

HIIT: Current evidence and future application in cardiovascular rehabilitation

NICHOLS, Simon <http://orcid.org/0000-0003-0377-6982>

Available from Sheffield Hallam University Research Archive (SHURA) at:

https://shura.shu.ac.uk/21041/

This document is the Presentation

Citation:

NICHOLS, Simon (2017). HIIT: Current evidence and future application in cardiovascular rehabilitation. In: BACPR Annual Conference 2017, London, 5-6 October 2017. (Unpublished) [Conference or Workshop Item]

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html

Sheffield Hallam University

NATIONAL CENTRE FOR SPORT & EXERCISE MEDICINE Working for Health & Wellbeing

MEMBER OF THE IOC MEDICAL RESEARCH NETWORK 2015-18

HIIT: Current evidence and future application in cardiovascular rehabilitation

Dr Simon Nichols

[™]s.j.nichols@shu.ac.uk [™]@nichols87simon

BACPR Annual Conference 2017

Conflicts of Interest: None

- Brief background of HIIT
 - The aerobic fitness benefits(?) of HIIT
- HIIT in cardiac populations
 - Emerging UK evidence

What is HIIT?

Repeat bouts of short duration high intensity exercise interspersed with short duration low intensity active recovery periods

Some disagreement in intensity zones - typically submaximal efforts >80% of maximal HR/>80 peak work rate

Variations in exercise volume/programme length

Where did HIIT come from?

Reported as early as the 1920s in athletic populations

1954 - Sir Rodger Bannister used HIIT during as a medical student during his lunch break - achieved the 4 minute mile

1960's peer-reviewed literature begins to emerge in healthy/athletic populations

1970/80's – Evidence for interval and high intensity interval training in clinical populations begins to emerge

1996 – Katerina Meyer found that interval training in CHF was safe – Assessed catecholamine, cardiac/metabolic stress, & dyspnoea - CHF patients can tolerate HIIT.

Today – A vast volume of literature on the efficacy of HIIT in health and disease

Is it safe?

Table 1. The number of patients, exercise-hours and the corresponding number of cardiovascular events associated with moderate- and high-intensity exercise, respectively.

Center	Patients	Total training	Moderate-intensity	High-intensity	
	(n)	(hours)	(hours)	(hours)	
Ålesund	775	25 720 ¹	15 232	$10\ 488^1$	
Feiring	2629	85 208 ²	63 032 ¹	22 176 ¹	
Røros	1442	64 892	51 192	13 700	
Total	4846	175 820	129 456	46 364	
Event rates	:				
Cardiac arrest, fatal			1	0	
Cardiac arrest, non-fatal			0	2	
Myocardial infarction			0	0	
Risk of events 1/58 607		1/58 607	1/129 456	1/23 182	

The likelihood of a cardiac event in high risk individuals appears to be low when conducting either moderate, or high intensity exercise

Rognmo Ø et al, (2012)

Is it Effective?

VO_{2max}, insulin sensitivity and endothelial function all appear to improve to a greater extent during HIIT, compared to MISS

Findings can be variable

NO

Improvements in muscle oxidative capacity/mitochondrial volume/quality Greater depletion of muscle glycogen stores leading to enhanced muscle glycogen uptake →improve insulin sensitivity

Is it Really Effective?

Favours HIIT 0.51 L/min (43 to 0.60 L/min) up to 0.9 L for longer studies

	Effect VO _{2ma}		Inference	
	Mean	±90 % CL		
Effect on treatment groups ^a				
Sedentary males	10.0	±5.1	Possibly moderate ↑	
Sedentary females	7.3	±4.8	Likely small	
Active non-athletic males	6.2	±3.1	Likely moderate ↑	
Active non-athletic females	3.6	±4.3	Possibly moderate ↑	
Athletic males	2.7	±4.6	Unclear	
Controls Weston et al (2014)	1.2	±2.0	Unclear	

The effects of low vol. HIIT appear to favour less fit populations

There is no definitive consensus on whether HIIT is superior to Well Prescribed endurance exercise training apparently populations

