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Abstract

Background

Proteolytic enzymes are important mediators of cellular proliferation, angiogenesis and 

remodelling of the extracellular matrix (ECM); all processes required for tumour growth 

and metastasis. However, the studies of proteolytic enzymes in hepatic tumours, both 

primary and metastatic, have largely been limited to specific matrix metallogroteinases 

e.g. MMP-2, -7 and -9, and urokinase-type plasminogen activator.

ADAM17 (a disintegrin and metalloproteinase 17), a membrane-bound sheddase, 

releases membrane-bound proteins including growth factors, which could contribute to 

liver tumour growth. Fractalkine is also shed by ADAM17, and can act as an 

angiogenic mediator, potentially aiding the development of tumour neovasculature. 

ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) -1, -4 and - 

5 are secreted enzymes, which primarily degrade ECM components, and may 

participate in the remodelling of liver ECM during invasive processes. TIMP3 (tissue 

inhibitor of metalloproteinases) is the major, endogenous inhibitor of ADAM17, 

ADAMTS-1, -4 and -5, and its dysregulation in cancer could aid tumour progression.

Methods

Three liver derived cell lines were utilised throughout this investigation, namely HepG2, 

HuH-7 (well-differentiated hepatocellular carcinoma cell lines), and LX-2 (an activated 

hepatic stellate cell line). ADAM17, ADAMTS-1, -4, -5 and TIMP3 mRNA expression 

was investigated by quantitative real-time RT-PCR using the SYBR green method, their 

protein expression by western blotting using the SDS-PAGE Laemmli system, and their 

cellular distribution by immunocytochemistry with confocal laser scanning microscopy. 

The modulation of each of these characteristics by cytokines (IL-1p, IL-6 and TNF-a) 

was also investigated, and MTT assays performed to determine the proliferative effect 

of these treatments. ADAM 17 activity was studied using a fractalkine ELISA, as was 

the effect of ADAM17 down-regulation by siRNA. Furthermore, cell surface and 

intracellular ADAM17 protein levels were quantified using flow cytometry and related to 

shed fractalkine levels following cytokine treatments.

Results

This investigation established the presence of ADAM17, ADAMTS-1, 4,-5 and TIMP3 

at the mRNA level in foetal and adult human liver, and confirmed the presence of 

ADAM17, ADAMTS-1 and TIMP3 at the mRNA and protein level in liver derived cells 

(HepG2, HuH-7 & LX-2 cell lines). Furthermore, the expression of ADAMTS-4 and -5 at 

the mRNA and protein level was demonstrated for the first time in liver cell lines. Their

i



expression in these cells was differentially modulated at the mRNA and protein level by 

pro-inflammatory cytokines elevated during liver tumour development (IL-1(3, IL-6 and 

TNF-a). The same cytokines also increased the cellular proliferation of hepatoma cells 

(FlepG2 & HuFI-7), but not activated hepatic stellate cells (LX-2). Fractalkine shedding 

was significantly increased following IL-ip and TNF-a treatments of HepG2 cells, 

although this did not correlate with the relatively weak up-regulation of ADAM17 protein 

following the same treatments, and was not reduced by the down-regulation of 

ADAM17 with specific siRNA, indicating the involvement of other proteinases in this 

process.

Conclusions

The modulation of these enzymes and their endogenous inhibitor in normal or 

transformed hepatic cells may provide a microenvironment that facilitates ECM 

remodelling to allow cancer cell invasion, and subsequent growth and development of 

tumours into the liver parenchyma.
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1.1 Overview

With over 10.9 million new cases of cancer diagnosed per annum, 6.7 million cancer- 

related deaths and 24.6 million persons living worldwide with cancer (Parkin et al, 

2005), understanding the intricate nature of this disease is more imperative than ever.

Hepatocellular carcinoma (HCC) is uncommon in the UK, with an incidence rate of 

approximately 3,100 per annum. Though with a 5-year patient survival rate of only 

5.4%, there are approximately 3,050 liver cancer-related deaths in the UK each year 

(UK liver cancer statistics, 2009). Additionally, the liver is a common site of invasion by 

metastatic tumours, with nearly half (48.2%) arising from colorectal cancers (Kasper et 

al, 2005). Colorectal carcinoma (CRC) is the second most common cancer in the UK, 

and a major contributor to cancer-related deaths due to the high frequency of liver 

metastasis (Bird et al, 2006). The 5-year survival rate for CRC patients as a whole is 

only 26 to 46.7%; this is reduced to just 4% in patients with inoperable tumours 

(Shimada et al, 2006).

Both HCCs and CRCs are notoriously difficult to treat, with the only curative treatment 

being surgical resection, which is only feasible in about 20% of patients (Burke & Allen- 

Mersh, 1996). Consequently further investigations into primary liver tumours and 

colorectal liver metastases are crucial to the view of identifying a more widely available 

treatment (Shimada et al, 2006).

Many researchers have identified metalloproteinases as mediators of pathological 

cancer cell invasion, with much research concentrated on matrix metalloproteinases 

(MMPs). More recently though the aberrant expression of specific members of the 

adamalysin sub-family of metalloproteinases has been described in numerous human 

cancers, e.g. breast, lung, brain and gastric cancers (Turner et al, 2009), but as yet has 

not been examined in relation to liver cancers.

Relevant aspects of liver physiology and primary and metastatic liver pathology will be 

discussed before focussing on the adamalysin family of proteolytic enzymes, whose 

dysregulated expression may facilitate the invasion of the liver by tumour cells.

1.2 The Microscopic Structure of the Liver

1.2.1 Liver Lobules

The four lobes of the liver are subdivided into thousands of hexagonal lobules (Figure 

1.1), with each of these functional units measuring 0.8 to 1.5 mm in diameter (Crawford 

et al, 1998). Hepatic lobules are composed of a number of specific cell types, arranged 

into precise structures that allow the correct functioning of the liver as a whole. Each 

individual lobule is comprised of a vast number of single cell thick, polyhedral
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Figure 1.1: Microscopic structure of a hepatic lobule (Adams & Eksteen, 2006).

Functional hepatic lobules contain precise structures and cells that allow the liver to 

function correctly. At intrahepatic portal tracts (lobule corners), hepatic arteries 

terminate and portal veins form septal branches; both empty their contents into hepatic 

sinusoids. The fenestrated sinusoidal endothelium allows the flow of plasma into the 

space of Disse, which separates sinusoids from hepatocyte plates (see inset). 

Sinusoidal endothelium is interspersed with Kupffer cells that form part of the 

reticuloendothelial system. Single cell thick hepatocyte plates radiate from the central 

vein towards the edge of lobule, and have microvilli on their surface facing the 

sinusoidal endothelium and modifications forming bile canaliculi on their lateral faces. 

The space of Disse houses quiescent hepatic stellate cells (HSCs) that become 

fibrogenic upon liver damage.
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hepatocyte columns, separated by the space of Disse, which radiate from the central 

vein (intralobular vein) to the edge of the lobule.

1.2.2 Hepatocytes

Hepatocytes are the main parenchymal cells of the liver, making up approximately 80% 

of the liver mass (Bowen, 1998). Consequently this cell type is involved in the majority 

of the liver’s functions, including protein synthesis, protein storage, and detoxification, 

modification and excretion of endogenous and exogenous substances. Their cellular 

membrane abuts onto three compartments defined by morphological and functional 

features, i) the bile canaliculi, ii) the sinusoidal surface, and iii) the smooth intercellular 

fissure (Kuntz & Kuntz, 2005).

Approximately 12% of their lateral faces are modified to form bile canaliculi, which 

transport bile secreted by hepatocytes to bile ducts located at the intrahepatic portal 

tracts, then out of the liver (Bowen, 1998; Kuntz & Kuntz, 2005) (Figure 1.1 inset).

About 37% of the hepatocyte surface, that facing the sinusoidal endothelium, has an 

abundance of microvilli, providing a greater surface area in which to absorb the oxygen 

and nutrients present in the space of Disse ensuring their survival (Bowen, 1998; Kuntz 

& Kuntz, 2005).

The remaining 50% of the surface membrane of hepatocytes forms the smooth 

intercellular fissure, which is connected to the space of Disse. At this site the 

intercellular exchange between neighbouring hepatocytes is facilitated by gap junctions 

(maculae communicantes), whilst intermediate junctions (zonula adherens) and 

desmosomes (macula adherens) form the adhesion site between hepatocytes (Kuntz & 

Kuntz, 2005). Tight junctions (zonula occludens) are also present to prevent bile 

entering these fissures from the bile canalicula, allowing only the exchange of water 

and cations at these sites.

1.2.3 Endothelial Cells (ECs)

Hepatocyte plates are separated by EC-lined hepatic sinusoids, which are low pressure 

vascular channels supported by a reticulin network (collagen type III) (Sakakibara et al, 

1985). These sinusoidal capillaries differ structurally from capillaries of other organs by 

the presence of small interspersed pores known collectively as the sieve plate, and 

larger pores known as fenestrae (Kuntz & Kuntz, 2005).

The fenestrated sinusoidal endothelium has no basement membrane and therefore

allows the virtually unimpeded flow of nutrient-rich blood plasma from the septal

branches of the hepatic portal vein into the space of Disse situated between the

sinusoidal endothelium and hepatocytes (Adams & Eksteen, 2006). It functions to filter

blood components, and regulate the exchange of fluid and material between the
4



sinusoids and hepatocytes (Kuntz & Kuntz, 2005). The plasma collecting in the space 

of Disse then flows back towards the intrahepatic portal tracts, and collects in lymphatic 

vessels to form a large fraction of the body’s lymph (Bowen, 2003). Oxygen is delivered 

to hepatocytes in the same manner via the terminal branches of the hepatic artery 

(Adams & Eksteen, 2006).

1.2.4 Hepatic Stellate Cells (HSCs)

HSCs, also known as Ito cells, are pericytes resident in the space of Disse. Each cell 

has several protrusions from their cell body that wrap around the sinusoids. In their 

quiescent state their function is unclear, but lipid droplets in their cell body provide a 

storage facility for vitamin A (Iredale, 2001). Additionally, quiescent HSCs may act as 

liver-resident antigen-presenting cells that present lipid antigens to and stimulate the 

proliferation of natural killer (NK) cells (Winau et al, 2007).

When the liver is damaged, HSCs are converted into an activated state associated with 

the adoption of a myofibroblast-like phenotype; they lose their vitamin A and begin to 

secrete large amounts of interstitial collagens I, III (Benyon & Iredale, 2000) and IV, 

fibronectin and laminin (Kuntz & Kuntz, 2005). The over-expression of these 

extracellular matrix (ECM) components represents the final common pathway of the 

wound-healing response of the liver (Friedman, 1993). However, the continued 

secretion of collagens by HSCs has a detrimental effect upon the liver by contributing 

to pathological intralobular fibrosis and liver cirrhosis (Iredale, 2001).

The conversion of quiescent HSCs into contractile, fibrogenic HSCs capable of directed 

migration involves changes in their phenotypic profiles, characterised by the differing 

expression patterns of certain intracellular markers. Classically, a-smooth muscle actin 

was used as a marker for HSC activation in humans, but neural/neuroendocrine 

features also denote the conversion of quiescent to activated HSCs, including the 

expression of neural-cell adhesion molecule (N-CAM) and glial fibrillary protein (GFAP) 

(Morini et al, 2005).

Normally upon activation HSCs (together with activated Kupffer cells) begin to produce 

and secrete a number of metalloproteinases (Emonard et al, 1990), in particular MMP- 

1, -2 and its activating protease MMP-14 (Milani et al, 1992). Consequently these cell 

types have the ability to degrade interstitial collagens present in normal and fibrillar 

collagen matrix (Aimes & Quigley, 1995; Ohuchi et al, 1997) and balance the amount of 

neomatrix laid down in the healing process with degradation of the existing matrix.

When liver fibrosis occurs and as it progresses, HSCs also release tissue inhibitors of 

metallogroteinase (TIMP) 1 and 2, which act to decrease the interstitial collagenase 

activity of MMP-1 and -2 (Iredale, 2001). Further to this, HSC activation results in the
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entry of HSCs into the growth cycle (Friedman, 1993). Consequently there is an 

increase in overall numbers of activated HSCs actively producing neomatrix, whilst 

simultaneously preventing matrix degradation through TIMP expression (Iredale, 2001).

1.2.5 Kupffer Cells

Numerous Kupffer cells, specialised macrophages resident only in the liver, populate 

the hepatic sinusoids and form part of the reticuloendothelial system, also known as 

the mononuclear phagocyte system (Haubrich, 2004). These cells are integral to the 

liver’s primary function of cleansing the blood of foreign materials and toxic substances 

(Wheeler, 2003). Kupffer cells exist in a resting state, but become activated in the 

presence of foreign materials and begin to secrete an assortment of pro-inflammatory 

cytokines (Section 1.5), including tumour necrosis factor alpha (TNF-a) and several 

types of interleukin (IL). These cytokines regulate the functions of other immunological 

cells required to elicit an inflammatory response, which ultimately results in the removal 

of the offending toxic or foreign molecules and initiates the healing process (Wheeler, 

2003).

Another role of Kupffer cells is the recycling of old red blood cells that are no longer 

functional. Kupffer cells break down the red blood cell by phagocytic action and split 

the haemoglobin molecule. The globin molecules are reutilised and the iron containing 

portion, haem, is further broken down into iron that is reused and bilirubin, which is 

excreted into bile for removal from the body (Szymanska & Schmidt-Pospula, 1979).

Activated Kupffer cells, like activated HSCs, produce and secrete MMPs (Emonard et 

al, 1990), and as such are involved in the degradation of liver ECM.

1.2.6 Pit Cells

Pit cells are a unique population of NK cells resident in hepatic sinusoids, with 

morphological, functional and immunophenotypical differences from blood NK cells. 

