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Abstract 

Objective: Three dimensional (3D) surface imaging is a viable alternative to traditional body 

morphology measures, but the feasibility of using this technique with people with obesity has not 

been fully established. Therefore, the aim of this study was to investigate the validity, repeatability 

and acceptability of a consumer depth camera 3D surface imaging system in imaging people with 

obesity. 

Methods: The concurrent validity of the depth camera based system was investigated by comparing 

measures of mid-trunk volume to a gold-standard. The repeatability and acceptability of the depth 

camera system was assessed in people with obesity at a clinic.  

Results: There was evidence of a fixed systematic difference between the depth camera system and 

the gold standard but excellent correlation between volume estimates (r
2
=0.997), with little evidence 

of proportional bias. The depth camera system was highly repeatable - low typical error (0.192 L), 

high intraclass correlation coefficient (>0.999) and low technical error of measurement (0.64%). 

Depth camera based 3D surface imaging was also acceptable to people with obesity. 

Conclusion: It is feasible (valid, repeatable and acceptable) to use a low cost, flexible 3D surface 

imaging system to monitor the body size and shape of people with obesity in a clinical setting.  

 

Keywords: 3D Surface imaging; body morphology measurements; weight management 
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Introduction 

The measurement of obesity and body morphology continues to be important to clinicians, researchers 

and the general population. Current methods for tracking participant progress in weight management 

programmes are simple (e.g. weighing scales, tape-based measurements) [1]. Medical imaging 

techniques - including Dual-energy X-ray absorptiometry [2], Magnetic Resonance Imaging [3-5] and 

Computed Tomography [6] - have been used to make more sophisticated measurements. However, 

these techniques are not in widespread use because they are complex, expensive, hard to access, 

irradiating (in some cases), and require skilled operators. 

 

Three dimensional (3D) surface imaging is a viable alternative for monitoring body morphology [7]. 

These non-contact, non-irradiating, light-based systems capture 3D models of the body surface 

topography. Three dimensional surface imaging presents several benefits over traditional manual 

measurements made with a tape measure: 1) it is fast, ranging from ~1.5 ms to ~15 s, 2) data can be 

archived, 3) models can be overlaid and 4) complex measures such as volume can be computed [8]. 

Moreover, it is less invasive than manual measurement and requires less contact time [9]. Finally, 3D 

surface imaging systems are likely to reduce inaccuracies [10] inherent with current manual 

techniques such as skin depression and soft tissue artefact [11], which are likely further exaggerated 

in people with obesity. 

 

Three dimensional surface imaging systems can be used to acquire simple 1D measures, such as 

waist, hip and thigh girth. They have been demonstrated to show good agreement with manual 

measurements [12] and provide effective indication of the risk of several medical conditions [13-14]. 

However, more complex anthropometrics can be obtained which have been used to estimate visceral 

adipose tissue [15] and proportions of subcutaneous and visceral fat in the abdomen [16]. As such, 

these systems offer great potential for monitoring and evaluating people with obesity but their 

widespread use has been limited due to complexity, availability and cost. 

 

Consumer depth cameras - e.g. Microsoft Kinect - offer the possibility of performing 3D surface 

imaging at relatively low cost and several systems leveraging this technology are now available, such 

as TC2 KX-16 (Cary, NC, USA) and Fit3D Proscanner (Redwood City, CA, USA). Recent studies 

have demonstrated that these systems can provide accurate, automated anthropometrics [17-18] but 

are expensive - ~£7,000-£15,000. An individual depth camera is only ~£150 so our group has 

developed calibration and camera correspondence algorithms that allow multiple off-the-shelf depth 

cameras to be combined to produce flexible and scalable 3D surface imaging systems [19-23]. This 

offers the possibility of obtaining accurate estimates of body morphology, conveniently and at very 

low cost. Wheat et al. [19] established that an early iteration of the approach could be used to measure 
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the volume of a mannequin trunk, showing good agreement with a high resolution non-contact laser 

scanner (Modelmaker D100, Metris, Leuven, Belgium). In subsequent studies, we have demonstrated 

that our approach provides repeatable and accurate estimates of the girth and volume of inanimate 

objects, machined to represent human body segments [20]. The approach produced clinically 

acceptable agreement in the measurement of mammometric parameters used for planning and 

evaluating breast reconstruction surgery [22]. Further, good agreement has been demonstrated with 

manual techniques and a gold standard 3D surface imaging system (3DMD, Altlanta, GA, USA)  for 

trunk [21] and thigh [23] volume, respectively, in normal weight participants. 

