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Abstract 

Sr2Fe3Se2O3 is a localised-moment iron oxide selenide in which two unusual coordinations for Fe2+ 

ions form two sublattices in a 2:1 ratio. In the paramagnetic region at room temperature the 

compound adopts the crystal structure first reported for Sr2Co3S2O3, crystallising in space group 

Pbam with a = 7.8121 Å, b = 10.2375 Å, c = 3.9939 Å and Z = 2. The sublattice occupied by two thirds 

of the iron ions (Fe2 site) is formed by a network of distorted mer-[FeSe3O3] octahedra linked via 

shared Se2 edges and O vertices forming layers, which connect to other layers by shared Se vertices. 

As shown by magnetometry, neutron powder diffraction and Mössbauer spectroscopy 

measurements, these moments undergo long range magnetic ordering below TN1 = 118 K, initially 

adopting a magnetic structure with a propagation vector (½–δ, 0, ½) (0 ≤ ≤ 0.1) which is 

incommensurate with the nuclear structure and described in the Pbam1’(a01/2)000s magnetic 

superspace group, until at 92 K (TINC) there is a first order lock-in transition to a structure in which 

these Fe2 moments form a magnetic structure with a propagation vector (½ , 0, ½) which may be 

modelled using a 2a × b × 2c expansion of the nuclear cell in space group 36.178 Bab21m (BNS 

notation). Below TN2 = 52 K the remaining third of the Fe2+ moments (Fe1 site) which are in a 

compressed trans-[FeSe4O2] octahedral environment undergo long range ordering, as is evident 

from the magnetometry, the Mössbauer spectra and the appearance of new magnetic Bragg peaks 

in the neutron diffractograms. The ordering of the second set of moments on the Fe1 sites results in 

a slight re-orientation of the majority moments on the Fe2 sites. The magnetic structure at 1.5 K is 

described by a 2a × 2b × 2c expansion of the nuclear cell in space group 9.40 Iab (BNS notation).  
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Introduction 

Multi-anion compounds adopt a diverse range of structures and have received recent attention in 

several contexts. Oxide sulfides and oxide selenides enable band gap tuning for semiconductors and 

transparent conductors1,2,3 and are of interest as potential thermoelectric materials.4 

Superconductors based on iron arsenides5 and selenides6 also often contain oxide, or hydroxide7 

slabs separating the iron arsenide or selenide layers. In oxide chalcogenides ordering of the oxide 

and heavier chalcogenide (S2–, Se2– or Te2–) anions is the norm as a result of their differing sizes and 

chemistry.8 Layered crystal structures often result, in which cations of main group and transition 

metals are separated according to their oxo- and chalcophilicity. Often, transition metal cations in 

oxide chalcogenides have coordination environments that contain both anions, e.g. in structures 

such as that of La2Fe2Se2O3
9 which has layers composed of face-sharing trans-FeSe4O2 octahedra 

separated by PbO-type LaO layers. Sometimes the resulting structures are less obviously layered, but 

maintain some low-dimensional feature of the magnetic exchange interactions which results in 

unusual phenomena such as in SrFe2Se2O, which contains FeSe2O2 tetrahedra that link to form what 

has been described as a spin-ladder with multiple competing exchange interactions.10 Some multi-

anion coordination environments are inherently polarised such as those in CaFeSeO11,12,13 and 

CaFeSO14 which contain all-vertex-linked FeSe2O2 and S-vertex-linked FeS3O tetrahedra respectively, 

and which crystallise in different structures, both with non-centrosymmetric space groups (CaFeSeO 

also has a centrosymmetric polymorph).11 The oxide selenide Sr2Fe3Se2O3 has recently been reported 

by Lai et al.,15 along with the sulfide analogues for both Fe15 and Co,16 in work which has been carried 

out independently of our own. In Sr2Fe3Se2O3 and Sr2Fe3S2O3
15 a new coordination environment for 

Fe2+ is described and there are a succession of magnetic phase transitions on cooling to a state in 

which all the Fe2+ ions are participating in magnetic long range order. Here we use neutron powder 

diffraction (NPD) and Mössbauer spectroscopy to probe the magnetic ordering as a function of 

temperature and correlate the behaviour with the detailed analysis of magnetometry and 

Mössbauer data made by Lai et al.15 

Experimental 

Synthesis. 

Polycrystalline samples of Sr2Fe3Se2O3 were synthesised from stoichiometric amounts of SrO, FeSe, 

Fe2O3 (Alfa Aesar 99.998 %) and Fe (Alfa Aesar 99.998 %). The SrO was prepared by thermal 

decomposition of SrCO3 (Alfa Aesar 99.997 %) under dynamic vacuum for 16 hours at 800 °C 

followed by 4 hours at 1100 °C. FeSe was prepared by stoichiometric reaction of iron (Alfa Aesar 

99.998 %) and selenium (Alfa Aesar 99.999 %) powders at 700 °C for 48 hours. The four reactants 
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were ground together inside an argon-filled dry glovebox (Glovebox Technology Ltd, UK) using an 

agate pestle and mortar. The ground powder was pressed into a pellet, placed inside an alumina 

crucible, and sealed inside an evacuated silica ampoule. Various heating protocols were then 

investigated as described in the results section.  