They comprise 43% of liver-associated lymphocytes, together with T-lymphocytes 

(30%) and B-lymphocytes (3%). They often adhere to ECs lining the sinusoid, and 

have direct contact with blood. The pseudopodia of pit cells are able to penetrate the 

fenestrated sinusoidal endothelium, enter the space of Disse and make contact with 

the microvilli of hepatocytes. This strategic location of pit cells means they represent a 

first line cellular defence against metastasising colon cancer cells (Luo et al, 2000).

Pit cells contain large granules and rod-cored vesicles, and possess spontaneous 

cytotoxic activity against tumour and foreign cell types, as well as necrosed cells (Kuntz 

& Kuntz, 2005); this activity can be augmented by several cytokines, including IL-2 

(Robertson & Ritz, 1990). Additionally pit cells preferentially kill cells lacking major
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histocompatibility complex (MHC) class I molecules, and can mediate antibody- 

dependent cellular cytotoxicity (ADCC) via CD16 (Luo et al, 2000).

1.2.7 Intrahepatic Portal Tracts

The intrahepatic portal tract located at the corner of each hexagonal lobule completes 

the lobular structure. These areas are a complex feature composed of branches of the 

hepatic portal vein, hepatic artery, bile ducts and nerve fibres.

1.2.8 Liver Extracellular Matrix (ECM)

Fibrous tissue within the liver is quantitatively very limited (-3%), however the liver 

ECM is of major importance both in liver physiology and pathology (Bedossa & Paradis, 

2003). In addition to a network of connective fibrous tissue surrounding the liver, 

termed Glisson’s capsule, ECM is restricted in normal liver to intrahepatic portal tracts, 

sinusoid walls (reticulin network) and central veins, and acts as part of the frontier 

between the blood flow and parenchyma (Bedossa & Paradis, 2003).

Hepatic ECM is composed of two major components, proteins and proteoglycans (PGs; 

Section 1.6.7), which provide not only structural support to the organ, but also 

modulate several major biological processes (Selden et al, 1999). The protein portion 

of hepatic ECM is composed of several molecular forms of collagen, predominantly 

types I, III, IV (Liu et al, 2006a), and V (Bedossa & Paradis, 2003). Collagen types I, III 

and V, which are fibrillar collagens, are mainly found in the intrahepatic portal tract and 

central vein wall (Martinez-Hernandez, 1984). In addition to these collagens, there are 

also non-collagenous components, such as fibrin, elastin, fibronectins, laminins and 

nidogens.

The reticulin network provides hepatic sinusoids with structural integrity by forming a 

low density, basement membrane-like material along the sinusoid wall (Martinez- 

Hernandez, 1984). Reticulin or reticular fibres is a histological term used to describe 

the scleroprotein fibril in liver ECM composed of collagen type III fibres. These fibres 

are often associated with other types of collagen, glycoproteins, PGs and 

glycosaminoglycans (GAGs) (Ushiki, 2002). Reticulin differs from regular collagenous 

fibres principally by the presence of a higher concentration of galactose, glucose, 

mannose and fructose sugars. Reticulin has a regular pattern in normal liver pathology, 

however when the liver becomes fibrosed this pattern is often disturbed.

The other major components of liver ECM, PGs, are a heterogeneous group of proteins 

containing GAG side chains (Selden et al, 1999). These highly glycosylated proteins 

form large complexes either with each other, hyaluronans (a non-sulphated GAG) or 

fibrous matrix proteins, such as collagen. These complexes regulate the movement of
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molecules through the ECM, affect the activity and stability of proteins and signalling 

molecules within the ECM (Alberts et al, 2008) and also, due to the hyaluronan 

component, modulate cell proliferation and migration (Stern, 2004).

Although the main function of ECM remains the mechanical coherence and resistance 

of the liver, as is the case in other tissues, liver ECM also affects the function and 

morphology of hepatocytes and other liver sub-populations (Selden et al, 1999) and 

modulates the processes of cell proliferation, migration, differentiation, signalling, and 

gene expression. It facilitates these important processes by sequestering numerous 

growth factors, hormones, enzymes, and cytokines in their inactive forms, which upon 

treatment become activated and deliver messages that modify the cellular 

microenvironment (Bedossa & Paradis, 2003).

The correct quality and quantity of hepatic ECM is essential for the proper functioning 

of the liver. Even a slight alteration in the liver ECM will rapidly affect the structure and 

function of the liver. Major alterations in both the quality and quantity of hepatic ECM 

occur during the development and progression of liver fibrosis, with activated HSCs 

producing the majority of the fibrotic neomatrix. The process of liver fibrosis, even in its 

early stages, rapidly affects the structure and functions of the liver, due to the 

modification of ECM at the interface between blood flow and epithelial compartment 

(Bedossa & Paradis, 2003).

1.3 Tumour Invasion and Metastasis

The progression from a benign non-invasive tumour, which predominantly has a single 

clonal origin (Ki et al, 2007), to a malignant neoplasm capable of invading neighbouring 

tissues is a complex and multi-step process involving the generation of a 

heterogeneous population of tumour cells with characteristic properties (Turner et al, 

2009; Gutman & Fidler, 1995). These hallmarks of cancer cells include the ability to 

proliferate independently of growth/anti-growth signals, to stimulate sustained 

angiogenesis, to degrade surrounding extracellular matrix, to modulate cellular 

adhesion and migration capabilities, and evade apoptosis (Hanahan & Weinberg, 2000; 

Thompson & Price, 2002).

The destructive processes involved in cell invasion and metastasis are not exclusive to 

cancer progression, but occur routinely during wound repair, vasculogenesis and axon 

outgrowth (Chang & Werb, 2001). However, these processes are less controlled in 

cancer cells. Invading malignant cells must interact with basement membranes or the 

ECM during dissemination. This involves three key processes: i) attachment of 

malignant cells to ECM, ii) proteolytic breakdown of ECM, and iii) migration of invading 

cells through damaged ECM (Ray & Stetler-Stevenson, 1994). The proteolysis events
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orchestrating the destructive process of normal and non-malignant pathologies are 

controlled and self-limiting; those involved in tumour invasion appear to occur 

perpetually, with a loss of controlling mechanisms, which can result in the formation of 

secondary tumours (Chang & Werb, 2001; Duffy, 1992).

Malignant cells cross the basement membrane at least three times during metastasis to: 

i) escape their primary site, ii) infiltrate the vascular system, and iii) extravasate from 

the bloodstream into a target organ (Figure 1.2) (Ray & Stetler-Stevenson, 1994; Duffy,

1992). This is mediated by a number of different proteolytic enzymes, which could be 

released from the invading tumour (Duffy, 1992), stromal fibroblasts surrounding the 

tumour and localised inflammatory cells (macrophages and neutrophils) (Foda & 

Zucker, 2001). The highest activity levels of proteases involved in cancer dissemination 

are found at the invading front of the tumour, where degradation of normal tissue is 

occurring (Duffy, 1992).

1.4 Liver Cancer

1.4.1 HCC Incidence and Epidemiology

There are two main types of primary liver cancer, HCC and cholangiocarcinoma (bile 

duct cancer), with the latter accounting for only 10-25% of all primary liver cancers 

registered in Europe (Parkin et al, 2005). They have a combined incidence rate of 10 

per 100,000 population in Europe (Bosch et al, 2004), which equates to -50,000 new 

cases of primary liver cancer per annum, -3100 of which occurred in the UK (UK liver 

cancer statistics, 2009). Unfortunately, the incidence of liver cancer is steadily 

increasing in many developed countries, including the UK (Bosch et al, 2004).

The cause of primary liver cancer is currently unknown; however there are a number of 

hepatic diseases that predispose the liver to tumour development including cirrhosis 

(90-95% of UK cases), hepatitis B virus or hepatitis C virus infection (>75% of cases 

worldwide), and some hereditary conditions e.g. haemchromatosis (Parkin et al, 2005; 

Ryder, 2003). So it is not surprising that in the Western world advancing age is also a 

risk factor of HCC development, which may reflect the long term nature of these 

underlying liver diseases (Ryder, 2003). The prevalence of liver cancer is also higher in 

males than females, with a ratio of 1.9:1 in Europe (Bosch et al, 2004).

The prognosis of this malignancy is poor, despite advances in the detection and 

diagnosis of liver cancer. The 5-year survival rate of primary liver cancer is 6.5% in 

Europe as a whole (Bosch et al, 2004), and slightly lower in the UK (5.4%), with -3,050 

liver cancer-related deaths in the UK each year (UK liver cancer statistics, 2009).
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Figure 1.2: The metastatic cascade (Guo & Giancotti, 2004).

Malignant tumour cells detached from the tumour mass, penetrate the basement 

membrane, and invade the surrounding ECM. These cells can then enter the 

bloodstream via intravasation. Many malignant cells are eliminated at this stage by the 

action of immune cells. Once the target organ has been reached, tumour cells adhere 

to the endothelium of the blood vessel, extravasate into the target organ, and undergo 

proliferation to form metastatic tumours.
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1.4.2 CRC Liver Metastases Incidence and Epidemiology

CRC is the third most common cancer worldwide, and the second most common cause 

of cancer death in the UK, with an incidence of approximately 57 per 100,000 

population (Bird et al, 2006), which equates to approximately 28,000 new cases per 

annum in the UK (Burke & Allen-Mersh, 1996).

The prevalence of CRC is higher in males than females, with 60% of cases arising in 

males (Bird et al, 2006). These tumours primarily affect people of advanced age, with 

over 50% occurring in patients over the age of 70 years (McMillan & McArdle, 2007). 

Recent advances in the diagnosis and localised treatment of early stage CRC have 

resulted in the lives of many patients being saved (Yamasaki et al, 2007). However, the 

prognosis for patients with advanced CRC is still poor (Ki et al, 2007).

The prognosis and overall survival rate of a CRC patient is ultimately determined by 

tumour burden and the dissemination of the primary tumour throughout the patient, 

particularly to the liver. At the time of CRC diagnosis, 25% of patients have detectable 

liver metastases (synchronous metastases), and a further 25% will develop liver 

metastases during the course of their disease (metachronous metastases) (Bird et al,

2006). This liver metastasis is the major cause of death in CRC patients (Ki et al, 2007).

If no treatment was given to CRC patients with liver metastases the majority would not 

survive beyond 8 - 1 2  months, however prognosis is improved with the correct 

treatment. Treatment of patients with unilobular metastases extends their median 

survival to 24 months, whilst the treatment of patients with bilobular disease extends 

their median survival to 18 months. The 5-year survival rate of this malignancy is 

between 26 and 46.7% (Shimada et al, 2006).

1.4.3 CRC Progression to the Liver

The predilection for liver metastases in the course of CRC is thought to be due to the 

vast amount of blood flowing to the liver from the colon via the hepatic portal vein 

(Burke & Allen-Mersh, 1996). This volume of blood may contain breakaway tumour 

cells with newly acquired metastatic potential, providing them with the potential to 

permeate the entire organ via the extensive branching of the hepatic portal vein into 

intrahepatic portal tracts, which extend throughout the liver.

However, the mere presence of malignant cells is not enough to permit the colonisation 

of the liver; the establishment of nascent metastases requires the adhesion of 

circulating tumour cells to hepatic ECs within the hepatic sinusoid, followed by their 

growth and extravasation into the liver parenchyma (Bird et al, 2006). The metastatic 

potential of colorectal cells is linked to cell adhesion molecules (CAMs). Ordinarily, 

cadherin-catenin complexes present in adherin junctions anchor cells in position; a
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down-regulation of these complexes can facilitate tumour cell detachment from the 

primary site. The subsequent over-expression of integrins and selectins may support 

the progression and development of tumours in distant tissues via the regulation of cell 

motility and angiogenesis (Paschos et al, 2009).

Heparin-like heparan sulphate PGs (HSPGs) present in the liver ECM are known to 

affect the clonal growth efficiency of hepatoma cell lines (Doerr et al, 1989). This may 

suggest that organ-specific PGs and their GAG side chains may be responsible for the 

regulation of autocrine growth factors in metastatic cells (Zvibel et al, 1991). In 

colorectal tumours, the EGF family of growth factors and their receptors play an 

essential role in the regulation of cellular proliferation, and the number of EGF 

receptors on colon cancer cells correlates with increased metastasis to the liver (Zvibel 

et al, 1991; Radinsky, 1995).

1.4.4 Liver Tumour Pathology

Liver metastases originating from colorectal adenocarcinomas can be divided 

histologically into three distinct sub-groups dependent upon their growth pattern, 

namely desmoplastic (42%), replacement (12%) and pushing (46%) (Figure 1.3). 

Usually only one growth pattern is observed in a single liver metastasis, and in patients 

with more than one metastasis, all metastases have the same growth pattern 

(Vermeulen et al, 2001). These differing growth patterns of liver tumours were initially 

described by Nakashima et al (1983) in relation to primary HCC.

Links between the growth patterns of primary CRCs and their liver metastases have 

since been made, such that primary CRCs with a pushing growth pattern are more 

likely to form liver metastases with a desmoplastic growth pattern (P<0.001) and 

primary CRCs with an infiltrative growth pattern are more likely to form non-capsulated 

metastases (P0.001) (Rajaganeshan et al, 2007).

The characteristic features of each growth pattern are easily observed at the tumour- 

liver parenchyma interface by the analysis of two histological stains, haematoxylin and 

eosin (H & E) -stain, and Gordon-Sweet’s reticulin-stain (Figure 1.3) (Vermeulen et al, 

2001; lllemann et al, 2009).

The growth pattern of liver metastases can be used as a prognostic indicator of the 

outcome of disease (Okano et al, 2000). This may be due to the differing degrees of 

angiogenesis within tumours of different growth patterns, and/or the differing levels of 

sinusoidal co-option (Vermeulen et al, 2001). However, for all metastatic growth 

patterns there is an inverse correlation between microvessel density and tumour cell 

apoptosis, such that the higher the microvessel density, the less tumour cells undergo 

apoptosis, and the poorer the outcome for the patient (Rajaganeshan et al, 2007). It is
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Figure 1.3: Gordon-Sweet's reticulin staining of CRC liver metastases with differing 

growth patterns (Vermeulen et al, 2001).

