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Abstract 
 

Currently employed enhancement and detection techniques for blood are not 

confirmatory due to targeting generic compound classes like proteins. As such, they 

are not sufficiently specific and are prone to false positives. The aim of this work was 

to confidently determine whether a crime scene sample is in fact blood and more 

specifically human blood. To achieve this, an in-solution bottom up proteomic 

approach was developed, targeting blood-specific proteins and employing MALDI-

MS. The work was developed further to devise a protocol for proteomic in situ 

analysis of bloodied fingermarks with MALDI-MS imaging, enabling the mapping of 

blood peptides to fingermark ridges and thus establishing a strong link between the 

suspect and the event of bloodshed. 

 

Putative peptide identifications were made for signals originating from a number of 

different blood-specific proteins, including not only the most abundant blood proteins 

like haemoglobin, but also several other proteins (e.g. complement C3 and 

hemopexin).  

 

To further validate the method, a blind study was conducted analysing unknown 

samples ranging from different species' blood and human biofluids to other 

substances known to produce false positives with conventional techniques. 

Employing MALDI-MS, it was possible to confidently identify human blood samples 

of up to 34 years in age. This is potentially a huge step forward in the forensic 

analysis of suspected blood samples and shows potential for re-analysis of cold case 

samples or samples of disputed origin. It was found in this study that further 

optimisation of the data analysis approach is required for provenance determination 

of animal blood samples. 

 

Traditionally, establishing the order of deposition of fingermarks associated with 

blood is difficult and subjective. Infinite focus microscopy was investigated for its 

potential to facilitate quantitative differentiation between the different deposition 

scenarios. However, results were highly dependent on the surface of deposition and 

thus the technique was shown to be unsuitable due to the wide range of surfaces 

potentially encountered in a forensic investigation. 
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1.1 Background: the evidential value of fingermarks and blood 

1.1.1 Fingermarks – their use historically and now 

Fingermarks are unique patterns left behind on a surface when an individual’s 

fingertip makes contact. These marks can be latent (invisible), patent (visible to the 

naked eye) or plastic (a negative impression in a malleable substance such as wax) 

and provide a wealth of information about the donor. It should be noted that in the 

UK, it is preferred to use the term fingermark for a latent crime scene impression and 

fingerprint for a known or willingly deposited or inked impression [1], whereas in other 

countries all impressions are simply referred to as fingerprints with the term latent 

prints used to make the distinction [2,3]. As the work reported in this thesis will cover 

and reference examples from both inside and outside the UK, the terms fingermark 

and fingerprint shall be used interchangeably and supplemented with added 

descriptions as necessary. 

 

In forensics, fingerprints are mostly used for identification purposes where marks 

found at a crime scene are compared to fingermark databases or a suspect’s print. 

The exact date of when the friction ridge patterns on each person’s fingers started 

to be considered unique and became widely used for forensic identification is 

perhaps debateable and location-dependent. However their identifying capabilities 

were exploited as early as 1750 B.C., when Babylonians used fingerprints to sign 

their identities on clay tablets [4]. Similarly, they were considered proof of identity, 

used to sign and seal documents and even informed criminal investigations in 300 

B.C. China, and encompassed in a law in 702 A.D. Japan that required illiterate 

individuals to sign documents written for them with their fingerprints [5]. J.G. Barnes 

compiled many other interesting historical facts surrounding fingerprints in chapter 1 

of the Fingerprint Source Book [5] and presents a timeline, according to which 

fingermarks were only recognised as unique in Europe in 1788. Alongside a wealth 

of information about the early research into understanding and characterising 

fingermark patterns and the development of classification systems, it is reported that 

the first homicide case to be solved by fingerprint evidence was the Rojas murder 

case in 1892 Argentina, which interestingly centred on a blood fingerprint. The first 

use of fingerprints in UK courts is reported to have taken place in 1902, where an 
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Inspector from Scotland Yard testified to an individualisation made in a burglary case 

[5]. 

 

Nowadays, fingerprints can be used for verification or identification purposes. In 

verification, a 1:1 match is obtained, comparing the given fingerprint against a 

chosen fingerprint in a database, for example to open a biometrical lock [6]. This 

kind of verification is widely used not only in high security areas, but even in mobile 

phone technology, where fingerprint sensors have become common means to allow 

access to a locked phone.  

 

For identification purposes, a given print is compared to all prints in a database (1:N 

match) using an automated fingerprint identification system (AFIS) in order to identify 

an unknown person. Aside from forensic use for identifying suspects, this kind of 

fingerprint recognition is also used in passports for example by the US in order to 

verify the identity of people entering the country and flagging potential false or 

duplicate credentials [6]. Additionally, fingerprints can be used to link crime scenes, 

even when an identification has not yet been made, by searching against an 

unsolved print database. This link can allow for the offender’s actions to be 

anticipated and thereby might aid in their identification and arrest [7]. 

 

Regardless of the nature of a fingermark, three levels of information are commonly 

associated with the pattern and used for identification or verification purposes. 

Level 1 describes the general ridge flow and pattern configuration, namely arches, 

whorls and loops (Figure 1.1) as described by Sir Francis Galton in his 1892 book 

“Finger Prints” [8]. Several more complex classification systems have been 

developed, both for single prints and a full set of 10 prints, for example dividing into 

internal and external loops, describing tented and left- or right-inclined arches and 

even including ridge count values [9]. The presence of Level 1 information is 

commonly known, but due to its general nature it does not allow for identification by 

itself. It is, however, useful for primary classification, as for example individuals with 

all arched patterns can be excluded if a suspect print presents with whorls, and 
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similarly further investigation can be undertaken into potential matches if a suspect 

does have whorled fingerprints. 

 

Level 2 information (Figure 1.1) is comprised of more characteristic formations such 

as ridge endings, bifurcations and islands, also known as minutiae, embedded in the 

general pattern.  This level of information requires more attention to be observed 

and can be used as individualising characteristics of a mark.  

 

Level 3 detail (Figure 1.1) includes even finer features such as pores, scars, creases 

and dimensional attributes like the width, shape or contour of a ridge.  Despite this 

very specific level of information, automated fingerprint identification systems do not 

actually exploit it, but only rely on level 1 and 2 detail obtained at an inadequate 

resolution for capturing level 3 detail [10]. For this reason, several studies have been 

undertaken looking into the added advantage of employing level 3 information [10–

12] obtained with higher resolution sensors, which have become widely available. 

However, to date this level of information is only of limited use due to the lack of 

database entries, as most databases still only store lower resolution data [10]. 

Examples of each level of detail can be viewed in Figure 1.1, reproduced adhering 

to the IEEE copyright clearance for use of figures and tables in dissertations. 
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Figure 1.1 Visual examples of the three levels of information of fingerprints. 
Reproduced from Jain, Chen and Demirkus (2007) [10], ©2007 IEEE, as per the 
IEEE copyright clearance. 

 

In England and Wales, a 16-point standard was implemented in 1953, meaning that 

any fingerprints matched with less than 16 minutiae could be challenged in court [1]. 

Evett and Williams investigated and challenged this standard in 1996, concluding 

that “There is no statistical justification for 16 points.” and that fingerprint 

identification is not an exact science [1]. Despite their findings and concerns, the 

system was in effect until 2001 [13], when it was changed after Scottish detective 

Shirley McKie had been wrongly accused of having left her prints at a murder scene 

[14]. It had already been under review by the Association of Chief Police Officers 

(ACPO) since 1996 [13] and the McKie case was perhaps only the final stimulus for 

the implementation of the recommendations made by Evett and Williams. A non-

numerical system has since been implemented, similar to what Evett and Williams 
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described to be in place in the US and Canada at the time of their study, after they 

had visited bureaus in Europe and North America [1]. It should also be mentioned 

that although there is no need for a specific number of matching characteristics, 

identifications have to be made adhering to ACPO and Home Office guidelines, e.g. 

having been checked by three independent examiners, and that the discontinuation 

of the numerical standard did not appear to result in a larger number of erroneous 

conclusions (as reported 2005) [13], as was feared by some.  

 

To supplement this non-numerical system and because recent years have seen a 

level of doubt regarding the uniqueness of fingerprints, several statistical models 

have also been developed and reviewed [15] to provide a probabilistic framework 

based on strong scientific principles as opposed to arbitrary numerical standards.  

 

Although the name automated fingerprint identification system (AFIS) suggests the 

automation of fingerprint matching, latent print experts are usually still required to 

prepare prints, e.g. by identifying minutiae in the so-called mark-up, to be matched 

by the software and review the list of potential candidates generated in order to reach 

identification. Therefore both the crime scene mark and the ten-print marks in the 

database must be encoded with the identified minutiae. Whilst this is automated for 

the ten-prints, the quality of crime scene marks is usually inferior and the automatic 

feature extraction (AFE) marketed by some AFIS vendors varies in efficiency. For 

this reason, a latent print examiner or AFIS technician usually identifies and encodes 

the minutiae of latent prints manually [3]. However, several studies have noted 

discrepancies in the analysis made, mark-up and conclusions drawn between 

different experts [1,16]. This is especially true when it comes to challenging samples 

such as unclear or distorted marks, where the initial step might be to determine if a 

mark has value for identification or if any time analysing it would be wasted. This 

conclusion appears to be strongly linked with minutiae count [17]. However, it was 

also found that different examiners marked different minutiae, even when the overall 

number of minutiae marked was similar. Some examiners might mark more minutiae 

in unclear areas, thus assigning a higher value to a mark than others, who assigned 

fewer minutiae and therefore deemed the analysis inconclusive [18]. Furthermore, it 
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was found that examiners often revised their original mark-ups when comparing 

prints, raising concerns about comparison bias. However, the study also stated that 

the mere occurrence of such revisions was not usually indicative of erroneous 

conclusions and often reflected a change of value assignment from “value for 

exclusion only” to “value for individualisation” [2]. Nonetheless, findings like these 

underline the fact that fingerprint comparison is not an exact science but experience-

based and standardisation at least in documentation of the Analysis, Comparison, 

Evaluation and Verification process might be advisable, as recommendations made 

by the Scientific Working Group on Friction Ridge Analysis, Study and Technology’s 

(SWGFAST) are unspecified and unenforced [2]. 

 

 

Several techniques are now available to enhance the visualisation of these three 

levels of information, with particular focus on the first two. However, these 

techniques only provide information regarding the physical conformation of a mark, 

enabling the match to a suspect. They completely neglect the retrieval of chemical 

information, which could provide additional intelligence on the individual that 

deposited their fingermarks. In recent years several analytical techniques have been 

exploited to generate a wealth of chemical information from fingerprints that, 

understandably, cannot be captured with a photograph of a crime scene mark. 

 

Fingermarks, in fact, are a sweaty deposit consisting of endogenous and exogenous 

substances, mostly gland secretions such as lipids, fatty acids, amino acids, 

triacylglycerols, cholesterol, electrolytes and water [19], but also peptides and 

proteins such as skin keratins [19–21]. The chemical composition of latent 

fingermarks has been reviewed [21] and analysed with a number of techniques, 

which have been discussed in a 2016 review by Wei et al. [22] and 2017 by Francese 

et al. [23]. Some of those techniques, such as GC-MS and GC-FID, are destructive 

to ridge detail [24], while others, such as MALDI-MS [25], LAET-MS [26] and DESI 

[27,28], have imaging capabilities and therefore not only maintain ridge detail, but 

also map the distribution of the analytes investigated. Indeed, techniques have been 

reported that can image fingermarks down to pore level details [29,30]. In addition 
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to those unlabelled approaches, several protocols have been developed using 

nanoparticles, antibody-labels or antibody-functionalised nanoparticles for a 

targeted approach [31–34]. 

 

The exact chemical composition of each mark is affected by a number of factors 

such as donor characteristics, surface of deposition, environmental conditions to 

which the mark, fingers and surface were exposed and the enhancement techniques 

used to visualise the marks [21,35]. Often, these factors combine and affect the 

composition of the mark in an unpredictable way. This means that for example the 

level of fatty acids in a mark will be increased if the donor touched sebum-rich areas 

such as their face just prior to deposition [24]. It is known that cold and wet or 

previously washed hands leave poorer fingerprints [36], perhaps because the sweat 

glands secrete less in colder temperatures as the pores close and a lot of the natural 

secretions are washed away by wetting the hands, respectively.  

 

In general, it is known that some people are better fingermark donors/secretors than 

others [30]. Such individual donor characteristics have also been exploited to 

determine the donor’s sex from a fingermark, e.g. by statistical analysis of fingermark 

peptides and small proteins [37] or detection of different levels of sex hormones [26], 

potentially allowing investigators to narrow the pool of suspects. Although not 

relating to chemical information, other studies have been undertaken regarding sex 

determination through fingerprints, where the current consensus appears to be that 

fingerprints left by females have a higher ridge density than those of males [38]. 

 

In addition to characterising the general composition of fingermarks, several studies 

have been shown to successfully separate overlapping fingermarks. This is based 

on using individual donors’ chemical constituents to give clear images of the 

individual prints [26,33,39]. Separating overlapping marks is very challenging to 

achieve with current computer algorithms. The use of chemical information to 

achieve this therefore provides a real advantage to fingerprint examiners in such 

cases, as they can successfully separate fingermarks and thereby provide more 

reliable evidence. The possible defence that a suspect’s mark was not present, but 
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merely identified in error due to complex overlapping patterns can thus be refuted 

with this technique. Investigations have also been undertaken with regards to the 

age of a fingerprint to determine the time since deposition [40–43]. It should, 

however, be noted that the analytical techniques mentioned here have been 

considered in research projects, but are far from being exploited in crime 

laboratories. 

 

In addition to endogenous chemicals and biochemicals, fingerprints can contain a 

wealth of information about the donor’s lifestyle including diet and smoking habits 

[24,44], and possibly consumption of drugs of abuse via the detection of metabolites 

excreted [34,45–47]. 

 

As per Locard’s principle, every contact leaves a trace. In the case of fingerprints, 

this means that, in addition to endogenous and excreted compounds, a range of 

external contaminants can be detected in them. These give an indication of what the 

donor has touched and may thereby help reconstructing events surrounding a crime. 

Exogenous contaminants can range from cosmetics or personal hygiene products 

[21,24,42], which might allow circumstantial evidence to be gathered regarding the 

perpetrator’s identity, to compounds that link the donor to a crime. Contaminants 

reported include condom lubricants [48,49], gunshot residues, explosives [50,51], 

drugs [34,45,47,52,53] and biofluids such as blood [54–57].  

 

Especially at the scenes of violent crimes, blood is a commonly encountered 

contaminant of fingerprints. The retrieval of information from both types of evidence, 

especially linking the two, can further inform and better direct investigations. Several 

drawbacks pertaining to the current analysis of blood and blood marks will be 

discussed in section 1.2. For these reasons, the study of blood forms the basis of 

the work presented in this PhD thesis, the aims of which are covered in section 1.6. 

 

Due to the association of blood and fingerprints, the order of deposition can also be 

of interest in an investigation. This can be crucial when investigating the hypothesis 

or defence that a suspect touched a contaminated surface rather than having the 
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contaminant present on their fingers. This was reported by Bradshaw et al. (2011) 

pertaining to condom lubricants [48], but is also significant when it comes to 

questioned documents. As such, it has been shown that it can be determined if a 

fingerprint was deposited before or after a document was written or printed [58], 

therefore indicating whether the donor could have had knowledge of the document’s 

contents. Following the same theoretical principle, fingermarks can have been left 

before, during or after an event of bloodshed and knowledge of the order of 

deposition can provide crucial information to an investigation. This is covered in more 

detail in section 1.1.2. 

 

In conclusion, the evidential value of a fingermark reaches much further than its ridge 

detail and, employing novel analytical techniques, a wealth of additional chemical 

and structural information can be gathered to support the investigation by providing 

information about a donor’s lifestyle or a link to the crime. 

 

1.1.2 Blood evidence 

Blood is the most frequently encountered body fluid at the scene of a violent crime 

and can provide valuable intelligence in the forensic investigation of serious 

offences. However, various other biofluids might also be present and it can be of 

great importance to ascertain whether a trace found really contains blood or not.  

 

With the robust and reliable detection of blood presence in spatter patterns, stains 

and fingermarks, such patterns can be interpreted to deliver information allowing the 

reconstruction of the sequence of events at a crime scene. Several books have been 

written on blood spatter pattern analysis [59,60] and papers are published on 

particular cases or scenarios of interest [61,62]. However, it can be difficult to 

determine the presence of blood with certainty, especially when it is suspected to be 

present in minute, invisible amounts or mixed with other biofluids and non-biofluid 

substances. This is due to the fact that currently used techniques for the detection 

of blood are not confirmatory, which is explained in more detail in chapter 1.2.  

Additionally, it can be challenging to ascertain if the suspected blood is of human 

origin or not. Furthermore, the presence of animal blood can further link a suspect 
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to the crime. An example of this was reported in a US murder case where no human 

blood was found on the suspects, but previously unidentified red stains on one 

suspect’s sleeve were found to be the victim’s dog’s blood, placing the suspect at 

the crime scene [63]. Even in cases where no humans were harmed, animal blood 

has been able to incriminate suspects, for example when burglars silenced barking 

dogs by slitting their throats and contaminated their clothes with the dogs’ blood [64]. 

In another curious case, a suspect’s DNA was obtained from blood inside a leech, 

which was found at the scene of an armed robbery. A DNA match eventually linked 

the previously unidentified perpetrator to the crime when he was charged with 

unrelated drug offences 8 years later [65]. 

 

There are a number of additional scenarios from wildlife and veterinary forensics 

(including animal cruelty cases) where animal blood and establishing its provenance 

can be and has been of great importance [66,67], as well as animals being 

responsible for injuries or deaths. Most of these cases refer to DNA obtained from 

blood, which allows specific animals to be identified. However different DNA markers 

are required for each species. This means that identifying the candidate species 

beforehand reduces the number of DNA tests necessary, as the correct primers can 

be chosen directly instead of trialling several different species’ primers. Furthermore, 

there might be a legitimate reason for the presence of DNA traces e.g. originating 

from saliva, whereas the presence of blood is usually regarded with much more 

suspicion. An animal cruelty case has been reported where llama blood was found 

on a teenager’s clothing and identified as such through DNA testing [66]. While DNA 

analysis confirmed which specific llama was affected, it can perhaps be argued the 

presence of blood was incriminating in itself without this individualising information. 

It can be considered rather important to determine if the DNA profile was indeed 

obtained from llama blood or perhaps llama saliva, with which the suspect might 

have become contaminated when petting the animal. 

 

Advances are being made with regards to determining blood provenance [54,68,69], 

which can inform the investigation further and be of great importance. Provenance 

determination can for example shed light on whether blood spatter on a car that is 
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suspected to have been involved in a “hit and run” incident or accident is in fact of 

human origin or might be the result of a road kill accident involving an animal. 

Establishing provenance can also corroborate or invalidate a suspect’s statement 

that blood found is not human but for example originated from an injured pet or meal 

preparation of a bloody steak. An example where such testing would have been 

useful is the Susan May case, where blood marks were found at the scene that were 

matched to Susan May’s prints. She, however, claimed the marks did not originate 

from her murdering her aunt but from preparing a steak for her [70]. 

 

Further information that is considered highly important to recover is the age (time 

since deposition) of blood (in a stain or fingermark), as this intelligence could provide 

information about the timeframe of the crime and thereby confirm or disprove a 

suspect’s alibi or statement in court. For this reason, several studies have attempted 

to date bloodstains [71–82] employing for example bioaffinity assays, reflectance 

spectroscopy or hyperspectral imaging for measuring changing ratios of 

biomolecules such as RNA or haemoglobin degradation products. However, again, 

these techniques are being researched rather than ready to be implemented and 

use in court would currently be unprecedented. 

 

In addition to stains and spatter pattern analysis, blood has also been investigated 

in correlation to fingermarks [54,56,57] with regards to the association and order of 

deposition. In real casework, this can provide strong evidence that the fingermark 

donor was present at a crime scene during or in close time proximity to the event of 

bloodshed, as evidenced by the Rojas murder case [5] mentioned in 1.1.1. It can, 

however, also raise questions regarding the order of events, e.g. if a suspect claims 

to have arrived after the event of bloodshed; therefore the possibility of secondary 

transfer from dried blood stains has also been investigated [83]. However, it can be 

difficult to determine the order of deposition considering the following scenarios: a) 

bloodied mark, left by a bloodied finger; b) mark in blood or c) coincidental 

association, which originates from a clean fingertip on a clean surface and 

subsequent contamination with blood for example as a result of blood spatter. 

Especially scenario C is very difficult to identify, as the marks can visually appear 
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like genuine blood marks (therefore also called “faux blood marks”) [84]. To date no 

quantitative techniques have been developed to distinguish between them and the 

distinction is solely based on an examiner’s expertise, making it prone to errors.  

 

Once the presence and provenance of blood has been demonstrated, it is, in theory, 

possible to obtain a plethora of additional information from it. Considering various 

blood diseases and protein variants like haemoglobinopathies, it might be possible 

to determine if the injured is suffering from a particular disease such as sickle cell 

disease [85], diabetes [86–88] or even myocardial infarction [89]. It can be 

hypothesized that this can narrow down the search by indicating that the injured will 

have to be taking a certain medication to treat the condition. Thereby it could also 

prove useful in unidentified missing person cases, where the identification of a 

disease via blood markers might indicate time constraints in locating the missing 

person in order for them to receive the necessary medication to treat life-threatening 

conditions. This could be particularly useful in combination with information on time 

since deposition to get an understanding of how long someone has been missing. In 

turn, determining that blood found at a scene belonged to e.g. a diabetic might 

provide clues to the whereabouts of a known missing diabetic even when DNA is not 

available for comparison. Medical conditions like diabetes are often included in 

missing person alerts [90]. 

 

In general, blood proteins are differentially expressed, meaning that some are much 

more abundant than others. As such, Anderson and Anderson report normal serum 

albumin concentrations of 35-50 mg/mL at the high abundance end, whereas 

Interleukin 6 is listed as a low abundance example with a normal range of 0-5 pg/mL 

serum [89]. Nonetheless, taking into account whole blood, haemoglobin is much 

more abundant with mean values ranging between 127-155 mg/mL, levels in 

females usually being slightly lower than in males [91], supporting observations that 

there are gender-specific differences in the blood proteome [92]. A table of a group 

of (blood) proteins and their normal ranges in blood can be found in Appendix 1. It 

should be noted that this includes blood-specific and non-specific proteins. 

Extensive research has been conducted pertaining to the characterisation of the 
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human plasma, serum and blood proteome, leading to the plasma proteome 

database (PPD, www. plasmaproteomedatabase.org/) containing information on 

10,546 serum/plasma proteins, including some mass spectrometric data [93]. 

 

In addition to gender differences and a normal range of variation in healthy subjects, 

protein expression levels change during life [92], potentially allowing the 

establishment of a likely age range for the injured. It is reported that plasma protein 

levels increase throughout infancy and that adult levels are reached by the age of 

10, although a further increase can be observed with the onset of menopause [94]. 

Another study has investigated age-related differences in the plasma proteome from 

neonates to adults [92], and although this has mainly been in a clinical context, the 

potential to exploit this knowledge for forensic purposes should be evident, even 

though the potential for abnormal concentrations due to disease has to be taken into 

account. 

 

Combining the information resulting from these individual areas of investigation 

therefore enables much more comprehensive intelligence that can narrow down both 

the number of possible crime scenarios and the range of suspects. 

 

1.2 Currently used blood enhancement techniques (BET) and 

their shortcomings 

At a crime scene, potential blood stains or blood marks may be readily visible as a 

red stain or present in minute trace amounts that cannot be observed with the naked 

eye and therefore require enhancement to enable their detection. Either way, a red 

stain cannot automatically be assumed to be blood but requires presumptive tests 

to be performed in order to indicate its presence. To hold up in court, further tests 

are then required to confirm the presumptive identification. This sub-chapter covers 

techniques for the enhancement and detection of blood both in stains and 

fingermarks grouped by their target compounds or working mechanisms alongside 

methodologies for provenance determination. A variety of procedures has been 

developed in parallel, each providing its own advantages and disadvantages. A 
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chronological review of blood enhancement techniques (BETs) and their history is 

available in “Advances in Fingerprint Technology”, Chapter 9.1 [95].  

 

The Home Office fingermark visualisation manual [36] describes a range of 

fingermark enhancement techniques (FET) as well as evaluating those that are 

suitable for the enhancement of blood-contaminated marks. It recommends 

workflows based on the evidence encountered and intelligence required, taking into 

account practical considerations such as the deposition surface or exhibits that have 

been subjected to the elements. In general, techniques are grouped into different 

categories. Category A describes techniques that are routinely used and considered 

safe. Categories B-F provide information about techniques that may offer potential 

for enhancement, may be used with caution or are not recommended for use, 

including a brief explanation why it is not a category A process. Unless use is not 

recommended, those techniques are considered for use in specific circumstances, 

e.g. where category A processes are not suitable or do not provide sufficient results. 

Furthermore, processes are assigned maturity levels, where high maturity means 

the process has been developed after years of scientific research with supportive 

operational data, and low maturity refers to limited scientific data and no operational 

data. Nonetheless, it is important to note that none of the BETs described are 

considered sufficiently confirmatory. 

 

Three classes of chemically reactive BETs are commonly distinguished, in order of 

increasing specificity: (i) amino-reactive compounds, (ii) protein dyes and (iii) haem-

reactive compounds [57]. It should be noted that amino-reactive and protein dyes 

are often grouped together or not further distinguished. This is due to fact that 

proteins are made of amino acids and both techniques are based on the reaction 

with the amine- or other functional groups found on proteins and amino acids [36,96]. 

In addition, several chemiluminescent and microcrystalline tests are known as well 

as spectroscopic techniques. The latter are the subject of current research and most 

have therefore not found their way into routine employment yet. 

Currently UK police forces recommend the use of acid dyes (also called protein 

dyes) as the most advanced and well-suited method for the enhancement of blood 
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and blood fingermarks [36]. It should be noted, however, that several different dyes 

and solvent formulations are available and whilst some are recommended category 

A processes, others fall into categories B-F, for example because an equivalent 

category A process produces better results [36]. Nonetheless, large scale screening, 

e.g. with alternative light sources, might be required prior to the more targeted 

enhancement with acid dyes. 

 

1.2.1 Fluorescence-based tests and alternative light sources  

Several techniques are available for screening large areas of a crime scene for the 

presumptive presence of blood. These usually employ either alternative light sources 

(ALS), thereby being classed as optical methods, or fluorescent reagents that enable 

optical or spectroscopic methods to be applied due to the underlying chemical 

reaction that causes fluorescence to be observable under certain light conditions.  

 

Luminol (5-amino-2,3-dihydro-1,4-phthalazinedione) is a reagent that exists in 

numerous formulations, usually containing either hydrogen peroxide or sodium 

perborate [97] in order to produce chemiluminescence aided by the peroxidising 

activity of haem [36,98,99]. While the reagent is highly sensitive to small traces of 

blood down to the nanogram level or 1:300,000 [36,99,100] or 1:1,000,000 [101], 

dark conditions are required in order to observe its fluorescence. Due to the ability 

of other compounds to catalyse peroxidation, a variety of false positives has been 

reported, ranging from vegetables to bleach, metals and terracotta tiles [97,100,102]. 

Experts claim, however, that it is possible for experienced investigators to distinguish 

blood from a false positive, e.g. based on small differences in the obtained spectral 

shift, i.e. the mean position of the peak [97,103]. Luminol is considered safer, is more 

sensitive and has been demonstrated to give a lower rate of false negatives than to 

other tests and reagents [100,104]. However, Virkler and Lednev [105] claim that 

Luminol and the UV wavelength employed to visualise it can damage DNA. Several 

other studies [98,103,106–108] have demonstrated that luminol is non-destructive 

to blood and surroundings and compatible with additionally carried out presumptive, 

confirmatory or serological tests for species determination and DNA analysis. These 

can be essential in criminal investigations. Luminol does not react with other body 
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fluids [103] and can be applied several times [100], although this does risk diffusion 

of the stain [101]. Whilst diffusion does not significantly affect the recovery of 

evidential stains, it would severely affect the integrity of the ridge pattern of blood 

fingermarks. As the lack of a fixative leads to diffusion and destruction of ridge detail 

[36], the Home Office discourages the use of luminol for fingermark enhancement 

and lists it as a category E process. 

 

Another fluorescent reagent suitable for large-scale crime scene use is fluorescin, 

which is oxidised into fluorescein by a haem-catalysed reaction, similar to that of 

luminol. Unlike luminol, fluorescein only emits fluorescence when exposed to an ALS 

at a wavelength of 425-485 nm, and it is considered non-destructive to DNA 

[105,106]. The sensitivity of Hemascein®, a commercially produced fluorescein kit, 

on fabrics and linoleum is superior to luminol, but poor results were obtained on 

plywood [109].  

 

Although not based on a chemical reaction, ALSs such as Polilight® can be used to 

screen a crime scene for the presence of blood. This is, however, less sensitive than 

the use of luminol and therefore provides little benefit on light-coloured backgrounds, 

where detectable bloodstains are generally visible to the naked eye in most cases. 

Polilight® also provides poor results on highly absorbent fabrics such as fleece, but 

has a considerable advantage over luminol in that it can visualise bloodstains that 

have been painted over. This is because it is based on blood’s strong absorption at 

415 nm, whereas some paints can exhibit fluorescence near-identical to that of 

luminol. Additionally, Polilight® can indicate the presence of other body fluids based 

on their fluorescence at certain wavelengths, although their identification is not 

possible [101]. Complementing this technique, digital enhancement and background 

correction algorithms of images have been successfully tested to improve visibility 

and detection rate of untreated bloodstains photographed under ALS illumination 

[110]. 

 

Seidl et al. investigated a portable forensic laser head and a mercury-arc lamp for 

the screening and detection of body fluids, but came to the conclusion that the laser 
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cannot detect blood at all. The mercury-arc lamp demonstrated poor sensitivity by 

detecting only dilutions down to 1:100 and an inability to differentiate body fluid stains 

from each other due to marginal differences in fluorescence [111].  

 

1.2.2 Other chemical enhancement techniques 

Despite luminol’s high sensitivity and ability to screen large areas for blood, several 

other techniques are still being used for the detection and presumptive or 

confirmatory identification of blood at a crime scene. Generally, these tests can be 

grouped into the following categories: haem-reactive or peroxidase-based reagents, 

amino-reactive reagents and protein dyes, immunogenic tests and microcrystalline 

tests, each exhibiting their own advantages and disadvantages.  

 

1.2.2.1 Haem-reactive tests  

Haem-reactive tests are based on a haem-catalysed peroxidation-reaction that 

usually results in a colour change indicating the presence of haem and thereby 

blood. The general underlying mechanism of the haem-peroxidase activity as well 

as the structure of haem can be seen in Figure 1.2.  However, due to the nature of 

the reaction, peroxidation can be facilitated by a number of other compounds, 

therefore resulting in false positives. Several haem-reactive tests are known and 

have been investigated with regards to their sensitivity, toxicity and error rates. 

 

A popular (and reportedly the first) haem-reactive test which was used from 1904 

onwards was using benzidine. Initially thought to be blood-specific, it was later found 

to be peroxidase-based, as all haem-reactive tests are. Due to its high sensitivity 

and drastic colour change from colourless to dark blue, benzidine was widely used 

until its adverse health effects were noted [112]. After the benzidine test was banned 

in the USA in 1974 due to its high toxicity and carcinogenicity [104,113], several 

structurally related compounds were investigated in attempts to identify a suitable 

replacement. Tetramethylbenzidine (TMB) was demonstrated to have the same 

sensitivity and specificity but lower toxicity and solubility. Despite producing false 

positives with e.g. horseradish and beet leaves that are commonly observed with 
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haem-based tests, Garner et al. claimed TMB was reliable “in the hand of 

experienced serologists” in 1976 [113]. The UK Home Office, however, discourages 

the use of TMB due to reduced sensitivity in comparison to e.g. acid black 1 and 

concerns about TMB’s possible carcinogenicity and mutagenicity [112]. Despite its 

ban in the US, benzidine was further investigated and termed “not sufficiently 

reliable” by a Spanish group in 1995 [114]. Similarly, 2,2’-azino-di-[3-

ethylbenzthiazolinesulfonate(6)] diammonium salt (ABTS) is considered a safer, 

non-carcinogenic alternative to 3,3’-di-aminobenzidine (DAB), with its bright green 

colour being another advantage providing superior contrast on dark surfaces 

compared to DAB’s dark brown colour. Although both reagents are peroxidase-

based, DAB can be used subsequently to ABTS [115]; however it has been shown 

to have little use for the enhancement of blood fingermarks. This is partially due to 

the solution’s instability and the dark brown product colour being very similar in 

appearance to dried blood [96]. 

