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Abstract: Numerical cognition is a distinctive component of human intelligence such that the observation of its practice provides
a window in high-level brain function. The modelling of numerical abilities in artificial cognitive systems can help to confirm
existing child development hypotheses and define new ones by means of computational simulations. Meanwhile, new research
will help to discover innovative principles for the design of artificial agents with advanced reasoning capabilities and clarify the
underlying algorithms (e.g. deep learning) that can be highly effective but difficult to understand for humans. This study
promotes new investigation by providing a common resource for researchers with different backgrounds, including computer
science, robotics, neuroscience, psychology, and education, who are interested in pursuing scientific collaboration on mutually
stimulating research on this topic. The study emphasises the fundamental role of embodiment in the initial development of
numerical cognition in children. This strong relationship with the body motivates the cognitive developmental robotics (CDR)
approach for new research that can (among others) help standardise data collection and provide open databases for
benchmarking computational models. Furthermore, the authors discuss the potential application of robots in classrooms and
argue that the CDR approach can be extended to assist educators and favour mathematical education.

1 Introduction
Numerical cognition is commonly considered one of the distinctive
components of human intelligence because number understanding
and processing abilities are essential not only for success in
academic and work environments but also in practical situations of
everyday life [1]. Indeed, the observation of numerical practice
within a situation can provide ‘a provisional basis for pursuing
explanation of cognition as a nexus of relations between the mind
at work and the world in which it works’ [2]. This strong
relationship between the human mind and numerical cognition has
made the latter a subject of research in the various disciplines that
study the human mind and its development, including artificial
intelligence.

The link between numbers and the body has been extensively
studied in child psychology and cognitive neuroscience and has
shown that mathematics is one of the skills that can be extended
through embodied experiences from a rather limited set of inborn
skills to an ever-growing network of abstract domains [3]. This
relation fits with embodied cognition theory, which holds that
many cognitive skills are acquired through embodied experiences,
such as movements, gestures, and manipulations, which help
children in the learning of various cognitive skills by using limbs
and senses to interact with the surrounding environment and other
human beings [4–7]. Indeed, early numerical practice is usually
accompanied by gestures that are considered as a window in
children's number knowledge, because children spontaneously use
gestures to convey information that is not necessarily found in their
speech [8].

Within the human body, a special role is attributed to fingers,
including a significant influence on the development of our system
of counting. We likely use a base 10 system because of the number
of fingers on our hands [9]. Indeed, recent research on the
embodiment of mathematics has evidenced fingers as natural tools
that play a fundamental role; from developing number sense to
becoming proficient in basic arithmetic processing [10–12].

Numbers constitute the building blocks of mathematics, a
language of the human mind that has the capacity to express the

fundamental workings of the physical world and to make the
universe intelligible [13]. This includes the strong connection
between spatial and mathematical domains [14], with abilities in
spatial reasoning being crucial for developing expertise in science,
technology, engineering, and mathematics disciplines, which are
some of the most abstract constructions of the human mind [15].
Therefore, the study of numerical cognition can be a way to
explore the neuronal mechanisms of high-level brain functions
[16].

1.1 Cognitive developmental robotics

The possibility to explore abstract cognition via modelling
numerical abilities has attracted the interest of researchers in
artificial intelligence, where high-level learning and reasoning is
still an open challenge [17, 18]. However, the simulation of
numerical skills by means of computational models is a powerful
tool that provides information to evaluate or compare existing
theories and to make novel experimental predictions that can be
tested on humans [19]. Computational models have the advantage
of being fully specified in any implementation aspect, which makes
them easily reproducible and verifiable, and they can produce
detailed simulations of human performance in various situations,
and, for example, experimented on with any combination of
stimuli. Furthermore, models can be lesioned to simulate cognitive
dysfunctions and performance can be compared to the behaviour of
patients in order to gain information and insights into diagnosis and
treatment that can be difficult to discover otherwise.

Nevertheless, for a complete emulation of human numerical
cognition, artificial models need to be physically embodied, i.e.
instantiated into realistic simulations of the human body that can
gesture and interact with the surrounding environment, such as
humanoid robots [20]. To this end, a novel research paradigm
known as cognitive developmental robotics (CDR) has been
introduced [21]. This research approach is defined as the
‘interdisciplinary approach to the autonomous design of
behavioural and cognitive capabilities in artificial agents (robots)
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that takes direct inspiration from the developmental principles and
mechanisms observed in natural cognitive systems (humans)’ [22].
CDR is still making its first steps, but it has been already
successfully applied in the modelling of embodied word learning as
well as the development of perceptual, social, language and
numerical cognition [23, 24], and recently extended as far as the
simulation of embodied motor and spatial imagery [25–27]. The
CDR approach has also been used to simulate neuropsychological
disorders and test possible rehabilitation procedures [28].

The application of embodied theory to artificial agents is among
the motivations for designing new robotic platforms for research to
resemble the shape of a human body, known as ‘humanoids’, e.g.
the iCub [29], Fig. 1a, Pepper [30], Fig. 1b, and ASIMO [31],
Fig. 1c. The iCub, in particular, is designed to resemble a 3–4-year-
old child. 

1.2 Robots in the education of children

Robots are currently being used in a variety of topics to teach
young children, from mathematics and computer programming to
social skills and languages, see recent reviews [32, 33], including
those with learning difficulties and/or intellectual disabilities [34–
37]. Robots can be a tool through which technical skills can be
learned, can act as a peer by providing encouragement or can
function as teachers [38–41]. For instance, Tanaka and Matsuzoe
[42] show that learning can be enhanced by encouraging children
to teach to a robot. Robots can combine the flexibility of a virtual
agent with the advantage of being embedded in a physical
environment where information can also be sensed as vision,
hearing, and tactile perception [43]. Educational robots are
‘engaging, motivating, encouraging imagination and innovation,
and may improve literacy and creativity, especially for children’
[44]. Indeed, robots can increase the attention level and
engagement in young children [45], see for instance Fig. 2. 

