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ABSTRACT 

We present numerical simulations of dripping to jetting transitions that occur during the flow 
of a Newtonian liquid. An axis-symmetric, Volume of Fluid (VOF) model along with 
Continuum Surface Force (CSF) representation is developed to capture various regimes of 
drop formation. By numerically studying different nozzle diameters subjected to various flow 
rates, we examine the critical conditions under which the dripping to jetting transition takes 
place. At every stage of dripping and jetting, we assess the accuracy of the present 
simulations through a number of comparisons with previously published experimental data 
and empirical correlation and find reasonable agreements. Our numerical simulations show 
different responses that characterize the dripping and the dripping faucet regimes leading to 
chaotic dripping patterns. Within the chaotic regime, we identify four unique modes of 
satellite formation and their merging patterns which have not been reported earlier. Finally, 
we observe that as soon as the flow rate approaches a threshold the jetting regime begins 
where, subsequent disintegration of drops and coalescence patterns are observed 
downstream. Detailed flow patterns, pressure distributions and drop shapes are provided for 
various dimensionless numbers alongside the spatial-temporal resolutions of both jetting and 
coalescence of primary drops. Of the many complex dynamics that influence the primary 
droplet coalescence, we find that the oscillatory motion of drops during their travel 
downstream, which is dampened normally due to viscous effects, can be influential and can 
aid both coalescence and breakup of droplets. 
 

Keywords: Dripping to Jetting; Chaotic Dripping response; VOF; Coalescence of drops; Numerical 

Simulation; Satellite drop formation. 

Highlights 

 Axis-symmetric numerical simulations for predicting dripping to jetting transitions for a 

Newtonian fluid using the VOF model. 

 Model results agree well with previously published experimental results and correlations for 

periodic dripping, dripping faucet and jet breakup lengths. 

 New modes of satellite formation and merging with primary drops during chaotic dripping 

are identified. 

 Prediction of coalescence of primary drops downstream during jetting. 
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1. Introduction 

Drop formation from nozzle finds its application in various fields such as ink-jet printing, 
encapsulation, food engineering and chemical synthesis. Over the centuries, researchers 
have studied various factors that partake in the breakup of drops in Newtonian liquids for 
different regimes realizing its importance to controlling those parameters to attain the desired 
goals. Several investigations have been carried out theoretically, experimentally and more 
recently, the advancements in computational techniques and high-performance computing 
have led to undertaking detailed numerical simulations for investigating droplet break-up 
mechanisms at various levels. The experimental studies on drop formation that have evolved 
for over centuries, paid significant attention to three regimes of drop formation namely, a) 
periodic dripping (PD), b) dripping faucet (DF) and c) jetting (J) that occur at incremental 
values of Weber number (We) when the flow rate reaches a threshold value. Many 
researchers have studied the (PD) regime (Tate, 1864; Rayleigh, 1899) that occurs at 
We<<1, for understanding how surface tension forces to gravitational forces played a vital 
role in drop detachment and associated mass of pendant drop (Harkins and Brown, 1919).  
 Experimental investigations have shown that the pendant drop proceeds through a 
range of profiles until a critical volume is reached when part of the drop detaches itself (Pitts, 
1976). Zhang and Basaran (1995) reported the time evolution of drops and presented the 
images of a liquid thread that connects the bottom portion of the drop that is about to detach 
from the rest of the liquid that is pendant from the tube. It was also shown that the breakup 
of liquid threads could potentially lead to the formation of satellite drops at much smaller flow 
rates. The increase in We leads to (DF) regime, which is an intermediary regime where 
period doubling, chaos and hysteresis are observed (Sartorelli et. al., 1994; Coullet et. al., 
2005). With further increase in We, (J) regime (Savart, 1833; Plateau, 1873; Rayleigh, 1879) 
is observed where a continuous stream of liquid emanates from the nozzle and disintegrates 
into drops downstream at a distance greater than 10D for low viscosity fluids such as water. 
However, the transition from dripping to jetting (Ambravaneswaran et al., 2004; Subramani 
et. al., 2006) was experimentally studied by Clanet and Lasheras (1999) in detail, who 
provide a criterion for the transition to occur at a critical Weber number (Wec) which was 
shown to be a function of Bond numbers of the inside and outside diameters of the tube and 
K, an empirically obtained constant with a value of 0.37. Sallam et. al., (2002) reported 
several breakup modes for jets for varying We such as, a weakly turbulent Rayleigh-like 
breakup observed at small jet exit We and Reynolds numbers (Re), a turbulent breakup 
observed at moderate jet exit We, and an aerodynamic bag/shear breakup observed at large 
jet We. The investigations by Sallam et. al., (2002) led to the development of expressions for 
various modes of jet breakup length as a function of We. 
 From a numerical standpoint, pendant drop formation and breakup have successfully 
been investigated in the past addressing the nonlinearities associated with the pinch-off 
region (Subramani et. al., 2006; Davidson and Cooper-White; 2006; Notz et. al., 2001).   
Eggers and Dupont (1994) applied the one-dimensional (1D) slender jet approximations to 
Navier-Stokes equations using boundary element analysis whilst Chen et al. (2002) 
examined pinch-off and scaling during drop formation using two-dimensional (2D) finite 
element methods (FEM) for glycerol-water solutions. Using the 2D FEM, Notz et. al., (2001) 
have examined the formation of satellites at low flow rate dripping and predicted that a thin 
liquid thread was a precursor to satellite formation corroborating the findings from Zhang and 
Basaran (1995). Che et. al., (2011) investigated the breakup process of pendant drops using 
three-dimensional (3D) numerical simulation that was carried out using the Level Set Method 
(LSM). Their studies emphasized the effects of surface tension and the outer diameter of the 
capillary on the amplitude and the period of the pressure fluctuation of the drop during pinch-
off. Laminar jetting in still air was studied by Pan and Suga (2006) using 3D LSM with 
Continuous Surface tension Force (CSF). Their studies showed that for jets featuring 
relatively high Ohnesorge number (Oh), the rearrangement of the axial velocity profile and 
surface shear induce initial large scale vortex structures inside the liquid core. The numerical 
simulations from Pan and Suga (2006) also showed that the violent breakup within the inside 