Diffraction Measurements. 

Laboratory X-ray powder diffraction (XRPD) measurements to monitor phase purity and the course 

of the reactions were performed on a Panalytical Empyrean diffractometer using CuKradiation. 

High resolution XRPD measurements for structure solution and analysis were performed on 

beamline I1117 at the Diamond Light Source, Ltd, UK, and additional measurements were made on 

beamline ID22 at the European Synchrotron Radiation Facility (ESRF), France. NPD measurements 

were performed from 10 – 300 K on the WISH instrument18 at the ISIS Pulsed Neutron and Muon 

Facility, UK with the samples contained in indium-sealed thin-walled vanadium cylinders. Structure 

solution and Rietveld refinements were performed using the TOPAS Academic software.19 Electron 

diffraction measurements at EMAT, Antwerp, were acquired with a Philips CM20 transmission 

electron microscope operated at 200 kV with the sample prepared by grinding the crushed powder 

in ethanol and depositing a few drops of the suspension on holey carbon TEM grids. 

Magnetometry. 

All measurements used a Quantum Design MPMS-XL SQUID magnetometer. The susceptibility was 

determined by measuring the magnetisation as a function of temperature on warming from 2 to 300 

K after cooling both in a zero applied field: zero-field-cooled (ZFC) and in the measuring field: field-

cooled (FC) of 50 mT. Magnetisation isotherms (–5 ≤ 0H/T ≤ +5) at several temperatures were each 

measured after cooling the sample from 200 K (i.e. well above the highest magnetic ordering 

transition) to the measurement temperature in a +5 T field and then measuring the magnetisation 

while sweeping the field in steps down to –5 T and back to +5T. Successive isotherms were collected 

from highest to lowest temperature. Between the measurement of successive isotherms, the field 

was changed to 0T and the sample warmed to 200 K, then the field was changed to +5 T prior to 

cooling. This was in an attempt to remove any influence of the previous measurement on the next. 

Samples were sequestered from air in gelatin capsules. 

Mössbauer Spectroscopy. 

57Fe Mössbauer spectra were collected using a constant-acceleration, cryostatic spectrometer (Janis 

10 K CCR, model CCS-800/204N) with a Lakeshore 335 temperature controller. The radiation source 
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57Co(Rh) was kept at room temperature. A Mössbauer thickness of 120 was achieved by 

homogenously mixing 25 mg of Sr2Fe3Se2O3 with graphite to fully pack a cylindrical cavity (1.77 cm2 

cross-section, 0.1 cm thick) in an acrylic disc, which was sealed air-tight. Spectra were analysed using 

the Recoil software package21 to deconvolve the data into separate iron environments. Extracted 

chemical shift values are quoted relative to a thin α-Fe foil calibration. 

 

Results and Discussion 

Synthesis.  

A preliminary synthesis using only SrO and FeSe in equimolar quantities was found to produce the 

reported phase with a large proportion of SrSe impurity. The synthesis was then modified by the 

inclusion of Fe2O3 and Fe to target (FeO)x(SrSe)y compositions with x > y to minimise impurities and 

infer the composition. Sample purity and Bragg peak asymmetry were found to vary greatly with the 

synthesis temperature, even with the correct compositional ratio of elements. Common impurities 

included SrSe, Fe3O4, SrFe2Se2O, and FeO. Repeated annealing at 760 °C or below yielded a 

composition with higher levels of FeO or Fe3O4 impurity (~2-5 % by mass), whereas repeated 

annealing above 760 °C yielded a product with higher levels of SrFe2Se2O impurity (3-8 % by mass). 

The highest purity samples were produced by placing the sealed crucible into a preheated furnace at 

900 °C and leaving it to dwell for only 80 minutes before quenching in ice water. This is similar to the 

bulk synthesis reported by Lai et al., although their reaction was of a longer duration. This method 

produced samples with ~1.1 % SrSe, 1.6 % SrFe2Se2O, and 0.3 % FeO by mass (sample A). The 

product was a grey powder and the room temperature resistivity of a cold-pressed pellet of sample 

A was measured as 0.4 Mcm, suggesting insulating behaviour. A second sample made by repeated 

annealing at 740°C in the intentionally slightly SrSe-rich stoichiometric ratio of 7Sr:10Fe:7Se:10O has 

also been used in this work (sample B), which contained only 0.9% SrFe2Se2O and 1.2% FeO as well 

as a 5.6% SrSe impurity, which was readily treated as a second phase in the Rietveld refinement.  

Structure solution. 

The laboratory XRPD pattern of Sr2Fe3Se2O3 was initially indexed on an orthorhombic unit cell with 

dimensions of 7.81 × 10.23 × 3.99 Å. Electron diffraction patterns on sample B confirmed the same 

unit cell and showed reflection conditions: 0kl : k = 2n, h0l : h = 2n, h00 : h = 2n, 0k0 : k = 2n, 

corresponding to the extinction coefficient Pba-, allowing space groups Pba2 and Pbam. These 

diffractograms (Figure 1) showed well-formed spots with no evidence for streaking in the regions 

investigated. Structural solution was performed using charge flipping, as implemented in TOPAS 
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Academic,21 with Pbam symmetry imposed, using high resolution PXRD data collected with the I11 

instrument. The algorithm was successful in identifying the locations of all ions in the unit cell, 

allowing the identity of the ions on each site to be subsequently deduced by comparison of their 

inter-ionic distances with those in relevant binary compounds.  