HIIT and Cardiometabolic Health

The effects of short-term HIIT also favour less fit populations

Batacan '17

Similar to VO_{2peak}, HIIT appears more effective at improving cardiometabolic health when individuals are unfit or sedentary

Adaptations in sedentary individuals

Туре	Frequency	Time	Intensity	Result
MISS	Exercise 3 x p/week for 8 weeks	Exercise progressed from 20 to 35 minutes	$\begin{array}{c} VO_{2peak} - MISS \ 9\% : HIIT \ 15\\ a-VO_2 \ diff - MISS \ \uparrow : HITT \\ \mathcal{Q}_{max} : MISS \ \sim : HITT \ \uparrow \end{array}$	
HIIT			4 min low / 1 minute 90% PPO	VO ₂ Kinetics - MISS~ : HIIT: 个 Exhaustion Time - MISS个: MISS个个 Capillary/Fibre R - MISS个: MISS个

Effect of interval versus continuous training on cardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in sedentary subjects

> **Frédéric N. Daussin,**¹ Joffrey Zoll,¹ Stéphane P. Dufour,¹ Elodie Ponsot,¹ Evelyne Lonsdorfer-Wolf,¹ Stéphane Doutreleau,¹ Bertrand Mettauer,^{1,2} François Piquard,¹ Bernard Geny,¹ and Ruddy Richard¹ ¹CHRU of Strasbourg, Physiology and Functional Explorations Department, Civil Hospital, Strasbourg, France and University Louis Pasteur, Faculty of Medicine, Physiology Department, Strasbourg, France; and ²Cardiology Department, Civil Hospital, Colmar, France

So what might this mean for cardiovascular rehabilitation programmes?

Is HIIT Effective in Cardiac Populations?

Study	MD (95% CI)	MD (95% CI)	Mean difference favours HIIT
Freyssin (2012) Fu (2011)	2.80 (-0.01,5.61) 3.6 (-0.15, 7.35)		by 3.03 mL/kg/min (95% Cl 2.00 to 4.07; p<0.001)
Iellamo (2012) Moholdt (2005) Molmen-Hansen (2012) Roditis (2007) Rognmo (2004) Shjerve (2008)	0.5 (-0.15, 7.35) 2.70 (-1.18,6.58) 5.70 (0.68,10.72) -1.20 (-4.93,2.53) 3.00 (-6.36,12.36) 2.30 (-1.85,6.45)		Six out of 10 studies conducted by the same research group
Tjonna (2008) Wisloff (2007)	3.70 (-5.96,13.36) 4.10 (2.53,5.67)		Only 273 patients included
Total (95% CI) Weston KS, et al. Br J Sports Med	3.03 (2.00,4.07)	-10 0 10 20 Favours MICT Favours HIIT	Other systematic reviews/meta-analyses show similar results

Heart Failure Only	Study or sub-category	N	INT Mean (SD)	N	MCT Mean (SD)	WMD (random) 95% Cl
	Dimopoulos, 2006	10	1.20(4.80)	14	0.90(3.75)	_
	Freyssin, 2012	12	2.90(3.05)	14	0.20(4.10)	
Mean difference favours	Fu, 2011	14	3.60(4.13)	13	0.10(4.21)	
Mean unrerence lavours	lellamo, 2012	8	4.24(4.43)	8	4.09(3.76)	
LUIT by 2.14 mal /kg/main	Nechwatal, 2002	17	1.50(4.31)	18	1.60(6.26)	
HIIT by 2.14 mL/kg/min	Smart, 2012	10	2.50(5.60)	13	1.60(3.34)	
	Vvisloff, 2007	9	6.00(1.87)	8	1.90(1.01)	
(95% CI 0.66 to 3.63)	Haykowsky et al (2013)	200	1997-1992 (SHINA 1997-1997-1997-1997-1	~		•

The Clinical Significance?

