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Abstract  1 

Sprint velocity decreases on the bend when compared with the straight, therefore 2 

understanding technique during bend sprinting could have important implications for aiding 3 

race performance. Few bend sprinting studies have used optoelectronic cameras to investigate 4 

kinematic variables. Limited published evidence regarding the reliability of marker sets in 5 

conditions representative of elite bend sprinting makes model selection difficult. Therefore, a 6 

test-retest protocol was conducted to establish the reliability and minimum detectable 7 

difference of a lower limb and trunk marker set during bend sprinting (radius: 36.5 m). Six 8 

participants completed five, 60 m trials at maximum effort, with data collected at 38 - 45 m. 9 

This was repeated 2 - 7 days later. Spatio-temporal (e.g. contact time) and kinematic 10 

variables (e.g. peak joint angles) were evaluated. Intraclass correlation coefficients (ICC) 11 

were used to determine the between- and within-day reliability. Between-day reliability (ICC 12 

3, k) was fair to excellent for all variables. Compared to between-day, within-day reliability 13 

demonstrated stronger agreement for the majority of variables. Thus, same-day data 14 

collection is preferable. It has been established that the marker set is reliable for future use. In 15 

addition, the minimal detectable difference was calculated which serves as useful reference 16 

for future research in bend sprinting.  (Word count: 200) 17 

 18 

Key words: 200 m, three-dimensional, athletics, curve, joint angles 19 

 20 

 21 

 22 
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Introduction 23 

 Sprint velocity decreases on the bend in comparison to the straight (Chang & Kram, 24 

2007; Churchill, Salo, & Trewartha, 2015; Churchill, Trewartha, Bezodis, & Salo, 2016). 25 

This reduction is suggested to be related to the additional need to generate centripetal force 26 

(Chang & Kram, 2007; Usherwood & Wilson, 2006). Unlike the 100 m race that occurs 27 

entirely on the straight, the 200 m and 400 m races include a portion on the bend that 28 

accounts for approximately 58% of the total distance covered (Meinel, 2008). Therefore, 29 

performance on the bend makes a substantial contribution to overall race performance.  30 

 Whilst there has been some consideration of the reliability of sprint related 31 

performance variables within the literature (most notably Hunter, Marshall & McNair, 2004a; 32 

Salo & Grimshaw, 1998; Standing & Maulder, 2017), the analysis of performance descriptors 33 

has been the main focus. However, substantial adaptations in joint kinematics have been 34 

reported during bend sprinting in comparison to straight line sprinting (e.g. Churchill et al., 35 

2015, Alt, Heinrich, Funken, & Potthast, 2015), without supporting reliability data it is 36 

difficult to determine whether these changes have been influenced by variation in task 37 

execution, equipment calibration, random error or protocol design.  38 

To evaluate performance on the bend, the analysis of spatio-temporal, kinematic and kinetic 39 

variables is required. Owing to its high reliability and validity, data collection with 40 

optoelectronic systems is considered the gold standard of kinematic measurement techniques 41 

(Hood, McBain, Portas, & Spears, 2012). Despite this, few bend sprinting studies have used 42 

optoelectronic cameras to investigate kinematic variables (for exceptions see, Alt, et al., 43 

2015, Ishimura & Sakurai, 2010, 2016; Ishimura, Tsukada, & Sakurai, 2013). A key 44 

consideration when working with three-dimentional motion capture is the choice of marker 45 
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set (Milner, 2008). However, in studies that have used 3D motion capture, most fail to 46 

provide explicit information on the location of markers used (Alt et al., 2015; Ishimura & 47 

Sakurai, 2010, 2016; Ishimura, et al., 2013). Furthermore, there is a lack of published 48 

evidence regarding the reliability of such models in conditions representative of elite bend 49 

sprinting (i.e. radius, velocity and surface), since the majority of research focus on straight-50 

line walking (e.g. Deschamps et al., 2012; Bishop, Paul & Thewlis, 2013; Milner & Brindle, 51 

2016) or running (e.g. Ferber, McClay Davis, Williams, & Laughton, 2002; Alenezi, 52 

Herrington, Jones, & Jones, 2016; Milner & Brindle, 2016). However, bend sprinting occurs 53 

at a higher velocity (e.g. 9.86 m/s, Churchill, et al., 2015) than walking (e.g. 1.25 m/s, Milner 54 

