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Abstract

Emulsions are found throughout various industries including oil extraction, biologi-
cal materials, and food products such as milk, condiments, and spreads. The study
of their rheology is therefore important due to its impact on manufacturing efficiency
and end product desirability. A key rheological measure is the emulsion viscosity,
the fluid’s resistance to flow, which affects the power required in production as well
as the taste and texture. An emulsion’s viscosity displays complex behaviour due
to the droplet interfaces and interactions. Similarly, the sheared self-diffusion coeffi-
cient measures the amount of movement the droplets exhibit, due to the interactions
between droplets.

The presented mesoscopic lattice-Boltzmann models allow for these macroscopic
properties to emerge from the simulations due to the explicit modelling of the
droplets. A continuous surface force is applied to the lattice fluids to model droplet
interfaces. The model is implemented in such a way as to allow the simulation of
hundreds of droplets with limited computing power.

The model is initially applied to a pipe flow, with the development of a pressure
boundary condition. Boundary effects from the solid walls require their removal,
using Lees-Edwards boundary conditions to represent bulk flow in a sheared system.
The boundary conditions are extended to the multi-component flow, which allowed
simulations to provide results for various emulsion systems with varying droplet
concentrations, surface tensions, viscosity ratios, and shear rates. Trends and results
from experimental and theoretical literature are recovered and constitutive models
of emulsion viscosity have been evaluated. The agreement of these two dimensional
lattice-Boltzmann models with three dimensional experimental results shows the
usefulness of the method. The structure of the droplets and clustering behaviour
they exhibit are examined and compared to solid particle suspension literature.
Finally, the model is used in exploratory simulations to examine the effect of droplet
bidispersity on the macroscopic properties; the witnessed effect agrees well with solid
suspension literature.

This mesoscopic model will allow for phenomenon on this scale to be more easily
studied and may provide more accurate information for multi-scale analysis.
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Chapter 1

Introduction

The flow of fluids has been studied for many hundreds of years. Even without
studying such a topic, it would impact our lives constantly: from drawing air into
our lungs, to pumping blood around our bodies. Rheology is then a critical area to
understand.

A key component of rheology is the viscosity of fluids; how much a fluid re-
sists flowing under stress [5]. Newtonian fluids, such as liquids and gases, behave
consistently independent of the applied stress.

However, we are frequently interacting with complex fluids; neither wholly liquid
nor gas, but may be a combination of these, as well as solids. Emulsions are a class of
complex fluids which are made up of liquid droplets dispersed through another liquid
component. The viscosity of such a fluid becomes dependent on many variables:
the concentration and size of the dispersed droplets, the density and viscosity ratios
between the suspended and suspending fluids, as well as interfacial tension between
the fluids, to name a few variables. Fig. 1.1 shows the predicted effect of increasing
the droplet concentration from a range of theoretical and empirical models; as a
greater concentration of droplets are introduced into the system, the fluid becomes
much more resistant to flow.

The interfaces and interactions between emulsion droplets result in complex be-
haviour described as non-Newtonian. The non-Newtonian behaviour of an emulsion
can present itself in various forms, but in essence it is the variability of viscosity under
stress. One of the most significant aspects of non-Newtonian viscosity—particularly
for emulsions—is a shear-thinning behaviour, which means the fluid’s viscosity de-
creases when it is sheared more. Notably, in food condiments, an emulsion may
remain stationary (on your plate or food) until forced to flow or spread.

Conversely, shear-thickening can also be present in emulsions; shear-thickening
means a fluid gets more resistive the more it is sheared. This can be due to the
agglomeration or clustering of its constituents, making it harder for the surrounding
fluid to flow.

The change in the microstructure of a suspension (solid particles dispersed in a
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Figure 1.1: The viscosity of an emulsion, predicted by models [6, 7, 8] for a range
of droplet concentrations.
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Figure 1.2: Reproduced from Wagner and Brady (2009) [9], with the permission
of the American Institute of Physics. The viscosity of a complex fluid varying with
the shear rate. At the top are overviews showing the microstructure of the fluid,
and below is the effect on the fluid viscosity. An increase in the shear rate results
in the fluid leaving the Newtonian regime and exhibiting shear thinning due to the
alignment of particles. A further increase can then make suspended particles start
to cluster, restricting the fluid flow and increasing the viscosity.

liquid) is visible in Fig. 1.2, showing changes due to the shear rate and the resulting
effect on the viscosity. Both shear thinning and shear thickening can be seen for the
same fluid in different ranges of the shear rate.

These behaviours, and even Newtonian viscosity, are important to various indus-
tries. Many food products such as mayonnaise and milk are emulsions, or may be
modelled as such. Key characteristics like the taste and texture may be determined
and controlled by the emulsion viscosity. The end product is therefore highly de-
pendant on the structure of the fluid. The concentration of the dispersed phase, the
viscosity ratio between the phases, the size of the dispersed particles or droplets,
are all factors that will determine the quality of the end product and customer
experience.

In other industries such as manufacturing or oil extraction, the viscosity of a
fluid being pumped through pipes is a vital measurement to get right. The viscosity
controls how much power is required to transport the fluid, with a more viscous
fluid requiring more powerful pumps. With non-Newtonian behaviours also present,
predicting the transport requirements can be a complex procedure.

3
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Numerical models of fluid viscosity have been under development for a cen-
tury [10, 6], with computer simulations entering the area more recently. Models
of complex, non-Newtonian behaviour have also been presented, but mostly from a
macroscopic perspective [11, 12]. These models must, by definition, make assump-
tions about the underlying structure of the fluid; they will be outlined and discussed
in Chapter 2.1.

Such macroscopic models fit themselves within the overarching equation of fluid
motion, the Navier-Stokes equation: [13]

∂u
∂t

+ (u · ∇) u = − 1
ρ
∇p+ η∇2u + g , (1.1)

where u is the fluid velocity, ρ is the fluid density, p is the fluid pressure, η is
the fluid viscosity, and g is an external force on the fluid (i.e. gravity). This
equation governs the flow of all fluid, from blood flow within veins to interstellar
gases flowing around the galaxy. The viscosity, η , can be constant, for a Newtonian
fluid, or a macroscopic model can be used to describe any effects by the shear
rate or droplet concentration. Numerical methods can, in some cases, solve this
system of non-linear partial differential equations to find the velocity field for a
given system. Such methods can be highly complex and computationally expensive,
fortunately dimensionless numbers and the law of similarities allow for the solution
to a non-dimensional system to be applicable to any scale of system. For example,
the simulations contained in Chapter 5 have droplets with radius 21 grid spaces.
If each grid space is decided to represent 1µm then the droplets have radius 21um
(with all other simulation parameters then being calculable from this ratio), however
the choice is free to be made.

As well as viscosity, the measurement of the sheared self-diffusion provides in-
sight into the droplet behaviour. The sheared self-diffusion coefficient measures the
movement of droplets due to the interaction with other droplets, i.e. the movement
perpendicular to the flow direction. Studying this behaviour on the scale of droplets
can provide an understanding of transport processes associated with the fluid. For
example, the dispersion of medicinal drugs in flowing blood will be impacted by the
diffusion happening within the fluid. Additionally, the diffusion and migration of
droplets may provide insight into how inclusions such as emulsion droplets can be
passively filtered (smaller droplets may be pushed to the boundaries, allowing them
to be filtered by the geometry of the system, for example).

In Chapter 2 of this thesis, models of viscosity will be described and models
using the lattice-Boltzmann method (LBM) relevant to emulsion rheology will be
discussed. Chapter 3 details and validates a lattice-Boltzmann model of emulsion
flow. This model is then firstly applied to a pipe flow with an analytic solution
in Chapter 4. To escape boundary issues from the solid walls, the method is then
applied to the bulk flow of emulsions in Chapter 5, which forms the majority of

4
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the reported rheological data. The results, including measures of relative viscosity,
sheared self-diffusion coefficient, and average droplet deformation, will be discussed
and compared to macroscopic models. Chapter 6 displays the structure of the fluid
droplets and the clustering behaviours witnessed. Having been applied to monodis-
perse emulsions throughout the previous sections, a subset of results are gathered for
bidisperse emulsions in Chapter 7. The conclusions of the thesis are in Chapter 8, as
well as an outline of possible future work. Appendix A provides a Chapman Enskog
analysis of the method in Chapter 3. Finally, Appendix B provides a table of videos
from the simulations carried out in this thesis.

1.1 Aims and Objectives

The intention of this thesis is to present a model of emulsion flow at the mesoscopic
scale, that explicitly models the droplets in the fluid structure. The aims and
objectives of this thesis break down as follows:

• Develop computer simulations to model the bulk flow of concentrated, explicit
emulsion droplets.

– Develop a model capable of simulating emulsion droplet flow. The droplet
and interface should be resolved appropriately. The model should be able
to drive the fluid at a wide range of shear rates.

– Extend the model to allow for concentrated emulsions. This is likely
to require multiple droplets to be modelled, so the model must support
this. The droplets should not coalesce and the model must allow for the
simulation of monodisperse emulsions to simplify the parameter space,
also allowing enabling comparisons to macroscopic models.

– The flow should be free from boundary effects, in order to take measure-
ments of the bulk fluid.

– The possibility of modelling emulsions that aren’t monodisperse should
be considered.

• Obtain rheological data from said models that can be compared to and enhance
experimental results.

– The viscosity of the emulsion should be measurable and comparable to
existing experimental results as well as macroscopic models.

– The applicability of existing macroscopic models should be explored—
how well can they represent such a fluid?

– Consider the possibility of using macroscopic models to conduct multi-
scale analysis of the fluid.

5



CHAPTER 1. INTRODUCTION

– Droplet behaviour, such as the sheared self-diffusion and deformation
should be measured.

– The microstructure of the fluid should be examined.

6



Chapter 2

Background

2.1 Emulsion Rheology

The aim of this chapter is to provide context for the models developed in Chapter 3.
Existing macroscopic equations are detailed—some theoretical and some empirical—
which may allow us to better describe the fluids or trends. Some of these models
are exact results, so they may supply validations for new techniques. Addition-
ally, current meso-scale methods are described which may compare or contrast with
Chapter 3.

Firstly, however, experimental measurements are an important part of validating
simulation results. A brief description of these methods is provided so these mea-
surements can be confidently used later. Various types of viscometers or rheometers
can determine a fluid’s viscosity; a proper description of non-Newtonian fluids will
require the flexibility of rheometers. There are just a few types of rheometers, and
some are more relevant here than others. Concentric cylinder rheometers, for ex-
ample, place the fluid between a cylinder forced to rotate and a cylinder that has
its rotation measured; the force that the fluid exerts on the free cylinder can then
be measured. The fluid sample undergoes a simple shear in a geometry that can
be closely approximated by computer simulation. Changing the speed of the ro-
tating cylinder allows the user to control the shear rate within the system; several
measurements can then be taken which describe the non-Newtonian fluid.

Some macroscopic models aim to convey this change in viscosity with the shear
rate [14, 15], whilst others focus on the material properties [6, 16]. Descriptions of
various models are provided below.

2.1.1 Suspension Models

Einstein [10] laid the foundation for viscosity modelling in 1906 when he determined
that the effective viscosity of a dilute suspension is:

ηeff = η0 (1 + 2.5φ) , (2.1)

7



CHAPTER 2. BACKGROUND

where η0 is the viscosity of the suspending fluid and φ is the volume fraction (concen-
tration) of the suspended particles. Specifically, this models a suspension with solid,
non-deforming, spherical particles. Whilst emulsion “particles” are liquid droplets
that may deform, this model remains relevant due to the impact it had as a starting
point for other models. Additionally, solid particle models may be able to describe
similar trends to emulsion data, but they should be used cautiously [17]. However,
the major limitation in this model is the very dilute concentration requirement, i.e.
the suspension is so dilute (< 2% concentration) that the particles have negligible
effect on each other.

Mooney [18] extends the model to finite concentrations, positing a crowding fac-
tor that affects the emulsion viscosity. The theory is limited to first order interactions
only, taking into account just the geometric crowding.

Considering the approach of adding particles in two stages and using Einstein’s
equation as the limit of zero concentration, Mooney determines the relative viscosity
of a monodisperse suspension to be:

ηr = ηeff
η0

= exp
(

2.5φ
1− kφ

)
, (2.2)

where k is a crowding factor, more recently described as a maximum packing fraction
φm = 1

k
. This maximum packing fraction imposes the upper limit whereby ηr →∞

as φ→ φm. The value of φm depends on the particles, but is in the region of 0.63–
0.74 for spherical particles. For practical purposes, both φm and the 2.5 may be used
to fit the model; the value 2.5 often chosen to follow Einstein in the spherical limit.
This model fits a variety of experimental data on suspensions and emulsions [4] with
modest concentrations. Fig. 2.1 shows a comparison of different methods, with (2.2)
being the most accurate, on average, for a range of emulsions.

The Krieger-Dougherty (KD) [16] model uses the same max packing fraction
concept:

ηr =
(

1− φ

φm

)−2.5φm

, (2.3)

however, using a power rather than exponential function. Through this choice, the
mathematical limits are more physically consistent [19] and a widely used viscosity
model was created.

Bian [20] uses smooth particle hydrodynamics—discussed in Section 2.1.4—to
simulate particulate flow and shows that the KD model fits well. This is especially
true as the channel gap is widened, i.e. the suspension is less confined. Whilst
describing a new theoretical model, Brady [21] shows KD in excellent agreement
with experimental results of van der Werff and de Kruif [22].

Similarly, Eilers [23] developed an empirical model including a max packing

8
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Figure 2.1: Reproduced from Pajouhandeh et al. [4] The average absolute percent-
age relative error between the various models for a variety of emulsions.

fraction:

ηr =
1 + 1.25φ

1− φ
φm

2

, (2.4)

which captures Einstein’s limit at low concentrations and increases to a singularity
when φ = φm .

Bicerano et al. [24] develop another hard-sphere model of a different form:

ηr =
(

1− φ

φm

)−2
1− 0.4

(
φ

φm

)
+ 0.34

(
φ

φm

)2
 . (2.5)

This model again uses the max-packing concept to impose an upper limit that
may be dependant upon particle shape, size, and distribution. By allowing φm to
vary with the Peclet Number, the model can become applicable to non-zero-shear
regimes [25]. These models compare well with experimental results, with (2.3) and
(2.5) showing wide applicability [26, 27].

2.1.2 Emulsion Models

The aforementioned models have all assumed the suspended material is solid, whereas
Taylor [6] extended Einstein’s model to include a viscosity ratio; enabling a flow in-
side the droplet. By assuming: the droplets are small enough that surface tension
will keep them spherical, there is no slipping on the surface, and the stress tangential
to the surface is continuous, Taylor estimates that the effective emulsion viscosity

9
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is:
ηr = 1 + 2.5φ

(
η1 + 2

5η0

η1 + η0

)
, (2.6)

where η0 and η1 are the viscosities of the suspending and suspended fluids respec-
tively and φ is the concentration of the suspended fluid in the emulsion. This model
also inherits the assumption from Einstein’s work that there is a very low concen-
tration of particles/droplets.

Taylor’s model, like Einstein’s, is exact when the assumptions are met and is
shown to be accurate in its target regime (low Reynolds and Capillary numbers) [3],
however this is of limited applicability in real emulsion systems; droplets are likely
to get deformed and/or concentrated emulsions may be required.

Yaron and Gal-Or [7] use a cell model, whereby the random placement and
movement of concentrated droplets means that a statistical average velocity profile
around the average drop can be calculated. The velocity profile is then used to
calculate energy dissipation and thus the viscosity:

ηr = 1 + φ

 5.5
[
4φ 7

3 + 10− 84
11φ

2
3 + 4

K

(
1− φ 7

3
)]

10
(
1− φ 10

3
)
− 25φ

(
1− φ 4

3
)

+ 10
K

(1− φ)
(
1− φ 7

3
)
 , (2.7)

Where K = η1
η0

is the viscosity ratio between the suspended and suspending fluid.
This model is valid only for a low capillary number.

Choi and Schowalter [8] also use a cell model, however the model incorporates
droplet deformability. Their viscosity model:

ηr = 1 + φ

 2
[
(5K + 2)− 5 (K − 1)φ 7

3
]

4 (K + 1)− 5 (5K + 2)φ+ 42Kφ 5
3 − 5 (5K − 2)φ 7

3 + 4 (K − 1)φ 10
3


(2.8)

is said to be one of the most precise at representing a water-in-oil emulsion by
Pajouhandeh et al. [4]; confusingly the average error is reported to be one of the
highest. At the zero concentration limit, this model reduces to the Taylor equation,
which is an improvement for physical realism over (2.7). Nonetheless, this model is
shown to over-predict viscosity and (2.7) is shown to be more accurate in [28, 29],
where various oil-in-water and water-in-oil emulsions are considered.

2.1.3 Non-Newtonian Models (Shear-Dependence)

Another class of viscosity models aim to describe the shear-dependant behaviour
of non-Newtonian fluids. Models in the previous sections have been focussed on
the material properties and how this affects viscosity, ignoring inertial effects by
using low Capillary and Reynolds number assumptions. It is almost the opposite
for models in this section. The material under flow is modelled, incorporating the
effect that shearing has on the material.

10
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Ostwald [30] and de Waele [31] independently described this relationship using
the power law:

ηeff = kγ̇(n−1) , (2.9)

where k is a consistency index, γ̇ is the shear rate, and n is the flow index. k

and n are frequently used as fitting parameters, however they do have physical
links: the consistency index is the viscosity of the fluid at zero shear, whilst the
flow index describes the shear-dependant behaviour that is seen. A flow index of 1
indicates Newtonian behaviour and no dependence on the shear rate. A flow index
greater than 1 indicates a dilatant fluid where the fluid becomes more viscous with
increasing shear. Finally, a flow index below 1 describes a pseudoplastic fluid that
exhibits shear-thinning behaviour.

Clearly, this model can be applied across various non-Newtonian behaviour, how-
ever the shear thinning regime (n < 1) is most applicable to emulsions.

Herschel and Bulkley [14] proposed their successful viscosity model that intro-
duced a yield stress into the power law model:

ηeff = kγ̇n−1 + τ0

γ̇
, (2.10)

ηeff =

η0, γ̇ ≤ γ̇0

kγ̇n−1 + τ0γ̇
−1, γ̇ ≥ γ̇0

, (2.11)

ηr =

1, γ̇ ≤ γ̇0

kγ̇n−1

η0
+ τ0γ̇−1

η0
, γ̇ ≥ γ̇0

, (2.12)

where τ0 is yield stress.
Casson [15] also developed a model with yield stress, initially for printer inks,

which has been widely adopted for modelling chocolate:

ηeff = η0 +
2√η0τ0√

γ̇
+ τ0

γ̇
(2.13)

ηr = 1 + 2√τ0√
η0γ̇

+ τ0

η0γ̇
(2.14)

Both equations (2.12) and (2.14) are shown to represent shear thinning behaviour
of food products very well [32]. A plot of the above non-Newtonian models is visible
in Fig. 2.2. Whilst the power-law model produces a straight line on a log-log plot,
indicating the shear thinning behaviour is consistent, the other two models produce
a curve, proposing that the shear-thinning lessens at higher shear rates. The Casson
model in particular converges on a viscosity at higher shear, once the yield stress of
the fluid has been overcome.

Four-parameter models have been developed which aim to represent the viscosity
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Figure 2.2: The effective viscosity of a fluid, predicted by non-Newtonian models for
a range of shear rates. The red and green lines are the power-law model of (2.9), the
blue line is the Casson model of (2.14), and the yellow line is the Herschel-Bulkley
model of (2.12). All the lines are showing shear thinning behaviour, with varying
model parameters. The consistency index, k, is set to 1 for all the models and lines.
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over a full range of shear rates, capturing both zero-shear and infinite-shear limits
of viscosity. One such model is the Cross model [11]:

ηeff − η∞
ηz − η∞

= 1
1 + (λγ̇)m , (2.15)

where ηz is the zero-shear viscosity limit, η∞ is the infinite-shear viscosity limit, λ
is related to the shear rate at which the viscosity leaves the Newtonian zero-shear
regime, and m is power-index similar—but not identical to—the power-law flow
index. The power index is limited to 0 ≤ m ≤ 1 , whereby a value of 0 indicates
Newtonian behaviour and values closer to 1 show a viscosity that is increasingly
dependent on the shear rate.

A similar four-parameter model is the Carreau-Yasuda model [12, 33]:

ηeff − η∞
ηz − η∞

= 1
[1 + (λγ̇)a]

1−n
a

, (2.16)

whereby a is often taken as 2 (making it a four-parameter model), and n is another
power index. Both of these models split the viscosity-shear equation into three
stages: a Newtonian zero-shear regime, a shear-thinning regime, and a Newtonian
infinite-shear regime [34]. Álvarez et al. [35] conducted a study of the viscosity of
various jams. Each of the presented non-Newtonian models were used (except the
Casson model) to understand the relationship between the temperature and the
viscosity of the jams. The authors find that all of the models provide an excellent
fit, with the parameters to shift as expected as the temperature changes.

These non-Newtonian models are all mathematically constructed equations, un-
like some of the theoretical models of previous sections. Whilst clearly allowing the
characterisation of flows, the dimensionality of the equations is sometimes complex;
often the shear rate is raised to a power, making the units of viscosity less clear.

With material properties such as concentration and viscosity contrast absent
from these models, they work well to characterise fluid flow data but not necessarily
predict how a given fluid will flow, i.e. tests and fits must first be done to provide
a curve for a fluid.

2.1.4 Meso-scale models

Detailed above are constitutive models that can describe the effect of changes in
material properties on the viscosity of a fluid at near-zero shear, as well as models
that can characterise fluid flow where viscosity varies with the shear rate. These
are macroscopic models since they focus on the time and length scales relevant to
industry and abstract away much of the microscopic physics. By looking at the meso-
scale, where the fluid structure can be modelled along with the flow, it’s possible
to get a more accurate picture of how different parameters interact and study more
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phenomena.
At this scale, above molecular dynamics but below traditional computational

fluid dynamics, there are a few methods capable of modelling droplet flow. Lattice-
Boltzmann methods, utilising several multi-phase models, are popular and develop-
ing rapidly. This method and the models built upon will be detailed in Section 2.2.

Loewenberg and Hinch [36] use the boundary-integral method to study the de-
formation of droplets in a sheared flow. Whilst limited to a droplet concentration
of less than 30%, this work is one of the first attempts to simulate a non-dilute
emulsion in order to understand the effect of the microstructure on the macroscopic
properties. Their method’s computational costs scale heavily with the number of
droplets and the number of elements used to make up the droplet surface. The model
does not allow for the breakup and coalescence of droplets. They limit the number
of droplets per unit-cell to 12, which is said to have been sufficient in convergence
tests. Their simulations then show increasing deformation with increasing capillary
number. As noted, the high deformation and alignment to the flow decreases the
collision cross-section, hence allowing the droplets to slip past each other more eas-
ily. This behaviour results in a decreased viscosity with increased shear, i.e. shear
thinning, which is expected due to theory [14, 15] and experiments [28]. However,
whilst in qualitative agreement, no quantitative comparisons are made.

Dissipative particle dynamics (DPD) [37] is another method that has been em-
ployed to model complex fluid flows [38]. Single-phase models of complex flow have
been developed [39], with multi-phase models more recently [40]. The multi-phase
models focus on true multi-phase, i.e. liquid-gas, rather than liquid-liquid emulsions.
The particle-based nature of the method is less efficient than grid-based techniques
like lattice-Boltzmann and level-set, which may limit the physical scale that an
emulsion model could realistically reach.

Similarly, smooth particle hydrodynamics (SPH) is an established particle-based
method, whereby the particles are replaced with smooth, curved functions, and a
continuous field is made up of the superposition of all discrete functions [41]. SPH
models are capable of multi-phase simulations by labelling particles and adjusting
the interaction force accordingly [42]. As with DPD, the scale of SPH simulations
may be limited by the particle-based fundamentals. These models are most appro-
priate for studying open flows as the introduction of boundaries is complex.

Finally, continuous surface stress models using the level-set method are able to
describe liquid droplet behaviour [43]. This method has been developed to model
multiple droplets, describing their deformation and viscosity in a shear flow. This
author is unaware of any thorough evaluation of this method against theoretical
and empirical models. Kim and Hwang [44] show the method is able to reproduce a
variety of droplet systems, with varying viscosity ratios and capillary numbers. The
accuracy of the results is only explored so-far as to say that the trends in viscosity
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agree with the models of Taylor [6] and Pal [45].
Coupling this with the volume-of-fluid method, Kagawa et al. [46] were able to

study the permeation of an emulsion through a pore. By adjusting the wettability
and size of the pore, they showed differing amounts of droplet coalescence during and
after traversing the pore. This method was again restricted to just a few droplets,
though it seems possible this could be used to study concentrated sheared flow.

2.1.5 Sheared Self-Diffusion

Whilst the above models focus on viscosity, another key rheological property to
complete a macroscopic model [47] is the diffusion in the fluid. This can be in
various forms, for example small particles will diffuse due to Brownian motion in all
directions. However, since this movement will be overwhelmed by the shearing of the
fluid the focus here is on the sheared self-diffusion—the movement of the particles
perpendicular to the shear direction as a result of the hydrodynamics (rather than
thermal fluctuations, for example). Note that the size of emulsion droplets means
that the effect of Brownian motion is expected to be minimal [48].

In the lab, it has recently become possible to measure the movement of particles
in a suspension [49, 50]. The fluid is doped with tracer particles, which may be
visible due to refractive index mismatching. Optical tweezers and lasers can be
used to trap the tracer particle and to keep track of its location. The diffusion
and microviscosity can then be extracted from the movement of the tracer particle.
As Wilson et al. show [49], this method is capable of obtaining data in line with
literature and other methods. Note, however, the application to solid suspended
particles; the technique has not yet been used to get measurements of emulsions.
The introduction of solid tracer particles into an emulsion may impact the rheology
too significantly. Though as optical tweezers can be used on emulsion droplets, solid
tracer particles may not be required and image analysis of emulsion diffusion may
be possible in the future.

