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Through ab initio approaches in nuclear theory, we may now seek to quantitatively

understand the wealth of nuclear collective phenomena starting from the underlying in-

ternucleon interactions. No-core configuration interaction (NCCI) calculations for p-shell
nuclei give rise to rotational bands, as evidenced by rotational patterns for excitation en-

ergies, electromagnetic moments, and electromagnetic transitions. In this review, NCCI

calculations of 7–9Be are used to illustrate and explore ab initio rotational structure, and
the resulting predictions for rotational band properties are compared with experiment.

We highlight the robustness of ab initio rotational predictions across different choices
for the internucleon interaction.

Keywords: Nuclear rotation; no-core configuration interaction calculations; Be isotopes.

PACS numbers: 21.60.Cs, 21.10.-k, 21.10.Re, 27.20.+n

1. Introduction

The challenge of ab initio nuclear theory is to quantitatively predict the complex

and highly-correlated behavior of the nuclear many-body system, starting from

the underlying internucleon interactions. Significant progress has been made in the

ab initio description of light nuclei through large-scale calculations.1–7 We may now

seek to understand the wealth of nuclear collective phenomena8 through ab initio

approaches.5,9–12

In particular, rotational bands emerge in ab initio no-core configuration inter-

action (NCCI)6 calculations of p-shell nuclei.13,14 Rotational patterns are found in

the calculated level energies, electromagnetic moments, and electromagnetic tran-

sitions. Natural questions surrounding the emergence of rotation in ab initio calcu-

lations include:
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(i) How recognizable is the rotation, from the calculated observables?

(ii) How robust is the prediction of rotation, both against limitations in the many-

body calculation and, more fundamentally, against uncertainties in the inter-

nucleon interaction?

(iii) How, physically, does the rotation arise, or what is the intrinsic structure?

(iv) How well does the calculated rotation agree with experiment, when compared

quantitatively?

However, to understand the emergence of rotation in NCCI calculations and address

these questions, we must first consider the ab initio calculations themselves. NCCI

calculations are, of necessity, carried out in a finite, truncated space. Computational

restrictions limit the extent to which converged calculations can be obtained.

This review is based upon the ideas and results of recent analyses of rotation

in ab initio NCCI calculations. A systematic study of the emergence of rotational

bands in NCCI calculations of 7−12Be, using the JISP16 nucleon-nucleon interac-

tion,15 is presented in Refs. 13, 14, 16. The spin and orbital angular momentum

structure of rotational states in 7Li (the mirror nucleus to 7Be) and 9Be is investi-

gated, using a chiral next-to-next-to-next-to-leading-order (N3LO) interaction,17 in

Ref. 18. (NCCI calculations for the ground state rotational band in 12C, although

not considered in this review, are discussed in Refs. 19, 20, 21.) We highlight here

the robustness of the ab initio rotational predictions across different choices for

the internucleon interaction. In particular, in many of the illustrations, we com-

pare the results of calculations based on two interactions obtained by very different

procedures: the JISP16 interaction (mentioned above) and the chiral next-to-next-

to-leading-order (NNLO) interaction NNLOopt.
22

The approach of this review is not to attempt an exhaustive summary of the

rotational phenomena noted in recent NCCI calculations, but rather to focus on

exploring a few illustrative cases. Specifically, calculations of 7–9Be are used to illus-

trate emergent rotational phenomena and to exemplify some of the ideas involved

in analysis of ab initio rotational structure. We begin by introducing the challenges

in obtaining converged results for the relevant observables in ab initio calculations

(Sec. 2). The definition of rotation in nuclei and its expected signatures are then

briefly reviewed (Sec. 3). Successively richer examples of rotation in the Be isotopes

are examined in Sec. 4: the even-even isotope 8Be (Sec. 4.1), the odd-mass isotope
7Be (Sec. 4.2), and rotational structure including excited bands (and both parities)

in 9Be (Sec. 4.3). Finally, we compare the rotational energy parameters extracted

from ab initio calculations with those for the experimentally observed bands in
7–9Be (Sec. 5).

2. NCCI calculations and their convergence

In NCCI calculations, the nuclear many-body Schrödinger equation is formulated as

a Hamiltonian matrix eigenproblem. The Hamiltonian is represented with respect

to a basis of antisymmetrized products of single-particle states. Conventionally,
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Fig. 1. Dimensions for NCCI calculations, as a function of the number of oscillator excitations

Nmax included in the basis, for selected nuclides. The example configuration shown (inset) involves

a total of four oscillator excitations above the lowest oscillator configuration and thus would be
included in calculations with Nmax = 4 and higher (for simplicity, only single particle states for

one type of nucleon, protons or neutrons, are shown). Dimensions are shown for M -scheme natural

parity, M = 0 spaces (see Sec. 4.1 text).

harmonic oscillator states23 are used as the single-particle states, for the technical

convenience they provide (both in transforming interaction matrix elements be-

tween relative and single-particle coordinates and in obtaining an exact separation

of the center-of-mass wave function). The problem is then solved for the full system

of A nucleons, i.e., with no inert core.

In practice, calculations must be carried out in a finite-dimensional subspace,

commonly obtained by truncating the basis to a maximum allowed number Nmax of

oscillator excitations. Convergence toward the exact results — as would be achieved

in the full, infinite-dimensional space — is obtained with increasing Nmax. However,

the basis size grows combinatorially with Nmax, so the maximum accessible Nmax

is severely limited by computational restrictions. The dimensions for representative

cases are shown in Fig. 1 (and the meaning of Nmax is illustrated in the inset). Thus,

e.g., Nmax = 10 calculations for 8Be, as considered below, involve a Hamiltonian

matrix dimension of ∼ 2× 108.

The calculated eigenvalues and wave functions, and thus the calculated values

for observables, depend both upon the basis truncation Nmax and on the length

parameter b for the oscillator basis functions, which is customarily specified by the

equivalent oscillator energy ~ω.24 Any attempt to interpret the results of NCCI

calculations (Sec. 4) or compare the calculations with experiment (Sec. 5) must
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Fig. 2. The Nmax and ~ω dependence of values obtained for observables in NCCI calculations,
including comparatively converged and unconverged cases: (a) the 4He ground state energy eigen-

value, (b) the 8Be ground state energy eigenvalue, (c) the 4He ground state RMS matter radius,

(d) the 8Be ground state RMS matter radius, (e) the magnetic dipole reduced transition prob-
ability between the first excited state and ground state of 7Be, and (f) the electric quadrupole

reduced transition probability between the first excited state and ground state of 8Be. Calculated
values are shown as functions of ~ω for Nmax = 2 to 10 (as labeled) and are obtained with the
JISP16 nucleon-nucleon interaction, with Coulomb interaction between protons.

take into account the manner in which these observables approach convergence and

the level of convergence which has been achieved.

The Nmax and ~ω dependences of calculated ground-state energy eigenvalues are

illustrated for 4He in Fig. 2(a) and for 8Be in Fig. 2(b), in both cases for 2 ≤ Nmax ≤
10 (we use the same Nmax range in all calculations, for purposes of comparison,

although current computational limits are significantly higher for 4He). For a fixed

Nmax, a minimum in the calculated energy is obtained at some ~ω (for the Be
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isotopes this will typically be in the range ~ω ≈ 20–25 MeV). By the variational

principle, any such calculated energy in a truncated space provides an upper bound

on the true ground state energy in the full, untruncated many-body space. As

Nmax is increased, a lower calculated ground state energy is obtained at each ~ω.

The approach to convergence is marked by approximate Nmax independence (a

compression of successive energy curves) and ~ω independence (a flattening of each

curve around its minimum). While a high level of convergence (at the keV scale) may

be obtained in the lightest nuclei, in particular, for the tightly bound and compact

nucleus 4He [Fig. 2(a)], the situation is more challenging for the Be isotopes. The

decrease in the variational minimum energy for 8Be does become smaller with each

step in Nmax [Fig. 2(b)], but even at Nmax = 10 these changes are still at the MeV

scale.

