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Synopsis

The aim of the research is to develop a Resilient Control System for Flexible Manufacture. The 

research previously carried out in this area by P. Gray claims to have produced a methodology to 

develop dependable software for the control of a Flexible Manufacturing Cell (FMC).

The MPhil work has consisted of an extensive literature search in the fields of Flexible 

Manufacturing Cells, Parallel Processing, Transputers and Petri Nets. The work to date has also 

given Gray's methodology a thorough investigation. These are discussed further in the body of this 

report.

The FMC at the School of Engineering (S.O.E.) forms the basis of the research. The control of the 

FMC is divided into three levels as follows:

Level 1; the control of sensors, actuators etc. using PLCs (Programmable Logic Controllers)

Level 2; the control of m/c tools, robots and PLCs controlling Level 1 

Level 3; decision making level

However Gray's methodology gives no consideration to Level 1 or the possible errors occurring 

within the FMC. An FMC is an environment in which the reliability of its constituent elements 

cannot be guaranteed. The work to date has focused on the complete and smooth operation of the 

devices in Level 1, constantly testing them and monitoring any errors occurring during the process. 

All PLCs in this level were reprogrammed to accommodate these or any other possible errors 

occurring during the control of the FMC.

The MPhil work to date has also consisted of the completion of the School's FMC which included 

the fixture and PLC programming of the Gantry Robot. In addition the appropriate Transputer and 

interfacing hardware to carry out the control of Levels 2 and 3 was investigated and chosen. The 

hardware will be used for the development and control of the FMC at all three levels to achieve a 

resilient control system during the PhD phase of the project.

The report provides evidence that the development of dependable software concentrating on Levels 

2 and 3 is not adequate for the control of a system such as a Flexible Manufacturing Cell.

However Gray's methodology has potential for modular growth.

The PhD work will produce a methodology for the development of a resilient Transputer based 

system accounting for all levels of the control. The system will include an Error Handling process 

concurrently with the Decision Making and Status Handling processes and will handle errors 

effectively and safely.

It is my belief that the future work will produce a methodology for the development of highly 

efficient Flexible Manufacturing Cells. The work is novel and will be a contribution to knowledge.
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1. Introduction

Flexible Manufacturing Cells (FMCs) have been well established for a number of years and are 

used in batch manufacturing industries to improve the efficiency of production. They consist of a 

number of computer numerical controlled (CNC) machine tools, automated work/tool handling 

equipment and a control system to synchronise the operation of the machine tools and handling 

equipment.

The safe and reliable operation of FMCs is clearly desirable, if not essential for their effective use. 

However FMCs are complex systems the elements of which operate concurrently, and interact at 

irregular times depending upon the components to be produced. Therefore the development of a 

control system is not a trivial affair!1!. The control system not only consists of a computer 

algorithm, but also the computer hardware, the communications protocols and the cell monitoring 

equipment (sensors, transducers etc.).

Flexible manufacturing operational strategies such as distributed control are now established 

practices in industry. Real time control is achieved by distributing the various functions of a 

control system which operate concurrently. It is essential however that these functions or elements 

communicate with each other to achieve complete synchronisation of the whole system. Such 

communication could be achieved by networking individual PCs, which each run sequential 

programs. The control of the FMC in the School of Engineering (S.O.E.) at Sheffield Hallam 

University (S.H.U.) is currently carried out using this method. However as the number of 

processors increases, the management overhead increases PI.

The programming strategies and languages available for conventional microprocessors do not 

model a parallel architecture!3!. Apart from developing the program for each processor separately 

from others, the programmer has to introduce techniques for synchronisation and communication 

of one processor with others. However the software is directly dependant on the hardware. By 

increasing the number of processors, the complexity of the software design, development and 

testing will multiply. Expansion and modification of the operation of the hardware requires major 

modification of the software.

A Transputer based parallel architecture is capable of overcoming the above mentioned problems. 

Occam, the software developed by Inmos, is a combination of sequential and parallel programs 

executed by the Transputer. It is a powerful and expressive calculus for describing concurrent 

algorithms I4!.
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2. The FMC at the S.O.E.

The FMC consists of a CNC lathe, CNC milling machine, and three work handling stations;

□  A loading and unloading station for raw material and finished parts.

□  A station at the lathe for loading and unloading the lathe.

□  A station at the miller for loading and unloading the miller.

The loading and unloading of raw materials and finished parts is carried out by a Puma robot. The 

loading and unloading of the lathe is carried out by a gantry robot, while a cylinder loads and 

unloads the miller by ramming a workpiece to and from the milling table. A conveyor track 

transports material to and from the stations. This equipment is referred to as the work handling 

equipment (Fig. 1).

2.1. Levels of Control

The equipment used to perform the logical control of all the elements within the FMC is distributed 

between PCs and PLCs (Programmable Logic Controllers), and divided into three levels of control 

as shown in (fig 2).

Level 1

The simple sequential control of primitive devices, such as actuators and sensors, is carried out in 

level 1 using PLCs.

One PLC is devoted to Station 1 (fig 1), also referred to as the Puma Station, and to the conveyor. 

The opening of the dogs on the conveyor, closing them when the pallets have moved on, and the 

monitoring of the appropriate sensors at the Puma Station, to determine the arrival/departure of 

pallets at/from the station, is carried out through this PLC.

A second PLC is devoted to Station 2 or the Miller Station. It monitors the appropriate sensors at 

the Miller Station to determine the arrival of the pallets, activates the loading/unloading cylinder, 

the milling table clamp and instructs the miller to start or stop machining. The PLC also checks the 

Machining in progress status.

A third PLC is used to control and monitor Station 3, or the Lathe Station, and the gantry robot, 

synchronising the opening and shutting of the lathe door with the entry and exit of the robot arm 

whilst loading and unloading workpieces. The execution of the Start Machining command, and the 

monitoring of the machining is also carried out through this PLC.
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Level 2

The control of the machine tools, robots and the PLCs conducting Level 1 control is achieved in 

this level.

The Puma and conveyor PC instructs the Puma robot to execute the program "Loadcell", which is 

used to place a blank from the raw material stock in the vice, or "Unloadcell" (finished parts). It 

also instructs the conveyor PLC to index pallets.

The Miller PC instructs the Miller PLC to transfer the vice at the Miller Station into the fixture on 

the milling table and clamp it in place, or vice versa.

The Lathe and Gantry PC instructs both the gantry robot, to load or unload the lathe, and the lathe 

station PLC, to monitor the arrival of pallets and the opening and closing of their vice accordingly.

Level 3

Level 3 is conducted by the Cell Controller. The Cell Controller's task is to ensure that a given 

schedule of jobs is processed by the cell.

For example; a) instructing the Lathe PC to start the CNC program for turning, b) instructing the 

Miller PC to start the CNC program for milling and c) Instructing the Puma and conveyor PC to 

unload a finished component from the cell.

2.2. Distributed Control

Having established that the control of the S.O.E.s FMC is achieved by distributed control, it is 

important to explain the reasons behind such a design. Why, for instance, is the whole cell not 

controlled by only one computer?

Two essential reasons;

a) To reduce the complexity of the control algorithms/computer programs.

Even with the small FMC at the S.O.E., the number of sensors that need monitoring, and the 

number of actuators which need operating is very large. Since the various parts of the cell 

operate concurrently, the control of such an environment by one sequential algorithm 

becomes virtually impossible, and certainly inefficient. Changes within the cell would mean 

redesigning the complete control algorithm, hence making future growth a very difficult task. 

There follows a simple example of concurrency within the cell.
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Example; a part is to be unloaded from the conveyor by the Puma robot, also a part is to be 

loaded onto the miller and whilst this is being carried out, the lathe finishes machining and 

requires its workpiece to be removed.

b) To achieve the required communications necessary to operate the machine tools and work 

handling equipment.

There are several types of data that have to be communicated within the cell. For example, 

whether a sensor is on or off, which program the Puma is to run, what component is to 

arrive at the Miller. This data is communicated in different ways depending on the 

complexity of the data. For instance, a sensor's data may be on or off (24 or 0 volts) and 

requires only two wires to transmit its data. However, instructing the Puma to run a certain 

program will require the name of the program to be communicated and the command to 

execute it (e.g. "EXEC LOADPART"), hence it uses a much more sophisticated 

communication method (in this case RS 232C). Other data may be conveyed as messages 

specific to the products being produced, e.g. "job 12 requires turning and milling, CNC 

program numbers 7 & 4".

