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Abstract: Amlodipine is a widely used medication in treating hypertension, which is also 

known as a chiral compound. So far efforts have been made to obtain optically pure 

(S)-amlodipine because (R)-amlodipine has poor efficacy and is related to undesirable side 

effects. However, the available separation methods for amlodipine are still unsatisfactory. 

Recently, chiral separation has become a promising application of chiral ionic liquids (CILs), 

because the structural designability enables them adjustable separation efficiency for specific 

tasks. In this work, a high-efficient CIL-based liquid-liquid extraction system was developed 

for racemic amlodipine separation with the assistance of quantum chemistry calculations. 

Enantioselectivity up to 1.35 achieved by the novel system at 298.15 K is significantly higher 

than other available extraction systems. Moreover, the recycling of CIL can be easily realized 

by backward extraction of amlodipine, which is important for the industrial application of 

CILs. 
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Amlodipine is a third-generation dihydropyridine calcium channel antagonist, which has 

been widely used for the treatment of cardiovascular diseases such as hypertension and 

angina pectoris in clinical trials.
1
 Known as a chiral compound (Figure 1), its two 

enantiomers exhibit different biological and pharmacological responses in internal 

environment. According to the present research, the hypotensive activity mainly arises from 

(S)-amlodipine, which can inhibit the calcium influx across cell membranes.
2
 (R)-amlodipine 

has very poor potency, while it may release nitric oxide into the peripheral blood vessels, 

further resulting in peripheral edema and some other undesirable side effects.
3
 It’s widely 

accepted that to isolate (S)-amlodipine from its racemate and administer amlodipine in the 

single enantiomeric form is beneficial for both safety and efficacy of the medication. 

 

The separation of chiral compounds is of substantial significance especially in 

pharmaceutical industry, which is nevertheless a challenging task due to the fact that 

enantiomers possess identical physical and chemical properties in achiral environment.
4, 5

 Till 

now, numerous attempts have been made to develop enantioselective separation process to 

obtain optically pure (S)-amlodipine with emphasis on diverse chromatographic techniques,
6, 

7
 crystallization

8, 9
 and extraction.

10, 11
 While the chromatographic techniques are only 

applicable in laboratory scale considering the low capacity and large consumption of 

solvents.
12

 Preferential crystallization featuring the formation of diastereomeric salts using 

tartaric acid derivatives is the most popular technique in industrial separations. But the 

disadvantage comes from the extensive use of hazardous organic solvents like DMSO, DMF 

and DCM, and it just gives rise to the safety and environmental concerns of the industrial 
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separation process. Furthermore, involved in bulk solid-handling operations, the 

crystallization separation processes are generally tedious and time-consuming.
13

 

Liquid-liquid extraction is seen as an alternative technology to overcome the deficiencies of 

chromatography and crystallization, while the currently available extraction systems 

comprising conventional chiral extractants are still subjected to poor efficiency and all 

require to be handled at quite frigid temperature, which means intensive energy consumption. 

Without doubt, there is a great demand to develop high-efficient and environmentally benign 

separation process for amlodipine racemate. 

Chiral ionic liquids (CILs) are a subclass of ionic liquids, in which the cation, anion or 

seldom both may be chiral. CILs are of importance due to the unique chiral recognition 

capability they exhibit,
14, 15

 besides other glaring merits inherited from ionic liquids such as 

low volatility, good chemical stability and excellent solubility.
16

 Moreover, CILs are proposed 

as designable chiral media, because their properties can be finely tuned by modifying the type 

and composition of the ion pairs for different tasks to increase the separation efficiency.
17

 

Owing to the favorable advantages, CILs are widely used in diverse separation processes,
18-20

 

especially their application in enantioselective extraction became an important issue in 

research in recent years. A pioneering work to separate phenylalanine racemate through chiral 

ligand-exchange liquid-liquid extraction using Cu
2+

 modified amino acid ionic liquid (AAIL) 

done by Tang et al achieved an excellent enantiomeric excess value reaching up to 50.6% in 

single-stage extraction.
21

 In other relevant research, the separation efficiency was further 

improved by introducing tropine-based cation into the AAIL.
22

 Despite these results show 

that CIL-based extraction is a very promising chiral separation technology, the difficulty in 
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further recovery of the products from the metal ligand still remains to be a problem.
21

 More 

importantly, metal contamination on products especially pharmaceuticals may become a 

critical hurdle to limit the industrial application of CILs. An effective way to overcome the 

defects of chiral ligand-exchange extraction is to exploit the chiral recognition capabilities of 

CILs directly without the use of coordinated metals,
23

 which meanwhile sets higher 

requirement for the configuration and chemistry of CILs to match specific chiral compound 

and has rarely been reported. Considering in some discussions earlier, quantum chemistry 

calculation has been successfully used to investigate the structure-function relationship of 

CILs and predict their performance in extraction separation of phenolic homologs,
24

 we are 

inspired to expect that this approach may also provide guidance to the selection of CIL for 

enantioselective extraction. Despite other computational methods such as conductor-like 

screening model (COSMO) calculation is available to predict behaviors of ionic liquids in 

complex systems by considering the charge distribution on molecular surfaces,
25, 26

 it’s not 

applicable to discriminate optical isomers in this work as the difference in charge 

distributions between molecules only differing in conformations is usually very slight.
27

