
127 reach . po int . x = bottomAd . x ;
128 reach . po int . y = bottomAd . y ;
129 reach . h int = "ab1-adjust" ;
130 reach . s t a tu s = false ;
131 reach po int pub . pub l i sh (reach) ;
132 }
133 if (target name . compare ("ab1-adjust") == 0)
134 {
135 if (p index < int (fu rTota l /2))
136 {
137 pose newPose = getComponent (furCoordAB , 0) ;
138 reach . po int . x = newPose . x ;
139 reach . po int . y = newPose . y ;
140 reach . h int = "ab1" ;
141 reach . s t a tu s = false ;
142 reach po int pub . pub l i sh (reach) ;
143 }
144 else if (p index >= int (fu rTota l /2))
145 {
146 pose newPose = getComponent (furCoordAB , p index) ;
147 reach . po int . x = newPose . x ;
148 reach . po int . y = newPose . y ;
149 reach . h int = "ab-resume" ;
150 reach . s t a tu s = false ;
151 reach po int pub . pub l i sh (reach) ;
152 }
153 }
154 if (target name . compare ("ab1") == 0 | |
155 target name . compare ("ab") == 0 | |
156 target name . compare ("ab-resume") == 0)
157 {
158 pose temp = getComponent (furCoordAB , p index) ;
159 checkPoint . r eque s t . x = temp . x ;
160 checkPoint . r eque s t . y = temp . y ;
161 if (p index < fu rTota l − 1)
162 {
163 if (a s k r e f e r e n c e . c a l l (checkPoint))
164 {
165 //if the requested point is occupied

166 if (checkPoint . r e sponse . s t a tu s == true)

238

167 {
168 //go to the next ploughing target

169 p index = p index + 1 ;
170 newPose = getComponent (furCoordAB , p index) ;
171 reach . po int . x = newPose . x ;
172 reach . po int . y = newPose . y ;
173 reach . h int = "ab" ;
174 reach . s t a tu s = true ;
175 reach po int pub . pub l i sh (reach) ;
176 }
177 //if the requested point is not occupied.

178 else if (checkPoint . r e sponse . s t a tu s == false)
179 {
180 //update reference

181 pose temp = getComponent (furCoordAB , p index) ;
182
183 updatePoint . r eque s t . x = temp . x ;
184 updatePoint . r eque s t . y = temp . y ;
185 if (upda t e r e f e r enc e . c a l l (updatePoint))
186 {
187 //start plouging

188 newPose = getComponent (furCoordCD , p index) ;
189 reach . po int . x = newPose . x ;
190 reach . po int . y = newPose . y ;
191 reach . h int = "cd" ;
192 reach . s t a tu s = false ;
193 reach po int pub . pub l i sh (reach) ;
194 }
195 }
196 }
197 }
198 else if (p index >= furTota l −1)
199 {
200 srand (time (NULL)) ;
201 float randx = −1∗rand ()%60+30; //a random number between 5 and 15

202 us l e ep (500000) ;
203 srand (time (NULL)) ;
204 float randy = −1∗(rand ()%30+15); //a random number between -1 and 1

205
206
207 reach . po int . x = cpX + randx ;
208 reach . po int . y = cpY + randy ;
209 reach . h int = "done" ;
210 reach . s t a tu s = false ;
211 reach po int pub . pub l i sh (reach) ;
212 }
213 }
214 if (target name . compare ("cd") == 0)
215 {
216 if (getIndex (furCoordCD , r e a ch ed l o c a t i on) < furTota l −1)
217 {
218 //decide which direction is closer

219 if (getIndex (furCoordCD , r e a ch ed l o c a t i on) >= int (fu rTota l /2))
220 {
221 reach . po int . x = le f tAd . x ;
222 reach . po int . y = le f tAd . y ;
223 reach . h int = "ab1-left" ;
224 reach . s t a tu s = false ;
225 reach po int pub . pub l i sh (reach) ;
226 }

239

227 else if (getIndex (furCoordCD , r e a ch ed l o c a t i on) < int (fu rTota l /2))
228 {
229 reach . po int . x = topAd . x ;
230 reach . po int . y = topAd . y ;
231 reach . h int = "ab1-adjust" ;
232 reach . s t a tu s = false ;
233 reach po int pub . pub l i sh (reach) ;
234 }
235 }
236 else

237 {
238 reach . po int . x = cpX ;
239 reach . po int . y = cpY+3.0;
240 reach . h int = "done" ;
241 reach . s t a tu s = false ;
242 reach po int pub . pub l i sh (reach) ;
243 }
244 }
245 }
246 int main (int argc , char ∗∗ argv)
247 {
248 map in i t () ;
249 ros : : i n i t (argc , argv , "task_handler") ;
250 THClass th ;
251 s l e e p (3) ;
252 sysIsReady = true ;
253
254 ros : : sp in () ;
255 return 0 ;
256 }
257 //a method to map the furrow coordinates.

258 //it collects all calculated coordinates in a list.

259 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t)
260 {
261 l i s t <pose> c r e a t edL i s t ;
262 pose currentPose = s t a r t ;
263 while (currentPose . x >= end . x)
264 {
265 /*

266 push_back -> add element at the end, last element.

267 push_front -> add element to the front, element 0.

268 */

269 c r e a t edL i s t . push back (currentPose) ;
270 currentPose . x −= d i s t ;
271 }
272 return c r e a t edL i s t ;
273 }
274 //a method to get particular component in a given list.

275 pose getComponent (l i s t <pose> l i s t , int i){
276 l i s t <pose > : : i t e r a t o r i t = l i s t . begin () ;
277 for (int i =0; i< i ; i++){
278 ++i t ;
279 }
280 return ∗ i t ;
281 }
282 int getIndex (l i s t <pose> l i s t , pose pose)
283 {
284 int index = −1;
285 pose temp ;
286 for (int i =0; i< l i s t . s i z e () ; i++)

240

287 {
288 temp = getComponent (l i s t , i) ;
289 if (temp . x == pose . x && temp . y == pose . y)
290 {
291 index = i ;
292 }
293 }
294 return index ;
295 }
296 void map in it (void)
297 {
298 A. x = 10 . 0 ;
299 A. y = −13.0;
300 B. x = −10.0;
301 B. y = −13.0;
302 C. x = 10 . 0 ;
303 C. y = 13 . 0 ;
304 D. x = −10.0;
305 D. y = 13 . 0 ;
306 bottomAd . x = B. x − 5 . 0 ;
307 bottomAd . y = B. y − 5 . 0 ;
308 topAd . x = C. x + 5 . 0 ;
309 topAd . y = C. y + 1 . 0 ;
310 l e f tAd . x = D. x − 6 . 0 ;
311 l e f tAd . y = D. y + 1 . 0 ;
312 fu rD i s t = 0 . 4 ;
313 furTransAB = 4 . 0 ;
314 furTransCD = 4 . 0 ;
315 // calculate furrow coordinates

316 furCoordAB = fu r r owLoca l i z e r (A,B, f u rD i s t) ;
317 furCoordCD = fur rowLoca l i z e r (C,D, f u rD i s t) ;
318 furTota l = furCoordCD . s i z e () ;
319 //calculating homing coordinates

320 C. y = C. y + furTransCD ;
321 D. y = D. y + furTransCD ;
322 A. y = A. y − furTransAB ;
323 B. y = B. y − furTransAB ;
324 homeCD = fu r rowLoca l i z e r (C,D, f u rD i s t) ;
325 homeAB = fur rowLoca l i z e r (A,B, f u rD i s t) ;
326
327 }

241

Appendix J

C++ Code for Region-based Task Handler Using ROS

1 #include <ro s / ro s . h>
2 #include <p l o u gh i n g r e v e r s i b l e / task . h>
3 #include <p l o u gh i n g r e v e r s i b l e /ReachPoint . h>
4 #include <p l o u gh i n g r e v e r s i b l e / occupied . h>
5 #include <nav msgs/Odometry . h>
6 #include <s t r i ng>
7 #include <std msgs /Bool . h>
8 #include <s t d i o . h>
9 #include <iostream>
10 #include <math . h>
11
12 #define hX 14.0000
13 #define hY 9.0000
14 #define tranX 0 .8
15 #define tranY 3 .0
16 #define PI 3.14159265
17
18 using namespace std ;
19
20 struct pose
21 {
22 float x ;
23 float y ;
24 } ;
25
26 //Method Signitures

