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ABSTRACT 

High recoverable energy density (Wrec ~ 2.1 J/cm3) was obtained in (0.7-x)BiFeO3-0.3BaTiO3-

xBi(Zn2/3Nb1/3)O3 + 0.1wt% Mn2O3 (BF-BT-xBZN, x = 0.05) lead-free ceramics at < 200 kV/cm. Fast 

discharge speeds (< 0.5 µs), low leakage (~ 10-7 A/cm2) and small temperature variation in Wrec (~ 

25% from 23 to 150 °C) confirmed the potential for these BiFeO3 based compositions for use in high 

energy density capacitors. A core-shell microstructure composed of a BiFeO3-rich core and BaTiO3-

rich shell was observed by scanning and transmission electron microscopy which may contribute to 

the high value of energy density. In addition, for x = 0.005, a large electromechanical strain was 

observed with Spos = 0.463% and effective d33
*  ~ 424 pm/V, suggesting that this family of ceramics 

may also have potential for high strain actuators. 

 

Keywords: energy storage, bismuth ferrite, lead-free ceramics, piezoelectrics, dielectrics, capacitors 
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INTRODUCTION 

The current research into new energy storage materials is mainly driven by concerns regarding the 

continued use of fossil fuels for automotive applications. Therefore, low cost, sustainable and 

environmentally-friendly energy storage materials with high energy densities are required.1-3 Among 

current energy storage devices, ceramic capacitors are emerging as promising technological 

alternatives to fuel cells and batteries, because of their high power densities combined with fast 

charge-discharges rates, which are favoured in advanced pulse power applications.4-7 This drives the 

search for dielectrics exhibiting both high energy and power densities, to satisfy for power supply 

components incorporated into portable electronics, electric vehicles and other high power and energy 

storage applications.8-10  

   

To attain high recoverable energy density (Wrec) and efficiency (η), a polarization maximum (Pmax), a 

small remnance (Pr) and an optimised breakdown strength (BDS) are simultaneously required. 

Furthermore, the stability of devices in a range of temperature is also a critical parameter. For 

example, for hybrid electric vehicles these devices are expected to operate at temperatures ranging 

from -40 °C to 140 °C. 1,11 Consequently, ferroelectrics (FE) and antiferroelectrics (AFE) are 

promising candidates due to their high Pmax and Curie temperature (TC). The total energy density (W), 

Wrec and η of FE and AFE ceramics is given by:  

W = � EdP
Pmax

0
,                                                                                                                              (1) 

Wrec = � EdP
Pmax

Pr
,                                                                                                                           (2) 

    η = Wrec/W                                                                                                                                      (3) 

where P, Pmax and Pr are the polarization, polarization maximum and remnance, respectively.  

 

Although there are commercial energy storage devices based on La doped lead zirconate titanate, 

concerns over the toxicity of PbO have led to a large body of recent research on lead free 

replacements such as BaTiO3 (BT), (K0.5Na0.5)NbO3 (KNN) and (Bi0.5Na0.5)TiO3 (BNT)  based 
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ceramics.12-25
 Oxide additives such as Al2O3, SiO2, MgO enhance both Wrec and BDS in BT-based 

ceramics12-14 but BT-Bi(M,N)O3 (M = Li, Mg, Zn, N = Nb, Ti, Zr) ceramics show greater promise, 

with Wrec up to 2.5 J/cm3.15-21 In addition, Bi0.5Na0.5TiO3-BaTiO3-KNbO3 (BNT-BT-KN) and 

Bi0.5Na0.5TiO3-BaTiO3-NaTaO3 (BNT-BT-NT) also exhibit large Wrec of 1.72 and 1.2 J/cm3, 

respectively.22,23 In a recent study, Du et al. showed a commensurate improvement in Wrec to ~ 4 J/cm3 

in KNN-ceramics due to an enhancement of BDS (300~400 kV/cm), which was achieved by a careful 

control of grain growth.24,25 BiFeO3-BaTiO3 (BF-BT) ceramics are characterised by high values of 

