
Understanding the behaviour of new low biopersistence high temperature insulation fibre 
materials

CHRISTOPOULOU, Georgia

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20894/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20894/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


 

 

 

Understanding the Behaviour of New Low 
Biopersistence High Temperature Insulation Fibre 

Materials 
 
 
 

 
 
 

Georgia Christopoulou 
 
 
 
 
 
 
 

A thesis submitted in partial fulfilment of the requirements of 
Sheffield Hallam University 

for the degree of Master of Philosophy 
 
 
 
 
 
 

Collaborating Organisation: Morgan Advanced Materials 
 
 
 
 
 
 
 
 
 
 

September 2017 
 
 



 
 

 

 

Στην Ιάσμη και στον Γιώργο 



2 

 

Abstract 

New low-biopersistence glass fibres (Superwool® XT) in the K2O-MgO-ZrO2-Al2O3-

SiO2 system have been previously developed by compositional reformulation, resulting 

in a safer, more environmentally-friendly fibre material suitable for applications 

demanding long-term and high-temperature stability. In this work, heat treatment 

experiments at 850°C and 1250°C with amorphous and pre-crystallized samples were 

employed to explore the long-term performance, the crystallization behaviour and the 

elemental stability of these bio-soluble glass fibres as functions of time, temperature and 

service conditions.  

Superwool® XT requires less than one minute of heating at 1250°C to partially 

crystallize to form glass-ceramic fibres. Amorphous and pre-crystallized samples of this 

material have a satisfactory performance at 850°C as no composition alterations or 

phase transformations occur after kalsilite (KAlSiO4) and zirconium oxide (ZrO2) 

completely develop. On the contrary, Superwool® XT samples heat treated at 1250°C 

revealed the formation of kalsilite at the initial firing stage (168-840 hours) and its 

transformation to leucite (KAlSi2O6) from around 800 hours and as crystallization 

progresses. This phase transformation is accompanied by K2O evaporation and rough 

and uneven surface morphology. 

To explore the thermal behaviour of Superwool® XT, systematic synthesis and heat 

treatment experiments were conducted. These resulted in multiphase and single-phase 

glass-ceramic fibres in the K2O-Al2O3-SiO2 and the K2O-ZrO2-Al2O3-SiO2 system. 

Heat treated samples at 1250°C showed that leucite is a stable crystalline phase as a 

function of time (up to 1000 hours) as opposed to kalsilite which is an unstable phase 

that probably behaves as a precursor of leucite. Samples in which kalsilite is the major 
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phase lose K2O after prolonged firing (1000 hours) dissimilarly to those with leucite in 

which little or no compositional alteration was detected.  

The unstable nature of kalsilite will cause loss of K2O and the development of leucite at 

1250°C and after prolonged firing (up to 2000 hours). Two hypotheses have been 

developed to explain this phenomenon. In the first, unstable kalsilite ejects K2O and 

Al2O3 and then transforms to leucite. In the second hypothesis, unstable kalsilite reacts 

with silica from an amorphous phase to form leucite. 

Heat treatment experiments demonstrated that the firing atmosphere parameters, such as 

number of samples inside the furnace and thus atmospheric K2O concentration and 

dimensions of the furnace, will affect the crystallization behaviour and the rate of K2O 

volatilization. Furthermore, the loss of potassium oxide is strongly connected with the 

development of leucite as in all the cases where K2O loss was limited the formation of 

this phase was also supressed. 

Finally, analysis of Cerachem® fibres in the ZrO2-Al2O3-SiO2 system which is the 

correct industry standard material for high thermal insulation showed that a loss of silica 

occurs as a function of temperature and material depth and is observed as a weight loss 

as gaseous SiO2 moves away from the hot face of the samples. 
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1. Introduction 

This chapter provides the underlying rationale and purpose of this research. The aims 

and the objectives of the investigation will be clearly elucidated and specific research 

questions will be defined, which take the form of hypotheses that were tested within the 

study. It is very important to reach an understanding of how aims and objectives each 

fulfil separate but related functions. Finally, an overview of the following chapters will 

be presented. 

 

1.1. Rationale 

Refractory fibres are a group of diverse types of amorphous or crystalline synthetic 

mineral fibres that are highly resistant to heat. They are normally used for applications 

demanding long term and elevated temperature stability such as lining for heat treatment 

and reheating industrial furnaces, fire-protection applications and in the steelmaking 

industry. The most commonly used manufacturing process for refractory fibres is 

melting and fibre-making process (Frydrych, Dziworska, & Bilska, 2002). 

Aluminosilicate fibre materials, also known as “refractory ceramic fibres” (RCFs), are 

fibrous, inorganic, vitreous materials formed by elevated temperature fusion of sources 

of silica and alumina into a mass which is cooled to a rigid condition without 

crystallization and formed into fibres. Products made of aluminosilicate wool are 

commonly used in applications demanding temperatures greater than 900°C and in 

critical application conditions and intermittently operating equipment (Alper, 1970).  
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The rapid crystallization of aluminosilicate fibres at temperatures above 1100°C and the 

formation of mullite (Al6Si2O13) and cristobalite (SiO2) have been extensively 

discussed in many studies (Belyakova, Kutukov, Ustyantsev, & Tretnikova, 1981; 

Gaodu, Pitak, Volfson, & Drizheruk, 1977; Hickling, Thomas, & Briggs, 1981; Jager, 

Stadler, & Wernig, 1984; Vine, Young, & Nowell, 1984). Aluminosilicate fibre 

materials have excellent electrical resistivity (1014-1016 Ωm), outstanding resistance to 

thermal shock, low thermal conductivity and are lightweight. 

In recent years RCFs have been used as an alternative to asbestos to protect materials 

and equipment against elevated temperatures. Nevertheless, they belong to the family of 

mineral wool fibres and have been categorized as “possible human carcinogen” 

(category 2B) by the International Agency for Research on Cancer (IARC Working 

Group on the Evaluation of Carcinogenic Risks to Humans, 2002) .  

Two fundamental ways exist for developing safer and environmental-friendly fibre 

types. The first is to make fibres thicker so as to be non-respirable, but this alteration 

was not successful as the products lose their desirable insulating properties (Christoph, 

Nyssen, & Wagner, 2000). The second way is to make fibres with low bio-persistence 

which has proved to be very promising. Bio-persistence is a complex interaction 

between fibre solubility and the natural clearance mechanisms in the lung (Stanton & 

Wrench, 1974). According to theory a fibre with high bio-solubility dissolves on the 

surface forming micro-cracks, these weaken the fibre and the macrophages in the lung 

can break the fibre and remove it (Brown et al., 2002). 

United States Patent No. 8,088,701 B2 (Jubb, 2012) disclosed potassium 

aluminosilicate fibres that had a low biopersistence combined with a high thermal 

stability in which the content of the major oxides SiO2+Al2O3+K2O is greater than 50 
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mol% and encompassed fibre compositions in which the percentage of K2O is greater 

than 12 mol%. As stated in the patent, these fibres tend to lose potassium. In agreement 

with this invention, a new safer, environmentally-friendly material suitable for 

applications demanding long-term and high-temperature stability was developed, 

Superwool® XT (SWXT®), by the world-leading ceramics manufacturer Morgan 

Advanced Ceramics. As depicted in Figure 1.1, potassium oxide is important for 

biosolubility, silica for fiberisation and aluminium oxide for refractoriness. Potassium 

oxide is an essential compound because fibres with more than 18% alkali metal and 

alkaline earth oxides avoid the 2B RCF classification (Commission Directive 97/69/EC, 

1997). 

 
Figure 1.1: Superwool® XT glass fibres chemistry vs performance ternary diagram. 

 
Superwool® XT chemistry is developed from the K2O-Al2O3-SiO2 phase diagram 

(Schairer & Bowen, 1955). According to the manufacturer's internal documentation 

when SWXT® fibres are heat treated at temperatures above 900°C the crystalline phase 

of potassium aluminium silicate (kalsilite; KAlSiO4) is almost detectable.  Kalsilite is 

an essential crystalline phase because it plays a crucial role in the subsequently forming 
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crystalline phases and in the stability of the fibres. Moreover, kalsilite is believed to be 

the precursor of leucite (KAlSi2O6) (Becerro, Escudero, & Mantovani, 2009; Buljan et 

al., 2010) and that leucite is a more stable crystalline phase. At the same time potassium 

oxide volatilizes and K2O loss begins at 900°C and accelerates at 1100°C. The 

microstructures of Superwool® XT fibres change at elevated temperature and these 

changes occur progressively with time, causing grains to grow which reduces the 

flexibility of the fibres. Eventually the fibres fuse together and the product becomes 

brittle.  

It is argued (Bunsell, 2005) that the shrinkage of glass fibres is due not only to elevated 

temperatures but also because crystallisation is initiated. There is an absolute need to 

understand the mechanisms for the loss of K2O and the loss of mechanical strength with 

increasing crystallinity and time so that they can be mitigated or reduced. The ambition 

of this research work is to understand in depth the behaviour and long-term performance 

of SWXT® under simulated service conditions. 

 

1.2. Aims and objectives 

1.2.1. Aims 

This project underpins the commercial success of a new safer, environmentally-friendly 

material, suitable for applications demanding long-term and high-temperature stability, 

SWXT®. This research topic aims to lead our knowledge one step further regarding the 

long-term performance of biosoluble glass fibres at elevated temperature. This study 

aims to determine the current state of the art knowledge in elevated temperature silicate 

and aluminosilicate fibre insulation materials, and further, to identify the stability of 
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different chemical species in SWXT® glass fibres in terms of time, temperature and 

service conditions. This project also aims to build an understanding of the long-term, in-

service stability of SWXT® as functions of modifications occurring in service. 

 

1.2.2. Research objectives 

The research is intended, in large part, to be a feasibility study: to identify existing 

literature and practices, and what methodologies might be applied to enable an 

optimised product strategy to be formed. To address the key aims, the research has five 

objectives: 

⇒ Identify literature and theoretical issues related to refractory fibres and their 

biopersistence, phase relationships and crystallization phenomena in the K2O-

Al2O3-SiO2 ternary system. 

⇒ Produce glass fibre compositions in the K2O-Al2O3-SiO2 and the K2O-ZrO2-

Al2O3-SiO2 system in the compositional field of relevance to Superwool® XT. 

⇒ Long-term and short-term heat treatment experiments at various temperatures to 

examine the chemical stability and thermal durability of alkali aluminosilicate 

glass fibres. 

⇒ Carry out chemical, structural, microstructural and thermal analysis of alkali 

aluminosilicate glass fibres. 

⇒ Extract critical conclusions regarding the in-service stability of Superwool® XT 

and alkali aluminosilicate glass fibres based from the analysis of heat treated 

samples.   
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1.3. Thesis overview 

The thesis structure and the presentation of this research work have been selected in a 

way that can be understood by both specialists in other disciplines and those 

knowledgeable in this topic. The research topic is addressed in two connected parts: In 

Chapter 1 the problem statement is presented and a brief review of the research subject, 

the related theory, and the literature is reported in Chapter 2. Chapter 3 comprises all the 

experimental procedures used for investigating the research problem.  The results of this 

research are reported in Chapter 4, and the implications of these results will be 

discussed in Chapter 5. Finally, conclusions and recommendations based on the results 

of this will be presented. 

Chapter 1, the theoretical framework regarding refractory fibres, biosolubility, the K2O-

Al2O3-SiO2 system and Superwool® XT has been introduced. A case has been made 

regarding the problem under investigation, the purpose of the study, and research 

questions to be investigated.  

Chapter 2, summarizes what is known and identifies what is unknown about the topic of 

the thesis. The implications of the previous studies for the present work are outlined. 

The potential contribution of this study to the existing body of knowledge is also 

identified. 

Chapter 3, the research design and the methodology is described in sufficient detail in 

this chapter that readers come away with a clear understanding of how the study has 

been conducted. The research questions presented in Chapter 1 have been replicated 

exactly near the beginning of Chapter 3. 
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Chapter 4, a factual reporting of the results is presented. Findings are generally 

organized around the research questions. A summary of the research findings has been 

presented at the end of this chapter.  

Chapter 5, findings are compared and linked to each other and to the existing literature 

described in Chapter 2. All explanations are supported by the results of Chapter 4. 

Chapter 6, conclusions have been presented in this closing chapter and 

recommendations for future work based on the lines of research that arose from this 

work. 
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2. Literature Review 

A critical review of the literature associated with the subject area of this research study 

will be presented in this chapter. The strengths and weaknesses of theories of relevance 

to this subject will be identified and analysed in depth. The contribution of this research 

to the existing body of knowledge will also be identified. 

In this chapter, an effort to build an understanding regarding the thermal behaviour of 

biosoluble glass fibres has been made. Refractory ceramic fibres will first be presented 

and how their biological effects have created the need for a new safer, biosoluble 

material will be discussed. The properties and applications of newly developed 

biosoluble glass fibres will then be described. Finally, the phase relationships in the 

systems of interest will be introduced by investigating the experimentally and 

theoretically calculated relevant phase diagrams.  

 

2.1. Insulation fibres 

Insulation fibres are a large group of diverse types of amorphous or crystalline man-

made mineral fibres made of alumina, silica and other refractory oxides, such as 

alkaline earth oxides, and have high resistance to heat. They are masses of disorganized 

interlocking fibres with variable diameters and lengths, some of which may be inhalable 

(Wallenberger & Bingham, 2010). 

The most commonly used manufacturing process for insulation fibres is melting and 

fibre-making. A mixture of raw materials is melted at about 2000ºC. As depicted in 

Figure 2.1 the molten mixture is ejected through a nozzle onto rotors turning at high 



Chapter 1 Introduction 

 

21 

 

speed and made into a bulk (raw fibres) by the centrifugal force of the rotors (spinning 

method). A stack of bulks is lubricated and subjected to needling, being shaped into a 

blanket. The lubricant is then removed by heating to create a blanket (Hearle, 2001). 

 

 
Figure 2.1: Manufacturing process of insulation fibre products (Hearle, 2001). 

 
Insulation fibres are commonly used for applications demanding long-term and elevated 

temperature stability, and are used to protect equipment, conserve energy and improve 

process performance in some of the most demanding elevated temperature industrial 

environments (Bahadori, 2014). Moreover, high temperature insulating fibres provide 

thermal insulation in processing of metals, petrochemicals, cement, ceramics and glass, 

and are used by manufacturers of equipment for aerospace, automotive, marine and 

domestic applications (Hearle, 2001). Typical applications include: 

• Chimney and duct insulation in power generation plants 

• Pipe insulation in elevated temperature processing plants 

• Linings and back-up insulation for all types of furnaces, heaters and kilns 

• Insulation of steam turbines and hot boxes 

• Exhaust and heat shield cladding 

• Vehicle and domestic appliance insulation 
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2.2. Refractory ceramic fibres 

In the first stage of the present work, the study was focused on theoretical and 

experimental understanding of aluminosilicate ceramic fibres which are also known as 

“refractory ceramic fibres” (RCFs). Refractory materials from alumino-silicate wool are 

ordinarily utilized in applications requiring temperatures higher than 900°C and in 

critical application conditions and intermittently operating equipment. 

They are manufactured in the form of wool and typically contain approximately 50% 

fibre and 50% unfiberised, largely non-respirable material. The fibres do not split 

longitudinally into thinner fibres as asbestos ones do but rather transversely, ultimately 

becoming granular dust (Mast, et al., 1995).  Table 2.1 shows the composition of the 

three most widely used RCFs. It indicates that these fibres consist of about 50% each of 

silicon oxide and aluminium oxide (RCF 1 and 3). In zirconia aluminosilicate fibres 

(RCF 2) part of the aluminium oxide is substituted by zirconium oxide.  

Reported studies (Brown, 2000; Butler & Dyson, 1997; Comodi, Cera, Gatta, Rotiroti, 

& Garofani, 2010; Dyson, Butler, Hughes, Fisher, & Hicks, 1997; Maxim, Venturin, & 

Allshouse, 1999) have confirmed that aluminosilicate fibres devitrifiy rapidly at 

temperatures above 1100°C to form mullite, cristobalite and another silica polymorph. 

Aluminosilicate fibre materials have great resistance to thermal shock, exceptional 

acoustical properties, low thermal conductivities, and are lightweight. 

A considerable number of studies have examined the crystallization behaviour of 

refractory ceramic fibres; the outcomes of the most important ones have been 

summarized in Table 2.2. Most of the studies have focused on the examination of the 

structure, the biological activity and the composition of as made fibres, and of heat 

treated fibres for various time periods and temperatures. There is a consensus that the 
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composition of the untreated fibres will affect the degree of crystallization and the 

devitrification products of RCFs upon heating at different temperatures. Prolonged heat 

treatment experiments of RCFs at 1300°C can lead to formation of cristoballite (SiO2) 

(CS), mullite (Al6Si2O13) and various crystalline phases (Gualtieri et al., 2009). In 

general, firstly mullite will form close to 980°C and cristobalite will then follow close to 

1100°C; the level of the crystallization is dependent on the time and temperature of heat 

treatment. 

Table 2.1: Chemical composition of the three mostly used types of RCFs expressed in % weight (Maxim, 
Allshouse, Kelly, Walters, & Waugh, 1997). 

Constituent 
 

Kaolin 
aluminosilicate 

(RCF-1) 

Zirconia 
aluminosilicate 

(RCF-2) 

High-purity 
aluminosilicate 

(RCF-3) 

SiO2  50-54 48-50 49-54 

Al2O3 44-47 35-36 46-51 

K2O  <0.01 <0.01 <0.01 

Na2O 0.5 <0.3 0.2 

MgO  <0.01 <0.01 <0.01 

CaO  <0.01 <0.05 <0.05 

TiO2  2 0.04 0.02 

ZrO2 0.1 15-17 0.2 

Fe2O3  1 <0.05 <0.2 

Cr2O3  <0.03 <0.01 <0.01 
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Cerachem® 

Morgan Αdvanced Μaterials Ltd. has developed Cerachem®, a highly insulating 

product for applications demanding elevated temperatures (up to 1315°C) for 

continuous use. Cerachem® composition is based on the alumina-silica-zirconia system 

(Table 2.3). It is designed for applications where low thermal conductivity, high tensile 

strength and low shrinkage are needed (Morgan Advanced Materials, 2017).  

Table 2.3: Elemental analysis of Cerachem®. 

Oxide Content (wt %) 

Al2O3  34.90 

SiO2  50.00 

ZrO2   15.20 

Fe2O3 0.15 

Na2O + K2O 0.10 

CaO + MgO 0.09 
 

Cerachem® products exist in five different forms as shown in the following figure 

(Figure 2.2). Cerachem® is resistant to chemical attack and is classified at 1426°C. It is 

lightweight, strong and features a low heat storage capacity for effective energy savings 

and good thermal shock resistance for use in difficult environments. Cerachem® pyro-

bloc modules provide easy to use, efficient thermal lining for all types of high 

temperature processing equipment such as homogenizing furnaces, process heaters, 

ceramic kilns, annealing furnaces and heat-treating furnaces. 
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Figure 2.2: Different types of Cerachem®; a) Bulk b) Pyro-Bloc Modules c) Folded and Stacked Blanket 

Modules d) Blankets e) Pyro-Log. 

 

2.2.1. Biological effects of refractory ceramic fibres  

In recent years RCFs have been used as an alternative to asbestos to protect materials 

and equipment against elevated temperatures. The commercial term “asbestos” includes 

an entire family of minerals with fibrous-asbestiform habit (Stanton & Wrench, 1972). 

Chrysotile (serpentine asbestos), actinolite, amosite, anthophyllite, crocidolite, and 

tremolite (amphibole asbestos) are classified as asbestos minerals (George, Guthrie, & 

Brooke Mossman, 1994). The fibrous-asbestiform habit, which determines the 

outstanding technological properties of asbestos, is unfortunately also one of the causes 

of its toxicity. Fibres released into the air, micrometric in size and with elongated 

streamlined morphology, can pass through the nasal mucous filter and reach the lungs, 

lodging in the tissues (Donaldson, Murphy, Duffin, & Poland, 2010). It has been 

scientifically proven that inhalation of asbestos fibres can cause serious pathologies of 

the lungs, like mesothelioma (Catherine & Skinner, 2003). For this reason, in many 

countries asbestos is banned, progressively removed from the environment and 

eventually substituted with synthetic fibres. It should be pointed out though that 

asbestos continues to be used in a variety of applications.  
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The risk of cancer from exposure to asbestos depends mostly on fibre dimensions with 

long fibres being more dangerous than short for all types of asbestos. Specifically, the 

ability of the asbestos fibres to split along their length into fine fibres that can reach the 

furthest part of the lung and the resistance of the fibres to the chemical attack by the 

lung's defences make asbestos so hazardous to human health (Cugell & Kamp, 2004).  

The dimensions (i.e. length, diameter, and length to diameter ratio) of the fibres are also 

important to rate their potential health hazard and are used to distinguish between 

continuous fibres, discontinuous fibres, and wools (Gualtieri et al., 2009). The term 

“discontinuous fibres” includes whiskers and small discrete particles with the 

appearance of powders but also includes wools and cotton wool-like materials. Fibres 

with diameters >3 µm are generally regarded as non-breathable and, therefore, cannot 

present an inhalation hazard.  

Devitrification of RCFs can lead to the development of cristobalite that has raised 

concerns regarding biological effects upon exposure to heat-treated RCFs (Comodi et 

al., 2010; Gantner, 1986). They belong to the family of mineral wool fibres and have 

been categorized as “possible human carcinogen” (IARC Working Group on the 

Evaluation of Carcinogenic Risks to Humans, 2002).  

The first in vivo studies on RCFs were conducted with 344 rats that were exposed to 

heat treated RCFs (1315.6°C, 24 hours) for 24 months (Mast, McConnell, Anderson et 

al., 1995; Mast, McConnell, Hesterberg et al., 1995; Rossiter & Chase, 1995). These 

rats were inhaling a 30mg/m3 of RCFs for 6 hours per day and for 5 days per week. The 

free CS inside the fibres was observed to be around 27%. This exposure resulted in 

pleural mesotheliomas in most of the rats for all the as made RCF types (RCF1, RCF2, 

RCF3) apart from RCF4 (a heat-treated sample simulating the state of the RCF1 fibres 
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after use in furnace insulation) which has been observed in only one rat. Regarding 

mesothelioma induction and lung tumour, these studies revealed that unheated RCFs are 

more toxic than after service RCFs. While the toxicity reduction was a consequence of 

the alteration in the length of the fibres, there was no evidence that the reason fibres 

became less toxic is devitrification. 

Moreover, experimental studies showed that CS that develops due to devitrification may 

not be toxicologically active as it is not detected on the fibre surface but escapes from 

the surface through devitrification (Brown et al., 1992; Harrison & Brown, 2011) and in 

the case of bulk samples; surface coating with mullite helps CS to be sheltered (Gaodu, 

Pitak, Volfson, & Drizheruk, 1977). In the latter study, it is indicated that the 

crystallization process makes the fibres weaker, and leads to fibre structure breakdown 

(Dietrichs & Kronert, 1981) and this breakdown will probably reduce any potential 

hazard connected with RCFs. 

During the present review, it has been noted that most of the in-vivo studies of heat-

treated fibres are not consistent regarding the total firing time and the exact 

temperatures used.  For instance, in the research study of Laskowski et al. (1994) it is 

not indicated whether the samples have been constantly heat treated for 7300 hours at a 

specific temperature. In-vitro studies on cells from various species (sheep, hamsters, rat 

and mice) have demonstrated that after-service fibres have a lesser toxicological impact. 

Exposure to refractory ceramic fibres can be increased when removal operations are 

initiated, but this kind of exposure has been considerably reduced nowadays (ECFIA, 

2010; Maxim et al., 1999). The results from industrial measurements while workers are 

involved with the production, installation and repair/removal of RCFs are contradictory. 