& Brindle, 2016) or running (e.g. 3.65 m/s, Ferber, et al., 2002). These higher velocities 55 

produced during sprinting are likely to affect the reliability of a marker set, for example 56 

through an increase in skin movement artefact. Thus, it is not appropriate to assume the same 57 

reliability as for walking or running actions. Due to the issues highlighted, selecting a marker 58 

set for use in bend sprinting is problematic. Knowledge of reliability data enables researchers 59 

to determine the meaningfulness of reported differences between conditions and conclude 60 

with confidence that the effects are due to the independent variable and not the method of 61 

data collection or any other form of random variation (Hopkins, 2000). A standardised 62 

marker set with supporting reliability data would be a valuable tool for use in future bend 63 

sprinting research. It is important to examine both between- and within-day reliability. Whilst 64 

within-day reliability is affected by task execution, random error and skin movement artefact, 65 

additional factors such as system calibration and marker application may affect between-day 66 

measurements. Furthermore, calculation of minimal detectable difference (MDD) provide an 67 

indication of the magnitude of change required to be considered 'real' to aid researchers in the 68 

interpretation of results. 69 
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During kinematic analyses, the number of cameras and available laboratory space 70 

impact upon factors such as frame rate, resolution and desired capture volume. The resulting 71 

camera set-up can influence the coverage within the capture volume which will impact upon 72 

marker detection - for example areas of low coverage within the capture volume would likely 73 

increase marker drop-out rate. Furthermore, increasing the number of markers used has the 74 

consequence of increasing marker application and post-processing time (Vanrenterghem, 75 

Gormley, Robinson & Lees, 2010). In addition, there is potentially a decrease in the 76 

representativeness of the protocol through increased athlete interference with additional 77 

markers. It has been established that a lower limb and trunk marker set was sufficient for the 78 

accurate calculation of CoM location and associated variables (velocity, touchdown distance 79 

and turn of CoM) during bend sprinting (Judson, Churchill, Barnes, Stone & Wheat, 2017). 80 

For mean step velocity, touchdown distance and turn of CoM, ICC's in the range of 0.995-81 

0.998 were reported showing excellent agreement between the simplified model and a whole-82 

body marker set (Judson, et al., 2017). Since this reduced marker set has been shown to 83 

accurately represent full body movements it holds promise for use in future studies on bend 84 

sprinting, however, its reliability has yet to be established.  85 

  Therefore, the aim of this research was to determine the within- and between- day 86 

reliability of bend sprinting using 3D optoelectronic motion capture with a lower limb and 87 

trunk marker set.  It was hypothesised that each measure would demonstrate excellent 88 

reliability, and within-day reliability would be greater in comparison to between-day.  89 

Methods  90 

Participants 91 
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 Following ethical approval from Sheffield Hallam Research Ethics Committee, six 92 

sprinters (four males; mean age 20 ± 1 years; body mass 73.3 ± 3.0 kg; stature 1.79 ± 0.56 m 93 

and two females; mean age 22 ± 3 years; body mass 58.9 ± 1.4 kg; stature 1.66 ± 0.40 m) 94 

volunteered for this study. All athletes had experience of bend sprinting (200 and/or 400 m) 95 

and were active in training at the time of data collection. Mean personal best times were 96 

22.76 ± 0.95 s (range 22.00 - 24.10 s; 200 m, four males) and 64.00 ± 0.00 s (400 m, two 97 

females).  The study procedures were fully explained to participants who subsequently 98 

provided written informed consent.  99 

Equipment 100 

 Kinematic data were collected using a 12-camera optoelectronic motion capture 101 

system (8 x Raptor model and 4 x Eagle model, Motion Analysis Corporation, Santa Rosa, 102 

CA, USA) sampling at 240 Hz. A right-handed lab coordinate system was defined using a 103 

rigid L-frame with four markers at known locations. The experimental set-up is demonstrated 104 

in Figure 1. Athletes ran primarily in the direction of the positive y-axis (anterior-posterior) in 105 

the capture volume, (see figure 1) where the positive z-axis was directed vertically upwards 106 

(longitudinal) and the positive x-axis was orthogonal to the other two axes (mediolateral, 107 

pointing to the athletes’ right). A three-marker wand (length 500 mm) was used within the 108 

calibration volume to scale the individual camera views. The calibration volume (7 m long, 109 

1.5 m wide and 2 m high) was located tangentially to the apex of the curve to record data 110 

through the 38 - 45 m section of the 60 m sprints.  111 

*** Figure 1 near here *** 112 

A modified Vicon Plug in Gait (PiG) marker set (lower limb and trunk; Judson et al., 113 

2017) was used to model segments (torso, pelvis, thighs, shanks and feet, Figure 2). PiG has 114 

been used extensively in gait research (Kadaba, Ramakrishnan, & Wootten, 1990; Kulmala et 115 
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al., 2017; Radzak, Putnam, Tamura, Hetzler, & Stickley, 2017). Although there are not yet 116 

any published data in sprinting, the unmodified PiG model is supported by reliability data 117 

during walking gait (Ferrari et al., 2008), revealing good reliability and correlation with other 118 

approaches including the Calibrated Anatomical System Technique (CAST; Benedetti, Catani 119 