 

With the aim to create a high-performance and green separation process for amlodipine, 

we report an experimental research combined with quantum chemistry calculations to 

develop a CIL-based liquid-liquid extraction system in this work. AAILs derived from 

natural amino acids were chosen for investigation as they were low-cost and 

biodegradability.
21, 28

 A pre-screening of AAILs was carried out by quantum chemistry 

calculation, and the predictive capability of the theoretical calculations was further validated 

by experimental data. The impacts of organic solvent, solution pH, concentration of the 
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substrates and extraction temperature on the separation efficiency, along with the recycling of 

AAIL were systematically investigated. It is prospected the approach proposed in the present 

work may extend the application of CILs in chiral separations. 

 

Methods 

Quantum chemistry calculation details 

Quantum chemistry calculations in this work were performed with Gaussian 16 

software.
29

 The hybrid Becke 3-Lee-Yang-Parr (B3LYP) exchange-correlation functional
30

 

and the density functional theory (DFT)
31

 with 6-31+G(d,p) basis set were employed. And 

dispersion-corrected
32

 DFT at B3LYP-D3/6-311+G(d,p) level of theory is also applied to 

determine the reasonable geometries. No constraint was applied to the geometry 

optimizations and all optimized geometries were verified as local minimums on the potential 

energy surface by vibrational frequency calculations. The geometries of amlodipine 

enantiomers, anions and cations of AAILs were produced by optimization and modification 

based on the previously published configurations.
33-36

 The optimization of ion pairs was done 

by placing the anions at different positions around the cations to construct different initial 

conformations and then optimizing them respectively. Conformation with the lowest energy 

was taken as global minimum for the AAIL. The initial conformations of amlodipine-AAIL 

complexes were constructed based on the molecular electrostatic potentials of the 

enantiomers and the ion pairs. Subsequently, the global minimums of all complexes were 

explored by geometry optimizations on these initial conformations. Interaction energies 

between amlodipine enantiomers and AAILs were calculated and corrected by basis set 
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superposition errors (BSSE) obtained by the counterpoise procedure method
37

 and zero-point 

energies (ZPE) obtained within the harmonic approximation. To get further insight into the 

interactions, atoms in molecules (AIM) analysis was also performed for the optimized 

amlodipine-AAIL complexes by AIMALL program.
38

 

Chemicals and analytical method 

Racemic amlodipine was purchased from Dalian Meilun Biotech Co. Ltd (Liaoning, 

China). 1-butyl-3-methylimidazolium L-glutamate ([Bmim][Glu], 97%), 

1-ethyl-3-methylimidazolium L-glutamate ([Emim][Glu], 97%), 1-butyl 

-3-methylimidazolium L-serinate ([Bmim][Ser], 97%), 1-ethyl-3-methylimidazolium 

L-serinate ([Emim][Ser], 97%), 1-butyl-3-methylimidazolium L-phenylalanate ([Bmim][Phe], 

97%) and 1-ethyl-3-methylimidazolium L-phenylalanate ([Emim][Phe], 97%) were 

purchased from Chengjie Chemical Co. Ltd (Shanghai, China). n-decanol (98%) and 

n-hexanol (98%) were purchased from Aladdin Reagent Co. Ltd (Shanghai, China). 

1,2-dichloroethane (AR, 99.0%), dichloromethane (AR, 99.5%), n-octanol (AR, 99.0%), 

sodium acetate (NaAc, AR, 99%) and acetate (HAc, AR, 99.5%) were purchased from 

Sinopharm Chemical Reagent Co. Ltd (China). NaAc/HAc buffer solutions in different pH 

ranges were prepared by mixing of sodium acetate and acetate solutions (both 0.3 mol/L) in 

proper proportions, and the pH measurements were performed with a pHS-3C digital 

pH-meter (LeiCi, Shanghai, China). 

Concentration of amlodipine enantiomers in organic phase was detected by 

high-performance liquid chromatography (HPLC, Agilent 1260 Infinity LC system). An 

EnantioPak SCDP column (5 μm, 4.6 × 250 mm
2
) was used with the mobile phase made up 
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of n-hexane (containing 0.1% trifluoroacetic acid) and ethanol (85/15, v/v). The flow rate of 

the mobile phase was set to be 1 mL/min, and the detection on amlodipine was performed by 

defined wavelength at 237 nm. 

