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Environmental significance statement: 

As production and application of graphene-based nanomaterials increase, including their 

potential for environmental clean-up, concerns about their transport and fate in the environment 

are growing. A better understanding under realistic environmental conditions is required, in 

particular the process of aggregation which plays a fundamental role in long-term fate of 

nanomaterials, to help developing predictive models for managing the release of these 

nanomaterials. To investigate the impact of environmental dynamics on the aggregation 

processes of shattered graphene oxide nanoparticles, this study uses a solid-body rotational 

approach to mimic dynamics of interacting populations of nanoaggregate with different sizes and 

structures. This sheds light on the greater aggregation rates observed in the aquatic environments 

such as groundwater and surface water systems compared to those observed in simplifying 

laboratory batch experiments.   
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Abstract 

Nanoparticle (NP) aggregation is typically investigated in either quiescent or turbulent mixing 

conditions; neither is fully representative of dynamic natural environments. In groundwater, 

complex interacting influences of advective-diffusive transport, pore tortuosity, and the arrival of 

aggregates from up-gradient pores impacts the aggregation behaviour of NPs, whereas in surface 

waters, continuous mixing of fresh particle and aged aggregate populations amends aggregation 

rates. To mimic such conditions, a cylinder reactor containing shattered graphene oxide NP 

(<100 nm) suspension was set to rotate with a Reynolds Number (Re) close to one and with zero 

shear. Two main aggregation phases were then observed. Up to 250-350 min, NP remained near 

the rotational axis longer than in static conditions, giving rise to higher aggregation rates 

interpreted as an enhanced perikinetic aggregation and differential sedimentation due to mixing 

with resuspending aggregates. In this phase, a population-balance model estimated an attachment 

efficiency >5 times in the rotating system than in the static system. Later (5-13 h) aggregates 

collided with extensively each other, broke, and reformed on the rotating cylinder wall giving 

rise to larger, denser aggregates (>1 cm). These results thus shed new light on the differences in 

aggregation behaviour between porous media and other natural environmental systems compared 

to quiescent batch experiments.  
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Introduction 

With the increasing global proliferation of commercial applications for nanomaterials, they are 

becoming increasingly released into the natural environment either accidentally in waste streams 

or deliberately within environmental clean-up, agronomy, and petroleum reservoir recovery 

applications.
1
 Among various nanomaterials, the use of graphene nanomaterials is rapidly 

growing due to their broad constructional, industrial, environmental, and medical applications 

and arising from  their use with other nanomaterials as nanohybrids.
2-7

 Graphene nanosheets may 

end up in the environment in various forms of particulate matter such as crumpled graphene,
8-10

 

multilayer graphene,
4, 5, 11

 shattered nanosheets,
12

 and fractal aggregates/hetero-aggregates.
13, 14

 

Once they have entered aquatic environments, aggregation of such particles can significantly 

affect their functionality and transport behaviour, particularly in aqueous and porous media.
4, 5, 15

 

Despite the existence of many studies on homo- and hetero-aggregation of various nanoparticles 

(NP),
14, 16-21

 and abundant reports on the impacts of various factors on the aggregation behaviour 

of these NP,
22-26

 it still remains a problem of how system dynamics modify aggregation. It is 

particularly of paramount importance in groundwater (GW) transport to understand how such 

complex multi-cascade processes of advective and diffusive transport,
27-30

 tortuosity in porous 

media,
31

 and the arrival of aggregates from up-gradient pores
32, 33

 impact the aggregation 

behaviour of NP. Additionally, it is critical to investigate how resuspension phenomenon 

occurring within surface water (SW) bodies, such as lakes, river, and sea at various scales, 

influences the aggregation of NP in these environments.
34-37

 

Typically current experimental techniques investigating NP aggregation dynamics are limited to 

simple quiescent or turbulent mixing batch experiments which may not adequately capture 

aggregation conditions in real systems.
38, 39

 Whilst research into incorporating aggregation 

models within porous media transport models continues,
38, 40, 41

 steps must be taken to validate 

the individual aspects of aggregation models in dynamic media. One of these impacts can be the 

heterogeneous or anisotropic mixing in the population of nanoaggregates induced by the 

environmental dynamics such as cascading/cycling conditions within GW and SW systems
27-30, 

32, 33, 36, 37, 42-44
 that can modify the particle size distribution (PSD) evolution trends under 

aggregation/sedimentation conditions. To investigate such systems, we used a slow rotating 

cylinder in which these impacts are simulated by slow continuous revolutions of the cylinder. 
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This simple apparatus allows monitoring the particle size dynamics during aggregation which is 

cumbersome or impossible in other experimental approaches used for studying the NP fate, such 

as packed column experiments
45

 or mesocosm tests.
46

  

