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Abstract
Slug flow is a flow assurance issue that staggers production 
and, in some cases, ‘kills the flow’ of the well. Severe slug-
ging, a type of slugging which usually occurs at the base of 
the riser column, causes large amplitudes in the fluctuation 
of pressure within the riser column and consequently dam-
ages equipment placed topside. An adaptation of a novel 
concept to slug mitigation: the self-lifting model, is presented. 
This model presents variations to the internal diameter of the 
self-lift bypass to produce effective mitigation to severe 
slugging. 

Keywords: slug, severe slugging, self-lift, riser base pressure, 
OLGA

1. Introduction
An understanding of the multiphase flow phenom-
enon (a flow characterised by the gas and liquid 
phases), as well as the overall potential effects to 
the processing facilities, is required in the design of 
multiphase flow pipelines (Al-Kandari and Koleshwar, 
1999). Al-Kandari and Koleshwar (1999) also argued 
that under or over-design of the piping can be 
counterproductive and may significantly affect pro-
cess plant operability as well as the mechanised 
part of pipeline system. Therefore, the paper 
emphasizes the understanding of flow assurance 
and severe slugging in multiphase flow.

A major flow assurance issue in multiphase flow 
is the slugging phenomenon. The formation of 
slug arises from the flow regimes commonly found 
with the liquid and gaseous phases of hydrocarbon 
(crude oil and gas) in transit (Al-Kandari and 
Koleshwar, 1999). Shotbolt (1986) defined slugging 

as an intermittent flow that ‘results in alternate 
delivery of liquid and gas phases’. This delivery is 
caused by the difference in superficial velocities of 
the phases, which can cause liquid surges within the 
pipes. 

Slugging can be observed within the vertical or 
inclined flexible riser and within the horizontal sec-
tion of the piping lying on the seabed (Oseyande, 
2010). The inclined orientation of flowlines, with 
hydrocarbon content flowing upwards, does tend 
to assist the initiation of slug flow (Al-Kandari and 
Koleshwar, 1999). Shotbolt (1986) emphasises that 
slug flow affects three major areas of concern:

1.	 It impacts the ‘volume and arrival rate of the worst 
liquid slug expected’, as well as the ‘differences 
between pressures and flowrates at the start and 
end of the gas bubble flow’.

2.	Sufficient riser base pressures capable of 
stopping flow within the pipeline (i.e. ‘kill’ the 
well flow) can be generated when the riser is 
filled completely with liquid. Research carried 
out by Yocum (1973) stated that 50 % capacity 
losses in flow have been observed to avoid slug-
ging in risers.

3.	Vibrations may be generated along the riser ow-
ing to momentum change reactions and its dead 
weight as gas and liquid phases alternately flow 
through the piping.

Sagatun (2004) corroborates this by stating that the 
pressure differentials created during slug flow 
causes fatigue and consequently wear and tear of 
the process equipment. These areas of concern 
also affect the delivery of the hydrocarbon content 
at the receiving facilities; for example flow irregu-
larities observed in the oil-water separator causing 
liquid surges in volume. 
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1.1. Multiphase severe slug flow
Depending on the severity of the slug flow, three 
different types of slugging can be identified in mul-
tiphase flow (Tang and Danielson, 2006):

•	hydrodynamic slugging;
•	 slugging due to ‘operationally induced surges’; 

and
•	 severe or terrain slugging.

The conditions for each type of slug flow occur on 
a regular basis during the production of hydrocar-
bon in deepwater oil fields. However, severe or 
terrain slugging is observed mainly at the riser base. 
Therefore, this paper focuses on investigating a 
self-lifting approach as mitigation for severe slug-
ging at the riser base due to the inclination needed 
for the technique to be effective.

Severe slug is observed at low gas rates of hydro-
carbon and Barbuto (1995) describes how severe 
slugging can occur when:

•	There is a ‘stratified downward flow in the pro-
duction line’ to the riser base.

•	Pressure builds up in the production line that 
exceeds the designed allowable riser pressure.

