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ABSTRACT 

This paper proposes a method comprising procedures to 

calibrate an EnergyPlus whole building energy model. 

An occupant behavior data mining procedure is 

developed and tested in an office building. Workday 

occupancy schedules are generated by mining the office 

appliance energy consumption data. Hourly and 

monthly power, energy, and temperature data are 

collected and used for lighting, equipment and HVAC 

systems energy performance calibration. The result 

shows a 1.27% mean bias error for the total annual 

energy use intensity. The proposed calibration method 

provides a scientific and systematic framework to 

conduct high accuracy EnergyPlus model calibration. 

INTRODUCTION 

Building energy modeling (BEM) is increasingly being 

used in the building industry. Currently, one main 

driver of BEM is to demonstrate code and standard 

compliances for green building certification purposes. 

However, the value of a BEM model can potentially 

extend beyond that. It can be used to  optimize design 

solutions during the design stage as well as advanced 

model-based building controls and life-cycle 

performance analysis during the operation stage (Zhao 

et al. 2014).  

There are many reasons why the value of the BEM 

model is under appreciated. A case study on LEED 

buildings showed significant disparities between 

modeling result and measured energy performance 

(Turner, Frankel, and Council 2008). BEM model 

calibration is the approach to modify and adapt the 

design case BEM model based on measured data to 

generate an updated BEM model that can accurately 

reflect the actual building operation performance. 

Model calibration is crucial to add value to the BEM 

model by extending its function to the building life 

cycle.  

ASHRAE Guideline 14-2002 defines the evaluation 

criteria to calibrate BEM models. According to the 

Guideline, monthly and hourly data, as well as spot and 

short-term measurements can be used for calibration. 

Mean Bias Error (MBE) and Coefficient of Variation of 

the Root Mean Squared Error (CVRMSE) are used as 

evaluation indices. “The computer model shall have an 

MBE of 5% and a CVRMSE of 15% relative to 

monthly calibration data. If hourly calibration data are 

used, these requirements shall be 10% and 30%, 

respectively.” (ASHRAE 2002)  

International Performance Measurement and 

Verification Protocol (IPMVP) Volume III stipulates 

the procedures of calibrating an “as-built” energy 

model. Model inputs such as weather input, occupant 

and equipment schedules, and system parameters such 

as equipment performance curves or system control, 

have to be calibrated based on the “best measured 

information available”. (EVO 2003) 

Reddy noted that the empirical BEM model calibration 

method is a “manual, iterative, and pragmatic 

intervention” (Reddy 2006). Several studies have 

proposed and demonstrated systematic and 

structuralized empirical BEM model calibration 

methods. Raftery et al. developed a method to 

iteratively update an EnergyPlus (Crawley et al. 2001) 

model with empirical data. Human resources 

interviews, personnel counts, and multiple day/night 

occupancy survey were conducted to update the 

occupancy schedule in the design case BEM model 

(Raftery, Keane, and Costa 2011). Kandil and Love 

proposed and demonstrated a method to calibrate an 

EnergyPlus model for a school building. Empirical data 

were collected through interview, site visit, long-term 

measurement, and spot measurement (Kandil and Love 

2013). Other studies also demonstrated the feasibility of 

various empirical BEM model calibration methods 

(Pedrini, Westphal, and Lamberts 2002, Raftery, 

Keane, and O’Donnell 2011, Pan, Huang, and Wu 

2007).  
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Current empirical BEM model calibration methods 

often use a “walk through audit” approach to determine 

occupancy schedule. This approach is necessary but 

may not be scientifically accurate. It is well 

acknowledged that occupant presence and behavior 

have significant impact on building energy 

consumptions (Dong and Lam 2011, Haldi and 

Robinson 2011, Page et al. 2008, Zhao et al. 2013, 

Zhang et al. 2012). It is necessary to develop a 

scientific and practical method to generate occupancy 

schedules for BEM models.  

This study proposes and demonstrates an empirical 

calibration method for the EnergyPlus model of a 

medium size office building in Pittsburgh Pennsylvania. 

