High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers

MURAKAMI, Shunsuke, WANG, Dawei, MOSTAED, Ali, KHESRO, Amir, FETEIRA, Antonio <http://orcid.org/0000-0001-8151-7009>, SINCLAIR, Derek, FAN, Zhongming, TAN, Xiaoli and REANEY, Ian

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/20998/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

MURAKAMI, Shunsuke, WANG, Dawei, MOSTAED, Ali, KHESRO, Amir, FETEIRA, Antonio, SINCLAIR, Derek, FAN, Zhongming, TAN, Xiaoli and REANEY, Ian (2018). High strain (0.4%) Bi(Mg2/3Nb1/3)O3-BaTiO3-BiFeO3 lead-free piezoelectric ceramics and multilayers. Journal of the American Ceramic Society, 101 (12), 5428-5442.

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
High strain (0.4%) Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-BaTiO$_3$-BiFeO$_3$ lead-free piezoelectric ceramics and multilayers

Shunsuke Murakami1, Dawei Wang1, Ali Mostaed1, Amir Khesro1, Antonio Feteira2, Derek C. Sinclair1, Zhongming Fan3, Xiaoli Tan3 and Ian M Reaney1.*

1Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, UK
2Materials Engineering and Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
3Department of Materials Science and Engineering, Iowa State University, Ames, Iowa, 50011 USA

*Corresponding Author Prof. Ian M Reaney; i.m.reaney@sheffield.ac.uk

Abstract

The relationship between the piezoelectric properties and the structure/microstructure for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (BBFT, $x = 0.55$, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics has been investigated. Scanning electron microscopy revealed a homogeneous microstructure for $x < 0.75$ but there was evidence of a core-shell cation distribution for $x = 0.75$ which could be suppressed in part through quenching from the sintering temperature. X-ray diffraction (XRD) suggested a gradual structural transition from pseudocubic to rhombohedral for 0.63<x<0.70, characterised by the coexistence of phases. The temperature dependence of relative permittivity, polarisation-electric field hysteresis loops, bipolar strain-electric field curves revealed that BBFT transformed from relaxor-like to ferroelectric behaviour with an increase in x, consistent with changes in the phase assemblage and domain structure. The largest
strain was 0.41 % for x = 0.63 at 10 kV/mm. The largest effective piezoelectric coefficient \(d_{33}^* \) was 544 pm/V for \(x = 0.63 \) at 5 kV/mm but the largest Berlincourt \(d_{33} \)
(148 pC/N) was obtained for \(x = 0.70 \). We propose that \(d_{33}^* \) is optimised at the point of
crossover from relaxor to ferroelectric which facilitates a macroscopic field induced
transition to a ferroelectric state but that \(d_{33} \) is optimised in the ferroelectric,
rhombohedral phase. Unipolar strain was measured as a function of temperature for \(x = 0.63 \) with strains of 0.30% achieved at 175°C, accompanied by a significant decrease in
hysteresis with respect to room temperature measurements. The potential for BBFT compositions to be used as high strain actuators is demonstrated by the fabrication of a
prototype multilayer which achieved 3 μm displacement at 150 °C.

1. Introduction

Piezoelectric materials convert electrical energy to mechanical strain and vice versa
and have applications, such as actuators, sensors, generators and acoustic transducers.
Recently, piezoelectric applications have emerged for extreme environment such as
within the high temperature (>200 °C) regions of automotive engines. Consequently,
there has been significant interest to improve the temperature range and performance of
piezoelectrics and an acceptance that compositions with higher Curie temperature \((T_C) \)
than Pb(Zr,Ti)O$_3$ (PZT) (250-320 °C) are required to achieve this ambition.1,2

PZT has been widely applied in piezoelectric devices over the past few decades.3 However, not only are there limitations in its operating temperature,1,2 but there are also environment and health issues due to the toxicity of lead.4,5 Rödel et al.6 summarized how lead affects the human body, noting that PbO is less toxic than metallic Pb. The majority of potential problems for PZT are linked not to the stable room temperature compound but during production when lead oxide is vaporized at high temperature.$^{7-9}$ Potential EU legislation banning PbO in the manufacture of piezoelectrics has therefore led to the development of a range of lead-free materials based on (K,Na)NbO$_3$ (KNN), Na$_{1/2}$Bi$_{1/2}$TiO$_3$ (NBT), and (Ba,Ca)(Zr,Ti)O$_3$ (BCZT). Each PbO-free alternative has strong and weak points. KNN based materials nominally have a high T_C and high piezoelectric coefficient ($d_{33} > 300$)10 but they generally exhibit a decrease in piezoactivity with increase in temperature.11,12 However, we note that Wang et al.13,14 reported the composition, 0.92(Na$_{0.5}$K$_{0.5}$)NbO$_3$-0.06(Bi$_{1/2}$Li$_{1/2}$)TiO$_3$-0.02BaZrO$_3$, to have 348 pC/N at RT which only decreased to around 200 pC/N at 200 °C.

NBT based materials need a high driving electric field to achieve large strain and undergo depolarization at relatively low temperatures (~150 °C). High strain compositions (>0.35%) are also highly hysteretic.15 BCTZ based materials show high
piezoelectric performance at the expense of a low T_C (<100 °C).16,17

BaTiO$_3$-BiFeO$_3$ (BT-BF) based ceramics have been reported to have high piezoelectric coefficient $d_{33} = 402$ pC/N and high $T_C = 454$°C after quenching.18 However, there are real challenges in convincing industry that quenched BT-BF ceramics and multilayers are mechanically reliable. Nonetheless, BT-BF compositions offer an important starting point for the development of piezoelectric materials which potentially have high strain (>0.3%) with T_C higher than PZT (>300 °C).

