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Abstract  

Long range corrections (lrc) for the potential energy and for the force in planar liquid-vapor 

interface simulations are considered for spherically symmetric interactions. First, it is stated 

that for the Lennard-Jones (LJ) fluid the lrc for the energy u of Janeček [J. Phys. Chem. B 

110, 6264 (2006)] is the same as that of Lotfi et al. [Mol. Simul. 5, 233 (1990)]. Second, we 

present the lrc for the force F for any spherically symmetric interaction as a derivative of u 

plus a surface integral over the cut-off sphere by using the extended Leibniz rule of Flanders 

[Am. Math. Monthly 80, 615 (1973)]. This F corrects the incomplete lrc 1F of Lotfi et al. 

and agrees with the result of Janeček obtained by direct averaging of the forces. Third, we 

show that the molecular dynamics (MD) results for the surface tension  of the LJ fluid with 

size parameter  obtained by Werth et al. [Physica A 392, 2359 (2013)] with the lrc F of 

Janeček and a cut-off radius rc = 3 agree with the results of Mecke et al. [J. Chem. Phys. 

107, 9264 (1997)] obtained with the lrc 1F of Lotfi et al. and rc = 6.5  within -0.4 to +1.6 

%. Moreover, using only the MD results for  of Werth et al. we obtain for the LJ fluid a new 

surface tension correlation which also represents the -values of Mecke et al. within  0.7%. 

The critical temperature resulting from the correlation is Tc = 1.31766 and is in very good 

agreement with Tc,ref  = 1.32 of the reference equation of state for the LJ fluid given by Thol et 

al. [J. Phys. Chem. Ref. Data 45, 023101 (2016)].  
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I. INTRODUCTION 

     Early studies
1-6 

of the planar liquid-vapor interface of the Lennard-Jones (LJ) fluid were 

concerned with the structure of the interface and presented also results
1,2,4,5,6

 for the surface 

tension . In the simulation studies
2-5

 the long range parts of the energies or forces were 

neglected beyond a cut-off radius rc as is usually done in simulations of homogeneous 

systems; in Ref. 4 and 5 the cut-off radius is explicitly given as rc = 2.5 with  being the LJ 

size parameter. It was, however, pointed out in a Monte Carlo study of adsorption by Rowley, 

Nicholson and Parsonage
7 

that for inhomogeneous systems the effects of the long range 

interactions do not cancel out but can be included by appropriate corrections. For the LJ 

liquid- vapor interface it was found by Lotfi, Vrabec and Fischer
8 

that the dew densities from 

interface simulations with rc = 2.5 are mostly too high by a factor of 3 in comparison with 

those obtained via bulk fluid simulations.  

     Hence, in Ref. 8 a long range correction (lrc) for the energy u was derived for the liquid- 

vapor interface and therefrom a lrc for the force 1F = u was obtained by differentiation of 

u. By using the force correction 1F and enlarging rc up to 5.0 direct MD simulations of 

the LJ liquid-vapor interface with 1,372 particles brought the orthobaric densities close to 

those obtained from bulk fluid simulations.
8
 In a subsequent article by Mecke, Winkelmann, 

and Fischer
9
 MD simulations were made for the LJ liquid-vapor interface using 1F in order 

to obtain improved orthobaric densities and also the surface tensions  including a tail 

correction tail. In that article
9 

three
 
set-ups with different particle numbers N and cut-off radii 

rc were used: a) N = 1,372, rc = 2.5, b) N = 1,372, rc = 5.0, and c) N = 2,048, rc = 6.5. It 

was found that for the low temperature T = 0.7 (reduced by kB/ with kB being the Boltzmann 

constant and  the LJ energy parameter) the surface tension  increased by 7.6% in going from 

a) to b) and by 0.5% in going from b) to c). For the high temperature T = 1.10 the surface 
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tension increased by 78% in going from a) to b) and decreased by 1.35% in going from b) to 

c). The strong variation of the results in going from rc = 2.5 to rc = 5.0 is somewhat 

surprising and indicates an only weak effect of the lrc 1F. Hence, in Ref. 9 it was concluded 