Occupancy schedules are learned by using data mining 

algorithms from office appliance energy consumption 

data. 2013 Actual Meteorological Year (AMY) weather 

data (DOE 2013), monthly energy meter data and 

hourly Building Automation System (BAS) data are 

collected and used for the calibration. An inverse 

calibration procedure is developed for lighting and 

equipment schedule and power density calibration. 

HVAC system parameters and controls are calibrated 

with hourly zone temperature data and monthly energy 

data. The method comprising several procedures is 

introduced, and results are presented and discussed.  

METHODS  

Overview 

Figure 1 illustrates the proposed EnergyPlus whole 

building energy model calibration method. The purpose 

of the calibration is to ensure the energy model can 

generate energy use result close to the measured values 

using actual inputs, including weather, occupancy 

schedule, lighting and equipment schedules and 

densities, and the HVAC system parameters and 

controls. The baseline model is created based on 

ASHRAE 90.1 Appendix G (ASHRAE 2007). The 

proposed design case model is created based on design 

drawings and specifications, with the same input 

assumptions as the baseline model for fair comparison 

purpose.  

The first step of the calibration  is to replace the TMY3 

weather file (DOE 2013) with real weather information 

in accordance with the actual data collection period. 

The second step is to replace the design case occupancy 

schedules with the “real (or learned)” occupancy 

schedules generated from the data mining study. The 

third step is to calibrate the interior lighting, interior 

equipment, exterior lighting, and exterior equipment 

power densities and schedules with monthly and hourly 

energy consumption data with an “inversed calibration 

method”. The fourth and final step is to calibrate 

HVAC system parameters and controls. It is important 

that the HVAC system should be calibrated after other 

input parameters and systems are calibrated, because 

most of these inputs will influence the HVAC system 

performance (such as internal loads and 

“disturbances”). The calibration acceptance criterion for 

each calibration step are MBE<5% and CVRMSE<15% 

for monthly data calibration, and MBE<10% and 

CVRMSE<30% for hourly data calibration, 

respectively. MBE and CVRMSE are defined by 

Equation (1 - 3). 

 

Figure 1 EnergyPlus whole building energy model calibration method 
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where,    is the measured data;   ̂ is the simulated data; 

   is the sample size; and   ̅ is the sample mean of 

measured data. 

Test-bed building model and data collection 

A 2-story 2,262m
2
 office building – Phipps Center for 

Sustainable Landscapes (CSL) in Pittsburgh, 

Pennsylvania is selected as a test-bed (Phipps 2012) to 

demonstrate the calibration method. The building 

baseline and proposed design case energy models are 

created with DesignBuilder and EnergyPlus programs, 

as seen in Figure 2 (Zhao et al. 2012). The EnergyPlus 

model is then linked with Matlab/Simulink to simulate 

the actual control settings (Zhao, Lam, and Ydstie 

2013). The CSL building construction was completed in 

December 2011 and was officially occupied in spring 

2012. For this study, hourly system operation, indoor 

environmental, and energy data have been collected 

from the BAS since August 2013. Monthly energy data 

from utility bills are available since January 2013.  

 

Figure 2 Model view of the CSL building 

Weather information 

2013 AMY weather data of Pittsburgh International 

Airport is used to replace the TMY weather file used in 

the design case energy model.  

Occupancy schedule data mining 

The occupancy schedules are derived by mining the 

electricity data of the office appliances. A field 

experiment was conducted in the CSL building from 

September to December 2013. Figure 3 shows the data 

collection system architecture. Occupancy status 

“ground truth” data is collected with Fitbit
®
 Flex

TM
 

(Fitbit 2014) pedometer with its Bluetooth Dongle, 

which receives signal every 9 seconds when it is within 

a 6-meter range, and with a computer idle-time logging 

program installed in the participants’ computers, which 

records the time that neither keyboard nor mouse is 

used within 5 minutes. 

 

Figure 3 Occupancy ground truth and training data 

collection system architecture 

Plugwise
®
 wireless smart meters (Plugwise 2013) are 

used to collect individual office appliance electricity 

data for each occupant in 5-minute time interval, 

including laptop computers, task lights, computer 

monitors, personal fans, chargers, and printers. This 

data is used as training data to predict occupancy status. 

Both “ground truth” and electricity data are collected 

with Python (Python 2012) programs and stored in an 

online database.  

