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Abstract—Fuzzy Systems are an efficient instrument to create
efficient and transparent models of the behavior of complex
dynamic systems such as autonomous humanoid robots. The
human interpretability of these models is particularly significant
when it is applied to the cognitive robotics research, in which
the models are designed to study the behaviors and produce a
better understanding of the underlying processes of the cognitive
development. From this research point of view, this paper
presents a comparative study on training fuzzy based system
to control the autonomous navigation and task execution of a
humanoid robot controlled in a soccer scenario. Examples of
sensor data are collected via a computer simulation, then we
compare the performance of several fuzzy algorithms able to
learn and optimize the humanoid robot’s actions from the data.

I. INTRODUCTION

Cognitive robotics is a recent branch of robotics that aims
to provide robots with human-like intelligent behavior. This
fast growing research area is based on the embodied cognition
principle, which affirms that a human being learns many
cognitive skills by interacting with its environment and other
humans using its limbs and senses, and consequently the body
largely influences its internal model of the world [1].

Cognitive robotics assumes that an artificial cognition model
can be embodied in a physical body (a robot), which will
enable the agent to interact with the surrounding environment,
something it is expected could lead to the emergence of
an intelligent behavior [2], [3]. A humanoid robot is, thus,
designed to test this hypothesis by allowing cognitive learning
scenarios to be acted out by an accurate reproduction of the
perceptual system and the movements of a small child so
that it can interact with the world in the same way that a
child does. The use of humanoid platforms can help scientists
studying cognitive development and working in disciplines
such as developmental psychology or epigenetic robotics,
increase their understanding of cognitive systems [4].

Cognitive robotics models are often learned from example
data collected in experiments with human being or based
on artificial neural networks, e.g. [5], [6], [7], which are
best suited to simulate the human brain but these have the
drawback that are difficult to interpret and, thus, it is hard to
identify the relationships between input and outputs. On the
contrary, fuzzy logic systems proved to be good controllers
for robots, e.g. [8], [9], but they rarely used in cognitive

robotics despite they are well known to have the interesting
characteristic of being human interpretable. For this reason,
they can, therefore, provide useful information for a deeper
understanding of the cognitive processes. The interpretability
can allow further research on the artificial robotic model to
make alterations and make experiments that will be difficult
in the real world, for instance, to simulate the effects of brain
damages and use the damaged model to test rehabilitation
procedures [10].

From this research hypothesis, this paper presents a compar-
ative study on applying fuzzy algorithms to learn the cognitive
architecture of a robotic football player. Examples of robot’s
sensor data and desired actions are collected via a computer
simulation in a RobotCup soccer scenario, and then a Fuzzy
Rule-based System (FRBS) is learned and optimized from
the data examples. Some well-known fuzzy-based algorithms
have been explored and their performance compared in order
to identify the one that can provide the best performance in
this innovative scenario. Precisely, the list of the compared
fuzzy-based algorithms includes Fuzzy K-Nearest Neighbor
(FKNN) classifier [11], three Adaptive Neuro-Fuzzy Inference
System (ANFIS) [12] based approaches and an Adaptive
Neuro-Fuzzy Classifier (ANFC-LH) proposed in [13]. The
analysis of the performance has been carried out by using
well-known evaluation metrics in data mining. Among the
compared algorithms, FuzzyKnn has emerged as the best fuzzy
approach to control the task execution of a robotic football
player.

II. MATERIALS

A. Nao robotic platform and Webots simulator

The robotic platform used in our experiments is a NAO
robot version 4 [14] that is 58 cm tall humanoid robot It
is equipped with many sensors: Tactile Sensors, Ultrasonic
sensors (sonars), A Gyro, An Accelerometer, Force Sensors,
Infrared sensors, 2 Cameras, 4 Microphones and high accuracy
digital encoders on each joint. Fig. 1 presents the NAO robot
parts.

In experiments with robotic platforms, there are many situa-
tions in which realistic computer simulation is preferred to the
use of real platforms. Among the advantages of simulation, we
recall that computer simulation allows researchers to set up an



Fig. 1: The NAO Humanoid robot

experimental scenario with several robotic agents and without
facing the problem of building in advance, and maintaining, a
complex environment such us a soccer field. Thus, simulation
can be used as a tool for testing algorithms in order to quickly
check for any major problems prior to using the physical robot,
and it drastically reduces the time of the experiments such as
in evolutionary robotics and reinforcement learning [15], [16].
For these reasons researchers often use computer simulation as
the physical body for their cognitive models, e.g. [17]. Indeed,
in this work, we used Webots to simulate the NAO robot and
the environment as shown in Fig. 2.

