A core outcome set for aphasia treatment research: the ROMA consensus statement

WALLACE, Sarah J., WORRALL, Linda, ROSE, Tanya, LE DORZE, Guylaine, BREITENSTEIN, Caterina, HILARI, Katerina, BABBITT, Edna, BOSE, Arpita, BRADY, Marian, CHERNEY, Leora R., COPLAND, David, CRUICE, Madeline, ENDERBY, Pam, HOWE, Tami, KELLY, Helen, KIRAN, Swathi, LASKA, Ann-Charlotte, MARSHALL, Jane, NICHOLAS, Marjorie, PATTERSON, Janet, PEARL, Gill, ROCHON, Elizabeth, ROSE, Miranda, SAGE, Karen <http://orcid.org/0000-0002-7365-5177>, SMALL, Steven and WEBSTER, Janet

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/22567/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Supplementary Table 1

ROMA consensus meeting facilitators

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sarah J. Wallace</td>
<td>PhD BSpPath(Hons) GradCert Gerontology CPSP</td>
<td>Northwestern University</td>
<td>Speech Pathologist, Teaching and Research Academic, School of Health and Rehabilitation Sciences, The University of Queensland. Expertise: post-stroke aphasia rehabilitation, core outcome set development, stakeholder perspectives, consensus processes, ICF.</td>
</tr>
<tr>
<td>Linda Worral</td>
<td>PhD BS(Thy) FSPA</td>
<td></td>
<td>Speech Pathologist, Teaching and Research Academic, School of Health and Rehabilitation Sciences, The University of Queensland, Australia. Expertise: post-stroke aphasia rehabilitation, ICF, aphasia trial design and conduct, consumer perspective, aphasia rehabilitation guideline development.</td>
</tr>
<tr>
<td>Guylaine Le Dorze</td>
<td>Ph.D MSc (A)</td>
<td></td>
<td>Teaching and Research Academic, School of Speech-Language Pathology and Audiology, Faculty of Medicine, Université de Montréal. Expertise: post-stroke aphasia rehabilitation, participation, single-subject designs, qualitative methods.</td>
</tr>
<tr>
<td>Tanya Rose</td>
<td>PhD BSpPath(Hons) GradCert Higher Ed CPSP</td>
<td></td>
<td>Certified Practising Speech Pathologist and Teaching and Research Academic, School of Health and Rehabilitation Sciences, The University of Queensland. Expertise: Post-stroke aphasia rehabilitation, paediatric and adult language, accessible health information, mixed-methods research.</td>
</tr>
</tbody>
</table>