 

Figure 1. Electron diffractograms of Sr2Fe3Se2O3 along the major zone axes. 

 

The structural model obtained from charge-flipping was confirmed and refined using Rietveld 

analysis. At this stage, the model was trialled in space group Pba2; the other candidate space group 

that accounted for the systematic absences in the electron diffraction experiment. In reducing the 

symmetry from Pbam to Pba2, site positions are allowed to refine freely along the z axis – a 

consequence of the lack of the centre of inversion. No significant improvement to the fit or change 

in the atomic positions was observed on allowing this reduction of symmetry and so 

centrosymmetric Pbam was chosen as the space group. During the course of our work we became 

aware of the discovery of the isostructural compound Sr2Co3S2O3
16 and the report of Sr2Fe3Ch2O3 (Ch 

= S, Se)15 in which single crystal X-ray diffraction confirmed this choice of space group Pbam. Rietveld 

refinement against synchrotron powder X-ray diffraction acquired using I11 achieved a good 

agreement to the data for sample B shown in Figure 2 and sample A shown in Figure S1. The result 

of the structural analysis (Table 1) is entirely consistent with the report of Lai et al.15 
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Figure 2 Rietveld refinement against the PXRD pattern (I11) of Sr2Fe3Se2O3 sample B taken at room 
temperature (note that this sample was intentionally prepared with a slight excess of SrSe in the 

reaction mixture, hence the presence of significant amounts of this phase in the sample). 

 

The Sr2Fe3Se2O3 structure is shown in Figure 3. For further discussion of the structure the reader is 

also referred to the works of Lai et al.15,16 The key features of the structure are as follows: there are 

two iron coordination environments shown in Figure 3(a): Fe1 has a compressed trans-FeSe4O2 

octahedral environment with a multiplicity of 2 in the unit cell, while Fe2 has a distorted mer-

FeSe3O3 octahedral environment with a multiplicity of 4 in the unit cell. The two environments have 

complex interconnectivity shown in Figure 3(b): each trans-FeSe4O2 octahedron (Fe1) shares four 

faces (necessarily Se2O1) with mer-FeSe3O3 octahedra (Fe2), and is linked to two other trans-FeSe4O2 

(Fe1) octahedra through Se2 edges to form chains of the trans-FeSe4O2 (Fe1) polyhedra extending 

along the c axis. Mer-FeSe3O3 octahedra (Fe2) connect to each other via Se2 edges which are the 

same as those shared to form the chains of trans-FeSe4O2 (Fe1) octahedra extending along c (Figure 

3(b). The mer-FeSe3O3 (Fe2) octahedra are further linked along the c direction though trans O 

vertexes to two other mer-FeSe3O3 octahedra (Fe2). Lai et al.15,16 describe this motif (Figure 3(b)) 

extending along the c axis as a necklace ladder. The remaining O vertexes of the mer-FeSe3O3 (Fe2) 

octahedra join these necklace ladders along the a direction and the resulting double chains of O-

vertex-linked mer-FeSe3O3 (Fe2) octahedra which extend along c are described as a 2-leg rectangular 

ladder.16 These connected ladders form a layer as shown by the solid bonds in Figure 3(c) that Lai et 

al. describe as a hybrid spin ladder.15,16 These hybrid ladders are joined together along the b axis by 

sharing of the remaining Se vertexes of the mer-FeSe3O3 (Fe2) octahedra as indicated by the dotted 

bonds in Figure 3(c).  

The coordination environments found in this compound should be compared with other transition 

metal oxide chalcogenides. The trans-FeSe4O2 coordination is found in La2Fe2Se2O3
9 and relatives 
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such as Sr2Fe2Se2OF2,
22 Na2Fe2Se2O,23 and the phase of BaFe2Se2O synthesised at high pressure,24 in 

which the polyhedra share faces producing layers containing Fe2O sheets, an arrangement also 

found in chalcogenide and pnictide analogues with these structure types containing other transition 

metals25,26,27,28 and in the structurally related oxide sulfide Ca2Fe2.6S2O3.
29 Both polymorphs of 

La2FeSe2O2 also display this coordination environment for Fe2+ ions with linking via shared selenide 

edges,30 and this coordination environment and mode of connection is also found in La5V3O7S6.
31 As 

discussed by Lai et al. in the original report of Sr2Co3S2O3
16 the mer-[MX3O3] octahedral environment 

(M = transition metal; X = non-oxide ion) is rare, although it has been reported for TiS3O3 octahedra 

in La6Ti2S8O5.
32 

 

Figure 3. (a) the local coordination enviroments of the two iron sites; (b) connectivity of the Fe1 and 
Fe2 octahedra, described by Lai et al. as the necklace ladder; (c) Structure of Sr2Fe3Se2O3 showing 

the Fe2 bonding network. Solid bonds show linkages of Fe2 in the necklace ladder and 2-leg ladder 
that together form a layer described as a hybrid spin ladder,15,16 which joins to adjacent ladders 

through selenide vertexes (dashed bonds). 