Webots is a realistic mobile robot simulator allowing a
straightforward transfer to real robots [18]. Webots provides
a rapid prototyping environment for modelling, programming
and simulating mobile robots. Webots relies on ODE (Open
Dynamics Engine) to perform accurate dynamic physics sim-
ulation. With Webots it is possible to define and modify a
complete mobile robotics setup, and even several different
robots sharing the same environment. A number of researchers
have used Webots to simulate the Aldebaran Nao humanoid
platform for a variety of tasks, mainly in the area of applica-
tions related to the RoboCup Standard Platform League, for
which Nao is the robot currently employed [19]. Robot soccer
field inspired from the RoboCup 2014 Standard Platform
League [20]. The soccer field is built on a total carpet area of
length 10.4 m and width 7.4 m. The field dimensions (within
the white lines) are 9 x 6 m.

B. Task and Input/Output data

As can be seen in Fig. 2, the experimental task we designed
for the robot is to avoid some other robotic players, to reach
the ball and to kick it towards the goal.

For executing the task, the controller can use four input data:
Sonar Left (SL), Sonar Right (SR), Camera Top (CT), Camera
Bottom (CB). Sonar is used to detect opponent robots and it
will give distance values of obstacles, values are between 2.55
(no obstacles) and 0.0 (collision). Images coming from robot’s
cameras are processed to calculate the position of the ball in
the vision fields (top and bottom, see Fig. 1). CT and CB can
be -1.00 (not in the vision field) or a value between 0 (left)
and 1 (right). These inputs will be the features involved in the
training process of the robotic player.

The output data is: Side step left (TL), Move Forward (MF),
Kick the ball (Kick); Side step right (TR). Each one of these
outputs can be 0 or 1. Six actions are associated with these
outputs: move forward (when MF is set to 1 and the remaining
outputs to 0); move toward left (when TL is set to 1 and the
remaining outputs to 0); move toward right (when TR is set
to 1 and the remaining outputs to 0); kick the ball (when Kick
is set to 1 and the remaining outputs to 0); move diagonally
toward left (when TL and MF are set to 1 and the remaining
outputs to 0); move diagonally toward right (when TR and
MF are set to 1 and the remaining outputs to 0). These actions
will be the class labels involved in the training process of the
robotic player. Therefore, our problem is a multi-classification
one with six classes.

The input/output data sample sequences were collected
using a pre-programmed algorithm, which was acting as a
teacher guiding the robot walk to keep the ball in the middle
of one vision field and move in the opposite direction if one of
sonar detected an obstacle, i.e. an opponent robot. To collect
the data sequences, the robot was placed in 33 random starting
positions in the field, 11 left, 11 center and 11 right, and then
performed a sequence of movements as described in Figure 2.
To increase variability and generalization, opponent robots
were placed differently in the field for the three starting posi-
tion categories (left, center, right). The resulting 33 sequences
of input/output have a different number of items.

III. METHODS

This section is devoted to discuss the fuzzy approaches
explored to control the robotic football player.

A. Fuzzy K-Nearest Neighbor (FKNN)

FKNN represents a fuzzy version of the K-Nearest Neighbor
(KNN). KNN is a lazy learner that does not require to process
labeled example set during a training phase, but it directly
uses them during the classification phase to associate a new
example with a label searched among its K nearest neighbors.
FKNN is similar to KNN in the sense that it must search
a label for the new example among its K nearest neighbors,
but it considerably differs in the procedure adopted to obtain
the K nearest neighbors. In particular, FKNN assigns fuzzy
memberships to labeled examples in order to determine the
grade of membership of a new example to each considered
class. In this way, FKNN provides a level of assurance to
accompany the resultant classification. For instance, if a new
example is assigned 0.9 membership in one class and 0.05
membership in two other classes, it is possible to be reasonably
sure the class of 0.9 membership is the class to which the new
example belongs. The setting for FKNN is simple as well as
for KNN. Indeed, the only parameter to be set is the number
of nearest neighbors (K) be considered during classification
task.