 

Figure 1.2 A: Structure of haem. B: The catalytic redox cycle underlying haem-
reactive compounds. Electrons (e-) are supplied by haem-reactive dyes and oxidised 
to form coloured compounds and water. (Re-drawn from [116].) 

 

In 1991, Cox compared phenolphthalein, orthotolidine (o-tolidine), leuco malachite 

green (LMG) and TMB in terms of sensitivity and specificity and concluded that, while 

o-tolidine and TMB were most sensitive, LMG and phenolphthalein were most 

specific out of the four peroxidising reagents [117]. As LMG was found to be the least 
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sensitive, the use of phenolphthalein was recommended. Furthermore, the use of o-

tolidine has since also been discontinued due to toxicity [104]. These authors also 

compared the Polilight® with haem-reactive tests Kastle-Meyer (KM; reactive 

ingredient phenolphthalein), LMG, luminol and Hemastix®, a haemoglobin chemical 

reagent test strip, and demonstrated that the least sensitive Polilight® is 50,000 

times less sensitive than luminol and 10 times less sensitive than LMG.  Hemastix®, 

KM and LMG exhibited reduced sensitivity when applied to swabs or filter paper, i.e. 

not directly to the stain [104] such as in Vandewoestyne et al.‘s visualisation assay 

[118].  

 

Variability in sensitivity of KM and LMG has been described alongside potential 

carcinogenicity. Studies carried out on haemoglobin solutions rather than blood 

showed that all techniques were still able to detect haemoglobin after 7 weeks of 

ageing [104].  

 

Although the working agent in Hemastix® is TMB, it is more sensitive and specific 

than TMB alone, but still gives false positives [119]. It also gives false negatives in 

the case of highly degraded samples when EDTA is added to increase specificity, 

as this chelates haem.  However, it was shown to remain efficient on archaeological 

samples, although low temperatures can pose problems [119].  When investigated 

for blood footwear impressions on fabric, Bluestar® Luminol was the only haem-

reactive reagent to enhance all prints and provide clear detail on denim and leather, 

where LMG, leuco crystal violet (LCV) and fluorescein demonstrated poor results. 

Additionally, LMG and LCV provide poor enhancement on dark surfaces and it was 

shown that none of the reagents detected blood after laundering of the substrate 

fabric [120] although it was not clear whether this may have been due to efficient 

removal of the blood in the washing process.  

 

Other researchers, however, have demonstrated the ability of KM, LMG, Hemastix®, 

TMB and Polilight® to detect bloodstains on fabric both after hand and machine 

washing. Hemastix® and KM were found to be the most, and LMG the least 
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sensitive, although results depended on the detergent used and the fabric’s ability 

to retain blood [101,121–123]. 

 

In addition to the compounds commonly observed to cause false positives in haem-

reactive tests [54,97,99–102,112,124–126], one study reports similar appearance of 

stains and reaction with phenolphthalein of legume root nodules due to their 

expression of leghemoglobin, which is structurally and functionally similar to 

haemoglobin. Moreover, the study demonstrated that if clothing presenting such a 

stain is submitted for DNA analysis, results show the wearer’s DNA profile, thus 

potentially misleading investigators to believe the stain is composed of the wearer’s 

blood [127]. Similarly, several tests were evaluated for their ability to distinguish 

blood from blow fly artefacts produced from flies feeding on blood, but proved to be 

unreliable [128]. 

 

1.2.2.2 Amino-reactive reagents  

While some literature is available concerning haem-reactive tests for the 

enhancement of fingerprints [96,115,129,130], there seems to be no literature 

regarding the detection of bloodstains by amino acid-reagents or protein dyes. These 

appear to be predominantly used on blood fingermarks or other non-stain pattern 

shapes such as footwear impressions. Protein-reactive reagents react with the 

amine group or other functional groups within all proteins [96] to produce colour. To 

allow visualisation on various substrates, a range of formulations is available to 

choose from resulting in light, dark or even fluorescent colours; examples include 

fuchsin acid (acid violet 19, hungarian red), acid black 1 (ab1), acid yellow 7 (ay7), 

acid violet 17 (av17), ninhydrin, coomassie blue (acid blue 83) and crowle’s double 

stain (acid blue 83 and acid red 71) [131]. An example illustrating the interaction 

between AB1 and a protein can be seen in Figure 1.3.
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Figure 1.3 Schematic interaction between acid black 1 (top) and a possible protein 
(bottom) with R and R+ as possible protein side groups. (Chemical structure obtained 
from sigmaaldrich.com, CAS 1064-48-8; re-drawn from [57].) 

 

An evident drawback for these reagents is the fact that their target substances are 

not exclusive to blood and can therefore elicit a vast range of false positives. 

Marchant and Tague compared ABTS and fluorescein with the protein dyes AB1 and 

Coomassie Blue for the enhancement of blood fingermarks on various surfaces, the 

success of which was dependent on the surface. Visual images of only 6-50% of 

fingermarks that tested positive for blood were usable for obtaining ridge detail, 

fluorescein demonstrating the poorest performance followed by aqueous AB1 (H2O-

AB1) [130], which is known to diffuse ridge detail [132]. AB1 in a methanol-based 

formulation (MeOH-AB1) provided the best results and performed equally well on 

porous and non-porous surfaces, followed by ABTS which worked slightly better on 

porous surfaces than MeOH-AB1. It was, however, inferior on non-porous substrates 

[130], although ABTS had been reported to show little potential for use on blood 

fingermarks previously [96]. An issue that has been reported is that MeOH-AB1 may 

be more damaging to evidence and substrates than the water-based formulation by 

for example causing background discolouration [130,132,133].  In order to overcome 

problems associated with both AB1 solvent systems, an alternative ethanol/water-

formulation was developed and is currently one of the protein dyes recommended 

by UK police forces for the enhancement of blood fingermarks, despite exhibiting 

slightly more background staining [36,132]. Other recommended dyes are the 
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fluorescent acid yellow 7 (AY7) for non-porous surfaces and acid violet 17 (AC17), 

both of which are especially useful on dark surfaces [120,134]. Further amino-

reactive reagents have also been evaluated by both Pereira and Sears et al., who 

list 1,8-diazafluoren-9-one (DFO) and ninhydrin (2,2-dihydroxy-1,3-indanedione) as 

alternatives for porous surfaces [96,133] including light-coloured fabrics [135]. 

These, however, also enhance latent, non-blood prints, whereas AB1, AV17 and 

AY7 only enhance blood [120,134] and have been demonstrated to remain effective 

for the recovery from fire scenes exposed to up to 200°C and soot removal, where 

e.g. LCV was ineffective even for lower temperatures [136]. 

 

In their review of enhancement techniques for blood fingermarks Bossers et al. claim 

haem-reactive compounds provide less background staining and are more specific 

to blood than protein dyes, some of which also enhance latent fingermarks. They 

also state that titanium dioxide (TiO2) has an affinity for proteins and amino acids, 

while cadmium telluride (CdTe) quantum dots have an affinity for haemoglobin [57]. 

This affinity has since been exploited for a specific blood lifting tape called ZarPro™, 

which is a paper-like strip impregnated with TiO2 that is misted with an activator 

solution of 50% methanol and binds blood proteins upon contact with the stain or 

fingermark, allowing for a proteinaceous impression to be lifted off the surface. 

Although the strips are white and as such already provide good contrast for patent 

marks, they are also inherently fluorescent, allowing easy visualisation of faint, 

poorly visible marks [137]. 

 

Similar principles have been proposed for potential biosensing mechanisms that 

have been discussed for body fluid identification e.g. by inducing different coloured 

fluorescence based on the type of body fluid [138]. Although the proposing article 

suggested the usefulness of simultaneous biosensor use, the group originally 

published individual studies for various fluids. The biosensor for blood employed in 

their studies uses fluorescent semiconductor quantum dots conjugated with 

antibodies against the human glycophorin A, an erythrocyte membrane protein [139]. 

 

While the Home Office provides extensive recommendations regarding operational 
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workflows, deposition surfaces and suitable enhancement techniques for blood 

fingermarks in their fingerprint source book [140] and the fingermark visualisation 

manual [36], studies have also been undertaken elsewhere regarding the recovery 

of blood fingermarks from fruit and vegetables, and here protein dyes have been 

deemed the most successful [141]. Several studies have also evaluated the effect 

of haem-reactive tests and protein-dyes on the success and sensitivity of DNA 

recovery and analysis, for example demonstrating a reduction in yield by a factor 

between 2 and 12 [129], especially if the process requires a de-staining step. No 

short-term effect on DNA amplification has been observed unless considering the 

discontinued benzidine [108] or LMG [142], which merely requires neutralisation 

before DNA analysis [143]. Long-term exposure, on the other hand, has been shown 

to affect DNA integrity and increase degradation [108,129,144], resulting in the 

recommendation to perform DNA analysis within a maximum of 30 days after 

enhancement, at which point e.g. Luminol starts degrading DNA. After 120 days, all 

treated samples showed DNA degradation, while non-treated samples did not [108]. 

Another study reported that H2O-AB1 and LCV negatively affect mRNA profiling 

[145].  

 

1.2.3 Microcrystalline tests  

Microcrystalline tests are tests in which crystals are formed between haemoglobin 

and the reagent to indicate the presence of blood. The popular microcrystalline 

Takayama and Teichmann tests are commonly considered confirmatory. However, 

they require blood to be scraped off a surface and treated in a laboratory, making 

them unsuitable for onsite use and the analysis of blood fingermarks without 

destruction of ridge detail [95]. Additionally, it means that they cannot be used 

speculatively, as suspected blood must be visible and easily observed in order to be 

scraped off. However, fingerprinting powder does not affect the crystal-formation of 

microcrystalline tests and thus does not hinder blood identification [146] if carried out 

after visualisation with powders and photography of ridges.  

Both tests are based on the reagent forming crystals with haemoglobin, which can 

be observed under a microscope [105,112,124,147–150]. In the case of the 

Teichmann test, these crystals are hematin, whereas hemochromogen is formed in 
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the Takayama test. Interestingly, these tests were developed as early as 1853 and 

1912, respectively [131]. 

 

1.2.4 RNA analysis for body fluid identification 

For forensic purposes, the analysis of nucleic acids such as deoxyribonucleic acid 

(DNA) is commonly used for identification of a subject or determination of familial 

relations. To do this, the number of repeats of various genes is compared between 

samples in what is often simply referred to as a “DNA test”. While undoubtedly useful, 

these analyses do not provide insight into the nature of the source, as they do not 

discriminate whether a sample originates from for example skin or blood cells. 

Therefore, they do not inherently allow the detection of blood, which can be of great 

importance to an investigation and suggest an entirely different dynamic of a crime.  

 

However, another type of nucleic acid, ribonucleic acid (RNA) has been investigated 

to bridge the gap and allow blood detection through nucleic acid analysis. Mostly this 

is employing messenger RNA (mRNA), the expression of which varies between cell 

types [151]. Although it is usually expected to degrade rapidly [152], its stability in 

forensic stains has been demonstrated for samples of up to 16 years in age [153–

155]. Due to its differential expression, several studies have evaluated mRNA 

markers for blood, however while they are most abundant in blood, they may not be 

entirely absent in other body fluids and tissues [151,156–158]. For example blood 

mRNA markers have been found in vaginal fluid at comparable expression levels 

[159] and some markers cannot be identified due to physiological variation in 

expression [151]. Multiplex assays, which can simultaneously detect multiple target 

analytes, have also been developed for body fluid identification, with some assays 

even cutting the need for fluorescently labelled primers to reduce time and cost. 

However, the majority of these multiplex assays only use two markers per body fluid 

[151,156–158]. In combination with the non-exclusive expression of those mRNA 

markers, this can be seen as a drawback potentially leading to misclassification of 

samples. Furthermore, those RNA multiplex systems have shown cross-reactivity 

with mRNA markers of domestic animals [160], compromising the confident 

identification of human blood. Further to mRNA, small, non-coding micro-RNAs have 
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also been employed for the identification of blood [161–164], being sensitive enough 

to detect as little as 50 pg of RNA [162]. 

 

Regardless of potential drawbacks, advances that have recently been made in the 

field of analysis may make it possible to combine the analysis of DNA with RNA 

analysis. Techniques are now available for the simultaneous co-extraction of DNA 

and RNA from one sample, which is useful if both are required [154,165]. It should 

be noted, though, that this combined extraction technique offers lower sensitivity for 

DNA than conventional extraction methods used for one target molecule.  

 

1.2.5 Spectroscopic techniques 

Besides the chemical tests, there has been a growing interest in the development of 

spectroscopic techniques for the identification of blood and its discrimination from 

other body fluids. In particular, the development of hand-held devices potentially 

enables such analyses to be performed at the crime scene [166,167]. Statistical 

analysis of the peaks in Raman spectra, for example, is reported to allow the 

discrimination of body fluids even in mixtures with component contributions of a few 

percent [105,168–174], as well as differentiating between human and animal blood 

[175] and non-blood substances [148]. The ability to detect blood dilutions of 1:250 

places the technique’s sensitivity in line with that of KM, LGM and ALS, but below 

that of luminol [167,176]. Furthermore it allows the use of reconstituted samples, e.g. 

from fabric extracts, which also solves the problem of strongly luminescent 

substrates such as fabrics interfering with analysis [167,176].  

Conflicting opinions exist on the identity of the two main components producing the 

peaks, with some researchers stating they originate from haemoglobin and haem 

aggregation products [177], indicating spectra are exclusively attributable to 

haemoglobin and its denaturation products, while others claim it is haemoglobin and 

fibrin [167,171]. As samples become heterogeneous in constituent distribution once 

dried, spectra at different points vary from each other and spectra of multiple points 

are required to satisfactorily represent a sample [172]. While some studies report 

that species determination is not possible based on Raman spectra due to the large 

haemoglobin sequence homology [148,149], others report it is possible with the aid 
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of principal component analysis (PCA) [68,175,178]. Although the detection of blood 

in heavily contaminated samples is still possible [179], in tape lifted blood mark 

samples, tapes may produce interference due to their large background 

fluorescence [148]. 

 

Surface enhanced raman scattering (SERS), a subset of Raman spectroscopy, has 

also been used for the analysis of plasma. It should be noted that it is therefore also 

looking at other biomolecules such as proteins, lipoproteins, carbohydrates and 

small organic molecules, instead of only haemoglobin and possibly fibrin, as has 

been reported for Raman. For this reason, it is demonstrating independence from 

haemoglobin signals, which form the exclusive basis of near-infrared Raman (NIR) 

spectra [180]. A SERS-substrate has been developed that increases the poor 

sensitivity of Raman by 2 orders of magnitude to 1:100,000 dilutions and allows 

swabbing of the substrate over the blood sample, thus providing another method for 

overcoming the luminescence of fabrics [176]. 

 

Spectrophotometric techniques used for the analysis of blood include UV-VIS 

microspectrophotometry, attenuated total reflectance Fourier-transform-infrared 

spectroscopy (ATR FT-IR), reflectance spectroscopy and NIR, all of which are able 

to differentiate body fluids but not blood species origin [124,148,149,181,182].  

 

Hyperspectral imaging, which combines photography or optical imaging with 

spectroscopic analysis [183,184], has been used to distinguish blood from non-blood 

substances. However, it is unsuitable for black substrates and a reference spectrum 

is required from the substrate, which can be difficult in a crime scene-context as it 

cannot be taken for granted that the reference is blood-free. On red substrates, the 

sensitivity is reduced from 512-fold dilutions to 32-fold dilutions and it works best on 

light-coloured substrates [185]. Additionally, the instrument’s imaging field and 

sample enclosure may be unsuitable for large samples containing blood marks that 

can be removed from the crime scene [183], such as baseball bats.  

  

A study has been published on proton-nuclear magnetic resonance (1H-NMR) 
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spectroscopy, which successfully demonstrated the identification of blood in body 

fluid mixtures via PCA. However, serum was studied rather than whole blood, 

extracts of crime scene stains were not mentioned and the differentiating features 

were not exclusive to a particular body fluid but merely chosen due to them exhibiting 

intense signals in all spectra of that body fluid [186]. This means that they could be 

present in other substances. Similarly, work on a self-calibrating X-ray fluorescence 

(XRF) system seemed to identify blood mainly based on the iron signal in its 

environmental signature and large preservative peaks were observed due to the 

blood being sourced from a blood bank [187], although this could be beneficial in 

identifying staged crimes, where blood from a blood bank may have been used. 

 

1.2.5.1 Mass Spectrometry  

Mass spectrometry (MS) has been used as a specific and confirmatory technique for 

the detection and identification of blood on its own or simultaneously with other body 

fluids and substances. MS has the advantage that no presumptive knowledge about 

sample identity is necessary [54,188] and matrix-assisted laser desorption/ionisation 

mass spectrometry (MALDI-MS) imaging of latent fingermarks has successfully 

been added to the Home Office fingermark visualisation manual as a category C 

process [36].  According to Espinoza et al., who analysed blood samples from 

different animal species for their intact haemoglobin signals using electrospray 

ionisation mass spectrometry (ESI-MS), each species typically presents 2-5 

haemoglobin variants [69]. This can perhaps affect the ability of other techniques to 

detect haemoglobin, for example if the variation results in an altered spectral shift or 

absorption band or an altered or sterically hindered antibody binding site used for 

provenance determination. Additionally, knowledge of the sequence variations is 

required in order to identify proteins or their tryptic peptides detected as haemoglobin 

or other blood-specific signals, without this knowledge they might be mistaken for 

other signals. Yang et al. employed high performance liquid chromatography-matrix-

assisted laser desorption/ionisation-mass spectrometry (HPLC-MALDI-MS) for 

protein and peptide analysis of overnight digests of blood that underwent multiple 

lengthy sample preparation steps. However, they only analysed haemoglobin alpha 

and beta as well as band 3 anion transport protein (also known as erythrocyte 
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membrane protein band 3) [188]. Additionally, this group has analysed the proteome 

of menstrual blood and compared it to venous blood and vaginal fluid, the other two 

components of menstrual blood. In doing so, they identified 385 proteins (36% of the 

total proteome identified in the experiment) that did not originate from venous blood 

or vaginal fluid and can therefore be considered unique to menstrual blood [189]. 

 

1.2.6 Provenance determination of blood 

In addition to the problems previously described with false positives, the currently 

used blood enhancement techniques are not specific to human blood and the ability 

of spectroscopic techniques to identify the species origin of a blood sample is not 

proven. Because blood provenance can be of paramount importance in a criminal 

investigation [63,64,66,67,70], immunogenic tests such as crossover-

electrophoresis, radioimmunoassay, Ouchterlony double diffusion and enzyme-

linked immunosorbent assays (ELISAs) have been in use since the 1970s in an 

attempt to provide such additional intelligence [190–193]. The success of these tests 

depends on the target protein, as for example immunoglobulin G (IgG) was only 

detectable for up to 8 weeks after bloodshed, whereas albumin was still detectable 

after 15 months of ageing [193]. However, IgG is also expressed in body fluids other 

than blood, albeit at lower levels [194]. Similarly, many immunogenic tests cross-

react with primate blood [192,195] due to the large sequence homology between 

human and primate proteins.  

 

Although some tests have to be carried out in a laboratory, a variety of strip tests 

(usable in the field), such as Hexagon OBTI (Gesellschaft für Biochemica und 

Diagnostic mbH, Wiesbaden, Germany) or HemaTrace® (Abacus Diagnostics, West 

Hills CA, USA) are available. The majority are haemoglobin based and hence not 

only exhibit cross-reaction with primate blood, but with blood from other species, e.g. 

ferret blood [196]. The exception to this is the Rapid Stain Identification™-Blood 

(RSID™-Blood) strip test (Independent Forensics, Lombard IL, USA), which claims 

specificity for human blood via two antibodies against glycophorin A, a red blood cell 

membrane specific protein. This has been shown not to exhibit false positives with 

ferret, skunk or primate blood samples [126]. The test is also said to remain efficient 
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for samples of up to 10 years of age, albeit with lower sensitivity than haemoglobin-

based tests [197]. 

 

Passi et al. also state that luminol has very little effect on the subsequent use of the 

Ouchterlony double diffusion test, in which 84.6% of luminol-treated samples could 

still be correctly typed for species determination using antibody-based techniques. 

This number reduces to 76.9% with bleach treatment, which may occur in an attempt 

to clean the crime scene [98]. While no success rate is given for untreated samples, 

it may be arguable whether a confidence interval of about 85% is sufficient or not for 

confirmatory species determination in a criminal investigation. 

 

Another laboratory-based test has been developed to locate human-specific blood 

in situ, e.g. on fibres, by staining minute amounts of blood (as little as individual blood 

cells) with fluorescently labelled antibodies (anti-glycophorin A [HIR2], anti-CD45 

[transmembrane protein tyrosine phosphatase], anti-MPO [hemoprotein in 

azurophilic granules within neutrophils] and anti-human histone H1). These can then 

be visualised with a fluorescence microscope. No cross-reaction was observed with 

ferret blood, but surprisingly primates were not tested [198].  

 

Raman spectroscopy has recently emerged as a new technique for provenance 

determination, however this is only possible if advanced data analysis protocols such 

as PCA are applied. The features of Raman spectra correspond to vibrational modes 

of haemoglobin and it is suspected that the differences leading to separate PCA 

classes are due to interspecies differences in haemoglobin [68,175,178]. No 

references to the testing of primate blood were found, but it may be hypothesised 

that differentiation would be impossible due to the large sequence homology with 

human haemoglobin. As the technique also relies largely on slight differences in 

signal intensities, it remains questionable whether the correct classification of a 

mixed species sample would be possible. As it has been reported that 2-5 

haemoglobin variants are commonly observed in each species [69], which has the 

potential to complicate haemoglobin-based species identification. 
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1.3 Introduction to MALDI-mass spectrometry 

Mass spectrometry is an analytical technique that can be used to gain insight into a 

sample’s chemical composition by measuring the molecular masses of components 

contained within it. Briefly, a mass spectrometer is composed of an ion source, in 

which compounds are ionised to produce gas-phase ions, followed by a mass 

analyser or selector, which separates ions based on their mass-to-charge ratio (m/z), 

and a detector, which detects the ions produced and separated in the previous 

components and generates a spectrum displaying the ion signals detected. 

 

Several different ionisation methods are available ranging from soft ionisation 

techniques (e.g. MALDI, ESI), which result in little to no fragmentation of molecular 

species, to high energy deposition ionisation techniques (e.g. electron ionisation), 

which produce fragment ions. Depending on the target analyte and conditions 

required, a variety of instruments and hyphenated instruments, which combine 

several techniques in sequence, are therefore available to choose from. 

 

The soft ionisation technique MALDI was selected for this project for its high 

sensitivity (down to a few femtomoles of material [199]) and because its lack of 

fragmentation is advantageous for the analysis of proteins, peptides and other 

complex biomolecules. Additionally, its imaging capabilities allow the mapping of an 

analyte’s spatial distribution in a sample, which is desirable for the biochemical 

analysis of fingerprints. The technique is also tolerant of low quantities of salts [200], 

which can be present in fingermarks and sweat. 

 

The invention of MALDI-MS is the subject of some controversy. Whilst it was Koichi 

Tanaka who received part of the Nobel prize for Chemistry in 2002 for his 

development of a laser desorption ionisation technique [201], Karas et al. are 

credited with the idea of employing an organic matrix [202], which results in better 

ionisation efficiency and therefore is the approach widely used. In order for the 

sample to be ionised, it is mixed with a chemical called a matrix, typically a small, 

non-volatile and UV-absorbing weak organic acid containing a chromophore [53], 

and allowed to co-crystallise.  
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A laser, commonly nitrogen (N2) or neodymium-doped yttrium aluminium garnet 

(Nd:YAG), is fired at the matrix-sample co-crystals. The emitted laser energy, e.g. 

355 nm in the case of the Nd:YAG or 337 nm in the N2 laser in UV-MALDI [202], is 

absorbed by the matrix, leading to desorption and ionisation of the co-crystals. The 

matrix, which should have a strong absorbance at the laser’s wavelength, absorbs 

most of the laser energy, thereby minimising analyte fragmentation. Several matrices 

are available, the choice of which is dependent on the target mass range, analyte 

type and instrument polarity. For this study, α-cyano-4-hydroxycinnamic acid 

(CHCA) was chosen, which, like 2,5-dihydroxybenzoic acid (DHB), is commonly 

used for low molecular weight peptides and lipids, whereas sinapinic acid (3,5-

dimethoxy-4-hydroxycinnamic acid, SA) is often used for proteins [203]. It should be 

noted that crystallisation is often inhomogeneous and the resulting “sweet spots” 

result in fluctuating ion signal intensities. As the matrix also ionises, it can produce 

strong background signals (“matrix peaks/clusters”), especially in the low mass 

range, or it may cause ion suppression of target analytes. One strategy to overcome 

the phenomenon of matrix cluster ions in peptide analysis is the addition of aniline 

to the matrix solution in order to suppress matrix peaks in the relevant mass range, 

as it enhances solubilisation of the matrix and aids crystallisation [204–208]. 

 

Due to its ability to detect a wide range of molecules, including drugs and 

biomolecules such as lipids and proteins, without the need for labelling with probes 

or antibodies, MALDI-MS has been previously applied to a variety of samples of 

biomedical and biochemical interest as well as forensic samples such as dyes [209] 

or blood for blood group genotyping [210]. 

 

1.3.1 Ionisation theory in MALDI 

The theory of desorption in MALDI has been reviewed by Dreisewerd in 2003, who 

describes one possible mechanism to be that analytes enter the gas phase through 

localised sublimation caused by the fast heating of co-crystals via vibrational 

excitation of matrix molecules during laser irradiation [211]. Similarly, multiple 

complex ionisation theories have been devised, although a consensus has been 
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reached that ionisation is achieved through a two-step process consisting of primary 

ionisation and secondary ion-molecule interactions [200]. However, the exact nature 

of these two steps is still discussed. 

 

Two models discussed for primary ionisation in MALDI are the cluster model, 

devised by the Karas group, and the photoexcitation/pooling model. Both have been 

described in detail in Knochenmuss’ review of ion formation mechanisms in UV-

MALDI, alongside other less widely discuss models [200]. In the cluster model, the 

matrix is viewed as a desorption vehicle carrying pre-formed ions that are subjected 

to neutralisation in the ion plume (Figure 1.4). In the photoexcitation/pooling model 

it is theorised that neighbouring matrix molecules are separately photoexcited but 

distribute the energy to create pools of a higher excitation state, thereby reaching 

sufficient levels of energy to achieve ionisation (Figure 1.5) [200,212]. The 

secondary reactions are then described as collisions between matrix and analyte or 

analyte and analyte molecules in the ion plume, resulting in either proton transfer, 

electron transfer or cationisation, depending on the analyte and matrix chemistry and 

selected instrument polarity [200,213]. The theory widely accepted for positive mode 

MALDI is that of proton transfer from photo-ionised matrix molecules to analytes. 
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Figure 1.4 Simplified schematic of the major process proposed in the cluster 
ionisation model. m = matrix, A = analyte, R- = generic counter ion. (Re-drawn from 
[200]). 

 

Figure 1.5 Simplified schematic of the major process proposed in the 
photoexcitation/pooling ionisation model. Green = molecules, Grey = wavefunction 
overlap leading to redistribution of excitation energy to different excitations states, 
Blue = ion. (Re-drawn from [200]). 

 

1.3.2 Mass analysers 

Following the generation of ions, they must be separated according to their m/z, 

which can be achieved by different physical principles. Schematics of different types 

of mass analysers are available by Pól et al. [214], although it should be noted that 

they are often combined in sequence to enhance versatility, e.g. in the popular Q-
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TOF, which combines time-of-flight (TOF) and quadrupole mass analysers. Only the 

analysers used in or relevant to this study shall be briefly described here and have 

been visualised in Figure 1.6. 

 

Figure 1.6 Schematic diagram of A) Quadrupole and B) Time-of-Flight mass 
analysers. 
 

The quadrupole, which was developed by Paul and Steinwedel in 1953 [215], 

employs an oscillating electrical field to separate ions based on the stability of their 

trajectories and is composed of four parallel, ideally hyperbolic rods. Opposing rods 

are connected and radiofrequency potentials are applied, whereas the opposite pair 

is subjected to a direct current potential. Ions are directed along the axis of the array 

and repelled by the changing potentials, resulting in complex flight paths, which can 

be stable or unstable. However, only ions with stable trajectories reach the detector, 

which means that knowing the calculations behind the trajectory path the conditions 

of the potentials applied can be varied to affect which ions have stable or unstable 

trajectories, hence allowing only selected ions of reach the detector (selected ion 

monitoring) [216]. Quadrupoles have a low resolution of 2000 full width half 

maximum (FWHM; the resolving power required to observe separated peaks) at m/z 

1000 and a limited mass range of up to 4000 Da with 100 ppm accuracy [216]. 

 

Time-of-flight (TOF) mass spectrometers, on the other hand, can have a mass 

resolution of 40,000 FWHM [217] and have been used to analyse ions in the 

megadalton range (1,900,000 Da) [218], although this cannot be considered a 

routine in mass spectrometry. Nonetheless, combined ToF instruments such as a 

MALDI-FTICR-IMS have been reported to operate with up to 75,000 FWHM [219]. 
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In TOF instruments, ions are accelerated by an electrical field and then separated 

based on their velocity in a field-free region, the so-called drift tube, between the ion 

source and the detector. Because ions all receive the same kinetic energy, smaller 

ions travel faster than larger ones and therefore reach the detector first, i.e. have a 

short time-of-flight, allowing separation based on their m/z [216,220]. In reflectron 

mode, ions are deflected after exiting the field-free region and sent back through the 

drift tube to compensate for kinetic energy dispersion of ions with the same m/z 

[199,216]. 

 

The instrument used to acquire positive mode MALDI data in this study was the 

Synapt G2™ High Definition Mass Spectrometer (HDMS) system by Waters 

Corporation (Manchester, UK) equipped with a 1 kHz Nd:YAG laser, which combines 

a quadrupole with reflectron TOF and the possibility for ion mobility-MS, although 

this was not used in this case and shall therefore not be discussed further. In 

sensitivity mode, which was used for this study, the instrument offers a mass 

resolution of 10,000 FWHM, whereas it can achieve 20,000 FWHM in resolution and 

40,000 FWHM in high resolution mode [217]. 

 

1.3.3 MALDI-MS imaging  

Mass spectrometry imaging (MSI) is possible with several techniques such as SIMS 

[221], DESI [27] and MALDI [25] and allows for the mapping of the spatial distribution 

of an analyte. 

 

The first reported use of MALDI for imaging was made in 1994 [222]. However, it did 

not gain widespread attention until the seminal paper by Caprioli et al. in 1997, who 

mapped peptides and proteins in tissue sections and blots thereof [223]. Due to its 

wide mass range, MALDI-MSI finds wide applicability ranging from use in 

biomedicine, biotechnology and pharmaceuticals, for example in drug mapping and 

tumour diagnosis [224], to microbiology and various forensic problems such as the 

analysis of ink, drugs of abuse [225,226], condom lubricants [48,49] and fingerprints 

[25,53]. 
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In principle, MALDI-MSI is similar to MALDI-MS profiling, where a spectrum is 

obtained without information on one spot or localised sample only. However, the 

laser can be automated to raster the section to be imaged. Full spectra of all ion 

signals are thereby collected at each x/y-coordinate (Figure 1.7A) and the intensity 

of each m/z can be extracted by specific imaging software to visualise its distribution 

across the entire sample (Figure 1.7B), i.e. which x/y-coordinate contains the m/z in 

question with which intensity. The quality of these distribution maps is, however, 

dependent on the laser spot size of each raster and the distance between laser shots 

as well as the sample preparation, which greatly affects the image quality. While in 

profiling applications the matrix is pre-mixed with or spotted onto the sample, it must 

be evenly and thinly applied onto a sample that is to be imaged in order to ensure 

that it is sufficiently covered with matrix to allow ionisation, but also prevent 

delocalisation of analytes caused by excess humidity. This is particularly challenging 

for the application of enzymes such as trypsin when peptide analysis is required, as 

trypsin requires moisture to be effective, or when tissues need to be sectioned, 

resulting in sample preparation being crucial for successful MSI analysis [203]. 

 

 

Figure 1.7 Concept of MALDI-MS imaging, demonstrated on a fictional example. A: 
Localised spectra of individual coordinates within the sample. B: Intensity and 
distribution map of a selected m/z throughout the image.  

 

1.4 The principles of proteomics   

Proteomics is a large field concerning the study and characterisation of proteins, 

long chains of amino acids with various important biological functions, and peptides, 

their smaller building blocks or fragments. Broadly, proteomics can be divided into 

structural proteomics, expression proteomics and functional or interaction 
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proteomics. Often these fields overlap in order to investigate structure and quantity 

as well as physiological role, localisation, interactions, dynamics and varieties within 

a biological system. These biological systems can be entire species, single organs 

or particular pathways of interest. A range of techniques is available for these tasks 

depending on the desired outcome, employing for example immunoassays, gel 

electrophoresis, western blotting, affinity chromatography, x-ray crystallography, 

mass spectrometry or even comparatively simple dipsticks. 