 

Extraction and backward extraction process 

In this work, all AAILs were diluted before use, as the pure AAILs were highly viscous 

near room temperature. The aqueous phase was prepared by dissolving a known amount of 

AAIL into NaAc/HAc buffer solution, and the organic phase was prepared by dissolving 

racemic amlodipine into halohydrocarbon or aliphatic alcohol. The aqueous phase and the 

organic phase at the same volume were put together into a shake flask, shaken isothermally at 

220 rpm for 3 hours when the extraction equilibrium has already been achieved as shown in 

Supplementary Figure 1 (take n-decanol-buffer/[Bmim][Glu] system for example), and 

settled for 30 minutes. The organic phase was then taken out of the flask without disturbing 

the aqueous phase and detected by HPLC to determine the concentration of amlodipine. Due 

to all organic solvents used in this work were almost immiscible with water, the concentration 

of amlodipine in the aqueous phase could be determined by mass balance method.
39-41

 All 

experiments were repeated at least three times and the errors in distribution coefficients were 

less than 5%. The distribution coefficient and enantioselectivity were calculated by the 

following equations, 

Sa

So
S

C

C
D                                 (1) 

Ra

Ro
R

C

C
D                                 (2) 
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R

S

D

D
                                (3) 

where CSo and CRo, CSa and CRa refer to the concentration of (S)-amlodipine and 

(R)-amlodipine in the organic phase, concentration of (S)-amlodipine and (R)-amlodipine in 

the aqueous phase, respectively. DS and DR refer to the distribution coefficients of 

(S)-amlodipine and (R)-amlodipine, and α refers to the enantioselectivity. 

To assess the mutual solubility between AAIL and organic solvent during the extraction 

process, blank extraction experiments were conducted. All experimental conditions were kept 

the same as mentioned above, except that amlodipine racemate was not added to exclude the 

interference for detection. After phase equilibrium had been reached, the content of AAIL in 

the organic solvent was determined on a 752PC UV–vis spectrophotometer (Shanghai 

spectrum, China). The results show that AAIL dissolved in the organic solvent is negligible. 

Take n-decanol-buffer (pH=5.5)/[Bmim][Glu] biphasic system for example, the mole fraction 

of AAIL in the organic solvent is only nearly 0.01% (Supplementary Figure 2). 

After the extraction process, the AAIL containing aqueous phase loaded with amlodipine 

was separated from the organic phase and used for backward extraction. The aqueous phase 

was mixed with n-decanol (1:1, v/v) and shaken vigorously under 298.15 K for 2 hours to 

reach phase equilibrium, then settled for half an hour. The aqueous phase and the organic 

phase were separated from each other, and the aqueous phase was reused in the extraction 

process. The schematic representation of the experimental procedure is shown in Figure 2. 
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Results and Discussion 

Hunting AAILs for the separation of amlodipine by quantum chemistry calculations 

In this work, the candidate AAILs are generated by combining the imidazolium cations 

Emim
+
, Bmim

+
 with amino-acid derived anions Glu

-
, Phe

-
 and Ser

-
. At the beginning, 

[Bmim][Glu] will be proposed as a representative to illustrate the chiral recognition 

mechanisms of AAILs. The optimized geometry of the complex formed by [Bmim][Glu] and 

(R)-amlodipine at B3LYP/6-31+G(d,p) level of theory is displayed in Figure 3a. There are 

three explicit hydrogen bonds represented by dash lines formed between them, and both the 

cation and the anion of the AAIL are involved in these hydrogen bonding interactions. The 

oxygen atoms contained in the γ-carboxyl of Glu
-
 are labeled as O66 and O67 respectively, and 

they both act as hydrogen bond acceptors for (R)-amlodipine. The corresponding hydrogen 

donor for O66 is the hydrogen atom contained in the amino group of (R)-amlodipine, and that 

for O67 is the hydrogen atom contained in the methyl, which is connected to the 

dihydropyridine ring of (R)-amlodipine. Besides, a third hydrogen bond is found between the 

hydrogen atom on the butyl group of Bmim
+
 and the carbonyl oxygen atom of 

(R)-amlodipine, which is labeled as O31. According to the results of AIM analysis, the 

electron densities (ρc) on bond critical points (BCPs) of N44-H46…O66, C84-H85…O31 and 

C19-H22…O67 are 0.0165, 0.0113 and 0.0058 a.u. respectively, and the corresponding 

Laplacian values (▽2
ρc) are 0.0653, 0.0423 and 0.0283 a.u.. All these values are within the 

typical range of hydrogen bond (0.002-0.035 a.u. for ρc, and 0.024-0.139 a.u. for ▽2
ρc).

42
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In the optimized geometry of (S)-amlodipine-[Bmim][Glu] (Figure 3b), interaction 

between the γ-carboxyl of Glu
-
 and the amino group of (S)-amlodipine, and that between the 

side chain of Bmim
+
 and the carbonyl oxygen atom O31 of the enantiomer can still be found. 

Nevertheless, due to the steric effect between the chlorphenyl group of (S)-amlodipine and 

the butyl group of Bmim
+
, the orientation between the side chains of Bmim

+
 and O31 is 

different from that in (R)-amlodipine-[Bmim][Glu]. As is shown, the hydrogen atom to 

interact with O31 is located in the methyl rather than the butyl of Bmim
+
. Moreover, there’s 

no hydrogen bond between the γ-carboxyl of Glu
-
 and the hydrogen atoms in the methyl of 

(S)-amlodipine as in (R)-amlodipine-[Bmim][Glu], because they move further from each 

other also by influence of the steric effect. The length of C80-H82…O31 in 

(S)-amlodipine-[Bmim][Glu] is 2.43 Å, and it is relatively longer than C84-H85…O31 in 