B. Adaptive Neuro-Fuzzy Inference System (ANFIS)

ANFIS is an adaptive network and, as such, it works to
achieve the desired input-output by updating parameter sets



(a) Ball detected, starting (b) Opponent Dribbling

(c) Kicking (d) Goal!

Fig. 2: Example of actions the robot does to reach and kick the ball in the simulated RobotCup environment: (a) The robot
uses vision to detect the ball; (b) The robot use sonars to dribble opponent robots and vision to stay on target; (c) Ball is on
sight, Robot starts the kick action; (d) Robot scores a goal!

according to given training data and a gradient-based update
procedure [21]. In particular, this updating feature is used
in ANFIS to learn and adapt the parameters of a given
Takagi-Sugeno-Kang (TSK) system during a set of epochs.
The initial TSK can be set through different procedures. If
a grid partition is used, it is necessary to set the number of
membership functions associated with each input (numMfs)
and the membership function type associated with inputs
(inMfType) and with output (outMfType). If the initial
TSK is built by using subtractive clustering, it is necessary to
set mainly only the cluster center’s range of influence for data
(rad). Grid partition and subtractive clustering are the most
popular approaches for generating the initial TSK. However,
recently, also Fuzzy C-Means (FCM) clustering has been used
for this aim. In this case, it is necessary only to specify the
number of clusters (numClusters) to be generated by FCM.

C. Adaptive Neuro-Fuzzy Classifier (ANFC-LH)

ANFC-LH is a classifier network that uses adaptive Lin-
guistic Hedges (LHs). In particular, this approach adds a new
layer to a common neuro-fuzzy classifier such as ANFIS to
indicate the effect of LHs. The LHs that are constituted by
the power of fuzzy sets introduce the importance of the fuzzy

sets for fuzzy rules [13]. To tune LHs values, ANFC-LH
uses the Scaled Conjugate Gradient (SCG) training algorithm,
whereas, it uses the K-means clustering method to construct
the fuzzy rules. Hence, ANFC-LH requires setting the number
of clusters (numClusters)to be used in order to work.

IV. RESULTS AND DISCUSSION

This section is devoted to show the results of the comparison
among the considered fuzzy approaches applied to train the
task execution of the robotic football player. In detail, Section
IV-A describes the configurations of the carried out exper-
iments, Section IV-B discusses the used evaluation metrics,
and, finally, Section IV-C shows the results of the comparison.

A. Experimental configuration

This work discusses the effects of applying three fuzzy
approaches (ANFIS, FKNN, and ANFC-LH) to train a robotic
football player in the execution of six actions (see Section
II-B). Nevertheless, the comparison precisely involves five
fuzzy approaches because three versions of ANFIS depending
on the method of generation of the starting TSK are consid-
ered. In detail, ANFISgp takes into account an initial TSK
generated by using a grid partition approach; in ANFISsc,



the initial TSK is generated through the subtractive clustering
and, in ANFISfcm, the initial TSK is generated by using FCM
clustering. Table I shows the parameters used for running each
one of the considered fuzzy approaches. These parameters
represent the best settings experimentally.

TABLE I: Settings of the compared fuzzy approaches

Approach Name Setting

FKNN K = 3

ANFC-LH numClusters = 2

ANFISgp numMfs = 3, inMfType =
gbell, outMfType = constant

ANFISsc rad = 0.2

ANFISfcm numClusters = 7

All compared fuzzy approaches have been undergone to
a training phase involving 500 epochs except for FKNN
since it is not characterized by a training phase being a lazy
learner. During the experiments, ANFISfcm and ANFC-LH
have shown a non-deterministic behavior. Therefore, in this
comparison, their results are related to the most frequent
behavior carried out after ten training phases. In addition, it is
important to note that all ANFIS approaches provide outputs
that are not integers. Since we are facing a classification
problem, ANFIS outputs will be rounded to determine the
class labels. However, ANFIS approaches can give in output a
value that corresponds to no class label. To solve this ANFIS
fault, during the comparison, the outputs of ANFIS approaches
have been adjusted by setting all negative outputs to the first
class label and all outputs greater than the number of classes
to the last class label. All compared fuzzy approaches have
been implemented in MatlabTM.