For electric quadrupole moments and transition strengths, traditionally so im-

portant in the identification of rotational structure,25 convergence is even more

elusive. The quadrupole operator, which has the form Q2,m ∝ r2Y2,m,24 includes

an r2 radial dependence and is therefore highly sensitive to the large-r “tails” of

the nuclear wave function, which are poorly reproduced in a harmonic oscillator

basis (see, e.g., Fig. 1 of Ref. 26).

While it is difficult to come by an illustration of successful convergence of an

electric quadrupole strength in NCCI calculations, the convergence of the root mean

square (RMS) radius observable in 4He, shown in Fig. 2(c), provides a model of the

behavior which might be expected. The RMS radius, like quadrupole observables,

is deduced from matrix elements of an operator with an r2 dependence. Conver-

gence — in general, manifested in Nmax independence and ~ω independence — is

here reflected in a compression of successive Nmax curves and a flat “shoulder” in

the plot of the B(E2) against ~ω, over some range of ~ω values. The calculated

RMS radius of 8Be, shown for comparison in Fig. 2(d), appears to be approaching

convergence but is not fully converged.

Returning, finally, to the quadrupole observables, the calculated quadrupole

transition strength between the 2+ first excited state and 0+ ground state of 8Be is

shown in Fig. 2(f). Here, the variation with Nmax and ~ω is much greater,a and at

most hints of the onset of convergence might be apparent. Consequently, there is

no obvious way to extract quadrupole observables, at least in their absolute magni-

tudes. We shall see (Sec. 4) that relative values of different quadrupole observables

within the same calculation may, nonetheless, be meaningfully considered.

aThe greater Nmax and ~ω dependence of the B(E2) observable [Fig. 2(f)], as compared to the
radius [Fig. 2(d)], is in part an artifact of the definition of the observable, rather than entirely
reflecting a difference in the actual convergence properties of the underlying matrix element. The
RMS radius is obtained by taking the square root of the expectation value [∝ 〈r2〉1/2], reducing

any sensitivity to the matrix element, while the B(E2) is obtained by taking the square of the
matrix element [∝ 〈r2Y2〉2], amplifying any sensitivity to the matrix element. Roughly speaking,
the total power difference of 4 in scaling with the radius between these two observables would be
expected to quadruple all relative (percentage) sensitivities.
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Magnetic dipole moments and transition strengths, in contrast, are compara-

tively well-converged. The Nmax and ~ω dependence of the calculated dipole tran-

sition strength between the 1/2− first excited state and 3/2− ground state of 7Be

is shown in Fig. 2(e).

3. Collective nuclear rotation

To begin, we must define what is meant by rotation in the nuclear many-body

system. Nuclear rotation8,25 arises when there is an adiabatic separation of a ro-

tational degree of freedom from the remaining internal degrees of freedom of the

nucleus.

A rotational state factorizes into an intrinsic state |φK〉 and a rotational wave

function of the Euler angles ϑ, describing the collective rotational motion of this

intrinsic state. Specifically, we consider an axially symmetric intrinsic state, with

definite angular momentum projection K along the intrinsic symmetry axis. The

full nuclear state |ψJKM 〉, with total angular momentum J and projection M , has

the form

|ψJKM 〉 ∝
∫
dϑ
[

DJ
MK(ϑ)︸ ︷︷ ︸

Rotational

|φK ;ϑ〉︸ ︷︷ ︸
Intrinsic

+ (−)J+KDJ
M,−K(ϑ)|φK̄ ;ϑ〉

]
, (1)

where |φK ;ϑ〉 represents the intrinsic state |φK〉 after rotation by ϑ, and the wave

function DJ
MK(ϑ) in the Euler angles is a Wigner D function. The second term,

involving the R2-conjugate state |φK̄ ;ϑ〉, arises from discrete rotational symmetry

considerations, i.e., under an “end-over-end” rotation R2 by an angle π about an

axis perpendicular to the symmetry axis.

The recognizable signatures of rotational structure reside not in the observables

for the states considered singly, but in relationships among different rotational

states arising from their closely-related wave functions (1). A rotational band is

comprised of nuclear states sharing the same intrinsic state |φK〉 but differing in

the angular momentum J of their rotational motion, i.e., differing in their angular

wave functions DJ
MK(ϑ). Within a rotational band, J = K, K + 1, . . ., except for

K = 0 bands, where only even J or only odd J are present (depending upon the R2

symmetry). Energies and electromagnetic multipole matrix elements among band

members follow well-defined rotational patterns.

Band members are expected to have energies following the rotational formula

E(J) = E0 + AJ(J + 1), where the rotational energy constant A ≡ ~2/(2J ) is

inversely related to the moment of inertia J of the intrinsic state. For K = 1/2

bands, the Coriolis contribution to the kinetic energy significantly modifies this

pattern, yielding an energy staggering

E(J) = E0 +A
[
J(J + 1) + a(−)J+1/2(J + 1

2 )︸ ︷︷ ︸
Coriolis (K = 1/2)

]
, (2)

where a is the Coriolis decoupling parameter.
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Fig. 3. Rotational predictions for electric quadrupole (a) moments and (b) transition reduced

matrix elements, within a rotational band, normalized to the intrinsic quadrupole moment Q0,

shown for bands with 0 ≤ K ≤ 5/2, as indicated. The further possibility of staggering of transition
strengths within a K = 1/2 band14 is indicated by the dotted lines. Figure from Ref. 14.

For the electric quadrupole operator, in particular, the reduced matrix element

between band members (with initial and final angular momenta Ji and Jf , respec-

tively) follows the relationb

〈ΨJfK‖Q2‖ΨJiK〉 = (2Ji + 1)1/2 (JiK20|JfK)︸ ︷︷ ︸
Rotational

〈φK |Q2,0|φK〉︸ ︷︷ ︸
Intrinsic (∝ eQ0)

. (3)

The value depends on the particular band members involved, Ji and Jf , only

through the Clebsch-Gordan coefficient, while the specific structure of the in-

trinsic state enters only through the intrinsic quadrupole moment eQ0 ≡
(16π/5)1/2〈φK |Q2,0|φK〉.

All electric quadrupole moments Q(J) and reduced transition probabilities

B(E2; Ji → Jf ) within a given band are therefore uniquely related to each other

via (3), simply from the assumption of rotation, with their overall normalization

determined by Q0. That is,

Q(J) =
3K2 − J(J + 1)

(J + 1)(2J + 3)
Q0, (4)

and

B(E2; Ji → Jf ) =
5

16π
(JiK20|JfK)2(eQ0)2. (5)

bNotations for electromagnetic observables and the convention for reduced matrix elements are as
defined in Sec. II of Ref. 14. Also see this reference for discussion of a cross term omitted from (3),

which may arise for bands with K = 1/2 or 1.
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Experimental transition strengths are customarily expressed in terms of the un-

signed reduced transition probabilities — or B(E2) values — as given in (5), since

phase information on the matrix elements is not normally experimentally accessible.

However, in the rotational analysis of ab initio wave functions it is more informative

to consider the signed (unsquared) reduced matrix elements (3) directly, to retain

further meaningful phase information (as illustrated in Sec. 4.2). The expected ro-

tational relations for electric quadrupole moments and transition reduced matrix

elements are summarized graphically in Fig. 3, for different values of K.

The rotational relation (3) is equally valid whether we take the quadrupole op-

erator to be the proton quadrupole tensor (i.e., the physical electric quadrupole

operator) Qp or the neutron quadrupole tensor Qn. The matrix elements of these

two operators provide valuable complementary information for investigating rota-

tion in ab initio calculations — despite the comparative (though not complete27)

inaccessability of neutron quadrupole observables in traditional experimental anal-

yses.