Some studies reported that these measurements were over exposure limits (Cheng, Mc 
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Dermott, Gia, Cover, & Duda, 1992; Fairfax & Burmeister, 2001; Gantner, 1986; Shih 

et al., 2008; Strübel & Faul, 1994; Sweeney & Gilgrist, 1998) while other studies 

indicated that measurements were under this limit (Groat et al., 1999; Linnainmaa et al., 

2007; Maxim et al., 2008; Rice, Lockey, Lemasters, Dimos, & Gartside, 1994; Van Den 

Bergen, Rocchi, & Boogaard, 1994). 

 

2.3. Biosoluble glass fibres 

The biological effects of refractory ceramic fibres created the need for a new and safer 

material that can be used for refractory applications. Research studies focused on 

developing safer fibres have proposed two fundamental approaches: 

I. Making the fibres thicker 

II. Low bio-persistence 

The first approach fails because the products then also lose their good insulating 

properties so the key is low bio-persistence (Maxim, Hadley, Potter, & Niebo, 2006). 

The term bio-persistence relates to the relative time that fibres remain in the body. A 

material with low bio-persistence can be removed from the human body quickly so the 

risk to health is reduced. To this end, the new glass fibres have been based on glass 

systems that are soluble in lung fluids and lead to low bio-persistence fibres. According 

to theory a fibre with high bio-solubility dissolves on the surface forming micro cracks 

– these weaken the fibre and the macrophages in the lung can break the fibre and 

remove it (Maxim et al., 2006).  

Low bio-persistence fibres did not initially have a satisfactory performance for 

applications demanding high temperature capability. United States Patent No. US 
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3352746 A (Dunbar, Rademaker, & Williams, 1967) disclosed the first calcium 

magnesium silicate composition fibres that were biosoluble and also had good thermal 

performance. A more recent European patent No. 0399320 B2 (Christoph, Nyssen, & 

Wagner, 2000) reveals a highly biosoluble glass fibre composition (10-20 mol% Na2O 

and 0-5 mol% K2O) but the maximum temperature at which it can be used is not 

mentioned. Saline soluble fibres based on calcium magnesium silicate glass system with 

ZrO2 that can be used up to 1000°C have been introduced by the International Patent 

Application No. WO 93/15028 A1 (Jubb & Martin, 1993).  

The maximum temperature of soluble glass fibres has been elevated according to 

different patents. Glass fibres with low alkali metal content that can be employed for 

applications at 1260°C have been introduced by International Patent Application No. 

WO 94/15883 (Jubb, 1994). In another patent application (WO 03/059835 A1) it is 

claimed that the addition of lanthanide elements improves the thermal performance of 

the fibres so they can be used at temperatures higher than 1260°C (Jubb & Freeman, 

2003).  

Another important fibre property which is an indication of biopersistence, determined 

by in vitro studies, is the dissolution rate constant Kdis (Gualtieri et al., 2009). Kdis was 

extensively studied and it is suggested as one of the candidate parameters for 

classification of fibre toxicity. Moreover, the correlation between Kdis and the time of 

persistence in a physiological environment was shown to be relatively high (McConnell, 

2000). Different parameters such as the content of alkali and alkaline earth oxides, and 

the distribution of fibre diameter can affect the dissolution rate so for each material in 

vitro testing is needed to determine the time of degradation in a physiological 

environment (Maxim et al., 1999). In general, the dissolution rate constant should be 
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below or around 100 ng cm-1 h-1 so that the fibres can be characterised as low 

biopersistence (Eastes & Hadley, 1996). 

 

2.3.1 Superwool XT® and Colloidal silica coated Superwool XT® 

Over the past ten years, Morgan Advanced Ceramics has undertaken an extensive 

research programme that led to the development of a new safer, environmentally-

friendly material, Superwool XT® (SWXT), suitable for applications demanding long-

term and high-temperature stability (Figure 2.3). 

 
Figure 2.3: Superwool XT® needled blanket (BG-15-P19-7702) with 128kg/m3 density. 

 
This newly developed material has been designed to replace Cerachem® in high 

temperature industrial processes (chemical, iron and steel and ceramics) and also to 

replace standard RCFs in automotive applications. Superwool XT® chemistry is 

developed from the K2O-Al2O3-SiO2 phase diagram and is based on the 

composition depicted with the red circle in Figure 2.4. 
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Figure 2.4: Phase diagram of the K2O-Al2O3-SiO2 system (Schairer & Bowen, 1955) showing the 

composition Superwool XT® is based on in red circle. 

 
United States Application No. US 8,088,701 B2 (Jubb, 2012) disclosed alternative 

potassium aluminosilicate fibres that had a low biopersistence combined with a high 

thermal stability in which the combined mole percentage of the major oxides (SiO2, 

Al2O3 and K2O) is greater than 50 mol% and encompassed fibre compositions in which 

the percentage of K2O is greater than 12 mol%. Alkali oxide is an essential compound 

because fibres with more than 18 mol% alkali metal and alkaline earth oxides avoid the 

category 2 (C2) RCF classification (IARC Working Group on the Evaluation of 

Carcinogenic Risks to Humans, 2002) - i.e. "a substance to be regarded as if it were 

carcinogenic to humans". Different agencies around the world have developed 

standardized protocols to ensure that new refractory fibres are not carcinogenic. For 

instance, the EU (Commission Directive 97/69/EC, 1997) requires that vitreous silica 

fibres consist of a minimum of 18 wt% of alkali metal and alkaline earth oxides and 

animal testing is also needed for complete exoneration (Figure 2.5). The elemental 
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analysis of as made Superwool XT® obtained by X-ray fluorescence (XRF) 

spectrometry is shown in Table 2.4. It is very important to note that this patent (Jubb, 

2012) reported that fibres tend to lose potassium which may be an obstacle for certain 

applications. 

Table 2.4: Elemental analysis of Superwool XT®. 

Oxide Content (wt %) 
Al2O3 35.7 
K2O 25.8 
SiO2 30.5 
ZrO2 6.2 
MgO 1.2 
HfO2 0.2 
Na2O 0.4 
TiO2 0.0 

 

 
Figure 2.5: RCF and Superwool XT® showing the EU 18% oxides rule for vitreous silica fibres (G. A. 

Jubb, personal communication, November 16, 2015). 

 
The performance and durability of Superwool XT® is strongly affected by 

crystallization.  Glass fibres change in their microstructures at elevated temperature and 

as time passes, and their flexibility will be reduced due to grain growth (Bunsell, 2005). 
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A fundamental problem of aluminium silicate glass fibres is that crystallization and 

shrinking occur and the fibres become brittle when used at elevated temperatures for a 

long time. According to the company's internal documentation, when Superwool XT® 

fibres are heat treated at temperatures above 900°C the crystalline phases of potassium 

aluminium silicate (KAlSiO4), zirconia (ZrO2), potassium magnesium silicate 

(K2MgSi3O8) are present (G. A. Jubb, personal communication, November 16, 2015). 

At higher temperatures (1250°C) for 1000 hours of heat treatment leucite peaks start to 

appear but are not yet fully formed at this stage. As heat treatment time increases and 

moving to higher temperatures both leucite and kalsilite phases are detected but as the 

time passes kalsilite almost completely transforms to leucite.  

United States Application No. US WO2004/064996 (Boff, Jubb, & Mottram, 2010) 

discloses an invention about the effect of partial crystallization of glass fibres on their 

thermal properties. It is argued that fibres that have first crystallized or at least partly 

crystallized will have a better performance as their shrinkage resistance will be 

increased. 

Colloidal silica coated Superwool XT® 

Colloidal silica consists of non-porous, spherical and fine amorphous silica particles in a 

liquid phase. To accomplish this, the particles must be small enough so gravity does not 

affect them. Initially, colloidal silica was used for coatings in a broad range of 

applications such as investment casting and ingot casting. It was during the late 70’s 

when for the first-time colloidal silica was introduced as a bonding agent in monolithic 

refractories. United States Patent No. US 4041199 A (Cartwright, 1977) discloses an 

invention about refractory heat-insulating materials where colloidal silica (2-16 wt%) 

was used for the first time as a bonding agent. 
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Refractory materials with colloidal silica were commercially available in gunning, 

castable and ramming formulations. Colloidal silica offers the perfect functional profile 

for these purposes thanks to its ability to withstand continuous operating temperatures 

of 1500°C with little shrinkage, excellent tolerance to thermal shock, and chemical 

inertness. 

Morgan Advanced Ceramics has been exploring the use of colloidal silica on Superwool 

XT® to supress surface crystallisation. According to the company’s internal 

documentation, addition of 1 wt% of colloidal silica can improve the temperature 

durability of Superwool XT®. To this end, colloidal silica coated Superwool XT® has 

been created but further investigation is needed to understand the mechanism behind 

improved performance and to further develop this material. 

Table 2.5: Elemental analysis of colloidal silica coated Superwool XT®. 

Oxide Content (wt %) 
Al2O3 34.4 
K2O 24.7 
SiO2 32.2 
ZrO2 7.2 
MgO 1.0 
HfO2 0.1 
Na2O 0.3 
TiO2 0.0 
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2.4. Quinary system K2O-MgO-ZrO2-Al2O3-SiO2 

The quinary system of K2O-MgO-ZrO2-Al2O3-SiO2 is a very complex and newly 

developed system so there are not – to the best of the author’s knowledge – literature 

data that directly describe its properties and behaviour in terms of crystallization and 

phase stability. This review aims to build a theoretical understanding regarding of 

system by investigating the following subsystems:  

• Binary system K2O-SiO2 

• Binary system K2O-Al2O3 

• Binary system Al2O3-SiO2 

• Ternary system K2O-Al2O3-SiO2 

• Ternary system ZrO2-Al2O3-SiO2 

• Ternary system MgO-Al2O3-SiO2 

 

2.4.1. Binary system K2O-SiO2 

Early studies of the K2O-SiO2 system involved the preparation of the compound 

K2O·2SiO2 (Morey, 1914) and of the related ternary system H2O-K2SiO3-SiO2 by 

Morey and Fenner (1917) who identified the hydrate, K2O·4SiO2·H2O, but did not 

report on the anhydrous tetrasilicate. The phase diagram of the system K2O-SiO2 and 

the invariant points as reported by Kracek, Bowen and Morey (1929; 1937) are shown 

in Figure 2.6 and Table 2.6, respectively.   

In the same studies (Kracek et al., 1929; Kracek et al., 1937), the behaviour of 

compounds in this system is reported as described in this paragraph. Specifically, the 

melting point of potassium metasilicate (K2O·SiO2) is 976°C and crystallization occurs 
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very readily. Another compound, potassium disilicate (K2O·2SiO2), will melt at 

1045°C, crystallization again occurs very readily, and at 594°C a reversible phase 

transition is initiated. Potassium tetrasilicate (K2O·4SiO2) has a melting point at 770°C 

and at 594°C a reversible phase change occurs. Crystallization is more difficult for the 

K2O-SiO2 glasses, with higher SiO2 content compared with the disilicate, than the 

Na2O-SiO2 glasses. 

Table 2.6: Invariant points in the K2O-SiO2 system.(Kracek et al., 1929; 1937) 

Phase Reaction 
 
 

Temperature 
(°C) 

 

Composition  
(wt%) 

K2O SiO2 
𝐾𝐾2𝑂𝑂 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆2⇌ L 976 61.07 38.93 
𝐾𝐾2𝑂𝑂 ∙ 𝑆𝑆𝑆𝑆𝑆𝑆2 +  𝐾𝐾2𝑂𝑂 ∙ 2𝑆𝑆𝑆𝑆𝑆𝑆2⇌ L 780 54.50 45.50 
𝐾𝐾2𝑂𝑂 ∙ 2𝑆𝑆𝑆𝑆𝑆𝑆2⇌ L 1045 43.95 56.05 
𝐾𝐾2𝑂𝑂 ∙ 2𝑆𝑆𝑆𝑆𝑆𝑆2 +  𝐾𝐾2𝑂𝑂 ∙ 4𝑆𝑆𝑆𝑆𝑆𝑆2⇌ L 742 32.40 67.60 
𝐾𝐾2𝑂𝑂 ∙ 4𝑆𝑆𝑆𝑆𝑆𝑆2⇌ L 770 28.17 71.83 
𝐾𝐾2𝑂𝑂 ∙ 4𝑆𝑆𝑆𝑆𝑆𝑆2 +  𝑆𝑆𝑆𝑆𝑆𝑆2(quartz)⇌ L 769 27.50 72.5 
 

 
Figure 2.6: Phase diagram of the binary K2O-SiO2 system by Kracek, Bowen and Morey (1937). 
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2.4.2. Binary system K2O-Al2O3 

There is only scarce literature data on the binary K2O-Al2O3 system; Brownmiller 

(1935) demonstrated that the melting temperature of K2O·Al2O3 is above 1650°C. He 

also determined that the formation of “β-alumina”, an alkali aluminate, is due to 

mixtures with high alumina content. The reaction between alkali (Na2O or K2O) 

carbonates with Al2O3 has been explored by Strokov et al. (1940). According to this 

study when the molar ratio of K2CO3:Al2O3 was 1:1 only K2O·Al2O3 formed on fusion 

between 900°C and 1100°C and when the ratio was 2:1 or 3:1 the excess K2O 

evaporated and only K2O·Al2O3 was present. Moreover, Kato and Yamauchi (1943) 

successfully obtained “β-Al2O3” by mixing K2CO3 and Al2O3, heat treating from 

1640°C to 1700°C and treating the final products with a 6N solution of HCl. 

 

2.4.3. Binary system Al2O3-SiO2 

The binary Al2O3-SiO2 is the most fundamental system that has been used for a broad 

range of refractory applications and generally to clay industrials. Shepherd, Rankin, and 

Wright (1909) first reported on this system, without however identifying 3Al2O3·2SiO2 

(mullite) until Bowen and Greig (1924) did later. Early studies reported that mullite 

melts congruently at 1850°C (Budnikov, Tresvyatskii, & Kushakovskii, 1953; Toropov 

& Galakhov, 1958), and exhibits a eutectic with Al2O3 at 1840°C and 78 wt% Al2O3 as 

shown in the Al2O3-SiO2 phase diagram (Figure 2.7) by Aramaki and Roy (1962). 

According to the authors, mullite is a solid solution, extending from 71.8 to 74.3 wt% 

Al2O3; but under metastable conditions mullite solid solutions can accommodate Al2O3 

contents up to 77.5 wt%. Some contemporaneous reports observed that mullite melts 

incongruently (Filonenko & Lavrov, 1953; Horibe & Kuwabara, 1967; Welch, 1960). 



Chapter 2 Literature Review 

 

42 

 

Later work by Aksay and Pask (1975)  revealed that stable mullite melts incongruently 

while metastable mullite melts congruently. This is reflected in the phase diagrams 

produced by Prochazka and Klug (1983) and by Klug, Prochazka and Doremus (1987) . 

As shown in  Figure 2.8, thermodynamically stable mullite does melt incongruently, 

with the solid solution phase boundaries meeting at 1890°C for 77.2 wt% Al2O3 

(2Al2O3·SiO2). Al2O3 solubility in mullite decreases with decreasing temperature, 

reaching the nominal mullite composition of 71.6 wt% Al2O3 (3Al2O3·2SiO2) below 

1600°C. According to the revised phase diagram, only a single eutectic point exists, that 

between SiO2 and mullite at 1587 °C and 7.7 wt% Al2O3 (Klug et al., 1987).  

 
Figure 2.7: The system Al2O3-SiO2. modified by Aramaki and Roy (1959a). 
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Figure 2.8: The mullite part of the Al2O3–SiO2 phase diagram (Klug et al., 1987).   

 
The excellent mechanical properties (𝜎𝜎 = 200 𝑀𝑀𝑀𝑀𝑀𝑀), thermal expansion (𝛼𝛼 = 4.5 ×

10−6𝐾𝐾−1) and conductivity (𝜆𝜆 = 3.5 𝑊𝑊(𝑚𝑚𝑚𝑚)−1) at elevated temperatures make mullite 

a superior candidate for physical, mechanical and thermochemical applications 

(Ibrahim, Naga, Kader, & Salam, 1995). These compounds are important components in 

white ware, electrical ceramics and refractories. Mullite refractories are used in a wide 

range of applications mostly in the metallurgical, furnace lining and glass industries 

because of their high resistance to glass, molten slags and metal, outstanding load 

bearing capacity, and volume stability (Kanka & Schneider, 2000). They are also used 

as thermal insulation mainly in industrial furnaces and refractory ceramic fibres are the 

most well-known aluminosilicate product for thermal insulation (Butler & Dyson, 

1997). 
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2.4.4. Ternary system K2O-Al2O3-SiO2 

The ternary system K2O-Al2O3-SiO2 has been investigated because of its fundamental 

importance to a broad range of disciplines and technologies, like mineralogy, silicate 

ceramics and refractory applications (Heimann, 2010). This ternary system has high 

refractoriness which is attributed to the existence of three potassium aluminosilicate 

compounds (K2O.Al2O3.2SiO2, K2O.Al2O3.4SiO2 and K2O.Al2O3.6SiO2) with 

congruent melting points higher than 1600°C.  

 Schairer and Bowen (1955) submitted preliminary data of melting relations in this 

quasi-ternary system (Figure 2.9). Modifications of this diagram have been made by 

Aramaki and Roy (1959b). 

 
Figure 2.9: Phase diagram of the K2O-Al2O3-SiO2 system (Schairer & Bowen, 1955). 
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Moreover, Morey and Bowen (1922) concluded that pure potassium feldspar 

(K2O·Al2O3·6SiO2) which exists as microcline, sanidine, or adularia, has an 

incongruent melting point at 1150°C and forms leucite (K2O·Al2O3·4SiO2) and a more 

siliceous melt. It is practically very difficult for the compounds on the leucite-SiO2 line, 

with lower liquidus temperatures than 1250°C, to crystallize and their viscosity is so 

high that even at temperatures close to the liquidus powdered glass could not flow. It is 

believed but not confirmed that the K2O·Al2O3·2SiO2 compound melts congruently at 

temperatures close to 1750°C or higher. Later Osborn and Muan (1960) expanded this 

system by revising and redrawing the K2O-Al2O3-SiO2 phase diagram. There are many 

unexplored regions in this phase diagram that make this system very prominent and 

interesting for further investigation (Lecomte, Pateyron, & Blanchart, 2004). 

Apart from experimental studies that face a lot of difficulties with this system due to the 

viscous silicate melt, the mixtures being hygroscopic and the volatilization of K2O, a 

notable effort has been made to approach this system by modelling (Yazhenskikh et al., 

2011). In that paper, the liquidus temperature and the invariant points for the entire 

compositional range of the K2O-Al2O3-SiO2 system were calculated (Figure 2.10 & 

Figure 2.11). The calculated data are in accordance with the existing experimental data 

of the available phase diagrams. 
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Figure 2.10: Liquidus surface for the K2O-Al2O3-SiO2 system (Yazhenskikh, Hack, & Müller, 2011). 

 

 
Figure 2.11: Invariant points for the K2O-Al2O3-SiO2 system (Yazhenskikh et al., 2011) 
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The most commonly used compound of this ternary system is leucite as its optical 

properties - the development of leucite inside the glass never hinders translucency - and 

the ability to retain its crystalline structure up to the melting temperature render it as the 

perfect candidate for dental applications. Leucite is widely used as a feldspathic 

veneering ceramic for coating different metals and for resin bonded crowns and veneers 

(Denry & Holloway, 2010). Kalsilite and leucite due to their high refractoriness are 

used in geopolymers to make them into refractory castables. Their physical behaviour is 

very advantageous and they are considered as a possible improvement on cement in 

respect of acidity, compressive strength, resistance to fire, and as a candidate material 

for the immobilization of hazardous or low/intermediate level radioactive waste 

(Kamseu, Rizzuti, Leonelli, & Perera, 2010). 

2.4.4.1. Leucite 

Leucite (KAlSi2O6) is a potassium aluminium mineral that is found in volcanic rocks, 

has a congruent melting point at 1686°C and occurs in two different polymorphs.  

Peacor (1968) discovered that when natural leucite is heat treated at elevated 

temperatures it crystallizes in cubic form (Figure 2.13) which has an Ia3d space group. 

Palmer et al. (1997) has found that leucite will form a tetragonal phase at tempertures 

under 665°C and according to Mazzi, Galli and Gottardi (1976) at room temperature 

leucite has an I41/a space group (Figure 2.12). Later, the above space groups for both 

polymorphs have been confirmed by Walsh, Harrison and Redfern (2006). 

Studies have reached somewhat different results regarding the phase transition 

temperature and the exact phase sequence for leucite.  Peacor (1968) showed that leucite 

transforms with a single transition from tetragonal which is the low temperature form 

(I41/a) to cubic which is the high temperature form (Ia3d).  Later, X-Ray diffraction 
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revealed the existence of two transition temperatures (655°C and 675°C) (Ito, Kuehner, 

& Ghose, 1995); tetragonal leucite (I41/a) will transform to an intermediate phase 

(I41/acd) before the final transformation to cubic leucite (Ia3d). 

The transformation of kalsilite to leucite has attracted the attention of many research 

studies (Erbe & Sapieszko, 1997; Liu, Komarneni, & Roy, 1994; Zhang, Wu, Rao, & 

Lv, 2006) but the exact mechanism has not been determined. In some experiments 

where leucite was synthesized, kalsilite was detected as a non-stable reaction product 

that vanishes with prolonged heat treatment. Zhang et al. (2007) reported that the 

formation of kalsilite is a transitional stage that leads to crystallization of leucite. In 

addition, more recent studies are in accordance with the idea that kalsilite is the 

precursor of leucite (Buljane et al. 2009, Becerro et al. 2009). Moreover, in some 

studies it is indicated that the prolonged heat treatment of natural  or synthesized 

kalsilite at elevated temperatures will gradually lead to a complete conversion to leucite 

and this phenomenon is believed to be connected with the high volatility of K2O 

(Capobianco & Carpenter, 1989; Gregorkiewitz, Li, White, Withers, & Sobrados, 

2008). 
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Figure 2.12: Atomic structure of tetragonal KAlSi2O6 with an I41/a space group. 

 

 
Figure 2.13: Atomic structure of cubic KAlSi2O6 an Ia3d space group. 
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2.4.4.2. Potassium aluminium silicate  

Potassium aluminium silicate (KAlSiO4) occurs in different crystalline forms; 

according to Smith and Tuttle (1957) K2O·Al2O3·2SiO2 compound exists in three 

different crystal structure families, one orthorhombic (Figure 2.15) and two hexagonal. 

Kalsilite (Figure 2.14) and kaliophilite minerals correspond to the hexagonal form 

(Buerger, 1954). Later, six different crystal structures have been confirmed including 

synthetic and natural forms of kalsilite and kaliophilite (Okamoto, 1997). 

Kalsilite is a feldspathoid rock-forming mineral that occurs in potassium rich 

environment of volcanic rocks (Holmes, 1942). Bannister and Hey (1942) presented the 

first experimental data by analyzing kalsilite with X-Ray and microscopic methods. The 

tetrahedral framework structure of kalsilite was discovered by Claringbull and Bannister 

(1948) and later the first single-crystal X-Ray diffraction pattern for natural kalsilite was 

presented (Perrotta & Smith, 1965). 

Buerger (1954) described the hexagonal crystal structure of kalsilite which is a stuffed 

derivative of the tridymite structure and was synthetically produced via two methods by 

Tuttle and Smith (Tuttle & Smith, 1958):  

• Hydrothermally by mixing alumina and potassium disilicate at temperatures 

under 840°C. 

• Phase transition by firing the KAlSiO4 orthorhombic polymorph that was first 

introduced by Bowen (1917). 