PZT is known to have an optimised d_{33} and electromechanical coupling coefficient (k) at a morphotropic phase boundary (MPB).19,20 BT-BF ceramics are also considered to exhibit an MPB.21-25 Wei et al.22 reported that 0.30BT-0.70BF (MPB composition) shows the highest d_{33} of 134 pC/N whereas Kumar and co-workers25 suggested that (1-x)BT-xBF ceramics transform from tetragonal to rhombohedral at $0.5 < x < 0.6$, at which compositions the structure appears to be pseudocubic. In general, there is no clear consensus concerning the changes in crystal structure as a function of composition within the BT-BF system,20-26 suggesting that multiple factors such as sintering conditions, quenching and dopants affect the phase assemblage. The same is true of microstructure. Yabuta et al.27 reported about the compositional inhomogeneity of (1-x)(0.33BaTiO$_3$-0.67BiFeO$_3$)-xBi(Mg$_{1/2}$Ti$_{1/2}$)O$_3$ ($x = 0, 0.05, 0.10, \text{and} 0.15$) ceramics
but there have been few papers referring to the relationships between the microstructure and the properties in the systematic investigation of BT-BF. Further work is thus required to design the composition and dopants of the BT-BF system to understand and optimise structure-property relations.

Many researchers (e.g. refs 25, 26) have suggested that the leakage current in BiFeO$_3$ containing systems originates from either the loss of Bi or from the formation of Fe$^{2+}$ as opposed to Fe$^{3+}$ during sintering. They have also proposed that various dopants alleviate these problems.28, 29 Dopants in the field of piezoelectric materials are classified into three groups; donor (higher valence), acceptor (lower valence) and self-compensated (average valence number remains the same). All the above-mentioned dopant strategies improve the resistivity of BT-BF ceramics as reported in the literature.11, 19, 20, 30-42 Wang et al.30 reported that Nb (donor) improves the resistivity of BT-BF while it gives rise to a decrease in the grain size. Curiously, acceptor dopants also improve the resistivity of BT-BF.33, 34 For instance, as Yao and co-workers33 reported, Mn increases the resistivity and decreases the dielectric loss of 0.8BF-0.2BT ceramics. However, the most successful dopants are stoichiometric or self-compensated (e.g. Cr, Co, Al, Ga, Mg$_{1/2}$Ti$_{1/2}$, Zn$_{1/2}$Ti$_{1/2}$ and Ni$_{1/2}$Ti$_{1/2}$) which improve not only the resistivity of furnace cooled ceramics but also their piezoelectric properties.18, 35-42
Nonetheless, the \(d_{33} \) of furnace-cooled doped BF-BT compositions is typically much smaller (163 pC/N) than that of quenched samples.\(^{16,39}\)

Given that all dopant strategies appear empirically to improve resistivity and stoichiometric/self-compensated dopants improve \(d_{33} \), it is logical to design doped compositions which not only act locally as aliovalent dopants but which also maintain macroscopic stoichiometry. The base composition has a mixture of \(\text{Fe}^{3+} \) and \(\text{Ti}^{4+} \) on the B-site. Consequently, only 2+ ions (e.g. \(\text{Mg}^{2+} \)) will consistently act as an acceptor irrespective of where they substitute in the lattice. A similar argument can be made for donor 5+ species (e.g. \(\text{Nb}^{5+} \)) which will act as a local donor wherever they substitute on the B-site. Substituting in the ratio \(\text{Mg}_{2/3}\text{Nb}_{1/3} \) maintains macroscopic stoichiometry (assuming an average 3+ valence) by creating a self-compensated combined dopant and follows previous work on stoichiometric dopants, e.g. Bi\((\text{Mg}_{1/2}\text{Ti}_{1/2})\)O\(_3\)-BaTiO\(_3\)-BiFeO\(_3\), reported by other researchers.\(^{27,29}\) However, the higher valence of \(\text{Nb}^{5+} \) in comparison to \(\text{Ti}^{4+} \) ensures the universal presence of a donor as well as acceptor ion (\(\text{Mg}^{2+} \)). To ensure that all grains contain both acceptor and donor ions, 5 mol\% of Bi\((\text{Mg}_{2/3}\text{Nb}_{1/3})\)O\(_3\) was substituted into the BaTiO\(_3\) – BiFeO\(_3\) solid solution in accordance with the formula, 0.05Bi\((\text{Mg}_{2/3}\text{Nb}_{1/3})\)O\(_3\)-(0.95-x)BaTiO\(_3\)-xBiFeO\(_3\) in which \(x \) was systematically varied to optimise properties.
2. Experimental procedure

0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics were prepared by conventional solid-state methods. The starting raw materials were as follows; Bi\textsubscript{2}O\textsubscript{3} (99.9%, Acros Organics), Fe\textsubscript{2}O\textsubscript{3} (99%, Sigma Aldrich), BaCO\textsubscript{3} (99%, Sigma Aldrich), TiO\textsubscript{2} (99.9%, Sigma Aldrich), MgO (99%, Sigma Aldrich), and Nb\textsubscript{2}O\textsubscript{5} (99.5%, Alfa Aesar). The raw materials were dried overnight to eliminate moisture, hydroxide, and adsorbed CO\textsubscript{2} before weighing. The dried powders were weighed and attrition milled for 1 to 2 h at 300 rpm in a Union Processes attritor mill (Szegvari Attritor System, Union Process), using 3mm diameter yttria-stabilised zirconia media in isopropanol. The slurry was separated from the media and dried overnight at 80ºC. The mixed dried powder was calcined at 750 to 800ºC in an Al\textsubscript{2}O\textsubscript{3} crucible for 2 h in a muffle furnace. The calcined powder was further attrition milled and dried. The attrition milled powder was mixed with poly(vinyl alcohol) equal to 0.5wt% of the attrition milled powder, dried, pulverized by using an agate pestle and mortar, and sieved through 250 micron mesh. ~ 0.3 g of powder was uniaxially pressed into a disk with 10 mm diameter at 125 MPa to form a compact. The compacts were sintered between 960 to 1040ºC for 2h after burning out the binder at 550ºC. To
evaluate the electric, dielectric, and piezoelectric properties, silver paste electrodes were applied to the sintered pellets, and then heated at 500ºC for 2 h.