A Local Area Network (LAN) is required to transmit data between the PCs because there is 

the chance of more than one PC wishing to communicate at once. For instance the Lathe 

Controller and the Miller Controller might both communicate with the Cell Controller at the 

same time that the Cell Controller wishes to instruct the Puma Controller to load the 

conveyor. The LAN's communication protocol ensures that none of the messages are lost.

3. Petri Nets, Transputers, Occam and FMCs

Over the years, Petri Nets have been successful in modelling safety critical systems!5!. FMCs are 

safety critical systems in that, although automated they work in conjunction with humans. Also, 

modelling an FMC greatly reduces faults in the system by removing them before use. Section 5.2 

discusses the possible faults or errors within the FMC.

Occam and Transputers considerably simplify the design of a concurrent system such as an FMC. 

However recent research carried out within the S.O.E. has shown that in modelling the School's 

FMC the Petri Net graph of the cell becomes very complex (fig. 3). The graph is not readable and 

difficult to follow. In addition, the graph cannot be modelled simply in Occam due to the 

parallelism being hidden, which provides no easy access for modular growth. Therefore 

dependable software cannot be produced from the Petri Net.
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For these reasons and inspired by the capabilities of Occam and Petri Nets, a methodology was 

developed by Mr. P. Gray (PhD student) and supervisors Dr. W. M. M. Hales and Prof. F.

Poolet6H7l, to produce dependable distributed control systems for flexible manufacture (section 4).

It is important however to discuss Transputers, Occam and Petri Nets, in more detail, for a better 

understanding of the methodology.

3.1. Transputers and Occam

The combination of the Inmos developed hardware and software called Transputer and Occam 

respectively is rapidly being recognised as a solution to the problem of programming concurrent 

systems of all kinds!3! .

A Transputer is a microcomputer with its own local memory, and with links for connecting one 

Transputer to another Transputer!8!. It can be used in a single processor system, or in networks to 

build high performance parallel architectures. By linking processors together, a linear increase in 

data processing capacity can be achieved, as opposed to the limited processing capacity of typical 

multi processor control systems (MPCS). MPCS can only be increased to a certain limit before 

experiencing a drop off in effective computing power!9!.

3.1.1. Occam: Language Definition

Occam simplifies the writing of concurrent programs by taking most of the burden of 

synchronisation away from the programmer!10!. Occam uses channels for communicating values 

and does not mind whether the two processes (programs) which are to communicate are running on 

different computers, or concurrently on the same computer. However channels are one way only, 

and therefore two would be needed for a two-way communication.

Although Occam provides synchronised communication, the programmer is still left with the 

responsibility of avoiding "deadlock", i.e. a process waiting for something that will never arrive, 

for it is prepared to do so forever . For the non professional programmer, or rather the 

professional engineer and system designer, avoiding deadlock, in even a relatively simple FMC 

such as the one in the S.O.E., is difficult.
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3.2. Petri Nets

Petri nets are a tool for the study of systems, and a mathematical representation of systems!11!.

The application of Petri Nets is mainly through modelling.

The structure of a Petri Net is as follows; a set of places (represented by circles on a Petri Net 

graph, fig. 4), a set of transitions (bars on a graph), input and output arcs (arrows), and a marking 

which is an assignment of tokens to the places of a Petri Net (represented by dots on a graph). 

Directed arcs connect the places and the transitions. Arcs directed from a place to a transition 

define the place to be an input of the transition. Arcs directed from a transition to a place define 

the place to be an output of the transition. The execution of a Petri Net is controlled by the number 

and distribution of tokens in the Petri Net!8!. Execution is carried out by firing transitions.

However a transition may only fire if it is enabled, i.e. each of its input places has at least as many 

tokens as there are arcs from the place to the transition, (fig. 5). Deadlock is ruled out of a Petri 

Net by making sure all transitions are capable of firing.

4. Methodology

The methodology highlights the simplicity of both Occam and Petri Nets. It demonstrates the 

effective use of both for the design and development of dependable software for a distributed 

control system, such as the FMC at S.H.U..

Rather than using Petri Nets to merely model the system, the methodology proposes the use of 

Petri Nets to design the system, from which a dependable Occam code could be produced. 

Although in general Occam code is generated from data flow diagrams (DFDs)!12!, the use of Petri 

Nets in the same way is more beneficial. Petri Nets are capable of analysing a system as well as 

modelling it. Concurrency is explicitly represented in the Petri Net (sub-section 4.1), making it 

capable of modular growth (section 6), thus simplifying the design process.

The five stages of the development of a computer system are the requirements and specifications, 

design\modelling, program design, implementation and finally, testing and maintenance!13! . The 

conventional method of developing such systems is treating these stages separately, where the 

appropriate formal and non formal techniques are used to help develop systems at each stage. 

However techniques such as SSADM!14! (Structured System Analysis and Design Methodology) 

and SIFT (Software Implemented Fault Tolerant) operating systems!15! which cover more than one 

stage, are currently being developed.
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The methodology aims to produce a dependable system by concentrating on the top stages, defined 

as the requirements, design and program code levels. It uses Petri Nets at the design level and 

Occam at the program code level. However, while the SIFT operating system insists on verifying 

that both the design and the code meet the requirements , the methodology uses Petri Nets to design 

the model directly from the requirements, in such a way that it can be accurately converted into 

Occam. Therefore simplifying the verification process and hence contributing to the simplification 

of the design process.

4.1. The Methodology and the S.O.E.s FMC

The methodology simplifies the design process of the FMC in that it clearly divides the process into 

three steps.

Step 1

Since the aim is to design the system from the requirements, using Petri Nets, the first step of the 

methodology is the identification of the operations which could take place concurrently within the 

cell. For instance, although the milling machine can not be loaded or unloaded while it is in the 

process of machining a component, other operations such as loading or unloading the lathe, loading 

or unloading the conveyor, or rotating the conveyor could be desirable concurrent with the milling 

process.

By identifying the above mentioned operations, the distribution of the control system through the 

relevant elements is clarified. The following table represents the possible concurrent operations 

and the distributed elements (controllers) of the control system.

Parallel Operations Elements

Lathe (loading, machining, unloading) Lathe controller

Miller (loading, machining, unloading) Miller controller

Puma robot (loading, unloading) Puma robot controller

Conveyor (transporting workpieces) Conveyor controller

Decision making (load lathe, etc.) Cell controller

Monitoring the status of the cell Status handler

Table of parallel operations and distributed elements within the cell
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Step 2

The second step of the methodology is to separately produce a Petri Net graph for each of the 

controllers, clearly listing its inputs (where they come from), its logical operations and outputs 

(where they go to). Fig. 6 gives an example of two of the logical operations carried out by the cell 

controller. The places on the left represent the inputs to the cell controller. The places on the right 

represent outputs from the cell controller which are sent to become input places of other 

controllers. The transitions for each output place are also clearly marked.

Fig. 6 shows that to load the lathe (for instance), all the conditions (input places) have to be 

determined first. These conditions are as follows: There is a pallet at the lathe, the pallet is full 

(has a part in it), the part is to be machined on the lathe, the lathe is idle, the lathe work handling 

equipment is also idle (gantry robot and transfer device).

Once this procedure is carried out fully, it becomes apparent that these input places are the output 

places from another controller's Petri Net, in this case the Status handler (fig. 7).

The complete logical operation of the Cell controller is shown in fig. 8.

Step 3

The third step is graphically linking the individual Petri Nets of all the controllers to produce a 

Petri Net for the entire control system. Fig. 9 represents the general layout of the system, and 

unlike fig. 3 it clearly shows the parallelism and the communications between the separate 

controllers. The controllers are laid out in such a way that the communications between them is 

one way, left to right (fig. 9). The purpose of this is to eliminate 'deadlock' from the system.

For instance, the Cell controller sends the command "load lathe" to the Lathe controller. The Lathe 

controller does not report back to the Cell controller, but the Status handler, hence keeping the 

direction of communication to one way. However there still remains the possibility of 'deadlock' 

between the Status handler and the Cell controller. The Cell controller receives data from the 

Status handler (the status of the cell) as well as sending it data, hence the potential for 'deadlock'. 

This is ruled out of the control system when converting the Petri Net into Occam code, by using the 

ALT (Alternation) command. The Status handler receives messages from the various elements of 

the system, including the Cell controller, by Alternation. However, the Status handler reports back 

to the Cell controller only if requested to do so by the Cell controller, hence avoiding the risk of 

'deadlock'. For more detail refer to [10J.
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5. Progress of Research

To establish a good foundation for the research, the initial period was devoted to the full 

understanding of the working of the FMC and the previous research carried o u t.