 

Magnetometry. 

Our magnetic susceptibility measurements show transitions consistent with those observed using 

magnetometry and heat capacity measurements by Lai et al.15 In what follows we adopt their 

notation. The transitions are shown in Figure 4(b) at ~125 K (TN1), 50 K (TN2) and 40 K (T′). TN1 

coincides approximately with the Verwey transition of Fe3O4, and while only 0.05 % of this phase 

(below the detection limit of bulk diffraction measurements) would be required to produce such a 

transition in the magnetisation, the heat capacity measurements of Lai et al.15 show that this feature 

is associated with the bulk of the sample. Figure 4(a) shows a change in the shape of the hysteresis 

loops, obtained after field-cooling from room temperature at 5 T, on passing through the 50 K (TN2) 

and 40 K (T′) transitions. Below T’ a metamagnetic transition appears at about 0.6 T in the 

magnetisation isotherm. This feature persists to lower temperatures and is evident in the virgin 
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curve of the magnetisation isotherm at 2 K obtained after zero-field-cooling in the report of Lai et 

al.15 In our field-cooled (5 T) isotherm at 2 K a higher-field feature is evident above 2 T which was 

also observed in the hysteresis loop of Lai et al.15 The behaviour suggests that there may be a field-

dependence to the magnetic ordering which would require neutron diffraction investigations 

beyond the scope of those performed here.  

 

Figure 4 (a) Magnetisation isotherms measured by cooling sample B from 200 K in a +5T field to the 
measurement temperature and sweeping the field to –5 T and back to +5T. (b) Zero-field-cooled and 
field-cooled temperature dependence of the magnetic susceptibility of sample B measured in a 1000 

Oe field.  

 

Neutron Powder Diffraction. 

Variable temperature NPD measurements (Figure 5) were carried out on both sample A and sample 

B on warming. Sample A was measured in narrow temperature steps from 1.5 K to 150 K, while 

diffraction patterns with better statistics were collected on sample B at 20, 55, 97, and 135 K 

corresponding to key ordered states. Rietveld refinements against data from both samples produced 

identical models for the magnetic ordering. On cooling we observe magnetic ordering transitions as 

follows. Below 118 K (equated with TN1) magnetic Bragg peaks begin to appear. On cooling further 

these peaks shift remarkably in d-spacing until 92 K is reached (Figure 5). We identify this 

temperature as a fourth magnetic transition for this compound which is not evident in the magnetic 

susceptibility measurements. We give this the symbol TINC because it is associated with the transition 

between commensurate and incommensurate magnetic ordering as described below. Below 51 K 

(TN2) an additional set of magnetic reflection appears, which increase sharply in intensity as the 
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temperature is lowered, as can be seen in the change in intensity of the peak at 3.8 Å between 48 

and 42 K in Figure 5..  

Analysis of the commensurate reflections was performed using the ISODISTORT software,33 coupled 

with Rietveld refinement in Topas Academic v6.19 Rietveld refinement of the incommensurate 

magnetic structure was performed using FullProf.34  

 

Figure 5. Evolution with temperature of the neutron powder diffraction patterns of Sr2Fe3Se2O3 

sample A measured as a function of temperature. Data from the detector bank with a mean 2 of 
90° are shown. 

 

Magnetic scattering in all diffraction patterns above TN2 = 51 K could be accounted for solely by 

ordering on one of the Fe sites. In principle the magnetic contribution to the Bragg scattering alone 

does not allow us to distinguish whether the Fe1 or the Fe2 site is responsible. However the Fe2:Fe1 

ratio of 2:1 enabled us to deduce, from the size of the ordered moment, that the Fe2 site (the mer-

FeSe3O3 site which accounts for two thirds of the iron sites) must be the one ordered in this regime 

(with an ordered moment of 3.04(1) B at 55 K) otherwise the less numerous Fe1 sites would each 

carry an ordered moment of 4.75(2) µB at 55 K, which exceeds the maximum saturated value 

expected for Fe2+. This result is consistent with the Mössbauer data (see below). We firstly consider 

the magnetic structure that pertains between TN2 (51 K) and TINC (92 K). This can be accounted for 

(Figure 6 shows the refinement against 55 K data) by commensurate ordering of the Fe2 moments 

with propagation vector k = (½, 0, ½). Trials of the possible magnetic ordering modes in the 
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expanded unit cell gave a good fit to the data with a combination of mU2(ξ1,0) modes (following the 

notation35,36 of Miller and Love used in ISODISTORT). This may be described in the magnetic space 

group Bab21m (36.178) (BNS notation).37 The ordering scheme is as shown in Figure 7, in which the 

moments are directed along the c axis with antiferromagnetic coupling (J1). In the direction of the a 

axis, the moments are antiferromagnetically aligned along the vertex-sharing 180° Fe(2)–O–Fe(2) 

pathways (J2), and ferromagnetically aligned along the 99° Fe(2)–Se–Fe(2) pathways (J3) resulting 

from edge sharing. These three J1 couplings in the ac plane occur in the hybrid spin ladders described 

by Lai et al.15 It is these intra-ladder interactions that appear to dominate the magnetic ordering 

scheme between TN2 and TINC. The alignment of spins by the inter-ladder couplings (J4-J7) exhibits an 

inherent frustration: according to the refined magnetic structure, for half the Fe2 ions J4 is 

ferromagnetic but J5, J6 and J7 are antiferromagnetic and for the other half of the Fe2 ions J4 is 

antiferromagnetic but J5, J6 and J7 are ferromagnetic. The ordering is summarised in the schematic in 

Figure 7(d). 