& Leardini 1998). Retro-reflective, spherical markers (12.7 mm diameter) were placed on the 120 

following anatomical landmarks of the left and right leg: lateral malleolus, medial malleolus, 121 

shank (lower lateral 1/3), thigh (lower lateral 1/3 surface of the thigh), lateral femoral 122 

epicondyle, medial femoral epicondyle, greater trochanter, posterior superior iliac spine (left 123 

and right), anterior superior iliac spine (left and right), C7, T10, suprasternal notch, xiphoid 124 

process. Acromion process markers were included for the static trial only. The PiG model 125 

represents the foot as a single unit. However, this simplistic approach does not permit the 126 

measurement of movements within the foot such as metatarsophalangeal dorsi- and plantar-127 

flexion which have been identified as important movements in sprinting (Bezodis, Salo, & 128 

Trewartha, 2012; Smith, et al. 2012).  In addition, inversion and eversion may have 129 

importance during bend sprinting. Therefore, additional markers were placed on the posterior, 130 

medial and lateral calcaneus, 1
st
 and 5

th
 metatarsal bases, 1

st
, 2

nd
 and 5

th
 metatarsal heads and 131 

head of the 2
nd

 toe (Smith, Lake, Lees, & Worsfold, 2012) (Figure 3). All foot markers were 132 

shoe mounted and thought to represent the movement of the underlying foot. The foot was 133 

modelled as three segments; rearfoot, forefoot and toebox (Figure 3). 134 

 Where possible, segments were defined according to ISB recommendations (Wu et 135 

al., 2002; Wu et al., 2005), with the exception of the multi-segment foot model which was 136 

defined in line with Cappozzo, Catani, Della Croce, and Leardini (1993).  137 

*** Figure 2 near here *** 138 
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*** Figure 3 near here*** 139 

Test-retest protocol  140 

 Data were collected on a flat standard indoor track surface with a reconstructed bend 141 

replicating lane 1 (radius 36.5 m) of a standard 400 m running track (IAAF, 2008). 142 

Participants performed five trials at maximal effort for 60 m. Data collection started at 38 m 143 

where athletes were likely to be at maximum speed (Krzysztof & Mero, 2013).  144 

Approximately eight minutes were allowed between trials to allow full recovery and avoid 145 

the onset of fatigue (Churchill et al., 2015). Participants wore the same pair of their own 146 

sprint spikes for each testing session. 147 

The test protocol was repeated two days to one week later, with the second session 148 

occurring at approximately the same time of day (i.e. morning or afternoon). The marker set 149 

was applied by the same researcher at each testing session. 150 

Data processing 151 

 Cortex software (version 5.3, Motion Analysis Corporation, Santa Rosa, CA, USA) 152 

was used to track and export raw 3D marker coordinate data. Automatic gap filling was 153 

performed using a cubic spline on all gaps <10 frames. Raw marker positions were filtered at 154 

14-18 Hz using a low-pass, fourth order recursive Butterworth filter. Trunk, pelvis and thigh 155 

markers were filtered at 18 Hz, shank and ankle markers at 16 Hz and foot markers at 14 Hz. 156 

These cut-off frequencies were chosen using residual analysis with frequency range based 157 

upon previous sprint and multi-segment foot literature with a range of 7 - 20 Hz (Churchill et 158 

al., 2015; Hunter et al., 2004a, 2004b; Milner & Brindle, 2016; Queen, Gross, & Liu, 2006). 159 

Segments, local coordinate systems and joint centres were defined and constructed in Visual 160 
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3D software based on a static standing trial (version 6, C-Motion, Rockville, MD, USA). 161 

Body segment parameters were estimated from de Leva (1996) and adjusted to allow the 162 

addition of 0.2 kg to each foot which represents the mass of a spiked shoe (Hunter, Marshall, 163 

& McNair, 2004b).  164 

 165 

Calculation of variables 166 

 Spatio-temporal and kinematic variables found to be of importance in previous bend 167 

sprinting research were selected for measurements and evaluation (Alt et al. 2015; Churchill 168 

et al., 2015). All variables were calculated separately for the left and right step. Left and right 169 

steps were defined by the foot that initiated the step. 170 

 Joint (orientation) angles were defined as the distal segment relative to the proximal 171 

segment, with the exception of the trunk that was defined relative to the lab coordinate 172 

system. The Cardan sequence xyz was used in line with ISB recommendations (Wu et al., 173 

2002). Peak joint angles during the stance phase were calculated to enable standardisation of 174 

results with previous research (e.g. Alt et al., 2015). Values for the left limb in the transverse 175 

and frontal planes were multiplied by -1 for ease of interpretation. Touchdown and take-off 176 

events were defined using the fifth metatarsal head markers (MTH5). The mean plus two 177 

standard deviations of the vertical coordinates of the left and right MTH5 in the static trial 178 

were calculated and used as a threshold for ground contact in each participant. For each foot, 179 

touchdown was considered as the first data point where the vertical coordinate of the marker 180 

dropped below the defined threshold and vice-versa for take-off (Bezodis, Thomson, Gittoes 181 