Severe slug occurs from the accumulation/blockage 
of liquid at the low point-elevation of negatively 
inclined/vertical piping or flowline (riser). The 
inclination is caused by the geometry of the pipe-
line (usually a dip at the riser base) or the terrain 
(seabed bathymetry). 

The accumulation of liquid at the low point- 
elevation causes liquid slugs to form. Jones et al. 
(2014) states that this type of slugging is a cyclic 

process and liquid slugs formed are of ‘at least one 
riser height’. As depicted in Fig 1, Ogazi (2011) 
summarised four major stages of severe slug as:

•	 slug build up/formation;
•	 slug production;
•	 slug blow-out;
•	 liquid fall-back.

A study by Schmidt et al. (1979) classified severe 
slugging into two different types: severe slugging 
with liquid slugs usually of riser length, and severe 
slugging with slightly aerated liquid slugs, the 
length of which did not exceed the height of the 
riser pipe. They also stated that the first type of 
severe slugging could be eliminated by varying 
either the flowrate of the liquid or the flowrate of 
the gas. 

However, with the second type of slugging, 
depending on the flowrate of the liquid, an increase 
in the flowrate of the gas could cause annular flow 
or slug flow to form (Schmidt et al., 1979). 
Malekzadeh et al. (2012) later categorised severe 
slugging into three types: severe slugging type 1 
(‘pure liquid slug length larger than the riser 
height’), severe slugging type 2 (‘pure liquid slug 
length smaller than the riser height’) and severe 
slugging type 3 (‘growing long aerated liquid slug 
in the riser followed by a gas blow down stage’).

1.2. Slug mitigation approaches
There are several established approaches to the 
mitigation of slugging in deepwater oil fields. 

Jones et al. (2014) stated that the most effective 
mitigation approach to slugging is riser top valve 

Fig 1: Different stages of severe slug (Ogazi, 2011)
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choking (topside choking). Jansen et al. (1996) 
agreed with Schmidt et al. (1979) that ‘choking 
eliminates severe slug by increasing the back pres-
sure and acting as a flow resistance proportionally 
to the velocity of the liquid slug in the riser’. This 
meant that choking could potentially balance and 
maintain the multiphase flow with ‘minimal back 
pressure’. However, Ogazi et al. (2011) argued that 
an inherent disadvantage with this approach is the 
extra back pressure induced on the pipeline and 
recommended the use of an active feedback con-
trol (dynamic choke) that could attenuate the slug 
flow and increase production.

Another slug mitigation approach is the use of a 
rise base gas injection system (gas lift). Jansen et al. 
(1996) prescribed gas lift as a viable method for 
eliminating severe slug, by ‘increasing the velocity 
and reducing the liquid holdup in the riser’. How-
ever, Al-Kandari and Koleshwar (1999), through a 
successful trial, stated that an increase in gas-to-oil 
ratio (GOR) led to slug-like flow regime within a 
36-inch crude transfer line and there were conse-
quent problems in ‘associated separator train at the 
gathering centre’. However, Jansen et al. (1996) 
highlighted this approach as being quite costly due to 
the ‘large gas volumes needed to obtain a satisfactory 
stability of the flow in the riser’. Jones et al. (2014) 
describe other passive methods including:

•	 altering the pipeline geometry to reduce or 
eliminate slugging, although this approach is 
not cost-effective for already existing subsea 
pipelines; and

•	using slug catchers, which can be comparatively 
cheap, but space and weight of installation top-
side is a crucial issue.

This study, however, focuses on a relatively novel 
approach in the mitigation of severe slugs through 
the use of ‘self-gas lifting’.

1.3. Self-lift approach in severe slug mitigation
The self-lift approach was invented and developed 
as a ‘method to eliminate severe slug in multiphase 
flow subsea lines’ (Barbuto, 1995). Barbuto (1995) 
described this novel approach as the use of an aux-
iliary line that connects the downwards inclined 
flowline with the main riser. A basic schematic is 
provided in Fig 2 detailing the configurations of 
the connection points: 

•	Point A – the connection point between the aux-
iliary line and the vertical line (main riser); 

•	Point B – the connection point between the pro-
duction line and the auxiliary line; and 

•	Point C – the connection point between the pro-
duction line and the vertical line.

