
Pattern languages in HCI: a critical review

DEARDEN, Andy <http://orcid.org/0000-0002-5706-5978> and FINLAY, J.

Available from Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/22/

This document is the author deposited version. You are advised to consult the
publisher's version if you wish to cite from it.

Published version

DEARDEN, Andy and FINLAY, J. (2006). Pattern languages in HCI: a critical review.
Human computer interaction, 21 (1), 49-102.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University Research Archive
http://shura.shu.ac.uk

http://shura.shu.ac.uk/
http://shura.shu.ac.uk/information.html

Published in Human Computer Interaction, 21(1), January 2006

 - 1 -

Pattern Languages in HCI: A critical review

Andy Dearden

Communication and Computing Research Centre,

Sheffield Hallam University

Janet Finlay

School of Computing, Leeds Metropolitan University

RUNNING HEAD: PATTERN LANGUAGES IN HCI

Corresponding Author

Andy Dearden, Communication and Computing Research Centre, Sheffield Hallam University,

Howard Street, Sheffield, S1 1WB, UK

Tel: +44 (0)114 225 2916

Fax: +44 (0)114 225 3161

Email:a.m.dearden@shu.ac.uk

Brief Authors’ Biographies:

Andy Dearden is an interaction designer with an interest in knowledge sharing and

communication in software development; he is a senior lecturer in the Communication and

Computing Research Centre at Sheffield Hallam University.

Janet Finlay is a usability researcher with an interest in design communication and

systemsevaluation; she is Professor of Interactive Systems in the School of Computing at Leeds

Metropolitan University.

Published in Human Computer Interaction, 21(1), January 2006

 - 2 -

ABSTRACT

This paper presents a critical review of patterns and pattern languages in human-computer

interaction (HCI). In recent years, patterns and pattern languages have received considerable

attention in HCI for their potential as a means for developing and communicating information

and knowledge to support good design. This review examines the background to patterns and

pattern languages in HCI, and seeks to locate pattern languages in relation to other approaches to

interaction design. The review explores four key issues: what is a pattern? what is a pattern

language? how are patterns and pattern languages used? and how are values reflected in the

pattern-based approach to design? Following on from the review, a future research agenda is

proposed for patterns and pattern languages in HCI.

Published in Human Computer Interaction, 21(1), January 2006

 - 3 -

CONTENTS

1. INTRODUCTION

2. The scope of this review

3. A Short History of Patterns

3.1. Christopher Alexander

3.2. Pattern Languages in Software Engineering

3.3. Patterns in HCI

4. Issue 1: What is a pattern?

4.1. Characteristics of Pattern

4.2. Identifying Patterns

4.3. The presentation of patterns

4.4. Patterns, Guidelines and Claims

5. Issue 2: What is a Pattern Language?

5.1. Pattern languages and pattern catalogues

5.2. The organisation of pattern languages

5.3. Notions of generativity

6. Issue 3: How are patterns and pattern languages used?

6.1. Patterns for participatory design

6.2. Patterns as technical lexicon

6.3. Patterns as organisational memory

6.4. Patterns as lingua franca

6.5. Patterns as design rationale

7. Issue 4: Values and pattern languages

7.1. The properties examined to identify patterns

7.2. Values in the selection of and rationale for individual patterns

7.3. Values in the process of developing patterns

7.4. Values in the process of using patterns

8. Conclusion: A research agenda for patterns in HCI

8.1. Exploring pattern languages in use

8.2. Organising pattern languages

Published in Human Computer Interaction, 21(1), January 2006

 - 4 -

8.3. Improving the production of pattern languages

8.4. Examining our values

References

Published in Human Computer Interaction, 21(1), January 2006

 - 5 -

1. INTRODUCTION
A pattern may be defined as a structured description of an invariant solution to a recurrent

problem within a context. A pattern language is a collection of such patterns organised in a

meaningful way. In recent years patterns and pattern languages have attracted increasing

attention in human computer interaction (HCI) for their potential in recording and

communicating design knowledge and supporting the design process. Patterns and pattern

languages are now being developed and presented in a wide range of HCI areas, including:

ubiquitous systems (Roth, 2002; Landay & Borriello, 2003), web design (van Duyne, Landay &

Hong, 2003, Graham, 2003), safety-critical interactive systems (Hussey, 1999), multimedia

exhibits (Borchers, 2001), hypertext and hypermedia (Rossi, Schwabe & Lyardet, 1997, 2000;

Rossi, Lyardet & Schwabe, 1999; Nanard, Nanard & Kahn, 1998), personal digital assistants

(Wier & Noble, 2003), socio-technical systems (Thomas, 2003) and games design (Bjork,

Lundren & Holopainen, 2003), as well as more general interaction design languages (Tidwell,

1998, 1999a, 2003; van Welie, 2002-2005; Laakso, 2003).

Initial efforts exploring patterns tended to focus on specific pattern development, leading to

repeated debates on correctness and commonality of form and structure, together with a certain

amount of “partisanship” regarding particular pattern approaches. Work in software engineering

and in interaction design shows a variety of debates about the nature of „patterns‟. Various

common elements are generally agreed to be relevant parts of the presentation of patterns, but

different authors give significantly different emphases. The result of this is a field that can be

daunting to the newcomer, who may find it difficult to disentangle the conceptual characteristics

of the approach and therefore its potential contribution to HCI.

In this paper, we present a critical review of research on patterns and pattern languages in HCI,

highlighting four key issues within the field. Our aim is to provide an overview of the field, and

identify key literature that may be useful and informative to HCI practitioners and researchers.

This review also aims to locate patterns in relation to other established and emerging techniques

in interactive systems design such as: guidelines and heuristics (Smith & Mosier, 1986; Nielsen,

1994), style-guides (e.g. Microsoft Corporation, 2003; GNOME project, 2003); participatory

design (Greenbaum & Kyng, 1991; Schuler & Namioka, 1993; Muller, Haslwanter & Dayton,

Published in Human Computer Interaction, 21(1), January 2006

 - 6 -

1997), claims analysis (Sutcliffe & Carroll, 1999; Sutcliffe 2000) and design rationale

(MacLean, Young, Bellotti & Moran, 1991).

We begin by outlining the scope of the pattern endeavour that we will consider. We then present

a short history of patterns, beginning with Alexander‟s exposition in architecture, through work

in software engineering, to the consideration of patterns in human-computer interaction, in order

to place the latter in its historical context. Our review then examines: different interpretations of

the concept of pattern; different ideas on the nature of pattern language, different approaches to

the use of patterns within the design process, and different ideas about the role of values in

pattern-supported design, before suggesting an agenda for future research.

2. THE SCOPE OF THIS REVIEW
This review is addressed to practitioners and researchers in HCI. Consequently, the primary

focus is on patterns and pattern languages that discuss interaction and interface design issues.

There are, however, a large number of patterns from other domains, e.g. software engineering

and organisational design, which may have a bearing on interactions between humans and

computers. To avoid extending the scope of our review beyond practical limits, we define three

broad classes of software-related pattern and pattern language that may be discussed:

General software design patterns –a problem is stated in terms of desirable qualities of the

internal structure and behaviour of software, and the solution is stated in terms of suggested code

structures. The majority of patterns in Gamma, Helm, Johnson and Vlissides (1995) fall into this

category.

Interface software design patterns – a problem is stated in the domain of desirable interaction

behaviours, and the solution is stated in terms of suggested code structures. Examples in this

category include: patterns for implementing systems that follow a „tools and materials‟ metaphor

(Riehle & Zűllighoven, 1995); patterns for implementing digital sound synthesis systems

(Judkins & Gill 2000); patterns to implement queuing of interaction events (Wake, Wake & Fox,

1996); patterns for e-commerce agent systems (Weiss 2001); and patterns for mobile services

(Roth 2002).

Interaction design patterns – a problem is stated in the domain of human interaction issues, and

the solution is stated in terms of suggested perceivable interaction behaviour. A good example in

this category is Tidwell‟s (1998, 1999a) pattern collection including patterns such as GO BACK

Published in Human Computer Interaction, 21(1), January 2006

 - 7 -

TO A SAFE PLACE which advocates providing users with a clearly identifiable way of returning a

system to a well known state such as the home page of a website.

Borchers (2001) includes three distinct pattern languages, the second of which is composed of

interaction design patterns and the third of interface software design patterns. Two examples

from Borchers serve to clarify the distinction between interaction design patterns and interface

software design patterns. The interaction design pattern EASY HANDOVER deals with the problem

that:

"Most interactive systems implicitly assume that each user begins using their system from a

start page or initial state. At interactive exhibits, however, one user often takes over from the

previous one, possibly in the middle of the interaction, and without knowing the interaction

history of the previous user." [Borchers, 2001, p117]

The pattern is illustrated by a photograph of two visitors to an interactive exhibit, one who is

using the exhibit, and another who is waiting for her turn.

The pattern then discusses the design issues and makes the recommendation:

“Therefore:

Minimize the dialogue history that a new user needs to know to begin using an interactive

exhibit. Offer a simple means to return the system to its initial state. If critical, user-specific

parameters such as language need to be set by a user, let the users change the setting at any

time, no matter where they are in the system" [ibid, p119]

This solution is then illustrated using a 'stick figure' drawing.

In contrast, BRANCHING TRANSFORMER CHAIN, an example of an interface software design

pattern, takes as its problem:

"If a software system is to react interactively to incoming musical data, it has to perform

various processing steps on this data. However, the way in which these processing steps are to

be combined is not always obvious." [ibid., p153]

Here the proposed solution is:

"Therefore:

Use a chain of software objects that process the incoming musical data in sequence. Order the

transformations so that coarse rythmic, harmonic or melodic changes are applied before

finer-grained adjustments." [ibid., p155].

Published in Human Computer Interaction, 21(1), January 2006

 - 8 -

The solution is then illustrated by means of a block diagram.

Based on the definitions above, this review is primarily concerned with „Interaction Design

Patterns‟ and, to a lesser extent with „Interface Software Design Patterns‟. To set the review in

context, it is necessary to consider other literature, particularly from Software Engineering and

Architecture. However, within such literature, this review will be restricted to general

discussions of pattern languages, rather than discussions of the detailed content of the patterns

themselves. Due to space constraints, and the authors' desire to consider the wide range of

different approaches to patterns, the paper does not include detailed illustrations of any complete

patterns. The reader is referred to published pattern languages and collections (e.g. Alexander,

1977; Gamma et al. 1995; van Duyne et al. 2003) or the available on-line collections of

interaction design patterns (e.g. Tidwell, 1998, 1999a, 2003; van Welie, 2002-2005; Brighton

Usability Group, 2003). Fincher‟s Pattern Gallery
1
 (Fincher, 2000b) provides an extensive on-

line catalogue of pattern formats from a range of sources, together with example patterns to

illustrate each style. To help orientate the reader who is unfamiliar with patterns, we discuss an

example of an Alexandrian pattern in the next section.

The early work of Alexander and colleagues (1975, 1977, 1979, 1982, 1985, 1987) in developing

pattern languages in architecture will be considered in order to locate HCI patterns within an

appropriate historical context.

3. A SHORT HISTORY OF PATTERNS

3.1. Christopher Alexander
Design patterns and pattern languages arose in architecture from the work of Christopher

Alexander and his colleagues. Within his profession his proposals have been controversial

(Dovey, 1990; Saunders, 2002) but nonetheless they have captured the public imagination with

regard to architecture (King, 1993; Gabriel, 1996b; Saunders 2002) and have been influential in

several other domains.

Alexander‟s early work, summarised in „Notes on the Synthesis of Form‟ (Alexander, 1964),

proposed a systemic approach to architectural design problems. The approach involves analytic

decomposition of the problem into sub-problems, each characterized by a set of competing

1
 The gallery is available at: www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html.

Published in Human Computer Interaction, 21(1), January 2006

 - 9 -

forces. By resolving the forces in each sub-problem, and synthesizing the individual solutions,

the architect generates a solution to the original global problem. Alexander (1964) even

considered the possibility of a computational solution to such problems.

During the period from the mid sixties to mid seventies, Alexander became sceptical of his

suggestions in „Notes on the Synthesis of Form‟. In the 1970s and early 80s, he and his

colleagues set out to define a new understanding and a new approach to architectural design.

Grabow (1983), in his biography, describes the changes in Alexander‟s thinking during this

period as a „paradigm shift‟. The new approach, centred on the concept of pattern languages, is

described in a series of books, namely: The Timeless Way of Building (Alexander, 1979); A

Pattern Language (Alexander et al., 1977); The Oregon Experiment (Alexander, Silverstein,

Angel, Ishikawa & Abrams, 1975); The Linz Café / Das Kafe Linz (Alexander, 1982); The

Production of Houses (Alexander, Davis, Martinez & Corner, 1985) and A New Theory of

Urban Design (Alexander, Neis, Anninou & King, 1987). The books were published as a series,

and are explicitly given volume numbers, which do not correspond with the chronological order

of publication. Volume one of the series (The Timeless Way of Building) sets out Alexander‟s

view of how patterns and pattern languages evolve, and how they should be utilized in design.

Volume two (A Pattern Language) offers one instance of a pattern language. The last four

volumes of the series each recount a case study in which the pattern based approach to design

was applied.

Alexander‟s pattern language used a specific format for the presentation of a pattern. To

illustrate this format, and give a further illustration of the pattern concept, we outline one of his

patterns. An Alexandrian pattern starts with the name and reference number, e.g. LIGHT ON TWO

SIDES OF EVERY ROOM (pattern 159). The name is concise and evocative but not obscure. This is

followed by a picture (in Alexander‟s case a photograph) showing an example of an instantiation

of the pattern and a short paragraph which sets its context, including the names of patterns to

which this one contributes. The problem that this pattern addresses is then stated. In the case of

LIGHT ON TWO SIDES OF EVERY ROOM, the problem is that:

“When they have a choice, people will always gravitate to those rooms which have

light on two sides, and leave the rooms which are lit only from one side unused and

empty.” (Alexander et al., 1977 pattern 159)

Published in Human Computer Interaction, 21(1), January 2006

 - 10 -

This concise statement of the problem is followed by a detailed discussion and rationale,

including the empirical background and evidence (the motivation for the pattern) and the „forces‟

involved in the resolution of the problem. The solution is then included:

“Locate each room so that it has outdoor space outside it on at least two sides, and

then place windows in these outdoor walls so that natural light falls into every room

from more than one direction.” (Alexander et al., 1977 pattern 159)

The pattern then includes a diagram, which illustrates the solution, and a paragraph indicating

how this pattern relates to other „lower‟ patterns in the pattern language, that is those which

contribute to it.

The Alexandrian form has been adopted by some, but by no means all, pattern writers in other

fields. For a summary of alternate forms, see the Pattern Gallery (Fincher, 2000b).

3.2. Pattern Languages in Software Engineering
In the late 1980s and early 1990s, researchers in software engineering were exploring ways to re-

use design knowledge. For example, Coplien (1992) investigated idiomatic styles of C++ code;

Wirfs-Brock, Vlissides, Cunningham, Johnson and Bollette (1991) examined the design of

frameworks that supported effective code re-use; Garlan and colleagues investigated the re-use

of formal specifications for a family of products (Garlan & Delisle 1990), and generic software

architectures that could be refined to specific implementations (Galan & Notkin 1991, Garlan &

Shaw 1993). Alexander‟s concept of „design patterns‟ was noticed in the context of this research

(Beck & Cunningham, 1987; Coad, 1992; Anderson, 1993; Coad & Mayfield, 1993; Gamma,

Helm, Johnson & Vlissides, 1993; Anderson, Coad & Mayfield, 1994). The first conference on

„Pattern Languages of Programming‟ (PLoP) was held in August 1994 (Coplien & Schmidt,

1995). Since then, PLoP conferences have been held annually (Vlissides, Coplien & Kerth, 1996;

Martin, Reihle & Buschmann, 1997; Harrison, Foot & Rohnert, 1999; PLoP, 1998; PLoP, 1999,

PLoP, 2000, PLoP, 2001; PLoP 2002; PLoP, 2003). Other conference series investigating pattern

languages in software engineering have also been established, e.g. EuroPLoP in Europe,

ChiliPLoP in Arizona and KoalaPLoP in Australasia. Another important milestone was the

publication of Gamma et al. (1995), often referred to as the „Gang of Four‟ book, which remains

one of best selling books in software engineering.

Published in Human Computer Interaction, 21(1), January 2006

 - 11 -

3.3. Patterns in HCI
Early work on patterns in software engineering included solutions for user-interface software

design. Thus, Gamma et al. (1993, 1995) include patterns such as OBSERVER (an abstraction

similar to the „Model View Controller‟ architecture) and DECORATOR (a software design solution

used for embellishments such as scrollable panels). The proceedings of the first meeting of PLoP

begin with two papers presenting a single interaction design pattern (Adams 1995) and a pattern

language with four interaction design patterns to describe a „tools and materials‟ metaphor for

user interface design, and seven interface software patterns that help implement such interfaces

(Riehle & Zűllighoven, 1995).