The experiments have followed the hold-out approach. In
detail, once data have been collected as described in Section
II, they have been divided into two sets: one composed of data
contained in the first 8 sequences for each of the three starting
position categories to be used during the training phase and
one composed of data contained in the remaining sequences
used for the testing phase. Hence, 24 sequences compose the
training data and 9 sequences compose the testing data. This
setting was chosen because it reflects the 70-30 ratio that is
often used in data mining.

B. Evaluation metrics

The comparison among the considered fuzzy approaches
is based on a set of performance metrics typically used in
data mining as described in [22]. In detail, the correctness
of a classification can be evaluated by computing the number
of correctly recognized class examples (true positives or tp),
the number of correctly recognized examples that do not
belong to the class (true negatives or tn), and examples that
either were incorrectly assigned to the class (false positives
or fp) or that were not recognized as class examples (false
negatives or fn) [22]. These four counts are the components
of a confusion matrix for the case of the binary classification.
Starting from the confusion matrix, it is possible to compute

the following set of metrics: Precision, Recall and Fscore.
However, our problem is a multi-class problem. Therefore,
as described in [22], in this scenario, for each metric, it is
necessary to combine its values obtained by each class in
an overall value. This combination can be achieved in two
ways: considering the average of the same measures calculated
for each class (macro-averaging shown with an M index), or
considering the sum of counts to obtain cumulative tp, fn, tn, fp
and then calculating a performance measure (micro-averaging
shown with m indices) [22]. In an unbalanced data scenario
where there are classes with more instances than others, micro-
averaged metrics are biased toward the most populated ones,
whereas, macro-averaged metrics are biased toward the least
populated ones. Since our data are unbalanced, it will be
relevant to consider both combination strategies.

Another important evaluation metric is AUC (Area Under
the Curve), that captures a single point on the Reception Op-
erating Characteristic (ROC) curve. However, there is yet no
well-developed multi-class Reception Operating Characteristic
analysis [23]. Therefore, we do not include AUC in the list
of measures used in our comparison. An alternative to the
evaluation performed through the AUC metric is given by
the Cohen’s kappa [24]. This metric can be applied in multi-
classification and it takes random successes into consideration
as a standard, in the same way as the AUC measure [24][25].
Therefore, also this metric is considered in the list of measures
used in our comparison. This section is concluded with the
formal definition of the used evaluation metrics:

Precisionm =

∑C
i=1 tpi∑C

i=1(tpi + fpi)
(1)

Recallm =

∑C
i=1 tpi∑C

i=1(tpi + fni)
(2)

Fscorem =
2 · Precisionm ·Recallm
Precisionm +Recallm

(3)

PrecisionM =

∑C
i=1

tpi

(tpi+fpi)

C
(4)

RecallM =

∑C
i=1

tpi

(tpi+fni)

C
(5)

FscoreM =
2 · PrecisionM ·RecallM
PrecisionM +RecallM

(6)

Kappa =
N ·

∑C
i=1 Xii −

∑C
i=1

∑C
j=1 Xij ·Xji

N2 −
∑C

i=1

∑C
j=1 Xij ·Xji

(7)

where tpi are the true positives for the class i, and fpi are
the false positives for the class i, fni are the false negatives
for the class i, tni are the true negatives for the class i, X is
the confusion matrix, C is the number of classes and N is the
total number of examples.
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(e) ANFC-LH

Fig. 3: Confusion matrices for all compared fuzzy approaches

TABLE II: Results for all compared fuzzy approaches. P
stands for precision, R for recall and F for Fscore.

Metric FKNN ANFC-LH ANFISgp ANFISsc ANFISfcm

Pm 0.9328 0.5970 0.6791 0.6978 0.6828

Rm 0.9328 0.5970 0.6791 0.6978 0.6828

Fm 0.9328 0.5970 0.6791 0.6978 0.6828

PM 0.9664 0.4403 0.4384 0.5049 0.4830

RM 0.8789 0.6363 0.3483 0.4296 0.4534

FM 0.9206 0.5204 0.3882 0.4643 0.4677

Kappa 0.8949 0.4742 0.5595 0.5868 0.5671

C. Performance Results

Fig. 3 shows the confusion matrices for all compared
approaches. Table IV-C show the performance of all compared
fuzzy approaches in terms of the used evaluation metrics.