ROMA consensus panel

<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Institution</th>
<th>Expertise</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edna Babbitt</td>
<td>PhD CCC-SLP BC-ANCDS</td>
<td></td>
<td>Research Speech-Language Pathologist Assistant Research Professor, Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, USA & Shirley Ryan AbilityLab, Chicago, USA. Expertise: Post-stroke aphasia assessment and rehabilitation.</td>
</tr>
<tr>
<td>Arpita Bose</td>
<td>PhD MSc (Speech and Hearing) BSc (Audiology and Speech Rehabilitation)</td>
<td></td>
<td>Speech and Language Therapist, Teaching and Research Academic, School of Psychology and Clinical Language Sciences, University of Reading, Reading, UK. Expertise: Post-stroke aphasia assessment and rehabilitation, bilingualism, single subject experimental designs, quality of life issues in aphasia, SLT training in decision-making in aphasia.</td>
</tr>
<tr>
<td>Marian Brady</td>
<td>PhD BSc</td>
<td></td>
<td>Speech and language therapist, Director Stroke Rehabilitation Research, NMAHP Research Unit, Glasgow Caledonian University, Glasgow, Scotland. Expertise: Stroke rehabilitation, design, development and evaluation of complex multidisciplinary interventions, survey, mixed methods, systematic review, meta-analyses and the use of randomised controlled trial archives.</td>
</tr>
<tr>
<td>Caterina Breitenstein</td>
<td>PhD academic degrees in Clinical Psychology and Cognitive Neuroscience</td>
<td></td>
<td>Teaching and Research Academic, Dept. of Neurology, University of Muenster, Germany. Expertise: Development and national adaptations of communication outcome measures, clinical trials methodology, intervention studies in post-stroke aphasia rehabilitation.</td>
</tr>
<tr>
<td>Leora R. Cherney</td>
<td>PhD CCC-SLP BC-ANCDS, Research Scientist and Speech and Language Pathologist. Shirley Ryan AbilityLab (formerly the Rehabilitation Institute of Chicago) and Northwestern University, Chicago, IL USA.</td>
<td></td>
<td>Expertise: Post-stroke aphasia</td>
</tr>
<tr>
<td>David Copland</td>
<td>PhD BSpPath (Hons)</td>
<td></td>
<td>Speech Pathologist, Principal Research Fellow, School of Health & Rehabilitation Sciences and Centre for Clinical Research, The University of Queensland, Brisbane, Australia. Expertise: Post-stroke aphasia</td>
</tr>
<tr>
<td>Madeline Cruice</td>
<td>PhD BSpPath (Hons)</td>
<td></td>
<td>Registered Speech and Language Therapist, Reader, Teaching and Research Academic, School of Health Sciences, City University of London, London, UK.</td>
</tr>
<tr>
<td>Pam Enderby</td>
<td>PhD MBE DSc (Hons) MSc FRCSLT</td>
<td></td>
<td>Speech and Language Therapist, Professor Emeritus of Community Rehabilitation, University of Sheffield, Sheffield, UK. Expertise: Aphasia</td>
</tr>
<tr>
<td>Name</td>
<td>Qualifications/Designations</td>
<td>Expertise</td>
<td>Management/Other</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Deborah Hersh PhD MSc BSc(Hons) GradCert Higher Ed FSPA</td>
<td>Speech Pathologist, Teaching and Research Academic, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia. Expertise: Post-stroke aphasia rehabilitation, consumer perspective, aphasia rehabilitation guideline development.</td>
<td>assessment and rehabilitation, aphasia trial design and conduct, neuroimaging in aphasia.</td>
<td>Management, Clinical Evaluation of Interventions, RCTs, Psychometric Properties of Outcome Measures.</td>
</tr>
<tr>
<td>Katerina Hilari PhD MRCSLT MHPC</td>
<td>Psychologist, Registered Speech and Language Therapist, Teaching and Research Academic, School of Health Sciences, City, University of London, UK. Expertise: Outcome measurement development, validation and cultural adaptation, post-stroke aphasia rehabilitation, feasibility RCTs, clinical guideline development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tami Howe PhD MHSc BEd SLP(C)</td>
<td>Speech Pathologist and Teaching and Research Academic, School of Audiology and Speech Sciences, University of British Columbia, Vancouver, Canada. Expertise: Aphasia rehabilitation, ICF, accessibility, goal setting, social participation, impact of aphasia on family members.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Helen Kelly PhD MRCSLT</td>