Curie maximum (TC) and Pmax (> 40 µC/cm2) 26-32, but because their dielectric tanδ and Pr are 

relatively large, their energy storage characteristics have been seldom studied. Recently, Nb2O5, 

La(Mg1/2Ti1/2)O3, Ba(Mg1/3Nb2/3)O3 and Nd2O3 have been used as either dopants in, or in solid 

solution with, BF-BT with Wrec of 0.71, 1.66, 1.56, and 1.82 J/cm3, respectively, reported33-36 Nd 

doped BF-BT multilayers showed particular promise with both high Wrec ~ 6.74 J/cm3 and η ~ 77%, 

from RT to 125 °C.36  

 

Wu et al. theoretically predicted that FE ceramics with core-shell microstructure could achieve 

enhanced energy density and reduced energy loss.37 However, to our knowledge, up to now the energy 

storage characteristics of BF-based ceramics featuring a core-shell microstructure remain elusive, as 

no experimental evidence has been provided. Also Bi(Zn2/3Nb1/3)O3 (BZN) doped BF-BT materials 

were recently reported to have excellent piezoelectric properties27 but their energy storage 

performance is yet to be determined, despite each effect relying on a large remanent/induced 

polarisation. In this work, a unique core-shell microstructure was induced by the substitution of BZN 

into BF-BT, its impact on the structure-property relationships, in particular on the energy storage 

characteristics, evaluated.  

 

EXPERIMENTAL SECTION 

Ceramic synthesis and characterisation: (0.7-x)BiFeO3-0.3BaTiO3-xBi(Zn2/3Nb1/3)O3 + 0.1wt% Mn2O3 

(BF-BT-xBZN, x = 0, 0.005, 0.01, 0.02, 0.05, 0.08) ceramics were fabricated using solid state 

reaction.26,36 In order to increase the resistivity of ceramics, 0.1 wt% Mn2O3 was added into the 
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calcined powder of BF-BT-xBZN.26,28,36 Mn-ions are considered to form defect dipoles with oxygen 

vacancies and decrease their mobility. Densities of ceramics were determined by the Archimedes 

immersion method and were typically >95%. The phase structure of sintered ceramics was determined 

at RT by X-ray powder diffraction (XRD) using a Bruker D2 Phaser. Grain and sub-grain structures 

were evaluated by scanning electron microscope (SEM) and transmission electron microscopy (TEM) 

using an FEI Inspect F50 equipped with a backscattered (BSE) detector and a Tecnai G2-F20, 

respectively. For SEM, ceramics were ground/polished to a mirror finish using wet abrasive paper and 

diamond paste (MetPrep Ltd.). For TEM, BF-BT-0.05BZN ceramics were ground to 120 µm, 3 mm 

disks ultrasonically cut and their centers dimpled down to 10 µm. Prior to Ar-ion milling to achieve 

electron transparency, samples were annealed at 650 °C/0.5 h to ensure that residual stresses were 

removed. 

Electrical properties: Fired-on gold paste electrodes were applied to both surfaces of the ceramics. 

100-120 °C was used to pole the electroded ceramics at fields of 40 ~ 60 kV/cm. A ferroelectric tester 

(aixACCT TF 2000E) was employed to measure the polarization and the electric-field induced strain 

from -50 °C to 150 °C using a 1 Hz triangular signal at provided by a TREK power supply. Leakage 

current density was also measured using the aixACCT TF 2000E. The dielectric properties as a 

function of temperature were evaluated from RT to 650 °C using an LCR meter (Agilent 4184A). AC 

impedance spectroscopy was carried out at 400 °C using a second LCR Meter (Agilent E4980A). 

Charging-discharge characteristics were determined using a capacitor discharge circuit.16,36 A 

Tektronix DPO 4104 oscilloscope together with a Pearson 6585 coil were employed to obtain the 

discharge current waveforms. The discharge energy was then measured using ceramics connected in 

series with a load resistor (RL). 