 

The human plasma proteome project for example set out to characterise the entire 

human plasma proteome, measuring protein concentrations using immunoassays 

and providing annotations via analysis of MS data [89,227,228]. The understanding 

of a healthy proteome and biological variation caused by physiological differences 

(e.g. age or gender) is imperative to the investigation for diagnostic purposes for 

instance in clinical proteomics. Without this basis, markers of disease like those 

found in samples from patients with kidney damage or cancer would not be 

identifiable as such [229]. Similarly, proteomics has been used for therapeutic 

purposes like monitoring changes in the proteome following drug treatment [206] as 

well as drug discovery and development through targeting protein pathways known 

to be involved in disease [230]. To identify these pathways, proteomics is employed 

for the investigation of the underlying mechanism of a disease and understanding 

protein interactions, like in the study of prion proteins, such as the one responsible 

for bovine spongiform encephalopathy [231], or α-synuclein associated with 

Parkinson’s disease [232]. With pertinence to this thesis, proteomics is also 

increasingly finding relevance in forensic sciences. Applications have for instance 

been reported analysing the human hair shaft proteome [233] and organ-specific 

protein expression patterns, aiming to identify the tissues a projectile traversed [234] 

to aid the identification of the lethal bullet in a case with multiple shots fired. 

Furthermore, studies have been undertaken investigating the proteome of several 

body fluids to allow their confident identification in forensic samples [188]. 
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Although conventional analysis methods such as gel electrophoresis or western 

blots remain useful, the advent of MS facilitated the more reliable, reproducible and 

exact analysis of proteins and has therefore been widely accepted in the field. The 

possibility to not only characterise or identify proteins by their mass and, in the case 

of ion mobility-MS, their collisional cross section or structural properties, but also 

sequence them certainly makes MS-based approaches a popular choice in 

proteomics. However, it also means proteomic databases like UniProtKB are of 

paramount importance to allow researchers to form hypotheses, draw from existing 

knowledge and recognise connections to their data.  

 

Regardless of the analysis platform chosen, two terms are commonly encountered 

in proteomics. Whilst the so-called "top-down" proteomics is concerned with 

detecting or sequencing intact proteins, "bottom-up" approaches analyse 

characteristic peptides generated from a protein by enzymatically cleaving it, a 

process called proteolysis or digestion. One such proteolytic enzyme that is 

frequently used in bottom-up proteomics is trypsin, which specifically cleaves at the 

C-terminal sites of the amino acids lysine and arginine, except when followed by 

proline [235]. This knowledge allows for in silico (theoretical) digests to be performed 

on known protein sequences (obtained from databases like UniProtKB) to predict 

the peptides produced by proteolysis. Especially the mass spectrometric analysis of 

such digests then allows the reliable measurement and identification of peptides and 

the proteins they originate from, respectively, with a given tolerance.  

 

For trypsin to be effective, it has to be present in a substrate:trypsin ratio of 

approximately 50:1 [236] – if too much trypsin is present it starts autolysing, resulting 

in large trypsin signals in the mass spectrum, and if too little trypsin is present it 

cannot effectively lyse the excess of protein, resulting in a lack of peptide signals. 

Digests can be performed in-solution, adding trypsin solution to e.g. tissue 

homogenates, sample extracts or liquid samples, or in situ, where the sample is 

covered with thin layers of the protease in order to maintain the spatial distribution 

of analytes. This technique is frequently used for MALDI-MSI of digested tissue 

sections, in which case it is also referred to as an “on-tissue” digest [237]. Commonly, 
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20 µg/mL trypsin solutions are used for in-solution and on-tissue digests 

[20,206,208], but various other trypsin concentrations have been reported in the 

literature alongside differing substrate:trypsin ratios for a range of samples 

[189,238–244]. 

 

1.5 Infinite focus microscopy 

Infinite focus microscopy (IFM), also called focus variation microscopy (FVM), is a 

relatively new microscopy technique that allows for the computational generation of 

3D images of a sample and thereby the characterisation of its surface. This can be 

considered a great advantage over conventional 2D microscopy, which doesn’t allow 

for the observation or measurement of height features and can only be focused on 

one plane of the sample at a time.  

Unlike confocal microscopy, which is regularly used for biological samples and is 

based on transmitted light, IFM works on reflected light and can therefore be used 

routinely in quality control and analysis of wear in material engineering and 

production processes, e.g. measuring metal parts and corrosion [245,246] as well 

as paper smoothness [247]. This is aided by the large, robust sample stage suitable 

for items of up to 20 kg [246]. In addition to quality control, IFM has been used for 

the comparison of toolmarks in a forensic context [248,249] as well as the analysis 

of archaeological and anthropological samples [250–256] and biological samples 

that are not amenable to confocal microscopy due to their opacity, such as teeth and 

bones [257–259]. 

 

Unlike conventional microscopy, IFM allows variation of the focus, meaning that it 

can automatically acquire focussed images at various focal planes with a vertical 

resolution of down to 10 nm [246,250]. This is achieved through the following 

principle: light hitting the specimen is reflected with equal strength into each direction 

if the topography is uneven, i.e. shows diffuse reflective properties, whereas it is 

mainly scattered into one direction in case of specular reflections, i.e. perpendicular, 

smooth samples. This reflected light is collected in the optics, which only have a 

small depth of field, by a light sensitive sensor behind a beam splitting mirror. Figure 

1.8 shows a schematic of the IFM’s optics. As the small depth of field means only 
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small portions of the image are in focus, data have to be captured continuously whilst 

vertically moving the optics along the optical axis. This permits full depth of field, i.e. 

sharp focus at each position, and allows complete analysis of the sample surface 

[260]. This focus variation is then processed by the software using specific 

algorithms [246,257], and by stacking of images acquired at each focal plane a final 

image is produced with a large depth of field based on the coordinate points that are 

best focussed. This stack thereby allows for the representation of the topology of a 

sample. 

 

Figure 1.8 Schematic of an infinite focus microscope. (Re-drawn from [261].) 

 

The lateral resolution that can be achieved is currently 400 nm [246,250] and 

complex geometric samples with slopes of up to 85° can be analysed as well as 

highly reflective or rough surfaces [246,247]. To further characterise the samples, 

several analytical tools are available within the software, allowing various 

measurements to be performed on the sample, ranging from profiles, heights and 

volumes to statistical surface parameters [260]. Particularly the step height function 
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has been investigated in this work with regards to its suitability for the analysis of 

blood fingermarks. 

 

1.6 Aims and objectives 

Currently used tests and enhancement techniques for blood lack specificity, 

especially for species provenance, and the ability to provide a strong link between 

blood and a fingermark. This is due to their non-specific targets and mechanisms of 

action, leading to a range of false positives and, in some cases, false negatives, in 

addition to often being destructive to ridge detail. 

  

Previous studies conducted at Sheffield Hallam University employed MALDI-MS for 

the analysis of intact haemoglobin, myoglobin and haem [54] in order to detect the 

presence of blood and its species origin. While this facilitated species differentiation 

between human, bovine and equine blood, it was realised that differentiation 

between other species would not be possible using intact protein analysis. This is 

due to the large sequence homology between some species, resulting in m/zs with 

little or no difference to one another. This can pose problems in their differentiation 

depending on the instrument’s mass resolving power, especially in mixtures or 

samples contaminated with other protein sources. The UK Home Office further 

expressed special interest in the differentiation of human and chimpanzee blood, 

which share identical haemoglobin sequences, preventing their discrimination based 

on intact haemoglobin detection. Curiously, however, in silico digests of human and 

chimpanzee haemoglobin β present 17 proteotypic peptides for human and 11 for 

chimpanzee with the differences lying solely in post-translational modifications. 

 

For these reasons, the study presented here aimed to develop a multi-informative, 

specific detection technique for blood in stains and fingermarks using MALDI-MS 

profiling and imaging in conjunction with bottom- up proteomics. 

This approach is based on the theory that signals originating from blood-specific 

proteins are only detectable if the sample contains blood.  It appeared sensible that 

the detection of a higher number of blood-specific proteins will increase confidence 
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and specificity of MS-based analysis compared to the detection of a single protein, 

haemoglobin. 

 Furthermore, the hypothesis was postulated that the use of a bottom-up approach 

will increase confidence and reliability of the analysis because a higher number of 

identified small, characteristic peptides provides a higher degree of confidence than 

a small number of intact proteins with large sequence homologies between species. 

In addition, this approach is thought to circumvent possible mass resolution 

problems resulting from high-homology protein sequences in top-down proteomics.  

 More-so, it was hypothesised that bottom-up proteomics will facilitate the 

identification of species-specific differences in the protein sequence or post-

translational modifications, therefore allowing for reliable provenance determination.  

 

To prove the hypothesis, it was envisioned to develop and optimise an in-solution 

digestion protocol for blood on known blood samples, targeting a number of blood-

specific proteins. Analysis of aged samples was proposed to investigate the 

method’s applicability to old and cold case samples and take into account possible 

sample degradation with age. This was to be followed by validation on unknown 

samples including human and non-human blood samples, biofluids and non-biofluid 

samples to thoroughly test the robustness of the methodology and identifications 

made.It was also intended to test the protocol in conjunction with commonly used 

enhancement techniques in order to evaluate possible interferences and be able to 

provide recommendations on which crime scene techniques to avoid when 

subsequent mass-spectrometric analysis is desired  

 

Pertaining to blood and fingerprints, the development on an in situ proteolysis 

protocol was proposed in order to maintain ridge detail, catering to the same 

hypothesis as the in-solution digests. The aim was to thereby facilitate mapping of 

the identified blood peptides on the fingermark ridge detail via MALDI-MSI, thus 

providing a link between the event of bloodshed and the fingermark deposition as 

well as allowing species determination. 
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Nonetheless, there are three possible scenarios pertaining to the order of deposition 

of blood marks: a) bloodied mark, b) mark in blood and c) coincidental association 

(faux mark). To date, differentiation between the three is complicated, subjective and 

experience-based, rather than based on a numerical approach. However, 

knowledge of the order of deposition can be of paramount importance to an 

investigation. If a suspect claims to have arrived at the scene after a violent crime, 

their defence can be refuted if it can be proven that their marks are covered by blood 

as in a type C mark. Similarly, the presence of a suspect’s marks in blood (B) will 

invalidate the defence that they left the scene before the event of bloodshed. 

Distinguishing between a type A bloodied mark and a type C coincidentally 

associated mark is of great importance to determine if it is possible that a suspect is 

innocent and had merely been at the scene prior to the crime, or if the marks have 

truly been left by their bloodied fingers. In theory, development of the MALDI-MSI 

approach outlined above will allow the differentiation of scenario A from B and C by 

mapping the blood peptides exclusively to ridge detail (scenario A) or the entire 

surface (B and C). However, the technique will not allow for the distinction of a mark 

in blood (B) from coincidental association (C). 

 

In order to provide quantifiable data to solve this problem, an additional objective 

was investigating the suitability of IFM for determining the order of deposition of 

blood fingermarks. It was hypothesised that the three different deposition scenarios 

would present characteristically different ridge heights measurable with IFM. The 

study therefore aimed to investigate deposition surfaces and lifting tapes that are 

also suitable for obtaining IFM images, as well as potential ridge height changes 

over time. These have the potential to complicate analysis due to the fact the exact 

age of a crime scene mark is unlikely to be known and can therefore not be taken 

into account accurately. Furthermore, it is reasonable to assume that ridge heights 

will also be affected by different volumes of blood and the structure and porosity of 

the deposition surface. 

For these reasons, several experiments had to be devised to determine if IFM or the 

statistical analysis of IFM data is suitable to solve the problem at hand. As current 

analysis is extremely difficult and reliant on the examiner’s expertise, successful 
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proof of this hypothesis would then facilitate more quantifiable, reliable means of 

analysis for these samples. 

 

The ultimate aim of study was therefore to develop a rapid MALDI-MS method that, 

in the near future, will be able to provide ridge detail, chemical information and 

confirmation regarding the presence and provenance of blood in fingermarks or 

stains in one single analysis, providing a link between a suspect’s presence at a 

crime scene and the event of bloodshed. Additionally, it was aimed to differentiate 

the three possible associations of a fingermark with blood by employing the non-

contact method IFM, ideally prior to MALDI-MSI analysis of the same sample to 

generate complementary datasets with maximum evidential value. 
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2.1 Introduction 

The detection of blood in stains or fingermarks at crime scenes can be an invaluable 

piece of evidence in the investigation of violent crimes. Crime scene investigators 

have several classes of enhancement techniques available to visualize the presence 

of blood, including optical, spectroscopic and chemical development methods [1]. In 

addition to limitations in common to all of the three classes of methods, chemical 

techniques are only presumptive methods, thus occasionally leading to false 

positives. These methods have been extensively reviewed by Sears [1] and all were 

reported to exhibit a lack of specificity; even haem-reactive compounds, the most 

specific class of blood reagents, may give false positives as horseradish, leather and 

extracts from plant material [2] show the same peroxidase activity exhibited by haem 

in human blood. For this reason, the author’s director of studies has previously 

reported a rapid and specific MALDI-MS method to detect blood in stains and map 

this biofluid in bloodied fingermarks [3]. With this method, the m/z of both haem and 

intact haemoglobin was employed to reliably demonstrate the presence of blood. 

The method was applied to a real crime scene stain, proving successful in less than 

five minutes of preparation and acquisition time. Since blood provenance is also a 

forensic question of interest and the m/z of haem would not permit the determination 

of the blood source, the m/z of intact haemoglobin chains were exploited to 

distinguish between equine, human and bovine blood, based on the small 

differences in the protein amino acid sequence [3]. However, although the detection 

of blood at a molecular level provides much higher specificity and reliability, intact 

protein analysis by MALDI-mass spectrometry suffers from mass resolution and 

mass accuracy issues, which may become significant, especially if blood is mixed 

with other bio-fluids or protein sources.  

 

The use of a bottom-up proteomic approach increases the reliability of protein 

identification because the mass of the smaller protein-derived peptides can be 

measured and separated more accurately (a few parts per million). This is due to the 

smaller number of amino acids in a peptide resulting in a lower mass difference to 

the theoretical, monoisotopic value caused by element mass fractions and isotopic 

abundances in comparison to a larger protein, where the higher number of amino 
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acids results in an overall higher mass difference. This approach would also enable 

the detection of additional blood-specific proteins, besides haemoglobin, allowing 

specificity and confidence in the determination of the blood presence to be further 

enhanced. The literature already contains many reports attempting to map the 

proteome of plasma and serum. Different authors concur on the extreme complexity 

of these matrices, with plasma being particularly challenging due to the wide range 

of concentrations of the proteins present (spanning 9 orders of magnitude) [4] and 

the huge heterogeneity due to the variety of protein glycoforms. In 2010, Liumbruno 

et al. extensively reviewed the literature covering the mapping of the blood proteome 

with all the techniques employed up to that date and the corresponding number of 

obtained protein identifications [5]. The majority of the methods employed separation 

techniques (gel electrophoresis-based or liquid chromatography) hyphenated with 

mass spectrometry, in both online and off-line approaches, employing ESI and 

MALDI, respectively, as mass spectrometry techniques.  

 

Amongst the techniques used, the combination of 2D gel electrophoresis and mass 

spectrometry was reported to be able to identify 289 plasma proteins in 2002 [4]; 

cation exchange coupled to capillary gradient reversed phase liquid chromatography 

combined with mass spectrometry of digested peptides contributed to the 

identification of 490 blood serum proteins [6]. These numbers have further increased 

when depletion and sample enrichment methods were preliminarily employed. In a 

2005 collaborative study coordinated by HUPO involving 35 laboratories, up to 3020 

plasma/serum proteins were identified using a range of hyphenated techniques [7]; 

since the start of the HUPO project the number of identified proteins has rapidly 

increased to populate a database (http://www.plasmaproteomedatabase.org/) of 

10546 proteins [8]. None of the approaches reported in the literature so far has 

involved the direct application of MALDI-MS on enzymatically digested blood. This 

is understandable, as in all of the previous reports the aim was to map the entirety 

of the blood proteome for medical and diagnostic purposes. However, in a forensic 

context, the detection of a handful of blood-specific proteins via the more reliable 

bottom-up proteomic approach using MALDI-MS would be more than appropriate. 

Furthermore, in forensic science, provided that reliability of the evidence is not 
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compromised, speed is paramount to investigations; the hyphenated methods 

reported can be labour-intensive and time-consuming, especially since some of them 

have employed preliminary purification to remove the most abundant proteins (e.g. 

albumin and haemoglobin).  

 

Reported here is an optimised a method for the digestion of bloodstains followed by 

direct MALDI-MS analysis; the method couples high mass accuracy the peptide 

mass fingerprinting stage with further confirmatory analysis by tandem mass 

spectrometry. A classical in-solution digestion protocol was optimised for use on 

blood stains by investigating the optimal concentration of trypsin to employ as well 

as the optimal digestion time. The performance of this method was then critically 

compared to that of a second method employing Vmh2 hydrophobin to preliminarily 

coat the MALDI target plate. This protein belongs to the class I hydrophobins and it 

has been demonstrated to homogeneously self-assemble on hydrophilic or 

hydrophobic surfaces [9] and to subsequently strongly bind proteins, including 

enzymes in their active form such as trypsin [10]. The use of Vmh2 has been recently 

proposed in a lab-on-plate approach as a simple and effective desalting method, 

enabling decrease in the proteolysis time and increase of the peptides’ signal-to-

noise (S/N) for tryptic digestion [11]. It was found that both methods could be 

successfully used to: (i) reliably detect the presence of blood in stains, (ii) determine 

the blood provenance even when two different blood sources were mixed and (iii) to 

identify the presence of this biofluid in a 9-year-old sample that had been pre-treated 

with acid black 1 [12,13], a protein dye used for the nonspecific 

enhancement/visualisation of blood. As it is discussed in this chapter, the present 

data will no doubt impact on the effectiveness of forensic practice by providing much 

more reliable and informative evidence than currently used techniques, thus 

empowering both investigations (of cold cases too) and judicial debates. 
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2.2 Experimental 

2.2.1 Materials 

ALUGRAMSIL G/ UV254 aluminium sheets, acetonitrile (ACN), ammonium 

bicarbonate (AmBic), trifluoroacetic acid (TFA), trypsin from bovine pancreas and 

alpha-cyano-4-hydroxycinnamic acid (CHCA) were obtained from Sigma-Aldrich 

(Dorset, UK). Trypsin gold was purchased from Promega, Southampton (UK) 

whereas Rapigest™ SF was purchased from Waters (Elstree, UK). Defibrinated 

horse blood was obtained from Fisher Scientific (USA). Unistik® 3 Neonatal & 

Laboratory single use lancets were obtained from Owen Mumford (Oxford, UK). 

Vmh2 ethanolic solution was prepared as previously described [10]. 

 

2.2.2 Instrumentation and data acquisition  

Calibration over a m/z 600–2800 range was performed prior to analysis using 

phosphorous red. MALDI-IMS/MS data were acquired in positive ion mode from m/z 

600 to 3000 at a mass resolution of 10,000 FWHM using a SYNAPT G2™ HDMS 

system (Waters Corporation, Manchester, UK) operating with a 1 kHz Nd:YAG laser. 

Full scan mass spectra were manually acquired over 45 seconds; all experiments 

were carried out in duplicate. The laser energy was set to 250 arbitrary units on the 

instrument; laser energy was increased to 270 arbitrary units for MALDI-IMS-MS/MS 

experiments. MS/MS analyses were conducted in situ on the most intense peaks. 

Fragmentation was carried out in the transfer region of the instrument, post ion 

mobility separation, therefore product ions retain the same drift time as the precursor 

ion. Collision energies ranging between 60–80 eV were used to obtain the best 

signal to noise ratio for product ions. 

 

2.3 Methods 

2.3.1 Initial method development and optimisation of digest protocol 

Standard solutions of Hb and myoglobin were made up at 1 mg/mL in 70:30 

Acetonitrile (ACN):0.2% TFAaq. All solutions were discarded after a maximum of 2 

days of storage in the fridge (at 5-8°C).  
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Table xx outlines the conditions trialled on the above solutions, all employing 20 

µg/mL trypsin gold and 37°C incubation temperature and combinations of one 

parameter of each set (i.e. only one detergent per sample). Using this approach, 1 

µL of trypsin solution (with or without detergents) was added to 10 μL of Hb or 

myglobin solution. Alternatively, 10 µL of sample were dried down with nitrogen and 

reconstituted in 40 μL 40 mM AmBic (NH4HCO3, pH 8) prior to addition of 10 μL of 

trypsin (with or without detergents). 

 

Digestion time - 3h 
- 6h 
- overnight 

Detergent addition - 0.5% v/v β-Octylglucoside (10mM) 
- 2% v/v Mega-8 (0.1% w/v in 40mM AmBic) 
- 0.1% or 0.3% v/v Rapigest™ SF (1% w/v in 

ultrapure dH2O) 

Pre-concentration - None  
- Drying down with nitrogen, reconstituting in 

40 µL 40 mM AmBic 

Stopping of digestion - Addition of 2 µL 5% TFAaq 
- Placing in the -20°C freezer 

Table 2.1 Digest conditions trialled on Hb and myoglobin solutions for method 
development. 

 

Ten μL defibrinated horse blood were digested for 1, 3, 5 or 7 hours with 10 μL of 20 

μg/mL trypsin with 0.1% Rapigest™ SF a.) directly, b.) after nitrogen-drying and 

reconstitution in 40 μL 40 mM AmBic or c.) after nitrogen-drying (reconstitution in 

trypsin). 

 

All incubations were stopped by placing in the -20°C freezer (one sample) or the 

addition of 2μL 5%TFAaq (one sample).  

 

A bichinchinonic acid (BCA) assay was carried to out to establish the protein 

concentration in whole, defibrinated horse blood. For this, standards of bovine serum 

albumin ranging from 25 μg/mL to 800 μg/mL were incubated with the BCA reagents 

according to the manufacturer’s instructions, alongside two replicates of a dilution 

series of blood (initially undiluted and 1:1 to 1:50, then 1:200 to 1:1000 in a second 

experiment) for 30 minutes. The absorbance was measured at 562 nm and the 
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reading of the blank subtracted from all other readings. A standard calibration curve 

was then plotted to extrapolate the protein concentrations of the blood samples. 

 

A 1:200 dilution of whole, defibrinated horse blood was prepared with dH2O. Ten µL 

of this were topped up with 40 μL 40 mM AmBic or dried down with nitrogen and 

reconstituted in 40 μL 40 mM AmBic prior to the addition of 9 μL trypsin (20 μg/mL 

with detergents 0.5% β-Octylglucoside, 2% Mega-8 or 0.1% Rapigest™ SF as 

above).  

Samples were incubated for 1, 2, 3 or 4 hours at 37°C, 5%CO2 and digestion stopped 

by the addition of 2 μL 5% TFAaq.   

 

All samples were spotted at 0.5 µL and topped and pipette-mixed with 0.5 µL CHCA 

10 mg/mL CHCA (70:30 ACN:0.5% TFAaq) while wet. 

 

2.3.2 Preparation and enzymatic digestion of blood samples  

Preliminary ageing experiments for in-solution digests were carried out as follows. 

For each ageing time point (5 hours, 1 day, 3 days and 7 days) and blood species 

under investigation (human, horse, cow from meat package, cow from a butcher’s, 

pig from meat package, pig from a butcher’s), 10 μL of blood were pipetted onto a 

clean ceramic tile (previously cleaned with ACN) and thinly spread into squares of 

approximately 7 mm side length with a pipette tip, taking care not to let the different 

samples contaminate each other.  

The tile was covered and placed into the environmental chamber at 25°C and 60% 

humidity. 

Each separate sample was then extracted from the ceramic tile by pipetting 70 μL of 

50% ACN solution onto the dried blood regions after the corresponding ageing time 

had elapsed. The extracts were transferred to separate 1.5 mL plastic 

microcentrifuge tubes and 50:50 ACN:H2O was added up to 1 mL in volume; the 

tubes were subsequently placed in an ultrasonic bath for 10 min at 45 kHz frequency. 

Forty μL of 40mM AmBic was added to 10 µL of each extract. Nine µL of 20 μg/mL 

trypsin gold including 0.1% Rapigest™ SF were subsequently added and were 

allowed to digest for 1 hour at 37°C and 5% CO2. Proteolysis was stopped by the 
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addition of 2 μL 5% aqueous trifluoroacetic acid (TFAaq). 0.5 µL of each in-solution 

digest were spotted onto a welled target plate with 0.5 µL 10 mg/mL CHCA (50:50 

ACN:0.5% TFAaq containing 4.8 µL aniline) matrix solution spotted on top and 

pipette-mixed while wet. 

 

For enzymatic digestions performed using the lab-on-plate approach, 10 µL of 

defibrinated horse blood was spread across pre-cut 2 cm2 ALUGRAMSIL G/UV254 

aluminium sheets pre-treated as previously described [14]. These were sealed in 

petri dishes with parafilm and placed in an environmental chamber for 5 hours at 

25°C and 60% relative humidity. Under full ethical approval (HWB-BRERG23-13-

14), human blood was obtained from the tip of the index finger using a Unistik® 3 

Neonatal & Laboratory single use lancet and blood was then prepared as described 

for horse blood. The MALDI plates were preliminarily functionalised with Vmh2 

hydrophobin and subsequently immobilised with trypsin from bovine pancreas as 

previously described [10]. The aluminium sheets with dried blood were carefully 

rolled into a glass vial, covered with 1 mL 50% ACN solution and ultra-sonicated for 

10 min. One µL of sample solution was spotted on Vmh2-adsorbed enzyme wells 

(MALDI plate) containing immobilised trypsin. The on-plate digest reaction was 

carried out for 5 min at room temperature. The reaction was stopped by the addition 

of 0.5 µL 10 mg/mL CHCA matrix solution. After mass spectrometric analysis, the 

Vmh2 coating was removed by washing the MALDI plate with 10% TFAaq (and gently 

polishing the surface), followed by washing with 100% acetonitrile, water and 100% 

acetone. 

 

2.3.3 Blood provenance determination 

Ten µL of horse blood were mixed with 10 µL of human blood. The mixture was 

digested using the in-solution and lab-on-plate protocols reported above. Samples 

were submitted to MALDI-MS analysis upon completion of the proteolysis. 
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2.3.4 Analysis of a 9-year-old bloodstain 

Blood extracts were obtained from a ceramic tile exhibiting a 9-year-old bloody 

handprint, previously enhanced with acid black 1, by rubbing a swab previously 

wetted with 70:30 ACN:H2O over the sample region. The swab tip was cut and 

sonicated for 10min in 1mL 70:30 ACN:H2O to release the proteins. Twenty µL of 

the supernatant were dried under a stream of nitrogen and re-dissolved in 20 µL of 

50mM AmBic (pH 8) under sonication (10min). The blood extracts were 

subsequently digested in-solution or on the hydrophobin coated plate as previously 

described. 

 

2.3.5 Data analysis 

Mass spectra obtained from MassLynx™ (Waters Corporation, Manchester, UK) 

were either converted into txt files and imported into mMass [15,16], an open source 

multiplatform mass spectrometry software, or processed directly within MassLynx™ 

by means of peak smoothing, baseline correction and peak centroiding. Expasy 

(http://www.expasy.org/) was employed to generate in silico peptide lists of known 

proteins present in the blood species investigated.  

 

Mass lists were generated by selecting “monoisotopic”, “MH+”, “trypsin higher 

specificity”, “2 missed cleavages” and “methionine oxidation”. Peptide lists were 

imported into mMass to create an “in-house” and local reference library. Mass lists 

including known matrix (or matrix cluster, adduct) and trypsin autolysis m/zs were 

used to preliminarily assign peaks and therefore exclude them from subsequent 

peptide assignment. 

 

Peak assignments in mMass were performed automatically using the “compound 

search” tool and the in-house created library by setting the tolerance at 10 ppm with 

a “max charge” of 1 and ticking the box “monoisotopic”. Prior to peak assignment 

search, spectra were smoothed and de-isotoped. Peak assignment was not 

accepted if the S/N was lower than 3:1. Spectral processing consisted of smoothing, 

baseline correction and lock mass-based mass correction. Prior to performing an 

MS/MS Mascot (Matrix Science, London, UK) search, spectra were processed using 
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MassLynx™ with the MaxEnt 3 algorithm to deisotope and enhance the S/N [17]. 

Queries were searched against the “Swiss-Prot” database with parent and fragment 

ion tolerances set to 50 ppm and 0.1 Da, respectively. Two missed cleavages were 

also selected. Peptide mass fingerprint searches using mascot were generated with 

the peptide tolerance set to 5 ppm. 

 

2.4 Results and discussion 

Although detection of blood at crime scenes or on evidential items is often a crucial 

piece of intelligence in the investigation of criminal offences, current forensic 

visualization methods do not offer the desired level of specificity [3]. This may result 

in incomplete or even in missing crucial information. In this paper the development 

of a rapid bottom-up proteomic method offering blood-specific signatures is reported. 

The developed methodology employs a recently proposed procedure involving 

immobilisation of trypsin on hydrophobin Vmh2 coated MALDI plates (“lab-on-plate” 

approach) [10], alongside a conventional in-solution digest 

 

Although other methods for immobilising trypsin for enzymatic digestion have been 

reported the leader of this study found the use of Vmh2 to be very straightforward 

and had the reported protocols optimised for the detection and identification of blood. 

MALDI-MS profiles of blood were acquired from both in-solution digests and the lab-

on-plate digests for comparative purposes.  

 

2.4.1 Initial method development and optimisation of the in-solution digest 

approach 

Initially, method development and candidate familiarisation with the subject was 

attempted using 10 µL pure haemoglobin or myoglobin stock solutions and 20 

µg/mL trypsin to produce a data set less complex than a digest of whole blood. 

Three incubation times (3 hours, 6 hours, overnight) were chosen to represent the 

range commonly reported in proteomic studies. Furthermore, the addition of 

detergents to the trypsin solution was trialled in order to improve tryptic digestion 



   

92 
  

as well as drying down of samples in view of removing potential interferences. Two 

methods of stopping the digestion were tested  

Unfortunately, results were inconclusive and no trend toward one set of conditions 

was observed. For example, a 3-hour digest of Hb did not produce observable 

peptides, whereas under the same digestion conditions 3-5 myoglobin peptides 

were observed. However, when dried down and reconstituted in AmBic prior to a 

longer incubation period of 6 hours or overnight, Hb digests produced spectra with 

15-20 putative peptide IDs, whereas myoglobin did not. Neither a 3-hour digest on 

a dried down Hb sample, nor a 6-hour digest on a myoglobin sample were 

successful. Similarly, no putative peptide signals were observed when digesting 

equine blood with either of the methods that had produced Hb or myoglobin 

signals.  

 

Because successful Hb digestion evidently was no guarantee for the successful 

digestion of equine blood it was decided further tests would only be carried out 

employing equine blood. In addition to the above conditions, a sample set was 

dried down and reconstituted in trypsin directly, rather than in AmBic, in order to 

increase the protein concentration. Digestion times were chosen between one and 

seven hours in hopes of reducing the overall sample preparation time and because 

in previous experiments noise had been highest in overnight digests.  

As in the previous set of experiments, results can best be described as mixed. For 

the samples that had not been pre-concentrated, the 7-hour digest with Rapigest™ 

produced the highest number (six) of putative peptide signals. In the sub-set of the 

dried down samples reconstituted directly in trypsin, the 1-hour digest with 

Rapigest™ yielded most putative peptide peaks (seven), whereas the 1-hour 

digests using the other pre-concentration approaches did not yield peptides at all. 

For the samples that had dried down and reconstituted in AmBic, the most 

successful sample was the 7-hour digest with Rapigest™, producing only one 

putative peptide signal. In general, more peptides had been expected to be present 

and no clear trend regarding the usefulness of pre-concentration or longer 

incubation times was observable, although it should be noted reconstitution in 

trypsin should be considered undesirable due to the low resulting overall volume of 
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the digest. Nonetheless, it became clear that the addition of TFA to stop digests 

produced resulted in better quality spectra in terms of noise, baseline and peptide 

signals. Due to the overall low number of peptides, no judgment was made on the 

best detergent at this point. 

 

Instead, having become more familiar with the topic, the PhD candidate decided it 

would be useful to determine the protein concentration of the sample to be able to 

achieve a 50:1 substrate:trypsin ratio, rather than assume the sample requires 

concentration as had been suggested by the director of studies. For this reason, a 

BCA assay was carried out on whole, defibrinated horse blood. 

The absorbance readings of the initial assay using blood:H2O dilutions of 1:1 to 1:50 

exceeded the highest reading of the calibration curve and were disregarded, as 

extending the calibration curve would have introduced inaccurate measurements. 

Therefore, the assay was repeated using dilutions of 1:200 to 1:1000 blood:H2O. 