This design mitigates severe slug by conveying 
the gas of the multiphase flow from point B to 
point A; this is possible due to the differences in 
pressure at point B and A. (Barbuto, 1995). The gas 
bubbles conveyed into the vertical line ‘help break 
up the liquid slugs’ (Ogazi, 2011). Moreover, the 
quantities of gas contained in oilfields were either 
greater or lesser compared to the oil (Shotbolt, 
1986). That meant that although the gas cap of a 
reservoir was not noticeable, the oil still contained 
a considerable amount of dissolved gas.

Tengesdal (2002) used this novel approach to 
model the mitigation of severe slug at the riser base. 
The approach was not considered to need any addi-
tional gas injection from the platform and was there-
fore termed ‘self-gas lifting’ (Tengesdal, 2002). This 
approach appeared to be quite beneficial as any 
extra-cost needed to compress external gas for miti-
gation of severe slugs, to transport the gas, and to 
store it on platforms topside, could all be reduced or 
completely waived. 
The research concluded that:

•	The approach caused a reduction of hydrostatic 
head within the riser and of the pressure in the 
production line.

•	From experimental observations, it is ideal to 
have the ‘injection point at the same level or 
slightly higher than the take-off point for opti-
mum performance’.

•	From experiments, it was observed that a ‘small 
choking was needed to stabilize the flow when 
the injection point is at a higher level than the 
take-off point’.

•	This approach to mitigating severe slug was ‘not 
sensitive to changes with liquid and gas flowrates’.

Tengesdal (2002) suggested that a variable choke 
controlled by a PC-based system would improve the 
flow as shown in Fig 3.

Further studies proposed by Tengesdal to 
improve its adaptability in the industry included: 
the study of self-lift with variations in the internal 

Fig 2: Schematic diagram of self-lift approach (Barbuto, 1995)
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diameter of the self-lift bypass and an application 
of choke at the bypass. Previous applications of self-
lift have focused on experiments in the laboratory, 
which do not truly approximate real life scenarios. 
Therefore, this study focused on the effectiveness 
of self-lift with data obtained from an oil field.

2. Self-lift model
2.1. Background, numerical model and validation
An experimental slug (Fabre et al., 1990) was first 
modelled for validation of the numerical tool, OLGA, 

after which the self-lift method was applied to prove 
the concept. 

A few experiments were conducted by Fabre 
et al. (1990) using a 2.09" internal diameter trans-
parent polyvinyl inclined pipe of length 25 m 
(designated ‘pipeline’) and a connecting vertical 
pipe of height 13.5 m (designated ‘riser’). Both pipes 
were connected using a 0.5 m radius bend. The test 
facility used an air/water mixture as fluid. The 
velocity of the air as the gaseous phase was obtained 
from the mass flowrate using its density at standard 
temperature and pressure (20 °C and 100 kPa). 
However, this study will focus on one experiment 
(Exp-1) to validate the model. 

Exp-1 superficial velocities for gas and liquid at 
standard conditions were superficial velocities of 
gas (Vsg) = 0.45 m/s and water (Vsl) = 0.13 m/s, 
respectively. The pipeline was inclined to a nega-
tive slope (–1 %). The experiment agreed with lit-
erature that ‘negative slope is generally considered 
a necessary condition for an unstable cycle’ (Fabre 
et al., 1990; Schmidt et al., 1979). 

The geometry of the model in Fig 4 corres-
ponds with the experiment. An increase in mesh-
ing (more section lengths) enabled better 
accuracy; therefore, three different mesh sizes at 
constant time-step were analysed. The time-step 
used was 0.0001 s. The coordinates of the pipe 

Fig 3: Self-lift with small choking at injection points (Tengesdal, 
2002)
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and section lengths are given in Table 1. For results 
of analysis, see section 3. For more detail on the 
OLGA numerical model of the experiment, see 
Appendix A.

