
A comparison of Lucene search queries evolved as text
classifiers

HIRSCH, Laurence <http://orcid.org/0000-0002-3589-9816> and
BRUNSDON, Teresa <http://orcid.org/0000-0001-5866-4326>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/22330/

This document is the Accepted Version [AM]

Citation:

HIRSCH, Laurence and BRUNSDON, Teresa (2018). A comparison of Lucene
search queries evolved as text classifiers. Applied Artificial Intelligence, 32 (7-8),
768-784. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

1

A comparison of Lucene search queries
evolved as text classifiers.

Laurence Hirsch and Teresa Brunsdon

Sheffield Hallam University

Abstract

In this article, we use a genetic algorithm to evolve seven different types of Lucene search query with

the objective of generating accurate and readable text classifiers. We compare the effectiveness of

each of the different types of query using three commonly used text datasets. We vary the number

of words available for classification and compare results for 4, 8 and 16 words per category. The

generated queries can also be viewed as labels for the categories and there is a benefit to a human

analyst in being able to read and tune the classifier. The evolved queries also provide an explanation

of the classification process. We consider the consistency of the classifiers and compare their

performance on categories of different complexities. Finally, various approaches to the analysis of

the results are briefly explored.

Introduction and background

Automatic text classification is the activity of assigning predefined category labels to natural

language texts based on information found in a training set of labelled documents. With the

explosive growth in online text, the task has become critical to many information management

tasks.

In the 1980s, a common approach to text classification involved humans in the construction of a

classifier, which could be used to define a particular text category. Such an expert system would

typically consist of a set of manually defined logical rules, one per category, of type

if {DNF formula} then {category}

2

A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive clauses. The document is

classified under a category if it satisfies the formula i.e. if it satisfies at least one of the conjunctive

clauses. An oft quoted example of this approach is the CONSTRUE system (Hayes et al. 1990), built

by the Carnegie Group for the Reuters news agency. A sample rule of the type used in CONSTRUE to

classify documents in the “wheat” category of the Reuters dataset is given below.

 if((wheat & farm) or (wheat & commodity) or

 (bushels & export) or (wheat & tonnes) or

 (wheat & winter & ¬ soft))

then WHEAT

else ¬ WHEAT

Such a method, sometimes referred to as “knowledge engineering”, provides accurate rules and has

the additional benefit of being human understandable - that is, the definition of the category is

meaningful to a human, producing additional uses of the rule including category verification.

However, the disadvantage is that constructing the required rules requires significant human input

from both those with knowledge of the domain and of rule construction (Apt´e et al. 1994). Since

the 1990s, the machine learning approach to text categorisation has become dominant, requiring

only a set of pre-classified training documents and an automated classifier. A wide variety of

statistical classification systems have been developed, for example: Naive Bayes, k-nearest

neighbour, support vector machines (SVMs) and neural networks (Baharudin et al. 2010).

Probabilistic classifiers based on numerical models often require hundreds or thousands of features

and are not open to human interpretation or maintenance.

Human understandable classifiers

It has been recognised that classifiers that are comprehensible have certain advantages:

1. The classifier may be validated by a human.

2. The classifier may be fine-tuned by a human.

3. The classifier may be used for other tasks such as information extraction, category labels or text

3

mining.

Accuracy and interpretability of classifiers are recognised as often being conflicting goals. As an

example, Oracle Corporation offer various options for classification in their Oracle Text1 product.

Two supervised classifiers are provided using user supplied training documents. The first uses SVM

technology and produces opaque classifiers with high accuracy. The second uses a decision tree to

produce classification rules which are transparent, understandable and modifiable by a human but

are recognised as having lower accuracy. This example clearly indicates that readability and

modifiability have value to commercial classification products and, where such features are required

as part of the classifier, some loss in accuracy is regarded as an acceptable trade-off for a more

comprehensible model. This has led to significant effort being given to developing human

interpretable classifiers, using techniques such as using automatic query generation

(Polychronopoulos et al. 2014).