 

Figure 6. Rietveld refinement against NPD data collected with sample B at 55 K (i.e. between TN2 and 
TINC with commensurate antiferromagnetic ordering on the Fe2 sites). Data from the detector bank 

with a mean 2 of 58° are shown. 

 

We note that the resulting magnetic space group is polar, indicating that the magnetic transition at 

TINC breaks the spatial inversion symmetry. Indeed, the magnetic order, which transforms as the 

mU2(ξ1,0) irreducible representation, couples a displacive distortion with the Γ4
–(σ) symmetry 

through the linear quadratic invariant 𝜎𝜉1
2 in the free energy. This lattice distortion can give rise to a 
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net dipolar moment in the structure and it is probably the origin of the frustration release in the 

inter-ladder couplings (J4–J7 in Figure 7). 

 

Figure 7 (a) Magnetic ordering scheme of the Fe2 sites between 51 (TN2) and 92 K (TINC) consisting of 
moments pointed along the c axis. Sr and Fe1 sites are not shown. (b) Arrangement of the Fe2 

magnetic moments in the hybrid spin ladder. (c) Local environment of an Fe2 ion with J-couplings to 
seven other Fe2 ions that are mediated by a single anion: three of which are intra-ladder and four 

are inter-ladder (d) schematic diagram of the magnetic ordering and couplings with colours 
indicating the relationships between neighbouring spins. The magnetic moments in the diagram are 
directed in the plane along the c axis and are coupled antiferromagnetically (J1) down that axis on all 
Fe2 sites. The unit cell shown is that of the magnetic cell, doubled along the a and c axes relative to 

the nuclear cell. 

 

On warming through TINC the magnetic Bragg peaks on a propagation vector (½, 0, ½) develop 

satellite peaks which can be indexed to a propagation vector of (½–δ, 0, ½) (0 ≤ ≤ 0.1). The 

transition appears sharp and first order, with solely commensurate ordering observed at 91 K, 

coexistence of the commensurate and incommensurate phases observed at 92 K (shown in the 

supporting information Figure S2), and solely incommensurate ordering observed at 93 K. The 

satellite peaks diverge from the commensurate ordering vector above 93 K as shown for the ½ 0 ½ 

reflection in Figure 5, appearing at positions ½±δ 0 ½ with δ increasing from 0 to a maximum of 0.10 
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before long range order is lost at TN1. Our model for the incommensurate magnetic structure is still 

described by spins directed along the c axis, with antiferromagnetic alignment (J1). Magnetic 

couplings in the a axis still have net antiferromagnetic alignment along the 180° oxide linkages (J2) 

and net ferromagnetic alignment along the 99° selenide linkages (J3) however, there is a modulation 

in the size of the ordered moment along a as shown in Figure 8. The occurrence of this 

incommensurate magnetic structure is presumably a response to the inherent frustration of the 

interlayer interactions (J4-J7) in the commensurate structure below TINC, shown by the dotted lines in 

Figure 7(c): the modulation in each layer is out of phase with that in the adjacent layer, such that 

when the moment is at a maximum in one layer it is at a minimum in the layer below. Numerous 

systems are known where frustration of magnetic interactions results in the adoption of a 

modulated magnetic structure.38,39,40,41 Attempts to model the magnetic scattering using a cycloidal 

magnetic structure produced poor fits (see Figure S8). 

 

Figure 8 (a) Magnetic ordering scheme of the Fe2 sites between 120 (TN1) and 92 K (TINC) consisting 
of moments pointed along the c axis and an spin density wave incommensurate with the crystal 

structure in the a axis (propagation vector (a, 0, ½) with a = 0.42 in the case shown). (b) 
Arrangement of the Fe2 magnetic moments in the hybrid spin ladder. The unit cell shown is the 
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nuclear cell. Fe1 sites are not shown in (a) and Sr sites are not shown in (a) or (b). See caption to 
Figure 7 for the convention on coloring of bonds. 

 

Rietveld refinement against the neutron diffraction pattern at 96 K is shown in Figure 9(a). The 

incommensurate magnetic structure is described within the Pbam1’(a0½)000s superspace group 

corresponding to the action of the mA3 irreducible representation of the parent space group and 

can be described as a spin density wave with amplitude ~3.0 µB at 95 K. The transition at TINC is a 

lock-in on cooling from the incommensurate propagation vector to the commensurate (½ 0 ½) value 

with a locking of the origin (corresponding to a locking of the phase of the sine wave) along the 

propagation vector direction to the value 1/8+n/2, where n is an integer number, resulting in the 

Bab21m magnetic space group. There appears to be no discernable signature of this transition in the 

susceptibility measurements. 