(R)-amlodipine-[Bmim][Glu] by 0.12 Å, indicating the hydrogen bonding interaction 

between the side chain of Bmim
+
 and the carbonyl oxygen atom O31 in 

(R)-amlodipine-[Bmim][Glu] should be stronger than in (S)-amlodipine-[Bmim][Glu], since a 

shorter length is usually more favorable to forming a more stable hydrogen bond. The 

inference is further confirmed by the results of AIM analysis, because the values of ρc and ▽

2
ρc for C80-H82…O31 are 0.0092 and 0.0357 a.u. respectively, and both of them are smaller 

than those of C84-H85…O31. The length of N44-H46…O67 in (S)-amlodipine-[Bmim][Glu] is 

also longer than N44-H46…O66 in (R)-amlodipine-[Bmim][Glu], and further analysis of AIM 

reveals N44-H46…O66 possesses higher stability as well, with slightly larger ρc and ▽2
ρc than 

N44-H46…O67 (0.0162 a.u. for ρc and 0.0635 a.u. for ▽2
ρc). By this way, it can be concluded 

that the hydrogen bonding network between [Bmim][Glu] and (R)-amlodipine is stronger 
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than that between [Bmim][Glu] and (S)-amlodipine. The result implies the AAIL is likely to 

recognize (R)-amlodipine preferentially. Furthermore, the interaction energies for 

[Bmim][Glu] to interact with (R)-amlodipine and (S)-amlodipine are -50.64 and -42.64 

kJ/mol, respectively. Considering a more negative energy corresponds to stronger interactions, 

the same result can be attained that [Bmim][Glu] interacts more strongly with (R)-amlodipine, 

herein its potential recognition effect for (R)-amlodipine is more evident. The above analyses 

approve that hydrogen bonding interactions are crucial in determining the enantioselective 

recognition capability of AAIL. Similarly, in some discussions earlier, the essential role of 

hydrogen bonds to recognize structurally similar bioactive compounds in ionic 

liquid-mediated extraction has also been confirmed.
24, 43, 44

  

Optimized geometries of complexes formed by amlodipine enantiomers and other five 

AAILs at B3LYP/6-31+G(d,p) level are summarized in Supplementary Figure 3-7. By 

comparing these conformations, it can be found that the active sites for amlodipine to interact 

with different AAILs are uniform, as has been revealed in the above discussion about 

[Bmim][Glu]. It represents that amlodipine has analogous interaction mechanism with these 

AAILs. Moreover, the cations interact with the enantiomers mainly through the side carbon 

chains, which are also responsible for steric effects. However, the active sites for different 

amino-acid derived anions to interact with amlodipine are somewhat different from each 

other, due to the subtle change in their compositions and structures.  

Interaction energies between different AAILs and amlodipine enantiomers at 

B3LYP/6-31+G(d,p) level are listed in Table 1, where ΔER and ΔES refer to energies for 

AAILs to interact with (R)-amlodipine and (S)-amlodipine respectively, and the quantity ΔE 
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calculated by subtracting ΔER from ΔES represents the energy difference between ΔER and 

ΔES. As is shown, ΔER and ΔES for different AAILs are all negative, and vary from -42.35 to 

-63.23 kJ/mol. Except for [Bmim][Glu], the values of ΔER for other three AAILs including 

[Bmim][Ser], [Emim][Ser] and [Bmim][Phe] are also more negative than the corresponding 

ΔES. The result indicates that these AAILs all interact more strongly with (R)-amlodipine 

than with (S)-amlodipine, so it is theoretically possible that they all exhibit preferable 

recognition effect towards (R)-amlodipine. Unlike the above four AAILs, [Emim][Glu] and 

[Emim][Phe] are expected to recognize (S)-amlodipine preferably, because the values of ΔER 

for these two AAILs are less negative than ΔES, meaning stronger interactions with 

(S)-amlodipine. By further comparing ΔE for all the AAILs, it can be seen this value for 

[Bmim][Glu] is very remarkable. It accounts for nearly 20% of the total energy for this AAIL 

to interact with (S)-amlodipine, and its absolute value is at least two times that of 

[Bmim][Ser], [Emim][Ser], [Bmim][Phe] and [Emim][Phe]. It implies the recognition 

capability of [Bmim][Glu] should be much stronger than the other AAILs, because a larger 

energy difference between ΔER and ΔES represents a more significant discrepancy between 

the stabilities of (S)-amlodipine-AAIL and (R)-amlodipine-AAIL complexes, which is more 

beneficial to the separation. 

We also calculated the interaction energies based on amlodipine-AAIL complexes 

(Supplementary Figure 8-13) optimized at B3LYP-D3/6-311+G(d,p) level, and the results are 

summarized in Table 1. As is shown, the values of ΔER and ΔES on this level are significantly 

lower than those on B3LYP/6-31+G(d,p) level by 63.87-99.08 and 64.51-96.99 kJ/mol, 

respectively, representing that the incorporation of Grimme’s dispersion correction (D3) in 
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the DFT based exchange-correlation functions can fairly well consider the dispersion 

effects.
45, 46

 The values of ΔE for [Bmim][Glu], [Bmim][Ser] and [Emim][Ser] are positive, 

and that for [Emim][Glu] stay negative, just the same as that observed on B3LYP/6-31+G(d,p) 

level, again suggesting their preferable recognition effect for (R)-amlodipine and 

(S)-amlodipine, respectively. Most importantly, the absolute value of ΔE for [Bmim][Glu] 

nearly doubled compared to that calculated on B3LYP/6-31+G(d,p) level, and is more 

significantly higher than for other AAILs, highlighting its potential superior enantioselective 

recognition capability for amlodipine racemate. 