To measure X-ray powder diffraction (XRD), the sintered pellets were crushed and ground to fine powder. XRD was performed using a Bruker D2 phaser X-ray diffractometer with CuKα (Bruker). The microstructure of polished/thermally etched pellets were studied using a scanning electron microscope (SEM) equipped with a backscattered electron detector (BSE) (Phillips, XL30). The surfaces of the samples were ground and mirror polished using wet abrasive paper. Samples were further polished using diamond abrasives in a water-based Diamond lubricant (MetPrep Ltd.). The polished samples were thermally etched at 900ºC for 20 minutes. Transmission electron microscopy (TEM) samples were prepared by grinding and polishing the ceramic to <30 µm followed by ion beam milling by a GATAN precision ion polishing (PIPS) II (GATAN) to electron transparency. Some samples were mechanically dimpled to 10 µm prior to ion milling. Samples were examined using a either JEOL R005 TEM (JEOL) operating at 300 kV or a Tecnai G2-F20 transmission electron microscopy operating at 200 kV. All crystallographic diffraction notation relates to a pseudocubic fundamental perovskite cell.

εr and tanδ were measured at 10 kHz using a LCR meter (HP, 4284A). The
temperature dependence of the \(\varepsilon_r \) and tan\(\delta \) were measured from 20 to 700\(^\circ\)C. Polarisation-Electric field (PE) hysteresis loops were measured at 1 Hz in silicone oil at room temperature in a ferroelectric tester (AixACCT, TF 2000). The impedance was measured from 100 to 500\(^\circ\)C in the frequency range 5 Hz to 13 MHz using a Precision LCR Meter (Agilent, E4980A). \(d_{33} \) was measured with a piezoelectric meter (PiezoMeter System, PIEZOTEST) shortly after poling. The poling treatment was conducted in silicone oil at 90 to 100\(^\circ\)C under DC at 40 to 50 kV/cm for 20 minutes. Electric field-induced strain (SE) was measured at 1 Hz up to 10 kV/cm from room temperature to 175\(^\circ\)C in silicone oil using a ferroelectric tester (AixACCT, TF 2000).

For multilayer actuators (MLA), calcined and attrition milled powder was mixed with ethyl methyl ketone (Fisher Chemical) as a solvent, poly(propylene carbonate) (EMPOWER Materials) as both dispersant and binder, and butyl benzyl phthalate (Sigma-Aldrich) as a plasticizer using Speed-mixer DAC 800 FVZ (Hauschild Engineering). The slurry was cast onto a silicon coated polyethylene terephthalate (PET) carrier film using a Mistler TCC-1200 tapecaster with a single doctor blade. The cast slurry was dried 1 h at room temperature. Pt ink (M637C Heraeus Electronic Materials) was printed on the green ceramics tapes using a DEK 247 screen printer. The size of each internal electrode area was 9.2 mm × 7.2 mm. 6 green ceramics tapes with
Pt internal electrodes were laminated and pressed at 10 MPa at 70ºC for 20 min. The pressed green sheets were sintered at 1005ºC for 2h after burning out organic ingredients at 180 and 300ºC.

3. Results and discussion

3.1 XRD Analysis

XRD diffractograms of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics are shown in Figure1. All patterns indexed according to a perovskite structure with no secondary phase peaks present. In addition, to determine the most probable structure for each data set, Rietveld refinements were conducted (Table 1). As x increased from 0.55 to 0.75, a systematic change in structure occurred from pseudocubic (Pm-3m) to mixed pseudocubic (Pm-3m) and rhombohedral (R3c) with the ratio of R3c/Pm-3m generally increasing with x as the BiFeO$_3$ end member is approached. The Miller indices in the XRD traces of x = 0.55 and x =0.75 in Figure 1 are in the pseudocubic (Pm-3m) and rhombohedral (R3c) settings, respectively.

3.2 Microstructure
To investigate the microstructure and the compositional homogeneity of ceramics, BSE images for the \(0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3\) ceramics were acquired (Figure 2). For all samples except \(x = 0.75\), most grains were in the range of 5 to 10 µm and image contrast suggested a homogeneous composition, indicating \(\text{Mg}^{2+}(0.72 \text{ Å})\) nm and \(\text{Nb}^{5+}(0.64 \text{ Å})\) reside on the B site (Fe, 0.645 Å and Ti, 0.601 Å). However, for \(x = 0.75\), grains were < 5 µm, smaller than in other samples with evidence of a core-shell structure with darker and brighter contrast, relating to regions of lower (BaTiO\(_3\)-rich) and higher (BiFeO\(_3\)-rich) weight average atomic number consistent with energy dispersive X-ray analysis (not shown here).

Figure 3 (a) is a dark field two beam TEM image of a sample with \(x = 0.63\) obtained using a 111 reflection with the electron beam approximately parallel to a [110] direction. There is no evidence of long range polar order (no distinct domain walls) and only local correlation of fringe contrast, typical of a pseudocubic (XRD data in Figure 1), relaxor-like compound with a nano- rather than macro- domain structure. Inset in Figure 3 (a) is a [110] zone axis diffraction pattern. Only fundamental perovskite spots appear in the pattern with no superstructure reflections, indicating the absence of octahedral tilting. In contrast, Figure 3 (b) shows a bright field image near a [112] direction for samples with \(x = 0.7\) which shows an \(R3c\) phase, consistent with the XRD data, Figure 1.
The $R3c$ phase is characterised by lamellar ferroelectric domains with corresponding diffraction patterns exhibiting $\frac{1}{2}\{ooo\}$ antiphase tilting superstructure reflections in some but not all $<112>$ zone axes. Two variants of the $<112>$ zone axes (with and without $\frac{1}{2}\{ooo\}$) are included in Figure 3b. Please note that on tilting the sample lamellar domains may also be observed in the upper RHS of the image.

To evaluate the electrical homogeneity, impedance spectroscopy (IS) analysis was conducted. Spectroscopic plots of Z'' and M'' extracted from impedance spectroscopy data may be used as a simple means to qualitatively assess electrical homogeneity. Figure 4 (a-f) show Z'' and M'' from complex IS plots with frequency for the $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3\cdot(0.95-x)\text{BaTiO}_3\cdot x\text{BiFeO}_3$ ceramics. For $x = 0.55$ to 0.70, the measurements were conducted at 320ºC. For $x = 0.75$, the measurement was conducted at 180ºC to ascertain the entire shape of the spectrum of Z'' and M''. All the spectra of M'' show a main peak and the low frequency tail of a second, higher frequency peak, indicating that they all have two or more electrical phases, most likely relating to either grain boundary, shell or core regions. The capacitance calculated from Z''_{max} measured at 320ºC for the $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3\cdot(0.95-x)\text{BaTiO}_3\cdot x\text{BiFeO}_3$ ceramics are shown in Table 2. For $x = 0.55$ to 0.65, the capacitance values are ~ 1 to 2 nF which is consistent with a grain boundary type-response but the capacitance decreases to 0.43 nF for $x = \ldots$
0.70 and 0.13 nF for $x = 0.75$ and these lower values are more indicative of a shell-type response. For $x = 0.75$ there is a clear gap between the peak positions of Z'' and M'', indicating the main electric path is electrically heterogeneous which may correspond to compositional inhomogeneity shown in the BSE image.

