
Detection of repetitive and irregular hypercall attacks from
guest virtual machines to Xen hypervisor

MOSTAFAVI, Mojtaba and KABIRI, Peyman <http://orcid.org/0000-0001-5143-
0498>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/23849/

This document is the Accepted Version [AM]

Citation:

MOSTAFAVI, Mojtaba and KABIRI, Peyman (2018). Detection of repetitive and
irregular hypercall attacks from guest virtual machines to Xen hypervisor. Iran journal
of computer science, 1 (2), 89-97. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1

Abstract— Virtualization is critical to the infrastructure of

cloud computing environment and other online services.
Hypercall interface is provided by hypervisor in order to offer
privileged requests by the guest domains. Attackers may use this
interface to send malicious hypercalls. In the reported work,
repetitive hypercall attacks and sending hypercalls within
irregular sequences to Xen hypervisor were analyzed and finally
an Intrusion Detection System (IDS) is proposed to detect these
attacks. The proposed system is placed in the host domain
(Dom0). Monitoring hypercalls traffic the system operates based
on the identification of irregular behaviors in hypercalls sent
from guest domains to hypervisor. Later on, the association rules
algorithm is applied on the collected data within a fixed time
window, a set of thresholds for maximum number of all types of
the hypercalls is extracted. The results from the implementation
of the proposed system show 91% true positive rate.

Index Terms— Hypervisor security, Xen, Hypercall,
Virtualization, Hypercall security

I. INTRODUCTION
N recent years, cloud computing has been increasingly
grown as a flexible and cost-effective technology to provide

business and application services on the Internet or wide
private networks. The risk of using cloud computing is higher
than other conventional methods. This is because part of client
resources (such as storages and processors) are owned and
operated by a third party and thus protecting its
confidentiality, integrity, and privacy will be difficult since
cloud computing uses a combination of different technologies
such as Virtualization, Web 2.0 and so on [1]. Therefore, it is
natural to have vulnerabilities of these technologies inherited
by the cloud computing. Virtualization is the most important
technology used in cloud computing network infrastructures.
As a result, many threats and attacks in the field of cloud
computing are related to this technology. Threats in the field
of virtualization are very wide and diverse. Hypervisor is one

M.Mostafavi is with the Iran University of Science and Technology

(IUST), Tehran, 1684613114, Iran (email: mjt.mostafavi@gmail.com)
P.Kabiri is with the School of Computer Engineering, Iran University of

Science and Technology (IUST), Tehran, 1684613114, Iran (email:
peyman.kabiri@iust.ac.ir)

of the most valuable targets for hackers in the cloud
computing. This is due to the fact that if the attacker takes the
control over a hypervisor on a server, then he can access rest
of all the Virtual Machines (VMs) on that server. Hypervisor
i.e. Virtual Machine Manager (VMM), attacks can be
generally categorized into two types: attacks from host OS to
hypervisor and attacks from guest VMs to hypervisor. The
reported work is intended to detect attacks from guest VMs to
Xen hypervisor [2].

Xen is a well-known open source hypervisor widely used in
cloud environments. The logic used in the Xen architecture is
not complicated. Xen uses a privileged kernel to manage,
monitor and control all guest VMs on a hardware server. This
privileged kernel is called domain0 (or dom0) and all other
domains managed by dom0 are known as guest domains (or
unprivileged domains) [3]. Once the hypervisor is conquered,
the attacker can either control VMs by accessing them or can
force them to fail. In other words, Denial of Service (DoS)
attacks can be successfully implemented in Dom0. In recent
years, researches on the security of Xen VMs revealed that the
virtual interfaces are vulnerable to different types of
attacks [4] [5]. Various researches and strategies are proposed
for the security of VMs, among which, Intrusion Detection
System (IDS), attack tracking, workload isolation and
monitoring system are some examples. In this study,
monitoring the hypercalls sent from VMs to the hypervisor is
used to implement and detect a number of attacks on the Xen
hypervisor, including repetitive hypercall attacks and irregular
sequences in hypercall generation. Consuming hypervisor
resources, these attacks often reduce the system performance.
In other words, they are considered as a DoS attack. The
proposed detection methods presented in this paper are a
combination of signature-based methods and identification of
anomalous hypercall sequences. Therefore, the proposed
method can detect a variety of attacks. Efforts have been made
to adapt search and sequence identification methods with the
least overhead for making the proposed method applicable to
large cloud computing networks.
In the second section of this paper the reported work is
introduced and its significance is discussed. The third section
explains the problem and classifies the existing hypercall
attacks. The architecture of the proposed system is presented

DETECTION OF REPETITIVE AND
IRREGULAR HYPERCALL ATTACKS

FROM GUEST VIRTUAL MACHINES TO
XEN HYPERVISOR

Mojtaba Mostafavi, Peyman Kabiri

I

mailto:mjt.mostafavi@gmail.com

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

in the fourth section. In fifth and sixth sections, the proposed
methods to detect the irregular order and repetitive hypercall
attacks are described, respectively. The seventh section is
about the application of intrusion detection system in cloud
computing environment. The eighth section talks about
implementation of the attacks in the experimental environment
and the experimental results. Conclusions and future works are
presented in the final section.