 

RESULTS AND DISCUSSION 

Room temperature XRD data in the 20°~70° 2θ range for BF-BT-xBZN ceramics are illustrated in 

Fig. 1(a). Reflections are ascribed to either a single-phase perovskite or a mixture of perovskite 

phases,	 without any detectable secondary impurity phases for x < 0.08. Secondary peaks however, 
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were observed for x = 0.08, denoting the solid solubility limit for Zn1/3/Nb2/3 self-compensated doping 

in BF-BT. The average ionic radii, R, of (Zn2/3Nb1/3)
3+ ions is given by R = 2/3R(Zn2+) + 1/3R(Nb5+) = 

0.707 Å (0.74 Å and 0.64 Å are the respective ionic radii of Zn2+ and Nb5+),38 which is larger than that 

of Fe3+ and Ti4+ (0.645 Å and 0.605, respectively) and consistent with the diffraction peaks shifting to 

lower diffraction angle with increasing BZN concentration (Fig.1). The likely crystal symmetry is 

often determined by (021)/(110) peak splitting at ~2θ = 32°. In the present case, expanded XRD 

patterns reveal an apparent coexistence of rhombohedral (R) and pseudocubic (PC) symmetries at 

room temperature in BF-BT-xBZN ceramics, as corroborated by broad multiple peaks. To confirm the 

phase assemblage, Rietveld refinement of BF-BT-0.05BZN was carried out using a two-phase 

refinement method (R3c + Pm3�m) in the GSAS+EXPGUI package.39,40 Observed and calculated 

patterns were in good agreement for BF-BT-0.05BZN as demonstrated in Fig. 1(b) (Rp = 7.6%, Rwp = 

9.7% and chi-squared (χ2) = 2.3), corroborating the presence of PC (Pm3�m) and  R (R3c) symmetries. 

 

The relative permittivity (εr) and dielectric loss (tan δ) for BF-BT-xBZN ceramics from RT to 550 °C 

measured at 100 kHz are illustrated in Fig. 1(c). BF-BT and BF-BT-0.005BZN exhibit a relatively 

sharp peak in εr at 476 °C and 480 °C, respectively, associated with a ferroelectric to paraelectric 

transition (TC) on heating but with increasing BZN concentration, two broad dielectric maxima are 

observed, each at lower temperatures. Furthermore, compared with BF-BT and BF-BT-0.005BZN, the 

maximum dielectric permittivity (εm) of BF-BT-xBZN (x > 0.005) decreases significantly and is 

accompanied by the emergence of broad frequency-dependent dielectric peaks (Fig. 1c). These two 

modifications are a manifestation of polar coupling disruption brought in by replacement of 

(Zn2/3Nb1/3)
3+ for Fe3+. Despite these changes, tan δ remains < 0.15 at < 230 °C, and then increases 

greatly (Fig. 1c), presumably due to a rise in dc conductivity. To evaluate the electrical homogeneity, 

impedance spectroscopy (IS) analysis was performed at 400 °C, Fig. 1(d) and Fig. S1. Indeed, 

electrical homogeneity can be qualitatively assessed from Z’’ and M’’ spectroscopic plots constructed 

from IS data.41,42 It is evident that the peak positions of Z” and M” are almost coincident for BF-BT 

(Fig. S1a of ESI), however a frequency offset between the Z” and M” peak is observed for BF-BT-

Page 5 of 30

ACS Paragon Plus Environment

ACS Applied Energy Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



0.02BZN and BF-BT-0.05BZN (Fig. 1d and Fig. S1b of ESI). This shows the latter compositions to 

be electrically heterogeneous, which we interpret on balance of evidence as arising from 

compositional inhomogeneity. 