Rolling cylinders have been used extensively in marine science to mimic the natural condition of 

marine snow aggregate formation.
47

 This system consists of a cylinder which is saturated with 

water and is placed horizontally to rotate around its axis slowly so that no significant shear is 

induced in the fluid inside. Since the initial condition is static, i.e., the cylinder is initially at rest 

at zero time, the initial rotations can cause shear in the fluid. Once this has passed, the system 

rotates as a solid body.
48, 49

 This technique,
50, 51

 has been also utilized to study the interactions of 

bacteria,
52

 organic carbon accumulation in marine sediments,
53

 aggregation of diatom,
54

 and their 

interactions with resuspended sediments,
55

 larvae interactions with anisotropic fluid motions,
56

 

and interactions of microplastic with phytoplankton aggregates.
57

 However, to the best of our 

knowledge there has not been any systematic application of rolling cylinders to determine the 

aggregation of engineered NP in aqueous environmental systems to date. To mimic the condition 

of porous media, the system was designed with a Reynolds number (Re) below one. The main 

objective of using such a system was to investigate how NP aggregation behaviour changes over 

time when the local mass concentration is kept constant, a phenomenon that can occur in pores 

of subsurface porous media and in resuspending surface waters. Using such a rotating cylinder, 

the angle between NP displacement directions and the gravity or removal direction is 

continuously changing without significant mechanical shear, thus preventing particle removal via 

settling within the axial area of the cylinder. This allows aggregates to develop to very large 

dimensions until gravity forces impacting on large grown aggregates which are probably more 

compact than initial aggregates overcome rotational displacements, and the system enters an 

unstable situation where aggregates tend to settle. The primary aim therefore is to shed light on 

unexpected higher aggregation rates of NP in GW systems when compared with many standard 

experimental and modelling results, and on how NP aggregation can be influenced by 

resuspension and population mixing in SW systems.
34, 38, 58, 59

 This may underpin development of 

new mathematical descriptions of aggregation mechanism for a more accurate consideration of 

these mechanism in models of NP fate and transport in the environment which take other 

complex concurrent transport/transformation mechanisms into account.
38, 41, 60
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Since the largest use of graphene nanomaterials may result from their high strength and 

flexibility (~100 stronger than steel),
4
 it is possible that they release into the environment as 

shattered graphene because they may undergo extreme physical or chemical stresses during the 

usage or upon entering waste streams. Therefore, in this study we use shattered graphene oxide 

(SGO) particles with a primary hydrodynamic size (DH) of 90 nm. In the scope of this study, 

which lumps the impact of particle surface characteristics and interactions in one free parameter, 

i.e., attachment efficiency, within the fitting process, SGO may also act as a representative for 

other NP types due to their small hydrodynamic size (DH <100 nm) and since in terms of general 

aggregation behaviour, e.g., hydrodynamic size and mass concentration trends over time, they 

exhibit similar patterns to other NP, such as hydroxyapatite (HAp) NP.
40

 It should be mentioned 

that the pristine GO sheets may not represent NP due to their large aspect ratio and being 

considered as a 2-D material.  

 

Materials and Methods  

Rotating cylinder setup. Acrylic cylinders were manufactured with inner diameters of 5 cm and 

length of 19.1 cm to rotate at 4.71 rotations per hour (rph) corresponding to a Reynolds number 

of 0.91. Methylene blue was used to investigate both the dispersion of matter inside the cylinder 

and the flow regime as a solid-body rotation. In this case the dye was injected through a needle 

as an instant point source into the cylinder to see how its diffusion/dispersion is affected by the 

rotations. A belt-pulley was set to reduce, by >200 times, the rotational velocity of a laboratory 

stirrer (Eyela NZ, Japan) with an adjustable revolution rate as illustrated in Figs. 1, S1. The 

connection of cylinder to the rotational apparatus was filled with soft plastic, preventing any 

transfer of shaking from the apparatus to the cylinder. The prepared NP dispersions were poured 

into the cylinder in the beginning of each experiment to set up each case with an initially 

homogeneous dispersion. Sampling for particle size measurement was challenging due to the 

possibility of aggregate breakage resulting from any shear force. To alleviate this, we selected all 

the channels through which the samples had to pass including syringe tips and a glass pipe inside 

the cylinder, with an inner diameter larger than ~2 mm. Sampling was performed by syringe 

removal (without needle) with a minor flow rate to minimize the impact of shear force on 

aggregates. With great care they were then directly transferred to the Dynamic Light Scattering 
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(DLS) cuvette for size measurement. Samples were taken using a straight glass pipe centred on 

one side of the cylinder up to approximately one-third of the length (Fig. 1). In order to keep the 

reactor saturated at all times during the experiment and to prevent bubble formation, a syringe 

with a long needle was used to inject the stock dispersion into the cylinder simultaneous with 

sampling, with the needle leaned towards the wall of the cylinder and entered up to 