II. RELATED WORK
In recent years, due to the high popularity and development

of the cloud computing services throughout the world, many
efforts have been made to increase security of the VMs.
However, the domains available in virtual servers are still
unreliable because of several reasons, including unawareness
of developers about all existing threats and invention of new
attack methods. Since Dom0 of hypervisor is a high-value
target, it is targeted in many attacks. In general, cloud
computing security can be considered from different aspects.
For example, Chonka et al. [6] investigated DoS attacks based
on XML and HTTP, and proposed a way to deal with these
attacks. In another work Bacon et al. [7] proposed a solution
for information flow control specifically in Platform-as-a-
Service (PaaS) cloud services. Patel et al. [8] examined
challenges of using Intrusion Detection and Prevention System
(IDPS) in cloud computing environments. Hashizume et
al. [1], studied cloud computing security from different
aspects and classified vulnerabilities and threats in cloud
environment. The work reported in the current text is aimed on
the security of Xen virtualization infrastructures in cloud
environment. In their reported work specifically considered
hypercall attacks in Xen hypervisor and proposed a solution to
handle certain types of these kind of attacks. In some of the
earlier solutions recommended for hypervisor security, e.g. [9]
and [10], intension was to reduce domains vulnerability by
using the hypervisor to monitor them. But one cannot
overcome all the threats using these methods, and some new
exploits may be discovered that above approaches cannot
prevent. In another reported work, Zhang et al. [11], assumed
that Dom0 might be converted into a destructive domain.
Since Dom0 has access to other domains, guest domains must
be protected against this domain. They have proposed a
mechanism called CloudVisor which is a small security
monitoring system to protect these sources. Difficulty in
commercialization is one of the most important challenges in
this case. This problem is due to the fact that they need to
apply changes on the existing virtualization architectures.
Therefore, it will make their implementation difficult and may
create problems for future hypervisor updates. Colp et al. [12],
suggest a solution called Xoar that divides management
domain into single-purpose components to reduce the
likelihood of attackers’ success in capturing hypervisor.
Hoang in his thesis [13] proposed two different approaches to
increase hypervisor security and to encounter hypercall
attacks. The first strategy is authentication of hypercalls
received by hypervisor using a MAC method and the other
strategy is to implement a hypercall access table. Given the

restrictions on the number of variables can be sent to
hypervisor by a hypercall, it is not practically possible to use
MAC method for the authentication of the hypercall.
Implementation of access table has its own difficulties. The
most important problem is access table volume that is
proportionate to number of domains in virtual server. This is
in contrast with the principle of Xen machines design concept.
Jingzheng et al. [14] proposed a mechanism called XenPump
that prevents time channel attacks. As the greatest problem of
their proposed method, it will significantly reduce system
efficiency and creates excessive lag in hypervisor
performance. Bharadwaja et al. [15] designed and proposed an
IDS called Collabra which works based on the detection of
irregular behaviors in order to deal with hypercall threats. The
proposed system allocates an anomaly score to every hypercall
and if the score is above a specified threshold, the hypercall is
considered anomalous and otherwise a normal hypercall. In
another reported work, Wang et al. [16] proposed a new
approach to make hypercall interface useless to the attackers.
In their proposed method, legal hypercalls are first encrypted
in the guest operating system using RC4 encryption algorithm
and then sent to the hypervisor. Another plugin located in the
hypervisor decrypts all incoming hypercalls and then delivers
them to the hypervisor. Thus, if incoming hypercalls are not
previously encrypted by the same key, they will be converted
into unclear words, and consequently they cannot be processed
by the hypervisor. This approach is costly and affects the
performance of the system since it requires performing
Encryption/Decryption operations repeatedly. In [17] an
architecture was developed that split Dom0 privileges into two
parts: First operations that can violate users privacy, removes
to a per user management domain that called DomU
Manage_VM. Other privileges was remain and form Thin
Dom0. So in the event of a successful attack to DomU, only
can compromise users in that DomU and no spread to other
DomU. Also once Dom0 was compromised then attacker can’t
access to private information of DomU. But they do not
address DDoS attacks in their work. In another work [18] they
design a secure execution environment to ensure the
confidentiality and integrity of guest virtual machine that
running on untrusted management virtual machine. They
categorized hypercalls that are used for management of DomU
into three groups: 1. Hypercalls that are harmful to the privacy
and integrity of DomU but not necessary, so should be
prohibited. 2. Hypercalls hat are not harmful to the privacy
and integrity, these hypercalls be unmodified. 3. Hypercalls
that are harmful but necessary for management of DomU, so
should be used with some restrictions. The proposed
architecture use encryption and hash functions to protect
integrity and privacy of virtual machine memory and vCPU.
Milenkoski et al. [19] proposed a hypercall attack simulator
software installed on a guest VM that can execute various
hypercall attacks. Using this software, one can evaluate
performance and efficiency of the IDS.