 

The SEM images of as-sintered and polished surface for BF-BT-xBZN are illustrated in Fig. S2 and 

Fig. 2(a-c), respectively. All samples present a single modal grain size distribution around an average 

of ~4 µm (Fig. S2 of ESI). Except for BF-BT and BF-BT-0.005BZN ceramics, there is evidence of 

core shell microstructure for BF-BT-xBZN (Fig. 2a-c), with dark and light contrast relating to 

BaTiO3-rich and BiFeO3-rich regions according to energy dispersive X-ray spectroscopy (EDS) 

mapping (Fig. 2d-k). The EDS elemental maps of polished BF-BT-0.05BZN samples are shown in 

Fig. 2(d-k). The Ba and Ti signals are weaker in the brighter regions of the SEM image, associated 

with the grain cores (Fig. 2d and e). Conversely, Bi and Fe exhibit a slightly increased intensity in the 

brighter areas (Fig. 2f, g). These results indicate that the observed core-shell microstructure in BF-BT-

xBZN are associated with the micro-segregation of Ba and Ti into the shell, while Bi and Fe are 

concentrated in the core regions.41-47. Murakami et al. investigated the role of composition and 

quenching on core-shell formation in BiMg1/3Nb2/3O3 doped BF-BT ceramics.41,42 They concluded that 

the major influence was the onset of immiscibility on cooling from the sintering temperature, driven 

by the electronegativity difference of the dopant species. Effectively, the more covalent the dopants, 

the greater the tendency for immiscibility. 

 
To examine the core-shell microstructure, TEM was conducted on BF-BT-0.05BZN ceramics. For 

further data on undoped systems the reader is referred to ref. 36. Fig. 3a is bright-field (BF) TEM 

image of a grain close to a <211>pc zone axis. The dark spherical region in the grain center 

corresponds to the bright regions in the SEM images in Figure 2 and is thus BiFeO3 rich. <211>pc 

zone axis diffraction patterns (Fig. 2a) from the BiFeO3 rich core have {½½½} superstructure 

reflections arising from antiphase O-octahedral tilting consistent with an R3c phase.36 These 

superstructure reflections are absent in the shell regions which are BaTiO3-rich, suggesting that they 

are PC. The weak aligned contrast in the shell region is consistent with relaxor-like phases in which 
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there is nano- rather than micro- or meso-range correlation of dipoles, commensurate with the diffuse 

frequency dependent Curie maxima, Fig. 3(b). The core and shell structures shown in Fig 3(a) and in 

Fig. 2 have been tentatively assigned to the high (BiFeO3-rich) and low (BaTiO3-rich) temperature 

broad Cure maxima in Fig. 3(b).  

 
Field-induced polarization (P-E), bipolar strain (S-E) and unipolar strain curves for BF-BT-xBZN 

ceramics measured at 100 kV/cm are illustrated in Fig. 4(a-c) (no field-induced strain for BF-BT-

0.08BZN was detected). Pr, coercive field (EC) and electric-field induced positive (Spos) and negative 

strain (Sneg) as a function of x are summarized in Fig. 4(d,e). The large signal piezoelectric strain 

coefficient (d33
*) and hysteresis (SH) are calculated by  

d33
* = Smax/Emax,                                                                                                                             (5)     

   SH = HEmax/2/Smax,                                                                                                                           (6)     

where Smax, Emax and HEmax/2 is the average electric field induced maximum strain obtained from the 

unipolar strain loops, the maximum electric field and  the width of the loop at half the applied field, 

respectively.48 BF-BT and BF-BT-0.005BZN ceramics exhibit saturated polarization loops and 

butterfly-shaped strain loops at 100 kV/cm (Fig. 4a,b), which also corroborate the high electrical 

resistivity of these ceramics. With increasing BZN content, the P-E and S-E loops become slimmer 

and are no longer saturated (Fig. 4a,b), along with Pr, EC, d33 and Sneg continuously decreasing (Fig. 