The crystal structures and phase transitions reported in literature for both synthetic and 

natural kalsilite forms are quite complex and inconsistent, as the properties and the 

structure of the modifications are affected by the existence of sodium and the 
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preparation conditions. KAlSiO4 melts above 1700°C and there are not significant 

difficulties during the chemical reactions apart from the hygroscopicity of some 

mixtures and the volatile character of K2O (Uchida, Downs, & Yang, 2006).  

It has been discovered that a reversible transition from hexagonal to orthorhombic (O-

form) KAlSiO4 occurs around 840°C under hydrothermal conditions. Probably, this 

inversion is improved by solid solution of nepheline as kalsilite has been produced 

under 840°C in mixtures that contain around 10% of NaAlSiO4 (Tuttle & Smith, 1958). 

However, Bowen (1917) had obtained the O-form of kalsilite from kaliophilite. In that 

study kaliophilite was heat treated at several temperatures and it was discovered that 

over 1550°C it will invert to orthorhombic form. Hull (1917) reported as well that an 

enantiotropic transition from hexagonal to orthorhombic form occurs around 1540°C.  

Afterwards, orthorhombic was described also as the high-temperature form and 

kaliophilite as the low-temperature one, although the temperature of the inversion 

among them was close to 900°C (Rigby & Richardson, 1947). 

Orthorhombic kalsilite melts congruently above 1700°C but the exact temperature is 

unidentified (Schairer & Bowen, 1955). In that study, orthorhombic and hexagonal 

forms of kalsilite were considered as the high and low temperature modifications, 

respectively, but a comprehensive structural study was not conducted. 

A significant attempt of understanding the interrelation among crystal structure forms of 

KAlSiO4 has been conducted by Abbot (1984). The phase relationship of Smith and 

Tuttle has been found to be odd as the high temperature polymorphs (kaliophilite, 

orthorhombic KAlSiO4) have lower symmetry compared to low temperature 

polymorphs (kalsilite). According to Abbot orthorhombic KAlSiO4 is more likely to be 

metastable. 

https://www.powerthesaurus.org/unidentified
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It is important to understand the tetrahedral linkage in KAlSiO4 because it is pertinent to 

the displasive and reconstructive transitions happening and to further organize its 

crystalline phases based on the different framework topologies (Capobianco & 

Carpenter, 1989). The polymorphs of kalsilite share the same structural features, sheets 

of 6-membered rings (6mR) of tetrahedra. These ordinary structural features give 

similar parameters for the unit-cell between the polymorphs of kalsilite. The two sheets 

of tetrahedra are connected by sharing apical oxygens which produce an approximately 

8.6 Å length for the c unit-cell parameter. The length of the α unit-cell parameter varies, 

since it relates to the distance among the 6mR of tetrahedra at about 5.2 Å. Alteration in 

the framework topology is accomplished by changing the sequence of up and down 

pointing tetrahedra on the 6mR.  This alteration will change the way of linkage through 

the apical oxygens among the sheets. Stebbins et al. (1986) had examined kalsilite from 

two groups with different topology and found that silicate and aluminate tetrahedra are 

all the time ordered in three-dimensional networks. 

Capobianco and Carpenter (1989) reported the existence of three temperature ranges for 

kalsilite: 

• 20-850°C, low temperature area, twinned orthorhombic kalsilite 

(pseudohexagonal) 

• 860-910°C, transition temperature area, superstructure 3√3 kalsilite probably 

orthorhombic, coexistence of two phases (low temperature and superstructure 

kalsilite) 

• 910-950°C, high temperature area, hexagonal kalsilite, possibly tridymite 

structure as described by Kawahara et al. (1987). 
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Hexagonal kalsilite has a tetrahedral open framework which appears to be isotypic with 

that of nepheline and tridymite and has a topological symmetry P63/mmc (Gatta et al., 

2011). Kalsilite’s framework consists of sheets (001) of ordered SiO4 and AlO4 

tetrahedra which form 6-membered rings (6mR) pointing alternatively up (U) and down 

(D); Figure 2.14 shows a single tetrahedral sheet of kalsilite. The stacking of the sheets 

along the c axis is accomplished by connection by the apical oxygen atoms, which 

nominally lie on special positions on the threefold rotation axis. The tetrahedral 6mR 

are additionally di-trigonally distorted as the tetrahedra rotate around [001]. The sense 

of this rotation will be the same for all the sheets of the P31c polymorph but with 

reversed sense of rotation in the P63 polymorph among adjacent (001) sheets. 

On the other hand, orthorhombic kalsilite (KAlSiO4-01) is disadvantaged by twinning 

and pseudosymmetry and its crystal symmetry has been reported to be an average 

orthorhombic structure with Pnam and Pn21m space groups (Gregorkiewitz & Schäfer, 

1980). Gregorkiewitz et al. (2008) successfully produced KAlSiO4-01 via solid state 

synthesis and concluded that its framework topology is different from tridymite and its 

stuffed derivatives. It is built of sheets which consist of 6-membered rings of ordered 

SiO4 and AlO4 tetrahedra in the ab plane but these ring topologies are not the 

UDUDUD sequence of tridymite. In the (001) plane there are two types of six-

membered rings, UUDUDD and UUUDDD, in a 2:1 ratio (Figure 2.15). These authors 

reported that KAlSiO4-01 is actually monoclinic with space group P1211 and has two 

orthorhombic supergroups, Pn21m and P212121. 
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Figure 2.14: 1. Crystal structure of P63 hexagonal KAlSiO4: (top) a single tetrahedral sheet of kalsilite, 
and (bottom) a view of the three-dimensional framework.  
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Figure 2.15: Atomic structure of P1211 "orthorhombic" KAlSiO4
: (top) a single tetrahedral sheet, and 

(bottom) projection along the b axis. 
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2.4.5. Ternary system ZrO2-Al2O3-SiO2. 

The Al2O3-SiO2-ZrO2 system is broadly used in several applications mainly due to its 

refractoriness. The high thermal shock resistance, excellent mechanical strength, low 

creep at elevated temperatures and corrosion resistance over alkaline compounds makes 

this system ideal for applications demanding high temperature resistance (Gawronski, 

Patzig, Höche, & Rüssel, 2013). 

Adding zirconia to mullite refractories was first employed to improve the manufacturing 

process (Garvie, Goss, Marshall, & Urbani, 1988). However, it was discovered early on 

that this also resulted in significant enhancement of the resistance to corrosion by 

chemicals in the furnace during glass melting, which prompted extensive use of this 

refractory type after 1940. The reaction-sintering concept suggested by Claussen & Jahn 

(1980) further established the field of Al2O3-ZrO2 composites. According to this 

concept, when alumina reacts with zircon (ZrSiO4), at approximately 1450°C, zirconia 

toughened alumina materials can be produced. Budnikov & Litvakovskii (1953) first 

produced the phase diagram for this system (Figure 2.16).   

More accurate phase diagrams of the binary ZrO2-SiO2 and Al2O3-ZrO2 systems were 

developed by Levin, Robbins and Howard (1964) as depicted in the following figures 

(Figure 2.17 & Figure 2.18). 
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Figure 2.16: Phase diagram of the ZrO2-Al2O3-SiO2 system (Budnikov et al., 1953). 

 

 
Figure 2.17: Phase diagram of the binary system Al203-ZrO2 (Levin et al., 1964). 
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Figure 2.18: Phase diagram of the binary system ZrO2 -SiO2 (Levin et al., 1964). 

 
The outstanding thermal shock resistance, low creep, elevated mechanical strength and 

corrosion resistance in alkaline compounds at high temperature make this system ideal 

for refractory applications. A principal group of refractories in the Al2O3-SiO2-ZrO2 

system is based on baddeleyite (ZrO2), mullite (Al4.5Si1.5O9.75) and corundum (SiO2) 

structures. It is widely employed in glass-melting furnaces, feeders, forehearths, as 

mantle blocks, plungers, channels, tubes and orifice rings. These materials are broadly 

used as refractory rollers in fast firing furnaces for the manufacture of sanitary ware, 

tableware and ceramic tiles (Zanelli, Dondi, Raimondo, & Guarini, 2010).  

 

2.4.6. Ternary system MgO-Al2O3-SiO2 

Magnesium aluminium silicate materials are commonly used due to their elevated 

chemical and thermal stability, low coefficient of thermal expansion, elevated 

mechanical strength and good dielectric properties (Shamsudin et al., 2011).  
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The MgO-Al2O3-SiO2 system was originally explored by Rankin and Merwin (1918).  

The cordierite 2MgO·2Al2O3·5SiO2 mineral was the first compound discovered with a 

melting temperature of 1460°C where liquid and mullite forms. Later, it was confirmed 

that a glass with cordierite composition can form the indialite mineral with fast cooling 

(Miyashiro & Iiyama, 1954). Karkhanavala and Hummel (1953) confirmed the 

existence of three different polymorphic forms of cordierite, an α-form or high 

temperature (crystallization above 950°C), an unstable μ-form, (crystallization around 

850°C), and a stable β-form or low temperature (hydrothermal crystallization).   

Foster (1950) concluded that sapphirine mineral 4MgO·5Al2O3·2SiO2 would have a 

region of stability in the MgO-Al2O3-SiO2 system. Accodingly, Keith and Schairer 

(1952) developed a detailed phase-equilibrium diagram including a field of stability for 

sapphirine (Figure 2.19). 

The magnesium-aluminium silicate system is a basis for glass ceramics, cordierite 

ceramics, metallurgical slags, and rocks and minerals. Moreover, MgO–Al2O3–SiO2 is 

a high quality refractory system because it has excellent thermomechanical, thermo-

chemical and physical properties under service conditions (Lee, Zhang, & Karakus, 

2004). Cordierite has an outstanding resistance to thermal shock. Thus, cordierite’s 

anisotropic expansion behaviour is used for the manufacture of honey comb catalysts. It 

is used for burner nozzles, kiln furniture and as insulator in electric hot plates 

(Camerucci, Urretavizcaya et al. 2001).   
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Figure 2.19: Phase diagram of the system MgO-Al2O3-SiO2, modified from Keith and Schairer (1952). 

 

2.4.7 Compositional Modifications 

In this section, the effect of adding different chemical compounds on the properties and 

the chemical stability of alkali aluminosilicate systems is examined.  

SnO2 

The role of SnO2 in aluminosilicate systems and its influence on their crystallization and 

chemical-physical properties has not been extensively explored. Bobkova and 

Kuz’menkova (2008) discuss that adding SnO2 in aluminosilicate glasses has 

comparable effects with ZrO2. Their study also indicated that the solubility of SnO2 in 

aluminosilicate melts is greater than that of ZrO2. 
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Rare Earth Oxides (La2O3, Nd2O3 and Y2O3) 

Wang et al. (2016) discuss the challenges faced by the addition of rare earth oxides to 

alkaline earth aluminosilicate glass fibres. It is debated that a small addition of rare 

earth oxides has the tendency to increase the crystallization temperature of fibres and as 

a result affect the thermal performance and crystallization behaviour of glass fibres. 

However, Wang et al. (2016) assume that this addition will negatively influence the bio-

solubility of glass fibres but not in a way that the bio-soluble character could be in 

doubt. 

MgO, ZrO2 and Y2O3 

 Addition of MgO, Y2O3 and ZrO2 is known to affect the grain growth and densification 

of alumina (Bunsell, 2005; Galusek, Sedláček, Chovanec, & Michálková, 2015). 

Addition of dopants changes the microstructure of the samples and decelerates 

densification and grain growth, particularly regarding ZrO2 and Y2O3. In general, 

temperatures by about 50-100 °C higher compared with materials without these dopants 

were required to achieve the same microstructural characteristics.  

TiO2 

Titanium dioxide (TiO2) is an important nucleating agent (Höland, Frank, & 

Rheinberger, 1995; Rouf, Hermansson, & Carlsson, 1978); elevated (4–8 wt%) TiO2 

content in the K2O-Al2O3-SiO2 system, is related to the evolution of leucite. Stookey 

(1959) conducted a research on both theory and practice of catalysed crystallization of 

glass.  The sub-microscopic catalysts promote the growth of the principal crystalline 

phases and heterogeneous nucleation. Cattell et al. (2005) have used titanium dioxide as 

a sub-microscopic catalyst in the K2O-Al2O3-SiO2 system, they have added (0.4 wt%) 
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TiO2 to their glass compositions and concluded that amorphous phase separation is a 

result of this addition. 

ZnO 

In a recent paper (Smedskjaer, Youngman, & Mauro, 2013) the rheological and physical 

properties of five series of sodium aluminosilicate glasses with ZnO, CaO, MgO, SrO or 

BaO and deviating Al2O3-to-SiO2 ratio have been explored. The main aspect of this 

paper was to examine and compare the effect of ZnO in aluminosilicate glasses. It is 

indicated that specifically for the glass samples with ZnO or MgO the content of Al2O3 

in comparison with Na2O/K2O will influence most of the property values. Specifically, 

when the Al2O3 content is equal to Na2O/K2O content, the coefficient of thermal 

expansion, liquid fragility index, refractive index and the isoform temperatures display a 

change in slope. The conclusions of this paper showed that the effect of Zn2 + on sodium 

aluminosilicate glasses is analogous to that of Mg2 +. Replacing MgO with ZnO can be 

very advantageous where the MgO content is limited as it can have a negative effect on 

the glass-forming ability. 
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3. Experimental Procedure 

This chapter describes the techniques and methods used to prepare and study the 

materials under investigation in this work. Different techniques were applied for each 

task, two in the case of the sample preparation: heat treatment of as made glass fibres 

and glass fibre synthesis through melt processing; two techniques for elemental 

analysis: X-Ray fluorescence energy-dispersive and X-Ray spectroscopy; four 

techniques for the structural characterisation: X-Ray powder diffraction, Rietveld 

refinement, Raman spectroscopy and scanning electron microscopy; and one technique 

to study the thermal behaviour: differential thermal analysis;.  

 

3.1. Sample preparation 

3.1.1. Melt processing 

In order to explore the K2O-Al2O3-SiO2 system, series of glass fibres with increasing 

amounts of K2O were prepared based on existing phase diagrams through melt 

processing. This process can be broken down into three basic steps: batching, melting 

and fiberisation. 

3.1.1.1 Batching 

In this initial stage of glass fibre manufacture, all the inorganic raw materials (Table 

3.5) were weighed with an electronic balance with an accuracy of ± 0.01 Kg in exact 

quantities according to the batch calculations as listed in Table 3.1 and Table 3.3  to 

produce glass fibres with the compositions shown in Table 3.2 and Table 3.4. The raw 
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materials were then thoroughly mixed in a cement mixer for at least 30 minutes 

(batching). 

Table 3.1: Batches used for production of 16 kg of glass fibres in the K2O-Al2O3-SiO2 system. 

 Al2O3 (kg) SiO2 (kg) K2CO3 (kg) Total (kg) 

KAS-1 3.75 8.82 5.09 17.66 

KAS-2 3.85 8.49 5.43 17.77 

KAS-3 4.33 7.72 5.85 17.90 

KAS-4 4.65 6.97 6.49 18.11 

KAS-5 5.17 6.08 7.03 18.283 

KAS-6 6.05 5.59 6.46 18.10 

KAS-7 6.41 5.47 6.11 17.99 

KAS-8 6.23 5.31 6.61 18.15 

KAS-9 7.35 6.26 3.56 17.17 
 

Table 3.2: Nominal glass fibre compositions in the K2O-Al2O3-SiO2 system. 

 Al2O3 (wt%) SiO2 (wt%) K2O (wt%) 

KAS-1 23.4 55.1 21.6 

KAS-2 24.0 53.0 23.0 

KAS-3 27.0 48.2 27.5 

KAS-4 29.0 43.5 27.5 

KAS-5 32.2 38.0 29.8 

KAS-6 37.7 34.9 27.4 

KAS-7 42.8 36.6 20.6 

KAS-8 38.8 33.2 28.0 

KAS-9 45.8 39.1 15.1 
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Table 3.3: Batches used for production of 16 kg of glass fibres in the K2O-Al2O3-ZrO2-SiO2 system. 

 Al2O3 (kg) SiO2 (kg) K2O (kg) ZrO2 (kg) Total (kg) 

KASZ-1 5.79 4.40 6.13 1.68 18.00 

KASZ-2 6.68 5.41 3.28 1.73 17.10 
 

Table 3.4: Nominal glass fibre compositions in the K2O-Al2O3-ZrO2-SiO2 system. 

 Al2O3 (wt%) SiO2 (wt%) K2O (wt%) ZrO2 (wt%) 

KASZ-1 36.1 30.9 26.0 7.0 

KASZ-2 41.6 37.3 13.9 7.2 
 

Table 3.5: Raw materials used for glass fibre production. 

Raw Material Purity Supplier 

Al2O3 99.0 ± 0.5 Richard Baker Harrison Ltd 

K2CO3 99.5 ± 0.2 Norkem 

SiO2 99.6 ± 0.2 Sibelco UK 

ZrSiO2 99.0 ± 0.5 Richards Bay Minerals 
 

3.1.1.2. Melting 

The melt furnace was heated by two molybdenum glass melting electrodes (Figure 3.1). 

Glass melting electrodes must withstand extremely elevated temperatures and 

aggressive glass melts. Molybdenum is the right material for these challenging 

conditions. A smooth flow of glass is achieved by careful temperature control.  
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Figure 3.1: Melt furnace (344 mm interior Ø and 160 mm height) and molybdenum glass melting 

electrodes (52 mm outer Ø and 200 mm long). 

 
It is very important to avoid any contamination with remaining materials from previous 

uses so the first step was to clean the melt furnace and the surface of molybdenum 

electrodes. The two electrodes were placed in the melt rig with a 5-mm starting distance 

between their flat surface and an alumina plate with an opening of 10 mm in the middle 

was used to cover the furnace orifice and the opening was sealed with a ceramic 

cylinder. Part of the starting material was added to the furnace to cover the orifice and 

the electrodes. The melting process was initiated by adding a small amount of the batch 

between electrodes and melting the mixture using an oxy-acetylene torch while 

applying electric current between the 2 electrodes. 

After the melting process was started, the milled powder was gradually added to the 

furnace while slowly increasing the distance of the 2 electrodes. This allowed to 

gradually grow the melt pool. The melt was covered by the starting material powder 

throughout the process (Figure 3.2). Once the melt flowed, the ceramic cylinder was 

removed from the plate’s opening allowing a melt stream of glass to flow down (Figure 

3.3). 



Chapter 3 Experimental Procedure 

 

85 

 

 
Figure 3.2: Melting process in progress. 

 

 
Figure 3.3: Melt stream of glass (700 mm distance). 

 
3.1.1.3. Fiberization 

The last step of this process was to fiberize the melt by blowing with compressed air, 

which divides the melt into drops thus subsequently extracting the fibres. The fraction 
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of these particles (so-called shots) is approximately between 40 and 60 %. The final 

product was a glass fibre blanket in most of the cases, as depicted in Figure 3.4. 

 
Figure 3.4: Glass fibre blanket (1100 mm width and length). 

 

3.1.2. Heat treatment processing 

Heat treatment was employed to examine the chemical stability and thermal durability 

at elevated temperature of alkali aluminosilicate fibre insulation materials. In the first 

stage of the present work, the study was focused on heat treatment experiments of 

Cerachem® and Superwool® XT samples. Subsequently, the broader scope of this 

study enabled us to conduct heat treatment experiments with colloidal SiO2 coated 

Superwool® XT, which were followed by studies of K2O-Al2O3-SiO2 glass fibre 

samples.  

During heat treatment experiments two different furnace arrangements were used as 

shown in the following figures. Initially, in the old furnace arrangement, a structure was 

built from RCF boards and silicon carbide (SiC) to accommodate more than 12 samples 

in 3 levels (Figure 3.5). For the new furnace arrangement one RCF board was used to 

hold a maximum of 5 samples on one level (Figure 3.6).   
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During the initial heat treatment experiments only the old arrangement was used but the 

results from comparative experiments revealed the new furnace arrangement to be more 

accurate. 

 
Figure 3.5: Old sample arrangement inside the furnace. 

 

 
Figure 3.6: New sample arrangement inside the furnace. 

 

Depending on the different scientific focus during this project, multiple heat treatment 

conditions have been used for the samples (Table 3.6, Table 3.7 and Table 3.8). During 

the long-term heat treatment experiments the samples were placed into the furnace at 

room temperature and then the furnace was ramped to the selected temperature at a rate 

of 5°C per minute. Samples were then taken out of the furnace at the maximum 
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temperature, at set time intervals with an accuracy of ±1h. Additionally, during short-

term experiments the samples were placed into the furnace and then taken out at the 

maximum temperature.  

Table 3.6: Long-term heat treatment conditions for SWXT® samples at 1250°C using the two furnace 
arrangements. 

Heat Treatment Time (h) Old Furnace 
Arrangement 

New Furnace 
Arrangement 

168 ✓ ✓ 

336 ✓  

504 ✓ ✓ 

672 ✓ ✓ 

840 ✓ ✓ 

1008 ✓  

1176 ✓ ✓ 

1224 ✓  

1296 ✓  

1344 ✓ ✓ 

1392 ✓  

1464 ✓  

1512 ✓ ✓ 

1560 ✓  

1632 ✓  

1680 ✓ ✓ 

1728 ✓  

1800 ✓  

1848 ✓ ✓ 

2160 ✓ ✓ 
 

In the beginning of this study, some of the SWXT® samples were first heat treated at 

1200°C for five minutes and then fired at 850°C for long time periods. According to X-

ray Powder Diffraction results, SWXT® crystalizes very quickly at elevated 

temperature and the glass fibres turn into ceramic fibres. The purpose of this pre-
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crystallization procedure was to examine whether the ceramic fibres will have a 

different response in the long-term heat treatment experiments compared with glass 

fibres. 

Table 3.7: Heat treatment conditions for melt-rig samples using the new furnace arrangement. 

 Heat Treatment Time 
Sample 

 1min 5min 15min 30min 1h 24h 500h 1000h 

KAS-1 ✓ ✓ ✓ ✓ ✓* ✓ ✓ ✓ 

KAS-2  ✓ ✓  ✓ ✓   

KAS-3  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

KAS-4  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

KAS-5  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

KAS-8       ✓ ✓ 

KAS-9       ✓ ✓ 

KASZ-1       ✓ ✓ 

KASZ-2       ✓ ✓ 
 

Table 3.8: Short-term heat treatment conditions for industrial samples using the new furnace 
arrangement. 

Sample T (°C) 
Heat Treatment Time 

30sec 45sec 1min 5min 10min 30min 1h 24h 48h 72h 

Superwool® 
XT 

850        ✓ ✓ ✓ 

1250 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

1500       ✓ ✓ ✓ ✓ 
Colloidal 
SiO2 Coated 
SWXT® 

1250       ✓ ✓ ✓ ✓ 

1500       ✓ ✓ ✓ ✓ 

Cerachem® 1250        ✓ ✓  
 
 
 

           

                                                 
* Additional heat treatments at 850°C and 950°C. 
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Table 3.9: Long-term heat treatment conditions for SWXT® and pre-crystallized SWXT® samples at 
850°C using the old furnace arrangement. 