approximately two-third of the length of the cylinder, to be far enough from the sampling point 

in the middle (see Fig. 1). The volume of each sample was <1.5 mL and an average of 16 

samples were taken in each experimental setup. Therefore, the total volume of reactor exchanged 

with the initially provided stock dispersion was around 24 mL which is less than 10% when 

compared with the total volume of the cylinder (~375 mL). After obtaining, the samples were 

immediately analysed for size and PSD using DLS (Malvern Zetasizer, Nano ZS model, UK) 

selecting the number of runs to 5 each with a duration of 10 sec and adjusting the beam 

attenuator to 11 and the position of measurement at 6.5 mm. The refractive index of graphene 

oxide (GO) used in the calculation of volume-based PSD was assumed as 1.333 and the 

absorption as 0.01. It should be noted that the sensitivity of volume-based PSD to these factors 

was minor despite their being expected to be influential. Based on preliminary batch experiment, 

ionic strength (IS) was selected at 0.5 and 0.75 mM CaCl2 with a pH of 6. These IS values are 

less than or close to the critical coagulation concentration (CCC) (results not shown).  

The derived count rate (DCR) of DLS output has been used as a measure of mass 

concentration.
61-63

 However, since DCR significance under the reaction limited aggregation 

(RLA) remains unvalidated, we also determined the mass concentration in each sample using 

UV-Vis spectroscopy (Hitachi, U-4100 model, Japan) at a wavelength of 230 nm, with a 

calibrated absorption curve. With such a curve (intercept = 0) we used measured absorbance 

normalized by the initial absorbance in each experiment as a representative of normalized mass 

concentrations.  

SGO synthesis. Graphene oxide was synthesized by the thermal exfoliation of natural graphite 

flakes using a modified Hummers method.
64

 This was conducted through the constant stirring of 

graphite (2.0 g) in a solution of 225 mL sulfuric acid and 50 mL phosphoric acid, followed by 

gradual addition of 5 g potassium permanganate at a constant temperature of 35 °C and 

continuous stirring, which was maintained for 10 h. The mixture was then diluted with 225 mL 
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of DI water and kept in an ice bath, subsequently, 3mL of H2O2 was added for permanganate 

residual removal, with the mixture centrifuged and washed with 1 M hydrochloric acid. This was 

followed by washing with phosphate buffer (pH 11). Finally, the synthesized GO was washed 

with DI water repeatedly to reach the neutral pH. Shattered GO was prepared via intensive ultra-

sonication of a GO dispersion (2 g/L) to achieve initial uniform hydrodynamic size below 100 

nm. This was conducted using a probe sonication at a power of 40 W for 2 h with 30-sec stops 

following 30-sec sonication intervals. This dispersion was then centrifuged for 30 min at 

19500	± 500 rpm to remove the larger fraction of particles. Finally, the dispersion was passed 

through a 0.45-�� syringe filter, and the filtrate kept in the dark at 4 ℃ as the stock dispersion. 

Sodium azide was added (10 mM) to each experimental dispersion to prevent the growth of 

bacteria during analysis and due to its buffering ability in maintaining a constant pH during the 

course of experiments.
40

  

Experimental procedure. The cylinder tests were performed as follows: (1) prepare particle 

dispersions in deionized (DI) water with a final SGO concentration 50 mg/L, and sodium azide 

concentration 10 mM; (2) adjust pH at 6±0.05 with NaOH/HCl (100 mM) while stirring with a 

magnet stirrer; (3) ultrasonicate for 5 min in sonication bath, add electrolyte, (CaCl2) to reach 

final concentrations 0.5 and 0.75 mM, stop stirring 5 sec after adding the electrolyte, and take the 

first sample; (4) fill the cylinder with the prepared dispersion, emplace the syringe and the 

sampling pipe, seal, and leave at rest for static cases or on the rotating mode for dynamic cases 

(in total taking ~10-15 min from the time of stopping the stirrer until the complete setup of the 

cylinder); and (5) take samples (<1.5 mL) at certain times to be analysed immediately by DLS. 

After obtaining each sample the glass pipe was evacuated using a syringe to prevent interference 

of the solution inside the pipe with the next sampling. After analysis by DLS, the same samples 

were carefully preserved at 4 ℃ for analysis using UV-Vis, which were carried out following 

dilution by 7.5 times and sonication for 5 min to obtain a uniform dispersion. Selected 

experiments which could have been prone to uncertainties (e.g., due to higher IS) were carried 

out in duplicate. Control experiments were undertaken in a similar condition to cylinder 

experiment but inside 3-mL DLS cuvettes with time resolved online measurement. In these 

experiments after ultrasonication of the suspension for 5 min, the electrolyte was added, and the 

sample was immediately vortexed for 5 sec. Then it was transferred to a disposable cuvette, after 
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which time-resolved DLS measurement was started immediately. The whole process duration, 

from ultrasonication until the start of the first measurement, was 70	±	20 sec. The sample 

volume of 3 mL corresponds to a measurement depth of ~23.3 mm which is close to the radius of 

the cylinder. In control experiments, time-resolved DCR data normalized to the initially observed 