<td>Registered Speech and Language Therapist, Teaching and Research Academic, Department of Speech and Hearing Sciences, University College Cork, Cork, Ireland. Expertise: Post-stroke aphasia assessment and management, single subject and RCT feasibility aphasia trial design and conduct, consumer perspective.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Swathi Kiran PhD CCC-SLP</td>
<td>Speech Language pathologist, Teaching and Research Academic, Professor, Associate Dean for Research Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA. Expertise: Aphasia rehabilitation, neuroimaging, bilingualism, single subject experimental design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ann-Charlotte Laska MD A/Professor</td>
<td>Department of Clinical Science Karolinska Institutet Danderyd Hospital, Sweden Expertise: Post-stroke aphasia, study design and conduct, RCT.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jane Marshall PhD Post Grad Diploma in Clinical Communication Studies BA FRCSLT</td>
<td>Registered Speech and Language Therapist, Teaching and Research Academic, School of Health Sciences, City, University of London, UK. Expertise: Post-stroke aphasia rehabilitation, the development and evaluation of novel treatments.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marjorie Nicholas PhD CCC-SLP</td>
<td>Professor and Interim Chair Dept. of Communication Sciences and Disorders, MGH Institute of Health Professions, Boston, MA, USA. Expertise: Aphasia rehabilitation, nonverbal cognition in aphasia, Life Participation Approach to Aphasia and community aphasia program design, ICAP design.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Janet Patterson PhD CCC-SLP ASHA Fellow</td>
<td>Chief, Audiology & Speech-Language Pathology Service, VA Northern California Health Care System Practicing Speech-Language Pathologist, Teaching and Research Academic. Expertise: Post-stroke aphasia rehabilitation, systematic reviews of</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gill Pearl MPhil Dip Hum Commun.</td>
<td>Certified practicing speech and language therapist in role as Chief Executive Officer of Speakeasy - specialist aphasia centre, UK. Expertise: Development and evaluation of novel approaches to providing long term aphasia support and therapy, facilitator of consumer involvement in research, feasibility studies, case series</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elizabeth Rochon PhD MSc (A) Reg CASLPO SLP(c)</td>
<td>Speech Pathologist, Teaching and Research Academic, Department of Speech-Language Pathology and Rehabilitation Sciences Institute, University of Toronto, Canada. Expertise: Post-stroke aphasia assessment and rehabilitation, development of aphasia treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miranda Rose PhD BSpath FSPA</td>
<td>Speech pathologist, Teaching and Research Academic, School of Allied Health, La Trobe University, Victoria, Australia. Expertise: Post-stroke aphasia rehabilitation, aphasia trial design and conduct, single subject designs, consumer perspective, aphasia rehabilitation guideline development.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Literature, single subject designs.</td>
<td>Studies, RCT design and conduct.</td>
<td>Studies, feasibility studies, single subject and RCT design, systematic reviews.</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------------------------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| **Karen Sage** PhD Dip DisHumComm BA (Hons) HCPC
Registered Speech and Language Therapist, MRCSLT; Teaching and Research Academic, Department of Allied Health Professions, Sheffield Hallam University, Sheffield, UK.
Expertise: Aphasia assessment and management, stroke rehabilitation, single case, case series, mixed methods. | **Steven L. Small** PhD MD
Professor of Neurology, University of California, Irvine
Expertise: Neurobiology of Language, Cognitive Neurology. | **Janet Webster** PhD MRCSLT
Registered Speech and Language Therapist, Teaching and Research Academic, Newcastle University, UK
Expertise: Post-stroke aphasia assessment and management, single subject design. |
Supplementary Table 2