Genetic Methods in Text Classification

Genetic Methods such as Genetic Programming (GP) and Genetic Algorithms (GA) are stochastic

search methods inspired by biological evolution. Genetic methods have been employed at various

stages of the text classification process (Espejo et al. 2010) - for example, in calculating useful term

weights (Escalante et al. 2015; Uysal and Gunal 2014; Baharudin et al. 2010). Luo (Luo and Zincir-

Heywood 2006) describes a system where recurrent linear GP is used to classify documents that are

encoded as word sequences. Genetic methods have also been used to induce rules or queries useful

for classifying online text (Smith and Smith 1997; Hirsch et al. 2007; Pietramala et al. 2008). In this

case, the evolution requires a fitness test based on some measure of classification accuracy. A

similar approach has been applied in an unsupervised context (Hirsch and Di Nuovo, 2017).

1 http://www.oracle.com/technetwork/database/enterprise-edition/index-098492.html

4

Proposed system

We propose a system to produce readable classifiers in the form of compact Apache Lucene search

queries containing a small number of words. A search query is generated for each of the categories

of the dataset such that each query is a binary classifier for that particular category. Thus, to classify

a document as belonging to a category we need simply to determine if the document is returned by

the search query. We evaluate the effectiveness of various evolved queries on 3 different text

datasets (see below) using a maximum of 4, 8 and 16 words per category. Fitness is accrued for

individuals producing classification queries which retrieve positive examples of the category but do

not retrieve negative examples from the training data. We use the ECJ

(http://cs.gmu.edu/~eclab/projects/ecj/) Java library for evolutionary computation in all the

experiments reported here.

Apache Lucene

Systems using methods based on Darwinian evolution are generally computationally intensive. In

our case, each individual in the population will produce a search query for each category of the

dataset and the fitness is evaluated by applying the search query to a potentially large set of text

documents. With a population of a reasonable size (for example, 1024 individuals) evolving over 100

or more generations it is critical that such queries can be executed in a timely and efficient manner.

For this reason, we decided to use Apache Lucene which is an open source high-performance, full-

featured text search engine. We use Lucene to build inverted indexes on the text datasets and to

execute the queries produced by the GA.

Pre-processing

Before we start the evolution of classification queries a number of pre-processing steps are made.

1. All the text is placed in lower case.

2. A small stop set is used to remove common words with little semantic weight.

3. For each dataset, a Lucene inverted index is constructed and each document labelled (using

http://cs.gmu.edu/~eclab/projects/ecj/

5

Lucene fields) according to its category and its test or training status.

F1 Fitness

As mentioned above, each query is actually a binary classifier. That is, it will classify any document

as either in a given category or outside that category. The following measures are therefore useful:

Recall (r) =
the number of relevant documents returned

the number of relevant documents
 (1)

precision (p) =
the number of relevant documents returned

the number of documents returned
 (2)

The F1 measure is also commonly used for determining classification effectiveness and has the

advantage of giving equal weight to precision and recall. F1 is given by:

 𝐹1 =
2𝑝𝑟

𝑝 +𝑟
 (3)

F1 also gives a natural fitness measure for an evolving classifier where documents in the training set

are the fitness cases. A similar approach is also taken in the Olex-GA (Pietramala et al. 2008) and

GPTC systems (Hirsch 2010). The micro-average is a global calculation of F1 regardless of category

and the macro-average is the average of F1 scores for all the categories.

F1 Word List

The total number of unique words in a document collection can be quite large. If each word were

given as a potential feature for a GA system, the size of the search space would become prohibitive.

We therefore use the following procedure to reduce the number of dimensions. For each category

of the dataset, an ordered list of potentially useful words is constructed which we call the

‘F1WordList’. Each word found in the relevant category of the training data is scored according to its

effectiveness as a single-term classifier for that category. So, for example, if we find the word “oil”

in the training data for a particular category, we construct a query based on the single word which

will retrieve all documents containing the word “oil”. We give the word a value (F1 score) as

determined by the number of positive and negative examples retrieved by the single term query

6

from the training data. We can then create an F1WordList of length n for each category by simply

ordering the words according to their corresponding F1 values and selecting the top n words. In our

system, 300 words are available for classification purposes. A negative list, useful for queries

containing a NOT operator, is created by reversing the two sets such that a high scoring word will

retrieve few documents from the current category but a large number of documents from other

categories.

