
GW4: a real-time background subtraction and maintenance
algorithm for FPGA implementation

APPIAH, Kofi <http://orcid.org/0000-0002-9480-0679>, HUNTER, Andrew and
KLUGE, Tino

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/22198/

This document is the Accepted Version [AM]

Citation:

APPIAH, Kofi, HUNTER, Andrew and KLUGE, Tino (2005). GW4: a real-time
background subtraction and maintenance algorithm for FPGA implementation.
WSEAS Transactions on Systems, 4 (10), 1741-1751. [Article]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

GW4: A Real-Time Background Subtraction and Maintenance Algorithm for

FPGA Implementation

KOFI APPIAH† ANDREW HUNTER† TINO KLUGE‡

Department of Computing and Informatics†

University of Lincoln

Lincoln, LN6 7TS

UK

OCIAM, Mathematical Institute‡

University of Oxford

Oxford, OX1 3LB

UK

{kappiah, ahunter}@lincoln.ac.uk, kluge@maths.ox.ac.uk http://facs.lincoln.ac.uk/Research/Vision

Abstract: - GW4 is a real-time video segmentation algorithm for detecting moving objects in indoor and outdoor scenes. The

platform for the final implementation is Field Programmable Gate Array (FPGA); a reconfigurable computing platform. The

algorithm detects moving foreground objects against a multimodal background; it is motivated by two well-known adaptive

background differencing algorithms, Grimson's algorithm and W4. The implementation is based on a single stationary camera

transmitting RGB values at 25Hz. Background modelling at pixel level has been used in many applications, but normally fails

due to camouflage and foreground aperture problems. These common problems have been reduced in our approach with the use

of pixel and frame level processing. To make the algorithm feasible and efficient for the final hardware platform, we avoid the

use of floating point numbers and transcendental operations. The final implementation operates at real-time frame rates on

640x480 video streams. We present experimental results indicating processing speeds, and superior segmentation performance

to Grimson's algorithm for different values of K.

Key-Words: - FPGA, Multimodal background, Real-time processing, Reconfigurable hardware

1 Introduction
Video segmentation algorithms process large amount of data,

and are consequently processor and memory hungry [11, 15].

Real-time robot vision tasks require high computational

power and data throughput in order of magnitude, which far

exceed those available on mainstream computer platforms

[21]. Typically, image processing algorithms can be broke

down into three major stages [3]: early processing,

implemented by local pixel-level functions; intermediate

processing, which includes segmentation, motion estimation

and feature extraction; late processing, including

interpretation and using statistical and artificial intelligence

algorithms. Typically algorithmic sophistication is

concentrated in the later stages, but processing demands are

dominated by the early stages.

 Background subtraction utilizes the visual properties of

the scene for building an appropriate representation that can

be use to identify foreground and background objects.

Existing methods for background modelling can be classified

as either predictive or non-predictive [22]. Predictive

methods model the scene as a time series, while the non-

predictive methods build a probability representation of the

observation at pixel level. Limitations on processing power

force us to use extremely simple algorithms for early

processing, limiting performance. The proliferation of cheap

sensor and increased processing power has made the

acquisition and processing of video information more

feasible [20].

 This article demonstrates how real-time early digital

vision can be accomplished with the use of data and

instruction parallelism. Our approach spans the early and

intermediate levels described above. Most image

segmentation algorithms are computationally expensive and

require significant storage space; however, they are also

often inherently parallelisable. Field Programmable Gate

Array (FPGA) systems are ideal for the implementation of

such algorithms, providing that algorithms are designed with

the limitations of FPGA in mind (in particular, avoidance of

floating point arithmetic is recommended). Modern FPGAs

provide a very appealing platform for rapid, low-cost

development of specialized algorithms, due to their

reconfigurable nature, as opposed to older Application

Specific Integrated Circuit (ASIC) designs, which have a

very long and error-prone design cycle [1].

 This article presents part of a vision system for monitoring

suspicious human activities in a risk prone environment.

Today's technology makes it possible for a single human

operator to potentially monitor multiple cameras relaying

images from sites like large industrial parks and residential

areas separated by great distances. The increase in numbers

of these cameras makes it very hard for the operator to

successfully identify behaviour of interest, leading to a

research interest in automated monitoring [5]. A number of

algorithms for segmentation of moving objects have already

been developed, and successfully implemented in software,

at least for individual video streams at low frame rates and

resolutions. Very few of these algorithms have been

incorporated into today's video surveillance systems, partly

due to computational complexity, cost and lack of real-time

capability. “One might argue that there is always a bigger

chip that will fit the application, but the use of

reconfiguration may bring some other profits such as good

system extensibility after the system expedition or more

favourable power consumption”[23]. This makes the

development of such algorithms on specialized hardware

timely.