Simulations tend to have easier access to this data because they usually know the
position of the suspended particles. This removes the need for a tracer particle and
allows system-wide averages to increase precision. Sierou and Brady [51] do exactly
this with accelerated Stokesian dynamics simulations. With 1000 particles being
tracked in the simulation, the sheared self-diffusion with respect to the suspension
concentration recovers results close to other simulated and experimental measure-
ments. There has yet to be development of macroscopic models for the self-diffusion
of emulsions.
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2.2 Lattice-Boltzmann

The lattice-Boltzmann method (LBM) uses a probability distribution on a grid of
nodes, each connected to their neighbours using discrete velocities, where each of
the connecting links carries a probability of finding a fluid particle travelling along
the link [52]. fi (x, t) represents this probability, where x is the node, t is the
timestep, and i is the direction of travel. The discrete velocities, ci, are such that
a probability travels between neighbours in exactly one timestep; see Fig. 2.3 for
a diagram and table of the velocities. The standard lattice-Boltzmann algorithm
repeats two distinct stages: propagation and collision. A properly specified LBM
can provide a solution to the Navier-Stokes equation of fluid flow [53, 52]

i x y Length
0 0 0 0
1 1 0 1
2 0 1 1
3 -1 0 1
4 0 -1 1
5 1 1

√
2

6 -1 1
√

2
7 -1 -1

√
2

8 1 -1
√

2

Figure 2.3: An example of velocities for a two dimensional, nine link lattice (D2Q9).
Other layouts may be chosen, but these are the velocities used throughout this work.
Links 1-4 are short links whilst 5-8 are long links.

During propagation the probabilities are moved along to their neighbours:

fi(x + ci∆t, t+ ∆t) = f †i (x, t), (2.17)

where f †i is the post-collision distribution, ∆t is the time interval and hence ci∆t is
the vector to the neighbour node in the ith direction.

The collision is then calculated as:

f †i (x, t) = fi(x, t)−
1
τ

[fi(x, t)− f eqi (x,u, ρ, t)] , (2.18)

where τ is the relaxation to equilibrium time and f eqi is the equilibrium distribution
value defined as:

f
(eq)
i (x,u, ρ, t) = tiρ

[
1 + u · ci

c2
s

+ (u · ci)2

2c4
s

− u2

2c2
s

]
, (2.19)
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where ti are the link weights (detailed shortly), ρ is the fluid density at x, u is the
fluid velocity at x, and cs is the speed of sound in the fluid. The link weights, ti,
and sound speed, cs, are specific to the lattice used (D2Q9 in this case); the weights
are selected such that its moments satisfy several symmetry and isotropy conditions
and are as follows:

ti =


4
9 i = 0,
1
9 i = 1, 2, 3, 4 (short links),
1
36 i = 5, 6, 7, 8 (long links),

(2.20)

whilst the sound speed is cs = 1√
3 .

Now, by taking moments of the distribution, several macroscopic properties are
recovered:

ρ =
∑
i

fi, (2.21)

ρuα =
∑
i

ciαfi, (2.22)

Παβ =
∑
i

ciαciβfi. (2.23)

The 0th moment provides the total fluid density at the node by summing all the
distribution values. The 1st moment returns the local fluid momentum and the 2nd

moment recovers the momentum flux.
Combining the propagation and collision provides a lattice-Boltzmann evolution

equation that describes the algorithm carried out at each timestep:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = 1
τ

[
f
(eq)
i (x,u, ρ, t)− fi(x, t)

]
. (2.24)

The above algorithm is frequently referred to as the lattice-Bhatnagar-Gross-
Krook (LBGK) method and may be seen as the starting point for current lattice-
Boltzmann development. This method was introduced in the early 1990s by Qian et
al. [54] and Chen et al. [55]. Qian et al. proposed the method as a way of removing
the disadvantages—poor isotropy and lack of Galilean invariance—of the previous
discrete lattice-gas models by using a relaxation method as the collision term:

Ni(t+ 1,x + ci) = (1− ω)Ni(t,x) + ωNie(t,x), (2.25)

which can be seen as equivalent to (2.24), whilst equilibrium equation (2.19) is also
proposed by Qian [56]. The authors also suggest link weights, ti, that ensure lattice
isotropy and Galilean invariance for various lattices, including D2Q9.

One of the major changes that LBGK models introduced was the single relax-
ation time, ω or 1

τ
, as opposed to the collision matrices of previous methods. This
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results in a much simpler algorithm and greater computing efficiency, but also im-
poses restrictions like the fixed ratio of kinematic and bulk viscosity. Whilst the
collision matrix was previously responsible for ensuring the conservation of physical
quantities, the single relaxation time cannot achieve this, thus the local distribution
equilibrium is used to impose conservation:

∑
i

f eqi =
∑
i

fi = ρ. (2.26)

This means much less tolerance of fluctuations from equilibrium so we are restricted
to smaller force terms. Whilst this is manageable and suitable for some applications,
it is possible to loosen this requirement by splitting the relaxation into two.

Ginzburg [57] introduced this by performing the collision on symmetric, s, and
anti-symmetric, a, parts of the distribution. These parts are described by:

f
(eq)
is = f

(eq)
i + f

(eq)
−i ,

fis = fi + f−i,

f
(eq)
ia = f

(eq)
i − f (eq)−i ,

fia = fi − f−i, (2.27)

where −i represents the link pointing in the opposite direction to i, i.e. c−i = −ci.
The collision step in (2.18) then becomes:

f †i (x, t) = fi(x, t)−
1
τs

(
fis (x, t)− f (eq)is (x, t)

)
− 1
τa

(
fia (x, t)− f (eq)ia (x, t)

)
,

(2.28)

where τs and τa are the symmetric and anti-symmetric parts of the relaxation pa-
rameter. τs is now linked to viscosity as ν = c2

s

2 (2τs − 1) and τa is calculated from
τs as τa = 0.5 + Λ

τs−0.5 where Λ = 3
16 .

This two-relaxation-times (TRT) method has other advantages over LBGK too,
such as improving the accuracy and stability of the method at small or large vis-
cosities. It is shown that LBGK introduces errors when τ 6= 1, and that moving to
the TRT scheme rectifies this through the use of the magic parameter, Λ [58, 57].
The TRT scheme is a simplified, special case of a multiple-relaxation-times (MRT)
scheme, in which more than two relaxation times may be used and tweaked. TRT,
however, provides much of the benefit of MRT whilst remaining as computationally
efficient as LBGK and making the algorithm only slightly more complex.

The algorithm described above will only produce incompressible Navier-Stokes
results when several assumptions are satisfied. One of these assumptions is that the
density fluctuation is negligible. This may become a problem when also implement-
ing multi-phase elements or certain boundary conditions. Pressure and density are
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linked through the ideal gas equation p = ρc2
s, so driving the fluid with a pressure

gradient or introducing a droplet with a Laplace pressure step will also create a
density gradient.

He and Luo [58] developed an incompressible algorithm to allow density to be-
come constant throughout the system. They used an adjusted equilibrium as follows:

f eqi (x,u, ρ, t) = ti

{
ρ+ ρ0

[
u · ci
c2
s

+ (u · ci)2

2c4
s

− u2

2c2
s

]}
, (2.29)

where ρ0 is now the fluid density, whilst ρ is still the sum of the local distribution
values. The moments of the distribution (2.21, 2.22, 2.23) now become:

p

c2
s

≡ ρ =
∑
i

fi, (2.30)

ρ0uα =
∑
i

ciαfi, (2.31)

Παβ =
∑
i

ciαciβfi. (2.32)

This now allows the local distribution density to vary whilst keeping the physical
fluid density constant.

Note that this incompressible method is relevant only when there are significant
pressure gradients in the system, otherwise the standard equilibrium may be more
appropriate [59].

2.2.1 Boundary Conditions

Boundary conditions are required to fully describe any system, which in the LBM
can be very simple. Firstly, one of the most commonly used conditions is that of a
periodic flow. This is simply achieved by wrapping the last layer of nodes round to
the first [52]:

f ininlet = f outoutlet, (2.33)
f inoutlet = f outinlet,

where f out represents the distribution values leaving the domain and f in represents
the respective values entering the domain (which would otherwise be unknown).
This basic boundary is frequently used to represent the open ends of a pipe flow,
where fluid continuously flows round the system.

Periodic boundaries can also be adjusted to enforce a pressure gradient through
the system that will drive the fluid flow. Zhang and Kwok [60] describe a periodic
pressure boundary condition in the weakly-compressible LBGK form of LBM. As
pressure is tied to the density, p = c2

sρ where ρ is the fluid density in this method,
the pressure gradient can be applied using a density gradient. Aiming to apply a
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pressure gradient of β̂ , a density step of β̂L
c2
s
between one system and its image should

be introduced:
p(x = 0, y) = p(x = L, y) + β̂L , (2.34)

where L is the length of the system. The average density of the fluid arriving at
the inlet is set to be ρS + β̂

c2
s
, where ρS here represents the initialised LBGK density

value of the fluid:
fi = tiρS , (2.35)

assuming the system is initialised uniformly. The unknown distribution values can
then be defined as:

f ininlet = f outoutlet
ρS + β̂

c2
s

ρ̄outlet
, (2.36)

f inoutlet = f outinlet
ρS − β̂L

c2
s

ρ̄inlet
,

where ρ̄inlet and ρ̄outlet are the average densities among the nodes defined as inlet or
outlet respectively.

This method is shown to be inaccurate (producing an incorrect density profile
and gradient) by Kim and Pitsch [61], who propose their own widely used boundary
condition. In this newer method, the unknown distributions arriving on the inlet
and outlet nodes are defined as:

f ininlet = f (eq)(ρI ,uI) + foutlet − f (eq)
outlet, (2.37)

f inoutlet = f (eq)(ρO,uO) + finlet − f (eq)
inlet,

and the values used in the new equilibriums are calculated:

ρI = ρoutlet + (ρ̂inlet − ρ̄outlet) , (2.38)
ρO = ρinlet + (ρ̂outlet − ρ̄inlet) , (2.39)

uI = ρoutlet · uoutlet

ρI
, (2.40)

uO = ρinlet · uinlet

ρO
. (2.41)

ρ̂inlet and ρ̂outlet are the target densities—note pressure p = ρc2
s . ρ̄inlet and ρ̄outlet

are the average densities among the nodes defined as inlet or outlet respectively.
The inlet and outlet nodes are the first and last real computational nodes respec-
tively. This boundary pulls the average density among a set of nodes towards the
target, whilst allowing for spatial fluctuations. The target densities in LBGK can
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be calculated from a pressure gradient, β̂, as:

ρ̂inlet = ρ0 + β̂

c2
s

, (2.42)

ρ̂outlet = ρ0 −
β̂L

c2
s

,

where ρ0 is the initial density of the fluid and L is the length of the system (the
number of nodes between the inlet and outlet).

Implemented with the incompressible method mentioned in Section 2.2 there will
be no density gradient as ρ is just the sum of the distribution values, proportional to
the pressure. These methods will be applied in the initial results chapter (Chapter 4),
when a pipe flow is modelled.

A periodic boundary condition, be it driven by a pressure gradient or body
force [62], is a widely appropriate method. Tarksalooyeh et al. [63] use a small
periodic area to feed particles into the main simulation in a consistently randomised
manner. The small pre-inlet area simulates particles in a simple geometry, which are
then copied over into an inlet region of a coupled simulation. The fluid distributions
are similarly copied. This kind of treatment allows the inflowing particles to be
unaffected by the complex geometry in the main simulation, i.e. the pre-inlet system
will deliver a consistent mix of particle sizes even if certain sizes might traverse the
main simulation differently to other sizes. Without such treatment it’s possible that,
for example, large particles could get trapped within the main system geometry and
the inflow of such particles would diminish. This boundary condition [63] is applied
to an aneurysm in blood, where a normal periodic boundary might result in all the
platelets getting trapped and the blood not being of the correct hematocrit.

Another common boundary condition is the bounce-back condition, used to rep-
resent a solid no-slip wall. This is another testament to the possible simplicity of
boundaries in the LBM; the distribution values propagating to the wall nodes are
reversed on the node they are propagating from. See Fig. 2.4 for a graphical repre-
sentation. This technique places the wall half-way between the real fluid node and
the ghost wall node—no calculation is carried out on such a node, it exists purely
to simplify the bounce back algorithm—to second order accuracy. Note that using
TRT or MRT allows the wall position to be exactly half-way between nodes, which
may not be the case when using LBGK.

The solid wall can also be given momentum [64, 65] in order to drive the fluid
flow. Whilst this may provide a way of shearing a fluid—possibly modelling a
rheometer mentioned at the start of Section 2.1—it will also confine the fluid and
introduce boundary effects [66]. In order to model and study the bulk material away
from the boundary, a large system or a high resolution may be required.

A Lees-Edwards (LE) boundary provides a way around this; shearing the fluid

21



CHAPTER 2. BACKGROUND

Figure 2.4: A selection of distribution values during the mid-link bounce-back
algorithm, focused on a top wall. Progressing left to right through repeated LBM
timesteps. Colours represent the same distribution value over time. Hollow nodes
are boundary, or ghost, nodes.

without introducing a solid wall. Lees and Edwards developed such a boundary
for Molecular Dynamics [67] and the method has since been applied to the LBM
by Wagner and Pagonabarraga [68]. This boundary condition imposes periodic
behaviour in all directions, except in one direction it is assumed that the periodic
images are moving. There are two key stages of the condition, firstly transforming
the velocity of the distributions crossing to a periodic image, and secondly shifting
the position of the distribution values so they propagate into the moving periodic
image in the correct place.

Assuming that a periodic image in the y-direction is moving with velocity U
in the x-direction (and the periodic image in the negative y-direction is moving
with velocity −U), a distribution value that will cross the boundary must have it’s
momentum (ρu) transformed to ρ(u −U) or ρ(u + U) depending on whether it’s
travelling up the velocity gradient or down it. The transformation is applied as:

f ′i =

fi + f
(eq)
i (u−U)− f (eq)i (u) if ciy > 0

fi + f
(eq)
i (u + U)− f (eq)i (u) if ciy < 0,

(2.43)

assuming, as above, that the velocity is increasing in the positive y-direction and
that f ′i is the new distribution value.

The second part of the algorithm is required due to the moving periodic image;
if a value propagates from the top of the system back round to the bottom it will
not be in the correct position unless the displacement of the system is tracked and
accounted for. Given a constant system velocity of U, the displacement of the
system over time is dx = tUx. This will rarely be an integer, therefore it is split
into integer and real number parts: dIx and dRx . Wagner and Pagonabarraga [68] then
apply a linear interpolation in order to shift the distributions onto the two nodes
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closest to where the actual displacement puts the distribution:

f ′i(x, t) =
(
1− dRx

)
fi
(
x + dIx, t

)
+ dRx fi

(
x + dIx + 1, t

)
, (2.44)

for the distributions in the top row travelling upwards out of the domain, and

f ′i(x, t) =
(
1− dRx

)
fi
(
x− dIx, t

)
+ dRx fi

(
x− dIx − 1, t

)
, (2.45)

for the distributions in the bottom row travelling downwards out of the domain.
Both stages of the LE algorithm should be carried out just before propagat-

ing distributions. In this case, a usual propagation step set up to handle periodic
boundaries will put the distributions in their correct places. Note that the sys-
tem displacement must be kept in mind for other parts of the LBM which aren’t
node-local, gradient calculations for example.

A final key element to the LE boundary is the use of multiple planes within
one domain. Whilst a naive implementation may align a single LE boundary with
the edge of the system domain (or put the LE boundary in the centre), this limits
the reachable shear rate due to the limit of the LBM velocity [53, 52]. This can
be overcome by placing multiple shear planes evenly spread through the system,
allowing for much greater overall system shear rates. The same algorithm (transform
then shift) just has to be applied along multiple rows to achieve this.

Wagner and Pagonabarraga [68] note that linear interpolation may have intro-
duced errors into the results and that it may be possible to improve upon it. A
reported error in velocity of 3% may be fine for many applications, however, Javaran
et al. [69] use the LE boundary with particles in the flow and note a disturbance
to a particle’s angular momentum as it crosses an LE boundary. This unintended
effect on the particle is overcome by moving to a third-order interpolation, rather
than the linear one, when applying the positional shift.

Javaran et al. [66] then apply this method to study the bulk rheological prop-
erties of suspensions. They find excellent agreement with several models outlined
in Section 2.1.1. Highlighted within is the importance of using LE boundary condi-
tions to impose a shear rather than standard moving bounce-back when measuring
bulk properties. When using solid walls, the authors show an increase in the ef-
fective viscosity of the suspension over that measured when using LE. This is due
to a depletion zone near the walls, forcing the particles closer to the centre of the
channel and increasing the frequency of particle interactions, effectively increasing
the particle concentration. Using a LE boundary condition then lessens the need
for larger system averages if the entire domain is navigable by the particles.
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2.2.2 Multi-component

Similar to boundary conditions, multi-component methods aim to model the inter-
face between several fluids and the effect of such an interface on the fluid flow. Sev-
eral of these methods have been developed for the LBM, each best applied to certain
applications. For instance, to study phase separation the free-energy method [70]
may be most appropriate. If approaching from a molecular dynamics background
then the Shan-Chen pseudopotential [71] method may be most familiar. This work
proceeds with the colour-gradient method [72, 73, 74] for a variety of reasons: the
relatively low micro-current activity (spurious fluid velocities that arise in most
multi-component methods); the ability to prescribe a surface tension value; and
the demonstrated [75, 76] scalability to many fluid droplets without exponential
computing power increases.

The method imposes a force on what is essentially a single fluid, targeted at
the fluid interface, creating a pressure step in the fluid [72]. To start, the single
fluid distribution function, fi is split into functions for the two fluids: f (0)

i and f (1)
i .

The majority of the algorithm still uses the single fluid distribution which is now:
fi = f

(0)
i + f

(1)
i . Both of the fluids then have local density:

ρ(k) =
∑
i

f
(k)
i , (2.46)

and the total nodal fluid density is:

ρ =
∑
k

ρ(k). (2.47)

The fluid velocity remains as:

uα = 1
ρ

∑
i

ciαfi. (2.48)

The interface between the two fluids is then determined by a phase field:

ρN = ρ(0) − ρ(1)

ρ(0) + ρ(1) , (2.49)

which is in the range of −1 ≤ ρN ≤ 1. In the bulk of each fluid this will tend to the
limits, so only over a finite amount of nodes will the phase field vary.

Now, knowing the location of the interface, a Laplacian pressure step must be
created. The LBM evolution equation can have a source term, φi, through which a
force can be applied:

fi(x + ci∆t, t+ ∆t)− fi(x, t) = 1
τ

[
f
(eq)
i (x,u, ρ, t)− fi(x, t)

]
+ φi (x) . (2.50)

It has been shown [62] that the source term can apply a spatially variant macroscopic
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force, F, via the following relationship:

φi (x) = ti

(
1− 1

2τ

) [(ci − u∗)
c2
s

+ (ci · u∗)
c4
s

ci
]
· F (x) , (2.51)

where u∗ is a modified fluid velocity:

u∗ = 1
ρ

(∑
i

fici + F (x)
2

)
. (2.52)

Note this modified velocity must be used in the relaxation and equilibrium, as well
as (2.51) above.

Halliday et al. [73] propose the force term:

F (x) = − 1
2σκ∇ρN . (2.53)

Inspecting this force term: σ is the assignable surface tension between the two fluids;
κ is the local curvature of the interface; the force is positioned on the fluid interface
by using the gradient of the phase field—as the phase field tends to a constant value
in the bulk, its gradient will tend to zero.

The above force term is proportional to the local curvature of the interface, which
can be calculated as:

κ = nxny

(
∂

∂y
nx + ∂

∂x
ny

)
− n2

x

∂

∂y
ny − n2

y

∂

∂x
nx, (2.54)

where n̂ is the interface unit normal:

n̂ = − ∇ρN

|∇ρN |
. (2.55)

Note the gradient of the phase field will be perpendicular to the interface, hence
using it to calculate the interface normal.

To complete the description of this method, the segregation algorithm—which de-
fines the two fluid distribution functions and enforces the interface between them—
must be presented. Once the collision step is complete, performed on the single fluid
(colour-blind) distribution function, the fluid distributions are determined by:

f
(k)
i = ρ(k)

ρ(0) + ρ(1)f
†
i + βti

ρ(0) · ρ(1)

ρ(0) + ρ(1) n̂ · ci, (2.56)

where f †i is the post-collision distribution, and β is a segregation parameter that
controls the width of the interface. The first term in (2.56) assigns fluid to each
colour distribution, proportional to the fluid density at the node. The second term
forces each fluid away from the interface into the respective fluid bulk by pushing
the fluid density onto the links facing away from the interface. Here, β must be
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Figure 2.5: Reproduced with permission from Halliday et al. [73]. This shows the
variation of the phase-field parameter, ρN , across a droplet of approximate initial
radius 10 lattice units for a range of segregation parameters, β . The parameter must
be carefully chosen: too high and the droplet is unstable, whilst too low and the
interface is spread over many nodes.

chosen to provide a balance between stability and interface width. A full analysis of
this, and other aspects of the segregation rule, is carried out by Halliday et al. [73]
Fig 2.5 shows the effect of β on the interface; too low and the interface is spread over
many nodes, too high and instabilities appear. Ideally the interface should be as
thin as possible, as physical fluids have discontinuous interfaces so a finite interface
brings resolution issues.

A three-dimensional equivalent to this model has been compared [3] with the
Taylor-Einstein equation shown in (2.6). The agreement with the exact theoretical
equation is excellent over a moderate range of viscosity ratio.

The above choice of force term in (2.53) applied via the source term is only one
option; Spencer et al. [74] propose another:

φi (x) = tiβσ

τc4
s

ρ(0)ρ(1)

(ρ(0) + ρ(1))2 (n̂αn̂β − δαβ)
(
ciαciβ − c2

sδαβ
)
. (2.57)

This imposes an equivalent spatially-variant Guo [62] body force as the explicit force
in (2.53). However, this is applied in the second moment of the source term, (2.51),
as a pressure perturbation, rather than in the zero-th moment as an explicit force,
which has several consequences. Firstly, it requires no adjustment to the veloc-
ity definition—see (2.52)—simplifying the implementation and analysis of the algo-
rithm. Secondly, the terms are localised, i.e. the gradient of the interface normal is
no longer present, increasing the efficiency of the algorithm. Lastly the microcur-
rents are slightly increased. The result is a simpler, more efficient way of imposing
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an equivalent interfacial force.
Both forcing algorithms are able to be extended beyond two fluids [75, 74]. The

same process is used, however the improved efficiency of (2.57) makes it highly
suitable for this purpose. The extra non-local terms needed for (2.53) become an
even bigger overhead for many-component fluids.

The extension can be carried out naively by creating N fluid lattices, then per-
forming the forcing and segregation on each pair of fluids. This, however, means
an exponential growth in required computing resources as the number of compo-
nents increases. To avoid this, only non-negligible fluids, those with a concentration
above a certain threshold, need to be processed and stored on each particular lat-
tice node. The number of non-negligible fluids per node is stated to be around 5
or 6 [75, 74]. Storing only these few fluids per node has a drastic effect on the
computational efficiency, but requires careful implementation to ensure fluid mass
doesn’t get misplaced—the 6 fluids on node x may be different from the 6 fluids
stored on neighbouring node y. Dupin et al. [75] introduce an extra tracker lattice
to keep an index of which fluid is on which node/link, which does mean a slight hit
to efficiency but keeps the computational scaling detached from the number of fluid
components. Without this detachment it’s possible that many-component flows be-
come too computationally expensive to all but the most costly computer cluster
systems. Note that the LBM algorithm is very memory intensive; storing as few flu-
ids as possible benefits in two ways: the method becomes more accessible to lesser
computer hardware and the computer can spend more time calculating rather than
moving data between memory areas. The key point is that rather than exponential
growth in resources, these models can be restricted to using the amount required
for approximately 5 or 6 fluid components. Some mass loss will be inevitable, but,
with an appropriately chosen concentration threshold, it should be negligible.

A key area in which both forcing methods need improvement is the ability to
implement a density ratio between the droplets. In fact, this is an area in which all
multi-component lattice-Boltzmann methods struggle [52]. Some emulsions contain
fluids with similar densities, for which these methods would be ideal. However,
many emulsions will contain fluids with differing densities and this may or may
not be relevant to the modelling. In cases where a density difference is present,
modifications to the above algorithm may be possible.

Similar colour-gradient models have already seen such modifications. Grunau et
al. [77] propose adjustments to the multi-component model of Gunstensen [78], using
a hexagonal lattice. More recently, Reis and Phillips [79] develop similar adjustments
to a more popular square lattice model. Most notable is the introduction of an extra
parameter in the fluid equilibrium that provides freedom to the rest link and controls
the speed of sound in each fluid. Tuning these parameters helps stabilise the interface
between fluids with a density difference. Reis and Phillips [79] show not only correct
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reproduction of Laplacian surface tension, but also good agreement with analytic
results for velocity profiles with a viscosity ratio. Foremost, is a droplet coalescence
test with a density ratio of 18.5 between the droplets and the surrounding fluid. The
test shows the adjacent droplets coalesce whilst preserving the mass of each fluid.

Further models have been proposed; Lishchuk et al. [80] achieve a stable static
droplet with a density ratio of 1000, however a more rigorous bubble rising test
proves stable only to a density ratio of 10. Liu et al. [81] propose a model capable
of the same bubble rising test stable to a density ratio of nearly 100.

Most recently, however, Ba et al. [82] have developed a model resembling that of
Grunau et al. [77] and Reis and Phillips [79]. Ba et al. [82] implement a multiple-
relaxation-time model to complement the multi-component algorithm and see a
valuable increase in the simulation stability. No bubble rising test is conducted,
however, a layered two-phase flow performs well up to a density ratio of 1000. Whilst
this test includes flow, it will not involve interfacial forces due to the interface being
flat. Simulations by Ba et al. show a droplet splashing on a surface, which becomes
unstable above a density ratio of 100.

Progress is being made towards stable simulations with a large density ratio. A
stable droplet, under flow, with a density ratio of 1000 would be a major milestone
as 1000 would closely represent the difference between water and air, making such
simulation truly multi-phase.

2.2.3 Application to Emulsions

Whilst extending their multi-component method to accommodate multiple immis-
cible droplets, Spencer et al. [74] showcase the ability of the algorithm to explicitly
simulate the deformable droplets of an emulsion. They are able to see droplet
behaviours, such as migration to the lower shear rate channel centre (minimising
deformation), as well as recover trends from macroscopic models—increasing the
droplet concentration increases the fluid viscosity. Comparisons to a power-law so-
lution for the velocity profile are made, however it would be useful to be able to
compare this against other macroscopic emulsion models.