3 
 

of the jet is due to the large scale vortex motion which is amplified by surface instability when 
the energy of the jet is accumulated enough to overcome inertial and surface tension forces. 
By choosing the (VOF) model coupled with Large Eddy Simulations (LES) in 3D, Farvardin 
and Dolatabadi (2013) investigated jets from elliptical orifices for capturing primary breakup 
in Rayleigh regime. They numerically characterize the axis-switching phenomenon where 
the jet axis switches by changing the major and minor axis in a 90°shift. However, they 
reported that their numerical results were unable to capture satellite drop formation that was 
experimentally reported for jets at certain We. Delteil et. al., (2011) studied rounded jets 
using a one-fluid model coupled with VOF method to represent the jet break-up and 
numerically verifying that no parasitic currents effected the capillary forces. Their simulations 
were performed with water injection at 308 K in supercritical CO2, show that the breakup 
length starts to increase until it stabilizes to a distance down which the fragmentation of the 
jet occurs. The core jet length variations have been reported in their simulations suggesting 
that once the jet is established, the droplet break-up length could potentially oscillate with 
time. In addition, they report critical findings from their numerical simulations that the first 
droplets generated by the jet breakup have a diameter below two-fold the jet diameter and 
as droplets move downstream, their numerical simulations showed a tendency to close their 
shape, catch-up and potentially coalesce. Their studies motivated to further our numerical 
investigations to understand downstream coalescence and catch-up of drops.  
 Numerically, modelling all the responses associated with transition from dripping to 
jetting have received significant attention owing to various reasons, but not limited to i) 
understanding drop formation, its shape and dynamics at different regimes, ii) to examine 
the interface capturing techniques' ability to predict such transient responses and iii) 
identification of new response periods of dripping and jetting. Rodríguez and Saborid, (2017) 
have recently demonstrated through a 1D numerical model based on the conservation form 
of the system of Differential-Algebraic equations (DAE) and computed both the linear 
stability analysis and the nonlinear transient behaviour of equilibrium solutions for capturing 
slender jets and examined the transitions. A rigorous 3D model was developed by Xiao et 
al., (2016) who studied the transition from dripping to jetting using a Coupled Level 
Set/Volume of Fluid (CLSVOF) technique adopted for interface-tracking coupled with Large 
Eddy Simulations (LES). The main focus of their study was to test and validate the CLSVOF-
LES formulation in 3D to predict the three regimes namely, the (PD), (DF) and (J) under the 
same conditions experimented by Clanet and Lasheras (1999) with constant geometrical 
properties. In addition, they performed simulations with two additional We in higher jetting 
regimes with the same inlet diameter of the orifice. Their simulations characterized that the 
jet breakup length is linearly proportional with respect to liquid velocity. More recently, drop 
formation have been addressed by solving axis-symmetric Navier-Stokes equations coupled 
with CLSVOF have shown evidences of new dripping responses for high viscous fluids by 
Chakraborty et al.,(2016) moreover, such methods have also detailed the interface 
overturning features during breakup (Borthakur et. al., (2017)).  
  Previous axis-symmetric studies using CLFVOF methods (Chakraborty et al., 2016; 
Borthakur et. al., 2017) have shown to represent intricate details on dripping to jetting 
transitions as much as the previously reported 3D CLSVOF simulations (Xiao et al., 2016;) 
and 3D LSM (Pan and Suga (2006)).  Although, the aforementioned studies on the axis-
symmetric models as well as the full 3D simulations have focused on drop formation and 
break up extensively but have not detailed the downstream dynamics of drops such as 
oscillatory motion of drops and coalescence of primary drops in the (J) regime have not been 
reported previously neither in 2D nor with the 3D simulations. In the present study, we 
develop an axis-symmetric VOF model to numerically investigate the liquid's response to We 
by changing the flow rates (Q) and to explore the various regimes of drop formation in 
quiescent air. The advantage of VOF method is that it ensures mass conservation is 
intrinsically satisfied and representation of droplet coalescence is well predicted 
(Nikolopoulos et. al., 2009; Delteil et al., 2011). Additionally, VOF has also been investigated 
and validated previously for pinch-off behavior in pendant drops (Zhang, 1999; Davidson and 
Cooper-White; 2006) Our objective in the present study is twofold; a) to validate our model 



4 
 

predictions for transitions from (PD) to (DF) and then to (J) responses against the previously 
published experimental results from Clanet and Lasheras (1999) for various nozzle 
diameters and We and b) to elucidate the breakup patterns and the nonlinear dynamics of 
drop interactions that occur downstream in the aforementioned regimes. In addition, we will 
focus on the (J) regime to examine the disintegration of the jet length and its temporal 
variance, and its dependence on We. This is carried out by comparing the numerical 
predictions of the mean jet breakup length and experimental correlations derived by Sallam 
et. al., (2002).   
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2. Problem Statement 

2.1. System details 
 
The system of interest is an axis-symmetric domain shown in Fig.1, represented by 
cylindrical coordinates (r, z), where r is the radial coordinate and z is the axial co-ordinate in 
the direction of gravity g respectively. The liquid, at a constant flow rate Q, that is injected 
from the nozzle is assumed to be incompressible and Newtonian with viscosity µw and 
density ρw and the flow to be axis-symmetric, whose origin lies at the center of the open end 
of the nozzle. In the present study, we assume that the fluid from the nozzle of radius (R) is 
injected into an incompressible, quiescent air of viscosity µa and density ρa.  
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Schematic of an axis-symmetric domain showing droplet formation during various regimes of 
liquid flow at a constant inflow velocity. 
 