& Kerwin, 2007). Absolute speed was calculated using the first central difference technique 182 

from the horizontal distance travelled in the anterior direction by the CoM. The mean of the 183 
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instantaneous speeds was calculated from the first frame of ground contact to the last frame 184 

of the flight phase with the contralateral foot to give absolute speed over a step (Churchill et 185 

al., 2015). Directional step length was calculated using a vector between the horizontal 186 

positions of the 2
nd

 metatarsal head at consecutive ground contacts. A second vector was 187 

created between the horizontal positions of the CoM at consecutive ground contacts. The dot 188 

product of the two vectors gave directional step length (Churchill et al., 2015). Step frequency 189 

was calculated as absolute speed divided by directional step length. Contact time was the 190 

time from touchdown to take-off of the same leg and flight time the total step time 191 

(touchdown of one foot to touchdown of the contralateral foot) minus contact time. 192 

Touchdown distance (the horizontal displacement between the CoM and second 193 

metatarsophalangeal joint at touchdown) was calculated using an instantaneous progression 194 

vector for the CoM (calculated from the horizontal position of the CoM one frame before the 195 

instant of interest to the horizontal position of the CoM one frame after the instant of interest, 196 

then divided by its norm to create a unit vector). A horizontal vector from the CoM to the 2nd 197 

metatarsal head of the touchdown limb was also calculated. The dot product of the horizontal 198 

vector onto the instantaneous progression vector gave touchdown distance (Churchill et al., 199 

2015). 200 

Reliability measures 201 

 The reliability of the marker set was established using intraclass correlation 202 

coefficient (ICC) tests. ICCs for absolute agreement were used to determine the reliability 203 

between sessions (ICC (3,k) - where k is equal to the number of trials (five)). Within-day 204 

reliability was determined using ICC (3,1) and calculated for all trials on the first day of 205 

testing. ICCs were interpreted according to Cicchetti (1994), where <0.40 represents poor 206 

agreement; 0.40 to 0.59 fair agreement; 0.60 to 0.75 good agreement and > 0.75 excellent 207 
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agreement. In accordance with recommendations from Koo and Li (2016), 95% confidence 208 

intervals (CI) were also presented and Cicchetti's (1994) descriptors were applied to the 209 

interpretation of CIs. As recommended by Koo and Li (2016), for a variable to be considered 210 

as having 'excellent' reliability, both upper and lower bounds must fall within the excellent 211 

range (i.e. > 0.75). 212 

 Standard error of measurement (SEM) was calculated from between-day data using 213 

the formula (Weir, 2005): 214 

Standard deviation of the mean difference (SD) x √1 − 𝐼𝐶𝐶    (1) 215 

 216 

  Minimal detectable difference (MDD) was calculated from between-day data using 217 

the formula (Weir, 2005): 218 

1.96 x SEM x √2                     (2) 219 

 220 

Results 221 

 For between-day reliability (ICC 3, k), analysis of 95% CI revealed all but two spatio-222 

temporal variables (Table 1, Table 2) were fair to excellent (0.419- 1.000). Right touchdown 223 

distance and left step length were poor to excellent (0.180 - 0.980). For all variables, within-224 

day reliability (ICC 3, 1: 0.258 - 1.000) was greater than between-day reliability (ICC 3, k: 225 

0.180 - 0.975). Right step frequency displayed a between-day MDD of 0.16 Hz, whereas 226 

right and left contact time had a between-day MDD of 0.02 s. Contact time also demonstrated 227 
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a small between-day SEM (0.006-0.007 s). Within-day SEM and MDD were smaller when 228 

compared to between-day values. 229 

 For joint kinematics (Table 3, Table 4), 29 of 44 variables demonstrated excellent 230 

between-day reliability when analysing the 95% CI (0.780-0.999).  Six frontal and transverse 231 

plane variables (left knee internal rotation, right hip external rotation, right knee abduction, 232 

right knee adduction, right knee external rotation, right ankle external rotation) demonstrated 233 

poor to excellent reliability (0.075 - 0.985). Within-day reliability (ICC 3, 1: 0.228-0.999) 234 

was greater than between-day variability (ICC 3, k, 0.075 - 0.999) for the majority of joint 235 

kinematic variables. MDD ranged from 1-11° across all variables. Between-day SEM values 236 

were < 4° across all conditions, however within-day SEM and MDD were smaller. 237 

*** Table one near here *** 238 

*** Table two near here *** 239 

*** Table three near here *** 240 

*** Table four near here *** 241 

Discussion and Implications   242 

 The purpose of this study was to determine the between- and within-day reliability of 243 

a lower limb and trunk marker set during maximal velocity bend sprinting. All athletes were 244 

experienced bend sprinters and mean absolute speed was similar between days. All variables 245 