 

Figure 9. Rietveld refinement against WISH NPD data (data bank with a mean 2 of 90°) of sample A 
at 96 K where the magnetic structure is incommensurate with the crystal structure (propagation 

vector (a, 0, ½) with a = 0.42 in the case shown). (b) Plot of the amplitude of the spin density wave of 
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the Fe2 sites and of the variable component a of the propagation vector (a, 0, ½) against 
temperature. 

 

A second set of magnetic reflections appears below TN2 (51 K), which index on a propagation vector 

k = (½, ½, 0). These arise from the long range ordering of the moments on the Fe1 sites combined 

with the existing magnetic ordering of the Fe2 sites, this gives an overall magnetic unit cell of 

2a × 2b × 2c relative to the structural cell. ISODISTORT was used to test ordering schemes for the Fe1 

moments that might contribute to the additional reflections observed below TN2, with k point S (k=½, 

½, 0), for which it was found the majority of the new magnetic scattering could be accounted for by 

a combination of mS3+S4+(ε1,ε2) modes, however it was not possible to fit the new magnetic 

intensities (Figure 10) which occur below TN2 using solely a combination of the Fe1 magnetic 

ordering modes without serious discrepancies. Allowing the already-ordered Fe2 moments to 

reorient so that they would contribute to the intensity of these new magnetic Bragg peaks that 

emerge below TN2 gave a much improved fit, with better visual agreement and a lowered Rwp from 

7.8 to 4.6 %. In the overall fit the Fe1 moments lie along the Fe1–O bonds in the ab plane, which was 

also the conclusion of Lai et al.15 from fitting of their Mössbauer data, and this and their 

ferromagnetic alignment via sharing of Se2 edges is consistent with the orientation of moments in 

the magnetic structure of Sr2Fe2S2OF2.
42 The Fe2 moments that were already ordered above TN2 

remain principally directed along the c axis with the mU2 ordering scheme, however to fully account 

for the magnetic intensities below TN2 they acquire a canting in the ab plane described by a 

combination of mS3+S4+ modes. A comparison of the fit with and without this Fe2 site canting is 

given in the supporting information (Figure S3). This rearrangement of the spins becomes 

established at 40 K and may be associated with the T’ transition in heat capacity measurements of 

Lai et al.15 The canting puts the Fe2 moments in a plane with their nearest Fe1–O bond and the 

corresponding Fe1 moment, with antiferromagnetic alignment between each of the Fe1 moments 

and the Fe2 moments canting as shown in Figure 11(a). The ordering scheme thus derived is purely 

antiferromagnetic, and can be described in the Iab magnetic space group in a 2anucl × 2bnucl × 2cnucl 

cell (Table S6). In light of the weak ferromagnetic component of the susceptibility evident in the 

magnetometry below T′ at 40 K, ordering modes which gave a net ferromagnetic canting of one or 

both sets of spins were attempted but none gave improvement to the fit, suggesting that the zero-

field magnetic structure (i.e. as measured in the NPD experiment) is purely antiferromagnetic. 

Moreover the determined magnetic space group does not allow any ferromagnetic moment in any 

crystallographic direction. Indeed, the magnetisation versus field curves shown in Figure 4 are close 

to linear at low fields, which is consistent with AFM ordering without an applied field. 
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To explain the canting of the Fe2 sublattice with the mS3+S4+(ε1,ε2) modes it is necessary to take 

into consideration a nuclear distortion with the right symmetry to allow a trilinear invariant in the 

free energy, coupling the two magnetic distortions. To conserve the translational symmetry of the 

parent structure, the nuclear distortion needs to have a propagation vector q=(0 ½ ½), the T point of 

the first Brillouin zone, and to transform as the T2 irreducible representation with order parameter 

direction P(δ1,δ2). This allows us to derive a trilinear invariant 𝑎𝜉1(휀1𝛿1 + 휀2𝛿2) + 𝑏𝜉1(휀1𝛿2 − 휀2𝛿1) 

describing the coupling, mediated by the T2(δ1,δ2), between the magnetic mU2(ξ1,0) and 

mS3+S4+(ε1,ε2) distortions. Any monoclinic nuclear distortion was outside the resolution of the WISH 

diffractometer, and we did not observe any superstructure reflections consistent with q= (0 ½ ½). 