Using the Shan-Chen pseudopotential multi-component method, Benzi et al. [83,
84] develop a model of a flowing emulsion-like system. This model results in various
mesoscopic structures occurring, which includes emulsion droplets but also includes
caging structures that can surround and trap droplets. The fluid-fluid interface
profile shows numerical artefacts, resembling a Gibbs-like phenomenon. In further
work, Benzi et al. [85] show their simulations produce reasonable agreement with
the Herschel-Bulkley yield stress model. This form of multi-component LBM has an
interfacial tension that emerges as a result of the potential function applied, which
may make it more challenging to study emulsion rheology when exploring the effect
of the droplet material properties.
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These appear to be the only works looking at emulsions on such a large scale
using the LBM. Other work in the LBM has focused on individual droplet behaviour,
i.e. deformability [86, 87], breakup [86, 88, 87], and wetting [89, 90, 91].

Pickering emulsions, in which the emulsion is stabilised by small solid particles,
have also been simulated within LBM, for example by Jansen and Harting [92]. The
authors used the Shan-Chen multi-component LBM coupled with solid particle tech-
niques developed by Ladd [64, 65] to investigate the effect of particle concentration
and the fluid ratio on the formation of Pickering emulsions. The fluid ratio (the
ratio of the amount of each fluid in the multiphase system) is found to have the
most impact, however, the contact angle (determined by making the particle favour
a certain fluid phase) is also important. The model agrees with previous simulations
and experimental data, and could prove useful if Pickering emulsions become more
widely used.

Whilst stabilisation with small solid particles is possible, most emulsions are
stabilised by surfactants. Their wide industrial use has encouraged their inclusion
in numerical models. While most of the immiscible models described in Section 2.2.2
assume surfactants are equally distributed and 100% effective at keeping droplets
coalescing, Farhat et al. [93] developed a hybrid lattice-Boltzmann scheme that pairs
the colour-gradient multi-component LBM with a surfactant model solved using a
finite-difference scheme. This hybrid model was used to study the effects in shear
and extensional flow of the surfactant coverage of a droplet, among other variables.
This kind of model may become useful to any work following this report due to the
importance of surfactants in the food industry.

There has been much work developing LBM for modelling fluid filled vesicles
or capsules. Much of this has been undertaken in immersed boundary methods,
whereby the interface is characterised by tracking markers that flow along with
the fluid [94]. Such markers are paired with the underlying LBM and may have
additional physics acting upon them, such as elasticity.

Using these methods, Krüger [95] was able to study the margination of platelets
in blood flow. An immersed boundary method was used to model both platelets and
much larger red blood cells. By varying the tube diameters and Capillary numbers,
it was possible to see that platelets would marginate to the tube wall as the Capillary
number increased. Once at the tube wall, in the cell-free-layer, the platelets were
unlikely to re-enter the bulk flow. The deformation of the red blood cells was also
found to increase with both the tube diameter and the Capillary number.

Without using an immersed boundary method, it is still possible to introduce
vesicle dynamics. Halliday et al. [96] propose an extension to their multi-component
model described above, which allows the force term to maintain a constant interface
length. This model provides a simpler alternative without the need for an interface
mesh, however the finite width of the interface will require an increased resolution

29



CHAPTER 2. BACKGROUND

of simulation in order to become negligible. Whilst an extension to multiple vesicles
in flow is said to require minimal modifications, nothing on the scale of immersed
boundary methods has been demonstrated.

2.3 Conclusion

To summarise, there is much interest in the modelling of emulsion behaviour, as
described in Section 2.1. The study at the meso-scale, where the droplet behaviour
and structure can be examined, however, still has many areas unexplored. Whilst in-
dividual (or a small selection of) droplets have been modelled, thorough exploration
into the bulk flow—made up of many emulsion droplets—has yet to be undertaken.
Works using the lattice-Boltzmann method have been taking steps in this direction,
with some showing multi-droplet emulsions in a confined shear flow.

It is important that these numerical models are extended to bulk flow and that
computational efficiency is good enough to allow for fully resolved simulations to
be carried out. These simulations at the meso-scale would allow for the study of
droplet behaviours in bulk flow, as well as the evaluation of theoretical and empirical
macroscopic models discussed in Section 2.1. With explicitly simulated droplets,
data on the sheared self-diffusion—equivalent to that available for suspensions—
may be recoverable.
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Methods

This chapter aims to fully describe an exactly incompressible lattice-Boltzmann
method (EILBM) that incorporates various techniques discussed in the previous
chapter. The closing boundary conditions will be described in the coming chapters,
when applicable, as there are several different variations (pipe-flow, bulk-flow).

3.1 EILBM for multiple immiscible fluids with a
TRT collision step

Recall that the LBM uses a probability distribution across a lattice of discrete nodes.
The set of velocities are designed to enable the distribution values to move from one
node to the neighbour in a single timestep. Here, the D2Q9 lattice is used, as
shown previously. The propagation of distribution values is followed by a collision
step, where the fluid relaxes towards equilibrium. These two steps are continuously
repeated to run the simulation.

The presented model uses a two-relaxation-time collision operator, which is a spe-
cial case of the multi-relaxation-time algorithm, to provide increased performance.
An exactly incompressible method is also adopted, which allows for the separa-
tion of density and pressure. Emulsion droplets will emerge in the flow due to an
applied stress perturbation and accompanying segregation algorithm. The ability
to simulate many liquid droplets simultaneously will be facilitated by an efficient
memory-saving algorithm that caps the number of stored lattices. In the following
chapters, this model is built upon with boundary conditions to simulate specific
geometries and systems.

Now, a more thorough description of the developed model is provided. Firstly,
the overall evolution equation of the model, which combines the propagation and
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collision steps, is:

fi(x + ci∆t, t+ ∆t) = fi(x, t)−
1
τs

(
fis (x, t)− f (eq)is (x,u, ρ, t)

)
− 1
τa

(
fia (x, t)− f (eq)ia (x,u, ρ, t)

)
+ ti∆tβmnσmn

τsc4
s

ρ(m)ρ(n)

ρ2

(
n̂mnα n̂mnβ − δαβ

) (
ciαciβ − c2

sδαβ
)
,

(3.1)

where x is the node, t is the timestep, and i is the direction of travel. Note the
final term shows this model uses the multicomponent forcing algorithm of Spencer
et al [74], which imposes a continuous surface force as a stress perturbation in the
second moment of the Guo [62] force term. The equilibrium is defined by [58]:

f
(eq)
i (x,u, ρ, t) = ti

{
ρ+ ρ0

[
u · ci
c2
s

+ (u · ci)2

2c4
s

− u2

2c2
s

]}
. (3.2)

This and the associated fis split into symmetric and anti-symmetric parts as fol-
lows [57]:

f
(eq)
is = f

(eq)
i + f

(eq)
−i ,

fis = fi + f−i ,

f
(eq)
ia = f

(eq)
i − f (eq)−i ,

fia = fi − f−i , (3.3)

where −i represents the link pointing in the opposite direction to i, i.e. c−i = −ci.
Hence, the method uses a TRT algorithm to provide a balance of simplicity and
accuracy. The physical fluid density, ρ0, is the same for each fluid. Also, ρ should
be thought of as the nodal density fluctuation [58] and is recovered from the moments
of the distribution function along with the momentum:

p

c2
s

≡ ρ =
∑
i

fi , (3.4)

ρ0uα =
∑
i

ciαfi , (3.5)

Παβ =
∑
i

ciαciβfi . (3.6)

Similarly, the distribution function and the nodal fluid density fluctuation of each
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fluid, k, is

fi =
∑
k

f
(k)
i , (3.7)

ρ(k) =
∑
i

f
(k)
i . (3.8)

The remaining variables in (3.1) are as follows:

• ci are the discrete lattice velocities, which are chosen to be the D2Q9 structure
seen in Fig. 2.3.

• ∆t is the timestep, taken to be 1.0.

• τs and τa are the symmetric and anti-symmetric relaxation times. Note that
these are linked to the fluid viscosity and may vary from one node to another
in a multi-component system. See Section 3.3.

• ti are the link weights given in (2.20).

• βmn is the segregation parameter between fluids m and n.

• σmn is the interfacial tension parameter between fluids m and n.

• n̂mn is the normal vector pointing into fluid m perpendicular to the interface
of fluids m and n, calculated from the gradient of the phase field.

• δαβ is the Kronecker delta, which equals 1 when α = β and 0 when α 6= β.

The speed of sound in this particular lattice is cs = ∆x
∆t
√

3 , where both the time
and space steps here are 1.0. The viscosity of each fluid is linked to the symmetric
relaxation parameter ν(k) = c2

s

2

(
2τ (k)
s − 1

)
, whilst the overall τs and τa are some

function of the fluid relaxation parameters τ (k)
s and τ (k)

a (see Section 3.3). The
anti-symmetric relaxation parameter can be calculated from the symmetric part as
τa = 0.5 + Λ

τs−0.5 where Λ = 3
16 . The magic parameter, Λ , is chosen to provide an

exact position for solid walls [97], though other choices are possible [98].
The last part of the algorithm is the post-collision fluid component segregation

process, to obtain the individual fluid distributions. As per (2.56) above, an appro-
priate equation is: [73]

f
(k)
i = ρ(k)

ρ
f †i +

∑
m,m 6=k

βkmti
ρ(k) · ρ(m)

ρ
ciαn̂

km
α . (3.9)

The summation in the above is cycling through each unique pair of fluids (here k
identifies one of the fluids). Note, n̂kmα = − n̂mkα , hence (3.9) can be applied in a
pairwise fashion. These segregated fluid distribution values are then propagated:

f
(k)
i (x + ci∆t, t+ ∆t) = f

(k)
i (x, t) . (3.10)
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To summarise, the background fluid and each droplet will have fluid distributions,
f

(k)
i , density fluctuations, ρ(k), and relaxation parameters (hence viscosities), τ (k)

s .
Each pair of fluids is also able to have unique pairwise parameters to define interfacial
tension and the interface width. Note that for the remainder of this thesis, every
fluid pair has the same interface width, via the segregation parameter β = 0.65.
Also, only two interfacial parameters are used; one for all of the droplet-background
interfaces and one for all of the droplet-droplet interfaces. The droplet-droplet
interfacial tension parameter, σ1 , was always chosen to be a magnitude larger than
the droplet-background parameter, σ0 , to prevent droplet coalescence. This forms
a complete algorithm for a multi-component LBM.

A Chapman-Enskog analysis of this model, outlined in Appendix A, shows that
it reproduces the correct Navier-Stokes and Laplacian interfacial tension behaviour.

One key issue is the computational requirements of such a model, if trying to
simulate several droplets. However, as discussed in Section 2.2.2, it is possible to
restrict the resources required to that of just 5-6 fluids.

3.2 Memory Saving Technique

This section is brief, but is vital to the simulations in this thesis. Without these
optimisations the simulations performed here would either be limited to the low
concentration regime or require more computer power than currently feasible.

Using a similar concept to Dupin [75, 76] and Spencer [74], the number of stored
distribution functions is formally detached from the number of fluid colours. Before
the collision step, whilst the propagated distribution values are having their moments
calculated (i.e. fluid density fluctuation and velocity) fluids with a relative node
concentration, ρ(k)(x)

ρ(x) , below a threshold are discarded. An appropriate threshold
for this is found to be 10−9 as it limits the fluids per node to L ∈ [4, 5], whilst
introducing negligible mass loss over millions of timesteps. The total discarded
mass at each node can be spread proportionally over the remaining fluids at the
node, in order to retain overall mass conservation.

Most of the algorithm can now be converted to use a maximum of L stored
lattices, where L can be far lower than the number of different fluids, N . Rather
than f

(k)
i , define la(k)

i as a sparse lattice of fluid distributions. An extra tracker
lattice is introduced to keep track of which fluid colour, k, resides on which node and
link; the memory impact of this is minimal since k ∈ Z+, saving many fluid lattices
from being required. With la

(k)
i a sparse array/lattice, an additional tracker-like

lattice may be required to track how many fluids are present on a particular node.
As before, having saved numerous floating-point lattices, an extra integer lattice is
a negligible overhead; not only saving storage, but being sparse, the algorithm is
allowed to skip calculations for absent fluids.
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Calculating and storing the pairwise phase gradients and interface normals is one
of the most time and memory consuming parts of the algorithm. Moving from pairs
of fluids to pairs of sparse lattices makes an enormous difference as the number of flu-
ids increases, for example the number of unique pairs of 100 fluids is 4950, whilst the
number of unique pairs of sparse lattices remains below 10 (unique pairs = N(N−1)

2 ).
The parts of data that are relatively small may remain as non-sparse arrays,

since to do otherwise would involve complicating the algorithm for very diminishing
returns. For example, the fluid density fluctuations, ρ(k), require relatively little
storage/memory compared the fluid distributions that are per-node and per-link.

The distribution function and the fluid density fluctuations can be calculated
from the sparse arrays as follows:

fi =
L∑
l

la
(l)
i , (3.11)

ρ(fluid(l)) =
∑
i

la
(l)
i , (3.12)

where fluid(l) uses the tracker lattices to identify the fluid, k, of this particular
lattice on this particular node.

The sparse lattices are propagated, which may mean also propagating the tracker.
Care should be taken to address the correct fluid or lattice, replacing βmn with
βfluid(k)fluid(l) when considering lattices rather than fluids for example.

The implementation of the algorithm can be carried out in various ways, but
it is essential if one is to simulate many-component systems. For this thesis, the
algorithm was implemented in the C programming language, parallelised using the
Message Passing Interface (MPI) standard to run on computer clusters. Fig. 3.1
shows the computational memory (RAM) usage of the implemented algorithm, be-
fore and after these optimisations were made. Without the optimisations, when each
fluid requires its own lattice, the memory cost continues to increase greatly as the
number of fluids is increased. This is overcome by implementing the optimisations,
as the number of lattices can be kept constant above a certain number of fluids,
L. Processor usage follows a similar, but not identical trend to the RAM usage.
Processor usage doesn’t quite plateau, even with optimisations, for two reasons: i)
there is a slight overhead involved with checking which fluids are negligible, and ii)
depending on the implementation, as more fluids are involved in the system, more
lattices will require more computation to be carried out. Expanding on the ii), when
only the background fluid is present on a lattice node then much computation can
be skipped as much of it is pairwise; as more droplets enter the flow then the number
of nodes with only the background fluid present will decrease.
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Figure 3.1: The computer memory (RAM) usage of the algorithm described in
Section 3.1, with and without the optimisations outlined in Section 3.2. Without
optimisation, the memory usage continues to grow, until the simulations are impos-
sible for all but the most powerful machines. With the optimisation the memory
usage is higher for a small number of fluids (the exact number will depend on the
implementation), but quickly plateaus, as no extra lattices are required. The systems
with optimisations used the same amount of lattices as fluids when lattices ≤ 7 ,
and then stayed fixed at 7 when the number of fluids was greater than that.
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3.3 Viscosity Interpolation

In the proximity of a fluid-fluid interface, where the fluids have differing viscosities
(relaxation parameters), the τs parameter must be interpolated between the different
values. Various methods have been applied to implement this interpolation. Linear
interpolation [99, 100, 101] is the simplest choice:

τs = ρ(k)∑
k ρ(k) τ

(k) . (3.13)

Quadratic [77, 79] and exponential [102] interpolations have also been used. Most
recently, a harmonic mean [103, 104] of the viscosity:

η =
∑
k ρ

(k)∑
k
ρ(k)

η(k)

, (3.14)

has been noted [104] to be physically correct at the sharp-interface limit [105].
Following [103, 104], it was decided to use (3.14), the physically correct har-

monic mean of viscosity, to interpolate relaxation parameter, τs, over the interface.
However, a misinterpretation resulted in this work using the harmonic mean of the
relaxation time:

τs =
∑
k ρ

(k)∑
k
ρ(k)

τ (k)

. (3.15)

While similar, the methods are not equivalent.
In essence, each method places the profile of the interpolation in line with some

physical quantity, whether it be the velocity gradient through the interface [103, 104]
or the phase field itself [99, 100, 101]. Investigations [3] into the implemented scheme
have determined the interpolation is in line the with the multi-component force being
applied to the fluid.

The viscosity ratio, K , is defined as: K = η1
η0
, where η0 and η1 are the viscosities

of two fluids. When modelling droplets, η0 is the viscosity of the background fluid,
and η1 is the viscosity of all of the droplets.

Noting that this method deviates from what is said to be correct in the sharp-
interface limit, validations and comparisons were carried out.

3.3.1 Bilayered flat-interface flow

The first possible validation case is that of a sheared two-component fluid with a flat
interface. Applying Lees-Edwards boundary conditions (LEBC) [67, 68] (the multi-
component implementation is described in Section 5.1.2) will provide a shear in a
fully periodic system and the fluid-fluid interface is parallel to the velocity direction.
This test is able to validate both the LBM and the viscosity interpolation scheme.
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The analytic solution for a flat, sharp interface is:

Ux(y) = 2η0η1ULE

w (η0 + η1) ηy + ULE

2
(η1 − η0)
(η0 + η1) , (3.16)

where w is the system width, and η is the viscosity of the fluid at that location, i.e.
η0 when y ≤ w

2 and η1 when y > w
2 .

Seeking to validate against (3.16), a system was set up as follows:

• 20 by 100 node lattice. Hence, w = 100 .

• All fluid densities ρ0 = 1.0 .

• Viscosity of fluid 0, η0 = 1
6 lu, τ0 = 1.0 .

• Interface segregation parameter, β = 0.65 .

• Interfacial tension parameter between the fluids, σ = 0.09 .

• Velocity on the Lees-Edwards boundary, ULE = 0.01 lu.

• Negligible fluid concentration threshold value, ρ(k)

ρ
≤ 1 × 10−9 .
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Figure 3.2: The velocity profile of a bilayered system (fluid-fluid interface at y = 50).
This system had a viscosity ratio of 100. There are large discrepancies between the
arithmetic (liner interpolation) method and the analytical solution. Both of the
harmonic methods agree well with the analytical solution.

Fig. 3.2 shows the velocity profile of such a system when the viscosity ratio is
100. There is a clear difference between the interpolation methods, with the standard
linear interpolation (via arithmetic mean of the viscosities) being far more rounded
at the interfaces.
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Figure 3.3: The velocity profile of several bilayered systems (fluid-fluid interface at
y = 50). From top to bottom, the systems had viscosity ratios of 100, 5, 0.5, and
0.01. There are still large discrepancies between the arithmetic (liner interpolation)
method and the analytical solutions. The harmonic mean of the relaxation time
method appears to deviate towards the arithmetic method when the viscosity ratio
K < 1 . The horizontal axis was zoomed in, to resolve on the position of the interface.
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Fig. 3.3 shows a zoomed in collection of these velocity profiles for different vis-
cosity ratio systems. With a more modest viscosity ratio the difference between the
schemes becomes less pronounced.
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Figure 3.4: The average error (taken along the channel) between the interpolation
method and the analytical solution for varying viscosity ratios. The harmonic mean
of the relaxation time method appears to have comparable errors to that of the
harmonic mean of viscosity when the viscosity ratio K > 1 , however, it deviates
towards the arithmetic method when the viscosity ratio K < 1 . Note that lines are
for reference only.

Fig. 3.4 displays the error between the measured velocity and the analytical
solution. The linear interpolation clearly has the largest error, with an average of
1% in the systems tested. The method used through this thesis, the harmonic mean
of the relaxation times has an average error of just 0.31% in these systems. This
error is low and acceptable, however, using the harmonic mean of the viscosities
reduces the average error further to just 0.06%.

This outcome is to be expected; this test assesses the influence of the interface on
the velocity gradient. The harmonic mean of the viscosities enforces that the velocity
gradient varies linearly with the phase-field, ρN , hence the change in velocity gradient
here lines up most accurately with the interface ρN = 0. The harmonic mean of the
relaxation times, however, is shown to place the viscosity interpolation in line with
the multi-component force—this force is notably absent here due to curvature being
zero—which may make it more appropriate when modelling droplets but makes it
less suitable to a test such as this.
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3.3.2 Taylor-Einstein

Secondly, the fully resolved flow fields were compared to the exact solution for a
dilute emulsion droplet in the Re = 0 limit, the Taylor-Einstein [6] model ((2.6)
of Section 2.1.2). A three dimensional (3D) model is, of course, necessary to carry
out quantitative comparisons [3] (Such a model could not be used for further sim-
ulations due to the computational cost of 3D models). The main comparison of
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Figure 3.5: The relative error when comparing the measured emulsion viscosity, η ,
of each method and viscosity ratio, K, against the Taylor-Einstein result. Where
ε = η(TE)−η

η(TE) , and η(TE) is the predicted value of Taylor-Einstein. Lines are a guide
to the eye only. Adapted from Xu et al. [3].

the data to the predictions of Taylor [6] is shown in Fig 3.5. The simplest method,
the linear interpolation (arithmetic mean) of the fluid viscosity [99, 100, 101], saw
greatly increasing error for a more viscous droplet. Whilst the harmonic mean of
viscosity [103, 104] saw even worse errors for a more viscous background fluid. The
viscosity interpolation of (3.15) provided the most accurate comparison over a wide
range of viscosity ratios.

3.3.3 Emulsion data sensitivity analysis

Further validations involved a set of comparison simulations which were run to
ascertain the effect that the interpolation method has on the physical outcomes,
namely: relative viscosity, sheared self-diffusion coefficient, and average deformation
parameter. The system design and simulation set up will be described in Chapter 5,
but is essentially a sheared emulsion—the LBM algorithm is described above and the
boundary conditions are Lees-Edwards boundaries (fully periodic with an imposed
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shear rate) [67, 68]. The three measures above are taken from time averages, also
described later. As mentioned, 3D simulations are currently too demanding on
computer and time resources, hence 2D simulations were carried out. Note that
these 2D simulations were able to provide comparisons for a wider range of viscosity
ratio before numerical instabilities interrupted the simulations. The system for the
data discussed in this section is as follows:

• 512 by 512 node lattice.

• Droplets of area 1369 lattice units (lu), radius 20.88 lu.

• All fluid densities ρ0 = 1.0 .

• Viscosity of the background fluid, η0 = 1
6 lu, τ0 = 1.0 .

• Interface segregation parameter, β = 0.65 .

• Interfacial tension parameter droplet to background, σ0 = 0.09 .

• Interfacial tension parameter droplet to droplet, σ1 = 10× σ0 = 0.9 .

• Negligible fluid concentration threshold value, ρ(k)

ρ
≤ 1 × 10−9 .

The effect of the interpolation method on the overall fluid viscosity is shown in
Fig. 3.6. There is an average of 5.4% difference between the results (standard devi-
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Figure 3.6: The relative viscosity results of a subset of emulsion simulations. Solid
lines (crosses) show the results when using the interpolation method correct in the
sharp-interface limit. Dotted lines (boxes) show the results when using the method
described in (3.15), which is used throughout this thesis. Note that lines are a
guide to the eye only and that not all configurations are replicated, due to time
restrictions.
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ation 4.4%), which is skewed by some relatively large differences when the viscosity
ratio, K, is 100 (differences of up to 13.2%).

Similarly, Fig. 3.7 shows a comparison for the sheared self-diffusion results. Over-
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Figure 3.7: The sheared self-diffusion coefficient results of a subset of emulsion
simulations. Solid lines (crosses) show the results when using (3.14), the harmonic
mean of viscosity. Dotted lines (boxes) show the results when using the method
described in (3.15), which is used throughout this thesis. Note that lines are a
guide to the eye only and that not all configurations are replicated, due to time
restrictions.

all, these match closer, with a difference of 4.4% (standard deviation of 5.5%) on
average. There is one outlier that is significantly different, with a difference of 15.7%.
This large difference isn’t present for the other comparisons at K = 0.5, nor for the
same concentration and shear rate configuration.

The same applies for a comparison of the average deformation parameter in
Fig. 3.8. The average difference is just 5.2% (with a standard deviation of 5.4%).
This value is skewed as previously, with a difference of 16.5% in this case.

Taken as a whole, these 2D comparisons show quite a different outcome from
the validation against the 3D Taylor-Einstein model [3]. Whilst the first validation
showed significant variation between the methods, with some results having errors
of up to 30%, for emulsions as a whole it seems significantly less important. It
is likely that the number of droplet interactions plays a part in making the exact
interpolation method less significant.

It is important to bear in mind for the future results that there may be small
quantitative errors arising from the viscosity interpolation method. Tests here show
that such an error from (3.15) are at worst ~5% in the emulsion comparisons and
are not expected to influence qualitative trends.
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Figure 3.8: The average deformation parameter results of a subset of emulsion
simulations. Solid lines (crosses) show the results when using the interpolation
method correct in the sharp-interface limit. Dotted lines (boxes) show the results
when using the method described in (3.15), which is used throughout this thesis.
Note that lines are a guide to the eye only and that not all configurations are
replicated, due to time restrictions.

3.4 Further Checks and Validations

3.4.1 Mass

The simulations below aim to explore the more basic requirements of the model. For
example, the model shouldn’t lose mass (neither as a whole fluid or the individual
droplets), which is easily done when applying the memory saving technique described
in Section 3.2. Losing or transferring mass may indicate inaccurate physics or re-
sult in the emulsion not being monodisperse. To test this, a system with multiple
interacting droplets should be examined.

The system is set up as follows:

• 512 by 512 node lattice.

• 133 droplets, each of area 1369 lattice units (lu), radius 20.88 lu.

• Providing a droplet concentration of 69.5%.

• All fluid densities ρ0 = 1.0 .

• Viscosity of the background fluid, η0 = 1
6 lu, τs0 = 1.0 .

• Viscosity of the droplet fluids, η1 = 100
6 , τs1 = 101

2 .

• Viscosity ratio, K = η1
η0

= 100.0 .
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• Interface segregation parameter, β = 0.65 .

• Interfacial tension parameter droplet to background, σ0 = 0.09 .

• Interfacial tension parameter droplet to droplet, σ1 = 10× σ0 = 0.9 .

• Negligible fluid concentration threshold value, ρ(k)

ρ
≤ 1 × 10−9 .

• The number of unique fluids is 134, whilst the number of lattices was set to
10 (although only a maximum of 5 were ever populated at any given time).

An example snapshot from the simulation is shown in Fig. 3.9.