Heat Treatment Time (h) SWXT® Pre-crystallized SWXT® 

168 ✓  

336 ✓ ✓ 

504 ✓  

672 ✓ ✓ 

840 ✓  

1008 ✓ ✓ 

1176 ✓  

1344 ✓ ✓ 

1512 ✓  

1680 ✓ ✓ 

1848 ✓  

2160 ✓ ✓ 
 

All furnaces require a periodic temperature recalibration due to the effluents given off 

by the materials fired, including alloys, ceramics, investments, stains and glazes. It is 

very important to examine the temperature stability and uniformity inside the furnace 

before starting the heat treatment experiments. In some cases, where the furnace 

calibration shows a remarkable temperature difference the space that can be used inside 

the furnace is limited. In this study, only the hot zone of the furnace was used where the 

temperature variation was within ±1°C based on thermocouple measurements. Also, in 

all heat treatment experiments in this work furnace calibration has affected the furnace 

settings regarding temperature. 
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3.2. Elemental analysis 

3.2.1. X-Ray fluorescence  

X-ray fluorescence (XRF) is one of the most important techniques used for this research 

project to determine the compositional stability. XRF is a non-destructive technique 

used to analyse the composition of a sample excited by an X-ray source, by measuring 

the emitted fluorescent X-rays. When a high energy X-ray beam (incident beam) 

interacts with a sample, some of its energy is lost, and some is absorbed within the 

sample depending on the sample chemistry (Goulding & Jaklevic, 1977). The sample 

excited by the X-ray beam emits X-rays whose wavelengths are characteristic of the 

atoms present in the sample. As shown in Figure 3.7, incident X-rays eject electrons 

from the lower energy levels of atoms (ionizing); these are replaced by electrons from 

higher energy orbitals. This is accompanied by release of energy due to the binding 

energy difference between the inner and outer electron orbital. Thus, X-rays 

characteristic of the type of atoms present are emitted (Van Espen, Nullens, & Adams, 

1977). In a multi-element sample, a complex X-ray spectrum is emitted and is separated 

into characteristic wavelengths for each element present with the use of a wavelength 

dispersive spectrometer (Figure 3.8).  

The measurements were performed with a PANalytical - Axios Advanced at Morgan 

Technical Ceramics which is shown in Figure 3.9. Full quantitative elemental analysis 

was carried out by XRF analysis of samples in form of fused beads; 1.000 ± 0.002g of 

sample was carefully weighted and mixed with 10.000 ± 0.002g di-lithium tetraborate 

and formed into a transparent glass disk using an automatic bead making instrument 

(Figure 3.10). 
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Figure 3.7: The principle of X-Ray Fluorescence (Klockenkämper & von Bohlen, 2014). 

 

 
Figure 3.8: Schematic arrangement of wavelength dispersive spectrometer (Klockenkämper & von 

Bohlen, 2014). 
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Figure 3.9: PANalytical - Axios Advanced instrument. 

 

 
Figure 3.10: XRF automatic bead making instrument. 
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3.3. Structural characterisation  

3.3.1. X-Ray diffraction  

X-ray diffraction (XRD) analysis was used to identify and study the crystal structure of 

the glass fibres. This technique is based on Bragg's law, which predicts the angles of 

peaks in a diffraction pattern from a crystal lattice. Geometrically, it is possible to think 

of a crystal as families of lattice planes as Figure 3.11 shows (Cullity & Stock, 2001). 

So, if an incident X-ray beam of wavelength λ (in the order of atomic spacing), interacts 

with a family of crystal planes, with interplanar spacing dhkl, it is possible to detect a 

diffraction beam of sufficient intensity, when the incident beam and the detector are 

placed in a Bragg angle, θhkl (angle at which reflections from these planes are 

observed). The Bragg equation (Eq. 3.1) is based on the assumption that the angles of 

incidence and reflection are equal (Waseda, Matsubara, & Shinoda, 2011). 

𝑛𝑛𝑛𝑛 = 2𝑑𝑑ℎ𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃ℎ𝑘𝑘𝑘𝑘     3. 1     

where λ is the X-ray wavelength, d is the interplanar spacing, θ is the angle of 

incidence, and n is taken as unity and hkl are the Miller indices.  

From the powder X-ray diffraction pattern, it is possible to extract useful information 

about the crystalline structure, such as the symmetry and the dimensions of the unit cell. 

Furthermore, the intensity of the peaks in the diffraction pattern is related with the 

atoms' nature and their position in the crystalline system, so it is also possible to obtain 

information about the internal structure of the crystal from this parameter (Compton & 

Allison, 1935).  
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Figure 3.11: Diffraction condition for a given set of atomic planes, `d´ is the spacing between atomic 

planes (Cullity & Stock, 2001). 

 
The powder diffraction pattern of a sample is characteristic of that sample, like a 

fingerprint. The measured powder pattern is quite likely to be reproduced by the simple 

sum of the isolated phases, if the sample contains two or more phases. So, the angles 

and intensities of a set of obtained peaks in the powder XRD pattern can be matched to 

those of known materials, to determine the presence or absence of any particular phase 

(Santra, 2009). The standard diffraction patterns are found in the database of the Joint 

Committee on Powder Diffraction Standards, known as JCPDS-ICDD cards. 

 
Figure 3.12: Diffraction in Bragg reflection. 
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The crystallographic evolution after variable heat treatment experiments was 

investigated by XRD at room temperature, with a diffractometer (model: Empyrean 

XRD, PANalytical™, Almelo, The Netherlands) equipped with a Cu or Co tube 

operated at 40 kV and 40 mA, normally in the 2θ range between 5 and 100°, with 2θ 

increments of 0.013° and counting time of ~70 s per step (Figure 3.13). All the samples 

were analysed using the reflection spinner sample holder, which spins at 0.25 Hz. All 

samples were crushed to fine powders using a mortar and pestle. 

 
Figure 3.13: Image of PANalytical Empyrean diffractometer. 

 

3.3.2. Rietveld refinement 

Quantitative phase analysis was used to ascertain the presence of an amorphous phase 

after long-term heat treatment at elevated temperature. This method is a least-square 

fitting of the experimental diffraction data with a mathematical model of a crystal 

structure which can provide additional information, such as atomic displacement and 

site occupancy, apart from precise lattice parameters. It is important to note that this 

method is a refinement, not a solution method: the structure of the model must be 

known in advance (Rietveld, 1988).  



Chapter 3 Experimental Procedure 

 

97 

 

The purpose of the fitting is to minimize the following residual function Sy (Eq. 3.2): 

𝑆𝑆𝑦𝑦 = �
1

𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜
�𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜 − 𝑦𝑦𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�

2
     

𝑛𝑛

𝑖𝑖=1

3. 2 

where yi,obs is the intensity of each point in the experimental pattern and  yi,calc is the 

intensity of every point of a calculated pattern using the space group of the crystal, the 

lattice parameters and the position of each atom in the unit cell. 

The best way to assess the quality of the fitting is the visual check of the difference 

between the calculated and the experimental pattern; however, there are also 

quantitative indicators: the weighted-profile R value (Rwp) (Eq. 3.3) and the expected 

residual value (Rexp) (Eq. 3.4): 

𝑅𝑅𝑤𝑤𝑤𝑤 = �∑ 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜−𝑦𝑦𝑖𝑖,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�
2

𝑖𝑖

∑ 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜�
2

𝑖𝑖
    3.3 

𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒 = �
𝑁𝑁−𝑃𝑃

∑ 𝑤𝑤𝑖𝑖�𝑦𝑦𝑖𝑖,𝑜𝑜𝑜𝑜𝑜𝑜�
2

𝑖𝑖
             3.4 

where N is the number of observations and P the number of parameters. Rwp is therefore 

the ratio of the difference between the two patterns to the observed pattern, whereas 

Rexp is a measure of the quality of the data (statistically). The ratio (Eq. 3.5): 

𝜒𝜒2 = �𝑅𝑅𝑤𝑤𝑤𝑤
𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒

�
2
      3.5 

is often given as a measure of the goodness of fit (GOF, or χ2). If the experimental 

pattern contains more data points than needed, χ2 can be much larger than 1, whereas if 

the data points are not sufficient (i.e. low sensitivity of the detector or scan time too 

short), χ2 can be even smaller than 1, which is an indication that the data acquisition 



Chapter 3 Experimental Procedure 

 

98 

 

should be repeated (Will, 2006). However, as for every empirical manipulation of data, 

the results must make physical sense, no matter how good the fitting is. 

In addition, the amorphous phase content was determined with the internal standard 

method (Madsen & Scarlett, 2008). Samples under investigation were mixed with 

silicon standard in a ratio of 4:1 by weight and the XRD patterns were obtained. The 

weight fractions of the crystalline phases present in each sample are estimated using the 

Rietveld methodology. Concentrations to be corrected proportionately according to Eq. 

3.6:  

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑊𝑊𝑗𝑗� = 𝑊𝑊𝑗𝑗 
𝑆𝑆𝑆𝑆𝑆𝑆𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘

𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
      3.6   

where Corr(Wj) is the corrected weight percent of phase j, STDknown the weighed 

concentration of the standard in the sample and STDmeasured the analysed concentration. 

The amount of amorphous material Wamorphous can then be derived from Eq. 3.7:  

𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = 1 −�𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑊𝑊𝑗𝑗�   3.7
𝑛𝑛

𝑗𝑗=1

 

 

3.3.3. Raman spectroscopy  

Raman spectroscopy of glass fibre materials was carried out to study slight changes in 

material structure and to determine the crystal structure. Raman spectroscopy permits 

the measurements of vibrational transitions by observing inelastically scattered 

radiation. This technique is based on the inelastic scattering of light by matter. The 

incident radiation induces transitions in the atoms that change the scattering medium, 

showing the variation in the Raman scattering (Truchet, Merlin, & Turrell, 1996). 

Raman spectroscopy can determine crystal symmetry, the degree of crystallinity, the 
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effects of temperature on phase transformations, and the strength of interatomic bonds 

(Turrell, Delhaye, & Dhamelincourt, 1996). 

Raman spectra were recorded with a Thermo Scientific™ DXR™2 microscope 

spectrometer (Figure 3.14) equipped with a laser beam emitting at 520 nm, at 300 mW 

output power. The photons scattered by the sample were dispersed by a 1200 lines/mm 

grating monochromator and simultaneously collected on a CCD camera; the collection 

optic was set at 50× objective. The spectral resolution is 1 cm-1 and the measurement 

range of Raman shift for glass fibres was 100 to 1300 cm-1. 

 
Figure 3.14: Thermo Scientific™ DXR™2 microscope Raman spectrometer. 

 

3.3.5. Scanning electron microscopy  

Scanning electron microscopy (SEM) is a micro-analytical technique, able to analyse 

materials that cannot generally be observed with the resolution offered by optical 

techniques, thus allowing a detailed analysis of the grain size and morphology of the 

studied material. It allows the study of phase distribution, sample topography and 

differences in crystal orientation (Reichelt, 2007).  
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SEM measures the secondary electrons emitted from a conductive substrate whose 

number depends on local surface slope and composition. Its spatial resolution is a 

function of the secondary electron diffusion within the sample and of the electron beam 

spot size. 

Energy Dispersive X-Ray Spectroscopy (EDS or EDX) is a quantitative chemical 

microanalysis technique used for elemental analysis and chemical characterization of a 

sample. The EDX technique has been used in conjunction with XRF to identify the 

different chemical species stability in Superwool® XT glass fibres in terms of time, 

temperature and service conditions. The elemental composition of the sample 

bombarded by an electron beam is determined by detecting the characteristic X-rays 

emitted. Quite small (≤ 1 µm) phases or features can be analyzed (Johansson, Campbell, 

& Malmqvist, 1995).  

All the samples were examined by field emission scanning electron microscopy (model: 

Nova Nano 200, FEI, Brno, Czech Republic, which is shown in Figure 3.15) equipped 

with an ultra-high-resolution retro-dispersed secondary electron detector to solid state 

and an OXFORD INCA 250 electron dispersive X-ray detector (EDX). During an EDX 

measurement, the theoretical detection limits is approximately 0.08 wt% but there are 

limitations as this technique has low sensitivity to elements lighter that Na and to trace 

elements.  
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Figure 3.15: FEI Nova Nano- SEM/EDX 200 microscope. 

 
Before SEM characterization a suitable sample preparation method must be followed 

depending on the information sought during the SEM evaluation. All the samples were 

coated to be conductive. Carbon coating was used because it is almost invisible to most 

X-rays and it is more suitable for compositional analysis. Coating was applied at a 

thickness of about 20 nm, which is too thin to interfere with dimensions of surface 

features 

 

3.4. Thermal analysis  

3.4.1. Differential thermal analysis 

The thermal behaviour of the samples was investigated by differential thermal analysis 

(DTA). The measurements were performed with a NETZSCH STA 409 PG Luxx 

instrument., with α-Al2O3 as the inert reference material, between room temperature 

and 1400ºC, with heating rates between 5ºC.min-1 and 50ºC.min-1, depending on the 

composition (Figure 3.16).  
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Figure 3.16: NETZSCH STA 409 PG Luxx DTA instrument. 

 
In DTA, while the sample under study and a reference material experience the same 

heating profile, their temperature difference (∆T) (Eq. 3.8) in terms of temperature is 

recorded. The record is the DTA curve; the temperature difference is plotted on the 

ordinate, and the temperature is on the abscissa. The temperature difference is negative 

in endothermic processes such as melting, and positive in exothermic processes such as 

crystallization (Gaisford, Kett, & Haines, 2016). Using DTA, changes taking place such 

as sublimation, melting, volatilization, phase transition, glass transition can be detected. 

(Haines, 1995). 

∆𝑇𝑇 = 𝑇𝑇𝑠𝑠 − 𝑇𝑇𝑟𝑟      3. 8 

 
Tr – temperature of reference sample 

Ts – temperature of sample. 
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4. Results 

This chapter includes detailed results concerning different aluminosilicate and alkali 

aluminosilicate glass fibre systems, starting from the most investigated material, 

Superwool® XT, to the laboratory produced glass fibres, and to the less explored 

Cerachem® fibres. The heat treatment and structural, thermal and elemental 

characterization of these glass fibre systems, described in Chapter 3, have allowed 

detailed studies to be developed, which were not previously described in literature, and 

that can help clarify the main problems and solutions of biosoluble glass fibres. 

 

4.1. Commercially produced Superwool® XT fibres 

The performance and durability of Superwool® XT glass fibres in terms of time and 

temperature was examined in depth by changing the thermal and furnace conditions. As 

previously described (Chapter 2) several analytical techniques were employed to 

determine the properties of this complex material. 

 

4.1.1. Heat treatment experiments 

As described in detail in Chapter 3, heat treatment was employed to explore the 

crystallization behaviour and compositional stability of SWXT®. To this end, SWXT® 

samples have been heat treated at 850°C and 1250°C for prolonged periods as shown in 

Table 4.1 and Table 4.3. 

After the 1st experiment (expr) at 1250°C that was mainly to investigate the 

performance of SWXT® under elevated temperature and for long periods, the results 
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obtained lead this research to new paths and the conduction of three additional long-

term heat treatment experiments to understand in depth the complex behaviour of this 

material. Moreover, during this study the effect of furnace arrangement (3rd and 4th 

experiments) was also examined to obtain a full picture of all the factors that play a 

crucial role on the performance of this material. In addition, to investigate SWXT® in 

more detail short-term experiments with heating times between 30 seconds and 72 hours 

were also carried out and in some cases colloidal silica SWXT® was also studied. 

Details of all long-term experiments for SWXT® are listed in Table 4.2. 

Table 4.1: Long-term heat treatment conditions for SWXT® samples at 1250°C using the two furnace 
arrangements. 

Heat Treatment 
Time (h) 

Old Furnace Arrangement New Furnace Arrangement 
1st Expr 2nd Expr 3rd Expr 4th Expr 

168 ✓   ✓ 
336 ✓    
504 ✓   ✓ 
672 ✓    
840 ✓   ✓ 
1008 ✓   ✓ 
1176 ✓ ✓ ✓  
1224  ✓   
1296  ✓   
1344 ✓ ✓ ✓  
1392  ✓   
1464  ✓   
1512 ✓ ✓ ✓  
1560  ✓   
1632  ✓   
1680 ✓ ✓ ✓  
1728  ✓   
1800  ✓   
1848 ✓ ✓ ✓  
2160 ✓    
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Table 4.2: Details of long-term heat treatment experiments of SWXT® at 1250°C. 

Experiment Furnace 
Arrangement 

Heat Treatment Time until 
Removal of 1st Sample (h) 

Heat Treatment 
Time Range (h) 

1st Old:12 samples 168 168-2160 
2nd Old:13 samples 1176 1176-1848 
3rd New:5 samples 1176 1176-1848 
4th New:4 samples 168 168-1008 

 

 

Table 4.3: Long-term heat treatment conditions for SWXT® and pre-crystallized SWXT® samples at 
850°C using the 1st furnace arrangement. 

Heat Treatment Time (h) SWXT® Pre-crystallized SWXT® 
168 ✓  
336 ✓ ✓ 
504 ✓  
672 ✓ ✓ 
840 ✓  
1008 ✓ ✓ 
1176 ✓  
1344 ✓ ✓ 
1512 ✓  
1680 ✓ ✓ 
1848 ✓  
2160 ✓ ✓ 

 

 

4.1.2. Chemical characterization 

X-ray fluorescence (XRF) and energy-dispersive X-ray spectroscopy (EDX), have been 

employed for elemental analysis of SWXT® compounds. Table 4.4 to Table 4.8 show 

the compositional stability of the key elements of SWXT® compared to the as made 

one for the main heat treatment experiments. 
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As depicted in Figure 4.1 and Figure 4.2 all the compounds are almost stable when the 

SWXT® samples are heat treated at 850°C. These experiments at 850°C proved that 

SWXT® glass fibres have high compositional stability as a function of time.  

 
Figure 4.1: Analysed composition of Superwool® XT fibres, heat treated at 850°C as a function of time. 

 

 

Figure 4.2: Analysed composition of pre-crystallized Superwool® XT fibres (5min, 1200°C), heat treated 
at 850°C as a function of time. 
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Figure 4.3 shows that there is a significant reduction in the potassium oxide, K2O, 

content at 1250°C and this loss is affected by heat treatment time. Potassium oxide is 

known for its volatile character especially at elevated temperatures but apart from this 

apparent reason an effort to understand additional whys and wherefores of this 

elemental loss will be made. XRF data show a peculiar behaviour of SWXT® around 

1500 hours of continuous heat treatment at 1250°C. It appears that SWXT® is gaining 

potassium oxide after a considerable loss, which is unexpected; this will be explored 

and discussed later (Figure 4.10).  

 

 
Figure 4.3: Analysed composition of Superwool® XT fibres, heat treated at 1250°C as a function of time 

(1st expr). 

 
Apart from K2O loss, Figure 4.3 shows that the other three main compounds (Al2O3, 

SiO2 and ZrO2) will increase in relation to their starting amount. To prove this 

compositional change of K2O all the other compounds have been normalized excluding 

the potassium oxide content and the results are presented in Figure 4.4. 
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Figure 4.4: Analysed composition of Superwool® XT fibres (excluding K2O), heat treated at 1250°C as a 

function of time (1st expr). 

 

As depicted in Figure 4.5 temperature is a very important factor that plays a crucial role 

in the performance of SWXT®, since for the same heat treatment time it has been 

confirmed that the loss of potassium is occurring only for the samples that have 

exposure to elevated temperatures (1250°C). Regarding the samples at 850°C for both 

experiments up to 2168 hours (precrystallized and amorphous samples), it is evident 

that, after a small initial loss (0-200 hours), the K2O content remained stable. 

The graph indicates that the behaviour of K2O content of SWXT® samples that were 

heat treated at 1250°C is significantly different compared with the samples at 850°C. 

After a large initial loss (0-200 hours), the K2O content is relatively stable and further 

large loss occurs at longer times and continues up to 2168 hours. 
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Figure 4.5: Analysed K2O content as a function of firing time for different temperatures. 

 
Furthermore, EDX analysis has been also used to examine the chemical stability of heat 

treated SWXT® at 1250°C as a function of time. The chemical composition derived 

from EDX is listed in Table 4.9 for different firing times.  

 

Figure 4.6: EDX spectrum (×500) of fired SWXT® fibres at 1250°C (1st expr) for 1344 hours. 
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Table 4.9: EDX analysis (wt% with ±2% relative error) of SWXT® fibres heat treated at 1250°C for 
various firing times. 

Firing Time 
(h) 

K
2
O SiO

2
 Al

2
O

3
 ZrO

2
 MgO Na

2
O 

0 30.63 28.31 33.37 6.24 0.95 0.51 

168 27.35 29.10 35.53 6.48 1.03 0.52 

1344 26.68 29.80 35.19 6.90 0.95 0.49 

2160 22.99 31.56 36.98 6.82 1.02 0.62 
 

The potassium oxide content determined by XRF and EDX is plotted in Figure 4.7. The 

loss in potassium oxide follows the same trend for both techniques, although there is a 

difference in the absolute values measured due to EDX sensitivity limitations. 

 

 
Figure 4.7: EDX and XRF spectra of heat treated SWXT® fibres at 1250°C, showing the K2O content as 

a function of time (1st expr). 

 
In order to understand this odd phenomenon happening around 1500 hours at 1250°C, a 

second experiment was designed, with firing times between 1176 and 1848 h, to obtain 

more data around 1500 hours by using the same furnace and thermal conditions. 
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As depicted in Figure 4.8 the new XRF data are not in accordance with old data which 

suggests that experimental or measurement errors affected the previous result. The K2O 

content remains relatively constant up to 1464 h firing time, and then drops for 1512 h, 

then gradually decreases and remains fairly constant until 1848 hours (experimental 

limit). All the other components remain constant throughout the long-term heat 

treatment at 1250°C.  

 

 
Figure 4.8: Analysed composition of Superwool® XT fibres, heat treated at 1250°C (2nd expr). 

  
Further experiments were designed (3rd and 4th experiment) to investigate whether 

Superwool® XT samples are affected by the K2O emissions from nearby samples inside 

the furnace. To this end, a new furnace arrangement was employed as described in 

Chapter 3 (3.1.2.). 

As illustrated in Figure 4.9, for the 4th experiment after a steep decrease (0-200 hours), 

the K2O content gradually declines (200-800 hours) and then it sharply drops again up 

to 1008 hours. For the 3rd experiment starting at 1176 hours, the K2O content slightly 

decreases (1176-1512 hours) and then it steeply declines until 1848 hours. XRF patterns 
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follow the same trend for both experiments, although variations exist due to furnace 

arrangement alterations. Apart from the K2O loss, the above figure shows that the other 

two main compounds (Al2O3 and ZrO2) will increase in relation to their starting content 

as expected in tandem with the K2O loss. The first four data points (168-1008 hours) are 

from the 4th experiment that was conducted in a bigger furnace and the samples were 

affected by the regular opening of the furnace compared to 3rd experiment that the door 

was closed until 1176 hours and which explains why at 1008 hours the K2O loss is 

greater than at 1176 hours. 

 

 

Figure 4.9: Analysed compositions of Superwool® XT fibres (dashed line: 3rd and continuous line: 4th 
expr), heat treated at 1250°C as a function of time. 

  

Table 4.10 demonstrates a comparison of K2O content under different furnace 

conditions. The data from the first two experiments are quite close apart from the 1512 

hours, in contrast with the results from the two subsequent experiments. The difference 

between these experiments is the arrangement inside the furnace.  
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Table 4.10: XRF analysis of potassium oxide content of SWXT® at 1250°C as a function of furnace 
arrangement. 

Heat Treatment 
Time (h) 

Old arrangement 
1

st
 expr 

K2O (wt%) 

Old arrangement 
2

nd
 expr 

K2O (wt%) 

New arrangement 
3

rd  expr 
K2O (wt%) 

0 25.8 25.8 25.8 
1176 23.5 23.1 21.5 
1344 22.5 23.1 21.4 
1512 20.1 22.3 21.4 
1680 21.8 21.7 19.2 
1848 21.1 21.5 18.8 

 

Figure 4.10 shows the K2O content for the four different long-term experiments. 

Comparing the results from the first two experiments a difference can be observed 

especially for 1512 hours of heat treatment. During the 1st experiment the furnace was 

opened every 168 hours to take one sample out in contrast with the 2nd experiment 

where the first sample came out after 1176 hours. Each time that the furnace opens, 

K2O vapours, due to thermal difference with the outside temperature, will go out of the 

furnace. Hence, the atmosphere inside the furnace at the 2nd experiment is richer in K2O 

than at the 1st experiment which explains why the samples of this experiment lost less 

K2O. This also explains the sharp decrease of K2O content at 1008 hours for the 4th 

experiment.  
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Figure 4.10: Potassium oxide content of SWXT® at 1250°C as a function of heat treatment time, for 

different furnace arrangements. 