GA Parameters

We used a fixed set of GA parameters in all our experiments and these are summarised in Table 1.

Subpopulations (island model) are used as a method of increasing diversity in the GA population.

Only limited communication (immigration/emigration) is allowed between subpopulations. In our

case, we exchanged 3 individuals between the two subpopulations every 20 generations.

Table 1: GA Parameters

Parameter Value

Population 1024
Generations 120
Selection type Tournament
Tournament size 5
Termination Max generations
Mutation probability 0.1
Reproduction probability 0.1
Crossover probability 0.8
Elitism No
Subpopulations 2 (exchange 3 individuals every 20 generations)
Chromosome length variable
F1WordList length 300
Engine ECJ 21: http://cs.gmu.edu/~eclab/projects/ecj/

Experiments

In all the experiments reported here, the GA system only had access to the training data. The

evolution for each dataset was repeated 3 times. The final result was determined by applying the

best queries evolved to the test data. There were a number of objectives for the experiments:

1. To evolve effective classifiers against the text datasets.

7

2. To automatically produce compact and human understandable classifiers in search query

format using a small number of features.

3. To evaluate the classification effectiveness of a variety of Lucene query types.

Datasets

Three commonly used text datasets were used.

Reuters-21578 (R10)

Reuters-21578 news collection contains 21,578 news articles in 135 categories collected from the

Reuters newswire in 1987. In our experiments, we use the “ModApt´e split” - a partition of the

collection into a training set and a test set that has been widely adopted by text categorisation

experimenters. We use the top 10 (R10) most populous categories which is comprised of 9980 news

stories. The R10 is one of the most widely used text datasets in text classification research. An in

depth discussion of the Reuters dataset is given in (Debole and Sebastiani 2005).

WebKB

WebKB collected 8,282 web pages from computer science departments of several universities in

1997 by the Carnegie Mellon University Text Learning Group. Each page belongs to only one of

seven categories, though three are discarded following previous research. 4199 documents with

four categories remain: “Student”, “Faculty”, “Course” and “Project”. A test/train split is also defined

(Craven et al. 1998).

20 Newsgroup (20NG)

The 20 Newsgroups collection, set up by (Lang 1995) consists of 20,000 documents that are

messages posted to Usenet newsgroups, and the categories are the newsgroups themselves. We

use the training/test split from the website http://qwone.com/~jason/20Newsgroups/ . Some of

the newsgroups are very closely related to each other (e.g. comp.sys.ibm.pc.hardware /

comp.sys.mac.hardware), while others are highly unrelated (e.g misc.forsale / soc.religion.christian).

http://qwone.com/~jason/20Newsgroups/

8

The data in this set are considered particularly noisy and as might be expected they include

complications such as duplicate entries and cross postings.

Performance

Queries must be evolved for each category of the document set and each individual in the evolving

population must fire a Lucene query to obtain its fitness. All experiments were run on an Intel i5

3330 processor running at 3.00GHz with 8GB of memory. Such a system generated the classification

queries for the R10 dataset listed in Table 4 in just over 3 minutes. Considering the number of

queries and documents in the set, we would suggest that this result is a testament to the efficiency

of ECJ and Lucene. The result of all the training work is a set of search queries. To test the R10

classifier requires the execution of 10 search queries and the result will be delivered in a time frame

below human perception. The fact that search queries will scale up to large text databases, including

the web, is well known.

Query Types

A GA was used to evolve 7 different types of query for classification purposes. A full description of

the indexing system and query syntax is given at the official Lucene site (http://lucene.apache.org/)

together with the Java source code and other useful information concerning Lucene. To help explain

the GA, let us assume that we are evolving a classifier for the R10 “crude” category. The first 8

words of the F1WordList are shown in Table 2. We explain the types of queries and how they are

combined. After each heading, we give the resulting query acronym in brackets.

Table 2: R10 Crude category F1WordList

0 oil

1 crude

2 barrels

3 opec

4 petroleum

5 energy

6 barrel

7 production

http://lucene.apache.org/

9

OR (OR)

When the OR operator is applied to two or more words it is simply required that one of the words

occurs in a document for that document to be returned. Our results show that highly effective

classifiers can be evolved using OR queries which clearly achieve one of primary goals - namely to be

easily interpreted by a human. As mentioned above, as a pre-processing step for each category we

construct an F1WordList of 300 words which are likely to be useful for classifier query construction.