By analyzing Table IV-C, it is possible to state that FKNN is
the best fuzzy approach to control the robotic football player.
Indeed, it is the best performer in all considered metrics. From
its confusion matrix shown in Fig. 3d, it is possible to state
that FKNN performs well also in the identification of classes
of a small number of examples such as class 2, 3 and 4. In
particular, out of 8 examples for class 4, 100% are correctly
classified by FKNN. This is a very important feature because
class 4 represents the action of ”kick the ball”, and, a poor
classification quality for this class negatively affects the robotic
football player goals.

By analyzing the performance of the other fuzzy ap-
proaches, it is possible to state that ANFIS approaches have
similar performance in terms of the micro-averaged evaluation,
but not in terms of macro-averaged where only ANFISsc and
ANFISfcm are characterized by similar values. This implies
that ANFISgp is less able than ANFISsc and ANFISfcm to
classify classes with a small number of examples such as class
2, 3 and 4. Indeed, even if all ANFIS approaches classify
correctly 0% of the classes 2 and 3, they are characterized by
a different number of examples correctly classified of class
4. In detail, as shown in the relative confusion matrices are
shown in Fig. 3, out of 8 examples for class 4, 0% are
correctly classified by ANFISgp, 50% are correctly classified
by ANFISsc and 75% are correctly classified by ANFISfcm.
Hence, it is possible to state that ANFISsc, but above all,
ANFISfcm are the best performers among ANFIS approaches
to allow the robot to kick the ball since they have a higher
classification quality for the class 4 representing the action of
”kick the ball”.

As for ANFC-LH, it performs less well than ANFIS
approaches in terms of the micro-averaged evaluation, but
it performs better than ANFIS approaches in the macro-
averaged one. This implies that ANFC-LH is more able to
identify classes with a small number of examples and less
able to identify classes with a large number of examples with
respect to ANFIS approaches. Indeed, for example, out of
126 examples of the class 1 (a class with a large number of



examples), the percentage of examples correctly classified is
75% for ANFIS approaches and 62% for ANFC-LH, whereas,
out of 3 examples of class 2 (a class with a small number of
examples), the percentage of examples correctly classified is
0% for ANFIS approaches and 100% for ANFC-LH. However,
in spite of ANFC-LH is able to identify classes with a small
number of examples better than ANFIS approaches, it suc-
ceeds to classify correctly no examples of class 4 representing
the action of ”kick the ball”. Hence, although ANFC-LH is
characterized by a higher classification quality in the micro-
averaged evaluation (i.e. the evaluation more significant in
our context where unbalanced data are collected) with respect
to ANFIS approaches, it is the worst performer in our task
because it fails to achieve its principal objective: kick the ball.

In summary, in our comparative analysis about micro and
macro-averaged evaluations, FKNN has emerged as the best
approach for leading the robotic football player forward the
final goal represented by kicking the ball thanks to its high
classification quality both for classes related to all robot
movements (classes 1, 2, 3, 5, 6) and the class related to
the action ”kick the ball” (class 4). ANFIS approaches and,
in particular, ANFISfcm, are the second performers as they
achieved a higher classification quality than ANFC-LH for the
class related to the objective of the robot: kick the ball (class
4). Indeed, ANFC-LH has emerged as the worst performer by
failing to lead the robot toward its main objective.

The ranking FKNN, ANFIS approaches and ANFC-LH is
confirmed also by an analysis performed through Kappa met-
ric where all classes are treated equally. Indeed, by analyzing
kappa values in the Table IV-C, it is possible to state that
FKNN classifies correctly the highest number of examples
regardless of their class labels, ANFIS approaches classify
correctly the second higher number of examples and ANFC-
LH is the last one.

V. CONCLUSION

This paper presents the comparison of some well-known
fuzzy approaches to control a robotic football player. After the
performance analysis based on well-defined metrics in data
mining domain, FKNN has emerged as the best performer
with respect to ANFIS approaches and ANFC-LH method. In
future, we will apply the same methodology to more complex
play scenarios, in which also the ball and opponent robots
can move. Moreover, we will investigate the use of the Fuzzy
Cognitive Maps as these can be better suited for Cognitive
Robotics applications.
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