 
Another key factor to consider is the position of each sample inside the furnace. 

Regarding the sample at 1512 hours the difference of K2O content for the first two 

experiments relates to the position of the sample, which was close to the door for the 1st 

experiment (less K2O) and close to the back of the furnace for the 2nd experiment (more 

K2O). Again, this phenomenon suggests that K2O vapours from nearby SWXT® 

samples, the position of the samples and the number of times a furnace will be opened 

will affect the rate of further losses of the remaining samples. 

On the other hand, results from 3rd and 4th experiments whose arrangement is as similar 

as possible to those of commercial use of SWXT® show that all the samples will lose 

significantly more K2O than in previous experiments. The irregular behaviour of K2O 

content around 1500 h for 1st and 2nd experiment and around 1000 hours for the 4th 

experiment suggest that probably this is also connected with the furnace arrangement 

and the K2O content inside the furnace. Summarizing, these results disclosed that a 
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K2O-rich atmosphere inside the heating environment will significantly limit the rate of 

potassium oxide evaporation. 

As listed in Table 4.11, the loss of K2O from SWXT® samples is affected by the 

concentration of potassium oxide vapours inside the furnace. Both experiments had the 

same amount of SWXT® samples but the size of the two furnaces is different so the 

concertation of K2O inside the big furnace is less than for the small one. The volume of 

the big furnace (Furnace 2) is 34.0×10-3 m3 and 9.1×10-3 m3 for the small furnace 

(Furnace 1). Potassium oxide vapours, as suggested from a number of experiments in 

this study, will supress the rate of K2O loss of the remaining samples. 

 
Table 4.11: XRF analysis (wt% with ±1% relative error) of Superwool® XT fibres, heat treated at 
1250°C for 1000 hours at different size furnaces. 

Oxide Unfired Furnace 1 Furnace 2 
Al2O3 35.7 38.2 38.5 
K2O 25.8 20.1 19.5 
SiO2 30.5 32.7 33.0 
ZrO2 6.2 7.2 7.2 
MgO 1.2 1.1 1.1 
HfO2 0.2 0.1 0.1 
Na2O 0.4 0.6 0.5 
TiO2 0.0 0.0 0.0 
Total 100.0 100.0 100.0 

K2O Loss 0.0 5.7 6.3 
New Total 100.0 94.3 93.7 

 

 

4.1.3. Structural characterization 

X-ray diffraction analysis of short term heating experiments (Figure 4.11) revealed that 

SWXT® rapidly crystallizes, within less than 1 minute, when heat treated at elevated 

temperatures (above 1200°C) with multiple phases developing simultaneously. XRD 
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patterns demonstrate the appearance of three crystalline phases. The major crystalline 

phase detected is hexagonal kalsilite (ICDD 00-012-0134) that gives a powder pattern 

whose strong reflections resemble those of natural kaliophilite (Smith & Tuttle, 1957); 

other crystalline phases detected is hexagonal potassium magnesium silicate (ICDD 04-

010-0020) with the chemical formula K2MgSi3O8 (Collin, Comes, Boilot, & 

Colomban, 1980) and tetragonal zirconium oxide (ICDD 04-014-2971) (Bhagwat & 

Ramaswamy, 2004). Once these phases form after 1 min firing, there are no major 

changes observed in the XRD patterns for firing times of up to 60 min. 

 
Figure 4.11: XRD patterns of heat treated SWXT® at 1250°C as a function of firing time. 

 
It is important to note here that potassium magnesium silicate is isostructural to kalsilite 

with lattice parameters that are quite close, and thus shows a similar XRD pattern 

(Collin et al., 1980 and Smith & Tuttle, 1957). Given the very small magnesium oxide 

content of SWXT® fibres (1.2 wt%), it appears likely that K2MgSi3O8 could exist only 

in trace amounts, if it does exist at all as a separate crystalline phase. It is more likely 
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that Mg is substituted in the kalsilite structure for some of the K and thus only a single 

kalsilite phase is present (Ma, Ma, & Yang, 2016). Therefore, in all the instances in this 

chapter where K2MgSi3O8 is identified as a phase present, it is to be construed to exist 

in trace amounts only, if it does exist at all.  

Figure 4.12 illustrates the XRD patterns from crashed SWXT® samples heat treated at 

850°C. Peaks corresponding to crystalline phases start appearing after 336 h of heat 

treatment. Hexagonal kalsilite and hexagonal potassium magnesium silicate are clearly 

detectable after 840 h of constant firing. There are no further changes in the phases 

present for longer times (up to 2160 h). 
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On the other hand, when SWXT® was first precrystallized at 1200°C for 5 minutes and 

then heat treated at 850°C for up to 2160 hours the crystallization behaviour is different. 

As shown in Figure 4.13 zirconium oxide peaks are now detectable – though with very 

small intensities – whereas hexagonal kalsilite and potassium magnesium silicate peaks 

are clearly detectable from the beginning. There is a peak shoulder at the left of the 

main peak (around 33°) which is not expected for hexagonal kalsilite but is expected for 

orthorhombic kalsilite. Thus, this indicates the transition from hexagonal to 

orthorhombic kalsilite (Gregorkiewitz, Li, White, Withers, & Sobrados, 2008) over time 

at 850°C, which is only observed for the pre-crystallized samples. The crystalline phase 

of zirconium oxide has been formed since SWXT® samples have been pre-crystallized 

at elevated temperature and at this temperature there is no further zirconium oxide 

crystal growth as crystallization process is evolving. 

 

 
Figure 4.13: XRD patterns of heat treated pre-crystallized SWXT® at 850°C as a function of firing time. 
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 For higher heat treatment temperatures, namely 1250°C, the crystallization behaviour 

of Superwool® XT differs significantly as depicted in Figure 4.14. Zirconia crystals are 

nucleating in the initial stages of heat treatment and continue to grow as SWXT® is 

fired for longer periods of time. Orthorhombic potassium aluminium silicate (ICDD 00-

033-0988) is formed but the quantity of the phase keeps reducing for longer firing times 

(Cook, Roth, Parker, & Negas, 1977). After 1000 hours of heat treatment leucite phase 

(ICDD 01-076-8737) starts to form and after 2000 hours is clearly detectable (Gatta, 

Rotiroti, Ballaran, & Pavese, 2008). Moreover, around 300 hours hexagonal potassium 

aluminium oxide (ICDD 04-010-8954) which is known as potassium doped alumina 

(KAl11O17) peaks are barely detectable (Dernier & Remeika, 1976). This crystalline 

phase has a characteristic single high intensity peak at around 9°, for Co Kα radiation, 

and as heat treatment time passes is clearly observed. 
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As previously mentioned, XRD has revealed that kalsilite is disappearing as a function 

of time. To confirm this, peak area and full width at half maximum (FWHM) have been 

taken into consideration (Table 4.11). All the data presented below have been taken 

from XRD analysis of the heat treated SWXT samples at 1250°C. 

Table 4.12: Peak shape parameters of the main KAlSiO4 matched peak for Superwool® XT fibres, heat 
treated at 1250°C (1st expr). 

Heat 
Treatment 
Time (h) 

Position 
(°2th.) 

FWHM 
(±0.01) 
(°2Th.) 

Area 
(cts*°2Th.) 

Relative 
Intensity (%) 

168 33.32 0.10 2334 (±239) 100 

336 33.36 0.16 1772 (±114) 100 

504 33.34 0.14 1936 (±140) 100 

672 33.33 0.13 1853 (±137) 100 

840 33.35 0.15 1703 (±111) 100 

1008 33.30 0.17 1590 (±96) 100 

1176 33.33 0.19 1628 (±84) 100 

1344 33.35 0.22 1341 (±60) 100 

1512 33.33 0.21 1223 (±59) 100 

1848 33.34 0.24 973 (±41) 100 

2160 33.33 0.24 656 (±27) 100 
 

Figure 4.15 shows the FWHM for the main peak matched by kalsilite as a function of 

firing hours. Normally FWHM will decrease as a function of time as it is associated 

with the crystal growth. The graph is probably affected by chemical formula changes 

and by lattice strains. In addition, as kalsilite peak gets broader (after 1000 hours of heat 

treatment) with time it is merged with other peaks that are starting to grow but are not 

yet detectable.  
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Figure 4.15: FWHM of kalsilite peak at 33.3° for SWXT® fibres, heat treated at 1250°C. 

 
As revealed in Figure 4.16 the peak area decreases with increasing time. The way the 

area behaves indicates that kalsilite is disappearing and transforming into another 

crystalline phase. 

 
Figure 4.16: Area of kalsilite peak at 33.3° for SWXT® fibres, heat treated at 1250°C. 
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The nucleation and the crystal growth of zirconium oxide have also been studied with 

the aid of peak area and FWHM (Table 4.13). All the data presented below have been 

taken from XRD analysis of the heat treated SWXT® samples at 1250°C. 

Table 4.13: Peak shape parameters of ZrO2 matched peaks of SWXT® fibres, heat treated at 1250°C (1st 
expr). 

Heat Treatment 
Time (h) 

Position 
(°2th.) 

FWHM (±0.01)  
(°2Th.) 

Area 
(cts*°2Th.) 

Relative 
Intensity (%) 

168 35.20 0.34 929.0 (±28)  11.53 

336 35.25 0.45 698.3 (±16) 15.54 

504 35.23 0.35 764.4 (±22) 18.23 

672 35.22 0.31 712.1 (±23) 22.33 

840 35.24 0.32 713.9 (±23) 25.77 

1008 35.20 0.29 619.6 (±21) 26.35 

1176 35.22 0.26 601.8 (±23) 28.46 

1344 35.24 0.25 754.9 (±30) 52.73 

1512 35.22 0.27 724.7 (±27) 51.30 

1848 35.24 0.26 569.8 (±22) 56.64 

2160 35.22 0.26 737.3 (±28) 88.24 
 

Figure 4.17 shows that after a gradual decline (0-1000 h) FWHM remains relatively 

constant in terms of time. The crystal size and strain of ZrO2 increase significantly at 

1000 hours. Moreover, after a substantial change between 168 and 336 hours, the peak 

area seems to be fairly constant as a function of firing time within acceptable errors 

(Figure 4.18). 
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Figure 4.17: FWHM of zirconia peak at 35.2° for SWXT® fibres, heat treated at 1250°C. 

 

 
Figure 4.18 Area of zirconia peak at 35.2° for SWXT® fibres, heat treated at 1250°C. 
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Reitveld refinement was used to identify the percentage of amorphous and crystalline 

phase and to further identify the percentage of the various crystalline phases as a 

function of heat treatment hours (Table 4.14). 

Table 4.14: Phase content (wt%) obtained from Rietveld analysis of heat treated SWXT® at 1250°C (1st 
expr). 

Heat 
Treatment 
Time (h) 

Kalsilite Zirconium 
Oxide Leucite 

Potassium 
Aluminium 

Oxide 
Amorphous 

168 57 3 0 0 40 

336 57 2 0 0 40 

504 65 3 0 0 32 

672 66 3 0 1 29 

1008 57 5 6 2 29 

1176 44 5 15 10 25 

1512 42 5 17 11 26 

1848 41 5 29 11 14 

2160 38 5 33 12 12 
 

As demonstrated in Figure 4.19 the percentage of amorphous phase decreases 

significantly as a function of time. The fairly linear pattern this graph follows is 

expected as crystal growth is occurring. 

Figure 4.20 shows that the ZrO2 phase content remains almost stable after nucleation 

has occurred (after 672 hours). The percentage of leucite seems to increase at a similar 

rate that the percentage of kalsilite is decreasing, indicating that kalsilite is disappearing 

with time and transforming into leucite. Moreover, potassium aluminium oxide content 

rises after 1008 hours. All these phase changes happen at the point that the kalsilite 

content decreases and a massive K2O loss is occurring. 
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Figure 4.19: Amorphous phase content in SWXT® heat treated at 1250°C as a function of time. 

 

 
Figure 4.20: Content of amorphous and crystalline phases in heat treated SWXT® at 1250°C as a 

function of firing time (1st expr). 
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Heat treatment experiments with Superwool® XT, pre-crystallized Superwool® XT at 

1200°C for five minutes and colloidal silica coated SWXT® were performed. All the 

samples were heat treated at 1500°C for 72 hours to study the different crystallization 

behaviour. During these experiments, SWXT® has been used as a crucible for the 

samples to avoid any reaction with alumina crucible. 

 As depicted in Figure 4.21 there are differences in the phase assemblage, except for 

ZrO2 that seems to equally develop for all the samples. Regarding KAl11O17, the peak 

at 7° 2θ is clearly detectable for SWXT® and it is stronger and sharper for the pre-

crystallized SWXT® sample in contrast with the colloidal silica coated SWXT® where 

this phase has not formed. These XRD patterns are a characteristic example to 

understand the thermal behaviour of biosoluble glass fibres. SWXT® fibres are directly 

affected by time and temperature because as shown in Figure 4.21 when the fibres are 

heat treated at higher temperatures less time is needed to reach the same crystallization 

stage with samples that were heat treated at lower temperature. Finally, at 1500°C 

leucite needs less than 72 hours to develop in considerable amount. 
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Figure 4.21: XRD patterns of samples heat treated at 1500°C for 72 hours. 

 
XRD patterns (Figure 4.22) of SWXT® fibres heat treated at 1250°C from the 2nd 

experiment illustrate that potassium aluminium silicate, zirconium oxide and potassium 

aluminium oxide are clearly detectable after 1176 hours of constant firing, with the 

latter phase being present in small amounts only. With increasing firing time, leucite 

peaks start to appear albeit with very low intensities. 

Figure 4.23 shows the crystallization behaviour of SWXT® with the new furnace 

arrangement. The first four patterns (168-1008 hours) are from the 4th experiment that 

was conducted in a big furnace and as it has been already explained the samples were 

affected by the regular opening of the furnace and by furnace dimensions which 

explains why the 1008 hours pattern has more prominent leucite peaks than the 1176 

hours pattern. On the other hand, the next five XRD patterns (1176-1848 hours) are 

from the 3rd experiment conducted in a small furnace and the furnace was not opened 

till 1176 hours when the first sample was removed. 
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Results show that the furnace arrangement is a very important factor that affects the 

crystallization evolution of SWXT® samples. Figure 4.24 suggests that there is a 

significant difference in the crystallization process because of K2O vapours. Potassium 

aluminium silicate and zirconia phases have already developed below 1000 hours as 

evidenced in this study so there is not any detectable difference. In contrast, the 

development of leucite and potassium aluminium oxide crystalline phases is 

substantially dissimilar for the two furnace arrangements. These XRD patterns prove 

the starting hypothesis that the presence of K2O vapours delays the development of the 

aforementioned phases. 

 

 
Figure 4.24: XRD patterns comparing the crystallization behaviour of heat treated SWXT® glass fibres 

at 1250°C as a function of time and different furnace arrangement (Old: 2nd expr and New: 3rd expr). 

 
Figure 4.25 shows the difference between two furnaces with different dimensions where 

furnace 1 is smaller than furnace 2. Inside these furnaces with the same arrangement a 

similar amount of SWXT® has been placed and heat treated at 1250°C so the same 
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amount of K2O vapours will be in different sized furnaces. As a result, furnace 2 will 

have the same amount of K2O in the heat-treating atmosphere but it will have less 

concertation. XRD patterns specify that samples heat treated in furnace 2, which has 

less potassium vapours concertation, have greater amount of leucite and potassium 

aluminium oxide. 

   
Figure 4.25: XRD patterns comparing the crystallization behaviour of heat treated SWXT® at 1250°C for 

up to 1000 hours under different experimental conditions; Furnace 2 is bigger than Furnace 1. 

 

4.1.4. Microstructural characterization 

Scanning electron microscopy was used to analyse the surface morphology and 

microstructure of SWXT® samples. Figure 4.26 demonstrates the surface of the unfired 

SWXT®; both secondary and backscattered imaging revealed that fibres have a 

featureless and smooth fracture surface as they are completely amorphous. The 
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observed pinholes (Figure 4.26 b) and c) could be caused – according to the 

manufacturer – by existence of trapped CO2 gas during the production of fibres. 

 
Figure 4.26: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of unfired SWXT® 

fibres. 

 

 
Figure 4.27: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C for 672 hours. 
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Figure 4.27 shows that even at initial stages of heat treatment the fracture surface has 

become already rough and coarse which designates crystallization through the fibre 

diameter. Backscatter imaging revealed the existence of several bright spots but their 

size and the phase cannot be detected at this stage. Possibly these spots relate to ZrO2 

crystalline phase because Zr – heaviest element in SWXT® – nuclei are more effective 

electron scatterers than the lighter nuclei like Si, Al, Mg, K and O; hence Zr appears 

brighter.  

The fracture surface of SWXT® after 1176 hours of constant firing at 1250°C with 

different furnace conditions as imaged by SEM is shown in Figure 4.28 to Figure 4.30. 

Secondary imaging revealed that SWXT® fibres are now interconnected and bonded 

together. The fracture surface is uneven and rough due to crystallization evolution. 

Moreover, SWXT® samples from the new furnace arrangement that are losing more 

K2O will have a greater degree of crystallization compared to the SWXT® samples 

with the old furnace arrangement. SWXT® glass fibres shown in Figure 4.30 have a 

very rough surface morphology with scratch-like features on the surface and the earlier 

observed spots are also larger compared to the samples in Figure 4.28 and Figure 4.29. 
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.  

Figure 4.28: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 
fibres at 1250°C (1st expr) for 1176 hours 

 

Figure 4.29: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 
fibres at 1250°C (2nd expr) for 1176 hours. 
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Figure 4.30: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C (3rd expr) for 1176 hours. 

 
Figure 4.31 shows that for even longer firing times some fibres have a very rough 

surface morphology with scratch-like features on the surface. The roughness of fracture 

surfaces suggests that the fibres are crystallized through the diameter. 

 
Figure 4.31: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C for 1512 hours (1st expr). 
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As depicted in the following SEM figures (Figure 4.32, Figure 4.33 & Figure 4.34), 

again the SWXT® samples from the new furnace arrangement have a greater degree of 

crystallization compared to the SWXT® samples with the old furnace arrangement. 

SWXT® samples (Figure 4.34) have very big hexagonal plate-shaped features; these 

plates seem to have grown out of the fibres and are more likely to be alumina plates. 

The zirconia crystals appear to be forming around the boundaries of these plate features 

and they appear to be larger than the crystals formed in the other areas of the fibres. 

Figure 4.35 shows that for the longest firing time (2160 hours) all the fibres have a very 

coarse and rough surface morphology and plate-shaped features have formed. The 

zirconia crystals appear to be forming around the boundaries of these plate features and 

are larger than the crystals formed in the other areas of the fibres. Backscatter imaging 

showed considerable growth of the previously observed spots. 

 

 
Figure 4.32: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C (1st expr) for 1848 hours. 
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Figure 4.33: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C (2nd expr) for 1848 hours. 

 

 
Figure 4.34: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C (3rd expr) for 1848 hours. 
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Figure 4.35: Secondary a), b), c), and d) and backscatter e) and f), SEM imaging of heat treated SWXT® 

fibres at 1250°C for 2160 hours 1st (expr). 

 
The SEM imaging presented here clearly demonstrates that Superwool® XT fibres 

develop microstructural changes at elevated temperature and with increasing heat 

treatment time, these changes will occur gradually, provoking growth of grains which 

reduces fibres’ flexibility. Finally, heat-treated fibres fuse together and SWXT® 

becomes brittle. The observed changes in surface morphology of glass fibres occur not 

only due to high temperature but also because crystallisation is initiated (Shelby, 2005). 

Secondary SEM imaging of SWXT® heat treated at 1500°C (Figure 4.36) demonstrate 

a very rough morphology, it appears that distinct crystal shaped areas have been formed 

throughout the fibres for all the different samples. 
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Figure 4.36: Secondary SEM imaging of a) pre-crystallized SWXT® (1200°C, 5min) b) SWXT® c) 

colloidal silica coated SWXT® glass fibres heat treated at 1500°C for 72 hours. 

 

4.1.5. Thermal analysis 

Differential thermal analysis was carried out to study the thermal behaviour of 

SWXT®. In these patterns (Figure 4.37), a strong exothermic peak is visible which is 

related to the main crystallization event. In some of the results, a shallow feature peak 

appears to exist at around 950°C and before the main crystallization peak which may 

relate to the glass transition temperature of SWXT®. 

As depicted, all the exothermic peaks increase in intensity, get broader and shift to 

higher temperature with the increase of heating rate. According to Kissinger (1957) and 

Speil et al. (1945) the heating rate (𝛷𝛷 = 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ ), affects the temperature and shape of 

DTA peaks. The peaks get wider because at higher heating rates the spacious gradient 

of temperature in the sample will get greater. At an accelerated 𝛷𝛷, the reactions in the 

sample needs less time. According to XRD data when SWXT® is heat treated at 

1250°C the formation of potassium aluminium silicate occurs quite soon and then 

leucite appears at longer firing times. In contrast with XRD, DTA is showing only one 

crystallization event for this material which relates to KAlSiO4.  
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Figure 4.37: DTA curves of unfired SWXT® (100mg) with various heating rates. 

 
The activation energy for SWXT® was determined by the Kissinger method (Eq. 4.1) 

(Kissinger, 1957). 

ln
𝑎𝑎
𝑇𝑇02

 =  −
𝐸𝐸𝑎𝑎
𝑅𝑅𝑇𝑇0

+ 𝐶𝐶     4.1 

where a is the heating rate, Ea is the activation energy, R is the gas constant, T0 is the 

exothermic peak temperature and C is a constant. The activation energy is calculated 

from the slope of the line of ln(a/𝑇𝑇02) vs 1/T0.  

The shape factor (n) of the exothermic peak is calculated by Eq. 4.2: 

𝑛𝑛 =
2.5
∆𝑇𝑇

 ∙
𝑇𝑇02

(𝐸𝐸𝑎𝑎 𝑅𝑅⁄ )        4.2 

where n is the Avrami constant and ΔT is the full width at half maximum of the 

exothermic peak.  

As Figure 4.38 shows, the activation energy for SWXT® is 420 kJ/mol which is 

correlated with the first exothermic peak in DTA and corresponds to the crystallization 
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of kalsilite. The activation energy of crystallization may actually vary with different 

starting materials. Okada, Kaneda, Kameshima, Yasumori, and Takei (2003) reported 

the activation energy of mullite for different starting materials (glass, glass fibres, 

hybrid gel, diphasic gel and single-phase gel) to range from 800 to 1300 kJ/mol. 

 
Figure 4.38: Kissinger plot for non-isothermal crystallization of SWXT®. 

 
The value of the Avrami exponent provides information regarding the morphology of 

the growing crystals (Johnson, Kriven, & Schneider, 2001). The value of n reflects the 

mechanism dominating the crystallization. Smaller n values indicate that the 

crystallization is dominated by a surface crystallization mechanism rather than by 

volume crystallization, and that the crystallization dimension is low. On the other hand, 

larger n values are expected only in case of increasing nucleation rates, i.e. > 2.5 in 

diffusion-controlled reaction or > 4 in polymorphic transformation (Takei et al., 2001). 

The combined average shape factor for SWXT® was 3.3±0.1 (calculated by Fit Multi-

Peaks function in Origin) which indicates that the formation process for this material is 

nucleation and three-dimensional growth that follows the diffusion-controlled 
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mechanism with increasing nucleation rate (Okada, Kaneda, Kameshima, Yasumori, & 

Takei, 2003). 

DTA analysis (Figure 4.39) shows that for SWXT® the first crystallization event occurs 

at lower temperature compared with colloidal silica coated SWXT® which is an 

expected result because as made SWXT® sample has lower silica content (by 

approximately 2 wt%). 