OMIs (n=50) identified in scoping review and retained following application of the consensus-based criteria

<table>
<thead>
<tr>
<th>Construct</th>
<th>Outcome measurement instrument</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language</td>
<td>• The Comprehensive Aphasia Test (CAT) (1)</td>
</tr>
<tr>
<td></td>
<td>• The Western Aphasia Battery Revised (WAB-R) (AQ+LQ) (2)</td>
</tr>
<tr>
<td></td>
<td>• Therapy Outcome Measures (TOM) (3-5)</td>
</tr>
<tr>
<td></td>
<td>• The Aphasia Checklist (ACL) (6)</td>
</tr>
<tr>
<td></td>
<td>• Aachen Aphasia Test (AAT) (7)</td>
</tr>
<tr>
<td></td>
<td>• Aphasia Language Assessment Test (ALA) (8)</td>
</tr>
<tr>
<td></td>
<td>• The Thai Aphasia Language Performance Scales (ALPS) (9)</td>
</tr>
<tr>
<td></td>
<td>• Bilingual Aphasia Test (BAT) (10)</td>
</tr>
<tr>
<td></td>
<td>• The Boston Diagnostic Aphasia Examination (BDAE) (11)</td>
</tr>
<tr>
<td></td>
<td>• Ege Aphasia Test (12)</td>
</tr>
<tr>
<td></td>
<td>• Kentucky Aphasia Test (KAT) (13)</td>
</tr>
<tr>
<td></td>
<td>• Montreal-Toulouse Language Assessment Battery (MTL) (14)</td>
</tr>
<tr>
<td></td>
<td>• The Norsk Grunntest for Afasi (NGTA) (15)</td>
</tr>
<tr>
<td>Emotional well-being</td>
<td>• Communication Confidence Rating Scale for Aphasia (CCRSA) (16)</td>
</tr>
<tr>
<td></td>
<td>• Hospital Anxiety and Depression Scale (HADS) (17)</td>
</tr>
<tr>
<td></td>
<td>• Montgomery-Asberg Depression Rating Scale (MADRS) (18)</td>
</tr>
<tr>
<td></td>
<td>• Geriatric Depression Scale (GDS) 15 item / 30 item (19, 20)</td>
</tr>
<tr>
<td></td>
<td>• Warwick and Edinburgh mental well-being scale (21)</td>
</tr>
<tr>
<td></td>
<td>• Geriatric anxiety scale (22)</td>
</tr>
<tr>
<td></td>
<td>• Stroke and Aphasia (SAD) Scale (23)</td>
</tr>
<tr>
<td></td>
<td>• Signs of Depression Scale (SODS) (24)</td>
</tr>
<tr>
<td></td>
<td>• Stroke Aphasic Depression Questionnaire (SADQ) (25)</td>
</tr>
<tr>
<td></td>
<td>• Visual Analogue Self-Esteem Scale (VASES) (26)</td>
</tr>
<tr>
<td></td>
<td>• Centre for Epidemiology Depression Scale –Revised (27)</td>
</tr>
<tr>
<td></td>
<td>• General Health Questionnaire (GHQ) 12 item (28)</td>
</tr>
<tr>
<td></td>
<td>• Therapy Outcome Measures (TOM) (29-31)</td>
</tr>
<tr>
<td></td>
<td>• Patient Health Questionnaire 2 item / 9 item (32, 33)</td>
</tr>
<tr>
<td></td>
<td>• Visual Analogue Mood Scale (VAMS) (34)</td>
</tr>
<tr>
<td>Communication</td>
<td>Quality of Life</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>• Aphasia Communication Outcome Measure (ACOM) (35)</td>
<td>• Aachen Life Quality Inventory (ALQI) (50)</td>
</tr>
<tr>
<td>• American Speech-Language and Hearing Association Functional Assessment</td>
<td>• Burden of Stroke Scale (BOSS) (51)</td>
</tr>
<tr>
<td>of Communication Skills for Adults (ASHA-FACS) (36)</td>
<td>• The Newcastle Stroke-Specific Quality of Life Measure (NEWSQOL) (52)</td>
</tr>
<tr>
<td>• Amsterdam-Nijmegen Everyday Language Test (ANELT) (37)</td>
<td>• Short Form 36 Health Survey (SF-36) (53)</td>
</tr>
<tr>
<td>• The Communication Activity Log (CAL) (38)</td>
<td>• Stroke and Aphasia Quality of Life Scale (SAQOL-39) (54, 55)</td>
</tr>
<tr>
<td>• The Communication Outcome After Stroke (COAST) (39)</td>
<td>• Measure of participation in conversation (MPC) (46)</td>
</tr>
<tr>
<td>• The Communicative Activities Checklist (COMACT) (40)</td>
<td>• The Communication Participation Item Bank (49)</td>
</tr>
<tr>
<td>• The Social Activities Checklist (SOCACT) (40)</td>
<td>• The Functional Outcome Questionnaire for Aphasia (FOQ-A) (45)</td>
</tr>
<tr>
<td>• The Communication Disability Profile (CDP) (41)</td>
<td>• The Communication Activities of Daily Living (CADL) (44)</td>
</tr>
<tr>
<td>• The Communication Effectiveness Index (CETI) (42)</td>
<td>• Measure of participation in conversation (MPC) (46)</td>
</tr>
<tr>
<td>• Community Integration Questionnaire (CIQ-R) (43)</td>
<td>• The Scenario Test (47)</td>
</tr>
<tr>
<td>• Communication Activities of Daily Living (CADL) (44)</td>
<td>• Therapy Outcome Measures (TOM) (29-31)</td>
</tr>
<tr>
<td>• The Functional Outcome Questionnaire for Aphasia (FOQ-A) (45)</td>
<td>• The Speech Questionnaire (48)</td>
</tr>
<tr>
<td>• Measure of participation in conversation (MPC) (46)</td>
<td>• Therapy Outcome Measures (TOM) (29-31)</td>
</tr>
<tr>
<td>• The Communication Participation Item Bank (49)</td>
<td>• The Communication Activities of Daily Living (CADL) (44)</td>
</tr>
<tr>
<td>• The Scenario Test (47)</td>
<td>• Measure of participation in conversation (MPC) (46)</td>
</tr>
<tr>
<td>• The Speech Questionnaire (48)</td>
<td>• The Communication Participation Item Bank (49)</td>
</tr>
<tr>
<td>• Therapy Outcome Measures (TOM) (29-31)</td>
<td>• The Communication Activities of Daily Living (CADL) (44)</td>
</tr>
<tr>
<td>• The Communication Participation Item Bank (49)</td>
<td>• Measure of participation in conversation (MPC) (46)</td>
</tr>
</tbody>
</table>
Supplementary Table 3