In the proceedings of the third meeting (Martin et al., 1997), user-interface patterns were

recognized as a discrete area of interest and afforded a separate „part‟ of the proceedings, despite

being represented by a single paper (Bradac & Fletcher, 1997). In the fourth meeting, four papers

were grouped in the proceedings as relating to „Patterns of Human-Computer Interaction‟ (see

Harrison et al., 1999). In 1998, (PLoP, 1998) the organisers grouped the papers using section

titles taken from „A Pattern Language‟, with the majority of interaction design patterns

appearing in the session „Zen View‟ (pattern 134 in Alexander et al., 1977). Eight of the papers

at the 1998 conference include interaction design or interface software design patterns. In 1999

(PLoP, 1999), four papers addressing user-interface issues appear in a group together with two

patterns that are primarily concerned with network performance issues. In recent years PLoP has

included only a small number of examples of interaction design patterns.

While the number of interaction design and interface software design patterns appearing in PLoP

was falling, interest in patterns at meetings of the HCI community was growing. Patterns

workshops have become regular events at CHI (Bayle et al. 1998; Griffiths, Pemberton, Borchers

& Stork 2000; van Welie, Mullet & McInerney 2002; Fincher et al., 2003; Schümmer, Borchers,

Thomas & Zdun, 2004), as well as being held at a meeting of the Usability Professionals

Association in 1999 (Granlund & Lafreniere, 1999a), and at Interact in 1999 (Griffiths,

Pemberton & Borchers, 1999). Panels were held at CHI 2001 (Borchers & Thomas, 2001) and at

IHM-HCI 2001 (Griffiths & Pemberton, 2001). An early mention of patterns in the mainstream

HCI literature was in Norman and Draper (1986) and Norman (1988) but in neither case was the

potential use of patterns explored in any detail. More recently, however, papers discussing the

use of patterns have been published in a variety of forums including DIS (Erickson, 2000a),

Published in Human Computer Interaction, 21(1), January 2006

 - 12 -

ECSCW (Martin, Rodden, Rouncefield, Sommerville & Viller, 2001), CHI (Dearden, Finlay,

Allgar & McManus, 2002a), PDC (Dearden, Finlay, Allgar & McManus, 2002b; Schuler, 2002),

HCI (Finlay, Allgar, Dearden & McManus, 2002) and ACM Hypertext conferences (Rossi,

1997; Nanard et al. 1998).

A number of interaction design pattern languages have also been published in book form,

including Borchers‟ triple languages for the development of interactive exhibits (Borchers,

2001a), Van Duyne et al.‟s Design of Sites language (Van Duyne et al., 2003) and, most

recently, Graham‟s (Graham, 2003) language on web usability, as well as many more web-based

collections (e.g. Tidwell, 1998, 1999a, 2003; Van Welie, 2002-2005; Bjork et al., 2003; Laakso,

2003). These developments are consistent with the expectations of the participants in the early

PLoP meetings. In their introduction to the proceedings of the first PLoP conference, Johnson &

Cunningham (1995) state their expectation that “as the PLoP community grows and matures …

PLoP will itself splinter along traditional lines of interest” [ibid. p. ix].

The remainder of this paper will consider four of the key issues that arise within patterns

research. We begin with the fundamental question of what is a pattern.

4. ISSUE 1: WHAT IS A PATTERN?
The debate as to what constitutes a pattern has occupied considerable attention in software

engineering and HCI. Lea (1994) describes the term pattern as a „pre-formal construct‟, noting

that Alexander provides no formal definition. Alexander offers many different descriptions of

patterns that are taken up by different authors. Coad (1992) emphasises the idea of patterns

emerging from repetitions in human behaviour, quoting Alexander‟s observation that „every

place is given its character by certain patterns of events that keep on happening there‟

(Alexander, 1979, as quoted by Coad, 1992, p 152). Gabriel (1996b), Denning & Dargan (1996),

Cline (1996), Johnson & Cunningham (1995) and Borchers (2001a) also highlight this view.

This viewpoint emphasises patterns as recurrent phenomena or structures that must be observed

and discovered. The POINTER project (Martin et al., 2001; Martin, Rouncefield & Rodden,

2002) captures just such recurrent phenomena, drawing on examples of common interactions

derived from ethnographic studies.

An alternative view highlights patterns as artefacts for the explicit representation of design

guidance. Gamma et al. (1995) quote Alexander „Each pattern describes a problem … and then

describes the core of the solution …‟ (Alexander et al., 1977, page x, as quoted by Gamma et al.

Published in Human Computer Interaction, 21(1), January 2006

 - 13 -

1995, p 2). Beck et al. (1996) describe patterns as „a particular prose form‟ (ibid. p. 103) and

Borchers (2001b) describes patterns as „… above all, a didactic medium for human readers …‟

(ibid. p. 361). Schmidt, Fayad and Johnson (1996) and Astrachan, Berry, Cox and Mitchener

(1998) have a similar emphasis.

For Alexander, there is no contradiction between these views. In The Timeless Way of Building,

Alexander (1979) posits pattern languages as fundamental to the organisation of building,

concluding that „nothing is made without a pattern language in the maker‟s mind; and what that

thing becomes, its depth, or its banality, comes also from the pattern language in the builder‟s

mind …‟ (ibid. p 224). Later, he argues that „… in a period when languages are no longer widely

shared, … it becomes necessary to make patterns explicit, … so that they can be shared in a new

way – explicitly instead of implicitly – and discussed in public.‟ (Alexander, 1979, p. 246). His

effort to explicate patterns gives rise to „A Pattern Language‟ (Alexander et al., 1977). Hence,

for Alexander, pattern languages are both a theoretical account of the organisation of the built

environment, and specific designed artefacts, whose purpose includes re-invigorating public

participation in, and discussion of, architectural design. Our discussion of patterns reflects this

and, unless explicitly stated, we are referring to constructed, documented patterns rather than

patterns in the world.

In software engineering and HCI it is generally agreed that a pattern is a structured description of

an invariant
2
 solution to a recurrent problem in context, reflecting Alexander‟s problem oriented

approach. However, such an approach is not universal. A distinction can be drawn between

design patterns, which centre on a problem and a proven solution, and activity patterns, which

simply provide a description of existing patterns of activity (Bayle et al., 1998). For example, the

patterns developed in the POINTER project (Martin et al., 2001; Martin et al., 2002), which seek

to summarise findings from ethnographic studies, can be seen as „activity patterns‟ in Bayle et

al.‟s terms. Another area of work in software has proposed the idea of „AntiPatterns‟ which are

2
 It should be noted that the term invariant here refers to a set of shared characteristics of the

recommended solution, but that the solution will need to be adapted to the specific circumstances

in which it is applied. Hence, there is variability in the way that the solution is instantiated in

individual applications, but the pattern describes the invariant core of solutions to the (recurrent)

problem.

Published in Human Computer Interaction, 21(1), January 2006

 - 14 -

examples of poor design practice together with descriptions of how the design could be repaired ,

(Brown, Malveau, McCormick & Mowbray , 1998). AntiPatterns have not attracted much

attention within HCI, although there was some discussion at the CHI 2000 patterns workshop

(Griffiths et al., 2000), in spite of many collections of examples of bad interaction design, with

and without repairs. The validity of AntiPatterns in Alexandrian terms can be debated, since

patterns are, by his definition, concerned with capturing good practice. However, their use in

software is relatively common and they do occur in interaction design (see for example, Graham,

2003). Within this review, however, we concentrate on the predominant view, i.e. on „design

patterns‟.

4.1. Characteristics of Pattern

A number of researchers have discussed what constitutes a design pattern and what distinguishes

it from other design advice. Bayle et al. (1998) assert that patterns are notable because they are

based on examples, facilitate multiple levels of abstraction, bridge the gap between the physical

and the social aspects of design and are amenable to piecemeal development. Fincher (1999) also

identifies capture of practice and abstraction as important, but adds: organising principle to relate

patterns to other patterns in a way that enables design; a value system that is embodied in the

patterns; and a particular presentational style.

Perhaps the most comprehensive attempt to characterise patterns arises from the software

engineering literature. Winn and Calder (2002) suggest nine essential characteristics of pattern,

some of which reflect attributes also identified by previous researchers. Below we summarise

the characteristics that Winn and Calder identify.

1. A pattern implies an artifact: A pattern should provide a higher-level picture of the shape

of the artefact that it describes. The implication is that patterns must support the design of

something.

2. A pattern bridges many levels of abstraction: A pattern provides design information at

different levels of abstraction. Winn & Calder point out that patterns in software

engineering include both sample code and „big-picture‟ structure diagrams.

3. A pattern includes its rationale: It is both functional and non-functional. A pattern should

include an explanation of why the solution is recommended, and what trade-offs are

involved.

Published in Human Computer Interaction, 21(1), January 2006

 - 15 -

4. A pattern is manifest in a solution: It should be possible to see the pattern that has been

used within the finished artefact, since a pattern relates to both design process and

structure. Generally, it is not possible, by inspecting a piece of software, to identify

whether a particular development process was used in its production. In contrast, if a

software engineering pattern has been used, its structure will be evident in the code.

5. A pattern captures system hot-spots: System hot-spots are points within a software

system that must be open to changes as the system evolves in response to a changing

environment and modified requirements. By identifying invariants of good design,

patterns also highlight design elements that must be open to change, and thus help to

manage the interplay between stability and change.

6. A pattern is part of a language: Patterns are related to other patterns and work together to

resolve the complexity of system design problems.

7. A pattern is validated by use: Patterns can only be proved through evidence of their

existence in real artefacts and their contribution to design. Although this characteristic is

similar to 4 above, there is a subtle distinction. Here the emphasis is on the evidence

required to verify the existence of a pattern, which requires that the pattern is found in a

range of successful system designs.

8. A pattern is grounded in domain: Patterns relate to specific domains and have no meaning

outside those domains. Patterns drawn from different domains should not be expected to

work together, and discussion of patterns without consideration of the domains in which

they are grounded is likely to be confused and confusing.

9. A pattern captures a big idea: Patterns should focus on key, difficult problems within a

domain. Not every design problem warrants a pattern.

Within the field of HCI a number of other characteristics have also been debated. Bayle et al.

(1998) raise several additional points.

10. Patterns support a „lingua franca‟: Patterns should support discussions with people who

are not specialists in the domain. In contrast with the concerns of software engineering,

patterns in HCI should be accessible and understandable by end- users.

Published in Human Computer Interaction, 21(1), January 2006

 - 16 -

11. Different patterns deal with problems at different scales: Some patterns in HCI deal with

high-level issues such as business process or task structure, while others address low

level details of GUI construction such as the layout of tables.

12. Patterns reflect design values: Patterns are not neutral but explicitly reflect design values.

The selection of patterns and the recording of patterns are value-laden activities,

reflecting the priorities and motivations of the writer. We return to this point in more

detail in section 7.

13. Patterns capture design practice: Patterns are derived from actual practice not theoretical

or conceptual proposals. This perspective relates to Winn and Calder‟s points 4 and 7

above but here the emphasis is on the processes of identifying and developing patterns.

Figure 1 compares the position of Winn and Calder with that of a selection of authors in HCI

who discuss the nature of design patterns. In this table we indicate a direct statement with a

bullet and an implicit agreement (for example through the use made of patterns) with a question

mark. We have included distinctions made by different authors, even where these are closely

related. Figure 1 illustrates the level of debate on even the fundamental question of what

constitutes a pattern and, to a degree, reflects a diversity of theoretical and philosophical

perspectives on the nature of patterns. As we have already seen, Alexander viewed patterns both

as a theoretical account of the built environment and as constructed artefacts to support design.

Similarly, some authors are primarily interested in patterns as a way of capturing and sharing

design knowledge and values, where it is assumed that documented patterns capture actual and

observable successful design practice. Others see patterns primarily as an accessible form of

design guidance and focus particularly on patterns that have immediate application and (in some

cases) where that application can be automated.

Some of the requirements laid down by Winn and Calder have not been identified as important in

HCI, for example the issue of system hotspots. Others, such as levels of abstraction within a

pattern, are perhaps so obviously implied by the generic solution and concrete examples, as not

to be stated explicitly by any HCI authors. Similarly, many HCI authors imply the focus on

design of an artefact through inclusion of notions such as construction and generativity, although

they do not mention this explicitly. It is clear, however, that there is a general agreement within

HCI that patterns should allow communication between different groups; that pattern languages,

Published in Human Computer Interaction, 21(1), January 2006

 - 17 -

as opposed to single patterns, are important; that patterns address problems at different levels;

and that patterns involve questions of value.

FIGURE 1 ABOUT HERE

4.2. Identifying Patterns
As we have seen, one of the distinguishing characteristics of patterns is that they are derived

from practice rather than theory. In The Timeless Way of Building, Alexander (1979) describes a

process that begins by finding places that exhibit what he calls „the quality without a name‟, and

then trying to identify the distinguishing characteristics that account for the success of the

selected design solution. He then seeks to identify key „invariants‟ that are common to all good

solutions to that design problem and not present in poor solutions.

In software engineering, it is usually agreed that patterns must be discovered by reference to

design solutions, rather than being constructed from first principles. Coad (1992) suggests that

“patterns are found by trial end error and by observation” [p.153]. Coad & Mayfield (1992)

discuss „discovering‟ patterns from experience. Gabriel (1996b) and Meszaros (1996) both use

the metaphor of „mining‟ patterns from existing designs. The mining metaphor has been used in

workshops on patterns in HCI (van Welie et al. 2002), and many of the patterns offered by

Tidwell (1998, 1999a), van Welie (2002-2005) and Brighton Usability Group (2003) are clearly

based on observations of common design solutions.

Pattern mining starts with identification of good practice. However, it is not enough simply to

capture good HCI practice: pattern mining requires capture of practice that is both good and

significant (Fincher & Utting, 2002). Patterns are not intended to state obvious solutions to trivial

problems or to cover every possible design decision, but to capture “big ideas” (Winn & Calder,

2002). A pattern should capture insights about the design that can inform even an experienced

designer; explaining not only how a problem can be solved but also why a design choice is

appropriate to a particular context. Fincher (2000) reflects that identifying patterns in HCI, i.e.

attributing positive qualities of an artefact to particular facets of the design, may be complicated

by the high levels of complexity and context dependence in interaction. For example, certain

designs (and patterns) may be appropriate in one culture, but not in another (Hall, Lawson &

Minocha, 2003). Other design elements may be appropriate only in the context of a particular

„genre‟. These problems are not unique to HCI, nor are they insurmountable. Alexander and

Published in Human Computer Interaction, 21(1), January 2006

 - 18 -

colleagues (Alexander, 1979; King, 1993) suggest that different cultures will develop and extend

their own architectural pattern languages. Hall et al. (2003) have suggested incorporating

statements relating to cultural setting within the „context‟ of individual patterns. Walldius (2002)

shows how patterns can be used to describe particular „genres‟ of film. Van Duyne et al. (2003)

use the idea of „site genre‟ as an organising principle within their web design pattern language.

One element that is perhaps unique to interaction design patterns is the need to include the notion

of temporality (Barfield et al., 1994; Borchers, 2001a). Unlike architecture, HCI deals with an

artefact where time is significant and the context of and solutions to interaction problems are

liable to be dynamic rather than static. A pattern must therefore be able to capture these temporal

aspects. Tidwell‟s (1999) pattern, STEP-BY-STEP INSTRUCTIONS exemplifies this issue. The pattern

addresses a context in which

“A user needs to perform a complex task, with limited time, knowledge, attention, or space.

Alternatively, the nature of the task is step-by-step, and it’s meaningless to show all the action

possibilities at once.” [ibid.]

The solution suggested for the pattern is:

“Walk the user through the task one step at a time, giving very clear instructions at each step.

Use visual similarities in all the steps, e.g. typography and layout, to maintain a rhythm

throughout the task; make each step a focal point, both visually and in the user’s “attention

space.” If information is needed from the user, ask for it in simple terms and with brevity, by

keeping it short, you can better maintain the user’s sense of flow through the whole step-by-

step process.” [ibid.]

The solution is illustrated by a line drawing as shown in Figure 2.

FIGURE 2 ABOUT HERE

It is clear that Tidwell‟s pattern relies on an understanding of the diagram as a series of user

interface states with navigation between them. The use of alternative media (such as video) has

been suggested to illustrate interactive time-based solutions (Borchers, 2000a) but the

fundamental issue of abstracting true interaction rather than simply snapshots of appearance or

behaviour remains.

On the other hand, patterns should also embody a timeless quality, presenting a solution that is

applicable regardless of particular platform or current technology. This is arguably a weakness in

many current interaction design patterns, which are strongly based on a particular and current

Published in Human Computer Interaction, 21(1), January 2006

 - 19 -

user interface paradigm (graphical user interfaces for example). Bayle et al. (1998) suggest that

patterns that address interaction issues at a „high level‟ of abstraction may be timeless, but that

patterns that are closer to the detail of interaction design perhaps necessarily reflect current

paradigms. Tidwell‟s (1998, 1999a) Common Ground language includes examples of both types.

GO BACK TO A SAFE PLACE is equally applicable to desktop systems, mobile phones, personal

digital assistants (PDAs) and aircraft flight control systems. It is likely to be relevant in any

interactive system devised in the future, whereas STACK OF WORKING SURFACES very clearly

reflects current window based interaction styles.

The lack of variety of good examples and the immaturity of our design field as compared to

architecture may lead to weaker examples being used as the basis of patterns in HCI (Fincher,

2002). Many interaction design „patterns‟ can be criticized for identifying common rather than

necessarily good practice. We shall return to the discussion of „good‟ practice in Section 7 where

we discuss the role of values in patterns.