The self-lift concept uses a bypass line to ‘lift’ the 
flow at a certain point above the riser base (Tengesdal, 
2002), as shown in Fig 5. The OLGA model of this 
concept uses two additional functions: a process 
equipment called the ‘phase-splitter’ and an inter-
nal node. The phase-splitter, which acts as the take-
off point along the pipeline, functions between an 
internal network node and a network separator. A 
bypass pipe of internal diameter 1.299" is con-
nected to the take-off point at 2.567 m from the 
riser base, along the pipeline. The bypass pipe is 
then connected to an internal node which serves 
as the injection point into the riser at 20 cm from 
the riser base (see Table 2).

2.2. Field data
Field data from a Chevron deepwater oil field in 
West Africa were obtained for study of the self-lift 
concept. In a previous study, the field experienced 
hydrodynamic slugging at low production rates in 
one of its flow loops (which will henceforth be 
referred to as flow loop F1). However, the focus of 
this study is severe slugging; the conditions of 
hydrodynamic slugging were aggravated to result 
in an example of typical severe slugging type one 
(1) and three (3): SS1 and SS3. 

The field operates at a depth greater than 1000 m 
with four flow loops connected to the topside via a 
riser system. For the purpose of this study, only 
flow loop F1 will be considered. Hydrocarbon is 
drawn from well 1 (W1) to the manifold through 
a 6" pipeline. Flow loop F1 comingles well 1 (W1) 
and well 2 (W2) using the manifold, and trans-
ports the hydrocarbon via an 8" pipeline from 
the manifold to the riser. The geometry of F1 as 
well as its pressure and temperature are given in 
Table 3.

The fluid flowing through flow loop F1 was 
defined using PVTsim 20. The water-cut of the fluid 
is defined at 3 % from the field data. GOR using 
the PT flash is verified as 385.91 Sm3/Sm3 at a min-
imum pressure of 1 bar and maximum pressure of 
300 bar, and minimum temperature of –20 oC and 

Table 1: Pipe coordinates and section lengths

Pipe x [m] y [m] Length [m] Elevation [m] No. of Sections

Starting point   0   0 Mesh 1 Mesh 2 Mesh 3
Negatively inclined pipe (pipeline) 25.5 –0.801 25.513 –0.801 25 50 55
Vertical pipe (riser) 25.5 13.199 14 14 14 28 28

Total number of sections 39 78 83

Table 2: Pipe coordinates and section lengths

Pipe x [m] y [m] Length [m] Elevation [m] No. of sections

Starting point   0   0   Mesh
Pipeline to take-off point 22.933 –0.720 22.944 –0.720 25
Bypass line to injection point 22.936 –0.601 0.119 0.119 2
Take-off point to riser base 25.5 –0.801 2.568 –0.081 5
Riser base to injection point 25.5 –0.601   0.2   0.2   1
Riser 25.5 13.2 11 11 22

Source

Take-off point

Bypass line

Riser base

Injection
point

Riser

Outlet

Inlet
Pipeline

Fig 5: Visual representation of the self-lift literature model (not 
geometrically accurate)

Table 3: Flow loop F1 geometry, pressure and temperature.

Station Flow loop F1

Total  
vertical  
depth (ft)

Pressure 
(psia)

Temperature 
(°F)

Separator (TS)   164   290 150
Manifold (MF) –4800 1300 168
Wellhead (W1) –4750 1678 180
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maximum temperature of 120 oC. The API of the 
fluid is given as API 47º. The densities of the oil and 
gas (641 kg/m3 and 18.2 kg/m3, respectively) were 
also flashed from the fluid. The properties of the 
fluid are given in Table 4.

Two wells (W1 and W2) were comingled along 
flow loop F1 at the manifold. Oil, gas and water 
flowed at volumetric flowrates of 6722 BoPD, 

4 MMScf/d and 0 STB/d, respectively, for W1. Oil, 
gas and water flowed at volumetric flowrates of 22 
157 BoPD, 23 MMScf/d and 6 STB/d, respectively, 
for W2. The mass flowrates were then converted 
and adjusted from the volumetric flowrates for eas-
ier input in OLGA. For mathematical conversion of 
the flowrates, see Appendix A. 