However, despite the experimental success, robotics software
still needs to evolve to reach full maturity and to produce widely
adopted applications that can have an impact on people's lives.

1.3 Objectives of this study and its structure

The objective of this study is to provide background knowledge
and directions for further interdisciplinary research in the field of
embodied numerical cognition. We also aim to facilitate new

research that combines the disciplines involved in order to achieve
mutual benefits. In fact, experimental data from children is used to
build CDR simulations, which, in return, can provide objective
computational validation and new hypotheses for further research
with children. Furthermore, the CDR paradigm can be extended to
include the application of numerically capable robots as tools in the
classroom to support teaching and learning. The study of this
application in controlled experiments can provide greater detail on
the learning process, and also provide novel data to refine robots’
cognitive models and behaviour. Finally, improved cognition and
autonomy can close the innovation cycle by supporting novel
applications in the education of children. The intrinsic advantage of
humanising the robots’ learning process is the likely increase in the
use of artificial agents in social environments, especially in the
education of children [34].

The rest of the paper is organised in two main parts. First, we
give an overview of the relevant research about numerical
cognition in child psychology and cognitive neuroscience as well
as in artificial intelligence and robotics. The aim is to provide a
base for the following discussion, with a focus on the embodied
nature of numerical cognition, including its impact on teaching and
learning strategies. Then, in the second part, we provide future
interdisciplinary research directions and discuss the possible
benefits to artificial intelligence and robotics as well as the
potential applications in developmental psychology research and in
mathematics education.

In the first part, Section 2 reviews the special role of the fingers
as an embodied tool for number processing, Section 3 presents an
overview of embodied strategies in mathematics education, and
Section 4 gives a survey of major computation models for
numerical cognition in artificial cognitive systems and robots.
Without pretending to be fully exhaustive, Section 4 will present
more details than the other sections, this is because there are
several recent and extensive surveys in the literature about
numerical cognition in humans (see for instance those cited earlier
in this section), while, as far as we know, there are only two
detailed reviews of computational models of numerical cognition
[46, 47], one of which [46] focuses on numerosity estimation only
and it is somewhat outdated (published in 2005).

The second part includes Section 5, which discusses research in
CDR and identifies future directions and possible mutual benefits
of closer collaboration and joint experiments in developmental
neuroscience and psychology, along with potential applications in
the education of children. Finally, Section 6 gives our conclusion.

2 Finger gestures: an embodied tool for number
processing
Finger gestures have been thought of as serving as a bridge
between possibly innate abilities to perceive and respond to
numerosity [48], such as subitising [49], i.e. detecting the
numerosity of a small group of items by making a mental estimate
without serial enumeration and the development of the capacity to
mentally represent and process number as well as linguistic number
related concepts [50]. The key role of fingers in early numerical
cognition is to provide an embodied representation of the number
magnitude [51], which helps to develop from subitising to
counting. Indeed, many studies found that finger gestures usually
precede verbalisation of number concepts, thus they provide a
window to children's early number cognition. For instance, Fig. 3
shows a child using fingers for counting. 

The study in [52] shows the role of fingers in the development
of the one-to-one correspondence principle, i.e. assigning of one
distinct counting word to each item to be counted. The same
happens for the cardinal principle, i.e. knowing that the last number
word reached when counting represents the size of the whole set
when labelling small sets [53]. More details on the five counting
principles of Gelman and Gallistel can be found in [54]. However,
while children often use finger counting to support their early
mathematical learning and this habit correlates with better
performance in initial stages, it should be pointed out that they may
not need gestures in later stages when they have successfully
learned the basic concepts [55]. Although there is evidence to show

Fig. 1  Examples of humanoid robots (not in scale)
(a) iCub, (b) SoftBank Pepper, (c) Honda ASIMO

 

Fig. 2  Softbank NAO robot performs storytelling in kindergarten [41]
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activation of regions of the brain responsible for finger movement
when adults are working with number – the movement is just
inhibited [56, 57].

Finger gestures and counting habits can influence orientation of
the mental quantity representation (the ‘number line’) [58], with
several studies reporting spatial-numerical association of response
codes (SNARC)-like effects correlated with the hand with which
people start to count, e.g. right-hand starters showed a stronger left-
to-right orientation of their mental number line than left-hand
starters [59]. SNARC [60] relates to the fact that people typically
associate smaller numbers with the left direction, and larger
numbers with the right. An association between small numbers and
the starting hand has been found in [57], but other work showed
that this can be altered if egocentric or allocentric perspectives are
taken into account for the number line [61].

The role of finger gestures is multiple and varies according to
the age of the individual and the task, however, a common
denominator could be found in the capacity to off-load the working
memory [62]. In fact, in the early years, finger pointing helps
children to coordinate both keeping track of items to count while
tagging them with number words [63]. After that, we observe
finger montring [64], which refers to the use of a finger to express
configurations for representing cardinal and ordinal number
information. Finger montring supports cardinal and ordinal
representation for counting quantities or doing basic arithmetic
operations [65]. In fact, following the acquisition of finger
counting skill, children's initial attempts at arithmetic are often
finger-based [66]. For instance, children represent small numbers
with a corresponding number of fingers, helping them in keeping
quantities while adding these numbers [67], e.g. four fingers on the
right hand plus other three on the left hand to solve 4 + 3 = 7. The
indirect effect of the five-finger-counting system has been observed
in children, who performed mental calculations with a
disproportionate number of split-five errors, i.e. deviated from the
correct result by exactly five [67]. This effect has been observed
also in adults [68], suggesting that there is a strong tendency of
using sensorimotor information and structures to support the
working memory and the neural links that support this habit can
persist in adulthood.

