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evolved as text classifiers. 

Laurence Hirsch and Teresa Brunsdon 

Sheffield Hallam University 

 

Abstract 

In this article, we use a genetic algorithm to evolve seven different types of Lucene search query with 

the objective of generating accurate and readable text classifiers.  We compare the effectiveness of 

each of the different types of query using three commonly used text datasets.  We vary the number 

of words available for classification and compare results for 4, 8 and 16 words per category. The 

generated queries can also be viewed as labels for the categories and there is a benefit to a human 

analyst in being able to read and tune the classifier.  The evolved queries also provide an explanation 

of the classification process.  We consider the consistency of the classifiers and compare their 

performance on categories of different complexities.  Finally, various approaches to the analysis of 

the results are briefly explored. 

Introduction and background 

Automatic text classification is the activity of assigning predefined category labels to natural 

language texts based on information found in a training set of labelled documents.  With the 

explosive growth in online text, the task has become critical to many information management 

tasks. 

In the 1980s, a common approach to text classification involved humans in the construction of a 

classifier, which could be used to define a particular text category.  Such an expert system would 

typically consist of a set of manually defined logical rules, one per category, of type  

if {DNF formula} then {category}  
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A DNF (“disjunctive normal form”) formula is a disjunction of conjunctive clauses.  The document is 

classified under a category if it satisfies the formula i.e. if it satisfies at least one of the conjunctive 

clauses.  An oft quoted example of this approach is the CONSTRUE system (Hayes et al. 1990), built 

by the Carnegie Group for the Reuters news agency.  A sample rule of the type used in CONSTRUE to 

classify documents in the “wheat” category of the Reuters dataset is given below.  

  if((wheat & farm)     or  (wheat & commodity) or     

     (bushels & export) or  (wheat & tonnes)    or  

     (wheat & winter & ¬ soft))  

then      WHEAT   

else     ¬ WHEAT  

Such a method, sometimes referred to as “knowledge engineering”, provides accurate rules and has 

the additional benefit of being human understandable - that is, the definition of the category is 

meaningful to a human, producing additional uses of the rule including category verification.  

However, the disadvantage is that constructing the required rules requires significant human input 

from both those with knowledge of the domain and of rule construction (Apt´e et al. 1994).  Since 

the 1990s, the machine learning approach to text categorisation has become dominant, requiring 

only a set of pre-classified training documents and an automated classifier.   A wide variety of 

statistical classification systems have been developed, for example: Naive Bayes, k-nearest 

neighbour, support vector machines (SVMs) and neural networks (Baharudin et al. 2010).  

Probabilistic classifiers based on numerical models often require hundreds or thousands of features 

and are not open to human interpretation or maintenance.  

Human understandable classifiers 

It has been recognised that classifiers that are comprehensible have certain advantages: 

1.    The classifier may be validated by a human. 

2.    The classifier may be fine-tuned by a human. 

3.    The classifier may be used for other tasks such as information extraction, category labels or text 
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mining. 

Accuracy and interpretability of classifiers are recognised as often being conflicting goals.  As an 

example, Oracle Corporation offer various options for classification in their Oracle Text1 product.  

Two supervised classifiers are provided using user supplied training documents. The first uses SVM 

technology and produces opaque classifiers with high accuracy. The second uses a decision tree to 

produce classification rules which are transparent, understandable and modifiable by a human but 

are recognised as having lower accuracy. This example clearly indicates that readability and 

modifiability have value to commercial classification products and, where such features are required 

as part of the classifier, some loss in accuracy is regarded as an acceptable trade-off for a more 

comprehensible model.  This has led to significant effort being given to developing human 

interpretable classifiers, using techniques such as using automatic query generation 

(Polychronopoulos et al. 2014).  

Genetic Methods in Text Classification 

Genetic Methods such as Genetic Programming (GP) and Genetic Algorithms (GA) are stochastic 

search methods inspired by biological evolution.  Genetic methods have been employed at various 

stages of the text classification process (Espejo et al. 2010) - for example, in calculating useful term 

weights (Escalante et al. 2015; Uysal and Gunal 2014; Baharudin et al. 2010).  Luo (Luo and Zincir-

Heywood 2006) describes a system where recurrent linear GP is used to classify documents that are 

encoded as word sequences.  Genetic methods have also been used to induce rules or queries useful 

for classifying online text (Smith and Smith 1997; Hirsch et al. 2007;  Pietramala et al. 2008). In this 

case, the evolution requires a fitness test based on some measure of classification accuracy.     A 

similar approach has been applied in an unsupervised context (Hirsch and Di Nuovo, 2017).   