DCR was used as an indicator of mass concentration.
40, 61-63

  

Theory and modelling 

Flow regime. A simplified form of Navier-Stokes equation in cylindrical coordinate can be 

expressed as:
48

 

����	 = � �
���
�� + 1
� 	

��
� − ����� (1) 

where �� is the angular component of the linear velocity, r is the radial distance from the centre 

of the cylinder, and � is the kinematic viscosity [L
2
T

-1
]. For the initial condition, �� = 0, and 

boundary condition, �� = ����� at r=����, where ���� is the radius of the cylinder and � is the 

angular velocity of the cylinder. The analytical solution of Eq. (1) is:
48, 65

  

�� = �� −�����( ��)"#$%&'(
)

�*�
 (2) 

where �� = 2�( �	��, �����-)#�, �� and �� are Bessel functions of the first kind and orders 1 and 

2, respectively, and  � ≈ /0����#�. The horizontal and vertical rectangular components of 

velocity, �1 and �� are:  

�1 = −�� sin 5 (3) 

�� = �� cos 5 − 89 (4) 

where 89 is settling velocity of agglomerates consisting of	: primary particles [L T
-1

]. Among 

various approaches to settling velocity,
66-69

 a power-law model can best describe the settling 

velocity of NP aggregates as derived in the Supporting Information:
40, 66-69

 

89 = 	;
18� (=> − =?)(2�>)@#AB(2�9)AB#�	 (5) 
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where �> is the radius of the primary particles, �9 is the radius of aggregates, CD is the fractal 

dimension of aggregates, ; is the gravitational acceleration, � is the viscosity of fluid, => is the 

density of primary particles [ML
-3

], and =? is the density of water [ML
-3

].  

Once the system reaches the equilibrium conditions, i.e. solid-body rotation, particle trajectories 

can be calculated as:
48

 

E = −�> sin(�	 − 5>) + 89�  (6) 

F = �> GHI(�	 − 5>) (7) 

where �> and 5> represent initial position of the particle in cylindrical coordinates and E and F 

are position of the particle in rectangular coordinates at time 	. 
The shear rate, J, resulted from the gradient of velocity across the cylinder radius is given as:

48
  

J = ���"#$%&'(	(−  �2 �>( ��) + 1
� ��( ��) +

 �2 ��( ��)	
)

�*�
 (8) 

Particle aggregation. A flexible population-balance model known as fixed pivot (FP)
70

, capable 

of considering initial particle size distribution (PSD) and consequent evolution of PSD in early 

and late stages of aggregation is used to model the dynamic behaviour of hydrodynamic 

diameter, overall mass concentration, and PSD for SGO aggregation experiments. Conserving 

two properties of mass and number, the model equation for aggregation combined with 

sedimentation term is as follows:
70

  

�K9�	 = � L1 − 1
2	MN,�P Q9RSN,�	KNK�

NT�

N,�UVWXY(UZ[U%)YUV\X

	− K9 �R	S9,�	K�
�

− 89]^ K9 (9) 

where K9 is the particle number concentration of agglomerates consisting of	: primary particles 

[_#@], S is the collision frequency, α is the attachment efficiency factor, v is the representative 

volume of each size class in the grid, M is Kronecker’s delta, ]^ is sedimentation depth or 

measurement depth [L], and Q9 is:   
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UV\X#(UZ[U%)

UV\X#UV  ,  `9 ≤ ( Ǹ + `�) ≤ `9[� 

       Q9 = 

  
,UZ[U%-#UVWX

UV#UVWX  ,  `9#� ≤ ( Ǹ + `�) ≤ `9     

(10) 

An explicit forward Euler scheme was used for the time discretization of Eq. (9) with an 

adjustable time-step, as this can be more efficient than higher-order schemes for solving “stiff” 

problems such as population balance models.
71, 72

 Since the Brinkman permeability-based 

model
73-75

 performs best for modelling collision frequencies, this approach was used in the 

present study. All collision kernels were expressed based on aggregate volume so that the impact 

of aggregate shapes which are unknown will interfere less in the model results.  The measured 

initial PSD was directly used as the initial condition. A new optimization algorithm code
40

 was 

also used here to estimate the parameter values (α and Df) by matching the modelled with 

experimental data for mean hydrodynamic diameter (DH) and normalized concentration data 

(C/C0). n these fittings, the contribution weight of the DH was assumed to be twice C/C0. 