A) Demoplastic growth pattern. The arrow indicates the fibrotic capsule separating the 

tumour tissue (T) from the liver parencyma (L). Liver architecture is not preserved in 

the metastasis.

B) Replacement growth pattern. The arrows indicate the interface between the tumour 

tissue (T) and the liver parenchyma (L). Liver architecture is preserved in the 

metastasis, but a there is a slight broadening of the cell plates and an increase in 

number of reticulin fibres separating the cell plates.

C) Pushing growth pattern. The arrows indicate the interface between the tumour 

tissue (T) and the liver parenchyma (L). The cell plates run in parallel with the 

circumference of the metastasis. Liver architecture is not preserved in the metastasis.
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not known if this also applies to HCCs.

Desmoplastic Growth Pattern

Liver metastases demonstrating a desmoplastic or encapsulated growth pattern are 

characterised by the accumulation of fibrillar collagens at the metastasis periphery 

(Figure 1.3A) (Conti et al, 2008). There is no contact between tumour cells and 

hepatocytes, as this dense reticulin positive desmoplastic stroma forms a capsule 

surrounding the tumour (Vermeulen et al, 2001; Niemann et al, 2009).

Present throughout this collagen-rich capsule is a dense lymphocytic infiltrate, 

indicating that metastatic CRC cells of this phenotype provoke an inflammatory 

response within the liver. Hence, the desmoplastic reaction may arise due to the 

classical wound healing response of activated HSCs (Conti et al, 2008). Interestingly, 

the dysregulated deposition of interstitial collagens within the desmoplastic capsule, 

particularly collagen type I, enhances CRC cell growth. Bile ducts and capillaries are 

also present in the rim of the newly formed stroma (Vermeulen et al, 2001).

As the tumour expands, liver cells at the tumour-liver interface collapse and disappear 

(Niemann et al, 2009), and consequently the liver architecture and reticulin pattern are 

not conserved within the metastasis (Vermeulen et al, 2001). Liver ECM breakdown by 

proteolytic enzymes may be essential to for the growth and expansion of liver 

metastases with a desmoplastic growth pattern (Niemann et al, 2009).

Liver metastases with this growth pattern are generally well-differentiated, and 

therefore classified as low grade tumours.

Replacement Growth Pattern

This category of CRC liver metastasis is characterised by the replacement of 

hepatocytes by tumour cells within the liver cell plates, resulting in the intimate cell-cell 

contact of tumour cells and hepatocytes (Figure 1.3B). The reticulin network of the liver 

parenchyma is conserved in this growth pattern, but a slight broadening of liver cell 

plates can occur, which is probably due to the slight increase in the number of reticulin 

fibres (Vermeulen et al, 2001).

No inflammation is evident at the periphery of replacement growth metastases, and 

there is an absence of desmoplasia in this location (Vermeulen et al, 2001; Stessels et 

al, 2004). However, due to minimal angiogenesis, characterised by a high tumour cell 

to EC proliferation ratio (Stessels et al, 2004), fibrosis and necrosis is frequently 

present at the centre of the metastasis (Vermeulen et al, 2001). Occasionally small 

glands are formed at the tumour-parenchyma interface, consisting of tumour cells at 

one side of the lumen and of liver cells at the other side (Vermeulen et al, 2001).
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Liver metastases with this growth pattern generally have an intermediate degree of 

differentiation, and therefore classified as intermediate grade tumours.

Pushing Growth Pattern

Liver metastases with a pushing or sinusoidal growth pattern are characterised at the 

tumour-liver parenchyma interface by hepatocyte plates being pushed aside and made 

to run in parallel with the outer edge of the tumour (Figure 1.3C). Due to this, the liver 

architecture and consequently the reticulin pattern of the liver parenchyma are not 

conserved within these liver metastases (Vermeulen et al, 2001).

There is no accumulation of reticulin or desmoplastic stroma formation at the 

metastasis periphery, but a thin layer of reticulin fibres is present that acts to separate 

hepatocytes from tumour cells. A mild inflammatory infiltrate is nearly always present at 

the tumour-liver parenchyma interface (Vermeulen et al, 2001).

HCC cells with this expansion pattern grow in an infiltrating manner into the sinusoids 

at the tumour periphery, and compress the liver cell plates and eventually take their 

place (Nakashima et al, 1983). If liver metastases with a pushing growth pattern grow 

in the same manner, matrix degrading activity may not be required as they could use 

the pre-existing cavity of the sinusoid (Niemann et al, 2009).

Liver metastases with this growth pattern are generally anaplastic, and therefore 

classified as high grade tumours, and contain three times more proliferating ECs than 

desmoplastic and replacement patterns. They also show a strong correlation between 

EC and tumour cell proliferation, which is not evident in the other growth patterns 

(Vermeulen et al, 2001).

1.5 Cytokines

Cytokines are a diverse group of glycoproteins and low molecular weight peptides that 

predominantly act as extracellular messengers between cells (Dunlop & Campbell, 

2000). They have many important roles within the human body, such as stimulating 

and regulating host immune responses to pathogens, activating signal transduction 

pathways that regulate cell growth, differentiation and cell death, and wound repair and 

healing. These processes can be hi-jacked by tumour cells to aid their growth and 

survival.

Cytokines are categorised to reflect their originally identified function, e.g. interferons 

(IFNs) were first identified by their ability to "interfere" with viral replication in host cells. 

However, due to the vast array of cytokines with differing origins and functions, it is 

simpler to group them according to their structure (Table 1.1) (Janeway et al, 2005).
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Table 1.1: Cytokine categorisation, cell source and major functions.*

Interferon (IFN) IFN-a Leukocytes, 

dendritic cells

Anti-viral; increased expression of 

MHC class I

IFN-p Fibroblasts Anti-viral; increased expression of 

MHC class I

IFN-y T-cells, 

NK cells

Anti-viral; increased expression of 

MHC class I & II and antigen 

processing components; 

macrophage activation; 

Immunoglobulin (Ig) class switching; 

suppression of T-helper2 cells (TH2)

Tumour TNF-a Macrophages, Local inflammation mediator,

necrosis factor (cachectin) NK cells, endothelial activation, induces other

(TNF family) T-cells cytokines, increased expression of 

MHC class I

TNF-p T-cells, B-cells Killing; endothelial activation

CD40 ligand T-cells, B-cell activation; class switching

(CD40L) mast cells

Trail T-cells,

monocytes

Apoptosis of activated T-cells and 

tumour cells

Hematopoietins IL-2

(T-cell

growth

factor)

T-cells T-cell proliferation; NK cell activation

IL-4 T-cells, B-cell activation; IgE switch; induces

(B-cell mast cells, differentiation into CD4 TH2 cells

growth basophils

factor)

IL-6 (IFN-P2) T-cells,

macrophages,

ECs

T- & B-cell growth & differentiation, 

acute phase protein production, 

fever

*This table is not extensive and does not list all cytokines within families, nor does it 

show all of their functions.
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Table 1.1 (continued): Cytokine categorisation, cell source and major functions.*

Hematopoietins LIF

(leukaemia

inhibitory

factor)

Bone marrow

stroma,

fibroblasts

Maintains embryonic stem cells

Interleukin-10

(IL-10)

IL-10

(cytokine

synthesis

inhibitory

factor)

IL-19

IL-24

(MDA7)

T-cells,

macrophages

Monocytes

Monocytes,

T-cells

Potent suppressant of macrophage 

functions

Induces IL-6 & TNF-a expression by 

monocytes

Inhibits tumour growth

Interleukin-12

(IL-12)

IL-12

(NK-cell

stimulatory

factor)

IL-23

Macrophage, 

dendritic cells

Dendritic cells

Activates NK cells; induces CD4 T- 

cell differentiation into TH1 -like cells

Induces proliferation of memory T- 

cells; increased IFN-y production

Unassigned TGF-p

IL-1a& IL-1P 

MIF

(macrophage

migration

inhibitory

factor)

Chondrocytes,

monocytes,

T-cells

Macrophages, 

epithelial cells

T-cells; 

pituitary cells

Inhibits cell growth; anti­

inflammatory; induces switch to IgA 

production, stimulates collagen & 

PG synthesis

Fever; T-cell activation; macrophage 

activation

Inhibits macrophage migration; 

stimulates macrophage activation; 

induces steroid resistance

*This table is not extensive and does not list all cytokines within families, nor does it 

show all of their functions.
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Most cytokines are produced and secreted transiently by a range of cell types in 

response to stimuli, such as pathological and cellular stresses. Cytokines can either be 

secreted in their active forms or exist as a latent complex that requires activation. The 

tight regulatory control over cytokine release and activation ensures their presence only 

when required, thus preventing tissue damage.

Cytokines act on a range of target cells in a paracrine or autocrine manner via specific 

high-affinity cell surface receptors, making them potent biological molecules. Cytokine 

receptors are linked to intracellular second messenger signalling pathways (Dunlop & 

Campbell, 2000), which result in altered gene expression in the target cell. The actions 

of cytokines are redundant, multiple and pleiotropic, and as such understanding their 

integrated functioning is not easily achieved.

1.5.1 lnterleukin-1 fi (!L-1f5), lnterleukin-6 (IL-6) and Tumour Necrosis Factor-a 

(TNF-a) in Cancer

There is growing evidence that inflammation is a factor in the development of cancer 

(Jung et al, 2003), with many pro-inflammatory cytokines being implicated in 

malignancies. Cytokines present in the tumour microenvironment have been shown to 

play a major role in the promotion of tumour growth by promoting cellular proliferation 

whilst attenuating apoptosis, and in the promotion of angiogenesis and tumour 

dissemination (Dranoff, 2004). However, there is no single cytokine common to all 

cancer patients (Dunlop & Campbell, 2000).

All cells normally present within the liver have the capacity to produce cytokines, but 

Kupffer cells are usually responsible for the initial induction of early-response cytokines 

(Simpson et al, 1997). Once cytokine production is induced, be it by Kupffer cells or 

malignant cells themselves, other cells in the liver can be stimulated to produce further 

cytokines resulting in an amplification of the inflammatory response (Simpson et al, 

1997).

In the liver, IL-6 is released in response to TNF-a, usually following hepatic injury or 

surgery (Zimmers et al, 2003), this can increase hepatocyte proliferation which may 

contribute to HCC and metastatic liver tumour development (Sander et al, 2007). 

Further to this, many CRC patients have elevated serum and peritoneal concentrations 

of three pro-inflammatory cytokines, IL-1(3, IL-6 and TNF-a (Whitworth et al, 2006). The 

production of these cytokines is increased, both locally and systemically, after the 

surgical treatment of cancer patients (Kuninaka et al, 2000). The production of IL-1p 

and TNF -a by Kupffer cells within the liver can also be induced by carcinoembryonic 

antigen (CEA), a tumour marker elevated in approximately 70% of patients with CRC 

and CRC liver metastases (Burke & Allen-Mersh, 1996, Simpson et al, 1997).
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IL-10

IL-10 is elevated in a number of cancers, including vulva, endometrium, prostate 

(Dunlop & Campbell, 2000) and breast cancers (Reed et al, 2009) where it has been 

linked to tumour growth, angiogenesis and invasiveness (Jung et al, 2003).

Jung et al (2003) have determined that IL-10 induces a stabilised hypoxia-inducible 

factor-a (HIF-a) protein in normoxia, which stimulates vascular endothelial growth 

factor (VEGF) production and promotes angiogenesis. In a lung epithelial cell line 

(A549), IL-1(3 treatment activates the phosphoinositide 3-kinase (PI3-K) / Akt pathway, 

which in turn activates a nuclear factor-KB (NFkB) dependent pathway and induces 

cyclooxygenase-2 (COX-2) production. COX-2 then mediates HIF-1a up-regulation, 

which induces VEGF production, and via its interaction with its transmembrane tyrosine 

kinase receptor on ECs lining the lumen of blood vessels, promotes angiogenesis.

COX-2 is also known to initiate colon cancer progression, with IL-1 (3 treatment of a 

colon cancer cell line (CaCo-2) resulting in COX-2 induction and HIF-1a elevation by 

the same mechanism as in A549 cells (Jung et al, 2003).

Epidemiological studies have suggested that the risk of development of certain cancers, 

including breast, colon, stomach, lung and oesophagus cancers, is reduced by the 

long-term administration of aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) 

(Reed et al, 2009; Coussens & Werb, 2001). The chemopreventative effect of these 

drugs is related to their ability to inhibit COX-2, which converts arachidonic acid to 

prostaglandins to induce inflammatory reactions in damaged tissues (Coussens & 

Werb, 2001).

Cytokines may also be involved in tumour cell migration. IL-1 p produced by tumour 

cells promotes tumour cell adhesion at metastatic sites by increasing the intercellular 

adhesion molecule 1 (ICAM-1) from ECs to facilitate tumour cell adhesion (Lai et al,

1993). TNF -a has also been linked to the induction of adhesion molecules and the 

facilitation of metastatic cell adhesion (Simpson et al, 1997).

Many advanced stage cancer patients (90%) suffer from cachexia syndrome, which is 

associated with more than 20% of cancer-related deaths (Tisdale, 2002). Cachexia is a 

clinical consequence of a chronic, systemic inflammatory response, associated with 

pro-inflammatory cytokines including IL-1 (3, IL-6 and TNF-a. This condition is 

characterised by abnormally low weight resulting from the depletion of host adipose 

tissue and skeletal muscle mass, coupled with the malnutrition of the patient due to the 

induction of anorexia and/or decreased food intake.
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Increased IL-1 p serum levels are associated with the anorexic component of cachexia. 