These behavioural observations are confirmed by recent
neuroimaging research; see for a review [69], where empirical
studies suggest that there is a neural link or even a common
substrate for the representation of numbers and fingers in the brain
[70]. Neuroimaging data shows neural correlates of finger and

number representations located in neighbouring or even
overlapping cortex areas, e.g. [71], suggesting that fingers may
have a role in setting up the biological neural networks for more
advanced mathematical computations [66]. Importantly, several
studies found a permanent neural link between the finger
configurations and their cardinal number meaning also in adults.
The authors of [57, 72] have found that adult humans activate the
same motor cortex areas that control fingers while processing digits
and number words, even when motor actions are prohibited.
Tschentscher et al. [57] assume this is the result of an early
association when finger configurations are used by both children
and teachers to support the explanation of numerical concepts, as
often observed in empirical studies in the classroom, e.g. [73].

Taken altogether, these results appear to support the hypothesis
that fingers provide a scaffold for number cognition, such that if
this scaffold is not properly built at the beginning, it can negatively
influence mathematical cognition in later stages [74].

3 Embodiment in teaching and learning
mathematics: the role of fingers
There is a growing understanding within the mathematics
education community of ways in which embodiment plays a role in
children's mathematics learning. See for instance Fig. 4 shows a
teaching session with children using fingers for counting. 

Lakoff and Nuñez [3] have performed an influential work in
this area, in its connection of physical metaphors with abstract
mathematical concepts. Lakoff and Nunez argue that mathematics
learning is built on physical experience and give a number of
examples of ‘grounding metaphors’ for number and arithmetic that
derive from early childhood experience. One of these is ‘arithmetic
as object collection’. We know that children are able to subitise
(automatically discern the number of objects in a group) up to four
objects from infancy [75]. Regular experience of small and larger
collections of objects allows children to extend their conceptions of
number (the size of the group) beyond subitisable groups, and to
develop foundational concepts of addition and subtraction based on
the experience of adding or taking away objects from a group. The
‘arithmetic as object collection’ metaphor can be compared with
the ‘arithmetic as motion along a path’ metaphor, which as well as
provides alternative conceptions of number (position on a path or
line), addition (forward movement or movement to the right along
a path or line) and subtraction (backward movement or movement
to the left), also supports foundational concepts of zero (the origin
of a path) and the concept of number being continuous rather than
discrete.

In conjunction with Lakoff and Nunez's [3] account of physical
metaphors for mathematical concepts, we can read anthropological
accounts of the number in different groups around the world. Most
societies have systems for counting, and most of those that have a
system for counting use a base 10 system, for instance, Ifrah [76]
makes the point that the language of number is often connected
with the fingers. The word ‘digit’ derives from the Latin ‘digitus’,
meaning finger. In the Ali language found in Central Africa, ‘moro’
is the word for both ‘hand’ and ‘five’, while ‘mbouna’ is a
contraction of ‘moro’ and ‘bouna’ and means both ‘two hands’ and
‘ten’.

Given the evidence for a connection between fingers and
arithmetic, researchers have begun to investigate implications that
this connection might have for mathematics education. Work in this
area has shown that children's finger sense – the ability to sense,
coordinate and individuate the fingers, also known as finger gnosis
– predicts counting and numeracy performance [77]. Taking this
forward, Gracia-Ballufuy and Noel [78] were the first to report an
intervention to train finger sense in young children and to
demonstrate a resulting improvement in numeracy.

The intimate connection between fingers and arithmetical
abilities has been confirmed by the study of Reeve and
Humberstone [79], results of which show that finger gnosia
abilities of children change from pre-school to early school years
and that these changes can be associated with the ability to use
fingers to aid computation.

Fig. 3  Child using fingers to count
 

Fig. 4  Children learning to count using fingers
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Jay and Betenson [80] argued that, rather than expecting a
direct effect of finger training on numeracy ability, the effect on
learning is likely mediated by children's use of fingers as a tool in
working with numbers. Jay and Betenson showed that an
intervention combining finger training with number games
(involving different representations of numbers on dice, dominoes,
board games, etc.) outperformed either intervention alone. This
study provided evidence that children with low levels of finger
sense may be being held back from developing good levels of
numeracy, and that a relatively brief intervention could support
children in improving both finger sense and numeracy. This is
attested by Fig. 5, which was a picture drawn by a pupil who took
part in the finger training intervention reported in [80]. The picture
shows a person with hands drawn in two different ways. The hand
on the left of the picture has only four fingers whereas the hand on
the right has five distinct fingers represented as separate digits. Jay
and Betenson suggested that the training intervention helped this
pupil to develop a stronger internal representation of the fingers
after the intervention and he had become more aware of the
convenience of using the five fingers to represent numbers. 

From the pedagogical viewpoint, these experimental results
encourage studying whether different finger-based approaches can
facilitate arithmetical understanding, and support the development
of educational practices that solicit embodied strategies as a tool
for stronger numerical cognition [81].

4 Simulation of number cognition in artificial
cognitive systems and developmental robots
This section reviews the major computational models that were
created to simulate the development of numerical cognition in
artificial cognitive systems and robots.