Figure 3.9: A snapshot of the simulation used to test the mass loss in the system.
The colour is based on the concentration of the background fluid, light when only
the background fluid is present and dark when only a droplet fluid is present (i.e.
inside a droplet interface).

Shearing this system, in the same way as will be described in Chapter 5, ensures
these highly concentrated droplets interact frequently. This check then also provides
a backing for the implementation of the mentioned boundary condition. Running
this for millions of timesteps provides the following performance values:

• The lost mass is calculated by taking the maximum mass of fluid through
the duration of the simulation, subtracting the minimum mass of the same
fluid. This can be divided by the initial fluid mass to find the percentage lost
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through the entire simulation: ρ(k)
lost = ρ

(k)
max−ρ

(k)
min

ρ
(k)
initial

× 100% . To be more specific,
this describes the largest change throughout the simulation, not just the loss,
which will exaggerate the statistic slightly.

• The total overall fluid mass lost per million timesteps is 0.00018%.

• The average (maximum) amount of a specific fluid mass lost per million
timesteps is 0.0012% (0.0023%) of its initial value.

This means that at the extreme end of the viscosity ratio, surface tension, and
droplet concentration (maximising droplet interactions, likely sources of error, and
number of overlapping fluids), each fluid will see a maximum of 0.0023% lost per
million timesteps. Considering the longest simulations in this thesis run for 20
million timesteps, a droplet losing 0.046% of its mass can be considered negligible.

A final consideration is that, since the maximum mass lost from a specific droplet
fluid exceeds that lost from the overall fluid, this may mean another droplet is gaining
mass by approximately the same amount. This means two neighbouring droplets
could be 0.092% different in their mass. This is still a negligible difference and the
emulsion could still be considered as mono-disperse (i.e. made up of a single size
and species of droplets).

3.4.2 Laplace law behaviour

Another key validation for a model containing emulsion droplets is the reproduction
of Laplacian pressure difference across the fluid-fluid interface. The Young-Laplace
equation links the interfacial tension, curvature, and pressure difference over the
interface as [13]:

∆p = σκ . (3.17)

In 2D, the mean curvature of a drop is the inverse of the radius, hence:

∆p = σ

R
. (3.18)

This equation should be true for varying droplet sizes, viscosity differences, and
interfacial tension parameters. Laplace law behaviour should be verified by measur-
ing the pressure difference between the inside and outside of a static droplet under
varying conditions.

Fig. 3.10 shows the model compared to the Young-Laplace equation for various
interfacial tension parameters. The simulations used fully periodic systems of 100 by
100 lattices nodes, and a droplet of radius

√
1369
π

= 20.88 . The droplet was positioned
in the centre of the system, hence it remains stationary relative to the lattice. To
obtain the pressure difference, the pressure in the corner of the system (the farthest
point from the droplet) was then subtracted from the pressure measured in the centre
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Figure 3.10: A comparison of the model (crosses) against the Young-Laplace equa-
tion (line). Also, the relative percent error (squares, second axis) between the pres-
sure difference in this model and the Young-Laplace equation. The model reproduces
an accurate pressure difference for a wide range of surface tension parameters, σ.
The viscosity ratio, K, was set to 1.0.

of the droplet. It can be seen that the model produces an accurate—within 1.2%—
pressure difference throughout the range of tested interfacial tension parameters.
The relative error increases linearly with the interfacial tension parameter. However,
the error remains acceptable even when the interfacial tension parameter is beyond
what is used in this thesis.

Fig. 3.11 shows the low relative errors between the measured pressure difference
and the Young-Laplace equation over a range of viscosity ratios. It can be seen that
the model produces an accurate pressure difference throughout the range of tested
viscosity ratios (using interpolation method (3.15)). The error is relatively constant
with changing viscosity ratio (viscosity ratio is not a variable in the Young-Laplace
equation) until the upper tested values. The largest error, 2.3%, is found in the test
with the highest viscosity ratio and interfacial tension, but is still manageable.

Note that the error in the Laplace law pressure step displayed in Fig. 3.10 in-
creases linearly with the interfacial tension parameter. This indicates that it may
be possible to decrease the applied interfacial parameter to achieve a more accurate
pressure step. Such a correction would be a very simple change to the initialisation
step of a simulation. However, this corrective action will not be taken through this
thesis as variable viscosity ratios will be explored and Fig. 3.11 shows the linearity
in the error no longer holds.
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Figure 3.11: The relative percent error of the pressure difference between the model
and the Young-Laplace equation. The model reproduces the correct pressure differ-
ence for a wide range of viscosity ratios, K. Lines are for guidance only.

3.4.3 Droplet Coalescence

The model has been shown to retain mass for each fluid and produce an accurate
Laplacian pressure difference. Next, the droplets should not coalesce. It might be
said that the model assumes surfactants on the interface are fully effective, keeping
coalescence completely arrested. Any movements or gradients of the surfactants due
to the flow are neglected.

A simple way to test the coalescence is to place two droplets next to each other.
Fig. 3.12 shows the initial configuration of the droplets as well as the system after
time has passed. The droplets immediately separate. A slight bridge between the
droplets is noticeable until they separate more and the interface becomes smooth.

A more thorough test, albeit hypothetical, places the droplets together as two
halves of a pseudo-Janus droplet. It would be hoped that the two different droplets
would separate in the same way as before. Fig. 3.13 shows that behaviour for several
systems. In the systems with a high interfacial tension (σ1 becomes larger than
1.0), artefacts become noticeable along the interface—rather than flat, it becomes
S-shaped. This doesn’t prevent the droplets from separating, and is not present
in the lower interfacial tension systems. The artefact is not visible in the lower
viscosity ratio, either, most likely because the droplets separate much faster. Such
a flat interface is unrealistic in a physically flowing emulsion.

Note that the interfacial tension parameter between the droplet fluids is ten
times the parameter between the droplets and the background fluid. This means
the parameter is extremely high in the cases with artefacts in Fig. 3.13(a and b).
A flat interface between a droplet and the background fluid may be quite common,
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Timestep Snapshot

t = 0

t = 500

t = 2000

Figure 3.12: Snapshots of a system at different points in time where droplets
are placed next to each other. The droplets do not coalesce, which is the correct
behaviour when assuming surfactants are fully effective. This test was carried out
with interfacial parameter σ0 = 0.11 and viscosity ratio K = 200.

but there will be no artefacts present. As row d of Fig. 3.13 shows, a flat interface
where the interfacial tension parameter is 10× 0.03 = 0.3 shows no artefacts; the
parameter between the droplets and the background fluid will be kept much lower
than this.

Other than the artefact in the higher interfacial tension systems, the droplets
behave as expected and all separate well.

3.5 Conclusion

The model has been validated at a low concentration [3] against the exact solution of
the Taylor-Einstein equation, as well as in a bilayered flow. The model has also been
shown to have mass conservation, an accurate Laplacian pressure step, and droplets
that don’t coalesce. The next step is to apply the method to more concentrated
systems. This will happen in the next chapter, where the results of a Poiseuille flow
will be analysed and compared to macroscopic models.
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σ0 K t = 500 t = 2000 t = 20000

a 0.11 200

b 0.11 1.0

c 0.03 200

d 0.03 1.0

Figure 3.13: Snapshots of several systems at different points in time. High and low
interfacial tension parameters and viscosity ratios were tested. The droplets start
unrealistically close to each other, like a pseudo-Janus droplet, but still force them-
selves apart. The highest surface tension is above the maximum of the algorithm
(σ1 = 10σ0 > 1.0), but is included to show successful separation in the extreme case.
The higher viscosity ratio droplets are expected to move and separate much slower
than their low viscosity ratio comparisons. The final position of the droplets is not
expected to be the same from system to system due to the initialisation and the
different amounts of dissipation associated with the varying material properties.
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Chapter 4

Pipe Flow

This chapter will display some initial results, obtained by applying the method
described in the previous chapter to an emulsion in a pipe flow. This appeared
to be a relatively straight forward next step, with boundary conditions apparently
documented, ready to implement [60, 61]. Once this chapter begins, however, this
is found to be more complicated. A new boundary condition is developed that is
able to drive a multi-component flow whilst maintaining mass conservation.

Driving the fluid through a pipe will validate the single-component code against
an analytic solution. Once applied to an emulsion, the fluid is hypothesised to be a
power-law fluid and this macroscopic model is fit to the data.

In addition, this chapter aims to show that simulations of up to O(100) of inter-
acting, individually parametrisable droplets are readily achievable.

4.1 Boundaries and initial conditions

The system was set up with solid walls at the top and bottom, modelled with the
bounce back method described in Section 2.2.1. Parameters such as the viscosity
ratio and density ratio were kept at 1, to control the domain space. A single droplet
was first tested to verify the model. To drive the flow, a pressure gradient is used.
The boundary conditions described by Zhang and Kwok [60] as well as Kim and
Pitsch [61] (see Section 2.2.1) were implemented and expected to work, but they both
lost fluid mass and sent pressure fluctuations through the system when interacting
with a droplet.

The first of these issues, the mass loss, is visible in Fig. 4.1. Each time the
droplet interacts with the boundary condition, a not insignificant amount of mass
is lost. On the timespan required to achieve pseudo-steady results, i.e. millions of
timesteps, the significance of the lost mass becomes more apparent.

The second issue, the pressure fluctuation, is visible in Fig. 4.2. The pressure
at a monitoring station was tracked as the droplet flowed past it and across the
boundary condition (a schematic is visible in Fig. 4.3). Fluctuations labelled a
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Figure 4.1: Normalised droplet mass over time, showing the droplet pass the bound-
ary condition twice. The compared methods are of Zhang and Kwok [60], Kim and
Pitsch [61], and the method described later in the section.

occur when the droplet crosses the boundary, whilst fluctuations labelled b occur as
the droplet passes the monitoring location. The second type of fluctuation is natural,
as the droplet creates a wake as it passes. This is, however, totally overwhelmed
by the non-physical fluctuation that the boundary conditions exhibit. The small,
physical fluctuations and subtle effects, may or may not be of interest, however
the large fluctuation may result in undefined or undesirable flow. This issue is
unlikely to improve if simulating multiple droplets, as in some systems it may be
that a droplet is present on the interface more often than not. Another way to view
this issue is via a video [106] showing the relative value of pressure throughout the
system (white being high pressure, black being low pressure). This video shows the
relative pressure over time when using the method of Kim and Pitsch. The physical
variations are visible around the droplet, but the whole background goes black as
the droplet interacts with the boundary condition. Note the flashing at the start of
the video is a visible representation of the system settling down from initialisation,
as seen at the start of Fig. 4.2.

As mentioned when discussing the boundary conditions in Section 2.2.1, the
methods take an average of the pressure along the inlet and outlet of the channel.
The introduction of droplets means that a pressure step within the interface is to
be expected. It appears most likely that the averaging process is being disrupted
by the pressure step, causing the droplet to lose mass and the imposed pressure
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Figure 4.2: Pressure fluctuations over time, showing the droplet pass over the
boundary condition three full times. Measured at a point half way along the
channel—near the side—outside of the droplet (as shown in Fig. 4.3). The com-
pared methods are of Zhang and Kwok [60], Kim and Pitsch [61], and the method
described later in the section.

Figure 4.3: A diagram of where the monitoring station is location in the channel.
The labelled dashed lines show the position of the droplet when the fluctuations
visible in 4.2 occur.

gradient to be interrupted.
A final problem in current pressure boundary conditions is the production of

incorrect pressure values through the boundary. As seen above, the boundary con-
dition has an effect on the droplet when it is nearby, however, there is also an effect
on the transmission of pressure. Kim and Pitsch [61] show in Fig. 4 that their
method produces different pressure contours to that of an applied body force. They
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do not show that these contours change depending on the location of the obstacle,
i.e. the system is not properly periodic as the closeness to a boundary condition
impacts upon the flow.

Following this, a new method was developed. Rather than an averaging process,
a constant amount of fluid mass is transferred from the outlet to the inlet. For
example, the unknown links entering the system will be:

f ininlet = f outoutlet + C ,

f inoutlet = f outinlet − C . (4.1)

The amount added and subtracted will be determined by the desired pressure step:

C = ∆p
c2
s

. (4.2)

The unknown links are then:

fi = fi + ticixC , (4.3)

where ti distributes the added mass onto the short and long link accordingly, and
cix will ensure the amount is added (subtracted) at the inlet (outlet). The pressure
step of a droplet will have no impact on this method, preserving mass conservation.
Removing the averaging process also has the benefit of improving computational
efficiency.

Fig. 4.4 compares the new pressure boundary condition to the existing methods
by reproducing and extending the figure by Kim and Pitsch [61] (Fig. 2). Note that
to reproduce the figure, the method of Zhang and Kwok [60] was implemented in
the compressible LBGK algorithm. This is the reason for the reference to density;
technically each method on the figure is showing a density fluctuation rather than
pressure. This shows the correct reproduction of the pressure gradient in a single-
component system. Additionally, in the previous figures, Fig. 4.1 and Fig. 4.2, it
can be seen that, for a multicomponent system, mass is indeed conserved and that
the non-physical fluctuation is eliminated. A video using this boundary condition
can also be viewed [107], this shows the pressure to be stable in the background
fluid even when the droplet approaches the boundary condition.

Further study on this topic highlighted the work of Inamuro [108]. Whilst the
paper describes the method as applied to a compressible algorithm of three dimen-
sions, the method appears to be very similar with one subtle difference: the pressure
step at any node along the channel is a constant, which means the exact amount
added from node to node could vary.

With effective boundary conditions implemented, the method can be applied on
more than just a single fluid. The emulsion will be mono-disperse and the droplets
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Figure 4.4: Reproduction, and extension, of Fig. 2 in Kim and Pitsch [61]. Stream-
wise comparison of the density/pressure profile and density/pressure gradient in a
periodic pipe flow. The method of Zhang and Kwok uses a compressible LBGK al-
gorithm, therefore is showing a density gradient (p = ρc2

s). The other two methods
are implemented in an EILBGK algorithm, therefore they are showing a gradient in
the density fluctuation (which is still p = ρc2

s ,). Analytically, the gradient should
be constant along the channel and was designed to provide a ρ of 1.01 and 0.99 at
the inlet and outlet respectively (where ρ = ∑

i fi and refers to the LBGK density
or EILBGK density fluctuation). Normalised from x = 0 to x = 1 along the
channel length.
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will have a relatively high interfacial tension (ensuring a near-circular droplet shape),
keeping the experimental domain under control. The fluid density, ρ0, and symmet-
ric relaxation times were set to 1. Hence fluid viscosities are 1

6 . The fluid segregation
parameters, β, were all set to 0.65. The interfacial tension parameter between the
droplets and the background fluid, σ0, was set to 4.72 × 10−2 and the interfacial
tension parameter between the droplets, σ1, was just over an order of magnitude
higher, at 5 × 10−1.

To apply the boundary condition to multiple fluids, the addition and subtraction
is spread proportionally across the different fluid distributions once they have been
segregated:

f
(k)
i = f

(k)
i + ticixC

ρ(k)(xinlet)
ρ(xinlet)

. (4.4)

Note that first attempts tried to use ρ(k)(xinlet)
ρ(xinlet)

at the inlet and ρ(k)(xoutlet)
ρ(xoutlet)

at the
outlet. However, due to the mismatch between these values on the two different
nodes, the conservation of mass couldn’t be guaranteed. Therefore one must use a
single column (inlet or outlet, preferably) to calculate the amount to be added to
the fluid distributions.

A resolution test was carried out to determine satisfactory system dimensions.
Allowing a single droplet to flow through the pipe, it will eventually migrate to
a vertical resting position. Increasing the dimensions (both system and droplet,
maintaining the ratio between them) showed the systems converging on a similar
resting position, as visible in Fig. 4.5. With a radius R = 20.9, the resting position
was 2.33% from the position using a radius of 23. Hence, sufficient resolution was
achieved with a radius of 21 and this size was used for the further simulations. This
set the channel length and width to 634 and 424 lattice units, respectively.

4.2 Results

Systems with varying numbers of droplets were then simulated, up to 120 droplets
(a concentration of φ = 0.609). An example system with 80 droplets (φ = 0.406)
is displayed in Fig. 4.6. Droplets were initialised at random positions in the channel
(although it was ensured there were an equal number at the top and bottom of the
pipe) and the flow starts from rest at t = 0.

The velocity profile across the channel for each simulation can be seen in Fig. 4.7
(pluses). An analytic solution to this flow is plotted as solid lines in Fig. 4.7. This
analytic solution is possible by hypothesising that the fluid has a power-law viscosity.
From Section 2.1.3:

ηeff = kγ̇(n−1) , (4.5)

where the shear rate in this geometry becomes: γ̇ = ∂yUx. The general solution to
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Figure 4.5: A plot of the droplet migration over time. Simulations were run for
varying resolutions, indicated by the droplet radius (in lattice nodes) in the legend
(more nodes is finer resolution). The viscosity of the fluid was η = 1

6 , the Reynolds
number was Re = Umaxw

η
= 1.1 × 102 , and the Capillary number was Ca = Umaxη

σ0
=

1.5 × 10−1 . Colour available electronically.

Figure 4.6: Overviews of an 80 droplet system (φ = 0.406) at its initial (left)
and final, pseudo-steady (right) states. The droplets are forced left to right, over
periodic boundary conditions, by an applied pressure gradient. The top and bottom
boundaries are solid walls. The right panel shows that the droplets have entered
clear layers over the course of the simulation.

the velocity profile is:

Ux(y) =
(
G

k

) 1
n

(
1

1
n

+ 1

)[(
w

2

) 1
n

+1
− y

1
n

+1
]
, (4.6)

where G is the pressure gradient, k is the consistency index of the power law fluid

57



CHAPTER 4. PIPE FLOW

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0  0.1  0.2  0.3  0.4  0.5

120 Droplets, φ=0.61

100 Droplets, φ=0.51

80 Droplets, φ=0.41
70 Droplets, φ=0.36

60 Droplets, φ=0.30

40 Droplets, φ=0.20
30 Droplets, φ=0.15
20 Droplets, φ=0.10
10 Droplets, φ=0.05

0 Droplets, φ=0.00

F
lu

id
 V

e
lo

c
it
y
 (

la
tt

ic
e

 u
n

it
s
)

Dimensionless position across channel (transverse)

Velocity and Power Law Approximation

Figure 4.7: A plot of the simulated velocities (+), in lattice units, and the power-
law approximations (solid lines) for varying numbers of droplets. The system was
634 nodes long and 424 nodes wide, with droplets of 21 node radius (hence the ratio
of channel diameter to droplet diameter w

2R = 10.1).

(i.e. the fluid viscosity), w is the width of the system, and y is the position in the
channel (upon which the velocity is dependant). When n = 1, the solution reduces
to that of a Newtonian fluid in a pipe, which is an analytic solution. This can
validate the simulation with no droplets in the flow. To measure the error between
the analytic solution and the simulation, the measured flow rate is compared to the
expected flow rate:

Q =
∫ w

0
Ux dy = − Gw3

12η . (4.7)

Using the above system dimensions and a pressure gradient of −3.15 × 10−7, the
analytic flow rate Qa = 12.015709 . Applying the same integral to the simulation ve-
locity data, by summing up a column of velocity data, yields Qm = 12.015742 . This
is an error of 0.0003% , providing confidence that the model accurately reproduces
the correct velocity in such a geometry.

Continuing to multi-component results, the power-law solution is no longer ana-
lytic but it can be fit to the data. A time average of the measured velocity profile was
taken, to smooth out the variation introduced by the droplets. The systems were
left to flow for 8 × 106 timesteps, to allow them reach a pseudo-steady state. A time
average was then taken every 5000 timesteps, 4000 times until 107 timesteps were
complete. This length of time allows a droplet to flow from inlet to outlet at least 40
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times when at the peak channel velocity. 1 The flow rate of the simulations was then
calculated, and the power-law solution fitted against this (with the power-index, n,
as the fitting parameter) using a non-linear least-squares Marquardt-Levenberg al-
gorithm. Note the solution including the flow rate rather than the pressure gradient
is:

Ux = Q

w
· 2n+ 1
n+ 1

1−
(

2|y|
w

)1+ 1
n

 , (4.8)

where y = 0 is the centre of the channel.
As shown in Fig. 4.7, the fits represent the data well. For lower concentration

fluids the model is highly representative (with errors < 1%), however, at around
60 droplets (φ = 0.305) there begins to be effects which are not captured by the
model. Note that the largest fitting errors are just 3.5%. It’s around this time that
the droplets begin to form layers, or bands, particularly in proximity to the wall—see
the right panel of Fig. 4.6 for an example of a layered system. Below this threshold,
the droplets have an abundance of room in which to migrate transversely around the
channel (away from the walls, generally), but in higher concentration systems the
droplets are more packed together and the outer droplets are closer to the walls than
before, resulting in a layer on the outside. As the number of droplets is increased
further, the outer layer imposes layers further in, until around 80 droplets (φ ≈ 0.35)
when the system becomes just a series of layers.

The flow behaviour index, n, can be seen plotted against the concentration in
Fig. 4.8, which emphasises the range in which the power-law model appears valid.
There is a clear trend towards a more shear-thinning fluid, until the system starts to
form layers and n tends upwards. Note the outlying point at a concentration of 0.5
(100 droplets); there is nothing visibly different in the velocity profile nor the flow
behaviour, yet fits to the profile consistently describe the system as shear thickening
(exponent above 1.0). This highlights that the power-law model can not reliably
represent systems with shear banding.

The power-law model doesn’t attempt to capture the layering behaviour, so its
use should be restricted to systems with more mobile drops. This is important due
the large effect on the velocity profile that the layers have, and thus the velocity
gradient (critical to non-Newtonian models like the power-law) which approaches
zero within some of the layers. It should be noted that the banding behaviour may
be encouraged by the relatively low channel diameter to droplet diameter ratio of
10.1, which may aid the walls to impose structure on the interior droplets. This
highlights a limitation of previous work [109].

In the lower concentration systems, hence more mobile, the power-law model is
highly accurate, providing a way for the reasonably costly mesoscopic simulations

1These figures were based on the simulation with 120 droplets, hence the slowest peak velocity.
A droplet could pass through the domain twice or even thrice that amount in the less concentrated
systems.
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Figure 4.8: A chart to match the power-law exponent to the droplet concentration.
The exponent is from the fitted data in Fig. 4.7. Error bars show the fitting uncer-
tainty. A trendline is shown for points 0.1 < φ < 0.35 (20-60 droplets), where no
layering occurs.

to be avoided in favour of approximated macroscopic methods.
The layering behaviour also effects the local concentration within the flow. Fig. 4.9

shows this effect, whereby in panel b the local concentration of droplets takes on
extreme values. The concentration clearly spikes within a layer and is almost zero
between layers. These are time averaged values, showing this is a prolonged ef-
fect. Macro-scale simulations may rely on the concentration being homogeneous, in
which case mesoscopic models should be used to verify this assumption. In other
cases, macroscopic simulations may benefit knowing the local droplet concentration
as concentration gradients may form a part of the model.

Whilst these simulations have provided validations of the model and results that
can connect to the macro-scale, there are issues. The flow within a pipe has varying
shear rate through the system, hence exhibits droplet migration. The droplets drift
away from the wall, leaving a depletion zone, effectively making the centre of the
channel more concentrated. The depletion zone is visible in Fig. 4.9a, at both edges
of the system the concentration tends toward zero. This is the same behaviour that
Javaran et al. note in their simulation of hard particles [66]. Also visible is the
alignment effect that the wall has, imposing a structure on the droplets.

Even with the depletion zones and alignment to the wall, the viscosity of a fluid
has been measured using such a system as this. Zhou & Pozrikidis [110] and Spencer
et al. [74] calculate the viscosity of the fluid using the flow rate, Q:

ηrel = ηeff
η0

= 4
6
wUmax

Q
, (4.9)
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Figure 4.9: Comparisons of the local concentration across the pipe for systems of
difference concentrations. Left panels give a snapshot of the system. Right panels
show a time averaged local concentration of droplets at a slice across the channel
(where a value of 1 indicates that a droplet is always present and a value of 0
indicates that a droplet is never present).
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Figure 4.10: Relative viscosity of the emulsion systems, calculated using (4.9). This
is compared to the model of Taylor [6].

where Umax is the maximum velocity of the system with no droplets. Applying this
equation to the flow rates measured in the data here provides the relative viscosity
plot in Fig. 4.10. The model of Taylor [6] (see (2.6) of Section 2.1.2) is plotted along
side as a comparison, however this model is known to under-predict the viscosity of
concentrated emulsions (in fact it is valid only up to a concentration of φ = 0.02
due to neglecting the interactions between droplets) [29]. Measurements obtained
this way are impacted by the conflicting boundary effects, namely: i) an increase
in viscosity due to the depletion zones, and ii) a decrease in concentration as the
droplets align into layers due to the solid walls.

The applicability of such models may also be limited by the physical scale, re-
stricted due to the ratio of the droplets to the system width. For example, if the
droplets are taken to be 2 µm fat globules in milk, the system width is then just over
20 µm, restricting the simulations to microfluidic geometries. Increasing the ratio
between the droplet radius and the system width means either using unresolved
droplet sizes or increasing the system width. Currently available computational
power makes increasing the system size unworkable, but this will of course be pos-
sible in the future.
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4.3 Conclusion

This chapter started by demonstrating that the LBM outlined in Chapter 3 could
be applied to a pipe flow and reproduce the exact analytical solution. Emulsion
droplets were introduced into the flow and simulations of hundreds of interacting
droplets are shown. The power-law non-Newtonian viscosity model was fit to the
resulting velocity profiles. The increasing concentration of the emulsions blunted the
velocity profile and power-law fits showed the fluid becoming more shear-thinning
until.

For this study a new periodic pressure boundary condition was developed that
conserves fluid mass and is not effected by the presence of droplets (i.e. the interac-
tion of the droplet does not send pressure shockwaves through the system, as seen
in previous methods). This method also transmits pressure through it undisturbed,
meaning that the system is properly periodic. The development and application of
this boundary condition was vital to enabling the study of multi-component flow
driven by a pressure gradient, as existing methods fail to extend satisfactorily to
multi-component flows.
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Chapter 5

Bulk flow

The previous chapter shows flow within a pipe, which exhibited severe wall effects,
imposing a layered structure on the droplets and creating a depletion zone near the
boundaries—increasing the concentration and viscosity closer to the centre of the
channel. Having the solid boundaries also restricted the applicability due to the
ratio of the droplet size to the channel size fixing the physical scale of the system.