The total electrical conductivity ($\sigma_{dc} = 1/R$) was calculated from the low frequency intercept of the large arc in the Z^* plots which corresponds to the large Z'' peak observed in Figure 4 (a-f), σ_{dc} versus reciprocal temperature for the 0.05Bi(Mg$2/3$Nb$1/3$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramics are shown in Figure 5 and the activation energy (E_a) calculated from these plots are shown in Table 2. Figure 4. shows that $x = 0.75$ is more conductive than the others. For $x = 0.75$, the E_a is clearly smaller, which means there is an obvious difference in the conduction mechanism between $x = 0.55$ to 0.65 and $x = 0.75$ and supports the conductivity results. Furthermore, these data imply that the electric path which show high resistivity for $x = 0.55$ to 0.65 is not present in $x = 0.75$. In other words, when compositions are microstructurally homogeneous (e.g. $x = 0.55$ to 0.65) a high resistive electric path is maintained. The high resistive electrical path is tentatively attributed to a grain boundary response but further measurements are required to confirm this assignment.
3.3 Temperature dependence of relative permittivity (ε_r) and tan\(\delta\)

The temperature dependencies of ε_r and tan\(\delta\) for the 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramics are shown in Figure 6(a) and 6(b) (measured at 10 kHz). For $x = 0.55$ (Figure 6(a)), the diffuse dielectric anomaly is broadly consistent with a relaxor-like transition and concomitant with the pseudocubic structure refined from XRD data. As x increases to $x = 0.70$, the dielectric anomalies sharpen as the volume fraction of the ferroelectric ($R3c$) phase in structural refinements increases. However, for $x = 0.75$, a broad flat diffuse dielectric anomaly is observed suggesting that this composition is no longer homogeneous, as confirmed by BSE images and Z'', M'' impedance plots.

The frequency dependence of ε_r and tan\(\delta\) vs temperature for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(1-x)BaTiO$_3$-xBiFeO$_3$ ceramics ($x = (a) 0.55, (b) 0.63, (c) 0.70$) measured at 1, 10, 100, and 250 kHz are shown in Figure 7. For $x = 0.55$, the dielectric anomaly and tan\(\delta\) shift to high temperature as the frequency increases, indicating these ceramics are relaxors. For $x = 0.70$, the diffuse dielectric anomaly also shifts in a similar manner to $x = 0.55$ but by a smaller interval, probably due to the difference of the ratio of relaxor-like to ferroelectric-like phase. However, for $x = 0.63$, the diffuse dielectric anomaly decreased but did not shift from 10 kHz to 100 kHz. The reason for the
absence of classic relaxor-like behaviour is not clear but may relate to the presence of multiple phase transitions which obscure the trends expected for pseudocubic ceramics which contain short range ordered polar nanoregions, as evidenced by XRD (Figure 1) and TEM (Figure 3).

\[\tan \delta \] for all compositions at room temperature is typically <0.1 and for \(0.55 \leq x \leq 0.65\) does not increase significantly until >350°C which is encouraging for high temperature applications. However, for \(x \geq 0.70\) the onset of the sharp increase in dielectric loss shifts to lower temperatures, consistent with a chemically and electrically inhomogeneous microstructure observed by BSE images and \(Z''\), \(M''\), impedance plots, respectively.

3.4 Ferroelectric and Piezoelectric properties

PE hysteresis loops and bipolar SE curves for the 0.05Bi\((\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3\)-(0.95-\(x\))BaTiO\(_3\)-xBiFeO\(_3\) ceramics were measured under an electric field of 7 kV/mm at room temperature (Figure 8(a) and Figure 8(b)). PE hysteresis loops show a change from a narrow hysteresis loop, more typical of electrostrictive compositions with limited or no long-range ferroelectricity to a classic ferroelectric square loop as \(x\) increases until 0.7, consistent with the increase in volume
fraction of the $R3c$ phase. A similar trend is observed for bipolar strain field measurements which transform from loops commensurate with dominant electrostrictive behaviour (negligible negative strain) to classic butterfly loops typical of a long-range order ferroelectric. However, $x = 0.75$ does not exhibit ferroelectric hysteresis and shows negligible strain, concomitant with an electrically and chemically inhomogeneous ceramic. Unpoled samples with $x = 0.63$ recorded the maximum strain of 0.41% at 10kV/mm at room temperature (Figure 9 (a)). We note however, that the largest d_{33}^* was obtained for this composition in the poled state, notably at 5kV/mm rather than 10 kV/mm (544 pm/V), Figure 9 (b). We further note that the largest strains/d_{33}^* are recorded at the point of crossover from dominant relaxor, electrostrictive ($x<0.63$) to ferroelectric behaviour ($0.65\leq x\leq 0.70$), a trend previously observed in Pb-free systems based on NBT or $(K_{0.5}Bi_{0.5}TiO_3$ (KBT)).$^{43-45}$

The temperature dependence of the unipolar SE curves for poled 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ($x = 0.63$) ceramics measured under an electric field of 6 kV/mm from 25 to 175°C are shown in Figure 10. The strain increased from ~0.27 to ~0.34% at 100 °C and decreased to ~0.30% at 175 °C accompanied by a notable decrease in hysteresis with respect to room temperature measurements. The variation of strain (ΔS) was 25%. Comparison of the variation with PZT and other PbO
free materials is given in Table 3. These results suggest that BBTF may have the potential to operate at higher temperatures than typical for PbO-free ceramics which often have low depolarising temperatures or a decrease in piezoactivity as temperature increases.45-49

Figure 11 compares d_{33}^* calculated from unipolar strain and d_{33} for poled $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70, \text{and } 0.75$) ceramics. The largest d_{33} was 148 pC/N for $x = 0.70$ and the largest d_{33}^* was 544 pm/V for $x = 0.63$ at 5 kV/mm. We note that the maximum d_{33} and d_{33}^* are not coincident, suggesting that the large strains relate principally to a field induced transition to a ferroelectric state rather than classic extender piezoelectric behaviour.50-55

A conclusion supported but the absence of evidence of long range polar order in the TEM images (Figure 3) and the pseudocubic structure in XRD data (Figure 1) for high strain compositions.

