Sheffield Hallam University

Basalt fibres for concrete strengthening

SERBESCU, Andreea, PILAKOUTAS, Kypros and GUADAGNINI, Maurizio Available from Sheffield Hallam University Research Archive (SHURA) at: https://shura.shu.ac.uk/21704/

This document is the Accepted Version [AM]

Citation:

SERBESCU, Andreea, PILAKOUTAS, Kypros and GUADAGNINI, Maurizio (2017). Basalt fibres for concrete strengthening. In: Seismic Loss, Rehabilitation and Postearthquake Crisis Management of Critical Infrastructure 2017, Istanbul, Turkey, 20th November 2017 - 24th November 2017. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Seismic Loss, Rehabilitation and Post-Earthquake Crisis Management of Critical Infrastructure

Basalt Fibres for concrete strengthening

Dr Andreea Serbescu

Sheffield Hallam University, UK

Work carried out at The University of Sheffield Prof. K. Pilakoutas Dr M. Guadagnini

nternational Workshop

Research Rationale

• Experimental work

• Findings and Conclusions

Strengthening

2 International Workshop

• Traditional - Steel

G. Nichols

Modern - Fibre Reinforced Polymers (FRPs)

Carbon, Glass, Aramid

sika.com

buildera.com

FRPs for Strengthening of Concrete

decks are limited to flexural strengthening. In addition, general guidance is

provided on suitable strengthening techniques.

FRP as reinforcement for concrete has already been validated!

- Cost Issue
- Debonding Issue

FRP Cost Issue

FRP Debonding Issue

Relatively new Basalt Fibers

Volcano

Basalt Rock

Basalt Plant

Basalt Fibres

Furnace

Crushed Basalt Rock

Basalt FRP (BFRP) bars/plates/strips

Relatively new Basalt Fibers

20-24 November 2017, Istanbul, Turkey

Characteristic of fibres	Basalt	E-Glass	S-Glass	Carbon
Tensile Strength (MPa)	3000~4840	3100~3800	4020~4650	3500~6000
Elongation at break (mm)	3.1	4.7	5.3	$1.5 \sim 2.0$
Elastic modulus (GPa)	79.3~93.1	$72.5 \sim 75.5$	83~86	230~600
Temperature of use (°C)	-260~+500	-50~+380	-50~+300	-50~+700

Research Question

4 November 2017, Istanbul, Turke

Can <u>Basalt FRP</u> represent an economic alternative to the traditional fibres?

4 November

Experimental Program - Overview

BFRP strips - preparation

November

U – strips (235x90) mm

2 International Workshop

November 2017, Istanbul, Turkey

Beam tests

Beam	Pult	Mult	Py	My	Vf	V	Pdeb	Failure mode	Pexp
	(kN)	(kNm)	(kN)	(kNm)	(kN)	(kN)	(kN)		(kN)
PB1-1	224	86	208	80	20	196	119	End debonding	171
PB1-2	209	80	-	-	20	196	119	Crushing	160
CB0	198	76	196	75	-	150	110	Rip-off	134
SB5	207	79	204	78	34	219	112	Crushing	179

Beam	P _{ult} (kN)	M _{ult} (kNm)	Py (kN)	My (kNm)	V _f (kN)	V (kN)	P _{deb} (kN)	Failure mode	P _{exp} (kN)
PB2-1	164	63	120	46	-	398	59	Peel-off	98
PB2-2	216	83	153	59	20	482	97	End debonding	151
PB2-3	206	80	158	60	20	482	62	End debonding	121

2 International Workshop

Plate end – crack patters

4 November 2017, Istanbul, Turke

Mid-span displacement (mm)

CBO beam (brittle)

30

- Increase in debonding load (~27%)
- Pseudo-ductility

Results

200

PB1-1 beam (distributed cracking)

PB1-1 beam (distributed cracking)

2 International Workshop

Results

- High strain in Basalt FRP strips
- No debonding of BFRP strips

Experimental Program - Overview

Set ^{bar}	Tests		No. of bars	Nominal	Actual	Total no.
type			per diameter	diameter (mm)	area	of bars
			5	3	9.6	
11	Tensile test (TT1)	5	5	23.8	20
			5	8	57.1	
			5	10	86.8	
	Tensile test (TT2)	5	3	9.4	5
		Water/20°C/1000h		3	9.5	
21	Durability test	Water/60°C/1000h	5			20
	(DT2)	pH13/20°C/1000h				
		pH 13/60°C/1000h				
		Water/60°C/200h	3	3	9.1	3
			9	б	33.3	
	Tensile tests	(TT3)	5	4	15.5	24
			5	5	23.6	
			5	7	44.4	
		pH 9/20°C/100h	5	б	33.2	5
		pH 9/20°C/1000h	5	б	32.9	5
		pH 9/40°C/100h	5	б	33.2	5
32		pH 9/40°C/1000h	5	б	30.1	5
	Durahility test	pH 9/60°C/100h	5	4	15.8	
	(D. m.e.)		5	5	22.9	20
	(DT3)		5	6	32.6	
			5	7	44.4	
		pH 9/60°C/1000h	5	б	32.7	5
		pH 9/20°C/5000h	5	б	32.6	5
		pH 9/40°C/5000h	5	б	33.2	5
		pH 9/60°C/5000h	5	б	32.5	5

132 Basalt FRP bars

24 November 2017, Istanbul, Turkey

International Workshop

- Time:

100h, 200h, 1000h and 5000h

- Alkalinity:

pH7, pH9 and pH13

- Temperature:

20°C, 40°C and 60°C

Note: the nominal diameters were verified and used for stress calculations for bars without strain

Conditioning

Basalt FRP bars

type 1 – 10 mm

Conditioning

Tensile testing

•

2 International Workshop

Effect of temperature

Long-term strength prediction in any environment

R₁₀ - cst. n_{on} - changes

nternational Workshop

Long-term strength prediction in any environment

- Step 1. Condition specimens
- Step 2. Measure short term-strength
- Step 3. Establish degradation parameters
- Step 4. Determine the reference degradation curve
- Step 5. Estimate the long-term strength

analytically

- environmental strength reduction factor

 $\eta_{env,t} = 1/((100 - R_{10})/100)^n$

- percentage of the long-term strength retained $f_{\it fkt\%} = (1/\eta_{\it env,t}) \cdot 100$

1000h, 20°C, 40°C, 60°C, water, pH13

Tensile testing

Use Table

Find n_{on} and R_{10}

November 2017, Istanbul, Turke

Conclusions

Strengthening Potential

- 27 % strength enhancement
- Enabled pseudo-ductile behaviour

Durability

- BFRP ~ GFRP tensile properties
- Temp high effect; pH less effect
- 53% strength retention after 100 yrs in concrete

Q: Can <u>Basalt FRP</u> represent an economic alternative to the traditional fibres?

A: BFRP – economic solution for concrete when strengthening demand is moderate

Thank you!

Acknowledgments

20-24 November 2017, Islanbul, Turkey

- Magmatech Ltd

Any questions?