A 4 word query could be constructed from a randomly generated GA such as:

 6 1 4 0

We create a Lucene Boolean query and add the term "barrels" from the list (in Lucene syntax using

BooleanClause.Occur.SHOULD) and then repeat the process for the words "crude", "petroleum" and

"oil" as determined by Table 2. The query will then return documents which contain any of the 4

selected words and we can calculate the F1 fitness as determined by the number of relevant and

irrelevant documents returned.

AND (ANDOR)

Where words are joined by the AND operator in Lucene (BooleanClause.Occur.MUST), all the

words in the query are required to exist in a document for it be returned. It is unusual to evolve

classifiers that return more than a few documents for 3 or more words connected with AND in any

of the datasets we use. However, if we apply the OR operator on a number of two word AND

queries (a conjunction of disjunctions) then we can evolve effective classifiers, and this is the

approach taken here. For example, the following 4 word ANDOR query which was evolved on the

trade category of the R10 achieves an F1 score of 0.699 on the test set:

(+exports +trade) (+trade +u.s)

In Lucene syntax, “+” indicates that the word MUST occur for the document to be returned but since

there is an implicit OR between the two brackets, the query will return a document if it contains the

words (“exports” AND “trade”) OR (“trade” AND “u.s”).

10

NOT (ORNOT together with SFNOT)

NOT on its own is not a useful operator but may improve classification effectiveness when combined

with others. We test NOT combined with a multi-word OR query and NOT combined with SpanFirst

(see below). The following example query gives an F1 of 0.683 for the category talk.politics.mideast

of the 20NG:

-code turkish israeli israel

where a minus sign in Lucene query syntax indicates that the word MUST NOT occur if the document

is to be returned. The query will return any document containing any of the words "turkish, israeli,

israel" but NOT containing the word “code”.

SpanFirst (SF)

A SpanFirst query restricts a query to search in the first part of a document, which is defined as some

number of words from the start. This appears to be useful since the most important information in a

document is often at the start of the text (Hirsch 2010). For example, to find all documents where

"barrel" is within the first 100 words we could use the Lucene query:

new SpanFirstQuery(new SpanTermQuery(new Term(“contents”,

“barrel”)),100);

In this paper, we simplify the format and write the above as: (barrel 100). A more complex query

might be: (barrel 100) (oil 20) which would retrieve documents where the word “barrel” occurred

within the first 100 words of a document OR the word “oil” occurred within the first 20 words.

Using the F1WordList from Table 1, such a query could be defined using the following GA:

6 100 1 20

SpanNear (SN)

We use Lucene SpanNear to evolve queries that will match words occurring within 10 words of each

other. For example, the following query evolved on the R10 corn category (scoring F1 0.843 on the

test set) indicates that one of the word pairs in brackets must occur within 10 words of each other in

a document if it is to be returned:

11

(corn usda 10) (tonnes maize 10) (u.s corn 10) (wheat corn 10)

The advantage of this query type is that it might capture multi-word units useful for classification

purposes.

MinimumNumberShouldMatch (MinShld)

A Lucene Query can be constrained to match at least a certain number of clauses. In our

experiment, we employ a specialised query which takes a given set of words and will only return a

document if at least two of the specified words occur in the document. For example, the following

query evolved to classify the comp.graphics documents of the 20NG, scoring F1: 0.422:

 (polygon graphics image lines)~2

A document must contain at least two of the words listed in brackets before it is returned.