Support Vector Regression (SVR), Linear Regression 

(LR), and Locally Weighted Learning (LWL) are tested 

as candidate algorithms to build occupancy schedule 

models (Zhao and Lam 2012, Zhao et al. 2013).  

Lighting and equipment system calibration 

An inverse calibration procedure is developed for 

lighting and equipment power density and schedule 

calibration. A Python program is written to automate 

part of the process (solid lines) in Figure 4.  

The method follows 4 steps. (1) Assumed power 

density and hourly schedule are fed into the EnergyPlus 

model. (2) EnergyPlus hourly output power 

consumptions are compared with the actual measured 

data to meet the MBE and CVRMSE criterion. (3) If 

the criteria are not met, an hourly inverse calibration 

factor, as calculated by taking the hourly measured 

power (PD), divided by the simulated power density 

(PD-hat), will be multiplied by the hourly schedule and 

generate an 8760-hours schedule including weekdays, 

weekends, and national holidays to be directly used in 

the next iteration of EnergyPlus simulation. If the 

criteria are met, the program will check the monthly 

MBE and CVRMSE criteria; (4) The monthly energy 

              Sampled open office zone 
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simulation data will be compared with monthly metered 

data to calibrate the total lighting and equipment power. 

The calibrated total power densities are calculated by 

multiplying the calibration factor E/E-hat by the 

assumed simulation lighting and equipment power 

densities. Some manual effort is involved in the 

process, represented by the dash lines in Figure 4. 

Daylight responsive control is implemented in the CSL 

building, so during times when daylight provided 

sufficient illuminance, the lighting electricity is 

reduced. Therefore, the electrical lighting electricity use 

and the EnergyPlus lighting schedule input (illuminance 

demand) are no longer correlated during those periods. 

Two steps are performed to solve this issue. (1) The 

daylight harvesting system is disabled in the model to 

get the total power consumption value without daylight 

contribution; (2) the difference between the actual and 

the daylight-disabled power consumption is derived and 

used to adjust the actual schedule. 

Exterior lighting is also controlled by daylight sensor, 

so the monthly schedule is also adjusted according to 

astronomical clock (number of daylight hours are taken 

into account).  

 

Figure 4 The inverse calibration procedure 

HVAC system calibration 

A central air handling unit (AHU) with a geothermal 

heat pump system is used to heat, cool, and ventilate the 

CSL building. The parameters of key HVAC equipment 

are first calibrated based on installed manufacturer 

datasheet and testing data. Table 1 illustrates the 

calibrated EnergyPlus model HVAC input parameters.  

Zone control setpoints are then calibrated based on 

measured hourly data for both heating and cooling 

modes. Simulated monthly HVAC energy consumption 

by end use is then compared with metered data. 

 

Table 1 HVAC equipment parameter calibration 

 
EnergyPlus model input 

AHU supply 
fan 

Maximum Flow Rate:  (5.85 m3/s) 

Pressure Rise (Total): 1740.595 (Pa) Equation 
(4-7) 

Motor Efficiency: 0.813 

Geothermal 

heat pump 

Rated Cooling Capacity: 123320.8 (W) 

Rated Heating Capacity: 104450.5 (W) 

Geothermal 
Heat 

Exchanger 

Bore Hole Radius: 0.073 (m) 

Bore Hole Length: 155.45 (m) 

Ground Thermal Heat Capacity: 2250000 

(J/m3-K) 

Ground Thermal Conductivity: 2.86 (W/m-K) 

 

RESULTS AND DISCUSSION 

Occupancy schedule modeling result 

The occupancy schedule modeling procedure is tested 

in the CSL building. 11141 valid data instances of 10 

valid participants are collected over 49 workdays out of 

84 total days of the measurement, as shown in Figure 5.  

With 95% confidence interval, the margin of error of 

the mean value for the 49 workday schedules is less 

than 10%. However, when comparing the mean value 

of different days of a week, variations are bigger. 

Figure 6 shows the different weekday ground truth 

mean value of the occupancy schedule. In general, 

Tuesdays and Wednesdays have relatively higher 

occupancy rate. Fridays have the lowest occupancy 

rate. The proposed design case occupancy assumption 

is also shown in Figure 6. The average weekday 

occupancy difference between the assumed and the 

actual weekday schedules is 43.18%.  