 Multimodal background differencing segmentation

algorithms are practical, reasonably fast and can handle some

typical problems, such as camera jitter, moving foliage, water

and lighting changes. They require a significant amount of

floating point processing, and thus when implemented in

software running on general-purpose computers are limited

to low frame rates and small frame sizes. They typically

absorb 80% to 90% of the entire processing time, which

makes them unattractive for real-time purposes.

 We present here a new multimodal background

differencing segmentation algorithm, which is very simple,

robust and can easily be implemented in computer hardware

with maximum efficiency in terms of speed and hardware

area. Our algorithm is a hybrid of two robust and well-known

image segmentation algorithms (Grimson's, and W4), which

illustrates how simple algorithms can be designed for

efficient FPGA implementation.

2 Previous Work
The first stage in processing for many video applications is

the segmentation of (usually) moving objects. Where the

camera is stationary, a natural approach is to model the

background and detect foreground objects by differencing the

current frame with the background. A wide and increasing

variety of techniques for background modelling have been

described; a good comparison is given by Gutchess et al [7].

 The most popular method is unimodal background

modelling, in which a single value is used to represent a

pixel, which has been widely used due to its relatively low

computational cost and memory requirements [8, 13]. This

technique gives poor results when used in modelling non-

stationary background scenarios like waving trees, rain and

snow. A more powerful alternative is to use a multimodal

background representation, the most common variant of

which is a mixture of Gaussians [6, 12]. However, the

computational demands make such techniques unpopular for

real-time purposes; there are also disadvantages in

multimodal techniques [6, 12, 13] including the blending

effect, where a pixel attains an intensity value which has

never occurred at that position (a side-effect of the smoothing

used in these techniques). Other techniques rely heavily on

the assumption that the most frequent intensity value during

the training period represents the background. This

assumption may well be false, causing the output to have a

large error level.

2.1 Grimson’s Algorithm
Grimson et al [12] introduced a multimodal approach,

modelling the values of each pixel as a mixture of Gaussians.

The background is modelled with the most persistent

intensity values. The algorithm has two variants, colour and

gray-scale: in this paper, we concentrate on the gray-scale

version. The probability of observing the current pixel value

is given as:

=

=
k

i

titittit

1

,,,),,()((1)

Where i,t, i,t and i,t are the respective mean, variance and

weight parameters of the ith Gaussian component of pixel at

time t, and is a Gaussian probability density function

ti

tit

e
ti

titit
,

2
,

2

)(

,

,,
2

1
),,(

−

=

 (2)

A new pixel value is generally consistent with one of the

major components of the mixture model and used to update

the model. For every new pixel value, t, a check is

conducted to match it to one of the K Gaussian distributions.

A match is found when t is within 2.5 standard deviations of

a distribution. If none of the K distributions match t, the

least weighed distribution is replaced with a new distribution

having t as mean, high variance and very low weight. The

weights are updated as follows:

)(1,,1,, −− −+= titititi m (3)

where is the learning rate and

=
otherwise 0

match a is thereif 1
,tim (4)

1 defines the time constant which determines the speed at

which the distribution's parameters change. Only the matched

distribution will have its mean and variance updated, using

the equations:

)(1 tttt −−= − (5)

)(*)()1(1 tt

T

tttt −−+−= −
 (6)

),|(ttt = (7)

The first B distributions (ordered by k) are used as a model

of the background, where

)min(arg
1

=

=
b

k

kb TB (8)

The threshold T is a measure of the minimum portion of the

data that should be accounted for by the background.

2.2 The W4 Algorithm
Haritaoglu et al [8] introduced the W4 algorithm, which uses

a single distribution with three integer values to model the

background. Their background model requires manual

initialisation; the three parameters (Maximum, Minimum and

maximum inter-frame difference values) are acquired over a

period of time (a few seconds) when there is no activity in

the scene.

 After the initialisation period, each pixel is classified as

either a background or a foreground pixel using the

background model. Given the maximum (M), minimum (m)

and the largest inter-frame absolute difference (D) of the

images collected over the initialisation period, a new pixel x

from an image sequence It is a foreground pixel if:

)(|)()(| xDxIxm t − (9)

or

)(|)()(| xDxIxM t − (10)

 In order to detect people in outdoor scenes using W4,

Haritaoglu et al [16] used new background modelling

parameters and updating equations. The initial background

model for a pixel at location x, is given as:

−

=

− |})()({|max

)}({max

)}({min

)(

)(

)(

1 xVxV

xV

xV

xd

xn

xm

ss

s

s

s

s

s

 (11)

Where)(*2|)()(| xxxV s − , for

(x) and)(),(xxV s
 being the respective stationary pixel

value, standard deviation and median value of intensities at

pixel location x. The assumption that the background model

stays unchanged for long periods of time does not hold for

outdoor scenes and hence must be updated periodically.