III. STATEMENT OF THE PROBLEM
Hypervisor is an attractive target for hackers and attackers.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

Therefore, they constantly try to find new ways to attack
hypervisors. Attacks may have different effects on the target
system, such as preventing hypervisor operation, which can be
considered a state of crash for the hypervisor or its clients. In
fact, these attacks are in the category of DoS attacks. Some
other hypercall attacks may disrupt the hypervisor state in
such a way that the targeted hypervisor may not be crashed;
instead it may be exposed to conditions desired for attacker.
For instance, if the victim hypervisor’s memory is in a certain
pathway, then it might allow the attacker to implement a
destructive code or high-level access operation. Hypercall
attack may even cause access to the unauthorized information.
For example, reading data from a portion of memory that is
allocated to the hypervisor or some other guest VM. In rare
cases, it is possible for the attacker to penetrate the system
executing a specific hypercall (by executing a destructive code
using hypercalls). A real example of this type of attack is the
reported incident CVE 2017-8903 [20]. Hypercall attacks can
generally be classified as follows [21]:

Running a single hypercall:
Executing a hypercall with an ordinary parameter (a

perfectly legal hypercall)
Executing a hypercall with modified parameter(s) to exploit

an available vulnerability.
Running series of hypercalls with a specific order:
Repetitive implementation of a specific hypercall.
Repetitive implementation of several consecutive

hypercalls.
The second group of attacks, namely running a series of

hypercalls, is also considered in this research. Anomaly
detection methods are used to deal with these types of attacks.
In recent years a variety of these attacks have been reported,
for example, reported incidences such as CVE-2013-
4494 [22], CVE-2013-1920 [23] worth mentioning. In
reported work by Shropshire [24] he run successful CPU DoS
attack from a malicious guest to hypervisor with a simple
infinite loop that invoke hypercall 13. As a result malicious
guest consumes 100% of CPU processing cycles. In [25] most
of this vulnerabilities and also some others, was exploited
using hInjector to evaluate IDSes in virtual environment.

In contrast to the approaches proposed by other researchers,
the method proposed in this paper maintains the main concept
of Xen hypervisor design [26] and applies the lowest possible
changes into the system. Another important point here is that
guest operating systems remain unchanged. According to the
above, the proposed method causes no problems in updating
either Xen hypervisor or guest operating systems.

There is a plugin in the solution proposed in this research
located at Dom0 kernel responsible for monitoring all
hypercalls sent by the guest VM. Once transformed into a
suitable format, data generated by this plugin is sent to the
IDS installed in the Dom0. The IDS learns rules and

thresholds that exist in normal traffic as for their signature.
Later on, this signature is used to identify any anomalous
behavior within the received hypercall traffic.”

IV. ARCHITECTURE
Hypercalls can be monitored in different ways and this

monitoring can be performed in different parts of the Xen
virtualization system. In this study, as presented in Fig.1,
monitoring all the hypercalls is performed within Dom0
kernel. Monitoring hypercalls in Dom0 provides high
efficiency, and low overhead.

As depicted in Fig.1, all hypercalls sent from guest VMs to
hypervisor are monitored in Dom0 using Xentrace plugin and
stored in a storage area. Later on, stored data is converted to
ASCII format using Xenalyze Plugin and finally it is send to
IDS.

In the reported work, Xentrace and Xenalyze plugins [27]
are used to monitor hypercalls in Dom0 kernel. These plugins
are open-source and their coupled operation is needed for the
hypercall monitoring.

Xen hypervisor has various features helping developers to
capture events occurring within the hypervisor. Tracing the
data, Xen stores them in special buffers and then Xentrace
plugin, which has been installed and activated in Dom0, can
read data from the buffers periodically and store them on hard
disk for further use. Xentrace plugin is a part of Xen
hypervisor project associated with each of its distribution. This
tool is fairly simple, yet very useful and practical. Information
stored by Xentrace is unreadable to humans and thus a tool is
needed to convert it’s data into a format that is readable for
humans [27]. Xenalyze plugin is used to convert the data
stored by Xentrace to the ASCII format which is usable by
IDS. A sample of Xenalyze output that is converted to ASCII
format is presented in Fig.2.

Fig. 1. Monitoring hypercalls sent to Xen hypervisor.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

Prior to the process carried-out by IDS, the captured data is
preprocessed to filter excess items from the hypercalls. Any
expression other than the hypercall’s hexadecimal number is
considered as an excess item. For example, pre-processed
information is presented in Fig.3. Function of IDS is explained
in sections 5 and 6.

A. DETECTION OF SEND SEQUENCE OF HYPERCALLS
WITH IRREGULAR ORDER

Hypercalls with irregular order do not have any typical
appearances. Therefore, an intelligent method is needed to
detect irregular sequences. The approach used in this study
identifies anomalous sequences using apriori algorithm. Based
on apriori algorithm, if {a,b,c} is a frequent itemset, then all of
its subsets ({a,b}, {a,c}, {b,c}, {a}, {b}, {c}) be frequent [29].
In this paper frequent itemsets (hypercall sequences) and
accordingly frequent rules are identified using apriori
algorithm and then extract rules from them.

