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Low-Dimensional Network 
Formation in Molten Sodium 
Carbonate
Martin C. Wilding1, Mark Wilson2, Oliver L. G. Alderman3,4, Chris Benmore3, J. K. R. Weber3,4, 
John B. Parise5, Anthony Tamalonis4 & Lawrie Skinner3,4,5

Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of 
rare earth elements and volatile molecules. An understanding of the structure and related properties 
of these intriguing liquids has been limited to date. We report the results of a study of molten sodium 
carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and 
computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are 
collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition 
in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) 
are obtained by performing molecular dynamics simulations treating the carbonate anions as 
flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low 
temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of 
the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as 
the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the 
diffusion of Na+ ions.

Carbonatites are rarely occurring igneous liquids whose formation is dominated by molten carbonates derived 
from the Earth’s mantle. Although their occurrence is currently restricted to a single active volcano, Ol Doinyo 
Lengai in Tanzania, it is believed that this type of volcanism has occurred throughout geological history1–4. As 
recently observed eruptions confirm, these carbonatite liquids have low viscosity and low eruption temperatures 
and are believed to play a significant role in the geological evolution of other terrestrial planets5. The low viscosity, 
the high solubility of key elements such as P and the light rare earth elements and ability to dissolve volatile ele-
ments makes carbonatite liquids important agents for geochemical enrichment in the Earth’s mantle and they are 
closely linked to kimberlite genesis and diamond formation6,7. Economically, carbonatites are important as 
sources of rare metals including niobium, tantalum and uranium2,3 while molten carbonates are important in 
development of molten carbonate fuel cells and as battery electrolytes8. Despite their recognised importance the 
structure of these liquids is not well-known. The traditional view is that they are similar to molten salts with car-
bonate groups −(CO )3

2  acting as anions and combining with metal cations9–11. This contrasts strongly with the 
silicate liquids which form the majority of terrestrial igneous liquids and are considered to be dominated by 
polymerised SinOm networks12.

An early X-ray diffraction (XRD) study provided estimates of the C-O, C-C and O-O distances for the car-
bonate anion and M-O, M-C and M-M distances in molten alkali (M+) carbonate liquids13. These X-ray data were 
interpreted in terms of the contact distances between the oxygen atoms in carbonate anions and the metal cati-
ons. The number of sites in contact with a single oxygen was found to increase systematically from Li+ to K+ and 
correlated with an increase in free volume allowing free rotation of anions. Vibrational spectroscopy performed 
on carbonate systems that form glasses hints at two populations of carbonate species, resembling those observed 
in crystalline configurations and those forming part of a network with the cations14,15, making their structures 
more complex than a typical molten salt. Simulations of carbonates which assume rigid anions with cations in 
interstices do not reflect the distortions suggested by spectroscopy15,16.
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In this study we present the results of a series of state-of-the-art in situ XRD experiments on levitated car-
bonate liquids and similarly advanced computer simulations of the same liquids. The aim of this work is to 
address some key questions that have arisen from the previous studies. These include questions such as whether 
the liquids can be considered as simple molten salts, whether the internal −CO3

2  geometry directly affects both 
melt structure and/or dynamics, and also how the liquid structure contrasts with typical silicates10,17–21. The devel-
opment of simulation models will allow, for example, temperature-dependent structural properties to be probed 
and will help steer future experimental investigation.

The structure of the sodium carbonate liquids is determined by high energy XRD (HEXRD) combined with 
a containerless levitation technique using four gas compositions. The Fx(Q) obtained compares with the results 
obtained by Zarzycki13. Although the Q-range of this earlier study is limited, there is good agreement in the 
position of the first few peaks in the diffraction pattern. However the intensities of the peaks are substantially 
different and furthermore, the functions obtained here show peaks which are better resolved. The diffraction 
pattern shows well-resolved peaks at 1.57, 2.39, 3.44 and 6.14 Å−1 (Fig. 1(a)) and oscillations that persist to at least 
Q ~ 22 Å−1. The high Q oscillations are indicative of significant short-range ordering associated with the presence 
of stable molecular anions in the liquid, whilst the low Q features highlight the presence of ordering on longer 
length-scales.