Fluid flows to W1 to comingle at the manifold 
through a 6" pipeline, and from the manifold to 
the riser through an 8" pipeline. The pipeline has a 
pipe roughness of 0.002 m and has two walls; the 
outer wall serves as insulation. Wall 1 and 2 have 
thicknesses of 0.009 m and 0.011 m, respectively. The 
ambient temperature is 5 oC, and the mean heat 
transfer coefficient on the outer wall is 2.3 W/m2K.

A total number of 142 sections were allocated 
for the meshing of the model, which is depicted in 
Fig 6. The model time-step was: 0.0001 s. The coor-
dinates of the pipe and section lengths are given 
in Table 5. 

The self-lift bypass was connected to the pipeline 
at the take-off (TK) at a distance of 274.67 m from 

Table 5: Pipe coordinates and section lengths

Pipe x [m] y [m] Length [m] Elevation [m] No. of sections
Starting point 0 –1447.8     Mesh
Pipe 1 (W1-MF) 1066.8 –1447.8 1066.8 0 35
Pipe 2 (MF-RB) 2712.649 –1463.04 1645.92 –15.24 54
Pipe 3 (RB-FPSO) 3139.369 0 1524 1463.04 50
Pipe 4 (FPSO-Sep) 3204.745 49.987 82.296 49.987   3

Table 4: Fluid properties

Component Mol. %

Flow loop F1

Carbon dioxide 0.81
Nitrogen 0.13
Methane 43.3
Ethane 7.49
Propane 7.29
Iso-butane 2.61
N-butane 3.28
Iso-pentane 1.98
N-pentane 1.56
Hexanes 2.72
Heptane plus 28.83
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the riser base and reinjected into the riser column at 
30.48 m from the riser base (see Fig 7 and Table 6). 
This is supported by literature: the re-injection 
point should be located at a distance from the riser 
base which is 2–3 % the length of the riser (Sarica 
and Tengesdal, 2000). Due to an increased num-
ber of total sections (151 sections), the time-step 
was reduced to 0.000000001 s to enable transient 
convergence.

3. Results and discussion: numerical models
3.1. Literature data: validation
Simulations involving Fabre et al. (1990) research 
studies were run at an angle of –1 % to simulate 
severe slugging experimentally. The numerical 
model on OLGA first had to be validated to depict 
the conditions of the experiment correctly, and 
then self-lift was applied to the model to mitigate 
severe slugging.

The air-water fluid numerical model was vali-
dated correctly against experiments at superficial 
velocities of gas (Vsg) and water (Vsl) of 0.45 m/s 
and 0.13 m/s, respectively. Severe slugging was 
observed at riser base as shown in Fig 8, where the 
higher pressure of 2.249 Bar was reached over the 
duration of the 30 min simulation. The cyclic fluc-
tuations of pressure in the prediction of the num-
erical model matched the experiment. This implied 
that the model could correctly predict the effect 
and presence of severe slugging.

In order to achieve more precise results without 
decreasing to a smaller time-step needlessly, three 
different types of mesh (sectioning) were com-
pared. The mesh with 78 sections in Fig 9 had the 
best convergence with the literature data.

The self-lift concept was applied to severe slug-
ging modelled from published data. Tengesdal 
(2002) numerically modelled the gas re-entry point 
at a distance of 20 cm from the riser base to depict 
a complete elimination of slug flow. 