 A change map consisting of three components (detection

support map gS, motion support map mS and change history

map hS) is dynamically constructed to determine whether a

pixel-based or an object based update method applies. The

three components are updated as follows:

−

+−
=

pixel foreground is x if)1,(

pixel background is x if 1)1,(
),(

txgS

txgS
txgS (12)

=−

=−
=

0 t)M(x, if)1,(

1 t)M(x, if)1,(
),(

txmS

txmS
txmS (13)

()

()

−−

+−

=

otherwise 0

*2|),()1,(|

*2|)1,(),(| if 1

),(

txItxI

txItxI

txM (14)

−−
=

otherwise
255

)1,(

 pixel foreground is x if 255

),(

N
txhS

txhS (15)

The background model parameters are updated as follows:

If (gS(x)>k*N) then

{

[m(x), n(x), d(x)]=background pixel parameters

}

Else

{

If((gS(x)<k*N) (mS(x)<r*N)) then

{

[m(x), n(x), d(x)]=foreground pixel parameters

}

Else

{

 The parameters remain unchanged

}

}

Typical values of k and r being 0.8 and 0.1 respectively.

After extracting the background scene a region-based

cleaning is applied to eliminate noisy regions.

2.3 The PixelMap Algorithm
Qi et al [17] introduced the PixelMap algorithm, using MoG

and additional information like minimum and maximum

pixel values to overcome most problems with typical MoG

scene modelling. The Mixture of Gaussians models as

presented in [18, 19] are advantageous in term of adaptivity,

time-efficiency and robustness, but have reduced

performance when there is a very large or very slow moving

object. To avoid complex and costly computations and yet

handle the foreground aperture problem associated with

MoGs, a data record called PixelMap is used. This is based

on RGB space and operates in three levels:

1. Pixel level using MoGs

2. Regional Level by considering spatial pixel relationships

in a 5x5 window

3. Frame level by considering frame differences and backup

extra data.

 Similar to [12, 18, 19] each pixel is modelled with a

mixture of K Gaussians as in equation 1. Thus each pixel will

have K distributions; each with an associated weight and five

arrays [Meanrgb, Varrgb, Maxrgb, Minrgb, Flag, Time],

representing the means, variance, maximum values and

minimum values of the RGB, and Time indicates the time

when a variable Flag changes from background to

foreground or vice-versa. New pixels Xt are checked against

the K distributions ordered by weights until a match is found.

The background model is given as

TB
K

i ti

b

i ti

b

=

=

=

1 ,

1 ,
minarg

 (16)

All pixels Xt which do not match any of the components are

marked as foreground for further processing.

 The marked foreground is then used to construct a mask at

the frame level. For 11 −− −= ttt FFD and ttt FFD −= +1 the

foreground mask is updated as follow:

)()(1 tt DDMaskMask += − (17)

Extra post-processing is performed to remove Salt and

Pepper noise as well as shadows. The background model is

updated as follows for matched distributions (where is the

learning rate)

ttiti I +−= −1,,)1((18)

)()()1(,,

2

1,

2

, tit

T

tittiti II −−+−= − (19)

and remains unchanged for unmatched distributions. The

least weighted distribution is replaced with the current pixel

if it matches none of the distributions. The weights are

adjusted as follows

1,,)1(−−= titi (20)

 The W4 algorithm is attractive in maintaining all values

with minimal use of floating point numbers. The inability of

this approach in handling multimodal backgrounds is

mentioned in [16]. Clearly, the number of parameters held

for each pixel (maximum and minimum intensity values,

maximum inter-frame difference, standard deviation, median

value, detection and motion support maps and the change

history map) make it impractical to extend this approach into

multimodal. Similarly the PixelMap approach reports

significant performance improvement in terms of processing

time and foreground extraction, with the use of extra

information. Again the number of parameters associated

with each pixel is enormously high and is not worth the slight

increase in processing time.

 Grimson's algorithm [12] is robust to outdoor

environments where lighting intensity can suddenly change

and handles multimodal backgrounds without manual

initialisation. This approach maintains minimal parameters

for each pixel as compared to the other discussed approaches.

Unfortunately, it has reduced performance due to

camouflage, foreground aperture and in the presence of very

large moving objects. It also uses floating-point numbers in

all its update parameters making it computationally

expensive, and unsuitable for hardware implementation [2].