The structure of the carbonate liquids can be usefully compared with silicates. Analogous sodium silicate 
glasses have been studied using both X-ray21 and neutron diffraction17,18,22. The first peak in Fx(Q) for (Na2O)
(SiO2) appears at around the same Q as the second peak in the corresponding carbonate21. This peak is dominated 

Figure 1. (a) The top two curves show the X-ray total structure factors from the present work obtained by 
experiment (purple line, levitated in Ar gas) and simulation (black line). Both of these curves are offset by one 
along the ordinate axis for clarity. The remaining curves show the weighted contributions of the six partial 
structure factors (identified in the legend) to the simulation total structure factor. (b) Temperature dependence 
of the X-ray total structure factor from simulation. The curves obtained at successive temperatures (from 
bottom to top, T =  1100 K, 1200 K, 1300 K, 1400 K, 1500 K, 1600 K, 175 K) are offset along the ordinate axis for 
clarity. The upper curve shows the experimental function obtained using Ar levitating gas. (c) The temperature 
evolution of the respective heights of the first three peaks in Fx(Q) as indicated in the main panel as Q1, Q2 and 
Q3. (d) The temperature evolution of the intensities of the six partial structure factors contributing to the peak at 
F(Q1). Key: black - OO, red - CO, green - NaO, Blue - CC, cyan - NaC, magenta - NaNa, orange - total F(Q).
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by Na-Na and Na-Si(C) contributions and, as a result, this strongly indicates that the Na-Na periodicites are 
equivalent in the two melts.

More insight into the liquid structure is obtained from the simulations of sodium carbonate liquids. 
Figure 1(a) shows Fx(Q) generated from simulation at T =  1400 K compared with that from experiment (in sup-
porting Ar gas). The simulated function shows the same “three peak” structure at Q ≤  5Å−1 identified from exper-
iment. Figure 1(a) also shows the contribution of the weighted partial structure factors. The peak at Q ~ 1.6 Å−1 is 
dominated by the O-C, O-O and O-Na contributions (although all six partials show intensity at this Q) and arises 
from the relatively long inter-ionic length-scale associated with the presence of the −CO3

2  anions. The peak at 
Q ~ 3.7 Å−1 arises from a superposition of peaks in the O-Na and O-O partials. The strong oscillation in Fx(Q) 
extending to high Q arises from a superposition of strong oscillations in both SOO(Q) and SCO(Q), the wavelengths 
of which correspond to the intramolecular O-O and C-O distances respectively.

The results of the simulation compare well with the experimental Fx(Q) although there is a notable difference 
in the intensity of the peak at Q ~ 2.3 Å−1 which is dominated by C-Na and Na-Na contributions. Figure 1(b) 
shows how the simulated Fx(Q) varies as a function of temperature. The peaks in Fx(Q) at Q1 ~ 1.6 Å−1, Q2 ~ 2.3Å−1 
and Q3 ~ 3.7 Å−1 show intensities which vary in different ways with temperature as shown in Fig. 1(c). The inten-
sity of the peak at Q2 falls rapidly with temperature, whilst that of the peak at Q3 falls only weakly. Interestingly, 
the intensity of the peak at Q1 increases in intensity with temperature, a behaviour observed previously for 
so-called first sharp diffraction peaks23. The (small) differences in peak intensities between the experimental and 
simulation total scattering functions could, therefore, simply represent a slight shift in the melting point predicted 
by the present potential model away from the experimental value. Figure 1(d) shows the respective intensities 
of the weighted contributions from the six partial structure factors to the peak at Fx(Q1) as a function of T. The 
key changes which contribute to Fx(Q1) are in the O-O and Na-O partial functions. To understand the structural 
origin of this behaviour, however, we must move the analysis into real space.

Figure 2(a) shows the total radial distribution functions (rdf), G(r), generated in two ways; by combining 
the partial rdfs (gαβ(r) - shown in Fig. 2(b)) weighted by the number of electrons in each ion, and by Fourier 
transformation of Fx(Q) (from Fig. 1b - mimicking the experimental procedure). The transformed functions are 
shown both with and without applying a Blackman windowing function. The windowing function acts to effec-
tively remove the oscillations which arise from the artificial truncation of Fx(Q), but results in significant peak 
broadening. Constructing G(r) directly from gαβ(r) removes any such truncation issues but is problematic in terms 
of applying the correct weighting functions. To highlight this effect the figure shows G(r) obtained using atomic 
(Na, C, O) and ionic (Na+, C4+, O2−) weightings respectively. The latter weighting generates functions similar 
with those obtained by Fourier transform. The peak at r ~ 1.3 Å is resolved entirely to gCO(r) (as would be expected 
for the intra-molecular C-O correlations). The peak at r ~ 2.4 Å is dominated by contributions from the O-O and 
Na-O rdfs. The Na-O rdf appears to have a relatively broad first peak consistent with a relatively distorted local 
environment for the sodium ions.