Magnetic dipole moments and transitions are deduced from reduced matrix

elements of the magnetic dipole operator. The rotational predictions are based on

the assumption of separation of the nucleus into a deformed rotational core, which

contributes through an effective dipole operator simply proportional to J, plus

extra-core nucleons, which contribute through a residual magnetic dipole operator

M′. The result is a somewhat more complicated rotational expression

〈ψJfK‖M1‖ψJiK〉 =
√

3
4π gRµN 〈Jf‖J‖Ji〉δJiJf

+(2Ji + 1)1/2
[
(JiK10|JfK)〈φK |M ′1,0|φK〉

+δK,1/2(−)Ji+1/2(Ji,− 1
2 , 1, 1|Jf

1
2 )〈φ1/2|M ′1,1|φ1/2

〉
]
,

(6)

for which corresponding simplified expressions for dipole moments µ(J) or ∆J = 1

transitions may be found in Sec. II D of Ref. 14. The essential point for purposes of

rotational analysis is to note that the rotational predictions involve three param-

eters: a core rotational gyromagnetic ratio gR (affecting only moments), a direct

intrinsic matrix element 〈φK |M ′1,0|φK〉, and a cross term intrinsic matrix element

〈φ1/2|M ′1,1|φ1/2
〉 (for K = 1/2 bands). The contributions to the magnetic dipole

matrix elements from these various terms are summarized graphically in Fig. 4, for

different values of K.

The physical magnetic dipole operator (excluding meson-exchange currents) is

the particular linear combination of orbital/spin and proton/neutron angular mo-

mentum operators

M1 =

√
3

4π
µN
(
g`,pLp + g`,nLn + gs,pSp + gs,nSn

)
, (7)

where the physical gyromagnetic ratios are g`,p = 1, g`,n = 0, gs,p ≈ 5.586, and

gs,n ≈ −3.826. However, the rotational results (6) apply to each term independently

(and to any such linear combination). Therefore, magnetic dipole matrix elements
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term (dotted lines, K = 1/2 only). For purposes of comparison, the curves are shown with nor-
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Ref. 14.

may be calculated and analyzed considering each of these different dipole terms24

individually, to separately probe the orbital and spin angular momentum structure

of rotation.c The magnetic dipole moment or magnetic dipole transition matrix el-

ement pertinent to physical electromagnetic transitions can, of course, be recovered

as the particular linear combination given in (7).

4. Emergence of rotational bands in the Be isotopes

4.1. Rotation in 8Be

Let us begin with the simplest case, that of the even-even nucleus 8Be. The level

energies obtained in ab initio NCCI calculations of 8Be are shown in Fig. 5.

Traditionally, two competing structural descriptions may be invoked.28 In a

cluster description, this nucleus consists of two α particles, which may undergo

rotation analogous to that of a diatomic molecule, resulting in a K = 0 positive

parity yrast rotational band (with J = 0, 2, 4, . . .). However, in a conventional shell-

model description, limited to the p-shell valence space, only states with angular

momentum J ≤ 4 can be constructed.

cSpecifically, the magnetic dipole observables quoted for each of these operators will be obtained
by setting the corresponding gyromagnetic ratio to unity, i.e., using M1 operators defined for each

dipole term as D`,p = [3/(4π)]1/2µNLp, D`,n = [3/(4π)]1/2µNLn, etc.14 Of course, if one were
willing to move further away from traditional notation for magnetic dipole observables, one could

just as well quote matrix elements of Lp, Ln, etc., directly.
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Fig. 5. Energy eigenvalues for states in the natural parity space of 8Be, as obtained with the
JISP16 (left) and NNLO (right) nucleon-nucleon interactions. Energies are plotted with respect to

an angular momentum axis which is scaled to be linear in J(J+1). Solid symbols indicate candidate
band members. Lines indicate the corresponding fits for rotational energies (2). Vertical dashed

lines indicate the maximal angular momentum accessible within the lowest harmonic oscillator

configuration (or valence space). From calculations with Nmax = 10 at ~ω = 20 MeV.

Experimentally, 8Be is unbound, but the “ground state” consists of a narrow

J = 0 resonance, which decays by 2α breakup.29 The next excited levels are J =

2 and 4 resonances. The energies are approximately consistent with a rotational

pattern, with the experimental E(4+)/E(2+) ≈ 3.75(5) lying somewhat above the

expected rotational value of 10/3 ≈ 3.33. Since the 2α decay mode so completely

dominates over electromagnetic decay, ratios of electromagnetic transition matrix

elements among these states are not known experimentally (only the 4+ → 2+

transition has been observed30).

Before further interpreting the results in Fig. 5, a few comments are in order

defining the specifics of the calculations (applicable also to the calculations dis-

cussed in subsequent sections for 7,9Be). The calculations are obtained using two

different realistic nucleon-nucleon interactions. The JISP16 interaction15 [Fig. 5(a)]

is a charge-independent two-body interaction derived from nucleon-nucleon scat-

tering data and adjusted via a phase-shift equivalent transformation to describe

light nuclei without explicit three-body interactions.d The NNLOopt interaction22

[Fig. 5(b)] is obtained from chiral effective field theory at next-to-next-to-leading or-

der (NNLO), with low-energy constants chosen to reproduce nucleon-nucleon scat-

tering phase shifts.

The many-body Hamiltonian eigenproblem is then solved using the code

dThe present calculations also include the Coulomb interaction between protons. It should be noted

that these calculations are therefore not identical to the JISP16 calculations previously presented

in Refs. 13, 14, 16, in which the Coulomb interaction was omitted, to ensure exact conservation
of isospin. However, the primary effect of the Coulomb interaction is simply to induce a shift in

the overall binding energies, which is irrelevant to the analysis of rotational band observables.
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nucleon-nucleon interactions. Shaded symbols indicate the initial levels being considered. All an-

gular momentum decreasing transitions from the selected levels are shown. Line thicknesses are

proportional to the magnitude of the reduced matrix element for the transition (also conveyed
through a gray scale). From calculations with Nmax = 10 at ~ω = 20 MeV, using the proton

quadrupole tensor.

MFDn,31–33 in a proton-neutron M scheme basis.34 States of different parity are

solved for separately. The states shown in Fig. 5 are in the natural parity space.e

The calculations in Fig. 5 are obtained for a specific choice of basis length param-

eter (~ω = 20 MeV) and trunction (Nmax = 10). They thus may be thought of as

taking a “snapshot” of the spectrum along the path to convergence.

Energies following a rotational pattern are most easily recognized if plotted

against an angular momentum axis which is scaled as J(J + 1), as in Fig. 5, so

that energies in an ideal rotational band lie on a straight line (or staggered about a

straight line, for K = 1/2). Rotational bands are most readily identifiable near the

yrast line, where the density of states remains comparatively low. The band mem-

bers are identified — both in the present discussion of 8Be and in the subsequent

discussions of other isotopes — on the basis not only of their energies, but also

on the basis of collective enhancement of electric quadrupole transition strengths

among band members. The strengths of the various electric quadrupole transitions

originating from the candidate band members in 8Be are shown in Fig. 6.

eThe parity of the lowest allowed oscillator configuration, or traditional shell model valence space,

may be termed the natural parity, and states of natural parity are more generally built from

oscillator configurations with even numbers of excitations. The parity obtained by promoting one
nucleon by one shell may be termed the unnatural parity, and states of unnatural parity are built

from oscillator configurations with odd numbers of excitations. Thus, for even-mass p-shell nuclei,
such as 8Be, natural parity is positive parity, while, for odd-mass p-shell nuclei, such as 7,9Be,

natural parity is negative parity.
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The candidate yrast rotational band members for 8Be are indicated (solid sym-

bols) in Fig. 5, through J = 6. Qualitatively, the situation is similar in the calcula-

tions with either the JISP16 interaction [Fig. 5(a)] or NNLO interaction [Fig. 5(b)].