4d,e), suggestive of relaxor-like behavior, which is commensurate with both the broad εm (Fig. 1c) and 

nanodomain structure (Fig. 3). The largest Pr ~ 24.6 µC/cm2, EC ~ 32.8 kV/cm, d33 ~ 180 pC/N, Sneg ~ 

0.079% values and smallest HS ~ 18.4% value are exhibited by BF-BT ceramics (Fig. 4d,e,f), due to 

coexistence of R3c and PC symmetries (Fig. 1).26,36 On the other hand, the largest Spos ~ 0.463% and 

d33
*  ~ 424 pm/V values are exhibited by BF-BT-0.005BZN ceramics (Fig. 4e,f), which arises from a 

field-induced transition from short- to long-range dipolar order at the transition from a normal to a 

relaxor ferroelectric (Fig. 4a,b and Fig. 1c).26,36 

 

Because of their slim P-E loops (Fig. 4a), BF-BT-0.05BZN and BF-BT-0.08BZN exhibit a greater 

potential for energy storage and were selected for further characterization. Unipolar P-E loops are 
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illustrated in Fig. 5(a,b), with corresponding values of Pmax, Pr and ∆P (Pmax - Pr) at different electric 

fields given in Fig. S3. As the increase of electric field, Pmax and ∆P are found to increase linearly 

with a marginal improvement of Pr for both samples (Fig. S3). The highest values of Pmax and ∆P are 

36.7 and 32.8 µC/cm2 for BF-BT-0.05BZN at 180 kV/cm, 26.4 and 24.5 µC/cm2 for BF-BT-0.08BZN 

at 190 kV/cm, respectively. Equations 1-3 are employed to calculate W, Wrec and η , Fig. 5(c,d). As 

field increases, W and Wrec increase, reaching 3.7 and 2.06 J/cm3 for BF-BT-0.05BZN at 180 kV/cm, 

and 2.9 and 1.98 J/cm3 cm2 for BF-BT-0.08BZN at 190 kV/cm, respectively. The η values, however, 

decrease for both compositions to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-

0.08BZN at 190 kV/cm. 

 

The discharge behaviour, leakage current and temperature stability are critical for high power 

capacitors. The discharge behaviour of BF-BT-0.05BZN and BF-BT-0.08BZN as a function of 

applied field is given in Fig. 6. The current increases as the electric field increases from 40 

kV/cm to 70 kV/cm and all discharge processes occur within ~0.5 µs, as shown in Fig. 6(a,b). 

The time for the discharge energy in the load to achieve 90% of the final value (τ90), is 

obtained from the Wrec curves (Fig. 6c,d). τ0.9 of both composition under different electric 

fields is less than 0.1 µs. 

 

In-situ temperature dependence of leakage current density (J) and unipolar P-E loops at 120 

kV/cm for BF-BT-0.05BZN are shown in Fig. 7(a,b). The corresponding values of J, Pmax, Pr 

and ∆P are given in Fig. 7(c) and Fig. S4. W, Wrec and η are also calculated and plotted in Fig. 

7(d). The value of J below 50 °C is of the order of 10-7 A/cm2 in the high field region (Fig. 

7a,c), ~ one order magnitude less than reported for BF-based ceramics at RT.49,50 From -50 °C 

to 150 °C, J consistently increases (Fig. 7a,c), indicating increased conductivity at high 

temperatures. As temperature increases, saturated P-E loops are obtained at ~150 °C, giving 

increased values of Pmax and Pr (Fig. S4), which is attributed to lower activation energy of the 

transition from relaxor to ferroelectric.26,36 W increases with temperature, while Wrec and η 
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increase before decreasing from a maximum of 1 J/cm3 and 59% at 75-100 °C, Fig. 7(d). The 

variation in Wrec is ~ 25% between RT and 150 °C, which is attractive for commercial 

applications.  