Slug flow was completely eliminated using self-
lift at the riser base and at the top of the riser of the 
experimental slug case (Fabre et al., 1990), as evi-
denced by the more stable pressure. As shown in 

Table 6: Pipe coordinates and section lengths

Pipe x [m] y [m] Length [m] Elevation [m] No. of sections

Starting point 0 –1447.8     Mesh
Pipe 1 (W1-MF) 1066.8 –1447.8 1066.8 0 35
Pipe 2 (MF-TK) 2438.05 –1460.5 1371.309 –12.7 45
Pipe 3 (TK-RB) 2712.72 –1463.04 274.232 –2.54   9
Pipe 4 (RB-INJ) 2721.254 –1433.779 30.48 29.261   1
Pipe 5 (Bypass) 2721.254 –1433.779 284.014 26.721   9
Pipe 6 (INJ-FPSO) 3139.369 0 1493.5002 1433.7792 49
Pipe 7 (FPSO-Sep) 3204.745 49.987 82.296 49.987   3

Inlet

Well head

Production
line

Take-off
point

Bypass
line

Riser base

Injection
point

Riser

Manifold

Outlet: FPSO
(Separator)

Fig 7: Visual representation of the self-lift OLGA model based 
on field data (not geometrically accurate)
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Fig 10, the highest riser base pressure was recorded 
at 2.114 Bara over the duration of the 30 min simu-
lation, which is quite reduced from that recorded 
in the severe slugging model (2.249 Bara). 

It can also be observed from the liquid hold-up 
shown in Fig 11 that the riser base is full of more 
stable liquid and no gas. The liquid hold-up is the 
fraction of the liquid volume with respect to the 
internal diameter of the pipe. This implies 
that the self-lift technique was effective in divert-
ing the gas from the riser base and just liquid 
remained.

Effects of the self-gas lift were more noticeable 
from the bypass pipe connecting the take-off point 
and the injection point through the riser column. 
As shown in Fig 12, liquid was passed through the 
bypass pipe to the injection point. Further analysis 
(see Fig 13) showed that gas and liquid were flow-
ing through the bypass pipe, and that ‘short slugs’ 
(slugs of short length that form and dissipate inter-
mittently) formed. 

The trend, shown in Fig 14, of the flow regime at 
the bypass pipe further confirmed this fact. This 
implied that the flow in the bypass could create 
more ‘turbulence’ when re-joining the flow in 
the riser column, as well as the formation of slugs. 
The riser column trend of its pressure, liquid 
hold-up and flow regime (see Fig 15 and Fig 16) 
confirms that although there are no cyclic fluctua-
tions in pressure, the flow of the liquid in the 
column was not stable; the flow was fluctuating 
between a bubble flow and slug flow.

3.2. Field data: slugging
A West Africa, Chevron-operated deepwater oil field 
experienced hydrodynamic slugging from one of its 
wells. Hydrodynamic slugging was observed from 
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W1 along flow loop F1 at production rates that 
were lower than 3000 barrels of oil per day (BOPD) 
and low reservoir pressure within the vicinity of 
the well. The same conditions were first modelled 
to observe the reported hydrodynamic with the pres-
sure fluctuations (Fig 17). 

Due to the geometry of the flow loop, severe 
slugging could not form easily at the riser base. 
Well 2, comingling with the flow at the manifold, is 
a fast-flowing well and also acts as a gas injection 
well for the flow loop.

3.2.1. Adjusted field data: severe slugging
The conditions for hydrodynamic slugging 
observed with the field data were aggravated by 
tuning the superficial velocities of oil, gas and water 
of W1, to model a severe slugging condition at the 
riser base. To observe slugging, the flow of crude 

oil from W2 leading into the manifold was turned 
off. Severe slugging was observed within a 24 hr 
simulation time, with cyclic fluctuations of pressure 
at superficial velocities of gas and liquid (oil and 
water) as 0.523 m/s2 and 0.303 m/s2, respectively, 
and a higher pressure of 109.846 Bara, as seen in 
Fig 18. Fig 19 shows that the number of slugs 
recorded in the flow loop were as high as 34 slugs 
per second after the first 2 hrs.

3.2.2. Self-lift numerical model
The self-lift concept was applied to the severe slug-
ging modelled from the field data with varying 
degrees of effectiveness. Slug flow persisted with the 
application of self-lift to the severe slugging observed 
from the model. Fig 20 shows that transitional severe 
slugging at the riser base was observed in the num-
erical model with a higher riser base pressure of 
108.069 Bara. The highest total number of slugs per 
second recorded along the flow loop was 4 slugs 
per second, as seen in Fig 21. 