Description of recommended outcome measurement instruments

<table>
<thead>
<tr>
<th>Outcome instrument and abbreviation</th>
<th>Development / alternate versions</th>
<th>Aims/instrument description</th>
<th>Number of items</th>
<th>Duration</th>
<th>Scoring system</th>
<th>Training</th>
<th>Cost/* availability</th>
<th>Language translations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Western Aphasia Battery Revised (WAB-R) (2)</td>
<td>Developed by Kertesz in 1979 based on the original format of the Boston Diagnostic Aphasia Examination (56). Revisions published in 1982 and 2006 (WAB-R): Supplemental tasks, revision of 15 items and testing materials (e.g. spiral-bound stimulus book replacing loose stimulus cards), as well as revised directions and scoring guidelines for clarity. The WAB-R also includes a bedside screening tool (Bedside WAB-R).</td>
<td>Primary: Assessment of linguistic skills in aphasia: 1. Spontaneous speech 2. Auditory verbal comprehension 3. Repetition 4. Naming and word finding 5. Reading 6. Writing 7. Apraxia 8. Constructional, visuospatial, and calculation tasks 9. Supplemental writing and reading tasks: reading and writing of irregular and non-words (WAB-R only) Secondary: Assessment of non-linguistic skills in aphasia: drawing, block design, calculation, and praxis 1. Additional aims: Classification of 8 aphasia types: Global, Broca’s, Transcortical motor, Wernicke’s,</td>
<td>>300</td>
<td>Bedside WAB-R: 15 min (comprises half of the items of WAB-R Part 1) Part 1: 30-45 min Part 2: 45-60 min</td>
<td>Aphasia Quotient (AQ): a weighted average of the WAB spoken language subtest scores. Cortical Quotient (CQ): a weighted average of both the language and non-language subtest scores. The Language Quotient (LQ): reflects auditory comprehension, oral expression, reading, and writing performance.</td>
<td>Administration: “some training” required according to developers. Scoring procedures require training.</td>
<td>Testing materials: +++ Available from: https://www.pearsonclinical.com</td>
<td>Cantonese (57) Korean (58) Bangla (59) Tagalog (60) Brazilian Portuguese (61) Japanese (62) Hungarian French Turkish (63) Hebrew Spanish (64)</td>
</tr>
</tbody>
</table>
| Stroke and Aphasia Quality of Life Scale (SAQOL-39; SAQOL-39g) (54, 55) | The SAQOL-39 is the short form of the SAQOL (53 items), which is itself an adaptation of the SS-QOL (Stroke-specific Quality of life scale).

The SAQOL-39 was originally tested in people with chronic aphasia (the measure had four domains: physical, psychosocial communication, energy).

The SAQOL-39g comprises the same 39 questions, in three quality of life (QoL) domains:

1. Physical (16 items)
2. Communication (7 items)
3. Psychosocial (16 items)

Timeframe for all questions is the past week.

| 39 | ● 15-20 min (depending on severity of aphasia) | ● Twenty-one of the items ask the respondents how much trouble they have had with activities (e.g., getting dressed, speaking). The response format for these questions is a 5-point scale that varies from 1=“couldn’t do it at all” to 5=“no trouble at all”. The rest of the items (18) ask about feelings (e.g., ‘did you feel irritable?’) and other activities (e.g., ‘did you see your friends less often than you would like?’). Their response format | Administration: Guidance is provided in administration guidelines. Administrators need to have skills in communicating with people with aphasia. Scoring procedures: no training required. | Free. Available from: https://blogs.city.ac.uk/cityaccess/saqol-description/. Chilean (68) Chinese (69) Chinese mandarin (70) Dutch (71) Greek (72, 73) Hindi (74) Italian (75) (76) Japanese (77) Kannada (78) Korean (79) Malayalam (80) Persian (81) Portuguese (82) Spanish (83) Turkish (84) |
Testing the SAQOL-39 in generic stroke population (n=87) resulted in the SAQOL-39g, which has the same items as the SAQOL-39 but three domains (all energy items groups with the psychosocial domain).

There are alternative forms for proxy administration (65, 66) and for postal and telephone administration (67).

Multi-modal presentation, i.e., patients can both read and listen to the questions. People with expressive aphasia can point to their responses instead of verbally responding.