Results

Table 3: Results Summary

Number R10 WebKB 20News

of Words Query Micro Macro Micro Macro Micro Macro

4

OR 0.817 0.788 0.691 0.671 0.589 0.572
ORNOT 0.828 0.784 0.721 0.692 0.563 0.544
ANDOR 0.793 0.755 0.660 0.644 0.517 0.498
SF 0.847 0.810 0.751 0.764 0.594 0.579
SFNOT 0.851 0.813 0.767 0.772 0.569 0.550
SN 0.691 0.657 0.676 0.682 0.363 0.349
MinShld 0.817 0.784 0.678 0.664 0.559 0.541

8

OR 0.855 0.823 0.719 0.698 0.639 0.630

ORNOT 0.853 0.815 0.736 0.718 0.621 0.611

ANDOR 0.816 0.785 0.699 0.688 0.588 0.572

SF 0.884 0.846 0.757 0.765 0.647 0.635

SFNOT 0.882 0.843 0.798 0.796 0.635 0.621

SN 0.792 0.746 0.714 0.733 0.451 0.438

MinShld 0.853 0.815 0.715 0.699 0.639 0.630

16

OR 0.860 0.819 0.719 0.700 0.669 0.666

ORNOT 0.874 0.829 0.736 0.705 0.668 0.664

ANDOR 0.866 0.818 0.739 0.720 0.634 0.624

SF 0.901 0.858 0.775 0.777 0.693 0.689

SFNOT 0.904 0.862 0.795 0.795 0.688 0.682

SN 0.829 0.756 0.769 0.772 0.527 0.515

MinShld 0.889 0.847 0.738 0.713 0.639 0.631

The results in Table 3 show the F1 values for the 7 query types discussed above on our 3 datasets for

12

queries using each of 4, 8 and 16 words, with the best results displayed in bold. Some conclusions

can be drawn:

1. SF (SpanFirst) queries produce the most accurate classification queries for all datasets and query

sizes.

2. NOT can improve classification accuracy in some cases but the effect is generally quite marginal.

3. SN (SpanNear) (which is a special type of AND) is generally the worst performing classifier.

4. Simple OR queries are more effective classifiers than a combination of two word AND queries.

5. MinShld (MinimumShouldMatch) is an interesting variant on OR and AND and performs slightly

better than AND.

The results above were found by averaging the F1 scores (micro and macro) for each query type,

number of words and data source combination. This averaging is over the three repetitions and over

all categories in each of the data sources. However, this loses much of the information in the

results. For example, how consistent are the queries? Are there some categories that are “hard” to

correctly identify and for which a particular query type is successful? Such sentiments have been

pointed out before (van Rijsbergen 1979) and (Goutte and Gaussier 2005).

A classical statistical ANOVA of the results has been successfully carried out in other studies, for

example, ￼(Lennon et al. 2013) and (Phachongkitphiphat and Vateekul 2014). The former fit

models to Precision, Recall and F1 by first employing the arcsine square root transformation. A

similar attempt was made here, employing a variety of transformations, and even the Beta

Regression approach of (Cribari-Neto and Zeileis 2010)￼. However, the resulting analyses required

all the higher interaction terms, making any interpretation difficult, and the residuals had a highly

leptokurtic distribution questioning the validity. This was mainly due to some extreme residuals

coupled with others at or near zero.

 Such non-normality of experimental results in the context of information retrieval and classifiers is

well established (e.g. (van Rijsbergen, 1979 chapter 7, and (Demšar 2006)). ￼ (Demšar 2006)￼

and (Garcia, et al. 2010)￼ investigate the use of non-parametric tests, but these require the

13

assumption that all classifications are independent and that the underlying distribution of the metric

is symmetric. Given that the results here come from just three data sources, the first of these is

unlikely. Also, since there are only three replicates, the second is not possible to ascertain. (van

Rijsbergen 1979) suggests that the use of a non-parametric test may be performed to provide a

conservative result. Consequently, the results were analysed using SAS statistical software and non-

parametric Cochran-Mantel-Haenszel tests were performed using the rank option in PROC FREQ,

making these tests equivalent to the Friemann test, but controlled over relevant sub-groups. Two

tests were performed on the F1 measures, one comparing the 7 Query types while controlling for

the number of words and category within each data source, and the second on the number of words

while controlling for the Query Types and categories. These gave statistically significant results

beyond even the 0.01% significance level. Hence, this suggests that, even being conservative, the

differences between Query types and between number of words are genuine.

The failure of the statistical modelling approach means that to understand the true pattern of the

F1, recall and precision results, we must drill into the data in other ways, achieved here by plotting

the data at various levels of granularity.

Initially, the classifiers are compared by plotting boxplots for each Query type using all instances in

the data so that each box has values from all three datasets, all categories and all number of words.