The liquid-air interface has a constant surface tension σ both spatially and temporally, and is 
free to deform. In the present work, only half of the jets and droplets are simulated by 
applying conditions of symmetry, purely to reduce the computational resource requirements.  
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Fluid Density 
(kg/m3) 

Viscosity (Pa.s) Air-Water Interfacial surface tension 
(N/m) 

Water 
 

Air 

1000 
 

1.22 

10-3 
 

8.76 x 10-5 

 

 
0.0728 

 
Table.1. Properties of fluids used in the present study. 
 
For validation purposes, we study with fluid properties provided in Table.1 and with orifice 
radii of the nozzles provided in Table.2 that are consistent with experimental data from 
Clanet and Lasheras (1999). 
 

Sc.no D0 (mm) D (mm) D/ D0 

i 
 
ii 
 

iii 
 

iv 

0.90 
 

1.66 
 

2.12 
 

2.78 

0.584 
 

1.20 
 

1.60 
 

2.156 

0.648 
 

0.727 
 

0.758 
 

0.778 
 

Table.2. Orifice radii of nozzles used for investigation in the present numerical simulations. 
 
The wall thickness of the tube is neglected in the present study as reviewed by several 
researchers (Zhang and Basaran, 1995; Zhang, 1999; Wikes et al.,1999) that global features 
of the dynamics such as drop length, volume and capillary breakup are virtually unaffected 
by the wall thickness (D0) provided that D/ D0 >0.3.  
 

2.2. Governing equations 
 
The equations that describe the motion of both fluids that are incompressible and present 
within the system are represented by a single set of Navier-Stokes Equations given as 
follows: 
 
The continuity equation is given as 
 
𝛁 ∙ (𝜌�⃗⃗� ) = 0           (1) 
 
and the momentum equation is described by 
 
𝜕

𝜕𝑡
(𝜌�⃗⃗� ) + 𝛁 ∙ (𝜌�⃗⃗� �⃗⃗� ) = −∇𝑝 + 𝛁 ∙ [𝜇(𝛁�⃗⃗� + 𝛁�⃗⃗� 𝑇)] + 𝜌�⃗⃗� + �⃗⃗�     (2) 

 
 
where  �⃗⃗� = (𝑢, 𝑣) is the velocity vector with components 𝑢 and 𝑣 that represent radial and 
axial components of the velocity field respectively. In the above equation, 𝑝 is the pressure 
�⃗⃗� = (0, 𝑔)  is the gravitational acceleration and 𝑡  is the time. �⃗⃗�  is the continuum surface 
tension force on the interface of the volume fraction field 𝛼, given by 
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�⃗⃗� = 𝜎𝑘𝛁𝛼          (3) 
 
where 𝑘 is the local curvature on the interface and is computed as  
 
𝑘 = −𝛁 ∙ (

𝛁𝛼

|𝛁𝛼|
)          (4) 

 
In terms of describing the interface between immiscible fluids, namely, water and quiescent 
air and providing volume fraction conservation throughout the domain, two-phase flow using 
the Volume of Fluid method (VOF) is incorporated. The VOF equation is given by: 
 
𝜕𝛼

𝜕𝑡
+ 𝛁 ∙ (𝛼�⃗⃗� ) = 0         (5) 

 
The volume fraction gives the portion of the cell which is filled with either phase, where 
 
𝛼 = 0          the cell is filled with air (the continuous fluid) 
0 < 𝛼 < 1  the interface exists in the cell      (6) 
𝛼 = 1          the cell is filled with liquid (the dispersed fluid, namely; water in this study) 
 
The density 𝜌 and viscosity  𝜇 can be expressed as linear contributions from each phase as 
follows: 
 
𝜌 = 𝜌𝑤𝛼 + 𝜌𝑎(1 − 𝛼)          (7) 
𝜇 = 𝜇𝑤𝛼 + 𝜇𝑎(1 − 𝛼)          (8) 
 
The following dimensionless numbers are used in this study to characterize dripping to 
jetting transition and for illustrating the jet break-up.  
 
The Weber number (𝑊𝑒) that relates the fluids inertia compared its surface tension and 
illustrates whether kinetic energy or the surface tension energy is dominant. 
 
𝑊𝑒 =

𝜌𝑤𝑉0
2𝐷

𝜎
           (9) 

 
 
The Bond number (𝐵𝑜) that characterizes the shape of droplets by relating gravitational force 
to surface tension force. 
 
𝐵𝑜 =

𝜌𝑤𝑔𝐷2

𝜎
           (10) 

 
 
The current study is limited to laminar jets where the Reynolds number is given by 

𝑅𝑒 =
𝜌𝑤𝑉0𝐷

𝜇
< 2300          (11) 

 

In the above Eqs. (9-11), 𝑉0 is the mean velocity and is related to the volumetric flow rate of 
the liquid entering the tube, given by 𝑄 = 𝜋𝐷2𝑉0. Although the outer diameter (D0) is not 
used anywhere in our simulations, we provide this parameter only for scaling purposes and 
for consistent comparison with experimental data. 
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2.3. Boundary and Initial conditions 
 
