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Abstract: Using a bivariate Diagonal BEKK model, this paper investigates the volatility 

dynamics of the two major cryptocurrencies, namely Bitcoin and Ether. We find evidence of 

interdependencies in the cryptocurrency market, while it is shown that the two 

cryptocurrencies' conditional volatility and correlation are responsive to major news. In 

addition, we show that Ether can be an effective hedge against Bitcoin, while the analysis of 

optimal portfolio weights indicates that Bitcoin should outweigh Ether. Understanding 

volatility movements and interdependencies in cryptocurrency markets is important for 

appropriate investment management, and our study can thus assist cryptocurrency users in 

making more informed decisions. 
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1 Introduction 

Cryptocurrency markets have recently received a lot of attention from the media and 

investors alike. Bitcoin is undoubtedly the most popular cryptocurrency with an estimated 

market capitalisation currently being worth $167 billion (coinmarketcap.com accessed on 12
th

 

March 2018). Since its introduction in 2009, cryptocurrency markets have rapidly grown with 

a total of more than 1550 existing cryptocurrencies (as of 12
th

 March 2018). Despite its 

relatively recent launch, Ether constitutes the second largest cryptocurrency in terms of 

market capitalisation, which is currently estimated at $72 billion (coinmarketcap.com 

accessed on 12
th

 March 2018)
2
. Bitcoin and Ether together represented 60% of the total 

estimated cryptocurrency market capitalisation at the time of writing. Although the two 

cryptocurrencies have several fundamental differences in purpose and capability, both of 

them have recently seen gigantic price fluctuations and are increasingly used for investment 

and speculation purposes, despite warnings issued by different financial institutions.  

Recently the literature on cryptocurrencies has rapidly emerged. For instance, recent studies 

have examined the hedging capabilities of Bitcoin against other assets (Dyhrberg 2016a, 

2016b; Baur et al., 2017; Bouri et al., 2017), the market efficiency of cryptocurrencies 

(Urquhart, 2016; Nadarajah and Chu, 2017), and the existence of bubbles in cryptocurrencies 

(Cheah and Fry, 2015; Corbet et al., 2017), while the price volatility of cryptocurrencies has 

been studied by Katsiampa (2017) and Phillip et al. (2018), among others. More recently, the 

literature has started examining the connectedness of cryptocurrencies to mainstream assets. 

For instance, Corbet et al. (2018) and Lee et al. (2018) studied linkages of cryptocurrencies to 

traditional assets and found that cryptocurrencies are rather isolated from other markets and 

that correlations between cryptocurrencies and other assets are low. Nevertheless, the 

literature on interdependencies within cryptocurrency markets is rather limited. To the best of 

                                            
2
 Due to Ether's fast growth and the fact that several industry giants have backed Ethereum, the network behind 

Ether, through the formation of the Enterprise Ethereum Alliance, it is believed by some that Ether could 

possibly overtake Bitcoin in popularity and market value in the future. 



the author's knowledge, only Ciaian et al. (2017) and Corbet et al. (2018) have studied 

interlinkages of cryptocurrencies. More specifically, Ciaian et al. (2017) studied 

interdependencies between Bitcoin and other cryptocurrencies using an Autoregressive 

Distributed Lag model and found that the prices of Bitcoin and other cryptocurrencies, such 

as Ether, are interdependent. However, the authors did not study cryptocurrencies' volatility 

co-movements. On the other hand, Corbet et al. (2018) studied interlinkages between 

cryptocurrencies using a Dynamic Conditional Correlation model and similarly found that 

cryptocurrencies are interconnected with each other. Nevertheless, the authors considered 

only Bitcoin, Ripple and Litecoin, excluding Ether, though. 

As investors in cryptocurrencies are exposed to highly undifferentiated risks (Gkillas and 

Katsiampa, 2018), examination of cryptocurrency price volatility co-movements is of utmost 

importance in order for investors and other market participants to better understand 

interlinkages within the cryptocurrency market and make more informed decisions, and 

multivariate GARCH models are useful tools for analysing such interdependencies between 

heteroskedastic time series. Nonetheless, volatility dynamics between Bitcoin and Ether have 

not been previously explored. Consequently, motivated by the Bitcoin and Ether price 

fluctuations and the interconnectedness of cryptocurrency markets, by employing a bivariate 

GARCH model, this study aims to investigate not only the volatility dynamics of Bitcoin and 

Ether but also their conditional covariance and correlation, examining which important events 

have led to unprecedented conditional volatility and covariance levels. We also study the 

optimal portfolio weights and hedging opportunities between the two cryptocurrencies. To 

the author's best knowledge, this is, therefore, the first study of price volatility dynamics 

between Bitcoin and Ether and of the hedging opportunities between the two 

cryptocurrencies. 