27 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t) ;
28 pose getComponent (l i s t <pose> l i s t , int i) ;
29 int getIndex (l i s t <pose> l i s t , pose pose) ;
30 //Variables

31 pose alpha ,A,B,C,D,
32 nextPose , beta ,
33 gama , ps i , rho ,
34 currentPose ;
35 l i s t <pose> furCoordAB , furCoordCD , homeCD, homeAB;
36 float fu rDis t , furTransAB , furTransCD ;
37 s t r i n g taskCmd="" , pointName="" ;
38 int teamSize=0,
39 rank=1,
40 furTota l ,
41 ploughingTurn = 0 ,
42 ploughingRound = 0 ;
43 bool taskIsCompleted = false ,
44 target I sReached = false ,
45 iAmConfident = false ,
46 pathIsCleared = false ,

242

47 targe t I sOccup i ed = false ;
48 p l o u gh i n g r e v e r s i b l e : : ReachPoint reach ;
49 p l o u gh i n g r e v e r s i b l e : : occupied checkPoint , updatePoint ;
50 std msgs : : Bool imageRes ;
51 /*A vector based integer for regions with at least 3 memebers.

52 initially the values are set to zero*/

53 vector<int> r eg i on (3) ;
54 /*A vector based integer for starting furNum of each furrow*/

55 vector<int> furNum (3) ;
56 /*A vector based pose for start point of the each region.

57 It is only on AB side as robots all goes to here first.*/

58 vector<pose> regPoint (3) ;
59 //An integer to count the regions

60 int reg ionCounter = 0 ;
61 //An integer to count number of processed tracks

62 int numOfProcessedTracks = 0 ;
63 class TaskHandler
64 {
65 public :
66 TaskHandler () ;
67 private :
68 ros : : NodeHandle nh ;
69 ros : : Subsc r ibe r task cmd sub ;
70 ros : : Subsc r ibe r r e a ch po i n t s t a t u s s ub ;
71 ros : : Subsc r ibe r img sub ;
72 ros : : Subsc r ibe r pose sub ;
73
74
75 ros : : Pub l i sher reach po int pub ;
76 ros : : S e r v i c eC l i e n t a s k r e f e r e n c e ;
77 ros : : S e r v i c eC l i e n t upda t e r e f e r enc e ;
78
79 void taskCmdCallback
80 (const p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg) ;
81 void reachPointStatusCa l lback
82 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s) ;
83 void imgCB(const std msgs : : Bool : : ConstPtr &imgStatus) ;
84 void poseCB(const nav msgs : : Odometry : : ConstPtr &pose) ;
85 } ;
86 //Class Constructor

87 TaskHandler : : TaskHandler ()
88 {
89 task cmd sub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : : task>
90 ("task_cmd" ,5 ,&TaskHandler : : taskCmdCallback , this) ;
91
92 r e a ch po i n t s t a t u s s ub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : :
93 ReachPoint>("p1/reach_point_status" ,100 ,&TaskHandler : :
94 reachPointStatusCal lback , this) ;
95
96 reach po int pub = nh . adve r t i s e<p l o u gh i n g r e v e r s i b l e : : ReachPoint>
97 ("p1/requested_point" , 1 0) ;
98
99 a s k r e f e r e n c e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : : occupied>
100 ("check_coordinate") ;
101 upda t e r e f e r enc e = nh . s e r v i c eC l i e n t<p l o u gh i n g r e v e r s i b l e : : occupied>
102 ("add_coordinate") ;
103
104 img sub = nh . subscr ibe<std msgs : : Bool>
105 ("r1_img_response" ,10 ,&TaskHandler : : imgCB , this) ;
106

243

107 pose sub = nh . subscr ibe<nav msgs : : Odometry>
108 ("robot_0/base_pose_ground_truth" ,10 ,&TaskHandler : : poseCB , this) ;
109 }
110
111 //a method to receive the staus of reach point.

112 void TaskHandler : : r eachPointStatusCa l lback
113 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &s ta tu s)
114 {
115 pointName = status−>hint ;
116 pose newPose ;
117 //Step 2-1: go to the first region

118 if (pointName . compare ("alpha") == 0)
119 {
120 //go to first coordinate in AB set for regions.

121 newPose = regPoint [reg ionCounter] ;
122 reach . po int . x = newPose . x ;
123 //keep your distance from start line until

124 //you are certain that no one is in the space.

125 reach . po int . y = newPose . y−tranY ;
126 reach . h int = "ab_reg" ;
127 reach . s t a tu s = false ;
128 reach po int pub . pub l i sh (reach) ;
129 iAmConfident = false ;
130 }
131 if (iAmConfident)
132 {
133 if (s tatus−>hint . compare ("ab_start") == 0)
134 {
135 pose newPose = getComponent (furCoordCD ,
136 getIndex (furCoordAB , regPoint [reg ionCounter])) ;
137
138 reach . po int . x = newPose . x ;
139 reach . po int . y = newPose . y ;
140 reach . h int = "cd" ;
141 reach . s t a tu s = false ;
142 reach po int pub . pub l i sh (reach) ;
143 numOfProcessedTracks++;
144 }
145 if (s tatus−>hint . compare ("cd") == 0)
146 {
147 //If number of processed tracks is smaller than

148 //number of tracks in your region then transit your track

149 if (numOfProcessedTracks <= reg ion [reg ionCounter]−1)
150 {
151 pose reachedPoint ;
152 reachedPoint . x = status−>po int . x ;
153 reachedPoint . y = status−>po int . y ;
154 newPose = getComponent (furCoordCD ,
155 getIndex (furCoordCD , reachedPoint)−1);
156
157 reach . po int . x = newPose . x ;
158 reach . po int . y = newPose . y ;
159 reach . h int = "cd_stage1" ;
160 reach . s t a tu s = false ;
161 reach po int pub . pub l i sh (reach) ;
162 }
163 //If number of processed tracks is bigger than

164 //available tracks in that region then go home

165 else if (numOfProcessedTracks > r eg i on [reg ionCounter]−1)
166 {

244

167 if (rank == 1)
168 {
169 pose newPose ;
170 newPose . x = hX;
171 newPose . y = hY;
172 reach . po int . x = newPose . x ;
173 reach . po int . y = newPose . y ;
174 reach . h int = "home" ;
175 reach . s t a tu s = false ;
176 reach po int pub . pub l i sh (reach) ;
177 }
178 else if (rank != 1)
179 {
180 pose reachedPoint ;
181 reachedPoint . x = status−>po int . x ;
182 reachedPoint . y = status−>po int . y ;
183 newPose = getComponent (homeCD,
184 getIndex (homeCD, reachedPoint)−1);
185
186 reach . po int . x = newPose . x ;
187 reach . po int . y = newPose . y ;
188 reach . h int = "home_cd" ;
189 reach . s t a tu s = false ;
190 reach po int pub . pub l i sh (reach) ;
191 }
192 }
193 }
194
195 if (s tatus−>hint . compare ("cd_stage1") == 0)
196 {
197 //No checking is required as you are sure

198 //that next round is still available

199 pose reachedPoint ;
200 reachedPoint . x = status−>po int . x ;
201 reachedPoint . y = status−>po int . y ;
202 newPose = getComponent (furCoordAB ,
203 getIndex (furCoordCD , reachedPoint)) ;
204
205 reach . po int . x = newPose . x ;
206 reach . po int . y = newPose . y ;
207 reach . h int = "ab" ;
208 reach . s t a tu s = false ;
209 reach po int pub . pub l i sh (reach) ;
210 numOfProcessedTracks++;
211 }
212 if (s tatus−>hint . compare ("ab") == 0)
213 {
214 //If number of processed tracks is smaller than number

215 //of tracks in your region then transit your track

216 if (numOfProcessedTracks <= reg ion [reg ionCounter]−1)
217 {
218 pose reachedPoint ;
219 reachedPoint . x = status−>po int . x ;
220 reachedPoint . y = status−>po int . y ;
221 newPose = getComponent (furCoordAB ,
222 getIndex (furCoordAB , reachedPoint)−1);
223
224 reach . po int . x = newPose . x ;
225 reach . po int . y = newPose . y ;
226 reach . h int = "ab_stage1" ;