“In order to obtain reliable values for the surface tension, cut-off radii of at least 5 molecular 

diameters supplemented by a tail correction are required”. It will be shown below, that the 

results for  obtained in Ref. 9 with N = 2048 and rc = 6.5 including tail agree within -0.4 to 

+1.6 % with recent MD results obtained by Werth, Lishchuk, Horsch, and Hasse
10

 which we 

believe to be presently the most reliable simulation results for the LJ liquid-vapor interface. It 

should still be mentioned that Mecke, Winkelmann, and Fischer
11

 also performed MD 

simulations for liquid-vapor interfaces of the LJ mixture argon + methane. In view of the 

weak effect of the lrc 1F in Ref. 9 such a correction was not used anymore in the mixture 

simulations
11

 but a rather large cut-off radius rc = 7.0 Ar = 6.38 CH4 was used for all 

interactions. 

    Several years after Ref. 8 and 9 had appeared Janeček published an interesting article
12

 on 

lrcs for the energy and the force in inhomogeneous simulations. The lrc for the energy given 

in Ref. 12 is the same as was already given in Ref. 8 which was overlooked by Janeček and 

subsequent authors. The merit of Janeček
12 

is that he derived a lrc for the force F by directly 

averaging over the forces from outside the cut-off sphere. Based on his result for F Janeček
 

pointed out that the lrc for the force 1F = u derived in Ref. 8 and used in Ref. 8 and 9 is 

incomplete. From the physical point of view this becomes immediately evident by looking at 

the upper part of Fig. 1 in Ref. 12.  

     The present paper is organized such that in Section II the lrcs for the energy and for the 

force as given by Lotfi, Vrabec and Fischer
8
 and by Janeček

12 
are discussed in detail. In 

particular, we explore the mathematical reason for the incomplete lrc 1F given in Ref. 8 by 
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using an extended version of the Leibniz rule for a three-dimensional integral with a 

parameter.
13-16

 In Sec. III we compare the MD results for the surface tension  obtained by 

Mecke, Winkelmann and Fischer
9 

with the recent MD results obtained by Werth, Lishchuk, 

Horsch, and Hasse.
10

 Moreover, we suggest for the LJ fluid an improved correlation for the 

surface tension based only on the MD data of Ref. 10 and compare the critical temperature Tc 

with the value from the recent reference equation of state of the LJ fluid.
20

                 

II.  LONG RANGE CORRECTIONS 

     We consider only spherically symmetric intermolecular potentials and a planar liquid-

vapor interface. If not stated otherwise we use the LJ potential u(r) with the energy parameter 

, the size parameter , and r being the intermolecular distance  

𝑢(𝑟) = 4𝜀[(𝜎 𝑟)⁄ 12
 −  (𝜎 𝑟)⁄ 6

].                                (1) 

Henceforth the following reduced quantities are used: intermolecular distance r* = r/, spatial 

coordinate perpendicular to the interface z* = z/, energy u* = u/, force component Fz* = 

Fz/(/), temperature T* = kBT/, density * = 3
, and surface tension * = 2

/. For 

convenience, the stars are omitted where no confusion can occur.  

     In molecular simulations a cut-off radius rc has to be introduced beyond which the 

potential or the force are set equal to zero.  Hence, in order to obtain the interface properties 

of the liquid- vapor interface of the LJ fluid with the full potential given in Eq. (1), Lotfi, 