The yrast J = 0, 2, and 4 states are well-isolated in energy from the off-yrast states

and lie approximately on a straight line plotted with respect to J(J + 1) (the line

shown in Fig. 5 is the best rotational energy fit to the calculated band members,

specifically, with J ≤ 4). Their energies approximately match the rotational ex-

pectation, with E(4+)/E(2+) ≈ 3.42 or 3.46, respectively, for the two calculations

shown. While the energy of the calculated yrast J = 6 state lies well above the

rotational line (Fig. 5), the quadrupole transition strengths (Fig. 6) nonetheless

suggest that this state is a member of the yrast band: it is connected to the yrast

4+ band member with collective strength, as well as, less strongly, to other off-yrast

4+ states. Candidate 8+ band members may be identified, as well, but they lie off

the yrast line (and outside the energy range shown in Fig. 5).

Let us return to the challenge of convergence (Sec. 2), but now with rotational

energy patterns in mind. The underlying question is how, when the calculated ener-

gies are still shifting on an MeV scale with increasing basis size, rotational patterns

can nonetheless be reproduced at an MeV or sub-MeV scale. The Nmax dependence

of the energy eigenvalues is shown for the members of the yrast band in Fig. 7 (top).

For each step in Nmax, the calculated energies shift lower by several MeV, much as

already seen for the ground state energy in Fig. 2(b). However, it may also be no-

ticed that the energies of different band members move downward in approximate

synchrony as Nmax increases (at least for the J = 0, 2, and 4 band members). Thus,

the relative energies within the band remain comparatively unchanged, as is seen

more directly when we consider excitation energies, in Fig. 7 (bottom). Thus, a

rotational pattern in the relative energies remains robustly present, even as the en-

ergy eigenvalues themselves change. Moreover, the slope or, equivalently, rotational

constant A would seem to be essentially converged.

There is, however, a clear difference in the convergence properties of the J = 6

band member, which lies above the maximal angular momentum (J = 4) accessible

within the valence space or, equivalently, maximal angular momentum accessible

within Nmax = 0 NCCI calculations (dashed vertical lines in Fig. 7). While the

energy of the J = 6 band member lies above the rotational expectation, this energy

is also converging downward relative to the energies of the lower band members.

Moving now to electromagnetic observables, recall that the calculated electric

quadrupole matrix elements for 8Be are far from converged, as we have seen in

particular for the transition between the J = 2 and J = 0 band members [Fig. 2(f)].

However, rotational structure is reflected not in the values of these observables on

an absolute scale, but rather on the ratios of matrix elements within a band, as

dictated by the Clebsch-Gordan factor in the rotational formula (3). (The overall

normalization of these matrix elements is then determined by the intrinsic structure,

via the intrinsic quadrupole moment Q0.) Let us therefore consider the relative
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Fig. 7. Dependence of calculated energies for 8Be natural parity yrast band members on Nmax:
energy eigenvalues E (top) and excitation energies Ex (bottom), as obtained with the JISP16 (left)

and NNLO (right) nucleon-nucleon interactions. Larger symbols indicate higher Nmax values.

Lines indicate the corresponding fits for rotational energies (2). Vertical dashed lines indicate the
maximal valence angular momentum. From calculations withNmax = 6, 8, and 10 at ~ω = 20 MeV.

values of the quadrupole moments (proportional to diagonal matrix elements of the

quadrupole operator) within the yrast band of 8Be, in Fig. 8 (top) and, similarly,

the quadrupole transition reduced matrix elements (or off-diagonal matrix elements

of the quadrupole operator), in Fig. 8 (middle). The overall normalization Q0 is

eliminated by normalizing to one of these values. We choose to normalize to the

first nonvanishing quadrupole moment within the band, i.e., of the J = 2 band

member. That is, the value of Q0 used for normalization in Fig. 8 is determined

from the calculated Q(2) via (4). Results are shown both for the JISP16 interaction

(at left) and the NNLO interaction (at right). In each case, the relative quadrupole

matrix elements within the band are seen to be largely converged with respect to

Nmax.

The expected rotational values for the quadrupole moments and transition ma-

trix elements, from (3) and (4), are given by the curves in Fig. 8 (top, middle). No-

tice, comparing the left and right columns of Fig. 8, that the calculated quadrupole

observables obtained with the JISP16 and NNLO interactions are virtually identi-

cal, not only in their resemblance to rotational predictions but also in the nature of

their deviations from the rotational predictions. It should be emphasized that the
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Fig. 8. Quadrupole and dipole matrix element observables for the 8Be natural parity yrast band

and their dependence on the Nmax truncation: quadrupole moments (top), quadrupole transi-

tion reduced matrix elements (middle), and dipole moments (bottom), as obtained with the
JISP16 (left) and NNLO (right) nucleon-nucleon interactions. Larger symbols indicate higher

Nmax values. Quadrupole observables are normalized to Q0 (see text). Quadrupole observables

calculated using both proton and neutron operators and dipole observables calculated using all
four dipole terms are shown (but proton and neutron values nearly coincide in all cases). The

curves indicate rotational values (for dipole observables, based on a best fit at highest Nmax). The

vertical dashed lines indicate the maximal valence angular momentum. From calculations with
Nmax = 6, 8, and 10 at ~ω = 20 MeV.

same Q0 values are used for normalization of the transitions [Fig. 8(c) or (d)] as

for the quadrupole moments in the same calculation [Fig. 8(a) or (b), respectively].

Therefore, no free normalization parameter remains for the transition matrix el-

ements. For example, since the value of Q0 used for normalization in Fig. 8 is

determined from Q(2), the proximity of the lowest calculated transition data point

to the rotational curve indicates that the ab initio calculations exhibit an agreement

between Q(2) and B(E2; 2+ → 0+) consistent with adiabatic rotation. There is a
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break from the rotational predictions in the quadrupole moments at J = 6 — the

quadrupole moment Q(6) has the expected sign but is nearly half again as large in

magnitude as expected from the rotational formula (and still increasing in magni-

tude with increasing Nmax). On the other hand, the transition matrix element from

this J = 6 band member is still reasonably consistent with the rotational formula.

Since the difference between proton and neutron quadrupole observables will

take on more significance going forward to the other Be isotopes (Secs. 4.2–4.3), it

is worth noting that, for 8Be, the matrix elements calculated using the proton and

neutron quadrupole operators — Qp and Qn (Sec. 3) — are almost identical, as

a result of the approximate proton-neutron symmetry of the system. Quadrupole

moments and matrix elements calculated using the proton (solid symbols) and

neutron (open symbols) quadrupole tensors are, in principle, both shown in Fig. 8,

but the data points are almost entirely indistinguishable on the plot. The proton

and neutron quadrupole observables are normalized separately in Fig. 8, i.e., the

proton and neutron intrinsic quadrupole moments (Q0,p and Q0,n, respectively)

are determined independently. Most of the difference in the calculated proton and

neutron observables is embodied in this normalization, through an ∼ 1% difference

in Q0,p and Q0,n.

There are no magnetic dipole transitions to consider within a K = 0 band, since

the angular momenta of successive band members differ by 2. However, we may still

examine the dipole moments for the rotational band members in 8Be, as shown in

Fig. 8 (bottom). As a particular special case of (6), these are expected to vary

linearly with J , as µ(J) = gRµNJ . The dipole moments calculated with the orbital

angular momentum dipole terms [circles in Fig. 8 (bottom)] do indeed closely follow

such a linear relation. The values are well-converged, with a slope gR ≈ 0.49.f Note

that the calculated dipole moments agree with the simple linear rotational formula

even for the J = 6 band member, for which the calculated energy and quadrupole

moment were not as clearly consistent with a rotational picture.