245

227 reach . s t a tu s = false ;
228 reach po int pub . pub l i sh (reach) ;
229 }
230 //If number of processed tracks is bigger than

231 //available tracks in that region then go home

232 else if (numOfProcessedTracks > r eg i on [reg ionCounter]−1)
233 {
234 if (rank == 1)
235 {
236 pose newPose ;
237 newPose . x = hX;
238 newPose . y = hY;
239 reach . po int . x = newPose . x ;
240 reach . po int . y = newPose . y ;
241 reach . h int = "home" ;
242 reach . s t a tu s = false ;
243 reach po int pub . pub l i sh (reach) ;
244 }
245 else if (rank != 1)
246 {
247 pose reachedPoint ;
248 reachedPoint . x = status−>po int . x ;
249 reachedPoint . y = status−>po int . y ;
250 newPose = getComponent (homeAB,
251 getIndex (homeAB, reachedPoint)−1);
252
253 reach . po int . x = newPose . x ;
254 reach . po int . y = newPose . y ;
255 reach . h int = "home_ab" ;
256 reach . s t a tu s = false ;
257 reach po int pub . pub l i sh (reach) ;
258 }
259 }
260 }
261
262 if (s tatus−>hint . compare ("ab_stage1") == 0)
263 {
264 //No checking is required as you are

265 //sure that next round is still available

266 pose reachedPoint ;
267 reachedPoint . x = status−>po int . x ;
268 reachedPoint . y = status−>po int . y ;
269 newPose = getComponent (furCoordCD ,
270 getIndex (furCoordAB , reachedPoint)) ;
271
272 reach . po int . x = newPose . x ;
273 reach . po int . y = newPose . y ;
274 reach . h int = "cd" ;
275 reach . s t a tu s = false ;
276 reach po int pub . pub l i sh (reach) ;
277 numOfProcessedTracks++;
278 }
279 //Going back to home position through cd sideline

280 if (s tatus−>hint . compare ("home_cd") == 0)
281 {
282 pose reachedPoint ;
283 reachedPoint . x = status−>po int . x ;
284 reachedPoint . y = status−>po int . y ;
285 if (getIndex (homeCD, reachedPoint)−1 > −1)
286 {

246

287 newPose = getComponent (homeCD,
288 getIndex (homeCD, reachedPoint)−1);
289
290 reach . po int . x = newPose . x ;
291 reach . po int . y = newPose . y ;
292 reach . h int = "home_cd" ;
293 reach . s t a tu s = false ;
294 reach po int pub . pub l i sh (reach) ;
295 }
296 if (getIndex (homeCD, reachedPoint)−1 == −1)
297 {
298 reach . po int . x = hX;
299 reach . po int . y = hY;
300 reach . h int = "home" ;
301 reach . s t a tu s = false ;
302 reach po int pub . pub l i sh (reach) ;
303 }
304 }
305 //Going back to home position through ab sideline

306 if (s tatus−>hint . compare ("home_ab") == 0)
307 {
308 pose reachedPoint ;
309 reachedPoint . x = status−>po int . x ;
310 reachedPoint . y = status−>po int . y ;
311 if (getIndex (homeAB, reachedPoint)−1 > −1)
312 {
313 newPose = getComponent (homeAB,
314 getIndex (homeAB, reachedPoint)−1);
315
316 reach . po int . x = newPose . x ;
317 reach . po int . y = newPose . y ;
318 reach . h int = "home_ab" ;
319 reach . s t a tu s = false ;
320 reach po int pub . pub l i sh (reach) ;
321 }
322 if (getIndex (homeAB, reachedPoint)−1 == −1)
323 {
324 reach . po int . x = hX;
325 reach . po int . y = hY;
326 reach . h int = "home" ;
327 reach . s t a tu s = false ;
328 reach po int pub . pub l i sh (reach) ;
329 }
330 }
331 }
332 //robot will be confident whenever it finds an unploughed furrow

333 else if (! iAmConfident)
334 {
335 //Step 1: Find your location respect to alpha

336 float regAngle = atan2 (currentPose . y−alpha . y ,
337 currentPose . x−alpha . x)∗180/PI ;
338
339 if (pointName . compare ("beta") == 0 | |
340 pointName . compare ("psi") == 0)
341
342 {
343 reach . po int . x = alpha . x ;
344 reach . po int . y = alpha . y ;
345 reach . h int = "alpha" ;
346 reach . s t a tu s = false ;

247

347 reach po int pub . pub l i sh (reach) ;
348 }
349 else if (pointName . compare ("rho") == 0)
350 {
351 reach . po int . x = gama . x ;
352 reach . po int . y = gama . y ;
353 reach . h int = "gama" ;
354 reach . s t a tu s = false ;
355 reach po int pub . pub l i sh (reach) ;
356 }
357 else if (pointName . compare ("gama") == 0)
358 {
359 reach . po int . x = beta . x ;
360 reach . po int . y = beta . y ;
361 reach . h int = "beta" ;
362 reach . s t a tu s = false ;
363 reach po int pub . pub l i sh (reach) ;
364 }
365
366
367 if (pointName . compare ("ab_reg") == 0)
368 {
369 //if the requested point is occupied

370 if (ta rge t I sOccup i ed)
371 {
372 //update your rank

373 rank++;
374 regionCounter++;
375 //go to the next ploughing target

376 newPose = regPoint [reg ionCounter] ;
377 reach . po int . x = newPose . x ;
378 reach . po int . y = newPose . y−tranY ;
379 reach . h int = "ab_reg" ;
380 reach . s t a tu s = true ;
381 reach po int pub . pub l i sh (reach) ;
382 }
383 //if the requested point is not occupied

384 else if (! ta rge t I sOccup i ed)
385 {
386 //start ploughing

387 pose newPose = getComponent (furCoordAB , getIndex
388 (furCoordAB , regPoint [reg ionCounter])) ;
389 reach . po int . x = newPose . x ;
390 reach . po int . y = newPose . y ;
391 if (rank == teamSize)
392 {
393 reach . h int = "ab_start" ;
394 }
395 else if (rank != teamSize)
396 {
397 reach . h int = "ab_conf" ;
398 }
399 reach . s t a tu s = false ;
400 reach po int pub . pub l i sh (reach) ;
401 iAmConfident = true ;
402 }
403 }
404 }
405 }
406

248

407 void TaskHandler : : imgCB(const std msgs : : Bool : : ConstPtr &imgStatus)
408 {
409 targe t I sOccup i ed = imgStatus−>data ;
410 }
411 //a method to receive the task command

412 void TaskHandler : : taskCmdCallback
413 (const p l o u gh i n g r e v e r s i b l e : : task : : ConstPtr &msg)
414 {
415 //loading data to appropriate variables

416 taskCmd = msg−>task ;
417 alpha . x = msg−>alpha . x ;
418 alpha . y = msg−>alpha . y ;
419 beta . x = msg−>beta . x ;
420 beta . y = msg−>beta . y ;
421 gama . x = msg−>gamma. x ;
422 gama . y = msg−>gamma. y ;
423 p s i . x = msg−>p s i . x ;
424 p s i . y = msg−>p s i . y ;
425 rho . x = msg−>rho . x ;
426 rho . y = msg−>rho . y ;
427 A. x = msg−>a . x ;
428 A. y = msg−>a . y ;
429 B. x = msg−>b . x ;
430 B. y = msg−>b . y ;
431 C. x = msg−>c . x ;
432 C. y = msg−>c . y ;
433 D. x = msg−>d . x ;
434 D. y = msg−>d . y ;
435 fu rD i s t = msg−>f u r r ow d i s t anc e ;
436 teamSize = msg−>t eam s i z e ;
437 // calculate furrow coordinates

438 furCoordAB = fu r r owLoca l i z e r (A,B, f u rD i s t) ;
439 furCoordCD = fur rowLoca l i z e r (C,D, f u rD i s t) ;
440 furTota l = furCoordCD . s i z e () ;
441 //calculating homing coordinates

442 C. y = C. y + tranY ;
443 D. y = D. y + tranY ;
444 A. y = A. y − tranY ;
445 B. y = B. y − tranY ;
446 homeCD = fu r rowLoca l i z e r (C,D, f u rD i s t) ;
447 homeAB = fur rowLoca l i z e r (A,B, f u rD i s t) ;
448 //Region Division

449 //First resize "region" and "regPoint" and

450 //"furNum" vector to suit the team size.