                                                           
1 http://www.oracle.com/technetwork/database/enterprise-edition/index-098492.html 
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Proposed system 

We propose a system to produce readable classifiers in the form of compact Apache Lucene search 

queries containing a small number of words.  A search query is generated for each of the categories 

of the dataset such that each query is a binary classifier for that particular category. Thus, to classify 

a document as belonging to a category we need simply to determine if the document is returned by 

the search query. We evaluate the effectiveness of various evolved queries on 3 different text 

datasets (see below) using a maximum of 4, 8 and 16 words per category.  Fitness is accrued for 

individuals producing classification queries which retrieve positive examples of the category but do 

not retrieve negative examples from the training data.  We use the ECJ 

(http://cs.gmu.edu/~eclab/projects/ecj/) Java library for evolutionary computation in all the 

experiments reported here. 

Apache Lucene 

Systems using methods based on Darwinian evolution are generally computationally intensive. In 

our case, each individual in the population will produce a search query for each category of the 

dataset and the fitness is evaluated by applying the search query to a potentially large set of text 

documents. With a population of a reasonable size (for example, 1024 individuals) evolving over 100 

or more generations it is critical that such queries can be executed in a timely and efficient manner. 

For this reason, we decided to use Apache Lucene which is an open source high-performance, full-

featured text search engine. We use Lucene to build inverted indexes on the text datasets and to 

execute the queries produced by the GA.  

Pre-processing 

Before we start the evolution of classification queries a number of pre-processing steps are made. 

1.       All the text is placed in lower case. 

2.       A small stop set is used to remove common words with little semantic weight. 

3.       For each dataset, a Lucene inverted index is constructed and each document labelled (using 

http://cs.gmu.edu/~eclab/projects/ecj/
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Lucene fields) according to its category and its test or training status. 

F1 Fitness 

As mentioned above, each query is actually a binary classifier.  That is, it will classify any document 

as either in a given category or outside that category. The following measures are therefore useful: 

Recall (r)         =   
the number of relevant documents returned

the number of relevant documents 
     (1) 

 

precision (p)  =   
the number of relevant documents returned

the number of documents returned
                                          (2) 

 

The F1 measure is also commonly used for determining classification effectiveness and has the 

advantage of giving equal weight to precision and recall.  F1 is given by: 

                                               𝐹1 =
2𝑝𝑟

𝑝 +𝑟
       (3) 

F1 also gives a natural fitness measure for an evolving classifier where documents in the training set 

are the fitness cases.  A similar approach is also taken in the Olex-GA (Pietramala et al. 2008) and 

GPTC systems (Hirsch 2010).  The micro-average is a global calculation of F1 regardless of category 

and the macro-average is the average of F1 scores for all the categories. 

F1 Word List 

The total number of unique words in a document collection can be quite large.  If each word were 

given as a potential feature for a GA system, the size of the search space would become prohibitive.  

We therefore use the following procedure to reduce the number of dimensions.  For each category 

of the dataset, an ordered list of potentially useful words is constructed which we call the 

‘F1WordList’.  Each word found in the relevant category of the training data is scored according to its 

effectiveness as a single-term classifier for that category.  So, for example, if we find the word “oil” 

in the training data for a particular category, we construct a query based on the single word which 

will retrieve all documents containing the word “oil”. We give the word a value (F1 score) as 

determined by the number of positive and negative examples retrieved by the single term query 
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from the training data.  We can then create an F1WordList of length n for each category by simply 

ordering the words according to their corresponding F1 values and selecting the top n words.  In our 

system, 300 words are available for classification purposes.  A negative list, useful for queries 

containing a NOT operator, is created by reversing the two sets such that a high scoring word will 

retrieve few documents from the current category but a large number of documents from other 

categories. 

GA Parameters 

We used a fixed set of GA parameters in all our experiments and these are summarised in Table 1. 

