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Abstract: - GW4 is a real-time video segmentation algorithm for detecting moving objects in indoor and outdoor scenes. The 

platform for the final implementation is Field Programmable Gate Array (FPGA); a reconfigurable computing platform. The 

algorithm detects moving foreground objects against a multimodal background; it is motivated by two well-known adaptive 

background differencing algorithms, Grimson's algorithm and W4. The implementation is based on a single stationary camera 

transmitting RGB values at 25Hz. Background modelling at pixel level has been used in many applications, but normally fails 

due to camouflage and foreground aperture problems. These common problems have been reduced in our approach with the use 

of pixel and frame level processing. To make the algorithm feasible and efficient for the final hardware platform, we avoid the 

use of floating point numbers and transcendental operations.  The final implementation operates at real-time frame rates on 

640x480 video streams. We present experimental results indicating processing speeds, and superior segmentation performance 

to Grimson's algorithm for different values of K. 
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1   Introduction 
Video segmentation algorithms process large amount of data, 

and are consequently processor and memory hungry [11, 15]. 

Real-time robot vision tasks require high computational 

power and data throughput in order of magnitude, which far 

exceed those available on mainstream computer platforms 

[21].  Typically, image processing algorithms can be broke 

down into three major stages [3]: early processing, 

implemented by local pixel-level functions; intermediate 

processing, which includes segmentation, motion estimation 

and feature extraction; late processing, including 

interpretation and using statistical and artificial intelligence 

algorithms. Typically algorithmic sophistication is 

concentrated in the later stages, but processing demands are 

dominated by the early stages.  

     Background subtraction utilizes the visual properties of 

the scene for building an appropriate representation that can 

be use to identify foreground and background objects. 

Existing methods for background modelling can be classified 

as either predictive or non-predictive [22]. Predictive 

methods model the scene as a time series, while the non-

predictive methods build a probability representation of the 

observation at pixel level. Limitations on processing power 

force us to use extremely simple algorithms for early 

processing, limiting performance. The proliferation of cheap 

sensor and increased processing power has made the 

acquisition and processing of video information more 

feasible [20]. 

     This article demonstrates how real-time early digital 

vision can be accomplished with the use of data and 

instruction parallelism. Our approach spans the early and 

intermediate levels described above. Most image 

segmentation algorithms are computationally expensive and 

require significant storage space; however, they are also 

often inherently parallelisable. Field Programmable Gate 

Array (FPGA) systems are ideal for the implementation of 

such algorithms, providing that algorithms are designed with 

the limitations of FPGA in mind (in particular, avoidance of 

floating point arithmetic is recommended). Modern FPGAs 

provide a very appealing platform for rapid, low-cost 

development of specialized algorithms, due to their 

reconfigurable nature, as opposed to older Application 

Specific Integrated Circuit (ASIC) designs, which have a 

very long and error-prone design cycle [1]. 

     This article presents part of a vision system for monitoring 

suspicious human activities in a risk prone environment. 

Today's technology makes it possible for a single human 

operator to potentially monitor multiple cameras relaying 

images from sites like large industrial parks and residential 

areas separated by great distances. The increase in numbers 

of these cameras makes it very hard for the operator to 

successfully identify behaviour of interest, leading to a 



research interest in automated monitoring [5]. A number of 

algorithms for segmentation of moving objects have already 

been developed, and successfully implemented in software, 

at least for individual video streams at low frame rates and 

resolutions. Very few of these algorithms have been 

incorporated into today's video surveillance systems, partly 

due to computational complexity, cost and lack of real-time 

capability. “One might argue that there is always a bigger 

chip that will fit the application, but the use of 

reconfiguration may bring some other profits such as good 

system extensibility after the system expedition or more 

favourable power consumption”[23]. This makes the 

development of such algorithms on specialized hardware 

timely. 