Table 1. BSSE and ZPE corrected interaction energies calculated on B3LYP/6-31+G(d,p) and 

B3LYP-D3/6-311+G(d,p) levels of theory (unit: kJ/mol) 

 

Validation of quantum chemistry calculations 

As is mentioned earlier, quantum chemistry calculation has been successfully used to 

predict the phase behavior of phenolic homologs in CIL-based extraction systems.
24

 However, 

as far as we know, there is still no report about the predictive capability of quantum chemistry 

calculations on the separation of chiral compounds using CILs. Therefore, it is necessary to 

validate whether the computational approach would be fit for the enantioselective systems 

with experimental data. 

On this account, a series of biphasic systems comprising different AAILs were 

constructed to experimentally test the chiral recognition capabilities of these chiral 

extractants. The resulting distribution coefficients and corresponding enantioselectivities are 

displayed in Figure 4a. It can be seen, when [Bmim][Glu], [Bmim][Ser] and [Emim][Ser] are 
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used as chiral extractants, the distribution coefficients of (S)-amlodipine are visibly larger 

than (R)-amlodipine, and the enantioselectivities are measured as 1.35, 1.11, and 1.05, 

respectively. This phenomenon confirms that the three AAILs all interact more strongly with 

(R)-amlodipine than with (S)-amlodipine, herein their preferential recognition effects towards 

(R)-amlodipine predicted by quantum chemistry calculation are identified. When [Emim][Glu] 

is employed, the distribution coefficient of (R)-amlodipine turns out to be higher than that of 

(S)-amlodipine, and enantioselectivity below 1 is observed, because of its unique preferable 

recognition effect for (S)-amlodipine. The phenomenon that [Emim][Glu] and [Bmim][Glu] 

exhibit opposite recognition effect to each other is mainly attributed to the difference in their 

lengths of carbon chains in the cations, which greatly influences the steric effect between the 

ion pairs and the enantiomers, thus leading to distinct amlodipine-AAIL complex 

conformations (Figure 1, Supplementary Figure 3). In the other two Phe
-
-based AAILs 

containing systems, the distribution coefficients of (R)-amlodipine are very close to those of 

(S)-amlodipine, revealing these AAILs exhibit very poor chiral recognition abilities for 

amlodipine. The reason is that both [Bmim][Phe] and [Emim][Phe] have quite close binding 

capabilities for different amlodipine enantiomers, with absolute value of ΔE being only 1.75 

and 2.02 kJ/mol on B3LYP/6-31+G(d,p), 1.39 and 1.08 kJ/mol on B3LYP-D3/6-311+G(d,p), 

as shown in Table 1. Despite there is no meaning in determining the recognition tendency of 

[Bmim][Phe] and [Emim][Phe], the result still approves that a larger interaction energy 

difference is more favorable for the separation process. 

In summary, enantioselectivities of these AAILs investigated in this work are in the order 

that [Bmim][Glu] > [Bmim][Ser] > [Emim][Ser] > [Bmim][Phe] ≥ [Emim][Phe] > 
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[Emim][Glu]. It is noteworthy that when the enantioselectivity is plotted versus ΔE (Figure 

4b), an approximate linear relationship is shown between the two quantities, both on 

B3LYP/6-31+G(d,p) and B3LYP-D3/6-311+G(d,p) levels of theory. The result proves that 

the pre-screening of AAILs by quantum chemistry calculations based on interaction energies 

is applicable to the present work. 

 

Extraction of amlodipine with and without [Bmim][Glu] as chiral extractant 

From the above theoretical calculation and experimental results, it has been verified that 

[Bmim][Glu] is a promising chiral extractant for amlodipine. In the subsequent studies efforts 

would be focused on developing an efficient enantioselective system using [Bmim][Glu] as 

the chiral extractant. For this purpose, a collection of organic solvents were combined with 

the [Bmim][Glu]-buffer solution to construct different biphasic systems, and phase behaviors 

of amlodipine enantiomers in these systems were investigated. 

Table 2. Distribution coefficient and enantioselectivity for different biphasic systems
a
 

 

From the results summarized in Table 2, it can be seen the distribution coefficients of 

amlodipine enantiomers in halohydrocarbon (1,2-dichloroethane/dichloromethane) containing 

systems are relatively smaller than in other systems, with or without the addition of 

[Bmim][Glu], indicating the affinities of 1,2-dichloroethane and dichloromethane for 

amlodipine are somewhat weaker than aliphatic alcohols. In aliphatic alcohols containing 

systems, the distribution coefficients of amlodipine enantiomers are in the order that 

n-hexanol > n-octanol > n-decanol, which is consistent with the polarities of these aliphatic 
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alcohols. When [Bmim][Glu] is absent, the distribution coefficients of (R)-amlodipine and 