In conjunction with the extensive literature survey carried out in the fields of FMCs, parallel 

processing, Transputers, Occam, petri nets and P. Gray's research, regular tests were carried out 

on the smooth and safe operation of the devices in level 1 (section 2.1.). As a result of this 

additional sensors were included and certain actuators upgraded within the cell. Hence the control 

of level 1 was revised. The program for each PLC was therefore modified to accommodate these 

changes.

A full understanding of PLCs was attained during this period. The Lathe PLC was programmed to 

control and monitor Station 3, the status of the lathe and the gantry robot. Unlike the PLCs at 

Stations 1 and 2 which were programmed using Ladder Diagrams, the Lathe PLC was 

programmed using Step Ladder Diagrams. Due to the complexity of the operations occurring at 

Station 3 a Mitsubishi F2 series PLC was used because of its ability to execute Step Ladder 

Programs!16! I17! .

5.1. PLC Programming

A PLC program consists of a ladder diagram (fig. 10) or a sequence of ladder diagrams!18!. The 

required actions of the program are represented sequentially by lines on the ladder diagram!19! .

The input signals to the PLC are marked on the left hand side of the diagram. These signals may 

be on or off and form the conditions for the output signals (instructions) from the PLC which are 

marked on the right hand side of the ladder. The input and output contacts (I/Os) of the PLC are 

clearly marked on the ladder (I = X0, X I, X2 etc., O = Y30, Y31, Y32 etc.). The PLCs internal 

relays are also marked as M numbers (M l00, M101, etc.).

A software package called MEDOC (Mitsubishi Electric Documentation) was used to produce the 

PLC programs. Once the I/Os and internal relays are labelled, MEDOC offers the option of 

showing the description of the I/Os and internal relays on the ladder diagram itself. The software 

also checks the format of the ladder and points out illegal operations. In addition, it provides 

downloading facilities from a PC to a PLC and verifies that the downloaded program matches with 

the one on the PC.
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However, although sequential, a PLC constantly scans through a ladder program in a cyclic 

fashion and only terminates if all the instructions are successfully carried out, or if an error occurs 

and generates an Error Status. Sub-section 5.3.1 discusses both terms Jurther stating their 

importance in the creation o f  a resilient control system. Therefore care must be taken when 

including opposing and repeated instructions within a ladder. The input conditions must be 

carefully determined for each output instruction to avoid future complications (fig. 11).

Although the PLC at the Puma Station controls and monitors Station 1 and the conveyor, the 

ladder program for this particular PLC is relatively simple. The reason for this is that the 

programming of the Puma robot is carried out using a PC. Appendix 1 represents the ladder 

program fo r  the PLC at Station 1, clearly showing the five sequential operations involved during 

the loading or unloading o f  the cell. It also lists the sensors monitored and the timers controlled 

by the PLC.

The task of the PLC at Station 3 is more complex than those of stations 1 and 2, in that it controls 

and monitors the gantry robot as well as the lathe and Station 3. There are thirteen sensors on the 

gantry alone that need monitoring by the PLC. Also the high number of operations (movements) 

involved in loading or unloading the lathe and the determination of the correct condition for each 

instruction (made by the PLC) make it very difficult, if not impossible, to control the gantry, the 

lathe and Station 3 using a ladder program. Therefore the programming of the PLC in this case 

was carried out using Step Ladders.

5.1.1. Step Ladder Programs

As the name suggests, the use of Step Ladders allows a complex PLC program to be divided into a 

number of steps t20! , depending on the complexity of the operations carried out by the PLC.

Each operation is given a step number at the beginning of the Step ladder and an input address 

which forms the condition for that particular Step Ladder to be Set (to start). The Step Ladder is 

Reset only if the required operation is carried out successfully. The layout of the required actions 

in between the Set and the Reset lines is similar to that of a standard Ladder diagram. However 

repeated instructions carried out by the PLC do not cause programming complications as they can 

be grouped in separate Step Ladders. Appendix 2 represents the Step Ladder Program fo r  the 

PLC at the Station 3. For example the instruction "Vert Down", instructing the gantry robot to go 

vertically down, occurs four times during the loading and the unloading of the Lathe. However, by 

dividing the "Load Lathe" operation into two Steps "Grip Workpiece" and "Workpiece to Chuck" 

for instance, the PLC will instruct the gantry to go vertically down again only after Step S601 is 

Set and Reset, and Step S602 is Set (appendix 2, pages 4 & 7). Therefore the programming of the 

PLC is simplified and the risk of errors reduced.
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5.2. Choosing the Appropriate Hardware

In order to carry out the control involved in Levels 2 and 3 as suggested by Gray's methodology, 

the research to date has also concentrated on the task of choosing the appropriate Transputer 

hardware for the FMC to replace the existing network of PCs.

There are many types of Transputer hardware available in the market today. Transtech, Sension, 

Parsytec and Inmos are some of the suppliers of such devices. The included features of the 

Transputers are reflected in their prices and vary from the basic T400 model to the latest, top of 

the range T9000.

However the T400 Transputer has only two links which means that the only possible network 

topology is a linear chain!21! as shown in fig. 12. With the upper models, such as the T425's and 

the T805's for instance, one can go further and configure a tree or a toroidal mesh!21! (fig. 12).

The configuration of the controllers and the communication protocol within the Cell is shown in 

fig. 13. The need for Transputers with four links each is clearly seen. The availability of the free 

links on the Lathe, Miller and Puma Controllers allow future modular growth, as intended by the 

research in the attempt to build resilience into the system.

The more recent Transputers such as the T805's and the T9000's are 'super-fast' micro computers 

which are ideal for Multitransputer Workstations!22! and Database Systems for banks!23!.

However with the FMC at the S.O.E. the aim was not to exploit the speed of Transputers, but to 

acquire Transputer hardware capable of handling the communication with the various parts of the 

system.

The Status Handler is currently a process within the Cell Controller, as suggested by Gray's 

methodology. As part of the PhD program further research will be carried out regarding the Status 

Handler and an additional element for the handling of errors (section 6). This is why no decision 

has yet been made regarding the type and configuration of the final hardware for the complete 

system. However enough hardware has been purchased from Transtech to carry out the control of 

one of the stations within the FMC adequately and cost effectively.

This hardware comprises of a TMB04 PC Transputer board featuring an IMST425 Transputer 

(Cell Controller) and four slots for TRAM daughterboards. A size one T425 Transputer TRAM 

(Lathe Controller or Miller Controller or Puma Controller) occupies one slot, a size one TTM21 

RS232-C TRAM (to communicate with Lathe, Miller or Puma) occupies another and a size two 

IOT332 digital I/O TRAM (to communicate with PLCs) the final two slots, (appendix 3). As the 

name suggests, the TMB04 PC board is PC compatible, which allows the Cell Controller to 

communicate with the PC, i.e. report to the monitor.
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5.3. P ossib le Errors Within the Sch oo ls FMC

The research carried out by Mr. P. Gray has produced a methodology which aims to produce 

reliable software for a distributed control system, and is based on the schools FMC. The aim of 

the current work is to research the resilience of the whole system. The identification of possible 

errors within the system and the handling of such errors forms a major part in the production of a 

resilient system.

An important part of the work to date has been to identify the possible errors occurring within the 

cell and categorising them as below:

Work Handling Errors

• Failure of sensors, solenoids, valves, etc.

• Manipulating errors (positioning, speed, etc.)

• Material errors (size, shape, alignment, position, etc.)

• Robot failure

• Power failure (air, electricity)

Machine Tool Errors

• Catastrophic failure

• Gradual failure (wear)

• Work handling (fixturing) failure

• Tool failure

• CNC program errors

Control Errors (Hardware and Software)

• Correctness, reliability
• Communication errors (timing of messages, message corruption, deadlock)

• Initial data errors

• Logic of control

• Speed of software

• Failure of hardware (PLCs, Transputers, trams, digital I/O)

• Power failure

Human Errors

• Misuse, inappropriate use

• Mistakes (incorrect choice of material, tools etc.)
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The methodology in section 4 claims to be a tool for developing a dependable distributed control 

system for flexible manufacture. Although the FMC at the S.O.E. forms the basis of Gray's 

research, no consideration has been given to any of the above mentioned errors which are likely to 

occur within the cell. However Gray claims that the methodology simplifies the modular growth of 

the dependable software, in an effort to build resilience into the complete system (section 6).

5.3.1. Handling of Errors

Having identified the possible errors which are likely to occur during the control of the Cell, it is 

important to discuss the various methods by which these errors are handled.