451 reg i on . r e s i z e (teamSize) ;
452 regPoint . r e s i z e (teamSize) ;
453 furNum . r e s i z e (teamSize) ;
454 //Then allocate number of tracks to each region.

455 //Vectors count from 0 therefore teamsize -1.

456 for (int i =0; i<=teamSize −1; i++)
457 {
458 reg i on [i] = f l o o r (fu rTota l / teamSize) ;
459 if (fu rTota l%teamSize > i)
460 {
461 reg i on [i]++;
462 }
463 furNum [i] = furNum [i−1]+reg i on [i] ;
464 regPoint [i] = getComponent (furCoordAB , furNum [i]−1) ;
465 }
466 //Step 1: Find your location respect to alpha

249

467
468 float regAngle = atan2 (currentPose . y−alpha . y ,
469 currentPose . x−alpha . x)∗180/PI ;
470
471 if (regAngle>= −1 && regAngle <= 90 . 0)
472 {
473 reach . po int . x = alpha . x ;
474 reach . po int . y = alpha . y ;
475 reach . h int = "alpha" ;
476 reach . s t a tu s = false ;
477 reach po int pub . pub l i sh (reach) ;
478 }
479 else if (regAngle> 90 .0 && regAngle <= 179 .0)
480 {
481 //Check if you are above D.y or below D.y

482 if (currentPose . y >= D. y)
483 {
484 reach . po int . x = ps i . x ;
485 reach . po int . y = ps i . y ;
486 reach . h int = "psi" ;
487 reach . s t a tu s = false ;
488 reach po int pub . pub l i sh (reach) ;
489 }
490 if (currentPose . y < D. y)
491 {
492 reach . po int . x = rho . x ;
493 reach . po int . y = rho . y ;
494 reach . h int = "rho" ;
495 reach . s t a tu s = false ;
496 reach po int pub . pub l i sh (reach) ;
497 }
498
499 }
500 else if (regAngle < −1 && regAngle >= −90.0)
501 {
502 reach . po int . x = beta . x ;
503 reach . po int . y = beta . y ;
504 reach . h int = "beta" ;
505 reach . s t a tu s = false ;
506 reach po int pub . pub l i sh (reach) ;
507 }
508 else if (regAngle < −90.0 && regAngle >= −179.0)
509 {
510 reach . po int . x = gama . x ;
511 reach . po int . y = gama . y ;
512 reach . h int = "gama" ;
513 reach . s t a tu s = false ;
514 reach po int pub . pub l i sh (reach) ;
515 }
516 //Step 2: approach the selected location

517
518 }
519 void TaskHandler : : poseCB(const nav msgs : : Odometry : : ConstPtr &pose)
520 {
521 currentPose . x = pose−>pose . pose . p o s i t i o n . x ;
522 currentPose . y = pose−>pose . pose . p o s i t i o n . y ;
523 }
524 //main method

525 int main (int argc , char∗∗ argv)
526 {

250

527 ros : : i n i t (argc , argv , "s1_th") ;
528 TaskHandler th ;
529 ros : : sp in () ;
530 return 0 ;
531 }
532 //a method to map the furrow coordinates.

533 //it collects all calculated coordinates in a list.

534 l i s t <pose> f u r r owLoca l i z e r (pose s ta r t , pose end , float d i s t)
535 {
536 l i s t <pose> c r e a t edL i s t ;
537 pose currentPose = s t a r t ;
538 while (currentPose . x >= end . x)
539 {
540 /*

541 push_back -> add element at the end, last element.

542 push_front -> add element to the front, element 0.

543 */

544 c r e a t edL i s t . push back (currentPose) ;
545 currentPose . x −= d i s t ;
546 }
547 return c r e a t edL i s t ;
548 }
549 //a method to get particular component in a given list.

550 pose getComponent (l i s t <pose> l i s t , int i){
551 l i s t <pose > : : i t e r a t o r i t = l i s t . begin () ;
552 for (int i =0; i< i ; i++){
553 ++i t ;
554 }
555 return ∗ i t ;
556 }
557 int getIndex (l i s t <pose> l i s t , pose pose)
558 {
559 int index = −1;
560 pose temp ;
561 for (int i =0; i< l i s t . s i z e () ; i++)
562 {
563 temp = getComponent (l i s t , i) ;
564 if (temp . x == pose . x && temp . y == pose . y)
565 {
566 index = i ;
567 }
568 }
569 return index ;
570 }

251

Appendix K

C++ Code for Reach Point Using ROS

1 #include <ro s / ro s . h>
2 #include <t f / t f . h>
3 #include <sensor msgs /LaserScan . h>
4 #include <p l o u gh i n g r e v e r s i b l e /ReachPoint . h>
5 #include <nav msgs/Odometry . h>
6 #include <geometry msgs/Twist . h>
7 #include <geometry msgs/Quaternion . h>
8 #include <s t r i ng>
9 #include <pthread . h>
10 #include <math . h>
11 #include <sstream>
12 #include <s t d l i b . h> /* srand, rand */

13 #include <time . h>
14
15
16 #define PI 3.14159265359
17 #define Rad2Deg 57.2957795
18 #define Deg2Rad 0.0174532925
19 #define PITCH 0.3522504892367
20 #define DistanceTh 0 .2
21 #define DistanceCrt 1 .5
22 #define DistanceCrtTwo 0 .5
23 #define MaxVel 0 . 5
24 #define Algor i thmEf fec tDis tance 5 .5
25
26 using namespace std ;
27
28 struct f o r c e
29 {
30 float mag ;
31 float theta ;
32 float x ;
33 float y ;
34 } ;
35
36 struct pose
37 {
38 float x ;
39 float y ;
40 double theta ;
41 } ;
42 struct mapMem
43 {
44 float Rx ;
45 float Ry ;
46 float Ox;

252

47 float Oy;
48 int time ;
49 float l r ;
50 float l r ang ;
51 float l r x ;
52 float l r y ;
53 } ;
54 mapMem fmm old ;
55 int f j c oun t = 0 ;
56 float f jmean= 0 . 0 ;
57 pose current , ab [1 0] ;
58
59 void stop (void) ;
60 void ∗move(void∗ threadID) ;
61 geometry msgs : : Twist v e l ;
62 p l o u gh i n g r e v e r s i b l e : : ReachPoint target , reqPoint , prevPoint ;
63 pose currentGlobal , requestedTarget ;
64 bool target I sReached = false , head ingI sCorrec ted = false ;
65 pthread t moveThHandler ;
66 s t r i n g procPointHint="" ;
67 int r obo t i d = 0 ;
68 float dl = 0 . 5 , df = 3 . 0 , dr = 1 . 5 ;
69 float r eve r sCoe f = 1 . 0 ;
70 ros : : Pub l i sher ve l pub ;
71 ros : : Pub l i sher t a r g e t s t a tu s pub ;
72
73
74 class ReachPoint
75 {
76 public :
77 ReachPoint () ;
78 private :
79 ros : : NodeHandle nh ;
80 ros : : Subsc r ibe r t a r g e t sub ;
81 ros : : Subsc r ibe r l a s e r s ub ;
82 ros : : Subsc r ibe r wor ld pose sub ;
83
84 void l a s e rCa l lBack (const sensor msgs : :
85 LaserScan : : ConstPtr &scan) ;
86
87 void worldPoseCal lback (const nav msgs : :
88 Odometry : : ConstPtr &wor ld pose) ;
89
90 void ta rge tCa l lback (const p l o u gh i n g r e v e r s i b l e : :
91 ReachPoint : : ConstPtr &ta rg e t) ;
92 } ;
93
94 ReachPoint : : ReachPoint ()
95 {
96 ros : : NodeHandle n("~") ;
97 n . getParam ("robot_id" , r obo t i d) ;
98 o s t r ing s t r eam ss ;
99 s s << "robot_" ;
100 s s << r obo t i d ;
101
102 s t r i n g robot name = ss . s t r () ;
103 s t r i n g la se r p ipename = robot name + "/base_scan" ;
104 s t r i n g pose pipename = robot name + "/base_pose_ground_truth" ;
105 s t r i n g twist pipename = robot name + "/cmd_vel" ;
106 s t r i n g pointreq pipename = robot name + "/requested_point" ;