 VO_{2peak} is one of the strongest clinical prognosticators. Improvements in VO_{2peak} are consistently associated with improved survival:

- Kodama et al. (2009): ~103,000 patients; demonstrate 1 MET improvement in aerobic fitness confers 13% survival advantage
- Myers et al. (2002): ~6200 patients: 1 MET improvement in aerobic fitness confers 12% survival advantage
- Vanhees et al. (1995): 1% improvement in exercise training induced VO_{2peak} confers a 2% survival advantage in patients with CHD

Low aerobic fitness indicates poor cardiometabolic health - Unpublished

The Role of HIIT in Cardiac Populations

Exercise-based cardiac rehabilitation for coronary heart disease (Review)

Heran BS, Chen JMH, Ebrahim S, Moxham T, Oldridge N, Rees K, Thompson DR, Taylor RS

Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease

Cochrane Systematic Review and Meta-Analysis

Lindsey Anderson, PhD,* Neil Oldridge, PhD,† David R. Thompson, PhD,‡ Ann-Dorthe Zwisler, MD,§ Karen Rees, PhD,|| Nicole Martin, MA,¶ Rod S. Taylor, PhD*

Changes in cardiorespiratory fitness in cardiac rehabilitation patients: A meta-analysis

Gavin Sandercock *, Valentina Hurtado, Fernando Cardoso

Rehabilitation after myocardial infarction trial (RAMIT): multi-centre randomised controlled trial of comprehensive cardiac rehabilitation in patients following acute myocardial infarction

Robert R West,¹ Dee A Jones,² Andrew H Henderson³

Cardiorespiratory fitness changes in patients receiving comprehensive outpatient cardiac rehabilitation in the UK: a multicentre study

Gavin R H Sandercock,¹ Fernando Cardoso,¹ Meshal Almodhy,¹ Garyfallia Pepera²

The minimum clinically important improvement in the incremental shuttle walk test following cardiac rehabilitation

Linzy Houchen-Wolloff, Sally Boyce and Sally Singh

The Role of HIIT in Cardiac Populations

- Evidence for the application of Amplication of Amplic
- There remains a lack of high quanty 'pragmatic' real-world evidence

OPTION 3

• A major research/logistical challenge in the UK? Prescribing HIIT when maximal exercise testing is not widely available.

@HIITorMISSUK - Study update

Pragmatic multi-centre RCT – 510 patients

Eight weeks – 2 x per week

10 x high intensity bouts at 85 -90% PPO

10 x low intensity bouts at 20 - 25% PPO

Control group – standard care at 40-70% HRR

Assessed following intervention ~8 weeks and at 12 months

Primary outcome measure -VO_{2peak}

Also assessing other physiological, psychosocial and economic outcomes BMJ Open High-intensity interval training versus moderate-intensity steady-state training in UK cardiac rehabilitation programmes (HIIT or MISS UK): study protocol for a multicentre randomised controlled trial and economic evaluation

> Gordon McGregor,^{1,2} Simon Nichols,³ Thomas Hamborg,⁴ Lucy Bryning,⁵ Rhiannon Tudor-Edwards,⁵ David Markland,⁶ Jenny Mercer,² Stefan Birkett,³ Stuart Ennis,^{1,2} Richard Powell,¹ Brian Begg,^{2,7} Mark J Haykowsky,⁸ Prithwish Banerjee,^{1,9} Lee Ingle,³ Rob Shave,² Karianne Backx²

@HIITorMISSUK[♥]

@HIITorMISSUK

Have Your Say!

- We would like to understand how UK CR exercise programmes are currently operating.
- At the end of our survey, there is a section relating to the future role that HIIT may have in UK CR programmes.
- We just need one response from each team Someone directly involved in exercise provision
- <u>https://northumbria.onlinesurveys.ac.uk/an-evaluation-of-exercise-provision-</u> <u>within-uk-cardiac-reha</u>

Summary

- Compared to MISS, HIIT appears to provide superior health benefits
- Variation in HIIT protocols and magnitude of benefit
 - HIIT appears to be safe and effective in cardiac populations HIITorMISSUK may provide much needed 'real-world' evidence.