Ideally the elimination of the chance of errors occurring is most favourable. In reality this is not 

always possible due to the unpredictability of some errors. For instance, in the case of gradual 

failure of machine tools, efforts such as constant preventative maintenance and statistical process 

control will help eliminate errors. However a work handling device, such as an Infra-Red sensor, 

could fail suddenly and therefore needs to be accounted for by the PLC program to avoid 

catastrophic consequences.

It is also essential to establish a good understanding of the terms successful and error during the 

control of a resilient FMC. This is best explained with an example. The PLC at Station 3 

instructs the Gantry robot to load the lathe. A fault with the material results in the diameter of the 

bar (for instance) in the vice being smaller than specified. Although failing to grip the workpiece in 

reality, the robot will carry out the operations "GRIP WORKPIECE" and "WORKPIECE TO 

CHUCK" successfully, hence transporting "fresh air" which in turn is machined by the Lathe.

Such control may be dependable, and even safe for that matter, it is not however in any way 

resilient.

Other considerations such as deciding the 'Robot to Safe Position' for the Gantry robot is also 

important. It was decided not to leave the arm of the robot directly above the Lathe after 

transporting a workpiece to the chuck. Tests showed that in the event of air supply failure, the 

robot arm will only remain in the 'Up' position for a limited amount of time before rapidly falling. 

This would result in the arm breaking the glass door at the top of the Lathe and colliding with the 

rotating chuck. Therefore an extra Step Ladder was included in the programming of the Gantry 

robot, taking the arm of the robot to a much safer position, above the conveyor.
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However not all errors can be dealt with in Level 1. Communication errors such as message 

corruption and deadlock, and even failure of hardware such as PLCs and Transputers are classed 

as control errors and should be accounted for by the software in the top levels of the control. 

Human rectifications, or rectifications by the operator are also an important part of the error 

handling process and need to be carefully dealt with by the Cell Controller at the decision making 

stage (section 6).

6. Future Work for the PhD

The most effective way of handling errors in any system is by eliminating them prior to their 

occurrence. However in an environment such as a Flexible Manufacturing Cell the reliability of 

the constituent elements cannot be guaranteed. This does not imply that the achievement of 

resilience is an impossible task. A reliable system failing catastrophically is less resilient than a 

relatively unreliable one failing safely. Therefore the handling of such possible errors efficiently is 

very important.

The research carried out to date has focused on the reliable and safe control of the devices in 

Level 1. It is my belief that by continuing the current research further and focusing on the control 

carried out in Levels 2 and 3 in conjunction with Level 1, a resilient control system can be achieved 

as a step forward from the dependable control claimed by Gray.

The PhD work will explore Mr. Gray's methodology further, investigating its capabilities of 

modular growth without the complete alteration of the original design and code. The aim is to 

include an additional element in parallel with the existing controllers (listed on page 8). This 

element will be named the Error Handler the task of which will be the constant monitoring of the 

errors occurring within the Cell.

However, similar to the Status Handler, although the Lathe Controller, the Miller Controller and 

the Puma/Conveyor Controller would all report to the Error Handler and not the Cell Controller, 

there would still be the potential for 'deadlock' between the Cell Controller and the Error Handler. 

Careful consideration is needed to address this problem fully. The frequency at which the Cell 

Controller demands updates from the Status and Error Handlers, the configuration of the Error and 

Status processes and the communication between them are all areas in need of further research.
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The possible errors occurring during the control of Level 1 have been identified and accounted for 

by the PLCs, and will be constantly studied further during the PhD work period. By further 

notifying the related Controllers, who in turn send the data to the Error Handler, these errors will 

be differentiated by the Cell Controller. The Cell Controller's task then is to make sure these errors 

are clearly labelled (source and type of error) and acknowledged by the operator, who can in turn 

track and rectify them.

However, in order to achieve resilience, it is important that the Cell Controller handles errors 

efficiently and makes the correct decisions. For example, in the event of an error on behalf of the 

Gantry robot during the loading of the Lathe, and if the Miller is being loaded at the same time, is 

it safe for the Cell Controller to instruct the operator to attend to the Gantry or does it need to 

instruct the Miller Controller to stop loading the Miller first, or even temporarily ignore the error 

until the Miller is Loaded.

The various possible configurations of processors and processes will also be considered to 

determine the best layout for the resilient control of the FMC. For example, similar to the Status 

Handler, the Error Handler could be included as a process within the Cell Controller, or as a 

process within the Status Handler whereby the Status Handler requests error updates from it and in 

turn report back to the Cell Controller, or even as a separate processor reporting back to its own 

station (PC monitor) and with its own decision making process.

The procedures of the methodology will be followed and a Petri Net for the whole FMC produced. 

Once designed and successfully modelled, the Petri Net will be converted into Occam code. The 

Transputer hardware to carry out the complete control of the whole system will be chosen and 

installed during this period.

In summary, a dependable control system concentrating on the top levels is not adequate for the 

development of a resilient FMC, nor is the safe and reliable control of the lower level. However it 

is my belief that by further researching into both areas and the existing methodology, a novel 

methodology can be produced for the development of a resilient control system for Flexible 

Manufacturing Cells.
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INDEX ERROR

X404
H/b

X404
H/b

Y433 T50
— I / bENABL CONVR DOG 

CONVR INDEX OPEN 
INDEX ERROR TIMER

Y433
- (  ) -----
CONVR
INDEX
ERROR

K2.0 
-(T50 ) 
DOG 

OPEN 
TIMER

Y532
- (  ) -----
OPEN 
PUMA 
DOG

Y533
' (  ) ------
OPEN
LATHE
DOG

Y534
"(  ) —  
OPEN 
MILLR 
DOG
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.02
X404 Y433 Y532 X413 X500 X501
H/l— I/I— I/I— I I— II— I I—ENABL CONVR OPEN PALLT PALLT PALLT
CONVR INDEX PUMA AT AT AT
INDEX ERROR DOG PUMA LATHE MILLR

09

Y432
- (  ) -----CONVR
INDEX
COMP

[END ]■
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I/O Name Comment Remark

XO ENABLVICE TABLE Input from IBM-PC Active Low
XI ENABLGRIP WKPCE Input from IBM-PC Active Low
X2 ENABLWKPCE CHUK Input from IBM-PC Active Low
X3 ENABLROBOT SAFE Input from IBM-PC Active Low
X4 ENABLVICE PALLT Input from IBM-PC Active Low
X5 ENABLSTARTM/C'G Input from IBM-PC Active Low
X6 ENABLWKPCE CONV Input from IBM-PC Active Low
X7 ENABLWKPCE VICE Input from IBM-PC Active Low

X10 VICE ON TABLE Input from sensor 12 Ind. Prox.
Xll VICE RAM RETRD Input from sensor 13 Magn. Reed
X12 VICE CLOSE Input from sensor 14 Press. Sw.
X13 VICE ON PALLT Input from sensor 15 I.R. Ref1.

X14 HORIZ AT CONVR Input from sensor B01 Ind. Prox.
X15 HORIZ AT LATHE Input from sensor B02 Ind. Prox.
X16 VERT AT CHUCK Input from sensor B03 Ind. Prox.
X17 VERT UP SAFE Input from sensor B04 Ind. Prox.
X400 MIDSTVERT EXT Input from sensor B05 Press. Sw.
X401 MIDSTVERT RET Input from sensor B06 Magn. Reed
X402 ROTAT 0 DEG Input from sensor B07 Ind. Prox.
X403 ROTAT 90 DEG Input from sensor B09 Ind. Prox.
X404 ENDSTRETRT Input from sensor Bll Magn. Reed
X405 ENDSTEXTND Input from sensor B12 Magn. Reed
X406 GRIPRCLOSE Input from sensor B13 Magn. Reed
X407 GRIPR OPEN Input from sensor B14 Press. Sw.
X410 GRIPR AT VICE Input from sensor B17 Ind. Prox.