To facilitate the distinction between the classical and the CDR
research, this section is divided into two subsections according to
the approach. It should be pointed out that, while CDR models are
by definition embodied in robots, some of the classical models may
not explicitly include embodiment among the constituent
components of the model. However, we have included the most
important among classical models for a complete historical review.

Importantly, it should be noted that both the classical and the
CDR research has largely focused in creating models of the
development of perceptual, social, language cognition, while the
number and the complexity of number cognition models are
relatively modest if compared with these other domains.

4.1 Early attempts

Earliest attempts to simulate numerical abilities by means of simple
computational models were focused on simple mental arithmetic
using neural network models.

Initial models were characterised by the associative approach of
Ashcraft [82], which assumes that mental arithmetic is based on
memory and that arithmetic is a process of stored fact retrieval.
This is the case of MATHNET [83], which was based on
Boltzmann machines (BMs) [84], a type of neural network that can
act as an associative memory. MATHNET was trained to store a set
of patterns representing items of arithmetic operations, i.e. two

operands and the result, then employed to predict solutions on
unseen problems by exploiting the ability of the BMs to complete
partial or noisy patterns. In fact, after training, arithmetic problems
are solved by retrieving the stored pattern that most closely
matches the partial input pattern, i.e. the two arguments of the
operation. In a later study, lesioned MATHNET models showed
good adherence to neuropsychological data patients with brain
damages [85]. However, the success of MATHNET in replicating
human data can be entirely attributed to an implausible frequency
manipulation [46].

The first complex connectionist architecture that formally
implements and simulates the development of elementary
numerical abilities was presented by Dehaene and Changeux [86].
It is focused on the perception and simple processing of non-verbal
visual and auditory stimuli. This architecture was modular, with its
core represented by a numerosity detection system, which was
hand-wired, reflecting the common assumption that numerosity
perception is present at birth [87]. The visual inputs are presented
one by one to a one-dimensional retina, whereas size is represented
by modulating Gaussian distributions. The numerosity of the visual
stimulus is then calculated by a summation cluster, which is
connected to a short-term echoic memory that processes the
auditory input. The final numerosity detectors selectively respond
to the summation cluster activity producing the final output. It
should be noted that, despite the increased complexity over
previous models, the model was able to carry out tasks with pre-
verbal elementary abilities and operate only on small sets of items
(up to five).

Rodriguez et al. [88] presented a recurrent neural network of
the Elman type (recursion on hidden layers [89]) that was capable
of counting symbols by means of supervised learning and back-
propagation through time [90]. The model was implemented with
two inputs, two hidden units, and two outputs to recognise the next
symbol in a sequence constructed with a formal language
framework, i.e. the input sequences were created using a
deterministic context-free language of the form anbn. In practice, to
solve the problem to identify the next in sequence, the network had
to develop the ability to count the items in the input sequence.
However, Rodriguez et al. aimed at demonstrating that recurrent
neural networks were able to count, so the model does not simulate
any human behaviour nor comparison with psychological data was
attempted.

Petersen and Simon [91] conducted a computational study of
subitising, in which they proposed two models to explore
quantification abilities and how they are developed. Petersen and
Simon used a combined and modular approach following the triple-
code model (auditory/verbal, visual digits, and an analogue
magnitude) [92]. The objective of Petersen and Simon
investigation was to provide a possible explanation for the
existence of a specific upper limit (believed to be up to four) for
the number of items that humans can estimate without counting.
The first model was based on the Adaptive Control of Thought -
Rational (ACT-R) theory of high-level cognition, proposed by
Anderson et al. to model several classic phenomena of visual
attention, including tasks such as the sperling, subitising and visual
search [93]. The ACT-R model implemented two strategies,
providing a simulation of different cognitive abilities that might be
involved in numerical cognition: the first strategy implements an
associative memory, which, like the biological counterpart, decays
in time, while it strengthens and becomes faster after repeated
exposure to the same inputs; the second strategy is called ‘the
counting procedure’, which tries to retrieve the numerosity when
possible, i.e. if the memory trace is strong enough, if not it attempts
to count. The counting was modelled in a simplified way, because
this was not the focus of the investigation, under the assumption
that this ability is available at the same time as subitising, which is
in contrast with children experimental data. The second model was
a connectionist architecture based on the parallel distributed
processing paradigm [94]; it was implemented by a standard multi-
layer perceptron, i.e. a three-layer feed-forward neural network.
This model simulated subitising only. The network was trained
with back-propagation to estimate the numerosity from a two-
dimensional retina input representing the arrangement of the items.

Fig. 5  Drawing of a pupil clearly showing five finger/digits on the right
after finger-based training for numerical ability
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Both models were able to simulate the human behaviour, with the
ACT-R model showing richer results and stronger reliability in
replicating the four items’ upper limit, while the analysis of the
results of the connectionist model revealed some inconsistencies.
In the case of the ACT-R model, the selection of memory
parameters generated the limit, while in the case of the
connectionist model the performance was influenced by the
number of internal units.

4.2 Advanced computational models

Thanks to the increase in computational capacity, most of the
recent models were composed of several modules to accomplish
more than one task, thus experimental simulations provided richer
results and deeper analyses.

One of the milestones is the work of Ahmad et al. [95], who
introduced a very complex multi-network modular system
following a mixture-of-experts approach. The proposed
architecture included two sub-systems for subitising and counting,
which are realised by interconnecting several constituent modules,
including connectionist networks that were trained independently.
The main constituent architectures included other than the multi-
layer feed-forward neural network, recurrent connections of both
Elman and Jordan (recursion on output [96]) types in the counting
sub-system, and two self-organising map (SOM [97]) architectures
in the subitising subsystem. Consequently, the type of training was
also differentiated according to the architectures, thus the counting
sub-system used a supervised back-propagation learning algorithm,
while the subitising an unsupervised Hebbian learning algorithm
[98]. In fact, the construction of this system also follows the
assumption that subitising is an innate capability while counting
should be learned via examples.