     Multimodal background differencing segmentation 

algorithms are practical, reasonably fast and can handle some 

typical problems, such as camera jitter, moving foliage, water 

and lighting changes. They require a significant amount of 

floating point processing, and thus when implemented in 

software running on general-purpose computers are limited 

to low frame rates and small frame sizes. They typically 

absorb 80% to 90% of the entire processing time, which 

makes them unattractive for real-time purposes. 

     We present here a new multimodal background 

differencing segmentation algorithm, which is very simple, 

robust and can easily be implemented in computer hardware 

with maximum efficiency in terms of speed and hardware 

area. Our algorithm is a hybrid of two robust and well-known 

image segmentation algorithms (Grimson's, and W4), which 

illustrates how simple algorithms can be designed for 

efficient FPGA implementation. 

 

 

2   Previous Work 
The first stage in processing for many video applications is 

the segmentation of (usually) moving objects. Where the 

camera is stationary, a natural approach is to model the 

background and detect foreground objects by differencing the 

current frame with the background. A wide and increasing 

variety of techniques for background modelling have been 

described; a good comparison is given by Gutchess et al [7]. 

     The most popular method is unimodal background 

modelling, in which a single value is used to represent a 

pixel, which has been widely used due to its relatively low 

computational cost and memory requirements [8, 13]. This 

technique gives poor results when used in modelling non-

stationary background scenarios like waving trees, rain and 

snow. A more powerful alternative is to use a multimodal 

background representation, the most common variant of 

which is a mixture of Gaussians [6, 12]. However, the 

computational demands make such techniques unpopular for 

real-time purposes; there are also disadvantages in 

multimodal techniques [6, 12, 13] including the blending 

effect, where a pixel attains an intensity value which has 

never occurred at that position (a side-effect of the smoothing 

used in these techniques). Other techniques rely heavily on 

the assumption that the most frequent intensity value during 

the training period represents the background. This 

assumption may well be false, causing the output to have a 

large error level. 

 

 

2.1 Grimson’s Algorithm 
Grimson et al [12] introduced a multimodal approach, 

modelling the values of each pixel as a mixture of Gaussians. 

The background is modelled with the most persistent 

intensity values. The algorithm has two variants, colour and 

gray-scale: in this paper, we concentrate on the gray-scale 

version. The probability of observing the current pixel value 

is given as: 

 


=

=
k

i

titittit

1

,,, ),,()(      (1) 

 

Where i,t, i,t and i,t are the respective mean, variance and 

weight parameters of the ith Gaussian component of pixel  at 

time t, and  is a Gaussian probability density function 
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A new pixel value is generally consistent with one of the 

major components of the mixture model and used to update 

the model. For every new pixel value, t, a check is 

conducted to match it to one of the K Gaussian distributions. 

A match is found when t is within 2.5 standard deviations of 

a distribution. If none of the K distributions match t, the 

least weighed distribution is replaced with a new distribution 

having t as mean, high variance and very low weight. The 

weights are updated as follows: 
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where  is the learning rate and   
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1  defines the time constant which determines the speed at 

which the distribution's parameters change. Only the matched 

distribution will have its mean and variance updated, using 

the equations: 
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The first B distributions (ordered by k ) are used as a model 

of the background, where 
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The threshold T is a measure of the minimum portion of the 

data that should be accounted for by the background. 

 

 

2.2 The W4 Algorithm 
Haritaoglu et al [8] introduced the W4 algorithm, which uses 

a single distribution with three integer values to model the 

background. Their background model requires manual 

initialisation; the three parameters (Maximum, Minimum and 

maximum inter-frame difference values) are acquired over a 

period of time (a few seconds) when there is no activity in 

the scene. 

     After the initialisation period, each pixel is classified as 

either a background or a foreground pixel using the 

background model. Given the maximum (M), minimum (m) 

and the largest inter-frame absolute difference (D) of the 

images collected over the initialisation period, a new pixel x 

from an image sequence It is a foreground pixel if: 
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     In order to detect people in outdoor scenes using W4, 

Haritaoglu et al [16] used new background modelling 

parameters and updating equations. The initial background 

model for a pixel at location x, is given as: 
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Where )(*2|)()(| xxxV s  − , for 

(x) and )( ),(  xxV s
 being the respective stationary pixel 

value, standard deviation and median value of intensities at 

pixel location x. The assumption that the background model 

stays unchanged for long periods of time does not hold for 

outdoor scenes and hence must be updated periodically.  