The transform of the experimental data compares well with the results of the simulation although the informa-
tion that can be extracted from this real space data is limited. The C-O correlation at 1.3 Å is well-resolved, there 
is a low r shoulder to the peak at 2.3 Å. At higher r the partial contributions all overlap. Both gNaO(r) and gOO(r) 
contribute to the peak at r ~ 2.3 Å. The Na-O correlation is broader and, as a result, the change with temperature in 
intensity of the shoulder most likely reflects a change in the sodium environment. The mean Na-O coordination 
number from simulation varies from 5.82 at T =  1100 K to 4.96 at T =  1750 K compared with typical silicate values 
of 4.220 and 3.618 (from simulation) and 5.624 from XAS studies.

Figure 2. (a) Total pair distribution functions obtained from both experiment and simulation. The black and 
red curves are obtained directly from the partial pair distribution functions using ionic and atomic weightings 
respectively. The remaining curves are obtained by direct Fourier transformation of the experimental and 
simulated total scattering functions (with and without a window to force F(Q) →  0 at Qmax). Successive curves 
are offset along the ordinate axis for clarity. (b) Partial pair distribution functions obtained from simulation 
at T =  1400 K. (c) The evolution of gCC(r) with T with the peak at r ~ 3.3 Å decreasing in intensity as the 
temperature is increased.
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Figure 2(c) shows the evolution with temperature of gCC(r). The most dramatic change occurs at r ~ 3.3Å 
with the clear peak at low T transforming to a weak shoulder at high T. The origin of this feature can be eluci-
dated by considering molecular graphics “snapshots” taken from the simulation at different temperatures (see 
Fig. 3(b)). Bonds are drawn between the C atoms separated by r ≤  4 Å (i.e. corresponding to the first peak in 
gCC(r), Fig. 2(b)). The carbonate anions are seen to form a low-dimensional network of (predominantly) chains. 
Figure 3(a) shows the distribution of the carbon chain lengths (shown as the number of carbon atoms in a chain 
of length c) at three temperatures with the inset to the figure showing the respective mean chain lengths as a 
function of T. As the temperature falls the number of longer chains increases (as does the mean chain length). 
Although these observations are primarily simulation results, they motivate further experimental (e.g. Raman 
spectroscopic, nuclear magnetic resonance) study in order to distinguish the different carbon environments.

To help understand how the observed network links with the system dynamics Fig. 4(a) shows the diffusion 
coefficients, Di, calculated from the respective mean-square displacements for the ionic species (i =  O, C, Na) as 
a function of T−1. DC and DO are highly correlated, reflecting their formal association in the model whilst the Na+ 
ions show significantly higher diffusivities. The figure shows the Na+ diffusion coefficients obtained by Spedding 
and Mills25 via an open-ended capillary method. The raw data points are shown along with the original fit 
extended to match the present temperature range. The diffusivities obtained here are systematically lower than 
those obtained experimentally. To show the effect of the molecular nature of the anion, additional simulations are 
performed in which the harmonic springs which join the C-O and O-O atoms are increased (by a factor of 5), 
making the springs more stiff and, as a result, tending towards the rigid-molecule “limit” employed in previous 
models16. The effect of stiffening the intramolecular bonds is to significantly reduce +DNa  across the whole tem-
perature range.

To further highlight the role of the −CO3
2  anion in the diffusion of the Na+ cations, we consider the difference 

in the respective O and C atom mean-squared displacements (see Fig. 4(b)), which contains information regard-
ing the respective vibrational and rotational motions of the molecules16. As the temperature is increased the 
rotational/vibrational motion becomes more rapid and the long t limit is reached more rapidly. As the spring 
constants are again stiffened the motion becomes significantly slower, correlated with the slowing of the Na+ 

Figure 3. (a) The distribution of C-C…  chain lengths, c, at three temperatures shown as c.f(c), the number of 
atoms in a chain of length c. The inset shows the mean chain length as a function of T. (b) Molecular graphics 
“snapshot” of a configuration taken from T =  1100 K. Key: red circles - C, blue circles - O, dots - Na. “Bonds” are 
drawn between C and O atoms from the same −CO3

2  anion and between pairs of C atoms separated by r ≤  4 Å 
(corresponding to the first peak in gCC(r) shown in Fig. 2(c)). The same configuration shown from an alternative 
angle and highlighting the carbon atoms only for clarity.
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motion. As a result, the internal modes of the molecular anions appear crucial in facilitating the relatively rapid 
motion of the cations.