The use of unsupervised learning and the SOM architecture
represented an innovation with respect to the previous work.
Another peculiar aspect of the counting sub-system is a module for
‘pointing’ to the next object to count ‘like a finger’, which is one of
the first times that embodiment was included, even if its
implications were not studied. However, it must be noted that
several details of the system are missing from the description as
Rucinski pointed out in his detailed review of Ahmad et al. work
(Chapter 3.3 of [47]).

When testing, Ahmad et al. [95] did not follow-up Petersen and
Simon's investigation of response times and the transition from
subitising and counting, but the sub-systems were tested and results
were presented separately. Inputs are 3 × 3 black and white (0, 1)
images and the final outputs were obtained by means of ‘gating’
neural networks that were trained to select the response of either
sub-systems. One of the characteristics of the subitising system is
that, after training, the winning nodes in the SOM network were
ordered topologically in a way resembling Fechner's law for
numbers: the bigger the size the closer to each other the nodes. The
counting sub-system included a comparison with behavioural and
performance data from children collected in previous experiments
by Fuson et al. [99, 100]. This comparison shows good adherence
to the children's data, but also some inconsistency, e.g. the
simulation has a higher frequency of counting no objects than
children, who rarely make this error. In summary, Ahmad et al.
[95] were very ambitious and their model is one of the most
complete systems for modelling human counting, including some
aspects that can be interpreted to implement embodiment, i.e. the
internal number representation and the pointing. Following the
same approach, Casey and Ahmad in a following article [101]
attempted to model the subitisation limit, where results of the
simulations indicate that the limit is due to the differences in the
learning algorithms between the feed-forward and the SOM
networks.

Verguts et al. [102, 103] studied the mental (or internal)
representation of numbers by means of connectionist models that
were inspired by neuro-scientific results obtained by Nieder et al.
[104, 105], who confirmed the existence of neurons able to act as
numerosity detectors. Verguts et al. propose a number
representation system that uses place coding, linear scaling, and
constant variability on the mental number line. In practice, the

representation is an extension of the orthogonal one-hot coding
(each neuron is fully active only in response to a specific input,
while it is zero otherwise), but with multiple activations that
exponentially degrade around the one. The first model [102]
supports the existence of a ‘summation-coding’ layer that can assist
the numerosity detection after supervised training, and produce an
efficient input for an unsupervised organisation of number-
sensitive neurons such as those observed in vitro by Nieder et al.
[104, 105]. The second model [103] is trained via back-propagation
and tested in three tasks: number naming, parity judgment, and
comparison, results show adherence with experimental data of
[106] and imply that small and large numbers are represented by
means of different codings. We should note that Verguts et al.
choice to train the entire model via back propagation seems in
contrast with other work, as does the principle that the capacity to
process small quantities is innate [48].

Gevers et al. [107] studied the interaction between the
representations of number and space by building on Verguts et al.
work [103] and presenting a connectionist model that exhibits the
SNARC effect in the parity judgment and number comparison
tasks. The model is obtained by adding a few extra layers to the
neural network presented in [103], which also provides the weights
for the same layers, while for the new one the weights are set by
hand to obtain the desired magnitude of the SNARC effect. This
model was extended by Chen and Verguts [108] by adding
biologically inspired layers to create an explicit representation of
the space and, therefore, to associate the numbers with space.
However, the ‘space representation’ has been hand-wired in such a
way so that it exhibits properties suggested by neuro-scientific
data. Indeed, the resulting model was able to simulate not only the
SNARC effect, but also several other experimental data and
effects, including the spatial attention bias known as the Posner-
SNARC effect [109] and, after lesion, the spatial dysfunction found
in patients with left hemisphere neglect.

A recent computational simulation of a more advanced
arithmetic behaviour has been proposed by Hansen et al. [110] that
propose the use of a standard reinforcement learning system [111]
to model the evolution of finger-based strategies to solve addition
problems. The reinforcement learning approach is considered an
example of semi-supervised training as it guides the learner
through feedback while exploring the possible solutions. The
feedback can be positive (reward) or negative (punishment)
according to the quality of the solution, while it can be provided
externally by an expert teacher or derived according to the learner
internal perception [112]. Hansen et al. [110] decompose addition
into a sequence of four elementary subtasks: give operand A; give
operand B; count; say how many. In this model, the embodied
limitation given by using fingers to represent numbers is directly
considered; in fact, the maximum number for the ‘give a number’
task is limited to the five fingers. The aim of Hansen et al. is to
resolve the inconsistency of a previous model Strategy Choice And
Discovery Simulation (SCADS) by Siegler and Jenkins [113],
which rejects faulty strategies via unexplained metacognitive
filters. Hansen et al. [110] compare the computational results with
data collected from children experiments, ran ad-hoc for the
comparison, showing good adherence.

4.3 Deep-learning approach

Some of the recent models tend to adopt a popular category of
algorithms and architectures, under the name of ‘deep learning’,
which are inspired by complex layered organisation and the
functioning of the cerebral cortex [114]. This results in deep-
layered processing, which is thought to be a fundamental
characteristic of the human brain, making this an essential feature
in the computational modelling of human cognition [115]. Deep
learning approaches have recently been applied to the modelling of
language and cognitive processing, showing how structured and
abstract representations can emerge in an unsupervised way from
sensory data, through generative learning in deep neural networks,
for an overview see [116].