We used the X-ray diffractometer ID22 at the ESRF to investigate whether the magnetic ordering at 

TN2 gives rise to a small monoclinic distortion of the nuclear cell or the presence of 0 ½ ½ peaks, that 

might be associated with the T’ transition in the heat capacity data of Lai et al.15 Our measurement 

at 5K showed no apparent symmetry lowering distortion (Figure S4), but a careful observation of the 

diffraction pattern indicated the presence of a very weak reflection, not present at ambient 

temperatures, that could be indexed as the 0 5/2 ½ reflection (Figure S5). Even if this reflection is 

statistically significant, its spurious nature cannot be excluded, but its position and the propagation 

vector are consistent with the symmetry analysis. A refinement with the distorted monoclinic 

symmetry Im is not possible due to the weak character of the distortion (i.e. the low intensity of the 

proposed 0 5/2 ½ reflection) and the high number of free parameters. Even considering this extra 

nuclear distortion, on the ground state magnetic space group, the weak ferromagnetic moment is 

still not allowed from the resulting symmetry. Note that we needed to use an attenuated beam on 

ID22 to avoid sample heating when performing this experiment: with the full intensity beam sample 

heating was evident as had been observed and described in measurements down to 75 K by Lai et al. 

on the same instrument (see their Figure S4).15 Figure 12 summarises the evolution of the ordered 

moments over the entire temperature range. 
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Figure 10. Rietveld refinement against NPD data collected with sample B at 20 K (below TN2 with 

both Fe sublattices ordered). Data from the detector bank with a mean 2 of 58° are shown. 

  

Figure 11. Magnetic structure of Sr2Fe3Se2O3 observed between 1.5 and 50 K (TN2). (a) the local 
environment of the Fe1 moment relative to the nearest neighbour Fe2 sites. (b) Arrangment of Fe1 

and Fe2 moments in the spin hybrid ladders (compare with Figure 7(b)). (c) Arrangment of moments 
between ladders. (d) magnetic unit cell below TN2, which is a  2a × 2b × 2c expansion relative to the 

nuclear cell (see Table S6). Sr and most Se sites not shown in (d) for clarity.  
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Figure 12. Evolution of (a) the total ordered moments on the two Fe sites and (b) the evolution of 
the components of the Fe2 moments showing the change in orientation that coincides with the 
onset of long range ordering of the Fe1 moments at TN2. The kink in the magnitude of the Fe2 

moment at TINC is consistent with the first order character of the lock-in transition.  
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Table 1 Structural and magnetic information from Rietveld refinement of Sr2Fe3Se2O3. Further details 
are given in the supporting information.  

Sample Sr2Fe3Se2O3 sample B 

Instrument I11  WISH 

T (K)  298 135  55  20  

Nuclear symmetry Pbam (55) Pbam (55) Pbam (55) Pbam (55) 

a (Å) 7.8121(2) 7.8003(2) 7.7963(2) 7.7945(2) 

b (Å) 10.23747(9) 10.2112(3) 10.2008(3) 10.1979(3) 

c (Å) 3.99388(5) 3.99121(9) 3.98951(9) 3.9893(1) 

V (Å3) 319.413(7) 317.97(1) 317.18(1) 317.10(1) 

Density (g cm–3) 5.70486(9) 5.7308(2) 5.7452(2) 5.7465(3) 

Rwp (%) 5.22 4.10 4.55 4.61  

χ2 1.56 1.06 1.17 1.21 

Sr–O × 2 

× 1 

× 1 

× 1 

Sr–Se × 2 

× 2 

2.6465(4) 

2.765(3) 

2.870(4) 

2.930(3) 

3.1253(7) 

3.1406(7) 

2.617(2) 

2.787(4) 

2.876(4) 

2.904(4) 

3.109(3) 

3.137(2) 

2.597(2) 

2.785(4) 

2.885(3) 

2.918(4) 

3.113(2) 

3.146(2) 

2.609(2) 

2.784(4) 

2.874(5) 

2.915(4) 

3.117(3) 

3.155(3) 

Fe1–O × 2 

Fe1–Se × 4 

2.029(4) 

2.7225(4) 

2.011(3) 

2.738(2) 

1.982(3) 

2.738(2) 

1.992(4) 

2.708(2) 

Fe2–O  × 2 

× 1 

Fe2–Se × 1 

× 1 

× 1 

2.0059(3) 

2.0878(9) 

2.7659(10) 

2.8740(11) 

2.9017(11) 

2.0084(4) 

2.082(2) 

2.714(3) 

2.905(3) 

2.918(3) 

2.0076(3)  

2.103(1) 

2.721(3) 

2.889(3) 

2.894(2) 

2.0078(4) 

2.092(2) 

2.754(3) 

2.870(3) 

2.880(3) 

Regime Paramagnetic Paramagnetic Fe2 ordered Fe1  and Fe2 

ordered 

Basis expansion of 

nuclear cell 

- - [2,0,0], [0,1,0], 

[0,0,2] 

[2,0,0], [0,2,0], 

[0,0,2] 

origin - - (-1/4,0,1/2) (0,0,0) 

Magnetic 

symmetry (BNS) 

- - Bab21m(36.178)* Iab (9.40)* 

K vector - - [½, 0, ½]   [½, 0, ½] , [½,½, 0] 

Fe1 |spin| along a, 

b, c (µB) 

- - - 3.10(2), 1.34(7), 0 

Fe1 total spin (µB) - - - 3.38(3) 

Fe2 |spin| along a, 

b, c (µB) 

- - 0, 0, 3.01(1) 0.69(2), 0.59(5), 

3.18(1)  

Fe2 total spin (µB) - - 3.01(1) 3.31(1) 

*non-standard settings of the magnetic space groups have been used to keep the directions of the 
lattice parameters consistent with the nuclear structure.  
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Mössbauer Spectroscopy. 