Vrabec and Fischer
8
 derived lrcs for the potential energy and the force. Assuming a 

cylindrical coordinate system with the z-axis being perpendicular to the interface they 

obtained the lrc u to the potential energy at a point r1 as                                                                                   

Δ𝑢(𝐫1)  =  ∫ 𝑢(𝑟12) (𝐫2)
𝑟12  > 𝑟𝑐

𝒅𝐫2,                                      (2) 
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where u(r12) is the intermolecular potential between particles at r1 = (x1, y1, z1) and r2 = (x2, y2, 

z2) with r12 = r2 - r1, r12 = r12 and z12 = z2 - z1. For the special case of the LJ potential Eq. (2) 

yielded
8
 for the lrc u(z1) at a position z1 

Δ𝑢(𝑧1) 8𝜋  =  ∫ 𝑑𝑧12

−𝑟𝑐

−∞

𝜌(𝑧2)(𝑧12
−10/10 − ⁄ 𝑧12

−4/4)  +  ∫ 𝑑𝑧12

𝑟𝑐

−𝑟𝑐

𝜌(𝑧2)(𝑟𝑐
−10/10 − 𝑟𝑐

−4/4)  

+ ∫ 𝑑𝑧12𝜌(𝑧2)(𝑧12
−10/10 −  𝑧12

−4/4).
∞

𝑟𝑐

                                                              (3) 

Therefrom, these authors
8
 obtained by differentiation of Eq, (3) on the basis of the usual one-

dimensional Leibniz rule for the lrc of the z-component of the force 1Fz(z1) as 

Δ1𝐹𝑧(𝑧1)/8𝜋 =  − ∫ 𝑑𝑧12𝜌(𝑧2)(𝑧12
−11 −  𝑧12

−5)
−𝑟𝑐

−∞

  −  ∫ 𝑑𝑧12𝜌(𝑧2)(𝑧12
−11 −  𝑧12

−5),            (4)
∞

𝑟𝑐

 

which was used in Ref. 8 and 9. 

     Several years later Janeček
12 

also
 
derived lrcs for the potential energy and the force. Let us 

first consider his lrc for the potential energy given in his Eqs. (11) and (12). The only 

difference between his formulas and lrc for the potential energy of Ref. 8, given above as Eq. 

(3), is that Eq. (3) presents the lrc as one-dimensional integrals whilst Janeček
12

 uses 

summations over strips. But this formal difference should not have a relevant impact on the 

results. A point of concern, however, is that Janeček
12

 did not mention the correct lrc for the 

energy from Ref. 8, the above Eq. (3), but has given a lrc for the potential energy in his Eq. 

(16) in which the upper line, w() = 0 for  ≤ rc, is wrong. He claims that this lrc for the 

energy in Monte Carlo simulations is equivalent to the lrc for the force in Ref. 9. 

Unfortunately, this statement together with the caption of Fig. 2 in Ref. 12 can be 

misunderstood in the sense that the wrong Eq. (16) in Ref. 12 is due to Mecke, Winkelmann, 

and Fischer
9
 which definitely is not the case.  
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     The merit of Janeček,
12

 as already mentioned, is that he also gave a lrc for the force. We 

remind that in Ref. 8 the lrc for the force was derived from u by interchanging 

differentiation and integration following the usual Leibniz rule for a one-dimensional integral 

with a parameter. Janeček, however, used a different route. He first derived from the LJ 

potential u(r) the full force in z-direction Fz(z1) at a position z1 resulting in the algebraic 

expression 

𝐹𝑧(𝑧1) =  −24(𝑧2 −  𝑧1)(2𝑟12
−14  −  𝑟12

−8).                                     (5) 

Thereafter, he averaged the long range contributions of the forces similar as it is done in the 

above Eq. (2) for the potential energy, so that he avoided the interchange of differentiation 

and integration. Thus he obtained for the lrc for the force 

                              ∆𝐹𝑧(𝑧1)  =  Δ1𝐹𝑧(𝑧1)  + Δ2𝐹𝑧(𝑧1),                                            (6) 

with 1Fz(z1) given by the present Eq. (4). The second term 2Fz(z1) was given by Janeček
12 

in 

his Eq. (13) and in the first line  of Eq. (14) (for the case  ≤ rc) and can be written in integral 

form as 

Δ2𝐹𝑧(𝑧1)  =  −2𝜋𝑢(𝑟𝑐) ∫ 𝑑𝑧12𝜌(𝑧2

𝑟𝑐

−𝑟𝑐

)𝑧12,                                                  (7) 

where u(rc) is the LJ potential at r = rc.  