Subpopulations (island model) are used as a method of increasing diversity in the GA population. 

Only limited communication (immigration/emigration) is allowed between subpopulations. In our 

case, we exchanged 3 individuals between the two subpopulations every 20 generations. 

Table 1: GA Parameters 

Parameter Value 

Population 1024 
Generations 120 
Selection type Tournament 
Tournament size 5 
Termination Max generations 
Mutation probability 0.1 
Reproduction probability 0.1 
Crossover probability 0.8 
Elitism No 
Subpopulations 2 (exchange 3 individuals every 20 generations) 
Chromosome length variable 
F1WordList length 300 
Engine ECJ 21: http://cs.gmu.edu/~eclab/projects/ecj/ 

Experiments 

In all the experiments reported here, the GA system only had access to the training data. The 

evolution for each dataset was repeated 3 times. The final result was determined by applying the 

best queries evolved to the test data.  There were a number of objectives for the experiments: 

1. To evolve effective classifiers against the text datasets. 
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2.  To automatically produce compact and human understandable classifiers in search query 

format using a small number of features. 

3. To evaluate the classification effectiveness of a variety of Lucene query types. 

Datasets 

Three commonly used text datasets were used.  

Reuters-21578 (R10) 

Reuters-21578 news collection contains 21,578 news articles in 135 categories collected from the 

Reuters newswire in 1987.  In our experiments, we use the “ModApt´e split” - a partition of the 

collection into a training set and a test set that has been widely adopted by text categorisation 

experimenters.  We use the top 10 (R10) most populous categories which is comprised of 9980 news 

stories.  The R10 is one of the most widely used text datasets in text classification research. An in 

depth discussion of the Reuters dataset is given in (Debole and Sebastiani 2005). 

 

WebKB 

WebKB collected 8,282 web pages from computer science departments of several universities in 

1997 by the Carnegie Mellon University Text Learning Group.  Each page belongs to only one of 

seven categories, though three are discarded following previous research.  4199 documents with 

four categories remain: “Student”, “Faculty”, “Course” and “Project”. A test/train split is also defined 

(Craven et al. 1998). 

 

20 Newsgroup (20NG) 

The 20 Newsgroups collection, set up by (Lang 1995) consists of 20,000 documents that are 

messages posted to Usenet newsgroups, and the categories are the newsgroups themselves.  We 

use the training/test split from the website http://qwone.com/~jason/20Newsgroups/  .  Some of 

the newsgroups are very closely related to each other (e.g. comp.sys.ibm.pc.hardware / 

comp.sys.mac.hardware), while others are highly unrelated (e.g misc.forsale / soc.religion.christian).  

http://qwone.com/~jason/20Newsgroups/
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The data in this set are considered particularly noisy and as might be expected they include 

complications such as duplicate entries and cross postings. 

Performance 

Queries must be evolved for each category of the document set and each individual in the evolving 

population must fire a Lucene query to obtain its fitness.  All experiments were run on an Intel i5 

3330 processor running at 3.00GHz with 8GB of memory.  Such a system generated the classification 

queries for the R10 dataset listed in Table 4 in just over 3 minutes.  Considering the number of 

queries and documents in the set, we would suggest that this result is a testament to the efficiency 

of ECJ and Lucene.  The result of all the training work is a set of search queries. To test the R10 

classifier requires the execution of 10 search queries and the result will be delivered in a time frame 

below human perception. The fact that search queries will scale up to large text databases, including 

the web, is well known. 

Query Types 

A GA was used to evolve 7 different types of query for classification purposes.  A full description of 

the indexing system and query syntax is given at the official Lucene site (http://lucene.apache.org/ ) 

together with the Java source code and other useful information concerning Lucene.  To help explain 

the GA, let us assume that we are evolving a classifier for the R10 “crude” category.  The first 8 

words of the F1WordList are shown in Table 2.  We explain the types of queries and how they are 

combined.  After each heading, we give the resulting query acronym in brackets. 