(S)-amlodipine in n-hexanol-buffer reach up to 75.82 and 79.61. While in n-octanol-buffer, 

the distribution coefficients for (R)-amlodipine and (S)-amlodipine decrease dramatically to 

36.33 and 37.91 respectively, and those in n-decanol-buffer are even lower. When 

[Bmim][Glu] is added, the trend still holds as shown in Table 2. These results reveal that the 

property of organic solvent has a great effect on the phase behavior of amlodipine, and 

aliphatic alcohols of higher polarities would have stronger affinities for amlodipine 

enantiomers. More importantly, it can also be seen that the addition of [Bmim][Glu] lowers 

the distribution coefficients no matter in aliphatic alcohol or in halohydrocarbon containing 

systems, implying there are strong intermolecular interactions between [Bmim][Glu] and 

amlodipine enantiomers, which drive the enantiomers into the aqueous phase.  

In n-decanol and n-octanol containing systems, the addition of [Bmim][Glu] is observed 

to promote the enantioselectivities to different degrees. When [Bmim][Glu] is absent, the 

enantioselectivities in n-decanol-buffer and n-octanol-buffer are only 0.97 and 1.04. While 

after the addition of [Bmim][Glu], they increase to 1.35 and 1.21 respectively, indicating 

[Bmim][Glu] dose have a prominent chiral recognition effect for (R)-amlodipine as has been 

predicted by quantum chemistry calculations. By contrast, in other organic solvents 

containing systems, the addition of [Bmim][Glu] does not make very distinct difference in 

enantioselectivity. The reason might be that the affinities of halohydrocarbons and n-hexanol 

towards amlodipine enantiomers are either too small or too large to achieve a moderate 

distribution of the enantiomers between the aqueous phase and the organic phase. In 

halohydrocarbons containing systems, the smaller distribution coefficients mean the 
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concentration of amlodipine in the aqueous phase was higher than in other systems, so the 

probability that [Bmim][Glu] was occupied by competing (S)-amlodipine increased. As for in 

n-hexanol containing system, the relatively larger distribution coefficients declare the 

concentration of amlodipine in the aqueous phase was lower than other two aliphatic alcohol 

containing systems, herein the sufficient interaction between (R)-amlodipine and [Bmim][Glu] 

was blocked. The results stress the importance of choosing the modest organic solvent for 

extraction separation process. 

Influence of solution pH on the enantioselective extraction of amlodipine 

For this part, n-decanol-buffer/[Bmim][Glu] system in which the aqueous solutions were 

weakly acid with pH values ranging from 3.5 to 6.0 was used to investigate the effect of 

solution pH on the enantioselective extraction process. The distribution coefficient and 

enantioselectivity were plotted versus the pH of the aqueous solution in Figure 5. Apparently, 

the distribution coefficient shows a strong dependence on acidity. The increase in solution pH 

results in a continuous growth in distribution coefficients for both enantiomers. Amlodipine is 

known as a weak alkaline compound and its pKa is equal to 8.6.
47

 In aqueous solution, it 

could exist in either a molecular form or a cationic form depending on the deprotonation and 

protonation behavior of the primary amino group. According to the following 

Henderson-Hassaelbach equation,
48

  

 ][/][log  BHAcidBBasepKapH                    (4) 

when the pH value is improved, the percentage of monomers in molecular form increases 

gradually, implying more amlodipine monomers are ready to dissolve in the organic phase. 

For this reason, the variation in distribution coefficients of amlodipine is estimated to be 
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reasonable. 

 

The buffer solution pH also greatly affects the enantioselectivity. When the solution pH 

is in the range of 3.5 to 5.5, the enantioselectivity grows continuously and reaches its 

maximum at pH=5.5. However, further increase in solution pH brings about a severe decrease 

in enantioselectivity, and it drops to only 1.06 when the pH is 6.0. Actually, along with the 

rapid increase in distribution coefficient, the amount of amlodipine in the aqueous phase 

declines very quickly, and the concentration of amlodipine at pH=6.0 equals only nearly half 

of that at pH=5.5. The extra low concentration of amlodipine under increased pH would 

impair the interactions between the enantiomers and AAIL so that the dramatic decrease in 

enantioselectivity is observed. From above, it can be concluded that the solution pH has a 

great effect on the extraction process by influencing the existence form of amlodipine 

monomers, and pH=5.5 would be appropriate for the separation process. 

Influence of the concentration of AAIL on the enantioselective extraction of amlodipine 

To investigate the influence of the concentration of AAIL on the extraction efficiency, 

aqueous solutions containing [Bmim][Glu] with different AAIL concentrations varying from 

0.01 to 0.20 mol/L were prepared and applied to the extraction process, and the results are 

summarized in Figure 6. Along with the increase in the concentration of [Bmim][Glu], the 

distribution coefficients for both enantiomers decrease because a higher concentration of 

[Bmim][Glu] leads to stronger interactions with amlodipine, and consequently higher 

concentration of amlodipine enantiomers in the aqueous phase. It is also found the 

enantioselectivity increases under low [Bmim][Glu] concentration and reaches the peak at 
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cAAIL=0.025 mol/L. However, further increase in the concentration of [Bmim][Glu] would 

reduce the enantioselectivity, because non-preferential recognition for (S)-amlodipine is 

included. 