IL-1 p induces the production of corticotropin-releasing hormone (CRH) in the 

hypothalamus, whilst suppressing the actions of the appetite stimulant neuropeptide Y 

(NPY) by stimulating expression of the hormone leptin, which blocks NPY release. 

Hence IL-1 (3 induces a negative feedback effect disrupting the NPY signalling pathway, 

resulting in the long-term inhibition of food intake (Tisdale, 2002).

IL-6

Increased serum levels of IL-6 are associated with poor prognosis of patients with 

gastric, prostate, ovarian and breast cancers and renal cell carcinoma (Chung & Chang, 

2003). IL-6 is also elevated in HCC patients, with males having higher serum 

concentrations than females. Evidence from rodent models suggest that IL-6 is a 

gender-specific risk factor for HCC, such that oestrogens mediate the inhibition of IL-6 

production by hepatic Kupffer cells, via interaction with the IL-6 expression activators 

NFkB and CCAAT-enhancer-binding protein p, effectively reducing the risk of HCC 

development in females (Sander et al, 2007).

Serum IL-6 is also elevated in CRC patients (Ito & Miki, 1999), where it may be 

involved in malignant transformation and tumour progression (Chung & Chang, 2003). 

Furthermore, IL-6 levels are significantly higher in CRC patients with lymph node and 

liver metastases than in patients without metastases, indicating that serum IL-6 levels 

reflect the disease status of CRC patients (Chung & Chang, 2003).

Production of the soluble receptor of IL-6 (slL-6R) is also elevated during the 

pathogenesis of colon cancer (Atreya & Neurath, 2005). This may be due to the up- 

regulation of a disintegrin and metallogroteinase 17 (ADAM17; Section 1.6.4) in colon 

cancer, which is known to release slL-6R from the cell membrane (Becker et al, 2004). 

The combined effect of elevated IL-6 and slL-6R is the increased formation of IL-6-slL- 

6R complexes, which interact with the membrane protein glycoprotein 130 (gp130) and 

initiate the Janus kinases/signal transducer and activators of transcription (JAK/STAT) 

trans-signalling pathway that induces the increased expression and nuclear 

translocation of the cytoplasmic transcription factor STAT3 (Kishimoto et al, 1995; 

Heinrich et al, 2003). IL-6 treatment has been shown to induce the activation of STAT3 

in primary hepatocytes and human hepatoma cells, which is likely to be due to the high 

levels of gp130 protein on hepatocytes (Gao, 2005).

STAT3 activates the transcription of a number of genes that are involved in the 

progression of the cell cycle and cellular proliferation and differentiation, including 

cyclin D1, c-myc, Jun B and c-Jun, anti-apoptotic genes such as bcl-xl and bcl-2, and 

acute-phase proteins, such as C-reactive protein and serum amyloid A (Atreya &
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Neurath, 2005; Gao, 2005). Although the synthesis of hepatic acute-phase proteins are 

increased due to elevated IL-6 concentrations in CRC liver metastases patients, overall 

hepatic protein synthesis is reduced (Fearon et al, 1991).

The prolonged increase in serum IL-6 levels has been associated with the weight loss 

component of cachexia, particularly in renal cell carcinoma patients. IL-6 can directly 

up-regulate pathways of protein degradation, specifically the 26S proteasome and 

lysosomal proteolytic pathways, leading to protein degradation in skeletal muscle 

(Tisdale, 2002).

TNF-a

TNF-a is over-expressed in ovarian, breast, prostate, bladder and colorectal cancers, 

lymphomas and leukaemias, and is often associated with the expression of IL-1 p and 

IL-6 (Balkwill & Mantovani, 2001). Biopsy tissue from CRC patients indicate that 

messenger RNA (mRNA) for TNF-a is present in these tumours, but its expression is 

not limited to malignant tissue, as adjacent normal tissue can express a higher level of 

this cytokine (Naylor et al, 1990). ADAM17 is known to be the major mediator of TNF-a 

release from its position on the cell membrane (Section 1.6.3), and is often up- 

regulated in these tumour types (Wajant et al, 2003).

The role of TNF-a in cancer is not clear, but it can both stimulate and inhibit tumour 

formation (Sturm et al, 2003). Being a major mediator of inflammation, TNF-a can 

induce cell death at the site of inflammation and destroy tumour blood vessels when 

expressed locally in high doses. Conversely, TNF-a can induce angiogenic factors to 

aid tumour progression and dissemination (Balkwill & Mantovani, 2001; Naylor et al, 

1990). Following liver injury Kupffer cells become activated and begin to secrete TNF-a, 

which stimulates the normally quiescent hepatocytes to proliferate (Cosgrove et al, 

2008).

Over 30 TNF receptor (TNF-R) superfamily members have been identified and can be 

separated into death domain (DD)-containing and DD-absent receptors (Gaur & 

Aggarwal, 2003). The binding of TNF-a to the receptor TNF-R1, also known as death 

receptor (DR) 2, is able to signal cell death via the cytoplasmic domain of the receptor 

and subsequent recruitment of the DD-containing adaptor protein fas-associated 

protein with death domain (FADD) and caspase-8 and -10 (Wajant et al, 2003).

Similarly, the TNF superfamily member fas ligand (fasL) may regulate HSC survival via 

its association with fas receptor (fasR). HSCs express fasR or DR1 and respond to 

fasL by undergoing apoptosis. HSCs express fasL itself, which is cleaved by MMP-7 to 

yield a soluble cell signal, and may act in an autocrine manner to regulate their own
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survival (Jamil & Iredale, 2006). FasL can also bind to decoy receptor (DcR) 3, 

rendering fasL inactive (Sheikh & Fornace, 2000).

However, the role of TNF-a in cellular apoptosis induction in vivo appears to be 

eclipsed by its role in the inflammatory process (Wajant et al, 2003). For example TNF- 

a, previously known as cachectin, activates skeletal muscle protein degradation in 

humans with cachexia syndrome, possibly by increasing ubiquitin gene expression in 

target cells. TNF-a also has the potential to induce catabolism of adipose tissue, a 

characteristic shared with IL-1 p. Similarly, TNF-a, like IL-1 p, is associated with the 

increased production of CRH resulting in suppression of food intake.

Furthermore, elevated serum levels of TNF-a in cancer patients correlates with a lower 

bitterness detection threshold than in control subjects. This may be a causative factor 

in the anorexic component of cachexia development, as altered taste perception is 

commonly associated with advanced cancer sufferers (Tisdale, 2002).

1.6 Metalloproteinases

Proteolytic enzymes or proteases occur naturally in all organisms and have many 

functions within the human body, including the facilitation of normal physiological 

invasion via the remodelling of the ECM environment; examples of which include 

wound repair, vasculogenesis and axon outgrowth (Chang & Werb, 2001). 

Tumourgenic invasion utilises a similar mechanism to physiological invasion, and 

involves many of the same proteases. There are currently five classes of proteases, i) 

serine, ii) aspartate, iii) cysteine, iv) threonine, and v) metallo- proteases, with 

members of each class implicated in the process of tumour invasion and metastasis 

(Table 1.2) (Nyberg et al, 2006).

Metalloproteinases are a class of protease enzymes found in bacteria, fungi and higher 

organisms, and are subdivided into two groups, i) exopeptidases, and ii) 

endopeptidases. Of particular interest in the pathological invasion of cancer cells are 

the endopeptidases, which catalyse the hydrolysis of non-terminal peptide bonds, 

especially those with hydrophobic residues (Creighton, 1993). Endopeptidases differ 

widely in sequence and structure, but most contain a catalytically active zinc atom, and 

as such belong to the metzincin superfamily of zinc-dependent proteases.

The metzincin superfamily is comprised of four subfamilies, the astacins, the matrixins

(MMPs), the adamalysins (snake venom metalloproteinases (SVMPs) and ADAMs),

and the serralysins (large bacterial proteinases) (Kaushal & Shah, 2000).

Metalloproteinases are important in many aspects of normal development and

physiology, ranging from cell proliferation, differentiation and remodelling of the ECM to

vascularisation and cell migration (Chang & Werb, 2001). For these processes to
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Table 1.2: Protease families involved in tumour invasion and metastases. (Adapted 

from Nyberg et al, 2006).

Cathepsins G & E Matrixins: Aspartate proteases:

MMPs Cathepsins D & E

Chymase Adamalysins: Cysteine proteases:

ADAMs, Cathepsin B, H, K, L, M, N, O & S

ADAMTSs &

SVMPs

Chymotrypsin Astacins Threonine proteases

Elastase Serralysins

Membrane-bound serine

proteases, e.g.

Matriptase

Plasmin

Plasminogen activators

(T umour-associated)

trypsins

T ryptase

Human tissue kallikreins
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proceed correctly there is a delicate balance between MP action and their inhibition by 

endogenous TIMPs (Ray & Stetler-Stevenson, 1994); when this regulation is disrupted 

metalloproteinases can contribute to the pathology of disease, for example rheumatoid 

arthritis and cancer (Rundhaug, 2003; Zlokovic, 2006).

Crossing of the basement membrane by malignant cells during metastasis is mediated 

by a number of different proteolytic enzymes. The dysregulated expression of ADAMs 

and ADAMTSs has been reported in numerous human cancers, where, in many cases, 

they are implicated as positive regulators of cancer progression. The roles of the 

primary ECM remodelling enzymes, the MMPs, have been extensively reviewed in 

relation to cancer (Curran & Murray 1999; Duffy et al, 2000).

Proteolytically active ADAMs act as ectodomain sheddases, which release extracellular 

regions of membrane-bound proteins, e.g. adhesion molecules, growth factors, 

cytokines, chemokines and receptors, and certain ADAMTSs breakdown ECM PGs, 

e.g. aggrecan and versican (Section 1.6.7). Through these combined actions they are 

able to sculpt the tumour microenvironment and modulate key processes involved in 

cancer progression, including cell proliferation, migration and angiogenesis. Members 

of both groups of proteins can also act to inhibit or slow cancer progression; ADAMs 

can interact with specific integrins to elicit inhibitory effects on cancer dissemination, 

and certain ADAMTSs possess anti-angiogenic activity, which prevents the increase of 

tumour size.

1.6.1 A Disintegrin And Metalloproteinase (ADAM) Proteins

ADAMs are multi-domain, transmembrane proteins, forming one of four distinct 

subfamilies of the metzincin zinc-dependent protease superfamily, the adamalysins 

(Kaushal & Shah, 2000). They are expressed in a wide range of animal species, 

tissues and cell types, and have been implicated in sperm-egg fusion, 

spermatogenesis, neutrophil infiltration, platelet aggregation, neurogenesis, and 

cachexia (Condon et al, 2001), as well as a number of pathological conditions including 

Alzheimer’s disease (Deuss et al, 2008), multiple sclerosis (Kieseier et al, 2003), and 

cancer (Rocks et al, 2008).

Over 29 ADAM proteins have been identified in humans to date (Roy et al, 2006), and 

these can be broadly grouped according to their distribution and functions. The first 

group termed the “ectodomain sheddases” (Nath et al, 2001) encompass ADAMs that 

are distributed throughout the body and have an active metalloproteinase domain 

(ADAMs 1, 8, 9, 10, 12, 15, 17, 19, 28, and 33). These enzymes are involved in the 

proteolysis of the ectodomains of membrane-anchored cytokines, growth factors and 

their receptors (Condon et al, 2001; Yamamoto et al, 1999), allowing cells to alter
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responsiveness to their environment. The second group (ADAMs 11, 22 and 23) are 

predicted to have an inactive metalloproteinase domain, effectively limiting their 

function to adhesion/de-adhesion and cell fusion. The third group contains 13 ADAM 

proteins (ADAMs 2, 3, 5, 6, 7, 16, 18, 20, 21, 24, 25, 26, 29, 30 and 32), which are 

exclusively expressed in the male gonads (testis and epidermis), where some have a 

role in sperm maturation (Tousseyn et al, 2006). Of these ADAMs 20, 21 and 30 have 

known proteolytic activity and ADAMs 2, 3, 7 and 32 have a predicted inactive 

metalloproteinase domain.

1.6.2 ADAM domain structure

ADAM proteins are -750 amino acids in length and have a characteristic 7 domain 

structure (Figure 1.4), namely, the prodomain, metalloproteinase, disintegrin-like, 

cysteine-rich, EGF-like, transmembrane and cytoplasmic tail domains (Primakoff & 

Myles, 2000). In addition, ADAM proteins are synthesised with an N-terminal signal 

peptide to direct them into the secretory pathway (Seals & Courtneidge, 2003).

Prodomain

All ADAM proteins are synthesised as zymogens with the approximately 200 amino 

acid prodomain located at their N-terminus, which acts to maintain the latent, inactive 

state of the immature protein (Seals & Courtneidge, 2003). Activation of ADAM 

zymogens is facilitated in the trans-Golgi network by furin-like proprotein convertases, 

which remove the prodomain at a furin recognition site (RxxR sequence) (single letter 

amino acid code x is for any other amino acid), located between the prodomain and the 

metalloproteinase domain (Schlondorff et al, 2000). Most ADAM proteins are thought to 

be activated by this process; however notable exceptions are ADAM8 and ADAM28 

which can undergo autocatalytic activation (Schlomann et al, 2002; Howard et al, 2000).

Active ADAM enzymes have an essential zinc atom in their catalytic domain with which 

a conserved cysteine residue located within the prodomain preferentially interacts. This 

cysteine-zinc intramolecular complex blocks the active site resulting in an inactive 

enzyme conformation (Van Wart & Birkedal-Hansen, 1990). A cysteine switch occurs 

upon activation of the enzyme (furin cleavage), which breaks the cysteine-zinc 

interaction and results in the formation of a mature length protein with an unobstructed, 

active catalytic site (Rocks et al, 2008).