 
Figure 4.39: DTA curves of unfired colloidal silica coated SWXT® and SWXT® (100mg) with a 5°C/min 

heating rate. 

 

4.1.6. Summary 

Loss of K2O upon prolonged heat treatment at 1250°C, it is believed by volatilization, 

has been confirmed with XRF analysis. As time passes and crystallization is initiated 

the loss of K2O increases. XRD analysis revealed that SWXT® will crystallize very 

quickly (< 1 minute) and Rietveld analysis showed that it will transform into a glass-

ceramic since after 2000 hours of constant firing there is still some amorphous phase. 

Kalsilite is the first nucleation product but will transform into leucite with the 
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concurrent development of potassium aluminium oxide. The K2O losses, the 

transformation of kalsilite to leucite and the formation of potassium aluminium oxide 

are happening simultaneously, with the fracture surface of SWXT® becoming uneven 

and rough. Finally, K2O vapours inside the furnace are affecting the performance of 

SWXT® samples. A combination of XRD and XRF analysis proved that the presence of 

K2O vapours inside the furnace delays the development of leucite and potassium 

aluminium oxide phases and supresses the rate at which glass fibres are losing K2O. 

 

4.2. Laboratory-produced glass fibres  

As described in Chapter 3, glass fibres in the K2O-Al2O3-SiO2 and the K2O-ZrO2-

Al2O3-SiO2 systems have been produced via melt processing. Subsequently the 

investigation of Superwool® XT behaviour in terms of time and temperature, a need for 

further exploration was created. The idea was to simplify the study of a very complex 

material like SWXT® by investigating samples with more simple chemistry but with 

common – according to the phase diagrams – crystalline phases. These experiments 

aimed to build an understanding of the stability of leucite and potassium aluminium 

silicate crystalline phases in terms of time and temperature.  

 

4.2.1. Heat treatment experiments 

As described in Chapter 3, all the melt-rig samples were heat treated at 1250°C for 

various periods (Table 4.15Table 4.15: Heat treatment conditions for melt-rig samples 

using new furnace arrangement at 1250°C.). In all these heat treatment experiments the 

new furnace arrangement was used and the same thermal conditions. 
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Table 4.15: Heat treatment conditions for melt-rig samples using new furnace arrangement at 1250°C. 

Sample 
Heat Treatment Time 

1min 5min 15min 30min 1h 24h 500h 1000h 
KAS-1 ✓ ✓ ✓ ✓ ✓† ✓ ✓ ✓ 
KAS-2  ✓ ✓  ✓ ✓   
KAS-3  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
KAS-4  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
KAS-5  ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
KAS-8       ✓ ✓ 
KAS-9       ✓ ✓ 

KASZ-1       ✓ ✓ 
KASZ-2       ✓ ✓ 

 

4.2.2. Chemical characterization  

XRF analysis has been carried out to study the compositional variations of melt-rig 

samples compared to target compositions and to heat treated samples. Apart from KAS-

6 and KAS-7 samples that have a significant difference compared to the respective 

target compositions, all the other glass compositions have been successfully produced 

with minor variations (Table 4.16 and Table 4.17).  

Table 4.16: XRF analysis (wt% with ±1% relative error) of glass fibre compositions of K2O-ZrO2-Al2O3-
SiO2 quaternary system. 

 

 

Target Content 
(wt%) 

Content by 
XRF (wt%) 

Variation 
(wt%) 

Content by 
XRF (mol%) 

KASZ-1 

Al2O3 36.1 34.8 -1.3 28.2 
SiO2 30.9 32.1 +1.2 44.2 
K2O 26.0 25.7 -0.3 22.6 
ZrO2 7.0 7.4 +0.4 5.0 
Total 100.0 100.0  100.0 

      

KASZ-2 

Al2O3 41.6 41.8 +0.2 33.2 
SiO2 37.3 37.3 +0.0 50.3 
K2O 13.9 13.8 -0.1 11.9 
ZrO2 7.2 7.1 -0.1 4.7 
Total 100.0 100.0  100.0 

                                                 
† Additional heat treatments at 850°C and 950°C. 
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Table 4.17: XRF analysis (wt% with ±1% relative error) of glass fibre compositions of K2O-Al2O3-SiO2 
ternary system. 

 

 

Target Content 
(wt%) 

Content by 
XRF (wt%) 

Variation 
(wt%) 

Content by 
XRF (mol%) 

KAS-1 

Al2O3 23.4 22.4 -0.96 15.8 
SiO2 55.1 57.6 +2.54 68.9 
K2O 21.6 20.0 -1.58 15.3 
Total 100.0 100.0 

 
100.0 

      

KAS-2 

Al2O3 24.0 23.9 -0.10 17.1 
SiO2 53.0 54.6 +1.60 66.3 
K2O 23.0 21.5 -1.50 16.6 
Total 100.0 100.0 

 
100.0 

 
 

KAS-3 

Al2O3 27.0 26.4 -0.6 19.4 
SiO2 48.2 49.4 +1.2 61.4 
K2O 24.8 24.2 -0.6 19.2 
Total 100.0 100.0 

 
100.0 

 
 

KAS-4 

Al2O3 29.0 28.4 -0.6 21.3 
SiO2 43.5 45.1 +1.6 57.3 
K2O 27.5 26.5 -1.0 21.5 
Total 100.0 100.0 

 
100.0 

 
 

KAS-5 

Al2O3 32.2 33.0 -0.6 25.5 
SiO2 38.0 38.9 +1.6 51.0 
K2O 29.8 28.1 -1.0 23.5 
Total 100.0 100.0 

 
100.0 

 
 

KAS-6 

Al2O3 37.7 33.3 -4.4 25.8 
SiO2 34.9 38.3 +3.4 50.4 
K2O 27.4 28.4 +1.0 23.8 
Total 100.0 100.0 

 
100.0 

 
 

KAS-7 

Al2O3 42.8 35.8 -7.0 27.3 
SiO2 36.6 42.0 +5.4 54.4 
K2O 20.6 22.2 +1.6 18.3 
Total 100.0 100.0 

 
100.0 

 
 

KAS-8 

Al2O3 38.8 37.4 -1.4 29.3 
SiO2 33.2 34.7 +1.5 46.6 
K2O 28.0 27.9 -0.1 23.9 
Total 100.0 100.0  100.0 

 
 

KAS-9 

Al2O3 45.8 45.7 -0.1 35.4 
SiO2 39.1 39.8 +0.7 52.4 
K2O 15.1 14.5 -0.6 12.2 
Total 100.0 100.0  100.0 
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As depicted in the ternary phase diagram (Figure 4.40), the idea was to create five 

compositions (KAS-1 to KAS-5) from leucite to kalsilite that will result – upon firing – 

in single-phase and multi-phase glass fibre materials of both phases. KAS-8 is the 

normalized SWXT® composition by considering only these three compounds and KAS-

9 is, according to the company's internal documentation, the normalized heat treated 

SWXT® (1250°C, 7450 hours) composition by considering again only these three 

compounds. Finally, only thermal analysis was conducted on KAS-6 and KAS-7 as the 

great variation from the target compositions put them out of the area of interest of this 

study. 

 
Figure 4.40: The ternary K2O-Al2O3-SiO2 diagram showing the produced glass fibre compositions. 

Image modified from Osborn and Muan (1960). 

 
Likewise, the compositions of KASZ-1 and KASZ-2 are based on KAS-8 and KAS-9 

respectively. The idea was to add the same weight percentage of ZrO2 as is contained in 
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SWXT® and then examine the effect of this addition on the crystallization evolution 

and chemical stability of glass fibres. The addition of ZrO2 is expected to decelerate 

nucleation and crystal growth (Seidel et al., 2016). As listed in Table 4.18 chemical 

stability is strongly connected with the starting composition. KAS-1, KA-9 and KASZ-2 

are the only compositions where all the elements remain stable in terms of firing time. 

The remaining materials have a similar behaviour with SWXT®; as time passes K2O 

loss increases. Samples KAS-8 and KASZ-1 have a difference in K2O loss probably 

related to ZrO2 addition. 

Table 4.18: XRF analysis (wt% with ±1% relative error) of heat treated glass fibres at 1250°C for 500 
and 1000 hours. 

 
Heat 

Treatment 
Time (h) 

Al2O3 
(wt%) 

K2O 
(wt%) 

SiO2 
(wt%) 

ZrO2 
(wt%) 

Total 
(wt%) 

K2O 
Change 
(wt%) 

KAS-1 
0 22.4 20.0 57.6 0.0 100.0  

500 22.4 20.0 57.6 0.0 100.0 0.0 
1000 22.4 20.0 57.6 0.0 100.0 0.0 

KAS-3 
0 26.4 24.2 49.4 0.0 100.0  500 26.8 23.0 50.2 0.0 100.0 -1.2 

1000 26.9 22.7 50.4 0.0 100.0 -1.5 

KAS-4 
0 28.4 26.5 45.1 0.0 100.0  500 29.0 24.7 46.3 0.0 100.0 -1.8 

1000 29.7 22.8 47.5 0.0 100.0 -3.6 

KAS-5 
0 33.0 28.1 38.9 0.0 100.0  500 33.3 27.1 39.6 0.0 100.0 -1.0 

1000 34.1 25.4 40.5 0.0 100.0 -2.7 

KAS-8 
0 37.4 27.9 37.4 0.0 100.0  500 38.5 25.7 35.8 0.0 100.0 -2.2 

1000 38.8 25.0 36.2 0.0 100.0 -2.9 

KAS-9 
0 45.7 14.5 39.8 0.0 100.0  500 44.6 14.8 40.6 0.0 100.0 +0.3 

1000 45.1 14.4 40.5 0.0 100.0 -0.1 

KASZ-1 
0 34.8 25.7 32.1 7.4 100.0  

500 35.5 23.9 32.9 7.7 100.0 -1.7 
1000 36.3 22.2 33.7 7.8 100.0 -3.5 

KASZ-2 
0 41.8 13.8 37.3 7.1 100.0  500 41.0 14.0 38.0 7.1 100.0 +0.2 

1000 41.4 13.8 37.7 7.1 100.0 0.0 
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4.2.3. Structural characterization 

Figure 4.41 and Figure 4.42 show the crystallization behaviour of KAS-1 and KAS-2 as 

a function of time at 1250°C. All peaks are matched by tetragonal leucite and no second 

phase peaks were observed which suggests that this crystalline phase is very stable in 

terms of time. Crystallization of leucite occurs very rapidly, in less than 5 minutes for 

KAS-1 and less than 15 minutes for KAS-2. 

Figure 4.43 shows the crystallization behaviour of KAS-1 as a function of temperature 

for 1 hour of heat treatment. At 850°C kalsilite peaks are stronger compared to those of 

leucite. At higher temperature (950°C) the proportion of leucite increases and kalsilite is 

still present. At even more elevated temperatures (1250°C), kalsilite is not detectable 

and leucite is the sole crystalline phase. 

 
 

 
Figure 4.41: XRD patterns of heat treated KAS-1 glass fibres at 1250°C as a function of time. 
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Figure 4.42: XRD patterns of heat treated KAS-2 glass fibres at 1250°C as a function of time. 

 

 
Figure 4.43: XRD patterns of heat treated KAS-1 glass fibres for 1 hour as a function of temperature. 
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As shown in Figure 4.44 for KAS-3, peaks are matched by kalsilite and leucite. Both 

phases seem to develop simultaneously but the crystallization process takes longer (< 30 

min) compared to the previous samples. 

  

 
Figure 4.44: XRD patterns of heat treated KAS-3 glass fibres at 1250°C as a function of time. 

 
For KAS-4, Figure 4.45 illustrates that at the beginning of the crystallization most of the 

peaks are matched by kalsilite. After 24 hours of constant heat treatment at 1250°C 

tetragonal leucite is fully formed. Moreover, crystallization occurs rapidly in less than 

15 minutes. 

Figure 4.46 shows XRD patterns of KAS-5, which is closer to kalsilite stoichiometry, 

heat treated at 1250°C in terms of time. Initially, only kalsilite is present (<15 min) and 

then at 500 hours of prolonged firing at elevated temperature potassium aluminium 

oxide and leucite develop. 
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Figure 4.45: XRD patterns of heat treated KAS-4 glass fibres at 1250°C as a function of time. 

 

 
Figure 4.46: XRD patterns of heat treated KAS-5 glass fibres at 1250°C as a function of time. 
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Figure 4.47 and Figure 4.48 show XRD patterns for KAS-8 and KASZ-1, respectively, 

which are the melt-rig glass fibres with compositions as close as possible to SWXT®.  

KAS-8 peaks are matched by kalsilite, leucite and potassium aluminium oxide phase. 

Regarding the XRD patterns of KASZ-1, the only difference with KAS-8 is the 

formation of tetragonal zirconium oxide phase.  

Figure 4.49 and Figure 4.50 demonstrate the crystallization behaviour of KAS-9 and 

KASZ-2, respectively, at 1250°C.  No second phases are observed for KAS-9 and all 

peaks are matched by tetragonal leucite.  Apart from leucite, tetragonal zirconium oxide 

is also present for KASZ-2. 
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Figure 4.47: XRD patterns of heat treated KAS-8 glass fibres at 1250°C as a function of time. 

 

 

Figure 4.48: XRD patterns of heat treated KASZ-1 glass fibres at 1250°C as a function of time. 
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Figure 4.49: XRD patterns of heat treated KAS-9 glass fibres at 1250°C as a function of time. 

 

 

Figure 4.50: XRD patterns of heat treated KASZ-2 glass fibres at 1250°C as a function of time. 
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Raman spectroscopy was used to locally characterize the structure of the five melt-rig 

compositions. Raman spectra (Figure 4.51) of unfired melt-rig glass fibres (KAS-1 to 

KAS-5) show the presence of three sets of bands which are located in the ranges of 

about 400-500 cm-1, 550-570 cm-1, and 950-1150 cm-1. The large width of these bands 

confirms the high presence of amorphous phase in the examined materials. A peak 

around 1020 cm-1 which is present for KAS-5 and KAS-4 and is more prominent for 

KAS-3 is due to impurities of the materials and more specifically carbon (Ferrari & 

Robertson, 2000). Glasses with high K2O content have the tendency to react with the 

atmosphere and form K2CO3.  

Figure 4.52 shows the effect of heat treatment on the melt-rig samples which have now 

sharper bands confirming the existence of crystalline phases. All samples were fired at 

1250°C for 24 hours before being tested.  KAS-1, KAS-2, and KAS-3 have Raman 

spectra corresponding to leucite. Moreover, some modes are labelled as 1 to 7 because 

at this stage their origin is purely speculative.  They are in the ranges of about 240-260 

cm-1 (1), 275-325 cm-1 (2), 350-370 cm-1 (3), 380-400 cm-1 (4), 450-470 cm-1 (5), 900-

950 cm-1 (6), 1000-1050 cm-1 (7) and 1070-1120 cm-1 (8). 
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Figure 4.51: Raman spectra of unfired glass fibres. 

 

 
Figure 4.52: Raman spectra of heat treated glass fibres at 1250°C for 24 hours. 
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4.2.4. Thermal analysis 

Differential thermal analysis was employed to explore the crystallization behaviour of 

unfired melt-rig samples and to understand the effect of altering the content of K2O, 

Al2O3 and SiO2 on the thermal behaviour. Figure 4.53 and Figure 4.54 present the DTA 

patterns gathered at a 5°C/min heating rate.  

As depicted in Figure 4.53, DTA patterns show one strong exothermic peak related to 

the main crystallization event. The main exothermic peak for KAS-1, KAS-2 and KAS-

3 relates to the development of leucite. In these three patterns, a strong anomaly is 

observed just before the first crystallization event which may relate to an endothermic 

event, probably a rearrangement of the structure of the amorphous phase. Also, moving 

from KAS-1 to KAS-3 the first crystallization exotherm moves to higher temperatures 

contrary to the kalsilite glass ceramics, KAS-4 to KAS-7 where it moves to lower 

temperatures. In KAS-4 a second shallow feature peak appears to exist at around 

1183°C which relates to the formation of leucite as a second phase.  

Additionally, Figure 4.54 illustrates that both KAS-8 and KASZ-1 have a main 

crystallization peak that is associated with kalsilite development. As it is expected the 

addition of ZrO2 hinders the formation of KAlSiO4 so the first exothermic moves to 

higher temperature. 

At around 993°C (KAS-9) and 965°C (KASZ-2) a strong exothermic peak is visible 

which is related with kalsilite. A second crystallization peak at 1293°C and 1280°C, 

respectively that relates to the leucite development and again an anomaly is observed 

before this peak.  Similarly, the addition of zirconia moves the crystallization exotherm 

to higher temperatures. 
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Figure 4.53: DTA curves of unfired K2O-Al2O3-SiO3 glass fibres (100mg) with a 5°C/min heating rate. 

 
 

 
Figure 4.54: DTA curves of unfired K2O-ZrO2-Al2O3-SiO3 and K2O-Al2O3-SiO3 glass fibres (100mg) 

with a 5°C/min heating rate. 
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4.2.5. Summary 

Systematic synthesis experiments to produce glass fibres in the ternary K2O-Al2O3-

SiO2 and the quaternary K2O-ZrO2-Al2O3-SiO2 systems were conducted. Heat 

treatment experiments resulted in multiphase and single-phase reaction products in the 

kalsilite-leucite region. Elemental analysis (XRF) revealed that the high volatility of 

K2O is related to the stoichiometry of the starting composition and crystallization 

behaviour as in some samples in which leucite is the major phase (SiO2-rich and Al2O3-

rich samples) no loss is observed. Moreover, XRD analysis suggests that kalsilite is an 

unstable phase which probably works as a precursor of leucite as even for samples with 

the exact kalsilite stoichiometry, leucite will form after prolonged firing. The XRD 

results suggest that after long-term (> 500 h) heat treatment all the samples will form 

leucite – at least in part – but the key difference is that when the starting composition is 

close to kalsilite this transformation will include K2O losses. 

 

4.3. Commercially produced Cerachem® fibres 

All the Cerachem® samples that have been used in this study are heat treated pyro-

block modules that customers have send back to Morgan Advanced Materials for 

testing. As depicted in Figure 4.55, Cerachem® modules were stacked in the wall of a 

furnace as insulation. These modules had a hot face, which is the inner surface exposed 

to heat, and a cold face which is the outer surface. Two pyro-block modules were taken 

from different sides inside the furnace, one from the west wall (module 1) and the other 

from the east wall (module 2). Unfortunately, the exact temperature and the hours of 

prolonged firing were not specified.  
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Figure 4.55: Hot and cold face of Cerachem® modules.  

 

4.3.1. Chemical characterization 

Cerachem® samples were chemically characterized to determine the compositional 

stability of the two samples moving from the hot face to the cold one. To this end, XRF 

analysis was carried out and the results are presented in Table 4.19 and  

Table 4.20. There is a significant reduction in the wt% of silicon dioxide, SiO2, closer 

to the hot face. In all the analysed samples, very small amounts of impurities were 

detected (Fe2O3, HfO2, K2O, MgO and TiO2). 

Table 4.19: XRF analysis (wt% with ±1% relative error) of module 1 as a function of depth from the hot 
face. 

Compound Unfired 0-2.5 mm 2.5-5 mm 5-7.5 mm 7.5-10 mm 
Al2O3 34.8 41.6 35.0 34.7 34.8 
SiO2 49.8 40.7 49.6 49.9 49.9 
ZrO2 15.1 16.8 14.6 14.6 14.6 
Fe2O3 0.1 0.1 0.1 0.2 0.1 
HfO2 0.0 0.5 0.4 0.4 0.4 
MgO 0.1 0.1 0.1 0.1 0.1 
TiO2 0.0 0.1 0.1 0.1 0.1 
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Table 4.20: XRF analysis (wt% with ±1% relative error) of module 2 as a function of depth from the hot 
face. 

Compound Unfired 0-2.5 mm 2.5-5 mm 5-7.5 mm 7.5-10 mm 

Al2O3 34.8 38.6 35.0 34.7 34.7 

SiO2 49.8 44.6 49.4 49.7 49.9 

ZrO2 15.1 15.9 14.8 14.7 14.7 

Fe2O3 0.1 0.2 0.2 0.2 0.1 

HfO2 0.0 0.4 0.4 0.4 0.4 

MgO 0.1 0.1 0.1 0.1 0.1 

TiO2 0.0 0.1 0.1 0.1 0.1 
 

The loss of silica occurs as a function of material depth and is observed as a weight loss 

as gaseous SiO2 moves away from the hot face of the module samples. This can involve 

reduction of SiO2 to SiO, or with water vapour or stream present they form silicic acid 

hydrates such as Si(OH)4 or Si2O(OH)6. The vaporization of SiO2 increases with 

increasing H2 content, with increased free SiO2, and with increased temperature 

(Thermal Ceramics, 1995).  

As depicted in Figure 4.56, the SiO2 content decreases closer to the hot face (0-2.5mm) 

for both Cerachem® samples. Module 1 sample has lost a higher amount of SiO2 

compared with Module 2 but it is likely that the Module 1 sample was in a position 

inside the furnace that was more affected by temperature and reduction atmospheres 

which cause the loss of silica – considering the temperature variations inside the 

furnace.  
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Figure 4.56: Silica content of Cerachem® module 1 and module 2 as a function of depth. 

 
Figure 4.57 and Figure 4.58, apart from the SiO2 loss, show that the other two main 

compounds (Al2O3 and ZrO2) will increase in relation to their starting amount. As it has 

been done in previous cases in this chapter where compositional change is observed all 

the other compounds have been normalized excluding the silica content and the results 

are presented in Table 4.21 and Table 4.22. 

 

 
Figure 4.57: SiO2, Al2O3, and K2O contents of Cerachem® module 1 as a function of depth. 
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Figure 4.58: SiO2, Al2O3, and K2O contents of Cerachem® module 2 as a function of depth. 

 
 
As shown in the tables below (Table 4.21 and Table 4.22), if the volatilization of silica 

is taken into account, the weight% of all other compounds remains fairly constant as a 

function of depth. This result confirms the starting hypothesis that silica loss is 

occurring in the hot face of both modules.  

Table 4.21: Normalized XRF results (wt% with ±1% relative error) of module 1, excluding the wt% of 
silica. 

Compound Unfired 0-2.5 mm 2.5-5 mm 5-7.5 mm 7.5-10 mm 

Al2O3 69.3 70.3 69.5 69.4 69.5 

ZrO2 30.2 28.3 29 29.1 29.1 

Fe2O3 0.3 0.2 0.3 0.3 0.2 

HfO2 0 0.8 0.8 0.8 0.8 

MgO 0.2 0.2 0.2 0.2 0.2 

TiO2 0 0.2 0.2 0.2 0.2 
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Table 4.22: Normalized XRF results (wt% with ±1% relative error) of module 2, excluding the wt% of 
silica. 

Compound Unfired 0-2.5 mm 2.5-5 mm 5-7.5 mm 7.5-10 mm 

Al2O3 69.3 69.7 69.1 69.2 69.2 

ZrO2 30.2 28.8 29.2 29.3 29.3 

Fe2O3 0.3 0.3 0.4 0.3 0.2 

HfO2 0 0.8 0.8 0.8 0.8 

MgO 0.2 0.2 0.2 0.2 0.2 

TiO2 0 0.2 0.2 0.2 0.2 
 

4.3.2. Structural characterization 

To investigate the crystal structure of Cerachem® modules, X-ray diffraction patterns 

were measured for various depths. As illustrated in Figure 4.59 and Figure 4.60, the 

major crystalline phase detected is orthorhombic mullite with the chemical formula 

Al4.54O9.73Si1.46 (ICDD 01-079-1456) (Ban & Okada, 1992); other crystalline phases 

detected is tetragonal cristobalite (ICDD 01-082-0512) with the chemical formula SiO2 

(Lacks & Gordon, 1993)  and two tetragonal zirconium oxide phases with the chemical 

formula ZrO2, one stable (ICDD 01-079-1771) (Bondars et al., 1995) and one unstable 

(ICDD 01-078-0047) (Igawa & Ishii, 2001). The presence of the latter is more evident 

at the hot face. 
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Figure 4.59: XRD patterns from Cerachem®, module 1 showing the crystallization as a function of depth. 