3.5 Effect of quenching on $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-0.75\text{BaTiO}_3-0.20\text{BiFeO}_3$

To investigate the cause of the compositional inhomogeneity for $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.75$), quenched (into liquid N$_2$) were compared to furnace cooled samples. Figure 12 (a) and (b) show BSE images for
polished 0.05Bi(Mg_{2/3}Nb_{1/3})O_3-(0.95-x)BaTiO_3-(x)BiFeO_3 (x = 0.75) of furnace cooled and quenched samples. For the furnace cooled composition, the core shell structure is apparent in the BSE images but less evident in the quenched sample under identical imaging conditions. Moreover, ferroelectric macrodomains are observed in the quenched but not in the furnace cooled sample, consistent with the PE and SE loops, Figure 13 (a) and (b). We note however, that there is a bright presumably Bi rich phase in the grain boundary of the quenched sample. This might suggest a complex phase equilibrium at the sintering temperature, involving a Bi-rich grain boundary phase in addition to the perovskite matrix phase. It is nonetheless concluded that the inhomogeneous distribution of constituent ions in the matrix phase was generated during furnace cooling.

PE hysteresis loops and bipolar SE curves for furnace cooled and quenched samples measured at room temperature at 8 kV/mm are shown in Figure 13 (a) and (b). The PE hysteresis loop of the furnace cooled sample is elliptical which indicates that the ceramics have only a weak ferroelectric response but quenched samples show square hysteresis loops typical of a ferroelectric. Moreover, the furnace cooled sample reveals negligible strain in bipolar measurements but the SE curve of the quenched sample shows a butterfly-like shape consistent with a strong ferroelectric/piezoelectric response.
We conclude therefore, that improved homogeneity in the matrix phase for quenched samples results in superior piezoelectric and ferroelectric properties in $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.75$) ceramics. The onset of inhomogeneity in the matrix suggests that $x = 0.75$ cools from a single perovskite phase at the sintering temperature through to a lower temperature region in which two perovskite phases co-exist.

We note that the largest strains in the BBFT system occur at $x = 0.63$ at the relaxor-ferroelectric crossover, a composition which remains homogeneous during furnace cooling, i.e. has a single perovskite phase over the entire temperature range from sintering. We speculate that not only is the $\text{Mg}_{2/3}\text{Nb}_{1/3}$, self-compensated dopant important in controlling conductivity in these systems, but it also encourages the formation of a relaxor-ferroelectric point of crossover (high strain/d_{33}^*) in compositions which are intrinsically homogenous (miscible over large temperature ranges), effectively moving the perovskite immiscibility region away from the ‘sweet-spot’ for high strain and large d_{33}^*, thereby removing the need for quenching, alluded to by several authors.18,39

3.6 Multilayer actuator for $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-0.63\text{BaTiO}_3-0.32\text{BiFeO}_3$
To demonstrate the potential of BBFT compositions for commercialisation, a MLA of 0.05Bi(Mg_{2/3}Nb_{1/3})O_3-0.63BaTiO_3-0.32BiFeO_3 was fabricated. Figure 14 (a) is a scanning electron microscope image (SEM) of a cross section of a MLA. The thickness of each ceramic layer was ~120 μm and the active area of each electrode was 34.34 mm². No delamination or voids were observed. *PE* hysteresis loop and bipolar *SE* curve for a MLA measured at room temperature are shown in Figure 14 (b). The MLA gave a displacement of ~1.5 μm at 882V (7 kV/mm) with a similar strain (0.25%) to bulk compositions. The maximum polarization was 38 μC/cm², slightly smaller than that of the bulk ceramics, (41 μC/cm²). The *SE* and *PE* hysteresis loops are however a little wider in MLAs than in bulk ceramics, perhaps suggesting some influence of clamping on domain wall motion from the presence of the internal Pt electrode. Figure 14 (c) and (d) show the temperature dependence of unipolar *SE* curve and *PE* loop for the MLA measured under an electric field of 6 kV/mm from 25 to 150°C. The strain increases from a displacement of 1.5 μm to >3 μm from room temperature to 150 °C. Although strain increases in bulk ceramics with increase in temperature, the magnitude is significantly less (only 20% increase in bulk). The origin of this difference in the temperature dependence of strain between bulk and MLA remains to be elucidated but is likely to relate to un-pinning/clamping of domain walls as temperature increases.
These novel compositions based on BBFT represent an important set of materials in the search for lead free electrostrictors and piezoelectrics. Although their small signal d_{33} is unsuitable for sensor applications, their large electrostrictive response and high strain (0.4%) are competitive with, or superior to, many lead free piezoelectrics for actuator applications. The inclusion of Mg$_{1/3}$Nb$_{2/3}$ as stoichiometric co-dopants was initially performed to modify the defect chemistry and reduce conductivity but it is evident from the results presented that Mg$^{2+}$ and Nb$^{5+}$ on the B-site also affect the correlation length of dipolar coupling and encourage the onset of relaxor rather than ferroelectric behaviour, thus permitting the large dominantly, electrostrictive strains.

BBFT is composed of non-toxic and environmentally sustainable elements with the exception of Nb$_2$O$_5$ but the low wt% in BBFT (<2 wt%) in comparison to KNN (60 wt%) ensures that its environmental profile is superior. Compared to NBT, KNN and BCZT there are relatively few studies of BBFT based compositions but the large strains and multilayer fabrication for non-quenched compositions demonstrated in our study suggest they are worthy of further investigation.

