Are metabolic equivalents (METS) an accurate method for estimating change in peak oxygen consumption after cardiac rehabilitation?

NICHOLS, Simon <http://orcid.org/0000-0003-0377-6982>, GLEDALL-SIDDALL, Damien, ANTONY, R., CLARK, A.L., CLELAND, J.G.F., INGLE, L. and CARROLL, Sean

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/21043/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
ARE METABOLIC EQUIVALENTS (METs) AN ACCURATE METHOD FOR ESTIMATING CHANGE IN PEAK OXYGEN CONSUMPTION AFTER CARDIAC REHABILITATION?

1. Newcastle University, University of Hull, Hull; 2. Castle Hill Hospital, Hull; 3. Imperial College London

Introduction

Personalised cardiac rehabilitation (CR) exercise prescriptions should be based on an individualised assessment that includes determination of patients’ cardiorespiratory fitness (CRF) [ACPCIR, 2015]. Maximal cardiopulmonary exercise testing (CPET) is the “gold standard” method for determining CRF (Mozzani et al. 2013). However, CPET is not widely available in the UK and estimates of VO_{2peak} are typically used.

Calculation of peak metabolic equivalents (METs) derived from workloads achieved during incremental exercise testing is a common approach to estimating VO_{2peak}, a marker of CRF (ACSM, 2013; Buckley, et al. 2016). One MET is assumed to equate to a resting VO₂ of 3.5 ml kg⁻¹ min⁻¹ [Wasserman, et al. 2011]. Increases in functional capacity reported from sequential exercise tests may be expressed in METs. Peak estimated METs achieved during maximal exercise testing in turn, can be used to quantify changes in CRF following exercise interventions (ACSM, 2013; ACPICIR, 2015).

Large discrepancies between estimated (METs), and directly determined VO_{2peak} have previously been reported (Froelicher et al. 1984; Kavanagh et al. 2002). Peak estimated METs may therefore, not accurately estimate VO_{2peak} change following CR. Previous investigators have found no correlation (r=0.24; p=0.200) between VO_{2peak} change and peak estimated MET change in 50 patients with coronary heart disease [CHD] (Milani et al. 1995). Stato et al. (2013) also present data indicating that the increase in directly determined VO_{2peak}, following CR was approximately half (41.7%) of the 28.8% increase in peak predicted METs following CR among 180 CHD patients.

This study therefore investigated the accuracy of estimating changes in VO_{2peak} in patients with CHD, by comparing patients’ directly determined VO_{2peak} to VO_{2peak} estimated through the American College of Sports Medicine leg cycling equation (ACSM, 2013).

Methods

Selected Cohort

27 patients with CHD

Visit 1

- Maximal CPET
- Cycle Ergometer – 25W increments every two minutes

Visit 2

- Maximal CPET
- Cycle Ergometer – 25W increments every two minutes

Intervention

Patients Referred to CR - Sessions: 13 range: 0 to 62

Direct Determined VO_{2peak}

Breath-by-breath data averaged over final 30 seconds of CPET

Estimated VO_{2peak}

Aerobic leg cycling equation: VO₂ = 11.8 x kg x m⁻¹ x M⁻¹ x 7.0

Figure 1

Key experimental stages of the study

- CHD = Coronary heart disease
- CPET = Cardiopulmonary exercise testing
- CR = Cardiac Rehabilitation
- BMI = Body mass index

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Visit 1</th>
<th>Visit 2</th>
<th>Mean Change</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Est V02peak</td>
<td>3.08</td>
<td>3.18</td>
<td>0.10</td>
<td>0.21 - 0.00</td>
</tr>
<tr>
<td>Est V02peak</td>
<td>3.74</td>
<td>3.98</td>
<td>0.24</td>
<td>0.35 - 0.13</td>
</tr>
<tr>
<td>Est V02peak</td>
<td>4.46</td>
<td>4.79</td>
<td>0.33</td>
<td>0.44 - 0.23</td>
</tr>
<tr>
<td>Est V02peak</td>
<td>5.21</td>
<td>5.57</td>
<td>0.36</td>
<td>0.47 - 0.25</td>
</tr>
</tbody>
</table>

Figure 2

- Linear regression showing the relationship between directly determined VO_{2peak} and estimated VO_{2peak} for visit 1 (panel A: r=0.958, p<0.001) and visit 2 (panel B); r=0.945, p<0.001

Figure 3

- Linear regression between directly determined VO_{2peak} change and estimated VO_{2peak} change between visit 1 and 2 (r=0.527, p<0.05)

Figure 4

- Bland-Altman plot showing mean bias (0.7 ml kg⁻¹ min⁻¹), LoA (-4.63 to 5.9 ml kg⁻¹ min⁻¹), with 95% CI (grey shaded area) between directly determined and estimated VO_{2peak}

Figure 5

- Linear regression showing a significant, moderate negative correlation between ΔV02/ΔWR slope and estimated VO_{2peak} measurement error

Conclusion

Estimated METs showed a high correlation with directly-measured VO_{2peak} in a representative cohort of patients attending CR. However, the estimated MET changes observed following CR correlated less well with direct measure and showed poor measurement agreement. Estimated METs may not accurately reflect mean VO_{2peak} changes following a CR exercise training intervention.

Our findings may in part, be due to poor aerobics efficiency. We found that ΔV02/ΔWR slope was negatively correlated with estimated VO_{2peak} measurement error (r=0.46, p=0.001) indicating that estimates of VO_{2peak} over-predict directly determined VO_{2peak} when patients are aerobically ‘inefficient’. Inefficient cardiorespiratory responses to exercise such as delayed oxygen kinetics, may prolong dependence on anaerobic metabolism (Mozzani et al. 2009) during segmental work rate transitions. In such instances, the assumptions of linearity between work rate and VO₂ would not apply and work rate would not be indicative of VO_{2peak}. Accurately predicting VO_{2peak} changes in CHD patients, as evidenced by our findings and those presented by others (ACSM, 1994; Milani et al. 1995; Stato et al. 2013), poses significant challenges, particularly at an individual patient level.

Increasing VO_{2peak} through structured exercise training improves survival (Vanhees et al. 1999) in patients with CHD and, consequently, improving VO_{2peak} remains a key objective for CR practitioners. Practitioners need to have confidence in their outcome measures. Given that CR programme outcome data are often presented, there is a requirement to examine the suitability of METs to estimate directly-determined changes in VO_{2peak}.

References