253

107 s t r i n g po intres po intname = robot name + "/reach_point_status" ;
108
109 ta rg e t sub = nh . subscr ibe<p l o u gh i n g r e v e r s i b l e : : ReachPoint>
110 (pointreq pipename ,5 ,&ReachPoint : : ta rgetCa l lback , this) ;
111
112 l a s e r s ub = nh . subscr ibe<sensor msgs : : LaserScan>
113 (laser p ipename ,5 ,&ReachPoint : : l a se rCa l lBack , this) ;
114
115 wor ld pose sub = nh . subscr ibe<nav msgs : : Odometry>
116 (pose pipename ,5 ,&ReachPoint : : worldPoseCallback , this) ;
117
118 ve l pub = nh . adve r t i s e<geometry msgs : : Twist>
119 (twist pipename , 1) ;
120
121 t a r g e t s t a tu s pub = nh . adve r t i s e<p l o u gh i n g r e v e r s i b l e : : ReachPoint>
122 (pointres po intname , 5) ;
123
124 for (int i =0; i<=9; i++)
125 {
126 ab [i] . x = 10 − Algor i thmEf fec tDis tance − i ∗1 ;
127 ab [i] . y = −13;
128 }
129
130
131 }
132 //a method to receive laser range finder readings.

133 void ReachPoint : : l a s e rCa l lBack
134 (const sensor msgs : : LaserScan : : ConstPtr &scan)
135 {
136 bool roadIsBlocked = false ,
137 r i gh t I sB l o cked = false ,
138 l e f t I sB l o c k e d = false ;
139 float frontObstacleMax = 4 . 5 ,
140 FOBMaxAngle = 0 . 0 ,
141 le f tObstac leMax = 4 . 5 ,
142 LOBMaxAngle = 0 . 0 ,
143 rightObstacleMax = 4 . 5 ,
144 ROBMaxAngle = 0 . 0 ;
145
146 pose d i r ;
147
148 if (reqPoint . h int . compare ("done") == 0)
149 {
150 //For APF

151 float beams [5 1 2] ;
152 pose obj new [5 1 2] , obj [5 1 2] ;
153 f o r c e a t t r a c t i on , r epu l s i on [5 1 2] , sum ;
154 int RotCoef = 1 ;
155 sum . x = 0 . 0 ;
156 sum . y = 0 . 0 ;
157 int beamCounter = 1 ;
158 d i r . x = requestedTarget . x − currentGloba l . x ;
159 d i r . y = requestedTarget . y − currentGloba l . y ;
160 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
161 float distanceToTarget = sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) ;
162
163 float R[2] [2] = {{ cos ((90− currentGloba l . theta)∗Deg2Rad) ,
164 −1∗ s i n ((90− currentGloba l . theta)∗Deg2Rad)} ,
165 { s i n ((90− currentGloba l . theta)∗Deg2Rad) ,
166 cos ((90− currentGloba l . theta)∗Deg2Rad)}} ;

254

167
168 if (distanceToTarget >= 3 . 0)
169 {
170 for (int i =0; i <=511; i++)
171 {
172 if (scan−>ranges [i] < 4 .5)
173 {
174 beams [i] = scan−>ranges [i] ;
175
176 obj [i] . x = beams [i]∗ cos ((i ∗PITCH)∗Deg2Rad) ;
177 obj [i] . y = beams [i]∗ s i n ((i ∗PITCH)∗Deg2Rad) ;
178 beamCounter++;
179 }
180 else if (scan−>ranges [i] == 4 . 5)
181 {
182 beams [i] = 0 . 0 ;
183 obj [i] . x = 0 . 0 ;
184 obj [i] . y = 0 . 0 ;
185 }
186 }
187
188 //form the orientation matrix

189 for (int i =0; i<= 511 ; i++)
190 {
191 if (beams [i] > 0 .0 && beams [i] < 4 . 5)
192 {
193
194 r epu l s i on [i] . x = obj [i] . x ;
195 r epu l s i on [i] . y = obj [i] . y ;
196
197 //remember: repulsion force is 180 degrees mirrored

198 //of the vector describing the object and the robot

199 if (beams [i] <= DistanceCrt && beams [i] > DistanceCrtTwo)
200 {
201 r epu l s i on [i] . x = 20∗ obj [i] . x ;
202 r epu l s i on [i] . y = 20∗ obj [i] . y ;
203 RotCoef = 10 ;
204 }
205 if (beams [i] <= DistanceCrtTwo)
206 {
207 r epu l s i on [i] . x = 100∗ obj [i] . x ;
208 r epu l s i on [i] . y = 100∗ obj [i] . y ;
209 RotCoef = 100 ;
210 }
211 if (beams [i] > DistanceCrt)
212 {
213 r epu l s i on [i] . x = obj [i] . x ;
214 r epu l s i on [i] . y = obj [i] . y ;
215 RotCoef = 1 ;
216 }
217 r epu l s i on [i] . mag = 1/ sq r t (r epu l s i on [i] . x∗ r epu l s i on [i] . x
218 +r epu l s i on [i] . y∗ r epu l s i on [i] . y) ;
219
220 r epu l s i on [i] . theta = atan2 (r epu l s i on [i] . y , r e pu l s i on [i] . x) ;
221 }
222 else if (beams [i] == 0 . 0)
223 {
224 r epu l s i on [i] . x = 0 . 0 ;
225 r epu l s i on [i] . y = 0 . 0 ;
226 r epu l s i on [i] . mag = 0 . 0 ;

255

227 r epu l s i on [i] . theta = 0 . 0 ;
228 }
229
230 sum . x = sum . x + repu l s i on [i] . x ;
231 sum . y = sum . y + repu l s i on [i] . y ;
232 }
233
234
235 float rx = sum . x∗ cos (180∗Deg2Rad) − sum . y∗ s i n (180∗Deg2Rad) ;
236 float ry = sum . x∗ s i n (180∗Deg2Rad) + sum . y∗ cos (180∗Deg2Rad) ;
237 sum . x = rx∗R[0] [0] − ry∗R [0] [1] ;
238 sum . y = −rx∗R[1] [0] + ry∗R [1] [1] ;
239 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
240 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
241
242 //attraction force

243 a t t r a c t i o n .mag = sq r t (d i r . x∗ d i r . x+d i r . y∗ d i r . y) ;
244 a t t r a c t i o n . theta = Rad2Deg∗atan2 (d i r . y , d i r . x) ;
245 a t t r a c t i o n . x = d i r . x ;
246 a t t r a c t i o n . y = d i r . y ;
247
248 //sum force

249 int Krep = 7 ;
250 int Katt = 20 ;
251 sum . x = sum . x + Katt∗ a t t r a c t i o n . x ;
252 sum . y = sum . y + Katt∗ a t t r a c t i o n . y ;
253 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
254 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
255
256 /*Here is where you assign speed to the motors*/

257 if (abs (sum . theta−currentGloba l . theta) < 180)
258 {
259 ve l . angular . z = RotCoef ∗0 .02∗ (sum . theta−currentGloba l . theta) ;
260 }
261
262 else if ((sum . theta−currentGloba l . theta > 180) | |
263 (sum . theta−currentGloba l . theta < −180))
264 {
265 ve l . angular . z = RotCoef ∗−0.02∗(sum . theta−currentGloba l . theta) ;
266 }
267
268 ve l . l i n e a r . x = sum .mag ;
269 //limiting the linear speed to 0.75 m/s

270 if (v e l . l i n e a r . x >= MaxVel)
271 {
272 ve l . l i n e a r . x = MaxVel ;
273 }
274 if (v e l . l i n e a r . x <= −1∗MaxVel)
275 {
276 ve l . l i n e a r . x = −1∗MaxVel ;
277 }
278 ve l pub . pub l i sh (ve l) ;
279
280 }
281 else if (distanceToTarget < 3 . 0)
282 {
283 stop () ;
284 reqPoint . s t a tu s = true ;
285 prevPoint . h int = reqPoint . h int ;
286 t a r g e t s t a tu s pub . pub l i sh (reqPoint) ;