The baseline data mining training dataset includes 

14111 instances of 5-minute power consumption data 

of all the 28 appliances for the 10 occupants.  

 
Figure 5 Total days of the study 

Table 2 shows the correlation coefficient, relative 

absolute error, and computation time of the 3 

algorithms. With p=0.05 two-tailed paired T-test, LR 

and SVR have no significant differences in correlation 

coefficient and relative absolute error. But LR is chosen 

for the learning algorithm due to its shorter computation 

time.  
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Figure 6 Comparison of the weekday ground truth 

mean value and the proposed design case assumption 

Table 2 Occupancy schedule data mining comparison 

results with different algorithms 

 SVR LR LWL 

Correlation coefficient 0.95 0.95 0.87* 

Relative absolute error 20.13% 21.76% 37.19%* 

Computation time (s) 1706.85 0.19 0.01 
*LWL has significantly lower performance than LR and SVR. 

The first baseline mining study has 28 attributes 

(number of appliances) in the dataset. For practical 

application, it would be useful to identify key attributes 

and do feature selection to reduce the number of 

attributes. The attributes can be classified into 3 

categories: computers, task lights, and others (personal 

fans, computer screens, chargers, and printers). The 

total weights of the 3 categories are 38.34%, 24.30%, 

and 37.37%, respectively. As all the occupants have 

computers, this attribute is selected as a key attribute to 

do the second data mining study using LR algorithm 

with 11 attributes (computer power consumptions). 

In the test-bed building, each occupant has a power 

strip. All the appliances are plugged into the power 

strip, so another practical way to reduce the number of 

attributes is to study the energy consumptions by power 

strip (by person) instead of by individual appliance. The 

third data mining study is conducted using LR 

algorithm with 10 attributes (total power consumptions 

per person). 

Table 3 shows the number of attributes, correlation 

coefficient and relative absolute error with different 

attributes. With p=0.05 two-tailed paired T-test, no 

statistical significant difference is found among the 3 

mining methods. The methods can all be used for 

learning occupancy schedule depending on the data 

availability.  

Figure 7 shows the occupancy schedule comparison 

among the ground truth value and the predicted value 

using the 3 different attributes on a typical weekday. It 

is noted that “by computer” predictions tend to have 

larger variations, “by person” predictions tend to 

underestimate, and “by appliances” predictions are 

generally in between the other 2 prediction values. 

Table 3 Occupancy schedule data mining comparison 

results with different attributes 

 

By 

appliances  

By 

computer 

By 

person  

# of Attributes 28 11 10 

Correlation coefficient 0.95 0.94 0.92 

Relative absolute error 21.76% 22.01% 31.07% 

 

 
Figure 7 Occupancy schedule prediction comparison 

Lighting and equipment calibration result 

Two sample weeks of hourly data in both August and 

December, 2013 are calibrated. The inverse calibration 

method is used.  

Figure 8 shows the interior equipment hourly power 

consumption calibration results in one weekday and one 

weekend.  

 

Figure 8 Interior equipment hourly power output 

Unlike interior equipment, interior and exterior lighting 

power consumptions between August and December 

are different mainly due to the daylight-responsive 

control systems. Additional steps are used to solve this 

problem, as discussed in the “METHODS” section. 

Exterior equipment power consumptions have relatively 

regular schedules. It has similar operation schedules for 

both weekdays and weekends in December and August. 

Table 4 shows the hourly and monthly MBEs and 

CVRMSEs for interior equipment, interior lighting, 

exterior equipment, and exterior lighting. The results 

are all within the ASHRAE Guideline 14-2002 

thresholds.  
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Table 4 Lighting and equipment energy calibration statistical results 

 

Interior 

equipment 

Interior 

lighting 

Exterior 

lighting 

Exterior 

equipment 

MBE (hourly - weekdays) -0.55% 1.94% -2.62% 0.51% 

MBE (hourly – weekends/holidays) -0.55% -0.23% -2.62% 0.51% 

MBE (monthly) 4.84% -0.03% 0.01% 1.06% 

CVRMSE (hourly - weekdays) 21.49% 29.32% 11.53% 22.08% 

CVRMSE (hourly – weekends/holidays) 14.68% 29.53% 11.53% 22.08% 

CVRMSE (monthly) 14.97% 10.29% 3.13% 2.99% 

     