The mean readings of the two replicates of the bovine serum albumin standards 

were plotted into a calibration curve (not shown). The equation of the line of best fit 

(y = 0.0009x + 0.049) was used to calculate the protein content of each sample of 

diluted equine blood based on its absorbance. These values were multiplied by the 

dilution factor of the sample to extrapolate the protein content of undiluted blood. 

The average protein content was determined to be 242.77 mg/mL by taking the 

mean of these values.   

 

Based on this, it was established that a 50:1 substrate:trypsin ratio could be achieved 

by adding nine μL of 18.05 μg/mL trypsin to a 10 μL sample of a 1:200 dilution of 

blood. As a 20 μg/mL trypsin solution was already present, this was employed from 

this point onward, also allowing for a degree of variation in protein content. Further 

experiments showed this concentration was also suitable for extracts of blood stains. 

 

The number of possible peptide identifications (accepted with 0.1 Da mass 

tolerance) per detergent and incubation time can be found in Table 2.2. It can be 

seen that the longest incubation time of four hours is actually detrimental to the 

detection of a broad range of peptides, possibly due to increased trypsin autolysis, 
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and/or due to the generation of smaller peptides outside the target range of 

detection. Furthermore, it can be observed that the additional step of drying the blood 

down with nitrogen prior to the addition of AmBic does not seem to reproducibly 

produce superior results and its use may therefore not be beneficial. 

In fact, the sample incubated for 1 hour with Rapigest SF without pre-drying 

produced the highest number of possible peptide matches (43), while the pre-dried 

4-hour samples digested by Rapigest SF or Mega-8 resulted in the lowest number 

of possible matches (10). For this reason, the pre-drying step was discontinued and 

trypsin always supplemented with 0.1% Rapigest SF in a one hour digestion from 

this point onwards. Shorter incubation times were not trialled, but based on the 

observations during this experiment it is thinkable a further reduction of digestion 

time might suffice to yield similar or better results, thus increasing the rapidity of the 

method. 

 

Peptide matches per x hours of incubation 1 2 3 4 

Rapigest SF 43 17 39 23 

Rapigest SF (N-dried)  27 20 36 10 

β-Octylglucoside  35 35 30 11 

β-Octylglucoside (N-dried) 39 32 34 19 

Mega-8  28 23 28 20 

Mega-8 (N-dried) 29 34 37 10 

Table 2.2 Number of putative peptide matches (≤0.1 Da absolute error using 
MALDI-MS) of an in-solution digest of a 1:200 dilution of whole, defibrinated equine 
blood in relation to incubation time, sample preparation and detergent used. 

 

It should also be noted that one of the most intense peaks consistently present in all 

equine blood spectra at m/z 1499.723 ± 0.1 Da was not attributable to any equine 

peptide under investigation nor trypsin autolysis or matrix peaks. For this reason, 

MS/MS was carried out on the signal in question and the resulting spectrum 

submitted to mascot server for identification. Interestingly, the signal was identified 

as a haemoglobin α peptide originating from the rare Przewalski’s horse (Equus ferus 

przewalskii). The supplier of the equine blood asserted that there are no Przewalski’s 

horses in the donor herd, but was unable to provide breeding information to 



   

95 
  

investigate whether there may have been a single cross-bred horse in the herd. 

Because Przewalski’s and domestic horses can produce fertile offspring [18] there 

may be the possibility of Przewalskis’ proteins unknowingly being passed on for 

several generations to a point where the incident of cross-breeding may have 

become forgotten and the animal is (mis-)classified as a domestic horse. 

As no blood from a confirmed pure-bred horse was available for comparison, it could 

not be investigated further whether the presence of this protein may actually be more 

common amongst horses. Furthermore, no other protein sequences assigned to 

Przewalski’s were available to cross-check against the acquired spectra. However, 

the sequence homology between Przewalski’s and the domestic horse’s Hbα is 

99.3% (http://www.uniprot.org/blast/uniprot/B201508012HN5US61EW), i.e. only 

one amino acid difference in this case (tyrosine in horse and phenylalanine in 

Przewalski’s at position 25), and could thus even be the result of a random single 

nucleotide polymorphism (codons for phenylalanine are UUC and UUU, tyrosine is 

encoded for by UAC and UAU).  

Albeit small, this difference results in six peptide signals specific to either species 

(Table 2.3) when taking into account the post-translational modification of 

methionine oxidation, and even more when considering all post-translational 

modifications. While many of the Hbα signals can be attributed to both species due 

to the large sequence homology, two Przewalski’s-specific peptides were found at 

m/z 1499.723 and 2043.004. In contrast, none of the equine-specific peptides were 

present and it can therefore be hypothesised that expression of the Przewalksi’s 

version of Hbα may be more common than expected amongst domestic horses. For 

this reason, it was also included as a peptide characteristic of equine blood in the 

following species-differentiation study. 

 

 

 

 

 

 

 

http://www.uniprot.org/blast/uniprot/B201508012HN5US61EW
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Equine-specific m/z Przewalski's- specific m/z 

1515.718 1499.723 

2058.999 2043.004 

2501.253 2485.258 

2554.239 2522.249 

3097.519 3065.530 

4369.113 4369.113 

Table 2.3 Hbα peptide signals specific to horse or Przewalski’s horse (when taking 
into account methionine oxidation as a post-translational modification). 

 

2.4.2 In-solution and hydrophobin digests 

In order to comparatively optimise both digestion methodologies, defibrinated horse 

blood was preliminarily employed. Both optimised methods yielded blood specific 

peptide signatures including those from myoglobin and the two chains of 

haemoglobin with a mass accuracy lower than 8 ppm (Table 2.4). In general, 

relevant peptide intensities are greater from the 1-hour in-solution digest; however 

the majority of peptides are still present employing the five minutes lab-on-plate 

digestion with generally a much better mass accuracy (Figure 2.1 A and B and Table 

2.4). A mascot score of 46 was achieved for equine Hbβ with a total of 13 matches 

at a 5 ppm tolerance. 

 

Horse blood 

protein 

Peptide m/z Sequence In-solution 

relative 

error (ppm) 

Lab-on-plate 

relative error 

(ppm) 

Myoglobin 2232.087 120HPGDFGADAQGAMTKALELF R140 - -2.330 

Haemoglobin 
β 

2326.204 9AAVLALWDKVNEEEVGGEALGR30 -5.717 -0.258 

1999.922 41FFDSFGDLSNPGAVMGNPK59 -6.000 6.300 

1930.029 66KVLHSFGEGVHHLDNLK82 -5.440 -7.979 

1801.934 67VLHSFGEGVHHLDNLK82 -7.547 - 

1449.796 133VVAGVANALAHKYH146 -7.380 -0.621 

1426.685 121DFTPELQASYQK132 -4.276 - 

1358.655 18VNEEEVGGEALGR30 -6.035 -1.693 

1274.726 31LLVVYPWTQR40 -7.845 -1.020 

1265.830 105LLGNVLVVVLAR116 -7.347 - 

Haemoglobin 
α 

2043.004 13AAWSKVGGHAGEFGAEALER32 -3.377 -0.098 

1499.724 18VGGHAGEFGAEALER32 -7.468 -1.134 

1833.892 42TYFPHFDLSHGSAQVK57 -7.143 -0.055 

Table 2.4 Peptide mass fingerprinting of equine blood from in-solution and lab-on-
plate digests. 
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Since high throughput is always one of the “desirables” for any new forensic protocol, 

the method employing Vmh2 is highly relevant since it has previously been observed 

that the proteolysis is most efficient if the sample is allowed to digest for no longer 

than five minutes. The optimised methodologies described in the methods section 

were subsequently applied to whole human blood. The digestion of whole human 

blood using the classic in-solution method resulted in a number of tentative protein 

identifications (Table 2.5). In addition to peptides resulting from haemoglobin α (Hbα) 

and β (Hbβ), a number of other proteins were detected including complement C3, 

apolipoprotein A-1, alpha-1-antitrypsin, hemopexin, serotransferrin and alpha-2-

macroglobulin. As seen in Table 2.5, the number of peptides originating from Hbα 

and Hbβ is marginally greater in the in-solution digest compared to the immobilised 

digest. However, it is apparent that there are peptides from proteins such as 

myoglobin, hemopexin and serotransferrin detected only via the lab-on-plate digest. 

Interestingly, using both methods, it was possible to tentatively assign multiple 

peptides to erythrocyte membrane protein band (EPB) 3 and 4.2. The significance 

of this is that some of the EPB 4.2 peptides detected are specific to human blood. A 

mascot score of 27 (with seven matches, using a 5 ppm tolerance) was achieved for 

human Hbβ alongside that of primates Pan paniscus and Pan troglodytes. 
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Human blood 

protein 

Peptide m/z 

Sequence In-

solution 

relative 

error 

(ppm) 

Lab-on-

plate 

relative 

error 

(ppm) 

Haemoglobin β 767.489 61VKAHGKK67 -4.560 -10.814 

952.510 2VHLTPEEK9 -4.514 -5.564 

1274.726 32LLVVYPWTQR41 -1.883 -4.079 

1314.665 19VNVDEVGGEALGR31 -4.336 0.152 

1378.700 122EFTPPVQAAYQK133 2.829 -10.009 

1449.796 134VVAGVANALAHKYH147 -3.518 -3.173 

1669.891 68VLGAFSDGLAHLDNLK83 -5.090 -10.719 

1866.012 2VHLTPEEKSAVTALWGK18 -1.125 - 

2058.948 42FFESFGDLSTPDAVMGNPK60 -2.720 -2.331 

2228.167 10SAVTALWGKVNVDEVGGEAL GR31 -2.244 -2.468 

2529.219 84GTFATLSELHCDKLHVDPEN FR105 -0.079 -8.105 

Haemoglobin α 1071.554 33MFLSFPTTK41 -1.773 -1.680 

1087.626 92LRVDPVNFK100 -1.655 -0.552 

1171.668 2VLSPADKTNVK12 -6.913 - 

1529.734 18VGAHAGEYGAEALER32 -4.511 -3.792 

1833.892 42TYFPHFDLSHGSAQVK57 -2.345 -3.762 

2043.004 13AAWGKVGAHAGEYGAEALER32 -5.923 -3.182 

2341.184 42TYFPHFDLSHGSAQVKGHGKK62 -2.606 -2.520 

2582.271 18VGAHAGEYGAEALERMFLSFPTTK41 -1.123 -6.506 

2996.489 63VADALTNAVAHVDDMPNALSALSDLHAHK91 -3.537 -3.137 

Myoglobin 1685.868 135ALELFRKDMASNYK148 - -5.101 

Complement C3 887.458 842NEQVEIR848 -3.042 -3.268 

1334.710 672SVQLTEKRMDK682 8.167 -6.668 

1087.636 1592EALKLEEKK1600 -10.757 -9.654 

Apolipoprotein 
A-1 

1215.622 220ATEHLSTLSEK230 -4.113 - 

1230.709 240QGLLPVLESFK250 -0.975 -2.194 

1723.945 141QKVEPLRAELQEGAR155 -3.770 -4.002 

1815.851 48DSGRDYVSQFEGSALGK64 7.269 7.820 

1833.892 42TYFPHFDLSHGSAQVK57 -2.345 -3.762 

1908.985 158LHELQEKLSPLGEEMR173 -4.086 - 

Alpha-1-
antitrypsin 

1318.676 
248LGMFNIQHCKK258 

-0.303 5.460 

Hemopexin 965.443 403VDGALCMEK411 -5.904 9.426 

1060.579 84ELISERWK91 - -1.886 

1070.574 214GEVPPRYPR222 - 2.615 

Serotransferrin 1068.551 61KASYLDCIR69 - 9.733 

1855.868 531EGYYGYTGAFRCLVEK546 -0.162 -0.647 

EPB 4.2 949.477 454EKMEREK460 5.055 8.320 

1048.546 451VEKEKMER458 -0.191 5.245 

1079.575 205WSQPVHVAR213 -9.448 - 

1113.488 428CEDITQNYK436 1.706 - 

1258.700 446EVLERVEKEK455 -2.383 1.986 

EPB 3 949.477 284AAATLMSER292 5.055 8.320 

1328.699 731SVTHANALTVMGK743 - -2.785 

Alpha-2-
macroglobulin 

1334.722 
350LSFVKVDSHFR360 

-0.749 - 

Table 2.5 Peptide mass fingerprinting of whole human blood from in-solution and 
lab-on-plate digests. 
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Figure 2.1 MALDI-MS spectrum of digested blood. Panels A and B show the MALDI spectra of equine blood 
digested in-solution and via the lab-on-plate approach, respectively. Panels C and D show the MALDI spectra 
of whole human blood digested in-solution and via the lab-on-plate approach respectively. 
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In the case of whole human blood, the overall relevant peptide intensities were lower 

from the in-solution digest (Figure 2.1C) than the on-plate digest (Figure 2.1D); this 

is probably due to the analyses being performed on whole human blood as opposed 

to a defibrinated sample (less complex) as in the case of the equine blood. 

 

A close evaluation of the data , in comparison with an optimised in-solution digestion 

of the duration of one hour (Figure 2.1 A and B), shows that the lab-on-plate protocol 

enabled the detection of the same number of blood proteins, but fewer blood protein-

derived peptides (10/13 of the peptides from myoglobin, Hbα and Hbβ were 

observed in the in-solution digest).  

 

As can be seen in Table 2.5, there are instances in which only one peptide could be 

putatively assigned to a protein (i.e. in the case of myoglobin, alpha-1-antitrypsin 

and alpha-2-macroglobulin). This is not standard practice in proteomics whereby, for 

increased identification reliability, at least two peptides should be assigned to a 

single protein. In the view of the author, this is not an issue to prevent claiming the 

presence of blood; based on the experiments carried out, the presence of two or 

more peptides from Hbα and Hbβ and another blood protein (e.g. myoglobin or 

serotransferrin) is suggested to be the proposed minimum for the confident 

identification of blood. 

 

Encouraged by these data, the focus was moved onto investigating the opportunity 

to provide information of the provenance of blood. The author’s research group has 

already reported preliminary data on blood provenance by MALDI-MS [3], an intact 

protein detection approach that was employed that, whilst successful in the 

instances investigated, may suffer from mass resolution and mass accuracy issues, 

thus reducing the level of reliability of the scientific evidence provided. At least one 

criminal case has been widely reported in the UK (Regina vs. Mrs Susan May) [19], 

in which determining with certainty the provenance of the blood detected would have 

resulted in a better informed or speedier outcome. The importance of determining 

blood provenance is further testified by a case from the USA reported in 1996. Here 
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the blood of the dog shot together with his owners aided the conviction of two men 

of murder; in this case it took a DNA test (in the first trial ever in the country to use 

animal DNA as evidence) to prove the presence of canine blood on the jacket of one 

of the murderers [20]. The comparison of the peptides obtained for equine and 

human blood (Figure 2.1 A,D and Table 2.4, Table 2.5) already demonstrate this as 

a feasible approach to determine blood provenance with a much higher specificity 

than previously shown [3].  

 

To further demonstrate robustness of the method, both approaches were applied to 

a sample made from mixing both equine and human blood. Figure 2.2 shows the 

peptide mass spectral profiles obtained from in-solution (Figure 2.2A) and lab-on-

plate (Figure 2.2B) digests of a mixture of human and equine blood. Although overall 

peptide signal intensity is higher for the in-solution digest spectrum, both digestion 

protocols enabled the detection of blood peptide markers specific to each species 

and putatively assigned peptides are shown in Table 2.6.  
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Figure 2.2 MALDI-MS spectrum of mixed digested blood. Panels A and B show the 
mass spectral profile of whole human blood mixed with defibrinated horse blood 
using the in-solution and the lab-on-plate approach, respectively. 
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Blood protein Peptide 

m/z 

Sequence In-solution 

Relative 

error (ppm) 

Lab-on-

plate 

Relative 

error (ppm) 

Haemoglobin β 

(human & equine) 

1274.725 32LLVVYPWTQR41 1.412 -2.510 

 

Serotransferrin 

(human) 

1529.752 588KPVEEYANCHLAR600 -3.464 -7.909 

EPB4.2 (human) 1113.488 428CEDITQNYK436 -1.706 -5.029 

949.477 454EKMEREK460 -1.369 -2.527 

Alpha-2-

Macroglobulin 

(human) 

1334.721 350LSFVKVDSHFR360 9.215 1.198 

Haemoglobin α 

(equine) 

1499.723 18VGGHAGEFGAEALER32 8.734 2.667 

1833.891 42TYFPHFDLSHGSAQVK57 - 9.160 

Myoglobin 

(equine) 

1815.902 2GLSDGEWQQVLNVWGK17 -0.660 1.872 

Table 2.6 Peptide mass fingerprinting of whole human blood mixed with defibrinated 
equine blood from in-solution and lab-on-plate digests. Table reports human and 
equine blood specific signatures. 

 

However, due to the extensive sequence homology between the two species, it was 

not possible to solely use the m/z of these protein derived peptides or even the 

demonstrated presence of Hbβ tryptic peptide at m/z 1274.725 via MALDI-IMS-

MS/MS analysis of the peptide ion (Figure 2.3A) as markers for species 

differentiation. However, subjected to MS/MS analysis, the tryptic peptide at m/z 

1499.723 was identified as equine (Equus ferus przewalskii, to be precise) Hbα with 

mascot score of 99 (Figure 2.3B). Furthermore, the tryptic peptide m/z 1815.902 

originating from myoglobin was also detected in the same spectrum. This peptide is 

specific to the equine protein sequence, thus more robustly demonstrating the 

presence of blood from equine provenance. Additionally, as expected from the in 

silico digestions, the detection of the human EPB 4.2 peptides, at m/z 949.477 and 

1113.488 (present in the 1-hour in-solution digest spectrum and via the rapid lab-on-

plate hydrolysis), as well as that of serotransferrin at m/z 1529.752, indicated the 

further presence of human blood, thus enabling the claim that the sample is of mixed 
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provenance, as well as indicating the individual species contributing to the blood 

sample under investigation. It is worth noting that, although there is a significant 

sequence homology between EPB 4.2 and α-2-macroglobulin within humans and 

chimpanzees, the indication of EPB 4.2 to be specific to human within this discussion 

is only with respect to equine blood. Both the in-solution and the lab-on-plate 

approaches were successful in determining the double source of blood via manual 

interpretation. It should be noted that submission of the mixed-provenance spectrum 

to mascot with the same 5 ppm tolerance applied to the single-origin samples 

resulted in a single score of 21 with two matches for Staphylococcus haemolyticus 

antibacterial protein 1. Only when the matching tolerance was increased to 15 ppm 

a score of 36 with eight matches for Hbβ of Gorilla gorilla gorilla, Homo sapiens, Pan 

paniscus and Pan troglodytes was achieved. Equine proteins were not identified, 

presumably due to the complexity of the sample and the fact that mascot attempts 

to identify the single most probable protein rather than a mixture. This also highlights 

the requirement for searches to be performed with varying tolerances, as a higher 

tolerance search curiously does not include the matches of a lower tolerance search, 

further complicating the analysis. 
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Figure 2.3 MALDI-IMS-MS/MS of tryptic peptides m/z 1274 (A, multi-species) and 
m/z 1499.723 (B, Przewalksi’s), identified via mascot as Hbβ and Hbα, respectively. 
Both b and y ions are annotated with y* representing the y-NH3 fragment ion. 
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Figure 2.4 Confirmation of the presence of blood from a 9-year-old forensically 
treated sample. Panel A shows the bloodied handprint from which the blood was 
swabbed (the blue-black colour is due to the treatment with the protein stain acid 
black 1). Panel B shows the mass spectral profile of the extract digested in-solution.
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Figure 2.5 Confirmation of the presence of blood from a 9-year-old forensically 
treated sample. Panel Ai shows the magnified region of the bloodied handprint 
(Figure 2.4) from which the blood was swabbed (the blue-black colour is due to the 
treatment with the protein stain acid black 1). Panel B shows the mass spectral 
profile of the extract digested via the lab-on-plate approach. 
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Finally, a method that is applicable not only to fresh bloodstains but also to much 

older ones would be highly desirable in the review of cold cases. Therefore, the 

Vmh2 lab-on-plate method was tested, in comparison with the classic optimised in-

solution protocol, on a 9-year-old bloodied handprint which had been deposited on 

a ceramic tile and stored at room temperature (Figure 2.4A and Figure 2.5Ai). 

Spectra acquired from the analysis of the extract digested in-solution (Figure 2.4B) 

and via on-plate hydrolysis (Figure 2.5B) are shown, with corresponding expanded 

mass regions in the m/z range 1000–2000. A number of relevant tryptic peptides are 

present including Hbα peptides at m/z 1087.625, 1529.734 and Hbβ peptides m/z 

1274.725 and 1449.796 to name a few (Table 2.7).  

 

Blood protein Peptide m/z 

 

Sequence 

 

In-solution 

Relative 

error 

(ppm) 

Lab-on-

plate 

Relative 

error 

(ppm) 

Haemoglobin 

α 

974.541 9TNVKAAWGK17 - 4.822 

1087.625 92LRVDPVNFK100 -5.424 -3.861 

1529.734 18VGAHAGEYGAEALER32 -1.503 0.326 

1833.891 42TYFPHFDLSHGSAQVK57 -2.508 -0.599 

2043.004 13AAWGKVGAHAGEYGAEALER32 - -1.517 

Haemoglobin 

β 

 

1274.725 32LLVVYPWTQR41 -1.725 -3.216 

1314.664 19VNVDEVGGEALGR31 -1.369 - 

1449.796 134VVAGVANALAHKYH147 -4.345 -3.586 

2058.947 42FFESFGDLSTPDAVMGNPK60 - -1.019 

EPB 4.2 1113.488 428CEDITQNYK436 -9.340 - 

949.477 454EKMEREK460 - 1.053 

Complement 

C3 

959.540 1592EALKLEEK1599 1.354 - 

Table 2.7 Blood peptide signatures detected from the 9-year old treated bloodied 
hand print. 

 

Data obtained indicated that blood presence demonstration was possible with the in-

solution approach, though both EBP 4.2 (indicating that the blood may be of human 

origin) and complement C3 were identified by one peptide only each. The lab-on-
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plate approach did not allow the detection of the complement C3 protein (which is 

not highly specific to blood in any case) and also enabled the detection of only one 

EBP 4.2 peptide. However, for confirmatory purposes, as a tryptic digestion 

generates numerous peptides resulting in complex mixtures, often with overlapping 

signals, cross validation and identification using LC-MS/MS may be beneficial. 

 

In addition to the ability to detect blood reliably and from such an old sample, it is 

very important to note that the bloodied handprint was preliminarily, 9 years prior, 

enhanced with acid black 1, a commonly used protein stain for blood enhancement. 

Successful blood identification in this instance demonstrates feasibility of the 

protocol to be integrated in the forensic workflow for blood 

enhancement/visualisation. The data obtained suggest that the acid black 1 does 

not interfere with the analyses, rather, that it may slow down degradation of the blood 

proteins over time. 

 

Another aspect of the study that was not included in the publication was the 

preliminary ageing study. Although species differentiation has already been 

demonstrated above, this preliminary dataset was acquired in hopes of one day 

being able to provide complimentary information with regards to the time since 

bloodshed and gain insight on how the composition of a sample changes with time. 

The experiment included human and equine blood as well as “blood” of bovine and 

porcine origin obtained from meat packages and the butcher’s. (Technically, this is 

not pure blood but perhaps “meat juice” that contains blood and other solutions used 

in the slaughtering process. For ease of reading the word blood will be used 

throughout this thesis.) These samples were aged for 5 hours, 1 day, 3 days and 7 

days, respectively, prior to extraction and digestion.  

 

In fact, in-solution and lab-on-plate digests were both carried out on all of the 

samples, however the lab-on-plate digest did not produce characteristic peptide 

signals on the bovine and porcine samples (data not shown). The in-solution digest 

on the other hand produced spectra that easily allowed for numerous peptide 

identifications and species differentiation, showing its superiority over the lab-on-
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plate approach. It was hypothesised this was due to the suspected sample impurities 

of “blood” samples coming from meat rather than pure blood samples.  

Due to these samples highlighting the evident shortcomings of the approach, the 

principle investigators decided not to include them in the publication, against the 

concerns of the PhD candidate. Apparently, the aim of the collaboration with the 

developers of the lab-on-plate method had been to highlight its advantages and 

show its superiority, which would have been tainted by disclosure of the full data and 

therefore displeased the collaborator.  

 

Furthermore, the candidate perceives the claim of a rapid 5-minute digestion to be 

deceiving, considering there are several preparation steps involved that add to the 

overall time.  In fact, while the in-solution digest can be prepared for a multitude of 

samples in a few minute and incubation time can be spend performing other duties 

outside the lab, the lab-on-plate digest requires a researcher to be present, 

performing different steps for each sample individually every few minutes. This led 

to the fact that the researchers performing the lab-on-plate digest spent the entire 1-

hour digestion time of the in-solution approach (or more, depending on the number 

of samples) in the lab functionalising the plate and digesting samples. This can 

hardly be considered a time-saver, perhaps even more of a distraction of resources. 

Additionally, it was noted that an Erasmus student’s later attempts at following the 

publication’s method section to employ the lab-on-plate approach for the method 

validation study were not successful either. Although fresh hydrophobin had been 

obtained, no spectra characteristic of tryptic digests could be produced. Instead, 

large, unidentified but repeating interference peaks were observed in all spectra and 

results from previous experiments, e.g. using equine blood, could also not be 

reproduced. This, at best, suggests experienced researchers and clearer 

instructions are required to perform the lab-on-plate digestion, but certainly casts 

doubt on its reproducibility, reliability and usefulness. 

 

Analysis of the aged samples digested with the in-solution approach, however, 

showed that some peptides can no longer be identified in the samples that had been 

aged for longer. When comparing the spectra of these different time points (Figure 
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2.6, using human as example), changing intensity ratios become apparent, perhaps 

reflecting protein and peptide degradation. Unfortunately, due to time constraints the 

spectra could not be thoroughly analysed from this point of view during the course 

of the candidate’s PhD studentship, as additional replicates are necessary and the 

topic is so complex, providing room for numerous variables, it would perhaps warrant 

its own studentship. Technically, since only human blood could be obtained fresh 

from a bleeding fingertip, all other samples had already been aged for unknown 

periods anyway, further complicating the analysis. Furthermore, it is possible the 

defibrination of the equine blood could also have an effect on its behaviour when 

aged, regardless of the other storage conditions. 

 

In addition to the ageing aspect another interesting forensic question concerned the 

differences between one specie’s blood obtained from different sources, such as the 

meat package or the butcher’s. When the preparation of a meal is used as a defence, 

like in the case of Susan May mentioned in chapter 1.1.2, this is where the blood 

can be expected to come from if indeed it is of animal origin. It is understandable 

that these spectra are busier compared to the pure human or equine spectra, due to 

the way the meat is treated and processed, making the sample more complex. 

Although, regrettably, no pure blood was available for comparison, it was interesting 

to note the differences between the two sources and their interfering signals (Figure 

2.7, using bovine as example), suggesting different treatment methods. 

 

Nonetheless, species-specific peptides could be tentatively identified in the residual 

blood from meat samples, supporting the method’s suitability to discriminate 

between samples of human origin and those originating from handling meat.  
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Figure 2.6 MALDI-MS spectra of tryptic digests of extracts of human blood. A: aged for 5 hours, B: aged for 7 days. * indicate 
putatively assigned blood peptides.  
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Figure 2.7 MALDI-MS spectra of tryptic digests of extracts of bovine blood. A: blood obtained from a packet of meat, B: blood 

obtained from a butcher. * indicate putatively assigned blood peptides.
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2.5 Conclusions 

The bottom-up method illustrated in this chapter will have a significant impact on 

forensic practice as well as on the overall criminal justice system by generating more 

robust and informative evidence. This is due to the high specificity of the method 

against current presumptive tests prone to generate false positives. Furthermore, 

the recovery of simultaneous information on blood provenance will both empower 

and speed up investigations as well as strengthening judicial debates. The study 

also crucially highlights compatibility with the necessary and prior application of 

blood enhancement techniques in combination with the analysis of very old blood 

samples, thus opening up new forensic opportunities for the review of cold cases. 

The lab-on-plate approach was shown to additionally offer rapid results (5 minutes 

of proteolysis time), which, in an operational forensic context, is a highly desirable 

feature, but lacks reproducibility and does not take into consideration the additional 

preparation time required to functionalise the plate for proteolysis. Following 

publication of these results, another group has also published proteomic data of 

blood digests. However, this was obtained using lengthy overnight digestion times, 

much lower trypsin concentrations and reporting only haemoglobin as the blood 

protein identified [21,22]. It can therefore be said that, especially in a forensic 

context, the approach presented in this thesis is advantageous due to its shorter 

digestion and analysis time, coupled with the higher degree of confidence resulting 

from the higher number of proteins and peptides identified.  

These studies were also expanded in the groups’ laboratories to include the reliable 

mapping of blood signatures on fingermark ridges using MALDI-MS Imaging in order 

to link the suspect (through the biometric information) to the crime, as presented in 

the next chapter. Finally, validation has also been carried out (see chapter 4), 

whereby the requirement for the minimum number of blood peptide signatures for 

both blood detection and blood provenance determination was provided through a 

blind study in collaboration with the Minnesota Bureau of Criminal 

Apprehension/Elite Forensic Services LLC. 
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Chapter 3 

3 Proteomics goes forensic: detection and 

mapping of blood signatures in fingermarks 
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3.1 Introduction 

The Fingermark research group at Sheffield Hallam University has provided an 

extensive body of knowledge regarding the chemical analysis of latent fingermarks 

by MALDI-MS based methods [1–3]. These protocols enable the detection and 

mapping of a range of endogenous (substances naturally present in sweat), semi-

exogenous (metabolite substances excreted in sweat) and exogenous species 

(contact substances) directly on the fingerprint ridges. This forensic opportunity 

provides investigators with a link between the biometric information (fingerprint 

molecular images) and specific intelligence on the lifestyle of the suspect and 

potentially circumstances of the crime. Amongst recoverable forensic intelligence, 

the reliable and robust detection of blood is highly desirable as this biofluid is 

frequently encountered at the scene of violent crimes or when criminals break in, as 

they may cut themselves, and may aid with the reconstruction of the chain of events 

taking place during the crime. As is also the case for latent fingermarks, the presence 

of blood may not be obvious to the naked eye; the blood might have been concealed 

(e.g. by attempts of the perpetrator to clean the crime scene) or could be present in 

invisible amounts; even "red stains" on their own or in association with fingermarks 

need to be confirmed as blood as opposed to other matrices. For this reason, blood 

enhancement techniques are primarily applied by investigators in compliance with 

the protocols described by the fingermark visualisation manual [4] produced by the 

Home Office UK. 

 

3.1.1 Blood enhancement techniques currently employed  

While several techniques are available for the enhancement and detection of blood 

at a crime scene and have been reviewed [5–8], they are only presumptive, meaning 

that they may lead to false positives [9–15]. For example acid dyes, used for blood 

enhancement, target proteins and, as such, they would stain positive for blood, 

semen and saliva, because in all of these biofluids proteins are found in high 

abundance.  The most commonly used blood enhancement techniques, which rely 

on the catalytic peroxidase activity of the ferrous ion in the haem group, are also 

presumptive and they are prone to both false positives (given that substances other 

than blood are capable of peroxidase activity) and false negatives (due to the 
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presence of substances that inhibit the reaction with haem). Both false positives and 

negatives generate incorrect information potentially misleading the investigations 

and court cases. The majority of the blood enhancement techniques are also 

destructive of the ridge pattern. For example Luminol, a fluorescent haem-reactive 

chemical frequently used to visualise blood traces at a crime scene, is likely to cause 

ridge diffusion due to the lack of a fixative step [4]. Immunogenic tests also belong 

to this category of techniques as they require swabbing or cutting prior to blood 

extraction [16]; as such, these methods cannot be employed for blood marks.  

3.1.2 Blood visualisation analytical techniques  

For the aforementioned reasons, the analytical community has invested significant 

efforts into developing alternative methods enabling the reliable visualisation and 

identification of blood using molecular or "analytical" markers. Recent approaches 

employ spectroscopic techniques such as Raman spectroscopy [17–23], Fourier-

transform-infrared spectroscopy (ATR FT-IR) [24], or Hyperspectral Imaging (HSI) 

[25,26]. 