4.3. The presentation of patterns
Fincher (1999) indicates that identifying good practice is the “least part of the achievement” in

developing patterns. Bayle et al. (1998) note that it is relatively easy to observe phenomena in

the world but much more difficult to use these observations to develop and explicate good

patterns. In order to be useful, patterns must present an abstraction of good practice at a

meaningful level of granularity. Formulations that are too abstract will be impractical in real

design use; those that are too specific will be difficult to re-use in new scenarios. Fincher and

Utting (2002) compare abstraction in patterns to good teaching practice: it should facilitate

understanding of the principles embodied in specific examples, to identify what is important in

the examples. Winn and Calder (2002) suggest that patterns should present knowledge at

graduating levels of abstraction.The focus on design patterns as a distinct form for design

guidance has led to debates about the content and structure of patterns. In software engineering, a

range of alternative formats appear in Beck and Cunningham (1987), Coad (1992), Beck (1994),

Beck and Johnson (1994), Gamma et al. (1995) and Fowler (1997). Meszaros and Doble (1998)

present a pattern language for pattern writing, suggesting a degree of stabilization around certain

formats. Sharp, Manns and Eckstein (2003) report on the way that the format of patterns to

support computer science education had to be modified to better suit the needs of their target

audience.

Published in Human Computer Interaction, 21(1), January 2006

 - 20 -

In HCI, alternative formats have been followed by Tidwell (1998, 1999a), Borchers (2001a), van

Welie, van der Veer and Eliëns (2000), Martin et al. (2001, 2002), Van Duyne et al. (2003) and

Tidwell (2003). Some of these (e.g. Borchers, 2001a) reflect the layout and typesetting of A

Pattern Language, for example, using bold fonts to highlight the key sections of the „problem‟

and „solution‟ and separating the text that describes the pattern‟s position in the language from

the body of the pattern by using three diamonds. Others (e.g. Tidwell, 1998, 1999a) reflect the

style of Gamma et al. (1995) with a series of specific headings: in Tidwell‟s case the headings

used are: Examples, Context, Problem, Forces, Solution, Resulting context and Notes. Still

others represent departures from previous forms (e.g. Tidwell, 2003; Martin et al. 2001, 2002;

van Duyne et al., 2003). Representative examples of interaction design pattern forms have been

collected in the Pattern Gallery (Fincher, 2000b). Several attempts have been made to identify

common elements and to formalise these in some way, for example Griffiths et al. (1999) and the

pattern language markup language PLML developed at the CHI‟2003 workshop (Fincher, 2003).

The DTD for PLML is given in Figure 3 and several collections have now been made PLML

compliant, including van Welie (2002-2005).

Dearden et al. (2002 a, b) and Finlay et al. (2002) highlight the degree to which different

formats, including abbreviated patterns, affect the use of patterns in practical design settings.

4.4. Patterns, Guidelines and Claims
Advocates of patterns in HCI have often sought to demonstrate clear distinctions between

patterns and other forms of design guidance. For example, Borchers (2001a) suggests that

patterns improve upon style guides, guidelines and standards:

„… through their structured inclusion of existing examples and insightful explanation not only of the

solution, but also of the problem context in which this solution can be used, and the structured way in which

patterns are integrated into the hierarchy of the language …‟ (ibid. p60).

Published in Human Computer Interaction, 21(1), January 2006

 - 21 -

FIGURE 3 ABOUT HERE

Patterns should also be compared to other efforts to re-use design knowledge such as „claims‟
3

(Sutcliffe & Carroll, 1999; Sutcliffe, 2001). To examine such arguments, we need to clarify both

the forms of design guidance being discussed, and the contrasts identified. The following

common types of design guidance can be distinguished:

1. style guides, which are specific to an environment or product grouping (e.g. GNOME

project, 2003; Microsoft Corporation, 2003);

2. general guidelines applicable to a range of systems (e.g. Smith & Mosier, 1986);

3. standards, which may resemble guidelines, but carry some formal authority (e.g. ISO

9241, International Standards Organisation [ISO], no date);

4. claims, which incorporate both theoretical argumentation and specific illustrative

examples (Sutcliffe & Carroll, 1999; Sutcliffe, 2001);

5. heuristics, which are general statements of desirable properties (e.g. Nielsen, 1994).

A number of different aspects of patterns and pattern languages are suggested as distinctive. The

major contrasts noted by van Welie et al. (2000), Borchers (2001a), Fincher (2000a), and

Brighton Usability Group (2003) are:

1. the level of abstraction at which guidance is offered;

2. the grounding of patterns in existing design examples, or „capture of practice‟;

3. the statement of the problem addressed by a pattern;

4. the discussion of the context in which a pattern should be applied;

5. the provision of a supporting rationale for the pattern;

6. the organisation of patterns into pattern languages; and

7. the embedding of ethics or values in the selection and organisation of patterns.

To simplify discussion we note that standards are not a distinct form of guidance, but are

distinguished by their authority. Indeed, the most commonly used standard in HCI (ISO 9241)

includes many sections presented as guidelines (referred to as „principles‟ or „recommendations‟

3
 http://www.co.umist.ac.uk/hci_design/appc.htm offers one approach to presenting claims.

http://ucs.ist.psu.edu which can be searched for examples of claims in the context of various

projects (e.g. http://ucs.ist.psu.edu/dbitemview.asp?id=43§ion=\Garden-

com\Activity+Design\Rationale)

http://www.co.umist.ac.uk/hci_design/appc.htm

Published in Human Computer Interaction, 21(1), January 2006

 - 22 -

within the standard). This leaves four distinct forms of guidance. Hence, we can identify twenty-

eight (4 x 7) distinct assertions. For example „interaction design patterns differ from heuristics

because patterns are grounded in concrete examples‟. Examining these assertions it is clear that

patterns differ from both style guides (because patterns aim to generalise away from particular

implementation environments and from fine detail of user-interface rendering, and patterns

discuss the context in which they are applicable), and from heuristics (because patterns identify

particular solutions, the context of application, and are supported by a rationale). However, it is

more difficult to distinguish patterns from guidelines (e.g. Smith & Mosier, 1986; ISO 9241) and

claims (Sutcliffe & Carroll, 1999; Sutcliffe, 2001).

The following similarities and contrasts can be identified:

1. Level of abstraction: Patterns, guidelines and claims can all be stated at various levels of

abstraction. Some patterns tackle issues at a similar level of detail to typical examples of

guidelines, e.g. THE SHIELD (van Welie et al., 2000) is comparable with ISO 9241-10

principle 3.3. However, the organisation of guidelines around particular styles of interaction

(e.g. „data entry‟, „form filling‟ or „menu selection‟) may lead towards guidelines dealing

with fine details of interaction, e.g. the arrangement of options within menus. In contrast,

interaction design patterns can address larger scale issues over extended interactions. For

examples, see STEP-BY-STEP INSTRUCTIONS (Tidwell, 1998, 1999a), EASY HANDOVER

(Borchers, 2001a), or RECOMMENDATION COMMUNITY (van Duyne et al., 2003). Claims can

also describe such larger scale design issues.

2. Use of examples: Patterns, guidelines and claims all include examples, but whereas examples

in guidelines are usually phrased in general terms, e.g. „imagine an application that …‟

(Smith & Mosier, 1986), patterns and claims refer to specific implemented systems. There is

a slight difference between patterns and claims in the use of examples. Patterns emphasise

their grounding in multiple examples of successful designs, whereas claims emphasise

grounding in theory. A theory „motivates‟ a claim (Sutcliffe & Carroll, 1998), and the claim

„explains‟ the design of a single artefact. Sutcliffe (2000) suggests that a pattern may be a

„generic design for‟ a claim (p. 205).

3. Statement of the problem: Neither guidelines nor claims include a specific problem that they

attempt to address.

Published in Human Computer Interaction, 21(1), January 2006

 - 23 -

4. Context: Some guidelines include „exceptions‟ to identify situations where they should not be

applied, but this is not required in all cases. Claims include a specific scenario in which a

particular artefact is used, which indicates a „context‟ in which the claim appears valid. In

contrast, patterns aim to characterise a set of possible contexts in which the particular design

advice should be followed. Hence the „context‟ in a pattern may generalize over the „context‟

for individual claims.

5. Supporting rationale: Guidelines, claims and patterns all provide some supporting rationale

based in both primary research and other literature. The presentation of that rationale is more

concise in Smith and Mosier‟s guidelines than is the case with typical patterns (e.g. Borchers,

2001a; van Welie et al., 2000). ISO 9241 does not include the references to the literature

within the individual guidelines, instead providing a general bibliography.

6. Connections between elements: Cross-referencing is common to guidelines, claims and

patterns. However, while guidelines include occasional cross-referencing, both patterns and

claims emphasise organisation and interdependence. We return to this issue in the next

section.

7. Embedding values: At one level, guidelines, claims and patterns all embody design values.

However in guidelines and claims these values are implicit, patterns aim to make these

explicit (Bayle, 1998), both in the detail of individual patterns and in the way that values

inform pattern mining (Fincher & Utting, 2002).

In summary, patterns are potentially more general than existing examples of guidelines, use more

specific examples, include the statement of a „problem‟ that they address, deliberately scope their

context of application, and explicitly reflect particular design values. Patterns can be

distinguished from claims by the inclusion of a problem statement, the requirement for multiple

examples, the treatment of context, and the recognition that a pattern explicitly reflects selected

design values. This comparison suggests that claims analysis might be a fruitful approach to the

identification of patterns, but there may be a tension between the „theoretical and empirical‟

grounding of claims, and the „value led‟ approach of patterns.

5. ISSUE 2: WHAT IS A PATTERN LANGUAGE?
Alexander‟s original work was not merely about individual patterns, but was explicitly

concerned with the concept of pattern languages. Taken in isolation, patterns are, at best,

Published in Human Computer Interaction, 21(1), January 2006

 - 24 -

“unrelated good ideas” (Alexander, 1996). However combined in a language, patterns provide

coherent support for design generation. In this section we examine what this means.

5.1. Pattern languages and pattern catalogues
There are two forms of organisation readily evident in A Pattern Language. On the one hand, the

patterns are collected into sets according to levels of physical scale, e.g. the first section of the

language addresses the size and distribution of towns and cities, while later sections address

smaller units such as neighbourhoods, clusters of houses and individual rooms. In addition, the

patterns form a network, where each pattern contains backward references to patterns that set its

context, i.e. patterns that have already been used or selected, and forward references to patterns

that can be used to help realise the current pattern. For example, the STREET CAFÉ pattern begins

by discussing patterns such as IDENTIFIABLE NEIGHBOURHOOD, ACTIVITY NODES, and SMALL

PUBLIC SQUARES that provide contexts to which a street café will contribute and ends by

directing the reader to patterns that help realise the street café such as creating an OPENING TO

THE STREET, making the terrace double as A PLACE TO WAIT, and using DIFFERENT CHAIRS. This

directed network structure provides for Alexander‟s analogy with the production rules of a

grammar (Alexander, 1979, p187).

In contrast, Gamma et al. (1995) describe their efforts as a catalogue of patterns that have some

interrelationships, but do not form a pattern language in Alexander‟s sense. Gamma et al.

classify their patterns by their area of concern: creation of objects, structuring of software

systems or dynamic behaviour of systems. Other authors who have used classification schemes

to organise pattern collections include Kendall, Murali Krishna, Pathak and Suresh (1998), Roth

(2002), Mahemoff and Johnston (1998), Hussey and Mahemoff (1999). One of the early

OOPSLA workshops in which patterns were a major topic was concerned with creating a

„handbook for software architects‟ (Anderson,1993). Coplien and Schmidt (1995), discuss the

distinction between pattern languages and catalogues, and suggest that

„it is likely that catalogs of patterns … will provide the most payoff for pattern based software

development over the next few years. It turns out that comprehensive pattern languages … are

challenging to produce …‟ [ibid. p322].

Gamma et al. (1995) express the hope that as more patterns are collected their catalogue might

evolve and be organised into a language.

Published in Human Computer Interaction, 21(1), January 2006

 - 25 -

Some authors in software engineering have applied the concepts of refinement and specialisation

to examine relationships between patterns. For example, see Yacoub and Ammar (1998),

Mikkonnen (1998), Agerbo and Cornils (1998) and Tahara, Ohsuga and Honiden (1999). A

similar approach for interaction design patterns is suggested by Mullet (2002), who proposes

three possible relationships between patterns, namely: derivation, where one pattern inherits

elements from a higher level pattern; aggregation, where one pattern is contained within another

pattern; and association, where one pattern uses another. Van Welie and van de Veer (2003)

suggest a similar set of connections between patterns.

A number of pattern collections have been presented using a layered approach, with sets of

patterns addressing different „levels‟ of a design problem. For example, Tahara et al. (1999),

provide patterns addressing macro-architectural, micro-architectural, and finally object levels for

the design of agent systems. Paternò (2000) suggests „task patterns‟ described in the

ConcurTaskTrees notation, which are in turn linked to software „architectural patterns‟ that are

described by configurations of re-usable interaction components called „interactors‟. Granlund,

Lafreniere and Carr (2001) suggest interaction design patterns at the levels of „business domain‟,

„business process‟, „task‟, „conceptual design‟ and „design‟.

5.2. The organisation of pattern languages
While the majority of work in the PLoP conferences has been in the form of individual patterns

or pattern collections, a number of networked languages have been presented. For examples, see

Johnson (1992), Richardson (2001), Hanmer (2000), Buschmann (2001) and Dyson and

Anderson (1997). Networked pattern languages for interface software include: Riehle and

Zűllighoven (1995), Bradac and Fletcher (1997), Towell (1998), Coldewey (1998), Judkins and

Gill (2000) Marick (2000) and Berczuk, Appleton and Cabrera (2000). Indeed, Beck and

Cunningham‟s (1987) paper, which is generally accepted as the first application of patterns to

software engineering, is a networked pattern language for the design of window-based

applications. Richardson (2001) and Hanmer (2000) use an „enables‟ relationship between

patterns, where later patterns enable the realisation of earlier patterns. Buschmann (2001) selects

the term „completes‟ to express the relationship between patterns. This relationship in which one

pattern „completes‟ another at a higher scale is evident in Alexander‟s writing, particularly in A

New Theory of Urban Design (Alexander et al., 1987). Tidwell‟s (1998, 1999a) interaction

design patterns are networked in a similar way. Borchers (2001a) provides three examples of

Published in Human Computer Interaction, 21(1), January 2006

 - 26 -

networked pattern languages for: creating blues music, interaction design for multimedia exhibits

and interface software design for multimedia exhibits. Van Duyne et al. (2003) provide a

networked „language‟ for the design of websites.

Fincher and others have drawn attention to the issue of finding a suitable „organising principle‟

for pattern languages in HCI (Fincher & Windsor, 2000; Fincher & Utting, 2002; Fincher, 2002).

Fincher and Windsor (2000) suggest four requirements for an organising principle for a pattern

language: it should provide a taxonomy to enable the user to find patterns; it should allow users

to find related or proximal patterns; it should allow the user to evaluate the problem from

different standpoints; and it should be generative, allowing users to develop new solutions. The

two stage organising principle that they propose focuses on the activities of design and the

physical characteristics of interface elements rather than the activities of use. This focus is

similar to that of other collections such as Tidwell (1998, 1999a). Van Duyne et al. (2003) group

their web-design patterns to address different design aspects, beginning with „site genre‟, then

examining issues such as „writing and managing content‟, and „making site search fast and

relevant‟. Van Welie and van de Veer (2003) propose a layered structure with patterns organised

by: posture, akin to Van Duyne et al.‟s genres; experience, relating to the particular expectation

of the user in approaching the system; task, relating to sequences of interactions; and activity,

relating to low level actions. The layers provide a mechanism for grouping the patterns but it is

not clear how the relationships between the patterns are determined by it.

These structuring proposals all provide a way of taxonomising a pattern collection, but they do

not actively support the process of identifying new patterns. The organisation is not predictive.

Fincher (2002) contrasts this with other domains, notably chemistry, where the periodic table

facilitated the discovery of previously unknown elements, because the organising structure

illuminated “gaps” where these could fit. Fincher argues that the organisation of interaction

design patterns by physical elements or common uses is arbitrary, whereas Alexander‟s patterns

are organised by the “particular quality of the relationship between physical and psychosocial

space” (ibid. p.3). The former could be characterised as a structure; while the latter includes a

clear structuring principle. Fincher (2002) suggests that Cognitive Dimensions (Green &

Blackwell, 2003) might be a candidate for a structuring principle for interaction design patterns.

5.3. Notions of generativity

Published in Human Computer Interaction, 21(1), January 2006

 - 27 -

A key concept in distinguishing pattern collections from pattern languages is the idea of

generativity. In The Timeless way of Building, Alexander explicitly invokes comparison with

generative grammars (Alexander, 1979, p 187). One reading of the organisation of A Pattern

Language (Alexander et al., 1977) suggests the idea of generating designs by implicit sequencing

of decisions, derived by traversing the network of links between the individual patterns. This

understanding is consistent with Alexander‟s description of case-studies in The Oregon

Experiment and The Production of Houses (Alexander et al., 1975, 1985).