For the spin dipole terms [triangles in Fig. 8 (bottom)], the moments are nearly

vanishing. The dipole moments calculated with the different orbital/spin and pro-

ton/neutron dipole terms may be interpreted as “spin contributions” coming from

these different operators,36 since they measure the projection of the orbital or spin

angular momentum onto the total angular momentum. The near-vanishing contri-

bution from the intrinsic spins is consistent with an α-clustering picture, where the

spins pair to zero angular momentum.

Returning to the complementary shell model description, it may be noted that

Elliot SU(3) symmetry37,38 and the LS coupling scheme play significant organizing

roles in the structure of p-shell nuclei.39 Ab initio calculations of the 8Be ground

state in an SU(3) coupling scheme have been reported in Ref. 12, using a next-

fThe traditional collective result for the gyromagnetic ratio35 is gR = 0.5, obtained if we assume
identical contributions Lp = Ln from the proton and neutron orbital angular momenta and no

contribution from spin angular momenta.
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Fig. 9. Energy eigenvalues for states in the natural parity space of 7Be, as obtained with the

JISP16 (left) and NNLO (right) nucleon-nucleon interactions. See Fig. 5 caption for discussion of
plot contents and labeling. From calculations with Nmax = 10 at ~ω = 20 MeV.

to-next-to-next-to-leading-order (N3LO) chiral interaction.17 It is found that the

dominant contribution to the ground state wave function arises from the (4, 0)

irreducible representation (irrep) of SU(3), paired with intrinsic spin contributions

which all vanish, i.e., (Sp, Sn, S) = (0, 0, 0). The (4, 0) irrep of SU(3) contains

angular momentum states with L = 0, 2, and 4, corresponding to a truncated

K = 0 rotational band.

To briefly summarize these observations, from the ab initio calculations there

are clear and consistent indications of rotation, in the simplest example of 8Be,

based on patterns in energies and electromagnetic observables. The K = 0 ground

state band is qualitatively consistent with an α-α structure, but discontinuities in

observables at the maximal valence angular momentum suggest that the spherical

shell structure (and shell model p-shell description) may retain physical relevance.

4.2. Rotation in 7Be

The most distinctive and well-developed rotational band structures are observed in

calculations for odd-mass nuclei. Given the same range of excitation energies and

angular momenta, the low-lying ∆J = 1 bands in the odd-mass nuclei provide a

richer set of energy and electromagnetic observables. Yrast and near-yrast states

yield the most immediately recognizable sets of candidate band members, so our

focus will be on these states. The rotational bands in 7Be (this section) and 9Be

(Sec. 4.3) serve as illustrative cases. Experimental counterparts for these calculated

rotational bands may be identified.14,29,40,41

The low-lying levels calculated in 7Be are shown in Fig. 9. A K = 1/2 yrast

band is identified, again through a combination of rotational energies and collec-

tively enhanced transition strengths. The quadrupole transitions, shown in Fig. 10,

obey the characteristic pattern for a K = 1/2 band implied by the rotational model
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Fig. 10. Electric quadrupole transition strengths among levels in the 7Be natural parity space, orig-

nating from yrast band members, as obtained with the JISP16 (left) and NNLO (right) nucleon-
nucleon interactions. See Fig. 6 caption for discussion of plot contents and labeling. From calcu-

lations with Nmax = 10 at ~ω = 20 MeV, using the proton quadrupole tensor.

[Fig. 3(b)]: stronger ∆J = 2 transitions and comparatively weak (though still col-

lective) ∆J = 1 transitions. The energy staggering is such that the J = 1/2, 5/2,

. . . levels are raised in energy, and the J = 3/2, 7/2, . . . levels are lowered (this

direction for the staggering corresponds to a negative value of the Coriolis decou-

pling parameter a). Note that the staggering is sufficiently pronounced that the two

lowest-J band members are inverted, as is experimentally observed.

Comparing the calculated energies with the rotational formula (2), it may be

seen that the energies of the band members through the highest angular momen-

tum accessible in the valence space (J = 7/2) are reasonably consistent with the

rotational formula. (The line in Fig. 9 represents the predictions of the rotational

formula, with band energy parameters E0, A, and a extracted from the energies

of the three lowest-energy band members, i.e., J = 1/2, 3/2, and 7/2.) Although

a second J = 5/2 state lies within ∼ 1 MeV of the yrast J = 5/2 state, in both

calculations, the lack of enhanced transitions (Fig. 10) suggests negligible mixing

of this “spectator” state with the yrast band member.

At higher angular momenta, J = 9/2 and 11/2 states are calculated to have

collective quadrupole transitions (Fig. 10) to the lower band members, suggesting

their inclusion as band members. The energy staggering is such that the J = 9/2

band member lies off the yrast line. (Intriguingly, these states also have enhanced

transitions to certain other, high-lying J = 5/2 and 7/2 states, at excitation energies

which seem to be roughly consistent between the JISP16 and NNLO calculations.)

While the energies of these states lie above the rotational expectation (Fig. 9), these

energies are also converging downward more rapidly than those of the lower band

members, much as seen above for the J = 6 band member in 8Be (Sec. 4.1).
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Fig. 11. Quadrupole and dipole matrix element observables for the 7Be natural parity yrast band:
quadrupole moments (first row), quadrupole transition reduced matrix elements (second row),

dipole moments (third row), and dipole transition reduced matrix elements (fourth row), as ob-
tained with the JISP16 (left) and NNLO (right) nucleon-nucleon interactions. See Fig. 8 caption
for discussion of plot contents and labeling. From calculations with Nmax = 10 at ~ω = 20 MeV.

A detailed test of the rotational description for these candidate 7Be band mem-

bers is obtained by comparing the many electric quadrupole moments and transi-

tion matrix elements among these states with the rotational expectation from (3)
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and (4), as shown in the upper two rows of Fig. 11. Recall that only a single

normalization constant, the intrinsic quadrupole moment Q0, enters into the rota-

tional predictions for the electric quadrupole moments and transitions, which are

shown normalized to Q0 in Fig. 11. (We have fixed Q0 based on the lowest non-

vanishing quadrupole moment, that of the J = 3/2 state.) Beyond this choice of

normalization, agreement or disagreement of the ab initio calculated values with

the rotational curves is entirely a test of the rotational picture. Quadrupole mo-

ments in Fig. 11 are calculated using both the proton (solid symbols) and neutron

(open symbols) quadrupole tensors (Sec. 3). The proton and neutron quadrupole

moments are normalized separately, since no a priori relation exists between the

intrinsic matrix elements of the Qp and Qn operators. (In some cases, data points

for the neutron and proton results may not be separately visible in these figures,

when the values are so close as to be indistinguishable.)

We may observe an essentially similar behavior to that noted earlier for

quadrupole observables in the 8Be yrast band (Sec. 4.1), though now with the

added richness of ∆J = 1 transitions. The quadrupole moments [Fig. 11 (first

row)] are consistent with a rotational picture up to the maximal valence angular

momentum J = 7/2. There is again a modest discontinuity in the quadrupole mo-

ments (increasing by about half again over the rotational expectation) above this

angular momentum. Although the Nmax dependence is not shown in Fig. 11, the

values of these quadrupole moments (even relative to those of the rest of the band,

i.e., normalized to Q0) are poorly converged with Nmax. The quadrupole transition

matrix elements [Fig. 11 (second row)] remain largely consistent with the rotational

expectations throughout the candidate band, up to J = 11/2.

Likewise, note the remarkable level of consistency between the JISP16

[Fig. 11 (left)] and NNLO [Fig. 11 (right)] calculations of these observables. The

similarity of these calculations lies not just in their mutual overall agreement with

the rotational predictions, but in the nature of their deviations from the rotational

formula and the sense of the splittings between the values of proton and neutron

matrix elements (excepting, perhaps, certain details for the highest-J band mem-

bers).