In the domain of interest shown in Fig.1, a constant flow rate Q that corresponds to a mean 
velocity (V0) was specified at the nozzle orifice pertaining to an inlet boundary condition. The 
symmetry or slip boundary condition was provided on the axis and a no-slip boundary 
condition at the top (wall) and nozzle was implemented. On the side, a free slip condition 
was used and at the outlet, a pressure-outlet boundary condition was used. On the free 
surface however, two conditions apply namely, a) a kinematic condition, that there should be 
no mass transfer across the free surface and b) a dynamic condition, that viscous and 
surface tension stresses should be in balance. To find the influence of the side and outlet 
boundaries, simulations were performed with different side widths ranging from 1.5D to 4.5D 
and outlets ranging from 10D to 40D. Typically, for lower We that comprise the (PD) and 
(DF) regimes, a domain width of 3.25D and length of 15D (Chakraborty et. al., 2016; Xiao et. 
al., 2016; Borthakur et. al., 2017) has no influence on the simulations and all events of 
interest are well predicted. However, for the (J) regime, a domain size between 40-80R was 
chosen to resolve the events of interest downstream. The domain was initialized with still air 
with properties at standard temperature and pressure conditions.  
 
2.4. Numerical Solution Procedure 
 
The numerical simulations that are presented in the current study were performed using 
commercially available finite-volume based software package ANSYS Fluent (Version 18.0). 
The flow equations are solved using a laminar incompressible, transient model integrated 
with the VOF method (Hirt and Nichols, 1981) in explicit formulation using a double-precision 
solver. The pressure-velocity scheme used was PISO that splits the solution into predictor 
and corrector steps, alongside the Non-Iterative Algorithm (NITA) which provides faster 
convergence. The discretized moment equation was approximated using the QUICK scheme 
and the gradients of the scalars were computed by using the Least-Squares cell-based 
method. The Least-Squares cell-based was chosen since it is directly comparable to node-
based gradient methods, much accurate compared to cell based methods and is 
computationally less intensive. The "PRESTO!" (PREssure STaggering Option) scheme, 
although computationally more expensive, was used to interpolate the pressure term as it 
directly calculates the pressures at cell faces and avoids interpolation errors. The interface 
was determined by the Geo-Reconstruct Algorithm (Youngs, 1982) that uses a piecewise-
linear approach to determine the interface between fluids. Firstly, the algorithm assumes that 
the interface between two fluids has a linear slope within each cell based on volume 
fractions. It then uses this linear shape for computation of the momentum transport by 
advection of fluid through the cell faces. Finally, it calculates the volume fraction in each cell 
using the balance of fluxes computed from the previous step. To account for the interfacial 
forces, the Continuum Surface Force (CSF) model (Brackbill et. al., 1992) has been 
formulated such that the addition of surface tension to the VOF calculation results in a 
source term in the momentum equation. It creates the interface between the two liquids as a 
transition region of finite thickness where the surface tension force term is proportional to the 
curvature in each location. Outside the interface, this force term is zero. A first order implicit 
scheme was used for time discretization with a maximum Courant number of 0.25. For all 
residual values, the convergence tolerance achieved within each time-step when monitored, 
was found to be <10-6. The computations were carried out at Sheffield Hallam University's 
High-Performance computing cluster. 
 
2.5. Test for Mesh Independency 
 
To evaluate the mesh independency, simulations were performed by constructing five 
meshes with the resolutions ∆𝑟 = ∆𝑧 = 0.02 𝑚𝑚, ∆𝑟 = ∆𝑧 = 0.025 𝑚𝑚, ∆𝑟 = ∆𝑧 = 0.04 𝑚𝑚,
∆𝑟 = ∆𝑧 = 0.07 𝑚𝑚 and ∆𝑟 = ∆𝑧 = 0.1 𝑚𝑚 that were uniform throughout the computational 
domain mentioned previously. Fig.2 shows the time evolution and pinch-off of the drop 
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measured as a function of growing length 𝐿

𝐷0
 for various mesh sizes where D=0.584 mm, 

𝐵𝑜 = 0.045 and 𝑅𝑒 = 233 (𝑊𝑒 = 1.28). Whilst the growing length and breakup times show 
differences for mesh sizes 0.07 mm and 0.1 mm with respect to the finest mesh case 
examined namely the ∆𝑟 = ∆𝑧 = 0.02 𝑚𝑚, the agreement gets better with a mesh size of 
0.04 mm and almost identical results are observed with 0.025 mm mesh size.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2. Time evolution of a droplet for various mesh cases for off for We=1.28, Bo=0.04596 and 
D=0.584 mm (D0=0.902 mm). 
 
 
Fig.3a shows the volume fraction distribution of the droplet just prior to pinch-off. Numerical 
diffusion is observed at the interface as well as within the drop for coarse mesh cases 
whereas with higher refinement levels, good agreement is evidenced from both spatial as 
well as from a temporal perspective for mesh cases 0.02 and 0.025 mm respectively. Fig.3b 
shows the total pressure of the drop on the iso-surface of the liquid volume fraction 
distribution where maximum total pressure experienced by the drop is seen at the necking 
region.  
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Fig.3. a) Volume fraction and b) Total pressure distributions for a droplet shown during necking for 
various mesh cases for We= 1.28, Bo=0.04596 and D=0.584 mm (D0= 0.902 mm). 
 