The first step in this procedure is to monitor and collect the
hypercall traffic sent by VMs in an experimental environment
within a relatively long period of time. It has been assumed
that there were no attacks during this period. Hence one can
call this traffic a white traffic. White traffic is used to train
normal behavior of the environment to the IDS. Properties and
behavior of the white traffic is assessed in two steps as
described in the following sections.
1) The first step of hypercall traffic analysis

This analysis aims to identify abnormal hypercall sequences
sent out by a VM in a Xen environment. Traffic analysis is
very simple at this stage. Various hypercalls sent by all types
of guest VMs in white traffic are tagged and stored in a table
as normal hypercalls. Thereafter, whenever the IDS detects
any hypercalls other than the values in this table, it will send a
warning message to the system administrator. Two types of
sabotage can be identified using this method. Type one is
sending abnormal hypercalls undefined to Xen hypervisor that
may aim to put the system in an undefined state. Type two is
detection of legal hypercalls in the desired environment that

are not regularly present in normal operating conditions and
are assumed suspicious once detected. Table I provides
samples of normal hypercalls.

2) The second step of hypercall traffic analysis
Purpose of the hypercall traffic analysis is to identify

attacks executed by sending several consecutive hypercalls
with irregular order. Since detection of repetitive hypercall
DoS attacks of a particular type (such as “d d d d d” sequence)
is performed by another approach explained in the section 6,
only non-repetitive orders are considered in this section.
Therefore, a simple program is developed to receive the
hypercall traffic as for input and stores all available non-
repetitive orders in a file as for output. The output file of this
program is input to the Weka software [30] that is used to run
apriori algorithm and to easily produce the output with a
suitable format. Due to a variety of monitored unique
hypercall values, the basket length is specified dynamically
based on the number of non-repetitive hypercalls sequences
and each non-repetitive sequence is placed in a separate
basket. The empty space of the basket is denoted by “?” and
all the values of basket are separated by comma, which is in
the standard format of Weka software. An example for
hypercall traffic (on the top of the figure) conversion into the
suitable input format for the Weka software (at the bottom of
the figure) is presented in Fig.4. In the reported work, it is
assumed that there are at the most 8 hybercalls in each line,
indicating that in sampled file only 8 types of different
hypercalls are transmitted to hypervisor. Thus, no line can be
permutated with unique value patterns larger than 8.

Executing the program, the whole white traffic is segregated
into numerous similar sequences and stored in an output file.
Using Weka software and apriori algorithm, popular
sequences in the traffic are identified. The repetitiveness of the
sequences displayed by the apriori algorithm is determined by
minimum support variable. Given the high variety nature of
hypercalls traffic, the highest value for minimum support
variable can be set to 0.5. In other words, often we can’t find a
hypercall sequence that has a support value greater than 0.5.

Fig. 2. A sample of converted Xenalyze output.

TABLE I
SOME SAMPLES OF NORMAL HYPERCALLS IN THE XEN

ENVIRONMENT.
21 18 e
11 a 1d

Fig. 4. Converting hypercall traffic to suitable input format for the Weka
software.

Fig. 3. A sample pre-processed information by the data obtained from
Xenalyze plugin.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Examples of popular sequences obtained from apriori
algorithm using Weka software running on a sampled traffic
are presented in Fig.5.

In Fig.5, the number at the end of each ‘hypercall’ word
indicates that hypercall permutation in the basket. For
example, hypercall2 indicates the second permutation in the
basket. Reader should be reminded that each basket had 8
permutations. A number at the end of each line represents the
number of occurrences of a given sequence in all the baskets.
For example, the first set in Fig.5 has a population for 12,648
occurrences. In the final step, these repetitive items are
considered as the determinant of traffic’s normal behavior and
stored as a signature. The IDS will use these signatures to
separate normal and anomalous behaviors of the hypercall
traffic within fixed time windows. Fig.6 shows the format of
several sample signatures with different sequence lengths and
how they are stored in the table.

The IDS records the traffic of hypercalls within fixed time
windows and compares various hypercalls against items stored
in normal hypercall table. An alert is generated once any
unusual hypercall type is detected. In the next step, traffic is
segregated into non-repetitive pieces and all the pieces are
compared versus the signatures of normal traffic stored in a
separate table that was generated during the training stage. If
no match is found, the sequence will be identified as an
anomalous sequence. Boyer-Moore algorithm [31] was used in
this study as for the search algorithm.

B. DETECTION OF REPETITIVE OCCURRENCES OF
SIMILAR HYPERCALLS ATTACKS

In this type of attacks, the attacker sends a large number of
a certain type of hypercall (i.e. type 20) to the hypervisor and
consumes hardware resources (CPU & memory). To detect
this type of attacks as it was mentioned earlier, in this research
IDS counts the number of occurrences of each type of
hypercalls for a specified long period of time. This operation
is performed within constant intervals to identify attacks and
then considers the highest count of the each hypercall within a
period of time as a threshold of that hypercall type occurrence
in each time interval. Obtained thresholds are stored in a table
such as Table II.