    A change map consisting of three components (detection 

support map gS, motion support map mS and change history 

map hS) is dynamically constructed to determine whether a 

pixel-based or an object based update method applies. The 

three components are updated as follows:  
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The background model parameters are updated as follows: 

 

If (gS(x)>k*N) then 

{ 

[m(x), n(x), d(x)]=background pixel parameters 

} 

Else 

{ 

If((gS(x)<k*N) (mS(x)<r*N)) then 

{ 

[m(x), n(x), d(x)]=foreground pixel parameters 

} 

Else 

{ 

  The parameters remain unchanged 

} 

} 

 

Typical values of k and r being 0.8 and 0.1 respectively. 

After extracting the background scene a region-based 

cleaning is applied to eliminate noisy regions. 

 

 

2.3 The PixelMap Algorithm 
Qi et al [17] introduced the PixelMap algorithm, using MoG 

and additional information like minimum and maximum 

pixel values to overcome most problems with typical MoG 

scene modelling. The Mixture of Gaussians models as 

presented in [18, 19] are advantageous in term of adaptivity, 

time-efficiency and robustness, but have reduced 

performance when there is a very large or very slow moving 

object. To avoid complex and costly computations and yet 

handle the foreground aperture problem associated with 



MoGs, a data record called PixelMap is used. This is based 

on RGB space and operates in three levels:  

1. Pixel level using MoGs 

2. Regional Level by considering spatial pixel relationships 

in a 5x5 window 

3. Frame level by considering frame differences and backup 

extra data. 

 

     Similar to [12, 18, 19] each pixel is modelled with a 

mixture of K Gaussians as in equation 1. Thus each pixel will 

have K distributions; each with an associated weight and five 

arrays [Meanrgb, Varrgb, Maxrgb, Minrgb, Flag, Time], 

representing the means, variance, maximum values and 

minimum values of the RGB, and Time indicates the time 

when a variable Flag changes from background to 

foreground or vice-versa. New pixels Xt are checked against 

the K distributions ordered by weights until a match is found. 

The background model is given as  
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All pixels Xt which do not match any of the components are 

marked as foreground for further processing. 

     The marked foreground is then used to construct a mask at 

the frame level. For 11 −− −= ttt FFD  and ttt FFD −= +1  the 

foreground mask is updated as follow: 

 

)()( 1 tt DDMaskMask += −    (17) 

 

Extra post-processing is performed to remove Salt and 

Pepper noise as well as shadows. The background model is 

updated as follows for matched distributions (where  is the 

learning rate) 
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and remains unchanged for unmatched distributions. The 

least weighted distribution is replaced with the current pixel 

if it matches none of the distributions. The weights are 

adjusted as follows 
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   The W4 algorithm is attractive in maintaining all values 

with minimal use of floating point numbers. The inability of 

this approach in handling multimodal backgrounds is 

mentioned in [16]. Clearly, the number of parameters held 

for each pixel (maximum and minimum intensity values, 

maximum inter-frame difference, standard deviation, median 

value, detection and motion support maps and the change 

history map) make it impractical to extend this approach into 

multimodal. Similarly the PixelMap approach reports 

significant performance improvement in terms of processing 

time and foreground extraction, with the use of extra 

information.  Again the number of parameters associated 

with each pixel is enormously high and is not worth the slight 

increase in processing time. 

     Grimson's algorithm [12] is robust to outdoor 

environments where lighting intensity can suddenly change 

and handles multimodal backgrounds without manual 

initialisation. This approach maintains minimal parameters 

for each pixel as compared to the other discussed approaches. 

Unfortunately, it has reduced performance due to 

camouflage, foreground aperture and in the presence of very 

large moving objects. It also uses floating-point numbers in 

all its update parameters making it computationally 

expensive, and unsuitable for hardware implementation [2]. 