Table 2: R10 Crude category F1WordList 

0 oil 

1 crude 

2 barrels 

3 opec 

4 petroleum 

5 energy 

6 barrel 

7 production 

 

http://lucene.apache.org/
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OR (OR) 

When the OR operator is applied to two or more words it is simply required that one of the words 

occurs in a document for that document to be returned.  Our results show that highly effective 

classifiers can be evolved using OR queries which clearly achieve one of primary goals - namely to be 

easily interpreted by a human.  As mentioned above, as a pre-processing step for each category we 

construct an F1WordList of 300 words which are likely to be useful for classifier query construction. 

A 4 word query could be constructed from a randomly generated GA such as: 

 6 1 4 0 
  

We create a Lucene Boolean query and add the term "barrels" from the list (in Lucene syntax using 

BooleanClause.Occur.SHOULD ) and then repeat the process for the words "crude", "petroleum" and 

"oil" as determined by Table 2. The query will then return documents which contain any of the 4 

selected words and we can calculate the F1 fitness as determined by the number of relevant and 

irrelevant documents returned.  

AND (ANDOR) 

Where words are joined by the AND operator in Lucene (BooleanClause.Occur.MUST), all the 

words in the query are required to exist in a document for it be returned.  It is unusual to evolve 

classifiers that return more than a few documents for 3 or more words connected with AND in any 

of the datasets we use.  However, if we apply the OR operator on a number of two word AND 

queries (a conjunction of disjunctions) then we can evolve effective classifiers, and this is the 

approach taken here.  For example, the following 4 word ANDOR query which was evolved on the 

trade category of the R10 achieves an F1 score of 0.699 on the test set: 

(+exports +trade) (+trade +u.s) 

In Lucene syntax, “+” indicates that the word MUST occur for the document to be returned but since 

there is an implicit OR between the two brackets, the query will return a document if it contains the 

words (“exports” AND “trade”) OR (“trade” AND “u.s”).  
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NOT (ORNOT together with SFNOT) 

NOT on its own is not a useful operator but may improve classification effectiveness when combined 

with others.  We test NOT combined with a multi-word OR query and NOT combined with SpanFirst 

(see below).  The following example query gives an F1 of 0.683 for the category talk.politics.mideast 

of the 20NG:  

-code turkish israeli israel 

where a minus sign in Lucene query syntax indicates that the word MUST NOT occur if the document 

is to be returned.  The query will return any document containing any of the words "turkish, israeli, 

israel" but NOT containing the word “code”. 

SpanFirst (SF) 

A SpanFirst query restricts a query to search in the first part of a document, which is defined as some 

number of words from the start. This appears to be useful since the most important information in a 

document is often at the start of the text (Hirsch 2010).  For example, to find all documents where 

"barrel" is within the first 100 words we could use the Lucene query:  

new SpanFirstQuery(new SpanTermQuery(new Term(“contents”, 

“barrel”)),100); 

In this paper, we simplify the format and write the above as: (barrel 100).  A more complex query 

might be: (barrel 100) (oil 20) which would retrieve documents where the word “barrel” occurred 

within the first 100 words of a document OR the word “oil” occurred within the first 20 words. 

Using the F1WordList from Table 1, such a query could be defined using the following GA: 

6 100 1 20  

 

SpanNear (SN) 

We use Lucene SpanNear to evolve queries that will match words occurring within 10 words of each 

other.  For example, the following query evolved on the R10 corn category (scoring F1 0.843 on the 

test set) indicates that one of the word pairs in brackets must occur within 10 words of each other in 

a document if it is to be returned: 
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(corn usda 10) (tonnes maize 10) (u.s corn 10) (wheat corn 10)  

The advantage of this query type is that it might capture multi-word units useful for classification 

purposes.   

MinimumNumberShouldMatch  (MinShld) 

A Lucene Query can be constrained to match at least a certain number of clauses.  In our 

experiment, we employ a specialised query which takes a given set of words and will only return a 

document if at least two of the specified words occur in the document. For example, the following 

query evolved to classify the comp.graphics documents of the 20NG, scoring F1: 0.422: 

 (polygon graphics image lines)~2  
 
A document must contain at least two of the words listed in brackets before it is returned. 