 

Raman spectroscopy yields scattering peaks characteristic for blood by exciting the 

sample at a wavelength of 752 nm [27] or 785 nm [28]. These peaks correspond to: 

(i) (oxy)haemoglobin (1000, 1368, 1542 and 1620 cm-1) and probably fibrin (967, 

1248, 1342 and 1575 cm-1) [27] for excitation at 752 nm. It has been reported that 

oxyhaemoglobin and haemoglobin denaturation products (419, 570, 677, 754, 1128, 

1311, 1374, 1398, 1549, 1582, 1638 cm-1) are also detected at 785 nm excitation 

and at low laser power (1.9 mW). These peaks are, however, subject to shifts as a 

function of higher laser power and age before and after drying [28]. HSI records the 

reflectance spectrum of a sample in the visible light region, where blood exhibits 

characteristic absorption bands: a strong, narrow absorption band centred at 415 nm 

(Soret band) and two weaker, broader bands between 500 and 600 nm (β and α 

bands) [26]. The technique is not only capable of identifying substances based on 

their reflectance spectra, but also of generating images mapping their distribution. 

This was investigated by Edelman et al. for application to various forensic traces [29] 

and was trialled on mock crime scenes for the detection and identification of blood 

[30]. However, limitations are the unsuitability of red and dark substrates and the 
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requirement for a reference spectrum which, in a crime scene scenario, cannot be 

guaranteed to be free of blood [26]. Furthermore, in theory, a non-blood substance 

with a sharp absorption band at 415 nm would give rise to a false positive result, 

though to date such a substance has not been reported. Finally, the Soret band shifts 

to shorter wavelengths by an appreciable amount as blood ages – it is this 

hypsochromic shift that researchers are using to date blood. This would give rise to 

false negatives if one is only looking for this peak in addition to the fact that the α 

and β bands disappear within some months. 

 

ATR FT-IR peaks correspond to the vibrational stretching of structural bonds and 

functional groups. In the analysis of blood, peaks are produced by amides A (3292 

cm-1), I (1651 cm-1), II (1540 cm-1) and III (1350-1220 cm-1), methyl stretches of 

plasma lipids (2956 cm-1), methyl bending of amino acid sidechains, lipids and 

proteins (1456 cm-1), fibrinogen/methyl bending of amino acid side chains, lipids and 

proteins (1359 cm-1) and carbohydrates (1250-925 cm-1). ATR FT-IR can also be 

used in imaging mode to generate maps of distribution of analytes in various general 

biological systems [31] including breast cancer tissue [32], as well as in forensic 

applications investigating illicit substances in lifted [33] and unlifted fingerprints [34] 

and questioned documents [35], and has potential to be used to map blood 

distribution as well. However, the aforementioned species are not exclusive to blood, 

thus introducing potential for false positives, with the added complication that 

confident analyte identification can be difficult in complex samples.  

 

Similarly, Raman spectroscopy can be used to produce images as described and 

reviewed by Steward et al. [36] and has been employed in determining the sequence 

of ink crossings [37] as well as in conjunction with HSI [38]. However, it should be 

noted that while Raman is a non-destructive technique capable of producing images, 

the detection of blood is solely dependent on haemoglobin and its denaturation 

products [28], making the identification approach less reliable and robust. 

 

Reports on blood detection using mass spectrometry and in particular MALDI-MS 

profiling have been present in the literature since 2004 [39–41]. This work based the 
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confirmatory test on the presence of blood by detecting either a number of distinct 

blood proteins and peptides [39], haemoglobin (α- and β-chain) [40] or its 

bioinorganic prosthetic group haem [41]. This provides a more specific means to 

claim the presence of blood, although the analysis of intact haemoglobin could pose 

a problem in aged and contaminated samples;  it has been shown that the use of 

luminol prevents the detection of the haemoglobin α- and β-chains with the usually 

employed MALDI matrices (such as α-cyano-4-hydroxycinnaminic acid), although 

identification was possible with the use of a different matrix, 2,6-

dihydroxyacetophenone (DHAP) with di-ammonium hydrogen citrate (DHAC) [40]. 

 

3.1.3 Application of MALDI-MS based techniques for the reliable 

visualisation and identification of blood 

Inspired by the work published using MALDI-MS, method development was 

undertaken at the research group’s laboratory to adapt and apply these methods for 

the direct profiling and imaging of blood in fingermarks [42]. In this work, Bradshaw 

et al. demonstrated the opportunity to map both haem and haemoglobin directly on 

the fingermark ridges, keeping their integrity and thus enabling, in a real forensic 

scenario, the preservation of the link between the biometric information and the 

event(s) of bloodshed. Such an approach was possible for both fresh and aged (7 

days) fingermarks, enabling further mass spectrometric confirmatory tests for the 

presence of haem. This approach also enabled the detection of additional blood-

specific proteins besides haemoglobin, increasing confidence in the determination 

of the presence of blood. Though a clear advancement in terms of both reliable 

confirmation of blood and the preservation of the integrity of the fingerprint evidence, 

an even higher level of specificity of the analytical method would be desirable in 

order to robustly inform both investigations and court cases.  

 

Top down proteomics could be an alternative approach given that the blood profile 

is very specific. Constant instrument developments may also offer the opportunity of 

post-source fragmentation enabling partial protein identification. However, 

instrumental capability for this type of analysis is not widespread; furthermore the 

sheer numbers of proteins present in blood, the differential protein concentration 



   

123 
  

spanning several orders of magnitude and the presence of lipids affecting protein 

ionisation could render the application of this technique problematic.  

 

The use of bottom up proteomics is much more established and would indeed 

increase the reliability of protein identification as it is well known that the mass 

accuracy that can be achieved on the protein-derived peptides is much higher (in 

the order of parts per million) than that achievable for intact proteins. The literature 

already contains many reports attempting to map the proteome of plasma and 

serum, though none of the approaches had involved the direct application of MALDI-

MS on enzymatically digested blood [43–47]. This is understandable, as in all of the 

previous reports the aim was to map the entirety of the blood proteome for medical 

and diagnostic purposes. However, in a forensic context, the detection of a handful 

of blood-specific proteins via a bottom up proteomic approach using MALDI-MS 

would be more than appropriate. This research hypothesis was developed in this 

group’s laboratories into a study demonstrating the opportunity to recover multiple 

blood protein signatures in as little as 5 minutes of sample digestion [48], targeting 

not only haemoglobin, but also a range of other blood-specific proteins to strengthen 

the evidential value of the analysis. This work also showed that molecular signatures 

enable provenance discrimination and that they can also be retrieved from very old 

samples which were pre-treated with blood enhancement techniques, thus opening 

a new investigative avenue for cold cases. 

 

3.1.4 Scope and results of the study presented  

The work outlined in this paper is complementary to the work of both Bradshaw et 

al. [42] and Patel et al. [48], bridging the gap between the two; in particular a proof 

of concept has been achieved through the step-wise development of an in situ 

proteolysis method in order to detect and map blood-specific proteins in fresh blood 

marks and analysis via MALDI-MSI directly on the ridge pattern. In this work, blood 

marks were digested in situ using trypsin and incubated for 3 hours, prior to MALDI-

MSI and ion mobility-MS/MS (IMS-MS/MS) analyses. Although any alteration, even 

minute, to the chemical and physical state of a fingermark is to be considered 

destructive (even optical methods though they have the lowest degree of 
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destructivity), the application of this in situ proteomic protocol enables the ridges to 

keep their integrity and original pattern including second level details (minutiae), thus 

also allowing the biometric information to be conveyed. Furthermore, compared with 

spectroscopic techniques, the application of MALDI-MS based methods can 

generate additional and more specific information as it relies on "molecular 

signatures" rather than "analytical signatures", which can also be verified by MS/MS 

methods as shown in this work. In particular, the use of ion mobility has been 

particularly crucial for the reliable identification and confirmation of blood signatures, 

thus adding the required level of confidence in judicial debates.  

 

3.2 Materials and methods 

3.2.1 In situ tryptic digestion of blood fingermarks for MALDI-MS Imaging 

(MALDI-MSI) 

For trypsin spotting experiments, blood fingermarks were prepared by pricking a 

clean finger with a Unistik® 3 Neonatal & Laboratory single use lancet (Owen 

Mumford, Oxford, UK) under full ethical approval (HWB-BRERG23-13-14). A droplet 

of blood was forced out the bleeding fingertip which was rubbed against another 

clean fingertip. This second finger was then used to deposit blood marks onto 

ALUGRAMSIL G/ UV254 aluminium sheets (Sigma-Aldrich, Dorset, UK) pre-treated 

as previously described [49].  

 

For trypsin spraying experiments, a clean finger was pricked using Accu-Chek 

Multiclix kit (Boots, Sheffield UK) according to the method for distributing material 

across the fingertips previously described [42]. Trypsin was employed to 

enzymatically digest blood directly on a blood mark using different methods. Initially 

trypsin was spotted at concentrations of 125 μg/mL, 250 µg/mL, 500 µg/mL, 1 

mg/mL, 2 mg/mL and 3 mg/mL in 50 mM ammonium bicarbonate (AmBic), at pH 8, 

containing 0.1% RapiGest™ SF, by depositing 0.5 μL onto the blood mark. 

 

In another experiment, quarter split blood marks underwent acoustic spotting of 

trypsin using the automatic spotter Portrait® 630 (Labcyte Inc., Sunnyvale, USA) at 
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trypsin concentrations of either 100 μg/mL, 150 μg/mL, 200 μg/mL or 250 μg/mL in 

50 mM AmBic at pH 8 containing 0.1% RapiGestTM SF. In the work reported here, 

50 cycles were performed, with one droplet per position deposited onto the split 

blood marks during each cycle. A total of approximately 8.5 nL of trypsin solution 

was therefore acoustically printed onto the mark, per spot. Additional blood mark 

quarters underwent differential trypsin spray coating, as reported for the acoustic 

ejection, using a SunCollect autosprayer (KR Analytical, Sandbach, UK); here 9 

layers of trypsin were delivered at a flow rate 2 μL/min and a nitrogen pressure of 3 

bar. All trypsinised samples were placed on polystyrene floats in a Coplin jar half-

filled with 50:50 methanol:H2O, sealed with parafilm and incubated for 3 hours at 

37°C. The jar’s lid was wrapped in paper tissue to prevent condensation forming on 

the glass and dropping onto the sample. 

 

3.2.2 Matrix deposition 

After incubation, all the digested blood fingermark samples were sprayed using the 

SunCollect (KR Analytical, Sandbach, UK) with 5 layers of 5 mg/mL CHCA in 70:30 

ACN:0.5%TFAaq, containing equimolar amounts of aniline to CHCA (i.e., 1 mL of 5 

mg/mL CHCA solution contained 2.4 µL aniline) at a flow rate 2 μl/min and a nitrogen 

pressure of 3 bar. 

 

3.2.3 Instrumentation and data acquisition   

Mass spectrometric images of blood marks using manually spotted trypsin were 

obtained in the m/z range 650-3000 using a modified Applied Biosystems API “Q-

Star” Pulsar i hybrid quadrupole time-of-flight (QTOF) instrument (Concord, Ontario, 

Canada). The orthogonal MALDI source of the Q-Star instrument has been modified 

to incorporate a SPOT 10 kHz Nd:YVO4 solid-state laser [50] (Elforlight Ltd., 

Daventry, UK) with a wavelength of 355 nm, a pulse duration of 1.5 ns and producing 

an elliptical spot size of 100 × 150 μm. Images were acquired at a spatial resolution 

of 150 × 150 μm in raster mode, using ‘oMALDI Server 5.1’ software supplied by 

MDS Sciex (Concord, Ontario, Canada) and data processed using BioMap 3.7.5 

software (Novartis, Basel, Switzerland) with a bin size of two. MALDI-MS images of 
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blood marks either sprayed with trypsin (SunCollect, KR Analytical, Sandbach, UK) 

or robotically spotted with this enzyme (Portrait 630®, Labcyte Inc., Sunnyvale, USA) 

were acquired in positive ion mode in the m/z range 600 - 3000 using a SYNAPTTM 

G2 HDMS system (Waters Corporation, Manchester, UK) operating with a 1 kHz 

Nd:YAG laser, at a mass resolution of 10,000 FWHM (sensitivity mode) and at a 

spatial resolution of 150 μm. Calibration over a 600-2800 Da mass range was 

performed prior to analysis using phosphorous red. The laser energy was set to 250 

arbitrary units in MS mode and increased to 270 arbitrary units for MALDI-ion 

mobility-MS/MS experiments. In particular, MS/MS analyses were conducted in situ 

on the peaks exhibiting a S/N of at least 14. Fragmentation was carried out in the 

transfer region of the instrument, post ion mobility separation, therefore product ions 

retain the same drift time as the precursor ion. Collision energies ranging between 

60-80 eV were used to obtain the best signal to noise ratio for product ions.  

 

3.2.4 Data analysis   

Mass spectra opened using MassLynx™ (Waters Corporation, Manchester, UK) 

were either converted into txt files and imported into mMass, an open source 

multiplatform mass spectrometry software [51], or processed directly performing 

peak smoothing, baseline correction and peak centroiding. UniprotKB 

(http://www.uniprot.org/, UniProt release 2015_11) was employed to generate in 

silico peptide lists of known proteins present in blood. Mass lists were generated by 

selecting “monoisotopic”, “MH+”, “trypsin”, “2 missed cleavages”, “methionine 

oxidation” and taxonomy "human". Peptide lists were imported into mMass to create 

an “in house” and local reference library.  

Data analysis of mass images was performed using BioMap 3.7.5 software 

(Novartis, Basel, Switzerland) or the HDI software (Waters Corp. Manchester, UK). 

Prior to peak assignment search, spectra were smoothed and de-isotoped. Peak 

assignment was not accepted if the S/N was lower than 3:1. Spectral processing 

consisted of smoothing, baseline correction and lock mass-based mass correction. 

Prior to performing an MS/MS Mascot (Matrix Science, London, UK) search, spectra 

were processed using MassLynx™ with the MaxEnt 3 algorithm to deisotope and 

enhance the S/N. Queries were searched against the "Swiss-Prot" database 
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(release 2015_11) with parent and fragment ion tolerances set to 50 ppm and 0.1 

Da respectively. Two missed cleavages were also selected. 

 

3.3 Results and discussion 

The ability of MALDI-MSI to spatially map the distribution of proteins and peptides in 

fingermarks opens up the potential to establish the link between the event of 

bloodshed and the biometric information, thus linking a suspect to a crime. For this 

reason, this study aimed to optimise the in situ proteolytic digestion of blood marks 

for analysis via MALDI-MSI. 

 

 

Figure 3.1 MALDI-MS Imaging of in situ proteolysis of a blood fingermark. Figure 
shows the molecular images of blood-specific peptides localised to the digest areas. 
In situ digests were performed by spotting of the blood mark with trypsin in 6 different 
concentrations and incubating at 37°C for 3 hours. Trypsin appeared to be most 
efficient when used in concentration of 250 µg/mL. 

 

3.3.1 Optimisation of trypsin concentration: MALDI-MSI of enzymatic 

digestion spots deposited on blood marks 

Due to the high protein concentration of blood [43], it was necessary to adapt the 

amount and concentration of trypsin used for blood proteolysis, as the 20 μg/mL 

trypsin frequently reported in the literature for on tissue and fingermark digests 
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[2,50,52] did not yield any peptides when applied to blood fingermarks (data not 

shown). In the initial experiments aimed to determine the optimal trypsin 

concentration, a human blood mark was spotted with concentrations of 125 μg/mL, 

250 µg/mL, 500 µg/mL, 1 mg/mL, 2 mg/mL and 3 mg/mL trypsin and digested at 

37°C for 3 hours before matrix application and the acquisition of MALDI-MSI data. 

Analysis of these binned data revealed multiple blood peptide peaks localised only 

in the spotted digest regions such as apolipoprotein A1 at m/z 1529.8 (theoretical 

monoisotopic m/z 1529.78), complement C3 at m/z 1337.8 and 1567.8 (theoretical 

monoisotopic m/z 1334.71 and 1567.88 respectively), haemoglobin α at m/z 1274.8 

and 1529.8 (theoretical monoisotopic m/z 1274.72 and 1529.73), serotransferrin at 

m/z 1529.8 (theoretical monoisotopic m/z 1529.75) and α-2-macroglobulin at m/z 

1334.8 and 1394.6 (theoretical monoisotopic m/z  1334.72 and 1394.68 

respectively); Figure 3.1 reports peptide images at m/z 1274.8, putatively identified 

as a haemoglobin α and at m/z 1567.8, putatively identified as a complement C3 

peptide (theoretical m/z 1567.9) as an example. The blood fingermark area digested 

with 250 μg/mL trypsin showed the highest intensity peaks for those peptides, 

indicating that this would be the most promising concentration to bring forward into 

subsequent imaging experiments. The use of high trypsin concentrations of 500 

μg/mL and above was discontinued, as a significantly lower intensity and/or absence 

of blood peptide signatures was attributed to an unsuitable trypsin:protein ratio, 

whereas trypsin concentrations between 100 and 250 μg/mL were chosen for further 

investigation on quarters of a blood mark split into four. In terms of the performance 

of the different trypsin concentrations tested, these results were reproducible 

through different repeats, though peptide intensities varied according to the different 

amounts of blood present within each repeat affecting the ratio trypsin:blood proteins. 

It is in fact important to remember that despite the optimisation of the reproducibility 

in the deposition of blood marks (see Materials and Methods section), slightly 

different amounts of blood could have been deposited within each repeat. The 

amount of blood in the droplet could only have been measured and kept consistent 

if an exact amount of blood was pipetted off the finger after squeezing and pipetted 

back onto an uncontaminated finger.  This method was trialled by the donor, however 

it was not possible to deposit prints with clear ridge detail due to the blood beginning 
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to coagulate and dry in the pipette tip. The first blood fingermark generated by 

contact with the relevant surface was employed for the study each time (primary 

marks). 

 

Figure 3.2 Acoustic spotting of trypsin on blood marks. Figure shows the visual 
image of the blood mark prior to splitting into quarters (A). Trypsin spots within the 
mark and surrounding the mark are visibly merged and distorted in certain areas of 
the aluminium slide (B). A distorted, ridge-merged blood mark was also visible on a 
polylysine glass slide after trypsin deposition (C) with an expanded region showing 
an unaffected area (no spot merging) where blood was not present (D). 
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3.3.2 Optimisation of trypsin deposition for mapping blood signatures on 

the ridges of blood marks  

In order to spatially map blood peptides on the fingermark ridges, subsequent 

experiments made use of the acoustic reagent multispotter (Portrait 630®) to deposit 

discrete trypsin nano-droplets at a spot-to-spot spatial resolution of 200 μm. 

 

However, when a blood mark quarter deposited on an aluminium slide was spotted 

with 100 μg/mL trypsin at a resolution of 200 μm, it was observed that spots were 

spreading into each other (Figure 3.2B); trypsin spots surrounding the mark are also 

visibly merged and distorted in certain areas of the aluminium slide (Figure 3.2B). 

Lower volumes of trypsin were trialled (as low as 1.7 nL per spot) in combination 

with different concentrations, though none of the combinations avoided the merging 

issue. In order to test the hypothesis that it was the particular surface of deposition 

that caused this issue, a polylysine-coated glass slide was used as a sample support 

(Figure 3.2C). Again, the trypsin nano-droplets were observed to merge across the 

blood mark resulting in a pool of protease. Conversely, the Portrait® deposited the 

trypsin solution in a precise manner where blood was not present (Figure 3.2D); 

other deposition surfaces, such as lifting tape and a stainless steel MALDI target 

plate were investigated and all exhibited the same issue suggesting the combination 

of surface of deposition and, majorly the viscosity of blood to be the problem causing 

spot merging due to insufficient drying of trypsin during the various spotting cycles. 

The spot merging issue eventually led to the choice to discontinue the use of the 

Portrait as a possible trypsin depositor for this particular application.  

 

The next best option was therefore the use of an automatic sprayer for the deposition 

of trypsin (and subsequently matrix) and the SunCollect automated pneumatic 

sprayer was employed with the intention to deposit trypsin concentrations at 100 

μg/mL, 150 μg/mL, 200 μg/mL and 250 μg/mL on four different quarters of a blood 

mark. It was observed, however, that with increasing trypsin concentrations, the 

spray was less and less uniform leading to capillary blockage and syringe breakage, 

most likely due to increased viscosity and back pressure build-up, respectively. For 

this reason, only three quarters of the blood mark could be sprayed with a maximum 
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usable trypsin concentration of 200 μg/mL to evaluate which concentration would be 

most suitable for future spraying of entire marks (Figure 3.3). In order to increase the 

trypsin concentration further when using the pneumatic depositor, additional method 

development work including minor instrumental modifications was carried out later 

to counteract the potential increase in viscosity with higher protease concentrations. 

(Due to time constraints this could only be done after the submission deadline for 

the publication presented in this chapter.) 

 

Examination of the imaging data obtained (Figure 3.3) revealed blood peptide 

signatures on the blood fingermark ridges for all the three trypsin concentrations 

investigated. Figure 3.3 shows example images for five peptide species (m/z 

767.407, 886.507, 953.549, 974.529, 1068.581) putatively assigned to complement 

C3 (2 peptides), hemopexin, Hbα and serotransferrin, respectively. These species 

have been reported in Table 3.1.  

 

possible peptide identity theoretical m/z observed m/z relative error (ppm) 

Complement C3 767.393 767.407 18.895 

Complement C3 886.510 886.507 -3.722 

Hemopexin 953.546 953.549 3.251 

Haemoglobin alpha 974.541 974.529 -12.723 

Serotransferrin 1068.598 1068.581 -15.721 

Table 3.1 Putatively identified blood peptide signatures within MALDI-MSI of blood 
marks 
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Figure 3.3 MALDI-MS Image of in situ proteolysis of a blood fingermark. Figure 
shows molecular images of blood-specific peptides generated by spraying trypsin at 
one of four different concentrations (anti-clockwise, starting top left: 100, 150, 200 
and 250 µg/mL) on the blood mark using the SunCollect. The trypsin concentration 
of 250 µg/mL could not be delivered to due limitations in the sprayer capabilities.  
Each peptide image has also been overlaid with the matrix signal at m/z 1066.115. 
The figure suggests that the best ridge reconstruction performance could be 
achieved using a trypsin concentration of or between 150 and 200 µg/mL. 
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To prove that these are genuine blood signatures a control experiment was 

performed by spraying trypsin at a concentration of 100 µg/mL on a latent fingermark 

("control", not blood contaminated) from the same donor and subsequently subjected 

to MALDI-MSI.  

Spectra of the control latent mark extracted from the MALDI-MS images generated 

are reported in Figure 3.4 as a comparison with the spectra extracted from the 

MALDI-MS images generated from the same blood mark shown in Figure 3.3. 

Results reported in Figure 3.4 show that the aforementioned blood signatures 

(highlighted in red in the spectra in Figure 3.4, shown in blue in the image of the 

blood mark in Figure 3.3) are absent in the latent mark and therefore not endogenous 

but exclusively present when blood is present. With respect to Figure 3.3 and Figure 

3.4, the spectrum showing the ion signal at m/z 1274.737 assigned to Hbα was 

additionally reported as present in the blood mark and absent in the latent mark. This 

peptide generated a speckled image, which is why it was not previously reported in 

Figure 3.3. This control experiment demonstrates not only specificity but selectivity 

of the method. 



   

134 
  

 

Figure 3.4 Comparison of spectra extracted from MALDI-MS images of a latent 
mark (control) versus a blood mark. In a latent fingermark (not contaminated by 
blood) enzymatically digested using 100 μg/mL of trypsin, the blood peptide 
signatures (red) previously mapped and reported in Figure 3.3 are absent. 

 



   

135 
  

Finally, to prove that the putatively identified peptide sequences could not belong 

to other proteins (other than the reported blood proteins) with which they might 

demonstrate sequence homology, a BLAST search was performed for each of the 

peptides in question. The search has revealed 100% sequence homology 

exclusively with the putatively reported blood peptide (data not shown). To further 

prove the exclusive presence of blood peptides on the mark's ridges, an overlay of 

each peptide image with a matrix peak image at m/z 1066.115 is also reported in 

Figure 3.3. 

Of the peptides identified, two produced the most abundant signal when digested 

with 200 μg/mL trypsin solution, whereas two were most abundant when digested 

with 150 μg/mL trypsin and one appeared to be equally abundant with both trypsin 

concentrations.  While this may complicate the determination of the most suitable 

trypsin concentration, it is a result to be expected given the differential abundance 

of the proteins in blood; while some proteins are present in blood in high 

concentrations, such as albumin (30-50 mg/mL in healthy individuals), others have 

been reported with concentrations as little as 0-5 pg/mL for Interleukin 6 [43]. This 

circumstance gives rise to sub-optimal substrate:enzyme ratio for some proteins. In 

fact, though some peptide peaks are still present, the overall TIC is much reduced 

with higher trypsin concentrations (above 250 µg/mL). This result is reproducible 

within the same conditions, which here refer to the blood amount being used. Blood 

amounts were controlled as much as possible by using the same lancet depth each 

time on the Accu-Chek Multiclix device (see section 3.2.1). Differential abundance 

may also negatively impact on the uniformity of distribution across the blood mark 

and eventually on the ridge pattern molecular image reconstruction. This may result 

in seemingly inferior results in one area, where in fact this area may have not 

contained "optimal" amount of the target species to begin with, thus resulting in non-

uniform distribution both within the same and between the different quarters. The 

spraying method was found to be reproducible through all repeats performed to date 

with regards to the proteolytic efficiency of trypsin used in the different 

concentrations trialled. 
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3.3.3 Key findings 

Data presented here suggest that both 150 μg/mL and 200 μg/mL trypsin are 

suitable for the in situ digestion of blood marks, however taking into consideration 

the results of the manually spotted image it would be beneficial to also evaluate 250 

μg/mL, although this will require some modification of existing instrumentation. In the 

data obtained to date, additional ion signal m/zs could be observed and matched to 

blood peptides, but showed a speckled distribution rather than a continuous 

fingermark ridge pattern when imaged. Despite the known difficulties in successfully 

performing in situ MS/MS experiments, these were optimised and Figure 3.5 shows 

an example confirming the presence of the α and β chains of haemoglobin by 

selecting the precursor ions at m/z 1274.725 and 1529.734, respectively. 
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Figure 3.5 MALDI-IMS-MS/MS of tryptic peptides at m/z 1274.725 (A, multi-species) 
and m/z 1529.734 (B, human), identified via mascot as Hbβ and Hbα, respectively, 
with both b and y ions annotated. 

 

3.4 Concluding remarks 

Mapping of blood signatures onto the ridge pattern of a fingermark can provide 

crucial information in a forensic investigation, linking the suspect to the events of 

bloodshed. Here a sample preparation method has been developed to undertake 

trypsin proteolysis in situ, thus enabling blood peptides to be mapped in a fingermark 

and hence facilitating reconstruction of "molecular blood images of the ridge pattern". 
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Results also indicate that the use of the acoustic ejector is unsuitable as the high 

viscosity of blood causes trypsin spot merging, thus preventing mapping of blood 

signatures onto fingermark ridges.  In contrast, the automatic sprayer employed here 

allowed successful imaging of the fingermark ridges. Further instrumental 

developmental work is planned to enable the deposition of higher concentrations of 

trypsin with the intention to improve the quality of molecular images and the blood 

peptide signal intensity.  A separate and in-depth study is required here, trialling the 

method and adjustments to it (trypsin concentration) needed for different amounts of 

blood tested in order to determine the blood amount range for which a certain trypsin 

concentration still yields the desired blood peptide signatures. This is also important 

as the amount of blood found in crime scene marks may differ from that employed 

here as a reference model, thus requiring different concentrations of trypsin to fulfil 

the optimal substrate:enzyme ratio. Once this study has been carried out it will be 

necessary to combine its findings with an estimation of the amount of blood present 

in a given piece of evidence in order to select an appropriate trypsin concentration. 

While the author has already demonstrated in MALDI profiling bottom-up proteomic 

experiments that it is possible to retrieve blood signatures from blood evidence as 

old as 9 years, future work will include testing the optimised sample 

preparation/imaging methods on blood fingermarks of different age to prove 

analytical robustness. 

The work illustrated here also opens up new avenues of investigation;  similarly to 

the concept previously demonstrated by the author’s group with regards to 

establishing the order of deposition of fingermarks and condom lubricants using 

MALDI-MSI [53], it may be possible to determine whether blood peptides are present 

exclusively on the ridges, which would suggest that a mark was left by a bloodied 

finger, or on the entire sample surface including ridges and valleys, which would 

suggest a mark having been deposited onto a bloodied surface (or contaminated 

with blood after deposition). Differentiating between these scenarios would then 

enable investigators to reach a more confident conclusion and establish a stronger 

link between the fingermark donor and the event of bloodshed. 
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Chapter 4 

4 Blind study and other applications – a tale of 

forensic method validation         
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4.1 Introduction 

In criminal cases it can be very important to determine if a substance collected as 

evidence is blood or contains blood. While DNA analysis is undoubtedly useful for 

determining the individual human source of the trace, it is not commonly used for 

simultaneous body fluid identification. Protocols have been reported for co-extraction 

of DNA and RNA, and this has been investigated for body fluid identification, 

however this results in lower sensitivity for DNA analysis [1,2]. The mRNA markers 

used for the identification of blood are in fact not unique to blood but can be found 

in other tissues and cell types in varying expression levels [3].  

 

If it is a requirement to determine the species of origin of the blood further issues 

with the use of DNA/RNA are encountered. Although amplification systems for 

animal DNA exist, a different set of primers is required for each species and multiplex 

systems have been found to be unreliable [4]. This means that presumptive 

knowledge of the species origin of a presumed blood trace is required, or 

alternatively a range of primers must be trialled in an attempt to determine the 

species source. 

 

Another consideration that needs to be made is the fact that several BETs result in 

reduced sensitivity of DNA recovery and analysis [5]. This is especially important 

when looking at long-term effects. This can have considerable impact on cold case 

investigations, as it is recommended to perform DNA analysis within 30 days of 

enhancement [5]. Furthermore, the swabbing required for DNA or RNA extraction 

makes it unsuitable for analysis of suspected blood fingermarks, where it is desirable 

to maintain ridge detail.  

 

In the previous chapters the development of a proteomic approach using MALDI-MS 

to allow confident detection and species determination of blood in stains was 

reported [6]. This methodology is based on the detection of blood-specific tryptic 

peptides and their species-specific differences in the amino acid sequences. The 

protocol has been further developed to allow the visualisation of the distribution of 

blood peptides in fingermarks via MALDI-MSI [7], thus establishing a link between 
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the biometric information and the event of bloodshed. Additionally, the problems 

previously encountered relating to the delivery of trypsin concentrations higher than 

200 µg/mL with the SunCollect autosprayer [7], as reported in chapter 3, were 

overcome. By using a larger internal diameter capillary (ID 100 µm), additional 

experiments were able to establish 250 µg/mL as the most suitable concentration for 

the controlled samples used so far. It was therefore agreed to proceed using this 

concentration. 

 

However, the samples used for the development of these methods were ideal 

samples of known provenance on substrates suitable for MALDI-MS. Therefore, the 

work reported in this chapter aimed to validate previous results and test the method’s 

suitability for unknown, forensically relevant samples. 

 

In order to allow for removal of fingermark samples from the crime scene and their 

mass spectrometric analysis, a lifting step is required. While this is common practice 

for latent fingermarks and a variety of lifting tapes are available, the chemistry of 

latent prints differs from that of blood marks. As this can be expected to have an 

effect on a tape’s ability to lift blood residue, a range of tapes was trialled in this work 

to identify a product suitable for lifting and MALDI-MSI analysis. 

 

Furthermore, suspected blood marks are often subjected to BETs at the crime scene 

to visualise them, improve contrast or presumptively test for blood. A non-enhanced 

mark would be unlikely to be submitted for further testing. Although previous work 

had been performed on non-enhanced marks and those that had been treated with 

acid black 1 (AB1), many other BETs are available. Previous work carried out at 

SHU has studied MALDI-MSI of latent fingermarks and the enhancement techniques 

they can be subjected to [8]. It seemed appropriate and necessary to investigate 

potential interferences of various BETs with the proposed MALDI-MS workflow for 

blood analysis and to add into this study an examination of species specificity. The 

rationale for the species study was that all but one sample analysed in the SHU 

group’s previous publications had been of known provenance. Although species 

differences appeared prominent and identifications were made with confidence, the 
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species subset was small and identification bias cannot be excluded due to previous 

knowledge. 

 

To address these issues and provide suitable validation, a blind study was devised. 

Samples were prepared externally by Dr. Glenn Langenburg (CEO of Elite Forensic 

Services, LLC, Minnesota, USA) without disclosing their origins to SHU investigators 

and included human blood, animal blood from five different species, human biofluids 

and non-biofluid samples. Additionally, some of the samples were enhanced with 

common BETs, but it was not disclosed which particular BET was used or which 

samples were enhanced. Because samples were prepared on silver-coloured 

aluminium slides, this meant that in some instances it was difficult to determine if a 

sample had been enhanced. This was due to the fact that for example, whilst light 

coloured enhancement techniques like acid yellow 7 are meant to improve contrast 

on dark substrates, they remain poorly visible on lighter backgrounds like that 

employed in this study. In some instances, enhancement could therefore only be 

inferred from a sample’s appearance under certain light conditions such as UV light. 