 



2 Data and methodology 

The dataset consists of daily closing prices for Bitcoin and Ether from 7
th

 August 2015 (as the 

earliest date available for Ether) to 15
th

 January 2018. The prices are listed in US Dollars and 

the data are publicly available online at https://coinmarketcap.com/coins/. The returns are 

defined as 

𝑦𝑖,𝑡 = ln𝑝𝑖,𝑡 −  ln𝑝𝑖,𝑡−1,     (1) 

where 𝑦𝑖,𝑡 is the logarithmic price change for cryptocurrency 𝑖, 𝑖 = 1,2, and 𝑝𝑖,𝑡 is the 

corresponding price on day 𝑡.  

Our empirical analysis begins with producing descriptive statistics for the Bitcoin and Ether 

price returns. We then perform the Augmented Dickey-Fuller and Phillips-Perron unit-root 

tests as well as Engle's ARCH-LM test for ARCH effects in order to examine the stationarity 

of the returns series and whether volatility modelling is required for the price returns of the 

two cryptocurrencies considered in this study. As shown in section four, the results suggest 

that the price returns of both cryptocurrencies are stationary but exhibit volatility clustering. 

Consequently, a bivariate GARCH model can be employed in order to model the conditional 

variances and covariance of the two cryptocurrencies. 

 

3 Model 

The conditional mean equation of the two cryptocurrencies' price returns is given as 

𝑦𝑡 = 𝑐 + 𝜀𝑡,                                          (2) 

where 𝑦𝑡 is the vector of the price returns as defined in the previous section, 𝜀𝑡 is the residual 

vector with a conditional covariance matrix 𝐻𝑡 given the available information set Ω𝑡−1, and 

𝑐 is the vector of parameters that estimates the mean of the return series
3
. All the three 

                                            
3
 It is worth mentioning that in this study a simple specification for the conditional mean equation is employed 

since our interest lies mainly in the time-varying covariance matrix. 



components of the mean equation are 2×1 vectors since here the focus is on the two major 

cryptocurrencies, namely Bitcoin and Ether. 

A popular model of conditional covariances is the BEKK model (Engle and Kroner, 1995), 

the covariance matrix of which is given as  

𝐻𝑡 = 𝑊′𝑊 + 𝛢′𝜀𝑡−1𝜀′𝑡−1𝐴 + 𝛣′𝛨𝑡−1𝐵,                                           (3) 

where 𝑊, 𝛢 and 𝐵 are matrices of parameters with appropriate dimensions, with 𝑊 being an 

upper triangular matrix, while the diagonal elements of 𝑊, 𝐴, and 𝐵 are restricted to be 

positive (Bekiros, 2014). The diagonal elements of 𝐻𝑡, ℎ𝑖𝑖,𝑡, 𝑖 = 1,2, represent the conditional 

variance terms, while the off-diagonal elements of 𝐻𝑡, ℎ𝑖𝑗,𝑡, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2, represent the 

conditional covariances. Once the BEKK model parameters are estimated, the conditional 

correlations can be derived as 

𝑟𝑖𝑗,𝑡 =
ℎ𝑖𝑗,𝑡

√ℎ𝑖𝑖,𝑡√ℎ𝑗𝑗,𝑡
                                                         (4) 

and the BEKK model thus accommodates dynamic conditional correlations as opposed to the 

Constant Conditional Correlations model. The BEKK model is also viewed as an 

improvement to the VECH model, as the number of parameters to be estimated is reduced 

and the positive definiteness of 𝐻𝑡 is ensured provided that WW   is positive definite (Terrell 

and Fomby, 2006), and to the Dynamic Conditional Correlation model (Boldanov et al., 

2016), since consistency and asymptotic normality of the estimated parameters of the latter 

model have not yet been established (Caporin and McAleer, 2012).  