Results 

Table 3: Results Summary 

Number   R10 WebKB 20News 

of Words Query Micro Macro Micro Macro Micro Macro 

4 

OR 0.817 0.788 0.691 0.671 0.589 0.572 
ORNOT 0.828 0.784 0.721 0.692 0.563 0.544 
ANDOR 0.793 0.755 0.660 0.644 0.517 0.498 
SF 0.847 0.810 0.751 0.764 0.594 0.579 
SFNOT 0.851 0.813 0.767 0.772 0.569 0.550 
SN 0.691 0.657 0.676 0.682 0.363 0.349 
MinShld 0.817 0.784 0.678 0.664 0.559 0.541 

8 

OR 0.855 0.823 0.719 0.698 0.639 0.630 

ORNOT 0.853 0.815 0.736 0.718 0.621 0.611 

ANDOR 0.816 0.785 0.699 0.688 0.588 0.572 

SF 0.884 0.846 0.757 0.765 0.647 0.635 

SFNOT 0.882 0.843 0.798 0.796 0.635 0.621 

SN 0.792 0.746 0.714 0.733 0.451 0.438 

MinShld 0.853 0.815 0.715 0.699 0.639 0.630 

16 

OR 0.860 0.819 0.719 0.700 0.669 0.666 

ORNOT 0.874 0.829 0.736 0.705 0.668 0.664 

ANDOR 0.866 0.818 0.739 0.720 0.634 0.624 

SF 0.901 0.858 0.775 0.777 0.693 0.689 

SFNOT 0.904 0.862 0.795 0.795 0.688 0.682 

SN 0.829 0.756 0.769 0.772 0.527 0.515 

MinShld 0.889 0.847 0.738 0.713 0.639 0.631 

  
The results in Table 3 show the F1 values for the 7 query types discussed above on our 3 datasets for 
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queries using each of 4, 8 and 16 words, with the best results displayed in bold.  Some conclusions 

can be drawn: 

1. SF (SpanFirst) queries produce the most accurate classification queries for all datasets and query 

sizes. 

2. NOT can improve classification accuracy in some cases but the effect is generally quite marginal. 

3. SN (SpanNear) (which is a special type of AND) is generally the worst performing classifier. 

4. Simple OR queries are more effective classifiers than a combination of two word AND queries. 

5. MinShld (MinimumShouldMatch) is an interesting variant on OR and AND and performs slightly 

better than AND. 

The results above were found by averaging the F1 scores (micro and macro) for each query type, 

number of words and data source combination.  This averaging is over the three repetitions and over 

all categories in each of the data sources.  However, this loses much of the information in the 

results.  For example, how consistent are the queries?  Are there some categories that are “hard” to 

correctly identify and for which a particular query type is successful?  Such sentiments have been 

pointed out before (van Rijsbergen 1979) and (Goutte and Gaussier 2005). 

A classical statistical ANOVA of the results has been successfully carried out in other studies, for 

example, ￼(Lennon et al. 2013) and (Phachongkitphiphat and Vateekul 2014).  The former fit 

models to Precision, Recall and F1 by first employing the arcsine square root transformation.     A 

similar attempt was made here, employing a variety of transformations, and even the Beta 

Regression approach of (Cribari-Neto and Zeileis 2010)￼.  However, the resulting analyses required 

all the higher interaction terms, making any interpretation difficult, and the residuals had a highly 

leptokurtic distribution questioning the validity.  This was mainly due to some extreme residuals 

coupled with others at or near zero.   

 Such non-normality of experimental results in the context of information retrieval and classifiers is 

well established (e.g. (van Rijsbergen, 1979 chapter 7, and (Demšar 2006) ).  ￼ (Demšar 2006)￼ 

and (Garcia, et al. 2010)￼ investigate the use of non-parametric tests, but these require the 
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assumption that all classifications are independent and that the underlying distribution of the metric 

is symmetric.  Given that the results here come from just three data sources, the first of these is 

unlikely.  Also, since there are only three replicates, the second is not possible to ascertain.  (van 

Rijsbergen 1979)  suggests that the use of a non-parametric test may be performed to provide a 

conservative result.  Consequently, the results were analysed using SAS statistical software and non-

parametric Cochran-Mantel-Haenszel tests were performed using the rank option in PROC FREQ, 

making these tests equivalent to the Friemann test, but controlled over relevant sub-groups.  Two 

tests were performed on the F1 measures, one comparing the 7 Query types while controlling for 

the number of words and category within each data source, and the second on the number of words 

while controlling for the Query Types and categories.  These gave statistically significant results 

beyond even the 0.01% significance level.  Hence, this suggests that, even being conservative, the 

differences between Query types and between number of words are genuine.   