(both spatio-temporal and kinematic) demonstrated excellent within-day reliability. Data 246 

from this study demonstrated consistently poorer between-day reliability than within-day 247 

reliability. When compared to between-day reliability, greater within-day reliability has been 248 
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a common finding throughout previous reliability investigations involving running (Ferber et 249 

al., 2002; Alenezi, et al., 2016). Between-day reliability for kinematic variables during 250 

walking and running has been reported with ICC's (without 95% CI's) in the range of 0.51-251 

0.72 (Alenezi, et al., 2016); 0.54-0.93 (Ferber, et al., 2002) and 0.644 - 0.993 (Milner & 252 

Brindle, 2016). In comparison to between-day reliability, within-day reliability for kinematic 253 

variables is typically greater: 0.63-0.94 (Alenezi, et al., 2016); 0.92-0.99 (Ferber, et al., 2002) 254 

and 0.881 - 0.994 (Milner & Brindle, 2016). Therefore, the between- (0.739 - 0.989) and 255 

within-day (0.761-0.995) reliability demonstrated for joint kinematics within the present 256 

study are comparable to previous research in walking and running. Greater within-day 257 

reliability suggests that, where possible, data for each individual athlete should be collected 258 

during a single session. Should this not be appropriate, the between-day MDD's provide an 259 

indication of the margin for error that should be applied when interpreting results. 260 

 SEM and MDD provide an indication of the magnitude of change required in 261 

experimental studies to be confident that a real change has occurred. The present findings 262 

demonstrated a MDD of 2° (left step) and 1° (right step) for peak hip adduction angles 263 

comparing favourably to the MDD of 6.90° during running and 8.37° in cutting previously 264 

reported (Alenzi et al., 2016). It is likely these differences can be attributed to the inclusion of 265 

recreational athletes by Alenezi et al. (2016) in comparison to the present study where 266 

athletes were trained and experienced in the execution of a specific task. Moreover, the 267 

cutting task used by Alenezi et al. (2016) may also contribute to these differences since it 268 

may be difficult for non-expert participants to replicate the movement consistently.  In 269 

addition, Alenezi et al. (2016) found knee internal rotation angle during the cutting 270 

manoeuvre (which due to its lateral change of direction shares some similarities with bend 271 

sprinting) demonstrated the lowest between-day ICC (0.40) with an MDD of 11.3°. This is 272 
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similar to the current findings, where one of the lowest between-day ICC was left knee 273 

internal rotation angle (0.782) with a MDD of 7°. Whilst this is larger than the 5° difference 274 

in left knee internal rotation angle reported by Alt et al., (2015), the reliability can be 275 

increased by collecting data on the same day. Doing so would decrease the required MDD 276 

from 7° to 3°, thus making the protocol sensitive to smaller changes such as those reported by 277 

Alt et al., (2015).  278 

 Touchdown distance and left step length in this study failed to achieve excellent 279 

between-day reliability, supporting previous findings that touchdown distance was one of the 280 

least reliable variables examined during straight line sprinting (Hunter, Marshall, and McNair 281 

2004a). In addition, Standing and Maulder (2017) reported between-day ICCs of 0.65 and 282 

0.44 for step length during the first and third steps of the acceleration phase. However, 283 

Hunter, Marshall and McNair (2004a) showed that reliability increased for all variables when 284 

averaging across three trials, suggesting a single trial is insufficient to capture the natural 285 

variance within an athlete's technique. Therefore, as also demonstrated by the results of 286 

average measures ICC(3, k) here, future research should use an average of multiple trials to 287 

improve reliability of variables such as step length and touchdown distance. Step length 288 

results of the present study demonstrate excellent within-day reliability for both steps, 289 

however high standard deviations were reported, suggesting step length is variable both 290 

between participants (SD: 0.08 - 0.11 m) and between-days (ICC 3, k: 0.184 - 0.991). These 291 

variations in step length might contribute towards the different results found between 292 

previous bend sprinting studies. For example, Churchill et al. (2015; 2016) suggested a 293 

reduction in right step length is present on the bend, while Alt et al. (2015), found neither left 294 

or right step length was affected during bend sprinting. However, this may have been a result 295 

of the differing protocols used, since Alt et al. (2015) measured sub-maximal velocity 296 
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compared to Churchill et al., (2015; 2016) who evaluated maximal velocity. Here, results 297 

provide increased clarity for future research on what constitutes a real change in step length. 298 

The ICCs for the remaining spatio-temporal variables represented excellent agreement for 299 

both between- and within-day reliability, with small (e.g. contact time 0.006 - 0.007 s) SEM 300 

reported throughout. Notwithstanding the poor and fair 95% CI reported for some ICC's, the 301 

resulting MDD is low enough to detect changes in spatio-temporal variables between 302 

conditions. For example, a 0.08 m MDD has been established for right step length. Churchill 303 

et al. (2015) reported a decrease of 0.10 m in right step length on the bend compared to the 304 

straight. In addition, Ishimura & Sakurai (2016) reported a difference of 0.14 m between right 305 

and left step length on the bend. Therefore, the marker set is reliable for future use with 306 

spatio-temporal variables.   307 

 Reliability of sagittal plane variables was generally greater than variables calculated 308 

in the frontal and transverse planes replicating common findings of reliability analyses. For 309 

example, a review of reliability in kinematic measures of walking gait demonstrated the 310 

lowest reliability and highest error occurred most frequently in the transverse plane 311 