 

 
Figure 4.60: XRD patterns from Cerachem®, module 2 showing the crystallization as a function of depth. 
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The surface morphology of Cerachem® samples has been examined by SEM. Figure 

4.61 and Figure 4.62 show secondary SEM imaging of the two modules. The outside 

surfaces of the fibres have an almost featureless and smooth appearance. Throughout 

the fibre cross-section a rougher fracture surface indicates that crystallization has taken 

place. 

   
Figure 4.61: Secondary SEM imaging of Cerachem®, module 1 at the hot face. 

 

 
Figure 4.62: Secondary SEM imaging of Cerachem® module 2 at the hot face. 

 

4.2.3. Thermal analysis 

Differential thermal analysis was carried out to determine the crystallization behaviour 

of unfired Cerachem®. Figure 4.63 presents the DTA patterns gathered at 10, 20 & 

40°C/minute heating rates. The primary low-temperature form of the material is a 
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homogeneous alumina-zirconia-silica (AZS) glass, stable up to temperatures of ca. 980-

1000°C. DTA patterns show one strong exothermic peak related to the main 

crystallization event at 1018-1045°C which is due to the formation of mullite and 

zirconia (Tonnesen & Telle, 2007). A second shallow feature peak appears at around 

1150°C which is probably connected with the formation of cristobalite. The result from 

the DTA test at the slowest rate (10°/min) shows that the exothermic crystallization 

peak has shifted to a lower temperature. 

 
Figure 4.63: DTA analysis for unfired Cerachem® samples using different heating rates. 

 

4.3.4. Summary 

Elemental analysis of Cerachem® showed that a loss of silica occurs as a function of 

material depth, and is observed as a weight loss, as gaseous SiO2 moves away from the 

hot face of the module samples. Investigation of the crystal structure of Cerachem® 

modules at various depths revealed that mullite, cristobalite and zirconia will develop. 
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5.  Discussion  

This research study aims to answer some important questions regarding the structure, 

thermal behaviour and chemical stability of biosoluble glass fibres in the K2O-MgO-

ZrO2-Al2O3-SiO2 system in terms of time and temperature. During this investigation, 

the potassium oxide losses, the phase transitions, the surface morphology of glass fibres 

and the factors affecting the heating atmosphere were the core research questions. 

 This chapter discusses the main findings as related to the principal purpose of the 

study. Also, other interesting findings from the results section will be discussed. All 

explanations are supported by the results in Chapter 4.  

 

5.1. Thermal behaviour of Superwool XT® fibres  

Due to the commercial importance of biosoluble glass fibres there are no reports in 

literature as to the thermal stability of compositions in the specific K2O-MgO-ZrO2-

Al2O3-SiO2 system for direct comparisons to be made here. However, data for 

subsystems and related systems are available. Thus, the results are discussed in 

comparison to the subsystems where appropriate.   

The term “thermal behaviour” is used here to describe the crystallization, compositional 

stability and surface morphology of SWXT® fibres in terms of time and temperature. 

The heat treatment experiments at 850°C and 1250°C for the same firing time (up to 

2160 hours) yielded different results. At lower temperature (850°C) SWXT® glass 

fibres are chemically stable as no elemental variations by XRF analysis were observed 

(Figure 4.1) and XRD disclosed that there are no alterations or phase transformations 

after 840 hours when disordered hexagonal kalsilite (KAlSiO4) is fully formed (Figure 
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4.12).  In contrast to ordered kalsilite, the XRD pattern of disordered hexagonal kalsilite 

is characterized by systematic absences of h0l and hhl reflections with l=2n+1 

(Kremenović & Vulić, 2014). These authors showed that such systematic absences 

result from a structure that contains substructures a and b only when they are in a ratio 

of 1:1 (Figure 5.1). 

 
Figure 5.1: Polyhedral representation of KAlSiO4 substructures a and b. Single tetrahedral layers are 
shown with SiO4 (light grey) and AlO4 (dark grey) tetrahedra. K atoms are symbolized by grey spheres 

(Kremenović & Vulić, 2014).  

 
Hexagonal kalsilite – either in its ordered or disordered form – is reported to be stable 

up to approximately 950°C (Capobianco & Carpenter, 1989). Thus, the analysed phase 

crystallization and high elemental stability, combined with support from literature, 

supports the conclusion that SWXT® fibres have a high thermal stability at 850°C over 

prolonged heating (2160 hours).  

Moreover, XRD (Figure 4.13) and XRF (Figure 4.2) investigation on SWXT® samples 

that have been pre-crystallized at 1200°C for 5 minutes showed that even though 

SWXT® fibres have transformed into glass-ceramic fibres with kalsilite formed, at low 
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temperature (850°C) there is no further crystal growth and all the components remain 

stable as a function of time (up to 2160 hours). European Patent Application EP 

2213634 A1 (Boff, Jubb, & Mottram, 2010) discloses an invention relating to the effect 

of partial crystallization of glass fibres on their thermal properties. This patent argues 

that fibres which have first crystallized or at least partly crystallized will have a better 

performance as their shrinkage resistance will be increased. This study has shown that at 

850°C the thermal behaviour – in terms of final phase assemblage and elemental 

stability – of glass fibres was the same for the pre-crystallized and amorphous samples. 

On the other hand, structural analysis of SWXT® heat treated at 1250°C (Figure 4.23) 

revealed the formation of KAlSiO4 and ZrO2 crystalline phases after 168 hours and the 

formation of KAlSi2O6 and KAl11O17 after 840 hours of constant heat treatment. The 

formation of leucite starts much earlier (<72 h) when the temperature is raised to 

1500°C (Figure 4.19) which shows that the development of a crystalline phase is 

influenced both by heating time and temperature (Comodi, Cera, Gatta, Rotiroti, & 

Garofani, 2010).  

At the initial stage of crystallization at 1250°C disordered hexagonal kalsilite is formed 

which then inverts to orthorhombic kalsilite (Figure 5.2), with this transition being 

detectable by XRD after about 1000 h of firing. Capobianco & Carpenter (1989) 

obtained orthorhombic kalsilite by annealing natural hexagonal kalsilite at 1200°C in 

open Pt crucibles for 48 hours. These results are not contradictory, considering that the 

composition of SWXT® is not stoichiometric kalsilite, and that it is in the form of glass 

fibres with crystallization kinetics being an additional factor. In fact, in glass fibres 

close to stoichiometric kalsilite (KAS-5) this transition was detectable in half of the 

firing time compared to SWXT® (500 h), though it may occur even earlier but no 

experimental data are available between 24 and 500 h (Figure 4.46). Thus, this 
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transition can be shown to have occurred between 24 and 500 hours based on this study. 

Detailed crystallographic analysis of kalsilite would be needed to establish how this 

transition occurs in glass fibres and this is suggested for future work. 

 
Figure 5.2: XRD patterns of disordered hexagonal KAlSiO4 (Kremenović & Vulić, 2014) and 

orthorhombic KAlSiO4  (Gregorkiewitz, Li, White, Withers, & Sobrados, 2008), for Cu Kα radiation. 

 
The transition from hexagonal to orthorhombic kalsilite is accompanied by the 

formation of leucite, as observed in all XRD patterns at 1250°C for SWXT® (Figures 

4.14 and 4.22 to 4.25) and melt-rig samples (Figures 4.45 to 4.48), and in accordance 

with Capobianco & Carpenter (1989) who observed the presence of leucite in all 

orthorhombic kalsilite samples. It is unclear whether hexagonal kalsilite first transforms 

to orthorhombic which then gradually transforms to leucite or orthorhombic kalsilite 

and leucite form simultaneously (Figure 5.3). The time required for these 

transformations depends on the starting composition; it is 1000 hours for SWXT® and 

500 hours for KAS-5 (close to kalsilite stoichiometry). 
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Figure 5.3: Schematic of hexagonal to orthorhombic kalsilite transition with the formation of leucite at 

1250°C. Dashed arrows represent two alternative transition pathways.  

 
XRD patterns for short firing periods at 1250°C (Figure 4.11) revealed that SWXT® 

partially crystallizes very rapidly, in less than one minute. Rietveld analysis (Figure 

4.19) for the first long-term experiment showed that even after 2176 hours of constant 

heat treatment at 1250°C some amorphous phase is retained and the percentage of 

amorphous phase decreases linearly as a function of time. The actual values calculated 

for the phase contents are not reliable due to the presence of multiple phases and peak 

overlapping; thus, the results were used to study only the trends in the phase 

assemblage. Analysis of the peak area for the highest intensity peak matched by kalsilite 

(Figure 4.16) showed that kalsilite is disappearing and transforming into another 

crystalline phase which is leucite. In support of this, Rietveld analysis (Figure 5.4) 

shows that the percentage of leucite increases in a similar manner that the percentage of 

kalsilite decreases, notwithstanding the uncertainty in the calculated phase contents. The 

emergence of the leucite phase upon heating kalsilite was also reported by Capobianco 

and Carpenter (1989) at 1200°C for 48 hours, and by Gregorkiewitz et al. (2008) at 

1300°C for 24 hours. 
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Figure 5.4: Phase content of kalsilite and leucite in SWXT® heat treated at 1250°C (1st expr) as a 

function of firing time, as determined by Rietveld analysis. 

 
XRF (Figure 4.3) and EDX (Figure 4.6) analysis of heat-treated SWXT® at 1250°C 

showed a significant reduction in the content of K2O as a function of time (6.8 wt% 

after 2160 hours). After an initial substantial loss (0-200 hours) of K2O, the K2O 

content gradually declines (200-1600 hours) and then it sharply drops again from 1600 

to 2100 hours. U.S. Patent No. 8,088,701 B2 (Jubb, 2012) disclosed that glass fibres in 

the K2O-Al2O3-SiO2 system have the tendency to lose K2O at elevated temperatures. 

The evaporation of K2O was also reported in studies of kalsilite (Capobianco & 

Carpenter, 1989; Gregorkiewitz et al., 2008) and was connected with the transformation 

of kalsilite to leucite at high temperature and for prolonged heat treatment but the reason 

of this loss was not investigated.  

This study shows that the thermal performance of SWXT® glass fibres deteriorates, as 

the surface morphology becomes rough and uneven (Figures 4.27 to 4.35) due to 

significant crystal growth (Tonnesen, Dietrichs, & Telle, 2005).  Also, some of the 

SWXT® fibres heat treated for long periods display cavities (Figure 5.5). Gualtieri et al. 

(2009) presented similar SEM images with inner cavities, which they attributed to 
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crystallization, after treating man-made vitreous fibres (MMVF) (CaO-SiO2-MgO) at 

1300°C for 72 hours. Some untreated SWXT® fibres have pinholes (Figure 4.26) which 

according to the manufacturer (G. A. Jubb, personal communication, November 16, 

2015) may be caused by the existence of trapped CO2 gas during the production of the 

fibres but their size compared to the fibre diameter is much smaller (
𝑑𝑑𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑜𝑜𝑜𝑜𝑜𝑜

≅ 7). 

Moreover, as depicted in Figure 5.5 after long firing (2160 hours at 1250°C) the surface 

of SWXT® fibres is covered with nodules, and more broken fibres exist. According to 

Dyson et al. (1997) nodules tend to form on fibre surfaces and work as points at which 

fibres will interconnect to each other. The presence of nodules and broken fibres was 

also observed by Gualtieri et al. (2009) in aluminosilicate and calcium magnesium 

silicate fibre samples heat treated at 1300°C for 72 hours. It is important to note here 

that the macroscopic appearance of SWXT® fibre samples changed significantly after 

prolonged heat treatment (800 h) at high temperature (1250°C); the samples visibly 

shrank and broke easily when handled as a result of the microstructural changes 

described above. 

SEM imaging (Figure 4.26 to Figure 4.35) revealed that the significantly rougher 

morphology of SWXT® fibres with both core and surface crystallization after heat 

treatment (2160 hours at 1250°C) probably relates to the formation of KAl11O17 which 

is a β alumina phase (Dernier & Remeika, 1976). Chemical analysis of K2O-Al2O3 

binary mixtures (1:5) showed that potassium evaporation at high temperature 

(≥1400°C) leads to the development of β alumina, which is the stoichiometric 1:11 

compound (Schaefer, De Kroon, & Aldinger, 1995). Potassium excess can be 

accommodated in the β alumina structure, K1+xAl11O17+x/2, with x values up to 0.5 being 

reported in literature (Iyi, Inoue, & Kimura, 1986). SWXT® fibres have very large 
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plate-shaped features after 1848 hours of heat treatment; these plates are more likely to 

be alumina plates.   

 
Figure 5.5: SEM secondary imaging of SWXT® fibres heat treated at 1250°C for a) 1176 hours and b) 

1848 hours. 

 

5.2. Effect of firing atmosphere on the thermal behaviour 

of glass fibres 

The need of conducting experiments under as close to in-service conditions as possible 

was the rationale for a series of experiments with different sample arrangements inside 

the furnace (Figure 3.5 and Figure 3.6). XRF results of all the experiments with 

SWXT® conducted at 1250°C (Table 4.5 to 4.7) showed that there is a significant loss 

of K2O – 7 wt% after 1848 hours of constant firing – as a function of time; the lost K2O 

is believed to be in the form of vapours, as K2O loss also has been measured in other 

potassium-bearing systems (Fedkin, Grossman, & Ghiorso, 2006; Yu, Hewins, & 

Wang, 2003). The concertation of potassium vapours in the furnace atmosphere is 

affected by the number of samples and the dimensions of the furnace.  

XRD patterns (Figure 4.24 and Figure 4.25) showed that in the experiments where there 

was expected to be a potassium-rich atmosphere inside the furnace, the crystal growth 

and the development of specific crystalline phases were suppressed. Specifically, 
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comparing the crystallization behaviour of SWXT® samples at 1250°C for 500 and 

1000 hours (Figure 4.25), for identical experimental conditions apart from the size of 

the furnace, the presence of leucite and potassium β alumina is lesser in the case of the 

small furnace, corresponding to a potassium rich atmosphere. Using the same-size 

furnace but varying the number of samples in it heat treated at 1250°C for 1176 to 1848 

hours – it is believed changing the potassium atmosphere in the furnace – again gave 

rise to analogous results. The XRD peaks of leucite and potassium β alumina are less 

prominent in the case of the furnace with more samples (Figure 4.24), corresponding to 

a more potassium rich atmosphere. Thus the formation of leucite and potassium 

aluminium oxide appears to be suppressed by this atmosphere. Elemental analysis 

(Figure 4.10 and Table 4.10) of samples that were exposed to the potassium-rich 

environment showed that apart from the crystallization, the rate of K2O evaporation is 

also suppressed. The above results indicate that the heat treatment atmosphere has a 

significant impact on the crystallization behaviour and the rate of potassium 

evaporation. Moreover, this is again evidence that the loss of potassium oxide is 

strongly connected with the development of leucite as in all the cases where the K2O 

loss was limited, the formation of leucite was also supressed. 

As discussed in several studies, different firing atmospheres can accelerate or suppress 

the formation of particular phases in minerals (Brindley & Lemaitre, 1987; Dubois, 

Murat, Amroune, Carbonneau, & Gardon, 1995; MacKenzie, 1969; MacKenzie, 

Meinhold, Brown, & White, 1996; Temuujin, Okada, MacKenzie, & Jadambaa, 1999). 

More specifically, in the case of kaolinite (Al2Si2O5(OH)4) a gaseous atmosphere of 

water or a vacuum accelerates the formation of mullite (Al6Si2O13), by modifying the 

mullite crystallization kinetics, and conversely the presence of carbon dioxide or oxygen 

retards the mullite development compared to a dry atmosphere (Brindley & Lemaitre, 
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1987; MacKenzie, 1969). Dubois et al. (1995) showed that the presence of mullite in 

kaolinite samples is supressed by argon or nitrogen atmospheres. For the same system 

under reducing and vacuum atmospheres at 1200°C, MacKenzie et al. (1996) reported 

the formation of a greater amount of mullite. In all the aforementioned studies, it is 

pointed out that the combination of high temperature and vapours inside the furnace 

affects the crystallization, which is in accordance with the experimental parameters of 

this study where the firing atmosphere is rich in potassium and the experiments were 

conducted at 1250°C.  

 

5.3. Laboratory-produced glass fibres 

Systematic synthesis experiments to produce glass fibres in the ternary K2O-Al2O3-

SiO2 system and the quaternary K2O-ZrO2-Al2O3-SiO2 system were conducted. Heat 

treatment experiments of the resulting fibres at 1250°C to multiphase and single-phase 

reaction products in the kalsilite-leucite phase fields. For a short heat treatment time (24 

h), all compositions formed the primary phases expected from the K2O-Al2O3-SiO2 

phase diagram (Osborn & Muan, 1960), i.e. KAS-1 and KAS-2 formed leucite, KAS-3 

and KAS-4 a mixture of leucite and kalsilite, and KAS-5 formed kalsilite. Prolonged 

firing altered the phase assemblage of some of the samples as discussed below. Samples 

KAS-8 and KAS-9 are compositions that lie within an experimentally unexplored 

region of the phase diagram, and therefore the analysis of these samples has provided 

new and useful information. 

Elemental analysis (XRF) revealed (Table 4.17) that in sample KAS-1, which is close to 

the stoichiometry of leucite (SiO2-rich) and KAS-9 and KASZ-2 (Al2O3-rich), no 

potassium loss is observed after heat treatment at 1250°C for 500 and 1000 hours. 
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Additionally, in sample KAS-3, the next closest material to the composition of leucite, 

the potassium loss was significantly lower (1.5 wt%) compared to the samples with 

compositions closer to the stoichiometry of kalsilite (2.7-3.6 wt%) for the same firing 

conditions. 

Additionally, according to XRD analysis (Figures 4.41 to 4.50) KAS-1, KAS-9 and 

KASZ-2 after heat treatment at 1250°C for 500 and 1000 h formed only leucite without 

any phase transformation or development of second phases. This suggests that leucite is 

a stable crystalline phase in terms of time at 1250°C and this is also combined with 

chemical stability. 

 In contrast, the rest of the samples (KAS-3, KAS-4, KAS-5, KAS-8 and KASZ-1) 

follow the same crystallization route as SWXT® in which distinct phases develop: in 

the early stage of crystallization kalsilite forms, which then transforms into leucite with 

simultaneous formation of β alumina. This is also described in studies (Erbe & 

Sapieszko, 1997; Liu, Komarneni, & Roy, 1994; Y. Zhang, Lv, Chen, & Wu, 2007) 

which show that kalsilite is an unstable phase that probably acts as a precursor of 

leucite. Even for sample KAS-5, which has the kalsilite stoichiometry, leucite will form 

after prolonged firing. In the aforementioned studies which aimed to produce pure 

leucite (with silica-rich starting compositions), kalsilite crystallised first at lower 

temperatures (800°C) and transformed to leucite as the temperature increased (900°C). 

Moreover, XRD results show that after long-term (>500 h) heat treatment at 1250°C all 

samples investigated form leucite (at least in part depending on the composition) but the 

key difference is that when the starting composition is close to kalsilite this 

transformation will include K2O losses.  

Structural analysis of the melt-rig fibres at the leucite-kalsilite tie-line (Figure 4.40) 

showed that by increasing the K2O content – moving towards kalsilite stoichiometry 



Chapter 5 Discussion 

 

193 
 

samples – the time each sample needs to transform from amorphous-rich material to 

glass-ceramic increases. These results agree with a study (Johnson, 1979) where the 

effect of additives in the aluminosilicate system was examined; K2O was found to 

retard crystal growth and even a small addition of K2O had a significant effect on the 

amount of mullite formed. 

In this work, the effect of adding ZrO2 was also studied by comparing KAS-8 to KASZ-

1 and KAS-9 to KASZ-2. KAS-8 and KAS-9 samples have no zirconia whereas KASZ-

1 and KASZ-2 contain about 7 wt%. Thermal analysis disclosed (Figure 4.53) that the 

addition of zirconia shifts the crystallization events to higher temperatures for both 

cases, by 23°C for KAS-8 to KASZ-1 and by 28°C for KAS-9 to KASZ-2, which 

indicates that ZrO2 increases thermal stability (Beall, 1972; Strand, 1986; Tashiro & 

Wada, 1963).  

The addition of zirconia (1-5 wt%) to Li2O-SiO2-Al2O3-K2O-P2O5 compositions was 

found to hamper the crystal growth of Li2SiO3 and Li2Si2O5 but those experiments 

were conducted at low temperatures (maximum 900°C) and for short-term heat 

treatments (1 hour) (Fernandes, Tulyaganov, & Ferreira, 2013). This effect was also 

observed in another study (Apel, van’t Hoen, Rheinberger, & Höland, 2007) for low 

zirconia contents (< 4 wt%) but the sample with the maximum percentage of ZrO2 (4 

wt%) was found to show increased crystallinity compared to the sample without ZrO2. 

The present work showed that at elevated temperature (1250°C) and for long-time firing 

(1000 hours) increasing the ZrO2 content will promote phase transformations and 

crystallization processes which implies the role of ZrO2 as a nucleating agent.  

Heat treated melt-rig samples KAS-9 and KASZ-2 did not have any structural or loss 

difference (Figure 5.6), with leucite being present. In the case of the samples KAS-8 

and KASZ-1, with kalsilite being the main phase (Figure 5.7), the zirconia sample 
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(KASZ-1) had higher K2O loss and again the amount of leucite was higher in 

comparison (Figure 5.7).  

 
Figure 5.6: XRD patterns of heat-treated KAS-9 and KASZ-2 glass fibres at 1250°C for 1000 hours. 

 

 
Figure 5.7: XRD patterns of heat-treated KAS-8 and KASZ-1 glass fibres at 1250°C for 1000 hours.  
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The role of Zr on crystallization has two aspects. It suppresses the development of β 

alumina as it is illustrated in Figure 5.7 where the presence of β alumina is greater for 

KAS-8 that does not contain ZrO2. Accordingly, the addition of zirconia is reported to 

negatively affect the densification and crystal growth of alumina compared with 

samples without any ZrO2 (Bunsell, 2005; Galusek et al., 2015). On the other hand, 

zirconia is an important nucleating agent as it is related to the formation of leucite, since 

KASZ-1 sample that has zirconia has also a greater amount of leucite compared with 

KAS-8 (Figure 5.7). Stookley (1959) reported that sub-microscopic catalysts such as 

ZrO2 and TiO2 promote the development of the principal crystalline phases and 

heterogeneous nucleation. Studies in the K2O-Al2O3-SiO2 system (Höland, Frank, & 

Rheinberger, 1995; Rouf, Hermansson, & Carlsson, 1978) disclosed that the addition of 

TiO2, which has comparable effects with ZrO2 (Kleebusch, Patzig, Höche, & Rüssel, 

2016), is related to the evolution of leucite. The role of ZrO2 on crystallization of 

samples in the K2O-Al2O3-SiO2 system in general could not be established within this 

study and this is suggested as possible future work. 

KAS-9 and KASZ-2 were the only samples that produced two exothermic peaks 

attributed to crystallization events in DTA curves (Figure 4.54) where the first 

crystallization event relates to kalsilite before the main crystallization event which is the 

formation of leucite, as confirmed by other reports (Y. Zhang et al., 2007; Y. Zhang, 

Wu, Rao, & Lv, 2006). XRF analysis for both samples revealed no elemental alteration 

as a function of time. 