 The following section gives details of our approach,

which utilizes all the attractive features of [8, 12, 17]. From

W4, we use the concept of maximum and minimum values to

distinguish between foreground and background pixels.

Rather that maintaining two values, we maintain a single

central value around which we define the maximum and

minimum values. We also use the pixel-level multimodal

approach as introduced in Grimson’s algorithm. Frame-level

processing is also conducted with the use of extra

information similar to the PixelMap approach used in [17].

3 The GW4 Algorithm
We present here a novel hybrid image segmentation

algorithm, GW4, that combines the attractive features of

Grimson's algorithm, PixelMap algorithm and W4 [8, 12, 16,

17, 18, 19], with appropriate modifications to improve

segmentation of the foreground image, and to allow an

efficient implementation on a reconfigurable hardware

platform, Field Programmable Gate Array (FPGA).

 Following Grimson [12], we maintain a number of

clusters, each with weight k , where Kk 1 , for K

clusters. Rather than modelling a Gaussian distribution, we

maintain a model with a central value, kc . We use an implied

range, [10,10 +− kk cc], rather than explicitly modelling a

range as in W4 [8]. The choice of 20 as the width of the

clusters was based on the maximum inter-frame absolute

difference obtained for some randomly selected test data

(outdoor and indoor scenes) using the algorithm presented in

[8]. The weights of all the clusters are initialised to 10, and

the total weight remains constant.

 A pixel),(jiI= from an image I is said to match a

cluster, k, if 10− kc and 10+ kc . The highest

weight matching cluster is updated, if and only if its weight

does not exceed 70% of the total weight of all K clusters

(i.e. 21k , given K=3). The update is as follows:

−

−+
=

−

−

otherwise 1

cluster winningfor the)1(

1,

1,

,

tk

tk

ti

K

 (21)

 If no matching cluster is found, then the least weighted

cluster's central value, kc is replaced with X; its weight stays

the same. The way we construct and maintain clusters make

our approach free from the blending effect. This is because

for every cluster, the central value kc represents an intensity

value which has occurred at that pixel location. Also

considering the number of parameters that is maintained for

each pixel in all the compared algorithms, our approach is

efficient in terms of resources utilization. We have also used

statistical test to show the effectiveness of our approach in

performance.

 The K distributions are ordered by weight, with the most

likely background distribution on top. Similar to [12], the

first B clusters are chosen as the background model, where

)min(arg
1

=

=
b

k

kb TB (22)

The threshold T is a measure of the minimum portion of the

data that should be accounted for by the background. The

choice of T is very important, as a small T usually models a

unimodal background while a higher T models a multi-modal

background. We set T to be 70% of the total weight of all K

clusters, thus

7*
100

70
*)*10(KKT == (23)

 To overcome the foreground aperture and camouflage

problems, we conduct a frame level processing. Rather than

maintaining three frames Ft-1, Ft and Ft+1 as in [17], we only

maintain a single frame with its current cluster values k for

our frame level processing. We classify a pixel as foreground

based on the following three conditions:

1. If the intensity value of the pixel matches none

of the K clusters.

2. If the matched cluster is outside the background

model.

3. If the intensity value is assigned to the same

cluster for two successive frames, and the

intensity values X(t) and X(t-1) are both outside

the 20% mid-range.

 The third condition is necessary to detect targets with low

contrast against the background, while maintaining the

concept of multi-modal backgrounds. A typical example is a

moving object with gray-scale intensity close to that of the

background, which would be classified as background in

[12]. This requires the maintenance of an extra frame, with

values representing the recently processed background

intensities, but the memory requirement is not excessive due

to the use of integer values in our overall computations. The

use of extra information to make our approach more robust is

in line with the W4 [16] and PixelMap [17].

 It must also be pointed out that a pixel classified as

foreground pixel using the third condition is also classified as

a background pixel. The resulting foreground image is

cleaned up by morphological opening using a 3 x 3

structuring element; we use the same procedure with

Grimson's algorithm, the base algorithm for fairness and

comparison purposes.

4 Hardware Implementation
Our segmentation algorithm, described in section 3, has the

advantage of being computationally simple, making it

suitable for hardware implementation. The mixture of

Gaussian models maintained for each pixel in [12] poses a

large computational and storage problem. Jiang et al [9]

reports an implementation on an SGI 02 with a R10000

processor, which can process only 11-13 frames per second

with a frame size of 160 x 120. The pixel-level processing

used in our GW4 algorithm makes it a good candidate for

parallel and pipeline processing.