4. Conclusions

The relationship between the piezoelectric/electrostrictive properties, the structure
and microstructure for $0.05\text{Mg}_{2/3}\text{Nb}_{1/3}\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70,$ and 0.75) ceramics was investigated. XRD revealed that compositions gradually transformed from a pseudocubic ($Pm-3m$) to a rhombohedral ($R3c$) phase as x increased. BSE images and Z'', M'' spectroscopic plots showed that $x = 0.75$ is chemically heterogeneous and has the greatest electrical inhomogeneity. The temperature dependence of the relative permittivity showed Curie maxima, consistent with a crossover from relaxor-like to ferroelectric behaviour as x increased with TEM images and polarisation - strain - field behaviour also coherent with this premise. The largest d_{33}^* was measured at 544 pm/V for $x = 0.63$ under 5 kV/mm at the crossover from relaxor to ferroelectric behaviour. The temperature dependence for $x = 0.63$ showed 0.30% strain under an electric field of 6 kV/mm at 175 °C with a notable decrease in hysteresis with respect to room temperature. For $x = 0.75$, quenching improved the chemical homogeneity in the perovskite phase and resulted in significantly improved ferroelectric and piezoelectric properties. We propose that not only is the $\text{Mg}_{2/3}\text{Nb}_{1/3}$, self-compensated dopant important in controlling conductivity in BT-BF based systems, but also encourages a relaxor-ferroelectric point of cross over in compositions which are miscible over large temperature ranges, effectively moving the immiscibility region away from the ‘sweet-spot’ for high strain and large d_{33}^*, thereby
removing the need for quenching. BBFT composition were successfully fabricated into MLAs with properties similar to bulk but with a marked increase in the temperature dependence of strain.

Acknowledgements
We thank the EPSRC for funding (Substitution and Sustainability in Functional Materials and Devices, EP/L017563/1).

References
3 An Introduction to Piezoelectric Materials and Applications, J. Holterman & P. Groen.

11 E. K. Akdogan, K. Kerman, M. Abazari, and A. Safari, Origin of high piezoelectric activity in ferroelectric (K_{0.44}Na_{0.52}Li_{0.04})-(Nb_{0.84}Ta_{0.1}Sb_{0.06})O_3 ceramics, Appl. Phys. Lett., 92, 112908 (2008).

14 H. Shi, J. Chen, R. Wang, S. Dong, Full set of material constants of (Na_{0.5}K_{0.5})NbO_3-BaZrO_3-(Bi_{0.5}Li_{0.5})TiO_3 lead-free piezoelectric ceramics at the morphotropic phase boundary, J. Alloys and Compounds, 655, 290-295 (2016).

15 S. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. Kleebe, and J. Rödel, Lead-free piezoceramics with giant strain in the system Bi_{0.5}Na_{0.5}TiO_3-BaTiO_3-K_{0.5}Na_{0.5}NbO_3. I. Structure and room temperature properties J. Appl. Phys., 103, 034107 (2008).

17 S. Murakami, T. Watanabe, T. Suzuki, T. Matsuda, and K. Miura, Effects of poling termination and aging process on piezoelectric properties of Mn-doped BaTi_{0.96}Zr_{0.04}O_{3} ceramics, Jpn. J. Appl. Phys., 54, 10ND05 (2015).

43 S. Zhang, A. B. Kounga, and E. Aulbach H. Ehrenberg J. Rödel, Giant strain in lead-free piezoceramics Bi$_{0.5}$Na$_{0.5}$TiO$_3$-BaTiO$_3$–K$_{0.5}$Na$_{0.5}$NbO$_3$ system, *Appl.
44. E. A. Patterson, D. P. Cann, J. Pokorny, and I. M. Reaney, Electromechanical strain in Bi(Zn\textsubscript{1/2}Ti\textsubscript{1/2})O\textsubscript{3}–(Bi\textsubscript{1/2}Na\textsubscript{1/2})TiO\textsubscript{3}–(Bi\textsubscript{1/2}K\textsubscript{1/2})TiO\textsubscript{3} solid solutions, *J. Appl. Phys.*, **111**, 094105 (2012).

45. X. Liu, J. Zhai, B. Shen, F. Li, Y. Zhang, P. Li, B. Liu, Electric-field-temperature phase diagram and electromechanical properties in lead-free (Na0.5Bi0.5)TiO3-based incipient piezoelectric ceramics, *Journal of the European Ceramic Society*, **37**, 1437–1447 (2017).

48. Y. Ehara, N. Novak, A. Ayrikyan, P. T. Geiger, and K. G. Webber, Dielectric, Phase transformation induced by electric field and mechanical stress in Mn-doped (Bi\textsubscript{1/2}Na\textsubscript{1/2})TiO\textsubscript{3}–(Bi\textsubscript{1/2}K\textsubscript{1/2})TiO\textsubscript{3} ceramics, *J. Appl. Phys.*, **120**, 174103 (2016).

49. L. Li, J. Hao, R. Chu, Z. Xu, W. Li, J. Du, P. Fu, Ferroelectric and field-induced strain response of lead-free (Fe,Sb)-modified (Bi\textsubscript{0.5}Na\textsubscript{0.5})\textsubscript{0.935}Ba\textsubscript{0.065}TiO\textsubscript{3} ceramics *Ceramics International*, **42**, 9419–9425 (2016).

51. W. Y. Pan, C. Q. Dam, Q. M. Zhang, and L. E. Cross, Large displacement
transducers based on electric field forced phase transitions in the tetragonal (Pb0.97La0.02) (Ti,Zr,Sn)O3 family of ceramics, J. Appl. Phys., 66, 6014-6023 (1989).

Table 1. Lattice parameters (a, b, c), fraction of phase (wt%) and fitting parameters (R_{wp} and χ^2) for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$–(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics measured at room temperature.