Raman spectroscopy was employed to locally characterize the structure of KAS-1 to 

KAS-5 samples in glassy and crystallized forms. Raman spectra (Figure 4.51) for glass 

samples showed the presence of three sets of bands which are located in the ranges of 

approximately 400-525 cm-1, 525-625 cm-1, and 900-1200 cm-1. In a recent study 
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(Yadav & Singh, 2015), it is reported that the broad Raman band at 900-1200 cm-1 is 

typical for aluminosilicate glasses and is related to Qn units of the tetrahedral network. 

Qn notation expresses the concertation of bridging oxygens per tetrahedron by varying 

the value of the subscript n. A tetrahedron fully linked into the network via four 

bridging oxygens is designated as Q4 unit, while an isolated tetrahedron with no 

bridging oxygens is designated as a Q0 unit. Vitreous SiO2 is defined as consisting of 

100% Q4 units. The addition of a generic alkali oxide creates non-bridging oxygens thus 

decreasing the concertation of Q4 units (Shelby, 2005). This peak at 900-1200 cm-1 

relates to the symmetric and asymmetric stretching vibrations of bridges Si-O-(Si) and 

sometimes Si-O-(Al), bonds related to the AlO4 and SiO4 tetrahedra (Neuville & 

Mysen, 1996). They can involve tetrahedral units, Q4, without non-bridging oxygens 

(NBO) and tetrahedra with one NBO, Q3, (Le Losq, Neuville, Florian, Henderson, & 

Massiot, 2014). There is a possibility that Q2 units are present, giving a band at 950 

cm−1 related to Si−O− stretching of NBOs, but the peak is too broad for this to be 

discerned without deconvolution (Brawer & White, 1977; Virgo, Mysen, & Kushiro, 

1980). As seen in Figure 4.51 this band shifts to lower frequencies, its intensity 

decreases and it becomes more asymmetric moving from sample KAS-1 (KAlSi2O6) to 

KAS-5 (KAlSiO4) corresponding to an increase in Al2O3 concentration and decrease in 

SiO2 concentration. The incorporation of Al3+ into the glass network leads to a 

decreased average bond strength of (Si,Al)-O, causing a decrease in the Raman shift 

(Bechgaard et al., 2017). Moreover, the peak centre shifts to lower wavenumbers, which 

would imply that the depolymerization degree of the aluminosilicate matrix increases as 

a result of increasing K2O content (L. Wang, Wang, Wang, & Chou, 2016). 

Shelby's (2005) mathematical model was used to calculate Q4 and Q3 units for KAS-1 

to KAS-5 samples (Table 5.1). This model considers that only two Qn types exist in any 
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alkali silicate glass. When the alkali concertation, x, is less than 33.3 mol% only Q4 and 

Q3 units are expected to be present and are calculated from Eq. 5.1 and Eq. 5.2, 

respectively. 

𝑄𝑄4 = 100 − 3𝑥𝑥     5.1 

𝑄𝑄3 = 2𝑥𝑥    5.2 

Table 5.1: Theoretical calculations of Q4 and Q3 units using a model for binary systems (Shelby, 2005). 

Sample SiO2 
(mol%) 

Al2O3 
(mol%) 

K2O 
(mol%) Q3 (mol%) Q4 (mol%) 

KAS-1 68.9 15.8 15.3 30.6 54.1 
KAS-2 66.3 17.1 16.6 33.2 50.2 
KAS-3 61.4 19.4 19.2 38.4 42.4 
KAS-4 57.3 21.3 21.5 43.0 35.5 
KAS-5 51.0 25.5 23.5 47.0 29.5 

 

This model quantitatively supports the Raman evidence that Q3 units increase and Q4 

decrease upon moving from high (KAS-1) to lower (KAS-5) SiO2 content, signifying 

the depolymerization of the glass network with modifier addition. However, since this is 

an aluminosilicate and not silicate system, the calculated values of Qn speciation are 

outside the validation of this model, as the interaction between the modifier and 

aluminium would affect the extent of depolymerization. Further spectroscopic analysis 

with the use of NMR and deconvolution of Raman spectra would be necessary to 

determine both Al and Si Qn speciation and this is suggested for future work. 

The Raman band at 525-625 cm-1 is allocated to the bending symmetric vibrations Si-O- 

(Si, Al) among the tetrahedra and the peak at 400-525 cm-1 is related to bending 

vibrations of Al−O− and Si−O− (McMillan & Piriou, 1983). As shown in Figure 4.51 the 

relative intensity of the 400-525 cm-1 band compared to 525-625 cm-1 band decreases 

from sample KAS-1 to KAS-5. Such a change in the relative intensity of the bands in 

the low-frequency region has been reported (Bechgaard et al., 2017) for alkali-alkaline 
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earth aluminosilicate glasses with the substitution of Al2O3 for SiO2 when [Al2O3] > 

[Na2O], and was attributed to a change in the role of the alkaline earth from network 

modifier to charge compensation. In this work, since the [Al2O3]:[K2O] remains almost 

constant the observed change in the Raman spectra maybe attributable to the decrease of 

SiO2 content. 

Raman spectra for the KAS-1 to KAS-3 heat treated samples at 1250°C for 24 hours 

(Figure 4.52) confirm the presence of tetragonal leucite (Palmer, Bismayer, & Salje, 

1990). Leucite is a very weak Raman scatterer that has two main intense peaks in the 

range of 450-550 cm-1 and the rest are very broad peaks in the range of 120-150 cm-1 

and presumably represent the superposition of multiple Raman lines (Palmer et al., 

1990). As confirmed by XRD, KAS-3 and KAS-4 samples form orthorhombic kalsilite 

while KAS-5 sample forms hexagonal kalsilite. To the best of the author’s knowledge, 

there are no existing literature data regarding the Raman spectrum of orthorhombic 

kalsilite. Hexagonal kalsilite is expected to show a sharp band around 300-400 cm-1 and 

a group of low intensity bands in the range of 900-1050 cm-1 (Uchida, Downs, & Yang, 

2006). The Raman spectrum of sample KAS-5 is not the same as that of hexagonal 

kalsilite. The observed modes in the ranges of about 240-260 cm-1, 275-325 cm-1, 350-

370 cm-1, 380-400 cm-1, 450-470 cm-1, 900-950 cm-1, 1000-1050 cm-1 and 1070-1120 

cm-1 for KAS-3, KAS-4 and KAS-5 cannot be identified at this stage, some or all of 

them are possibly attributable to orthorhombic kalsilite. Additionally, the high 

frequency modes 1070-1120 cm-1 could be related to retained aluminosilicate glass. 
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5.4. Transformation mechanism of kalsilite to leucite and 

the loss of K2O 

This study aimed to develop an understanding of the transformation mechanism of 

kalsilite to leucite and its connection with the loss of K2O from SWXT® fibres. While 

this study revealed that kalsilite is stable for 2160 hours at temperatures of up to 850°C, 

structural analysis of SWXT® and melt-rig samples disclosed that kalsilite is in fact 

unstable at elevated temperatures (1250°C) and will transform into leucite as a function 

of time as also reported in literature (Capobianco & Carpenter, 1989; Gregorkiewitz et 

al., 2008). Combining XRD patterns with Rietveld analysis revealed that kalsilite will 

transform into leucite.  

As mentioned above, the first evidence regarding the loss of potassium arose when 

SWXT® fibres were heat treated at 1250°C for prolonged times (up to 2160 hours). The 

first assumption was the well-known volatile character of K2O (Yu et al., 2003) but the 

irregular rate of this loss indicated that further investigation was needed.  

Kalsilite is less thermodynamically stable than leucite and this can be assessed using the 

approach of Curtis (1976), who calculated the Gibbs' free energy changes of the 

reactions for leucite and kalsilite (Table 5.2). Considering variation in the written 

formula by expressing the free energy change per gram-atom rather than per mole (this 

approach allows comparison of like with like in terms of numbers of bonds being 

broken as the framework silicate weathers) the least stable mineral is kalsilite. 
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Table 5.2: Weathering reactions for framework kalsilite and leucite minerals (Curtis, 1976). 

Reaction 

ΔGr 

(kJ/mol) 

ΔGr (kJ/ gram 

atom) 

2KAlSiO4+2H++H2O =2K++Al2Si2O5(OH)4 -115.25 -6.07 

2KAlSi2O6+2H++H2O=2K++Al2Si2O5(OH)4+2SiO2 -88.00 -3.52 

 

Alternatively, looking at the free energy of formation as calculated using Eq. 5.3 

(Atkins & De Paula, 2013) for kalsilite and leucite, leucite is more stable in the whole 

temperature range of interest as shown in Figure 5.8. 

∆𝐺𝐺𝑇𝑇° = ∆𝐻𝐻298° + � 𝐶𝐶𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑇𝑇 �∆𝑆𝑆298° + �
𝐶𝐶𝑝𝑝
𝑇𝑇
𝑑𝑑𝑑𝑑

𝑇𝑇

298
�  

𝑇𝑇

298
 5.3 

where ∆𝐺𝐺𝑇𝑇°  is the Gibbs' free energy of formation at temperature T, ∆𝐻𝐻298°  is the 

enthalpy of formation at 298 K, ∆𝑆𝑆298°  is the entropy of formation at 298 K and 𝐶𝐶𝑝𝑝 is 

heat capacity. 

 

 
Figure 5.8: Gibbs' free energy of formation as a function of temperature, calculated using 

thermodynamic parameters given in Yazhenskikh, Hackb, & Müller (2011). 
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In this study for SWXT® (Figure 4.23) and for melt-rig samples KAS-4, KAS-5, KAS-

8 and KASZ-1 XRD patterns (Figures 4.45 to 4.47) showed that kalsilite is the first 

phase to crystallize. Then, after prolonged heat treatment – with the exact time varying 

depending on composition – kalsilite transforms to leucite and loss of K2O is also 

initiated. 

There are two possible routes for the transformation of kalsilite to leucite in a 

compositional system inside the leucite-kalsilite phase fields: 

The first hypothesis is that K2O and Al2O3 are being ejected from kalsilite according to 

Eq. 5.4: 

𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆𝑆𝑆4 →  1
4
𝐾𝐾2𝑂𝑂 + 1

4
𝐴𝐴𝐴𝐴2𝑂𝑂3 + 1

2
(𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆2𝑂𝑂6)   5.4 

This mechanism shows that after prolonged heat treatment kalsilite will completely 

transform to leucite, particularly in the case of stoichiometric kalsilite. In this case some 

of the ejected potassium oxide will react with alumina, and the rest will evaporate 

according to Eq. 5.5:  

3
2
𝐾𝐾2𝑂𝑂 + 11

2
𝐴𝐴𝐴𝐴2𝑂𝑂3 → 𝐾𝐾𝐴𝐴𝐴𝐴11𝑂𝑂17 + 𝐾𝐾2𝑂𝑂 ↑   5.5 

The formation of potassium aluminium oxide has been confirmed by XRD for all the 

SWXT® samples and the melt-rig samples with composition close to kalsilite, when 

heat treated at 1250°C.  

The second hypothesis is that the transformation mechanism follows the reaction 

showed in Eq. 5.6: 

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝑂𝑂4 + 𝑆𝑆𝑆𝑆𝑂𝑂2 → 𝐾𝐾𝐾𝐾𝐾𝐾𝑆𝑆𝑆𝑆2𝑂𝑂6  5.6 

The second hypothesis is analogous to the crystallization mechanism of mullite as 

reported in literature (Huling & Messing, 1991; Tkalcec, Kurajica, & Ivankovic, 2005).  



Chapter 5 Discussion 

 

202 
 

There, the first crystalline phase is spinel which reacts with the SiO2-rich amorphous 

phase to form mullite (Al6Si2O13) at elevated temperature (1000°C). Correspondingly, 

KAlSiO4 would react with SiO2 of the amorphous phase and transform to KAlSi2O6. 

This is consistent with XRD results presented in this study for SWXT® heat treated at 

1250°C for more than 1000 hours. Phase transformation of the first crystallization 

product with amorphous SiO2 from the residual glass was also reported in similar 

systems (Li2O-Al2O3-SiO2) where the first nucleation product is Li2SiO3 which 

develops at 650°C and then at 830°C reacts with amorphous SiO2 to form Li2Si2O5 

(Bischoff, Eckert, Apel, Rheinberger, & Höland, 2011; P. Zhang, Li, Yang, & Xu, 

2014). 

The Gibbs' free energy of reaction, ∆G°
r, for the two mechanisms is shown in Figure 5.9 

as a function of temperature. The first mechanism is thermodynamically not expected to 

take place below around 1300K (1027°C) while the second mechanism is predicted to 

be possible in the whole temperature range of study. Even above 1300k where both 

reactions are feasible the second mechanism is more favourable as the Gibbs' free 

energy of reaction is lower. 
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Figure 5.9: Gibbs' free energy of reaction as a function of temperature for the two transformation 

mechanisms, calculated using thermodynamic parameters given in Yazhenskikh, Hackb, & Müller (2011) 
and Stull & Prophet (1971). 

 
Analysis of melt-rig samples with composition in the region of kalsilite and as close as 

possible to SWXT® – compositions with high K2O content – supported the above 

hypothesis. XRF and DTA analysis showed that kalsilite will nucleate first and that at 

around 500 hours the development of leucite and potassium aluminium oxide is 

accelerating. Kalsilite will transform to leucite by reacting with SiO2 from the 

amorphous phase. This reaction will create in the system an excess amount of K2O and 

Al2O3. In addition, some of the K2O will react with the remaining Al2O3 forming 

potassium aluminium oxide and the rest will evaporate as described in Eq. 5.5. 

Both transformation mechanisms suggest that the unstable behaviour of kalsilite and the 

transformation to leucite are driving the K2O loss.  

The second transformation mechanism is also possible for the case of the compositions 

close to leucite stoichiometry (KAS-1) and richer in alumina (KAS-9 and KASZ-2). As 

XRF (Table 4.17) revealed these materials will not have any elemental alteration in 

terms of time. Again, the first crystallization product is kalsilite at low temperature 
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(Figure 4.43), which will react with the SiO2 in the amorphous phase to form leucite 

(Eq. 5.2). The starting glass compositions are potassium deficient compared to kalsilite 

which may explain why there is no loss of K2O in this case. XRD results suggest that 

these reactions will continue until all kalsilite transforms to leucite at elevated 

temperature. As studies in the formation of leucite indicate (He, Jia, Wang, & Zhou, 

2011; Y. Zhang et al., 2007; Y. Zhang et al., 2006), having adequate crystallization 

kinetics, a metastable phase – in this case kalsilite - can form first. Indeed, Zhang et al. 

(2007) determined by the Kissinger method (Kissinger, 1957) that the activation energy 

for crystallization of kalsilite (Ea = 103 kJ/mol) is lower than that of leucite (Ea = 125 

kJ/mol) for hydrothermally prepared samples.  

According to Abbot (1984) orthorhombic kalsilite is more likely to be a metastable 

phase. Nucleation and growth kinetics can be altered by the addition of nucleating 

agents (Erbe & Sapieszko, 1997; Y. Zhang, Qu, Rao, Lv, & Wu, 2007; Y. Zhang et al., 

2006) such as leucite nanocrystals, leading to the elimination of kalsilite as an 

intermediate crystallization product, and the formation of leucite at lower temperatures. 

These results indicate that potassium is lost due to the instability of kalsilite at elevated 

temperatures; and that potassium evaporates due to its high volatility (Yu et al., 2003). 

Glass fibres based on the kalsilite-leucite region of the K2O-Al2O3-SiO2 system will 

transform into glass-ceramic fibres and the first nucleation product at low temperatures, 

no matter whether the composition is closer to leucite or to kalsilite, will be kalsilite. 

Compositions in the kalsilite region will partly form leucite at higher temperature after 

prolonged heat treatment – irrespective of the transformation mechanism – and the 

resulting excess of potassium will evaporate during the crystallization process. 
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To conclude, it has been shown that the metastable character of kalsilite at elevated 

temperatures and the stoichiometry of the starting composition together drive the loss of 

potassium from SWXT® and melt-rig glass fibres. 

Potential strategies to minimize potassium loss could be designing a composition close 

to leucite thus avoiding the formation of kalsilite. Another way could be increasing the 

crystallization temperature by compositional modifications. Wang et al. (2016) suggests 

that a small addition of rare earth oxides (La2O3, Nd2O3 and Y2O3) to alkaline 

aluminosilicate glass fibres has the tendency to increase the crystallization temperature 

and as a result affect the thermal performance and crystallization behaviour of glass 

fibres. However, modifications to the system should be carefully made without 

negatively affecting the fiberization and the bio-solubility of glass fibres.  

 

5.5. Cerachem® fibres 

Analysis of Cerachem® in the ZrO2-Al2O3-SiO2 system showed that a loss of silica 

occurs as a function of material depth (from the cold to the hot face) and was measured 

as a weight loss by XRF (9.1 wt%). Unfortunately, the exact temperature, the 

environment and the duration of prolonged firing were not available due to the nature of 

industrial use. This has prevented useful correlations to be made with literature data, 

and experiments to be conducted with unfired Cerachem® under simulated operation 

conditions, which would have given insights into the causes of SiO2 loss and the 

possible solutions. This is most likely in the form of gaseous SiO2 that moves away 

from the hot face of the module samples (Figure 4.56); the cold face of the modules has 

the same silica content as the unfired blocks which makes silica diffusion from the hot 

to the cold face highly improbable.  Dubois et al. (1995) observed this phenomenon, 
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describing a progressive ejection of silica – in a gaseous SiO or solid SiO2 form – from 

mullite with increasing heat treatment temperature. Ban and Okada (1992) and Brindley 

and Nakahira (1959) by observing XRD patterns of mullite (3Al2O3·2SiO2) discovered 

that with increasing the heat treatment temperature, to more than 1300°C, it becomes 

overstoichiometric in alumina which suggests that SiO2 content decreases without this 

being quantified.  

Several mechanisms can be involved in the loss of silica. They can involve reduction of 

SiO2 to SiO, or with water vapour or steam present they form silicic acid hydrates such 

as Si(OH)4 or Si2O(OH)6. The vaporization of SiO2 increases with increasing H2 

content, with increased free SiO2, and with increased temperature (Thermal Ceramics, 

1995). 

XRD analysis (Figure 4.59 and 4.60) of the Cerachem® modules, showed the presence 

of mullite, cristobalite and zirconia. The presence of cristobalite decreases moving from 

the cold to the hot face, while that of mullite increases in comparison; this suggests that 

SiO2 is probably lost from the cristobalite phase. Two tetragonal zirconia phases were 

detected, one stable (Bondars et al., 1995) and one metastable (Igawa & Ishii, 2001). 

The presence of the latter is more evident at the hot face. 
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6.  Conclusions and Future Work 

Superwool® XT biosoluble glass fibres have been the subject of extensive research 

because they are of great interest for applications demanding long-term and high-

temperature performance and are important for the development of new safer 

environmental-friendly fibres.  

This chapter presents the main conclusions drawn from this research study. All the key 

findings and outcomes we will be summarised. Moreover, recommendations for future 

work based on the results of this study will be given.  

 

6.1. Conclusions 

• SWXT® crystallizes very quickly (< 1 minute) at 1250°C and after 2176 hours of 

constant heat treatment some amorphous phase is retained. Thus, SWXT® glass 

fibres after one minute of firing will be converted to glass-ceramic fibres. 

• SWXT® fibres and pre-crystallized SWXT® samples (5 min, 1200°C) that were 

heat treated at 850°C are thermally stable as no compositional alterations or phase 

transformations occur after kalsilite (KAlSiO4) and zirconium oxide (ZrO2) 

completely develop. This phase assemblage and high compositional stability in 

terms of time shows that SWXT® (both pre-crystallized and amorphous) glass fibre 

samples have a good thermal performance as a function of time at 850°C. 

• SWXT® fibres that were heat treated at 1250°C lost K2O as a function of time, and 

crystallization. The first crystallization products are KAlSiO4 and ZrO2 (168 hours) 

and then KAlSi2O6 and KAl11O17 develop after 800 hours of constant heat 

treatment. Kalsilite is disappearing and transforming into leucite with increasing 
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firing time. In addition, this study shows that SWXT® macroscopically shrinks and 

the surface morphology of the fibres becomes rough and uneven, negatively 

affecting the thermal performance of the product.  

• Heat treatment experiments demonstrated that the firing atmosphere parameters, 

such as concertation of potassium vapours and therefore number of samples inside 

the furnace and dimensions of the furnace, will affect the crystallization behaviour 

and the rate of K2O volatilization. Furthermore, the loss of potassium oxide is 

strongly connected with the development of leucite as in all the cases where K2O 

loss was limited, due to increase of potassium vapours, the formation of this phase 

was also supressed. 

• Experiments with melt-rig glass fibres in the ternary K2O-Al2O3-SiO2 system and 

the quaternary K2O-ZrO2-Al2O3-SiO2 system revealed that leucite is a stable 

crystalline phase in terms of time at elevated temperature in contrast with kalsilite 

that is an unstable phase which probably behaves as an intermediate precursor of 

leucite. Samples with kalsilite being the main phase appear to lose K2O after 

prolonged firing (1000 hours) dissimilarly with samples with leucite being the main 

phase in which no compositional alteration was detected. 

• Finally, two hypotheses were presented regarding the phase transformation of 

kalsilite to leucite and the evaporation of K2O. In the first one, K2O and Al2O3 are 

ejected from unstable kalsilite resulting in a more stable phase which is leucite. Part 

of the ejected K2O reacts with Al2O3 to form a new phase, potassium aluminium 

oxide (KAl11O17), and the rest of the K2O evaporates. In the second hypothesis, 

unstable kalsilite reacts with silica from an amorphous phase – taking into 

consideration that the material is a glass-ceramic – to form a more stable phase 
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which is leucite. In this case some of the excess K2O evaporates and some reacts 

with Al2O3 to form KAl11O17.  

In both hypothetical cases the crystallization process, and more specifically the 

unstable behaviour of kalsilite, drives the loss of potassium and the development of 

leucite and potassium aluminium oxide. Compositions with kalsilite being the main 

phase will partly form leucite as a final product after prolonged heat treatment and 

will lose potassium oxide during the crystallization process. 

 

6.2. Future work 

There are several lines of research arising from this work which should be pursued.  

1. Building an understanding on the unstable behaviour of kalsilite at elevated 

temperatures. It is very important to understand the reason of the unstable behaviour 

of kalsilite and the connection with time and temperature. 

2. Study of the kinetics as the reaction mechanism and the activation energies of all the 

phase transformations should be determined. The activation energies of kalsilite 

crystallization and leucite crystallization via kalsilite can be determined to explore 

this transformation mechanism further.  

3. Regarding the heating atmosphere and its effect on the crystallization process and 

the rate of K2O loss, heat treatment experiments at various temperatures with 

potassium atmosphere inside the furnace should provide greater differences in K2O 

evaporation content to identify in detail the changes due to potassium oxide effects. 
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4. Heat treatment experiments with bulk glass and glass fibres to understand how the 

surface area to volume ratio of SWXT® is affecting the development of specific 

crystalline phases and the evaporation of K2O. 

5. A secondary line of research, which follows from chapter 4, is to investigate the 

strong anomaly before the main exothermic peak in DTA traces of melt-rig samples 

(Figure 4.52 and Figure 4.53).  

6. As discussed in Chapter 2 (Section 2.4.7.), modifications of key elements of 

SWXT® composition could be examined. For instance, the challenges faced by the 

addition of rare earth oxides on the crystallization behaviour of biosoluble glass 

fibres can be determined. 

7. Detailed structural analysis of glass compositions on the leucite-kalsilite tie-line 

with the use of NMR and Raman spectroscopy could be used to investigate the Al 

and Si Qn speciation.  

8. Finally, the role of ZrO2 in K2O-Al2O3-SiO2 systems could be explored to build an 

understanding on the nucleating effect in terms of temperature and composition.  
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