 

The study successfully demonstrated that MALDI-MS allows the confident detection 

of human blood in unknown, enhanced and non-enhanced stains with a 100% 

success rate. Refinement of the data analysis approach was necessary to facilitate 

identification and species determination of animal blood, especially concerning some 

of the employed enhancement techniques. Whilst no extensive in-house database 

had been created for the identification of non-blood biofluids, they were readily 

distinguishable from blood samples and the presence of a few characteristic 

peptides allowed their preliminary identification. Future work can be envisioned 

involving the more extensive characterisation of those biofluid proteomes for more 

confident identification. Non-biofluid samples were successfully classed as such, 

although no further identifications were attempted. 

 

One fingermark sample was successfully identified as a human blood mark and 

another as a non-biofluid mark, both maintaining ridge detail.  
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4.2 Methods and materials 

4.2.1 Lifting of non-enhanced and AB1-enhanced bloodied marks 

A white ceramic tile was cleaned with Mr. Muscle window and glass cleaning 

detergent (S.C. Johnson & Son, Racine, USA) and subsequently wiped with Distel 

high level laboratory disinfectant (Tristel Solutions Ltd., Snailwell, UK) prior to 

sample deposition. Bloodied fingermarks were prepared by pricking a clean finger 

with a lancet and rubbing it against another clean fingertip to achieve an even 

distribution. This second finger was then used to deposit bloodied marks onto the 

tile. Optical images of bloodied marks before and after AB1-enhancement and lifting 

were obtained on a Foster+Freeman VSC 4CX (Evesham, UK). 

 

The following strategies were applied independently from each other, each on a 

fresh set of marks so lifting was not attempted on the same mark twice. 

Originally, CSI pre-cut lifting tape 96113 was peeled off straight away after 

smoothing out across the mark. Next, pressure was applied to the tape on top of the 

mark for 30 s, 1 min, 1 min 30 s, 2 min, 2 min 30 s and 3 min before lifting. Lastly, 

the tile was placed in a humidity chamber at 25°C and 70%, 80% or 90% humidity 

for 5, 10 or 15 minutes before application of the tape, followed by 30 s pressure and 

lifting. 

 

Bloodied marks were enhanced using the ethanol/water-based formulation of acid 

black 1 (AB1) as described in the Home Office fingermark visualisation manual [9]. 

The fixing solution (23 g/L 5-sulphosalicylic acid in dH2O) was applied to the tile with 

a dropper pipette, ensuring the mark was covered and kept wetted for 5 minutes. 

Subsequently, the substrate (a white ceramic tile) was tilted to allow the solution to 

drain onto a paper towel, and briefly air dried. The staining solution (1 g AB1 in 1L 

5:25:70 acetic acid:ethanol:dH2O) was applied, left to stain for 4 minutes and 

removed in the same manner. Lastly, the washing solution (5:25:70 acetic 

acid:ethanol:dH2O) was applied for 3 minutes and the substrate gently agitated. After 

draining, the process was repeated once more. 

 



   

150 
  

Tape Supplier 

CSI pre-cut lifting tape - fingerprint (#96113) 

CSI Equipment Ltd (Woburn 

Sands, UK) 

Permacel J-Lar® Clear to the Core lifting tape 

25mm (#96105) 

CSI Flexi tape (3M Polytape 1-1410; #96104) 

CSI specialist tape - fingerprint (#96160) 

Cellulose Clear Tape ref. 3M 607 (3M Pressure 

Sensitive tape; #C32810) 

WA Products (Burnham on 

Crouch, UK) 

Sirchie fingerprint lifting clear tape (#S144L) 

Sirchie Search Polythene Lifting Tape 

Transparent (#S169PPA) 

Serilux Style lifter (#B20653-100) 

3M Magic Tape local stationery shop 

Clear, black and white gelatine lifters BDA via WA Products Ltd 

(Burnham on 

Crouch, UK) 

ZarPro™ fluorescent blood lifting strips Tri-Tech Forensics 

Table 4.1 Lifting tapes and gelatine lifters trialled including suppliers. 

 

Preliminary tests were performed on enhanced marks, exerting 30 s of pressure 

using a variety of different tapes (Table 4.1). ZarPro™ blood lifting strips were used 

as per the manufacturer’s instructions. J-Lar® tape was also used to lift immediately 

after smoothing onto the mark, without pressure application. 

 

4.2.2 Preparation of blind samples 

ALUGRAMSIL G/UV254 aluminium slides (Sigma-Aldrich, Dorset, UK) were 

prepared as previously described [10] and used as deposition surfaces for the blind 

samples. Blind samples were prepared by Dr. Glenn Langenburg, CEO of Elite 

Forensic Services LLC (Saint Paul, Minnesota, USA). The sample set included blood 

from a human donor as well as pig, cow, chicken, deer and wild boar blood, human 

biofluids and non-biofluid samples, which were deposited as stains and fingermarks. 
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Each slide contained 2 separate stains or fingermarks. Some of the samples were 

enhanced with BETs, the exact nature of which was not disclosed.  

 

4.2.2.1 Tryptic digestion and MALDI-MS  

Stain samples were extracted into 1 mL 70:30 ACN:H2O by pipetting some of the 

solution onto the stain, pipetting-mixing and scratching off the dried residue to 

reconstitute in the extraction solution. This extract was transferred back into the 1 

mL solution, which was then sonicated at 45 kHz for 10 minutes. 

 

In-solution digests were prepared following the previously devised protocol [6] and 

spotted with 0.5 µL of 5 mg/mL CHCA in 70:30 ACN:0.5%TFAaq containing 

equimolar amounts of aniline (2.4 µL per mL matrix). 

 

In situ digests were prepared as previously described [7], employing a trypsin 

concentration of 250 µg/mL incl. 0.1% Rapigest™ SF and a 100 µm internal diameter 

capillary on the SunCollect autosprayer (KR Analytical, Sandbach, UK). 

 

MALDI-MS data were acquired in positive ion mode in the m/z range 650 - 3600 

using a SYNAPTTM G2 HDMS system (Waters Corporation, Manchester, UK) 

operating with a 1 kHz Nd:YAG laser, at a mass resolution of 10,000 FWHM 

(sensitivity mode). Images were acquired at a spatial resolution of 150 μm. 

Calibration over a 650 - 3600 m/z range was performed prior to analysis using 

phosphorous red. The laser energy was set to 250 arbitrary units. 

 

Mass spectra opened using MassLynx™ (Waters Corporation, Manchester, UK) 

were either converted into txt files and imported into mMass, an open source 

multiplatform mass spectrometry software [11], or processed directly performing 

peak smoothing, baseline correction and peak centroiding. UniprotKB 

(http://www.uniprot.org/, UniProt release 2015_11) was employed to generate in 

silico peptide lists of known proteins present in blood. Mass lists were generated by 

selecting “monoisotopic”, “MH+”, “trypsin”, “2 missed cleavages”, “methionine 

oxidation”. Peptide lists were imported into Microsoft Excel and mMass to create an 
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“in house” and local reference library. A FASTA database containing the relevant 

blood peptides was generated for use in Waters Protein Lynx Global Server 

software. Data analysis of mass images was performed within the HDI 1.4 software 

(Waters Corp. Manchester, UK). Prior to peak assignment search, spectra were 

smoothed and de-isotoped. Peak assignment was not accepted if the S/N was lower 

than 3:1. Spectral processing consisted of smoothing, baseline correction and lock 

mass-based mass correction. 

 

4.3 Results and Discussion 

4.3.1 Lifting of bloodied fingermarks 

Since blood marks are currently not routinely recovered from crime scenes, due to 

the absence of further analysis techniques, prior to the work described here 

identification of a suitable lifting tape was not required. The use of MALDI-MSI of 

blood marks, however, changes this and has brought about a need to identify a tape 

suitable for lifting blood marks to facilitate their intact removal from a crime scene or 

evidential object. 

 

Initially, the lifting tape previously used by the author’s group for the study of latent 

marks [12] (CSI pre-cut lifting tape 96113) was used to attempt to lift blood marks. 

Despite exerting pressure for various lengths of time and subjecting the samples to 

70-90% humidity prior to lifting attempts, the blood did not stick to the lifting tape and 

marks could not be lifted. Due to the different chemical composition of blood marks 

versus latent marks it is entirely plausible that a tape used for the lifting of latent 

marks is unsuitable for blood marks. 

 

For this reason, a variety of other tapes (stationery tapes and tapes intended for 

fingermark lifting) of different compositions were trialled under the assumption they 

would present different characteristics including potentially stronger adhesive 

properties. Regrettably, detailed information about the constituents were not publicly 

available, therefore only claimed performance characteristics could be employed in 

choosing different tapes. 
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During preliminary trials of lifting non-enhanced bloodied marks with the aid of 

manually applying pressure for 30 s to the various different tapes, a faint residue not 

dissimilar to non-blood marks was observed on some tapes. However, by the time 

the last mark out of a series of nine was lifted the residue had already become 

invisible, presumably due to evaporation. Therefore, the capture of optical images 

was not possible. Also, contrast was poor, making it hard to determine if lifting had 

been successful. Hence it was decided to continue the trials on enhanced marks 

with improved contrast. 

 

4.3.2 Lifting of AB1-enhanced marks 

AB1-enhancement was performed in accordance with the Home Office protocol 

described in the Fingermark Visualisation Manual [9]. 

When attempting to lift the enhanced marks of the substrate with the exertion of 30 

s of manual pressure, J-Lar® clear to the core tape and Sirchie 144L tape showed 

the most promising results in the preliminary trials, lifting at least near-complete 

marks (Figure 4.1 and Figure 4.2), whereas other tapes only lifted small areas with 

poor ridge detail (data not shown). ZarPro™ lifts were also promising, however due 

to the vastly different structure and chemistry of the lifts, a lot of method optimisation 

will be required to allow for their MALDI-MSI analysis. (Their surface coating 

absorbed trypsin and matrix and did not allow for the generation of ions with the 

previously established method. Due to time constraints, the method was not 

optimised further for this particular lift.) 



   

154 
  

 

Figure 4.1 A: AB1-enhanced blood mark on a ceramic tile, B: lift of A with J-Lar® 
tape, C: mark A after lifting 

 

Figure 4.2 A: AB1-enhanced blood mark on a ceramic tile, B: lift of A with Sirchie 
144L tape, C: mark A after lifting 

 

Furthermore, it was found out by accident that lifting the tape straight after deposition 

onto a mark produces a visibly better lift than exerting 30 s of pressure (Figure 4.3). 

This was verified by comparing 5 repeats of both practices and hence, the no-

pressure approach is recommended and has been used for subsequent MALDI-MSI. 
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Figure 4.3 AB1-enhanced blood marks lifted with J-Lar® tape with (A) the 
application of 30 s of pressure and (B) lifted immediately, without pressure 
application. 

 

It was, however, noted that occasionally there were marks that could not be lifted 

successfully by any tape or method, even though prepared, enhanced and "lifted" at 

the same time as the other marks in that sample set, which were successfully lifted. 

This was the case even for the more successful J-Lar® and Sirchie 144L tapes, 

which lifted marks in the same sample set but failed to lift the “problematic marks”. 

The marks in question did not visually differ from each other and it remains unclear 

why they could not be lifted when treated and stored exactly as the other marks, 

calling for further investigation of this matter. 

 

In order to further evaluate the operational suitability of the J-Lar® and Sirchie tapes, 

in situ digests followed by MALDI-MSI were performed on lifts obtained with both 

tapes. Figure 4.4 shows the distribution of two ions putatively identified as the [M+H]+ 

ions of peptides originating from ceruloplasmin of various species origin (including 

human, porcine or bovine) and human haemoglobin β (Hbβ) in a lift obtained with J-

Lar® tape. Although in this instance the blood was known to be of human origin, the 
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detection of the peptide at m/z 932.480 (theoretical m/z 932.520; k.SAVTALWGK.v) 

confirms the species provenance within the sub-set of species considered in the 

study. It should be noted, however, that the two exemplary peptides presented here 

are not proteotypic and can be found in other species that could not be included in 

this study, such as primates or sea mammals.  

 

The data obtained show that neither AB1-enhancement nor the tapes’ chemistry 

hindered MALDI-MSI analysis and detection of blood peptides in the lifted blood 

mark. Although imaged peptides could not be identified with the same mass 

accuracy as in profiling experiments (± 10 ppm) [6], the experiment provided 

valuable proof that the technique is suited to potential real word forensic applications 

with the use of the lifting tapes identified here. 

 

 

Figure 4.4 MALDI-MSI data of a tryptically digested, AB1-enhanced blood mark 
lifted with J-Lar® tape. Image shows distribution of A: m/z 752.399 (theoretical m/z 
752.430 – multi-species ceruloplasmin; r.IGGSYKK.l) and B: m/z 932.480 
(theoretical m/z 932.520 – human or chimpanzee Hbβ; k.SAVTALWGK.v). 
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4.3.3 Analysis of blind samples with MALDI-MS profiling 

Blind sample stains were extracted, digested and analysed following the previously 

developed protocol (see chapter 2). This included exporting data acquired using 

Waters MassLynx software into .txt-files, importing the .txt files in the free mMass 

software package and performing smoothing and peak-picking in this package. In 

mMass, peaks below a S:N of 3:1 were not accepted. Peptide identifications were 

achieved by employing the software’s in silico digestion and matching function. 

 

In an initial round of analysis, data from 11 samples were compared to the in-

house peptide database of human, bovine (cow), porcine (pig, wild boar), cervine 

(deer) and phasianine (chicken). All human blood samples (n=2) were correctly 

identified as such via identification of commonly observed human blood peptides, 

including proteotypic peptides such as the m/z 2808.340 (theoretical m/z 2808.344; 

k.DYELLCLDGTRKPVEEYANCHLAR.a) putatively identified as from human 

serotransferrin. Additionally, all non-blood samples (n=3) were correctly classed as 

such based on the absence of commonly observed blood peptides. However, the 

six animal blood samples in the preliminary cohort were initially misclassified as 

non-blood because they did not present like typical blood spectra but appeared 

rather noisy. Furthermore, between the noise commonly observed or expected 

signals, such as the Hbβ peptide at m/z 1274.725 (r.LLVVYPWTQR.f), appeared to 

be absent or only present in very low abundance that was easily masked by the 

noise. (Note: m/z 1274.725 had previously been observed in abundance in all 

blood samples and was therefore initially seen as a marker for the presence of 

blood.) Figure 4.5 shows a comparison between one of the correctly identified 

human blood samples (bottom panel) and a bovine blood sample (top panel) that 

was initially misclassified. It can be seen that in the bovine sample, m/z 1274.725 

is only present in low abundance and somewhat masked by noise. Other blood 

peptides expected to be present in bovine blood are completely hidden by noise, 

suchm/z 1529.734 (Hbα human, bovine; k.VGAHAGEYGAEALER.m), or absent 

entirely, like m/z 1833.891 (Hbα human, bovine; k.TYFPHFDLSHGSAQVK.g). This 

observation combined with the lack of reference spectra had led to the 

misclassification.  
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It should, however, be noted that there might have been differences in the sample 

composition of the animal blood samples compared to human blood due to the way 

they were collected. Human samples, in this instance, were pure blood drawn by a 

phlebotomist, whereas animal blood was not obtainable this way. Animal samples 

are likely to originate from roadkill or meat packages and can thus have been 

exposed to several contaminants as well as being diluted. This can also be 

hypothesised from visual comparison of the two stains as seen in the inserts inFigure 

4.5, where the bovine stain appears more faint and dilute than the human blood 

stain. Although visual appearance can of course be misleading and cannot serve for 

sample identification, it might be viewed as an indicator of potentially reduced protein 

content here. 

 

Despite the initial lack of identification, upon closer inspection chicken and bovine 

blood presented some signals that were not present in any of the other spectra and 

could therefore potentially serve as species markers. In bovine blood, this was m/z 

1669.835, which can putatively be identified as myoglobin of bovine or cervine origin 

(k.ALELFRNDMAAQYK.v) or chicken apolipoprotein A1 (theoretical m/z 1669.836; 

k.LREDMAPYYKEVR.e). The peptide had also been observed in a previous study 

by this group in the analysis of bovine samples obtained from the residual blood and 

juices found in meat packages (Appendix 4, S 4.1). In chicken blood, m/z 1749.793 

was prominently observed in all spectra, although no putative identification could be 

made. This could, however, be due to the fact that chicken protein sequences could 

only be found for eight of the 17 blood proteins selected for this study. Additionally, 

Espinoza et al. [13] previously reported that they found a minimum of 2-5 

haemoglobin variants in each species and in some instances none of them matched 

the previously reported variants. It is hence possible that the signals observed could 

not be identified because they originate from a protein or protein variant not currently 

in the database. This is especially true for the identification of deer, where only four, 

and wild boar, where no protein sequences were available in the database. 

Regrettably, although Espinoza et al. [13] reported to have found at least five 
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different haemoglobin variants for elk/red deer-sub species and 16 for white-tailed 

deer, they appear to not have entered them into UniProtKB. 
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Figure 4.5 MALDI-MS spectra of blind samples. Top panel shows bovine blood sample that was originally misclassified as a non-
blood sample. Bottom panel shows human blood sample. Coloured boxes inserted for ease of comparison of some peptides 
expected in the bovine sample. * denotes m/z 1274.725 (Hbβ human, bovine, porcine, cervine; r.LLVVYPWTQR.f), ** denotes 
m/z 1529.734 (Hbα human, bovine; k.VGAHAGEYGAEALER.m), *** denotes m/z 1833.891 (Hbα human, bovine; 
k.TYFPHFDLSHGSAQVK.g), all referring to theoretical m/z. Inserts show the visual appearance of the stains before extraction. 
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Another problem that became evident when reanalysing the misidentified samples 

was that the two porcine samples in this initial cohort produced entirely different 

mass spectra. This was true both comparing the two different samples, but also 

comparing different spots of the same sample, which suggests considerable 

differences in ionisation efficiency. This understandably made the observation of 

characteristic signals very difficult. Even signals putatively identified as porcine 

serotransferrin, the signals with theoretical m/zs 1205.594 (r.DDTQCLARVGK.t) and 

1803.945 (r.ENMSKAVKNGPLVSCVK.k), were only present in low abundance and 

easily masked in some spectra.  

 

In contrast, another porcine sample that hadn’t been included in the initial round of 

identifications was easily identified as such based on the abundant presence of m/z 

1274.711 (r.LLVVYPWTQR.f) and m/z 1422.703 (k.VGGQAGAHGAEALER.m), 

identified as human, bovine, porcine or cervine Hbβ and porcine Hbα, respectively. 

Both of these signals had also been observed in previous studies of porcine blood 

obtained from a butcher (Appendix 4, S 4.2). (Note: Curiously, the bovine peptide 

observed in this blind study had only been detected in the sample from a meat 

packet, but not the one from a butcher. This further underlines the vast differences 

in the treatment of the two and therefore the possible variety of samples 

encountered.) Upon inspection of the optical images obtained prior to extraction, it 

was noted that the two misclassified samples exhibited fluorescent properties under 

UV light at 365 nm, whereas the correctly identified porcine sample did not, but 

perhaps appeared a little more red. This suggested that those samples had been 

subjected to an enhancement technique that was perhaps aimed at improving 

contrast on dark surfaces or under UV light, as it was not observable on the light 

sample background in visible light. (However, at the time of submission of this thesis 

the details of any enhancement used were not available). Due to the considerable 

differences observed between these data and those obtained from the correctly 

identified porcine sample, it can be hypothesised that this particular enhancement 

technique results in some sort of interference with the proposed MALDI-MS 

workflow, perhaps resulting in inefficient tryptic digestions or analyte ionisation. For 
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this reason, consideration should be given to the recommendation of the use of a 

specified sub-set of enhancement techniques when MALDI-MS analysis is desired.  

 

While the human blood samples had been identified correctly, the misclassification 

of animal blood samples posed an unexpected problem to the analysis strategy. For 

most samples, putative peptide identifications could be made for peptides originating 

from multiple species, although with little confidence due to the low signal intensities 

with some being identified in such noisy areas that their validity had to be doubted 

or refuted. Although characteristic signals could be identified for some, not all 

species included in the study had been encountered yet, resulting in a lack of known 

characteristic signals for deer and wild boar blood. Due to the differences in spectra 

obtained from porcine samples, identification of characteristic signals was difficult. 

Furthermore, basing an identification on one or two potential peptides or other 

unidentified signals is less than ideal, especially when no confident determination 

can be made as to where these signals originate from.  

For this reason, the data analysis strategy was altered in hopes of achieving more 

reliable identifications and reducing analysis time by automating the process. The 

Waters software protein lynx global server (PLGS) was used in conjunction with an 

in-house FASTA database of the blood proteins selected for this study. Mass spectra 

were loaded into PLGS and a database search performed to match signals present 

in the spectra to blood peptides. However, rather than matching and identifying 

individual peptides, the software appeared to attempt to find a single protein 

identification. As such, it for example reported probabilities of 99.7% for human Hbβ 

and 0.3% for human Hbα in a human blood sample, although peptides originating 

from both, and additional proteins, were present. Consequently, other proteins and 

their peptides were given probability scores of 0%. Additionally, in a chicken blood 

spectrum human and other species proteins were still identified with higher 

probabilities than the chicken proteins. Human α-2-macroglobulin was for example 

given a 71.68% probability rating, whereas chicken albumin and Hbβ were only 

assigned 0.08% probability as the most probable chicken proteins identified. A 

definitive and correct species identification was not achieved using this strategy. 
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Figure 4.6 MALDI-MS spectra of blind samples. Top panel shows porcine blood sample that was correctly identified, middle and 
bottom panel show porcine samples originally misclassified as non-blood samples. * denotes possible porcine-specific signals, ** 
denotes m/z 1274.725 (Hbβ human, bovine, porcine, cervine; r.LLVVYPWTQR.f), *** denotes m/z 1422.708 (Hbα porcine; k. 
VGGQAGAHGAEALER.m), all referring to theoretical m/z. Inserts show the visual appearance of the stains before extraction 
under visible light (right) and UV light at 365 nm (left).
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In order to achieve confident identifications and reduce the number of matches made 

to signals hidden in noise, the baseline and signal-to-noise threshold were 

increased. However, the problem remained that a higher number of human or other 

species proteins and peptides were putatively identified than of the true species 

origin. This is likely due to a combination of two facts: 1) the exclusion of putative 

identifications due to their lower S:N-ratio, and more importantly 2) the different 

number of proteins included in the database per species. As previously mentioned, 

17 protein sequences are included for human, whereas only 8 were available for 

chicken and 4 for deer. For this reason, the number of putatively identified human 

peptides can be much larger than that of other species peptides, even in animal 

samples, and sequence variations are not taken into account. 

 

Unfortunately, this means that at the moment, whilst the automated system can 

quickly identify blood samples based on the presence of several species’ blood 

peptides, it cannot confidently identify which animal species they originated from. 

The ability to determine which putative peptide identifications were valid and which 

were made to noise did not appear to be increased in comparison to mMass 

analysis. However, mMass allows questioned regions of the spectra to be expanded 

and for matches to be removed if found invalid, although checking for such invalid 

identifications can be quite a lengthy process and PLGS is certainly the faster option. 

The presentation of results in or generated through mMass was preferred over that 

of PLGS, though, and a table listing all identifications can be found in Appedix 4, 

S4.4.  

 

For further analysis, it was decided to perform preliminary screening of spectra for 

the presence of haemoglobin peptides using mMass. This is based on the 

hypothesis that a blood sample from a healthy donor will always contain Hb peptides, 

as it is the most abundant protein considered in the study. Conversely, samples 

without identifiable Hb peptides can be considered to be highly unlikely to contain 

blood. This is, of course, under the assumption that none of the sample collection or 

BETs employed prior to analysis negatively affected the protocol’s ability to generate 
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peptide ions, and that all donors were healthy and do not express blood protein 

variants. 

 

Following this approach, Hb peptides were putatively identified in 43 out of 86 

samples, of which 30 presented abundant signals previously observed in human 

blood samples. Further analysis confirmed that proteotypic human blood peptides 

could be identified in all of those 30 samples, including one that contained EDTA, an 

anticoagulant commonly employed in containers used for blood draws.  

It should be noted that putative Hb identifications were also made in a small number 

of additional spectra, but these were discarded as being invalid due to the identified 

signals not representing valid peaks despite having been assigned a S:N above 3, 

but generally below 10, by the software. However, the 43 spectra with valid Hb 

identifications also included four samples that were identified as non-blood samples, 

although it should be noted that in all instances only one putative low abundance Hb 

peptide was identified and the spectra did not otherwise have the overall appearance 

of blood spectra. 

 

Perhaps more worryingly, the 43 spectra for which Hb peptide assignments could 

not be made for, thus indicating non-blood samples, also included five animal blood 

samples. These consisted of the two previously misclassified porcine samples, two 

chicken samples, of which one had been previously misclassified, and one bovine 

sample. These could only be putatively identified through the presence of the 

aforementioned characteristic signals observed in the initial round of analysis of only 

a few samples, after which the analysis approach was adjusted, or not at all in the 

case of porcine blood. Again, it should be noted the approach of basing 

identifications on seemingly characteristic, but unidentified signals is not desirable, 

as these signals could originate from other sources or contaminants specific to the 

sample collection procedure.  This approach should, at this stage, merely be seen 

as an indication of the possible blood species provenance. Despite best efforts, no 

Hb peptide identifications could be made for these samples and it can only be 

hypothesised that pre-treatment interfered with the technique or extraction, digestion 
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or ionisation failed for another unknown reason such as the Hb variants present in 

these samples not being in the UniProt database. 

 

In total, the study putatively identified three chicken, six bovine and three porcine 

blood samples, including the five mentioned above, which were only identified 

through the presence of characteristic, but unidentified signals. Interestingly, the 3rd 

porcine spectrum did not only contain abundant Hb signals, but was easily 

identifiable as porcine blood based on the presence of an abundant signal from the 

proteotypic porcine Hbα peptide at m/z 1422.703 (theoretical m/z 1422.708), as seen 

in Figure 4.6. 

 

Of the 43 samples for which Hb peptide identifications could not be made, six 

exhibited characteristic peaks observed in the semen or saliva spectra identified in 

the first round of analysis. This allowed putative identification of five semen samples 

and one saliva sample. The generation of in-house bio-fluid peptide libraries is 

envisioned as future work in order to support these preliminary identifications.  

 

Consequently, the study identified 38 samples as non-biofluid samples. An overview 

of sample numbers, identification and pre-treatment can be found in Table 4.2. 

below. 

 

sample 
number 

ID summary 1. ID 
level 
(Is it 
blood?) 

2. ID level 
(Is it 
human 
blood?) 

3. ID level (If 
not human 
blood, 
which 
animal 
species?) 

4. ID level (If 
not blood, is 
it a biofluid 
and which?) 

1 bovine yes no bovine - 

2 human yes yes - - 

3 human yes yes - - 

4 chicken yes no chicken - 

5 bovine yes no bovine - 

6 human yes yes - - 

7 porcine yes no porcine - 

8 human yes yes - - 

9 human yes yes - - 
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sample 
number 

ID summary 1. ID 
level 
(Is it 
blood?) 

2. ID level 
(Is it 
human 
blood?) 

3. ID level (If 
not human 
blood, 
which 
animal 
species?) 

4. ID level (If 
not blood, is 
it a biofluid 
and which?) 

10 non-biofluid no - - no 

11 human yes yes - - 

12 non-biofluid no - - no 

13 non-biofluid no - - no 

14 human yes yes - - 

15 human yes yes - - 

16 human yes yes - - 

17 human yes yes - - 

18 porcine yes no porcine - 

19 human yes - - - 

20 bovine yes no bovine - 

21 non-biofluid no - - no 

22 human yes yes - - 

23 non-biofluid no - - no 

24 non-biofluid no - - no 

25 non-biofluid no - - no 

26 non-biofluid no - - no 

27 semen no - - semen 

28 bovine yes no bovine - 

29 non-biofluid no - - no 

30 non-biofluid no - - no 

31 human yes yes - - 

32 semen no - - semen 

33 human yes yes - - 

34 human yes yes - - 

35 chicken yes no chicken - 

36 non-biofluid no - - no 

37 human yes yes - - 

38 bovine? (low 
1669) 

yes? no bovine - 

39 human yes yes - - 

40 non-biofluid no - - no 

41 non-biofluid no - - no 

42 human yes yes - - 

43 human yes yes - - 

44 non-biofluid no - - no 

45 non-biofluid no - - no 

46 non-biofluid no - - no 
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sample 
number 

ID summary 1. ID 
level 
(Is it 
blood?) 

2. ID level 
(Is it 
human 
blood?) 

3. ID level (If 
not human 
blood, 
which 
animal 
species?) 

4. ID level (If 
not blood, is 
it a biofluid 
and which?) 

47 semen no - - semen 

48 human yes yes - - 

49 saliva no - - saliva 

50 human yes yes - - 

51 non-biofluid no - - no 

52 non-biofluid no - - no 

53 human yes yes - - 

54 bovine yes no bovine - 

55 non-biofluid no - - no 

56 porcine yes no porcine - 

57 non-biofluid no - - no 

58 semen no - - semen 

59 human yes yes - - 

60 non-biofluid no - - no 

61 human yes yes - - 

62 human yes yes - - 

63 chicken yes no chicken - 

64 human yes yes - - 

66 non-biofluid no - - no 

67 non-biofluid no - - no 

68 non-biofluid no - - no 

69 non-biofluid no - - no 

70 human yes yes - - 

71 human (odd 
spectrum, low 
abundance - 
enhancement 
inference?) 

yes yes - - 

72 non-biofluid no - - no 

73 non-biofluid no yes - no 

74 non-biofluid no - - no 

75 sweat? 
(several 
intense peaks, 
but none 
identified) 

no - - no/sweat? 

76 semen no - - semen 

77 human yes yes - - 
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sample 
number 

ID summary 1. ID 
level 
(Is it 
blood?) 

2. ID level 
(Is it 
human 
blood?) 

3. ID level (If 
not human 
blood, 
which 
animal 
species?) 

4. ID level (If 
not blood, is 
it a biofluid 
and which?) 

78 non-biofluid no - - no 

79 non-biofluid no - - no 

113 non-biofluid no - - no 

132 non-biofluid no - - no 

141 non-biofluid no - - no 

158 non-biofluid no - - no 

160 non-biofluid no - - no 

162 human yes yes - - 

171 non-biofluid no - - no 

175 non-biofluid no - - no 

Table 4.2 Table of putative identifications of in-solution samples in the blind study. 

 

The 1000 most abundant peaks of each spectrum were also submitted to a mascot 

search against the SwissProt database with a tolerance of 5 ppm. Results of the top 

hits have been compiled in Table 4.3 alongside the identifications made in Table 4.2. 

As observed in chapter 2, this low tolerance was required for correct species 

identification in some samples, but detrimental in others. The same problem was 

observed in this dataset; several of the previously clearly identified human blood 

samples did not return human protein scores unless matched with a tolerance of 10 

or 15 ppm, if at all. This was observed despite the abundant presence of the Hbβ 

peptide at theoretical m/z 1274.725, which curiously, in some cases, was even 

matched to other species’ Hbβ with homologous peptide sequence but to human 

Hbβ. In sample 19, for example, m/zs 1274.715 and 1274.731 were matched to Hbβ 

of Helarctos malayanus and several other animal species with -7.67 ppm and 4.78 

ppm, respectively, for the peptide with the sequence r.LLVVYPWTQR.f – the same 

sequence as the human Hbβ peptide at m/z 1274.725, which does not appear in the 

list of mascot scores for this sample. With a 5 ppm tolerance, the only score returned 

for this sample is for human tumor suppressor ARF. It is understandable that in some 

cases the mass accuracy of the data might not be sufficient to allow correct mascot 

identification with a tolerance of 5 or 10 ppm, however the fact that 5 ppm matches 

are not included in a search with a 10 ppm tolerance further complicates analysis, 
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as each sample would be required to be matched with varying tolerances to obtain 

all scores. Furthermore, selection of the score perceived to be “most appropriate” 

appears to be subjective and perhaps biased by previous sample identification. It 

should also be noted that mascot scores were all below 70, the significance 

threshold (p<0.05) reported by the software, meaning that the matches could be 

random events. Looking at the identifications returned by mascot it can be concluded 

that its use does not appear to aid the correct identification of challenging samples. 

On the contrary, the software misclassified samples whose IDs were unequivocally 

established, perhaps due to issues with mass accuracy or sample complexity. As 

this was the case with pure human blood samples, it is not surprising that the 

software provided no benefit in the analysis of complex animal blood samples that 

were potentially contaminated or diluted through their collection procedures. 