The failure of the statistical modelling approach means that to understand the true pattern of the 

F1, recall and precision results, we must drill into the data in other ways, achieved here by plotting 

the data at various levels of granularity. 

Initially, the classifiers are compared by plotting boxplots for each Query type using all instances in 

the data so that each box has values from all three datasets, all categories and all number of words.   

 

Figure 1:  Comparison of all F1 Measures 

Across all datasets, categories and 

Number of Words, arranged in order of 

F1 mean. 

Figure 1 shows boxplots for each Query 

type aggregated over all datasets, 

categories and number of words.  They 

are arranged in rank order using the mean of F1 for each query type.  They confirm the results seen 
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in the table above.  However, it should be noted that all the boxes overlap, so alternative ranking of 

queries may be reasonable for some combinations of category and number of words.   The range 

and interquartile range for each query are quite large compared to the bounds on F1 (0  F1  1), 

showing quite varied success of the classifiers.    SpanNear10 is the most dispersed having the 

longest whiskers (largest range) and a longer box (largest interquartile range). 

The precision and recall are included in the left plot of Figure 2.  From this plot, it can be seen that 

while SpanNear10 has the lowest F1 on average, it also appears to have the best precision, although 

the other query types do not lag far behind. This is off-set by its very poor recall.  All the other query 

types have less of a disparity between recall and precision.  We may presume that this indicates that 

two word units may be good indicators of category membership when they are found but do not 

occur with sufficient frequency across all documents to achieve high accuracy when measured by F1.   

The optimum recall for the other queries is OR slightly ahead of SpanFirst.  This might also be 

expected, since the requirement of SpanFirst is more exacting than OR.  

  

Figure 2: Comparison of F1, Recall and Precision across all datasets, categories and number of 

words (left) together with comparison of all F1 Measures across all datasets and categories by 

number of words (right).  Both arranged in order of F1 mean. 

 
The results for the different number of words as well as query type plots are shown in the right of 

Figure 2.  In general, F1 increases with the number of words but not dramatically, nor by the same 

amount for each classifier. For example, there is little difference in using 16 rather than 8 words for 
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MinShould.  Dispersion also tends to be lower with more words, again with MinShould being the 

notable exception.  This may be a result of the way the query works, in that extra words can be 

added without necessarily making a substantial change to the set of documents returned. This 

reduction in the dispersion of the F1 measures is more notable  using 8 rather than 4 words; 16 

makes relatively less difference.  Thus, the goal of making queries more interpretable by using fewer 

words can be achieved with little reduction in effectiveness. 

 

Figure 3: Box-plots of F1 for each Category, Number of words and Query type for a selection of 

categories and Sources. Note that as this is based on only three data points, the top of the box will 

be the maximum, the bottom the minimum and if there is a middle line it will be the middle point.  
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Figure 3 shows a selection of the individual boxplots at the most granular level, for each category, 

number of words and query type separately.  Categories 1,3 and 9 in the R10 dataset (only category 

3 is shown) have high F1 values across the board, showing that these categories are “easier” to 

classify.  Such “easy” categories also tend to be more consistent (all three runs gave similar results so 

that the boxes are small). Further examples are 6 and 8 in 20 NG, and 0 in WebKB.  Low F1 measures 

such as for categories 12,13 and 19 in the 20NG source (19 not shown) illustrate “hard” categories 

that are also more dispersed.  SpanNear10 (SN) usually is the lowest F1 measures and ANDOR often 

has the second lowest.  For “easy” categories, this usually no longer holds with ANDOR performing 

equally well and sometimes also SpanNear10 (e.g. category 3 in R10).   

 

There are examples and counterexamples where the number of words makes quite a difference in 

mean F1 (13 vs 2 in 20NG for example).  More words also tend to make the results more varied, 

although there are exceptions such as 0,3 and 18 20NG (8 more varied than 16). Two categories give 

unique results: category 2 in WebKB shows SpanNear10 outperforming all but the two SpanFirst 

Queries with all other queries performing badly.  Category 7 in R10 shows greater dispersion, 

particularly for SpanNear10.  A detailed study of the relationship between the categories and the 

results for different query types could prove a fruitful area of research, by, for example, identifying 

in which circumstances two word units may be useful for classification.  