<table>
<thead>
<tr>
<th>x</th>
<th>Space group</th>
<th>Lattice parameters</th>
<th>Weight (%)</th>
<th>R-factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>Capacitance at 320°C</td>
<td>Activation Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C (nF/cm)</td>
<td>E_a (eV)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td>1.01</td>
<td>1.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td>1.98</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.63</td>
<td>1.59</td>
<td>1.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td>1.17</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td>0.43</td>
<td>1.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td>0.13</td>
<td>0.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Capacitance measured at 320°C (from Z'' peak) and activation energy for the dc conductivity for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ($x = 0.55$, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature Range</th>
<th>ΔS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZT 4</td>
<td>RT-160°C</td>
<td>15%</td>
<td>10</td>
</tr>
<tr>
<td>PZT-5H</td>
<td>RT-80°C</td>
<td>>40%</td>
<td>50</td>
</tr>
<tr>
<td>0.91BKT-0.09BF</td>
<td>RT-175°C</td>
<td>15%</td>
<td>46</td>
</tr>
<tr>
<td>BNT-BKT</td>
<td>RT-190°C</td>
<td>3%</td>
<td>48</td>
</tr>
<tr>
<td>0.3BT-0.7BF</td>
<td>RT-150°C</td>
<td>42%</td>
<td>47</td>
</tr>
<tr>
<td>0.05BMN-0.32BT-0.63BF</td>
<td>RT-175°C</td>
<td>25%</td>
<td>This work</td>
</tr>
</tbody>
</table>
FIGURE 1 XRD patterns of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics measured at room temperature. Indexation for x = 0.55 and 0.75 are in pseudocubic and rhombohedral settings, respectively.

FIGURE 2 BSE images of polished surface of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramics with x = (a) 0.55, (b) 0.60, (c) 0.63, (d) 0.65, (e) 0.70 and (f) 0.75. Residual flaws and irregularities are caused by polishing and thermal etching.

FIGURE 3 a) Two beam dark field transmission electron microscopy image of a sample with x = 0.63 obtained using a 111 reflection close to the [110] direction, illustrating the nanodomain structure of the pseudocubic relaxor-like phase. Inset is the [110] zone axis diffraction pattern in which only fundamental perovskite reflections are apparent. b) Bright field image of x = 0.7 close to the [112] direction. Bottom LHS shows lamellar ferroelectric domains and the top RHS exhibits a similar domain structure on tilting. Inset are two variants of the [112] zone axis for the R3c phase with and without ½{000} antiphase tilt reflections.

FIGURE 4 Combined Z'' and M'' spectroscopic plots for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramics with x = (a) 0.55, (b) 0.60, (c) 0.63, (d) 0.65, (e) 0.70 measured at 320°C and (f) x = 0.75 measured at 180°C.

FIGURE 5 Arrhenius plot of the dc electrical conductivity for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics.

FIGURE 6 Temperature dependence of (a) ε_r and (b) tanδ for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics.

FIGURE 7 Frequency dependence of relative permittivity and dielectric loss, tanδ vs temperature for 0.05 (Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(1-x)BaTiO$_3$-xBiFeO$_3$ ceramics (x = (a) 0.55, (b) 0.63, (c) 0.70.

FIGURE 8 (a) PE hysteresis loops and (b) bipolar SE curves for
0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics measured at room temperature.

FIGURE 9 Unipolar SE curve of (a) unpoled and (b) poled and unpoled samples of 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.63) ceramics measured at room temperature.

FIGURE 10 The temperature dependence of the unipolar SE curve for poled 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.63) ceramics measured under an electric field of 6 kV/mm from 25 to 175 °C.

FIGURE 11 The largest d_{33}^* calculated from unipolar strain and d_{33} for 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics measured at room temperature.

FIGURE 12 BSE images of polished surface of (a) furnace cooled and (b) quenched 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.75) ceramics.

FIGURE 13 (a) PE hysteresis loops and (b) bipolar SE curves for furnace cooled and quenched 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.75) ceramics measured at room temperature.

FIGURE 14 (a) Cross-sectional SEM image, (b) PE hysteresis loop and SE curve measured at room temperature, and temperature dependence of (c) unipolar strain and (d) PE loop of MLA for 0.05Bi(Mg\textsubscript{2/3}Nb\textsubscript{1/3})O\textsubscript{3}-(0.95-x)BaTiO\textsubscript{3}-xBiFeO\textsubscript{3} (x = 0.63).
Fig. 1. XRD patterns of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70, \text{and } 0.75$) ceramics measured at room temperature. Indexation for $x = 0.55$ and 0.75 are in pseudocubic and rhombohedral settings, respectively.
Table 1. Lattice parameters (a, b and c), fraction of phase (wt%) and fitting parameters (R_{wp} and χ^2) for $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-(x)\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70$ and 0.75) ceramics measured at room temperature.

<table>
<thead>
<tr>
<th>x</th>
<th>Space group</th>
<th>Lattice parameters</th>
<th>Weight (%)</th>
<th>R-factors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>a(Å)</td>
<td>b(Å)</td>
<td>c(Å)</td>
</tr>
<tr>
<td>0.55</td>
<td>Pm-$3m$</td>
<td>4.0007(9)</td>
<td>4.0007(9)</td>
<td>4.0007(9)</td>
</tr>
<tr>
<td>0.60</td>
<td>Pm-$3m$</td>
<td>3.998(1)</td>
<td>3.998(1)</td>
<td>3.998(1)</td>
</tr>
<tr>
<td>0.63</td>
<td>Pm-$3m$</td>
<td>3.9980(8)</td>
<td>3.9980(8)</td>
<td>3.9980(8)</td>
</tr>
<tr>
<td></td>
<td>R3c</td>
<td>5.6145(0)</td>
<td>5.6145(0)</td>
<td>14.0691(7)</td>
</tr>
<tr>
<td>0.65</td>
<td>Pm-$3m$</td>
<td>3.9967(6)</td>
<td>3.9967(6)</td>
<td>3.9967(6)</td>
</tr>
<tr>
<td></td>
<td>R3c</td>
<td>5.6573(8)</td>
<td>5.6573(8)</td>
<td>13.7388(5)</td>
</tr>
<tr>
<td>0.70</td>
<td>Pm-$3m$</td>
<td>3.9994(6)</td>
<td>3.9994(6)</td>
<td>3.9994(6)</td>
</tr>
<tr>
<td></td>
<td>R3c</td>
<td>5.6352(6)</td>
<td>5.6352(6)</td>
<td>13.8498(9)</td>
</tr>
<tr>
<td>0.75</td>
<td>Pm-$3m$</td>
<td>3.9982(3)</td>
<td>3.9982(3)</td>
<td>3.9982(3)</td>
</tr>
<tr>
<td></td>
<td>R3c</td>
<td>5.6272(6)</td>
<td>5.6272(6)</td>
<td>13.8844(2)</td>
</tr>
</tbody>
</table>
Fig. 2. BSE images of polished surface of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramics for $x = (a) 0.55$, (b) 0.60, (c)
0.63, (d) 0.65, (e) 0.70 and (f) 0.75. Residual flaws and irregularities are caused by polishing and thermal etching.