 

sample 
number 

ID 
summary 

top mascot score 

1 bovine 57 for Beta-enolase Oryctolagus cuniculus 

2 human 33 for Hbβ Hylobates lar, Gorilla gorilla gorilla, Homo 
sapiens, Pan paniscus, Pan troglodytes 

3 human 27 for Hbβ Hylobates lar, Gorilla gorilla gorilla, Homo 
sapiens, Pan paniscus, Pan troglodytes 

4 chicken 24 for Isocitrate lyase (Fragment) Acinetobacter 
calcoaceticus 

5 bovine 20 for Small, acid-soluble spore protein N Bacillus 
cytotoxicus  

6 human 37 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

7 porcine 21 for 60S acidic ribosomal protein P2 Rhodotorula 
glutinis 

8 human 37 for Hbβ Hylobates lar, Gorilla gorilla gorilla, Homo 
sapiens, Pan paniscus, Pan troglodytes 

9 human 24 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

10 non-
biofluid 

18 for 50S ribosomal protein L14 Hamiltonella defensa 
subsp. Acyrthosiphon pisum  

11 human 56 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

12 non-
biofluid 

18 for 30S ribosomal protein S20 Mycobacterium 
abscessus 

13 non-
biofluid 

20 for 50S ribosomal protein L13, chloroplastic Gracilaria 
tenuistipitata var. liui 
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14 human 15 for Cytochrome c oxidase subunit 8A, mitochondrial 
Eulemur fulvus fulvus 

15 human 53 for Hbβ Hylobates lar 

16 human 57 for Hbβ Hylobates lar, Gorilla gorilla gorilla 

17 human 33 for Hbβ Hylobates lar (32 for Hbβ Homo sapiens) 

18 porcine 23 for Photosystem I reaction center subunit IV 
(Fragment) Thermosynechococcus vulcanus 

19 human 20 for Tumor suppressor ARF Homo sapiens 

20 bovine 17 for 50S ribosomal protein L34 Sulfurimonas 
denitrificans 

21 non-
biofluid 

20 for 50S ribosomal protein L15 Methanococcus 
aeolicus 

22 human 36 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

23 non-
biofluid 

20 for ATP synthase subunit epsilon-like protein, 
mitochondrial Homo sapiens 

24 non-
biofluid 

20 for H/ACA ribonucleoprotein complex subunit 1 
Debaryomyces hansenii  

25 non-
biofluid 

17 for Brevinin-1AVb Rana arvalis 

26 non-
biofluid 

18 for 50S ribosomal protein L14 Clostridium 
acetobutylicum 

27 semen 19 for 30S ribosomal protein S2, chloroplastic Piper 
cenocladum 

28 bovine 19 for 30S ribosomal protein S7 Corynebacterium 
urealyticum  

29 non-
biofluid 

16 for 50S ribosomal protein L36, chloroplastic Acorus 
calamus, Aethionema cordifolium and 45 other species  

30 non-
biofluid 

18 for 30S ribosomal protein S20 Verminephrobacter 
eiseniae 

31 human 18 for 50S ribosomal protein L34 Buchnera aphidicola 
subsp. Cinara cedri 

32 semen 21 for Hydrophobin-like protein MPG1 Magnaporthe 
oryzae  

33 human 62 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

34 human 17 for Ribosome maturation factor RimP Prochlorococcus 
marinus  

35 chicken 20 for Taicatoxin, alpha-neurotoxin-like component 
(Fragment) Oxyuranus scutellatus scutellatus 

36 non-
biofluid 

19 for 30S ribosomal protein S14 Methylococcus 
capsulatus 

37 human 46 for Hbβ Hylobates lar, Gorilla gorilla gorilla, Homo 
sapiens, Pan paniscus, Pan troglodytes 

38 bovine 15 for Sperm protamine P1 Saimiri sciureus 

39 human 16 for 50S ribosomal protein L20 Bradyrhizobium sp.  
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40 non-
biofluid 

17 for 50S ribosomal protein L36 1 Clavibacter 
michiganensis subsp. michiganensis and subsp. 
sepedonicus, Leifsonia xyli subsp. xyli 

41 non-
biofluid 

18 for Hbβ Tamias merriami  

42 human 39 for Homo sapiens, Pan paniscus, Pan troglodytes 

43 human 20 for Fallaxidin-3.1.1 Litoria fallax, Fallaxidin-3.2.1 Litoria 
fallax 

44 non-
biofluid 

20 for 50S ribosomal protein L34 Deinococcus deserti 

45 non-
biofluid 

20 for 50S ribosomal protein L36 Leptothrix cholodnii 

46 non-
biofluid 

14 for 50S ribosomal protein L33 Chlamydia muridarum 
and 4 other Chlamydia strains 

47 semen 20 for 50S ribosomal protein L31 type B Rhodococcus 
erythropolis 

48 human 19 for 50S ribosomal protein L34 Sulfurimonas 
denitrificans 

49 saliva 20 for 50S ribosomal protein L34e Pyrococcus furiosus 

50 human 27 for Hbβ Hylobates lar 

51 non-
biofluid 

17 30S ribosomal protein S27ae Methanothermobacter 
thermautotrophicus 

52 non-
biofluid 

15 for Peptide PGLa-B2 Xenopus borealis 

53 human 46 for Hbβ Gorilla gorilla gorilla, Homo sapiens, Pan 
paniscus, Pan troglodytes 

54 bovine 22 for UPF0218 protein MTH_266 Methanothermobacter 
thermautotrophicus 

55 non-
biofluid 

20 for Histone H4 (Fragment) Medicago sativa 

56 porcine 45 for Beta-enolase Sus scrofa 

57 non-
biofluid 

19 for 30S ribosomal protein S20 Buchnera aphidicola 
subsp. Baizongia pistaciae 

58 semen 19 for Ribonuclease PH Sphingomonas wittichii 

59 human 27 for Hbβ Hylobates lar 

60 non-
biofluid 

16 for 30S ribosomal protein S16 Prochlorococcus 
marinus 

61 human 17 for 60S ribosomal protein L31 Drosophila 
melanogaster 

62 human 27 for Hbβ Hylobates lar 

63 chicken 22 for Translation initiation factor IF-1 Chlorobaculum 
tepidum  

64 human 18 for 50S ribosomal protein L24 Anaeromyxobacter 
dehalogenans, Anaeromyxobacter sp. and 
Anaeromyxobacter dehalogenans 
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66 non-
biofluid 

18 for Putative uncharacterized protein ycf15 Cucumis 
sativus 

67 non-
biofluid 

16 for 50S ribosomal protein L36 Amoebophilus asiaticus 

68 non-
biofluid 

19 for Histone H1.C2 Trypanosoma cruzi 

69 non-
biofluid 

10 for 50S ribosomal protein L23 Synechococcus sp. 

70 human 19 for 50S ribosomal protein L33 Clostridium kluyveri  

71 human  19 for 50S ribosomal protein L34, chloroplastic 
Phaeodactylum tricornutum 

72 non-
biofluid 

15 for 50S ribosomal protein L34 Borrelia hermsii  

73 non-
biofluid 

20 for 50S ribosomal protein L18 Leptospira 
borgpetersenii serovar Hardjo-bovis 

74 non-
biofluid 

12 for Cono-RFamide CNF-Tx1.3 Conus textile 

75 sweat 23 for Ascaphin-8 Ascaphus truei 

76 semen 16 for 50S ribosomal protein L36 Coxiella burnetii  

77 human 23 for Hbβ Hylobates lar 

78 non-
biofluid 

18 for Spermatid nuclear transition protein 1 Mus 
musculus, Rattus norvegicus 

79 non-
biofluid 

18 for 50S ribosomal protein L23 Aeromonas hydrophila 
subsp. hydrophila 

113 non-
biofluid 

17 for Trypsin inhibitor 2b Sechium edule  

132 non-
biofluid 

16 for Ceratotoxin-B Ceratitis capitata  

141 non-
biofluid 

12 for F420-non-reducing hydrogenase vhu subunit U 
Methanococcus voltae 

158 non-
biofluid 

16 for 30S ribosomal protein S21 Lactobacillus 
acidophilus, Lactobacillus delbrueckii subsp. Bulgaricus, 
Lactobacillus helveticus, Lactobacillus johnsonii  

160 non-
biofluid 

16 for Virescein Heliothis virescens 

162 human 54 for Hbβ Hylobates lar (53 for Hbβ Gorilla gorilla gorilla, 
Homo sapiens, Pan paniscus, Pan troglodytes) 

171 non-
biofluid 

17 for 50S ribosomal protein L32-1 Listeria innocua 
serovar 6a, Listeria welshimeri serovar 6b  

175 non-
biofluid 

19 for Ceratotoxin-B Ceratitis capitata 

Table 4.3 Table of putative identifications of in-solution samples in the blind study 
and their respective top mascot scores achieved with a 5 ppm tolerance. 
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4.3.4 Analysis of blind sample fingermarks with MALDI-MSI 

In order to validate the previously presented method for MALDI-MSI of blood 

fingermarks (see chapter 3), blind sample marks were digested and analysed as 

described in section 3.2.1, employing the SunCollect autosprayer to deliver nine 

layers of trypsin at a concentration of 250 µg/mL. This, again, included marks 

contaminated with human or animal blood as well as other biofluids or non-biofluid 

substances. For time reasons, only partial images were generated, and the sample 

cohort was much smaller than that of the blind stains. Additionally, a number of 

samples did not produce images with visible ridge detail or identifiable peptides. It 

was hypothesised that this was due to humidity being too high during digestion, 

although the experimental set up was not altered. This hypothesis stemmed from the 

observation that samples were visibly wet when removed from the incubator, 

although the tissue wrapped around the lid of the Coplin jar was still dry, thus ruling 

out condensate dropping onto the samples. It was envisioned to reduce the humidity 

by not sealing the Coplin jar with parafilm or perhaps even leaving the lid ajar. 

However, because no additional samples were available and due to time constraints, 

this altered set up could not be tested to date. For this reason, only few images with 

ridge detail could be obtained and analysed. 

Nonetheless the putative identification of several proteotypic human blood peptides 

was possible in one sample, alongside their mapping onto ridge detail, as seen in 

Figure 4.7. This allowed confident detection of human blood in this fingermark, which 

had been pre-enhanced with acid yellow 7. It should be noted, however, that the 

mass accuracy of the identifications made in imaging is much lower than in MALDI-

MS profiling, but comparable ppm error values have been achieved in imaging of 

known samples (e.g. 18 ppm for m/z 1000.498 in the known sample compared to 14 

ppm in the blind sample or -45 ppm for m/z 1274.725 in the known compared to -61 

ppm in the blind sample). Additionally, the digest efficiency and therefore number of 

peptides can be expected to be reduced in situ compared to in solution digests. This 

is due to the fact that cells and proteins cannot be lysed or sterically accessed for 

tryptic digestion as efficiently and trypsin requires a moist environment to be 

effective, which in turn can disrupt ridge detail.   
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An additional mark was correctly identified as a non-biofluid mark. Considering the 

unexpected problems in detecting animal blood or identifying species origin in in 

solution digests, it is perhaps not surprising that this was even more problematic in 

the analysis of MALDI-MSI data. Due to the reduced digestion efficiency and 

therefore reduced number of peptide signals in images as well as lower mass 

accuracy, it was not possible to confidently identify animal blood in the blind 

fingermarks provided in the small sample set analysed in this study. It can be 

hypothesised that this will be possible with more concentrated animal blood samples 

and following the generation of a more robust library of reference samples. 

Nonetheless, it can be considered a great achievement that human samples were 

identified correctly in all instances. 

 

4.3.5 MALDI-MS analysis of a 34-year old ninhydrin-enhanced sample 

To evaluate the method’s suitability for cold case samples and extend the work 

previously reported in this area [6], a 34-year old ninhydrin-enhanced sample was 

analysed. Although the overall signal intensity was understandably lower than that 

observed in fresh samples and the spectrum obtained (see Figure 4.8) contained 

abundant unidentified masses such as m/z 881.258 (which does not correlate to 

matrix or trypsin peaks and could represent a degradation product), relevant blood 

peptide peaks could still readily be identified and have been listed in Table 4.4. More 

so, detection of m/z 2058.950 confirms that the sample is of human origin, as the 

Hbβ peptide it was matched to is proteotypic.  
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Figure 4.7 MALDI-MSI data of a blind sample with putatively identified human blood 
peptides and their sequences. Black rectangle of the insert shows the area of the 
mark that was treated and imaged. 
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Figure 4.8 MALDI-MS spectrum of a 34-year old ninhydrin-enhanced tryptically digested blood sample. * denote identified 
haemoglobin α and β peptides.
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Possible 
peptide 
identity 

Theoretical
m/z 

Observed
m/z 

Relative 
error 
(ppm) 

Peptide sequence 

Albumin 1296.705 1296.695 7.018 r.LAKTYETTLEK.c 

EPB4.2 708.335 708.341 -9.176 
k.MEREK.d or 
k.EKMER.e (both 1 
Oxidation) 

Haemoglobin 
α 

1529.734 1529.736 -1.307 
k.VGAHAGEYGAEALE
R.m 

Haemoglobin 
α 

1071.554 1071.556 -1.773 
r.MFLSFPTTK.t 

Haemoglobin 
β 

1274.726 1274.727 -1.098 
r.LLVVYPWTQR.f 

Haemoglobin 
β 

952.510 952.506 3.990 
.VHLTPEEK.s 

Haemoglobin 
β 

1314.665 1314.659 4.488 
k.VNVDEVGGEALGR.l 

Haemoglobin 
β 

1449.796 1449.788 5.587 
k.VVAGVANALAHKYH
. 

Haemoglobin 
β 

1378.700 1378.687 9.429 
k.EFTPPVQAAYQK.v 

Haemoglobin 
β 

2058.948 2058.950 -1.214 
r.FFESFGDLSTPDAV
MGNPK.v 

Haptoglobin 1290.730 1290.730 0.310 k.DIAPTLTLYVGK.k 

Haptoglobin 1378.694 1378.687 4.497 
r.YQCKNYYKLR.t or 
r.YQCKNYYKLR.t 

Serotransferrin 1529.753 1529.736 10.917 r.KPVEEYANCHLAR.a 

Serotransferrin 1379.700 1379.693 5.436 w.WCALSHHERLK.c 

Table 4.4 Putative blood peptide identifications obtained from a digest of a 34-year 
old ninhydrin-enhanced sample. 

 

4.4 Conclusion 

The method presented in this chapter allowed confident detection and identification 

of human blood in 100% of the blind samples investigated. This includes samples 

containing EDTA, pre-enhanced samples and those of up to 34 years in age, thus 

confirming wide applicability of the technique and highlighting its potential for cold 

cases. Additionally, human blood peptides could be identified and mapped to ridge 

detail of a fingermark, thus confirming the method’s suitability for the analysis of 

blood fingermarks. In conjunction with the lifting tapes identified as suitable for lifting 
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blood marks and MALDI-MSI analysis, this can provide valuable intelligence for a 

variety for criminal investigations. 

 

Due to the more complex sample composition and lack of reference spectra, 

identification and species differentiation of non-human blood samples was not 

always possible. In some instances, characteristic signals were observed that 

allowed the tentative identification of an animal species; however it was not possible 

to give firm assignments to them. It is possible, however, that they originate from 

protein variations not listed in the database. In addition to this, basing identification 

on just one or two signals is far from desirable, especially when the origin of the 

signals is not known. Further optimisation of the processing and analysis workflow, 

e.g. through the use of more advanced software that can filter out noise more 

efficiently and label peptide peaks with more confidence, as well as the generation 

of a reference library is required in order to improve confidence. Other biofluids have 

exhibited characteristic, identifying signals and the generation of additional in-house 

libraries will allow their confident identification including peptide assignment. 

Nonetheless, being able to distinguish human blood from any other samples is 

undoubtedly the most important criterion in common crime scene investigations and 

has been achieved satisfactorily.  

 

Aside from its speed, another benefit of the method is the fact that if the further 

development of the reference libraries is achieved, presumptive knowledge of the 

sample chemistry in order to confirm the presence of a biofluid or particular species 

blood will not be required. This will allow one rapid analysis to deliver multi-

informative and specific intelligence to an investigation, where previously multiple 

separate tests would have been required and not necessarily been able to delivery 

confirmatory evidence. 
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Chapter 5 

5 Investigation of infinite focus microscopy for the 

determination of the association of blood with 

fingermarks 
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5.1 Introduction 

Blood fingermarks are a type of evidence frequently encountered at the scene of 

violent crimes and confirmation of the presence of blood in association with a 

fingermark can greatly inform investigations and judicial debates by corroborating or 

disproving a suspect's/defendant's statement. 

  

The first challenge is the false positive- and false negative-free detection and 

confirmation of the blood presence. Various presumptive techniques for the 

enhancement and detection of blood have been developed and are currently 

employed [1–4]. However, these methods are prone to false positives as they lack 

specificity. This group has previously developed a multi-informative, confirmatory 

approach for detecting blood and establishing its provenance in stains [5] as well as 

fingermarks [6,7] employing matrix-assisted laser desorption/ionisation-mass 

spectrometry (MALDI-MS). Additionally, MALDI-MS has allowed the detection of 

multiple blood signatures in stains [5] and their visualisation on fingermark ridges 

[6,7]. The specificity of the method is thought to greatly reduce false 

positives/negatives due to its detection of multiple blood-specific peptides. In 

comparison, presumptive techniques are based on a reaction with for example 

proteins, haem or haemoglobin as the only substance indicative of the presence of 

blood. These reactions can be facilitated by a large variety of other compounds, 

making the techniques prone to false positives. 

 

The second challenge is to determine the type of association between a fingermark 

and blood. There are three different types of blood-fingermark association: type A - 

blood marks, which originate from a bloodied fingertip, where blood would in principle 

be  only expected on the ridges; type B - marks in blood, which originate from a clean 

fingertip contacting a blood-containing surface, where blood would in principle be 

expected on ridges and in the valleys of the mark; type C - coincidental association, 

which originates from a clean fingertip contacting a clean surface and subsequent 

contamination with blood for example as a result of  blood spatter (also called faux 

blood marks). In this case blood might also be expected on ridges and in valleys of 

the mark.  
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These three types of association are indicative of three distinct forensic scenarios 

and three different crime scene dynamics, the distinction of which could greatly 

contribute to the reconstruction of the events around the bloodshed. MALDI-MSI 

could have theoretically enabled the differentiation between type A association and 

the remaining two scenarios. A first insight into this capability was provided in 

previous work with regards to the order of deposition of fingermarks associated with 

condom lubricants [8], where it was possible to distinguish a mark left by a 

contaminated finger (type A) from a mark left by a clean finger on a contaminated 

surface (type B). However, due to the nature of association types B and C, a two-

dimensional MALDI-MS image does not allow their differentiation, as the 

contaminant is expected to be present throughout the entire image in both cases. 

However, this may be a too simplistic approach to the problem. 

 

Conventionally, the type of association is determined by experts including blood 

spatter analysts, who examine the evidence by eye and base their opinion on their 

expertise and experience with this type of evidence. However, this method of 

identification is highly subjective and can lead to incorrect decisions, as some marks 

visually present the same characteristics but may indeed stem from different types 

of association, therefore potentially leading to incorrect conclusions as to the 

dynamics of the bloodshed. Praska and Langenburg [9] reported that type C latent 

fingermarks subsequently exposed to blood and treated with blood enhancement 

techniques could appear as genuine type A blood marks, the differentiation between 

which ranges from difficult to impossible. They also reported that the interaction 

between latent mark and blood or blood dilution can differ and produce both faux 

blood marks and tonal reversals depending on the age of the mark, angle and 

duration of contact with blood as well as possible dilution factors of blood. In general, 

the production of faux blood marks and tonal reversals was unpredictable [9]. 

Furthermore, it has been reported that the appearance and clarity or tonal reversal 

of ridge detail is affected by conditions of deposition such as angle, blood volume, 

drying time and pressure, as well as environmental factors including humidity, air 

flow and temperature of blood, body and air [10]. Additionally, the observation has 

been reported that, contrary to popular belief, tonal reversal is not produced by 



   

185 
  

excessive pressure of deposition, but rather by longer drying time of blood on the 

finger prior to deposition and, as this has been achieved with marks left by a bloodied 

finger, cannot be seen as indicative of marks in blood, where the hypothesis might 

be that the ridges push blood away or, upon removal of the finger, lift it out of the 

blood. A diagram has been produced to show the proposed mechanism of the 

generation of tonally reversed blood marks [10]. All of these observations indicate 

an extremely challenging scenario for both visual inspection from experts and for 

MALDI-MSI capabilities and a different approach that is analytical and objective must 

be identified. 

 

The use of various different microscopy techniques in forensic analysis has been 

extensively reviewed [11], outlining their applications in the identification of 

toolmarks, fracture patterns, fibres and ballistic evidence as well as biological 

specimens such as hair, pollen and insects, to name a few. Despite the array of 

techniques and set ups, most microscopes only generate two-dimensional data and 

have to be focused on one feature of the sample, thereby not allowing height or 

topology features to be measured without rotating or re-locating the sample, which 

often is impossible or impractical. 

 

In recent years, with the advent of focus variation, newer techniques such as 

confocal microscopy and infinite focus microscopy (IFM, also referred to as focus 

variation microscopy or FVM) have been developed, allowing for the computational 

generation of a 3D image of the topology of a sample via acquisition of images on 

multiple focal planes. While confocal microscopy is based on transmitted light and 

routinely used for biological samples, the same cannot be said about IFM, which is 

based on reflected light. Background information about its development and principle 

of operation is reported in the literature [12,13]; in brief, the software generates an 

optical image with a large depth of field by stacking images of each focal plane and 

producing an in-focus image based on the coordinate points that are best focussed. 

This then allows the representation of the topology of a sample. Therefore, IFM 

allows the combination of rapid, non-contact microscopic images with 3D topology 

data of complex geometric samples presenting an angle of up to 85°, highly reflective 
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surfaces and high surface roughness. This can be achieved with a vertical and lateral 

resolution of down to 10 nm and 400 nm, respectively. Additionally, several analytical 

tools are available within the software, allowing various measurements to be 

performed on the sample, ranging from profiles, heights and volumes to statistical 

surface parameters.  

 

As the sample stage is considerably larger than a usual microscope stage and can 

hold items weighing up to 20 kg [12], IFM is frequently used in quality control and 

analysis of wear in material engineering and production processes, e.g. measuring 

metal parts and corrosion [12,14]. In addition, it has been applied to characterise 

biological samples that are not amenable to confocal microscopy due to their opacity, 

such as teeth and bones, in a medical context [13,15,16], as well as the analysis of 

archaeological and anthropological samples [17–22] and even the comparison of 

toolmarks in a forensic context [23,24].  

 

Following this promising trend, it was decided to combine the biological and forensic 

aspects and apply IFM to blood fingermarks. Given the topographical capabilities of 

IFM, it was hypothesised that the application of this technique would allow the 

distinction of the three scenarios A, B and C previously described above. In 

particular, this group hypothesised that employing IFM, it might be possible to 

determine if there are significant differences in ridge and valley height between the 

different scenarios by obtaining 3D measurements of representative samples. For 

example, it can be theorised that in scenario C, blood covering a latent mark would 

fill the valleys and cover the ridges, presenting a relatively flat surface with ridge 

heights becoming undetectable. As opposed to scenario C, in scenario B, a mark 

deposited in blood might present significantly detectable ridge heights in comparison 

with the valleys. Furthermore, ridge heights observed in scenario A marks are 

expected to be different from B and C marks as there is no blood present in the 

valleys. If the "ridge height determination concept" was proven, this would allow for 

more facile and quantifiable differentiation of blood marks and reduce the likelihood 

of erroneous or conflicting conclusions due to subjective analysis, especially of 

particularly challenging samples.  
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This chapter describes a range of measurements to test the overall hypothesis that 

IFM can distinguish between the three different types of blood-fingermark 

association. In order to establish the validity of subsequent measurements on marks 

associated with blood, the error of measurement was determined by measuring the 

same feature on a stable, non-biological sample, a penny coin, five times a day for 

five days. Following this, a range of surfaces and lifting tapes were investigated with 

regards to their suitability as surfaces of deposition allowing the generation of IFM 

images and subsequent ridge height measurements. Of particular interest was the 

surface roughness which could have interfered with height measurements.  

 

Once lifting tape had been identified as a suitable substrate, a time course 

experiment was performed obtaining measurements on blood fingermarks over the 

course of 33 days in order to observe changes in ridge heights, as the composition 

of fingermarks is known to start changing immediately after deposition, which might 

affect the ability to differentiate between scenarios. Additionally, a range of samples 

encompassing the three types of association was analysed in an attempt to 

distinguish between associations A, B and C. However, height measurements 

obtained differed drastically from the previous sample sets obtained on lifted type A 

marks and largely fell within the standard error of measurement. It was determined 

that this was likely due to the surface properties of the substrate, such as the 

wettability, which affects the spreading of blood and therefore the ridge height of a 

sample. Considering the variability of this type of evidence in real forensic cases with 

regards to the different surfaces of deposition, the range of forensically viable 

samples amenable to this analytical approach appears to be small. Taking into 

account the large effect that the various surfaces of deposition may have on the 

ability of IFM to quantifiably differentiate between deposition scenarios, despite a 

promising hypothesis, the technique was deemed to be unsuitable for the purpose 

intended by this study. 
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5.2 Methods 

5.2.1 Determination of error of measurement 

In order to establish the robustness of IFM measurements, a method was devised 

to determine the standard error of the instrument. In particular, a sample was 

selected with discernible features that the researchers were confident would not 

change during the duration of the measurement. To this end, a prominent feature, in 

this instance the profile of the Queen’s nose, was measured on a one pence coin 

five times a day for five consecutive days and at different orientations of the coin. 

Unique features within the sample, such as dents or grooves, were used to 

reproducibly position the measurement line, in this case across the Queen's nose 

from one dent on the coin to another. 

 

5.2.2 Sample preparation 

Initially, blood marks were deposited directly on aluminium slides (prepared as 

previously described [25] and used in chapters 2 and 3), glass slides and various 

lifting tapes and gel lifters (Table 5.1) in order to establish their suitability for the 

acquisition of IFM images. 

 

Blood fingermarks were prepared as described in section 3.2.1Depletion 

series were produced by loading the fingertip with blood only once before 

depositing 5 consecutive fingermarks in order to deplete the amount of 

blood present on each mark. 

 

For subsequent experiments, a white ceramic tile was cleaned with a 

window cleaning detergent (Mr. Muscle) and subsequently wiped with 

laboratory disinfectant prior to use as a sample deposition surface. 

Samples deposited onto the tile were then enhanced using acid black 1 

(AB1) as described in the Home Office edited fingermark visualisation 

manual [26]. 

J-Lar® clear to the core tape was used to lift AB1-enhanced primary 

deposition blood marks by carefully adhering the tape over the mark, using 
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sufficient force to ensure good contact, minimising air bubbles but making 

sure the mark was not modified or smeared by the pressure applied by the 

finger. For storage and analysis, samples were taped into Petri dishes with 

the adhesive side facing up and kept at ambient temperature. 

 

Tape Supplier 

CSI pre-cut lifting tape - fingerprint (#96113) 

CSI Equipment Ltd (Woburn 

Sands, UK) 

Permacel J-Lar® Clear to the Core lifting tape 

25mm (#96105) 

CSI Flexi tape (3M Polytape 1-1410; #96104) 

CSI specialist tape - fingerprint (#96160) 

Cellulose Clear Tape ref. 3M 607 (3M Pressure 

Sensitive tape; #C32810) 

WAProducts (Burnham on 

Crouch, UK) 

Sirchie fingerprint lifting clear tape (#S144L) 

Sirchie Search Polythene Lifting Tape Transparent 

(#S169PPA) 

Serilux Style lifter (#B20653-100) 

3M Magic Tape local stationary shop 

Clear, black and white gelatine lifters BDA via WA Products Ltd 

(Burnham on 

Crouch, UK) 

Table 5.1 Lifting tapes and gels trialled including supplier. 

 

Samples consisting of non-enhanced blood marks, marks in blood and marks with 

blood in coincidental association were prepared directly onto plasticised PVC cards. 

The chemical nature of the PVC card was confirmed through FTIR-ATR analysis. 

Blood marks were prepared as depletion series using either 5 μL (2 consecutive 

depositions) or 20 μL (4 consecutive depositions) of blood. For the preparation of 

marks in blood, different volumes between 5-30 μL were spread out into ovals of 2-

3 cm length, which were left to dry 1-2 minutes, depending on blood volume, before 

the deposition of a clean fingermark in the blood. Faux blood marks were created by 

depositing a latent mark on the substrate, air drying for 72 hours and then dropping 

15-20 µL of whole blood or diluted blood (50:50 H2O:blood) on top of if it. After 3 
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minutes of exposure to blood, the slide was tilted to drain the bio-fluid in order to 

allow ridge detail to become visible, as it would otherwise be obscured by a near-

opaque blood stain. 

 

5.2.3 Data acquisition 

All images were obtained on an Alicona IFM (Alicona Imaging GmbH, Grambach, 

Austria) at a lens magnification of 5x. Brightness, contrast and image resolution were 

adjusted as necessary to ensure high quality images. Ridge height was analysed via 

profile form measurements of the acquired data using the instrument’s software 

InfiniteFocus® (IFM Version 3.5.1.5).  

 

For time course experiments, unique features within the sample were used to align 

them against the field of vision and for placement of the measurement line in order 

to ensure the same area of the sample was measured each time. 

 

5.2.4 Statistical analysis  

Excel (version 14.0.7188.5002) and Prism (version 7.03) were used for calculation 

of the standard error and Dixon’s Q outlier test (Q=|suspect-nearest|/[largest-

smallest]), plotting of trend lines and generation of graphs of time course data.  

 

5.2.5 Contact angle measurements 

Contact angle measurements were performed using a Data Physics SCA202 contact 

angle instrument. Data Physics OCA20 software was used to measure contact angle 

from the captured images. The collection parameters are given in Table 5.2. Contact 

angle measurements were made in duplicate, at randomly selected regions on each 

substrate.  
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Contact Angle Method Sessile Drop 

Dosing Liquid 18M water 

Dosing volume 0.1 µL 

Dosing rate 0.5 µL /s 

Syringe Type/Volume Hamilton 100 µL 

Computation Method Ellipse Fitting 

Software OCA20 

Table 5.2 Contact angle collection parameters. 

 

5.3 Results and discussion 

A sample stable over time with discernible features, in the form of a one pence coin, 

was used to establish the reproducibility of IFM measurements (establishing 

standard deviation) and evaluate variation between measurements. Using this 

sample, it was anticipated that differences in measured step height could be 

attributed solely to measurement variation. The findings were then used to inform 

the analysis of biological samples with regards to whether changes observed could 

be attributed to measurement variation or truly represented a change in the sample. 

 

Five IFM images of the Queen’s nose on the same one pence coin were acquired 

per day on five consecutive days, using the same instrument settings (resolution, z 

range, contrast, brightness), but different orientations of the coin (see example in  

Figure 5.1). Characteristic features surrounding the nose were identified and used 

as markers to set the measurement line (step height profile), which was placed as 

reproducibly as possible using the distance between characteristic dents for each 

measurement. Five measurements were obtained in order to determine if minor 

differences in the placement of the measurement line had an effect on the step 

height profile observed. 
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Figure 5.1 IFM images of the same coin in different orientations (A and B) with the 
measurement line placed in the same position, aligned to two dents in the coin. 

 

Some variations in the step height measurements obtained from five replicates 

grouped by acquisition day can be observed between multiple measurements of the 

same image (Figure 5.2). However, the majority of sample measurements appear to 

cluster well, indicating that minor differences in the placement of the measurement 

line do not have a drastic effect on the step height determination. This is also 

evidenced by 16 out of 25 sample images exhibiting a relative standard deviation 

(RSD) <1% across all five measurements, six with an RSD <2% and only three 

images showing an RSD between 2% and 2.8%, two of which can be corrected to 

<1% when performing the Dixon's Q outlier test and rejecting one measurement 

each accordingly. 

 

The overall mean of the 123 measurements (25 acquisitions with 5 measurements 

each, two measurements rejected) obtained was calculated to be 103.7 μm with a 

minimum of 87.4 μm, a maximum of 111.6 μm and a standard deviation (σ) of 4.6. 

Based on this, the coefficient of variation was calculated to be 4.6% (σ/mean*100), 

meaning that there can be ± 4.6% error of measurement in each measurement 

obtained.  

 

As a range of sample surfaces can be expected to be present in crime scene 

scenarios, some consideration had to be given to the selection of such surfaces for 

this study as no standard protocols are available for the selection of representative  
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Figure 5.2 Step height IFM measurements replicates of five image acquisitions (each shown by a different shape) per day 
(colour coded) of the same penny coin in different orientations and their median.  
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sample surfaces. In general, enhancement techniques for fingermarks and blood are 

applied as suitable for porous, semi-porous or non-porous surfaces. It can be 

hypothesised that these surface properties also affect fingermark ridge heights, e.g. 

by absorbing some of the deposit or the deposit heights due to an uneven surface. 

