Teaching relational database fundamentals: a lack-of-progress report

BOISVERT, Charles <http://orcid.org/0000-0002-3069-5726>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/23797/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version


Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Teaching relational database fundamentals: a lack-of-progress report

CHARLES BOISVERT, Department of Computing, Sheffield Hallam University

This paper describes and evaluates changes introduced in six successive years teaching a relational databases module. We explain how we plan to obtain some certainty on the value of interventions. Using an archive of data over the period, we find some interventions that should not be repeated. We also show that most changes introduced did not significantly improve students’ learning, contrary to expectations. Instead, factors that were ignored had more influence on performance that factors we attempted to affect.

CCS Concepts: • Social and professional topics → Student assessment

Additional Key Words and Phrases: Computer Science Education; Database Systems; quasi-experiment

ACM Reference format:
https://doi.org/10.1145/3294016.3294031

1 INTRODUCTION
This paper discusses the successive attempts to improve teaching a relational databases module over six academic years. During the period, various problems were identified and interventions attempted to alleviate them. But not all attempts were fruitful, and not all were carefully controlled. Comparing results over time, we identify some interventions which may have been helpful, but some hypotheses were also found to be without foundation, and some choices should not be repeated.

The paper presents first a general introduction to the module and the data that has been collected, then presents a history of changes over time, before evaluating the effectiveness of those changes, and discussing our ability to evaluate interventions reliably in practical conditions.

2 BACKGROUND INFORMATION: MODULE AND DATA AVAILABLE

2.1 Module description
The module proposed at Sheffield Hallam University, that we will consider here, has varied little in over six years, from September 2012 to the present. It covers the basis of relational databases, their design using top-down and bottom-up methods, the use of a Database Management System (Oracle) and the basics of the SQL language. It is destined to Business and Enterprise students. Currently, these register on two courses: Business and ICT, and IT with Business studies, which involve both some business and some Information Technology. In earlier years, an identical module was delivered to more courses, including technical students, and one of the events over the period is that these technical students were given a different curriculum.

The duration and time devoted to the module has not changed during the six years under scrutiny: the module lasts the whole academic year, with two hours of contact time each week, one for a lecture and one for practical work in a smaller group. The recommended amount of study time has also not changed, or the use of an examination to test SQL and database management skills.

2.2 Data available: a first look
Over the period we have kept data on student marks and work completed each year, as well as information about the nature and dates of the homework used. Cohort numbers vary widely, with the minimum in 2015-16 being
nearly half the largest group two years earlier. The module is compulsory, and so this fluctuation reflects that of the courses the students choose to join each year.

Not all the data, however, is suitable for analysis. In particular, of the 5 years for which data is available, one stands out for the unusual distribution of the results, the year 2013-14. The marks are lower overall than each of the later years and than 2012-13. A t-test shows the results are statistically significant (p<0.016).

These peculiar results are explained by the events of that year. A policy enforced to simplify assessment required the module team to limit the number of pieces of work carried out by students to just one piece of coursework, and one examination. With a single, complex piece of individual homework due late in the academic year, without preparation for the students, or the opportunity for early formative feedback, the results were unusually poor. They then had to be moderated, adapting the marking to make sure the module results were kept acceptable. The unusual distribution illustrated fig. 2 is a product of these results and moderation.

The policy was abandoned a year later. The unusual situation means that that year’s results is an outlier for most purposes. But these events gave the impetus to curate an archive of key module results and data, and to be able to identify trends and provide a factual basis for making and evaluating decisions. The data set is therefore made of work submission and marks data for the academic year 2012-13 and the three years of 2014-18, plus outlier data for the year 2013-14.

3 EVOLUTIONS OF THE MODULE

In this section, we describe the successive changes introduced in the period. Some were very deliberate and chosen with the intention to improve the module, but others were in reaction to events or needs becoming apparent; and finally, some simply resulted from opportunities becoming available. We describe them mainly in historical order, to facilitate later evaluation.

3.1 The need for change

_Databases for Business_ has a difficult history. It is necessary for its students, but it is also challenging. In the courses _Business and ICT, IT with Business Studies_ - that include it, this second year module is the first in which students are required to use any computer language; neither have they been taught logic or set theory previously. With such demands on the students, it is not surprising that every year some of them fail to complete the work satisfactorily. The module failure rate shown in fig. 3 makes this clear. This also creates pressure to reduce demands on the students by adopting a less demanding curriculum, and so even if the failure rate is not always high, it is essential to control it.
3.2 Improving an SQL workbook

The module has been supported by a study book for SQL since several years before the data presented here started to be collected.

The workbook combines practice exercises and pointers to key information. Learning material, in this work, is deliberately limited to reminders and references to other materials. This both dedicates the workbook to practice, and encourages the students to refer to more complete information; but navigation - section naming, titles, order of topics addressed - is kept consistent with other learning material.

3.3 Succession of coursework tasks

In 2013-14, as we discussed in section 2.2, the practice of multiple small marked tasks ended. Four separate marked tasks were replaced by a single large piece of coursework. Since then, the coursework has returned to two marked pieces.

3.4 A spin-off module

A year later, from 2014-15, the module destined for more technical students was made separate, with the aim to adapt the teaching to each cohort. The difference had always been clear between business students for whom SQL is the only computer language they encounter, and software engineering students who practice many, and study the theoretical underpinnings needed to understand many more; it was more visible still after the exceptional year 2013-14 which primarily affected the business students.