However, the parameters of the BEKK model cannot be easily interpreted, and their net 

effects on the future variances and covariances cannot be easily observed (Tse and Tsui, 

2002). Moreover, the BEKK model is problematic with regards to the existence of its 

underlying stochastic processes, regularity conditions, and asymptotic properties (Allen and 

McAleer, 2017). The model most commonly used in practice instead is the first-order 

Diagonal BEKK model (Ledoit et al., 2003), which addresses the aforementioned issues. In 



this model both parameter matrices A and B are diagonal and therefore their off-diagonal 

elements are all equal to zero. Consequently, under the Diagonal BEKK model, the number 

of parameters is considerably decreased while maintaining the positive definiteness of 𝐻𝑡 

(Terrell and Fomby, 2006). Furthermore, the QMLE of the parameters of the Diagonal BEKK 

model are consistent and asymptotically normal, and hence statistical inference on testing 

hypotheses is valid (Allen and McAleer, 2017). 

For comparison purposes, next the bivariate forms of both models are presented. The 

unrestricted BEKK model in bivariate form is written as 

(
ℎ11,𝑡 ℎ12,𝑡

ℎ21,𝑡 ℎ22,𝑡
) = 𝑊′𝑊 + (

𝑎11 𝑎21

𝑎12 𝑎22
) (

𝜀1,𝑡−1
2 𝜀1,𝑡−1𝜀2,𝑡−1

𝜀1,𝑡−1𝜀2,𝑡−1 𝜀2,𝑡−1
2 ) (

𝑎11 𝑎12

𝑎21 𝑎22
)

+ (
𝑏11 𝑏21

𝑏12 𝑏22
) (

ℎ11,𝑡−1 ℎ12,𝑡−1

ℎ21,𝑡−1 ℎ22,𝑡−1
) (

𝑏11 𝑏12

𝑏21 𝑏22
) 

Hence, we have that 

ℎ11,𝑡 = 𝑤11
2 + 𝑎11

2 𝜀1,𝑡−1
2 + 2𝑎11𝑎21𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎21

2 𝜀2,𝑡−1
2 + 𝑏11

2 ℎ11,𝑡−1 + 2𝑏11𝑏21ℎ12,𝑡−1

+ 𝑏21
2 ℎ22,𝑡−1 

ℎ22,𝑡 = 𝑤12
2 + 𝑤22

2 + 𝑎12
2 𝜀1,𝑡−1

2 + 2𝑎12𝑎22𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎22
2 𝜀2,𝑡−1

2 + 𝑏12
2 ℎ11,𝑡−1

+ 2𝑏12𝑏22ℎ12,𝑡−1 + 𝑏22
2 ℎ22,𝑡−1 

ℎ12,𝑡 = ℎ21,𝑡 = 𝑤12𝑤11 + 𝑎11𝑎12𝜀1,𝑡−1
2 + (𝑎12𝑎21 + 𝑎11𝑎22)𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑎21𝑎22𝜀2,𝑡−1

2 +

𝑏11𝑏12ℎ11,𝑡−1 + (𝑏12𝑏21 + 𝑏11𝑏22)ℎ12,𝑡−1 + 𝑏21𝑏22ℎ22,𝑡−1. 

As none of the above single equations solely possesses its own parameters, interpretation of 

the parameters could be misleading even in the case of only two time series (Terrell and 

Fomby, 2006). On the other hand, the bivariate form of the Diagonal BEKK model is given 

by 

ℎ11,𝑡 = 𝑤11
2 + 𝑎11

2 𝜀1,𝑡−1
2 + 𝑏11

2 ℎ11,𝑡−1, 

ℎ22,𝑡 = 𝑤11
2 + 𝑤22

2 + 𝑎22
2 𝜀2,𝑡−1

2 + 𝑏22
2 ℎ22,𝑡−1 



ℎ12,𝑡 = 𝑤11𝑤22 + 𝑎11𝑎22𝜀1,𝑡−1𝜀2,𝑡−1 + 𝑏11𝑏22ℎ12,𝑡−1. 

It can be easily noticed that in the case of the Diagonal BEKK model the number of 

parameters to be estimated is significantly reduced. Therefore, in this study, the Diagonal 

BEKK model is employed in order to investigate volatility dynamics between Bitcoin and 

Ether. The model parameters are estimated by the maximum likelihood approach under the 

multivariate normal and multivariate Student's t error distributions using the BFGS algorithm. 