Aspects of numerical cognition have also been modelled using
architectures and training methods classified as ‘deep learning’.
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For instance, Stoianov et al. [117] use the mean-field BM
architecture and the contrastive divergence learning (CDL)
algorithm [118] to model a simple mental arithmetic operation
(addition). The mean-field BMs are two-layer architectures with
recursion on each layer, while the CDL is an unsupervised
stochastic generative learning algorithm that is used to train the
network to predict its own inputs. In practice, Stoianov et al. train
the model with example input vectors that contain the two
operands and the result of the addition, while the model is tested
providing only the two operands and recursively run the network
until the result is predicted. Stoianov et al. used the model to
compare three numerical representations and conclude that the
numerosity magnitude representation (also known as the
‘thermometer’ code) gives the best results in simulating simple
additions while attracting the best biological plausibility. The
numerosity magnitude representation made learning arithmetic
facts easier and the model to achieve processing times that match
the pattern of human reaction times.

Recently, Stoianov and Zorzi [119] investigated the emergence
of the visual number sense with a deep-learning architecture made
of one ‘visible’ layer encoding the sensory data and two
hierarchically organised ‘hidden’ layers. The model is obtained
following a hierarchical processing approach in which each layer is
trained by applying CDL algorithm. The first layer is trained using
the input examples, while the hidden layers are trained to predict
the previous layer internal activations. Each example was a binary
30 × 30 pixels image containing up to 32 randomly-placed non-
overlapping rectangular objects, separated by at least 1 pixel. In
analysing the results of the computational experiments, Stoianov
and Zorzi found that some neural units spontaneously acted as
‘emergent numerosity detectors’ with response profiles resembling
those of monkey parietal neurons. This result supports that such a
computational model can develop a numerosity estimation capacity
with a behavioural signature compatible with the one shown by
humans and animals.

4.4 Number cognition in developmental robots

CDR researchers have extensively studied other aspects such as
language grounding, see e.g. [22, 24], but very few attempts have
been made so far to simulate embodied numerical learning using
robots.

A first attempt with the developmental cognitive robotics
paradigm was made by Ruciński et al. [47, 120] that explored
embodied aspects of the interactions between numbers and space,
reproducing three psychological phenomena connected with

number processing: size and distance effect, the SNARC effect and
the Posner-SNARC effect. The architecture proposed by Ruciński
et al. follows the principles set by Caligiore et al. [121], therefore,
it is split into two neural pathways: ‘ventral’, which elaborates
identity of objects, makes decisions according to the task, and
processes the language, and ‘dorsal’, which processes the spatial
information, i.e. locations and shapes of objects, and sensorimotor
transformations that provide direct support for visually guided
motor actions. The components of the ‘ventral’ pathway have been
selected according to Chen and Verguts’ model [108], while the
‘dorsal’ included the use of a SOM layer for the spatial
representation. The results show that the embodied approach
allowed achieving a more biologically plausible model and
simulations by replacing arbitrary parts of the Chen and Verguts’
model with elements which have direct physical connection and,
therefore, more realistic interpretation.

In other work, Ruciński et al. [122] presented a new CDR
model to simulate aspects of the earlier work on gesture in
counting by Alibali and Di Russo [63], and indeed experimental
results showed that pointing gestures significantly improved the
counting accuracy of the humanoid robot iCub. The architecture is
a recurrent neural network of the Elman type, with two input
layers, one for the items to count, i.e. a binary vector, and another
for the proprioceptive information, the arm and hand encoder
values. The model is trained via the back-propagation through
time. In the experiments, the performance is compared with that
obtained by the same architecture but without gesture inputs.
Statistical analysis of the results of 32 trials shows adherence to the
experimental data of Alibali and Di Russo.

Recently, Di Nuovo et al. conducted several experiments [123–
125] with the iCub humanoid robot to explore whether the
association of finger counting with number words and/or visual
digits could serve to bootstrap numerical cognition in a cognitive
robot. The models were based on three recurrent neural networks
of the Elman type, which were trained separately and then merged
to learn the classification of the three inputs: finger counting
(motor), digit recognition (visual), and number words (auditory),
i.e. the triple-code model [92]. The novelty of this model was that
all inputs were derived from real instances of the numbers from
one to ten according to their source: 14 motor encoders of the
robot's hands, ten black and white pixels for Arabic digits, and 13
Mel-frequency cepstral coefficients (MFCCs) extracted from the
number words. MFCCs are the most commonly used features for
speech recognition roughly similar to the auditory system [126].
The model is presented in Fig. 6, where it can be seen that the
motor control layer is split into right and left to mimic the two-
hemisphere organisation of the brain. 

For each input, internal representations were obtained by
training the associated recurrent network to predict the following
input, i.e. to learn the number sequence. Then, the internal
representations were used to classify the number with a softmax
competitive layer, which provides the likelihood of the
classification. Results of the various robotic experiments show that
learning finger sequencing together with the number word
sequences speeds up the building of the neural network's internal
links resulting in qualitatively better understanding (higher
likelihood of the correct classification) of the real number
representations. In fact, an optimal cluster analysis showed that the
internal representations of the finger configurations are the ideal
basis for the building of an embodied number representation in the
robot. The result for fingers and number words is reported in
Fig. 7, which presents the optimal cluster dendrogram analysis with
optimal leaf order [127]. 

Furthermore, it is shown that such a cognitive developmental
robotic model can subsequently sustain the robot's learning of the
basic arithmetic operation of addition [123]. Although, this
operation was implemented with an additional handcrafted layer,
just to show the possible further evolution of the model.