X411 CHUCKOPEN CNC M/C CODE 61 Int. Relay
X412 CHUCKCLOSE CNC M/C CODE 62 Int. Relay
X413 M/C'GFINSH CNC M/C CODE 63 Int. Relay
X500 IN CYCLE CNC Cycle Interrupt Int. Relay
X501 ERROR CNC Cycle Interrupt Int. Relay
X502 DOOR CLOSE Input from sensor 16

Y30 LATHESTATNCOMP Output to IBM-PC
Y31 LATHESTATNEROR Output to IBM-PC

Y32 EXTNDVICE RAM Output to Ram cyl. (Extend) Double Sol
Y33 RETRTVICE RAM Output to Ram cyl. (Retract) Double Sol
Y34 OPEN VICE Output to Vice cyl .(Retract) Double Sol
Y35 CLOSE VICE Output to Vice cyl .(Extend) Double Sol
Y36 AIR ON Output to Tog clamp ISol Sprng

Y37 HORIZ TO CONVR Output to Sol. Y1 3 Pos 2Sol
Y40 HORIZ TO LATHE Output to Sol. Y2 3 Pos 2Sol
Y41 VERT DOWN Output to Sol. Y3 3 Pos 2Sol
Y42 VERT UP Output to Sol. Y4 3 Pos 2Sol
Y43 EXT. VERT MIDST Output to Sol. Y5 Double Sol
Y44 RET. VERT MIDST Output to Sol. Y6 Double Sol
Y45 ROTATTO 0 DEG Output to Sol. Y7 ISol Sprng
Y430 ROTATTO 90DEG Output to Sol. Y9 ISol Sprng
Y431 EXTND END STOP Output to Sol. Y10 Double Sol
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Y433 CLOSEGRIPR Output to Sol. Y12 Double Sol
Y434 OPEN GRIPR Output to Sol. Y13 Double Sol

Y435 CYCLESTART Output to Lathe Int. Relay
Y436 CYCLESTOP Output to Lathe Int. Relay
Y437 M/C STROB Output to Lathe Int. Relay
Y530 OPEN DOOR Output to Lathe Int. Relay
Y531 CLOSEDOOR Output to Lathe Int. Relay

M100 VICE/TABLE COMP
Ml01 VICE/TABLE ERR
Ml02 GRIP WKPCE COMP
M103 GRIP WKPCE ERR
Ml04 WKPCE/CHUK COMP
M105 WKPCE/CHUK ERR
Ml06 ROBOT/SAFE COMP
M107 ROBOT/SAFE ERR
M H O  VICE/PALLTCOMP
Mill VICE/PALLT ERR
M112 STARTM/C'GCOMP
M113 STARTM/C'G ERR
Ml14 WKPCE/CONV COMP
Ml15 WKPCE/CONV ERR
Ml 16 WKPCE/VICE COMP
Ml17 WKPCE/VICE ERR
M121 M/C'GCOMPL
M122 VICE/TABLE PLS
M123 GRIP WKPCE PLS
M124 WKPCECHUCK PLS
M125 ROBOT SAFE PLS
M126 VICE PALLT PLS
M127 STARTM/C'G PLS
M130 WKP CE CONVR PLS
M131 WKPCEVICE PLS
5600 VICE TO TABLE
5601 GRIP WORK PIECE
5602 WKPCE TO CHUCK
5603 ROBOT SAFE POSN
5604 VICE TO PALLT
5605 STARTM/C'G
5606 WKPCE TO CONVR
5607 WKPCE TO VICE
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VICE TO TABLE

XO
H/b-ENABL
VICE
TABLE

12

15

18

■[ s

S600
-|s t l |-
VI CE 
TO 

TABLE

M122 X10 X13
H  I— H/l— H/b-VICE/ VICE VICE 
TABLE ON ON
PLS TABLE PALLT

X13X10
H I  1 HVICE VICE 
ON ON 

TABLE PALLT

M101
H  I-------------VICE/
TABLE
ERR

M101 X10
H  / 1—H / 1—VICE/ VICE 
TABLE ON 
ERR TABLE

M101 X10
H/l— H I—VICE/ VICE 
TABLE ON 
ERR TABLE

XO
H -[ R
ENABL
VICE
TABLE

S600 ] 
VICE 
TO 

TABLE

M122
- (  ) —  
VICE/ 
TABLE 
PLS

M101
- (  ) —  
VICE/ 
TABLE 
ERR

Y32
"(  > -  
EXTND 
VICE 
RAM

M100
-( ) -  
VICE/ 
TABLE 
COMP

S600 ] 
VICE 
TO 

TABLE
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20 [RET ]-

GRIP WORKPIECE

21

23

25

30

34

XI
H/b-ENABL
GRIP
WKPCE

S601
-|s t l |-
GRIP
WORK
PIECE

-[ S S601 ] 
GRIP 
WORK 
PIECE

[PLS M123 ] 
GRIP 
WKPCE 
PLS

M123 X14
I I 1 / b

X17
H HGRIP HORIZ VERT 

WKPCE AT UP
PLS CONVR SAFE

M103
H  I-----------------------GRIP
WKPCE
ERR

M103 X17 X407
I / I-- 1 I--l/b-GRIP VERT GRIPR 

WKPCE UP OPEN
ERR SAFE

M103
- (  ) -----
GRIP
WKPCE
ERR

M103 X407
I / I 1 b

X400
I / b

GRIP GRIPR MIDST 
WKPCE OPEN VERT 
ERR EXT

Y434
- (  ) —  
OPEN 
GRIPR

Y43
- (  ) ~  
EXT. 
VERT 
MIDST



CONTROL OF WORK 
HANDLING, GANTRY 
ROBOT AND MACHINING 
FOR LATHE STATION 
IN THE SCHOOL OF 
ENGINEERING’S FMC

SHEFFIELD HALLAM 
UNIVERSITY

Draw.no:

Date:21/04/93 Proj:LATHE

Rev.dat: Syst:Fl/F2

Rev.no: 6 Type:Ladder

Sign: A.T. Page: 3

M103 X400 X410
H/l— I I— H/l—GRIP MIDST GRIPR 
WKPCE VERT AT 
ERR EXT VICE

M103 X410 X406
H/l— H I— —I/1GRIP GRIPR GRIPR 
WKPCE AT CLOSE 
ERR VICE

M103 X406
H/l— H I-----GRIP GRIPR 
WKPCE CLOSE 
ERR

XI
HENABL
GRIP
WKPCE

[ R

Y41
- (  ) -  
VERT 
DOWN

Y433
- (  ) —  
CLOSE 
GRIPR

M102
- (  ) “  
GRIP 
WKPCE 
COMP

S601 ]■ 
GRIP 
WORK 
PIECE

[RET ]■

WORKPIECE TO CHUCK

X2
H / HENABL

52

WKPCE
CHUK

S602
-|s t l (-
WKPCE

TO
CHUCK

54 [PLS

S602 ]• 
WKPCE 

TO 
CHUCK

M124 ]■ 
WKPCE 
CHUCK 
PLS
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M124
H  b

X400

WKPCE MIDST 
CHUCK VERT 
PLS EXT

X406
H / H

M124
H  bWKPCE GRIPR 
CHUCK CLOSE 
PLS

M124 X410
I I 1 /  I—WKPCE GRIPR 

CHUCK AT 
PLS VICE

M105
H  I-------------WKPCE
/CHUK
ERR

M105 X12
_1 /  | _ | |-----------------------
WKPCE VICE 
/CHUK CLOSE 
ERR

M105 X12 X403 X17
H/l--I/I-- I/I---l/bWKPCE VICE ROTAT VERT
/CHUK CLOSE 90 UP
ERR DEG

M105 X17 X403
I / I 1 I I/I—WKPCE VERT ROTAT 

/CHUK UP 90 
ERR SAFE DEG

SAFE

M105
- (  ) -----WKPCE
/CHUK
ERR

Y34
- (  ) -----
OPEN 
VICE

Y42
"( ) -----VERT 
UP

Y430
- (  ) ------ROTAT 
TO 90 
DEG
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M105
H/b

M105 X405 X502
H  / 1— H  I— HWKPCE ENDST DOOR 
/CHUK EXTND CLOSE 
ERR

X403 X15 X404
I / I 1 h

M105
H/hWKPCE ROTAT HORIZ ENDST 
/CHUK 90 AT RETRT
ERR DEG LATHE

X15 X401
I / 1— I H

M105 X404
H  / 1— H  hWKPCE ENDST HORIZ MIDST 
/CHUK RETRT AT VERT 
ERR LATHE RET

X15 X405 X401

WKPCE HORIZ ENDST MIDST 
/CHUK AT EXTND VERT
ERR LATHE RET

M105
H/h

X502
H/h

X401

WKPCE DOOR MIDST 
/CHUK CLOSE VERT 
ERR RET

M105
H/b

X401 X16
H  I— I/

WKPCE MIDST VERT 
/CHUK VERT AT 
ERR RET CHUCK

M105 X16 X411 X404
H/l— I I— I/I— I/1—WKPCE VERT CHUCK ENDST
/CHUK AT OPEN RETRT
ERR CHUCK

M105
H/b

X15 X412

WKPCE HORIZ CHUCK 
/CHUK AT CLOSE 
ERR LATHE

Y40
- (  ) -----HORIZ 
TO 

LATHE

Y431
-( ) -  
EXTND 
END 
STOP

Y530
( ) -
OPEN
DOOR

Y44
"( ) ------
RET. 
VERT 
MIDST

Y41
" (  ) -  
VERT 
DOWN

Y437
- (  ) -----
M/C 
STROB
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M105 X411 X404
H/l— I I— H /hWKPCE CHUCK ENDST 
/CHUK OPEN RETRT 
ERR