From literature, finding the optimal re-injection 
point in the riser is crucial to the mitigation of 
slugging, with the optimal re-injection point pre-
scribed as 2 % to 3 % of the riser length (Sarica 
and Tengesdal, 2000). However, Fig 22 shows that 
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Fig 20: Self-lift with severe slugging
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changing the re-injection points (30.48 m, 41.15 m, 
and 45.72 m along the riser length) did not elimin-
ate the slug flow. 

A study was also conducted to ensure only the 
flow of gas in the bypass pipe, by applying different 
sizes of the internal diameter of the bypass pipe: 
0.55 m; 0.2032 m; 0.20 m; 0.18 m; 0.16 m; 0.15 m; 
0.14 m; 0.12 m; 0.10 m; 0.08 m; and 0.06 m. Although 
severe slugging was observed in the bypass pipe, the 
bypass internal diameter, 0.16 m, 0.10 m, 0.06 m 
showed the most effective change in trend of the 
severe slugging (see Fig 23). Fig 24 shows that liquid 
and gas flow were present in the bypass pipe.

In Fig 25, the application of a choke at the bypass 
increased the slug formation time and, consequently, 
the length of the slug. This meant that the riser base 
pressure was increasing over a longer duration, and 
the length of the liquid accumulation increased 
beyond the height of the riser into the production 
pipeline.

3.2.3. Self-lift in conjunction with gas injection
Riser base gas-lift (RBGL) was also explored and 
modelled using field data, to compare its effective-
ness with self-lift. Gas was injected into the riser 
column at 86 ºF and mass flowrate of 1.5 kg/s. This 

successfully eliminated severe slugging at riser base, 
with a stabilised pressure of 35 Bara.

Applying self-lift with RBGL yielded unique 
results: the pressure at the riser base exceeded the 
design parameters. This result can be explained 
from the concept of slug flow; pressure fluctua-
tions in slug flow are usually caused by the trap-
ping of gas pockets behind varying lengths of 
liquid accumulations (Luo et al., 2011; Tang and 
Danielson, 2006). The bypass pipe reintroduced 
slug flow (severe slugging) into the riser column 
at a point beyond the riser base, therefore trap-
ping the inflow of gas from the RBGL, and con-
sequently increasing the pressure at the riser base. 
This meant that RBGL cannot be applied with 
self-lift.

However, external gas injection was modelled 
with self-lift by placing the entry point of gas fur-
ther downstream, beyond the re-injection point of 
the bypass pipe. Injecting gas at mass flowrate of 
1.5 kg/s further downstream showed a more stabi-
lised fluid flow at an average pressure of 44.71 
Bara. It is observed that the pressure of the com-
bined slug mitigation techniques was higher than 
RBGL and also less stable, unlike with just RBGL 
(see Fig 26).
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Fig 23: Self-lift 2 % bypass internal diameter sizing
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4. Conclusion
Self-lift, which has not been deployed in a field situ-
ation, may be adopted as a passive slug mitigation 
technique, which must be adapted on a case-by-
case basis, to produce maximum effectiveness. Self-
lift was verified by numerically modelling it to 
severe slugging observed experimentally in litera-
ture (Fabre et al., 1990). Self-lift completely elimin-
ated slug flow and yielded a more stable pressure at 
the riser base. The application of self-lift reduced 
the riser base pressure by 6 % from 2.249 Bara to 
2.114 Bara. 

Self-lift achieved a complete separation of the 
fluid phases (gas and liquid) at the riser base using 
published data. Short slugs were observed in self-lift 
bypass pipe. The results of self-lift modelled from 
published data showed that liquid accumulated in 
the bypass pipe, leading to slugging within the 
pipe. It was observed that slugs were reintroduced 
into the riser column, leading to surges in liquid 
volume. Field data were successfully modelled 
numerically to depict the reported hydrodynamic 
slugging. 