Determining the thresholds, entire traffic of the hypercalls

within specified time windows are analyzed. Alerts will be
generated once number of occurrences passes a predefined
threshold.

C. APPLICATION OF IDS IN CLOUD COMPUTING
ENVIRONMENT

As shown in Fig.7, the cloud computing infrastructure
consists of many virtual hypervisors installed on different
hardware servers [32]. In previous sections, the proposed
approach for IDS was to install it on Dom0 of a number of
servers to make it operate independently. One of the
advantages of this approach is its low traffic overhead for each
IDS. On the other hand, since every server may be assigned to
a customer with certain needs, any one of the IDSs can be
configured differently based on requirement of the servers
they are installed on. Thus, one can expect that the number of

false positive and false negative alerts to reduce.
Another advantage of having independent IDSs on each

hypervisor is that the traffic monitored by each IDS will be
limited. Thus, speed and performance of the detection is
increased.

V. EVALUATION RESULTS
In this section, results of the experiments and evaluation of

the proposed IDS method is discussed using two scenarios. In
the first scenario hypervisor is attacked by sending various
hypercalls with irregular order. Second scenario is another
type of attack on the hypervisor that is carried-out by sending
repetitive hypercalls to the hypervisor.

A. The first scenario – sending various consecutive
hypercalls with irregular order

Fig. 7. Hypervisors in the cloud computing environment.

Fig. 5. Some examples of apriori algorithm output.

Fig. 6. A few signature examples of normal traffic.

TABLE II
SAMPLE TABLE FOR HYPERCALLS OCCURRENCE THRESHOLDS.

Number of Hypercalls Occurrence threshold
a 82
e 247

1a 36
1d 184

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

In this scenario, as displayed in Fig.8, Xen hypervisor
serves 5 virtual guest machines on a server with core i5 CPU
and 4GB RAM. Each VM offers a different service to the
users. One of these guest machines that is controlled by the
attacker (one that is highlighted with a darker color), starts
sending consecutive hypercalls with irregular order to disrupt
Xen hypervisor operation or to reduce its performance. These
attacks can lead to DoS as the order of hypercalls is out of the
ordinary and not in a way hypervisor is expecting. This in turn
causes hypervisor to encounter an unusual situation and to be
unable to continue to serve its VMs. Hypercalls also may be
sent with seemingly legitimate order, but in fact they are
sending requests to the hypervisor that cause conflict and
waste of resources. In the attack simulated in this research,
VM number 2 starts sending several hypercalls with irregular
order and IDS located in Dom0 must detect these attacks and
generate alerts. Given that these attacks use special order of
hypercalls, hypercall parameters are not important in this
scenario. As mentioned in section 3, two examples of these
attacks are reported as CVE-2013-4494 [22] and CVE-2013-
1920 [23].

1) Scenario implemented in the experiments and the results
An experiment that was conducted to implement this

scenario and to evaluate performance of the IDS can be
described in the following steps:

First step: Traffic of the hypercalls are monitored for 10
hours and saved in a file. Over eighteen million and five
hundred thousand hypercalls were generated during this time
which seems to be sufficient for analyzing the hypercall traffic
behavior in normal conditions.

The recorded file that contains broken traffic data is fed into
Weka software in order to implement apriori algorithm on its
data. In the output of Weka, number of repetitive items with
minimum support values of 0.5 and 0.3 is very limited. This
result was expected and it is justifiable due to the wide variety
of the hypercall sequences in the recorded hypercall traffic
behavior. Therefore, the best way to cover diversity of the

hypercalls traffic behavior is to use several different sets with
lower support coefficients. According to the experiments,
normal traffic behavior of hypercalls can be often separated
with only 20 signatures from abnormal behavior with an
acceptable accuracy (over 98%). In this study, a set of
signatures with minimum support of 0.1 were used to extract
the signatures. Signatures extracted from the output of apriori
algorithm are reported in Table III.

Second step: The traffic related to the hypercalls generated
within 10 windows of 10-seconds time interval was monitored
in normal operating conditions and saved in a file. Later on, as
for testing, different types of hypercalls that are recorded in
these files are extracted and compared versus normal
hypercalls in the table and no warning messages are generated.
This traffic was analyzed using normal traffic signatures
obtained in the 5th step. False positive rate is 0.76%. Here
false positive rate represents wrong detections of a part of
normal traffic as anomaly traffic.

Third step: As presented in Table IV, at random times in a
10 seconds time interval window, VM2 sends 11 irregular
hypercall sequences to the hypervisor. As shown in Fig.9, the
IDS issued 5 warning messages for anomalous hypercalls. The
type of anomalous hypercall found at each message is
displayed by the bracket signs “[]”. Later on, these samples
are analyzed using signatures that were obtained in step 1 and
consequently total number of 17 warning messages were
issued. 7 alerts out of 17 are false warnings generated before
inserting the attacks (related to the 0.76% false positive rate
for the reported approach).