- 4-scale response options (exact wording depends on item):
 1. 'better/healthier than normal'
 2. 'same as usual'
 3. 'worse/more than usual'
 4. 'much worse/more than usual'

Calculation of:
1. Total score: mean score of all 39 items
2. Domain scores: mean score of all items relating to the respective domain

General Health Questionnaire (GHQ) 12

- Alternate versions:
 - GHQ-60: 60-item questionnaire
 - GHQ-30: a short form without items relating to primary: screening device for identifying minor psychiatric disorders in the general population and within community or non-psychiatric clinical settings such as primary care or general medical out-patients.

1. 12 questions relating to symptoms of various psychiatric conditions, assesses the respondent’s 12
2. 2 min administration time (in non-language impaired samples)
3. Administration: no training required.
4. Scoring procedures: no training required.

Testing materials: +

Available from: https://www.gl-assessment.co.uk

- Italian (85)
- Arabic (86)
- Turkish (87)
- Persian (88)
- Portuguese (89)
- Kannada (90)
- Hindi (91)
- Spanish (92)

A number of other unvalidated translations are available. The MAPI Research...
physical illness
- GHQ-28: a 28 item scaled version – assesses somatic symptoms, anxiety and insomnia, social dysfunction and severe depression (7 items for each of the four scales)
current state and asks if that differs from his or her usual state, and is therefore sensitive to short-term psychiatric disorders.

4 possible methods of scoring. GHQ scoring (0-0-1-1) is advocated by the test author.

GHQ-12 yields only an overall total score (range: 0 to 12 points with standard scoring procedure).

Trust distributes translated versions on behalf of GL Assessment. Contact: PROinformation@mapi-trust.org

* Free, + Up to US$100, ++ Up to US$200, +++ > US$200
Supplementary Table 4

Properties of recommended outcome measurement instruments

<table>
<thead>
<tr>
<th></th>
<th>Western Aphasia Battery – Revised (WAB-R)</th>
<th>Stroke and Aphasia Quality of Life Scale (SAQOL-39/39g)</th>
<th>General Health Questionnaire (GHQ-12)</th>
</tr>
</thead>
</table>
| **Objectivity** | • During assessment: Limited because no audio recordings of verbal stimulus material available
 • During scoring: Limited for spontaneous speech and written output subtests | • During assessment: Moderate (interaction between assessor and patient frequently required because of physical stroke symptoms (arm paresis) and lack of pictorial task instructions (written sentences only))
 • During scoring: High | • During assessment: High if assessor does not interact with patient
 • During scoring: High |
| **Internal consistency** | High: Cronbach’s alpha of total score= 0.91 (93).
 | High: Cronbach’s alpha of total score= 0.93;
 Cronbach’s alpha of subscale scores= 0.74–0.94 (54).
 SAQOL-39g: High: Cronbach’s alpha of total score= 0.95;
 Cronbach’s alpha for subscale scores= 0.92-0.95 (55) | High (general population): Cronbach’s alpha of total score= 0.79-0.91 (94-96).
 Cronbach’s alpha of subscale scores= 0.80-0.92. |
| **Test-retest reliability** | Excellent test-retest reliability: r >0.90
 Acute stage post stroke:
 • Korean version; (58); 5-day test–retest interval (n=20 people with aphasia;
 Aphasia Quotient: r=0.976; Language Quotient: r=0.977; Cortical Quotient:
 r=0.920; Spontaneous Speech: r=0.96; Auditory Comprehension: r=0.967;
 Repetition: r=0.952; Naming: r=0.934; Reading: r=0.986; Writing: r=0.988;
 Praxis, r=0.908; Construction: r=0.922).
 Chronic stage post stroke:
 • 1 year test–retest interval (97), n=22 patients, r=0.992
 • 6 months to 6.5 test–retest interval (av. | Good to excellent test-retest reliability ICC=0.89-0.98
 • English version; 2 to 14 days; n=17 people with aphasia; ICC=0.98 overall, 0.94–0.98 subscales (54).
 • English generic stroke version (SAQOL-39g);
 7 ± 4 day test–retest interval; n=18 people with stroke/ stroke and aphasia; ICC= 0.96 overall;
 ICC= 0.92–0.98 subscales (55)
 Other translated versions:
 • Chilean version; ICC=0.95 (67)
 • Chinese ICC=0.97(69)
 • Chinese mandarin version; ICC=0.98 (70)
 • Dutch ICC=0.9 (71)
 • Greek ICC=0.96 (73) | Acceptable to excellent test-retest reliability
 • General population: ICC=0.79-0.82 (100)
 • Stroke (inc. aphasia) population using GHQ-28: 2 month test-retest reliability with a sample of 20 individuals (r=0.90) (101) |
12-23 months test–retest interval; (93)), n=38 patients with chronic aphasia; WAB-AQ (r=0.968), WAB-CQ (n=9, r=0.895), WAB-LQ subtests: Spontaneous Speech – Information Content (r=0.947) and Fluency (r=0.941), Comprehension (r=0.881), Repetition (r=0.970), Naming (r=0.923), Reading (n=32; r=0.927) and Writing (n=25; r=0.956) and the Construction subtest (n=14, r=0.974). Test-retest reliability was adequate for the Praxis subtest (n=18, r=0.581).