Self-lift was applied to the severe slugging num-
erical model based on field data. Although it did not 

eliminate severe slugging at the riser base, the total 
number of slugs per second at riser base were 
reduced from 34 to 4 and the higher pressure redu
ced from 109.846 Bara to 108.069 Bara. This meant 
that self-lift resulted in a 1.62 % reduction in riser 
base pressure and an 88 % reduction in slugs per 
second within the flow loop. Self-lift modelled 
using field data also showed that liquid and gas 
volume flows were observed in the bypass pipe. 
Consequently, severe slugging was also observed 
within the bypass pipe. The variations of internal 
diameter of the self-lift bypass pipe with field data 
showed that the most effective change in trend of 
severe slugging occurred with 0.16 m, 0.1 m and 
0.06 m. Self-lift modelled using field data, with a 
manual choke at the bypass, increased the slug for-
mation time; pressure build up and liquid accumu-
lation were longer. 

Using field data, the self-lift technique applied 
in conjunction with the RBGL caused the riser base 
pressure to exceed its design parameters, although 
external gas injection could occur at a point beyond 
self-lift bypass re-injection point. Self-lift was also 
applied in conjunction with gas injection. The 
combination yielded a more stable pressure at riser 
base, but the RBGL technique was more effective 
alone than with self-lift. With the presence of liquid 
in the bypass, the numerical modelling tool was 
simply splitting the fluid flow rather than splitting 
the fluid into its phases. Self-lift is dependent on 
fluid flow as well as the gas-to-oil ratio of the hydro-
carbon; it is more suitable for fluid flows of rela-
tively low mass flowrates. It is also not easily 
adaptable to work in conjunction with RBGL in 
deepwater oil fields. Slugging at riser base is 
aggravated by the slug flow reintroduced into the 

Fig 25: Self-lift manual choke at bypass
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riser column through the self-lift bypass, and 
consequently increases the riser column pressure. 
It can be inferred that improving the geometry 
design of the self-lift bypass pipe would reduce the 
likelihood of slugging within the pipe. 
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Appendix A: Mathematical conversion of volumetric flowrates to mass flowrates

Barrels of oil per day (BOPD) 1 BOPD = 0.159m3/d, or 
1.8402778e-006 m3/s

Million standard cubic feet per day (MMScf/d) 1 MMScf/d = 28,316.85 m3/d, or 
0.32774132 m3/s

Stock tank barrels per day (STB/d) 1 STB/d = 0.119 m3/d, or 
1.3773148e-006 m3/s 
(density of water is taken at 60 °F)

Well 1

Volumetric flowrates:

•	Oil, Qo: 6722 BoPD
•	Gas, Qgas: 4 MMScf/d
•	Water, Qwater: 0 STB/d

Qo   = 6722 BoPD = 1.2370347e-002 m3/s

ṁ o   = 7.9293927 kg/s

Qgas = �4 MMScf/d = 1.31096528 m3/s  
@ STP: 101.325 kPa, 60 °F

At operating pressure, using ideal gas law: 

Qgas: 
1.310965*101.325*355.37222*1

288.706*11569.404*1
 

 = 0.01413268 m3/s
ṁ gas   = 0.25721475 kg/s
Qwater = 0, m˙ ṁ water = 0
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Well 2

Volumetric flowrates:

•	Oil, Qo: 22157 BoPD
•	Gas, Qgas: 23 MMScf/d
•	Water, Qwater: 6 STB/d

Qo   = 22157 BoPD = 4.0775035e-002 m3/s

ṁ o   = 26.1367975726 kg/s
Qgas     = �23 MMScf/d = 7.53805036 m3/s  

@ STP: 101.325 kPa, 60 °F

At operating pressure, using ideal gas law: 

Qgas:  = 7.538055036*101.325*348.70556*1
288.706*8963.1853*1

 = 0.1029239238 m3/s

ṁ gas   = 1.873215413 kg/s
Qwater = 6 STB/d = 8.2638888e-006 m3/s
ṁ water = 8.2482089e-003 kg/s