TABLE III
SIGNATURES EXTRACTED FROM THE OUTPUT OF APRIORI

ALGORITHM IN EXPERIMENT.
Nom. Signature Nom. Signature

1 a , 1a 12 18, 1d, 21, 20
2 1a, d 13 18, 1d, 1a
3 d, 1a 14 18, 1d, d
4 d, 14 15 18, 1d, 21
5 18, 1d 16 d, 18, 1d
6 18, d 17 d, 24, 1a
7 1, 1a 18 14, 20
8 d, 18 19 20, 18
9 1d, 1a 20 18, 20

10 1d, d 21 24, 1a
11 d, 11

Fig. 8. Consecutive hypercall attacks with irregular orders.

Fig. 9. Warning messages from anomaly hypercalls within 10 seconds time
interval window after execution of the attacks.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

The irregular sequence 4 in Table IV (24, a, 14, 21, 19, 1a,
1) was not identified. Studying the cause, the recorded
hypercall traffic was examined. This sequence is combined
with its previous sequence (d, 1a, 24, a, 14, 21, 19) after being
added to the initial traffic, and a new sequence is generated
that matches with one of the signatures (d, 1a) given in Table
III. Numbers of false and true warning messages are given in
Table V.

Using the resulted values, (1) to (5) are used to calculate
error rates for the method proposed in this study.
True Positive Rate (TPR):

)/(FNTPTPTPR += (1)
Where TP is the number of true positive alerts and FN is the

number of false negative alerts.
False Positive Rate (FPR):

TN)+FP/(FP=FPR (2)
Where FP is the number of false positive alerts issued and

TN is the number of true negative alerts.
True Negative Rate (TNR) or Specificity (SPC):

TN)+TN/(FP=SPCor TNR (3)
Where TN is the number of true negative alerts and FP is

the number of false positive alerts.
Negative Predictive Value (NPV):

FN)+TN/(TN=NPV (4)
Where TN is the number of true negative alerts and FN is

the number of false negative alerts.
F1 Score:

FN)+FP+2TP/(2TP1F = (5)
Where TP is the number of true positive alerts, FP is the

number of false positive alerts and FN is the number of false
negative alerts. Results are reported in Table VI.

B. The second scenario – Repetitive hypercalls
This scenario is implemented in an experimental

environment similar to scenario 1, but this time the guest VM
executes 2 attacks by sending a large number of hypercall 21

(physdev_op). The purpose of this attack is to consume or
waste hypervisor resources by sending a large number of
repetitive hypercalls. Therefore, hypervisor has to process all
the incoming hypercalls that will lead to the waste of
processor resources. Two examples of these attacks are
reported as CVE-2015-7969 [33] and CVE-2015-7971 [34].
These attacks also have been referred to in various articles
e.g. [19].
1) Scenario implemented in the experiment and its results

This experiment is aimed on implementing a scenario to
evaluate performance of the proposed IDS and can be
described in the following steps:

First step: The traffic of hypercalls sent to hypervisor is

monitored for ten hours. Later on, number of incoming
hypercalls for each hypercall is counted within 5-seconds time
interval windows and finally the count is stored in a table. A
part of the table related to physdev_op hypercall is presented
in Table VII.

Second Step: Evaluating the performance of IDS, hypercall
21 was sent 100, 85, 70, 60 and 50 times for 5 times at random
intervals, respectively, where the IDS detected the attacks in 4
of 5 cases. Only one attack was not identified. In the 4th
attack, 60 hypercalls of type 21were sent out. In fact, total
number of both malicious and legitimate hypercalls (the
equivalent of 68 hypercalls) was lower than the threshold, i.e.
74. Thus, no alert is generated.

VI. CONCLUSION AND FUTURE WORK
Hypervisors in cloud computing environment are attractive

targets for attackers and this is why their protection against
security threats is very important. One of the common
methods used to attack hypervisors is to use hypercall
interface to send malicious hypercalls by guest VMs. The
reported work investigated repetitive hypercall attacks and
attacks carried-out by sending hypercalls with irregular order.
In the reported work, hypercalls traffic in Dom0 is monitored.
Executing a series of preprocesses, monitored traffic was
broken into several non-repetitive rules. Apriori algorithm was
applied to the resulted rule set. Number of repetitive
hypercalls in each sequence defined is set to predefined

TABLE IV
A SAMPLED IRREGULAR SEQUENCES SENT TO XEN HYPERVISOR.

No. Irregular hypercalls sent to
hypervisor by attacker

1 18, ,21, 1, d,18,18,18
2 22, d, 12
3 d, 21, 25, 11
4 24, a, 14, 21, 19, 1a, 1
5 1, 1d, 24, d
6 d, 21, 1d, 24, 18
7 1b
8 14, 1a, 21, a, 18
9 21, 18, 1a

10 14, 23, 23, 23, 23, 23
11 1d, 21, 24, 18

TABLE VII
NUMBER OF INCOMING PHYSDEV_OP HYPERCALLS WITHIN 5-SECONDS

TIME INTERVAL WINDOWS.
Time Hypercall type Received count
[0-5] 21 29

[5-10] 21 6
[10-15] 21 7
[15-20] 21 29
[20-25] 21 7
[25-30] 21 11

TABLE V
CLASSIFICATION OF POSITIVE WARNING MESSAGES.