The dynamic conditional correlation between Bitcoin and Ether is then calculated as 

𝑟𝑡 =
ℎ12,𝑡

√ℎ11,𝑡√ℎ22,𝑡
,                                                          (5) 

where ℎ11,𝑡 is the conditional variance of Bitcoin, ℎ22,𝑡 is the conditional variance of Ether, 

and ℎ12,𝑡 is their conditional covariance. 

The optimal portfolio weights are also constructed, subject to a no-shorting constrain, 

following Kroner and Ng (1998). The optimal weight of Bitcoin in a one-dollar portfolio 

consisting only of Bitcoin and Ether is  

𝑤12,𝑡 =
ℎ22,𝑡−ℎ12,𝑡

ℎ11,𝑡−2ℎ12,𝑡+ℎ22,𝑡
, if 0 ≤ 𝑤12,𝑡 ≤ 1.                                (6) 

Finally, following Dey and Sampath (2018), the dynamic long/short hedge ratio between 

Bitcoin and Ether is constructed as 

𝛽12,𝑡 =
ℎ12,𝑡

ℎ22,𝑡
.                                                          (7) 

 

4 Results 

Figure 1 illustrates the prices of Bitcoin and Ether. It can be noticed that although the prices 

of both cryptocurrencies would increase slowly until the beginning of 2017, there was 

considerable price appreciation from the second quarter of 2017 onwards, increasing the 

opportunities for investment and speculation. This indicates that the two cryptocurrencies 

seem to follow a similar pattern and could be correlated. Indeed, the Pearson correlation 



coefficient which measures the linear correlation between Bitcoin and Ether price returns is 

positive and equal to 0.2507, and significantly different from zero at any conventional level
4
. 

 

 

(i) Bitcoin                                                    (ii) Ether 

Fig. 1 Daily closing prices of Bitcoin and Ether (in US Dollars). 

 

Table 1 (Panel A) presents descriptive statistics for the price returns of the two 

cryptocurrencies. The average price returns are positive for both Bitcoin and Ether and equal 

to 0.4373% and 0.6889% with a standard deviation of 3.9092% and 8.5037%, respectively. 

Furthermore, the price returns of both cryptocurrencies are leptokurtic as a result of 

significant excess kurtosis - with Bitcoin exhibiting smaller kurtosis than Ether - and 

negatively skewed suggesting that it is more likely to observe large negative returns. 

Moreover, the Jarque-Bera test results confirm the departure from normality, while the test 

results for conditional heteroskedasticity suggest that ARCH effects are present in the price 

returns of both cryptocurrencies. We can thus proceed with bivariate GARCH modelling to 

model the conditional variances and covariance of the price returns of Bitcoin and Ether. 

Furthermore, the results of both unit root tests (Table 1, Panel B) suggest that stationarity is 

ensured. Consequently, the Bitcoin and Ether price returns are appropriate for further 

analysis. 

                                            
4
 The Spearman rank-order correlation coefficient, which is a nonparametric measure of correlation, was also 

found positive and significantly different from zero at all the conventional levels, but equal to 0.1985. 
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Table 1 Descriptive statistics and unit roots tests for the price returns. 

 

Note: *** significant at the 1% level. 

 

The estimation results of the Diagonal BEKK model under the multivariate normal and 

multivariate Student's t error distributions are reported in Tables 2 and 3, respectively. It can 

be noticed that in comparison with the results obtained under the multivariate normal 

distribution, the log-likelihood value is increased and the values of all the three information 

criteria used in this study (Akaike, Schwarz, and Hannan–Quinn) are decreased under the 

multivariate Student's t error distribution. The estimated model under the multivariate 

Student's t error distribution is thus preferred. We notice that the estimated value of the 

GARCH coefficient, in particular, is equal to 0.8359 and 0.7583 for Bitcoin and Ether, 

respectively, indicating a relatively high degree of volatility persistence for both 

cryptocurrencies, with higher volatility persistence displayed in the Bitcoin market, though. 