 With mesh cases 0.02 mm and 0.025 mm, the agreement is observed to be much 
closer and differences in the total pressure distribution are seen to be almost insignificant in 
describing the formation and pinch-off of droplets. Considering the computational cost and 
the large number of simulations required for this study, it was very time-consuming to 
employ the finest mesh case for all the simulations. However, considering that a good overall 
agreement the mesh size ∆𝑟 = ∆𝑧 = 0.025 𝑚𝑚  has with the finest mesh case presented, a 
mesh size of 0.025 mm was used for the whole computational domain. 
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3 Results and Discussions 

 
In this section, we present dynamics of droplet formation and breakup in periodic, dripping 
faucet and the jetting regimes. Increasing the flow rate leads to transition from dripping to 
jetting regimes and such a transition can be characterized using first and second limits. The 
first limit defines the threshold velocity for which transition occurs from periodic to quasi-
periodic emission of droplets. The second limit however, defines the velocity for which the 
drop disintegration moves downstream to distances where L/D > ~10. Fig.4 presents the 
validation of our simulations for various orifice diameters shown in Table.2. with the 
experimentally determined limits of transition that were reported earlier by Clanet and 
Lasheras (1999).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4. Comparison between the current numerical simulations and experimental results from Clanet 
and Lasheras (1999) for periodic dripping (PD) characterized within the first limit, dripping faucet 
(DF) within the second limit and the jetting regime beyond the second limit. 
 
 As seen in Fig.4, with increase in orifice diameters, the first and second limit regimes 
start to narrow. It is seen that the discrepancy between numerical and experimental data for 
both the first as well as the second limit is greater where the boundaries of the limits are 
closer and pertaining to (DF) regime getting significantly narrower. Although differences are 
observed quantitatively for larger orifice diameters, qualitatively however, a good match is 
seen between numerical and experimental results in distinguishing the first and the second 
limits at smaller diameters and predicting the trend observed in the experimental results by 
Clanet and Lasheras (1999). In the following sections, we will focus on our numerical 
findings of droplet formation and disintegration in each of the (PD), (DF) and (J) modes and 
compare them with previously published experimental data, where available. 
 
 
3.1. Periodic Dripping  
 
Within the regime of the first limit where periodic dripping (PD) mode exists, at very small 
flow rates, there exists a regime where, alongside the primary droplets, satellite droplets are 
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observed (Zhang and Basaran; 1995; Zhang and Stone 1997; Wilkes et. al., 1999; Zhang, 
1999; Notz et. al., 2001; Yildirim et. al., 2005; Subramani et. al, 2006). However, by 
increasing Q beyond a threshold, drops pinch-off at regular intervals and have the same 
detachment position. This is identified to be the period-1 response to droplet disintegration. 
Fig.5 shows the time (t) evolution of four consecutive drops predicted by the present 
numerical simulations that have nearly identical growing length 𝐿

𝐷0
 and with the detachment 

point ~1D0. The current numerical prediction on the growing length and detachment point for 
the (PD) regime is found to be consistent with the experimentally reported results from 
Clanet and Lasheras (1999) for the parameters used in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Temporal evolution of a droplet formation and growth rate histories for We=0.354, Bo=0.345 
and D=1.6 mm (D0= 2.108 mm) in the periodic dripping regime.  
 
 
Experimentally, it was observed by Clanet and Lasheras (1999) that the time evolution of the 

necking diameter 𝐷𝑛𝑒𝑐𝑘 , takes an exponential functional form 𝐷0 (1 − 𝑒
(𝑡−𝑡0)

𝑡𝑛 )  where tn 

represents the necking time and t0 is the time shift due to exponential decay where one is 
expected to observe the onset of instability. Fig.6 shows a comparison of the current 
numerical prediction of time evolution of neck with experimentally reported results by Clanet 
and Lasheras (1999). Although we see a difference in the evolution of neck in numerical 
results; which tends to be faster at compared to the experimental data, it can be observed 
that the onset of necking and the overall pinch-off period predicted by numerical results 
shows a good match with the experimental data. One may note that in the experiments the 
droplet is pinned to thickness of the tube unlike that in the simulations where the thickness is 
neglected. The results from Fig.6 is analogous to the trend noted by Clanet and Lasheras 
(1999) who showed that the neck evolution is faster for smaller diameters. The trend shown 
in Fig.6 suggests that the outer diameter could be influential during neck evolution although 
drop length and capillary breakup time remain unaffected. In the Fig.7, we show the volume 
fraction and total pressure distribution profiles during the evolution of the neck and pinch-off 
for the drop corresponding to Fig.6 for consistency. At the instance of pinch-off (t-t0 =-
0.0015(s)) shown in Fig.7a), the interface overturning (Day et. al., 1998; Casterjón-Pita et 
al.,2011; Borthakur et. al., 2017) which is expected for low viscosity fluid, such as water, is 
clearly predicted by the present numerical result. During the evolution of the neck, the 
numerical results show that the pressure energy (Fig.7b) spreads along the axis of the drop 
before pinch off and the maximum total pressure is closest to the neck during breakup.  
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Fig.6. Time evolution of the neck for current numerical simulations compared with experimental 
results from Clanet and Lasheras (1999) for We=1.28, Bo=0.04596 and D=0.584 mm (D0= 0.902 mm) 
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Fig.7. a) Volume fraction and b) Total pressure distributions for a droplet showing spatial and 
temporal evolution of necking and pinch-off for We=1.28, Bo=0.04596 with D= 0.584 mm (D0= 0.902 
mm).  
 