     The following section gives details of our approach, 

which utilizes all the attractive features of [8, 12, 17]. From 

W4, we use the concept of maximum and minimum values to 

distinguish between foreground and background pixels. 

Rather that maintaining two values, we maintain a single 

central value around which we define the maximum and 

minimum values. We also use the pixel-level multimodal 

approach as introduced in Grimson’s algorithm. Frame-level 

processing is also conducted with the use of extra 

information similar to the PixelMap approach used in [17]. 

 

 

3   The GW4 Algorithm 
We present here a novel hybrid image segmentation 

algorithm, GW4, that combines the attractive features of 

Grimson's algorithm, PixelMap algorithm and W4 [8, 12, 16, 

17, 18, 19], with appropriate modifications to improve 

segmentation of the foreground image, and to allow an 

efficient implementation on a reconfigurable hardware 

platform, Field Programmable Gate Array (FPGA). 

     Following Grimson [12], we maintain a number of 

clusters, each with weight k , where Kk 1 , for K 

clusters. Rather than modelling a Gaussian distribution, we 

maintain a model with a central value, kc . We use an implied 

range, [ 10,10 +− kk cc ], rather than explicitly modelling a 

range as in W4 [8]. The choice of 20 as the width of the 

clusters was based on the maximum inter-frame absolute 

difference obtained for some randomly selected test data 

(outdoor and indoor scenes) using the algorithm presented in 

[8]. The weights of all the clusters are initialised to 10, and 

the total weight remains constant. 

     A pixel ),( jiI=  from an image I is said to match a 

cluster, k, if 10− kc  and 10+ kc . The highest 



weight matching cluster is updated, if and only if its weight 

does not exceed 70% of the total weight of all K clusters 

(i.e. 21k , given K=3). The update is as follows: 
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     If no matching cluster is found, then the least weighted 

cluster's central value, kc  is replaced with X; its weight stays 

the same. The way we construct and maintain clusters make 

our approach free from the blending effect. This is because 

for every cluster, the central value kc  represents an intensity 

value which has occurred at that pixel location. Also 

considering the number of parameters that is maintained for 

each pixel in all the compared algorithms, our approach is 

efficient in terms of resources utilization. We have also used 

statistical test to show the effectiveness of our approach in 

performance.  

     The K distributions are ordered by weight, with the most 

likely background distribution on top. Similar to [12], the 

first B clusters are chosen as the background model, where 
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The threshold T is a measure of the minimum portion of the 

data that should be accounted for by the background. The 

choice of T is very important, as a small T usually models a 

unimodal background while a higher T models a multi-modal 

background. We set T to be 70% of the total weight of all K 

clusters, thus 

 

7*
100

70
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     To overcome the foreground aperture and camouflage 

problems, we conduct a frame level processing. Rather than 

maintaining three frames Ft-1, Ft and Ft+1 as in [17], we only 

maintain a single frame with its current cluster values k for 

our frame level processing. We classify a pixel as foreground 

based on the following three conditions: 

 

1. If the intensity value of the pixel matches none 

of the K clusters.  

2. If the matched cluster is outside the background 

model. 

3. If the intensity value is assigned to the same 

cluster for two successive frames, and the 

intensity values X(t) and X(t-1) are both outside 

the 20% mid-range. 

 

     The third condition is necessary to detect targets with low 

contrast against the background, while maintaining the 

concept of multi-modal backgrounds. A typical example is a 

moving object with gray-scale intensity close to that of the 

background, which would be classified as background in 

[12]. This requires the maintenance of an extra frame, with 

values representing the recently processed background 

intensities, but the memory requirement is not excessive due 

to the use of integer values in our overall computations. The 

use of extra information to make our approach more robust is 

in line with the W4 [16] and PixelMap [17]. 