Aggregation modelling was performed only at a single spatial point, i.e., the centre of the 

cylinder cross-section, corresponding to the point of measurement and considering the 

sedimentation depth in Eq. (9), ]^, as the radius of the cylinder. Full model equations together 

with details of extensive model testing and the MATLAB codes and optimization algorithm are 

available in the Supporting Information and in Babakhani et al.
40

 A summary of the model 

parameters and experimental characteristics are provided in Table 1.  

Results 

Flow regime and particle trajectory analysis. The experimental results of the cylinder with a 

drop of dye injected in the beginning of the experiment (Fig. S2) shows that generally within the 

first ~10-20 min a thin layer of dye forms at the rotating wall. After ~60 min, however, this thin 

layer is still noticeable, but begins to slowly diffuse into the bulk solution and after ~90-100 min 

it is barely visible. These results suggest that the rotational regime can be considered as solid-

body and the diffusion of dye is the only mechanism of mixing in the cylinder after ~10-20 min. 

Consistent with these outcomes, the calculations of rotation velocity and shear rate for the 

cylinder, shown in Fig. S3, demonstrate that within 10 min rotational velocity reaches a steady-
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state (solid-body rotation) and the shear stress produced in cylinder fluid totally disappears (blue 

lines). This duration is negligible compared to the total course of experiment > 5 h and is not 

captured in the sampling intervals when NP dispersions are used in the cylinder. Both 

experimental and modelling results confirm the validity of assuming steady-state and zero-shear 

conditions in the system.  

Figure 2 shows results of particle trajectory analysis modelled using Eqs. (1-8) with varying 

fractal dimension and particle radius for two scenarios: (1) particle is initially placed in the 

middle of the cylinder radius and (2) particle initially placed near the wall of the cylinder. Based 

on this analysis, the movement of NP and their aggregates ranging in radius from 20 nm to 100 

µm depends significantly on the fractal dimension. For aggregates up to a radius of ~1 µm and 

for fractal dimension up to 2.5, their trajectories follow the “fixed” solid-body rotation regime as 

illustrated by Tagawa et al.
76

 However, for aggregate radii in range of 10-100 µm with Df ≥ 2.5, 

trajectories start to deviate from this regime and show a tendency towards the so-called 

“cascading” or “suspending” regimes.
76

 Sedimentation velocity is so rapid for aggregates of 

radius >100 µm and Df = 2.9 that they interact with the cylinder wall instead of rotating with the 

solid body. In agreement with these results, Fig S4 shows that velocity vectors exhibit a 

nonuniform distribution for aggregates with 10 µm radius and Df = 2.9, highlighting the 

importance of aggregate fractal dimensionality and size in controlling particle trajectories.   

Aggregation experiment results. Experiments were undertaken in the cylinder under both 

rotating and static (non-rotating) conditions, and as a control within a cuvette under static 

conditions with continuous monitoring using dynamic light scattering (DLS). Figure 3a shows 

that the averaged hydrodynamic diameter (DH) follows a log-linear trend with time at 0.5 mM 

CaCl2 in all experiments. However, at 0.75 mM CaCl2 (Fig. 3c) the gradient decreases over time 

after a rapid initial rise, which we interpret as a transition from early (fresh, monodisperse 

particle population) to late (aged, polydisperse particle population) stage conditions within a 

coupled aggregation/sedimentation system.  

Under the solutions present and within the selected periods for size measurement (up to 300-350 

min), the sedimentation is not generally significant (Fig. 3b,d). The trend of DH measurement at 

0.5 mM CaCl2 within the static cylinder closely matches that in the control, demonstrating the 

validity of the design of sampling in the cylinder experiments. This was also the case at 0.75 mM 
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CaCl2 but only in the early stages <120 min, as shown in Fig 3c after this time DH in the control 

continues to rise, whereas DH in the static cylinder tends towards an asymptote over time. The 

reason for this behaviour is not clear, it could be due to minor differences in the conditions 

between the two experiments, such as variation in temperature or dimensionality between the 

cylinder and the cuvette. One might attribute this behaviour to the breakage of aggregates larger 

than ~500 nm during sampling from the cylinder experiments. However, this is less likely to be a 

reason for the observed lower growth of aggregates in the static cylinder compared to the control 

system, because the control experiment shows a level of sedimentation which is not observed for 

the static case (Fig. 3d) whereas sedimentation measurement, is not expected to be affected by 

the breakage. This suggests that in this case there might be a level of uncertainty for the control 

test rather than the occurrence of breakage in the cylinder samples as also indicated by the larger 

standard deviations in the control after ~230 min.  