This chapter aims to model the flow of an emulsion without imposing solid
boundaries. Removing the solid boundaries remedies both of the aforementioned
issues; there will be no walls to impose a layered structure and the physical scale
of simulation is not restricted by the size of the simulation domain. Therefore sim-
ulations without solid boundaries should provide more meaningful bulk rheological
measurements that can be compared to experimental work and measurements from,
for example, rheometers. Lees-Edwards [67, 68] boundary conditions are used to
impose a shear in a periodic system.

The bulk of the results within this thesis are contained in this chapter; mea-
surements of relative viscosity, sheared self-diffusion coefficient, and average droplet
deformation are studied in relation to the droplet concentration, shear rate, viscos-
ity ratio, and interfacial tension. Macroscopic models outlined in Chapter 2 will be
compared and fitted to these bulk measurements.

5.1 Boundaries, Initial Conditions, and Valida-
tions

To avoid imposing wall effects a bi-periodic system is used. This means droplets can
cross the top and bottom boundaries as well as the right and left. Shearing the sys-
tem can be achieved by using a Lees-Edwards boundary condition (LEBC) [67, 68].
Described in Section 2.2.1, the LEBC imposes a shear by sliding the periodic images
above and below in opposite directions. The boundary condition applies a trans-
formation to the distributions on the boundary, then shifts the values by the offset
between the periodic images and the reference frame. An added benefit of using
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these conditions is the ability to reach arbitrarily high shear rates by introducing
more evenly spaced boundaries into the system.

Note, the interpolation used to shift the distribution values was adjusted from a
linear interpolation to a third-order interpolation (additionally using the neighbours
of the target nodes) for the next validation. This interpolation was then changed
to use cubic splines in all future work (as well as previously in Section 3.3.1 and
Section 3.3.3) to provide near-perfect mass conservation; this will be described in
the following sections.

5.1.1 Transient single-component flow

A possible validation of the LEBC implementation in this LBM is to compare the
analytical solution for a single-component flow velocity profile to that of the simu-
lation data. The steady flow itself is very simple, a constant shear rate through the
system. Hence, to test the dynamics of the algorithm, the transient solution is used
as a validation:

Ux(y, t) = y

h
+

100∑
n=1

[
2
π

(−1)n
n

sin
(
nπ

y

h

)
exp

(
−n2π2tη

ρ0h2

)]
(5.1)

where h is the height of the system, y is the position in the system, and t is the
timestep. A periodic domain technically has infinite height and width, hence here
height refers to the distance between a point and its periodic image. This equation
then describes the change from a zero-velocity system to one with a uniform flow
profile over time.

Fig. 5.1 shows the velocity profiles from the simulation compared to the analytical
solution for selected timesteps. The system was 10 nodes wide by 40 nodes tall. The
fluid had a viscosity of 1

6 lu, hence τs = 1.0 . The fluid density ρ0 = 1.0 lu. The
solution with the sum to 100 was found to have converged, with the errors showing
negligible change when trying a sum to 1000. The measured data compares well,
with relative percentage errors of < 2% in almost all cases, as shown in Fig. 5.2.
At the very earliest of timesteps the error is much larger, sometimes up to 100%,
which can be explained in two ways: firstly, after 9 timesteps, the numerical method
will have only propagated the effect of the boundary velocity by 9 nodes, whereas
the analytical solution shows miniscule velocities over a much wider reach. This
means the measured velocities can be zero, where the analytical method has a finite
velocity, hence 100% error. Secondly, the analytical velocities are very small (as
low as 10−8) at points with high relative error, which obviously inflates the relative
error. The overall measured velocity profiles match the analytical profiles very well,
even at the short timescales. This transient validation is important because the
introduction of droplets will prevent a truly steady state solution; the droplets will
disrupt the flow in the system, even near the boundary.
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Figure 5.1: A validation of the LEBC comparing the analytical transient solution
(solid lines) to the measured velocity profiles (points). The boundary is located at
y = 20. The flow starts from rest at t = 0. See Fig. 5.2 for relative percentage error.

5.1.2 Multi-component Lees-Edwards boundary condition

The LEBC must now be adapted to interact with the multi-component flow. Both
steps of the LE algorithm, the transformation and the shift, must be adjusted.
Now, rather than the overall distribution function, fi, the boundary interacts with
the post-collision post-segregation fluid distributions la(l)

i . Note that this algorithm
disconnects the lattices from the physical fluids (see Section 3.2). The Galilean
transform is then applied to the lattices on the boundary, in the form:

la′(l)i = la(l)
i + ρ(fluid(l))

ρ

(
f

(eq)
i (u−Uciy)− f (eq)

i (u)
)
, (5.2)

where ciy acts to correct the sign based on the boundary direction, and ρ(fluid(l))

ρ

spreads the transformation across the lattices proportional to the local concentra-
tion. As ∑l

ρ(fluid(l))

ρ
= 1 , the full transformation will be applied across the present

lattices.
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Figure 5.2: The relative percentage error of the validation against the analytical
transient solution. Main figure shows a zoomed in y axis to be able to see the
errors that occur later on in more detail. Inset shows the full picture of the errors,
including at the very short timescale where the relative percentage error is higher.

The second step of the LE boundary condition, the shift, must also be applied to
the fluid lattices. This is a straight forward extension, considering just the upwards
travelling distributions in a linear interpolation:

la′(l)i (x, t) =
(
1− dRx

)
la′(l)i

(
x + dIx, t

)
+ dRx la

′(l)
i

(
x + dIx + 1, t

)
. (5.3)

Note that this equation assumes the same fluids are on the same lattices across
different nodes, which is not always the case in this model, hence the applied method
must ensure to identify matching fluids and use zero values for absent fluids. This
simple extension will apply the shift to the multi-component lattices, however it
will not conserve mass and will disturb the droplet interface shape. The following
sections describe this problem, and the solution, in more detail.
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5.1.3 Bisecting Drop

Similarly to the work of Javaran et al. [69], the linear interpolation when shifting
the distribution values proved insufficient to handle a droplet interacting with the
boundary. Fig. 5.3 shows the problem introduced by the linear interpolation in
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Figure 5.3: A comparison of the droplet interface (defined by ρN = 0) when the
droplet is away from the boundary (solid lines) against when the droplet is bisecting
the boundary (boxes). The system in the left panel uses linear interpolation whilst
the system in the right panel uses a cubic spline interpolation. The maximum
velocity of the system is 0.01 lattice units and the Capillary number is 2

3 . The
simulations were run until a pseudo-steady state in which the droplet shape was no
longer changing.

the left panel. Of course, being periodic means the boundary site itself should not
influence the flow, hence there should be no difference between the two droplet
interface positions. The whole system should have the same shear rate (ignoring
the effect of the droplet itself), so the droplet interface should deform uniformly.
This is a major concern as it is expected that in concentrated systems there will be
droplets near (or on) a boundary almost all the time—particularly when considering
the multi-plane implementation where there may be several boundary areas within
the system.

5.1.4 Cubic spline interpolation implementation

To remedy this, a third order interpolation was used along the boundary nodes (only
in Section 5.1.1), however this was then improved to a cubic spline interpolation.
Cubic splines are required for each lattice link and each fluid on each of the Lees-
Edwards boundaries. In this implementation the GNU Scientific Library (GSL) [111]
was used to generate and interpolate using cubic splines. Third order polynomials
are constructed, piecewise, between each lattice point. GSL takes the lattice values,
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as mentioned above, and can evaluate the value anywhere along the cubic spline,
hence the value at the shifted position is retrieved.

The effect of this higher order interpolation is apparent in the right panel of
Fig. 5.3. The droplet interface is no longer effected by bisecting the boundary, hence
the boundary is invisible to the flow and the system is fully periodic. Similarly, the
loss of mass, as established in Section 3.4.1, is negligible.

5.1.5 Finite-size effects

A consideration before proceeding with emulsion simulations is to ensure the system
is large enough to avoid finite-size effects. That is, because the system is fully
periodic, the droplets may interact with their periodic images and the behaviour will
be skewed. Additionally, the number of droplets within the system must be large
enough to obtain a sufficient average. To ensure the independence of the droplet
interactions, the self-diffusion coefficient was measured in a set of increasingly large
simulations until sufficient convergence was achieved. The effective viscosity of the
systems was also measured, but found to be far less susceptible to finite-size issues
than the sheared self-diffusion coefficient (except in the smallest of cases). Fig. 5.4
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Figure 5.4: The result of a set of simulations to find the opti-
mal system size that lessens the impacts of finite-size effects whilst re-
maining computationally achievable. The systems were parametrised as:
σ0 = 0.09 , φ = 0.33 , viscosity ratio η1

η0
= K = 1.0 ,Re = 5.1 × 10−1 ,

Ca = 7.6 × 10−3 .

shows the effect of increasing the system size and the number of droplets (whilst
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keeping the droplets the same size—this resolved size was determined in Chapter 4)
on the effective viscosity and sheared self-diffusion coefficient. All dimensionless
parameters were kept constant (Reynolds number, concentration, etc.). As the
system is fully periodic, an increase in the system size only requires an adjustment
to the LEBC velocity (to impose the same shear rate) and an increase in the number
of droplets (to keep a fixed concentration).

The effective viscosity measurements are relatively unaffected by the number
of droplets or system size, that is once a sensible minimum is reached (more than
10 droplets). The sheared self-diffusion coefficient is more sensitive and, as seen
in previous work on suspensions [51, 112], continues changing above 100 droplets.
This continued change is relatively small: 8% from 64 droplets to 144 droplets. Due
to available computational resources and time constraints, systems of size 512x512
lattice nodes (that is N=64 in Fig. 5.4) are used in this thesis. In the simulations to
follow the value of N will vary in order to simulate systems of varying concentration.

The small, continued rise in the sheared self-diffusion coefficient is attempted to
be accounted for by adjusting the obtained values using the equation fit in Fig. 5.4,
consistent with the works of Kromkamp et al. [112] and Sierou et al. [51]:

D∞ = DN

(
1 + β

N

)
, (5.4)

where D∞ is the value with infinite droplets, DN is the value obtained using N

droplets, and β is a free parameter. The fitting parameters are D∞ = 0.0941 and
β = 2.90 . The reported sheared self-diffusion coefficient values reported here are
then D∞ of (5.4), using the measured DN and fit β .

5.1.6 Mass

A final check that was already detailed in Section 3.4 is to ensure mass conservation.
As mentioned, this check used the LEBC (with cubic spline interpolation) outlined
here, which verified that mass is being conserved by the algorithm.

5.2 Results

The model has been shown to reproduce the correct analytical transient flow be-
haviour, conserve mass, and have minimal finite-size effects. It has also been shown
that the droplets can bisect the LEBC planes with no impact on themselves or the
flow.

Data can now be gathered, with confidence, for a variety of phase spaces. The
system is set up as follows:

• 512 by 512 node lattice.
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• Droplets of area 1369 lattice units (lu), radius R = 20.88 lu, distributed
randomly. Keeping the system monodisperse to limit the phase space.

• Varying numbers of droplets providing a variable concentration, φ .

• All fluid densities ρ0 = 1.0 .

• Viscosity of the background fluid, η0 = 1
6 lu, τ0 = 1.0 .

• Viscosity of the droplet fluids, 1
12 ≤ η1 ≤ 100

6 lu, is varied to provide a variable
viscosity ratio, 0.5 ≤ K ≤ 100 .

• Interface segregation parameter, β = 0.65 .

• Interfacial tension parameter droplet to background, 0.03 ≤ σ0 ≤ 0.09 lu, is
varied to adjust the Capillary number.

• Interfacial tension parameter droplet to droplet, σ1 = 10× σ0 .

• Negligible fluid concentration threshold value, ρ(k)

ρ
≤ 1 × 10−9 .

• The imposed velocity of the LEBC, 0.001 ≤ ULE ≤ 0.48 lu, is varied to provide
a variable Reynolds number (via the shear rate). Note this velocity may be
split over several LEBC planes to restrict the maximum nodal fluid velocity
in the system.

The dimensionless numbers are defined as:

Re = Inertial forces
Viscous forces = ρ0γ̇R

2

η0
, (5.5)

Ca = Viscous forces
Interfacial forces = η0γ̇R

σ0
. (5.6)

The Capillary number will also vary with the shear rate, γ̇, but adjusting the interfa-
cial tension will allow for tweaking the Capillary number whilst keeping the Reynolds
number constant. Where possible, results will be shown using these dimensionless
numbers.

From this model, macroscopic material properties can be measured, free from
boundary effects, i.e. effective fluid viscosity and sheared self-diffusion coefficient.
Being in a bi-periodic, sheared system, the viscosity is related to the bulk shear
stress [43] as:

ηeff = σ̄xy(x)
γ̇

, (5.7)

where σ̄xy(x) is the mean of the xy component of bulk stress throughout the sys-
tem [13]:

σ̄αβ(x) = 1
X

∑
x
σαβ(x) , (5.8)
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where X is the number of nodes summed over. This bulk stress must include con-
tributions of the component interfaces [43], hence it is of the form:

σαβ = −pδαβ + 2η0Dαβ + σIαβ , (5.9)

where p is the pressure, Dαβ is the rate of deformation tensor, and σIαβ is the inter-
facial stress. In the present model, these terms are expressed as:

Dαβ =1
2 (∂αuβ + ∂βuα) = −1

2ρ0c2
sτ∆t

∑
i

(
fi − f 0

i

)
ciαciβ , (5.10)

σIαβ =−∆t
∑

m,m 6=n
2βmnσmnρ

(m)ρ(n)

ρ2

(
n̂mnα n̂mnβ − δαβ

)
. (5.11)

Hence, the stress can be calculated as:

σαβ = − ρc2
sδαβ −

(
1− 1

2τs

) [∑
i

(
fi − f (eq)i

)
ciαciβ + τs∆t

2τs − 1
∑
i

Ficiαciβ

]
,

(5.12)

including both viscous stresses and interfacial stresses. The relaxation parameter,
τs , will need to be interpolated through a fluid-fluid interface, as described in Sec-
tion 3.3.

The relative viscosity, ηr , is the ratio of the effective viscosity to the suspending
fluid viscosity: ηr = ηeff

η0
.

The sheared self-diffusion coefficient can be obtained from the displacement of
the droplets in the velocity gradient direction. These displacements are due only
to the droplet interactions (i.e. hydrodynamics). Measuring the mean-squared dis-
placement:

ζ =
∑
m

[
C(m)
y (t)− C(m)

y (t−∆t)
]2

M
, (5.13)

where C(m)
y (t) is the centre of mass of droplet m at time t in the y axis (the velocity

gradient direction), ∆t is the timestep interval between measurements (in the range
of 50–1000 timesteps in this data), and M is the number of droplets. The sheared
self-diffusion coefficient in lattice units is then [112]:

D = ζ

2∆tR2γ̇
. (5.14)

Then the non-dimensional sheared self-diffusion coefficient is:

D̂ = D

∆tγ̇ . (5.15)

Another property that may be of interest is the average deformation of the
droplets in the flow. This can be obtained using the eigenvalues of the inertia
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tensor. Firstly, the inertia tensor of fluid m:

I
(m)
αβ = −

∑
x

ρ(m)

ρ

[(
xα − C(m)

α

) (
xβ − C(m)

β

)
−
(
xγ − C(m)

γ

) (
xγ − C(m)

γ

)
δαβ

]
,

(5.16)
i.e. perform the above calculation over all nodes in the system (or nodes with non-
negligible mass of fluid m) with xα − C(m)

α being the distance in the direction α

between the node and the centre of mass (see below) of fluid (droplet) m. The
deformation parameter of fluid m, then, is calculated using the eigenvalues, ε1 and
ε2, of I(m)

αβ :
Def(m) = ε1 − ε2

ε1 + ε2
,where ε1 > ε2 . (5.17)

The mean deformation parameter of all droplets then provides an average defor-
mation, Def , in the system. Again, GSL [111] was used to efficiently calculate the
eigenvalues.

The calculation of the centre of mass of a droplet within this bi-periodic system
is no longer straightforward. Half of a droplet can be present on the bottom of the
system with the other half at the top, a simple algorithm for the centre of mass would
place it right in the centre of the system rather than on the boundary. To add to the
complexity, the regions between Lees-Edwards boundaries have physical locations
that are detached from the computational nodes (node x may not be physically
interacting with node x + 1 due to the system displacements).

The latter issue can be resolved by shifting each slice of the system by the LE
displacement when required for any calculations. Appendix B describes this solution
within the context of creating a continuous system snapshot (rather than a snapshot
with LE discontinuities). Given that the slices are shifted in such a way, the new
coordinates can be used for calculations. The issue of periodicity still remains, but
a correct centre of mass can be calculated by transforming the coordinates onto a
circle [113]. Firstly then, the angle:

θα = xα
Wα

2π ,

where α is either direction x or y, and Wα is the system dimension in direction α.
Using this angle, the coordinates on a unit circle are:

aα = cos θα ,
bα = sin θα .

The centre of mass of droplet k in this new coordinate system is then calculated
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from a weighted sum throughout the domain:

a(k)
α =

∑
x

ρ(k)

ρ
aα ,

b(k)
α =

∑
x

ρ(k)

ρ
bα .

These coordinates can then be transformed back into an angle in the original coor-
dinate system:

θ̄α = atan2
(
−b(k)

α ,−a(k)
α

)
+ π ,

where atan2 provides the angle between the x-axis and the point
(
−b(k)

α ,−a(k)
α

)
within the interval (−π, π] . The angle for the centre of mass then provides the
coordinates for the centre of mass:

C(m)
α = Wαθ̄α

2π .

Hence, the centre of mass calculation is now able to cope with both the periodicity
of the system and the shifting slices due to the LE boundaries. These coordinates
will point to the centre of mass no matter if a droplet straddles a boundary or even
a corner of the periodic system.

A final complication is that a droplet can cross the periodic boundaries, therefore
the centre of mass can go from Wα − 1 to 1 (for example) within a few timesteps,
assuming that the coordinates are adjusted to fit within the system dimensions. This
will cause discontinuities in the centre of mass data, which is intended to be used to
measure the sheared self-diffusion coefficient. Such data should then be continuous
in order to obtain an accurate measurement, else the sheared self-diffusion coefficient
will be overestimated. The algorithm should therefore check whether the droplet
position has changed by more than Wα

2 (assuming that a droplet cannot physically
move this far between measurements) and adjust the coordinate by incrementing by
Wα.

All of these measurements can change over time, whether that be as the system
progresses to a pseudo-steady state or small fluctuations even whilst pseudo-steady.
Time averages of these measures are therefore undertaken. The deformation param-
eter is a time average of an average of many droplet deformations, which makes it
quite a stable measurement. The other two parameters, the viscosity and the sheared
self-diffusion coefficient, are less stable and may depend on the initial condition of
the system. Kromkamp et al. [112] note that hard-sphere suspensions need a strain
of γ̇t = 8 to pass through a transitional period and achieve a stable mean-squared
displacement. This transitional strain appears to be the same in these emulsion
simulations.

Periodically during the time averaging, the value is stored and the time averaging
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begins anew from the current timestep, effectively providing time averages from
many initial configurations from a single simulation [51]. The time interval between
restarting the time averaging process was set to 1.5 × 106 timesteps, which equates
to a range of strains of 3 ≤ γ̇t ≤ 1406, depending on the shear rate of the system.
The lower end of this strain interval is low compared to the transitional period and
the strain of 30 that Kromkamp et al. [112] use, however the collection of many
of these periods helps stabilise the value. For the low shear rate system it wasn’t
possible to lengthen the simulations due to the available computational resources
and time requirements.

Note: Throughout these results there will be citations linking to animations of
the systems. These videos are produced by using simulation snapshots as frames of a
video. The snapshots themselves are based on the local droplet fluid concentration,
where red (or light grey) represents the suspending fluid and blue (or dark grey) rep-
resents the suspended droplet fluid. Animations of systems that exhibit behaviours
of particular interest will be cited in the text, but links to many more simulation
animations (and more detail of their production) can be found in Appendix B. The
Digital Object Identifier (DOI) links should provide a page on figshare.com where
the animations can be watched or downloaded.

5.2.1 Concentration Dependence

Starting with a fixed interfacial tension parameter (σ0 = 0.09 lu) and viscosity
ratio of 1, Fig. 5.5 shows the relative viscosity of the simulations as a function of
the droplet concentration. There is a clear increase in relative viscosity as the con-
centration increases, more pronounced in the lower Reynolds number systems. This
is to be expected as there are increased contributions from the interfacial stresses
(see (5.12)) as the concentration increases; there is also an increase in interfacial
stresses due to the increased frequency of droplets moving past each other.

Comparisons to macroscopic models and experimental results are also visible in
Fig. 5.5; although the models and experiments are three dimensional the trends agree
very well with the two dimensional simulation data (particularly when looking at
the lower Reynolds number results). As discussed in Section 2.1, these macroscopic
models assume a creeping flow, i.e. low Reynolds number, hence the agreement
with the models decreases as the Reynolds number of the simulation increases. The
experimental results of Pal also show the same trend, and again this was a low
Reynolds number flow.

These results differ, as expected, with those from Chapter 4, as seen in Fig. 5.6.
The pipe flow viscosity measurements are clearly reduced due to the alignment of the
droplets. Removing the solid walls has provided viscosity measurements much more
in line with the predictions of macroscopic models than the previous experiments.
The Reynolds and Capillary numbers are not directly comparable between the two
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Figure 5.5: A graph of relative viscosity against concentration, each line has a
constant Reynolds and Capillary number. Points are results from simulation sys-
tems, with connecting lines as a guide to the eye. The solid lines are macroscopic
models [7, 23]. Dotted lines are the experimental results of Pal [28]. The simulation
results follow the trends of previous models and experiments, especially the lower
Reynolds number flows. Lines between experimental results are just as a guide to
the eye.
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measurements to those taken in the pipe flow from Chapter 4. The bulk measure-
ments show a greatly increased viscosity, indicating that the alignment forced upon
the droplets by the solid walls had a large impact on the measurements.
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types of systems due to the pipe flow not having a fixed shear rate. However,
even if considering the high Reynolds number bulk measurements, the pipe flow
results underpredict the viscosity. This throws into question the applicability of
measurements obtained this way as they will be highly specific to the geometry [110,
109].

Fig. 5.7 show the sheared self-diffusion coefficient of the same systems as above
as a function of the concentration. The trends are similar to the relative viscosity,
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Figure 5.7: A graph of the sheared self-diffusion coefficient against concentration,
each line has a constant Reynolds and Capillary number. There is an upwards trend,
however a higher shear rate means the effect becomes less prominent. Lines are just
as a guide to the eye.

where increasing the concentration increases the sheared self-diffusion coefficient.
More droplets in the flow means there are likely to be more interactions between
droplets and they will have to move around each other more often.

At the higher Reynolds number end of the simulations, the sheared self-diffusion
coefficient becomes almost constant with changing concentration. This is likely to
be due to two effects: the high shear makes the droplets align in layers in the
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flow, removing the need for them to move around each other, and the shear makes
them more deformable, which will reduce the distance they need to move around
each other. The former option is less likely here as fully aligned systems have
been removed from the displayed data (hence the incomplete data lines). Both
the relative viscosity and sheared self-diffusion coefficient of these aligned systems
dropped drastically, more so than visible anywhere in Figs. 5.5–5.12. Such systems
will be discussed in Section 6.1.1. The second is more likely the cause in these
results, and will be discussed when looking at the results’ shear dependence soon.

A physical explanation of why the high shear systems overlap the lower shear
systems in the low concentration regime is unclear.

The deformation parameter of these systems is shown in Fig. 5.8. Again, in-
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Figure 5.8: A graph of deformation parameter against concentration, each line has
a constant Reynolds and Capillary number. There is an upwards trend, higher shear
rates even make this change more pronounced. Lines are just as a guide to the eye.

creasing the concentration increases the average deformation in the system. The
droplet-droplet interactions deform the droplets, hence more interactions will result
in a greater average deformation. It is also clear that increasing the shear rate will
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increase the deformation, which will be discussed soon. As with the relative viscosity
and sheared self-diffusion coefficient, the increasing shear rate reduces the impact of
the concentration. An increased shear rate will raise the number of droplet interac-
tions, which will also increase with a higher concentration; these two effects appear
to compound.

Note that data around the deformation parameter of the droplets was not gath-
ered in the earliest versions of the programmed simulations. Hence, there may be
more incomplete lines in the figures demonstrating deformation data than figures
displaying other data.

5.2.2 Shear Dependence

The shear dependence (via the Reynolds number) of the relative viscosity is displayed
in Fig. 5.9. There is clear shear thinning behaviour, whereby an increase in the
shear rate (hence Reynolds and Capillary numbers) results in a less viscous fluid.
This effect becomes more prominent at higher droplet concentrations. The droplets
become more deformable at higher shear rates, hence they flow more easily (i.e.
lower viscosity).

As mentioned in Section 2.1.3, shear thinning behaviour is an avid topic for
macroscopic modelling. The viscosity can drop by orders of magnitude, so predict-
ing this allows for a clearer understanding of manufacturing requirements (i.e. how
powerful does a pump need to be to force the fluid at a specific flow rate?). Sec-
tion 2.1.3 outlines various models that aim to capture this shear thinning behaviour,
i.e. the behaviour visible in Fig. 5.9. It is possible to fit these models against this
data to see which, if any, accurately reproduce the trends and may be appropriate
to use in further macroscopic studies.

Using the relative viscosity data visible in Fig. 5.9, i.e. σ0 = 0.09 and K = 1 ,
a least-squares fitting algorithm adjusted the model parameters to find the best
fit for the 5 different concentrations over the range of shear rates. The average
R2 values of these 5 fits is provided in Fig. 5.10. The Carreau and Cross models
(see (2.16) and (2.15)) are clearly the best fitting models for this data. These
models in particular have an infinite-shear plateau, which the data is quite close
to reaching. The yield stress of the fluid and the zero-shear limit, on the other
hand, are not displayed in the simulation data. These are key concepts of the
Herschel-Bulkley and Casson models (see (2.12) and (2.14)), which explains their
less accurate fit when the range of data lies outside this region. Without modelling
the infinite-shear viscosity limit, the Herschel-Bulkley and Casson models are far
less appropriate for data in this range as they cannot reproduce the visible curve
in the data. The power-law model does not account for Newtonian behaviour at
either limit, hence the fit is unable to reproduce the required curve to fit the data.
Interestingly, the Herschel-Bulkley and Casson models are far superior to the power-
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each non-Newtonian model. The Cross model failed to fit the line of φ = 0.2 .

law model even when their zero-shear regime isn’t present—the lack of the limit in
the data does provide them with the freedom to place this limit at any point to get
the lowest R2 . The Cross model was unable to fit the data for φ = 0.2 , which may
be a result of the slight shear thickening that is seen.