 

The acceptability of 3D surface imaging to patients is another important feasibility consideration, but 

this has received little attention in the literature. Wells et al. [8] reported 3D surface imaging to be 

acceptable to children aged 5-11 years, with only 2.6% of those invited to participate declining. 

However, the rate of acceptance of invites to participate is a crude measure of acceptability, with 

more work required to explore this further, in adults as well as children. Moreover, Wells et al. [8] 

used an expensive, commercial 3D surface imaging system, with no information about the 

acceptability of systems based on consumer depth cameras. 

 

The aim of this study was to investigate the feasibility of using low-cost depth camera 3D surface 

imaging with people with obesity. We sought to establish the validity and repeatability of the 

technique in the measurement of mid-trunk volume. Acceptability of the technique to participants 

attending a local tier 3 weight management service was also explored. 

 

Methods 
The study had two linked experiments. The repeatability of the technique was assessed in a sample of 

people with obesity at a local obesity clinic. Data collection at the clinic allowed the feasibility of 

field-based testing to be explored, together with the acceptability of the technique to participants 

However, it was not possible to investigate the validity of the technique in this environment, as no 

gold standard measurement system was available. Instead, a validity experiment was conducted in the 

Morphology Laboratory on University campus, with a suitable gold-standard. The depth camera 3D 

surface imaging system was common to both parts of this study. Details of this system are provided in 

the next section, followed by methods specific to both experiments.  
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Depth camera-based 3D surface imaging system 

Setup 

The system comprised four
a
 depth cameras (Microsoft Kinect version 1, Microsoft, Redmond, WA, 

USA) mounted on a frame (protocol one) or tripods (protocol two) - see Figure 1. The depth cameras 

were connected to a single, standard personal computer. Our own software (KinanthroScan, Sheffield 

Hallam University, UK) interfaced with the depth cameras. To avoid interference, data were collected 

sequentially from each camera. In total, approximately 900 ms were required to collect all 3D point 

cloud data (a collection of 3D points). Point clouds from each depth camera required alignment to 

produce a complete 3D image of the mid-trunk. To achieve this, depth camera correspondence 

matrices were defined using a two-step calibration process which we have described in detail 

elsewhere [23]. The calibration takes approximately 9 minutes to complete and it was performed at 

the start of each data collection session, and repeated between each participant. 

 

**** insert figure 1 near here **** 

 

3D surface image acquisition protocol 

Participants wore tight fitting clothing or nothing on their upper bodies. Before data collection, blue 

circular stickers (radius = 5 mm) were attached to the skin at the location of the left and right anterior 

superior illiac spine, sacrum, left and right nipple, and over the thoracic spine at the height of the 

nipple - approximately the tenth thoracic vertebra. During collection, participants were asked to 

lightly touch supports with their fingertips, as this support has been shown to reduce postural sway 

[27]. To eliminate the effects of breathing, participants were asked to pause their breathing (at end-

tidal expiration) for the duration of the acquisition [9]. 

 

3D surface image analysis 

All post-processing was performed using KinanthroScan. A single operator manually digitised the six 

anatomical markers, which were used to create inferior and superior segmentation planes (Figure 2a), 

defining the mid-trunk segment. We focussed on this region of the trunk as large variations were 

expected in people with obesity, with an asymmetric, eccentric shape, that is particularly difficult to 

model. The region was divided into 2 mm sections in the inferior to superior direction. All points in a 

section were projected onto a plane - passing through the section's centre - creating a 2D topological 

representation of the participant's body (Figure 2b). A cubic smoothing spline (ρ = 0.79) was fitted to 

these 2D points [28], creating a smooth collection of points defining the surface of the trunk in each 

                                                           
a
 Four cameras were used in this study (the minimum required to estimate mid-trunk volume), but the 

calibration and correspondence algorithms are scalable such that more cameras could be used if 

required. 
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section (Figure 2b). An implementation of discrete Green's equations was then used to calculate the 

volume of the mid-trunk across all sections [29]. 