 
3.2. Dripping Faucet: Modes of Satellite Drop Formation and Merging 
 
On reaching the first limit, one enters the (DF) second regime where drop emissions are no 
longer a constant both spatially as well as temporally. Experiments and numerical 
simulations in the past have shown that high viscosity fluids such as a syrup, with the 
increase in Q, it is possible to transition  directly from period- 1 dripping to jetting without 
exhibiting the intermediary (DF) regime (Ambravaneswaran et. al, 2004). However, in the 
case of low viscosity liquids such as for water, the (DF) regime could exhibit a range of 
complex dynamics (Sartorelli et al., 1994) starting from period- 2, period- 3, period- 4 etc., 
and then to chaotic responses before transitioning to a jet (Clanet and Lasheras, 1999; 
Coullet et. al., 2005; Subramani et al., 2006) when Q exceeds a threshold. Fig.8 shows a 
comparison of drop growth histories between present numerical results with experimental 
results from Clanet and Lasheras (1999) for a period- 2 response when We=1.6 and 
Bo=0.345. The present numerical results show a trend that is evidenced in the experimental 
data in predicting the existence of two frequencies that correspond to alternate emissions of 
smaller and larger drops. In addition, the growing and pinch-off lengths for drops for both 
emission periods predicted by the computational results, for smaller and larger sized drops, 
show a good agreement with experimental observation. However, we see discrepancies with 
the drop numbers generated with time between the numerical result and experimental data. 
Such discrepancies could potentially be attributed to the fact that in the experiments the 
thickness of the wall of the nozzle considered in the experiments has not been included in 
the model due to additional complexities involved in accurately describing wall-wetting and 
fluid-solid interface characteristics. However, to the best of author's knowledge, a 
comparison of drop histories between numerical and experimental results in the (DF) regime 
corresponding to a period- 2 mode, for water is reported for the first time.  
Fig. 9 shows the volume fraction profiles of the smaller and larger drop distributions that 
evolve in the period- 2 regime for the same parameters as in Fig.8. 
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Fig.8. Comparison of temporal evolution of the dripping faucet regime from the present numerical 
simulations showing a period-2 response trend against the experimentally determined growth rate 
histories from Clanet and Lasheras (1999) for We=1.6, Bo=0.345 with D=1.6mm (D0=2.108 mm). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.9. Numerical results of the drop distributions and temporal evolution of the dripping faucet 
regime exhibiting a period-2 trend for We=1.6, Bo= 0.345 and D=1.6mm (D0=2.108 mm). 
 



16 
 

 Interestingly, when the flow rate is increased to a value closer to the boundary of the 
second threshold limit, it leads to chaotic dripping (CD). Fig.10 shows the drop growth 
histories for We= 2.85 and Bo=0.345 in the (CD) regime, where a combination features 
corresponding to responses such as a period-2, period-3 etc., seem to exist. Although one 
could also notice an appreciable increase in drop emission frequencies, we are unable to 
conspicuously classify such changes as chaotic to non-chaotic transitions leading to a 
boundary crisis as observed by Sartorelli et al., (1994). Potentially, this may be due to the 
overall computational time that the simulations have been carried out to categorically 
ascertain such transitions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.10. Temporal evolution of the dripping faucet regime in chaotic dripping (CD) mode showing 
growth rate histories for We= 2.85, Bo = 0.345 with D=1.6mm (D0= 2.108 mm). 
 
  More recently, at relatively high Bond numbers, numerical simulations from 
Chakraborty et. al., (2016) have identified the existence of satellites in high viscosity liquids 
in the period-2 regime, namely the period-2s, which has been also been reported in the 
experimental results from Rubio et. al., (2018). In the current paper we examine the 
formation of satellite drops in the (CD) regime and their merging modes for a low viscosity 
fluid namely, water. We focus only on the mainstream liquid and first primary drop that 
disintegrates from the mainstream liquid and any satellite drop(s) that are formed or 
associated within them. Specifically by focusing our attention on the motion of primary and 
satellite drop shown in Fig.11, one may observe that they tend to show oscillatory pattern 
when moving downstream by exhibiting characteristics of alternative stretching and shrinking 
in stream-wise and span-wise directions and vice-versa. Such oscillations in droplets are 
strongly nonlinear and their decay has been attributed to viscous damping (Becker et. al., 
1991). Broadly, such oscillations in droplets are generated due to mechanisms such as 
breakup from mainstream, through coalescence or due to bouncing (Suñol and Cinca, 
2015). Within this focus, our current numerical simulations predict plethora of interesting 
dynamics that identify four possible modes of satellite drop formation and coalescence as 
described in Fig.11. In Fig.11a), we observe that a liquid thread like structure that is attached 
to the mainstream liquid disintegrates forming a satellite drop which merges with the 
immediate primary drop present downstream. This type of satellite formation and merging 
has features similar to that of period- 1s which is well known and has been significantly 
reported by various researchers (Notz. et al., 2001; Chen et. al., 2002).  
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Fig.11. Formation of satellite droplets from a) mainstream and merge into primary droplet, b) 
anterior of the primary drop and merge into primary droplet c) mainstream and merge into 
mainstream and d) posterior of the primary droplet and merge into primary droplet for We=2.85, 
Bo=0.345 with D=1.6mm (D0=2.108 mm). 
 
 Fig.11b) shows another type of formation of satellite droplet from a primary droplet 
that was formed from the mainstream liquid. In this case, we observe that the oscillations of 
the primary drop are non-uniform when moving downstream and depending on its initial 
shape can aid to the formation of a satellite drop. One such formation is shown in Fig.11b) 
where the satellite drop is formed from the anterior of the primary drop that moves down with 
oscillations as described above. Once the satellite drop is formed, almost immediately, we 
see that it merges with the primary drop. This is owing to the fact that the satellite drop also 
undergoes oscillatory motion alongside the primary drop when moving downstream, they 
merge to an equilibrium shape until no further breakup is experienced and due to 
subsequent decay of oscillations due to viscous damping. Fig.11c) shows the formation of 
satellite drop from mainstream liquid thread with formation features similar to Fig.11a). But in 
Fig.11c) we observe that unlike the coalescence of the satellite drop with the primary droplet 
present downstream shown in Fig.11a)), the mainstream liquid that moves downstream 
merges with the satellite drop. Another mode of formation of satellite droplet is predicted 
which is in contrast to Fig.11b), where the satellite droplet is formed from the posterior of the 
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primary drop as shown in Fig.11d). Although not all primary drops or their instances of pinch-
off lead to formation of liquid threads in mainstream that create satellites, we observe that 
the satellites are formed depending on the initial droplet distribution of the primary drops that 
are formed from the mainstream liquid and the nature of oscillatory motion associated with 
them when moving downstream. 
 