Thank You

[™]s.j.nichols@shu.ac.uk [™]@nichols87simon

References

- Meyer K, Samek L, Schwaibold M, Westbrook S, Hajric R, Lehmann M, Essfeld D and Roskamm H. Physical responses to different modes of interval exercise in patients with chronic heart failure--application to exercise training. *Eur Heart J* (1996); **17**: 1040-1047.
- Rognmo Ø, Moholdt T, Bakken H, Hole T, Mølstad P, Myhr NE, Grimsmo J and Wisløff U. Cardiovascular Risk of High- Versus Moderate-Intensity Aerobic Exercise in Coronary Heart Disease Patients. *Circulation* (2012); **126**: 1436-1440.
- Daussin FN, Zoll J, Dufour SP, Ponsot E, Lonsdorfer-Wolf E, Doutreleau S, Mettauer B, Piquard F, Geny B and Richard R. Effect of interval versus continuous training on c ardiorespiratory and mitochondrial functions: relationship to aerobic performance improvements in Physiology - Regulatory, Integrative and Comparative Physiology (2008); **295**: R264-R272
- Bacon AP, Carter RE, Ogle EA and Joyner MJ. VO_{2max} trainability and high intensity interval training in humans: a meta-analysis. *PloS one* (2013); 8: e73182.
- Weston M, Taylor KL, Batterham AM and Hopkins WG. Effects of Low-Volume High-Intensity Interval Training (HIT) on Fitness in Adults: A Meta-Analysis of Controlled and Non-Controlled Trials. *Sports Med* (2014); **44**: 1005-1017.
- Weston KS, Wisløff U and Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British Journal of Sports Medicine (2014); **48**: 1227-1234.
- Haykowsky MJ, Timmons MP, Kruger C, McNeely M, Taylor DA and Clark AM. Meta-analysis of aerobic interval training on exercise capacity and systolic function in patients with heart failure and reduced ejection fractions. *The American journal of cardiology* (2013); **111**: 1466-1469.
- Kodama S, Saito K, Tanaka S and et al. Cardiorespiratory fitness as a quantitative predictor of all-cause mortality and cardiovascular events in healthy men and women: A meta-analysis. JAMA (2009); 301: 2024-2035.
- Myers J, Prakash M, Froelicher V, Do D, Partington S and Atwood JE. Exercise Capacity and Mortality among Men Referred for Exercise Testing. *New England Journal of Medicine* (2002); **346**: 793-801.
- Vanhees L, Fagard R, Thijs L and Amery A. Prognostic value of training-induced change in peak exercise capacity in patients with myocardial infarcts and patients with coronary bypass surgery. *The American journal of cardiology* (1995); **76**: 1014-1019.
- Heran BS, Chen J, Ebrahim S, Moxham T, Oldridge N, Rees K, Thompson DR and Taylor RS. Exercise-based cardiac rehabilitation for coronary heart disease. *Cochrane Database Syst Rev* (2011); **7**.
- Anderson L, Oldridge N, Thompson DR, Zwisler A-D, Rees K, Martin N and Taylor RS. Exercise-Based Cardiac Rehabilitation for Coronary Heart DiseaseCochrane Systematic Review and Meta-Analysis. *Journal of the American College of Cardiology* (2016); **67**: 1-12.
- Sandercock G, Hurtado V and Cardoso F. Changes in cardiorespiratory fitness in cardiac rehabilitation patients: A meta-analysis. International Journal of Cardiology (2011).
- West RR, Jones DA and Henderson AH. Rehabilitation after myocardial infarction trial (RAMIT): multi-centre randomised controlled trial of comprehensive cardiac r ehabilitation in patients following acute myocardial infarction. *Heart* (2012); **98**: 637-644.
- Sandercock G, Cardoso F, Almodhy M and Pepera G. Cardiorespiratory fitness changes in patients receiving comprehensive outpatient cardiac rehabilitation in the UK: a multicentre study. *Heart* (2013); **99**: 785-790.
- Houchen-Wolloff L, Boyce S and Singh S. The minimum clinically important improvement in the incremental shuttle walk test following cardiac rehabilitation. *European J* ournal of Preventive Cardiology (2014).
- McGregor G, Nichols S, Hamborg T, Bryning L, Tudor-Edwards R, Markland D, Mercer J, Birkett S, Ennis S and Powell R. High-intensity interval training versus moderate-I ntensity steady-state training in UK cardiac rehabilitation programmes (HIIT or MISS UK): study protocol for a multicentre randomised controlled trial and economic evaluation. *BMJ open* (2016); **6**: e012843.