The prodomain has a secondary function in the proper folding of ADAM proteins, in 

particular the metalloproteinase domain, as ADAM proteins synthesised without a 

prodomain are proteolytically inactive (Loechel et al, 1999; Milla et al, 1999; Anders et 

al, 2001).
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ADAM

Prodomain Metalloproteinase Disintegrin-like Cysteine-rich EGF-like TM Cytoplasmic

Furin-like (ADAM 15)

ADAMTS

Prodomain Metalloproteinase Disintegrin-like TSR Cysteine-rich Sp TSR TSR

X
Furin-like

Figure 1.4: Domain structures of ADAM and ADAMTS proteinases.

ADAM proteins consist of seven common domains, namely the prodomain, 

metalloproteinase, disintegrin-like, cysteine-rich, epidermal growth factor (EGF) -like, 

transmembrane (TM) and cytoplasmic tail domains. ADAM15 is the only ADAM protein 

with the RGD motif characteristic of true disintegrin proteins. ADAMTS proteins also 

contain the prodomain, metalloproteinase, disintegrin-like and cysteine-rich domains, 

but remaining domains are comprised of variable numbers of thrombospondin repeats 

(TSRs) and a spacer domain (Sp). They may also contain additional domains unique to 

individual ADAMTSs, e.g. gon and CUB (not shown). Most ADAM and ADAMTS 

zymogens are processed by furin-like proprotein convertases at a furin recognition site 

(furin-like), and converted to mature length proteins.
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Furthermore, the prodomain is necessary for proper transit of ADAM proteins through 

the secretory pathway, as a form of the soluble splice variant of ADAM 12 (ADAM12-S) 

lacking the prodomain is retained in the early endomembrane system. However, when 

both the prodomain and metalloproteinase domains were absent from the protein 

constructs, the protein was secreted from the cell (Loechel et al, 1999). Taken together 

these data suggest that the prodomain ensures correct folding of the metalloprotease 

domain during synthesis, allowing proper transit through the secretory pathway (Seals 

& Courtneidge, 2003).

Metalloproteinase Domain

The metalloproteinase domain of ADAM proteins (~200 amino acids) contains the 

active site consensus sequence HExxHxxGxxHD (M§zyk et al, 2003). A tetrahedral co­

ordination sphere is formed by the three histidine residues binding an essential zinc ion, 

and the glutamic acid residue acting as a catalytic support for the required water 

molecule (Fox & Bjarnason, 1996). The glycine residue allows a turn in the peptide 

backbone, which together with an essential downstream methionine residue located in 

a methionine-turn motif (Seals & Courtneidge, 2003) completes the active site structure 

and ensures that the hydrolytic processing of proteins can occur. Members of the 

metzincin superfamily have significant conservation within their catalytic sites, but 

characteristic structural differences of individual proteins may determine their specificity 

for substrates and/or proteinase inhibitors (Stocker et al, 1995). Alterations in the active 

site consensus sequence of a number of ADAM proteins e.g. ADAMs 2, 3, 22 and 23 

(Tousseyn et al, 2006) renders them proteolytically inactive (Rocks et al, 2008).

Disintegrin-Like Domain

The disintegrin-like domain of ADAM proteins (60 to 90 amino acids) has sequence 

similarity to the SVMPs. But unlike SVMPs, ADAM proteins are not true disintegrin 

proteins, as they usually lack an RGD consensus sequence (Fox & Bjarnason, 1996). 

This motif allows disintegrins to interact with integrins from different cell systems (Lu et 

al, 2007), including platelet integrins (Seals & Courtneidge, 2003). ADAM15 is the only 

ADAM protein known to have an RGD-motif (Lu et al, 2007); the remainder contain an 

xCD-motif in their disintegrin-like domains, which has also been identified as an 

integrin-binding motif (McLane et al, 1998). Additionally, a number of ADAM proteins, 

e.g. ADAMs 1, 2, 3, 9 & 12, contain an Rx6DEVF sequence in this domain, which binds 

readily to a9pi integrins. ADAM10 and 17 lack this aspartic acid containing sequence 

and consequently cannot bind a9(31 integrins (Eto et al, 2002).
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Cysteine-Rich Domain

Little is known about the function of the cysteine-rich domain of ADAM proteins (-160 

amino acids), but in ADAM12 for example, it interacts with cell surface HSPGs, such as 

syndecan, to mediate cell-cell or cell-matrix attachment (Iba et al, 2000). Interestingly, 

the disintegrin-like domain of ADAM12 is not involved in cell adhesion (Iba et al, 1999), 

suggesting that the cysteine-rich domain compensates for its dysfunctional disintegrin- 

like domain. The cysteine-rich domains of ADAM1 and ADAM 12 contain a putative 

fusogenic peptide suggesting a role in cell-cell fusion (Huovila et al, 1996); however at 

this time this function remains hypothetical.

Epidermal Growth Factor (EGF) -Like Domain

The 40 amino acid EGF-like domain of ADAM proteins contains six cysteine residues, 

and may allow ADAM proteins to interact with chaperones involved in biosynthesis (Lu 

et al, 2007). Little else is known of the functions of this domain.

Transmembrane Domain

The majority of ADAM proteins are type I membrane proteins, and as such are 

anchored to the cell surface via a transmembrane domain located near the C-terminus 

of the protein. Proteins present in this location are mature length proteins, many of 

which are catalytically active. However, some ADAM proteins (e.g. ADAMs 11, 12, 17 

& 28) have alternative splice forms, which are altered upstream of the transmembrane 

domain and are consequently present as soluble, secreted forms (Lu et al, 2007).

Cytoplasmic Tail Domain

The cytoplasmic tail domain of ADAM proteins is highly variable in both length (40 to 

250 amino acids) and sequence, and contains specialised motifs with hypothesised 

involvement in the signal transduction between the interior and exterior of the cell and 

vice versa. The most frequently occurring motif in this domain, PxxP, acts as a binding 

site for Src homology (SH) 3 domain-containing proteins, such as signalling adapters 

and enzymes, and allows protein-protein interactions at a site other than a catalytic site. 

Many human ADAMs contain this motif, including ADAMs 7, 8, 9, 10, 12, 15, 17, 19, 22, 

29 and 33 (Seals & Courtneidge, 2003; Lu et al, 2007).

Some ADAM proteins, e.g. ADAM12 and 15, also contain potential serine-threonine 

and/or tyrosine kinase phosphorylation sites in their cytoplasmic tails (Seals & 

Courtneidge, 2003). These sites may function as ligands for SH2 domain-containing 

binding proteins, in addition to providing an adaptor function allowing the assembly of 

protein complexes required for ADAMs to execute their functional activity (Lu et al,

2007).
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1.6.3 ADAM 17 Functions

ADAM 17 was first identified as the major proteinase responsible for the processing of 

membrane-bound pro-TNF-a into its soluble active form (TNF-a), from which it gained 

its alternative name TNF-a converting enzyme (TACE) (Black et al, 1997). Since then 

the role of ADAM 17 in the proteolytic cleavage of the ectodomain of a wide range of 

membrane-bound precursors has been extensively studied (Sunnarborg et al, 2002). 

These substrates include a number of growth factors, cytokines, receptors and 

adhesion molecules, as summarised in Table 1.3 (M§zyk et al, 2003; Lee et al, 2003; 

Plumb et al, 2006; Edwards et al, 2008).

ADAM17 can be up-regulated in response to various cytokines, e.g. IL-ip, TNF-a, 

TGF-(31 and IFN-y (Roy et al, 2006), with TGF-pi and TNF-a inducing ADAM17 

activation in hepatocytes, which releases epidermal growth factor receptor (EGFR) 

ligands to activate EGFR signalling (Murillo et al, 2005). The up-regulation of ADAM17 

has been associated with pathologies such as cancer (Vazquez et al, 1999; Ringel et al, 

2006; Wiseman & Werb, 2002), rheumatoid arthritis (Yamamoto et al, 1999; 

Schlondorff et al, 2000) and multiple sclerosis (Plumb et al, 2006).

ADAM17 has a well established function in the EGFR signalling pathway, which has a 

critical role in normal development (Sahin et al, 2004). This signalling pathway has also 

been identified in the development and progression of a number of cancers (Fischer et 

al, 2003; Borrel-Pages et al; 2003), including ovarian cancer development (Tanaka et 

al, 2005), glioma cell invasiveness (Zheng et al, 2007) and HCC growth and 

invasiveness (Ding et al, 2004).

EGFR signal trans-activation is primarily achieved via ectodomain shedding of the 

EGFR ligand membrane precursors in part by ADAM17 (Sunnarborg et al, 2002). The 

direct treatment of EGFR by ligand binding results in the dimerisation and subsequent 

phosphorylation of the two receptor molecules. This creates phosphotyrosine docking 

sites to activate intracellular signalling cascades, such as mitogen-activated protein 

kinases (MAPKs), the PI3-K/Akt pathway and modulation of ion channels (Fischer et al,

2003).

Membrane-bound EGFR ligands are also capable of EGFR signalling; however this 

can only occur in an autocrine or juxtacrine manner. The production of soluble EGFR 

ligands allows the additional signalling modes of paracrine or endocrine signalling to 

occur (Sahin et al, 2004).

ADAM 17 also possesses a-secretase activity, as do ADAM9 and ADAM 10, which can 

increase cellular proliferation via the cleavage of amyloid precursor protein (APP) 

(Section 1.6.4). However the down-regulation of ADAM17 by siRNA does not affect
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cellular proliferation of pancreatic ductal adenocarcinoma (PDAC) cells in vitro, but 

their invasive behaviour is notably reduced (Ringel et al, 2006).

1.6.4 AD AM 17 in Cancer

Many ADAM proteins, including ADAM17, have been implicated in the development 

and/or progression of cancer (Table 1.4).

ADAM17 and Cancer Cell Proliferation

Physiological cell proliferation is tightly regulated and responsive to the specific needs 

of the human body. However, when these controls become defective in a cell, it can 

grow and divide in an unregulated manner forming a mass of cells with no physiological 

function, a tumour (Lodish et al, 2000). The speed at which primary and metastatic 

tumours develop depends largely on the rate of cell proliferation within the tumour, and 

the rate of cell death (Begg & Steel, 2002).

The over-expression of certain proteolytically active ADAM proteins has been 

associated with the increased proliferative capacity of a number of tumour types, via 

the cleavage of growth factors or cell surface proteins, examples of which include 

ADAM9 (Arribas & Bech-Serra, 2006), 10, 12 and 17 (Rocks et al, 2008). In particular, 

ADAM17 influences tumour cell proliferation when over-expressed in breast (Wiseman 

& Werb, 2002), ovary (Tanaka et al, 2005), kidney (Roemer et al, 2004), colon 

(Vazquez et al, 1999), prostate (Karan et al, 2003) and primary HCC (Itabashi et al, 

2008).

ADAM 17 has a-secretase activity (Asai et al, 2003), and as such can shed a non- 

amyloidogenic fragment of APP from the cell surface generating soluble APP (sAPP); 

ADAM9, 10 (Lammich et al, 1999), and 19 (Tanabe et al, 2007) also possess a- 

secretase activity. The enhanced secretion of sAPP in explant cultures of anaplastic 

astrocytomas and glioblastomas has been shown to correlate to the malignancy of 

tumours (Nakagawa et al, 1999). This may be due to the proliferation-promoting effect 

of sAPP, as demonstrated in skin keratinocyte (Hoffmann et al, 2000), rat thyroid 

epithelial (Pietrzik et al, 1998) and colon carcinoma (Meng et al, 2001) cell lines. Hence 

the over-expression of ADAMs with a-secretase activity by tumours, in conjunction with 

sAPP could result in the increased proliferation of tumour cells.

However, Ko et al (2007) have demonstrated that an ADAM 10 anti-sense 

oligonucleotide reduced both the expression of this enzyme and the growth of an oral 

squamous cell carcinoma cell line OECM1, which ordinarily has elevated expression of 

APP and ADAM10, without changes in sAPP. This might suggest mechanisms that do 

not involve sAPP in the cell growth-promoting activity of a-secretases.

33



Table 1.4: Aberrant ADAM protein expression in human cancers and their functions.■
ADAM8 Yes Promotes cell migration 

and invasion.

Brain (Wildeboer et al, 2006), 

Kidney (Roemer et al, 2004), 

Lung (Ishikawa et al, 2004), 

Pancreas (Valkovskaya et al, 

2007),

Prostate (Fritzsche et al, 2006)

ADAM9 Yes Promotes cell 

proliferation, adhesion 

and invasion.

Breast (O'Shea et al, 2003), 

Kidney (Fritzsche et al, 2008), 

Liver (Tannapfel et al, 2003), 

Lung (Shintani et al, 2004), 

Pancreas (Grutzmann et al,

2004),

Skin (Zigrino et al, 2005), 

Stomach (Carl-McGrath et al,

2005)

ADAM10 Yes Promotes cell growth, 

proliferation and 

migration.

Colon (Gavert et al, 2007),

Oral cavity (Ko et al, 2007), 

Ovary, Uterus (Fogel et al, 2003), 

Prostate (McColloch et al, 2004), 

Stomach (Yoshimura et al, 2002)

ADAM12

...................

Yes Promotes cell growth, 

proliferation and invasion. 

a4(31 binding inhibits cell 

migration.

Bladder (Frohlich et al, 2006), 

Bone (Tian et al, 2002),

Brain (Kodama et al, 2004), 

Breast, Colon (Iba et al, 1999), 

Liver (Le Pabic et al, 2003), 

Lung (Rocks et al, 2006), 

Stomach (Carl-McGrath et al, 

2005)

* Up-regulated expression of ADAM proteins in cancers, unless otherwise stated. 

I  Down-regulated expression.
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Table 1.4 (continued): Aberrant ADAM protein expression in human cancers and their 

functions.

ADAM15 Yes Promotes cell growth and 

angiogenesis. aVp3 

binding inhibits cell 

migration.