Di Nuovo et al. [128] extended the previous work by adopting
the deep learning approach to achieve a superior learning
efficiency. The new model was created by applying a learning
strategy similar to that seen in Stoianov and Zorzi [119]. In this
case, the model was able to accept two types of input, finger

Fig. 6  Embodied model with iCub's fingers for counting [124]
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configurations and number words, which had dedicated layers
initialised separately using the weights of restricted BMs (RBMs)
trained via CDL to replicate the own inputs. Then, the two internal
representations layers were merged by a dedicated layer before
being connected to the final classification layer. In the last step, the
entire architecture was refined via back-propagation. The
simulations showed that the model is quicker and more effective in
terms of classification likelihood when both fingers and words are
provided as input rather than when finger or words are the only
input. Furthermore, the model was applied in a simulation of the
learning behaviour of bi-cultural children, who can be exposed to
different finger counting representations and habits to accompany
their number learning. This application scenario was selected
because the difficulty of realising a similar study with children and
collect quantitative data, in fact, the purpose was to show how
computational models can help to generate hypothesis for research
in children education. However, the results obtained with the
model are plausible in line with qualitative observations previously
made with bi-cultural children.

Recently, Di Nuovo [129] investigated the effectiveness of the
embodied approach in the handwritten digit (image size 28 × 28
pixels) recognition through a deep-learning model. The model
comprised two parts, one for visual recognition and another for
motor control, that were created by stacking autoencoders [130],
which are similar to RBMs but trained via back-propagation rather
than CDL. The two parts were connected via a neural link to
simulate the one observed between visual and motor areas in recent
neuro-scientific studies [57]. In the simulation experiments, the
embodied representation (finger encoder values) was compared to
other representations, including the numerosity magnitude [131],
showing that fingers can represent the real counterpart of that
artificial representation and both are able to maximise the
performance.

In a follow-up study, Di Nuovo [132] investigated another
deep-learning architecture, the long short-term memory (LSTM)
[133], for performing addition with the support of the robot's finger
counting. LSTMs are more advanced recurrent neural networks
that allow modelling of the working memory and, therefore, they
are well suited for modelling arithmetic operations. The model is
trained to perform the addition of two handwritten digits with or
without finger representations to accompany them. In practice, as
in the previous work, the inputs are black and white images (28 × 
28 pixels) of handwritten digits and the finger encoders, but in this
case, they are provided in sequence and, therefore, the task is to
recognise the numbers and directly perform the addition without
any intermediate step. The results confirm a significantly improved
accuracy when fingers are included in the input sequence along
with the digits. Interestingly, the model shows an unusual number
of split-five errors, similarly to those observed in studies with
humans [67]. This was a spontaneous result, recorded without
imposing any constraints to the model.

5 Discussion
This section discusses some of the main themes that emerge from
the review of the work presented in the above sections. Themes
were identified among those that can solicit future CDR research,

including extending the approach to the realisation of novel
applications of robots in the education of children.

5.1 Case of the internal representation of numbers in
computational models

An open issue that arises when analysing computational models is
about the type of coding that should be used for storing the internal
representation of numbers. Indeed, reviewing the literature, it
seems that there is no definite consensus among authors. A proper
definition of the coding is important to correctly set up the
computational models and, consequently, to use them in
understanding bias and effects observed in humans.

If we analyse this aspect in the main models presented above,
we see that the activity of output units of Dehaene and Changeux's
model is lower and wider for larger numbers, which infers a
logarithmic coding [134]. Ahmad et al. [95] used the numerosity
magnitude or ‘thermometer’ code, which was studied by Zorzi et
al. [46, 117, 131], who observed that magnitude information
coding should express cardinal meaning and the numerosity
magnitude code, or ‘thermometer’ representation shown to give the
best results in simulations while attracting the best biological
plausibility. On the other hand, Verguts et al. [102, 103] proposed
an alternative number representation system to let their model
produce many of the effects observed in humans, which was not
possible with the numerosity magnitude code.

In trying to resolve this dispute, we recall that several studies
with children and adults, e.g. [67, 68], demonstrated that the
internal representation of numbers is influenced by the fingers,
therefore, the numerosity magnitude is more plausible because it
can be considered as an internal representation of fingers, as also
shown in [129]. To this end, we should note that Verguts et al.
model is not tested on arithmetic operations, whereas the other
models that use the numerosity magnitude code can simulate the
addition task, which is one of the most evident cases of number
processing facilitated by the fingers. Finally, as hypothesised by
Verguts et al. [102, 103], we believe that there could be different
representations for small numbers and large numbers.

In summary, we believe that small number representation (1–4)
is likely to be innate and hard-wired in the brain, therefore, it can
be modelled with unsupervised learning or hand-coded, while large
number representation should be derived following embodied
cognition theory, i.e. the model should use proprioceptive
information which can be provided by a robotic platform, e.g.
[123].

5.2 Open research questions and the need for a closer
interdisciplinary approach

An open research question in embodied neuroscience is whether
the embodiment is realised by establishing a neural link between
the areas of the brain that process numbers, perhaps via an Hebbian
learning process, e.g. [57], or by reusing brain areas previously
developed as a scaffolding for building the number cognition, i.e.
there is a common substrate shared by motor control and number
processing, e.g. [70]. However, it is difficult to discriminate the
two conditions as the current brain imaging technology cannot
provide reliable data to give a definite answer. We see this issue as
an example of a possible interaction between CDR and
experimental psychology because the CDR can be used to model
the different alternatives and identify consequential effects that can
be used as a hypothesis in experimental studies with children.