      The difference between the result of Ref. 12 and the result of Ref. 8 is in the additional 

term 2Fz(z1) which accounts for the lrc contribution at z1 from those particles which are 

outside the cut-off radius rc and have a z-coordinate z2 with – rc ≤ z12  ≤ rc (see upper part of 

Fig. 1 in Ref. 12). As these particles have to contribute to the lrc for the force, the statement of 

Janeček that the lrc for the force used in Ref. 9 (taken from Ref. 8) is incomplete, is definitely 

correct.    
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      When it became clear that the lrc for the force derived in Ref. 8 is incomplete, the 

challenge arose to understand the difference between 1Fz(z1) from Ref. 8 and Fz(z1) from 

Ref. 12. For that purpose, we use the generalization of the Leibniz rule to the case of a three-

dimensional space in the form given by Flanders.
13

 He considers a fluid flowing through a 

region of space. The Euler description gives the velocity v(x,t) at time t at position x. Suppose 

now a domain Dt that moves with the flow and a function G(x,t) on the region of flow. For 

that case, Flanders
13,14 

proved the following formula which was already known in continuum 

mechanics
15,16

  

𝑑

𝑑𝑡
∭ 𝐺(𝒙, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑧 =  ∬ 𝐺𝒗 ∙ 𝑑𝝈 +  ∭

𝑑𝐺

𝑑𝑡𝐷𝑡𝜕𝐷𝑡𝐷𝑡

𝑑𝑥𝑑𝑦𝑑𝑧.                     (8) 

Here d = n d = (nx, ny, nz) d  is the outward directed vectorial area element on the closed 

surface Dt of the domain Dt. Graphical representations of the considered situation are given 

in Ref. 13 and in Ref. 14. Moreover we mention that in these references the function G(x,t) is 

called F(x,t) which we changed in order to avoid confusion with the force terms in the present 

paper.      

     If we apply now Eq. (8) to our case with planar geometry and any spherically symmetric 

interaction u(r12),  , then G(x,t) is u(r12)(r2) with r12 = r2 - r1,  r1 =  (x1 = 0, y1 = 0, z1), and r2 

=  (x2, y2, z2), t = z1, x = r2, the domain Dt is given by r12 > rc, and the velocity v is the unit 

vector in the z-direction v = ez. Therewith vd  =  nz d  and  in these notations the Leibniz 

rule takes the form    

𝜕

𝜕𝑧1
∫ 𝑢(𝑟12)𝜌(𝒓2)𝑑𝒓2  =   ∫

𝜕𝑢(𝑟12)

𝜕𝑧1
𝜌(𝒓2)𝑑𝒓2  +  ∫ 𝑢(𝑟𝑐)𝜌(𝒓2)𝑛𝑧𝑑𝜎.    (9)

𝑟12=𝑟𝑐

 
𝑟12 >𝑟𝑐𝑟12 >𝑟𝑐

  

Let us first discuss the meaning of this equation for the LJ fluid. The expression on the lhs 

corresponds to the negative lrc -1Fz(z1) from Ref. 8 given in the present Eq. (4), whilst the 
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first integral on the rhs corresponds to the negative lrc -Fz(z1) from Ref. 12 given in the 

present Eq. (6). The difference between the two lrcs obtained in Ref 8 and Ref. 12 is 

represented by the second integral on the rhs of Eq. (9). This can still be rewritten in simpler 

form where we have to keep in mind that the integration is made outside the cut-off sphere 

and hence the vector n is directed inside the cut-off sphere yielding nz = - z12/rc. Therewith 

one obtains 

∫ 𝑢(𝑟𝑐)𝜌(𝒓2)𝑛𝑧𝑑𝜎 =  − 𝑢(𝑟𝑐)
𝑟12=𝑟𝑐

∫ 𝜌(𝒓2)
𝑧12

𝑟𝑐
𝑑𝜎.    (10)