     It must also be pointed out that a pixel classified as 

foreground pixel using the third condition is also classified as 

a background pixel. The resulting foreground image is 

cleaned up by morphological opening using a 3 x 3 

structuring element; we use the same procedure with 

Grimson's algorithm, the base algorithm for fairness and 

comparison purposes. 

 

 

4   Hardware Implementation 
Our segmentation algorithm, described in section 3, has the 

advantage of being computationally simple, making it 

suitable for hardware implementation. The mixture of 

Gaussian models maintained for each pixel in [12] poses a 

large computational and storage problem. Jiang et al [9] 

reports an implementation on an SGI 02 with a R10000 

processor, which can process only 11-13 frames per second 

with a frame size of 160 x 120. The pixel-level processing 

used in our GW4 algorithm makes it a good candidate for 

parallel and pipeline processing. 

     Efficient hardware implementation of any Digital Signal 

Processing (DSP) algorithm can be achieved in two distinct 

and important domains: speed and hardware area. Many DSP 

implementations tend to focus on one of these and ignore the 

other, either partially or totally. Typical general purpose-

processors run at a speed of 2 to 3 GHz as compared to high-

end reconfigurable computers like FPGA, which can run at a 

maximum speed of 200 to 500 MHz but can support parallel 

execution. DSP processors perform better than FPGAs when 

the algorithm relies heavily on floating-point numbers, since 

the hardware area consumed by floating point accumulators 

limits the parallel nature of FPGAs [2]. 

     Real-time image processing on FPGA has three major 

constraints [10]: timing, bandwidth and resource constraints. 

These constraints have been dealt with in our implementation 

with the use of fixed-point numbers from the onset of the 

design. The reduced hardware area makes it possible to meet 

the timing constraints and hence real-time processing needs. 

All morphological operations are conducted on BlockRAM, 

as a means of reducing the bandwidth constraints. In addition 

to the use of fixed-point numbers, our implementation 

minimizes resource requirements. As compared to [12], 

where the weight, variance and mean of each pixel is 

maintained for all K distributions, our approach only 



maintains the central value and weight for each pixel, thus 

reducing the storage requirement by a factor of 3K for each 

pixel, ignoring the fact that floating point numbers 

maintained for the mean, variance and weight take much 

more bits than the fixed-point central values. Other 

implementations tend to convert floating-point based 

algorithms into fixed-point [1] as a means of making 

hardware implementation feasible, but without redesign of 

the algorithm. The end result is accumulated error. In 

contrast, our algorithm is designed “from the ground up” to 

use fixed point arithmetic. 

     Our design is a fully parallel and pipelined architecture 

based on FPGA, which reads, processes and store a pixel 

every clock cycle. 

There are six distinct blocks running in parallel with each 

other. These are: 

 

Input Block; This block reads pixels from the camera in 24-

bit RGB format at PAL frame rate (25 fps) for processing. A 

special mechanism had to be introduced to deal with the high 

disparity in frequency of the design and the camera. This 

block iterates several times until the expected pixel value is 

transmitted from the camera. Thus in effect this block runs at 

a maximum frequency of 25Hz. 

 

Pixel Processing Block; This is a 6 stage pipelined block. 

The first stage identifies the pixel read by the input block. 

The memory address corresponding to the storage location of 

its background parameters is computed. The stored 

parameters are then retrieved from memory in the second 

pipelined stage. The third pipeline stage involves the 

conversion of the 24-bit RGB pixel value from the camera 

into 8-bit gray-scale intensity. To reduce computational cost, 

the well-known Craig's formula for converting RGB to Gray-

scale, 

 

BGRY *11.0*59.0*3.0 ++=               (24) 

 

has been modified as follows 

 

BGRY *25.0*50.0*25.0 ++=               (25) 

 

This can be accomplished in a single clock-cycle with two-

hardware adders and two shift operations. The fourth pipeline 

stage is used for pixel classification and the last two stages 

are used for updating the parameters of that pixel stored in 

external memory. The nature of the external RAM calls for 

two blocks of RAM to be used in parallel. Thus while the 

background data is been read from one block the updated 

data is written to the other. These blocks are then 

interchanged after processing a full frame. This block has 

two distinct advantages, which might not be very obvious. 