 

A comparison of Wrec and strain for ceramics is plotted in Fig. 8.12-25, 26-36, 48-92 Wrec generally increases 

with electric field but lead-based ceramics still exhibit larger Wrec values compared to the lead-free 

ceramics (Fig. 8a). To our knowledge, BF-BT-0.05BZN has one of the highest value of Wrec ~ 2.1 

J/cm3 among current lead-free FE ceramics with an electric field < 220 kV/cm, which is ascribed to 

the high BDS ~ 190 kV/cm, Pmax ~ 36.7 µC/cm2 and ∆P ~ 32.8 µC/cm2. In Fig. 8(b), BF-BT-

0.005BZN has one of the highest values of strain ~ 0.463% amongst ferroelectric ceramics, with a 

medium value of d33
*  ~ 424 pm/V and a low value of strain hysteresis ~38% (in comparison with 

BNT),82-89 which is attractive for actuator applications. Core-shell structures in FE ceramics are 

reported to alleviate inhomogeneity of local electric fields and weakens dielectric nonlinearity, 

resulting in slimmer hysteresis loops.37 Although the work presented does not conclusively prove the 

arguments presented by the authors of ref. 37, enhanced energy storage is observed for core-shell BT-

BF-xBZN compositions. Furthermore, we note that recent multilayering of Nd doped BF-BT ceramics 

improved Wrec from 1.82 to 6.74 J/cm3 and η from 50 to 77%.36 Similar improvements for multilayers 

of BF-BT-xBZN whose bulk ceramics have superior energy storage properties would suggest that 

they have potential for commercialization should lead based systems fail to gain exemption from 

future environmental legislation. Moreover, BT-BF-xBZN compositions are rare-earth (RE)-free, 

lowering their cost and enhancing their potential for sustainable manufacturing. 

 

CONCLUSIONS 

Dense BF-BT-xBZN lead-free ceramics were fabricated using solid state reaction. R and PC phases 

coexisted in all studied BF-BT-xBZN compositions at RT. As BZN concentration increased, a core-

shell microstructure was observed with a BaTiO3-rich shell and BiFeO3-rich core, confirmed by SEM, 

EDS, IS, TEM and LCR measurements. With the increase of BZN concentration, relaxor-like 

behaviour dominated with Pr, EC, d33 and Sneg decreasing. The highest values of Pr ~ 24.6 µC/cm2, EC ~ 
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32.8 kV/cm, d33 ~ 180 pC/N, Sneg ~ 0.079% and HS ~ 18.4% were achieved for the undoped BF-BT. 

The highest value of Spos ~ 0.463% and d33
*  ~ 424 pm/V was obtained for BF-BT-0.05BZN. For 

energy storage properties, with increasing electric field, W and Wrec increased from 3.7 and 2.06 J/cm3 

for BF-BT-0.05BZN at 180 kV/cm, and 2.9 and 1.98 J/cm3 cm2 for BF-BT-0.08BZN at 190 kV/cm, 

respectively. η decreased however, to 53% for BF-BT-0.05BZN at 180 kV/cm and 68% for BF-BT-

0.08BZN at 190 kV/cm, respectively. A fast discharge speed (less than 0.5 ms), leakage current ~ 10-7 

A/cm2 and a small temperature variation in Wrec (~ 25% in a temperature range between RT and 

150 °C) were also obtained, suggesting that the BF-BT-xBZN is a potential lead-free candidate for 

pulsed power capacitors and electromechanical actuators. 
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Figure Captions: 

Fig. 1. a) Room temperature XRD patterns of BF-BT-xBZN from 20°~70° 2θ. b) Rietveld refinement 

analysis of BF-BT-0.05BZN using the GSAS+EXPGUI package. c) Temperature dependence of εr 

and  tanδ for BF-BT-xBZN; (d) Spectroscopic plots of Z’’ and M’’ for BF-BT-0.05BZN. 
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Fig. 2. SEM images of polished surfaces for BF-BT-xBZN (a) BF-BT, (b) BF-BT-0.02BZN and (c) 

BF-BT-0.05BZN. EDS elemental mapping results of polished BF-BT-0.05BZN samples (d) Ba, (e) Ti, 

(f) Bi, (g) Fe, (h) O, (i) Zn, (j) Nb and (k) elemental layered image.  

Fig. 3. a) Bright field TEM image of a grain in BF-BT-0.05BZN, illustrating a BiFeO3 rich core and 

BaTiO3 rich shell; <211> zone axis diffraction patterns reveal the absence of ½{ooo} superstructure 

reflections in the shell (up) compared with core regions (down). b) The BiFeO3 and BaTiO3 core-shell 

regions are tentatively ascribed to the high and low temperature dielectric anomalies. 