X15 X412M105 X404
H/l— I I— I I— I HWKPCE ENDST HORIZ CHUCK 
/CHUK RETRT AT CLOSE 
ERR LATHE

X2
IENABL

WKPCE
CHUK

Y432
( ) “  
RETRT 
END 
STOP

M104
- (  ) -----WKPCE
/CHUK
COMP

[ R S602 ]- 
WKPCE 

TO 
CHUCK

[RET ]•

ROBOT TO SAFE POSITION

X3
H / HENABL

26

ROBOT
SAFE

S603
-|s t l [-
ROBOT

28 [PLS

SAFE
POSN

S603 ]- 
ROBOT 
SAFE 
POSN

ROBOT
SAFE
PLS
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M125 X16
H I 1 / bROBOT VERT 
SAFE AT 
PLS CHUCK

M125 X15
H  I— ^  / 1—ROBOT HORIZ 
SAFE AT 
PLS LATHE

M125
I b

X502
bROBOT DOOR 

SAFE CLOSE 
PLS

M107
H  I-------------ROBOT
/SAFE
ERR

M107 X407
H/l—H/bROBOT GRIPR 
/SAFE OPEN 
ERR

M107
H/b

X407 X405
I I l/b

ROBOT GRIPR ENDST 
/SAFE OPEN EXTND 
ERR

X405 X17
I I 1/

M107
H/bROBOT ENDST VERT 
/SAFE EXTND UP 
ERR SAFE

M107 X17 X502
I / I 1 I l /bROBOT VERT DOOR 

/SAFE UP CLOSE 
ERR SAFE

M107
-( ) -  
ROBOT 
/SAFE 
ERR

Y434
"(  ) ------
OPEN
GRIPR

Y431
-( ) -  
EXTND 
END 
STOP

Y42
-( ) -  
VERT 
UP

Y531
- (  ) “  
CLOSE 
DOOR



CONTROL OF WORK 
HANDLING, GANTRY 
ROBOT AND MACHINING 
FOR LATHE STATION 
IN THE SCHOOL OF 
ENGINEERING'S FMC

SHEFFIELD HALLAM 
UNIVERSITY

Draw.no:

Date:21/04/93 Proj:LATHE

Rev.dat: Syst:F1/F2

Rev.no: 6 Type:Ladder

Sign: A.T. Page: 8

M107 X502 X14
H/l— I I— I/I-ROBOT DOOR HORIZ 
/SAFE CLOSE AT 
ERR CONVR

M107 X14
H/l— I I--------ROBOT HORIZ 
/SAFE AT 
ERR CONVR

X3
H bENABL
ROBOT
SAFE

Y37
- (  ) -----
HORIZ
TO

CONVR

M106
- (  ) -----ROBOT
/SAFE
COMP

■[ R S603 ]■ 
ROBOT 
SAFE 
POSN

[RET ]•

VICE TO PALLET

X4
—l/bENABL
VICE
PALLT

65

S604
-|s t l |-
VI CE 
TO 

PALLT

67 [PLS

S604 ]■ 
VICE 
TO 

PALLT

M126 ]■ 
VICE 
PALLT 
PLS
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M126 X13 X10
H  I— I/I— l/hVICE VICE VICE 
PALLT ON ON
PLS PALLT TABLE

M126 Xll

VICE VICE 
PALLT RAM 
PLS RETRD

X10X13
H  I— I I-------------VICE VICE 
ON ON 

PALLT TABLE

Mill
H  I-----------------------VICE/
PALLT
ERR

Mill X13
H  / 1— H  / 1-------------VICE/ VICE 
PALLT ON 
ERR PALLT

Mill Xll X13

VICE/ VICE VICE 
PALLT RAM ON 
ERR RETRD PALLT

X4
_ | |-------------------
ENABL
VICE
PALLT

■[ R

Mill
-( ) -  
VICE/ 
PALLT 
ERR

Y33
“ ( ) ------RETRT 
VICE 
RAM

M H O
- (  ) ~  
VICE/ 
PALLT 
COMP

S604 ]■ 
VICE 
TO 

PALLT

[RET ]-
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START MACHINING

90

92

94

04

06

X5
H /  I-ENABL
START
M/C'G

S605
-|s t l |-
START
M/C'G

[ s S605 ]
START
M/C'G

M127 X502
H  I— H  \~START DOOR 
M/C'G CLOSE 
PLS

M127 X14
H  I— ~ \ / \ ~START HORIZ 
M/C'G AT 
PLS CONVR

M127 X17
H  I— H  /  I-START VERT 
M/C'G UP 
PLS SAFE

M113
H  I-----------START
M/C'G
ERR

M113
I /  I-----------

[PLS M127 ] 
START 
M/C’G 
PLS

M113
"( )----START
M/C'G
ERR

START
M/C'G
ERR

M113 X500
H  / 1— H  I—START IN 
M/C'G CYCLE 
ERR

Y435
"( ) ------
CYCLE 
START

M112
- (  ) -  
START 
M/C'G 
COMP
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X501 X413
H /ERROR M/C'G 

FINSH

X5
H  h~ENABL
START
M/C'G

M121
- (  ) -----
M/C'G 
COMPL

■[ R S605 ]■
START
M/C'G

[RET ]-

WORKPIECE TO CONVEYOR

X6
H / l -ENABL

15

WKPCE
CONV

S606
-|s t l [-
WKPCE

17 [PLS

TO
CONVR

S606 ]• 
WKPCE 

TO 
CONVR

WKPCE
CONVR
PLS
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M130 X413
H  I— H / F “WKPCE M/C'G 
CONVR FINSH 
PLS

M130 X14
H  I— H  /  \~WKPCE HORIZ 
CONVR AT 
PLS CONVR

M130 X17
H  I— H  /  HWKPCE VERT 
CONVR UP 
PLS SAFE

M115
H  I-----------WKPCE 
/ CONV 
ERR

X14 X407M115 X404
—I /  I —I /  I I I I \~WKPCE ENDST HORIZ GRIPR 
/CONV RETRT AT OPEN 
ERR CONVR

M115 X16 X404 X15
H/l—H I—H/l—H/HWKPCE VERT ENDST HORIZ 
/CONV AT RETRT AT
ERR CHUCK LATHE

M115 X404 X15
H/l—H I—H/lWKPCE ENDST HORIZ 
/CONV RETRT AT 
ERR LATHE

M115
~( )----WKPCE
/CONV
ERR

Y432
- (  ) ~  
RETRT 
END 

STOP

Y40
- (  ) ~  
HORIZ 
TO 

LATHE
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M115 X15 X405 X407
H/l— I I— I/I— I hWKPCE HORIZ ENDST GRIPR 
/CONV AT EXTND OPEN 
ERR LATHE

M115
H / h

X411 X405 X406
HWKPCE CHUCK ENDST GRIPR 

/CONV OPEN EXTND CLOSE 
ERR

M115 X405
H/l— I h

X502 X14
H/

X17 X407

WKPCE ENDST DOOR HORIZ VERT GRIPR 
/CONV EXTND CLOSE AT UP OPEN
ERR CONVR SAFE

M115 X502 X16 X405 X407
H/l— I/I— I/I— I I— I I-WKPCE DOOR VERT ENDST GRIPR 
/CONV CLOSE AT EXTND OPEN
ERR CHUCK

M115 X15 X406 X16
H/l— H I— H/l— H I—WKPCE HORIZ GRIPR VERT 
/CONV AT CLOSE AT 
ERR LATHE CHUCK

X411
H/h

M115 X406
H  / 1— H  hWKPCE GRIPR CHUCK 
/CONV CLOSE OPEN 
ERR

X17
H /

X406M115 X405
H  / 1— H  hWKPCE ENDST VERT GRIPR 
/CONV EXTND UP CLOSE 
ERR SAFE

M115
H/h

X17 X502
I / h

X406

WKPCE VERT DOOR GRIPR 
/CONV UP CLOSE CLOSE 
ERR SAFE

Y431
-( > -  
EXTND 
END 
STOP

Y530
-( )- 
OPEN 
DOOR

Y41
-( )- 
VERT 
DOWN

Y433
"( )----CLOSE
GRIPR

Y437
-( ) -  
M/C 
STROB

Y42
"( )" 
VERT 
UP

Y531
-( )----
CLOSE 
DOOR
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M115
H/h