Breast, Prostate (Kuefer et al, 

2006),

Lung (Schutz et al, 2005), 

Ovary (Nath et al, 2001), 

Stomach (Carl-McGrath et al, 

2005)

ADAM17 Yes Promotes cell growth, 

proliferation and 

angiogenesis. a5p1 

binding inhibits cell 

migration.

Brain (Zheng et al, 2007),

Breast (Wiseman & Werb, 2002), 

Colon (Vazquez et al, 1999), 

Kidney (Roemer et al, 2004), 

Liver (Itabashi et al, 2008),

Ovary (Tanaka et al, 2005), 

Pancreas (Ringel et al, 2006), 

Prostate (Karan et al, 2003)

ADAM19 Yes Promotes cell 

proliferation. a5{31 or 

a9p1 binding inhibits cell 

migration.

Brain (Wildeboer et al, 2006), 

Kidney (Roemer et al, 2004)

ADAM23 No Promotes cell growth and 

migration.

Promotes cell migration.

Brain (Cal et al, 2000)

I  Breast (Costa et al, 2004)

ADAM28 Yes Promotes cell 

proliferation.

Breast (Mitsui et al, 2006), Kidney 

(Roemer et al, 2004), Lung 

(Ohtsuka et al, 2006)

* Up-regulated expression of ADAM proteins in cancers, unless otherwise stated. 

I  Down-regulated expression.
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ADAM17 could also increase tumour cell proliferation via the release of angiotensin II 

(Ang II; an EGF-like ligand), which triggers EGFR signal transactivation (Itabashi et al,

2008). Ang II has a fundamental role as a vasoconstrictor controlling cardiovascular 

function and renal homeostasis, but also acts as a potent growth factor of vascular 

smooth muscle cells and certain cancer cell lines (Itabashi et al, 2008). Similarly, 

amphiregulin (another EGFR ligand) is released by ADAM17 (Sahin et al, 2004) and 

enhances proliferation of cancer cells (Rocks et al, 2008).

ADAM17 and Cancer-Associated Angiogenesis

The process of angiogenesis, whereby new blood vessels are formed from pre-existing 

vasculature, appears to provide the primary form of vascularisation within a tumour and 

is the rate-limiting step in cancer progression (Handsley & Edwards, 2005). 

Angiogenesis has two clear functions in cancer progression; the first and most 

apparent role in this pathology is to provide the tumour with its own blood supply 

(Carmeliet & Jain, 2000). The new vascular network supplies nutrients and oxygen 

throughout the tumour mass, enabling it to grow beyond the critical 2mm sphere of an 

avascular tumour (Lodish et al, 2000). The second, more subtle role for neoplastic 

angiogenic vasculature is to provide a route for dissemination of tumour cells to 

different sites of the body via the process of metastasis (Handsley & Edwards, 2005).

An increasing number of ADAM proteins have been linked to angiogenesis, at least 

indirectly, with potential roles in the modulation of angiogenic factors and the release of 

membrane-bound angiogenic inhibitors (Handsley & Edwards, 2005).

ADAM17 is over-expressed in a number of human cancers, including PDAC (Ringel et 

al, 2006), breast (Wiseman & Werb, 2002) and colon carcinomas (Vazquez et al, 1999), 

where a role as a positive regulator in tumour-associated angiogenesis has been 

established (Blanchot-Jossic et al, 2005).

The combined approach of immunohistological and mRNA analysis applied by 

Blanchot-Jossic et al (2005) showed that ADAM 17 is over-expressed in both its pro 

and active forms in neoplastic and ECs within primary colon carcinomas relative to 

paired normal colonic mucosa. They also demonstrated that phosphorylated EGFR (P- 

EGFR) was significantly up-regulated in most colon carcinomas compared with paired 

normal mucosa. Although the relatively weak over-expression of P-EGFR did not 

correlate with ADAM17 over-expression, EGFR protein was co-expressed with 

ADAM17 in cancer cells and ECs present in the tumour mass.

This indicated that ADAM17-mediated EGFR activation is involved in tumour-mediated 

angiogenesis, as the downstream signalling cascade of EGFR is involved in a number 

of essential angiogenic processes such as cell migration, adhesion and proliferation.
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However, the ADAM family of proteins show redundancy in substrate specificity, and 

ADAMs 9, 10, 12, and 15 have also been shown to shed EGFR ligands from the cell 

surface in response to stimulants (Sahin et al, 2004), hence any of these may also be 

capable of EGFR-mediated angiogenesis (Roy et al, 2006).

Further evidence of ADAM protein involvement in the positive regulation of 

angiogenesis was gleaned using in vitro models of angiogenesis. The human 

mammary epithelial cell line HMEC-1 expresses both ADAM17 and ADAM15, and 

treatment with the ADAM-specific inhibitor GL129471 inhibited the major processes 

involved in angiogenesis, namely migration, adhesion and proliferation, and the 

formation of capillary tubules (Trochon et al, 1998). The same angiogenic responses 

could also be inhibited in ECs by blocking the interaction between the disintegrin-like 

domain of ADAM15 and the angiogenic integrin a5p1 in humans (Trochon-Joseph et al,

2004).

ADAM 10 and ADAM 17 are involved in the ligand-dependent activation of the Notch 

signalling pathway. This is a two-step process of controlled proteolysis in which the first 

cleavage is performed by ADAM10 or ADAM17 (Huovila et al, 2005). The involvement 

of Notch in cancer depends on the cellular context and it has been proposed that it can 

act either in a tumour promoting or a tumour suppressive fashion. Oncogenic signals of 

Notch have, for example, been reported in breast epithelium, melanocytes and T-cell 

acute lymphoblastic leukaemia (Stylianou et al, 2006). Through its effects on gene 

expression, cancer processes modulated by Notch include suppression of p53, 

angiogenesis and cell adhesion (Lefort et al, 2007). However, it has also been reported 

that conditional Notch 1 knockout mice develop cutaneous lesions that resemble basal 

cell carcinoma (Lefort et al, 2007).

ADAM17 and Cancer Cell Adhesion and Migration

Cell migration is a complex sequential process necessary for physiological 

development, tissue repair and regeneration. It is also the process that drives the 

metastasis of cancer cells. Cell migration is aided by the integrin family of adhesion 

molecules, which promote stable interactions between cells and the ECM, as well as 

functioning as signalling molecules initiating intracellular signals that regulate certain 

cell behaviours including cell migration (Arribas & Bech-Serra, 2006).

A number of ADAM proteins interact with cell surface integrins via their disintegrin-like 

domain, and it is possible that these interactions influence cell migration during cancer 

progression. Evidence suggests that the interaction of ADAM17 with a5p1 integrin can 

inhibit Chinese hamster ovary (CHO) cell migration; other examples of this include the
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interactions of ADAM12 with a4p1, ADAM15 with aVp3, and ADAM19 and ADAM33 

with both a5p1 and a9p1 (Arribas & Bech-Serra, 2006; Huang et al, 2005).

The mechanisms by which these inhibitory effects are mediated may vary, but are as 

yet poorly understood. However, ADAM 15 over-expression in ovarian cancer disturbed 

the pro-migratory interaction of aVp3 integrin with vitronectin, which resulted in reduced 

cellular adhesion to vitronectin and the consequent reduction in random cellular motility 

(Nath et al, 2001).

Conversely, other ADAM proteins can promote cell migration via integrin interaction, 

and may therefore aid tumour cell invasion. Activated HSCs, commonly known as liver 

stromal cells, secrete the soluble splice variant of ADAM9 (ADAM9-S), which can 

localise to the surface of colon carcinoma cells via an interaction between a6p4 and 

a2p1 integrins on the tumour cell and the disintegrin domain of ADAM9-S. Its 

localisation to the cell surface can promote the invasion of colon carcinoma cells In 

vitro by the degradation of laminin and other ECM components (Mazzocca et al, 2005), 

but further investigation is required to determine whether this effect is also observed in 

vivo. This highly invasive phenotype has also been demonstrated in a variety of cell 

lines (Arribas & Bech-Serra, 2006).

Interestingly, recent crystallographic studies have revealed that the disintegrin domain 

of ADAMs, which supposedly interacts with integrins, is inaccessible for protein binding. 

The hyper-variable region of the cysteine-rich domain has been proposed as a 

potential protein-protein association region (Takeda et al, 2006).

1.6.5 A Disintegrin and Metalloproteinase with Thrombospondin Motif (ADAMTS) 

Proteins

ADAMTSs are multi-domain, extracellular proteins, belonging to the same subfamily of 

metzincin proteins as the ADAMs, the adamalysins (Kaushal & Shah, 2000). Although 

they are secreted proteinases, they usually bind to ECM components, such as HSPGs 

(Section 1.6.7) (Porter et al, 2004). There are 19 ADAMTSs, numbered 1-10 and 12-20 

(ADAMTS-11 is the same protein as ADAMTS-5) with known functions in ECM 

processing, organogenesis, haemostasis (Porter et al, 2004), and angiogenesis (Porter 

et al, 2005). They can be divided into four sub-divisions depending upon their structural 

characteristics and activities (Jones & Riley, 2005).

The first division contains ADAMTS-1, -4, -5, -8, -9, -15 and -20, which possess the 

ability to cleave members of hyalectan or lectican family of large aggregating PGs, 

including aggrecan, versican, neurocan, and brevican (Bandtlow & Zimmermann, 2000), 

and are therefore known as hyalectanases. These enzymes can also be classed as 

glutamyl endopeptidases (GEPs), as they cleave proteins at the carboxyl end of
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glutamate residues. All ADAMTSs in this division can cleave aggrecan, with the 

exception of ADAMTS-20, which originally led them to be known as aggrecanases.

The second group containing ADAMTS-2, -3 and -14, are known as pro-collagen N- 

propeptidases; ADAMTS-2 is able to cleave type I, II and III procollagens, ADAMTS-3 

processes type II procollagen peptides, and ADAMTS-14 (a homologue of ADAMTS-2) 

functions as the major type I procollagen N-propeptidase in tendons.

The third group contains only ADAMTS-13; this proteinase is responsible for the 

cleavage of the large multimeric von Willebrand factor (vWF) precursor. The remaining 

ADAMTS proteins are grouped into a category known as 'others', which can be 

subgrouped into four pairs based on their structural features; these are ADAMTS-6 and 

-10, ADAMTS-7 and -12, ADAMTS-16 and -18, and ADAMTS-17 and -19.

1.6.6 ADAMTS Domain Structure

ADAMTSs share considerable structural similarities with ADAMs with four domains of 

similar type, the prodomain, metalloproteinase domain, disintegrin-like domain and 

cysteine-rich domain (Section 1.6.2). ADAMTSs also contain additional characteristic 

domains, including thrombospondin type-l repeats (TSRs) (Tucker, 2004), a spacer 

domain and several C-terminal domains unique to particular ADAMTSs (Figure 1.4).

Prodomain

Like ADAMs, ADAMTSs are synthesised as zymogens, however after proteolytic 

processing at the N-terminus to remove the signal sequence and prodomain, they are 

secreted from cells, indicating that the prodomain has a specific function in the 

intracellular retention of the inactive ADAMTSs. Whilst for most ADAMTSs the removal 

of the prodomain is an important step in their activation, ADAMTS-13 is enzymatically 

active when this region is still attached (Majerus et al, 2003).

As for ADAMs, the main enzyme involved in the removal of the prodomain is furin. 

However, the prodomain of ADAMTS-4 can be removed in a cell line that does not 

express furin (Wang et al, 2004); therefore other enzymes may also be involved.

Metalloproteinase Domain

ADAMTSs possess a metalloproteinase domain with a zinc binding module of the 

sequence HExxHxxGxxHD similar to that in ADAM proteins, which is responsible for 

the proteolytic activity of these enzymes.

Disintegrin-Like Domain

The disintegrin-like domain of ADAMTSs is 25-45% similar to that of SVMPs, however

none of the ADAMTSs contain an RGD motif and their interactions with integrins have

not been reported (Kaushal & Shah, 2000).
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Cysteine-Rich Domain

The highly homologous cysteine-rich domain contains ten conserved cysteines 

(Kaushal & Shah, 2000), but little is known about its functional role.

Spacer Domain

The spacer domain is the least homologous of all the domains and it comprises an N- 

terminal part in which several hydrophobic amino acids are conserved and a C-terminal 

section which is highly variable.

ADAMTSs may also undergo C-terminal processing post-translationally within this 

domain, which can alter their localisation and substrate specificity. This controlled 

proteolysis has been shown for ADAMTS-1, ADAMTS-4, ADAMTS-8 and ADAMTS-9. 

The relationship between C-terminal processing, localisation and biological activity of 

ADAMTS-4 is well characterised. The conversion of the full-length 75 kDa form to 60 

kDa and 50 kDa species results in changes in the pattern of cleavage of aggrecan and 

the range of substrates degraded. Additionally, ECM binding is altered, such that the 

75 kDa isoform associates with ECM, whilst shorter forms with truncated spacer 

regions do not (Kashiwagi et al, 2004).

Thrombospondin Repeats (TSRs)

Sandwiched between the disintegrin-like and cysteine-rich domains is the central TSR, 

which is very similar in amino acid sequence in all ADAMTSs. Whereas the TSRs 

closer to the C-terminus differ much more in sequence, but can include a CVSTCG 

motif that binds to the CD36 cell surface receptor or a motif known to interact with 

sulphatide and heparin (Cal et al, 2002). Members of the ADAMTS family have a 

different number of C-terminal TSRs, e.g. ADAMTS-4 lacks a C-terminal TSR motif, 

while ADAMTS-9 and ADAMTS-20 have 14 C-terminal TSRs.

In several ADAMTSs the TSRs and spacer domain together are involved in the binding 

of ECM. Similarly, the TSR which precedes the spacer and cysteine-rich domain in 

ADAMTS-4 is important in its binding to sulphated GAGs linked to aggrecan (Cal et al, 

2002).