 

Influence of initial concentration of racemic amlodipine on the enantioselective 

extraction of amlodipine 

The effect of initial concentration of racemic amlodipine on the extraction process is 

shown in Figure 7, where the initial concentration was in the range of 0.5 to 3.0 g/L. It can be 

observed, both the distribution coefficient and the enantioselectivity rise firstly and then 

decline with the increase in the initial concentration of amlodipine. The distribution 

coefficients come to the maximum values when camlodipine=2.25 g/L, while the 

enantioselectivity comes to its maximum at camlodipine=2.0 g/L. The result verifies that the 

initial concentration of amlodipine has an important effect on the phase behavior, and 2.0 g/L 

would be a suitable initial concentration for amlodipine. 

 

Influence of temperature on the enantioselective extraction of amlodipine 

In general, temperature is an important factor influencing the separation efficiency of 

chiral extraction process. Lower temperature is usually more beneficial to improve the 

enantioselectivity because interactions between chiral extractants and target molecules 

usually get weakened under higher temperature, and the chiral recognition effect will be 

impaired as a result.
40, 49

 For this reason, the previously proposed methods for the extraction 

of amlodipine using conventional extractants such as cyclodextrin and tartaric acid 
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derivatives all require to be handled at frigid temperature,
10, 11

 which brings about intensive 

energy consumption. As far as we know, enantioselectivities of those methods near room 

temperature (298.15 K) would not be higher than 1.14. 

In this work, the effect of extraction temperature on the phase behavior of amlodipine 

enantiomers in n-decanol-buffer/[Bmim][Glu] was studied with the window opened from 

288.15 to 318.15 K. According to the results listed in Figure 8, enantioselectivity reaching up 

to 1.38 can be achieved at 288.15 K, whereas it drops only slightly under room temperature 

and maintains at 1.35 although higher temperature is unfavorable for separation, owing to the 

superior chiral recognition capability of [Bmim][Glu]. By contrast to other extraction systems 

comprising conventional chiral extractants, the performance has been significantly improved 

by the use of AAIL. More importantly, the desirable separation efficiency under room 

temperature proves the present system is conducive to energy saving and consumption 

reducing. 

Recycling of [Bmim][Glu] 

The recycling of ionic liquids is important for developing an economic and 

environmentally benign separation process. In this work, the recycling of [Bmim][Glu] was 

achieved by regenerating the aqueous phase through backward extraction, with no need to 

further purify the AAIL. Note that n-decanol was employed as the organic solvent in 

backward extraction process mainly for two reasons. Firstly, n-decanol itself is an adequate 

organic solvent for the enantioselective extraction of amlodipine racemate. To keep the 

organic solvent consistent in both extraction and backward extraction process is beneficial to 

establish easy-handling and continuous operations. Secondly, the backward extraction 
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efficiency is very desirable. The result of HPLC analysis shows that after the backward 

extraction, the concentration of amlodipine in the aqueous phase is below 0.01 g/L, which is 

negligible to the initial concentration of amlodipine at 2.0 g/L. 

The performance of the reused [Bmim][Glu] containing aqueous phase within 5 cycles is 

shown in Figure 9. Compared to extraction process using fresh aqueous phase, the 

enantioselectivity obtained with the regenerated aqueous phase declined a little bit. A 

reasonable explanation to the phenomenon is that the regenerated aqueous phase is saturated 

with n-decanol, which may subtly influence the phase equilibrium. It was also confirmed by 

an additional controlled extraction experiment in which a n-decanol pre-saturated 

[Bmim][Glu] containing aqueous solution was used. The results indicate that 

enantioselectivity of amlodipine also descends to about 1.24, just similar to that in 

regenerated CIL-based system. Nevertheless, considering enantioselectivity in the 

regenerated system still stays above 1.20 within 5 cycles, and the distribution coefficients in 

different cycles only change very slightly, it can be deduced that the reused [Bmim][Glu] still 

remains good separation efficiency for amlodipine. 

 

Conclusions 

In this work, a novel enantioselective liquid-liquid extraction system comprised of 

n-decanol, NaAc/HAc buffer solution and AAIL was proposed for the separation of 

amlodipine. Quantum chemistry calculations were carried out to give a pre-screening to the 

candidate AAILs, and revealed that [Bmim][Glu] was supposed to exhibit more preferable 

chiral recognition effect for amlodipine enantiomers than other studied AAILs. The 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



theoretical calculations also provide comprehensive insights into the chiral recognition 

mechanisms of AAILs, and show that hydrogen bonding interactions are essential to the 

recognition capabilities of AAILs. To validate the theoretical calculations, phase behaviors of 

amlodipine enantiomers in diverse biphasic systems containing different AAILs were 

investigated, and we found that the enantioselectivity showed a strong dependence on ΔE. It 

demonstrates the quantum chemistry calculations are capable to provide reasonable guidance 

to the screening and design of CILs. Subsequently, the impacts of several important factors 

on the separation efficiency of amlodipine in the present system were investigated. The 

results show that under optimal conditions when the initial concentration of [Bmim][Glu] and 

racemic amlodipine are 0.025 mol/L and 2.0 g/L respectively, the solution pH is 5.5 and the 

extraction temperature is 288.15 K, enantioselectivity reaching up to 1.38 can be achieved. 