 Efficient hardware implementation of any Digital Signal

Processing (DSP) algorithm can be achieved in two distinct

and important domains: speed and hardware area. Many DSP

implementations tend to focus on one of these and ignore the

other, either partially or totally. Typical general purpose-

processors run at a speed of 2 to 3 GHz as compared to high-

end reconfigurable computers like FPGA, which can run at a

maximum speed of 200 to 500 MHz but can support parallel

execution. DSP processors perform better than FPGAs when

the algorithm relies heavily on floating-point numbers, since

the hardware area consumed by floating point accumulators

limits the parallel nature of FPGAs [2].

 Real-time image processing on FPGA has three major

constraints [10]: timing, bandwidth and resource constraints.

These constraints have been dealt with in our implementation

with the use of fixed-point numbers from the onset of the

design. The reduced hardware area makes it possible to meet

the timing constraints and hence real-time processing needs.

All morphological operations are conducted on BlockRAM,

as a means of reducing the bandwidth constraints. In addition

to the use of fixed-point numbers, our implementation

minimizes resource requirements. As compared to [12],

where the weight, variance and mean of each pixel is

maintained for all K distributions, our approach only

maintains the central value and weight for each pixel, thus

reducing the storage requirement by a factor of 3K for each

pixel, ignoring the fact that floating point numbers

maintained for the mean, variance and weight take much

more bits than the fixed-point central values. Other

implementations tend to convert floating-point based

algorithms into fixed-point [1] as a means of making

hardware implementation feasible, but without redesign of

the algorithm. The end result is accumulated error. In

contrast, our algorithm is designed “from the ground up” to

use fixed point arithmetic.

 Our design is a fully parallel and pipelined architecture

based on FPGA, which reads, processes and store a pixel

every clock cycle.

There are six distinct blocks running in parallel with each

other. These are:

Input Block; This block reads pixels from the camera in 24-

bit RGB format at PAL frame rate (25 fps) for processing. A

special mechanism had to be introduced to deal with the high

disparity in frequency of the design and the camera. This

block iterates several times until the expected pixel value is

transmitted from the camera. Thus in effect this block runs at

a maximum frequency of 25Hz.

Pixel Processing Block; This is a 6 stage pipelined block.

The first stage identifies the pixel read by the input block.

The memory address corresponding to the storage location of

its background parameters is computed. The stored

parameters are then retrieved from memory in the second

pipelined stage. The third pipeline stage involves the

conversion of the 24-bit RGB pixel value from the camera

into 8-bit gray-scale intensity. To reduce computational cost,

the well-known Craig's formula for converting RGB to Gray-

scale,

BGRY *11.0*59.0*3.0 ++= (24)

has been modified as follows

BGRY *25.0*50.0*25.0 ++= (25)

This can be accomplished in a single clock-cycle with two-

hardware adders and two shift operations. The fourth pipeline

stage is used for pixel classification and the last two stages

are used for updating the parameters of that pixel stored in

external memory. The nature of the external RAM calls for

two blocks of RAM to be used in parallel. Thus while the

background data is been read from one block the updated

data is written to the other. These blocks are then

interchanged after processing a full frame. This block has

two distinct advantages, which might not be very obvious.

Pixels are processed as soon as they are read from the

camera. This significantly improves the throughput of this

implementation, as little time is spent of addressing and

retrieving data from slow external memory. This also reduces

the memory requirement of the implementation. The use of

gray-scale intensity values rather than RGB values from the

camera is due to the fact that 24-bit values captured by

inexpensive cameras have very noisy lower four bits [24].

Erosion Block; This block is use for morphological erosion.

The binary foreground extracted in the Pixel Processing

block is stored on a dual-port BlockRAM for erosion.

Dilation Block; This block is use for morphological dilation.

The binary foreground obtained after erosion in the erosion

block is further dilated and stored in another dual-port

BlockRAM for the external VGA.

Pixel Output Block; This block makes data available to the

VGA at its refresh rate. This is the foreground obtained after

dilation.

Memory Control Block; This controls the RAM block for

reading and writing. Since the external RAM is not dual-port

and we need to read from and write to RAM every clock

cycle, we maintain two RAM blocks, which are swapped

after processing each frame.

 The development of these blocks has been accomplished

using Celoxica's DK3 design suite and Xilinx ISE 7.1i place

and route (PAR) tool. The hardware platform is composed of

a Xilinx Virtex II XC2V6000 FPGA, with equivalent of 6

million logic gates and 2,592KB of dual-port BlockRAM

[14]. This FPGA has been packaged with 4 banks (36-bit

addressable) of external ZBT SRAM totalling 32Mbytes on

the RC300 [4]. Table 1 is a summary of the resource

utilization of the hardware implementation, using device

xc2v6000, and package ff1152 and speed grade 6. The

system is clocked at 25.17MHz and hence the pipeline yields

approximately 25 MPixels/sec.