3.3. Jetting: Varying Jet Breakup length and Coalescence of drops downstream  
 
After a series of aforementioned transitions and by crossing the second boundary limit as 
shown in Fig.4, a laminar liquid jet originates where the droplet disintegration point suddenly 
moves downstream to distances where L/D  greater than 10. This marks the beginning of the 
jetting regime with interface perturbations leading to a varicose deformation of the jet. In this 
study we limit our numerical simulations to Rayleigh jetting regimes and other higher order 
regimes are beyond the scope of this study. The mean breakup length of a jet has been 
experimentally determined by Sallam et. al., (2002) for low viscosity liquids, given by the 
following correlation: 
 
𝐿

𝐷
= 5 𝑊𝑒0.5  valid for 𝑊𝑒 < 400.        (12) 

 
 In testing the numerical accuracy of the jet length, we take an approach which is 
similar to that presented by Pan and Suga, (2006) where, the mean breakup length of the jet 
from their numerical simulations were compared against the correlation given in Eq.12. by 
Sallam et. al., (2002). Fig.12 shows both the instantaneous and time averaged jet length(s) 
just before the breakup of droplet occurs. To note, the parameters in the Fig.12 correspond 
to a mean velocity 𝑉0 = 0.92 𝑚/𝑠 (as shown in Fig.4); which indicate a value that lies closer 
to the second boundary limit and that the laminar jet has just evolved with an average 
breakup length of L/D=~10.96. This behavior matches very well with the experimental results 
and observations by (Clanet and Lasheras, 1999) shown in Fig.4. Also, we see in Fig.12 that 
the jet breakup length predicted by the numerical result varies with time. Observations on 
varying jet breakup length have been evidenced in the past both experimentally (Clanet and 
Lasheras, 1999) and numerically (Pan and Suga, 2006; Delteil et al., 2011; Chakraborty et. 
al., 2016; Borkathur et. al., 2017) by several researchers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12. Instantaneous and time averaged jet extensions at the inception of breakup for We=6.8, Re = 
537, B0=0.0459 with D= 0.584 mm (D0= 0.902 mm).  
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 Fig.13 shows the numerical results for varying We obtained by monitoring jet lengths 
for >70 drop disintegrations in each case; typically, a value that is much greater than 
previously reported numerical results for jet lengths. For each We values, we present the 
instantaneous minimum, maximum and time averaged jet lengths and compare against the 
experimental correlations by Sallam et. al., (2002) shown in Eq.12 for the same Bo=0.0459 
by maintaining the orifice diameter. Subsequently, we also compare the numerical results 
with Eq.12 when We is maintained to be a constant for different Bond numbers (by varying 
the orifice diameter) shown in Table.3 For all the cases presented, we see that the time 
averaged breakup length shows reasonably good agreement with the experimentally 
observed correlation from Sallam et.al.,(2002). Incidentally, we note that with the jet breakup 
varying with time for free laminar jets, the numerical results present evidences of droplets 
coalescing when they move downstream. We shall elucidate the coalescence behavior of 
droplets from the images corresponding to the results presented in Table.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.13. Comparison of experimental correlation for jet breakup lengths from Sallam et. al., (2002) 
given by (Eq. 13) with present simulation for various Weber numbers with Bo=0.0459, D=0.584 mm 
(D0=0.902 mm).   
 

D 
(mm) 

Bo Re We Experimental fit from 
Sallam et. al., (2002) 

 
𝐿

𝐷
= 5𝑊𝑒(1/2) 

 
for 𝑊𝑒 < 400 

Simulation Results (𝐿

𝐷
) 

minimum maximum Average 

1.6 
 

0.584 

0.345 
 

0.0459 

890 
 

537 

6.8 
 

6.8 

13.038 
 

13.038 

9.645 
 

9.664 

16.268 
 

15.184 

12.259 
 

10.96 
 
Table.3. Values of jet breakup lengths obtained from the present numerical results compared with 
Sallam et. al., (2002) for two different Bo but maintaining the same We. 
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Fig.14. Evolution of a Jet and merging of two primary drops downstream shown using a) Volume 
fraction and b) Total pressure distributions for We=6.8, Re=537, Bo=0.0459 with D=0.584 mm (D0= 
0.902 mm).  
 