- Danish version (98); 3.5 months test–retest interval; n=19, r=0.96.
- Cantonese version (99); 12 to 16 months test–retest interval; n=16 patients, Spontaneous Speech subtest – Information, Fluency and total scores (r=0.83, 0.94, 0.96 respectively), Naming subtest (r=0.91), AQ (r=0.93).

Responsiveness

Sub-acute phase (up to 1 month post-onset):
- WAB-LQ: n=50 adults with aphasia secondary to acute stroke, who received treatment (n=42) or no treatment (n=8). Participants assessed at baseline (2-4 weeks post-onset of aphasia), 3 months, and at least 6 months post-baseline. Significant main effect for time (F=43.33, df=2.96, p<0.0001), significant differences in the mean scores for the three tests (p<0.01). (102)
- Very Early Rehabilitation of Speech (VERSE) trial; n=20 participants with mild-severe aphasia receiving intervention (4-5 h/wk for 5 wks) achieved 18% greater recovery on the WAB-AQ compared to the usual care.

Acute to post-acute phase (up to 6 months post-onset):
- Generic stroke sample, n=87; people admitted to hospital with a first stroke were assessed two weeks, three months and six months post stroke. Moderate changes (d = 0.35—0.49; standardized response mean (SRM) = 0.29—0.53) from two weeks to six months support responsiveness. (55)

Post-acute to chronic (3 months to 1 year):
- Cohort study of stroke sample with and without aphasia, n=78. Effect size r=0.22. MID estimated 0.21. (107)

Chronic phase (at least 6 months post-onset):
- Impact of stroke with and without aphasia across the first six months, n=87 people with stroke or stroke and aphasia; psychological distress significantly reduced with time on GHQ-12 [F (2,140) = 7.1, p=0.001] (109)
- Effects of singing in a community choir on mood; n=13 people with aphasia; 2.8 point reduction in mean GHQ-12 score was seen by week 12, suggesting a possible reduction in...
Post-acute phase (2-6 months post-onset):
- See (102) above
- Prospective longitudinal study with n=75 participants with aphasia post stroke, assessments at 4, 8, 12 and 24 weeks post-stroke, significant improvement in WAB-AQ across first year post-stroke (104)

Chronic phase (at least 6 months post-onset):
- n=10 participants with chronic aphasia. Combination of d-amphetamine, TMS, and SLT superior to control intervention of placebo with TMS and SLT; Change in AQ (from 36.13[18.23] to 38.60[19.33], P = 0.04) and LQ (from 32.41[14.93] to 35.03[15.10], P = 0.02) showed a statistically significant increase in the active experiment. Comparison of proportional changes of AQ and LQ in the active experiment with AQ and LQ in the placebo experiment showed a significant difference (AQ, P = 0.02; LQ, P = 0.008) (105)

Mixed stages
- n= 50 participants with aphasia (49 secondary to subacute or chronic stroke). Participants’ mean scores improved significantly from pre- to post-treatment on all WAB subtests, with absolute percentages ranging from 6.5% to 13% improvement (p<0.01 to p<0.0001) (106).

| Convergent validity | Convergent validity in sample of n=15 people with aphasia (93). Comparison with corresponding subtests of the SAQOL-39: Good convergent validity (r=0.55 to 0.67)(54). Adequate correlation between GHQ-12 and the SAQOL-39 mean (0.53, 0.65) (55). Convergent validity in post-stroke aphasia sample: | Good correlations with SAQOL |