Resource Total Used Per.

Flip Flops 1,479 out of 67,584 2%

4 input LUTs 3,200 out of 67,584 4%

Block RAMs 57 out of 144 39%

bonded IOBs 335 out of 824 40%

GCLKs 4 out of 16 25%

DCMs 1 out of 12 8%

Occupied Slices 2,022 out of 33,792 5%

Table 1: Resource utilization on the implementation

5 Experimental Results
To evaluate the performance of our approach (GW4), we

conduct two different tests against Grimson's algorithm [12].

The first test is to estimate which of the two algorithms

performs better in extracting moving targets in both indoor

and outdoor scenes. For this test we use eight different

sequences; four indoor scenes and four outdoor scenes. The

second test is to establish, which of the two algorithms can

model perfectly a multimodal background. We use two

sequences each with swaying trees, slow-moving objects and

waving river.

 The experiments were conducted using MATLAB [25] as

the development tool for K=3, 4 and 5 for both algorithms.

For fair sensitivity comparisons, we use a learning rate of

=0.2 for Grimson’s algorithm and T=0.7 as the threshold

weight that account for the background. Similarly we use set

T=7*K for our implementation, where K is the total number

of clusters. We have constructed reference standard

segmentations on these sequences by using manually marked

frames; results of the algorithms are compared to this

reference standard. Fig. 1 shows some sample frames of the

sequences and their corresponding manually marked frames.

 We report pixel-wise errors against the reference standard,

in terms of true positive (TP), true negative (TN), false

negative (FN) and false positive (FP) pixels. Table 2 shows

the sensitivity (SENS.) and specificity (SPEC.) of Grimson

and GW4, for K=3. The test is conducted on a total of 340

frames, 170 frames from four different outdoor scenes and

170 frames from four different indoor scenes.

Fig. 1: Sample images with manually mark-out frames.

Scene

GW4 (%) Grimson’s (%)

SENS. SPEC. SENS. SPEC.

Out1 60.9 94.1 55.8 97.1

Out2 85.5 93.5 81.0 96.8

Out3 90.5 85.9 88.2 94.6

Out4 83.7 81.6 76.4 90.0

In1 81.1 89.5 76.9 93.1

In2 80.6 93.9 77.2 95.1

In3 87.3 95.0 85.1 97.0

In4 91.0 80.4 89.6 86.2

Table 2: Sensitivity and Specificity of GW4 against

Grimson’s algorithm.

The evaluation parameters used are defined as follows:

FNTP

TP
SENSySensitivit

+
=.)(

FPTN

TN
SPECySpecificit

+
=.)(

Table 2 clearly indicates the superiority of our algorithm in

detecting foreground pixels (higher sensitivity than Grimson)

in all 8 sequences and hence suitable for our target

application. Figure 2, shows some outputs of the two

algorithms after morphological opening for K=3.

Fig. 2: Sample output of the two algorithms. Left: Original

image. Middle: GW4 output. Right: Grimson's output.

 Our algorithm sometimes produce more false positive

errors; this is a side-effect of the sensitivity of the model in

detecting moving targets with low contrast against the

background, which may lead to detection of the shadows of

moving targets which Grimson's algorithm would ignore.

Nonetheless, overall the error rate is lower than Grimson's

[12]. Again, most of the noise produced in our approach can

easily be removed with morphological opening at very

minimal cost.

 To show that this result is statistically significant we

combine the results of all eight sequences for a sensitivity

test. A binomial test is then conducted to test the null-

hypothesis that the probability of Grimson’s algorithm

performing better is greater or equal to 0.5. For p=0.5, since

Grimson’s algorithm lost in all 8 independent scenes, the

probability of performing better is (0.5)8=0.00390625 and

hence reject the null hypothesis with 99% significance. The

performance of one algorithm over the other is consistent for

all frames in any particular sequence. Figure 3 shows how

the sensitivity and specificity changes across frames for two

selected scenes, when k=3.

Fig. 3: Graphs showing the sensitivity and specificity of the

two algorithms for two independent sequences.

 It is worth noting that Grimson's algorithm [12] although

more sophisticated than ours, failed to perform better with

the test data presented here, for K=3. This is due to the

additional condition (condition 3) we use in extracting

foreground pixels, thereby resolving the foreground aperture

problem. From fig. 2, it becomes clear where Grimson's

algorithm fails to perform better than GW4 due to foreground

aperture. Further test were also conducted to evaluate the

quality of results for both algorithms, when K increases.

However, test results using the above 8 sequences did not

show any significant improvement in sensitivity and

specificity for K=4 and K=5 for both algorithms. Table 3

shows the average specificity and sensitivity for all 8

sequences with different values of K.