Pixels are processed as soon as they are read from the 

camera. This significantly improves the throughput of this 

implementation, as little time is spent of addressing and 

retrieving data from slow external memory. This also reduces 

the memory requirement of the implementation. The use of 

gray-scale intensity values rather than RGB values from the 

camera is due to the fact that 24-bit values captured by 

inexpensive cameras have very noisy lower four bits [24]. 

 

Erosion Block; This block is use for morphological erosion. 

The binary foreground extracted in the Pixel Processing 

block is stored on a dual-port BlockRAM for erosion.  

 

Dilation Block; This block is use for morphological dilation. 

The binary foreground obtained after erosion in the erosion 

block is further dilated and stored in another dual-port 

BlockRAM for the external VGA.  

 

Pixel Output Block; This block makes data available to the 

VGA at its refresh rate. This is the foreground obtained after 

dilation.  

 

Memory Control Block; This controls the RAM block for 

reading and writing. Since the external RAM is not dual-port 

and we need to read from and write to RAM every clock 

cycle, we maintain two RAM blocks, which are swapped 

after processing each frame. 

 

     The development of these blocks has been accomplished 

using Celoxica's DK3 design suite and Xilinx ISE 7.1i place 

and route (PAR) tool. The hardware platform is composed of 

a Xilinx Virtex II XC2V6000 FPGA, with equivalent of 6 

million logic gates and 2,592KB of dual-port BlockRAM 

[14]. This FPGA has been packaged with 4 banks (36-bit 

addressable) of external ZBT SRAM totalling 32Mbytes on 

the RC300 [4]. Table 1 is a summary of the resource 

utilization of the hardware implementation, using device 

xc2v6000, and package ff1152 and speed grade 6. The 

system is clocked at 25.17MHz and hence the pipeline yields 

approximately 25 MPixels/sec.  

 

Resource Total Used Per.  

Flip Flops 1,479 out of 67,584 2% 

4 input LUTs 3,200 out of  67,584 4% 

Block RAMs 57 out of  144 39% 

bonded IOBs 335 out of 824 40% 

GCLKs 4 out of 16 25% 

DCMs 1 out of 12 8% 

Occupied Slices 2,022 out of 33,792 5% 

Table 1: Resource utilization on the implementation 

 

 

5   Experimental Results 
To evaluate the performance of our approach (GW4), we 

conduct two different tests against Grimson's algorithm [12]. 

The first test is to estimate which of the two algorithms 

performs better in extracting moving targets in both indoor 



and outdoor scenes. For this test we use eight different 

sequences; four indoor scenes and four outdoor scenes. The 

second test is to establish, which of the two algorithms can 

model perfectly a multimodal background. We use two 

sequences each with swaying trees, slow-moving objects and 

waving river.   

     The experiments were conducted using MATLAB [25] as 

the development tool for K=3, 4 and 5 for both algorithms. 

For fair sensitivity comparisons, we use a learning rate of 

=0.2 for Grimson’s algorithm and T=0.7 as the threshold 

weight that account for the background. Similarly we use set 

T=7*K for our implementation, where K is the total number 

of clusters. We have constructed reference standard 

segmentations on these sequences by using manually marked 

frames; results of the algorithms are compared to this 

reference standard. Fig. 1 shows some sample frames of the 

sequences and their corresponding manually marked frames. 

     We report pixel-wise errors against the reference standard, 

in terms of true positive (TP), true negative (TN), false 

negative (FN) and false positive (FP) pixels. Table 2 shows 

the sensitivity (SENS.) and specificity (SPEC.) of Grimson 

and GW4, for K=3. The test is conducted on a total of 340 

frames, 170 frames from four different outdoor scenes and 

170 frames from four different indoor scenes.  

 

  

  

  

  
Fig. 1: Sample images with manually mark-out frames. 

 

Scene 

GW4 (%) Grimson’s (%) 

SENS. SPEC. SENS. SPEC. 