Given that the best fitting model for this data is the Carreau model, a plot of
each of the fits is displayed in Fig. 5.11 and the fitting parameters in Table 5.1.

The model fits the data well over the range of Reynolds number simulated, with
a smooth increase in ηinf as the concentration increases. However, improvements
could be made by obtaining data at the low-shear limit to be able to pinpoint the
ηz plateau—in which case the models would have to be reassessed as this missing
feature limited the fit of all the models. With the current data, the plateau is not
seen and the fits therefore appear to have two free parameters (ηz , the zero-shear
plateau, and λ , related to the point at which the shear thinning begins and the
slopes turns downwards). In the lower concentration regime (φ ≤ 0.5), there is
either zero or one data point to characterise the actual shear thinning, hence the
power index, n , also becomes unreliable. At higher concentrations, where the shear
thinning is more pronounced and displayed over several data points, the power index
provides a good fitting slope.

As with viscosity, the sheared self-diffusion coefficient also shows a downwards
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trend over the range of Reynolds number simulated, as seen in Fig. 5.12. The re-
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Figure 5.12: A graph of sheared self-diffusion coefficient against Reynolds number,
each line of constant concentration. There is a clear downwards trend through most
of the data, similar to the shear thinning behaviour. Capillary number is scaled and
displayed, since it is also linear in shear rate. Lines are just as a guide to the eye.

duction of the sheared self-diffusion coefficient with increasing shear is due to the
increasing deformability of the droplets. As they become more deformable, they need
to travel less distance (perpendicular to the flow direction) around other droplets.
This is reinforced by Fig. 5.13, where the deformation parameter is displayed. With
increasing shear, the average deformation in the system increases significantly. The
increased shear rate simultaneously makes the droplets more deformable whilst in-
creasing the number of droplet interactions. Of course, the higher the concentration,
the more droplet interactions will also occur, increasing the average deformation even
further.

Quantitative comparisons of the deformation parameter with literature and an-
alytic solutions (Taylor relation) would require a three dimensional model, however
even in 2D the results are in good agreement. For instance, the Taylor relation [6, 86]
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states the deformation parameter is related to the Capillary number as: D = 35
32Ca .

The relation considers a lone droplet, so the closest comparison to be made here is
of the least concentrated system (φ = 0.2): at Ca = 7.6 × 10−5 the predicted
deformation is 8.3 × 10−5 whilst the measured value is 2.5 × 10−4, approximately
three times the predicted value. It is expected that a more concentrated system
will have more deformation on average and it is noted that the measurement at
φ = 0.2,Ca = 7.6 × 10−3 is also approximately three times higher than the
prediction of Taylor.

It is interesting in Fig. 5.12 that there is an apparent convergence, with all the
different concentrations collapsing onto a single sheared self-diffusion coefficient at
the highest shear rates. At such high shear rates the droplets are on the verge of
breaking apart—systems with breakup were witnessed, but excluded from data to
keep the regime monodisperse—as the deformation of the droplets becomes extreme.
With so much deformation it may be that no matter how many droplets are in the
flow, they don’t have to move far at all to manoeuvre around other droplets. At the
highest of concentrations, layered systems are formed leading to marked reductions
in the macroscopic transport properties (discussed in Section 6.1.1).

The sheared self-diffusion coefficient results compare well with the simulation
data reported by Mountrakis et al. [114] for red blood cells. That data shows
a reduction in the sheared self-diffusion coefficient with an increase in the shear
rate, as well as the slight increase in the high-shear low-concentration regime. The
convergence in the high shear regime of the present data cannot be reconciled with
that of Mountrakis et al. as their data does not have a high enough shear rate. On
the other hand, the upwards shift in the low concentration data makes it appear as
though a similar convergence may have presented itself if such data was gathered.

5.2.3 Viscosity Ratio Dependence

The results up until this point have been for a fixed interfacial tension and viscosity
ratio. Allowing the viscosity of the droplet fluid to vary provides a variable viscosity
ratio. The effect of this on the relative viscosity of the emulsion is shown in Fig. 5.14.
There is a clear upwards trend in the relative viscosity of the emulsion as the viscosity
ratio increases. The effect of the viscosity appears to be fairly constant when other
parameters change, unlike before where the effects of concentration and shear rate
were heavily intertwined.

As mentioned in Section 2.1.2, macroscopic models have attempted to capture
the effect of concentration and viscosity ratio. One such model is that of Yaron
and Gal-Or [7], which has been plotted alongside the data in Fig. 5.15. Whilst
the trend is quite similar between the data and the macroscopic model, the model
of Yaron and Gal-Or over-predicts the relative viscosity. The macroscopic model
includes assumptions that the capillary number is low (i.e. zero or low shear rate,
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with interfacial forces dominating the system), so that the droplets do not deform.
These assumptions do not carry over to the data well, as low enough shear rates are
too computationally expensive to achieve. The droplets are also going to deform in
various ways throughout the system (deforming differently over time as well). Hence,
the recovery of similar trends is encouraging, reproducing quantitative values is not
to be expected.

The sheared self-diffusion coefficient shows a much different trend. Visible in
Fig. 5.16 is that there is almost no change in sheared self-diffusion coefficient with
a change in viscosity ratio. There is a slight increase with viscosity ratio in the
low concentration regime, and the opposite in the higher concentration regime. An
increase in the viscosity ratio would tend to make the droplets more "solid", which
could result in less (or less responsive) deformation, hence the need for both increased
movement and increased sheared self-diffusion coefficient. It is therefore unclear why
an increase in the viscosity ratio would reduce the sheared self-diffusion coefficient.

Unfortunately, the hypothesis of lower deformation is not backed up by the
data. Fig. 5.17 shows the average deformation parameter in systems of varying
viscosity ratios. As the viscosity ratio increases, a small increase in the deformation
parameter is witnessed. This is counter-intuitive as the droplets become physically
more "solid", taking longer to deform. A thorough explanation of this effect is still
unknown, however one hypothesis is that the more viscous droplets deformed due
to consistent droplet-droplet interactions and take longer to relax to their preferred
less deformed state—as opposed to less viscous droplets which may be able to relax
their shape between encountering another droplet.

There is also a major outlier in the low Reynolds number regime, for a viscosity
ratio of 0.5 . This system displayed some "clustering" behaviour that is only visible
in a couple of other simulations; the droplets occasionally group up and proceed
through the flow together. This clustering results in an increased deformation, and
it may be noted that looking at the average deformation in the system for time
periods where these clusters are absent provides a result 3.2 × 10−4 , in line with
the other results. The clustering behaviour will be looked at in more detail in
Section 6.2, however a animation/video of this particular system is available at this
reference: [115].

5.2.4 Interfacial tension dependence

Finally, the interfacial tension parameter has been constant throughout the previous
results, but this is a variable parameter within this model. In Fig. 5.18 a lower
interfacial tension regime (σ0 = 0.03 lu) is plotted alongside the previous results.
The relative viscosity decreases when the interfacial tension is reduced, which is to
be expected as the droplets will become more deformable and thus less resistant to
flow. The interfacial tension has just as much impact as the other variables displayed
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here; a reduction of 66% decreased the relative viscosity by 55% in some cases.
The same effect is visible in the sheared self-diffusion coefficient, shown in Fig. 5.19.

When the interfacial tension is reduced, the sheared self-diffusion coefficient also
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Figure 5.19: A graph of the sheared self-diffusion coefficient against concentration,
each line has a constant Reynolds and Capillary number. Extension of Fig. 5.7 with
the dashed line representing the system with reduced interfacial tension parameter
σ0 = 0.03 lu (with solid lines having σ0 = 0.09 lu). The reduction in the
interfacial tension also reduces the sheared self-diffusion coefficient of the emulsion.
Lines are just as a guide to the eye.

reduces, likely due to the droplets deforming more and thus travelling less to ma-
noeuvre around each other. The effect is even more pronounced than in the rela-
tive viscosity; here the reduction can be as much as 70% (when the concentration
φ = 0.5).

This data highlights a significant space in the literature for macroscopic mod-
els in which the interfacial tension is a variable. Such models would certainly be
meaningful as physical emulsions may have the interfacial tension tweaked by mak-
ing adjustments to the surfactants on the fluid-fluid interface (or by using slightly
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different fluids).

5.3 Conclusion

The solid boundaries of the pipe flow were removed to prevent wall effects and gain
bulk measurements of the fluid properties. A Lees-Edwards boundary condition,
specifically applied to a multi-component flow using a cubic-spline interpolation,
provided a sheared bi-periodic system. These boundary conditions allow for an
arbitrarily high shear rate by increasing the number of boundaries in the system.
The fluid viscosity, sheared self-diffusion coefficient (both key parameters in any
complete macroscopic model [47]), and deformation were then measured for varying
droplet concentrations, shear rates, viscosity ratios, and interfacial tensions. Vis-
cosity models depending on concentration and viscosity ratio were shown to be in
good agreement with the simulation results, despite the difference in dimensions.
Similarly, non-Newtonian viscosity models were fit to the data and the best-fitting
model (that of Carreau [12], see (2.16)) was shown to represent the data well. This
relationship between the data and the macroscopic models was complicated by the
lack of results at very low shear rates. Some macroscopic models show a Newtonian
plateau in this region, hence the fits suffered from being unable to pinpoint this.

Overall, this chapter shows that two dimensional simulations of many interacting
emulsion droplets provides rheological measurements comparable to that of experi-
ments and macroscopic models.
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Chapter 6

Structure Analysis

This chapter will look at the droplet structure within the previous bulk flow ex-
periments. The mesoscopic nature of the models allows for the detailed study at
the droplet level, which previously may have required challenging image analysis of
experimental systems.

As shown in Section 5.2, certain systems (of high concentration and/or shear
rate) have a tendency to form a layered regime, these are easily pinpointed in the
data of Section 6.1 by their pronounced, repeated peaks. This chapter will also
consider the formation of temporary clusters within the flow, showing that the for-
mation of them may result in the shear-thickening behaviour seen in the last chapter
(see Fig. 5.9).

6.1 Radial Distribution Function Analysis

Using the centre of mass data it was possible to post-process radial distribution
functions (RDFs) for the simulations. The radial distribution, g(r), compares the
local density at r away from a droplet to the average density of the system. A
perfectly homogeneous system would be represented by a flat line at g(r) = 1,
where values above (below) show that, compared to an ideal gas, it is more (less)
likely to find particles at this point than expected.

The distance between every unique pair of droplets in the system is categorised
into the bins of a histogram which are small enough to give the appearance of a
continuous function. The amount within the shell (the "doughnut" of space between
the start and end of the histogram bin) is then normalised by the amount expected
to be within that area/volume in an ideal gas mixture of the same concentration.

A look at this function for various systems provides insight into the structure
of the fluid and the droplet behaviour, as peaks and troughs display the important
distances in the fluid. The structure is most obvious when looking at the layered
system mentioned previously.
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6.1.1 Layered systems

As mentioned, some figures in Chapter 5 contain incomplete lines of data, as the lay-
ering behaviour makes the system enter an incomparable flow regime. An overview

γ̇t = 6.3 γ̇t = 94.4 γ̇t = 122.4

Figure 6.1: Overviews of a system that becomes layered. The system itself has
parameters: Re = 1.0 × 10−1 ,Ca = 4.5 × 10−3 , φ = 0.6 , σ0 = 0.03 , K = 1.0 .

of a system entering such a state is shown in Fig. 6.1. The droplets line up behind
each other in layers; this appears to be the easiest way for them to flow, which is
reflected in a dramatically decreased viscosity measurement. This appears to hap-
pen quite randomly, there isn’t a fixed point in time at which the systems enter this
state. The change is sudden, with relative viscosity and sheared self-diffusion coeffi-
cient data quite stable until the moment the droplets line up. Once in such a regime
the droplets stay in this formation indefinitely. Out of the 50 layered systems, one
of them has ~80% of the droplets in consistent rows of 11 droplets whilst two other
rows (containing 12 droplets) don’t appear to settle down—not pushing the system
out of the layered state but introducing velocity perpendicular to the flow. Another
three of these layered systems actually form diagonal layers, which appear to have
a yield stress—they prevent flow for a small period of time and then the layers snap
past each other (again locking and preventing flow).

The layered systems’ periodic peaks are usually a pair of repeating peaks: one
for the distance between droplets in the same layer and another for the droplets
in adjacent layers, as seen in Fig. 6.2. Clearly the number of droplets in the layer
determines how close each droplet must get, so these systems show very pronounced
peaks every 2R (or close to it). The droplets cannot get any closer than that without
deformation and once layered they end up in a periodic system. Due to the specific
number of droplets, the layers end up being made up of different amounts of droplets,
which just means the peaks are more broad or short than otherwise.

6.1.2 Shear rate dependence

When considering the effect of the shear rate on the structure of the fluid, almost
all systems show the same trend (except layered systems and one other, discussed
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Figure 6.2: A radial distribution function of a layered system. This system is
characterised by: Re = 5.1 × 10−1 ,Ca = 2.3 × 10−2 , φ = 0.7 , σ0 = 0.03 , K = 0.5 .
This system is made up of 12 layers, 10 with 11 droplets and 2 with 12 droplets. The
first peak corresponds to the distance spacing of 12 droplets in the system size whilst
the second peak is in line with 11 droplets. The first peak is lower and broader than
the second because the layers are moving past each other so the distance between
drops in other layers oscillates, whilst the distance between droplets in the same
layer stays constant.
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later). The first peak moves left (i.e. less distance between droplet centres) with an
increasing shear rate, due to being more deformed so the droplets are able to get
closer. This first peak starts outside the 2R exclusion zone, since the low shear rate
doesn’t deform the droplets much and doesn’t force the droplets into the zone. As
the shear increases, the first peak eventually gets closer than 2R (particularly at high
concentrations), indicating that the shear has deformed the droplets and altered the
zone of exclusion (droplet interface). An example of this behaviour (seen across
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Figure 6.3: Radial distribution functions for systems with differing shear rates.
These systems have φ = 0.5 , σ0 = 0.03 , K = 2 . The trend displayed here is visible
throughout the data, where increasing the shear rate lowers, broadens, and moves
the first peak left. The higher shear makes the droplets more deformable and allows
them to get closer.

many of the systems) is shown in Fig. 6.3.
The peaks also get lower and broader with an increasing shear rate, as the less

deformable droplets enforce a very specific minimum separation due to the unde-
formed interfaces. As the droplets become deformable, the distance between them
can occasionally decrease but it isn’t a consistent effect like the layering behaviour,
hence the exact separation becomes more varied (lower and broader).

The outlying behaviour (the exception mentioned earlier) seen in Fig. 6.4, is due
to the clustered system that was first visible in Fig. 5.17. This results in the lowest
shear rate system having a shorter (and broader) peak than would be expected from
the rest of the data.
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6.1.3 Viscosity ratio dependence

Considering the effect of the viscosity ratio on the RDFs, there is very little notice-
able effect, especially at lower shear rates. A small visible trend is that the first
peak moves left and lower with an increasing viscosity ratio, as shown in Fig. 6.5.
The peak moving left shows the droplets tending to be closer to each other, an
explanation for which is unclear as the droplets would tend to be more solid. This
does match with the average deformation data (see Fig. 5.17), where the droplets
become more deformed as the shear rate increases.

At high shear rates, however, the highest viscosity ratio (K = 100) consistently
bucks this trend. This effect can be seen in Fig. 6.6.

6.1.4 Concentration dependence

Looking now at the effect of the droplet concentration on the fluid structure, there
appears to be a different effect depending on how high the shear rate is. At the
higher shear rates the droplets tend to get closer as the concentration increases
(over and above the inherent packing effect of increasing concentration). This is
visible in Fig. 6.7. The peak gets much broader as the concentration increases,
which indicates there are more droplets in this region, but the high shear rate allows
them to deform (making a specific peak lower and broader).

At lower shear rates, the first peak in the RDF gets higher as the concentration
increases, as seen in Fig. 6.8. This is even true for the layered systems. As the
peak gets higher it is also sharper, indicating that as the concentration increases the
droplets are located at more specific points, with less free space to flow into.

6.2 Clustering analysis

The same centre of mass data can also be used to look at the clustering behaviour
of the droplets. Droplet clusters create areas of higher viscosity, effectively creating
larger droplets and restricting the flow. Such phenomenon should be avoided for the
system to be homogeneous, and for consistency in macroscopic properties.

6.2.1 Method

This clustering data wasn’t gathered during the lattice-Boltzmann method (LBM)
simulations, but enough other data was output to allow for an analysis to be under-
taken. Using the droplet centre of masses and the deformation of each droplet (both
output frequently), a simulation snapshot can be recreated. An approximation to el-
lipses is possible using this data, a comparison of which can be seen in Fig. 6.9. This
is representative to the bulk of the simulations, but can break down at high shear
rates when the droplets are forced to deform into different, non-elliptical shapes.
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Figure 6.4: Radial distribution functions for systems with differing shear rates.
These systems have φ = 0.33 , σ0 = 0.09 , K = 0.5 . The trend in this data differs
from the rest as the peaks don’t get consistently lower and left with an increasing
shear rate.
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Figure 6.5: Radial distribution functions for systems with differing viscosity ratios.
Each of these systems have φ = 0.33 , σ0 = 0.03 ,Re = 1.0 × 10−1 ,Ca = 2.7 × 10−2 .
The peak gets lower and broader, whilst moving left, with an increasing viscosity
ratio, indicating that the droplets are able get closer to each other.
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Figure 6.6: Radial distribution functions for systems with differing viscosity ratios.
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Figure 6.7: Radial distribution functions for systems with differing concentrations.
The systems here have σ0 = 0.03 , K = 2.0 ,Re = 5.1 × 10−1 ,Ca = 1.4 × 10−1 .
The first peak moves left as concentration increases, as well as getting lower and
broader.
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Figure 6.8: Radial distribution functions for systems with differing concentrations.
The systems here have σ0 = 0.03 , K = 2.0 ,Re = 4.6 × 10−2 ,Ca = 1.2 × 10−2 .
The first peak gets higher as the droplet concentration increases.

The first row of data in Fig. 6.9 shows a system with a shear rate at the higher end
of these simulations, which is still quite well represented by the ellipses. The second
row is less well represented due to being at the limit of shear rates studied here.

Zheng and Palffy-Muhoray detailed [116, 117] a solution to the closest approach
of two arbitrary ellipses. Knowing the closest approach and the centre of masses,
the actual distance between the droplets’ interfaces can be estimated. Knowing the
closeness of each droplet to another, the algorithm of Stoddard [118] was applied
to efficiently develop a list of clusters through each time interval (usually every 100
timesteps). A cluster is deemed to be a group of three or more droplets which have
interfaces within 2 lattice nodes (10% of the droplets radius).

Most clusters "survive" longer than the interval of the measurements, hence the
algorithm must decide which clusters in a specific timestep are the same ones from
a previous timestep. These surviving clusters were identified by the following rules
(note that droplets themselves were identifiable via a unique ID):

1. the cluster has the exact same droplets as a cluster in the last interval, OR

2. the cluster contains all the droplets that a cluster in the last interval contained
(with extras), OR

3. the cluster contains at least one droplet that a cluster in the last interval
contained.

The algorithm checks these conditions in order, so if an exact match is found at
point 1, then the algorithm stops. Conditions 2 and 3 can be met several times,
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Simulation Estimation to ellipses

Figure 6.9: Comparison of simulated droplets with estimated ellipses. The first row
is a system parametrised as: σ0 = 0.03 , φ = 0.5 , K = 5 ,Re = 5.1 × 10−1 ,Ca =
1.4 × 10−1 . The second row is parametrised as: σ0 = 0.09 , φ = 0.6 , K = 0.5 ,Re =
2.5 ,Ca = 2.2 × 10−1 . The second row shows much more deformation (due to the
higher shear rate) and isn’t as well represented by ellipses as the first system.

when multiple clusters form a larger cluster, in which case the new cluster inherits
the age of the oldest cluster it is found to contain. Note that the algorithm stops
if a particular step is successful in its search, i.e. if condition 2 is satisfied then
the algorithm doesn’t consider condition 3. Following these rules, clusters can be
tracked through a flow, gaining and losing droplets, whilst accruing a lifespan that
may help characterise the flows.

Mountrakis et al. [114] have studied the clustering behaviour of suspensions
of elastic particles, similarly using LBM. Whilst direct comparison can’t be made
between elastic particles (red blood cells (RBCs)) and emulsion droplets, it may
be useful to see what trends are reproduced in both datasets. Fig. 6.10 shows
some clustering data of emulsion that may be comparable to the data in Fig. 6 of
Mountrakis et al. There are different methods and cluster definitions that may have
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(a) Snapshot of clustering
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(c) Proportion of single droplets

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1e-05  0.0001  0.001

T
im

e
 a

v
e

ra
g

e
d

 m
e

a
n

 s
iz

e
 o

f 
c
lu

s
te

rs

Reynolds number

Concentrations
0.33

0.5
0.6
0.7

(d) Average cluster size

Figure 6.10: The simulation data here uses σ0 = 0.09 and K = 0.5 , with varying
shear rates and concentrations. The snapshot system has a lower σ0 as these images
were only output for a select number of systems.
Subfigure a shows a snapshot of a simulation with parameters: σ0 = 0.03 , φ =
0.6 , K = 0.5 ,Re = 5.1 × 10−1 ,Ca = 1.4 × 10−1 . Droplets that are identified as
being in a cluster are lightened.
Subfigure b shows the average lifespan of clusters. Unfortunately, many of the
simulations didn’t have clusters that fit the definition, leaving only one line to draw
conclusions from. This shows that increasing the concentration increases the lifespan
of the clusters.
Subfigure c displays the time averaged proportion of single droplets in the system.
The decrease of these single droplets indicates that more droplets are becoming part
of clusters. Again, only one line of data had any significant amount of clusters
detected.
Subfigure d shows the time averaged mean size of clusters. Clusters in this algorithm
are a minimum of 3 droplets. A few data points didn’t exist (no clusters), so they
are plotted at 3 as the minimum possible. The plot shows that as the concentration
or shear rate is increased the cluster is likely to contain more droplets.
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an effect: the algorithm above defines clusters having a minimum of 3 droplets. This
means that the cluster size average starts at 3 and there are likely to be more "single
drops" that may be pairs. One set of data is shown here (surface tension σ0 = 0.09
and viscosity ratio K = 0.5), but these figures look quite similar across the board.

Still, it may be possible to draw comparisons with Fig. 6 of Mountrakis et al. [114]
Specifically, Fig. 6.10b and Fig. 6e of Mountrakis et al. display a characteristic
timescale of the cluster behaviour. Both show an increasing timescale as the con-
centration is increased. This indicates that at lower concentrations interactions are
more brief, whereas in a more concentrated system the droplets are forced into con-
tact for a longer time. The droplets have less freedom to move and escape a cluster
when the flow is more densely packed.

Fig. 6.10c agrees with this as well, showing that the proportion of droplets in a
cluster increases as the concentration increases. This compares well with Fig. 6c of
Mountrakis et al. and indicates that the denser packed systems force more droplets
into longer lasting clusters (when taking both figures into consideration). A big
difference between this data and that of Mountrakis et al. is that these emulsion
systems don’t reach a zero number of single droplets, whereas the algorithm used
with the RBCs shows that all of the inclusions are contained in clusters by φ ≈ 0.5 .

Finally, Fig. 6.10d shows the mean size of clusters in each system, noting that
this is defined to start at three droplets. The data shows that increasing either
concentration or shear rate can increase the size of clusters. This agrees well the
data shown in Fig. 6d of Mountrakis et al. and the data in the previous subfigures.
The concentration has already been shown to force more droplets into clusters, but
the shear rate is also displayed doing the same here; this is likely related to the
increased deformation and the droplets forming structures parallel to their long axis
(as highlighted in Fig. 6.11).

Now, looking at simulation data in more detail Figures 6.12 to 6.17 show his-
tograms of cluster sizes and cluster lifespans. It isn’t possible to compare frequencies
between figures since they may have been compiled over different non-dimensional
time (t* = simulation time * shear rate), either due to different simulation lengths
(low shear means a lower t*) or running analysis on a specific section (layered
regimes). Systems within the same figure, however, have been analysed over the
same non-dimensional time, so the distribution of the histogram is comparable.
Also note that the total frequency of cluster sizes may not be equal to the total
frequency of the cluster ages, because they are measured in different ways: the clus-
ter sizes are counted each time interval they are detected, whereas the cluster ages
are only counted once a cluster breaks up. Clusters that don’t break up before the
end of the simulation would therefore not be in the age data, but would be present
in the size data. The cluster size data, counted each time interval, incorporates a
timescale into the measurement, i.e. the longer a cluster stays at a certain size the
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Figure 6.11: A snapshot of a system with temporary droplet structures highlighted.
This isn’t unique to this system but it was parametrised as σ0 = 0.03 , φ = 0.6 , K =
2.0 ,Re = 5.1 × 10−1 , and Ca = 1.3 × 10−1 .
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more it is counted in the data. This has the advantage of acting like a probability,
showing which size clusters are most likely to be found at any given time. It also
has the disadvantage of obscuring any very brief clusters.

6.2.2 When viewed as functions of shear rate

Now, looking at the clustering behaviour across a wider set of simulation data.
Firstly, looking at the effect of the shear rate on the clustering behaviour, Fig. 6.12
shows this for a low concentration. These low concentration systems require a high
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Figure 6.12: Clustering figures for systems of varying shear rates. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
φ = 0.33 , σ0 = 0.03 , K = 0.5 .

shear rate to start seeing small, short-lived clusters forming. These clusters appear
to be made up of very quick interactions between a few droplets that break down
fairly rapidly. The low inertial effects seem unable to overcome the repulsive forces
of the droplet interfaces, so they don’t get close enough to be classified as a cluster.
In more concentrated systems (φ = 0.6 ) clusters also form more frequently at higher
shear rates, seen in Fig. 6.13. Here, increasing the shear rate creates larger clusters,
with significantly stretched droplets sometimes, as well as longer lasting clusters.
As mentioned earlier, this is likely related to the droplet deformability, as well as
there being more interactions at a higher shear rate.