Fig. 3. a) Two beam dark field transmission electron microscopy image of a sample with $x = 0.63$ obtained using a 111 reflection close to the [110] direction, illustrating the nanodomain structure of the pseudocubic relaxor-like phase. Inset is the [110] zone axis diffraction pattern in which only fundamental perovskite reflections are apparent. b) Bright field image of $x = 0.7$ close to the [112] direction. Bottom LHS shows lamellar ferroelectric domains and the top RHS exhibits a similar domain structure on tilting. Inset are two variants of the [112] zone axis for the R3c phase with and without $\frac{1}{2}\{00\}$ antiphase tilt reflections
Fig. 4. Combined Z'' and M'' spectroscopic plots for 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ceramic with $x = (a) 0.55$, (b) 0.60, (c) 0.63, (d) 0.65, (e) 0.70 measured at 320°C and (f) 0.75 and measured at 180°C.
Table 2. Capacitance measured at 320°C (from Z'' peak) and activation energy for the dc conductivity for $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70, \text{and} 0.75$) ceramics.

<table>
<thead>
<tr>
<th>x</th>
<th>Capacitance at 320°C</th>
<th>Activation Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C (nF/cm)</td>
<td>E_a (eV)</td>
</tr>
<tr>
<td>0.55</td>
<td>1.01</td>
<td>1.12</td>
</tr>
<tr>
<td>0.60</td>
<td>1.98</td>
<td>1.11</td>
</tr>
<tr>
<td>0.63</td>
<td>1.59</td>
<td>1.15</td>
</tr>
<tr>
<td>0.65</td>
<td>1.17</td>
<td>1.14</td>
</tr>
<tr>
<td>0.70</td>
<td>0.43</td>
<td>1.11</td>
</tr>
<tr>
<td>0.75</td>
<td>0.13</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Fig. 5. Arrhenius plot of the dc electrical conductivity for $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70, \text{and} 0.75$) ceramics.
Fig. 6. Temperature dependence of (a) relative permittivity and (b) dielectric loss, $\tan \delta$ for $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-(x)\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70,$ and 0.75) ceramics.
Fig. 7. Frequency dependence of relative permittivity and tanδ vs temperature for 0.05Bi(Mg_{2/3}Nb_{1/3})O_3-(0.95-x)BaTiO_3-(x)BiFeO_3 (x = (a) 0.55, (b) 0.63, and (c) 0.70).

Fig. 8. (a) PE hysteresis loops and (b) bipolar SE curves for 0.05Bi(Mg_{2/3}Nb_{1/3})O_3-(0.95-x)BaTiO_3-(x)BiFeO_3 (x = 0.55, 0.60, 0.63, 0.65, 0.70, and 0.75) ceramics measured at room temperature.
Fig. 9. Unipolar SE curve of (a) unpoled and (b) poled and unpoled samples of 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ ($x = 0.63$) ceramics measured at room temperature.
Fig. 10. The temperature dependence of the unipolar SE curve for poled 0.05Bi(Mg$_{2/3}$Nb$_{1/3}$)O$_3$-(0.95-x)BaTiO$_3$-xBiFeO$_3$ (x = 0.63) ceramics measured under an electric field of 6 kV/mm from 25 to 175 °C.
Table 3. Comparison of the temperature dependence of strain (ΔS) for several kinds of piezoelectric ceramics (PZT, $\text{Bi}_{1/2}\text{K}_{1/2}\text{TiO}_3$-BF, $\text{Bi}_{1/2}\text{Na}_{1/2}\text{TiO}_3$- $\text{Bi}_{1/2}\text{K}_{1/2}\text{TiO}_3$, BT-BF, BMN-BT-BF).

<table>
<thead>
<tr>
<th>Material</th>
<th>Temperature Range</th>
<th>ΔS</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>PZT 4</td>
<td>RT-160°C</td>
<td>15%</td>
<td>10</td>
</tr>
<tr>
<td>PZT-5H</td>
<td>RT-80°C</td>
<td>>40%</td>
<td>47</td>
</tr>
<tr>
<td>0.91BKT-0.09BF</td>
<td>RT-175°C</td>
<td>15%</td>
<td>43</td>
</tr>
<tr>
<td>BNT-BKT</td>
<td>RT-190°C</td>
<td>3%</td>
<td>45</td>
</tr>
<tr>
<td>0.3BT-0.7BF</td>
<td>RT-150°C</td>
<td>42%</td>
<td>44</td>
</tr>
<tr>
<td>0.05BMN-0.32BT-0.63BF</td>
<td>RT-175°C</td>
<td>25%</td>
<td>This work</td>
</tr>
</tbody>
</table>

Fig. 11. The largest d_{33}^* calculated from unipolar strain and d_{33} for $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.55, 0.60, 0.63, 0.65, 0.70, \text{and } 0.75$) ceramics measured at room temperature.
Fig. 12. BSE images of polished surface of (a) furnace cooled and (b) quenched $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.75$) ceramics.

Fig. 13. (a) PE hysteresis loops and (b) bipolar SE curves for furnace cooled and quenched $0.05\text{Bi}(\text{Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.75$) ceramics measured at room temperature.
Fig. 14 (a) Cross-section SEM image, (b) PE hysteresis loop and SE curve measured at room temperature, and temperature dependence of (c) unipolar strain and (d) polarisation a multilayer actuator fabricated from $0.05\text{Bi(Mg}_{2/3}\text{Nb}_{1/3})\text{O}_3-(0.95-x)\text{BaTiO}_3-x\text{BiFeO}_3$ ($x = 0.63$).