𝑟12=𝑟𝑐

 

Finally, changing the integration over the surface area d  to the integration over z2 by using 

d = 2 rc dz2 and replacing dz2 by dz12 yields 

− 𝑢(𝑟𝑐) ∫ 𝜌(𝒓2)
𝑧12

𝑟𝑐
𝑑𝜎 =  −2𝜋𝑢(𝑟𝑐) ∫ 𝑑𝑧12

𝑟𝑐

−𝑟𝑐

𝜌(𝑧2)𝑧12,         (11) 
𝑟12=𝑟𝑐

 

which corresponds to the term 2Fz(z1) obtained by Janeček
12 

for the LJ-fluid and is given 

above
 
in Eq. (7). Summarizing, we obtain from Eq. (9) after rearranging the sequence of the 

terms  

− ∫
𝜕𝑢(𝑟12)

𝜕𝑧1
𝜌(𝒓2)𝑑𝒓2

𝑟12 >𝑟𝑐

= − 
𝜕

𝜕𝑧1
∫ 𝑢(𝑟12)𝜌(𝒓2)𝑑𝒓2 −

𝑟12 >𝑟𝑐

2𝜋𝑢(𝑟𝑐) ∫ 𝑑𝑧12

𝑟𝑐

−𝑟𝑐

𝜌(𝑧2)𝑧12.  (12) 

We emphasize that Eq. (12) is valid for all spherically symmetric interactions u(r) and planar 

interfaces. It means that the lrc for the force can be obtained as negative derivative of the lrc 

for the potential energy plus a term with an integral over the cut-off sphere.  
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    Application of Eq. (12) to the LJ fluid yields the lrc for the force Fz(z1) in integral form as  

∆𝐹𝑧(𝑧1)/2𝜋 =  − 4 ∫ 𝑑𝑧12𝜌(𝑧2)(𝑧12
−11 −  𝑧12

−5)
−𝑟𝑐

−∞

  −  𝑢(𝑟𝑐) ∫ 𝑑𝑧12𝜌(𝑧2

𝑟𝑐

−𝑟𝑐

)𝑧12     

−  4 ∫ 𝑑𝑧12𝜌(𝑧2)(𝑧12
−11 −  𝑧12

−5),                                                                  (13)
∞

𝑟𝑐

 

which is in agreement with Eq. (6) in combination with Eqs. (4) and (6).  

     Eq. (12) can e.g.also be used to get the lrc for the force in integral form for the Mie n-m 

potentials which were considered recently in Ref. 17.      

III. SURFACE TENSION EQUATION FOR THE LENNARD-JONES FLUID  

     After the disagreement between 1Fz(z1) from Ref. 8 and Fz(z1) from Ref. 12 has been 

clarified in the previous Section, it seems interesting to compare representative MD results for 

the LJ fluid obtained with either lrc for the force. The one source is the publication of Mecke, 

Winkelmann and Fischer
9
 from which we take the results obtained with 2,048 particles, the 

lrc 1Fz(z1) and rc = 6.5. The other source is the publication of Werth, Lishchuk, Horsch, and 

Hasse
10

 from which we take the results obtained with 300,000 particles, the lrc Fz(z1) and rc 

= 3.0.   