 GW4 (avg. %) Grimson (avg. %)

K SENS. SPEC. SENS. SPEC.

3 82.6 89.2 78.8 93.7

4 81.9 89.0 78.3 93.7

5 82.1 88.8 77.6 93.8

Table 3: Average sensitivity and specificity values for

different values of K.

 It will be unfair to judge the performance of our approach

only on extracting moving objects. Hence, we perform test

on two scenes with only slowly moving objects, swaying

tress and waving river. This test is aimed at finding which of

the two approaches best models a multimodal background.

Fig. 4 shows some of the frames from the two sequences

used in this test. Our interest here is the total number of true

negatives for each algorithm. Table 4 shows the score for the

two algorithms in terms true negatives and the number of

frames an algorithm performs better than the other.

Complex Scene -frames 10, 150, 160 and 300

Normal Scene - frames 10, 150, 160 and 300

Fig. 4: Sequences for multimodal background test.

 GW4 Grimson

K TN (%) frames TN (%) frames

3 54.85 171 54.26 129

4 54.10 91 55.30 209

5 53.60 54 55.90 247

 (a) Result for complex scene

 GW4 Grimson

K TN (%) frames TN (%) frames

3 69.60 300 67.10 0

4 68.80 204 67.80 96

5 68.30 153 68.30 147

 (b) Results for normal scene

Table 4: Results of the multimodal modelling test for two

scenes.

 In general the performance of Grimson’s algorithm in

modelling multimodal background improves as the value of

K increases. The normal scene has a significant portion of

static background, which accounts for the high performance

with our implementation. It is also clear that GW4 performs

better for lower values of K and hence the FPGA

implementation with K=3 is better than Grimson’s algorithm

for the same value of K. It is also worth noting that the

complexity and storage requirement of the implementation

increases while the value of K increases; making it

impractical for FPGA implementation for speedup. Fig. 5

shows some results of the multimodal modelling for the

complex scene while fig. 6 shows some results for the normal

scene. Green pixels represent pixels that failed to be

classified as background.

Fig. 5: Result of the complex scene for GW4 (left) and

Grimson (right); for K =3, 4 and 5 respectively at frame

180/300.

Fig. 6: Result of the normal scene for GW4 (left) and

Grimson (right); for K =3, 4 and 5 respectively at frame

60/300.

From table 3, GW4 always has lower specificity as compared

to Grimson's algorithm due to GW4's sensitivity in detecting

targets with low contrast to the background as well as

reflections from moving objects. Clearly any form of error is

undesirable. However, in our target application false positive

(FP) errors of the type reported are more acceptable than

false negative (FN) errors, as subsystem tracking stages can

discard distracters such as shadows.

 Timing analysis generated by the Place and Route (PAR)

tool shows that the design can run at a maximum speed of

39.72ns, meaning every stage in the design can be clocked at

25.17MHz. Hence for a standard frame size of 640x480, the

design can process at least 80fps (ignoring access to external

RAM), when the pipeline is full. Comparing to real-time

application requirement of 30fps, the implemented design, as

it stands, meets the real-timing requirement. The efficient

resource utilization of our design makes it possible to add

new image processing functions, like object tracking and

action interpretation to the system.

6 Conclusion
In this article we have shown a real-time adaptive

background scene modelling and maintenance technique

suitable for tracking people in both indoor and outdoor

environments, implemented as a System-on-Chip (SoC)

using FPGA technology.

 Instead of using a complicated already existing

background subtraction technique, our algorithm is a hybrid

version of the W4 [8] and Grimson's [12] techniques, with

some modification to enhance the sensitivity in detecting

targets with low contrast against the background. The system

learns and models the background scene over time to detect

foreground objects, in the presence of multimodal

background objects like tree branches. The algorithm has

been implemented in Handel-C and runs on Xilinx Virtex II

FPGA. Currently, for an image size of 640x480, the system

operates at real-time (30fps). This performance level cannot

be easily reached without parallel processing. Various tests

have also been conducted using MATLAB to justify the

performance of our approach. Generally, our results show

that our implementation is optimal for the available FPGA

resources.

References:

[1] AccelChip, Comparison of Methods for Implementing

DSP Algorithms, SoC Central, 2003

[2] Elham Ashari and Richard Hornsey, FPGA

implementation of real-time adaptive image thresholding,

SPIE-International Society for Optical Engineering, Dec.

2004.

[3] J. Batlle, J. Martin, P. Ridao and J. Amat, A New

FPGA/DSP-Based Parallel Architecture for Real-Time

Image Processing, Elsevier Science Ltd., 2002

[4] Celoxica, Video and Imaging solution,

http://www.celoxica.com, 2004.