Figure 1: Comparison of all F1 Measures

Across all datasets, categories and

Number of Words, arranged in order of

F1 mean.

Figure 1 shows boxplots for each Query

type aggregated over all datasets,

categories and number of words. They

are arranged in rank order using the mean of F1 for each query type. They confirm the results seen

14

in the table above. However, it should be noted that all the boxes overlap, so alternative ranking of

queries may be reasonable for some combinations of category and number of words. The range

and interquartile range for each query are quite large compared to the bounds on F1 (0  F1  1),

showing quite varied success of the classifiers. SpanNear10 is the most dispersed having the

longest whiskers (largest range) and a longer box (largest interquartile range).

The precision and recall are included in the left plot of Figure 2. From this plot, it can be seen that

while SpanNear10 has the lowest F1 on average, it also appears to have the best precision, although

the other query types do not lag far behind. This is off-set by its very poor recall. All the other query

types have less of a disparity between recall and precision. We may presume that this indicates that

two word units may be good indicators of category membership when they are found but do not

occur with sufficient frequency across all documents to achieve high accuracy when measured by F1.

The optimum recall for the other queries is OR slightly ahead of SpanFirst. This might also be

expected, since the requirement of SpanFirst is more exacting than OR.

Figure 2: Comparison of F1, Recall and Precision across all datasets, categories and number of

words (left) together with comparison of all F1 Measures across all datasets and categories by

number of words (right). Both arranged in order of F1 mean.

The results for the different number of words as well as query type plots are shown in the right of

Figure 2. In general, F1 increases with the number of words but not dramatically, nor by the same

amount for each classifier. For example, there is little difference in using 16 rather than 8 words for

15

MinShould. Dispersion also tends to be lower with more words, again with MinShould being the

notable exception. This may be a result of the way the query works, in that extra words can be

added without necessarily making a substantial change to the set of documents returned. This

reduction in the dispersion of the F1 measures is more notable using 8 rather than 4 words; 16

makes relatively less difference. Thus, the goal of making queries more interpretable by using fewer

words can be achieved with little reduction in effectiveness.

Figure 3: Box-plots of F1 for each Category, Number of words and Query type for a selection of

categories and Sources. Note that as this is based on only three data points, the top of the box will

be the maximum, the bottom the minimum and if there is a middle line it will be the middle point.

16

Figure 3 shows a selection of the individual boxplots at the most granular level, for each category,

number of words and query type separately. Categories 1,3 and 9 in the R10 dataset (only category

3 is shown) have high F1 values across the board, showing that these categories are “easier” to

classify. Such “easy” categories also tend to be more consistent (all three runs gave similar results so

that the boxes are small). Further examples are 6 and 8 in 20 NG, and 0 in WebKB. Low F1 measures

such as for categories 12,13 and 19 in the 20NG source (19 not shown) illustrate “hard” categories

that are also more dispersed. SpanNear10 (SN) usually is the lowest F1 measures and ANDOR often

has the second lowest. For “easy” categories, this usually no longer holds with ANDOR performing

equally well and sometimes also SpanNear10 (e.g. category 3 in R10).

There are examples and counterexamples where the number of words makes quite a difference in

mean F1 (13 vs 2 in 20NG for example). More words also tend to make the results more varied,

although there are exceptions such as 0,3 and 18 20NG (8 more varied than 16). Two categories give

unique results: category 2 in WebKB shows SpanNear10 outperforming all but the two SpanFirst

Queries with all other queries performing badly. Category 7 in R10 shows greater dispersion,

particularly for SpanNear10. A detailed study of the relationship between the categories and the

results for different query types could prove a fruitful area of research, by, for example, identifying

in which circumstances two word units may be useful for classification.

Readability

Creating compact classifiers that are human readable is one of the main objectives of this work. We

give some examples of evolved classifiers in Table 4 and Table 5. Although unexpected terms

sometimes appear, the queries generated are quite readable and, critically, offer an explanation of

how the classifier works. Note that in the case of SpanFirst, we have ordered the query terms by the

SpanFirst integer value that indicates the number of words from the start of the document in which

17

a word must appear for the document to be returned. So for example "oil" may occur in many

documents outside the crude category but is unlikely to occur within the first 27 words of a

document not in that category (Table 4). We also note that the query evolved for the wheat

category (F1 of 0.893) outperforms the human constructed rule discussed in the introduction (F1 of

0.84) and is arguably more readable, using only three words.