The calculations in Fig. 11 test not just the magnitudes of the moments and

matrix elements, but also their signs. There are some ambiguities in the rotational

predictions for the signs of the reduced matrix elements, due to the arbitrary phases

entering into the definition of each eigenstate of a Hamiltonian operator (or, equiva-

lently, the arbitrary overall sign arising on each eigenvector obtained in the numeri-

cal diagonalization of a Hamiltonian matrix). However, even once phase ambiguities

are taken into account, a rich set of predicted correlations between signs of matrix

elements for electric quadrupole (∆J = 1 and ∆J = 2) and magnetic dipole tran-

sitions remains, as detailed in Sec. III C of Ref. 14. Since moments are deduced

from diagonal matrix elements of the transition operator, they are invariant under

the arbitrary sign choices in the definitions of eigenstates. The sign of a transition
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matrix element varies with the sign choices on the initial and final states, σJ and

σJ′ , respectively, as the product σJ′σJ .

Matching a small subset of the ab initio calculated transition matrix elements

(say, the ∆J = 1 proton quadrupole matrix elements) to the signs conventionally

adopted in the rotational description (Fig. 3) suffices to completely fix arbitrary

signs. It is then meaningful to compare the signs of all other transition matrix

elements — the proton and neutron quadrupole matrix elements, and all magnetic

dipole terms — with the rotational predictions. The signs obtained in the ab initio

calculations of Fig. 11 are uniformly consistent with the rotational picture.

We turn now to comparing the many magnetic dipole moments and transition

matrix elements among these states with the rotational expectation from (6), as

shown in the lower two rows of Fig. 11. The four distinct “dipole moments” calcu-

lated for each band member in 7Be, obtained with the four different dipole terms,

are shown in Fig. 11 (third row), while the four distinct sets of ∆J = 1 dipole

transition matrix elements are shown in Fig. 11 (fourth row). The lines indicate the

rotational predictions from (6), with parameters determined to provide a best fit

to the calculated moments and transitions (specifically, considering the band mem-

bers with J ≤ 7/2). These parameters are determined independently, for each dipole

term operator (and, of course, for the calculations with different interactions).

Recall that there are only three parameters in the rotational predictions (6). The

core gyromagnetic ratio gR is responsible for the overall linear trend in the dipole

moments, which is the dominant contribution for the orbital dipole terms [circles

in Fig. 11 (third row)]. Then, for a K = 1/2 band, there are two relevant intrinsic

matrix elements, where the second of these, or cross term in (6), contributes the

staggering of the values as a function of J . Thus, there are only three parameters but

many more (eleven) calculated values (for each dipole term and for each calculation

in Fig. 11), and the ab initio calculated values appear to be highly consistent with a

rotational pattern. Moreover, the senses of the deviations which do arise appear to

be remarkably consistent between the JISP16 and NNLO calculations. Notice the

near-vanishing proton spin contributions — these would be consistent, for instance,

with a structure in which proton spins are paired to yield zero total proton spin

angular momentum.

The rotational formula for magnetic dipole moments and transition matrix ele-

ments provided by (6) is the result of the classic rotational interpretation, formu-

lated for heavier nuclei. As noted in Sec. 3, the basic assumption is that the nucleus

separates into a deformed rotating core and residual extra-core particles. However,

consistency with a model does not imply that the model provides the sole successful

description of the physical system, nor that the model uniquely provides the correct

underlying physical interpretation. For 7Be, in particular, it might be natural, in

a cluster description, to consider the nucleus either as an α-3He dimer or as 8Be

coupled to a neutron hole.28
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Fig. 12. Energy eigenvalues for states in the natural parity space of 9Be (top) and unnatural parity

space of 9Be (bottom), as obtained with the JISP16 (left) and NNLO (right) nucleon-nucleon

interactions. See Fig. 5 caption for discussion of plot contents and labeling. From calculations
with Nmax = 10 (for natural parity) and Nmax = 11 (for unnatural parity) at ~ω = 20 MeV.

4.3. Rotation in 9Be

The isotope 9Be has a natural interpretation in a cluster picture, as consisting

of 8Be plus a neutron, that is, as an α-α dimer with a covalent neutron shared

between the α clusters.28 Although the ground state is stable, all excited states are

resonances, lying above the α+ α+ n decay threshold.29 The unnatural (positive)

parity states begin at low excitation energy relative to the natural (negative) parity

states: the ground state is 3/2−, but the first excited state, at an excitation energy of

under 2 MeV, is 1/2+. We therefore show, in Fig. 12, the energies of the eigenstates

obtained in both the natural [Fig. 12 (top)] and unnatural [Fig. 12 (bottom)] parity

spaces.

Based both on energies and transition strengths, two low-lying bands are iden-

tified in the natural parity space, both for the JISP16 [Fig. 12(a)] and NNLO

[Fig. 12(b)] interactions: an yrast K = 3/2 band (with J = 3/2, 5/2, 7/2, and 9/2

members) and an excited K = 1/2 band (with J = 1/2, 3/2, 5/2, and 7/2 mem-

bers). A similar pattern of low-lying states may be found in traditional shell model
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states (see text), as obtained with the JISP16 nucleon-nucleon interaction. See Fig. 6 caption for
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the proton quadrupole tensor.

calculations with the phenomenological Cohen-Kurath p-shell interaction,42 shown

in Fig. 13(a). (The maximal angular momentum accessible within the valence space

is J = 9/2.) The apparent restriction of these bands to the valence space (although

enhanced quadrupole transitions to off-yrast states at higher J are not excluded)

and consistency with p-shell calculations would seem to suggest that the structure

of these bands can be largely described by dynamics within the valence shell. As a

further indication of the robustness of the rotational structure, similar results from

NCCI calculations with the N3LO interaction are shown in Fig. 13(b).
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The quadrupole transition strengths from the band members are shown in

Fig. 14(a,b). The band assignments are based on enhanced transitions within each

band. There is also one example of an enhanced cross transition between the bands

(namely, from the J = 9/2 terminating band member of the K = 3/2 band to the

J = 5/2 member of the excited band).

It is intriguing that the J = 7/2 member of the excited band is the third J = 7/2

state, in all four calculations considered here, i.e., with JISP16 [Fig. 12(a)], NNLO

[Fig. 12(b)], Cohen-Kurath [Fig. 13(a)], and N3LO [Fig. 13(b)] interactions. The

“spectator” 7/2−2 state, rather than being part of the rotational band structures, ap-

pears to be part of a grouping of off-yrast states connected by enhanced quadrupole

transitions, as shown in Fig. 14(c). This grouping is comprised also of the next off-

yrast J = 1/2, 3/2, 5/2 (both members of a close doublet), and 9/2 states. The

W-shaped staggering pattern in the energies of these off-yrast states (raised 1/2,

5/2, and 9/2 members) is consistent across all four calculations.

To provide a foundation for the rotational description of 9Be and to lay the

groundwork for our discussion of the band energy parameters below (Sec. 5), the

Nmax dependence of the energies for the yrast and excited band members is in-
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vestigated in Fig. 15. Much as we have already seen for the yrast band in 8Be

(Fig. 7), the calculated energy eigenvalues shift lower by several MeV with each

step in Nmax [Fig. 15 (top)], while the relative energies within the band remain

comparatively unchanged, as may be seen more directly from the excitation ener-

gies [Fig. 15 (bottom)]. The excitation energy of the excited band relative to the

yrast band, though not converged, varies much less rapidly with Nmax than do the

eigenvalues themselves.

The magnetic dipole observables can provide some insight into the angular mo-

mentum structure of a rotational band (Secs. 4.1 and 4.2). However, the angu-

lar momentum structure may also be explored more directly, by decomposing the

eigenfunctions into components of good orbital angular momentum L and/or spin S

(which may be further subdivided into proton and neutron spins, Sp and Sn). This

decomposition is accomplished automatically if the eigenproblem is solved from the

beginning in a basis of good orbital and spin angular momentum quantum numbers,

as in the SU(3)-coupled NCCI code of Dytrych et al.43 However, this decomposi-

tion may alse be extracted from wave functions obtained in conventional M scheme

NCCI calculations, as described in Ref. 18 (via the so-called “Lanczos trick”).