(McGinnley, Baker, Wolfe & Morris, 2009). In addition, the values reported here are 312 

consistent with previous reliability investigations of multi-segment foot models during 313 

walking (Bishop, Paul, & Thewlis, 2013; Deschamps et al., 2012) and running (Milner & 314 

Brindle, 2016). Moreover, comparison of the MDD's with previous bend sprinting literature 315 

suggests the protocol is sensitive enough to detect the magnitude of change previously 316 

reported. For example, Alt et al. (2015) and Churchill et al. (2015) have reported an increase 317 

in left hip adduction on the bend compared to the straight of 6° and 8° respectively. The 318 

present study established a MDD of 1° and 2° for within- and between-day protocols. In 319 

addition, although right ankle external rotation demonstrated poor to excellent between-day 320 
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reliability, the associated MDD is 4°, which is smaller than the 5° difference between left and 321 

right foot on the bend reported by Alt et al. (2015). In addition, right ankle external rotation 322 

MDD can be decreased further to 2° by collecting data on the same day. Therefore, the 323 

marker set can reliably be used in future research. 324 

 A radius replicating lane one (36.5 m) was used in this study. Whilst this may be most 325 

useful from a research perspective since technical adaptations have been shown to be more 326 

prominent in lanes with a smaller radius (Churchill, Trewartha, & Salo, 2018), athletes tend 327 

to avoid training in this lane, which may have contributed towards variance between days.  328 

Conclusion 329 

 The reliability of a lower limb and trunk marker set with a multi-segment foot has 330 

been established for bend sprinting. The results presented partially support the hypothesis. 331 

Overall, between-day ICCs were fair to excellent for all variables and comparable to those 332 

previously reported during straight-line walking and running gait. Within-day reliability was 333 

greater than between-day reliability, suggesting that, where possible, data collection for a 334 

single athlete should take place on the same day. The between-day data presented takes into 335 

account variance in athlete technique alongside the reliability of the equipment set-up, 336 

calibration, random error and marker placement. As such, this will inform protocol design 337 

and the determination of meaningful differences between conditions in future kinematic 338 

studies of bend sprinting. The lower limb and trunk marker set is a reliable model to use in 339 

future analyses of bend sprinting. However, results should be interpreted with the reported 340 

MDD's in mind. 341 
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Table 1: Left step spatio-temporal variables. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability.  

95% lower- (LB) and upperbound (UB) confidence intervals are presented. Variables showing less than excellent (<0.75) reliability  

are highlighted with an asterisk (*). ± indicates the standard deviation of the group mean. 

 

 

 

 

 

 

 

Table 2: Right step spatio-temporal variables. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability.  

95% lower- (LB) and upperbound (UB) confidence intervals are presented. Variables showing less than excellent (<0.75) reliability  

are highlighted with an asterisk (*). ± indicates the standard deviation of the group mean. 

 

 

 

 

 

 

Variable 
Left ICC 

(3, 1) 

95% 

 LB 

95% 

 UB 
SEM MDD 

ICC 

(3, k) 

95%  

LB 

95%  

UB 
SEM MDD 

Day One Day Two 

Absolute speed (m/s) 
7.89 

± 0.75 

8.01 

± 0.67 
0.990 0.964 0.999 0.02 0.04 0.985 0.946 0.989 0.03 0.08 

Directional step length (m) 
1.94 

± 0.08 

2.00 

± 0.08 
0.832 0.315* 0.995 0.03 0.08 0.738* 0.184* 0.980 0.04 0.10 

Contact time (s) 
0.128 

± 0.01 

0.127  

± 0.01 
0.949 0.748 0.994 <0.01 0.01 0.815 0.419* 0.933 0.007 0.02 

Flight time (s) 
0.122 

± 0.03 

0.126 

 ± 0.02 
0.857 0.456* 0.983 <0.01 0.01 0.796 0.536* 0.911 0.01 0.03 

Step frequency (Hz) 
4.07 

± 0.32 

4.01 

± 0.26 
0.981 0.898 1.000 0.03 0.07 0.975 0.834 1.000 0.03 0.08 

Touchdown distance (m) 
0.40 

± 0.08 

0.42 

± 0.08 
0.791 0.258* 1.000 0.02 0.06 0.701* 0.436* 0.855 0.02 0.07 

Variable 
Right ICC  

(3,1) 

95%  

LB 

95%  

UB 
SEM MDD 

ICC 

(3, k) 