In software engineering, a number of authors have sought to emulate this idea of a generative

language. Beck and Cunningham‟s (1987) suggest that a pattern language helps designers to ask

and answer the right question at the right time, i.e. the language can be used to sequence design

decisions. Beck (1994), Lea (1994) and Tahara, Toshiba, Ohsuga and Honiden (2001) also

suggest using the language for sequencing. The idea of patterns being connected by an enabling

relationship, where later patterns enable the realization of earlier patterns is apparent in pattern

languages in both software engineering and HCI (for examples see: Aarsten, Brugali & Menga,

1996; Dyson & Anderson, 1997). The notion of an „enables‟ or „completes‟ relationship between

patterns (Richardson, 2001; Hanmer, 2000; Buschmann, 2001) is consistent with this reading of

„generative‟, in the sense that a higher level pattern implies the use of the lower level patterns

that enable it. In HCI Borchers (2001a) suggests this notion of generative sequencing of design

decisions, which is also adopted by Finlay et al. (2002). Fincher and Windsor (2000) also reflect

this by incorporating design process into their organising structure for pattern languages.

However, this is not the only way that the term „generative‟ has been discussed in software

engineering and HCI. Gabriel (1996a) suggests that individual patterns can be considered

„generative‟ because they give indirect advice about what to do to achieve a desirable outcome,

rather than simply stating that the outcome is desirable. He gives the example of telling himself

to „follow through‟ when hitting a tennis ball. This advice is indirect, it does not centre on the

outcome of propelling the ball at speed, instead it indicates a specific practical action that will

achieve the desired result. Lea (1994) also emphasises this notion of generativity, as do

Mahemoff and Johnston (1998).

Beck and Johnson (1994) suggest using patterns to construct a more complete design rationale

for a whole system, analogous to a mathematical proof. In this analogy, patterns correspond to

axioms (or theorems) of the design space. This approach is similar to Thimbleby‟s (1990)

Published in Human Computer Interaction, 21(1), January 2006

 - 28 -

concept of „Generative Usability Engineering Principles‟, which specify constraints on

permissible designs to ensure that resulting designs exhibit desirable properties. This may also be

consistent with Alexander‟s analogy between pattern languages and Chomsky‟s grammars and

with Alexander et al.‟s (1987) approach in „A New Theory of Urban Design‟, and in „Notes on

the Synthesis of Form‟ (Alexander, 1964), both of which can be interpreted as forms of design by

constraint solving.

Another concept of „generative‟ discussed in HCI, is the idea of generating an option space of

alternative designs from which the design team should select (Lane, 1990; MacLean et al., 1991;

Dearden & Harrison, 1997). Some pattern collections offer the reader a choice of alternative

(incompatible) solutions to a design problem, from which one must be selected, based on

specified attributes of the domain. For examples in software engineering see McKenney (1996),

Dyson and Anderson (1997), Sandu (2001), Tahara et al. (1999, 2001) Mai and de Champlain

(2001), Souza, Matwin and Japkowicz (2002). In HCI an example is Tidwell‟s (1998, 1999a)

alternative patterns TILED WORKING SURFACE and STACK OF WORKING SURFACES.

6. ISSUE 3: HOW ARE PATTERNS AND PATTERN LANGUAGES

USED?
Alexander and colleagues provide four books in which they describe various experiments

applying pattern-based design (Alexander et al., 1975; Alexander et al.,1985; Alexander, 1982;

Alexander et al.,1987).

In the field of software engineering, although many patterns, pattern collections and pattern

languages have been published, there has been comparatively little discussion of the practical

aspects of using patterns. Beck et al. (1996) reports on a panel discussion comparing experiences

between various software organisations and Fraser, Beck, Booch, Johnson and Opdyke (1997)

debate whether frameworks and patterns actually reduce design costs. We have not found any

published details of observational or empirical studies of software developers using patterns in

practice.

Similarly, in HCI, there has been relatively little written about the practical details of using

patterns in design projects (van Welie et al. 2000). Borchers (2001a) discusses how patterns

might be applied at different stages of Nielsen‟s (1993) usability engineering lifecycle, and

reports that patterns were used by various design teams in developing musical exhibits, but does

not discuss precise details of the design activity. Windsor (2000) describes using patterns to

Published in Human Computer Interaction, 21(1), January 2006

 - 29 -

capture design rationale within specific projects. The Participatory Patterns Project (Dearden et

al. 2002 a, b; Finlay et al. 2002) have reported on simulated design exercises supported by

patterns. Borchers (2002) reports on the use of patterns for teaching interaction design. Chung et

al. (2004) describe an empirical evaluation of the use of patterns for ubiquitous computing,

which they (and we) believe to be the first controlled empirical study of the use of patterns with

designers. In this section we consider these proposed uses of interaction design patterns in more

detail.

6.1. Patterns for participatory design
Alexander argues that user participation in design is essential to successful building: “… it is

virtually impossible to get a building that is well adapted to these needs if the people who are the

actual users do not design it.” (Alexander et al., 1975, p.42). His pattern language was intended

to enable users to actively and directly design their own living and working spaces, in part by

providing a common language with which they could make proposals and discuss ideas with an

„architect-builder‟. An important practical element of this usage is the meaningful naming of

patterns: in Alexander‟s language pattern names (without detail) are sufficient to facilitate this

discussion. A similar emphasis on the need to develop a shared language is apparent in the

participatory tradition in HCI (Ehn & Sjőgren, 1991; Ehn & Kyng, 1991; O‟Neill, 1998). King

(1993) points out that a community using a pattern language in architecture is likely to evolve

and develop their own specific pattern language or dialect.

Several authors in HCI have recognised this participatory focus. Bayle, et al. (1998) highlight

participatory design as one possible application for pattern languages. Borchers (2001a) also

mentions participatory design as a possibility. The Participatory Patterns Project (Dearden et al.

2002a, b; Finlay et al. 2002) has investigated ways of combining pattern languages with other

techniques for participatory interaction design, such as paper prototyping, and has found the

approach promising.

A variation on the use of patterns in concert with paper prototyping, is work by Lin and Landay

(2002) who propose to integrate patterns into a design sketching environment, allowing

designers to drag and drop patterns into their sketches and customise them to meet local

requirements. While this approach is intended for experienced designers, its potential application

within participatory design to support early prototyping with patterns is clear.

Published in Human Computer Interaction, 21(1), January 2006

 - 30 -

6.2. Patterns as technical lexicon
Many authors in software engineering report the use of pattern names as a specialist technical

lexicon to support design debates. For example, Schmidt (1995) suggests that a knowledge of

patterns “helped experts document, discuss and reason systematically about sophisticated

architectural concepts” (ibid. p. 70). Cline (1996) suggests that patterns provide a „standard

vocabulary‟ amongst developers. Meszaros (in Beck et al., 1996) states a similar view. This

standard vocabulary can also benefit design documentation, since a pattern name might be

sufficient, in some contexts, to explain a complex design. Du and England (2001) propose

augmenting the User Action Notation (Hartson, Siochi & Hix, 1990) with references to patterns

in order to produce more concise design specifications.

Cline (1996), Schmidt (1995) and Astrachan and Wallingford (1998) all suggest using patterns to

educate novices about good software design, and to integrate novices into design teams.

Astrachan et al. (1998) claim that patterns should form an essential part of the undergraduate

computing science curricula. The explicit presentation of the content of patterns may also ease

communication across development teams (Schmidt, 1995, p.69). Goldfedder and Rising (1996)

suggest using patterns to inform the review of a design, and to aid documentation.

The use of patterns as an educational tool is carried through into HCI. One of the earliest HCI

publications on patterns focuses on the use of patterns within an interaction design curriculum

(Barfield et al., 1994). Borchers (2002) suggests two ways of using patterns within the

curriculum: as a tool to present HCI design knowledge to students and as a methodology to

support design. His experiences suggest that both can be successful and that students can grasp

the patterns concept. Seffah (2003) and Sharp, Manns and Eckstein (2003) take this a step further

by suggesting the use of pedagogical patterns to design courses, as well as teaching interaction

design and process patterns.

Cline (1996) advocates these ways of using patterns, but also suggests that patterns can be used

pro-actively to suggest design structures. Where this pro-active design generation is applied,

Cline suggests that designers must apply a degree of „high-level pattern matching‟ (ibid. p 47) to

identify which patterns to use, and concludes that „the design patterns must be part of one‟s flesh

and blood – looking things up in a book would be completely unacceptable in these on-the-fly

situations” (p47). Goldfedder and Rising (1996) and Buschmann, Meunier, Rohnert, Sommerlad

and Stal (1996, p423 ff) voice a similar concern that the time to find a pattern increases as more

Published in Human Computer Interaction, 21(1), January 2006

 - 31 -

and more patterns are published. This situation may suggest that designers will need to search a

database of patterns to find one that matches their current problems, but whether this is a

practical solution in the heat of real software development projects is open to debate. However,

such resources are useful for students and practitioners seeking to enhance their knowledge and

skills.

6.3. Patterns as organisational memory
In both HCI and software engineering, there has been some work on using patterns as part of an

organisational memory. Beck et al. (1996) discuss efforts within specific organisations both to

use patterns and to develop patterns that are specific to the domains in which those organisations

operate. May and Taylor (2003) propose patterns as a tool for organisational knowledge

management. In HCI, Henniger (2001) suggests a process where each development project

begins by interrogating a corporate memory to retrieve and select patterns (and guidelines) to use

within the project. Relevant patterns are identified by a rule-based system that matches patterns

and guidelines against project characteristics (such as user populations, tasks and GUI tools).

The selected patterns are then passed to the project to consider. At the end of the project any

patterns used are reviewed and may be updated based on the experience gained. Granlund et al.

(2001) also suggest updating patterns on the basis of project experiences. Alexander et al.‟s

(1975) suggestions for the management of the pattern language in The Oregon Experiment (ibid.

p136 ff.), part of which is an annual public review of the pattern language, can also be viewed as

a form of organisational learning.

This context of organisational memory has led to the development of a number of tools to

support the editing of patterns and pattern languages. Borchers (2001a, p 195ff.) describes

requirements for PET a „Pattern Editing Tool‟. Schuler (2002) and colleagues are developing an

on-line pattern submission and discussion environment for recording patterns for „living

communication‟. This environment allows participants to submit and edit their own patterns, and

allows members of the public to review submissions.

Some authors have investigated incorporating software patterns into development tools, or

implementing patterns as components of programming languages (see, e.g. Meijler, Demeyer &

Engel, 1997; Agerbo & Cornils, 1998; Mapelsden, Hosking & Grundy, 2002; Chambers,

Harrison & Vlissides, 2000). This has also been proposed in interaction design (Molina, Torres

& Pastor, 2003; Lin & Landay, 2003). It can be objected that such efforts only incorporate the

Published in Human Computer Interaction, 21(1), January 2006

 - 32 -

„solution‟ part of the pattern, but do not provide advice to software designers about when to use

that particular pattern. Leacock, Malone and Wheeler (2005) describe the production of a library

of interaction design patterns at Yahoo!, to which they hope to add visual assets and code

fragments that can be re-used by developers to produce systems that conform with the approved

patterns.

6.4. Patterns as lingua franca
Crocker (in Beck et al. 1996) and Beck (1994) both discuss using patterns to support

communication between designers responsible for the definition of the overall architecture of a

system, and designers responsible for applications software. Schmidt (1996) suggests using

patterns to explain architectural design issues to managers. Fowler (1997) suggests using his

patterns in collaboration with requirements analysts, clients and domain experts to develop

specific models for particular projects.

In HCI, Erickson (2000) also suggests patterns as a „lingua franca‟ to support and enhance

communication about design, in particular advocating the use of patterns to help users to engage

with design processes. Granlund et al. (2001) suggest a design process of four phases: system

definition; user profiling and task analysis; conceptual design; and „design‟. In each phase,

patterns are used as archetypes to begin design discussions with users and clients. Borchers

(2001a) reports on the use of three separate pattern languages, addressing different aspects of the

design of a multi-media exhibit, namely: designing and playing a piece of blues music; designing

user interaction for the exhibit; and designing software to implement the exhibit‟s musical

synthesis capabilities. Borchers suggests that, because the pattern format is familiar to designers

from each of these different disciplines, they can more readily share their design thinking with

each other across disciplinary boundaries. Martin et al. (2001, 2002) use patterns (although not

design patterns) to present findings from ethnographic studies in a form that might be applied by

software designers. Fernández, Holmer, Rubart and Schűmmer (2002) express the hope that their

patterns for groupware will improve communication within development teams, between

development teams and end users, and between end users. Denning and Dargan express the hope

that a pattern language could provide „a method of mapping from human actions to software

functions in a way that is intelligible to clients, designers and engineers simultaneously‟

(Denning & Dargan, 1996, p114). In the Participatory Patterns project, patterns are used to

Published in Human Computer Interaction, 21(1), January 2006

 - 33 -

facilitate communication between users and website designers (Finlay et al., 2002, Dearden et

al., 2002).

6.5. Patterns as design rationale
As we noted in the discussion of „generativity‟, there are a variety of understandings about the

semantic relationships between patterns, pattern languages and the designs produced from

patterns. There is general agreement that patterns provide some rationale for particular design

decisions, but the suggested (or implicit) structure of such rationales differs between authors.

Each of Alexander‟s patterns contains a discussion of the issues that surround the problem that

the pattern addresses, and explains why the chosen solution is desirable. Cline (1996) argues that

patterns can provide software engineers with design elements that have „well-understood trade-

offs‟ (ibid. p. 47). Each of Gamma et al.‟s (1995) patterns includes discussion of the trade-offs

involved in selecting and using it. Additionally, within the „implementation‟ section of some of

Gamma et al’s patterns (e.g. FACTORY METHOD, STATE), alternative design options for certain

aspects of the pattern are offered together with advice on selection.

Unlike Alexander‟s original work, some pattern languages in software engineering offer

alternative patterns for similar problems, but designed for different contexts (e.g. Adams et al.,

1996; Dyson & Anderson, 1997; McKenney, 1996; Sandu, 2001; Mai & de Champlain, 2001).

Fowler (1997) prefers to offer multiple ways of addressing a problem within a single pattern.

Tahara et al. (2001) define the context in which each of their patterns should be applied using a

common set of indexing attributes. Souza et al. (2002) take a similar approach. Coplien (1998)

uses tables to relate the selection of certain patterns to analyses of commonalities and

variabilities within a domain. This type of language suggests the possibility of using patterns in

combination with a design rationale notation such as Questions, Options and Criteria (QOC)

(MacLean et al., 1991). In such a combination, the patterns themselves could become re-usable

elements of the rationale.

Fowler (1997) suggests that his patterns can be used to suggest options for a design, which may

be accepted, modified or rejected. However, when the pattern is modified or rejected, the

justification for that decision should be recorded as part of the design rationale. However, to

date, we are unable to find any published demonstration of how such a design rationale would be

constructed or presented.

Published in Human Computer Interaction, 21(1), January 2006

 - 34 -

Beck and Johnson‟s (1994) analogy with axiomatic mathematical proof suggests a more

complete rationale connecting all of the design decisions. Such an interpretation would require a

pattern language that is „generative‟ in the strict sense of a generative grammar, with the

rationale for a design corresponding to a parse tree. Each of Beck and Johnson‟s patterns

includes a „pre-conditions‟ section restricting the scope of the pattern, e.g. “you are writing a

program that is animating a visual display in real time, probably in response to user input …”

(Beck & Johnson, 1994, p147). Hence, in this reading, the design rationale could be a proof that

the pattern language (the set of axioms) entails the proposition that the specified context (or any

context matching the required pre-conditions) implies the selection of the chosen design. This

example highlights the fact that the context of a pattern is composed of two different parts. On

the one hand, there is a context defined by the position of the pattern in the language, i.e. the

larger patterns that it enables; on the other hand, part of the context refers to the nature of the

environment in which the pattern is to be applied, the pre-conditions.

In HCI, different authors reflect these different understandings of design rationale. Pattern

languages that make use of „enabling‟ links to generate designs are consistent with Beck and

Johnson‟s (1994) idea of a proof (see Borchers, 2001a; Dearden et al., 2002a, b; Finlay et al.,

2002; Riehle & Zűllighoven, 1995; Bradac &Fletcher, 1997; Towell, 1998; Coldewey, 1998;

Judkins & Gill, 2000; Marick, 2000). However, these examples do not specify additional

contextual details for each individual pattern. Rather the designer must make an initial decision

about whether the language is relevant and, if so, the validity of the language and its correct

application provides the rationale for the generated design. Tidwell (1998, 1999a) provides a

generative language but does include some patterns that represent distinct alternatives for similar

problems (e.g. TILED WORKING SURFACE and STACK OF WORKING SURFACES). However, she

does not specify in detail how to select between these options. Van Duyne et al. (2003) provide

some alternative patterns (e.g. FIXED WIDTH SCREEN SIZE and VARIABLE WIDTH SCREEN SIZE)

together with textual discussion of suitable contexts for the application of each alternative, which

would enable a form of rationale closer to Beck and Johnson‟s (1994) approach.