Generally, the experimental observations using the rotating cylinder initially show higher 

aggregation rates than that of the static cylinder (Fig. 3a,c). In the case of 0.5 mM CaCl2, 

normalized mass concentration curves show increases in concentration to above the initial 

uniform concentration at the point of measurement (Fig. 3b). Interestingly, these results are 

consistent for both measurement techniques, i.e., UV-Vis used for the cylinder samples and DLS 

derived count rate used for the control data, and are also in agreement with previous 

measurements of DCR for HAp NP aggregation at IS below CCC.
40

 Babakhani et al. used the FP 

model already to validate the use of DCR data as representative of mass concentration during NP 

aggregation at IS above CCC leading to a decline in mass over time. The present study’s results 

tend to agree with the use of DCR data as a representative of mass concentration at IS below 

CCC as well.   

The experimental photos of the rotating cylinder at 0.75 mM CaCl2 at different times are shown 

in Fig. S5 and the magnified images of aggregates formed at each time are shown in Fig. 4. It 

appears that visible aggregates form on the wall after ~290 min, corresponding to the start of 

removal in the sedimentation curve after 250-300 min (Fig. 3d). Large networks of gel-like 

aggregates form at the bottom after ~315 min which as a result of extensive sliding on the wall 

and consequent collisions, breakage, and reforming, become denser over time until finally they 

form larger (>1 cm) granular dense aggregates as indicated by their darker colour compared to 
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those formed at earlier times (Fig. 4, S5).
77, 78

 When finally, the sizes of aggregates grow larger 

and their structure become more compact to induce their higher settling velocity due to their 

higher bulk density, the settling velocity overcomes the resuspension due to the cylinder rotation. 

This results in millimetre-sized aggregates appear immediately on the cylinder wall sliding and 

colliding consequently producing compact centimetre-sized SGO granules appear on the wall of 

the rotating cylinder in longer time (5-13 h), and the suspension becomes clear of the SGO NP.  

Aggregation modelling results. Data from the first 250-350 min of experiments (before the 

evolution of larger, settling macro-aggregates) were used to fit models of the aggregation in the 

suspended phase. The estimated parameter values are shown in Fig. 5 and are also available in 

Table S1 along with  Nash-Sutcliff
15

 b�cd values used as a goodness-of-fit criterion. The model 

set used in this study (FP population-balance technique with the power-law model for settling 

velocity and the Brinkman permeability model for collision frequencies) can fit both DH and 

normalized concentration (C/C0) well with an average b�cd 0.758±0.18 for DH data. Parameter 

values estimated for the model matched to the control data agree well with those of static 

cylinder measurements at electrolyte concentrations of 0.5 mM CaCl2 and 0.75 mM CaCl2 

(<29% difference). The rolling cylinder experiment shows 5 and 7 times greater attachment 

efficiency (Fig. 5a) than that of the static system at 0.5 and 0.75 mM CaCl2, respectively. 

Likewise, Df estimated in the rolling cylinder experiment is on average 10% and 31% larger than 

that of the static cylinder at 0.5 and 0.75 mM CaCl2, respectively (Fig. 5b).    

The results clearly indicate that conditions within the rotating cylinder enhance aggregation rate 

and leads to aggregates with more compact structures (via increasing Df). For higher IS than 

those of the present study’s experimental condition and longer times than those of the 

aggregation simulation, the impact of system dynamics may well be higher (Fig. 4, S5). 

Although the process of the aggregation at longer times (sliding on the wall) is different from 

that at early stages (aggregation of suspended particles/aggregates), occurrence of both phases is 

relevant to the natural environment. In GW system, large aggregates attached to porous medium 

solid surfaces can be translated, rolled over and collide with each other, thereby aggregating in 

the retained phase.
32, 38

 They can also be detached and transported to a new pore where they can 

interact with new NP or aggregates,
32, 38

 whether in the suspended phase or in the retained phase. 

Likewise, in a SW system the aggregates which have already settled onto deeper depths, can be 
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transported with sediments or be resuspended where they could encounter new particles. It 

should be noted that in both modes, aggregates become more compact, shown either by enhanced 

Df resulted from the model or by change in colour of aggregates to a darker colour observed in 

the cylinder.
77, 78

 The current cylinder condition ignores many aspects of convoluted groundwater 

pores, such the constricted geometry of pores, shear effect, nonuniform flow regime, and 

dynamic interactions between suspended particles and solid surfaces.
79-82

 Nevertheless, ignoring 

such aspects may allow a better understanding of the dynamic impacts on the individual 

aggregation/sedimentation mechanisms. For instance, including shear stress in the system
39, 82, 83

 

can overshadow the impact of system dynamics due to addition of other complexities such as 

break-up of aggregates.
84

 This cylinder can be further modified in future studies, e.g., by 

modifying the wall surface roughness or adding short edges/partitions on the inner wall in order 

to consider more complexities of natural conditions.  