6.2.3 When viewed as functions of concentration

When considering the effect of the concentration on the clustering behaviour, this
is again inter-dependent on the shear rate. At a low shear rate, there needs to be
a very high concentration to start to see clustering behaviour, which can be seen
in the previous Figs. 6.12 and 6.13. At higher shear rates, however, the effect of
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Figure 6.13: Clustering figures for systems of varying shear rates. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
φ = 0.6 , σ0 = 0.09 , K = 0.5 .

concentration becomes more gradual, which can be seen in Figs. 6.14 and 6.15. Both
the cluster size and cluster lifespan increase with an increase in the concentration.
It’s clear that as more droplets are added to the flow, the droplets within clusters
will have less room to break out due to the surrounding droplets.

Fig 6.15 shows the ellipse estimation breaking down, as it detects many clusters
within the layered system. The droplets in this system appear to deform into a
square shape, due to the lattice-like layers they are forced into. This square defor-
mation makes the cluster analysis unreliable.

6.2.4 When viewed as functions of viscosity ratio

As with previous data, the viscosity ratio appears to play a much more subtle role
on the clustering behaviour. This is visible in Figs. 6.16 and 6.17. The small trends
are inconsistent between different datasets. Fig. 6.17 shows very little effect on the
number of clusters or the cluster size distribution, whereas the age of the clusters
appears to be longer for a higher viscosity ratio. On the other hand, Fig. 6.16 appears
to show more clusters forming as viscosity ratio increases (with the size distribution
being unaffected), whilst the age of the clusters also gets longer for higher viscosity
ratios. Note that the highest viscosity ratio on this figure doesn’t keep in line with
this trend, which is what was seen in the radial distribution functions.

6.2.5 Comparison to material properties

The formation and flow of these clusters would be expected to affect the proper-
ties of the emulsion, i.e. the relative viscosity and sheared self-diffusion coefficient.
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Figure 6.14: Clustering figures for systems of varying concentrations. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
σ0 = 0.03 , K = 0.5 ,Re = 5.1 × 10−1 ,Ca = 1.4 × 10−1 . The highest concentration
system entered a layered regime and thus minimal clusters are detected.
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Figure 6.15: Clustering figures for systems of varying concentrations. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
σ0 = 0.09 , K = 100 ,Re = 5.1 × 10−1 ,Ca = 4.5 × 10−2 . The highest concentration
system entered a layered regime and thus cluster detection is less reliable.
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Figure 6.16: Clustering figures for systems of varying viscosity ratios. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
φ = 0.5 , σ0 = 0.03 ,Re = 5.1 × 10−1 ,Ca = 1.4 × 10−1 .
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Figure 6.17: Clustering figures for systems of varying viscosity ratios. Left panel:
cluster size distribution. Right panel: cluster age distribution. These systems have:
φ = 0.6 , σ0 = 0.09 ,Re = 2.5 ,Ca = 2.2 × 10−1 .
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Comparing the trends in these data sets, the concentration of the emulsion seems to
have the same effect on the viscosity, diffusion, and clustering activity, whereby an
increase in the concentration increases the given parameter. However, the concen-
tration and increased droplet interactions are likely to be the overwhelming cause
of this, rather than the clustering activity. This can be concluded as the opposite
effects are witnessed in relation to the shear rate, whereby the increase in shear rate
reduces the relative viscosity and sheared self-diffusion coefficient but increases the
clustering activity.

A key area where the clusters may impact the macroscopic properties is in the
low concentration, high shear rate regime. It can be seen in Fig. 5.9 that there is
a slight increase in the relative viscosity in this regime, reversing the overall shear-
thinning behaviour. This shear-thickening behaviour coincides with the detection
of clusters, i.e. clusters don’t form in the low concentration regime until the shear
rate gets relatively high. As noted by Wagner and Brady [9], this shear-thickening
behaviour is known to occur in suspensions due to the formation of clusters. It
appears here that the increasing shear rate makes the viscosity decrease, but the
formation of clusters impedes the flow at the higher shear rates. The reproduction
of such subtle phenomenon shows why experimental data and mesoscopic models
are required to inform the development of macroscopic models (particularly when
no theoretical solution is known).

6.3 Conclusion

The structure of the fluid and how it changed with various adjustments to fluid prop-
erties was shown via the radial distribution function. This insight into the structure
reinforced the understanding of the changes in the macroscopic measurements, i.e.
the higher shear rates introduce more deformation and allow the droplets to get
closer than before, which in turn reduces the sheared self-diffusion coefficient.

Additionally, the clustering behaviour of the droplets was displayed and analysed.
An increase in clustering activity coincided with shear thickening in the relative
viscosity data, which agrees with literature on suspensions.
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Chapter 7

Bidisperse systems

Finally, the previous simulations of monodisperse systems are idealised to enable
easier modelling than physical systems that will have some form of droplet size
distribution, i.e. they would never be perfectly monodisperse. Clearly many effects
of the droplet size distribution will be neglected from these results, in order to study
the other phase spaces with more confidence. The model itself requires only the
initial conditions to be adjusted in order to change the size distribution, hence the
model has now been used to simulate a bidisperse emulsion. Droplets of radius
R =

√
(889
π

) = 16.8 were introduced into the flow, in equal numbers to the larger
droplets. The size of these droplets is shown in Chapter 4 (Fig. 4.5) to adequately
resolve the droplet resting position to within 10% of the highest tested value. Ideally,
larger droplets would have been introduced, i.e. droplets of R = 21 with R = 25,
but this would have been too computationally expensive. Also, using slightly more
resolved droplets, such as R = 19 was felt to not be a large enough difference to the
other droplets.

To compare the effect of the bidispersity, the concentration and dimensionless
numbers are matched:

• The effective droplet radius is now 18.8 rather than
√

1369
π

= 20.9 ,

• The shear rate is adjusted by the ratio (squared) of the new and old droplet
radii to ensure matching Reynolds numbers,

• The interfacial tension parameter is adjusted by the same ratio to fix the
Capillary number, hence all these simulations use σ0 = 0.099,

• The same overall droplet concentration is desired, which means the number of
droplets is adjusted as more of the smaller droplets are required.

Now, the effect of introducing a droplet size variation into the flow is firstly
visible in Fig. 7.1, showing the relative viscosity. Both sets of data follow very
similar trends, but the bidisperse data does increase the relative viscosity in some
systems. In particular, the higher concentration data is most affected. Notably,
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Figure 7.1: A graph of relative viscosity against concentration, each line has a
constant Reynolds and Capillary number. Solid lines (crosses) are monodisperse
data (visible in previous figures), whilst dotted lines (pluses) are bidisperse data.
Both results follow the same trends, but there is a slight increase in viscosity for the
bidisperse systems, particularly at high concentrations. Lines are just as a guide to
the eye.

the higher concentration regime is where the layered systems form, which appears
to be prevented when the droplets are no longer monodisperse. The different sized
droplets are likely to prevent the layers forming as layering requires the droplets to
flow comfortably behind each other. When other sizes are introduced, the larger
droplets are likely to be unstable in the flow behind a smaller droplet and hence the
layers don’t form. It is conceivable that layers of different sizes could form, however
it may be that parallel motion of the droplets interrupts the layering causing them to
jump out of their layers; in the monodisperse systems the parallel motion is observed
creating waves through the layers and inflicting increased deformation on droplets
as they pass each other, hence the effects may be exasperated if two neighbouring
layers contain different sized droplets. Of course, it may be that even bidisperse
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systems would enter a stable layering regime, given enough simulation time, but
this seems unlikely as the bidisperse simulations were run for many times longer
than the time it took the monodisperse systems to become layered.

The bidispersity appears to, again, affect the higher concentrations’ sheared self-
diffusion coefficient results, as shown in Fig. 7.2. The trend is more consistent in
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Figure 7.2: A graph of sheared self-diffusion coefficient against concentration,
each line has a constant Reynolds and Capillary number. Solid lines (crosses) are
monodisperse data, whilst dotted lines (pluses) are bidisperse data. Both results
follow the same trends, but the bidispersity prevents the layering behaviour. Lines
are just as a guide to the eye.

these measurements, with a clear increase across the data set. Having different
sized droplets may provide greater opportunities for droplets to flow into openings
that have not been appropriate before, i.e. the smaller droplets may find spaces to
flow into (or be forced into) that the original droplets simply couldn’t physically fit
inside. Again, extra data is visible due to the prevention of the layering behaviour.

When viewed as a function of the shear rate, in Fig. 7.3, there appears to be a
more visible and consistent increase in the viscosity when the system is bidisperse.
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Again, the modest shear rates and the high concentration systems are most impacted
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Figure 7.3: A graph of relative viscosity against shear rate, each line has a con-
stant concentration. Solid lines (crosses) are monodisperse data, whilst dotted lines
(pluses) are bidisperse data. Both results follow the same trends, but there is a
slight increase in viscosity for the bidisperse systems. Lines are just as a guide to
the eye.

by the bidispersity. These results corroborate with the study of Javaran et al. [66],
whereby the polydispersity of solid particles results in an increase of the relative
viscosity. It is worth noting, however, that the witnessed effect depends heavily on
the droplet sizes, shear stress, and the proportion of large versus small droplets.
Pal [48] shows that as smaller droplets are introduced the relative viscosity can, in
fact, decrease to a local minimum and then begin to increase. This effect totally
vanishes for larger values of shear stress, whereby the same effect is witnessed as
is seen here. The increase in relative viscosity may be less pronounced than that
seen by both Pal and Javaran et al. due to the relatively small difference in size
between the droplets ( 24% here and 700% in Pal’s work [48]). The work of Javaran
et al. [66] also studies a relatively large range of particle sizes, in the range of 4–10
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lattice units.
Fig. 7.4 shows the sheared self-diffusion coefficient data as a function of the

shear rate. The small increase due to the bidispersity is again visible, with the
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Figure 7.4: A graph of sheared self-diffusion coefficient against shear rate, each line
has a constant concentration. Solid lines (crosses) are monodisperse data, whilst
dotted lines (pluses) are bidisperse data. Both results follow the same trends, but
the highest concentration data is most impacted by the bidispersity. Lines are just
as a guide to the eye.

effect becoming more prominent in the higher concentration systems. The increase
appears consistent for a varying shear rate. The tendency to converge on a specific
sheared self-diffusion coefficient appears unchanged with the addition of smaller
droplets.

7.1 Conclusion

To conclude the results chapters of this thesis, and gather exploratory data using the
developed method, simulations of bidisperse emulsions were carried out, introducing
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smaller droplets into the flow. The bidispersity was seen to increase the relative
viscosity and sheared self-diffusion coefficient of the emulsions, which agreed with
previous studies of suspensions.

The model is seen to be easily extensible to such systems. Even a bidisperse
system is an idealised system, however, initialising with a droplet size distribution
would be relatively straightforward.
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Chapter 8

Conclusions and Future Work

This chapter concludes the thesis by summarising the outcomes and outlining pos-
sible future work. The conclusion also provides an overview of the original contri-
butions that have been put forward, namely:

• the lattice-Boltzmann model of many explicit emulsion droplets, with directly
parametrisable interfacial tension parameter and making use of efficient com-
putational techniques, in Chapter 3,

• the periodic pressure boundary condition outlined in Chapter 4,

• the rheological measurements gathered by the developed model and the anal-
ysis provided through Chapters 4-6.

8.1 Conclusions

This thesis aimed to model the emergent non-Newtonian behaviour of flowing emul-
sions. Previous studies in this area either focus on the individual droplet interface
or lack a thorough comparison to existing experimental and theoretical work. The
computational costs associated with numerical methods at this scale—modelling
the fluids and the droplet interface(s)—has usually meant restricting simulations to
dilute emulsions, for which non-Newtonian behaviour is less pronounced.

A mesoscopic lattice-Boltzmann method (LBM) was developed and used to
model the explicit flow of emulsion droplets. This model was shown to reproduce
the rigorous theoretical results of Taylor [6] (see (2.6)) for the viscosity of a di-
lute emulsion. Similarly, a single-component pipe flow with analytic solution was
reproduced; with multi-component simulations beginning to show non-Newtonian
behaviour when compared with the power-law viscosity model. A periodic pressure
boundary condition was developed that didn’t have issues when interacting with
multicomponent fluid interfaces with physical pressure steps. Whilst this allowed
rheological measurements of emulsions, the solid walls imposed severe boundary ef-
fects causing a depletion zone as well as shear banding. The Lees-Edwards boundary
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condition was adapted to the emulsion model in order to study the bulk properties
of fluids.

This model of the bulk flow then provided a vast amount of data on the macro-
scopic properties of flowing emulsions and the links to the fluid microstructure. The
relative viscosity measurements from the simulations were shown to agree closely
with experimental results and macroscopic models. The expected non-Newtonian
behaviour did emerge from the simulations, showing shear-thinning behaviour over
the majority of the data. Several macroscopic models were compared, with the model
of Carreau [12] representing the data most accurately. The majority of the macro-
scopic non-Newtonian viscosity models incorporate a zero-shear limit whereby the
emulsion has Newtonian behaviour, hence the comparisons to macroscopic models
would be greatly improved by being able to study even lower shear rates.

The same model is shown to be able to take in to account the viscosity ratio
and the interfacial tension forces between the suspending and suspended fluids.
The viscosity ratio increases the relative viscosity of the emulsion, as predicted by
macroscopic models. Interfacial tension is not present in macroscopic models, yet
the impact on the relative viscosity cannot be ignored. It is known that reducing
the interfacial energy by introducing more surfactants will reduce the viscosity of an
emulsion, however this is complicated as droplets may then become smaller due to
the greater surfactant coverage. This model enables the interfacial tension to vary
independently and precisely, which allows for the study of this parameter in regards
to the macroscopic properties of the fluid.

Whilst the macroscopic properties measured from the simulations agree well
with previous studies, the explicitly modelled droplets and the ability to study the
microstructure at the same time are the highlight of the work. The explicit model al-
lows the macroscopic behaviour to emerge naturally as a result of the microstructure
of the emulsion. For example, the very subtle shear thickening effect in the high-
shear low-concentration regime is recovered in the simulations and a cluster analysis
shows this coincides with the agglomeration of droplets into clusters. Other studies
have highlighted this effect for suspensions (solid particles suspended in a liquid),
and it could be expected that the same behaviour would be apparent in emulsions.
Yet this behaviour wasn’t an assumption in the model, it simply emerged from the
droplet hydrodynamics.

Similarly, having access to the precise position and movements of each droplet
over time allows computer simulations to easily undertake statistics around this.
The sheared self-diffusion coefficient measures the movement of the droplets (or
more frequently, particles) perpendicular to the flow, i.e. due to the hydrodynamic
interactions of said particles. Outside of simulations, tracer particles that can be
tracked must be introduced into the flow, a process that hasn’t been extended to
emulsions (with deformable droplets). The access to such data allowed for the
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measuring of the sheared self-diffusion coefficient for these emulsion simulations,
and it is clear that it behaves very similarly to the relative viscosity.

The developed model is also simply extended to bidisperse emulsions, which were
also briefly studied here. Introducing a proportion of smaller droplets into the flow
was shown to slightly increase both the relative viscosity and sheared self-diffusion
coefficient, which is an effect seen in previous studies of suspensions. It has been
shown that this increase (in the relative viscosity at least) depends on the shear
rate; at low shear rates and with a low proportion of smaller droplets, the relative
viscosity can in fact be lower than that of an emulsion of the same concentration
with purely the larger droplets.

The range of data collected was limited due to the computational and time costs
associated with very low shear systems. If these restrictions were to be lifted, the
low-shear limit would then be restricted by the microcurrent activity in the system—
these spurious velocities introduced from the multi-component method are of low
order, but must be overwhelmed to achieve reliable results. At the high-shear limit,
the restriction on the LBM velocity can be overcome by introducing many Lees-
Edwards boundary planes. However, there is a physical limit present due to the
breakup of the droplets—this already resulted in the exclusion of some data from
the current study. The interfacial tension of the droplets could be increased to allow
them to withstand greater shear rates, but this introduces larger errors into the
multi-component method.

8.2 Future Work

There are several areas where this work could be extended.
Firstly, the introduction of solid particles alongside the emulsion droplets would

make the model more applicable to a wide array of complex fluids, such as molten
chocolate or ice-creams. Solid particle boundary conditions are well established in
the LBM [64, 65], and the combination with an emulsion model is also possible [92].

Similarly, having the model accommodate a density difference between the two
fluids would allow for a more accurate representation of various emulsions. The
density difference in an oil-water emulsion can vary greatly depending on the oil
used, significant in some situations but negligible in others. The developed model
would benefit from being able to model this difference.

The fits to macroscopic non-Newtonian models were complicated by the lack of
low-shear data, the collection of which is incredibly expensive. Gathering such data
would inform the macroscopic model fits, likely increasing the fitting accuracy.

It would be of interest to take the more realistic, and newly predicted, viscosity
and sheared self-diffusion data and pass it up the length scales to macroscopic models
such as Phillips et al. [47] Such macroscopic models would then be able to reach
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larger length scales than achievable by the model here yet still contain the correct
mesoscopic physics.

The effect of bidispersity on the relative viscosity is dependant on various factors,
most particularly the proportion of small to large droplets. This could be studied
in the present model and it would be interesting to see whether the same trend is
recovered as in experiments. Additionally, a realistic droplet size distribution could
feasibly be simulated, simply by adjusting the initial conditions.

An extension of the work to three dimensions (3D) is a logical next step. It
goes without saying that modelling the emulsion droplets in 3D, rather than the
infinite cylinders that they are assumed to be in these 2D models, would be more
appropriate. Such a system would be very computationally expensive, but as with
the validations in Section 3.3 a 3D model could be used on a small scale to vali-
date against the Taylor deformation relation. Moving to 3D would likely improve
the models applicability to physical emulsions, but the 2D approximation provides
excellent agreement with experimental measurements already.
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Appendix A

Chapman-Enskog Analysis

In this appendix a Chapman-Enskog analysis of the lattice-Boltzmann method
(LBM) described in Chapter 3 is undertaken. It follows a similar method to the
TRT analysis of Servan-Camas and Tsai [119], but applied to the Navier-Stokes
equation and multi-component LBM.

The evolution equation of the method is:

fi(x + ci∆t, t+ ∆t) = fi(x, t)−
1
τs

(
fis (x, t)− f (eq)is (x,u, ρ, t)

)
− 1
τa

(
fia (x, t)− f (eq)ia (x,u, ρ, t)

)
+ ∆tFi .

(A.1)

The symmetric and antisymmetric parts are defined as:

fis = fi + f−i
2 , f

(eq)
is = f

(eq)
i + f

(eq)
−i

2 ,

fia = fi − f−i
2 , f

(eq)
ia = f

(eq)
i − f (eq)−i

2 , (A.2)

where −i refers to the link in the opposite direction to i .
The equilibrium function is:

f
(eq)
i = ti

(
ρ+ ρ0

[
ciαuα
c2
s

+ ciαciβuαuβ
2c4
s

− uαuα
2c2
s

])
, (A.3)

and considering this in the reverse i direction [119]:

f
(eq)
−i = ti

(
ρ+ ρ0

[
−ciαuα

c2
s

+ ciαciβuαuβ
2c4
s

− uαuα
2c2
s

])
. (A.4)

Using (A.3) and (A.4) to create the symmetric and antisymmetric parts described
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in (A.2):

f
(eq)
is = ti

(
ρ+ ρ0

[
ciαciβuαuβ

2c4
s

− uαuα
2c2
s

])
,

f
(eq)
ia = ti

[
−ρ0

ciαuα
c2
s

]
,

Taking moments of (A.1) gives:

∑
i

fi =
∑
i

f
(eq)
i = ρ

∑
i

ficiα =
∑
i

f
(eq)
i ciα = ρ0uα∑

i

ficiαciβ =
∑
i

f
(eq)
i ciαciβ = Π0

αβ = c2
sρδαβ + ρ0uαuβ ,

assuming fi is close to equilibrium. Similarly for the symmetric and antisymmetric
parts: ∑

i

f
(eq)
is = ρ ,

∑
i

f
(eq)
ia = 0 ,

∑
i

f
(eq)
is ciα = 0 ,

∑
i

f
(eq)
ia ciα = ρ0uα ,∑

i

f
(eq)
is ciαciβ = Π0

αβ ,
∑
i

f
(eq)
ia ciαciβ = 0 .

Due to being close to equilibrium, moments of higher fi become:
∑
i

f
(n)
i = 0, n ≥ 1 ,

∑
i

f
(n)
i ciα = 0, n ≥ 1 ,

∑
i

f
(n)
i ciαciβ = Π(n)

αβ , n ≥ 1 ,

with the symmetric and antisymmetric parts:
∑
i

f
(n)
is = 0, n ≥ 1 ,

∑
i

f
(n)
is ciα = 0, n ≥ 0 ,

∑
i

f
(n)
is ciαciβ = Π(n)

αβ , n ≥ 0 ,
∑
i

f
(n)
ia = 0, n ≥ 0 ,

∑
i

f
(n)
ia ciα = 0, n ≥ 1 ,

∑
i

f
(n)
ia ciαciβ = 0, n ≥ 0 .
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Now, using the forcing term of Guo et al. [62] to perform a thorough analysis:

Fi = ti

[
A+ Bαciα

c2
s

+ Cαβ

(
ciαciβ − c2

sδαβ
2c4
s

)]
. (A.5)

Note that the specific multi-component force term from Chapter 3 (which in essence
adds a coefficient to the last term and sets A = Bα = 0) will be considered later to
detail the impact of the interfacial tension parameter. The force term has symmetric
and antisymmetric parts:

Fis = Fi + F−i
2 = ti

[
A+ Cαβ

(
ciαciβ − c2

sδαβ
2c4
s

)]
,

Fia = Fi − F−i
2 = ti

[
Bαciα
c2
s

]
.

Taking moments of the force term, (A.5), gives:

∑
i

Fi = A ,

∑
i

Ficiα = Bα ,

∑
i

Ficiαciβ = c2
sAδαβ + 1

2 [Cαβ + Cβα] ,

and for the symmetric and antisymmetric parts:
∑
i

Fis = A
∑
i

Fia = 0 ,
∑
i

Fisciα = 0
∑
i

Fiaciα = Bα ,

∑
i

Fisciαciβ = c2
sAδαβ + 1

2 [Cαβ + Cβα]
∑
i

Fiaciαciβ = 0 ,

For the Chapman-Enskog expansion:

∂t = ε∂t1 + ε2∂t2 (A.6)
∂α = ε∂α1 (A.7)
fi = f 0

i + εf 1
i + ε2f 2

i . (A.8)

A Taylor expansion and Chapman-Enskog expansion of (A.1), grouped on orders
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of ε , gives:

O
(
ε0
)

0 = − 1
τs

(
f 0
is − f

(eq)
is

)
− 1
τa

(
f 0
ia − f

(eq)
ia

)
O
(
ε1
)

∆t (∂t1 + ciα∂α1) f 0
i = − 1

τs
f 1
is −

1
τa
f 1
ia + ∆tFi (A.9)

O
(
ε2
)

∆t∂t1f 1
i + ∆t∂t2f 0

i + ∆t
2 ∂t1∂t1f

0
i + ∆tciα∂α1f

1
i

∆t2ciα∂t1∂α1f
0
i + ∆t2

2 ciαciβ∂α1∂β1f
0
i = − 1

τs
f 2
is −

1
τa
f 2
ia

=⇒ ∆t∂t2f 0
i + ∆t (∂t1 + ciα∂α1) f 1

i + ∆t2

2 (∂t1 + ciα∂α1)2 f 0
i

= − 1
τs
f 2
is −

1
τa
f 2
ia (A.10)

Taking the symmetric expression of (A.9):

∆t
(
∂t1f

0
is + ciα∂α1f

0
ia

)
= − 1

τs
f 1
is + ∆tFis ,

=⇒ f 1
is = −∆tτs

(
∂t1f

0
is + ciα∂α1f

0
ia

)
+ τs∆tFis . (A.11)

Now taking the antisymmetric expression of (A.9):

∆t
(
∂t1f

0
ia + ciα∂α1f

0
is

)
= − 1

τa
f 1
ia + ∆tFia ,

=⇒ f 1
ia = −∆tτa

(
∂t1f

0
ia + ciα∂α1f

0
is

)
+ τa∆tFia . (A.12)

Combining the symmetric and antisymmetric parts, (A.11) + (A.12), gives:

f 1
i = −∆tτs

(
∂t1f

0
is + ciα∂α1f

0
ia

)
−∆tτa

(
∂t1f

0
ia + ciα∂α1f

0
is

)
+ ∆t (τsFis + τaFia) , (A.13)

Substituting (A.13) into (A.10) gives:

∆t∂t2f 0
i + ∆t (∂t1 + ciα∂α1)

[
−∆tτs

(
∂t1f

0
is + ciα∂α1f

0
ia

)
−∆tτa

(
∂t1f

0
ia + ciα∂α1f

0
is

)
+ ∆t (τsFis + τaFia)

]
+ ∆t2

2 (∂t1 + ciα∂α1)2 f 0
i = − 1

τs
f 2
is −

1
τa
f 2
ia
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=⇒ − 1
τs
f 2
is −

1
τa
f 2
ia = ∆t∂t2f 0

i

−∆t2τs (∂t1 + ciα∂α1)
(
∂t1f

0
is + ciα∂α1f

0
ia

)
−∆t2τa (∂t1 + ciα∂α1)

(
∂t1f

0
ia + ciα∂α1f

0
is

)
+ ∆t2 (∂t1 + ciα∂α1) (τsFis + τaFia)

+ ∆t2

2 ∂t1∂t1f
0
i + ∆t2

2 ciαciβ∂α1∂β1f
0
i

+ ∆t2∂t1ciα∂α1f
0
i . (A.14)

Considering this from the opposite i direction:

=⇒ − 1
τs
f 2
−is −

1
τa
f 2
−ia = ∆t∂t2f 0

−i

−∆t2τs (∂t1 − ciα∂α1)
(
∂t1f

0
−is − ciα∂α1f

0
−ia

)
−∆t2τa (∂t1 − ciα∂α1)

(
∂t1f

0
−ia − ciα∂α1f

0
−is

)
+ ∆t2 (∂t1 − ciα∂α1) (τsF−is + τaF−ia)