Adverse mood symptoms that was sustained to week 20. (110)
- Effects of solution-focused brief therapy, n=5 people with aphasia. On GHQ-12 the mean (SD) score before therapy was 4.80 (4.60) [median (IQR) = 6.00 (0–9.00)]. This was reduced after therapy to a mean (SD) score of 2.00 (2.55) [median (IQR) = 1.00 (0–4.50)]. The effect size was large: Cohen’s $d = 0.79$. (111)

Caregivers of people with aphasia:
- Impact of a psychoeducation program on caregivers’ burden and stress, n =31 caregivers of people with post stroke aphasia. Caregivers in the immediate treatment group had significant reductions in GHQ-12 measured stress (GHQ mean (SD) at baseline =6.26 (5.67), GHQ post treatment 3.21 (SD 4.20), $p=0.006$). (112)
Neurosensory Center Comprehensive Examination for Aphasia (NCCEA), using Pearson correlation coefficients

- Excellent correlation between:
 - WAB Spontaneous Speech and NCCEA Description of Use and Sentence Construction (r=0.817);
 - WAB Comprehension and NCCEA Identification by Name and Identification by Sentence (r=0.915);
 - WAB Repetition and NCCEA Sentence Repetition (r=0.880);
 - WAB Naming and NCCEA Visual Naming and Word Fluency (r=0.904);
 - WAB Reading and NCCEA Reading subtests (r=0.919);
 - WAB Writing and NCCEA Writing subtests (r=0.905); and
 - WAB and NCCEA total scores (r=0.973).

- Sample of n=45 people with aphasia. Excellent correlation between the WAB and the Czech version of the Mississippi Aphasia Screening Test (MASTcz) (r=0.933) (13).

- Sample of n=140 people with aphasia. Comparison of WAB with Raven’s Coloured Progressive Matrices scores. Adequate correlation (r=0.547).

- SAQOL-39: Discriminant validity (r = 0.02-0.27) (54)

- SAQOL-39g: Good/excellent discriminant validity for overall scale and subdomains, evidenced by low

- Excellent discriminant validity in Swedish population (n=556 patient cases surveyed in specialized psychiatric care outpatient age and n=556 sex-matched controls). Individuals using specialized psychiatric

- The GHQ-12 demonstrated good convergent validity in a sample of 83 individuals with chronic stroke and aphasia, by comparison with the SAQOL-39. The study yielded an adequate correlation between the GHQ-12 and the SAQOL-39 mean (0.53, p<0.01). Correlations between the GHQ-12 and SAQOL-39 subtests were adequate (physical r=0.39, energy r=0.32, p<0.01) to excellent (psychosocial r=0.62, p<0.01). (54)
- Sample of n=66 people with chronic aphasia. Discriminant validity of the WAB Aphasia Quotient (WAB-AQ) by comparison with the Scandinavian Stroke Scale (SSS), Barthel Index (BI) and Frenchay Activities Index (FAI). Excellent correlation between the WAB-AQ and the SSS ($r=0.64$), adequate correlations between the WAB-AQ and the BI ($r=0.44$) and the FAI ($r=0.50$). to moderate correlations with external measures ($r=0.03-0.40$). (55)

services and healthy controls (Likert index AUC=0.86, GHQ index AUC=0.83), and between individuals with current disorder from healthy controls (Likert index AUC=0.90, GHQ index AUC=0.88). (114).

* Test-retest reliability: 1=perfect reliability; ≥ 0.9=excellent reliability; ≥ 0.8 < 0.9=good reliability; ≥ 0.7 < 0.8=acceptable reliability; ≥ 0.6 < 0.7=questionable reliability; ≥ 0.5 < 0.6=poor reliability; < 0.5=unacceptable reliability; 0=no reliability.
References

31. Enderby P, John A, Petheram B. Therapy Outcome Measures for the rehabilitation professionals: Speech and language therapy, physiotherapy, occupational therapy,

47. Van Der Meulen I, Van De Sandt-Koenderman WME, Duivenvoorden HJ, Ribbers GM. Measuring verbal and non-verbal communication in aphasia: reliability, validity, and

100. Piccinelli M, Bisoffi G, Bon MG, Cunico L, Tansella M. Validity and test-retest reliability of the Italian version of the 12-item General Health Questionnaire in general