**** insert figure 2 near here **** 

 

Experiment one: Validity 

Participants 

It was not feasible for a large number of people with obesity to visit the laboratory. Also, many 

participants were too large to fit into the maximum sized measurement volume of a gold standard 

system achievable in the lab. Therefore, people without obesity were recruited for the lab-based 

validity experiment. Fourteen young, healthy participants volunteered to participate. Following 

institutional ethical approval and after being offered the opportunity to ask questions, participants 

provided written informed consent before data collection. 

 

Procedure 

Two 3D surface imaging systems were used in this experiment; the depth camera based system and 

3DMD (3DMD LLC, Atlanta, GA, USA) which we considered to be ‘gold standard’. The depth 

camera system was set up as described above and positioned within the 3DMD system (Figure 1). Set 

up of the 3DMD system was in accordance with the manufacturer's guidelines and data collection was 

triggered manually for each system. Entirely concurrent collection was not possible because of 

potential for interference between each system's structured light patterns. As such, data were collected 

consecutively, resulting in a total time of approximately 2 seconds. Data were collected and analysed 

using the protocol and methods described above. For the 3DMD data, anatomical markers were 

digitised using KinanthroScan and mid-trunk volume was calculated using a proprietary algorithm in 

Geomagic Studio (Three D Systems, Rock Hill, SC, USA)
b
 - using inferior and superior segmentation 

planes defined in the same manner as for the depth camera system.  

 

Statistical analysis 

Agreement between the depth camera and 3DMD estimates of mid-trunk volume was assessed using 

several, complementary statistical measures. The degree to which differences between the 

measurement systems were systematic or random was explored using Limits of Agreement [30]. This 

                                                           
b
 Mid-trunk volume data from the 3DMD system were also calculated using the algorithms built into 

Kinathroscan – the difference was minimal (0.19 ± 0.42 %). We chose to present 3DMD volume data calculated 
through Geomagic Studio to ensure the data were analysed in a gold standard manner, in addition to being 
collected using a gold standard system. 
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was supplemented with paired samples t-tests to establish whether systematic differences were 

statistically significant. Finally, Least Products Regression [31] was used to delineate fixed and 

proportional systematic bias. 

 

Experiment two: Repeatability, feasibility and acceptability 

Participants 

Following institutional ethical approval, 61 participants (Body Mass Index (BMI) = 40.4 ± 6.1 kg/m
2
) 

enrolled on a weight loss programme at a local tier 3 weight management service volunteered to 

participate after receiving study information at the end of an existing consultation. Inclusion criteria 

required participants to be aged ≥ 18 years, have a BMI >30 kg/m
2
 and able to stand unaided. 

Participants provided written informed consent and were given the opportunity to become accustomed 

to the data collection protocol. 

Procedure 

Three 3D surface images were collected, separated by approximately one minute. Data were collected 

and analysed as described previously. Acceptability was assessed using a questionnaire that was 

developed for the study because, to the authors' knowledge, no reliable and valid questionnaire has 

been published. The questionnaire contained items with Likert scale responses (1. strongly disagree, 

2. disagree, 3. neither agree or disagree, 4. agree and 5. strongly agree). In addition, participants were 

asked to identify their preference for either 3D imaging or tape measurement and they were provided 

space to explain their responses or provide further comments. 

 

Statistical analysis 

Similar to validity, repeatability was assessed using multiple complementary techniques. Typical error 

was calculated for each pair of trials to identify presence of order bias. Relative accuracy was 

quantified by calculating intraclass correlation coefficients (ICC 2,1 [32]). ICC is a common measure 

of reliability, with ICCs > 0.7 indicating suitability for use within a clinical environment [33]. 

Additionally, relative technical error of measurement (TEM), commonly used for assessing 

repeatability in kinanthropometry [34], was also calculated [35]. Finally, for the acceptability data, a 

one sample t-test was used to assess significant differences from respondents’ opinions to statements 

and 'neither agree or disagree'. 