95%  

LB 

95% 

 UB 
SEM MDD 

Day One Day Two 

Absolute speed (m/s) 
7.87 

± 0.78 

8.01                                    

± 0.67 
0.973 0.908 0.997 0.02 0.04 0.984 0.944 0.999 0.03 0.08 

Directional step length (m) 
1.93 

± 0.11 

2.00 

± 0.11 
0.939 0.782 0.993 0.03 0.08 0.924 0.768 0.991 0.03 0.09 

Contact time (s) 
0.108 

 ± 0.01 

0.108  

± 0.01 
0.963 0.826 0.996 <0.01 <0.01 0.878 0.734 0.944 0.006 0.02 

Flight time (s) 
0.119  

± 0.03 

0.113 

± 0.05 
0.935 0.693 0.995 0.003 0.01 0.761 0.420* 0.897 0.006 0.02 

Step frequency (Hz) 
4.09 

± 0.33 

4.02 

± 0.27 
0.949 0.818 0.994 0.06 0.16 0.958 0.869 0.995 0.06 0.16 

Touchdown distance (m) 
0.34 

± 0.07 

0.38 

± 0.07 
0.982 0.867 0.997 <0.01 <0.01 0.684* 0.180* 0.874 0.03 0.08 
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Table 3: Left step joint kinematics. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability.  

95% lower- (LB) and upperbound (UB) confidence intervals are presented. Variables showing less than excellent (<0.75) reliability  

are highlighted with an asterisk (*). ± indicates the standard deviation of the group mean. 

Peak joint angle during stance  (°) 
Left ICC 

(3, 1) 
95% 

LB 

95% 

UB 
SEM MDD 

ICC 
(3, k) 

95% 

LB 

95% 

UB 
SEM MDD 

Day One Day Two 

Hip Flexion  42 ± 8 38 ± 16 0.926 0.763 0.988 1.92 5 0.930 0.782 0.992 2.55 7 

Hip Extension -15 ± 5 -14 ± 11 0.975 0.922 0.996 0.84 2 0.917 0.738 0.990 2.36 7 

Hip Abduction -5 ± 3 -5 ± 4 0.946 0.825 0.991 0.69 2 0.941 0.714 0.999 0.87 2 

Hip Adduction 9 ± 4 8 ± 5 0.988 0.960 0.998 0.24 1 0.956 0.845 0.997 0.58 2 

Hip Internal Rotation  -2 ± 9 -2 ± 8 0.992 0.973 0.999 0.26 1 0.989 0.965 0.999 0.42 1 

Hip External Rotation -16 ± 8 -14 ± 7 0.963 0.861 0.996 0.55 2 0.967 0.897 0.996 0.72 2 

Knee Flexion -40 ± 5 -42 ± 9 0.952 0.803 0.997 0.81 2 0.967 0.882 0.998 0.87 2 

Knee Extension  -18 ± 7 -18 ± 7 0.975 0.911 0.997 0.70 1 0.978 0.932 0.997 0.54 1 

Knee Abduction  -3 ± 3 -2 ± 4 0.969 0.890 0.996 0.57 2 0.936 0.780 0.995 1.33 4 

Knee Adduction  4 ± 4 3 ± 3 0.942 0.815 0.991 0.38 1 0.937 0.808 0.992 0.40 1 

Knee Internal Rotation 7 ± 7 8 ± 10 0.947 0.814 0.994 1.18 3 0.782 0.190* 0.985 2.39 7 

Knee External Rotation  -13 ± 9 -9 ± 10 0.956 0.862 0.993 1.55 4 0.933 0.794 0.992 2.05 6 

Ankle Dorsiflexion 107 ± 6 108 ± 9 0.962 0.865 0.996 0.96 3 0.934 0.795 0.992 2.37 7 

Ankle Plantarflexion 63 ± 12 58 ± 10 0.960 0.850 0.995 1.94 5 0.932 0.786 0.992 3.87 11 

Ankle Eversion -10 ± 13 -12 ± 13 0.994 0.979 0.999 0.32 1 0.971 0.909 0.996 1.06 3 

Ankle Inversion 5 ± 14 6 ± 11 0.992 0.972 0.999 0.49 1 0.970 0.907 0.996 1.85 5 

Ankle Internal Rotation 24 ± 6 22 ± 6 0.949 0.819 0.994 0.66 2 0.852 0.549* 0.982 2.31 6 

Ankle External Rotation 3 ± 5 4 ± 3 0.976 0.910 0.997 0.69 2 0.871 0.590 0.985 1.76 5 

Midfoot Inversion  0 ± 4 0 ± 3 0.962 0.860 0.996 0.53 1 0.872 0.595* 0.985 1.64 5 

Midfoot Eversion 7 ± 5 7 ± 1 0.985 0.948 0.998 0.34 1 0.877 0.603* 0.986 1.88 5 

MTP Dorsiflexion 36 ± 8 38 ± 6 0.995 0.980 0.999 0.38 1 0.914 0.729* 0.990 2.21 6 

MTP Plantarflexion  13 ± 5 13 ± 6 0.906 0.648* 0.989 0.97 3 0.840 0.504* 0.981 2.20 6 
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Table 4: Right step joint kinematics. ICC (3, 1) represents within-day reliability and ICC (3, k) between-day reliability.  