An area that should attract more attention from researchers in
CDR is the relation between numbers and space, e.g. [135], which
can be the base for studying advanced mathematical problems,
such as geometry. In this case, we envisage a multidisciplinary
research approach in which experimental human data is collected
ad hoc to support the creation of the model. This is to allow a
perfect reproduction with the robot, which can be constrained in its
gestures and movements and could not exactly replicate those of
the children. For instance, in the current design, the iCub robot
hands have the last two fingers ‘glued’ together, i.e. their
movements are actuated by the same motor, and therefore not all of
the finger configurations to represent numbers are possible. This

Fig. 7  Optimal leaf-order of hidden units’ activations for fingers
configurations and number words

 

Cogn. Comput. Syst.
This is an open access article published by the IET under the Creative Commons Attribution-NonCommercial-NoDerivs License
(http://creativecommons.org/licenses/by-nc-nd/3.0/)

7



co-design is a rare procedure, in fact, almost all the models are
based and compared on previous studies, tasks of which are often
simplified for the robot, but if correctly realised it can achieve
higher fidelity yielding richer information. Furthermore, using data
collected ad hoc for creating computational models can be
beneficial because it can include minor procedural information or
results that may be not included in detail when published, but
useful to evaluate and refine the model [22, 23].

5.3 Potential applications of embodied robots in the
numerical education of children

Use of robots in the classroom can be thought of as broadly fitting
with the concept of guided play [136]. A guided play approach
allows educators to combine aspects of child-directed and free play
with adult guidance and mentorship, e.g. through the cueing of
attention to important concepts. In this context, we envision that a
robot that could count and perform simple arithmetic procedures,
using finger gestures to do so, could provide a useful prompt in
guided play.

Guided play with a robot could build on what we know about
the self-explanation effect in mathematics education [137]. Self-
explanation involves learners generating an explanation for
themselves to make sense of new information, and generally leads
to improvements in conceptual and procedural knowledge. A robot
using its fingers for counting or simple arithmetic could provide a
useful prompt for children to explain the robot's behaviour. This
could involve a robot either counting or calculating correctly or
making particular errors in processes. This would build on a long
history of research in mathematics education employing puppets;
e.g. Gelman and Meck [138] report a series of studies in which
children watched a puppet counting objects and were asked to tell
the researcher whether the puppet counted correctly or incorrectly.
The advantage of robots over puppets would be that children may
be more likely to attribute robots with rationality that they often
fail to associate with inanimate puppets. Puppet experiments have
been criticised for being confusing to children, who may be
unwilling to report an error when they know that the adult
manipulating the puppet is really the person carrying out a
counting or arithmetic procedure. If a robot carries out a procedure,
children may be more likely to interpret this as an authentic attempt
to solve a problem – although this remains to be tested.

If a robot is judged by a child to have carried out a procedure by
its own volition, then it may be more likely to give rise to
meaningful self-explanation by a child. This, in turn, provides
opportunities for an adult to guide discussion further. This
approach to the use of robotics in the classroom would align well
with current directions in video-game-based-learning in early years
settings, where the focus is very much on processes rather than
outcomes [139].

6 Conclusion
This study conducted a review of the current scientific knowledge
about the development of number understanding and basic
arithmetic in children and artificial cognitive systems. The review
emphasised the close relationship of numerical cognition with the
human body, in particular, the fingers, providing strong motivation
for the use of an interdisciplinary approach known as CDR for the
computational modelling of such a fundamental component of
human intelligence.

The aim was to create a common resource of background
knowledge that can support closer collaboration among the
disciplines interested in the study of numerical abilities in order to
produce mutual benefits. For instance, closer collaboration can
result in the design of ad-hoc experiments to gather data for
computational modelling and, in return, to program numerically
capable robots to behave as assistants in experiment with children,
attracting their attention, recording data, giving instructions always
in the same exact way, exemplify the execution of the tasks and
providing feedback.

The possibility to record children data in a repeatable way is
one of the benefits that we envisage when researchers from the
different disciplines involved will join their effort. Indeed, raw data

from children experiment is usually not publicly available, indeed
there are no open ‘benchmark’ databases unlike the typical open
data behaviour in machine learning. Computer modellers can use
only the post-processed data and statistical analyses for designing
and validating models. Furthermore, the validation task does not
often match the robot capabilities and a surrogate has to be tested
instead. To have a more effective match between real experiments
and artificial simulations, we envisage ad-hoc studies that are co-
designed in such a way to provide open data, well-matched
between robots and children tasks. Furthermore, the availability of
open databases will favour the engagement of the machine learning
community as happened with other fields of application, such as
computer vision, speech recognition, DNA sequencing, and so on.

One of the limits of the computational models so far is that they
simulated simple tasks, mostly subitising and/or counting, but
mathematics is a lot more than these two basic activities, therefore
new research is needed to identify architectures and algorithms that
can simulate the learning process that allows children to progress
from the basic numerical knowledge and arithmetic to abstract
mathematics, which can provide the principles for the design of
artificial agents capable of high-level cognition and abstract
thinking.

The loop can be closed with further benefits by deploying
robots in the classroom to assist the teacher in the mathematical
education of children. These teaching assistants could be peers, i.e.
capable of mimicking the behaviours of children when learning
mathematics. These robots can lead educational activities in the
form of a game, during which they interact with speech and
gestures to guide the learner through arithmetic procedures and
prompt the children to identify errors in the robot behaviours.

We remark that to realise all of these potential benefits, closer
collaboration among researchers of the multiple disciplines
involved is required to share expertise and co-design the studies.
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