Pattern collections and catalogues, cf. van Welie (2002-2005), Henniger (2001), suggest a

greater emphasis on pattern matching to construct the rationale. Granlund et al‟s. (2001)

approach also emphasises a rationale constructed by comparing pattern contexts with the

conditions of a specific project. This approach is similar to Fowler‟s (1997). Mahemoff and

Published in Human Computer Interaction, 21(1), January 2006

 - 35 -

Johnston (1998) and Hussey and Mahemoff (1999) begin with an analysis of relevant usability

dimensions, which is similar to Tahara et al.‟s (1999) approach, but they do not take this further

into a defined process for using patterns.

Windsor (2000) reports on the use of patterns as an explicit mechanism for recording and

organising the design rationale in an interaction design project.

7. ISSUE 4: VALUES AND PATTERN LANGUAGES
The idea of a „design language‟ is well established in the sense of a collection of elements used

to create a common design style (Rheinfrank & Eveson, 1996). However, Alexander‟s work

clearly seeks more than just consistency of style. Rather, he chose the patterns in A Pattern

Language to support a humane architecture that resulted in environments that he describes as

„living‟ and „nurturing‟. In his keynote address to the annual conference on Object Oriented

Programming Systems, Languages and Architectures (OOPSLA) in 1996, Alexander (1996)

draws attention to the „moral component‟ as central to his use of pattern languages in

architecture.

“In the architectural pattern language there is, at root, behind the whole thing, a constant

preoccupation with the question, under what circumstances is the environment good?”

(Alexander, 1996).

This leads to our fourth issue, the place of values in pattern languages for HCI. Issues of value

are apparent in patterns in a number of different ways, including:

 The key properties that are examined when attempting to identify „good‟ design from

which patterns may be discovered;

 The selection of, and the rationale provided for, individual patterns;

 The processes by which patterns are recorded and developed;

 The way in which patterns are used.

We examine these aspects in detail below.

7.1. The properties examined to identify patterns
Alexander discusses, at length, „The Quality without a Name‟. He appeals to this „quality‟ to

distinguish spaces and buildings that are „living‟ from negative or „dead‟ spaces. His patterns are

then selected to enable the design of such „living‟ spaces. His procedure for identifying spaces

Published in Human Computer Interaction, 21(1), January 2006

 - 36 -

with this „quality‟ is based on personal observation, but he claims that the „quality‟ is objective

and empirical. To support this claim he reports that when people experience spaces that either do

or do not have the quality, they exhibit a high level of agreement about its presence or absence.

This might be interpreted as a claim of inter-rater reliability, though Alexander does not quantify

the claim or provide any evidence. What is apparent is the holistic nature of the „quality‟ that

Alexander is seeking. Dovey (1990) describes Alexander‟s approach as implicitly

phenomenological and suggests that:

“The patterns are derived from the lived world (lebenswelt) of everyday experience and they gain

their power, if at all, not by being proven empirically correct, but by showing us a direct

connection between the pattern and our experience of the built environment.” (ibid. p4, author‟s

italics).

In Software Engineering, Gabriel (1996a) discusses the idea of code being „habitable‟ for those

involved in the day-to-day maintenance of a system (ibid. pp9 – 16). He considers, and

eventually rejects, „alive, whole, comfortable, free, exact, egoless and eternal.‟ (ibid. pp. 36ff)

but admits „I still can‟t tell you what the quality is, but I can tell you some things about software

that possesses it. …‟ (ibid. p42 – 43). Gamma et al. (1995) and Cline (1996) emphasise

designing software that is easy to re-use, in particular designing systems that are robust to certain

types of change that may be necessary as requirements evolve. Wynn and Calder (2002) describe

this as identifying system „hot-spots‟, i.e. distinguishing aspects of the system that should remain

invariant from those that should permit change. Others highlight clarity of communication within

development teams and between software development teams and maintenance teams (e.g. see

Schmidt, 1995; Cline, 1996; Beck et al. 1996). Both Beck and Meszaros, in their contributions to

Beck et al. (1996), describe an aim of saving time in designing software, though Meszaros

qualifies this by suggesting that patterns help „less experienced developers produce good designs

faster‟ [ibid. p112]. Tidwell (1999b) criticises software engineers for concentrating on such

„technical‟ values, and for failing to apply values relating to users‟ experience of software.

The importance of values was recognised early in the development of patterns in HCI, for

example Bayle et al. (1998) discuss this issue. Some authors have sought to identify an analogy

for the „quality without a name‟ in HCI. A definition developed at the 1999 ChiliPLoP workshop

(Borchers 2000b; see also Borchers 2001a, p. 36) suggests “transparency”; Pemberton posits

“engaging” (Pemberton, 2000); Van Welie et al. (2000) suggest that „usability‟ is sufficient;

Published in Human Computer Interaction, 21(1), January 2006

 - 37 -

Christiansen (2005) suggests „competence affirmation‟; Finlay et al. (2002) compare the „quality

without a name‟ to Maslow‟s notion of “wholeness” (Maslow, 1970), which incorporates a sense

of unity and integration as an essential component of self-actualisation. However, none of these

proposals fully capture what Alexander intended where the „quality‟ is the essence of being

alive.

It is not surprising that it is difficult to agree an appropriate analogy for the „quality without a

name‟ given the holistic and experiential character of the „quality‟ described by Alexander. It is

debatable whether the „quality‟ can exist at all in technology design, whether it should be sought

or whether there are other properties (for example usability, acceptability, engagement) that may

be more appropriate as outcomes of using interaction design patterns. Certainly, at the level of

interface elements, usability may be more desirable. There is arguably also less agreement about

what is fundamental to quality in interactive software compared with architecture, which may

contribute to the difficulties in identifying an analogy to Alexander‟s „quality without a name‟.

However, it is also valuable to explore what it might mean to be “living” in the context of

technology design. Certainly properties of the living world, such as context awareness and

adaptability, have been explored in technology design but, while seen as theoretically desirable,

appropriate “technological” interpretations of these properties remain elusive. This concept is

particularly pertinent when considering patterns at a more global level than those concerned with

specific interface elements, for example, patterns which describe how, when and even if

technology should be deployed. There are relatively few examples of patterns at this level,

Schuler‟s (2002) patterns for “living communication” being the closest.

However, Fincher and Utting (2002) insist that patterns and pattern languages must embody

values since they advocate particular design ideas to be emulated. Hence, all pattern language

development challenges practitioners and researchers in HCI to examine the value systems that

they employ.

7.2. Values in the selection of and rationale for individual patterns
As well as informing the process of selecting „good‟ designs from which patterns might be

identified, the individual patterns that are selected and the rationales provided within individual

patterns help to make the authors‟ design values explicit. For example, Alexander includes

patterns such as OLD PEOPLE EVERYWHERE (40) and FOUR STOREY LIMIT (21) that clearly reflect

particular design values of integrated communities in touch with their environment. In HCI,

Published in Human Computer Interaction, 21(1), January 2006

 - 38 -

patterns also reflect the values and priorities of their authors. For example, Borchers‟ patterns

ATTRACT-ENGAGE-DELIVER and EASY HANDOVER both reflect the value of efficiency, in terms

of the flow of people through the exhibition. In the case of the former this is from the perspective

of the exhibition sponsor or organiser, wishing to maximise the number of people able to receive

the message they wish to deliver. The latter is also concerned with efficiency but has a slightly

different focus, reflecting the needs of the user within this rapid turnover. Van Duyne et al.

(2003) include a group of six patterns for „Building Trust and Credibility‟. These patterns focus

on how designers can create web designs to engender a sense of trust. However, the priority in

these patterns is on establishing credibility through external appearance and explicit statements

of trustworthiness rather than any attempt to address the actual behaviour (trustworthy or

otherwise) of the organisation behind the site.

Values within pattern selection and rationale are reflected in the presentation of patterns at

different levels, which provide a value-based context even where patterns cannot be used

directly. Alexander includes patterns at a range of levels, from regional and whole city

development, through local town planning, to individual neighbourhoods and buildings to

interior designs. Clearly not every potential user of the pattern language can exploit all of these

patterns: home owners may only be able to use interior design patterns and some limited

architectural patterns, whereas architects, builders and town planners could utilise building and

neighbourhood patterns directly. Relatively few stakeholders are in a position to make direct use

of the highest-level patterns (such as INDEPENDENT REGIONS), although Alexander would argue

that each development contributes piecemeal to these global patterns. However, these patterns

are also important in that they express the values that underpin the authors‟ view of architectural

development, providing context for the lower level patterns. In HCI, there has been little work as

yet on such high level, contextual patterns. Perhaps the most relevant work is the Public Sphere

Project sponsored by Computer Professionals for Social Responsibility (CPSR) (Schuler, 2002).

However it is easy to see parallels in terms of the types of environments, philosophies and scales

of development that many researchers and practitioners would wish to promote within interaction

design.

7.3. Values in the process of developing patterns

Published in Human Computer Interaction, 21(1), January 2006

 - 39 -

In The Timeless Way of Building Alexander (1979) describes the evolution of pattern languages

as a social process that is critically dependent on the involvement of users in using and

discussing the language and the buildings generated by it (ibid., Ch 13). In particular Alexander

suggests that professionalisation of debate about design leads people “lose confidence in their

own judgement” (ibid. p233) about what designs work for them. From The Oregon Experiment,

it is apparent that Alexander et al. (1975) expect that specific communities will both adapt

existing patterns to suit their needs and will create patterns and pattern languages that are

specific to their situation. King (1993) also discusses the development of specific languages

within specific communities. This view of the evolution of a pattern language as a social process

might be compared with the concepts such as a speech community (Wynn & Novick, 1995), or a

genre ecology (Erickson, 2000b).

In software engineering, a specific practice of „writers workshops‟, and „shepherding‟ has

evolved to support the development of patterns and pattern languages. Each workshop has a

„shepherd‟, who acts as chair and facilitator of the workshop and works with the authors of the

papers to initially prepare the paper for the workshop. In the workshop, workshop participants

discuss the paper but the author(s) are not allowed to comment. Their role is to listen to the

discussion. After the workshop, the author(s) take the comments of the workshop into account in

finalizing the paper for publication (Kafura, Lavender & Schmidt, 1996; Buschmann et al., 1996;

Coplien, 2001). A key value in this process is to ensure that the comments are always

constructive, with the appointed „shepherd‟ taking responsibility for maintaining the constructive

atmosphere.

There is some evidence of similar pattern writing workshops in HCI, for example, Borchers

(2001a, pp171ff) discusses how one pattern was modified in the course of such a workshop

before final inclusion in the published pattern language and Schümmer et al. (2004) included

shepherding activity. While writers‟ workshops emphasise pattern writing as a professional albeit

apprenticed activity, the Participatory Patterns Project (Dearden et al., 2002a, b; Finlay et al.,

2002) reports that use of patterns in a participatory context permitted users to critique and make

proposals for change in patterns. This suggests that Alexander‟s vision of users owning and

evolving their own languages may be facilitated by participatory practices.

Another issue that has impacted the development of pattern languages, particularly in HCI, is the

distribution of researchers interested in the subject, and the demands on researchers to publish

Published in Human Computer Interaction, 21(1), January 2006

 - 40 -

and own work. Bayle et al. (1998) recognise that pattern language development needs to be a

community effort, yet the competitive pressures within the wider research context can mediate

against such a cooperative approach. This has led instead to competing voices and individual

(and often repeated) efforts. Recent moves in developing a shared XML schema for patterns

(Fincher, 2003) and the availability of web-based communication systems to permit on-line

collaboration in the effort of documenting and distributing pattern languages (for example, van

Welie, 2002-2005) are perhaps a move towards a more coherent sharing of the pattern

development effort.

Schuler (2002) and colleagues are developing an on-line pattern submission and discussion

environment for recording patterns for „living communication‟. This environment allows

participants to submit and edit their own patterns, and allows members of the public to view

currently submitted patterns. It is hoped that this environment will in future support a

collaborative process whereby participants can select and develop the patterns towards a

coherent pattern language.

7.4. Values in the process of using patterns
Alexander‟s use of patterns to support participatory design is driven (in part) by a value system

that treats localised control, and contextual sensitivity in design as essential. The Linz Café

(Alexander, 1982) and A New Theory of Urban Design (Alexander et al., 1987) discuss the

importance of making decisions on the actual construction site, and taking into account the

surrounding context. In The Oregon Experiment and The Production of Houses Alexander et al.

(1975, 1985) emphasise the use of patterns by a community to design for itself. In this situation it

is important that the written patterns are not regarded as blueprints for design, rather they provide

guidance which must be locally interpreted, and must be open to challenge.

In the participatory tradition in HCI there is a similar commitment to users as active participants,

rather than passive „subjects‟, and to the importance of local context in systems design. As

discussed in section 6.1, The Participatory Patterns Project (Dearden et al, 2002a, b; Finlay et al.

2002) have conducted some initial investigations into this area. However initial results suggest

that users may ascribe unwarranted authority to advice presented in the form of patterns

(Dearden et al., 2002b). To avoid this, the authors advocate encouraging ownership and

development of the language by users.

Published in Human Computer Interaction, 21(1), January 2006

 - 41 -

8. CONCLUSION: A RESEARCH AGENDA FOR PATTERNS IN HCI
In this paper we have examined the patterns endeavour in HCI, looking in particular at the nature

of patterns and pattern languages, the ways that patterns can be used, and the values they

embody. From our review, it is clear that significant contributions have been made in the

development of patterns and pattern languages which have been employed in the design of real

systems (e.g. Borchers, 2001a; van Duyne et al. 2003). However, although the use of patterns is

reported, there is little concrete evaluation of either the usefulness of pattern languages within

the process or the contribution that they have made to the quality of the end product or to the

design process (with notable exceptions such as Borchers, 2002; Dearden et al. 2002a, b; Finlay

et al. 2002; Chung et al., 2004). Further, discussions of patterns and pattern languages so far

within HCI have been dominated by form and examples, with limited examination of the

philosophy and values of pattern based design. Given this context, we suggest that the research

agenda for patterns in HCI should prioritise four areas, namely:

 Exploring appropriate ways to use pattern languages in design and in education, and

evaluating the contribution that pattern languages can make;

 Finding ways to organise pattern languages in HCI so that patterns at different levels

(from the broader social context of systems to the detail of interfaces) can be applied

together in design.

 Exploring and improving the processes by which patterns are identified, recorded and

reviewed so that the existing stock of patterns and pattern languages available in HCI can

be constantly improved and enlarged, in particular to include generic patterns as well as

those focused on particular platforms or interaction styles;

 Examining the way that values are explicated and promulgated in pattern languages and

in pattern-led design.

We examine each of these areas in more detail.

8.1. Exploring pattern languages in use
One of the most obvious weaknesses in HCI research on patterns to date is the lack of

substantive evidence of their benefits for actual design practice. Perhaps understandably attention

has focused on generating patterns, rather than on using them, and most researchers have

developed their own languages for a variety of reasons. Significant effort is now required to

Published in Human Computer Interaction, 21(1), January 2006

 - 42 -

examine the use of these languages in actual design (e.g. via empirical and observational studies)

and in education to demonstrate what benefits might be gained from a patterns approach.

Three notable studies have demonstrated possible approaches to evaluating pattern languages in

use. Borchers (2002) describes evaluations of the value of patterns to student learning in two

undergraduate HCI modules. Dearden et al. (2002) and Finlay et al. (2002) describe a qualitative

study of the role of patterns in simulated participatory design activities. Chung et al. (2004)

report on a structured empirical study using a pattern language in a simulated design activity

including a group of experienced designers. These studies provide some possible ways in which

such evaluations could be conducted. However, none of these studies can be treated as

conclusive, so there is considerable need for further work.

Two key limitations of the work to date are that:

 The studies have not attempted to compare patterns with any other type of design advice,

whereas a key claim made for HCI patterns is that they are in some way superior to other

forms of design guidance;

 The studies have only investigated simulated design activities rather than longitudinal

observations of „real world‟ developments, which may reveal different characteristics.

Given that a range of substantial pattern collections and pattern languages are now available,

future research efforts must be focused on exploring how they can actually be used both in

design and in education, and in evaluating their effectiveness in these areas. Comparative and

longitudinal studies in particular are needed.

A secondary related area of research may consider alternative ways in which pattern languages

can be used to develop and document the rationale for design decisions.

8.2. Organising pattern languages
Fincher and Windsor (2000) have raised the question of how pattern languages in HCI should be

organised. This issue will have a significant impact on the ways in which larger pattern

languages might be applied as practical resources in design, as it determines how easy it is to

locate core and related patterns and whether patterns can be used effectively to generate solutions

to problems. The organisation of pattern languages in HCI is particularly problematic because of

the wide range of different levels that may be addressed by patterns in HCI, from the broader

social context in which an interactive system is used, to the low-level details of interaction.

Unlike architectural patterns, where “scale” provides a useful organising principle, in HCI the

Published in Human Computer Interaction, 21(1), January 2006

 - 43 -

problem is multi-dimensional. Scale is important, but designers also address problems in terms

of technology, task, information, and time. Providing organisational structures and retrieval

approaches that reflect these different conceptualisations is a challenge that requires further

research. Another challenge is creating an HCI pattern language that is truly „generative‟.

Looking outside the practice to related theories and principles, as proposed by Fincher (2002),

merits further investigation.