+ ∆t2

2 ∂t1∂t1f
0
−i + ∆t2

2 ciαciβ∂α1∂β1f
0
−i

−∆t2∂t1ciα∂α1f
0
−i . (A.15)

Using (A.14) and (A.15) to construct the symmetric expression:

− 2
τs
f 2
is = 2∆t∂t2f 0

si

− 2∆t2τs
(
∂t1∂t1f

0
is + ∂t1ciα∂α1f

0
ia

)
− 2∆t2τa

(
∂t1ciα∂α1f

0
ia + ciαciβ∂α1∂β1f

0
is

)
+ 2∆t2 (τs∂t1Fis + τaciα∂α1Fia)
+ ∆t2∂t1∂t1f 0

is + ∆t2ciαciβ∂α1∂β1f
0
is

+ 2∆t2∂t1ciα∂α1f
0
ia ,

=⇒ −f 2
is = ∆tτs∂t2f 0

si

−∆t2τs2
(
∂t1∂t1f

0
is + ∂t1ciα∂α1f

0
ia

)
−∆t2τsτa

(
∂t1ciα∂α1f

0
ia + ciαciβ∂α1∂β1f

0
is

)
+ ∆t2τs (τs∂t1Fis + τaciα∂α1Fia)

+ ∆t2

2 τs∂t1∂t1f
0
is + ∆t2

2 τsciαciβ∂α1∂β1f
0
is

+ ∆t2τs∂t1ciα∂α1f
0
ia . (A.16)
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Similarly, the antisymmetric expression:

− 2
τa
f 2
ia = 2∆t∂t2f 0

ai

− 2∆t2τs
(
∂t1ciα∂α1f

0
is + ciαciβ∂α1∂β1f

0
ia

)
− 2∆t2τa

(
∂t1∂t1f

0
ia + ∂t1ciα∂α1f

0
is

)
+ 2∆t2 (τa∂t1Fia + τsciα∂α1Fis)
+ ∆t2∂t1∂t1f 0

ia + ∆t2ciαciβ∂α1∂β1f
0
ia

+ 2∆t2∂t1ciα∂α1f
0
is ,

=⇒ −f 2
ia = ∆tτa∂t2f 0

ai

−∆t2τsτa
(
∂t1ciα∂α1f

0
is + ciαciβ∂α1∂β1f

0
ia

)
−∆t2τa2

(
∂t1∂t1f

0
ia + ∂t1ciα∂α1f

0
is

)
+ ∆t2τa (τa∂t1Fia + τsciα∂α1Fis)

+ ∆t2

2 τa∂t1∂t1f
0
ia + ∆t2

2 τaciαciβ∂α1∂β1f
0
ia

+ ∆t2τa∂t1ciα∂α1f
0
is . (A.17)

Combining the symmetric and antisymmetric parts, (A.16) + (A.17), gives:

−f 2
is − f 2

ia = ∆tτs∂t2f 0
si + ∆tτa∂t2f 0

ai

−∆t2τs2
(
∂t1∂t1f

0
is + ∂t1ciα∂α1f

0
ia

)
−∆t2τsτa

(
∂t1ciα∂α1f

0
is + ciαciβ∂α1∂β1f

0
ia

)
−∆t2τa2

(
∂t1∂t1f

0
ia + ∂t1ciα∂α1f

0
is

)
−∆t2τsτa

(
∂t1ciα∂α1f

0
ia + ciαciβ∂α1∂β1f

0
is

)
+ ∆t2τs (τs∂t1Fis + τaciα∂α1Fia)
+ ∆t2τa (τa∂t1Fia + τsciα∂α1Fis)

+ ∆t2

2 τs∂t1∂t1f
0
is + ∆t2

2 τa∂t1∂t1f
0
ia

+ ∆t2

2 τsciαciβ∂α1∂β1f
0
is + ∆t2

2 τaciαciβ∂α1∂β1f
0
ia

+ ∆t2τs∂t1ciα∂α1f
0
ia + ∆t2τa∂t1ciα∂α1f

0
is
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=⇒ −f 2
i = ∆tτs∂t2f 0

si + ∆tτa∂t2f 0
ai+

−∆t2τs
[(
τs −

1
2

)
∂t1∂t1f

0
is + (τs + τa − 1) ∂t1ciα∂α1f

0
ia

+
(
τa −

1
2

)
ciαciβ∂α1∂β1f

0
is − τs∂t1Fis − τaciα∂α1Fia

]
+

−∆t2τa
[(
τa −

1
2

)
∂t1∂t1f

0
ia + (τs + τa − 1) ∂t1ciα∂α1f

0
is

+
(
τa −

1
2

)
ciαciβ∂α1∂β1f

0
ia − τa∂t1Fia − τsciα∂α1Fis

]
.

(A.18)

Taking the zeroth moments of (A.9) and (A.10):

∑
i

(A.9) ∆t (∂t1ρ+ ρ0∂α1uα) = ∆tA

=⇒ ∂t1ρ+ ρ0∂α1uα = A , (A.19)

∑
i

(A.10) ∆t∂t2ρ+ ∆t2

2
(
∂t1∂t1ρ+ 2ρ0∂t1∂α1uα + ∂α1∂β1Π0

αβ

)
+

−∆t2∂α1mFα = 0

=⇒ ∂t2ρ+ ∆t
2
(
∂t1∂t1ρ+ 2ρ0∂t1∂α1uα + ∂α1∂β1Π0

αβ

)
= ∆t∂α1mFα .

(A.20)

Taking the first moment of (A.13):

∑
i

ciα(A.13) −mFα∆t = −∆tτa
(
ρ0∂t1uα + ∂β1Π0

αβ

)
+ ∆tτaBα

Let Bα = nFα (A.21)

=⇒ ρ0∂t1uα + ∂β1Π0
αβ =

(
m

τa
+ n

)
Fα . (A.22)

Considering (A.19) to (A.22), to obtain the Euler equation let:

m

τa
+ n = 1 and A = 0 . (A.23)

Taking the first moment of (A.18):

∑
i

ciγ(A.18) −
∑
i

ciγf
2
i = ∆tτaρ0∂t2uγ

−∆t2τa
[(
τa −

1
2

)
ρ0∂t1∂t1uα + (τa + τs − 1) ∂t1∂α1Π0

γα

+
(
τs −

1
2

)
ρ0c

2
s∂α1∂β1 (uαδβγ + uβδαγ + uγδαβ)

−τa∂α1nFγ − τs∂α1

(
c2
sAδαγ + 1

2 (Cαγ + Cγα)
)]
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=⇒
∑
i

ciγf
2
i = −∆tτaρ0∂t2uγ + ∆t2τa

(
τa −

1
2

) [
ρ0∂t1∂t1uγ + ∂t1∂α1Π0

γα

]
+ ∆t2τa

(
τs −

1
2

) [
∂t1∂α1Π0

γα + c2
sρ0∂α1∂β1 (uαδβγ + uβδαγ + uγδαβ)

]
−∆t2τa2∂t1nFγ −∆t2τaτs∂α1

(
c2
sAδαγ + 1

2 (Cαγ + Cγα)
)
. (A.24)

Now, the second moment of (A.13):

∑
i

ciµciν(A.13)
∑
i

ciµciνf
1
i = −∆tτs∂t1Π0

µν −∆tρ0c
2
s∂α1 (uαδµν + uµδαν + uνδαµ)

+ ∆tτs
(
c2
sAδµν + 1

2 (Cµν + Cνµ)
)
. (A.25)

Using (A.19) and (A.22) in (A.20):

∂t2ρ−
∆t
2 ∂α1

[
−∂β1Π0

αβ + Fα

(
m

τa
+ n

)]
+ ∆t∂α1

[
−∂β1Π0

αβ + Fα

(
m

τa
+ n

)]
+ ∆t

2 ∂α1∂β1Π0
αβ

= ∆t∂α1mFα . (A.26)

Cancelling Π0
αβ terms and applying (A.23):

=⇒ ∂t2ρ = ∆t∂α1Fα

(
m− 1

2

)
∴ m = 1

2 hence n = 1− 1
2τa

. (A.27)

Using (A.22) in (A.24):

0 = ρ0∂t2uγ + ∆t
(
τa −

1
2

) [
ρ0∂t1∂t1uγ + ∂t1∂α1Π0

γα

]
+ ∆t

(
τs −

1
2

) [
∂t1∂α1Π0

γα + c2
sρ0∂α1∂β1 (uαδβγ + uβδαγ + uγδαβ)

]
−∆tτa∂t1nFγ −∆tτs∂α1

[1
2 (Cαγ + Cγα)

]
.

Using (A.22) again and gathering terms:

=⇒ ρ0∂t2uγ =
(

∆t
(
τa −

1
2

)(
m

τa
+ n

)
−∆tτan

)
∂t1Fγ

+ ∆t
(
τs −

1
2

)
∂t1∂α1

(
ρc2

sδαγ + ρ0uαuγ
)

+ ∆t
(
τs −

1
2

)
c2
sρ0∂α1 (∂γ1uα + ∂α1uγ)

+ ∆t
(
τs −

1
2

)
c2
sρ0∂γ1∂α1uα

−∆tτs∂α1

[1
2 (Cαγ + Cγα)

]
(A.28)
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Considering part of the term on line 2 of (A.28), using (A.19) to simplify:

∂t1ρc
2
sδαγ + ∂t1ρ0uαuγ

= − c2
sρ0δαγ∂β1uβ + uγ

(
−∂β1Π0

αβ + Fα

(
m

τa
+ n

))
+ uα

(
−∂β1Π0

γβ + Fγ

(
m

τa
+ n

))
.

Using this to look at the full term on line 2 of (A.28):

∆t
(
τs −

1
2

)
∂t1∂α1

(
ρc2

sδαγ + ∂t1ρ0uαuγ
)

= −∆t
(
τs −

1
2

)
c2
sρ0∂γ1∂β1uβ

−∆t
(
τs −

1
2

)
∂α1

[
uγ∂β1Π0

αβ + uα∂β1Π0
γβ

]
+ ∆t

(
τs −

1
2

)
∂α1

[(
m

τa
+ n

)
(uγFα + uαFγ)

]
.

Substituting the definition of Π0
αβ , cancelling terms O (u3) , and gathering remaining

terms gives:

∆t
(
τs −

1
2

)
∂t1∂α1

(
ρc2

sδαγ + ∂t1ρ0uαuγ
)

= −∆t
(
τs −

1
2

)
c2
sρ0∂γ1∂β1uβ

−∆t
(
τs −

1
2

)
c2
s∂α1 [uγ∂α1ρ+ uα∂γ1ρ]

+ ∆t
(
τs −

1
2

)(
m

τa
+ n

)
∂α1 [uγFα + uαFγ] . (A.29)

Now, substituting (A.29) back into (A.28), after cancelling one of the terms, gives:

ρ0∂t2uγ =
(

∆t
(
τa −

1
2

)(
m

τa
+ n

)
−∆tτan

)
∂t1Fγ

−∆t
(
τs −

1
2

)
c2
s∂α1 [uγ∂α1ρ+ uα∂γ1ρ]

+ ∆t
(
τs −

1
2

)(
m

τa
+ n

)
∂α1 [uγFα + uαFγ]

+ ∆t
(
τs −

1
2

)
c2
sρ0∂α1 (∂γ1uα + ∂α1uγ)

−∆tτs∂α1

[1
2 (Cαγ + Cγα)

]

Using (A.23) and (A.27) to cancel further, and cancelling the terms of O(m3) [58]:
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ρ0∂t2uγ = ∆t
(
τs −

1
2

)
c2
sρ0∂α1 (∂γ1uα + ∂α1uγ)

+ ∆t
(
τs −

1
2

)
∂α1 [uγFα + uαFγ]

−∆tτs∂α1

[1
2 (Cαγ + Cγα)

]
(A.30)

Recombining time scales from (A.22) and (A.30) gives:

ρ0∂tuγ + ∂α1Π0
αγ = ∆t

(
τs −

1
2

)
c2
sρ0∂α1 (∂γ1uα + ∂α1uγ) + Fγ

+ ∆t
(
τs −

1
2

)
∂α1 [uγFα + uαFγ]

−∆tτs∂α1

[1
2 (Cαγ + Cγα)

]
. (A.31)

We require:
(
τs −

1
2

)
[uγFα + uαFγ] = τs

2 (Cαγ + Cγα) .

Hence:

Cαβ =
(

1− 1
2τs

)
(uαFβ + uβFα) . (A.32)

Considering the force term, along with (A.21) and (A.32):

Fi = ti

[(
1− 1

2τa

)
ciαFα
c2
s

+
(

1− 1
2τs

) (uαFβ + uβFα) ciαciβ
2c4
s

−
(

1− 1
2τs

) (uαFβ + uβFα) c2
sδαβ

2c4
s

]

=⇒ Fi = ti

[(
1− 1

2τa

)
ciαFα
c2
s

−
(

1− 1
2τs

)
uαFα
c2
s

+
(

1− 1
2τs

)
ciαciβuβFα

c4
s

]
.

(A.33)

Now working towards the stress tensor starting at (A.25):

∑
i

ciµciνf
1
i = −∆tτs∂t1Π0

µν −∆tρ0c
2
s∂α1 (uαδµν + uµδαν + uνδαµ)

+ ∆tτs
(
c2
sAδµν + 1

2 (Cµν + Cνµ)
)

=⇒ Π1
µν = −∆tτs∂t1

[
c2
sρδµν + ρ0uµuν

]
−∆tρ0c

2
s∂α1 (uαδµν + uµδαν + uνδαµ)

+ ∆tτs
(
c2
sAδµν + 1

2 (Cµν + Cνµ)
)
.
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Using (A.19) and (A.22), along with the product rule, this reduces to:

Π1
µν = ∆tτsuµ

[
∂α1c

2
sρδαν − Fν

]
+ ∆tτsuν

[
∂α1c

2
sρδαµ − Fµ

]
−∆tτsρ0c

2
s∂ν1uµ −∆tτsρ0c

2
s∂µ1uν

=⇒ Π1
µν = −∆tτs [uνFµ + uµFν ]

−∆tτsρ0c
2
s [∂ν1uµ + ∂µ1unu]

+ ∆tτs
(

1− 1
2τs

)
(uµFν + uνFµ)

=⇒ Π1
µν = −∆tτsρ0c

2
s [∂ν1uµ + ∂µ1unu]− ∆t

2 (uµFν + uνFµ)

∴ σαβ = −
(

1− 1
2τs

) [
Π1
αβ + ∆t

2 (uαFβ + uβFα)
]

(A.34)

We must analyse the implemented multi-component force:

Fi = tiβσ

τsc4
s

ρ(0)ρ(1)

ρ2 (n̂αn̂β − δαβ)
(
ciαciβ − c2

sδαβ
)

(A.35)

which is a coefficient of the final term of (A.5). This is specified to a two-component
system to allow for the analysis of the pressure step of a droplet. A steady, stationary
version of (A.31) with the implemented force term rather than the full force term is
considered:

∂α1c
2
sρ = − 2∆tβσ∂β1

[
ρ(0)ρ(1)

ρ2 (n̂αn̂β − δαβ)
]
. (A.36)

Taking this in two dimensions:

−∂xc2
sρ = 2∆tβσ

[
∂x

(
ρ(0)ρ(1)

ρ2

(
n2
x − 1

))
+ ∂y

(
ρ(0)ρ(1)

ρ2 nxny

)]

−∂yc2
sρ = 2∆tβσ

[
∂x

(
ρ(0)ρ(1)

ρ2 nxny

)
+ ∂y

(
ρ(0)ρ(1)

ρ2

(
n2
y − 1

))]

−∂xc2
sρ = 2∆tβσ

[
∂x

(
ρ(0)ρ(1)

ρ2 n2
x

)
− ∂x

ρ(0)ρ(1)

ρ2 + ∂y

(
ρ(0)ρ(1)

ρ2 nxny

)]

−∂yc2
sρ = 2∆tβσ

[
∂x

(
ρ(0)ρ(1)

ρ2 nxny

)
+ ∂y

(
ρ(0)ρ(1)

ρ2 n2
y

)
− ∂y

ρ(0)ρ(1)

ρ2

]
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Using the product rule to expand this:

−∂xc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 ∂xn
2
x + n2

x∂x
ρ(0)ρ(1)

ρ2 − ∂x
ρ(0)ρ(1)

ρ2

+ρ
(0)ρ(1)

ρ2 ∂y (nxny) + nxny∂y
ρ(0)ρ(1)

ρ2

]

−∂yc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 ∂x (nxny) + nxny∂x
ρ(0)ρ(1)

ρ2 + ρ(0)ρ(1)

ρ2 ∂yn
2
y

+n2
y∂y

ρ(0)ρ(1)

ρ2 − ∂y
ρ(0)ρ(1)

ρ2

]

−∂xc2
sρ = 2∆tβσ

[
2ρ

(0)ρ(1)

ρ2 nx∂xnx + n2
x∂x

ρ(0)ρ(1)

ρ2 − ∂x
ρ(0)ρ(1)

ρ2

+ρ
(0)ρ(1)

ρ2 ny∂ynx + ρ(0)ρ(1)

ρ2 nx∂yny + nxny∂y
ρ(0)ρ(1)

ρ2

]

−∂yc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 nx∂xny + ρ(0)ρ(1)

ρ2 ny∂xnx + nxny∂x
ρ(0)ρ(1)

ρ2

+2ρ
(0)ρ(1)

ρ2 ny∂yny + n2
y∂y

ρ(0)ρ(1)

ρ2 − ∂y
ρ(0)ρ(1)

ρ2

]
(A.37)

Consider that there is a static droplet of radius R; we pick a directly on the
interface (ρN = 0) on the left side where n̂ = (−1, 0) =⇒ nx = −1 and ny =
0 . The curvature of the droplet is κ = 1

R
and κ = −∂αnα = − ∂xnx− ∂yny . Using

this to remove terms of ny and cancelling like terms from (A.37) gives:

−∂xc2
sρ = 2∆tβσ

[
2ρ

(0)ρ(1)

ρ2 nx∂xnx + n2
x∂x

ρ(0)ρ(1)

ρ2

−∂x
ρ(0)ρ(1)

ρ2 + ρ(0)ρ(1)

ρ2 nx∂yny

]

−∂yc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 nx∂xny − ∂y
ρ(0)ρ(1)

ρ2

]

Noting that ny is unchanging in the x direction (at this point), and that ρ(0)ρ(1)

ρ2 is
at a local maximum, differentials of these terms are zero:

−∂xc2
sρ = 2∆tβσ

[
2ρ

(0)ρ(1)

ρ2 nx∂xnx + ρ(0)ρ(1)

ρ2 nx∂yny

]
−∂yc2

sρ = 2∆tβσ [0]
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Considering just the x differential now then:

− ∂xc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 nx∂xnx + ρ(0)ρ(1)

ρ2 nx∂xnx + ρ(0)ρ(1)

ρ2 nx∂yny

]

=⇒ − ∂xc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 nx∂xnx + ρ(0)ρ(1)

ρ2 nx (∂xnx + ∂yny)
]
.

As nx is unchanging in the x direction (at this point), and using the identity of the
curvature from earlier we have:

− ∂xc2
sρ = 2∆tβσ

[
ρ(0)ρ(1)

ρ2 nx (−κ)
]

=⇒ ∂xc
2
sρ = 2∆tβσρ

(0)ρ(1)

ρ2 nxκ (A.38)

Now, from the segregation algorithm we have:

∂αρ
N = 4βρ

(0)ρ(1)

ρ2 n̂α

=⇒ ρ(0)ρ(1)

ρ2 n̂α = ∂αρ
N

4β

=⇒ ρ(0)ρ(1)

ρ2 n̂x = ∂xρ
N

4β (A.39)

Using (A.39) in (A.38):

∴ ∂xc
2
sρ = 2∆tβσκ∂xρ

N

4β

=⇒ ∂xc
2
sρ = ∆tσ

2 κ∂xρ
N (A.40)

Considering Laplace law behaviour, remembering p = c2
sρ , we want:

∆p =
∫ in

out
∂xc

2
sρ∂x = ∆tσ

2 κ
∫ in

out
∂xρ

Ndx =
[

∆tσ
2 κρN

]in
out

=⇒ ∆p = ∆tσ
2 κ

[
ρN
]in
out

= ∆tσ
2 κ (−1− 1) = −∆tσκ

Letting ∆t = 1 =⇒ ∆p = − σκ , which means the pressure step from inside to
outside the droplet is directly proportional to the interfacial tension parameter and
the radius (curvature) of the droplet.
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Appendix B

Video files

Within this Appendix are a selection of animations relating to the bulk emulsion
flow of Chapters 5–7. There were approximately 250 unique simulations carried out,
but this has been condensed the subset of videos seen in Table B.1.

Firstly, an explanation of what will be seen. As discussed in Chapter 5, these
videos are produced by using simulation snapshots as frames of a video. The snap-
shots themselves are based on the local droplet fluid concentration, where red rep-
resents the suspending fluid and blue represents the suspended droplet fluid. The
speed of the droplets moving within the video may not be representative of the
velocity they travelled within the flow, because their movement within the videos
depends on the number of timesteps between each frame of the animation. If the
video playback speed was proportional to the droplet velocities, the low shear sys-
tems would appear almost paused compared to the high shear systems.

Also of note are the positions of the Lees-Edwards boundaries and the effect they
have on the speed of the droplets. Between different systems the number and position
of the boundary conditions will change—only one is required if the velocity is small,
but to shear over the LBM velocity limit more boundaries can be introduced. The
boundaries cause a discontinuity in the systems if the displacement is not accounted
for. For the output of the snapshots then, the system "slices" between each boundary
are shifted by their displacement. Fig. B.1 shows this process. This process starts
at the bottom boundary, shifting by zero, then proceeds upwards shifting the slices
as required. This means that the bottom slice will have an effective velocity from
−ULE to ULE , whereas the slices above will have positive velocities from n×ULE to
(n + 1) × ULE , where n increases as the process moves up a slice (starting at zero
for the bottom slice).
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Figure B.1: On the left is an example snapshot of a sheared system. On the right is
a schematic of how the slices between the Lees-Edwards planes are shifted in order
to produce a continuous image. The fluid velocity within each slice stays between
−ULE and ULE , but is shifted into a continuously increasing velocity from bottom
to top. This ensures that droplets on the interface line up with their other half on
the other side of the boundary.

Table B.1: The list below provides a selection of videos. Firstly, nine monodisperse
simulations from a combination of low, medium, and high shear rates and concen-
trations, which provide a representative sample of the data visible in Chapter 5.
Secondly, 7 bidisperse simulations from a combination of low, medium, and high
shear rates and concentrations, which provide a representative sample of the data
visible in Chapter 7 (note that only one high shear video is available due to the video
frames of other simulations being unsuitable—droplets flow too fast to be followed).
Finally, a selection of simulations exhibiting unique behaviour. The Digital Object
Identifier (DOI) links within the references should provide a page on figshare.com
where the animations can be watched or downloaded.

System description Citation
Free-flowing, unlayered systems, representative of data in Chapter 5:
φ = 0.33 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 0.5 [120]
φ = 0.33 ,Re = 1.0 × 10−1 ,Ca = 4.5 × 10−3 , K = 2.0 [121]
φ = 0.33 ,Re = 5.1 × 10−1 ,Ca = 2.3 × 10−2 , K = 2.0 [122]
φ = 0.5 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 2.0 [123]
φ = 0.5 ,Re = 1.0 × 10−1 ,Ca = 4.5 × 10−3 , K = 2.0 [124]
φ = 0.5 ,Re = 5.1 × 10−1 ,Ca = 7.6 × 10−3 , K = 2.0 [125]
φ = 0.7 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 2.0 [126]
φ = 0.7 ,Re = 4.6 × 10−2 ,Ca = 2.0 × 10−3 , K = 0.5 [127]
φ = 0.7 ,Re = 5.1 × 10−1 ,Ca = 2.3 × 10−2 , K = 0.5 [128]
Free-flowing, unlayered systems, representative of data in Chapter 7:
φ = 0.33 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 1.0 [129]
φ = 0.33 ,Re = 1.0 × 10−1 ,Ca = 1.5 × 10−3 , K = 1.0 [130]
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φ = 0.5 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 1.0 [131]
φ = 0.5 ,Re = 1.0 × 10−1 ,Ca = 1.5 × 10−3 , K = 1.0 [132]
φ = 0.5 ,Re = 5.1 × 10−1 ,Ca = 7.6 × 10−3 , K = 1.0 [133]
φ = 0.7 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 1.0 [134]
φ = 0.7 ,Re = 1.0 × 10−1 ,Ca = 1.5 × 10−3 , K = 1.0 [135]
φ = 0.33 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 0.5 .
A cluster forms near the bottom of the video around the 4 minute
mark. This clustering appears to be responsible for a significant
increase in the droplet deformation.

[115]

φ = 0.5 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 0.5 .
The droplets form a single large cluster spanning the entire system.
Due to periodicity the cluster joins onto itself and shear banding
occurs (the background fluid can more easily flow through the areas
lacking droplets). This system was excluded from the main dataset
due to the flow regime.

[136]

φ = 0.7 ,Re = 5.1 × 10−3 ,Ca = 7.6 × 10−5 , K = 5.0 .
The droplets never quite break out of the initialisation, but the
lattice structure they fall into isn’t aligned with the flow direction
(unlike in other systems). This diagonal lattice creates a yielding
behaviour whereby flow is resisted until the droplet slip past each
other into the next jammed state. These systems were excluded
from the main dataset due to the flow regime.

[137]

φ = 0.6 ,Re = 1.0 × 10−1 ,Ca = 1.5 × 10−3 , K = 0.5 . The
system is freely-flowing for the majority of the simulation, except
an almost imperceptible moment (between 40 and 60 seconds in the
video) in which the droplets align to the flow. It’s hard to notice
in the video, but the result is an order of magnitude drop in the
sheared self-diffusion coefficient (for this brief moment, the time
averages overcome this). This is the only simulated system with
such an event.

[138]

φ = 0.7 ,Re = 4.6 × 10−2 ,Ca = 2.0 × 10−3 , K = 0.5 . The
droplets align almost completely with the flow, but the structure
isn’t stable. Due to the number of droplets in the system there can-
not be an equal number in all the rows; this appears to destabilise
the structure, with droplets being forced out and between the rows.

[139]
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