256

287 procPointHint = reqPoint . h int ;
288 }
289 }
290 /*check the "reqPoint.hint" to assign limitation on field of view*/

291 else if (reqPoint . h int . compare ("done") != 0)
292 {
293 d i r . x = requestedTarget . x − currentGloba l . x ;
294 d i r . y = requestedTarget . y − currentGloba l . y ;
295
296 if ((reqPoint . h int . compare ("ab1") == 0 &&
297 sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) >= Algor i thmEf fec tDi s tance) | |
298 (reqPoint . h int . compare ("ab1-left") == 0 &&
299 sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) >= Algor i thmEf fec tDi s tance − 1 . 5) | |
300 (reqPoint . h int . compare ("ab1-adjust") == 0 &&
301 sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) >= Algor i thmEf fec tDi s tance − 1 . 5) | |
302 (reqPoint . h int . compare ("ab-resume") == 0 &&
303 sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) >= Algor i thmEf fec tDi s tance − 1 . 0))
304 {
305 d i r . x = requestedTarget . x − currentGloba l . x ;
306 d i r . y = requestedTarget . y − currentGloba l . y ;
307 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
308 float distanceToTarget = sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) ;
309 //For APF

310 float beams [5 1 2] ;
311 pose dir , obj new [5 1 2] , obj [5 1 2] ;
312 f o r c e a t t r a c t i on , r epu l s i on [5 1 2] , sum ;
313 int RotCoef = 1 ;
314 sum . x = 0 . 0 ;
315 sum . y = 0 . 0 ;
316 int beamCounter = 1 ;
317 d i r . x = requestedTarget . x − currentGloba l . x ;
318 d i r . y = requestedTarget . y − currentGloba l . y ;
319 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
320 distanceToTarget = sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) ;
321 float R[2] [2] = {{ cos ((90− currentGloba l . theta)∗Deg2Rad) ,
322 −1∗ s i n ((90− currentGloba l . theta)∗Deg2Rad)} ,
323 { s i n ((90− currentGloba l . theta)∗Deg2Rad) ,
324 cos ((90− currentGloba l . theta)∗Deg2Rad)}} ;
325 if (distanceToTarget >= DistanceTh)
326 {
327 for (int i =0; i <=511; i++)
328 {
329 if (scan−>ranges [i] < 4 .5)
330 {
331 beams [i] = scan−>ranges [i] ;
332
333 obj [i] . x = beams [i]∗ cos ((i ∗PITCH)∗Deg2Rad) ;
334 obj [i] . y = beams [i]∗ s i n ((i ∗PITCH)∗Deg2Rad) ;
335 beamCounter++;
336 }
337 else if (scan−>ranges [i] == 4 . 5)
338 {
339 beams [i] = 0 . 0 ;
340 obj [i] . x = 0 . 0 ;
341 obj [i] . y = 0 . 0 ;
342 }
343 }
344
345 //form the orientation matrix

346 for (int i =0; i<= 511 ; i++)

257

347 {
348 if (beams [i] > 0 .0 && beams [i] < 4 . 5)
349 {
350
351 r epu l s i on [i] . x = obj [i] . x ;
352 r epu l s i on [i] . y = obj [i] . y ;
353
354 //remember: repulsion force is 180 degrees

355 //mirrored of the vector describing the object and the robot

356 if (beams [i] <= DistanceCrt && beams [i] > DistanceCrtTwo)
357 {
358 r epu l s i on [i] . x = 20∗ obj [i] . x ;
359 r epu l s i on [i] . y = 20∗ obj [i] . y ;
360 RotCoef = 10 ;
361 }
362 if (beams [i] <= DistanceCrtTwo)
363 {
364 r epu l s i on [i] . x = 100∗ obj [i] . x ;
365 r epu l s i on [i] . y = 100∗ obj [i] . y ;
366 RotCoef = 100 ;
367 }
368 if (beams [i] > DistanceCrt)
369 {
370 r epu l s i on [i] . x = obj [i] . x ;
371 r epu l s i on [i] . y = obj [i] . y ;
372 RotCoef = 1 ;
373 }
374 r epu l s i on [i] . mag = 1/ sq r t (r epu l s i on [i] . x∗ r epu l s i on [i] . x
375 +r epu l s i on [i] . y∗ r epu l s i on [i] . y) ;
376
377 r epu l s i on [i] . theta = atan2 (r epu l s i on [i] . y , r e pu l s i on [i] . x) ;
378 }
379 else if (beams [i] == 0 . 0)
380 {
381 r epu l s i on [i] . x = 0 . 0 ;
382 r epu l s i on [i] . y = 0 . 0 ;
383 r epu l s i on [i] . mag = 0 . 0 ;
384 r epu l s i on [i] . theta = 0 . 0 ;
385 }
386
387 sum . x = sum . x + repu l s i on [i] . x ;
388 sum . y = sum . y + repu l s i on [i] . y ;
389
390 }
391 float rx = sum . x∗ cos (180∗Deg2Rad) − sum . y∗ s i n (180∗Deg2Rad) ;
392 float ry = sum . x∗ s i n (180∗Deg2Rad) + sum . y∗ cos (180∗Deg2Rad) ;
393 sum . x = rx∗R[0] [0] − ry∗R [0] [1] ;
394 sum . y = −rx∗R[1] [0] + ry∗R [1] [1] ;
395
396
397 //Applying Repulsion Force From the Field

398 if (currentGloba l . y < −15.0 && (−15.0 − currentGloba l . y <= 2 . 0)
399 && currentGloba l . x <= 11.0
400 && currentGloba l . x >= −11.0)
401 {
402 sum . x += 10000 . 00 ;
403 sum . y += −10000.00;
404 }
405 else if (currentGloba l . y < 13 .0 && currentGloba l . y > −13
406 && currentGloba l . x >= 12.0

258

407 && (currentGloba l . x − 12 <= 0 . 7 5))
408 {
409 sum . x += 10000 . 00 ;
410 sum . y += 10000 . 00 ;
411 }
412 else if (currentGloba l . y > 12 .0
413 && (currentGloba l . y − 13 .0 <= 2 . 0)
414 && currentGloba l . x <= 11.0 && currentGloba l . x > 0 . 0)
415 {
416 sum . x += −10000.0;
417 sum . y += 10000 . 00 ;
418 }
419 else if (currentGloba l . y > 12 .0
420 && (currentGloba l . y − 13 <= 2 . 0)
421 && currentGloba l . x <= 0.0
422 && currentGloba l . x >= −11.0)
423 {
424 sum . x += 10000 . 00 ;
425 sum . y += 10000 . 00 ;
426 }
427 else if (currentGloba l . y < 13 .0
428 && currentGloba l . y > −13.0
429 && currentGloba l . x <= −12.0
430 && (−12 − currentGloba l . x <= 0 . 7 5))
431 {
432 sum . x += −10000.00;
433 sum . y += 10000 . 00 ;
434 }
435
436 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
437 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
438 //attraction force

439 a t t r a c t i o n .mag = sq r t (d i r . x∗ d i r . x+d i r . y∗ d i r . y) ;
440 a t t r a c t i o n . theta = Rad2Deg∗atan2 (d i r . y , d i r . x) ;
441 a t t r a c t i o n . x = d i r . x ;
442 a t t r a c t i o n . y = d i r . y ;
443 //sum force

444 int Krep = 7 ;
445 int Katt = 20 ;
446 sum . x = sum . x + Katt∗ a t t r a c t i o n . x ;
447 sum . y = sum . y + Katt∗ a t t r a c t i o n . y ;
448 sum . theta = Rad2Deg∗atan2 (sum . y , sum . x) ;
449 sum .mag = sq r t (sum . x∗sum . x+sum . y∗sum . y) ;
450 /*Here is where you assign speed to the motors*/

451 if (abs (sum . theta−currentGloba l . theta) < 180)
452 {
453 ve l . angular . z = RotCoef ∗0 .02∗ (sum . theta−currentGloba l . theta) ;
454 }
455 else if ((sum . theta−currentGloba l . theta > 180)
456 | | (sum . theta−currentGloba l . theta < −180))
457 {
458 ve l . angular . z = RotCoef ∗−0.02∗(sum . theta−currentGloba l . theta) ;
459 }
460 ve l . l i n e a r . x = sum .mag ;
461 //limiting the linear speed to 0.75 m/s