Moreover, the ARCH and GARCH coefficients are highly significant for both 

cryptocurrencies. The significance of the estimated ARCH coefficients suggests that 

news/shocks in Bitcoin (Ether) are of great importance for Bitcoin's (Ether's) future volatility, 

 Bitcoin Ether 

Panel A: Descriptive statistics 

Observations 892 892 

Mean 0.004373 0.006889 

Median 0.003306 0.000000 

Maximum 0.225119 0.412337 

Minimum -0.207530 -1.302106 

Std. Dev. 0.039092 0.085037 

Skewness -0.114590 -3.694999 

Kurtosis 8.910433 67.17186 

JB 1300.303*** 155083.1*** 

ARCH(1) 48.84901*** 40.73491*** 

ARCH(5) 61.68204*** 90.48128*** 

Panel B: Unit root test statistics 

ADF -29.35884*** -32.46530*** 

PP -29.35593*** -32.36005*** 



while the significance of the estimated GARCH coefficients indicates that the persistence of 

shocks also affects the two cryptocurrencies' future volatility. Similar results are obtained for 

the two cryptocurrencies' conditional covariance which is significantly affected by cross 

products of previous news/shocks and previous covariance terms
5
.  

 

Table 2 Diagonal BEKK model parameter estimates under multivariate normal error distribution. 

Panel A  

 𝐶 𝑊 𝐴 𝐵 

Bitcoin 0.002796*** 

(0.0005) 

0.000025*** 

(0.0000) 

0.000016*** 

(0.0036) 

0.407807*** 

(0.0000) 

 0.920444*** 

(0.0000) 

 

Ether 0.003900** 

(0.0279) 

 0.000234*** 

(0.0000) 

 0.467085*** 

(0.0000) 

 0.873196*** 

(0.0000) 

Panel B        

 LL 3014.193 SIC -6.719916 𝑄11
2 (15) 

5.2398 

(0.990) 
 

 AIC -6.768452 HQ -6.749899 𝑄22
2 (15) 

12.014 

(0.678) 
 

Notes: ** and *** indicate significance at the 5% and 1% levels, respectively. The p-values are 

presented in brackets. 𝑄11
2  and 𝑄22

2  are the Ljung-Box portmanteau test statistics for serial correlation 

in the univariate squared standardised residuals of Bitcoin and Ether, respectively.  

Conditional variance equations with substituted coefficients: 

ℎ11,𝑡 = 2.5362𝑒−05 + 0.1663𝜀1,𝑡−1
2 + 0.8472ℎ11,𝑡−1 

ℎ22,𝑡 = 0.0002 + 0.2182𝜀2,𝑡−1
2 + 0.7625ℎ22,𝑡−1 

ℎ12,𝑡 = 1.6115𝑒−05 + 0.1905𝜀1,𝑡−1𝜀2,𝑡−1 + 0.8037ℎ12,𝑡−1 

 

Table 3 Diagonal BEKK model parameter estimates under multivariate Student's t error distribution. 

Panel A  

 𝐶 𝑊 𝐴 𝐵 

Bitcoin 0.002680*** 

(0.0000) 

0.000018** 

(0.0190) 

0.000009 

(0.5621) 

0.541649*** 

(0.0000) 

 0.914258*** 

(0.0000) 

 

Ether 0.001302 

(0.3314) 

 0.000340*** 

(0.0060) 

 0.622328*** 

(0.0000) 

 0.870809*** 

(0.0000) 

  t-Distribution 

(Degrees of Freedom) 

2.686224*** 

(0.0000) 

   

Panel B        

                                            
5 It is also worth mentioning that an asymmetric Diagonal BEKK model under the multivariate Student's t error 

distribution was also employed but the asymmetric effects between good and bad news were found statistically 

insignificant for both Bitcoin and Ether and, hence, these results are not reported here as the standard Diagonal 

BEKK model is preferred. 



 LL 3225.489 SIC -7.188162 𝑄11
2 (15) 

4.7154 

(0.994) 
 

 AIC -7.242092 HQ -7.221477 𝑄22
2 (15) 

12.317 

(0.655) 
 

Notes: ** and *** indicate significance at the 5% and 1% levels, respectively. The p-values are 

presented in brackets. 𝑄11
2  and 𝑄22

2  are the Ljung-Box portmanteau test statistics for serial correlation 

in the univariate squared standardised residuals of Bitcoin and Ether, respectively.  