When operated at 298.15 K, only a small drop in separation efficiency was observed, 

revealing the present system made less strict demand on temperature than conventional 

extraction systems containing organic chiral extractants, herein the method was proved to be 

more energy-efficient. Lastly, the recycling of [Bmim][Glu] by regenerating the AAIL 

containing aqueous phase through backward extraction was studied, and the experimental 

data showed that the reused [Bmim][Glu] still remained good separation efficiency. Thus, we 

have successfully developed a new potential chiral separation process for amlodipine. 
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Figure 1. The structures of (a) (R)-amlodipine and (b) (S)-amlodipine 

 

 

 

 

Figure 2. Schematic representation of the experimental procedure 
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Figure 3. Optimized structures of (a) (R)-amlodipine-[Bmim][Glu] and (b) 

(S)-amlodipine-[Bmim][Glu] at B3LYP/6-31+G(d,p) level. All interatomic distances 

represented by dash lines are in angstroms. 

 

 

 

 

 

Figure 4. (a) Distribution coefficient and enantioselectivity of amlodipine enantiomers in 

different n-decanol-buffer/AAIL systems and (b) enantioselectivity plotted versus ΔE 

calculated on B3LYP/6-31+G(d,p) and B3LYP-D3/6-311+G(d,p) levels of theory. (The initial 

concentration of racemic amlodipine and AAIL were 2.0 g/L and 0.025 mol/L, respectively. 

The buffer pH was 5.5. Extraction temperature was 298.15 K. R
2
 for linear fit of B3LYP and 

B3LYP-D3 in (b) are 0.85 and 0.91, respectively.) 
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Figure 5. Influence of solution pH on distribution coefficient and enantioselectivity. (The 

initial concentration of amlodipine and [Bmim][Glu] were 2.0 g/L and 0.025 mol/L, 

respectively. The temperature was 298.15 K.) 

 

Figure 6. Influence of concentration of AAIL on distribution coefficient and 

enantioselectivity. (The initial concentration of amlodipine was 2.0 g/L. The solution pH was 

5.5. The temperature was 298.15 K.) 

This article is protected by copyright. All rights reserved.

A
cc

ep
te

d 
A

rti
cl

e



 

Figure 7. Influence of initial concentration of amlodipine on distribution coefficient and 

enantioselectivity. (The concentration of [Bmim][Glu] was 0.025 mol/L. The solution pH was 

5.5. The temperature was 298.15 K.) 

 

Figure 8. Influence of extraction temperature on the distribution coefficient and 

enantioselectivity. (The initial concentration of racemic amlodipine and [Bmim][Glu] were 

2.0 g/L and 0.025 mol/L, respectively. The buffer pH was 5.5.) 
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Figure 9. Distribution coefficient and enantioselectivity of amlodipine in different recycle 

times. (The initial concentration of racemic amlodipine and [Bmim][Glu] were 2.0 g/L and 

0.025 mol/L, respectively. The buffer pH was 5.5. The temperature was 298.15 K.) 
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Table 1. BSSE and ZPE Corrected Interaction Energies Calculated on B3LYP/6-31+G(d,p) 

and B3LYP-D3/6-311+G(d,p) Levels of Theory (unit: kJ/mol) 

AAILs 

B3LYP/6-31+G(d,p)  B3LYP-D3/6-311+G(d,p) 

ΔER ΔES ΔE  ΔER ΔES ΔE 

[Bmim][Glu] -50.64 -42.64 8.00  -124.20 -108.57 15.63 

[Bmim][Ser] -45.99 -42.25 3.74  -123.62 -115.24 8.38 

[Emim][Ser] -46.57 -44.02 2.55  -131.94 -129.47 2.47 

[Bmim][Phe] -50.30 -48.55 1.75  -144.15 -145.54 -1.39 

[Emim][Phe] -42.35 -44.37 -2.02  -141.43 -140.35 1.08 

[Emim][Glu] -58.73 -63.23 -4.50  -122.60 -127.74 -5.14 
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Table 2. Distribution Coefficient and Enantioselectivity for different Biphasic Systems
a
 

Biphasic systems DR DS α 

1,2-dichloroethane-buffer/[Bmim][Glu] 2.90 2.91 1.00 

1,2-dichloroethane-buffer 5.33 5.33 1.00 

dichloromethane-buffer/[Bmim][Glu] 4.19 4.21 1.00 

dichloromethane-buffer 8.01 8.08 1.01 

n-decanol-buffer/[Bmim][Glu] 13.13 17.73 1.35 

n-decanol-buffer 23.15 22.46 0.97 

n-octanol-buffer/[Bmim][Glu] 19.97 24.18 1.21 

n-octanol-buffer 36.33 37.91 1.04 

n-hexanol-buffer/[Bmim][Glu] 55.43 54.91 0.99 

n-hexanol-buffer 75.82 79.61 1.05 

a
 The initial concentration of racemic amlodipine and chiral extractant were 2.0 g/L and 0.025 

mol/L, respectively. The buffer pH was 5.5. The temperature was 298.15 K. 
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