     The simulation results are compiled in Table I. Column 2 shows the simulation results S1 

from Ref. 9 and column 3 shows the simulation results S2 from Ref. 10. Direct comparison 

can be made for the temperatures T = 0.70 and T = 1.10. The relative differences S = (S1/S2 

– 1) x100 are shown in column 4 and amount – 0.4% at the low temperature and 1.6% at the 

high temperature which is quite satisfactory in view of the uncertainties of other simulation 

results.       
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     TABLE I. Comparison of surface tensions  for the LJ fluid from MD results
9,10

 and from 

correlation equations. S1: MD results from Ref. 9, S2: MD results from Ref. 10,  S (%) = 

(S1/S2 – 1)x100, C1: correlation results from Ref. 9,  C2: correlation results from Ref.10,  

C3: results from the present correlation Eq. (13) based only on the MD results from Ref.10.   

  T S1 
 S2 

 
S 

(%)
 

C1 C2  C3  

0.70 1.1452 (194)  1.150(4)  - 0.42 1.1451 1.1515 1.1534 

0.80   0.930(10)  0.9187 0.9249 0.9248 

0.85 0.8096(162)   0.8096 0.8152 0.8144 

0.90  0.707(8)  0.7034 0.7082 0.7070 

1.00  0.502(5)  0.5012 0.5034 0.5021 

1.10 0.3150 (122) 0.310 (4) 1.61 0.3150 0.3133 0.3129 

1.20  0.144(8)  0.1500 0.1434 0.1450 

1.25  0.075(4)  0.0787 0.0696 0.0726 

   

  Another point of interest are the correlation equations for the surface tension for which we 

use the equation given in the book of van der Waals and Kohnstamm
18

                                                        

𝛾𝐶𝑜𝑟𝑟 = 𝐴(1 −  𝑇 𝑇𝑐⁄ )𝑏 .                                      (14) 

In Ref. 9 the parameters A, Tc and b were obtained by a fit to the available three simulation 

results which gave A = 2.96019, Tc = 1.32521, b = 1.26415. In Ref. 10 the parameter Tc was 

taken from an external source
19 

as Tc = 1.3126 and A and b were obtained by a fit to the 

simulation results which gave A = 2.94 and b = 1.23. The surface tensions obtained from these 

two correlation equations are also contained in Table I as C1 (Ref. 9) and C2 (Ref. 10).  

Therefrom we learn that at the highest temperature T= 1.25 the correlation C2 yields a 

considerably too low value for the surface tension which can be attributed to the chosen 

critical temperature. Surprisingly, at that temperature the correlation C1 is closer to the 

simulation value S2 than C2. As a consequence, we made a least square fit using only all 
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simulation data of Ref. 10, Table 1 and 2, for 300,000 particles and obtained as correlation 

equation  

𝛾𝐶𝑜𝑟𝑟 = 2.97504(1 − 𝑇 1.31766⁄ )1.25065.                         (15)                          

The surface tensions obtained from this correlation equation are also contained in Table I as  

C3. First, we see that this correlation reproduces the simulation results S2 from Ref. 10 very 

well and also represents the S1 values of Ref. 9 within  0.7%. Moreover, we note that the 

obtained critical temperature Tc = 1.31766 is in very good agreement with the critical 

temperature Tc,ref = 1.32 in the reference equation of state for the Lennard-Jones fluid.
20 

  

 

IV.  CONCLUSIONS 

     First, it was stated that for the LJ fluid the lrc for the energy in Ref. 12 is the same as that 

given earlier in Ref. 8. Second, by using the Leibniz rule for the three-dimensional integral 

given by Flanders
13

 we detected the reason for the incomplete lrc for the force derived from 

the lrc for the energy in Ref. 8. Third, we found agreement between the surface tension results 

from Ref. 9 obtained with the incomplete force-lrc and a cut-off radius of 6.5 and those from 

Ref. 10 with the correct force-lrc within -0.4 to +1.6 %. Finally, we obtained a correlation 

equation for the surface tension of the LJ fluid by taking only MD data from Ref. 10. This 

correlation reproduces also the MD results of Ref. 9 for the surface tension within  0.7%. 

Moreover, the critical temperature resulting from the correlation is in very good agreement 

with that from the recent reference equation of state for the LJ fluid in Ref. 20.  
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