X502 X14 X406
H / hWKPCE DOOR HORIZ GRIPR 

/CONV CLOSE AT CLOSE 
ERR CONVR

X402 X406M115 X14
H  / 1— HWKPCE HORIZ ROTAT GRIPR 
/CONV AT 0 CLOSE
ERR CONVR DEG

M115 X402
H/l— H \~WKPCE ROTAT 
/CONV 0 
ERR DEG

X6
IENABL

WKPCE
CONV

Y37
( ) — 
HORIZ 
TO 

CONVR

Y45
( ) — 
ROTAT 
TO 0 
DEG

M114
-( ) — 
WKPCE 
/CONV 
COMP

[ R S606 ]■ 
WKPCE 

TO 
CONVR

[RET ]-

WORKPIECE TO VICE

X7
H / \—ENABL
WKPCE
VICE

01

S607
-|s t l |-
WKPCE
TO

VICE

03 [PLS

S607 ]- 
WKPCE 
TO 

VICE

M131 ]■ 
WKPCE 
VICE 
PLS
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M131 X17
H  I— H / hWKPCE VERT 
VICE UP 
PLS SAFE

M131 X14
H  I— H / hWKPCE HORIZ 
VICE AT 
PLS CONVR

M131 X12
H  I— I \~WKPCE VICE 
VICE CLOSE 
PLS

M117
|-------------

WKPCE
/VICE
ERR

X400
H/h

X17M117
H/hWKPCE MIDST VERT 
/VICE VERT UP 
ERR EXT SAFE

M117 X400 X410 X406
H/l— H I— —I/1— H IWKPCE MIDST GRIPR GRIPR 
/VICE VERT AT CLOSE 
ERR EXT VICE

M117
I / h

X410 X12
I I 1/

WKPCE GRIPR VICE 
/VICE AT CLOSE 
ERR VICE

X407
I / h

M117 X12
H  / 1— HWKPCE VICE GRIPR 
/VICE CLOSE OPEN 
ERR

M117
"(  ) -----WKPCE 
/VICE 
ERR

Y43
-( ) -  
EXT. 
VERT 
MIDST

Y41
-(  ) -----
VERT 
DOWN

Y35
-(  ) -----
CLOSE 
VICE

Y434
- (  ) ~  
OPEN 
GRIPR
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M117 X17
H/l— IWKPCE VERT ENDST GRIPR 
/VICE UP RETRT OPEN 
ERR SAFE

M117
H/h

X407 X17
I I 1/WKPCE GRIPR VERT 

/VICE OPEN UP 
ERR SAFE

X404 X407
I / I 1 h

M117
I / h

X404

WKPCE ENDST 
/VICE RETRT 
ERR

X7
H  I-------------ENABL
WKPCE
VICE

Y42
- (  ) -----VERT 
UP

Y432
-( ) -  
RETRT 
END 
STOP

M116
( ) -  
WKPCE 
/VICE 
COMP

•[ R S607 ]■ 
WKPCE 
TO 

VICE

[RET ]-
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GENERATE ERROR STATUS

47
M101
H  \—VICE/
TABLE
ERR

M103
H  \~GRIP
WKPCE
ERR

M105
H  h”WKPCE
/CHUK
ERR

M107
H  \~ROBOT
/SAFE
ERR

Mill
H  I-VICE/
PALLT
ERR

M113
H  h"START
M/C'G
ERR

M115
H  h~WKPCE
/CONV
ERR

M117
H  I—WKPCE

Y31
-( ) -  
LATHE 
STATN 
EROR

/VICE
ERR
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GENERATE COMPLETION STATUS
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M100
H  \~VICE/
TABLE
COMP

M102
H  \—GRIP
WKPCE
COMP

M104
H \—WKPCE
/CHUK
COMP

M106
H  \~ROBOT
/SAFE
COMP

M H O
H  I—VICE/
PALLT
COMP

M112
HSTART
M/C’G
COMP

M114
H  b~WKPCE
/CONV
COMP

M116
H  \—WKPCE

Y30
' (  ) -  
LATHE 
STATN 
COMP

/VICE
COMP
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M120
H  H

M121
H  HM/C'G
COMPL
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TMB Transtech TMB04
AN EXPANDABLE TRANSPUTER BOARD FOR THE IBM PC

TMB

Features ♦IMST800, IMST425 or IMST414 transputer options 

♦ 1 to 16 MBytes of dynamic RAM with zero wait state option 

♦20,25 or 30 MHz transputer speed options 

♦Four standard TRAM slots 

♦DMA/IRQ capability for fast MS.DOS I/O transfer 

♦Plugs directly into IBM PC AT or XT and compatibles 

♦Supports Occam TDS development and 3L’s scientific languages 

♦ Compatible with the Transtech range of TRAMs

Introduction The Transtech TMB04 is part of a compatible family of transputer development boards. The 
TMB04 will fit any IBM PC AT or XT (and compatibles) expansion slot, providing the interface 
between the PC running a file server under MS.DOS and the processing power of transputer 
systems.

Flexibility The TMB04 has been developed with Transtech’s unrivalled experience of transputer boards to 
provide the most flexible single transputer board available.

Capable of supporting any speed variant of the IMST800, IMST425 and IMST414 transputers, the 
TMB04 also has options for 1,2,4,8 or 16 MBytes of DRAM, which can be accessed in 3,4,5 or 6 
cycles depending on the speed of processor and memory. The four links of the transputer can be 
accessed via a standard 37-way D-type edge connector compatible with a wide range of other 
transputer boards. These links can be set to run at 10 or 20 Mbits/sec.



TMB Transtech TMB04 TMB

IBM PC Bus interface to the PC bus is provided via an IMSC012 link adaptor for communication between
Interface ^ost niacliine and a transputer network. The interface supports software polling of the link

adaptor, used in many earlier transputer boards and also a DMA mechanism allowing transfer rates 
of between 200 and 300 KBytes/sec to be achieved. The TMB04 also has the ability to interrupt the 
host PC on a number of user defined events.

Expandable More flexiblity is provided by the addition of four TRAM (TRAnsputer Module) slots, which 
allow up to four standard TRAMs to be added to the board. The TMB04 accepts the whole range 
of TRAMs from Transtech and is compatible with those of other manufacturers, giving customers 
the freedom to choose many different processor and memory combinations or application specific 
TRAMs. Eight links from the four TRAM slots are also taken to the 37-way D-type edge 
connector, allowing them to be connected to external devices as well as to the master transputer on 
the TMB04. Further information on the Transtech range of TRAMs is available from Transtech or 
your local distributor, while details on the TRAM standard and TRAM motherboard architecture 
are published by Prentice Hall in ’Transputer Technical Notes’ ISBN 0-130929126-1.

System
Control

Software

The reset, error and analyse system control of the transputer is user definable, by selecting one of a 
variety of reset configurations. The master transputer can be reset either from the external world 
via the edge connector, or from the PC, while the remaining TRAM slots can be reset from either 
the same source as the master transputer or from a sub-system generated by the TMB04. The 
generation of the sub-system enables the TMB04 to control a large system of transputers while 
still running the TDS.

The TMB04 can be programmed with software development packages to run Occam, C, FORTRAN, 
Pascal and other transputer language compilers as well as the Helios, TransIDRIS, Express and 
other transputer operating systems. It can also be used as the processing hardware for a number of 
application specific software packages that are available for the transputer. The board is also 
supplied with a diagnostic test program.