Unique C-Terminal Domains

Some ADAMTSs have unique C-terminal domains. ADAMTS -2, -3, -10, -12, -14, -17 

and -19 have a protease and lacunin (PLAC) domain (Somerville et al, 2004). 

ADAMTS-13 is characterised by the presence of two complement subcomponents 

C1r/C1 s/embryonic sea urchin protein Uegf (CUB) domains which also occur in 

proteases of the astacin family (a subfamily of the metzincins) (Zheng et al, 2001). The 

CUB domain is present in several extracellular and plasma membrane bound proteins.
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The long isoform of ADAMTS-9 and ADAMTS-20 have a gon domain that was 

originally discovered in an ADAMTS involved in the development of gonads in 

Caenorhabditis elegans (Somerville et al, 2003). ADAMTS-7 and ADAMTS-12 contain 

a mucin domain which is located between their C-terminal TSRs (specifically between 

repeats 3 and 4 out of seven) (Somerville et al, 2004), and C-terminal processing of 

ADAMTS-12 occurs within this domain.

1.6.7 ADAMTS-1, -4 and -5 Protein Functions

Belonging to the hyalectanase group of ADAMTS proteins, ADAMTS-1, -4 and -5 are 

able to cleave hyalectans, a group of CSPGs that bind non-covalently to hyaluronan 

present on cell surfaces and in the ECM (Bandtlow & Zimmermann, 2000). They differ 

structurally at their C-termini, such that ADAMTS-1 has two TSRs, ADAMTS-4 has 

none and ADAMTS-5 has one; this may confer substrate specificity to these 

proteinases and account for their differing substrate spectra.

PGs are glycoproteins with at least one sulphated GAG side chain bound covalently to 

the core protein (Zimmermann & Dours-Zimmerman, 2008). PGs are major ECM 

components providing structural support to cells, and can be characterised by the 

disaccharide units of their GAG side chains into chondroitin sulphate (CS), HS, and 

keratan sulphate (KS) PGs (Bandtlow & Zimmermann, 2000).

Additional roles have been implicated for PGs from In vitro studies, in which a variety of 

ligands, including growth factors, CAMs, enzymes and enzyme inhibitors, bind to PGs. 

This may indicate that PGs mediate the bio-availability of these ligands (Bandtlow & 

Zimmermann, 2000).

The hyalectans, also known as lecticans, are a family of secreted CSPGs, namely 

aggrecan, versican, brevican and neurocan, which participate in the formation of ECM 

(Bandtlow & Zimmermann, 2000). All lecticans have highly conserved terminal globular 

regions; the N-terminal globular domain binds to the core protein-free GAG hyaluronan 

(a core protein-free non-sulphated polymer of glucosamine and glucuronic acid), and 

the C-terminal globular domain has a unique lectin domain flanked by an EGF and 

complement regulatory protein (CRP) -like domain, indicating a role in carbohydrate 

binding (Jones et al, 2003; Yamaguchi, 2000). However, their interglobular domains or 

intermediate CS-attachment domains have substantial variation in sequence, length 

and number of CS side chains; this region is highly sensitive to proteolysis (Viapiano & 

Matthews, 2006).

ADAMTS-4 and -5 are the classical aggrecanases (Zimmermann and Dours- 

Zimmerman 2008), and extensive research has been performed into the role of these, 

and ADAMTS-1, in arthritic diseases, such as rheumatoid arthritis and osteoarthritis,
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due to their ability to cleave aggrecan, the major CSPG of cartilage. ADAMTS-1, -4 and 

-5 cleave aggrecan at a site distinct from MMP cleavage, E373-A374, located within the 

GAG-binding domain (Kuno et al, 2000; Tortorella et al, 2000; Abbaszade et al, 1999). 

Since these early studies, further cleavage sites have been identified or proposed for 

all three enzymes, namely E1667-G1668, E1480-G1481, E1545-G1546, e ^ -A ™ 20, and E1919- 

L1920, all located within the GAG-binding domain of aggrecan (Flannery, 2006).

Versican is a major CSPG present in developing blood vessels, and is synthesised by 

arterial smooth muscle cells (Wight & Merrilees, 2004). There are 4 splice variants of 

versican (V0, V1, V2 and V3), and ADAMTS-1 and -4 are able to cleave V1A/0 

versican at the e441_a442/E1428-A1429 bonds (Jonsson-Rylander et al, 2005). Brevican is 

mainly restricted to neural tissues (Yamaguchi, 2000), and is processed by ADAMTS-4 

and -5 at the E395_s396 bond (Held-Feindt et al, 2006). Similarly, neurocan is restricted 

to neural tissues (Yamaguchi, 2000).

Aside from their proteolytic functions, ADAMTS-1 and -5 may also confer anti- 

angiogenic properties via their central TSRs (Section 1.6.8).

1.6.8 ADAMTS-1, -4 and -5 and Cancer

Many ADAMTS proteins are dysregulated during cancer progression (Table 1.5), 

including ADAMTS-1, -4 and -5.

ADAMTS-1 and -5 and Cancer-Associated Angiogenesis

Until recently all proteinases were considered to be positive regulators of tumoral 

angiogenesis. However, four members of the ADAMTS family (ADAMTS-1, -5, -8 and 

-12) have recently been shown to have anti-angiogenic properties.

ADAMTS-1 (METH-1) and ADAMTS-8 (METH-2) exhibit potent angio-inhibitory activity 

in vitro (Roy et al, 2006), by acting independently to inhibit bovine VEGF (bVEGF) - 

induced vascularisation in the rabbit corneal pocket assay, and to inhibit VEGF-induced 

angiogenesis in the chick chorioallantoic membrane assay (CAM assay) (Vazquez et al, 

1999).

The anti-angiogenic activity of ADAMTS-1 has been mapped to the three TSRs in the 

proteins C-terminus, with recombinant and proteolytic fragments containing these 

repeats also exhibiting angio-inhibitory activity in the rabbit corneal pocket and chick 

CAM assays (Vazquez et al, 1999). However, mutational analyses have revealed that 

although TSRs are necessary for the inhibition of angiogenesis, they alone are not 

sufficient to bring about this response in vivo. The spacer domain must be present in 

combination with the TSRs of the protein to elicit an anti-tumour response (Kuno et al, 

2004).
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Table 1.5: Aberrant ADAMTS protein expression in human cancers and their functions.

ADAMTS-1

ADAMTS-4

ADAMTS-5

or

ADAMTS-11 

ADAMTS-8

ADAMTS-13

ADAMTS-15

ADAMTS-18 

or

ADAMTS-21

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Promotes cell invasion and 

angiogenesis.

Down-regulation of this anti- 

angiogenic protein permits 

angiogenesis.

Promotes cell invasion.

Promotes cell invasion.

Undetermined.

Down-regulation of this anti- 

angiogenic protein permits 

angiogenesis.

Undetermined.

Predicator of prolonged 

survival.

Down-regulation is a 

predicator of poor 

prognosis.

Tumour suppressor.

Breast (Porter et al, 

2006)

I  Breast (Porter et al, 

2004),

|  Lung (Rocks et al, 

2006),

i  Liver, J, Pancreas 

(Masui et al, 2001)

Brain (Held-Feindt et al, 

2006)

Brain (Held-Feindt et al, 

2006)

Lung (Dunn et al, 2004)

|  Brain (Dunn et al, 

2006)

|  Brain (Oleksowicz et 

al, 1999)

Breast (Porter et al, 

2006)

I  Breast (Porter et al, 

2006)

Oesophagus (Jin et al, 

2007)

* Up-regulated expression of ADAMTS proteins in cancers, unless otherwise stated. 

I  Down-regulated expression.
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Furthermore, a GWQRRL/TVECRD motif common to the first C-terminal TSR of both 

ADAMTS-1 and -8, but absent from all other ADAMTS proteins, may play an important 

role in the angio-inhibitory action of these proteins (Porter et al, 2005). C-terminal 

processing of ADAMTS-1 from its 87 kDa full length form to a 64 kDa form lacking the 

terminal TSR domain and part of the spacer domain reduces its angio-inhibitory effect 

(Rodriguez-Manzaneque et al, 2000).

The sequestration of VEGF165 by ADAMTS-1 and -8 may provide a mechanism by 

which they execute their anti-angiogenic activity (Handsley & Edwards, 2005). VEGF165 

is one of the most specific mediators of tumour angiogenesis, with suppression of 

VEGF signalling causing the inhibition of angiogenesis and an associated reduction of 

tumour burden. Conversely, the over-expression of VEGF and its receptor VEGF 

receptor 2 (VEGFR2) results in the increased invasion and metastasis of human 

cancers (Luque et al, 2003).

Luque et al (2003) have shown that ADAMTS-1 can bind to VEGF165 and form a stable 

complex, but it cannot bind to the splice variant of VEGF lacking a heparin-binding 

domain in its C-terminal (VEGF12i). Interestingly, the TSRs of ADAMTS-1 and -8 

contain the consensus sequence WSxWS, which also binds heparin (Vazquez et al, 

1999). So it is likely that heparin or another HSPG, such as syndecan, acts as a 

chaperone between ADAMTS-1 and VEGF165, resulting in the reduced bioavailability of 

VEGF, and consequent inhibition of VEGFR2 phosphorylation. This leads to decreased 

EC proliferation and angiogenesis (Luque et al, 2003). However, the functional 

inactivation of VEGFR2 due to the binding of ADAMTS-1 to VEGF165 is reversible, and 

dissociation of the complex results in an active growth factor and the subsequent 

phosphorylation of VEGFR2 (Luque et al, 2003; Iruela-Arispe et al, 2003).

In order to overcome the anti-angiogenic actions of ADAMTS-1 and -8, many tumour 

types have been found to down-regulate their expression. For example ADAMTS-1 is 

down-regulated in mammary (Porter et al, 2004), hepatocellular and pancreatic 

carcinomas (Masui et al, 2001), and ADAMTS-8 in brain tumours (Dunn et al, 2006).

In contrast, the over-expression of full-length ADAMTS-1 in TA3 mammary carcinoma, 

Lewis lung carcinoma (Liu et al, 2006b), and CHO cell lines (Kuno et al, 2004) was 

found to promote angiogenesis and invasion. This must suggest that C-terminal 

processing, and consequently the proteolytic status of ADAMTS-1 determines its effect 

on tumour metastasis in vivo (Rocks et al, 2008; Liu et al, 2006b).

Another potential anti-angiogenic ADAMTS protein is ADAMTS-5, and although the 

function of full-length ADAMTS-5 in angiogenesis is presently unknown, the first TSR of 

ADAMTS-5 functions as an angiogenesis inhibitor in vitro (Sharghi-Namini et al, 2008).

44



Synthetic and recombinant forms of the centrally located ADAMTS-5 TSR, but not the 

C-terminal TSR, inhibited EC tubule formation on Matrigel, a consequence of reduced 

cell-matrix attachment and increased EC apoptosis.

The first TSR peptide of ADAMTS-5 also inhibited EC proliferation in the presence and 

absence of VEGF, which normally stimulates EC proliferation; although this did not 

contribute significantly to the decrease in EC tube-like structures. However, unlike 

other known anti-angiogenic proteins, the first TSR peptide of ADAMTS-5 promotes the 

migration of ECs; it is hypothesised that this increased motility may decrease the ability 

of ECs to form organised tubules (Sharghi-Namini et al, 2008).

Llamazares et al (2007) provided extensive evidence that ADAMTS-12 functions as an 

angio-inhibitory protein.

ADAMTS-4 and -5 and Cancer Progression

A number of ADAMTS proteins have been implicated in the progression of cancer, but 

a specific role in this progression has yet to be elucidated. These include ADAMTS-4, 

-5, -8, -13 and-15.

Human glioblastomas are the most common type of brain tumours, and also the most 

difficult to treat effectively due to their infiltrative invasion of surrounding normal neural 

tissue (Viapiano et al, 2008). The ECM can modulate cellular movement, as is the case 

for glioblastomas (Nutt et al, 2001), which consistently up-regulates the ECM protein 

brevican, a neural-specific CSPG, also known as brain enriched hyaluronan binding 

protein (BEHAB). In normal brain tissue brevican inhibits cell and neurite motility, but its 

over-expression in glioblastomas dramatically enhances tumour growth and invasion in 

vitro and in vivo (Viapiano et al, 2008).

An up-regulation of brevican cleavage products has also been observed in human 

glioblastomas (Viapiano et al, 2005), with the N-terminal fragment containing a 

hyaluronan-binding domain causing increased invasive behaviour of tumours in vivo 

(Zhang et al, 1998). Hu et al (2008) have since shown that cleaved brevican promotes 

EGFR activation, increases the expression of adhesion molecules, and promotes the 

secretion of fibronectin and the accumulation of fibronectin microfibrils on the cell 

surface. Furthermore, the N-terminal cleavage fragment of brevican binds to fibronectin 

to promote glioblastoma cell motility in cultured cells and surgical glioblastoma samples 

(Hu et al, 2008).

Brevican is cleaved at a single site (E395-S396) by the hyalectanases ADAMTS-4 and -5, 

and although both proteinases are present in normal brain tissue, their production is 

increased in proliferating glioblastoma cells in situ, compared to cultured human 

glioblastoma cells (Held-Feindt et al, 2006). These data have led to the conclusion that
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ADAMTS-4 and -5 may contribute to the highly invasive behaviour of malignant 

glioblastomas, via the processing of brevican.

1.6.9 Tissue Inhibitors of Metalloproteinases (TIMPs)

The proteolytic activities of ADAM17, ADAMTS-1, 4 and -5 are tightly regulated by the 

endogenous TIMP3 (Nagase et al, 2006); thus ensuring that these enzymes can 

perform their normal physiological functions without becoming pathological. The 

remaining three TIMP proteins (TIMP1, 2, and 4) result in varying degrees of ADAM17, 

ADAMTS-1, 4 and -5 inhibition. TIMPs are expressed by a variety of cell types and are 

present in most tissue types and bodily fluids (Lambert et al, 2004).