Alarm condition Number of alerts
True Positive 10
False Positive 0
True Negative 915
False Negative 1

TABLE VI
THE REPORTED RESULTS.

Alarm condition Number of alerts
True Positive Rate (TPR) 91%
False Positive Rate (FPR) 0%
True Negative Rate (TNR) 100%
Negative Predictive Value 99.8%

F1 Score 95%

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

thresholds. In the last step, results are used to extract
signatures of regular hypercalls behavior. Finally, the
proposed IDS can detect irregular hypercall behaviors using
these signatures.

The proposed method used in this paper searches for the
signatures obtained from normal traffic for the exact match
within a given traffic. A suggestion for future research is to
use an algorithm that can match signatures using similarity
threshold between existing signatures and different parts of
hypercall traffic. If the similarity of each part of the traffic
with existing signatures is more than the threshold, it would be
considered as regular hypercall traffic; otherwise, it is an
anomalous traffic. Using this method, it is expected to have a
reduced false positive rate.

On the other hand, the approach reported in this paper only
considers order of hypercalls and number of their repetitive
generations. Another proposal to improve this approach is to
the sent hypercalls parameters in addition to their order and
number of repetitions to detect anomalies. Thus, it can be
expected to have the proposed IDS covering more types of
attacks.

REFERENCES
[1] K. Hashizume, D. Rosado, E. Fernández-Medina, and E. Fernandez, "An

analysis of security issues for cloud computing," Journal of Internet
Services and Applications, vol. 4, pp. 1-13, 2013/02/27 2013.

[2] M. Zheng, "Virtualization Security in Data Centers and Clouds," 2011.
[3] W. von Hagen, Professional Xen Virtualization: Wiley Publishing, 2008.
[4] B. Cully, "The virtual monkey monitor," Technical report2006.
[5] T. Ormandy, "An empirical study into the security exposure to hosts of

hostile virtualized environments," Technical report2007.
[6] Chonka, Y. Xiang, W. Zhou, and A. Bonti, "Cloud security defence to

protect cloud computing against HTTP-DoS and XML-DoS attacks,"
Journal of Network and Computer Applications, vol. 34, pp. 1097-1107,
2011.

[7] J. Bacon, D. Eyers, T. F. J. M. Pasquier, J. Singh, I. Papagiannis, and P.
Pietzuch, "Information Flow Control for Secure Cloud Computing,"
IEEE Transactions on Network and Service Management, vol. 11, pp.
76-89, 2014.

[8] Patel, M. Taghavi, K. Bakhtiyari, and J. Celestino Júnior, "An intrusion
detection and prevention system in cloud computing: A systematic
review," Journal of Network and Computer Applications, vol. 36, pp.
25-41, 2013.

[9] Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger,
D. Boneh, et al., "Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems," ACM
SIGARCH Computer Architecture News, vol. 36, pp. 2-13, 2008.

[10] Z. Wang, X. Jiang, W. Cui, and P. Ning, "Countering kernel rootkits
with lightweight hook protection," presented at the Proceedings of the
16th ACM conference on Computer and communications security,
Chicago, Illinois, USA, 2009.

[11] F. Zhang, J. Chen, H. Chen, and B. Zang, "CloudVisor: retrofitting
protection of virtual machines in multi-tenant cloud with nested
virtualization," presented at the Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, Cascais, Portugal, 2011.

[12] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker, T. Deegan, et al.,
"Breaking up is hard to do: security and functionality in a commodity
hypervisor," presented at the Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles, Cascais, Portugal, 2011.

[13] C. Hoang, "Protecting Xen Hypercalls: Intrusion Detection/Prevention
in a Virtualized Environment," MSc, Computer Science, University of
British Columbia, 2009.

[14] W. Jingzheng, D. Liping, L. Yuqi, N. Min-Allah, and Y. Wang,
"XenPump: A New Method to Mitigate Timing Channel in Cloud
Computing," in IEEE 5th International Conference on Cloud Computing
(CLOUD) 2012, 2012, pp. 678-685.

[15] S. Bharadwaja, S. Weiqing, M. Niamat, and S. Fangyang, "Collabra: A
Xen Hypervisor Based Collaborative Intrusion Detection System," in
Eighth International Conference on Information Technology: New
Generations (ITNG) 2011 2011, pp. 695-700.

[16] F. Wang, P. Chen, B. Mao, and L. Xie, "RandHyp: Preventing Attacks
via Xen Hypercall Interface," in Information Security and Privacy
Research. vol. 376, D. Gritzalis, S. Furnell, and M. Theoharidou, Eds.,
ed: Springer Berlin Heidelberg, 2012, pp. 138-149.

[17] C. Yu, L. X. Li, K. Wang, and W. T. Yu, "Protecting the Security and
Privacy of the Virtual Machine through Privilege Separation," Applied
Mechanics and Materials, vol. 347-350, pp. 2488-2494, August 2013
2013.