HVAC system calibration result 

HVAC zone air temperature setpoints are calibrated 

based on the available measured air temperature hourly 

data from September to December 2013. Compared to 

the proposed design case assumptions, the actual 

implemented setpoint band is much narrower, which 

typically indicates higher energy consumption. Figure 9 

is an example of the setpoint comparison between the 

proposed design case and the calibrated models in the 

heating mode. Figure 10 shows the hourly air 

temperature data of measured and calibrated model 

corresponding to outdoor temperature for one month in 

the 1st floor open office of the CSL building, as shown 

in the highlighted area of Figure 2. The scattered plot 

suggests a generally consistent match between the 

measured data and the calibrated model. Some 

inconsistency occurred when the outdoor temperature is 

above 16 °C, where the measured data has relatively 

lower value (21°C) but the model has higher value (23 

– 24°C). A possible reason for the discrepancy is the 

passive mode setting difference between the real 

HVAC system and the EnergyPlus model. Further 

investigation is needed. Table 5 shows the zone 

temperature calibration results for the 4 months. 

 
Figure 9 Heating mode zone air temperature setpoints 

Monthly HVAC energy consumption calibration results 

are shown in Figure 11. The total energy consumption 

of the AHU is metered for the first 3 months of the 

study period, and then a separated meter is installed to 

measure AHU supply fan energy consumption. As 

shown in Table 5, the MBE of the monthly HVAC 

energy between the calibrated model and the actual 

meter data is 0.10%, and the CVRMSE is 15.00%. 

 

Figure 10 Heating mode zone air temperature 

Table 5 HVAC system calibration result 

 
MBE CVRMSE 

September (hourly temperature) -1.12% 6.29% 

October (hourly temperature) 4.15% 8.02% 

November (hourly temperature) 6.04% 8.21% 

December (hourly temperature) -1.83% 4.42% 

Full year (monthly energy) 0.10% 15.00% 

 

 

Figure 11 Monthly HVAC energy consumption 

calibration result 

Total building energy calibration result 

Figure 12 shows the total annual energy use intensity 

(EUI) comparison among the AHSRAE 90.1-2007 

baseline model, proposed design case model, calibrated 

model, and the actual metered data of the CSL building. 

The blue line shows the metered annual photovoltaic 

energy generation intensity. Table 6 shows the MBEs 
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and CVRMSEs of the 3 models compared to the actual 

metered data for the year of 2013. The final calibrated 

model has an MBE of 1.27% and a CVRMSE of 

6.01%. The model can be considered as well calibrated.   

 

Figure 12 Total annual EUI comparison 
 

Table 6 Errors of total annual EUI compared with 

measured data for the 3 models 

 
Baseline Design Calibrated 

MBE 35.30% -7.29% 1.27% 

CVRMSE 79.88% 93.40% 6.01% 

It should also be noted that there are significant 

variations between the design case assumptions and the 

actual building operations. The design case model uses 

the same lighting and equipment power densities and 

schedules as in the ASHRAE baseline model for 

comparison purposes. But the actual building lighting 

and equipment power density is much less than the 

baseline assumptions. The HVAC energy consumption 

of the design case model uses night setback strategies to 

save energy. But the actual building setpoint schedule is 

more stringent, as seen in Figure 9. This control 

strategy difference causes a big difference in HVAC 

energy consumption. The resulting effect is that the 

MBE of total energy use intensity of the case model 

compared to the measured data is -7.29%, and the 

CVRMSE is 93.40%.  

CONCLUSION 

This paper demonstrates an EnergyPlus model 

calibration method with occupancy schedule data 

mining and empirical data in an office building. The 

occupancy schedule data mining study is novel, 

practical and effective for office buildings. The lighting 

and equipment inverse calibration procedure and the 

HVAC system calibration procedure are also 

demonstrated in the test-bed building. The overall 

method provides a scientific and systematic framework 

to conduct high accuracy EnergyPlus model calibration.  
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