The angular momentum and spin decompositions for the natural parity yrast

and excited band members in 9Be are shown in Fig. 16. It is apparent that each state

is dominated by a specific L component and by an intrinsic spin S = 1/2. That is,

the calculated wave functions approximately obey an LS coupling scheme.28 (The

angular momentum decomposition for rotational states in 7Li, the mirror nucleus to
7Be, is also explored in Ref. 18 and yields similarly strong evidence of LS coupling.)
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The LS coupling, while reasonably pronounced in Fig. 16, is not pure. In fact, the

mixture of L components in the ab initio calculated ground state [Fig. 16(a)] is

consistent with a simple single-irrep SU(3) shell-model description, including spin-

orbit interaction, as presented in Ref. 39: an L = 1 contribution of 21/26 ≈ 81%

and an L = 2 contribution of 5/26 ≈ 19%.

In both bands, the dominant L values for successive band members are found

to be L = 1, 2, 3, and 4. In the yrast band, the angular momenta are coupled in the

“stretched” (or “aligned”) sense, with J = L+1/2, while, in the excited band, these

same angular momenta are coupled in the “unstretched” (or “antialigned”) sense,

with J = L − 1/2. This pattern may be interpreted in a core-particle rotational

picture, in which the core orbital motion generates a K = 1 band, which then

couples to the neutron spin, in aligned and antialigned senses, to generate aK = 3/2

band and a K = 1/2 band, respectively.

Finally, we note that the calculated yrast states of the unnatural parity space

of 9Be also constitute a K = 1/2 rotational band, with candidate band members

at least through J = 17/2 [Fig. 12 (bottom)]. The maximal angular momentum

possible in the lowest shell model unnatural parity space (the space of 1~ω excita-

tions) or, equivalently, the NCCI Nmax = 1 space is J = 13/2 [dashed vertical lines

in Fig. 12 (bottom)]. The properties of this unnatural parity band are similar to

those already discussed for the calculated 7Be yrast K = 1/2 band (electromagnetic

observables are not shown here, but see Fig. 8 of Ref. 14): (i) band members above

the maximal valence angular momentum lie above the rotational prediction in en-

ergy but are converging downward in energy relative to the lower band members,

(ii) quadrupole moments and transitions are in close agreement with the rotational

predictions, except for an enhancement in quadrupole moments relative to the ro-

tational formula above the maximal valence angular momentum, and (iii) dipole

moments and transitions are generally consistent with the rotational predictions

through the highest J considered, including above the maximal valence angular

momentum.

5. Extrapolation of energies and prediction of rotational band

parameters

Returning to the initial questions, from Sec. 1, now that we have explored how

recognizable the signatures of rotation are, seen that they are surprisingly robust

across interactions (and despite limitations in convergence), and inquired into as-

pects of the intrinsic physical structure, let us touch upon how the emergent rotation

compares to experiment in quantitative detail.

The energy parameters for the bands in 7–9Be, as extracted from level energies

in the ab initio calculations, are summarized in Fig. 17. Recall that the band energy

parameter E0, rotational parameter A, and Coriolis decoupling parameter a (for

K = 1/2) entering into the rotational energy formula (2) represent the “height” of

the band, the “slope” of the band, and the “staggering” of the band, respectively,
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in a plot of energies vs. J(J + 1) (e.g., Figs. 5 and 9). The band excitation energy

Ex, shown in Fig. 17 (bottom), is defined relative to the yrast band energy as Ex ≡
E0−E0,yrast.

g Results are shown for a sequence of Nmax truncations. Parameters for

the experimentally observed bands (based on the set of experimental levels detailed

in Ref. 14) are also shown (horizontal lines).

Ideally, comparison of the calculated and experimental band parameters pro-

gNote that the band energy parameter E0 is the energy intercept of the band at J = 0. It is
therefore not equivalent to the band head energy (except perhaps in the case of a K = 0 band).

Likewise, the band excitation energy, as the difference of two such band energy parameters, is the
vertical separation between the excited band and the yrast band as they intersect the energy axis

at J = 0. It is therefore not to be conflated with the band head excitation energy (the two being

equivalent only in the case where both bands are even-spin K = 0 bands, thus both with J = 0
band heads, and even then only in the ideal case that the band member energies lie exactly on

the rotational line).
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vides a direct test of the degree to which the nuclear many-body problem with the

chosen internucleon interaction (here, JISP16 or NNLO) reproduces the rotational

dynamics actually occurring in the physical Be isotopes. This comparison is sub-

ject to various challenges: the computational limitations in obtaining convergence

of energies (already discussed), the experimental challenge of identifying the band

members (in some cases from amongst broad, overlapping resonances, with limited

information available for spin-parity assignments and almost exclusively without

electromagnetic decay data29,40), ambiguity in describing the band through band

energy parameters when level energies deviate from the rotational formula, and

the more fundamental consideration that some of the levels involved are broad

resonances for which an equivalent sharp bound state energy is not well-defined.

Nonetheless, the calculated band parameters in Fig. 17 are sufficiently stable

with respect to Nmax (and the experimental band parameters sufficiently well-

defined) to permit a meaningful comparison. The experimental values of the rota-

tional parameter A [Fig. 17 (top)] for the various bands vary by about a factor of 2,

from ∼ 0.5–0.7 MeV for the experimental natural parity bands down to ∼ 0.34 MeV

for the 9Be unnatural parity band. The JISP16 and NNLO calculations both con-

sistently yield rotational parameters of ∼ 0.6 MeV for the natural parity bands and

∼ 0.35–4 MeV for the 9Be unnatural parity band. The Coriolis staggering for the

calculated K = 1/2 bands [Fig. 17 (middle)] varies in both amplitude and sign, and

the experimental trend in both these properties is reproduced across the bands.

The excitation energies for the excited natural parity band and the unnatural

parity band in 9Be [Fig. 17 (bottom)] are decreasing with Nmax [recall Fig. 15 (bot-

tom)], bringing them toward the experimental values. Yet, they are varying too

strongly with Nmax for it to be immediately obvious how close the converged pre-

dictions will lie to the experimental values.

One may attempt to overcome incomplete convergence — and obtain more pre-

cise comparisons with the experimentally identified rotational bands — by applica-

tion of basis extrapolation methods.44,45 If the functional dependence (on Nmax and

~ω) were known, describing how the energy eigenvalues calculated in the truncated

spaces approach their converged values, it should, in principle, be possible to take

unconverged values obtained from calculations in truncated spaces and use them to

estimate the true converged eigenvalues. Such methods are still in their formative

stages. Nonetheless, it is intriguing to apply a straightforward scheme based on a

presumed exponential convergence of energy eigenvalues with Nmax:46,47

E(Nmax) = c0 + c1 exp(−c2Nmax). (8)

Calculations of the energy at three successiveNmax values, for fixed ~ω, are sufficient

to determine all three parameters ci in (8). Extrapolating to the limit Nmax →∞
gives E(Nmax)→ c0, so the fitted value for c0 provides an estimate of the converged

value for the energy. The results of this procedure are typically most stable when

~ω is taken near the variational minimum in the energy curves as functions of ~ω,47

as in Figs. 2(a,b), i.e., ~ω ≈ 20–25 MeV for the isotopes and interactions considered
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Fig. 18. Calculated energy eigenvalues E (top) and excitation energies Ex (bottom), for 8Be natu-
ral parity yrast band members, from calculations with Nmax = 6, 8, and 10, as in Fig. 5, together
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here (see Ref. 47 for further discussion of the procedure).