 
 Many critical conditions may lead to drops merging downstream such as, but not 
restricted to; the variation in breakup length, wavelength of the jet during breakup, drop sizes 
resulting from diminutive breakup timescales etc., However, in the present study we find that 
phenomenon of the nature of oscillatory motion of drops as discussed in the Section 3.2, 
which is a by-product of the aforementioned conditions can aid to the phenomena of merging 
of droplets downstream.Fig.14 shows the volume fraction and total pressure distributions for 
a jet with We=6.8, Re=890, Bo=0.3449 where D=1.6 mm (D0=2.108 mm) taken at arbitrary 
snapshots. We see two primary droplets a1 and a2 that were formed from the jet (a2 was 
formed prior to a1), moving downstream along with oscillatory motion that is normally 
mitigated by viscous damping. In the present case, it can be seen that the oscillatory motion 
experienced by a1 is synchronous to a2 with respect to both droplets experiencing a 
stretching motion in stream-wise direction. When drops move closer to each other, such 
synchronous motion enhances the feasibility of droplets coming into contact and potentially 
merges and forms a new droplet a12. Also, as seen from Fig.14b), at the incipience of 
merging, we observe that the total pressure distribution is highest at the region of contact. 
Similar behavior is observed with Fig.15 where We is identical to Fig.14 but for Re=890, 
Bo=0.3449 and D=1.6 mm (D0=2.108 mm). In all the cases described above, not all primary 
droplets that are formed coalesce. For both the jets which have the same We=6.8 but with 
different Bo, we have shown images of jet evolutions at arbitrary snapshots to reveal 
coalescence patterns of two primary drops that take place. Interestingly, one may note that 
in both cases (Fig.14 and Fig.15), the droplets coalesce ~25-29D, which typically 
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corresponds to 2-2.3 times the average breakup length (see Table.3) of the jet observed for 
cases that are reported with We=6.8. We have observed this behavior of coalescence that 
takes place at various time instances (not shown) for the reported We for which, the 
incipience of coalescence of two primary drops have always taken place only at distances > 
~15D from the average breakup length of the jet. This suggests that a typical scaling 
relationship may exist between the average breakup length which is a function of We and 
with the first mean coalescence length within the laminar jet breakup regime. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.15. Evolution of a Jet and merging of two primary drops downstream shown using a) Volume 
fraction and b) Total pressure distributions for We=6.8, Re=890, Bo=0.3449 with D=1.6 mm (D0= 
2.108 mm).   
 
 
One may note that the jets' transitioned liquid core for both cases show surface features 
pertaining to low Re turbulent behavior. In order to fully characterize such perturbations and 
to resolve the surface waves in jets due to turbulence, previous studies by Farvardin and 
Dolatabadi (2013) have pointed out that a full 3D model using Large Eddy Simulations (LES) 
together with VOF method would be more ideal. We also envisage that the choice of LES-
VOF should resolve such higher order surface effects and further enhance the agreement 
between predicted average jet lengths with experimentally determined results from Sallam 
et. al., (2002). 
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4. Concluding Remarks 
 
We have presented an axis-symmetric model that comprises the Navier-Stokes equations 
coupled to Volume of Fluid method and with Continuum Surface Force approach to predict 
transition from dripping to jetting in a simple Newtonian fluid. ANSYS Fluent (Version 18.0) 
has been used with Geo-Reconstruct Scheme for interface determination in explicit 
formulation and with NITA time stepping algorithm. After carefully examining the grid 
resolution and determining the mesh independency, a series of numerical simulations were 
carried out for various orifice diameters (D) and Weber numbers (We) that showed an 
excellent agreement in predicting the boundaries of the first and second limits corresponding 
to the regimes of the (PD), (DF) and (J) responses that were experimentally reported by 
Clanet and Lashreas (1999). At low flow rates corresponding to the (PD) mode within the 
period-1 response, the numerical results obtained for the droplet necking time predicted a 
nearly exponential trend and the predicted breakup timescales agree reasonably well with 
the previously determined experimental results. Whereas, when the flow rate reaches a 
threshold limit corresponding to the (DF) mode, with the same experimental parameters set 
in numerical simulations, a period-2 response is predicted agreeing well with experimentally 
determined drop growth histories and in identifying two emission frequencies. Increasing the 
flow rate eventually led a route to chaotic dripping (CD) response that showed a combination 
of several periodic responses. The numerical results also featured the oscillatory motion of 
droplets when moving downstream. 
  In the (CD) response, the numerical results predict four new modes of formation of 
satellite drops that occur from a thread like structure from the mainstream liquid and either 
merges with the a) onward moving mainstream liquid or b) with the primary drop next to it 
downstream. In other cases, the satellites were formed from either the c) anterior or the d) 
posterior side of the first primary droplet depending on its nonlinear oscillatory motion when 
moving downstream and its initial shape, that were found to merge with the primary droplet 
subsequently. By increasing the flowrate beyond the second boundary threshold, the 
numerical results predict a laminar jet that emanates from the orifice where, typically droplet 
disintegration occurs at distances L/D>~10. This result is in excellent agreement with the 
experimental results from Clanet and Lashreas (1999) for water. Additionally, the results 
show fluctuations in breakup length of the jet with time similar to the observations reported in 
earlier studies. The breakup length predicted by the numerical results for different We and 
Bo agree reasonably well with the experimentally obtained correlations from Sallam et. al., 
(2002). We observed that some drops exhibit the tendency of coalescing with the other and 
provide their merging distances downstream. Typically, we demonstrated with We=6.8 and 
with two different Bo=0.00459 and 0.3449, where coalescence of primary droplets take place 
at distances ~10-12D from the breakup location which suggests that a potential scaling 
relationship may exist with the onset of merging, breakup length and We.  
  Although the above results for the coalescence of drops and the onset of their 
specific merging distances will need validation from experimental results, we observe from 
our simulations that depending on the type of the oscillatory motion that is exhibited by some 
drops moving downstream, the phenomenon of drops coalescing with one another other 
takes place. Despite well predicting the overall behavior and salient features within the 
dripping to jetting transitions, one may note that the coalescence of two axis-symmetric 
primary drops arising from a laminar jet or during modes of dripping may not strictly lead to 
the formation of an axis-symmetric droplet in which case, the model will exhibit its pitfalls in 
revealing such formations. Also, recent experiments (Suñol and Cinca, 2015) have 
demonstrated that in addition to drops coalescing, they also exhibit the characteristics of 
bouncing when they come into contact one another in certain scenarios; such realizations 
are beyond the realm of the current set of equations used in the present study. In the future, 
we aim to extend the current study to describe the onset of coalescence of primary drops 
and satellites from free laminar jets and present a scaling relationship with dimensionless 
numbers to quantify their merging length, pattern and timescales. 
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