Table 4: R10 SpanFirst with 8 words

Category F1 Query
Acq 0.835 (acquired 48)(offer 124)(merger 146)(sell 147)(stake 186)(acquire 188)(sells 237)(acquisition 240)

Corn 0.876 (soybean 36)(corn 231)(cordoba 241)(maize 248)(belt 291)

Crude 0.829 (oil 27)(refinery 49)(crude 52)(gasoline 87)(petroleos 87)(opec 159)(barrels 258)(barrel 284)

Earn 0.967 (split 41)(profit 44)(net 46)(earnings 47)(loss 86)(vs 115)(results 227)(dividend 289)

Grain 0.97 (corn 97)(cereals 108)(rice 132)(wheat 141)(crop 179)(barley 200)(grain 206)(maize 280)

Interest 0.747 (leaves 4)(deposit 21)(discount 22)(room 24)(rate 29)(rates 31)(repurchase 78)(money 84)

Money-fx 0.798 (yen 15)(dollar 45)(money 58)(currency 71)(cooperate 90)(currencies 171)(fed 191)(monetary 201)

ship 0.793 (port 58)(strike 62)(shipping 75)(tankers 96)(vessels 187)(freights 234)(ships 287)(vessel 297)

trade 0.746 (payments 6)(account 22)(trade 29)(sanctions 36)(retaliation 139)(textiles 221)(protectionism
253)(tariffs 295)

wheat 0.893 (commodity 4)(temperatures 53)(wheat 204)

Table 5: 20NG OR with 4 words (showing only the rec category)

Category F1 Query

rec.autos 0.637 cars car wharfie automotive toyota

rec.motorcycles 0.798 moa bikes dod motorcycle bike

rec.sport.baseball 0.599 phillies jays pitching baseball cubs

rec.sport.hockey 0.777 nhl devils playoffs hockey playoff

Future work

The current system produces binary classifiers that simply indicate whether a document is contained

within a particular category. Indexing systems such as Lucene incorporate complex and highly

efficient scoring systems so that the set of documents matching a query are ranked according to

some measure of closeness to the query. We believe that this could be incorporated into the fitness

test in order to enhance classification accuracy. We are also working on developing an unsupervised

learning system for clustering sets of documents using search queries to retrieve disjoint sets of

18

documents. In addition, we believe that there is a need to drill into results as this can show the

consistency of classifiers and aid in our understanding of when and why one works over another. It

is hoped to revisit the statistical modelling approach of the experiments conducted here to find a

more suitable way to quantify this.

Conclusion

We have evolved a number of classifiers using queries of 16 or fewer words for each category of the

dataset. The queries produced are readable and compact. Surprising levels of classification accuracy

can be achieved using only 4 words and a simple OR based query, whereas AND type queries are less

accurate. There are obvious advantages to the query format of the classifiers as they are ready to

apply to large text datasets and are in a format that can be easily refined or tuned by a human

analyst. These simple queries are also surprisingly consistent, even for categories that are “hard” for

the algorithm to get right.

References

Apt´e, C., F. J. Damerau, and Weiss, S. M. “1994. Automated learning of decision rules for text

categorization. .” ACM Trans. on Inform. Syst. 12, 3, 1994.

Baharudin B., Lam, H. L., Khairullah K. “A review of machine learning algorithms for text-documents

classification.” Journal of advances in information technology, 2010.

Craven, Mark, Andrew McCallum, Dan PiPasquo, Tom Mitchell, and Dayne Freitag. “ Learning to

extract symbolic knowledge from the World Wide We.” Proceedings of AAAI. , 1998.

Cribari-Neto, Francisco, and Achim Zeileis. “Beta Regression in R.” Journal of Statistical Software 34 ,

no. 2 (2010): 1–24.

Debole , F, and F Sebastiani. “An analysis of the relative hardness of Reuters‐21578 subsets.” Journal

of the American Society for Information Science and technology 56.6, 2005.