The system developed different stages in respect to the interplay between aggregation and 

sedimentation mechanisms within the rotating cylinder. Up to 250-350 min, where the sliding of 

aggregates on the wall is still not significant, the maximum Df obtained in the present study is 

2.34 (at 0.75 mM CaCl2 within the rotational cylinder) and the maximum aggregate DH is below 

1 µm (Fig. 3a,c). According to the particle tracking analysis results (Figs. 2 and S4), for these 

values of Df and DH, the effect of gravity on aggregates may not be strong enough to deviate 

aggregate trajectories from a uniform solid-body regime. In agreement with this, the results from 

sedimentation over time (Fig. 3b) show minor or no removal of NP over the periods up to 250 or 

350 min. Hence, within these periods the only difference between the static and rotating systems 

is seemingly that particle orientations with respect to the gravitational force vector are 

continuously changing for aggregates in the rotational system while they remain constant within 

the static system. This might maintain the local particle concentration within the axial area high 

at initial stages and therefore enhance the number of collisions resulting from Brownian motion, 

thereby increasing the overall rate of aggregation. At 0.75 mM CaCl2, at times <150 min 

normalized mass concentration data shows a slight decrease in the suspended mass in both the 

control and static cylinder experiments which is not noticeable in the case of rotational cylinder 

(Fig. 3d). However, after 250-300 min mass removal in the rotating cylinder becomes 

increasingly significant as the aggregates become large and dense enough for the gravity force on 

them to overcome the rotational force leading to their settlement on the cylinder wall. Enhanced 
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aggregation and removal within the rotating cylinder compared to the static cylinder emanates 

also from differential sedimentation mechanism
85

 of aggregation. In fact, attachment efficiency 

is generally expected to be a function of NP surface characteristics.
86

 However, the present study 

indicates that system dynamics increase the effective attachment efficiency, even though 

chemical conditions controlling surface properties were consistent between rotating, static and 

control experiments. To investigate this behaviour, we calculated the collision frequencies 

between particles with radii of 50, 500, and 5000 nm and particles with all other size classes up 

to a radius of 15 µm and for various Df (1.5-2.9) as illustrated in Fig. S6. Based on collision 

frequency formulations used in the present study, representing the state-of-art equations for 

environmentally-relevant NP,
40, 72, 87

 the impact of differential sedimentation mechanism of 

aggregation, which is notably affected by the structure of aggregates (Df), is around 3-5 orders-

of-magnitude lower than that of perikinetic aggregation across the range of aggregate sizes, 

which is impacted less by the structure of aggregates (Df), for the range of aggregate sizes 

observed in this study in early stages of aggregation. Experimental photos (at 0.75 mM CaCl2, 

Fig. 4, S5) suggest that at 290 min aggregates are sufficiently large (>10 µm, based on Fig. 2) 

and/or compact enough (Df > 2.5, based on Fig. 2) for the trajectories to deviate from solid body 

rotation and to settle on the wall, suggesting that in this condition sedimentation and therefore 

differential settling mechanism of aggregation is significant. However, the current collision 

frequency formulation may not be able to take this effect into account because for a similar range 

of aggregate size/fractal dimension they predict negligible contribution for differential 

sedimentation. This deviation may also arise from restructuring or change in the fractal 

dimension over the course of the experiment increases its significance in the later stages of 

aggregation.
40, 68, 88

 Taking such a transient change in the fractal dimension, which causes a 

variation in the particle volume discretization, into account needs special computational 

consideration. Modelling the whole rotating cylinder domain for aggregation may shed light on 

the complex interactions of resuspending aggregates and the reasons for the observed differences 

in the attachment efficiency between the two systems of dynamic and static. Furthermore, 

additional experimental analysis on the structure of aggregates is needed to verify the estimated 

fractal dimension values, e.g., using static light scattering (SLS)
88

 to monitor the dynamics of the 

aggregate structure online during the test. The impact of system dynamics can be even more 

crucial where the existence of natural colloids induces hetero-aggregation with NP.
16

 In such 
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systems, the initial diversities in density, size, and interactions of particles may affect both the 

initial availability of surfaces for Brownian-driven aggregation and differential settling 

aggregation. These are beyond the scope of current study and may be subject of future studies. 

 Conclusions In the early stage of experiments reported here, whilst the majority of particles 

remain suspended, maintenance of mass concentration in the axial area of the rotating cylinder 

increased the number of collisions induced by Brownian motion and arising from differential 

sedimentation collisions with resuspending larger aggregates. This enhanced the aggregation rate 

which emerged relating to the attachment efficiency estimated based on model fit to 

experimental data. As the system evolves and aggregates grow sufficiently to show significant 

sedimentation, resuspension of settling aggregates in the rotating cylinder increased differential 

sedimentation, further enhancing the aggregation rate. This consequently leads to an immediate 

formation of aggregates on the cylinder wall that afterwards start rolling and sliding on the wall. 

These processes give rise to the formation of more compact aggregates, leading to an increase in 

fractal dimension in all stages as revealed by greater fractal dimension in the rotating system 

compared to that of static system and control and indicated by dark colour of aggregate formed 

on the cylinder wall at the end of experiments.  