 



RUNNING HEAD: 3D SURFACE IMAGING OF PEOPLE WITH OBESITY 

 

Results 

There was evidence of a significant (p < 0.05) fixed systematic difference between mid-trunk volumes 

estimated with the depth camera-based system and 3DMD, with greater volumes reported with the 

depth camera system (16.4 ± 2.6 vs 15.8 ± 2.5 L - Figure 3). However, there was excellent correlation 

between volume estimates (r
2
 = 0.997) and little evidence of proportional bias (Least Products 

Regression b = 0.96, 95% CI 0.92-1.01). The 95% Limits of Agreement were 0.11 - 0.98 L. 

 

**** insert figure 3 near here **** 

 

The depth camera system was highly repeatable (Figure 4), indicated by a low typical error (mean = 

0.192 L 95% CI = 0.170 - 0.219), very high ICC (>0.999) and low relative TEM (0.64 ± 0.13%). 

 

**** insert figure 4 near here **** 

 

Fifty-two participants (95% who completed the questionnaire) preferred to be measured using 3D 

surface imaging rather than the tape measure. Figure 5 highlights all responses were in a direction 

which indicated 3D surface imaging was acceptable. When responding to the statement ‘I was happy 

to be scanned' and 'I felt comfortable being scanned' participants significantly agreed (p < 0.01). 

However, participants significantly disagreed with 'The scanning procedures were distressing' (p < 

0.01). Participants 'would feel more confident in my results if scanning was included' and agreed that 

'scanning would improve the feedback about my weight status' (p < 0.01). Finally, participants agreed 

that 'regular scanning would motivate me to lose weight' and 'regular scanning should be included as 

part of my weight loss programme' (p < 0.01). 

 

**** insert figure 5 near here **** 

 

Discussion 

The aim of this study was to investigate the feasibility of using low-cost depth camera 3D surface 

imaging in people with obesity. Although it was not possible to include people with obesity in the 

validity protocol, our results indicated good agreement between the depth camera and gold standard 

3DMD systems. In the second experiment, the depth camera system demonstrated high repeatability 

when imaging people with obesity. Combined with the data on acceptability, the results suggest it is 

feasible to use depth camera based 3D surface imaging systems with people with obesity. 
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The depth camera system demonstrated good agreement with 3DMD. Significantly greater volumes 

were measured with the depth camera system but the bias was fixed rather than proportional. This is 

in agreement with a previous study of thigh volume [23]. Bullas et al. [23] postulated that the 

overestimation might stem from hardware limitations and potential calibration inaccuracies, but the 

reason for consistent overestimation was not clear. Nonetheless, the excellent correlation between 

systems (r
2
 = 0.997) strongly suggests the depth camera system would show excellent agreement with 

the 3DMD system, following appropriate correction using a simple linear model. Similar good 

agreement with criterion measurements has been demonstrated for other 3D surface imaging systems, 

including relatively expensive systems based on depth cameras [17-18]. Our results provide further 

evidence that 3D surface imaging has great potential for quick and accurate body measurements in 

people with obesity. Moreover, the results demonstrate that valid measurements can be obtained using 

low cost, flexible, scalable (depth cameras can be added or removed) and reconfigurable systems 

comprising multiple, off-the-shelf consumer depth cameras.  

  

The depth camera system was also highly repeatable when imaging people with obesity. The relative 

TEM was small (0.64 ± 0.13%), comparable to studies in which similar depth camera systems were 

used to measure thigh (TEM = 0.77% [23]) and mid-trunk volume (TEM = 0.88% [21]) in young, 

healthy participants. These results are promising as they are better than the minimum precision 

required by an International Society for the Advancement of Kinanthropometry practitioner (Level 1, 

< 2%; Level 2-4, < 1% TEM [34]). However, this interpretation is made with caution because the 

criteria are based on traditional anthropometrics, such as lengths and girths, and no criteria are 

published for volume. Regardless, the ICCs indicated the depth camera system exceeded the 

requirements for clinical acceptability [33]. 