Demšar, Janez. “Statistical Comparisons of Classifiers.” Journal of Machine Learning Research, 2006:

1-30.

Escalante, H. J., García-Limón, M. A., Morales-Reyes, A., Graff, M., Montes-y-Gómez, M., Morales, E.

19

F., & Martínez-Carranza, J. “Term-weighting learning via genetic programming for text

classification.” Knowledge-Based Systems, 83, 2015: 176-189.

Espejo P., Ventura S. and Herrera F. “A survey on the application of genetic programming to

classification.” Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on 40.2 , 2010: 121-144.

Garcia, Salvador, Aberto Fernández, Julián Luengo, and Francisco Herrera. “Advanced nonparametric

tests for multiple comparisons in the design of experiments in computational intelligence

and data mining: Experimental analysis of power.” Information Sciences 180 (2010): 2044-

2064.

Goutte, Cyril, and Eric Gaussier. A probabilistic Interpretation of Precision, Recall and F-score, with

Implication for Evaluation. Vol. 3408, in Advances in Information Retrieval, by David E.

Losada and Juan M. Fernández-Luna, edited by David E. Losada and Juan M. Fernandez-Luna,

345-359. Berlin Heidelberg New York: Springer, 2005.

Hayes, Philip J, P Stevensen, and Weinstein. “CONSTRUE/TIS: A System for Content-Based Indexing

of a Database of News Stories.” IAAI, vol. 90, 1990: 49-64.

Hirsch, Laurence. “Evolved Apache Lucene SpanFirst queries are good text classifiers.” Evolutionary

Computation (CEC), IEEE Congress on. Barcelona, 2010.

Hirsch, Laurence, and Alessandro Di Nuovo. “Document Clustering with Evolved Search Queries.”

Evolutionary Computation (CEC), IEEE Congress on. Donostia - San Sebastián, 2017.

Hirsch, Laurence, Robin Hirsch, and Masoud Saeedi. “Evolving Lucene search queries for text

classification.” In Proceedings of the 9th annual conference on Genetic and evolutionary

computation. London: ACM, 2007. 1604-1611.

Kutner , Michael H., Christopher J Nachtsheim, John Neter, and William Li. Applied Linear Statistical

Models, 5 edition. McGraw-Hill Higher Education, 2004.

Lang, K. “Newsweeder: Learning to filter netnews.” Proceedings of the Twelfth International

Conference on Machine Learning. 1995.

Lennon, Craig, et al. Performance Evaluation of a Semantic Perception Classifier. Adelphi: Army

Research Laboratory, 2013.

Luo, x, and A Zincir-Heywood. “Evolving Recurrent Linear-GP for Document Classification and Word

Tracking.” CEC 2006. IEEE Congress on. IEEE. 2006.

Özel , S. “A Web page classification system based on a genetic algorithm using tagged-terms as

features.” Expert Systems with Applications 38.4, 2011: 3407-3415.

Phachongkitphiphat, N, and P Vateekul. “An improvement of flat approach on hierarchical text

classification using top-level pruning classifiers.” International Joint Conference on Computer

Science and Software Engineering. 2014. 86-90.

Pietramala A, Policicchio V., Rullo P., and Sidhu I. “A Genetic Algorithm for Text Classification Rule

20

Induction.” Proc. European Conf. Machine Learning and Principles and Practice of Knowledge

Discovery in Databases (ECML/PKDD ’08). 2008. 188-203.

Polychronopoulos , Vassilis , Nick Pendar, and Shawn R Jeffery. “QuIET: A text classification

technique using automatically generated span queries.” Semantic Computing (ICSC), IEEE

International Conference on, . IEEE. 2014. 52-59.

Smith, M. P., and M. Smith. “The use of genetic programming to build Boolean queries for text

retrieval through relevance feedback.” Journal of Information Science, 23(6), 1997: 423-431.

Uysal, A. K., & Gunal, S. “Text classification using genetic algorithm oriented latent semantic

features.” Expert Systems with Applications, 41(13), 2014: 5938-5947.

van Rijsbergen, C. J. Information Retrival. 2nd. Butterworth-Heinemann, 1979.