Conditional variance equations with substituted coefficients: 

ℎ11,𝑡 = 1.7683𝑒−05 + 0.2934𝜀1,𝑡−1
2 + 0.8359ℎ11,𝑡−1 

ℎ22,𝑡 = 0.0003 + 0.3873𝜀2,𝑡−1
2 +  0.7583ℎ22,𝑡−1 

ℎ12,𝑡 = 9.0222𝑒−06 + 0.3371𝜀1,𝑡−1𝜀2,𝑡−1 + 0.7961ℎ12,𝑡−1  

 

The plots of the conditional variances and covariance as well as the plot of the conditional 

correlations of the price returns of Bitcoin and Ether when using the Diagonal BEKK model 

under the multivariate Student's t error distribution are depicted in Figures 2 and 3. It can be 

noticed from Figure 2 that overall Ether exhibits higher conditional volatility than Bitcoin. 

Moreover, from the evolution of the conditional volatility of Bitcoin, there are few distinct 

episodes in 2017 that emerge from the plot, where the Bitcoin conditional volatility series has 

reached unprecedented levels. More specifically, three important spikes which seem to be 

related to the effects of the Bitcoin hard fork, China banning Bitcoin trading, and the 

announcement of the CME Group Inc. to launch Bitcoin futures, taking place in July, 

September, and December 2017, respectively, are observed. On the other hand, for the Ether 

price volatility, we observe two distinct spikes around June 2016 and February 2017, which 

seem to be associated with the effects of the Ether hard fork and the formation of the 

Enterprise Ethereum Alliance, respectively. Furthermore, the conditional covariance between 

the two cryptocurrencies, which measures the association between Bitcoin and Ether, is time-

varying and mostly positive, while the highest peak in the conditional covariance of the two 

cryptocurrencies is observed in September 2017 and can be associated with China banning 

Bitcoin trading and initial coin offering. Yet, the conditional correlation plot (Figure 3) 

confirms time-varying conditional correlations between Bitcoin and Ether, with the dynamic 



correlation between the two cryptocurrencies fluctuating in both positive and negative 

regions, although positive correlations mostly prevail. More specifically, Figure 3 shows that 

the conditional correlation between the price returns of Bitcoin and Ether ranges from -0.70 

to 0.96, suggesting that checking the unconditional correlation only is not adequate.  

 

 

Fig. 2 Conditional Variances and Covariance 

 

 

Fig. 3 Conditional Correlations 

 



Finally, the average hedge ratio and average optimal portfolio weight from the Diagonal 

BEKK model under the Student's t error distribution are reported in Table 5. The average 

value of the hedge ratio between Bitcoin and Ether is 0.42, suggesting that a $1 long position 

in Bitcoin can be hedged for 42 cents with a short position in Ether. In addition, the average 

optimal weight for the Bitcoin/Ether portfolio is 0.82, suggesting that for a $1 portfolio, 82 

cents should be invested in Bitcoin and 18 cents should be invested in Ether on average.
6
 

 

Table 5 Hedge ratio and portfolio weight. 

 Mean 

Panel A: Hedge ratio 

Bitcoin/Ether 0.423314 

Panel B: Portfolio weight 

Bitcoin/Ether 0.816894 

 

 

5 Conclusions 

By employing a bivariate Diagonal BEKK model, this study investigated the volatility 

dynamics of the two largest cryptocurrencies in terms of market capitalisation, namely 

Bitcoin and Ether. It was found that the price returns of both cryptocurrencies are 

heteroskedastic, a finding which is consistent with previous studies, and that news/shocks 

about the two cryptocurrencies as well as their persistence are of great importance for the two 

cryptocurrencies' future volatility, while the estimated model under the multivariate Student's 

t error distribution is preferred. It was also found that the two cryptocurrencies' volatility is 

responsive to major news. Furthermore, the bivariate framework has helped us examine not 

only the two cryptocurrencies' individual conditional variances but also the movements of 

their conditional covariance and correlation. More specifically, the two cryptocurrencies' 

conditional covariance was found to be significantly affected by both cross products of 

                                            
6
 It should be noticed that the selection of models affects the estimated hedge ratios and optimal portfolio 

weights (Kroner and Ng, 1998). 



previous news/shocks and previous covariance terms, a result that supports the findings of 

previous studies on the interconnectedness of cryptocurrencies. It was also shown that time-

varying conditional correlations between Bitcoin and Ether exist and fluctuate in both 

positive and negative regions, although positive correlations prevail, while the highest 

correlation was observed in September 2017 when China banned digital currency trading. 

Finally, it was shown that Ether can be an effective hedge against Bitcoin, while the analysis 

of optimal portfolio weights suggested that Bitcoin should outweigh Ether.  
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