95% lower- (LB) and upperbound (UB) confidence intervals are presented. Variables showing less than excellent (<0.75) reliability  

are highlighted with an asterisk (*). ± indicates the standard deviation of the group mean. 

Peak joint angle during stance  (°) 
Right ICC  

(3,1) 
95% 

LB 

95% 

UB 
SEM MDD 

ICC 

(3, k) 
95% 

LB 

95% 

UB 
SEM MDD 

Day One Day Two 

Hip Flexion  39 ± 10 43 ± 11 0.909 0.714 0.985 1.81 5 0.883 0.580 0.992 3.15 9 

Hip Extension -15 ± 8 -14 ± 15 0.989 0.962 0.999 0.40 1 0.961 0.861 0.997 1.70 5 

Hip Abduction -7 ± 4 -6 ± 4 0.963 0.871 0.996 0.46 1 0.966 0.896 0.996 0.46 1 

Hip Adduction 4 ± 6 6 ± 5 0.985 0.945 0.998 0.40 1 0.976 0.927 0.997 0.41 1 

Hip Internal Rotation  3 ± 5 4 ± 8 0.923 0.733* 0.991 1.36 4 0.907 0.705* 0.989 1.46 4 

Hip External Rotation -9 ± 2 -9 ± 5 0.761 0.228* 0.962 2.41 7 0.752 0.200* 0.971 2.24 6 

Knee Flexion -44 ± 5 -42 ± 7 0.860 0.461* 0.984 2.21 5 0.831 0.479* 0.980 1.90 5 

Knee Extension  -18 ± 7 -16 ± 8 0.951 0.822 0.994 0.70 1 0.972 0.913 0.997 0.42 1 

Knee Abduction  -3 ± 2 - 4 ± 3 0.891 0.613* 0.987 0.88 2 0.778 0.308* 0.959 0.55 2 

Knee Adduction  2 ± 1 3 ±4 0.855 0.320* 0.978 0.87 2 0.809 0.493* 0.990 1.23 3 

Knee Internal Rotation 1 ± 8 -2 ± 9 0.961 0.862 0.995 1.01 3 0.973 0.886 0.999 1.09 3 

Knee External Rotation  -14 ± 4 -13 ± 9 0.807 0.327* 0.997 1.64 5 0.739* 0.075* 0.982 3.67 10 

Ankle Dorsiflexion 98 ± 6 97 ± 8 0.954 0.854 0.993 1.25 3 0.940 0.814 0.993 1.10 3 

Ankle Plantarflexion 52 ± 13 51 ± 13 0.944 0.804 0.993 1.52 4 0.961 0.864 0.997 1.37 4 

Ankle Eversion -4 ± 8 -4 ± 7 0.988 0.956 0.999 0.60 2 0.897 0.705* 0.983 2.68 6 

Ankle Inversion 12 ± 4 12 ± 9 0.961 0.874 0.994 1.38 4 0.816 0.294 0.987 3.33 9 

Ankle Internal Rotation -7 ± 4 - 6 ± 6 0.948 0.815 0.994 1.06 3 0.922 0.734 0.994 1.25 3 

Ankle External Rotation -17 ± 3 - 16 ± 2 0.929 0.708 0.995 0.75 2 0.793 0.353* 0.976 1.34 4 

Midfoot Inversion  -9 ± 5 -6 ± 4 0.937 0.799 0.990 0.92 3 0.827 0.510* 0.978 2.84 8 

Midfoot Eversion -3 ± 4 0 ± 3 0.960 0.887 0.996 0.77 2 0.880 0.639* 0.986 1.66 5 

MTP Dorsiflexion 36 ± 6 36 ± 5 0.918 0.703 0.990 1.18 3 0.914 0.785 0.994 1.91 5 

MTP Plantarflexion  12 ± 5 10 ± 4 0.945 0.804 0.994 1.53 4 0.908 0.839 0.989 1.77 5 
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Figure 1: Plan view of test set-up (not to scale). 

Figure 2: Lower limb and trunk marker set anatomical marker locations 

Figure 3: Multi-segment foot model marker placement and segment division. The solid line (-) represents the forefoot defined by the first and fifth metatarsal base 

and first, second and fifth metatarsal head. Dashed line (- - -) represents the toebox defined by first, second and fifth metatarsal heads and the head of the second toe. 

Circular line (…) represents the rearfoot segment defined by posterior, lateral and medial calcaneus and a virtual intermedius calcaneus marker. 

 

 

 

 

 