Figure 4(a) shows the comparison to Na+ diffusion coeffcients with those obtained from previous silicate 
simulations, (Na2O)(SiO2)2

20,26 and (Na2O)(SiO2)3
20 respectively. To promote a more direct comparison, the data 

from Horbach et al.20 is extrapolated into the temperature range studied here. In all three cases the observed sil-
icate Na+ diffusion coefficients are orders of magnitude smaller than those observed in the carbonate suggesting 
diffusion is enhanced by the “paddle wheel” effects of asymmetric, rotating anions (see, for example27).

The combined simulation and HEXRD shows a liquid structure far more complicated than a simple ionic 
liquid with the −CO3

2  anions forming a low-dimensional network at low temperature. Although bridging has been 
suggested in carbonate liquids this has been assumed to link the anions and cations in the melt15. As shown by the 
changes in the gCC(r) the carbonate chains break up with increasing temperature allowing the anions to more 
freely rotate. The increased rotations “average out” the structure leading to greater O-O ordering on the 
length-scale corresponding to Q ~ 1.6 Å−1. As temperature is increased there is a fall in intensity of the peak at 
Q ~ 2.3 Å−1 which is associated with the increase in mobility of the Na+ ions as the carbonate network breaks up.

A variety of structural environments result from the flexibility of the carbonate anions and there is a strong 
temperature-dependence of structure (the formation of a low-dimensional carbonate network) which influences 
the diffusion. Furthermore, this diversity of structural environments that results could explain the high affinity for 
otherwise incompatible elements14. The temperature dependence of structure would indicate that these liquids 
are extremely fragile, with high temperature liquids dominated by Na+ diffusion enhanced by the rotation of 
asymmetric −CO3

2  anions. Lower temperature liquids would be expected to show the increased influence of the 
carbonate chains and it will be interesting to investigate how their length may grow as the glass transition temper-
ature is approached. Vitreous forms of carbonates would also be expected to be dominated by these carbonate 
networks.

Methods
Experimental Background. High energy X-rays (E >  100 keV) have been shown to be very effective in 
studying the structure of liquid and amorphous materials28. They reduce the corrections required to account for 
absorption and multiple scattering whilst their short wavelength provide scattering data to high values of the 
scattering vector, Q, (to Qmax >  20 Å−1) essential for good real-space resolution. Liquids have inherently low scat-
tering and whilst high energy X-rays are an excellent tool for studying liquid structure the total scattering signal 
can be swamped by contributions from sample environments such as furnaces or sample containers. One, very 
productive approach is to combine high energy X-ray diffraction (HEXRD) with containerless techniques which 
eliminate the contribution of furnaces or similar sample environments. Combined HEXRD and containerless 
techniques enable studies of stable and metastable (supercooled) liquids to be undertaken.

In this study an aerodynamic levitation furnace is used, a 2–3 mm diameter bead of sample precursor is lev-
itated in a divergent conical nozzle by a flowing levitation gas, the composition of which can be controlled. The 
sample is heated by a continuous wave 400 W CO2 laser and the temperature monitored by optical pyrometer 
operating at 0.85 μm. The entire levitator is enclosed in a chamber and fully integrated into high energy beam 
lines at the APS (here 6-ID-D)29–32. The X-ray diffraction pattern of the liquid is measured in transmission mode 
with incident X-rays entering the chamber though a 1 cm aperture and emerging through a second window 
mounted opposite. Other apertures provide access to the levitation chamber for the pyrometer and for a video 
camera. The incident X-ray beam in these experiments had an energy of 100.099 keV, which corresponds to a 