Out1 60.9 94.1 55.8 97.1 

Out2 85.5 93.5 81.0 96.8 

Out3 90.5 85.9 88.2 94.6 

Out4 83.7 81.6 76.4 90.0 

In1 81.1 89.5 76.9 93.1 

In2 80.6 93.9 77.2 95.1 

In3 87.3 95.0 85.1 97.0 

In4 91.0 80.4 89.6 86.2 

Table 2: Sensitivity and Specificity of GW4 against 

Grimson’s algorithm. 

 

The evaluation parameters used are defined as follows: 

FNTP

TP
SENSySensitivit

+
=.)(  

FPTN

TN
SPECySpecificit

+
=.)(  

Table 2 clearly indicates the superiority of our algorithm in 

detecting foreground pixels (higher sensitivity than Grimson) 

in all 8 sequences and hence suitable for our target 

application. Figure 2, shows some outputs of the two 

algorithms after morphological opening for K=3. 

   

   

   

   

   

   
Fig. 2: Sample output of the two algorithms. Left: Original 

image. Middle: GW4 output. Right: Grimson's output. 



     Our algorithm sometimes produce more false positive 

errors; this is a side-effect of the sensitivity of the model in 

detecting moving targets with low contrast against the 

background, which may lead to detection of the shadows of 

moving targets which Grimson's algorithm would ignore. 

Nonetheless, overall the error rate is lower than Grimson's 

[12]. Again, most of the noise produced in our approach can 

easily be removed with morphological opening at very 

minimal cost. 

     To show that this result is statistically significant we 

combine the results of all eight sequences for a sensitivity 

test. A binomial test is then conducted to test the null-

hypothesis that the probability of Grimson’s algorithm 

performing better is greater or equal to 0.5. For p=0.5, since 

Grimson’s algorithm lost in all 8 independent scenes, the 

probability of performing better is (0.5)8=0.00390625 and 

hence reject the null hypothesis with 99% significance. The 

performance of one algorithm over the other is consistent for 

all frames in any particular sequence. Figure 3 shows how 

the sensitivity and specificity changes across frames for two 

selected scenes, when k=3. 

 

 

 
Fig. 3: Graphs showing the sensitivity and specificity of the 

two algorithms for two independent sequences.       

   

     It is worth noting that Grimson's algorithm [12] although 

more sophisticated than ours, failed to perform better with 

the test data presented here, for K=3. This is due to the 

additional condition (condition 3) we use in extracting 

foreground pixels, thereby resolving the foreground aperture 

problem. From fig. 2, it becomes clear where Grimson's 

algorithm fails to perform better than GW4 due to foreground 

aperture. Further test were also conducted to evaluate the 

quality of results for both algorithms, when K increases. 

However, test results using the above 8 sequences did not 

show any significant improvement in sensitivity and 

specificity for K=4 and K=5 for both algorithms. Table 3 

shows the average specificity and sensitivity for all 8 

sequences with different values of K.  

 

 GW4 (avg. %) Grimson (avg. %) 

K SENS. SPEC. SENS. SPEC. 

3 82.6 89.2 78.8 93.7 

4 81.9 89.0 78.3 93.7 

5 82.1 88.8 77.6 93.8 

Table 3: Average sensitivity and specificity values for 

different values of K. 

 

     It will be unfair to judge the performance of our approach 

only on extracting moving objects. Hence, we perform test 

on two scenes with only slowly moving objects, swaying 

tress and waving river. This test is aimed at finding which of 

the two approaches best models a multimodal background. 

Fig. 4 shows some of the frames from the two sequences 

used in this test. Our interest here is the total number of true 

negatives for each algorithm. Table 4 shows the score for the 

two algorithms in terms true negatives and the number of 

frames an algorithm performs better than the other.  

 

    

   
Complex Scene -frames 10, 150, 160 and 300 



   

  
Normal Scene - frames 10, 150, 160 and 300 

Fig. 4: Sequences for multimodal background test. 