 

There is a paucity of evidence on the acceptability of 3D surface imaging. Wells et al. [8] assessed the 

acceptability of 3D surface imaging for measurement of body shape in children but based solely on 

participation rates [8]. We undertook extensive searching of the peer reviewed literature to obtain a 

validated and reliable questionnaire that could be used in the present study. To the author's 

knowledge, no questionnaire exists so an in-house questionnaire was developed to explore 

acceptability. It is important to elucidate whether participants would benefit from being scanned as 

part of routine obesity monitoring and our results suggest 3D surface imaging is acceptable to people 

with obesity because the frequency distribution and significance for all scanning questions was 

positive. However, the findings may be biased since only those who volunteered completed the 

questionnaire, rather than all who were approached to participate. More importantly, there are many 

aspects which should be considered while assessing acceptance, including issues such as individual 
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privacy perception levels, confidence with the technology used and other influences such as age and 

gender which were not considered and will be explored in the future. Finally, despite inviting 

participants to expand on their experiences and explain their Likert scale responses, there was limited 

engagement. Thus, there is scope to undertake a qualitative study to further understand the 

acceptability of the scanning system.  

 

Experiment one sampled people without obesity. It was not practicable for participants from the 

obesity clinic to visit the laboratory housing the 3DMD system. Notwithstanding the difficulties in 

participants travelling to the laboratory, the mid-trunks of many people with obesity could not be 

imaged by the 3DMD system as they exceeded the maximum possible data collection volume. 

Importantly, though, a benefit of only imaging people with obesity with the depth camera system in 

the clinic was that perceptions of acceptability were not influenced by lab-based collection with the 

3DMD system. Nonetheless, there was crossover in the mid-trunk volumes in the participant samples 

for experiments 1 and 2 – which can be observed in the mid-trunk volume data shown in figures 3 and 

4. Taken together with the evidence of a lack of proportional bias, this suggests the findings from 

experiment 1 extend to people with obesity. A further limitation to this feasibility study is that only 

one of many potential anthropometric parameters was considered. However, mid-trunk volume was 

measured because this region is particularly difficult to model in people with obesity, owing to large 

variations and an asymmetric, eccentric shape. Although we suggest the findings related to mid-trunk 

volume are likely to extend to other regions of the body and different anthropometric parameters, 

more work is required to confirm this. Finally, the percentage of participants who volunteered to take 

part in the study was not recorded which might also reflect acceptability. However, the reasons for not 

participating are likely to go beyond simply acceptability due to the recruitment strategy, for instance, 

lack of time.   

 

In summary, the results of this preliminary study suggest it is feasible to use cheap, readily accessible 

depth camera 3D surface imaging to monitor the body size and shape of people with obesity. The 

technique is valid and repeatable and its use is acceptable to participants. Moreover, it is possible to 

use a low cost 3D surface imaging system in a clinic. Multiple off-the-shelf consumer depth cameras 

(cost per unit ~£150) were used, which is simple, low cost, scalable and flexible. More or fewer 

cameras can be used and they can be reconfigured to image objects and body segments of different 

size and shape. Follow-up work should use 3D surface imaging to monitor the effectiveness of weight 

management interventions, either in a clinical or laboratory setting. Future research should also 

investigate the effectiveness of 3D surface imaging as a method of encouraging weight loss and 

adherence to weight management programmes. This research will explore the extent to which 3D 
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surface images taken over the course of a weight management programme could aid motivation and 

thus weight loss. 
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Figure legends 

 
Figure 1: The 3D surface imaging system. a) the system in the lab, mounted on an aluminium frame, 

within the 3DMD, gold standard system. b) the system set-up in the local obesity clinic, showing the 

four depth cameras mounted on tripods, connected to a single, standard computer. 
 
Figure 2: 3D point cloud analysis. a) An example 3D point cloud from the depth camera system, 

illustrating the inferior/superior segmentation planes b) Example 2D cross-section. White dots 

represent the raw data points. The grey line represents the cubic spline used to define the surface of 

the body.  

 

Figure 3: Agreement between depth camera and 3DMD estimates of mid-trunk volume. Dashed line: 

identity, solid line: least products regression line (𝑦 =  0.96𝑥 +  0.07). 

 

Figure 4: Mid-trunk volume for all participants across the three repeated 3D surface images black 

closed circles = surface image 1, black open circles = surface image 2 and grey closed circles = 

surface image 3. 

 

Figure 5: The acceptability of depth camera based 3D surface imaging to people with obesity 