Figure 4. (a) Diffusion coefficients for the Na, C and O atoms (displayed as indicated in the legend) as a 
function of temperature compared with the experimental data for Na diffusion in Na2CO3 from Spedding and 
Mills25 (light blue; ×  - original data, line - original fit to the data extended to the present temperature range). The 
figure also shows the DNa for a model with signficantly stiffer C-O and O-O intramolcular interation potentials. 
Comparison is also made to Na+ diffision on simulation studies of silicates performed by Horbach et al.20 and 
Smith et al.26, the former extrapolated to the temperature range studied here. (b) The difference in mean-
squared displacements between the O and C atoms as a function of temperature (from T =  1100 K [black line] to 
T =  1750 K [orange line]). The inset shows the effect of stiffening the harmonic springs constraining the −CO3

2  
anions. The both panels the arrows highlight the changes in the respective function on increasing the 
temperature.
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wavelength of 0.1239 Å. Collimation was used to achieve an incident beam of 0.25 mm high and 0.5 mm wide. 
The entire 2D liquid diffraction pattern is detected on an vertically mounted Perkin Elmer XRD1621 Tl-doped 
CsI scintillator detector with 2048 ×  2048 pixels of 200 μm ×  200 μm set at a distance of 335.13 mm from the levi-
tator nozzle. The detector distance, coordinates of the direct beam and the angle of tilt and rotation are refined by 
calibration using a crystalline CeO2 standard placed in the levitator nozzle.

The structure factor has been obtained for liquid levitated using four different levitation gases; O2, CO2, Ar and 
a mixture of 80% CO2 and 20% CO. The CO2 and CO gases are 5% volume in argon. The temperatures, measured 
at the sample surfaces, were 1255 K for the pure and 80% CO2 gases, 1285 K for the pure O2, and 1328 K for the 
pure Ar. The 1D diffraction pattern were obtained by integrating over all the pixels in the 2D image using the 
Fit2D software package33 and Fx(Q) then obtained using PDFgetX2 software34 and corrected by subtracting a 
background pattern collected with no sample in the nozzle but with flowing gas, and for Compton scattering. The 
Compton and form-factor contributions have a strong Q-dependence and are obtained from tabulated values35. 
The liquid densities, used to calculate the attenuation of the sample and to obtain the real space data by Fourier 
transform, were obtained from the studies of Liu and Lange36 and from Spedding25. Each diffraction measure-
ment comprised a series of 60, 1 second frames with ideally five patterns collected and averaged for each sample. 
The levitation behavior of these very fluid liquids was different under different levitating gases. In pure O2 the 
drop oscillated considerably and tended to wet the levitator nozzle and, as a consequence, only two series were 
obtained for this gas composition. The most stable levitation was observed in pure Argon gas and under these 
conditions the drop neither oscillated nor stuck to the nozzle. Figure 1 shows very limited changes in structure 
are observed as a function of levitating gas. These small differences could result either from the nature of the 
levitating gas or from the (marginally) different levitation temperatures. The essential invariance of the scattering 
functions with levitating gas however indicates that there is no significant decomposition of the carbonate mate-
rial in reducing conditions. The Na2CO3 used was Alfa Aesar 99.95–100.05%.

Simulation Background. The potential model employed for the Na2CO3 simulation is based on that devel-
oped by Tissen and Janssen16 which uses a standard Born-Huggins-Mayer form with charges Qi taken as 
QNa =  1.0e, QC =  1.54e and QO =  − 1.18e (giving = − .Q 2 0eCO3

 overall). In the original work16 the shape of the 
−CO3

2  ion was imposed by using constraint dynamics to retain a fixed geometry. In the present work the basic 
trigonal planar geometry is imposed by employing harmonic springs which act between the C-O and O-O pairs 
in the molecular anion (as used previously in the study of sulphates27). The force constants controlling the respec-
tive C-O and O-O interactions may be varied. Simulations are performed over a temperature range 
T =  1100 K–1750 K at constant volume using the equation of state from Liu and Lange36.

Fx(Q) is generated by combining the partial (Ashcroft-Langreth) structure factors (of which there are six for 
the three component system). These are calculated directly from the Fourier components of the ion densities, 

=αβ α β
⁎S Q A Q A Q( ) ( ) ( ) , where = ∑ .α =

α

αA Q i( ) exp( Q r )
N j

N j1
1 . Total X-ray structure factors are constructed 

from weighted sums of these partial structure factors using X-ray form factors taken from standard sources37.
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