A related issue is the management and maintenance of pattern languages, as the interconnected

structure of a pattern language becomes more complex. Here software tools may be helpful but

they should be focused not on automating the application of patterns (patterns provide design

guidance not blueprints) but on the intelligent management, organisation and retrieval of patterns

to support their use in design practice. Here, attention must be paid to the differences between

the sequence and pacing of activities in architectural production and in interactive systems

development.

8.3. Improving the production of pattern languages
To date pattern development has been relatively ad hoc, based on designer experience and

largely individual or small group efforts. Much of the effort has been on developing individual

patterns, collections and pattern languages. A number of different pattern languages and

collections have been developed using different formats and structures, resulting in the same

essential patterns (as recurrent phenomena) being reproduced (as explicit texts) in these different

formats. For example, the pattern STEP BY STEP INSTRUCTIONS first proposed by Tidwell (1999)

describes the same phenomenon as van Welie‟s (2002-2005) WIZARD and van Duyne et al.‟s

(2003) PROCESS FUNNEL. However, while STEP BY STEP INSTRUCTIONS is a relatively generic

pattern, the WIZARD pattern, in the choice of name alone, implies a particular style of solution,

and the PROCESS FUNNEL, a particular type of application. This duplication of effort is further

complicated by the pressures in academia to produce publications and by issues of copyright.

New members of the HCI patterns community have been encouraged to engage in writers‟

workshops to practice the skills of identifying and writing patterns. For some workshops, a

proposal for a (new) pattern or pattern language is required to gain admission. This approach,

when combined with the pressures in academia to produce publications, has some drawbacks.

 Firstly, it makes the development and completion of patterns expensive, since much of

the work takes place at face-to-face meetings at international events;

Published in Human Computer Interaction, 21(1), January 2006

 - 44 -

 Secondly, it assigns a high value to producing new patterns and new pattern languages

for presentation at such workshops, but provides few incentives for evaluating, critiquing,

improving and evolving existing languages;

 Thirdly, it is unclear how such improvements to an existing language should be

published, if a pattern is regarded as the copyright of the initial author(s), then it is not

clear how improvements can be made, recognised and distributed;

 Fourthly, these workshops may fail to engage with some key stakeholders in pattern

language development, namely end-users and designers, who should be the primary

beneficiaries.

Bayle et al. (1998) suggested that identifying and writing patterns needs to become a genuine

community effort within HCI. The Pattern Language for Living Communication project

(Schuler, 2002) has attempted to develop a broad international community, working together in a

shared workspace where patterns can be proposed, critiqued and edited on-line. However, the

project is not yet in a position to claim that a successful process for developing pattern languages

has been found.

This situation indicates that research is required to develop better ways to encourage the widest

possible collaboration in pattern language development. This may require some way of

recognising and rewarding efforts made to contribute to a pattern language, as well as suggesting

a requirement for new tools for computer supported collaboration in pattern language

development. A means for reporting experiences of using particular patterns and taking such

experience reports into account in improving patterns is needed. Some concept of community

ownership of a language may be necessary, with collective democratic governance of the content

of such languages. Alexander et al. proposed a possible model for an architectural pattern

language in The Oregon Experiment (1975). An alternative approach might explore the different

licensing approaches of the open source software community as models to permit community

development of pattern languages.

More fundamentally, the duplication of patterns highlights the conflict between pattern

languages that are aiming in some sense to be generic and applicable to a range of situations,

those that are specific to a particular platform or interaction style, and those that are targeted to a

particular domain or application area. The tendency in the proliferation of HCI pattern languages

Published in Human Computer Interaction, 21(1), January 2006

 - 45 -

has been towards patterns directed at particular interaction styles (e.g. desktop computing) across

a range of domains, or pattern languages that are specific to particular domains. We believe that

the research community also needs to develop patterns and pattern languages that are generic

across platforms, styles and domains, that are in some sense „timeless‟. To achieve this we need

to improve our understanding of successful design in HCI. Pattern mining depends

fundamentally on identifying successful design, a process that we need to refine. Frameworks for

analysing design to identify the elements that make it successful are needed. Here work in other

areas, from traditional usability assessment and more recent work on understanding the nature of

user experience (e.g. Wright & McCarthy, 2004) to observations from other design disciplines

(e.g. Dorst, 2003) may be useful.

8.4. Examining our values
Values need to be given more attention in HCI generally, as we recognise the wider social and

ethical implications of the technologies we design (Light, Blandford, Cockton, Dearden &

Finlay, 2004; Wild, Dearden, Light & Muller, 2005). We need to consider the values HCI

practitioners and researchers should be promoting and how this might be done. In terms of

patterns we need to think further about whether there is an equivalent of „quality without a name‟

for HCI and, if so, what it might be. We need to address how we can identify patterns that are

both timeless and culturally sensitive. Understanding the role of values in design may help us to

recognise the values embodied in patterns. There are also value issues involved in the

development and use of patterns where the need for recognition of contribution needs to be

balanced with openness for use and further development. The patterns community may be able to

learn here from practices relating to open source software.

One area that has largely been neglected to date has been the consideration of global HCI design

patterns. Alexander‟s Pattern Language begins with patterns on a global scale (e.g. INDEPENDENT

REGIONS) which may have little practical meaning to someone building a single home but which

serve both to make explicit the value context in which more specific patterns should be

understood, and to inform decision makers. HCI patterns have so far understandably

concentrated on the specifics of designing particular applications but say little about how

technology should be deployed or about the wider context. This is an area where patterns can

contribute to the values debate.

Published in Human Computer Interaction, 21(1), January 2006

 - 46 -

Patterns and pattern languages offer an approach to design with much potential. Research in

these areas is now needed to ensure that this promise is fulfilled and that pattern language

research makes an effective and lasting contribution to the practice and understanding of

interaction design.

Published in Human Computer Interaction, 21(1), January 2006

 - 47 -

Published in Human Computer Interaction, 21(1), January 2006

 - 48 -

NOTES

Acknowledgments. We are grateful for the comments and the feedback we have received

from many people whilst developing this article. In particular, we should like to thank Barbara

McManus, Elizabeth Allgar and Sally Fincher for their comments on early drafts. We should also

like to thank all the reviewers for their helpful comments, and particularly Ralph Johnson and

Jack Carroll for their insights and encouragement.

Support. The authors wish to acknowledge the support of their respective institutions in

enabling this work.

Authors’ Present Addresses.

Andy Dearden. Communication and Computing Research Centre, Sheffield Hallam

University, Sheffield, S1 1WB, UK. Email:a.m.dearden@shu.ac.uk

Janet Finlay, School of Computing, Leeds Metropolitan University, Caedmon Hall,

Headingley Campus, Leeds, LS6 3QS, UK. Email:j.finlay@leedsmet.ac.uk

HCI Editorial Record. (supplied by Editor)

Published in Human Computer Interaction, 21(1), January 2006

 - 49 -

REFERENCES

Aarsten, A., Brugali, D., & Menga, G. (1996). Designing Concurrent and Distributed Control

Systems. Communications of the ACM, 39(10), 50 – 58.

Adams, S. (1995). Functionality Ala Carte. In Coplien & Schmidt (1995), 1 – 8.

Adams, M., Coplien, J., Gamoke, R., Hanmer, R., Keeve, F., & Nicodemus K. (1996). Fault

Tolerant Telecommunication System Patterns. In Vlissides, Coplien, & Kerth (1996), 549

– 561.

Agerbo, E., & Cornils, A. (1998). How to preserve the benefits of design patterns. In

Proceedings of OOPSLA’98, ACM SIGPLAN Notices 33(10), 134 – 143.

Alexander, C. (1964). Notes on the Synthesis of Form. Harvard University Press

Alexander, C. (1982). The Linz Café / Das Kafe Linz. Oxford, UK. Oxford University Press.

Alexander, C. (1996). The Origins of Pattern Theory, the Future of the Theory, And The

Generation of a Living World. Keynote address to the eleventh annual conference on

Object-oriented programming systems, languages, and applications. October 6 - 10,

1996, San Jose, CA USA. Available from:

http://www.patternlanguage.com/archive/ieee/ieee.htm

Alexander, C. (1979). The Timeless Way of Building. Oxford, UK. Oxford University Press.

Alexander, C., Davis, H., Martinez, J., & Corner, D. (1985). The Production of Houses. Oxford,

UK: Oxford University Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., & Angel, S.

(1977). A Pattern Language. Oxford, UK. Oxford University Press.

Alexander, C., Neis, H., Anninou, A., & King, I. (1987). A New Theory of Urban Design.

Oxford, UK. Oxford University Press.

Alexander, C., Silverstein, M., Angel, S., Ishikawa, S., & Abrams, D. (1975). The Oregon

Experiment. Oxford, UK. Oxford University Press.

Anderson, B. (1993). Addendum to the Proceedings of OOPSLA ’92. Workshop Report:

Towards and Architecture Handbook. OOPS Messenger 4(2), pp. 109 – 113.

Anderson, B., Coad, P., & Mayfield, M. (1994). Addendum to the Proceedings of OOPSLA ’93.

Workshop Report: Patterns: Building Blocks for Object Oriented Architectures. OOPS

Messenger 5(2), pp. 107 – 109.

Astrachan, O., & Wallingford E. (1998). Loop Patterns. Paper presented at PLoP ’98. Available

from: http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P60.pdf

Published in Human Computer Interaction, 21(1), January 2006

 - 50 -

Astrachan, O., Berry, G., Cox, L., & Mitchener, G. (1998). Design Patterns: An Essential

Component of CS Curricula. ACM SIGSCE Bulletin, 30 (1), pp. 153 – 160.

Barfield, L., Van Burgsteden, W., Lanfermeijer, R., Mulder, B., Ossewold, J., Rijken, D., &

Wegner, P. (1994). Education: Interaction Design. In ACM SIGCHI Bulletin, Vol 26, 3.

Bayle, E., Bellamy, R., Casaday, G., Erickson, T., Fincher, S., Grinter, B., Gross, B., Lehder, D.,

Marmolin, H., Moore, B., Potts, C., Skousen, G., & Thomas, J. (1998). Putting it all

together: Towards a pattern language for interaction. SIGCHI Bulletin, 30, 1, 17-33.

Beck, K., & Cunningham, W. (1987). Using Pattern Languages for Object-Oriented Programs.

Technical Report No. CR-87-43. Tektronix Inc., Available from:

http://c2.com/doc/oopsla87.html

Beck, K., & Johnson, R. (1994). Patterns Generate Architectures. In, Proceedings of the OO

Programming 8
th

 European conference (ECOOP 94) Berlin: Springer. 139-149

Beck, K. (1994). Patterns and Software Development. Dr Dobbs Journal, 19 (2). pp. 18 – 23.

Beck, K., Coplien, J. O., Crocker, R., Dominick, L., Meszaros, G., Paulisch, F., & Vlissides, J.

(1996). Industrial Experience with Design Patterns. Proceedings of the 18th International

Conference on Software Engineering (ICSE 18). IEEE Computer Society, ISBN 0-8186-

7246-3. 103 – 114.

Berczuk, S., Appleton, B., & Cabrera, R. (2000). Getting Ready to Work: Patterns for a

Developer’s Workspace. Paper presented at PLoP 2000. Available from:

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Berczuk/Berczuk.pdf

Bjork, S., Lundren, S., & Holopainen, J. (2003). Game Design Patterns Project. Available at

http://www.gamedesignpatterns.org/

Blackwell, A., & Green, T. (2003). Notational Systems – The Cognitive Dimensions of

Notations Framework. In J. M. Carroll (ed.) HCI Models, Theories and Frameworks:

Toward a Multidisciplinary Science, Morgan Kaufmann, pp. 103 – 134.

Borchers, J. (2000a). Interaction Design Patterns: Twelve Theses. Position paper presented at the

Workshop on Pattern Languages for Interaction Design, CHI 2000 Conference on

Human Factors in Computing Systems, April 2-3rd, The Hague, Netherlands. Available

at: http://www.hcipatterns.org/publications.html

Borchers, J. (2000b). CHI Meets PLoP: An Interaction Patterns Workshop. SIGCHI Bulletin, 32

(1), 9 – 12.

Borchers, J. (2001a). A Pattern Approach to Interaction Design. John Wiley and Sons,

Chichester, UK.

Borchers, J. (2001b). A Pattern Approach to Interaction Design. AI & Society 15, 359 – 376.

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Berczuk/Berczuk.pdf
http://www.gamedesignpatterns.org/

Published in Human Computer Interaction, 21(1), January 2006

 - 51 -

Borchers J. (2002). Teaching HCI Design Patterns: Experience From Two University Courses.

Position paper for Patterns in Practice workshop at CHI 2002, Minneapolis, MI. April 21

– 25, 2002. Available from: http://www.hcipatterns.org.

Borchers, J. O., & Thomas, J. C. (2001). Patterns: what's in it for HCI? Panel Discussion. In,

CHI '01 extended abstracts on Human factors in computer systems, ACM Press, ISBN 1-

58113-340-5, 225 – 226.

Bradac, M., & Fletcher, B. (1997). A Pattern Language for Developing Form Style Windows. In,

Martin et al., 1997, 347 – 393.

Brighton Usability Group (2003). The Brighton Usability Patterns Collection. Available at:

http://www.cmis.brighton.ac.uk/research/patterns/home.html

Brown, W. H., Malveau, R. C., McCormick, H. W., & Mowbray, T. J. (1998). AntiPatterns:

Refactoring Software, Architectures and Projects in Crisis. New York, John Wiley.

Buschmann, F. (2001). A Pattern Language for Distributed Object Computing. Presented at

EuroPLoP 2001. Available at:

http://hillside.net/patterns/EuroPLoP2001/papers/Buschmann.zip

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., & Stal, M. (1996). Pattern-oriented

software architecture: a system of patterns, John Wiley & Sons, Inc., New York, NY,

1996.

Buschmann, F., Johnson, R., Coplien, J., Rising, L, Delano, D., Gamma, E., & Schmidt D.

(1996). How to hold a writers’ workshop, Written in preparation for PLoP 1996

Available from: http://www.cs.wustl.edu/~schmidt/writersworkshop.html

Chambers, C., Harrison, B., & Vlissides, J. (2000). A Debate on Language and Tool Support for

Design Patterns. In Proceedings of the 27th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. ACM Press. ISBN: 1-58113-125-9, pp. 277 – 289.

Christiansen, E. (2005). Competence affirmation as a complementary quality of human-computer

interaction. To be presented at Quality, Values and Choice a workshop at CHI 2005,

Portland, OR, 1
st
 – 7

th
 April, 2005. Available from

www.bath.ac.uk/~maspjaw/workshops/QVC/Papers/Christiansen.pdf

Chung, E.S., Hong, J. I., Lin, J., Prabaker, M. K., Landay, J. A., & Lin, A. L. (2004).

Development and Evaluation of Emerging Design Patterns for Ubiquitous Computing. In

Proceedings of DIS 2004, ACM Press, 233 – 242.

Cline, M. P. (1996). The Pros and Cons of Adopting and Applying Design Patterns in the Real

World. Communications of the ACM 39 (10) 47 – 49.

Coad, P. (1992). Object-Oriented Patterns. Communications of the ACM, 35(9), pp. 152 – 159.

http://www.cs.wustl.edu/~schmidt/writersworkshop.html

Published in Human Computer Interaction, 21(1), January 2006

 - 52 -

Coad, P., & Mayfield, M. (1993). Addendum to the Proceedings of OOPSLA ’92. Workshop

Report: Patterns. OOPS Messenger 4(2), pp. 93 - 95.

Coldewey J. (1998). User Interface Software. Presented at PLoP ’98. Available from:

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P13.pdf

Coplien, J. O. (1992). Advanced C++ programming styles and idioms. Reading MA. USA,

Addison-Wesley.

Coplien, J. O. (1998). Multi-paradigm design for C++. Addison-Wesley, Reading MA. USA.

Coplien, J. O. (2001). Writers Workshop Patterns. Available from:

http://c2.com/cgi/wiki?WritersWorkshopPatterns

Coplien, J., & Schmidt, D. (1995). Pattern Languages of Program Design. Reading MA. USA,

Addison-Wesley.

Dearden A, Finlay, J., Allgar, E., & McManus, B. (2002a). Evaluating Patterns in Participatory

Design. In Adjunct Proceedings of CHI 2002, pp. 664 – 665. ACM Press, New York,

USA.

Dearden A, Finlay, J., Allgar, E., & McManus, B. (2002b). Using Pattern Languages in

Participatory Design. In Binder, T., Gregory, J., & Wagner, I. (Eds.) Proceedings of PDC

2002. CPSR: Palo Alto, CA.

Dearden, A. M., & Harrison, M. D., (1997). Abstract Models for HCI. International Journal of

Human-Computer Studies, 46 (1), 151 - 177.

Denning, P., & Dargan, P., (1996). Action Centred Design. In, Winograd, T. (Ed.) Bringing

Design to Software. ACM Press. ISBN 0-201-85491-0. pp. 105 – 120.

Dorst, K. (2003). Understanding Design: 150 Ways of Looking at Design. Book Industry

Services, Amsterdam.

Dovey, K. (1990). The pattern language and its enemies. Design Studies 11(1), 3 - 9.

Du, M., & England, D. (2001). Temporal Patterns for Complex Interaction Design. In Johnson,

C. (Ed.): Interactive Systems: Design, Specification, and Verification, 8th International

Workshop, DSV-IS 2001, Lecture Notes in Computer Science 2220, London: Springer.