 

Readability 

Creating compact classifiers that are human readable is one of the main objectives of this work.  We 

give some examples of evolved classifiers in Table 4 and Table 5.  Although unexpected terms 

sometimes appear, the queries generated are quite readable and, critically, offer an explanation of 

how the classifier works.  Note that in the case of SpanFirst, we have ordered the query terms by the 

SpanFirst integer value that indicates the number of words from the start of the document in which 
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a word must appear for the document to be returned.  So for example "oil" may occur in many 

documents outside the crude category but is unlikely to occur within the first 27 words of a 

document not in that category (Table 4).  We also note that the query evolved for the wheat 

category (F1 of 0.893) outperforms the human constructed rule discussed in the introduction (F1 of 

0.84) and is arguably more readable, using only three words. 

 

Table 4: R10 SpanFirst with 8 words 

Category F1 Query 
Acq 0.835 (acquired 48)(offer 124)(merger 146)(sell 147)(stake 186)(acquire 188)(sells 237)(acquisition 240)  

Corn 0.876 (soybean 36)(corn 231)(cordoba 241)(maize 248)(belt 291)  

Crude 0.829 (oil 27)(refinery 49)(crude 52)(gasoline 87)(petroleos 87)(opec 159)(barrels 258)(barrel 284)  

Earn 0.967 (split 41)(profit 44)(net 46)(earnings 47)(loss 86)(vs 115)(results 227)(dividend 289)  

Grain 0.97 (corn 97)(cereals 108)(rice 132)(wheat 141)(crop 179)(barley 200)(grain 206)(maize 280)  

Interest 0.747 (leaves 4)(deposit 21)(discount 22)(room 24)(rate 29)(rates 31)(repurchase 78)(money 84)  

Money-fx 0.798 (yen 15)(dollar 45)(money 58)(currency 71)(cooperate 90)(currencies 171)(fed 191)(monetary 201)  

ship 0.793 (port 58)(strike 62)(shipping 75)(tankers 96)(vessels 187)(freights 234)(ships 287)(vessel 297)  

trade 0.746 (payments 6)(account 22)(trade 29)(sanctions 36)(retaliation 139)(textiles 221)(protectionism 
253)(tariffs 295)  

wheat 0.893 (commodity 4)(temperatures 53)(wheat 204) 

 
 

Table 5: 20NG OR with 4 words (showing only the rec category) 

Category F1 Query 

rec.autos 0.637 cars car wharfie automotive toyota  

rec.motorcycles 0.798 moa bikes dod motorcycle bike  

rec.sport.baseball 0.599 phillies jays pitching baseball cubs  

rec.sport.hockey 0.777 nhl devils playoffs hockey playoff  

 

Future work 

The current system produces binary classifiers that simply indicate whether a document is contained 

within a particular category.  Indexing systems such as Lucene incorporate complex and highly 

efficient scoring systems so that the set of documents matching a query are ranked according to 

some measure of closeness to the query.  We believe that this could be incorporated into the fitness 

test in order to enhance classification accuracy.  We are also working on developing an unsupervised 

learning system for clustering sets of documents using search queries to retrieve disjoint sets of 
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documents.  In addition, we believe that there is a need to drill into results as this can show the 

consistency of classifiers and aid in our understanding of when and why one works over another.  It 

is hoped to revisit the statistical modelling approach of the experiments conducted here to find a 

more suitable way to quantify this. 

 

Conclusion 

We have evolved a number of classifiers using queries of 16 or fewer words for each category of the 

dataset.  The queries produced are readable and compact. Surprising levels of classification accuracy 

can be achieved using only 4 words and a simple OR based query, whereas AND type queries are less 

accurate.  There are obvious advantages to the query format of the classifiers as they are ready to 

apply to large text datasets and are in a format that can be easily refined or tuned by a human 

analyst.  These simple queries are also surprisingly consistent, even for categories that are “hard” for 

the algorithm to get right. 
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