[5] M. Ekinci and E. Gedikli, Real Time Background model

initialization and maintenance for video surveillance, IJCI

Proceedings of Intl. XII.Turkish Symposium on Artificial

Intelligence and Neural Networks, 2003

[6] Ahmed Elgammel, David Harwood, and Larry Davis,

Non-parametric Model for Background Subtraction,

Proceedings of the 6th European Conference on Computer

Vision, Dublin, Ireland, 2000

[7] D. Gutchess, M. Trajkovic, E. Cohen-Solal, D. Lyons and

K. Jain, A Background Model Initialization Algorithm for

video Surveillance, IEEE, International Conference on

Computer Vision, 2001.

[8] I. Haritaoglu, D. Harwood and L. Davis, W4: Who?

When? Where? What? A real time system for detecting

and tracking people, IEEE Third International

Conference on Automatic Face and Gesture, 1998

[9] Hongtu Jiang and Viktor Owall, Controller Synthesis in

Hardware Accelerator Design for Video Segmentation,

SSoCC, 2004.

[10] K. Johnston, D. Gribbon and D. Bailey, Implementing

mage Processing Algorithms on FPGAs, Proceedings of

the Eleventh Electronics New Zealand Conference,

Palmerston North, Nov. 2004.

[11]Craig Sanderson and Dave Shad, FPGAs Supplant

Processors and ASICs in Advanced Imaging

Applications, FPGA and Programmable Logic Journal,

2005.

[12] C. Stauffer and W. E. L. Grimson, Adaptive background

mixture models for real-time tracking, IEEE Conference

on Computer Vision and Pattern Recognition, 1999.

[13] C. Wren, A. Azarbayejani, T. Darrel and A. Pentland,

Pfinder: Real-time tracking of human body, IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 1997.

[14]Inc. Xilinx, Virtex II Platform Field Programmable Gate

Arrays Data sheet,

http://direct.xilinx.com/bvdocs/publications, March 2005.

[15]Pavel Zemeik, Hardware Acceleration of Graphics and

Imaging Algorithms using FPGAs. Proceedings of Spring

Conference on Computer Graphics, 2002.

[16]I. Haritaoglu, D. Harwood and L. S. Davis, W4: Real-

Time Surveillance of People and Their Activities. IEEE

Transactions on Pattern analysis and machine

intelligence, Vol.22, No.8, August 2000.

[17]Qi Zang and Reinhard Klette, Robust Background

Subtraction and Maintenance, Proceedings of the 17th

IEEE International Conference on Pattern Recognition

(ICPR’04), 2004.

[18]C. Stauffer, R. Romano, L. Lee and W. E. L. Grimson,

Using Adaptive Tracking to classify and Monitor

Activities in a Site, Proceedings of Computer Vision and

Pattern Recognition Conference, 1998.

[19]C. Stauffer and W. E. L. Grimson, Learning Patterns of

Activity Using Real-Time Tracking, IEEE Transactions

on Pattern Analysis and machine intelligence, Vol.22,

No.8, August 2000.

[20]A.Monnet, A. Mittal, N. Paragios and V. Ramesh,

Background Modeling and Subtraction of Dynamic

Scenes, Proceedings of the 9th IEEE International

Conference on Computer Vision, 2003.

[21]S. Jorg, J. Langwald and M. Nickl, FPGA based Real-

Time Visual Servoing, Proceedings of the 17th IEEE

International Conference on Pattern Recognition, 2004.

[22]A. Mittal and N. Paragios, Motion-Based Background

Subtracting using Adaptive Kernel Density Estimation,

Proceedings of the IEEE Computer Society Conference

on Computer Vision and Pattern Recognition, 2004.

[23]R. Matousek, M. Danek, Z. Pohl, R. Bartosinski and Per

Honzik, Reconfigurable System-on-a-Chip, The

Syndicated: A Technical Newsletter for ASIC and FPGA

Designers, July 2005.

[24]M. Mason and Z. Duric, Using Histograms to Detect and

Track Objects in Color Video, Proceeding of the 30th

IEEE Applied Imagery Pattern recognition Workshop,

2001.

[24] http://www.mathworks.com/

Fig. 7: Raw outputs of the two algorithms without

morphological opening for K=3 for three different scenes.

GW4- left and Grimson’s algorithm – right.

Fig. 8: Raw outputs of the two algorithms without

morphological opening for K=4 for three different scenes.

GW4- left and Grimson’s algorithm – right.

Fig. 9: Raw outputs of the two algorithms without

morphological opening for K=5 for three different scenes.

GW4- left and Grimson’s algorithm – right.