114-127

Dyson, P., & Anderson, B. (1997). State Patterns. In Martin et al. (Eds.) 1997, 125 – 142.

Ehn, P., & Kyng, M., (1991). Cardboard Computers: Mocking-it-up or Hands-on the Future. In

Greenbaum, J., & Kyng, M. (Eds.), Design at Work. pp. 169-196, Lawrence Erlbaum

Associates, Hillsdale, NJ.

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P13.pdf

Published in Human Computer Interaction, 21(1), January 2006

 - 53 -

Ehn, P. & Sjőgren, D., (1991). From System Descriptions to Scripts for Action, In Greenbaum,

J., & Kyng, M. (Eds.), Design at Work. pp. 241 – 268. Lawrence Erlbaum Associates,

Hillsdale, NJ.

Erickson, T. (2000a). Lingua Francas for Design: Sacred Places and Pattern Languages. In The

Proceedings of DIS 2000 (Brooklyn, NY, August 17-19, 2000). New York: ACM Press,

357-368.s

Erickson, T. (2000b). Making Sense of Computer-Mediated Communication (CMC):

Conversations as Genres, CMC Systems as Genre Ecologies. In Nunamaker, J. F. Jr. and

Sprague, R. H. Jr (Eds.) Proceedings of the Thirty-Third Hawaii International

Conference on Systems Science HICSS-33. IEEE Press. p3011. A longer version of this

paper is available from:

http://www.pliant.org/personal/Tom_Erickson/genreEcologies.html

Fernández, A., Holmer, T., Rubart, J., & Schűmmer, T. (2002). Three Groupware Patterns from

the Activity Awareness Family. Presented at EuroPLoP 2002. Available at:

http://hillside.net/patterns/EuroPLoP2002/papers/Fernandez_Holmer_Rubart_Schuemme

r.zip

Fincher, S. (1999). Analysis of Design: An Exploration of Patterns and Pattern Languages for

Pedagogy. Journal of Computers in Mathematics and Science Teaching: Special Issue on

Computer Science Education, 18 (3), pp. 331-348.

Fincher, S. (2000a). “Capture of Practice": Is it obvious? BCS HCI Group/IFIP WG 13.2

Workshop on HCI Patterns, November 2000. Available at

http://www.cs.kent.ac.uk/people/staff/saf/patterns/bcs.pdf

Fincher, S. (2000b). The Pattern Gallery. Available at

http://www.cs.ukc.ac.uk/people/staff/saf/patterns/gallery.html

Fincher. S. (2002). Patterns for HCI and Cognitive Dimensions: two halves of the same story? In

Kuljis, J., Baldwin, L., & Scoble, R. (eds.), Proceedings of the Fourteenth Annual

Workshop of the Psychology of Programming Interest Group, Brunel University, UK,

June 2002, pp. 156-172. Available at: http://www.ppig.org/papers/14th-fincher.pdf

Fincher, S. (2003). PLML: Pattern Language Markup Language. Interfaces, 56, British HCI

Group. Report of Workshop held at CHI2003, pp. 26-28

Fincher, S., & Utting, I. (2002). Pedagogical patterns, their place in the genre. In Proceedings of

ITiCSE. June 24
th

 – 26
th

 Aarhus, Denmark. ACM Press.

Fincher, S., & Windsor, P. (2000). Why patterns are not enough: some suggestions concerning

an organising principle for patterns of UI design, CHI’2000 Workshop on Pattern

Languages for Interaction Design: Building Momentum. Available at

http://www.cs.kent.ac.uk/people/staff/saf/patterns/chi00.pdf

http://www.cs.ukc.ac.uk/people/staff/saf/patterns/gallery.html
http://www.ppig.org/papers/14th-fincher.pdf
http://www.cs.kent.ac.uk/people/staff/saf/patterns/chi00.pdf

Published in Human Computer Interaction, 21(1), January 2006

 - 54 -

Fincher, S., Finlay, J., Greene, S., Jones, L., Matchen, P., Thomas, J., & Molina, P. (2003).

Perspectives on HCI patterns: concepts and tools, CHI '03 extended abstracts on Human

factors in computer systems, April 05-10, 2003, Ft. Lauderdale, Florida, USA, pp. 1044-

1045

Finlay, J., Allgar, E., Dearden, A., & McManus, B. (2002). Pattern Languages in Participatory

Design, in Faulkner, X., Finlay, J., & Detienne, F. (eds.), People and Computers XVI -

Memorable yet Invisible, Proceedings of HCI2002, pp. 159-174, Springer Verlag:

London.

Fowler, M. (1997). Analysis Patterns: Reusable Object Models. Addison Wesley, Menlo Park,

CA., USA. ISBN: 0-20189542-0.

Fraser, S., Beck, K., Booch, G., Johnson, R., & Opdyke, B. (1997). Beyond the Hype: Do

Patterns and Frameworks Reduce Discovery Costs? Proceedings of the 1997 ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages &

Applications (OOPSLA '97) SIGPLAN Notices 32 (10) 342-344.

Gabriel R. (1996a). Introduction to Pattern Languages of Program Design 2, Vlissides et al.

(Eds.) 1996.

Gabriel R. P. (1996b). Patterns of Software: tales from the software community. Oxford

University Press. ISBN 019510269X.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1993). Design Patterns: Abstraction and

Reuse of Object-Oriented Design. In Proceedings of the 7
th

 European OO Programming

conference ECOOP 93, LNCS 707. Springer, Berlin, Germany. 406 – 431.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. 1995. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, Reading, MA.

Garlan, D., & Delisle, N. (1990). Formal specifications as reusable frameworks. In Bjorner, B.

Hoare, C. A. R., & Langmaack H. (Eds.) VDM and Z: Formal Methods in Software

Development. LNCS 428, Springer-Verlag, 150 – 163.

Garlan, D., & Notkin, D. (1991). Formalising design spaces: Implicit invocation mechanisms. In,

Prehn, S. & Toetenel, W. J. (Eds.) VDM ’91: Formal Software Development Methods..

LNCS 551, Springer-Verlag, 31 – 44.

Garlan, D., & Shaw, M. (1993). An Introduction to Software Architecture. In Ambriola, V., &

Tortora, G. (Eds.), Advances in Software Engineering and Knowledge Engineering,

Series on Software Engineering and Knowledge Engineering, Vol 2, World Scientific

Publishing Company, Singapore, pp. 1-39.

GNOME Project, (2003). The GNOME Human Interface Guidelines.

http://developer.gnome.org/projects/gup/hig/1.0

http://developer.gnome.org/projects/gup/hig/1.0

Published in Human Computer Interaction, 21(1), January 2006

 - 55 -

Goldfedder, B., & Rising, L. (1996). A Training Experience with Patterns. Communications of

the ACM 39(10) 60 – 64.

Grabow, S. (1983). Christopher Alexander. The search for a new paradigm in architecture.

Stocksfield, Northumberland, UK: Oriel Press.

Graham, I. (2003). A Pattern Language for Web Usability. Addison Wesley: London.

Granlund, A., Lafreniere, D., & Carr, D. A. (2001). PSA: A pattern supported approach to the

user interface design process. In Proceedings of HCI International 2001, vol. 1, Mahwah,

NJ: Lawrence Erbaum Associates pp. 282-286.

Granlund, A., & Lafreniere, D. (1999). A pattern-supported approach to the user interface design

process. Workshop report, UPA'99 Usability Professionals' Association Conference

(Scottsdale, AZ, June 29-July 2, 1999). Available from: http://www.upassoc.org/conf99reg/ws6.shtml

Greenbaum, J., & Kyng, M. (Eds.) (1991). Design at Work. pp. 169-196, Lawrence Erlbaum

Associates, Hillsdale, NJ, USA.

Griffiths, R., Pemberton, L., & Borchers, J. (1999). Usability Pattern Language: Creating a

community. In Brewster, S., Cawsey, A., & Cockton, G. (Eds.) Human-Computer

Interaction – Interact 99 (Volume II). British Computer Society, ISBN: 1-902505-19-0,

p. 135. Outputs from workshop are available at

http://www.it.bton.ac.uk/staff/rng/UPLworkshop99/

Griffiths, R., Pemberton, L., Borchers, J., & Stork, A. (2000). Pattern languages for interaction

design: Building momentum. CHI2000 Extended Abstracts, p. 363. ACM Press, 2000.

Griffiths, R. N., & Pemberton, L. (2001). 'Patterns in Human-Computer Interaction

Design' (panel session) In, J. Vanderdonckt, A. Blandford, & A. Derycke, (Eds.)

Proceedings of IHM-HCI 2001, volume II, Toulouse, France, Cépaduès-Éditions.

Hall, P. A. V., Lawson, C. J., & Minocha, S. (2003). Design Patterns as a Guide to the Cultural

Localisation of Software. In Proceedings of the 5
th

 International Workshop on

Internationalisation of Products and Systems, Berlin, 17
th

 – 19
th

 July, 2003, pp. 79 – 88.

Hanmer, R. S. (2000). Real Time and Resource Overload Language. Presented at PLoP 2000.

Available at: http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Hanmer/Hanmer.pdf

Harrison, N., Foote, B., & Rohnert, H. (Eds.) (1999). Pattern Languages of Program Design 4.

Reading, MA., USA, Addison Wesley.

Hartson, H. R., Siochi, A. C., & Hix, D. (1990). The UAN: A user-oriented representation for

direct manipulation. ACM Trans. on Information Systems 8(3): 181 – 203.

Henninger, S. (2001). An Organizational Learning Method for Applying Usability Guidelines

and Patterns. In Little, M.R. & Nigay, L. (Eds.) Engineering Human-Computer

Interaction. LNCS 2254. Springer, Berlin, Germany 141 – 156.

Published in Human Computer Interaction, 21(1), January 2006

 - 56 -

Holtzblatt, K., & Beyer, H. (1997). Contextual Design. Morgan Kaufman, San Fransisco, CA,

USA.

Hussey, A. (1999). Patterns for safer human-computer interfaces. In M. Felici, K. Kanoun & A.

Pasquini, editors, Computer Safety, Reliability and Security: SAFECOMP'99, 103-112.

Springer-Verlag.

Hussey, A., & Mahemoff, M. (1999). Safety-Critical Usability: Pattern-based Reuse of

Successful Design Concepts. In M. McNicol (ed.), 4th Australian Workshop on Industrial

Experience with Safety Critical Systems and Software (SCS) 99, Canberra, Australia,

pages 19-34, ACS

International Standards Organisation (no date) ISO International Standard 9241 (Ergonomic

requirements for office work with visual display terminals) Available from

http://www.iso.org/

Johnson, R. (1992). Documenting Frameworks using Patterns. In Proceedings of OOPSLA’92 pp

63 – 76. ACM Press.

Johnson, R., & Cunningham, W. (1995). Introduction to Coplien & Schmidt, 1995.

Judkins, T. V., & Gill, C. D. G. (2000). Synthesizer A Pattern Language for Designing Digital

Modular Synthesis Software. Paper presented at PLOP 2000, available from

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Judkins/Judkins.pdf

Kafura, D., Lavender, G., & Schmidt, D. (1995). Workshop on Design Patterns for Concurrent,

Parallel and Distributed Object Oriented Systems. In Addendum to the proceedings of

OOPSLA ’95 OOPS Messenger 6(4) 128 – 131.

Kendall E. A., Murali Krishna, P. V., Pathak, C. V., & Suresh, C. B. (1998). Patterns of

Intelligent and Mobile Agents. In, Proceedings of the Second International Conference

on Autonomous Agents. 92 – 99. ACM Press.

King, I. (1993). Christopher Alexander and Contemporary Architecture. Special issue of

Architecture and Urbanism, August 1993.

Laakso, S. (2003). User Interface Design Patterns, Available at

http://www.cs.helsinki.fi/u/salaakso/patterns/

Landay, J.A., & Borriello, G. (2003). Design Patterns for Ubiquitous Computing. Computer

36(8), 93 – 95.

Lane, T. G. (1990). Studying Software Architecture through Design Spaces and Rules. Technical

Report CMU/ SEI-90-TR-18. Software Engineering Institute, Carnegie Mellon

University.

Lea, D. (1994). Christopher Alexander: An Introduction for Object-Oriented Designers, Software

Engineering Notes, 19 (1) 39-46.

Published in Human Computer Interaction, 21(1), January 2006

 - 57 -

Leacock, M., Malone, E., & Wheeler C. (2005). Implementing a Pattern Library in the Real

World: A Yahoo! Case Study. Presented at the American Society for Information Science

and Technology Information Architecture Summit, Montréal, Québec, Canada, 3
rd

 – 7
th

March, 2005. Available at: http://leacock.com/patterns/

Lin, J., & Landay, J. A. (2002). Damask: A Tool for Early-Stage Design and Prototyping of

Multi-Device User Interfaces. In Proceedings of The 8th International Conference on

Distributed Multimedia Systems (2002 International Workshop on Visual Computing),

San Francisco, CA, September 26-28, 2002, pp. 573-580.

Light, A., Blandford, A., Cockton, G., Dearden, A., & Finlay, J. (2004). Values in HCI: What

drives our Practice. Panel in, Dearden, A., & Watts L. (Eds) Proceedings of HCI 2004:

Volume 2, pp211 - 212, British HCI Group.

Maclean, A., Young, R. M., Bellotti, V. M. E., & Moran, T. P. (1991). Questions, Options &

Criteria: elements of design space analysis. Human-Computer Interaction, 6 (3 & 4) 201

– 250.

Mahemoff, M. J., & Johnston, L. J. (1998). Principles for a Usability-Oriented Pattern Language

In Calder, P., & Thomas, B. (Eds.), OZCHI '98 Proceedings , Los Alamitos, CA IEEE

Press. 132-139.

Mai, Y., & de Champlain, M. (2001). A Pattern Language to Visitors. Presented at PLoP 2001.

Available from:

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/ymai0/PLoP20

01_ymai0_1.pdf

Mapelsden, D. Hosking, J., & Grundy, J. (2002). Design Pattern Modelling and Instantiation

using DPML. In, Noble, J., & Potter, J. (Eds.) Proceedings of the 40
th

 International

Conference on Technology of Object-Oriented Languages and Systems (TOOLS Pacific

2002), 3 – 11. ACM Press.

Marick, B. (2000). Using Ring Buffer Logging to Help Find Bugs. Presented at PLoP 2000.

Available from: http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/Marick/Marick.pdf

Martin, D., Rodden, T., Rouncefield, M., Sommerville, I & Viller, S. (2001). Finding Patterns in

the Fieldwork. In Prinz, W., Jarke, M., Rogers, Y, Schmidt, K., & Wulf, V. (Eds.):

Proceedings of the Seventh European Conference on Computer Supported Cooperative

Work, Kluwer 2001 ISBN: 0-7923-7162-3, pp.39-58

Martin, D., Rouncefield, M., & Sommerville, I. (2002). Applying patterns of cooperative

interaction to work (re)design: e-government and planning. In Proceedings of CHI 2002.

ACM Press, 235-242

Martin, R. C., Riehle, D., & Buschmann, F. (Eds.) (1997). Pattern Languages of Program

Design 3. Addison Wesley, Reading MA., USA etc. ISBN: 0201310112.

Maslow, A. 1970. Motivation and Personality, Third Edition, Harper and Row, London, UK.

http://www.asis.org/
http://www.asis.org/
http://leacock.com/patterns/

Published in Human Computer Interaction, 21(1), January 2006

 - 58 -

May, D., & Taylor, P. (2003). Knowledge Management with Patterns, Communications of the

ACM, 46(7) 94-99

McKenney, P. E. (1996). Selecting Locking Primitives for Parallel Programming.

Communications of the ACM, 39(10), October 1996, pp. 75 - 82.

Meijler, T., D., Demeyer, S., & Engel, R. (1997). Making Design Patterns Explicit in FACE: a

Framework Adaptive Composition Environment. In, Jazayeri, M., & Schauer, H. (Eds.)

Proceedings of the 6th European Software Engineering Conference. Springer-Verlag,

New York, NY., USA. ISBN: 3-540-63531-9, pp. 94–110.

Meszaros, G. (1996). Patterns for Decision Making in Architectural Design. In Addendum to the

proceedings of OOPSLA ’95 OOPS Messenger 6(4) 132 – 137.

Meszaros, G., & Doble, J. (1998). A Pattern Language for Pattern Writing. In, Martin et al. 1997,

529 – 574.

Microsoft Corporation (2003). Windows XP Visual Guidelines. Available at:

http://www.microsoft.com/hwdev/windowsxp/downloads/

Mikkonen, T. (1998). Formalising Design Patterns. In Proceedings of the 20th International

Conference on Sofware Engineering. IEEE Press, Los Alamitos, CA., USA.

Molina, P.J., Torres, I., & Pastor, O. (2003). User Interface Patterns for Object-Oriented

Navigation upgrade IV, 1, February 2003. Available at:

http://www.upgrade-cepis.org/issues/2003/1/upgrade-vIV-1.html

Muller, M. J., Haslwanter, J. H., & Dayton, T. (1997). Participatory Practices in the Software

Lifecycle. In Helander, M., Laundauer, T. K., & Prabhu, P. (Eds.) Handbook of Human-

Computer Interaction, Second Edition. Elsevier Science, BV, Amsterdam.