462 if (v e l . l i n e a r . x >= MaxVel)
463 {
464 ve l . l i n e a r . x = MaxVel ;
465 }
466 if (v e l . l i n e a r . x <= −1∗MaxVel)

259

467 {
468 ve l . l i n e a r . x = −1∗MaxVel ;
469 }
470 ve l pub . pub l i sh (ve l) ;
471
472 }
473 else if (distanceToTarget <DistanceTh)
474 {
475 stop () ;
476 reqPoint . s t a tu s = true ;
477 prevPoint . h int = reqPoint . h int ;
478 t a r g e t s t a tu s pub . pub l i sh (reqPoint) ;
479 procPointHint = reqPoint . h int ;
480 }
481 }
482 else

483 {
484 for (int i =191; i <=319; i++)
485 {
486 if (scan−>ranges [i] <= df)
487 {
488 roadIsBlocked = true ;
489 if (scan−>ranges [i] < frontObstacleMax)
490 {
491 frontObstacleMax = scan−>ranges [i] ;
492 FOBMaxAngle = i ∗PITCH∗PI /180 ;
493 }
494 }
495 }
496 for (int j =0; j <=127; j++)
497 {
498 if (scan−>ranges [j] <= dr)
499 {
500 r i gh t I sB l o cked = true ;
501 if (scan−>ranges [j] < r ightObstacleMax)
502 {
503 rightObstacleMax = scan−>ranges [j] ;
504 ROBMaxAngle = j ∗PITCH∗PI /180 ;
505 }
506 }
507 }
508 for (int k=385; k<=512; k++)
509 {
510 if (scan−>ranges [k] <= dl)
511 {
512 l e f t I sB l o c k e d = true ;
513 if (scan−>ranges [k] < l e f tObstac leMax)
514 {
515 le f tObstac leMax = scan−>ranges [k] ;
516 LOBMaxAngle = k∗PITCH∗PI /180 ;
517 }
518 }
519 }
520 //}

521 if (reqPoint . h int . compare ("ab1") != 0
522 && reqPoint . h int . compare ("ab1-adjust") != 0
523 && reqPoint . h int . compare ("ab1-left") != 0
524 && reqPoint . h int . compare ("ab-resume") != 0)
525 {
526 r i gh t I sB l o cked = false ;

260

527 l e f t I sB l o c k e d = false ;
528 }
529
530 /*this is a section which guides the robot,

531 it has been put in here because this function

532 is being updated 5 times a second.

533 Remeber because is being called very often,

534 we are not allowed to put any while loop in here, if we

535 do that, laser range finder readings will be missed.

536 */

537 pose dir , p r evd i r ;
538 d i r . x = requestedTarget . x − currentGloba l . x ;
539 d i r . y = requestedTarget . y − currentGloba l . y ;
540 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
541 prevd i r = d i r ;
542
543 if (abs (d i r . theta−currentGloba l . theta) >= 10.0
544 && (reqPoint . h int . compare ("cd") == 0
545 | | reqPoint . h int . compare ("ab") == 0)
546 && prevPoint . h int . compare (reqPoint . h int . c s t r ()) != 0)
547 {
548 //heading correction

549 if (abs (d i r . theta−currentGloba l . theta) < 180)
550 {
551 ve l . angular . z = 0 .04∗ (d i r . theta−currentGloba l . theta) ;
552 }
553 else if ((d i r . theta−currentGloba l . theta > 180)
554 | | (d i r . theta−currentGloba l . theta < −180))
555 {
556 ve l . angular . z = −0.04∗(d i r . theta−currentGloba l . theta) ;
557 }
558 ve l . l i n e a r . x = 0 . 0 ;
559 ve l pub . pub l i sh (ve l) ;
560 head ingI sCorrec ted = false ;
561 }
562 else if (reqPoint . h int . compare ("cd") != 0 | |
563 reqPoint . h int . compare ("ab") != 0)
564 {
565 head ingI sCorrec ted = true ;
566 }
567 if (! target I sReached && head ingI sCorrec ted)
568 {
569 //Congestion avoidance

570 if ((roadIsBlocked | | r i gh t I sB l o cked) &&
571 sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) <=
572 frontObstacleMax ∗ s i n (FOBMaxAngle)/2)
573 {
574 roadIsBlocked = false ;
575 r i gh t I sB l o cked = false ;
576 }
577 //if lasers didn’t detect anything in the field,

578 //approach the target.

579 if (! roadIsBlocked && ! r i gh t I sB l o cked
580 && ! l e f t I sB l o c k e d)
581 {
582 //update the position of the robot respect to target

583 d i r . x = requestedTarget . x − currentGloba l . x ;
584 d i r . y = requestedTarget . y − currentGloba l . y ;
585 d i r . theta = atan2 (d i r . y , d i r . x)∗Rad2Deg ;
586 //simulation cannot reach 180 or -180 degrees.

261

587
588 if (abs (d i r . theta−currentGloba l . theta) < 180)
589 {
590 ve l . angular . z = 0 .02∗ (d i r . theta−currentGloba l . theta) ;
591 }
592 else if ((d i r . theta−currentGloba l . theta > 180)
593 | | (d i r . theta−currentGloba l . theta < −180))
594 {
595 ve l . angular . z = −0.02∗(d i r . theta−currentGloba l . theta) ;
596 }
597 ve l . l i n e a r . x = sq r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) ;
598 //limiting the linear speed to 0.75 m/s

599 if (v e l . l i n e a r . x >= 0 .75)
600 {
601 ve l . l i n e a r . x = 0 . 7 5 ;
602 }
603 if (v e l . l i n e a r . x <= −0.75)
604 {
605 ve l . l i n e a r . x = −0.75;
606 }
607 ve l pub . pub l i sh (ve l) ;
608 prevd i r = d i r ;
609 }
610 //if any obstacle is detected within the

611 //field of view of the robot

612 else if (roadIsBlocked | | r i gh t I sB l o cked | | l e f t I sB l o c k e d)
613 {
614 if (reqPoint . h int . compare ("ab1") == 0
615 | | reqPoint . h int . compare ("ab1-adjust") == 0
616 | | reqPoint . h int . compare ("ab1-left") == 0
617 | | reqPoint . h int . compare ("ab-resume") == 0)
618 {
619 reve r sCoe f = rand () % 20 + 1 ;
620 ve l . l i n e a r . x = −1∗ r eve r sCoe f ∗0 . 0 2 ;
621 ve l . angular . z = 0 . 0 ;
622 ve l pub . pub l i sh (ve l) ;
623 prevd i r = d i r ;
624 }
625 else if (reqPoint . h int . compare ("cd") == 0
626 | | reqPoint . h int . compare ("ab") == 0)
627 {
628 ve l . l i n e a r . x = 0 . 0 ;
629 ve l . angular . z = 0 . 0 ;
630 ve l pub . pub l i sh (ve l) ;
631 }
632 }
633 }
634
635 //if we have reached in distance of 5 cm or less of the target,

636 //target is assumed to be reached.

637 if (s q r t (d i r . x∗ d i r . x + d i r . y∗ d i r . y) <= 0 .20)
638 {
639 target I sReached = true ;
640 stop () ;
641 reqPoint . s t a tu s = true ;
642 prevPoint . h int = reqPoint . h int ;
643 t a r g e t s t a tu s pub . pub l i sh (reqPoint) ;
644 procPointHint = reqPoint . h int ;
645 }
646 }

262

647 }
648 }
649
650 //a method to receive global position of the robot.

651 void ReachPoint : : worldPoseCal lback
652 (const nav msgs : : Odometry : : ConstPtr &wor ld pose)
653 {
654 currentGloba l . x = world pose−>pose . pose . p o s i t i o n . x ;
655 currentGloba l . y = world pose−>pose . pose . p o s i t i o n . y ;
656
657 currentGloba l . theta = Rad2Deg ∗
658 t f : : getYaw(world pose−>pose . pose . o r i e n t a t i o n) ;
659 }
660 //a method to receive target coordinates.