Similarly, it can be expected that some substrates, such as smooth, non-porous 

surfaces, will be more suitable for this study than others; Uneven or porous surfaces 

can be expected to affect and distort ridge heights to a degree where the background 

surface roughness interferes with the target measurements. In contrast, it can be 

hypothesised that wet blood or fingermark residue would spread further on smooth 

surfaces before it dries than it would on uneven or porous surfaces, resulting in 

smaller observable ridge heights. In addition to these considerations, forensically 

relevant surfaces had to be chosen with regards to the possibility to remove them 

from the crime scene for analysis, or to the possibility to lift the fingermark, taking 

into account the IFM’s stage size and operating mechanism as well as techniques 

likely to be carried out at the crime scene prior to IFM analysis of a sample. 

 

For these reasons, the suitability of a selection of different analysis 

surfaces was established in preliminary studies. Aluminium slides are an 

historically suitable surface of deposition for this research group 

investigating fingermarks by MALDI-MS based methods [27] and it was 

chosen as a reference representation of non-porous but not completely 

smooth surfaces. Glass slides were also selected as representing smooth 

and non-porous surfaces. Additionally, various lifting tapes and gel lifters 

were selected to account for the fact that the majority of samples would 

require to be lifted to allow transportation from the crime scene. The 

selected surfaces were investigated with regards to their surface 

roughness, interactions with blood and the ability to yield good quality IFM 

images without considerable loss of data. 

 

IFM image acquisition is based on the reflectance of light; consequently 

glass slides and gel lifters were found to be unsuitable because, although 

fingermark ridges were visible, no data could be acquired from the 
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surrounding surface. This resulted in black regions in the images acquired 

that represent loss of data. This made evaluation of the surface roughness 

impossible, as the clean surface could not be measured. 

 

While aluminium slides yielded suitable images, it was found that when larger 

volumes of blood, such as droplets or pools, were used to create marks in blood or 

coincidentally associated marks, the residue would not adhere to the surface once 

dried and would start to flake off. Consequently, they had to be disregarded as a 

suitable substrate. Example images of each surface can be seen in Figure 5.3. 

 

 
 
Figure 5.3 Example images obtained from A: a blood drop on a latent mark on 
aluminium; B: a blood drop on a latent mark on glass; C: an AB1-enhanced bloodied 
mark lifted wit J-Lar® tape; D: a blood drop on a latent mark on a clear gelatine lifter. 
 

However, lifting tape was identified as a viable analysis surface for IFM 

measurements and several tapes were trialled for the lifting of bloodied fingermarks. 

Due to different compositions of the tape backing as well as the adhesives used, 
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details of which were not disclosed in the product information for most tapes, not all 

lifting tapes provided equal results in lifting blood marks. In fact, a larger number of 

fingermark lifting tapes did not visibly lift any blood mark residue and due to the faint 

nature of some blood marks and more so their lifts, contrast was poor. For this 

reason and because crime scene marks would most likely be enhanced prior to 

collection, acid black 1 (AB1)-enhancement was performed on the blood marks to 

increase contrast and allow easier visual inspection of whether lifting was successful. 

Various tapes were trialled and Sirchie 144L and J-Lar® Clear to the Core tapes in 

combination with AB1-enhancement of the blood mark produced the highest quality 

lifts with regards to the largest portions or the entirety of the mark being lifted. Other 

tapes either did not lift at all or only lifted small partial and incomplete areas of the 

mark and were therefore found unsuitable. Comparing the success rate and mark 

portion lifted between Sirchie 144L and J-Lar® Clear to the Core, the J-Lar® product 

was shown to be the most promising tape amongst those tested and hence used in 

a time course study to evaluate potential changes in ridge heights of the blood marks 

over time. The investigation of lifted marks could also be beneficial in those cases 

where photography of enhanced blood marks is not sufficient and lifting is required 

in order to facilitate removal of the mark for laboratory analysis. Therefore, standards 

treated using this approach would have a larger applicability to real life scenarios.  

 

Ten primary deposition type A blood fingermarks (hereafter M1-M10) were enhanced 

with AB1 and lifted with J-Lar® tape. Additionally, two depletion series of five marks 

each (M11-M20) were enhanced and lifted in the same manner.  

IFM measurements were acquired from the same area of a mark on the day of 

deposition (day 0), 5 days later and then at 7-day intervals up to 33 days in order to 

determine if potential changes in ridge height over time might affect discrimination 

between different deposition scenarios. It was noted that some marks did not 

produce images of sufficient quality on some days (and therefore those images had 

to be excluded from the dataset) and not all deposited impressions could be lifted 

successfully. Characteristic features in each mark, such as ending ridges or islands, 

were then used as reference points to place a measurement line in the image, which 

was used to determine the ridge height of the sample post acquisition. Using the 
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protocol described in the Methods section, five measurements were obtained per 

image. 

 

At each time point, an image of the same region of the mark was collected (aligned 

to the field of view using characteristic features in each mark) and the same 

reference points used for placement of the measurement line. Figure 5.4-Figure 5.6 

show time course plots for each fingermark including the five repeat measurements 

for each acquisition. As was observed previously in the coin sample, multiple 

measurements on the same image exhibit low amounts of scattering, and for the 

majority of samples measurements appear consistent. It was however observed that 

the measurements fluctuated between days without a clear trend amongst all 

samples, therefore the Dixon’s Q test (Q=|suspect-nearest|/[largest-smallest]) for 

outliers was performed on the mean ridge height (n=5) of the most suspect samples 

(M1, 2, 3, 5 and 7), assuming normal distribution of the data. From this analysis, day 

33 of mark 3 represented an outlier that was rejected (Q= 0.711 for a sample size of 

the 6 time points obtained, with Q≥0.621 critical for P=0.05). 

 

In an attempt to detect potential trends in the data, lines of best fit were calculated 

and plotted for the time course data. Comparing Figure 5.4, Figure 5.5 and Figure 

5.6, however, it was evident that different trends for different marks could be 

observed. Marks 1, 7, 8, 9, 10 and 12 appear to exhibit a decrease in ridge height, 

possibly suggesting evaporation of water, marks 3, 4 and 5 demonstrate a trend 

towards increased ridge height, potentially indicating collection of dust/debris, and 

marks 2, 6 and 13 show little change in ridge height. The decrease in ridge height 

for marks 7, 8 and 12 fits better to an exponential function as they decrease (Figure 

5.7), which would support the hypothesis of exponential loss of water over time due 

to evaporation. It should be noted, however, that all marks had been stored together 

in the same way and such a scatter of results was therefore unexpected. 
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Figure 5.4 IFM time course with linear regression of AB1-enhanced bloodied fingermarks 1-4 lifted with J-
Lar® tape. (Note: Mark 3, day 33, highlighted in red, is likely an outlier as calculated by Dixon's Q and has 
therefore been rejected.) 
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Figure 5.5 IFM time course with linear regression of AB1-enhanced bloodied fingermarks 5-8 lifted with J-
Lar® tape. 
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Figure 5.6 IFM time course with linear regression of AB1-enhanced bloodied fingermarks 9,10, 12 and 13 
lifted with J-Lar® tape. 
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Figure 5.7 IFM time course of AB1-enhanced bloodied fingermarks 7, 8 and 12 lifted with J-Lar® tape, fitted 
with exponential regression for marks where this appeared to fit best. 
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Comparison of these data with the previously established standard error of 

measurement (4.6%) shows that the minimum and maximum ridge height values 

for each mark across all time points show a much greater variation than 4.6%. 

This is therefore likely to show change in the sample over time rather than an 

error in measurement, although a consistent trend with regards to increasing or 

decreasing ridge height was not observed.  

Since it was unclear if the scatter of results was due to the samples or the 

measurement strategy, experiments were conducted using samples from 

different types of blood-fingermark association, as it was hypothesised that 

measurements of bloodied ridges outside the fluctuating 25 μm and 84 μm range 

might be observed for other scenarios, therefore still permitting their 

differentiation within the 4.6% RSD measurement error. 

 

Samples of all three deposition scenarios were deposited on PVC plastic cards 

and step heights measured using the strategies outlined previously. On this 

substrate across the different deposition types, volumes and drying times, 

periodically, but unusually, samples exhibited ridge heights of a maximum of 12.4 

μm, with the majority ranging around 2-3 μm (see Figure 5.8-Figure 5.13 as 

example) and a few being as low as 400 nm (remaining data not shown). 

 

Although the absolute ridge height values are not of primary importance, the fact 

they did not separate into clear groups according to the different deposition 

scenarios is. Not only did the measurements mostly fall within the range of the 

instrument’s error of measurement of 4.6% (σ), but they also failed to exhibit any 

obvious differences between deposition scenarios, making their differentiation 

impossible in this case. It should be noted that for dark samples it was difficult to 

obtain measurements due to the lack of contrast and reflectivity, and even where 

acquisition was possible, ridges were not measurable within the blood. The 

results were further investigated as to why the ridge heights, even of the same 

deposition scenario, were so much lower on PVC (Figure 5.8-Figure 5.13) than 

those analysed in previous experiments (Figure 5.12) and ridge height 

measurements often did not match up the with observed position of the ridge, i.e. 

the valley was measured to be higher than the ridge (Figure 5.13). Figure 5.8-

Figure 5.13 show a dark red line on the optical image obtained, which is the 
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measurement line. The graph below the optical image corresponds to this 

measurement line, i.e. shows the profile height from one end of the dark red line 

to the other. The red and green marks on the image correspond to the marks of 

the same colour on the graph and show the profile height at those specific points 

in the image and graph, respectively. In Figure 5.13 it therefore becomes evident 

that the red mark in the valley of the fingermark was measured to be 6.4199 µm 

higher than the green point on the fingermark ridge, the opposite of what could 

be expected. 

 

 

 

Figure 5.8 IFM image and profile measurement graph obtained on a bloodied 
mark (3rd depletion in 20 µL depletion series). Note the dark red line on the image 
shows the measurement line to which the graph corresponds, whereas the dotted 
lines connect specific measurement points (+ signs on the image) with the 
corresponding measurements on the graph. Delta z describes the height 
difference between the two measurement points. 



   

204 
 
 

 

Figure 5.9 IFM image and profile measurement graph obtained on a mark in 10 
µL blood. Note the dark red line on the image shows the measurement line to 
which the graph corresponds, whereas the dotted lines connect specific 
measurement points (+ signs on the image) with the corresponding 
measurements on the graph. Delta z describes the height difference between 
the two measurement points. 



   

205 
 
 

 

Figure 5.10 IFM image and profile measurement graph obtained on a faux blood 
mark (15-20 µL blood). Note the dark red line on the image shows the 
measurement line to which the graph corresponds, whereas the dotted lines 
connect specific measurement points (+ signs on the image) with the 
corresponding measurements on the graph. Delta z describes the height 
difference between the two measurement points. 
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Figure 5.11 IFM image and profile measurement graph obtained on a faux 
blood mark (50:50 dilution). Note the dark red line on the image shows the 
measurement line to which the graph corresponds, whereas the dotted lines 
connect specific measurement points (+ signs on the image) with the 
corresponding measurements on the graph. Delta z describes the height 
difference between the two measurement points. 
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Figure 5.12 IFM image and profile measurement graph obtained on an AB1-
enhanced bloodied mark lifted with J-Lar® tape. Note the dark red line on the 
image shows the measurement line to which the graph corresponds, whereas 
the dotted lines connect specific measurement points (+ signs on the image) 
with the corresponding measurements on the graph. Delta z describes the 
height difference between the two measurement points. 
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Figure 5.13 IFM image and profile measurement graph obtained a mark in 
blood, showing an example for the measurement mismatch observed in some 
images: It can be seen the green measurement point on the ridge is lower than 
the red point in the valley. Note the dark red line on the image shows the 
measurement line to which the graph corresponds, whereas the dotted lines 
connect specific measurement points (+ signs on the image) with the 
corresponding measurements on the graph. Delta z describes the height 
difference between the two measurement points. 

 

Clearly, understanding the different substrate chemistries and surface 

topographies should facilitate the elucidation of the nature of these differences. 

In order to investigate why ridge heights differed so drastically between the 

different substrates, contact angle measurements were undertaken. Although 

blood marks were initially deposited and left to dry on a ceramic tile before lifting, 

the determination of the contact angle indicated a much larger contact angle (128-

128.2°) for the lifting tape than the PVC plastic (64-64.4°), meaning that any 

liquids or deposits exhibit reduced spreading across the surface in the case of 

the lifting tape, due to the nature of the adhesive coating. Any substance, in this 
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case blood marks, deposited on PVC on the other hand could spread out much 

more before drying, thereby reducing the final ridge height. This finding implies 

that measurements of any deposition scenario will be highly dependent on the 

original substrate, which cannot be controlled in a forensic case scenario, 

therefore greatly limiting the forensic applicability and feasibility of the method 

despite the ability to analyse lifted samples. For this reason, it would appear that 

the scope and applicability of IFM for the determination of the order of deposition 

of blood marks is somewhat limited. It may be feasible to outline idealised 

scenarios where the methodology is applicable, but it does not have the desired 

wide appeal for inclusion into a standardised set of protocols within a routine 

crime scene work-flow.  

 

5.4 Conclusions 

This study aimed to determine the feasibility of using IFM for the differentiation of 

different types of blood association with fingermarks based on ridge height 

measurement. This knowledge would inform investigations and provide more 

objective conclusions than those currently relying on the expert observation by 

naked eye. The scenarios in question include marks left by a bloodied finger, 

marks left in blood and clean, latent marks subsequently contaminated with blood 

(coincidental association), e.g. blood spatter or during attempted clean-up of a 

crime scene, which can be virtually impossible to differentiate from one another 

due to the large visual similarity.  

 

The IFM instrument’s relative standard error of measurement was established to 

be 4.6% based on measurements of a stable sample coin. The changes in ridge 

height of a time course experiment conducted on lifted, pre-enhanced marks left 

by a bloodied finger were observed to have an RSD larger than 4.6%, but findings 

regarding trends (or lack thereof) observed in ridge heights over time were 

inconclusive. Some marks showed increased ridge heights while others exhibited 

a decrease or reasonably stable ridge heights over time, despite all marks being 

stored under the same conditions.  
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The range of ridge height values determined on marks with blood pertaining to 

each of the three different deposition scenarios were found to be highly 

dependent on the deposition surface, pre-enhancement or lack thereof and 

chemistry of the lifting tape, as for example, ridge heights on PVC were much 

smaller than on the previously investigated lifting tape and did not allow 

differentiation between the scenarios. As a range of different surfaces can be 

expected to be encountered at crime scenes and it is impossible to provide 

appropriate control measurements for each such surface, it was determined that 

the forensic applicability of the method would be very limited. Despite a promising 

hypothesis and the potential of success for some selected surfaces, IFM was 

therefore deemed unsuitable for the reliable, quantifiable differentiation of the 

three types of blood-fingermark association as per initial research hypothesis 

based on the capabilities of the technique. 
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6 Conclusions and future work 
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Currently used tests and enhancement techniques for the detection of blood are 

not confirmatory because they target generic compounds of blood, such as 

proteins or amino acids. Even the supposedly haem-reactive tests are actually 

based on a redox-reaction that can be facilitated by a multitude of other 

compounds. For this reason, a range of false positives is encountered frequently. 

However, the confident detection of blood can be of great importance in a criminal 

investigation, as well as establishing species provenance. 

 

To solve this problem, the author selected 17 blood-specific proteins as suitable 

targets for the confident detection of blood. The work presented in this thesis 

centred on the development and optimisation of a bottom-up proteomic approach 

in conjunction with MALDI-MS analysis. Based on the knowledge of the 

theoretical protein sequences and their species-specific differences, it was 

hypothesised that this would allow the confident detection of blood and its 

provenance determination. 

 

Following the determination of the total protein content of blood, the digestion 

protocol was optimised with regards to the use of a suitable trypsin concentration. 

It was found that in order to be able to use the commonly employed 20 µg/mL 

trypsin solution, blood samples needed to be either diluted 1:200 for known 

volumes, or diluted by extracting the blood stain from the surface of deposition. 

In preliminary tests, the protocol and resulting peptide yield were optimised by 

trialling the addition of various detergents and the use of different digestion times. 

Comparing signal intensities and the number of peptide identifications, the 

digestion time for in-solution digests was optimised to 1 hour with the help of the 

detergent Rapigest™ SF.  

 

This protocol was then applied to human and equine blood samples and binary 

mixtures thereof to demonstrate the principle. MALDI-MS analysis allowed the 

detection of blood-specific peptides in all of those samples as well as provenance 

determination through the presence of proteotypic peptides. This was possible 

even in the mixed sample, thus confidently establishing the presence of both 

species’ blood in the sample.  
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To validate these results obtained on samples of known provenance, a range of 

blind samples was analysed. These included blood samples of human and four 

different animal species origin, biofluid samples and non-biofluid samples. 

Additionally, some samples were pre-enhanced with unknown BETs, thus 

theoretically indicating the presence of blood to crime scene personnel. 

 

In this blind study, human blood was confidently detected and identified as such 

in all instances, including pre-enhanced samples, samples of up to 34 years in 

age and one containing the anticoagulant EDTA. This was possible through the 

identification of proteotypic human blood peptides. Unfortunately, not all animal 

blood samples were recognised as such due to the absence of abundant peptide 

signals commonly expected, such as haemoglobin peptides. Overall, animal 

blood spectra did not present abundant signals, making it easy to mistake them 

for non-biofluid spectra. It is thought that this is due to differences in the sample 

collection, as animal samples are likely to have been obtained through transfer 

from roadkill or from meat packages. This means they may be more dilute and 

perhaps have been exposed to various contaminants. Additionally, it is possible 

that some of the BETs used to enhance the samples resulted in interference with 

proteolysis or ionisation.  

 

Nonetheless, characteristic signals were observed in chicken and bovine blood 

samples that allowed those species to be putatively identified in other samples. 

It should be noted, however, that to date these signals could not be identified and 

species determination based on them should therefore not be considered 

definitive or confident. The signals considered to be characteristic for bovine 

blood had also been observed in bovine samples in a previous study; however 

no additional reference spectra were available. It is possible that these 

characteristic signals originate from sequence variations in the commonly 

observed proteins, but were not identifiable as such due to lack of available 

sequence information on these variations. Considering 2-5 haemoglobin variants 

are reportedly found in each species, the absence of commonly observed Hb 

peptides would not be surprising if another Hb variant was present, perhaps 

resulting in the more abundant signals detected. 
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In addition to the animal blood samples, several other biofluid samples were 

correctly identified as such based on the presence of characteristic signals. The 

generation of a robust in-house database of biofluid peptides in envisioned for 

the future to increase confidence in those identifications and facilitate peptide 

matching. Additional samples were confidently classed as non-biofluid samples 

based on the absence of blood peptides and other characteristic signals. 

 

The study thus allowed the correct classification of human biofluid and blood 

samples. Whilst the analysis approach currently employed struggles with the 

detection and provenance determination of animal blood, human blood was 

confidently detected and identified in all instances. The analysis of additional 

reference samples for the generation of a more robust peptide library is 

envisioned for animal samples.  

 

Nonetheless, the ability to confidently differentiate human blood from all other 

samples with a robust analytical workflow is a big step forward for forensic 

sciences and criminal investigations. The confident identification of human blood 

in a sample even 34 years after deposition and enhancement further undermines 

the technique’s forensic applicability and shows great potential for the analysis of 

cold case samples. 

 

In addition to the aforementioned shortcomings of currently used BETs, most 

techniques require swabbing or scraping of the sample, thus destroying spatial 

information contained for example in blood fingermarks. This intelligence can be 

of great importance in criminal investigations, linking a fingerprint to an event of 

bloodshed and therefore a suspect to a crime. 

 

In order to apply the proteomic methodology mentioned above to suspected blood 

fingermarks, a protocol for in situ digestion was optimised for blood. This included 

trialling trypsin concentrations between 100 µg/mL and 3 mg/mL to account for 

the higher protein concentration in localised, undiluted samples and the lower 

efficiency of in situ digestion. Several instruments and instrumental settings were 

investigated for the application of the protease to blood marks. The high trypsin 

concentrations employed in this study led to capillary blockages in the SunCollect 
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autosprayer, which was routinely employed for controlled deposition of lower 

trypsin concentrations and matrix onto imaging samples. This problem was 

thought to be due to increased viscosity of the solution and was overcome by 

fitting the autosprayer with a larger internal diameter capillary.  

 

The optimised protocol employs nine layers of 250 µg/mL trypsin including 0.1% 

Rapigest™ SF and a 3-hour incubation period. This approach allowed for 

mapping of the spatial distribution of blood peptides onto fingermark ridge detail, 

thus establishing that the fingermark donor had blood on their fingers and linking 

them to the crime. 

 

Again, the protocol was trialled on blind samples and confidently identified one 

fingermark each to be contaminated with human blood and a non-biofluid, 

respectively. Due to the problems encountered in provenance determination in 

stain samples, species determination of animal blood was not possible in 

fingermarks. However, this might be partly due to the small sample set and the 

fact that several samples did not exhibit ridge detail when imaged. This was due 

to the humidity being too high and trypsin pooling on the sample, resulting in 

peptide dislocation from the ridges, although the digestion set up was not 

changed. This problem should be resolvable by reducing the humidity.  

 

Furthermore, the overall mass spectra and peptide yield observed in in situ 

digestions vastly differed from in-solution digests, as very few signals were 

observed in the higher mass range. It is thus possible that some animal-specific 

blood peptides were not observed due to their higher mass. Additionally, the 

mass accuracy obtainable in MALDI-MS imaging was lower than in profiling, 

thereby further complicating the analysis. 

 

Nonetheless, detection and identification of human blood in fingermarks was 

possible, as well as the mapping of peptides onto ridge detail in marks deposited 

on ideal surfaces or lifted using a suitable lifting tape. Several tapes were trialled 

and J-Lar® clear to the core tape was identified as most suitable for lifting, tryptic 

digestion and MALDI-MSI of blood marks following AB1-enhancement. 
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When blood marks are concerned, several scenarios of deposition can be 

encountered at a scene. A) bloodied mark, left by bloodied fingertip, B) mark in 

blood or C) coincidental association (or faux blood mark), where a clean, latent 

mark is subsequently contaminated with blood. Scenario C can for example occur 

during attempted clean-up of a crime scene when blood is wiped across the 

perpetrator’s mark, but also when unrelated marks are covered in blood spatter 

during a crime. As this can indicate a vastly different sequence of events than a 

type B mark in blood, it is of paramount importance to be able to distinguish the 

scenarios from one another. MALDI-MSI theoretically allows the differentiation of 

scenario A, where blood peptides are only expected on the ridges, from B and C, 

where blood peptides are expected on the entire surface. However, MALDI-MSI 

does not allow the order of deposition to be established, as it currently cannot 

determine if the fingermark is underneath or on top of the blood. To date, 

determining the order to deposition is purely based on an examiner’s expertise 

and no numerical approach appears to be available. As differentiating between 

scenarios is complicated and different scenario marks often visually appear to 

exhibit the same characteristics, this is far from ideal. 

 

For this reason, the hypothesis was postulated that type A, B and C marks would 

present different heights of ridges and valleys that could allow their differentiation 

based on numerical data. In order to measure those ridge heights, infinite focus 

microscopy was employed. Pre-enhanced bloodied marks were lifted with J-Lar® 

lifting tape and IFM measurements obtained over the course of 33 days in order 

to evaluate possible changes over time. Whilst ridge heights did vary over time, 

no clear trend could be established, as some marks exhibited a decrease and 

other an increase in ridge heights. Despite this information, it was still possible 

that differences in ridge heights between the deposition scenarios would be so 

drastic that their differentiation would be easily achieved, even with fluctuating 

heights. Hence, samples of all deposition types were deposited on PVC plastic 

cards and ridge heights measured. Unfortunately, the heights observed in this set 

of experiments were consistent between different scenarios, and also differed 

vastly from the previous set of samples analysed on lifting tape. It was thus 

determined that the chemistry and surface properties of the deposition surface, 

such as surface tension and contact angle, had a significant effect on the results. 
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As such, the ability of IFM to differentiate between different scenarios of 

deposition greatly depends on the deposition surface. However, this cannot be 

controlled in real life forensic scenarios and a great variety of surfaces can be 

expected. Therefore, in conclusion IFM was deemed unsuitable for the purpose 

of delivering quantifiable, numeric data to allow for establishing the order of 

deposition of blood fingermarks.  

 

However, recent advances in mass spectrometry appear to show potential to 

solve the problem at hand. Prof. Spengler has presented his group’s development 

of an autofocus laser suitable for 3D surface profiling using atmospheric pressure 

LDI or MALDI-MSI [1]. Instead of employing a laser with a fixed focus point that 

becomes defocused with changes in the sample height and doesn’t deliver data 

on those areas, Spengler’s technique allowed the detection and mapping of 

analytes in 3D. It stands to reason that this instrumentation should be able to 

determine whether blood is present on top or underneath a fingermark by not only 

detecting and re-focussing on minute changes in the height of the sample, but 

also chemically mapping its topology. Analysing a mark in blood, the sample 

topology is expected to consist of blood on the surface of deposition and in the 

fingermark valleys. The fingermark ridges on top of the blood, however, are 

expected to allow the detection of the usual components of latent, non-blood 

fingermarks, provided the currently reported vertical resolution of 1.5 µm is 

sufficient to distinguish between the layers of the sample. A fingermark covered 

in blood, on the other hand, is expected to consist of blood peptides on the entire 

top layer, regardless of different heights of covered ridges and blood-filled valleys. 

Additionally, unless tryptic digestion re-distributes blood, this could even allow for 

the combination of proteomic analysis with determination of the order of 

deposition into one single analysis, making the developed protocols truly multi-

informative. 

 

[1] M. Kompauer, S. Heiles, B. Spengler, Chemical and topographical 3D 

surface profiling using atmospheric pressure LDI and MALDI MS imaging, 

(2017). http://dx.doi.org/10.1038/protex.2017.103. 
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Appendix 1 

Protein detected concentration [μg/mL] Reference 

Haemoglobin 126500 - 155100 [1] 

Albumin 35000 - 50000 [2] 

43100 ± 8500 [3] 

Haptoglobin 3800 - 7800 [2] 

1790 ± 1260 [3] 

Fibrinogen 2610 ± 840 [3] 

2000 - 4500 [2] 

Transferrin 2000 -4000 [2] 

1870 ± 490 [3] 

α-1-antitrypsin 2000 -4000 [2] 

1690 ± 370 [3] 

α-2-macroglobulin 1600 - 3800 [2] 

1709 ± 590 [3] 

IgG1 7160 ± 5190 [3] 

IgA 3410 ± 1950 [3] 

IgG2 2910 ± 2310 [3] 

IgM 2730 ± 3100 [3] 

IgG4 2400 ± 2300 [3] 

a1-acid glycoprotein 1480 ± 480 [3] 

Apo-A1 1170 ± 490 [3] 

IgG3 1070 ± 600 [3] 

Apo-B 900 ± 440 [3] 

Apo-C3 160 ± 100 [3] 

IgD 670 ± 370 [3] 

Inter-α-trypsin inhibitor 200 - 700 [2] 

α-1-anti-chymotrypsin 300 - 600 [2] 

Fibronectin 300 [2] 

Complement C5 40 - 150 [2] 

Complement C8 70 - 90 [2] 

Transcortin 60 - 80 [2] 
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Protein detected concentration [μg/mL] Reference 

Complement C1r 50 [2] 

Complement C1r 

subcomponent-like 

protein 

39 

[4] 

Insulin-like growth factor-

binding protein 3 

20 
[4] 

Complement C2 10 - 30 [2] 

Coagulation factor XIII 10 - 20 [2] 

Protein Z-dependent 

protease inhibitor 

9.8 
[4] 

Coagulation factor XI 8.3 [4] 

Vasorin 7.5 [4] 

C-reactive protein 7.1 [4] 

Sulfhydryl oxidase 1 6.6 [4] 

Pigment epithelial-derived 

factor (PEDF) 

5 
[2] 

Lysozyme C 5 [4] 

Biotinidase 3.2 [4] 

Mannose-binding protein 

C 

3 
[4] 

IgGFc-binding protein 1.9 [4] 

Vinculin 1.7 [4] 

Adiponectin 1.1 [4] 

Basement membrane-

specific heparan sulfate 

proteoglycan core protein 

0.78 

[4] 

Cofilin-1 0.65 [4] 

Thrombospondin-4 0.54 [4] 

Talin-1 0.47 [4] 

Pleckstrin 0.39 [4] 

Peptidase inhibitor 16 0.24 [4] 
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Protein detected concentration [μg/mL] Reference 

Matrix metalloproteinase-

2 (MMP-2) 

~ 0.2 
[2] 

Multimerin-1 0.12 [4] 

Hepatocyte growth factor 

activator (HGFA) 

~ 0.08 
[2] 

Zyxin 0.054 [4] 

Filamin-A 0.05 [4] 

T-lymphocyte activation 

antigen (CD80) 

0.04 -0.1 
[2] 

PDZ and LIM domain 

protein 1 

0.033 
[4] 

Latent-transforming 

growth factor beta-

binding protein 1 

0.024 

[4] 

Integrin alpha-IIb 0.021 [4] 

Tubulin alpha-4A chain 0.02 [4] 

Ras suppressor protein 1 0.015 [4] 

Vasodilator-stimulated 

phosphoprotein 

0.012 
[4] 

Alpha-actinin-1 0.012 [4] 

Tubulin beta-1 chain 0.0011 [4] 

A disintegrin and 

metalloproteinase with 

thrombospondin motifs 13 

0.011 

[4] 

macrophage stimulatory 

protein (MSP) 

0.01 - 0.03 
[2] 

Myosin regulatory light 

chain 12B 

0.003 
[4] 

Integrin beta-3 0.0029 [4] 

Human megakaryote 

stimulating factor (MSF) 

~ 0.001 
[2] 
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Protein detected concentration [μg/mL] Reference 

Interleukin-1 receptor (IL-1 

R) 

~ 0.001 
[2] 

LIM and senescent cell 

antigen-like-containing 

domain protein 1 

0.0005 

[4] 

Erythrocyte band 7 

integral membrane protein 

0.0003 
[4] 

Beta-parvin 0.0001 [4] 

Band 3 anion transport 

protein 

0.0001 
[4] 

Interleukin-12 β chain (IL-

12 p40) 

0.000077 
[2] 

Fibroblast growth factor-

12 (FGF-12) 

~ 0.00001 - 0.00003 
[2] 

S 1.1 Non-comprehensible table of a variety of (blood) proteins and their normal 
concentration ranges in blood, in decreasing order. (Compiled by Erasmus 
student Judith Schramm) 

[1] E. Beutler, J. Waalen, The definition of anemia : what is the lower limit of normal 
of the blood hemoglobin concentration ? The definition of anemia : what is the 
lower limit of normal of the blood hemoglobin concentration ?, Blood. 107 
(2006) 1747–1750. doi:10.1182/blood-2005-07-3046. 

[2] Y. Shen, J.M. Jacobs, D.G. Camp  2nd, R. Fang, R.J. Moore, R.D. Smith, W. Xiao, 
R.W. Davis, R.G. Tompkins, Ultra-high-efficiency strong cation exchange 
LC/RPLC/MS/MS for high dynamic range characterization of the human plasma 
proteome, Anal Chem. 76 (2004) 1134–44. doi:10.1021/ac034869m. 

[3] C. Petibois, G. Cazorla, A. Cassaigne, G. Déléris, Plasma protein contents 
determined by Fourier-transform infrared spectrometry., Clin. Chem. 47 (2001) 
730–8. http://www.ncbi.nlm.nih.gov/pubmed/11274025. 

[4] R.C. Bollineni, I.J. Guldvik, H. Grönberg, F. Wiklund, I.G. Mills, B. Thiede, A 
differential protein solubility approach for the depletion of highly abundant 
proteins in plasma using ammonium sulfate, Analyst. 140 (2015) 8109–8117. 
doi:10.1039/C5AN01560J. 
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Appendix 4 

 

S 4.1 MALDI-MS spectra of tryptically digested bovine “blood” samples obtained 
from A: residual juices in meat packet, B: a butcher. * denotes theoretical m/z 
1669.8353 putatively identified as bovine Myoglobin, which was observed as a 
characteristic signal in the study. Note its absence in the sample obtained from 
the butcher. 
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S 4.2 MALDI-MS spectra of tryptically digested porcine “blood” samples 
obtained from A: residual juices in meat packet, B: a butcher. * denotes 
theoretical m/z 1274.7114 (r.LLVVYPWTQR.f) and m/z 1422.7036 (k. 
VGGQAGAHGAEALER.m) putatively identified as as human, bovine, porcine or 
cervine Hbβ and porcine Hbα, respectively. Both were observed in one porcine 
sample in the blind study, but not detected in two others. Note their absence in 
the sample obtained from the meat package. 