3.5 Delaying the examination and introducing video material

The next action, in 2015-16, was to re-organise the examination: instead of testing the students at the end of the first semester, in January, the test was moved to the end of the academic year in May. The aim was to allow time...
for the students to develop their understanding and practice of SQL. To support this practice, questions were redesigned to facilitate the release of past examinations texts to students. Finally, a set of videos was recorded and made available—on a Youtube channel—which emphasises, and delivers asynchronously, key elements and summaries of the SQL material. The material is carefully selected to emphasise key points, then scripted to make sure that each film is short, focused on a single point, and clear. This keeps each video under 10 minutes. The topics addressed are segmented to match the sections in the workbook, and the workbook was edited to reference relevant video material at key points.

Fig. 5. A subset of the video material. The few minutes’ duration of each recording is visible by each thumbnail, resulting in multi-part topics

3.6 Introducing automatic SQL feedback

The module team had long hoped to introduce automatic SQL feedback. It is clear that learning SQL needs to be supported by more than pen and paper practice [6, 7]. In 2016-17, a student developed TestSQL, an interactive web application to facilitate this study [5]. The system runs a relational database imported in sqlite format, and dynamically constructs questions for that database. Students answers receive several checks, including comparing the results of the student query to a model query, to give appropriate feedback.

Fig. 6. A TestSQL session: automatic feedback gives the student immediate information about their query

Being the result of a student project, the work was available late in the academic year. It was immediately adapted to support the students preparing for examinations (in April 2017). Finally, in 2017-18, TestSQL was also embedded more carefully in the module by developing a set of prepared questions to match the exercises and example data used in the existing workbook (discussed in section 4). In the evaluation section below, we discuss early data on the value of this tool.
4 EVALUATING INTERVENTIONS

4.1 Method

The data available provides some basis to support evaluating the successive interventions. To understand whether
the changes introduced have made any difference, we analyse the results data for the sets of years before, and
after, particular changes were implemented.

This follows a ‘quasi experimental’ method, and we should remain aware of the limits of the approach. [3]
discusses different designs, discussing potential threats to validity of each. Ours is illustrated fig. 7 and they raise
the important objection, that we cannot guarantee the groups compared are identical except for the intervention.

![Fig. 7. Facsimile of the 1963 classic study of quasi experimental designs [3], showing the conditions of this work.](image)

We remain aware that the changes year-on-year are not isolated interventions, and therefore it is difficult to
attribute changes in the results to a specific chosen action. Nevertheless, this is the best, we may say, the least
worst, method available. This is characteristic of the difficulties encountered in a practice setting. To quote again
[3], ‘insofar as the designs become complex, it is because... of the experimenter’s lack of complete control’.

4.2 Some surprising results

A key change to evaluate is between the two years of 2012-13 and 2014-15 on one hand, to the three of
2015-2018. In the later two years, we hoped to improve the students’ prospects with three improvements: a later
examination, video materials on SQL, and sets of past examination questions.

The results data contain marks for SQL examination questions, which have always been difficult for these students.
The distribution of marks appears to show an improvement in the second group, but the t-test shows this is not
significant, with a high probability (p = 0.98) that the differences are due to chance.

![Fig. 8. Distribution of SQL marks before, and since, the 2015 examination.](image)

A comparison between these results and the second part of the examination, which focuses on security and
concurrency questions, shows an interesting contrast. As fig. 9 show, marks vary widely year on year, even
excluding the 2013-14 outlier. This is confirmed by t-tests which show dissemblance year on year between the
result sets.

![Fig. 9. The results on the DBA section of the exam vary widely every year](image)

That wide variation is not associated to attempts to improve the module delivery and materials. An explanation may
be that student results are less influenced by the offer of tools, however well designed, or by our choices, than they
are by students’ engagement with those tools and the module materials. As Hundhausen writes in [4], ‘how students use AV technology has a greater impact on effectiveness than what AV technology shows them’; what is true of Algorithm Visualisation in that work, remains true of other Educational Technologies and interventions.

The same applies with any information on the TestSQL tool. Introduced at the end of academic year 2016-17 with little support, it was hoped that a year later, its more complete use would result in improvements in the students’ SQL performance at the 2018 exam. The t-test shows no significant change (p=0.39). Student engagement, of course, remains an issue; we would also recommend against being over-reliant on automatically marked SQL practice. In a separate study investigating assessing Software Engineering students ([1]), we found that being able to provide code for simple SQL queries is a poor predictor of overall students performance, and that indirect questions, not answered in code, are a better alternative.

Finally, some in the teaching team have long expected that students from the two courses studying this module have widely different results. They did once, as the IT with Business Studies course started: Data indicates that the distribution of marks was significantly different in 2015. This is no longer the case, but it took statistics to abandon that early conviction. as Prof. Norris, Education professor at the University of East Anglia says dryly (in personal communication), ‘there is a lot of belief in education’.

5 CONCLUSION

The results show that student performance was not primarily influenced by the factors that we were trying to affect with our materials and technology. Instead, factors that we did not intervene on, such as student engagement, had more influence.

We present this work in the belief that, as [2] write, ‘negative results can be as valid as positive results in the scientific endeavor’: that is, although we would desire both greater scientific rigour and more positive results for interventions presented here, there are valuable lessons to be learned from the succession of attempts, partial successes and downright failures in the six years of data.

The difficulty in evaluating separate interventions shows the importance of collecting and analysing traces, which can provide fine grained details on students activity. But we hope that this work shows that where such traces cannot be available, investigation does not have to stop.

REFERENCES