 

 

 GW4 Grimson 

K TN (%) frames TN (%) frames 

3 54.85 171 54.26 129 

4 54.10 91 55.30 209 

5 53.60 54 55.90 247 

  (a) Result for complex scene 

 

 GW4 Grimson 

K TN (%) frames TN (%) frames 

3 69.60 300 67.10 0 

4 68.80 204 67.80 96 

5 68.30 153 68.30 147 

  (b) Results for normal scene 

Table 4:  Results of the multimodal modelling test for two 

scenes. 

 

     In general the performance of Grimson’s algorithm in 

modelling multimodal background improves as the value of 

K increases. The normal scene has a significant portion of 

static background, which accounts for the high performance 

with our implementation. It is also clear that GW4 performs 

better for lower values of K and hence the FPGA 

implementation with K=3 is better than Grimson’s algorithm 

for the same value of K. It is also worth noting that the 

complexity and storage requirement of the implementation 

increases while the value of K increases; making it 

impractical for FPGA implementation for speedup. Fig. 5 

shows some results of the multimodal modelling for the 

complex scene while fig. 6 shows some results for the normal 

scene. Green pixels represent pixels that failed to be 

classified as background. 

 

  

  

  
Fig. 5: Result of the complex scene for GW4 (left) and 

Grimson (right); for K =3, 4 and 5 respectively at frame 

180/300. 

 

  

  

  
Fig. 6: Result of the normal scene for GW4 (left) and 

Grimson (right); for K =3, 4 and 5 respectively at frame 

60/300. 

 



From table 3, GW4 always has lower specificity as compared 

to Grimson's algorithm due to GW4's sensitivity in detecting 

targets with low contrast to the background as well as 

reflections from moving objects. Clearly any form of error is 

undesirable. However, in our target application false positive 

(FP) errors of the type reported are more acceptable than 

false negative (FN) errors, as subsystem tracking stages can 

discard distracters such as shadows. 

     Timing analysis generated by the Place and Route (PAR) 

tool shows that the design can run at a maximum speed of 

39.72ns, meaning every stage in the design can be clocked at 

25.17MHz. Hence for a standard frame size of 640x480, the 

design can process at least 80fps (ignoring access to external 

RAM), when the pipeline is full. Comparing to real-time 

application requirement of 30fps, the implemented design, as 

it stands, meets the real-timing requirement. The efficient 

resource utilization of our design makes it possible to add 

new image processing functions, like object tracking and 

action interpretation to the system. 

 

 

6   Conclusion 
In this article we have shown a real-time adaptive 

background scene modelling and maintenance technique 

suitable for tracking people in both indoor and outdoor 

environments, implemented as a System-on-Chip (SoC) 

using FPGA technology. 

     Instead of using a complicated already existing 

background subtraction technique, our algorithm is a hybrid 

version of the W4 [8] and Grimson's [12] techniques, with 

some modification to enhance the sensitivity in detecting 

targets with low contrast against the background. The system 

learns and models the background scene over time to detect 

foreground objects, in the presence of multimodal 

background objects like tree branches. The algorithm has 

been implemented in Handel-C and runs on Xilinx Virtex II 

FPGA. Currently, for an image size of 640x480, the system 

operates at real-time (30fps). This performance level cannot 

be easily reached without parallel processing. Various tests 

have also been conducted using MATLAB to justify the 

performance of our approach. Generally, our results show 

that our implementation is optimal for the available FPGA 

resources.  
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Fig. 7: Raw outputs of the two algorithms without 

morphological opening for K=3 for three different scenes. 

GW4- left and Grimson’s algorithm – right. 

 

  
 

  
 

  
Fig. 8: Raw outputs of the two algorithms without 

morphological opening for K=4 for three different scenes. 

GW4- left and Grimson’s algorithm – right. 

 

  

  

  
Fig. 9: Raw outputs of the two algorithms without 

morphological opening for K=5 for three different scenes. 

GW4- left and Grimson’s algorithm – right. 