Mullet, K. 2002. Structuring pattern languages to facilitate design. CHI2002 Patterns in

Practice: A Workshop for UI Designers Available at

http://www.welie.com/patterns/chi2002-workshop/Mullet.pdf.

Nanard, M., Nanard, J., & Kahn, P. (1998). Pushing Reuse in Hypermedia Design: Golden

Rules, Design Patterns and Constructive Templates. In Proceedings of the Ninth ACM

conference on Hypertext, pp. 11- 20.

Nielsen, J. (1994). Heuristic Evaluation. In Nielsen, J., & Mack, R. L. (Eds.) Usability Inspection

Methods, New York: John Wiley & Sons.

Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann. San Fransisco, CA, USA.

Norman, D., & Draper, S. (Eds.) (1986). User Centered System Design: New Perspectives on

Human-Computer Interaction. Lawrence Erlbaum Associates, Hillsdale, NJ.

Norman, D. (1988). The Psychology of Everyday Things. Basic Books. New York.

http://www.microsoft.com/hwdev/windowsxp/downloads/

Published in Human Computer Interaction, 21(1), January 2006

 - 59 -

O’Neill, E. (1998). User-developer co-operation in software development. Building common

ground and usable systems. PhD Thesis, Queen Mary & Westfield College, University of

London.

Paternò, F. (2000). Model-Based Design and Evaluation of Interactive Applications, Berlin:

Spinger-Verlag.

Pemberton, L. (2000). The Promise of Pattern Languages for Interaction Design. Article based

on presentation at HF2000, Loughborough. Available from

http://www.it.bton.ac.uk/staff/lp22/HF2000.html

PLoP (1998). Proceedings of Pattern Languages of Programs ’98. Technical Report, WUCS-98-

25. Department of Computer Science, Washington University, WA. USA. Available

from: http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/

PLoP (1999). On-line Proceedings of Pattern Languages of Programs '99. Available from

http://jerry.cs.uiuc.edu/~plop/plop99/proceedings/

PLoP (2000). Proceedings of PLoP 2000. Technical Report, WUCS-00-29, Department of

Computer Science, Washington University, WA. USA. Available from

http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/proceedings.html

PLoP (2001). On-line Proceedings of the 8th Conference on Pattern Languages of Programs.

Available from http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-

papers.html

PLoP (2002). On-line Proceedings of the 9th Conference on Pattern Languages of Programs.

Available at: http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

Rheinfrank, J., & Evenson, S. (1996). Design Languages. In, Winograd, T. (Ed.) Bringing

Design to Software. ACM Press. ISBN 0-201-85491-0. pp. 63 – 80.

Richardson, C. (2001). A Pattern Language for J2EE Web Component Development. Presented

at PLoP 2001. Available at:

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/crichardson0/P

LoP2001_crichardson0_3.pdf

Riehle, D., & Zullighoven, H. (1995). A Pattern Language for Tool Construction and Integration

based on the Tools & Materials Metaphor. In Coplien & Schmidt, 1995, 9–42.

Rossi, G., Schwabe, D., & Garrido, A. (1997). Design Reuse in Hypermedia Applications

Development. In, Proceedings of the eighth ACM conference on Hypertext. ACM Press,

ISBN: 0-89791-866-5, pp. 57 – 66.

Rossi, G., Lyardet, F. D., & Schwabe, D. (1999). Developing Hypermedia Applications with

Methods and Patterns. ACM Computing Surveys, 31(4es) Electronic Symposium on

Hypertext and Hypermedia, December 1999.

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/
http://jerry.cs.uiuc.edu/~plop/plop2k/proceedings/proceedings.html
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-papers.html
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/accepted-papers.html
http://jerry.cs.uiuc.edu/~plop/plop2002/proceedings.html

Published in Human Computer Interaction, 21(1), January 2006

 - 60 -

Rossi, G., Schwabe, D., & Lyardet, F. (2000). User Interface Patterns for Hypermedia

Applications. In, Proceedings of the Working Conference on Advanced Visual Interfaces.

ACM Press, ISBN: 1-58113-252-2, 136 – 142.

Roth, J. (2002). Patterns of Mobile Interaction Personal and Ubiquitous Computing 6 (4) 282-

289.

Sandu, D. (2001). Collection Patterns. Presented at PLoP 2001. Available from:

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/dsandu0/PLoP2

001_dsandu0_1.pdf

Saunders, W. S. (2002). A Pattern Language. Harvard Design Magazine, 16, Winter / Spring

2002, pp 74 - 78. MIT Press.

Schmidt, D. C. (1995). Using design patterns to develop reusable object-oriented

communications software. Communications of the ACM 38(10) 65 – 74.

Schmidt, D. C. (1996). Using Design Patterns to Guide the Development of Reusable Object-

Oriented Software. ACM Computing Surveys 28(4es), December 1996.

Schmidt, D. C., Fayad, M., & Johnson, R.E. (1996). Editorial. Communications of the ACM 39

(10). Special issue on Software Patterns. pp. 36 – 39.

Schuler, D. (2002). A Pattern Language for Living Communication. In Binder, T., Gregory, J., &

Wagner, I. (Eds.) Proceedings of the Participatory Design Conference 2002. CPSR

Press. ISBN 0-9667818-2-1. pp. 51 – 62. See also: http://www.scn.org/sphere/patterns/

Schuler, D., & Namioka, A. (Eds.) (1993). Participatory Design: principles and practice.

Hillsdale, New Jersey, NJ. USA.

Schümmer, T., Borchers, J., Thomas, J., & Zdun, U. (2004). Human-Computer-Human

Interaction Patterns: A Workshop on the human role in HCI Patterns, In CHI '04

extended abstracts on Human factors in computer systems (CD). Also available at

http://www.hcipatterns.org/CHI2004Workshop.html

Seffah, A. (2003). Learning the Ropes: Human-Centred Design Skills and Patterns for Software

Engineers’ Education. Interactions, X(5)

Sharp, H, Manns, M. L., & Eckstein, J. (2003). Evolving Pedagogical Patterns: The Work of the

Pedagogical Patterns Project. Computer Science Education, 13 (4), pp. 315-330

Smith, S. L., & Mosier, J. N. (1986). Guidelines for designing user interface software. Mitre

Corporation Report MTR 9240, Mitre Corporation. Available at : http://hcibib.org/sam

Souza, J., Matwin, S., & Japkowicz, N. (2002). Evaluating Data Mining Models: A Pattern

Language. Presented at PLoP 2002. Available at:

http://jerry.cs.uiuc.edu/~plop/plop2002/final/PLoP2002_jtsouza0_1.pdf

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/dsandu0/PLoP2001_dsandu0_1.pdf
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/dsandu0/PLoP2001_dsandu0_1.pdf

Published in Human Computer Interaction, 21(1), January 2006

 - 61 -

Sutcliffe, A., & Carroll, J. M. (1999). Designing claims for reuse in interactive systems design.

International Journal of Human-Computer Studies 50(3) 213 – 241.

Sutcliffe, A., (2000). On the Effective Use and Reuse of HCI Knowledge. ACM Transactions on

Computer-Human Interaction 7(2). 197 – 221.

Tahara , Y., Ohsuga , A., & Honiden, S. 1999. Secure and efficient mobile agent application

reuse using patterns. Proceedings of the 21st International Conference on Software

Engineering May 1999. IEEE Computer Society Press. 356 - 367

Tahara , Y., Toshiba , N., Ohsuga, A., & Honiden, S. (2001). Agent system development

method based on agent patterns. ACM SIGSOFT Software Engineering Notes 26 (3), 78

– 85

Thimbleby, H. (1990). User Interface Design. ACM Press, New York, NY., USA

Thomas, J. (2003). A socio-technical pattern language proposal. Available from:

http://www.truthtable.com/A_Sociotechnical_Pattern_Language.html

Tidwell, J. (1998). Interaction Patterns. Presented at PLoP 1998. Available from:

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P29.pdf

Tidwell, J. (1999a). Common Ground: A Pattern Language for Human-Computer Interface

Design. Available from: http://www.mit.edu/~jtidwell/interaction_patterns.html

Tidwell, J. (1999b). The Gang of Four are Guilty. Available from:

http://www.mit.edu/~jtidwell/gof_are_guilty.html

Tidwell, J. (2003). UI Patterns and Techniques. Available at

http://time-tripper.com/uipatterns/index.php

Towell, D. (1998). Display Maintenance. Presented at PLoP 1998. Available from:

http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/P15.pdf

Van Duyne, D.K., Landay, J. A., & Hong, J. I. (2003). The Design of Sites. Addison Wesley,

Boston MA.

van Welie, M. (2002 - 2005). Interaction Design Patterns. Available from:

http://www.welie.com/patterns/index.html

van Welie, M., van der Veer, G.C., Eliëns, A. (2000). Patterns as Tools for User Interface

Design. In, Farenc, Ch., & Vanderdonckt, J. (Eds.) Tools for Working with Guidelines,

Springer-Verlag, London, 313-324.

van Welie, M., Mullet, M., & McInerney, M. (2002). Patterns in practice: a workshop for UI

designers. In, CHI '02 extended abstracts on Human factors in computer systems. ACM

Press ISBN: 1-58113-454-1, 908 – 909.

http://www.mit.edu/~jtidwell/interaction_patterns.html

Published in Human Computer Interaction, 21(1), January 2006

 - 62 -

van Welie, M., & van der Veer, G. (2003). Pattern Languages in Interaction Design: Structure

and Organization. In: Proceedings of Interact '03, 1-5 September, Zürich, Switserland,

Eds: Rauterberg, Menozzi, Wesson, p527-534, ISBN 1-58603-363-8, IOS Press,

Amsterdam, The Netherlands

Vlissides, J. M., Coplien, J. O., & Kerth, N. L. (Eds.) (1996). Pattern Languages of Program

Design 2. Addison Wesley, Reading MA. USA etc. ISBN 0-201-60734-4.

Wake W. C., Wake, B. D., & Fox, E. A. (1996). Improving Responsiveness in Interactive

Applications Using Queues. In Vlissides et al, 1996, 563 –573.

Walldius, Å. (2001). Patterns of Recollection: The Documentary Meets Digital Media. Aura

Förlag, Stockholm.

Weiss, M. (2001). Patterns for e-Commerce Agent Architectures: Using Agents as Delegates.

Paper presented at PLoP 2001, available from:

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/mweiss0/PLoP

2001_mweiss0_2.pdf

Weir, C., & Noble, J. (2003). A Window in Your Pocket. In Proceedings of the Eighth European

Conference on Pattern Languages of Program Design (EuroPLoP). Irsee. Universitäts

Verlag Konstanz. 2003. Available at:

http://www.charlesweir.com/WindowInYouPocket.pdf

Wild, P., Dearden, A., Light, A., & Muller, M. (2005). Quality, Values & Choice in HCI.

Workshop at CHI 2005, Portland OR., USA, 4
th

 – 8
th

 April, 2005.

Windsor, P. (2000). A Project Pattern Language for User Interface Design. Presentation at BCS

HCI Group/IFIP WG 13.2 Workshop on HCI Patterns, London, UK, November 2000.

Winn, T & Calder, P. (2002). Is this a Pattern? IEEE Software, January/February 2002, pp.59-65.

Wirfs-Brock, A., Vlissedes, J., Cunningham, W., Johnson, R., & Bollette, L. (1991). Designing

Reusable Designs (panel session): Experiences Designing Object Oriented Frameworks.

In Proceedings of OOPSLA / ECOOP 90, Addendum: systems, languages, and

applications, ACM Press, New York, pp. 19 - 24.

Wright, P., & McCarthy, J. (2004). Technology as Experience. MIT Press, Cambridge, MA.

Wynn, E., & Novick, D.G. (1995). Conversational Conventions and Participation in Cross-

Functional Design Teams. In Proceedings of COOCS, 95, ACM Press, pp. 250 -257.

Yacoub, S. M., & Ammar, H. H. (1998). A Pattern Language of Statecharts. Presented at PLoP

1998. Available from: http://citeseer.nj.nec.com/yacoub98pattern.html

http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/mweiss0/PLoP2001_mweiss0_2.pdf
http://jerry.cs.uiuc.edu/~plop/plop2001/accepted_submissions/PLoP2001/mweiss0/PLoP2001_mweiss0_2.pdf

Published in Human Computer Interaction, 21(1), January 2006

 - 63 -

FIGURE CAPTIONS

Figure 1. A comparison of different perspectives on the essential characteristics of

patterns.

Figure 2. Figure 2: Illustration of Step-by-Step Instructions. From Tidwell, 1999.

Figure 3. Figure 3: DTD showing structure of pattern in PLML (Fincher, 2003).

Published in Human Computer Interaction, 21(1), January 2006

 - 64 -

FIGURES
(IT’S BEST TO PUT ONE FIGURE PER PAGE)

Characteristic

W
in

n
 &

C
al

d
er

2
0
0

2

B
ay

le
 e

t
al

.

1
9

9
8

v
an

 W
el

ie
 e

t

al
.

2
0
0

0

G
ra

n
lu

n
d

 e
t

al
.

2
0
0

1

B
o

rc
h

er
s

2
0

0
0

F
in

la
y
 e

t
al

.

2
0

0
2

F
in

ch
er

 &

U
tt

in
g
 2

0
0
2

E
ri

ck
so

n

2
0

0
0

a

v
an

 D
u
y

n
e

et

al
.

2
0
0

3

T
id

w
el

l

1
9

9
8

,
1

9
9

9
a

1. A pattern implies an artefact ● ? ? ● ? ? ? ● ?

2. A pattern bridges many levels

of abstraction
● ? ?

3. A pattern includes its rationale ● ? ● ? ● ? ? ? ● ?

4. A pattern is manifest in a

solution
●

5. A pattern captures system hot

spots
●

6. A pattern is part of a language ● ? ● ● ● ● ● ● ?

7. A pattern is validated by use ● ? ● ? ● ? ●

8. A pattern is grounded in a

domain
● ? ? ● ● ? ● ●

9. A pattern captures a big idea ● ●

10. Patterns support a „lingua

franca‟
 ● ? ? ● ● ● ● ? ●

11. Different patterns deal with

problems at different „scales‟
 ● ● ● ● ? ? ● ● ●

12. Patterns reflect design values ● ? ● ● ● ● ? ●

13. Patterns capture design

practice
 ● ● ? ? ? ● ● ?

Figure 1: A comparison of different perspectives on the essential characteristics of patterns

Published in Human Computer Interaction, 21(1), January 2006

 - 65 -

Figure 2: Illustration of Step-by-Step Instructions. Based on Tidwell, 1999.

Published in Human Computer Interaction, 21(1), January 2006

 - 66 -

.
PLML v1.1

<!ELEMENT pattern (name?, alias*, illustration?, problem?, context?, forces?, solution?, synopsis?, diagram?,
evidence?, confidence?, literature?, implementation?, related-patterns?, pattern-link*, management?)>

<!ATTLIST pattern patternID CDATA #REQUIRED>

<!ELEMENT name (#PCDATA)>

<!ELEMENT alias (#PCDATA)>

<!ELEMENT illustration ANY>

<!ELEMENT problem (#PCDATA)>

<!ELEMENT context ANY>

<!ELEMENT forces ANY>

<!ELEMENT solution ANY>

<!ELEMENT synopsis (#PCDATA)>

<!ELEMENT diagram ANY>

<!ELEMENT evidence (example*, rationale?)>

<!ELEMENT example ANY>

<!ELEMENT rationale ANY>

<!ELEMENT confidence (#PCDATA)>

<!ELEMENT literature ANY>

<!ELEMENT implementation ANY>

<!ELEMENT related-patterns ANY>

<!ELEMENT pattern-link EMPTY>

<!ATTLIST pattern-link

 type CDATA #REQUIRED

 patternID CDATA #REQUIRED

 collection CDATA #REQUIRED

 label CDATA #REQUIRED>

<!ELEMENT management (author?, credits?, creation-date?, last-modified?, revision-number?)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT credits (#PCDATA)>

<!ELEMENT creation-date (#PCDATA)>

<!ELEMENT last-modified (#PCDATA)>

<!ELEMENT revision-number (#PCDATA)>

Figure 3: DTD showing structure of pattern in PLML (Fincher, 2003)

Published in Human Computer Interaction, 21(1), January 2006

 - 67 -

FOOTNOTES

(Make a copy of all footnotes on a separate page here. This only has to be done for the final submission for

production. During the review process, it is okay to just have footnotes at the bottom of pages.)

1. The gallery is available at: www.cs.kent.ac.uk/people/staff/saf/patterns/gallery.html.xxx

2. It should be noted that the term invariant here refers to a set of shared characteristics of

the recommended solution, but that the solution will need to be adapted to the specific

circumstances in which it is applied. Hence, there is variability in the way that the

solution is instantiated in individual applications, but the pattern describes the invariant

core of solutions to the (recurrent) problem.

3. http://www.co.umist.ac.uk/hci_design/appc.htm offers one approach to presenting claims.

http://ucs.ist.psu.edu which can be searched for examples of claims in the context of

various projects (e.g. http://ucs.ist.psu.edu/dbitemview.asp?id=43§ion=\Garden-

com\Activity+Design\Rationale)

http://www.co.umist.ac.uk/hci_design/appc.htm