661 void ReachPoint : : t a rge tCa l lback
662 (const p l o u gh i n g r e v e r s i b l e : : ReachPoint : : ConstPtr &ta rg e t)
663 {
664 //keeping record of the requested target

665 reqPoint . po int . x = target−>po int . x ;
666 reqPoint . po int . y = target−>po int . y ;
667 reqPoint . h int = target−>hint ;
668 reqPoint . s t a tu s = target−>s t a tu s ;
669 //loading the target

670 requestedTarget . x = target−>po int . x ;
671 requestedTarget . y = target−>po int . y ;
672
673 if (reqPoint . h int . compare ("ab1") == 0)
674 {
675 df = 1 . 5 ;
676 d l = 0 . 5 ;
677 dr = 1 . 5 ;
678 }
679 else if (reqPoint . h int . compare ("ab1-adjust") == 0)
680 {
681 df = 3 . 0 ;
682 d l = 1 . 0 ;
683 dr = 3 . 0 ;
684 }
685 else if (reqPoint . h int . compare ("ab") == 0)
686 {
687 df = 0 . 5 ;
688 d l = 0 . 0 ;
689 dr = 0 . 0 ;
690 }
691 else if (reqPoint . h int . compare ("cd") == 0)
692 {
693 df = 1 . 0 ;
694 d l = 0 . 0 ;
695 dr = 0 . 0 ;
696 }
697 else if (reqPoint . h int . compare ("ab1-left") == 0
698 | | reqPoint . h int . compare ("done") == 0)
699 {
700 df = 1 . 0 ;
701 d l = 0 . 5 ;
702 dr = 0 . 7 5 ;
703 }
704 target I sReached = false ;
705 head ingI sCorrec ted = false ;
706 }

263

707
708 void stop (void)
709 {
710 ve l . l i n e a r . x = 0 . 0 ;
711 ve l . l i n e a r . y = 0 . 0 ;
712 ve l . l i n e a r . z = 0 . 0 ;
713 ve l . angular . x = 0 . 0 ;
714 ve l . angular . y = 0 . 0 ;
715 ve l . angular . z = 0 . 0 ;
716 ve l pub . pub l i sh (ve l) ;
717 }
718 int main (int argc , char∗∗ argv)
719 {
720 ros : : i n i t (argc , argv , "reach_point") ;
721 ReachPoint rp ;
722 srand (time (NULL)) ;
723 ros : : sp in () ;
724 return 0 ;
725 }

264

Glossary

A:
————————
α A unique point outside of the field. Point of entrance
APF Artificial Potential Field

D:
————————
df distance between two consecutive furrow
distpl Required ploughing distance
distft Required furrow transitioning distance
Dpl Total ploughing distance
Dft Total furrow transitioning distance
dstage1 Travel distance in stage 1
dstage2 Travel distance in stage 2
dstage3 Travel distance in stage 3
dstage4 Travel distance in stage 4
dαl1 Distance between α and the first track (spraying)
dlj−1lj Distance between two consecutive track locations (spraying)

E:
————————
ε Collision Threshold Distance

F:
————————
FR FRONT REGION
Fsum Sum Force
Fatt Attraction Force
Frep Repulsion Force

G:
————————
Γ Detecting Range of a robot
Gi Set of location ids allocated to robot i

H:
————————
H Headland Width
h1, h2 Headland width in each side

K:

265

————————
K Number of ploughing locations

L:
————————
L Length of the field
λ Robot’s Length
lf length of a single furrow
LR LEFT REGION

M:
————————
m the last track number assigned to previous robots (spraying)

N:
————————
nopt Optimum number of robots in the team (spraying)

P:
————————
PC Ploughing Cost

R:
————————
Regionn number of regions in the field (spraying)
ri the i’th robot
RR RIGHT REGION

T:
————————
τinit constant time to perceive task initiation event (spraying)
τpn Ploughing delay time
tdelay Field accessing delay time
tp Single furrow ploughing time for a single furrow
Tp Total ploughing time
Tploughing Team ploughing time
tsi Standby period for robot i (spraying)
tsprayingi refers to spraying time for robot i (spraying)
tta Task allocation period for robot i (spraying)

U:
————————
U(q) Potential Function
Uatt(q) Attraction Potential Function
Urep(q) Repulsion Potential Function

V:
————————
v Robot’s Velocity

266

W:
————————
W Width of the field
wf Width of a single furrow

267

	Contents
	List of Figures
	List of Tables
	AGRICULTURE AND ROBOTICS: TRENDS AND CHALLENGES
	Agriculture: Everlasting Tension
	Agriculture: Current Trends and Methods
	Mechanisation
	Precision Farming
	Multi Robot Approach

	Research Question, Aim and Objectives
	Thesis Contribution
	Thesis Layout
	Research Location

	LITERATURE REVIEW
	From Multi Agent System to Multi Robot System
	Multi Robot System
	Application Domain of Multi Robot System
	Foraging
	Area Coverage and Exploration
	Multi-Target Observation
	Object Transportation
	Flocking
	Soccer

	Team Characteristics
	Control Structure
	Differentiation
	Communication Structure
	Representative Architecture

	Main Questions in Multi Robot System
	Task Partitioning and Allocation
	Coordination
	Congestion Avoidance and Clearance

	Cooperative Farming: Review and Analysis
	Agricultural Tasks
	Analysis of the Related Works
	The Problem of Localisation in Agricultural Robotics

	Conclusion

	COOPERATIVE PLOUGHING: DESIGN AND IMPLEMENTATION
	Ploughing Analysis
	Ploughing Patterns
	Ploughing Restrictions
	Ploughing Mouldboards and Furrow Transitioning
	Ploughing Cost

	Design Requirements and Considerations
	Interaction Model
	Furrow Detection
	Vision Based Furrow Detection
	Accuracy of the Vision Based Furrow Detection

	Points of Failure
	Congestion Clearance
	Spatial Resource Conflict
	Proposed Solution to Spatial Resource Conflict
	Collision Avoidance

	Challenges in Obstacle Detection Implementation
	Differentiation between other team members and the rest of the obstacles in the environment
	Entering the Field due to Collision Avoidance
	Combination of Collision and Congestion Avoidance

	Team Ploughing
	Furrow Transitioning
	Ploughing with a Reversible Mouldboard: First-In, First-Out
	Ploughing with a Reversible Mouldboard: Last-In, First-Out
	Comparison and Discussion

	Ploughing Optimisation
	Issues with FIFO and LIFO
	Toward Self-Organising Ploughing

	Conclusion

	COOPERATIVE SPRAYING: DESIGN AND IMPLEMENTATION
	Motivation Behind Further Investigation
	Spraying Analysis
	Single Robotic Sprayer

	Cooperative Spraying: Design Description
	Task Partitioning Analysis
	Task Allocation Analysis
	Task Initiation Analysis
	Spraying Time Analysis
	Design Limitations

	Implementation and Testing
	Mathematical Results
	Simulation Results

	System Optimisation
	Dynamic vs Static Checkpoints
	Optimum Team
	Large Team and Fewer Checkpoints

	Conclusion
	Critiques and Future Work

	Discussions, Conclusions and Future Works
	Research Recap
	Region-based vs Self-organised, FIFO, LIFO
	Execution Time Comparison
	Scalability, Flexibility and the Required Coordination
	Resilience Toward Failure

	Application Scope
	Seeding
	Harvesting
	Multi-Robotic De-mining and Mine Field Mapping
	Cooperative Beacon Distribution

	Conclusion and Future Directions of Research
	Recovering from Failure During Task Execution
	Hybrid Approaches

	References
	Appendix Spraying Optimum Team Size
	Appendix C++ Code for Artificial Potential Field Using ROS
	Appendix C++ Code for Cluster Class
	Appendix C++ Code for Cluster Finding
	Appendix C++ Code for Chilitag Fiducial Finding
	Appendix C++ Code for Color-based Pattern Recognition
	Appendix C++ Code for FIFO Task Handler
	Appendix C++ Code for LIFO Task Handler
	Appendix C++ Code for Self-organised Task Handler
	Appendix C++ Code for Region-based Task Handler Using ROS
	Appendix C++ Code for Reach Point Using ROS