[18] C. Li, A. Raghunathan, and N. K. Jha, "Secure Virtual Machine
Execution under an Untrusted Management OS," in IEEE 3rd
International Conference on Cloud Computing, 2010, pp. 172-179.

[19] Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev,
"HInjector: Injecting Hypercall Attacks for Evaluating VMI-based
Intrusion Detection Systems," presented at the Annual Computer
Security Applications Conference (ACSAC), 2013.

[20] (2017, 05 Nov). National Vulnerability Database (NVD). CVE-2017-
8903. Available: https://nvd.nist.gov/vuln/detail/CVE-2017-8903

[21] Milenkoski, B. D. Payne, N. Antunes, M. Vieira, and S. Kounev,
"Experience Report: An Analysis of Hypercall Handler Vulnerabilities,"
in IEEE 25th International Symposium on Software Reliability
Engineering (ISSRE) 2014, 2014, pp. 100-111.

[22] (2013, 27 Feb). National Vulnerability Database (NVD). CVE-2013-
4494. Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-4494

[23] (2013, 27 Feb). National Vulnerability Database (NVD). CVE-2013-
1920. Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1920

[24] J. Shropshire, "Hyperthreats: Hypercall-based DoS attacks," in IEEE
SoutheastCon 2015, 2015, pp. 1-7.

[25] Milenkoski, B. D. Payne, N. Antunes, M. Vieira, S. Kounev, A.
Avritzer, et al., "Evaluation of Intrusion Detection Systems in
Virtualized Environments Using Attack Injection," in Research in
Attacks, Intrusions, and Defenses: 18th International Symposium, RAID
2015, Kyoto, Japan,November 2-4, 2015. Proceedings, H. Bos, F.
Monrose, and G. Blanc, Eds., ed Cham: Springer International
Publishing, 2015, pp. 471-492.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, et al.,
"Xen and the art of virtualization," presented at the Proceedings of the
nineteenth ACM symposium on Operating systems principles, Bolton
Landing, NY, USA, 2003.

[27] D. Faggioli. (2012, 08 Apr). Tracing with Xentrace and Xenalyze.
Available: https://blog.xenproject.org/2012/09/27/tracing-with-xentrace-
and-xenalyze/

[28] (2013, 27 Feb). Vulnerability Summary for CVE-2013-1920. Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1920

[29] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to datamining, 1st
ed.: Pearson, 2005.

[30] (2013, 10 Apr). Weka 3: Data Mining Software in Java. Available:
http://www.cs.waikato.ac.nz/ml/weka/

[31] R. Sedgewick and K. Wayne, Algorithms, 4th ed.: Addison-Wesley
Professional, 2011.

[32] F. Rocha, T. Gross, and A. Van Moorsel, "Defense-in-Depth Against
Malicious Insiders in the Cloud," in IEEE International Conference on
Cloud Engineering (IC2E) 2013, 2013, pp. 88-97.

[33] (2015, 30 Oct). National Vulnerability Database (NVD). CVE-2015-
7969. Available: https://nvd.nist.gov/vuln/detail/CVE-2015-7969

[34] (2015, 30 Oct). National Vulnerability Database (NVD). CVE-2015-
7971. Available: https://nvd.nist.gov/vuln/detail/CVE-2015-7971

Mojtaba Mostafavi received M.Sc. in the
Computer networks architecture from Iran
University of Science and Technology on
February 2015. His research interests
include network security and forensics.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

P. Kabiri was born in Tehran-Iran in
1968. He received B.Sc. in Computer
Hardware Engineering from Iran
University of Science and Technology,
Tehran, Iran in 1992. M.Sc. in real time
systems and Ph.D. in Computer Science
both from the Nottingham Trent
University, Nottingham, UK, in 1996

and 2000, respectively.
Currently, he is assistant professor at the School of Computer
Engineering, Iran University of Science and Technology
where he is actively pursuing research in different areas of
computer science/engineering. He is a member of computer
hardware engineering group in school of computer
engineering. He is director of the Intelligent Automation
Laboratory (IAL) at the school of computer engineering.

	I. INTRODUCTION
	II. RELATED WORK
	III. STATEMENT OF THE PROBLEM
	IV. ARCHITECTURE
	A. DETECTION OF SEND SEQUENCE OF HYPERCALLS WITH IRREGULAR ORDER
	1) The first step of hypercall traffic analysis
	2) The second step of hypercall traffic analysis

	B. DETECTION OF REPETITIVE OCCURRENCES OF SIMILAR HYPERCALLS ATTACKS
	C. APPLICATION OF IDS IN CLOUD COMPUTING ENVIRONMENT

	V. EVALUATION RESULTS
	A. The first scenario – sending various consecutive hypercalls with irregular order
	1) Scenario implemented in the experiments and the results

	B. The second scenario – Repetitive hypercalls
	1) Scenario implemented in the experiment and its results

	VI. CONCLUSION AND FUTURE WORK
	References