Ordering 
Information

TMB04- PROCESSOR OPTION MEMORY OPTION

A=IMST414-20 1=1 MBYTE
B=IMST425-20 2=2 MBYTES
C=IMST425-25 4=4 MBYTES
D=IMST425-30 8=8 MBYTES
E=IMST800-20 16=16 MBYTES
F=IMST800-25
G=IMST800-30

FAST 3 CYCLE RAM IS AVAILABLE FOR ALL 20 MHz PROCESSOR OPTIONS AND SHOULD BE SPECIFIED BY ADDING "F" TO THE
PART NUMBER e.g.TMB04-E-2F HAS AN IMST800-20 WITH 2 MBYTES OF FAST 3 CYCLE DRAM

TRANSTECH DEVICES LIMITED 
Unit 17, Wye Industrial Estate 
London Road 
High Wycombe 
Buckinghamshire 
HP111LH 

. England
Telephone: [+44] 0494464303 

^  Facsimile: [+44] 0494 463686

<4
©Copyright Transtech Devices Limited 1989

Transtech has a policy of continuous development and reserves 
the right to change these specifications without prior warning. 
Transtech cannot accept responsibility to any third party for 
loss or damage arising from the use of this information. 
Transtech acknowledges all registered trademarks

Document Reference:TMB04FLY0789
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4. INSTALLATION 

4.1 TRAM Fitting and Handling

Care must be taken when fitting or removing TRAMs from the TMB04, to ensure no damage occurs to 
the TRAM pins. A white circle or triangle in the comer of each TRAM slot indicates Pin 1 of that 
slot on the TMB04. TRAMs also have an indicator for pin 1, which should be matched with the 
marking on the motherboard to ensure correct orientation. A TRAM plugged in the wrong way round 
may result in damage to the TRAM and the motherboard. The TMB04 has some components mounted on 
the board between the TRAM sockets, which foul some of the TRAMs available. If a TRAM cannot be 
fitted without fouling these components, stand • off strips or larger pins supplied with the TRAM 
should be fitted to allow the TRAM to be raised above these components.

4.2 Installing a TMB04

Remove the TRAM that is to be the root processor from its protective packing, observing the 
appropriate anti-static handling precautions.

Plug the TRAM into slot 0 ensuring pin 1 matches pin 1 on the TMB04. The 16 pins that carry the 
signals should fit into the required slot, so a TRAM larger than size 1 that fits over more that one 
slot will cover adjacent slots to TRAM slot 0, i.e. a size 2 TRAM will cover slots 0 and 1 and a size 4 
TRAM will cover slot 0, 1, 2 and 3. If the TRAM is larger than size 1 insert link jumpers in the slots 
that do not carry signals to ensure the continuity of the hardwired pipeline. A jumper is an 8 way 
connector that connects link 1 to link 2 on a slot that does not carry any signals, and should be inserted 
at one end of the slot with its indicator lining up with the Pin 1 index of the slot. If a TRAM is 
stacked on top of it the jumpers need to be removed from the slots used for stacking. Install other 
TRAMs as required in the other slots of the TMB04, not necessarily in order, provided that the 
pipeline is maintained as discussed in section 2.2. Pipe jumpers should also be fitted in the slots that 
are not being used as shown in the following diagram where slots 2 and 3 have been jumped out to 
complete the pipeline. Once all the TRAMs have been fitted follow the instructions in your PC 
manual for installing an option board.

TRAMO TRAM 1 GRAM 2 : RAM3

l l l l l l i l l l l l l l l

page 16



Transtech TTM21 User Manual

1 Introduction
This module is intended to allow the user a vehicle whereby the simple 
basic RS232 interface can be accessed from directly within a transputer 
network. This interface is not intended to perform a t very high data 
rates and there is only a limited amount of ram on the module to allow 
buffering of data, but this interface is intended to function more than ad­
equately for such applications as: mouse interfacing, keyboard interfac­
ing, printer interfacing, instrument interfacing.

The module contains its own EPROM which allows the module to be­
come a standalone sub-system. The simple example is to treat the mod­
ule as an Inmos link to RS232 interface converter which requires no 
initialisation. Any bytes sent down the link will appear a t the interface 
with no setup required.

By moving away from the obvious functions of serial interfacing it can 
be seen that this module can also be used in areas where direct signal 
sampling at moderate data rates is required.

The port lines are controlled from a 22vl0 pal which is memory mapped 
into the transputer and is available as 4 bits of read data arid 4 bits of 
write data, the read and write data registers are not read/write registers 
but are write only/read only registers mapped a t the same address.

Access to the data is by simple PLACED access of a memory location for 
the setting (write) of data or the sample (read) of data.

Page 3
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2 Hardware Description

2.1 T222 system functions

The T222 transputer uses its four links to act as a peripheral controller 
capable of receiving data from four sources. This means th a t adjacent 
transputers can access the peripheral system directly without having to 
go through the IBM system. The T222 is normally used in boot from rom 
mode NOT boot from link mode, this is selected by the position of a zero 
ohm resistor identified on the underside of the board.

The T222 has a 64K memory map, and on this module it is split into two 
32K sections: the lower 32k ($8000 to $FFFF) being for up to 32K * 8 ram 
(normally 8K * 8), which will allow word access in single cycles where 
the on chip ram exists, otherwise in 4 processor cycles, the top 8 bytes of 
this ram site are ($FFF8 to $FFFF) also mapped into the on board func­
tion latch. Which are read as the 8 switch inputs on data lines D15 to D8 
and the input 4 serial lines on D3 to DO. The output 4 serial data lines 
are also on DO to D3.

The top 32K ($0000 to $7FFF) is primarily intended as a rom site to al­
low the module to boot up using pre-configured code. The wait state gen-

Page5
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erator can be set to use 200ns (9 cycle access) or 250ns (11 cycle access) 
rom devices.

T222

sw flow c

8 data

jntrol disable now control enabled
Baud 1
Baud 2
ChTyl
ChTy2

nfig hard set

SW10
SW9
SW8

SW12
SWI1
SW13
SW14
SW15

Pinl
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32 Channel 
Digital Input/Outpi 
Transputer Module

Features
□ 32 TTL-compatible Input/Output lines 

□I I/O lines selectable in groups of 8

Q 64mA output drive capability

□ Readback capability on all lines

□ All lines set to inputs on power up

□ Inmos size 2 TRAM format

The iot332 is a size2programmable digital 
input/output module, whose 32 TTL- 
compatiblelines are organised as 4 groups 
of 8 lines. Each group can be selected, 
under software control, as either input or 
output and all lines give full, bipolar TTL 
drive compatibility, with up to 64mA 
drive capability.
Each line, in an 8 line group, can be 
cleared orsetundersoftware control. The 
status of lines set to output can be read 
back for verification purposes.
Interface to the Transputer bus is via an 
Inmos C O ll Link Adapter. External 
connections are made by a 50-way IDC 
connector, compatible with the ARCOM™ 
range of signal conditioning cards. The 
module comes with C callable drivers for 
the 3L Compiler/Configurer and the 
Inmos D7214B Toolset.

specifications
^timber Of channels 32

Configuration 4 groups ot  Sf selectable as either 
Input or Output

I/O levels TTL compatible
Output drive capability 64 mA

Read/Wirtc t/pdate Rate 500,000 channels/sec

Power Retirement
@ 100mA quiescent 
<§) 1.6 A maximum load

Temperature Range 5C to 50C Operating 
-25C to 85C Storage

Module Ska Size 2TRAM, 2.15” x3.66" (5.5 x9 cm)

Sunnyslde Systems Ltd, Rosebank Nursery, Klrkton Campus, Livingston EH54 7AN, Scotland T el: 0506 460345 F ax: 0506 460314

The information provided herein is believed to be accurate; however, Sunnyside Systems Ltd assumes no responsibility for innacuracies or omissions. 
Prices and specifications are subject to change without notice. All trademarks are acknowledged. iot332/ll/91



SERIAL LINK OUT LINK 1 SELECTED
LINK I SELECTED

cs

8 =0
I C8 I

R P IRI U 3
R P 2

J l

C 2 C 7C £C 3 C 4

J 4

U SU 4 U 7 U 2US US

+
C IO

J2

3 3 2

J 3

S E R IA L  L IN K  S P E E D  ; 
20M H Z SE L E C T E D

Figure 2.1.1 Jum per Positions and Factory Set Conditions

2.2 Confidence Test S r :
' :• ‘ f V' ’ * ' ■: V i .

Before running the confidence test, change the jumper settings for the serial link configuration as 
shown in Figure 2.2.1 below. The jumper links should be set such that the iot332 communicates 
on linkO.

The test simulates the action of an eight bit counter on each of the four groups (ports) of
inputs/outputs, (the 32 I/O lines are organised as four ports, each with eight lines). The maximum
frequency is present on the LSB I/O pin, the minimum on the MSB I/O pin.

L K 2 CS ,■
R P I

U 3

J l L K 3

C 7C 2 C 6C 3

J 4

U 1

U 7 ua U 2U4 US US

C IO

J2

3 3 2
JS

J 3
L K 1

Figure 2.2.1 Confidence Test Serial Link Positions
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