The temperature dependence of the Mössbauer spectra has been described and interpreted by Lai 

et al.15 Here we show the evolution of the spectra in the region from just above TN1 to just below TINC 

spanning the region where the magnetic ordering of the Fe2 moments is incommensurate and the 

Fe1 moments do not participate in long range order. The data and fits in Figure 13 show the onset of 

magnetic order between 125 K and 110 K and the evolution to 80 K, below TINC. At 125 K (Figure 13) 

in the paramagnetic region, the data are modelled by two doublets. The more numerous Fe2 

moments produce a doublet with a chemical shift (relative to a thin Fe foil) of  = 1.001(2) mm s–1 

and with a quadrupole splitting of EQ = 1.897(8) mm s–1. The remaining doublet is ascribed to the 

Fe1 moments ( = 0.963(4) mm s–1; EQ = 1.46(1) mm s–1). As magnetic ordering occurs, the majority 

signal due to the Fe2 sites is described by a sextet confirming that it is the Fe2 moments that are 

participating in long range magnetic order below TN1 (see the potential ambiguity described above in 

the analysis of the NPD data). At 80 K (Figure 13), below TINC, the signal due to these Fe2 moments is 

described by a highly asymmetric sextet arising from the local magnetic field, Bhf, due to the 

magnetic ordering and the quadrupole splitting due to the asymmetric coordination environment.43 

The minority Fe1 signal persists as a quadrupole doublet. In the region between TN1 and TINC, where 

the NPD data show incommensurate magnetic ordering of the Fe2 moments, the Fe2 sextet in the 

Mössbauer spectrum exhibits very broad lines. The data in this region (110 K and 97 K in Figure 13) 

were modelled using a quadrupole splitting similar to that used in the paramagnetic region above 

TN1 and in the commensurately ordered region below TINC, and a single value for the local magnetic 

field that steadily increased with decreasing temperature (Figure 14(a)), but they required much 

broader line widths in this region (Figure 14(b)) consistent with the spin density wave type order 

reflecting a wide range of local magnetic fields experienced by the ensemble of Fe2 ions. For 

discussion of the Mössbauer spectra at lower temperatures where Fe1 undergoes magnetic ordering 

the reader is referred to the data and analysis of Lai et al.15  



21 
 

 

Figure 13. Mössbauer spectra measured through the transitions TN1 and TINC. Isomer shift relative to 
room temperature thin α-Fe foil. Fitting parameters are given in Table 2. 

  

 

125 K

110 K

97 K

80 K
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Table 2. Summary of Mössbauer parameters of fit components, relative to room temperature α-Fe. 

Temp 
(K) 

Site δ 
(mm s–1) 

ΔEQ 
(mm s–1) 

η 
  

Bhf 
(T) 

HWHM 
(mm s-1) 

Area 
(%) 

Reduced 
Chi2 

125 Fe1 0.96 1.46   0.15 37 0.784 

  Fe2 1.00 1.88   0.14 63   

110 Fe1 0.97 1.52   0.17 37 1.350 

  Fe2 1.06 1.83* 0.7* 4.16 0.36 63  

97 Fe1 0.98 1.45   0.14 34 2.190 

  Fe2 1.00 1.83* 0.7* 8.49 0.35 66  

80 Fe1 0.98 1.47   0.15 34 0.840 

  Fe2 1.03 1.71 0.7 11.11 0.15 66   

± 1  ± 0.02 ± 0.02  ± 0.5 ± 0.01 ± 1   

*Quadrupole splitting, ΔEQ, and asymmetry, , fixed in the incommensurate region. 

 

 

 

Figure 14. (a) The evolution of the mean hyperfine field, Bhf, for the Fe2 sites on cooling through TN1 
and TINC. (b) The evolution of the linewidths (expressed as half-width at half-maximum (HWHM)) for 
the Fe1 and Fe2 signals on cooling through TN1 and TINC. The broader widths in the region of the 
incommensurate spin density wave order of the Fe2 moments are ascribed to the range of hyperfine 
fields experienced by these sites. See Table 2. 
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Conclusions 

Sr2Fe3Se2O3 with two unusual and highly anisotropic environments for Fe2+ ions shows a complex 

succession of magnetic ordering transitions. Neutron powder diffraction measurements unveil the 

origin of the complexity in the magnetic susceptibility and Mössbauer spectra previously described15 

and reveal an additional region of magnetic behaviour where the onset of long range magnetic 

ordering on one of the Fe sublattices (Fe2) on cooling results first of all in an incommensurate region 

of long range order, presumably driven by frustration of some of the weaker exchange interactions. 

The lowest temperature magnetic structure is dictated by the interactions between the two 

sublattices of long-range-ordered Fe moments. Given the complexity of the magnetic structures 

found for compounds composed of these highly anisotropic transition metal coordination 

environments26,42 there is scope for tuning the details of the exchange interactions by chemical 

substitution on the transition metal, chalcogenide and electropositive metal sites. 
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Sr2Fe2Se2O3 displays complex magnetic ordering over two Fe2+ sublattices which is probed using 

powder neutron diffraction. 

 

 

 