Numerous studies have reported higher aggregation rates in groundwater, surface-water and 

other natural environmental systems when compared to quiescent batch experiments.
34, 38, 58, 59

 

The results from this study demonstrate that this effect can be understood in terms of systems 

where, even in the absence of hydrodynamic shear, particle suspensions are to some extent 

prevented from sedimentation. Such effects are simulated here by continuous rotation in a slow-

moving cylinder, which models slow flow through tortuous pore networks in natural systems 

which are characteristic of changing flow directions and mixing of old and new particle 

populations. It should be noted that considering the importance of hetero-aggregation 

(aggregation of NP with natural colloids) in the fate of NP in natural waters,
16, 89-91

 the present 

study serves as a first stage to investigate hetero-aggregation in more realistic conditions. The 

system used in this study has also important applications for water treatment, e.g., as a settling 

unit that can be optimized through adjustment of the fractal dimension and aggregation rate 

where the adsorption of contaminants to NP is maximised whilst the NP removal due to settling 

is minimised. Further studies are required to consider a variable fractal dimension in the model 
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for taking reorganization of aggregates into account and to investigate the spatial variations of 

aggregate sizes in both phases of suspended and settled particles. It also remains for future 

studies to experimentally verify the model estimated fractal dimension values through direct, 

online measurements.   
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Figures: 

 

Figure 1. Schematic of the experimental setup.  
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Figure 2. Particle trajectories resulted from Eqs. (1-8) with virtually varying Df and particle radii 

considering two scenarios: (1) for particle initially placed in the middle of the cylinder radius 

(left-hand side panels) and (2) particle initially placed near the wall of the cylinder (right-hand 

side panels). The rotational direction is counter clockwise.    
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Figure 3. Experimental and modelling results of SGO aggregation/sedimentation under two 

electrolyte concentrations of 0.5 (a,b) and 0.75 mM CaCl2 (c,d) at a fixed pH of 6 within static 

and rotating cylinders, and the cuvette of the DLS instrument (control measurement). The 

position of sampling in the cylinder (acyl=2.5 cm) was at the centre of the cross-section and the 

control measurement position was at 2.4 cm below water surface. Panels show averaged 

hydrodynamic size (a,c), and normalized concentration (b,d). The normalized mass 

concentrations for control cases are obtained from DLS derived count rate data while for other 

cases these are determined using UV-Vis. The average of the duplicate of control measurements 

are shown with standard deviation as error bars. The cases of 0.75 mM CaCl2 were conducted in 

duplicate and the experimental data of duplicate experiments are superimposed while each set 

fitted with the model separately. The model set used includes FP population-balance technique 

with the power-law model for settling velocity and the Brinkman permeability model for 

collision frequencies. 
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Figure 4. Experimental photos of SGO aggregates formed over longer times for the case of 

rotating cylinder filled with SGO NP in 0.75 mM CaCl2 solution and pH 6. The full photographs 

of cylinder corresponding to each time is available in Fig. S5, Supporting Information. The 

snapshots in this figure were obtained at the same scale from the bottom of the cylinder.  
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Figure 5. Estimated attachment efficiency (a) and fractal dimension (b) for SGO 

aggregation/sedimentation experiments under two electrolyte concentrations of 0.5 and 0.75 mM 

CaCl2 at fixed pH 6 within control, static, and rotating cylinders. The position of sampling in the 

cylinder was at the centre of the cross-section (acyl=2.5 cm) and control measurement position 

was at 2.4 cm below water surface. In the control, the model was fitted to the average of the 

duplicated online measurements while in other cases the model was fitted to both duplicate 

experiment datasets (if available), and the mean and standard deviation of estimated values are 

reported.  
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Table 1. Summary of modelling parameters and experimental characteristics.  

Parameter  Symbol Value 

Shear rate (s
-1
) G 0 

Dynamic viscosity of fluid (water) (Pa.s) µ 0.00089 

Temperature (K) T 298 

Density of primary particle (kg.m
-3
) => 1800 

Density of the medium (water) (kg.m
-3
) =? 1000 

Initial NP concentration (mg.L
-1
) C0 50 

Cylinder radius (cm) acyl 2.5 

Cylinder length (cm) Lcyl 19.1 

Sedimentation depth (cm) Zs 2.33, 2.5 

angular velocity (rph) ω 4.71 

Reynolds number Re 0.91 

Radius of the primary particles (nm), 

variable depending on the first non-zero 

bin of initial PSD 

a0  6.75-45 

Ionic strength (mM CaCl2) (mM)  0.5, 0.75  

pH  6.0 

Number of size classes, variable 

depending on broadness of the initial PSD 

 63-86 

Attachment efficiency α Fitting parameter 

Fractal dimension Df Fitting parameter 
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