Fig. 4. High electric field (a) bipolar P-E, (b) bipolar S-E and (c) unipolar S-E loops of BF-BT-xBZN 

samples at 100 kV/cm. (d) Pr and EC as a function of BZN concentration. (e) Spos and Sneg as a function 

of BZN concentration. (f) d33
* and SH as a function of BZN concentration. d33 as a function of BZN 

concentration is in the inset of (d). 

Fig. 5. Unipolar P-E loops under different electric fields for (a) BF-BT-0.05BZN and (b) BF-BT-

0.08BZN. W, Wrec and η as a function of electric field for (c) BF-BT-0.05BZN and (d) BF-BT-

0.08BZN. 

Fig. 6. Time dependence of the pulsed discharge current for (a) BF-BT-0.05BZN and (b) BF-BT-

0.08BZN. Time dependence of Wrec for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN. 

Fig. 7. In-situ temperature dependence of (a) J and (b) unipolar P-E loops for BF-BT-0.05BZN at an 

electric field of 120 kV/cm. (c) J as a function of temperature at different electric fields. (d) W, Wrec 

and η as a function of temperature. 

Fig. 8. Comparison of (a) Wrec vs electric field and (b) strain vs d33
* among lead-based and lead-free 

ceramics.12-25, 26-36, 48-92 
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Fig. 1. a) Room temperature XRD patterns of BF-BT-xBZN from 20°~70° 2θ. b) Rietveld refinement analysis 
of BF-BT-0.05BZN using the GSAS+EXPGUI package. c) Temperature dependence of εr and  tanδ for BF-BT-

xBZN; (d) Spectroscopic plots of Z’’ and M’’ for BF-BT-0.05BZN.  
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Fig. 2. SEM images of polished surfaces for BF-BT-xBZN (a) BF-BT, (b) BF-BT-0.02BZN and (c) BF-BT-
0.05BZN. EDS elemental mapping results of polished BF-BT-0.05BZN samples (d) Ba, (e) Ti, (f) Bi, (g) Fe, 

(h) O, (i) Zn, (j) Nb and (k) elemental layered image.  
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Fig. 3. a) Bright field TEM image of a grain in BF-BT-0.05BZN, illustrating a BiFeO3 rich core and BaTiO3 rich 
shell; <211> zone axis diffraction patterns reveal the absence of ½{ooo} superstructure reflections in the 
shell (up) compared with core regions (down). b) The BiFeO3 and BaTiO3 core-shell regions are tentatively 

ascribed to the high and low temperature dielectric anomalies.  
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Fig. 4. High electric field (a) bipolar P-E, (b) bipolar S-E and (c) unipolar S-E loops of BF-BT-xBZN samples 
at 100 kV/cm. (d) Pr and EC as a function of BZN concentration. (e) Spos and Sneg as a function of BZN 

concentration. (f) d33* and SH as a function of BZN concentration. d33 as a function of BZN concentration is 
in the inset of (d).  
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Fig. 5. Unipolar P-E loops under different electric fields for (a) BF-BT-0.05BZN and (b) BF-BT-0.08BZN. W, 
Wrec and η as a function of electric field for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN.  
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Fig. 6. Time dependence of the pulsed discharge current for (a) BF-BT-0.05BZN and (b) BF-BT-0.08BZN. 
Time dependence of Wrec for (c) BF-BT-0.05BZN and (d) BF-BT-0.08BZN.  
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Fig. 7. In-situ temperature dependence of (a) J and (b) unipolar P-E loops for BF-BT-0.05BZN at an electric 
field of 120 kV/cm. (c) J as a function of temperature at different electric fields. (d) W, Wrec and η as a 

function of temperature.  
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Fig. 8. Comparison of (a) Wrec vs electric field and (b) strain vs d33* among lead-based and lead-free 
ceramics.12-25, 26-36, 45-86  
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