Digital places: location-based digital practices in higher education using Bluetooth Beacons

GLOVER, Ian <http://orcid.org/0000-0002-1078-5281> and MCDONALD, Kieran <http://orcid.org/0000-0001-6501-5439>

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/21981/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
Digital Places:
Location-based Digital Practices in Higher Education using Bluetooth Beacons

Dr. Ian Glover,
Senior Lecturer in Digital Capability,
Sheffield Hallam University, UK
i.glover@shu.ac.uk

Kieran McDonald,
Senior Lecturer in Visual Communications,
Sheffield Hallam University, UK
k.mcdonald@shu.ac.uk
Session Overview

- Bluetooth beacons overview
- Real-world examples
 - within education
 - outside education
- Potential Use-cases within (higher) education
- Technical considerations
Bluetooth Beacons: An Overview
Bluetooth Beacons: An Overview

- Small device that transmit a signal over Bluetooth
 - Can be a unique ID number, URL, or both
- Signals picked up by app on smart device
 - URL can be opened directly from notification area
 - Unique ID triggers a specified action within an app (if known ID)
- Adjustable transmission strength means area that receives a signal can be fine-tuned
 - Short-range for very local actions
 - Long-range for more general actions
Bluetooth Beacons: An Overview

- Distance from beacons can also be used to trigger actions
 - Display wider contextual info when far from beacon, giving increased detail when closer

- Signal strength from multiple beacons can be used to calculate exact position in a space, i.e. Micro-location
 - Works similar to GPS
 - 'Trilateration' calculates distance from each beacon and therefore location
 - needs three beacons to work, but more beacons increase accuracy
Trilateration
Bluetooth Beacons: An Overview

- Simple identifier format means that the same beacon can trigger different actions in different apps.
- Signal effectively becomes a ‘public good’ - if it is there for one purpose, it can’t (easily) be restricted from other purposes
 - Students can create their own apps that use the existing beacon infrastructure
Real-world examples
Real-world Examples: Education

- **Attendance monitoring**
 - CampusM app

- **Contextualised campus tours**
 - University of Bradford - open days
 - University of Edinburgh & Sheffield Hallam University library tours
Real-world Examples: Education

- Restricting device features by time and location (Thompson, 2013)
- Adding digital layer to physical learning zones (McDonald & Glover, 2016)
- Location-based digital storytelling for Theatre and Drama (Texas State Uni.)
Real-world Examples: Outside Education

- **Wayfinding**
 - Airports
 - *Sports and Entertainment venues*
 - Retail
 - *Disability support*

- **Event attendance tracking**
 - Conferences
- **Self-guided tours**
 - Museums
 - City walks
 - Art projects

- **Proximity Marketing**
 - Inside shops
 - Outside shops
Potential Use Cases in (Higher) Education
Potential Use: Highly Contextual Information

- Location-specific, personalised information provided at relevant points within a space
- May change according to direction of movement, distance to beacon or intent

Example

A student walking towards or past the library is notified about reserved books being available and outstanding loans.

As they enter the library they are notified of new resources related to their studies.
Potential Use: Creative ‘Subversion’ of Shared Spaces

- Beacon infrastructure intended for one purpose is used by staff and/or students for another.
- Could be course-related or entirely independent

Example

A university installs beacons to support wayfinding around campus. A group of art students work with some computing students to create a virtual art gallery using the beacons, while other students create an Alternate Reality Game (ARG)
Potential Use: Serendipitous Learning

- Unanticipated learning opportunities are created in spaces through the fleeting presence of individuals.
- Beacons provide information on people’s work which could lead to conversations and new connections.

Example

Staff ID cards contain a beacon that transmits information about their work. As they move around campus, other people (perhaps in a cafe) can use this to explore new ideas and change their own thinking.
Potential Use: Information Discovery

- An additional layer of digital information is added to a location or object or area within it.
- Different content can be displayed based on proximity, movement through a space, personal interest, time, etc.

Example

Art students attach beacons to their work at their graduate show that link to further information about the work, its creation, and inspiration. Attendees can access this as they look at the artworks to find out more about the student and their work.
Considerations Before Implementing
Equity of experience

- Do all students have a mobile device?
- Are there any disability issues?

Privacy

- Does the way the beacon is used violate user privacy?
Considerations Before Implementing

Security
- Could the beacons or app be abused by a malicious person?

Over-reliance
- Could long-term use cause people to become too reliant on the beacons?
Intrusiveness

- Will people become fatigued or annoyed by too frequent notifications?

Maintenance

- How will the infrastructure be monitored and maintained?
Summary
Beacons offer a way to layer digital information and interactions onto physical locations

Already in use in a range of environments

Can support a variety of formal and informal learning opportunities

Some careful planning required for deployment, but no insurmountable issues.
Questions
Contact Details

Ian Glover
i.glover@shu.ac.uk
Twitter: @irglover

Kieran McDonald
k.mcdonald@shu.ac.uk
Twitter: @DTE_SHU