To apply this exponential extrapolation scheme to our rotational analysis, we

must first extrapolate the energies of the individual band members. Let us take the
8Be yrast band for illustration, and revisit the Nmax dependence of the calculated

values from Fig. 5. The result of exponentially extrapolating these values is seen

in Fig. 18 (open symbols). Observe that the energy of the J = 6 band member

comes into line with the rotational predictions. Rotational energy parameters are

then obtained by matching the rotational energy formula (2) to the extrapolated

level energies (dashed lines in Fig. 18).

The band energy parameters for 7–9Be obtained from such extrapolations are

shown in Fig. 17 (paired triangles), providing a more concrete estimate of where the

converged values lie. Note in particular the reproduction of the excitation energies

for both excited bands in 9Be (at the MeV scale), as well as the reproduction of

the unnatural parity band rotational and Coriolis parameters. This success is to be

contrasted with the apparent failure to reproduce the exceptionally high experimen-

tal rotational parameter value of ∼ 0.7 MeV for the natural parity excited band.

However, the exponential extrapolations are subject to considerable uncertainties,47



January 1, 2018 13:9 WSPC/INSTRUCTION FILE berotor-ijmpe

Collective rotation from ab initio theory 29

and several of the experimental levels (including in the 9Be natural parity excited

band) are subject to significant ambiguitities.29,48 It is therefore not yet clear to

what extent the remaining discrepancies reflect actual deficiencies in the ab initio

description of the nucleus with the chosen interactions, as opposed to these other

limitations.

6. Conclusions

Through illustrative examples of rotational bands in ab initio NCCI calculations

for 7–9Be, we have seen how the emergence of rotational structure can be recognized

through a combination of rotational energy patterns, enhanced electric quadrupole

strengths, and general agreement of electric quadrupole and magnetic dipole mo-

ments and transition matrix elements with rotational predictions.

It is simplest to recognize rotational states near the yrast line, where the density

of states is comparatively low, as in the bands considered here. However, rotational

structure may also be recognized in states further away from the yrast line (see the

excited K = 0 band of 10Be,41,49,50 as calculated and discussed in Ref. 14). It is also

most straightforward to recognize rotational states with angular momenta accessible

within the traditional valence space (or NCCI Nmax = 0 or 1 space), since energies

of band members above this angular momentum may have significantly different

convergence properties and may deviate from the rotational formula, at least in the

computationally-accessible truncated calculations.

We have also begun to develop a sense of the robustness of the emergent rotation

in ab initio calculations: at a more fundamental level, how robustly the imperfectly-

known internucleon interaction can be expected to give rise to rotation, and, at a

more pragmatic level, how robust the rotation is in incompletely-converged many-

body calculations carried out in truncated spaces.

We observe a remarkable similarity in spectral details across results obtained

with two independently-derived interactions: the JISP16 interaction, obtained by

inverse-scattering methods, and the chiral NNLO interaction NNLOopt (calculations

with a chiral N3LO interaction were also considered). The similarity lies not only in

the presence of analogous rotational bands across the calculations but in the subtle

deviations of these bands from the ideal rotational formulas (e.g., Fig. 11). The

similarities arise despite the different levels and rates of convergence — compare,

e.g., the energies in Fig. 7(a) with those in Fig. 7(b). Comparing the predictions

for band energy parameters obtained with these two interactions, we found a high

level of quantitative consistency (Fig. 17). Here, a simple exponential basis extrap-

olation scheme for energy eigenvalues aided the comparison of the less-converged

observables (e.g., certain band excitation energies), but, for most of the band en-

ergy parameters, the consistency is apparent even without need for extrapolation.

It is particularly valuable here to note consistency across methods. Although the

focus of this review is on NCCI calculations, quantum Monte Carlo calculations
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Fig. 19. Energy eigenvalues for states in the natural parity space of 7Li (the mirror nucleus to 7Be),
as obtained in Green’s Function Monte Carlo (GFMC) calculations with the AV18 nucleon-nucleon

and IL2 three-nucleon interactions, for comparison with Fig. 9. Calculations from Ref. 1.

of 7Li (the mirror nucleus to 7Be), as shown in Fig. 19, also readily reproduce

an 3/2-1/2-7/2-5/2 yrast angular momentum sequence,1 reflective of a K = 1/2

band with negative Coriolis staggering. These calculations were carried out with an

internucleon interaction consisting of an AV18 two-body part51 and an IL2 three-

body part.52 It is intriguing to note the detailed resemblance of the eigenvalue

spectrum in Fig. 19 to the NCCI calculations of Fig. 9. Again the J = 5/2 band

member lies slightly higher than the rotational formula would give, based on the

J = 1/2, 3/2, and 7/2 states. The same pattern of off-yrast states arises, as well:

the close J = 5/2 doublet and a subsequent set of off-yrast states (J = 1/2, 3/2,

5/2, and 7/2) with the same staggering pattern as in Fig. 9.

The rotational patterns are also perhaps surprisingly robust against trunca-

tion of the many-body calculation. The principal challenge in identifying collective

structure in NCCI calculations is the weak convergence of many of the relevant ob-

servables (Fig. 2). However, there is an important distinction between convergence

of individual observables, taken singly, and convergence of relative properties, such

as excitation energies (and, especially, their ratios) or ratios of different electromag-

netic matrix elements. It is these latter, relative properties that are essential to the

recognition of rotation through comparison with the rotational formula.

Our initial focus in examining observables lay simply in recognizing rotational

patterns in the ab initio calculations and examining their fidelity to the rotational

formulas. The existence of such patterns suggests a rotational separation of the

wave functions, as in (1). However, by itself, it leaves unanswered the question of

the physical origin and intrinsic structure of the wave functions, i.e., the nature of

the intrinsic state |φK〉. The two classic paradigms for understanding this structure

are α clustering and p-shell dynamics, including SU(3) symmetry in the p shell.

(A more comprehensive, multishell framework for understanding the emergence of

collective deformation and rotational degrees of freedom is provided by Sp(3,R)
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symplectic symmetry.53,54)

Traditionally, in rotational analysis, intrinsic matrix elements of the multipole

operators are the essential source of information on intrinsic structure.25 The elec-

tric quadrupole moments and transitions provide insight into the nuclear deforma-

tion. The absolute magnitudes of the quadrupole observables are unconverged in

the NCCI calculations (leaving only the ratio Q0,p/Q0,n, which may provide insight

into the relative deformation of the proton and neutron distributions, as discussed

in Sec. IV B of Ref. 14). However, magnetic dipole intrinsic matrix elements probe

the orbital and spin angular momentum structure of the rotational states, which

may also be more directly examined through angular momentum (L, S, Sp, and

Sn) decompositions of the wave functions.

From the examples considered here, it appears that the rotational bands in 7–9Be

are consistent with an α-α clustered rotational core and particle-rotor descriptions.

Nonetheless, discontinuities in observables at the maximal valence angular momen-

tum suggest that the spherical shell structure also plays some role. It is not clear

whether these discontinuities are transient artifacts of incomplete convergence in

truncated calculations or instead persist to the full, untruncated many-body space.

The preliminary indications vary depending upon the observables considered, e.g.,

the quadrupole moments in Fig. 8 (top) or the excitation energies in Fig. 18 (bot-

tom).

Finally, a quantitative comparison of the emergent ab initio rotation with ex-

periment is subject to many challenges, from the computational side (convergence),

the experimantal side (including identification of the relevant levels, lack of elec-

tromagnetic transition data, and resolution of broad resonances), and the more

fundamental limitations to applying bound-state methods and a bound-state for-

mulation of the rotational formalism to resonant states. Nonetheless, despite these

challenges, we have seen that the band energy parameters extracted from ab initio

calculations (Fig. 17) display a notable level of consistency, both qualitative and

quantitative, when compared with those extracted from experiment.
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