TIMPs are between 184 and 194 amino acids in length, and divided into an N-terminal 

and a C-terminal domain, with the N-terminal domain providing their inhibitory action 

(Nagase et al, 2006). TIMP1, 2 and 4 are present in a soluble form (Lambert et al, 

2004), whereas the N-terminal domain of TIMP3 binds tightly to sulphated GAGs 

(Hashimoto et al, 2004). Therefore through its interaction with cell membrane HSPGs, 

e.g. syndecan, TIMP3 may inhibit membrane-bound ADAM proteins, such as ADAM17 

(Hashimoto et al, 2004), whilst its interaction with ECM CSPGs, e.g. aggrecan, may 

enable TIMP3 to inhibit extracellular ADAMTS proteins, such as ADAMTS-1, -4 and -5 

(Lambert et al, 2004).

TIMP3 was shown to be the major in vivo regulator of ADAM 17 following the partial 

hepatectomy of TIMP3 null mice. In these mice liver regeneration was impaired due to 

abnormal inflammation, with elevated TNF-a release, thus suggesting that ADAM17 is 

one of the major targets of TIMP3 in vivo (Mohammed et al, 2004). TIMP-1 and -4 are 

very poor inhibitors of ADAM17, whilst TIMP2 does not inhibit ADAM17 activity at all 

(Nagase et al, 2006).

A number of studies have documented the effective inhibition of ADAMTS-4 and -5 by 

TIMP3 (Hashimoto et al, 2001; Kashiwagi et al, 2001). With regards to ADAMTS-4, 

TIMP1 and 2 showed weak aggrecanase inhibition, with very weak inhibition by TIMP4 

(Hashimoto et al, 2001). Similarly, Kashiwagi et al (2001) demonstrated that the N- 

terminal domain of TIMP3 is a strong inhibitor of ADAMTS-4 and -5. In contrast they 

found no inhibition of these enzymes by TIMP1 or 2, and ADAMTS-4 but not ADAMTS- 

5 inhibition by TIMP4. a2-macroglobulin (a2m) is also an endogenous inhibitor of 

ADAMTS-4 and -5 (Tortorella et al, 2004). In addition TIMP3 inhibits ADAMTS-1 

activity, although activity is not completely blocked, this is also true of TIMP2 

(Rodriguez-Manzaneque et al, 2002).

Interestingly, the dysregulated expression of TIMPs has been observed at various 

stages of cancer progression. For example, the down-regulation of TIMP1 and 2
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expression is associated with increased invasiveness of tumour cells, whilst their over­

expression leads to reduced tumour growth and metastasis formation in tumours of 

various origins (Lambert et al, 2004). As previously described (Section 1.5.1) cytokines 

can also be dysregulated in cancer, and some of these cytokines have been found to 

regulate the expression of TIMPs. This may provide a mechanism for controlling the 

proteolytic activity of enzymes under TIMP control. For example when the pro- 

inflammatory cytokines IL-1p and TNF-a are applied simultaneously to brain ECs, 

TIMP3 expression is almost completely blocked (Bugno et al, 1999).

1.7 Conclusions

Surgical resection is currently the only curative treatment of liver tumours, but this 

treatment option is only available to a minority of patients. Hence a need exists for the 

development of more widely available, effective treatment of liver tumours. Many 

published investigations implicate adamalysin family members in the development and 

progression of human tumours. It is therefore feasible that one or more of these family 

members may also aid the development and/or progression of tumours within the liver.

An investigation into the expression of these proteolytic enzymes is necessary to 

determine whether they are expressed within the liver and to ascertain whether they 

are aberrantly expressed by liver tumours to aid tumour colonisation of the liver and/or 

tumour dissemination. This may ultimately enable the development of novel liver 

cancer treatments.

Liver tumours with a desmoplastic reaction express higher levels of proteolytic 

enzymes than liver tumours with other growth patterns; these include well-differentiated 

HCCs and 42% of colorectal liver metastases. There are currently no commercially 

available cell lines derived from colorectal liver metastases, but many well- 

differentiated HCC cell lines are readily available, e.g. HepG2 and HuH-7. These would 

therefore be appropriate in vitro models in which to investigate adamalysin expression 

in liver tumours.
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1.8 Aims and Objectives of the Study

Hypothesis

ADAM17 and ADAMTS-1, -4 and -5 are important mediators of tumour cell invasion

and metastasis of the liver.

Overall aim

To determine the potential role of ADAM17 and ADAMTS-1, -4 and -5 in tumour cell

invasion and metastasis of the liver.

Specific Objectives

• To determine the production and modulation of ADAM17 and ADAMTS-1, -4 and - 

5, and their endogenous inhibitor TIMP3, in human hepatoma and stellate cell 

lines at the mRNA and protein level, and their production at the mRNA level in 

total RNA extracts of normal adult and foetal liver.

• To determine the effect of pro-inflammatory cytokines on the proliferation of 

human hepatoma and stellate cell lines.

• To determine the production and release of fractalkine from human hepatoma cells 

as an indicator of sheddase activity and the role of ADAM17 in this process. 

Fractalkine may also have a role in invasion and metastatic processes having a 

role in angiogenesis.

• To determine the levels of cell surface ADAM 17 on human hepatoma cells in 

response to cytokine treatment, which has the potential to increase sheddase 

activity.
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Chapter 2

Materials and Methods
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Unless otherwise stated, all experimental methods were performed at ambient 

temperature (~20°C) and at atmospheric pressure (~100 kPa).

2.1 Materials

2.1.1 Manufacturers of Reagents

Abeam Inc, 332 Cambridge Science Park, Cambridge, UK

Mouse Monoclonal Antibody to GAPDH (ab8245); Mouse Monoclonal Antibody to 

Hepatoctye Specific Antigen, clone OCH1E5 (ab49432); Rabbit Polyclonal Antibody to 

ADAM17 (ab2051); Rabbit Polyclonal Antibody to ADAMTS-1 - Carboxyterminal end 

(ab39194); Rabbit Polyclonal Antibody to ADAMTS-4 - Carboxyterminal end (ab28285); 

Rabbit Polyclonal Antibody to ADAMTS-5 - Carboxyterminal end (ab39202); Rabbit 

Polyclonal Antibody to TIMP3 (ab2169); Rabbit Polyclonal Antibody to TIMP3 - Loop 1 

(ab39184).

ABgene Ltd, ABgene House, Blenheim Road, Epsom, Surrey, UK

ABsolute™ QPCR SYBR® Green Fluorescein Mix, 2X (AB-1219).

Amersham Biosciences, Part of GE Healthcare UK Ltd, Amersham Place, Little 

Chalfort, Amersham, Buckinghamshire, UK

ECL Plus Western Blotting Detection Reagents (RPN2132).

Becton Dickinson UK Ltd, Between Towns Road, Cowley, Oxford, UK

FACS Flow™ (342003); FACS Lysing Solution, 10X (349202); IntraSure™ Kit (641776).

Bio-Rad Laboratories Ltd, Bio-Rad House, Maxted Road, Hemel Hempstead, 

Hertfordshire, UK

iScript™ cDNA Synthesis Kit (170-8891).

Carl Zeiss Ltd, Woodfield Road, Welwyn Garden City, Hertfordshire, UK 

Immersol™ Immersion Oil for fluorescence microscopy (518F).

Chemicon Europe Ltd, Part of Millipore, The Science Centre, Eagle Close, Chandlers 

Ford, Hampshire, UK

Mouse Monoclonal Antibody to Glial Fibrillary Acidic Protein (GFAP), clone GA5 

(MAB3402); Rabbit Polyclonal Antibody to TACE/ADAM 17 (AB19027); TACE, C- 

Terminal Control Peptide (AG909).

Chivers Ireland Ltd, Coolock, Dublin, Republic of Ireland

Marvel Original Dried Skimmed Milk Powder.
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Dako UK Ltd, Cambridge House, St Thomas Place, Ely, Cambridgeshire, UK

Rabbit Polyclonal to Mouse Immunoglobulin G (IgG) Horseradish Peroxidase 

Conjugate (P0161).

Fisher Scientific, Part of Thermo Fisher Scientific, Bishop Meadow Road, 

Loughborough, Leicestershire, UK

Acetic Acid Glacial, Laboratory Reagent Grade (A/0360/PB17); Acetone, Laboratory 

Reagent Grade (A/0560/17); Methanol, HPLC Grade (M/4056/17); Anhydrous Propan- 

2-ol, Analytical Reagent Grade (P/7500/17).

Invitrogen Ltd, 3 Fountain Drive, Inchinnan Business Park, Paisley, Renfrewshire, UK

Custom Oligonucleotide Primers; Gibco™ DMEM Low Glucose (31885-023); Gibco™ 

DMEM High Glucose with GlutaMAX (61965-026); Gibco ™ Dulbecco's PBS without 

CaCI2 and MgCI2, 1X (14190-094); Gibco™ Dulbecco's PBS without CaCI2 and MgCI2, 

10X (14200-067); Gibco™ Foetal Calf Serum (10106-169); Gibco™ Fungizone® 

Antimycotic (15290-026); Gibco™ L-Glutamine 200mM, 100X (25030-024); Gibco™ Pen 

Strep (15070-063); Gibco™ Sodium Pyruvate Solution, 100mM (11360-039); Gibco™ 

0.05% Trypsin-EDTA, 1X (25300-062); Molecular Probes® Alexa Fluor® 488 Goat 

Polyclonal Antibody to Rabbit IgG (A11008); Molecular Probes® Alexa Fluor® 488 

Rabbit Polyclonal Antibody to Mouse IgG (A11059); Molecular Probes® Alexa Fluor® 

568 Goat Polyclonal Antibody to Mouse IgG (A11004); NuPAGE® Antioxidant 

(NP0005); NuPAGE® 10% Bis-Tris Gel 1.0mm x 10 wells (NP302BOX); NuPAGE® LDS 

Sample Buffer, 4X (NP0007); NuPAGE® MOPS SDS Running Buffer, 20X (NP0001); 

NuPAGE® Sample Reducing Agent, 10X (NP0009); NuPAGE® Transfer Buffer, 20X 

(NP0006); SeeBlue® Plus2 Pre-stained Standard (LC5925); UltraPure™ Agarose 

(15510-019).

PeproTech EC Ltd, PeproTech House, 29 Margravine Road, London, UK

Recombinant Human IL-1-(3 (200-01B); Recombinant Human IL-6 (220-06); 

Recombinant Human TNF-a (300-01A).

Perbio Science UK Ltd, Unit 9, Atley Way, North Nelson Industrial Estate, 

Cramlington, Northumberland, UK

Dharmacon DharmaFECT 4 Transfection Reagent (T-2004-02); Dharmacon ON- 

TARGET plus human ADAM 17 SMART pool (L-003453-00); Dharmacon ON-TARGET 

plus human GAPD CONTROL pool (D-001830-10-05); Dharmacon ON-TARGET plus 

Non-targeting pool (D-001810-10-05); Dharmacon siRNA Buffer, 5X (B-002000-UB- 

100); Pierce Restore™ Plus Western Blot Stripping Buffer (46430).
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Promega UK Ltd, Delta House, Southampton Science Park, Southampton, UK

Blue/Orange 6X Loading Dye (G1881); 25bp DNA Step Ladder (G4511); Magnesium 

Chloride Solution, 25 mM (A3511).

R & D Systems Europe Ltd, Barton Lane, Abingdon, Oxfordshire, UK

DuoSet® ELISA Development System, Human CX3CL1/Fractalkine (DY365); Mouse 

IgG! Isotype Control, fluorescein conjugate (IC002F); Mouse Monoclonal Antibody to 

CX3CL1/Fractalkine (MAB3651); Mouse Monoclonal Antibody to Human TACE, 

Cytosolic (MAB2129); Mouse Monoclonal Antibody to Human TACE, fluorescein 

conjugate (FAB9301F); Mouse Monoclonal Antibody to Human TIMP3 (MAB973).

Santa Cruz, Bergheimer Str 89/11, 69115 Heidelburg, Germany

Rabbit Polyclonal TACE (H-170) IgG (sc-25782).

Sigma-Aldrich Company Ltd, The Old Brickyard, New Road, Gillingham, Dorset, UK

Albumin from Bovine Serum (A3059); Bicinchoninic Acid Solution (B9643); BioChemika 

DEPC-treated Water (95284); Brilliant Blue R (B0149); Cell Dissociation Solution, 1X, 

Non-Enzymatic (C5914); Cell Growth Determination Kit, MTT Based (CGD-1); 

CelLytic ™-M Mammalian Cell Lysis/Extraction Reagent (C2978); Chloroform (C2432); 

Copper(ll) Sulphate Pentahydrate 4% Solution (C2284); Dimethyl Sulfoxide (D2650); 

Deoxyribonuclease I (DNase I), Amplification Grade (AMP-D1); ECACC HepG2 Cell 

Line (85011430); Ethanol for Molecular Biology (E7148); Fluka Tri Reagent™ (93289); 

Goat Polyclonal Antibody to Rabbit IgG (whole molecule), Horseradish Peroxidase 

Conjugate (A9169); Hydrochloric Acid, 37% (H-7020); Minimal Essential Medium Eagle 

with Earle’s Salts (M2279); MEM Non-Essential amino acid solution, 100X (M7145); 

Paraformaldehyde (P6148); 1, 10-Phenanthroline Monohydrate (P9375); Ponceau S 

Solution (P7170); Propidium Iodide (P4170); Protease Inhibitor Cocktail for general use 

(P2714); 2-Propanol, for Molecular Biology, minimum 99% (19516); Rabbit Polyclonal 

Antibody to Actin (20-33) (A5060); Sulphuric Acid, ACS Reagent (320501); SYBR® 

Green I (S9430); Trichloroacetic acid, SigmaUltra, minimum 99% (T9159); Tris-Borate- 

EDTA Buffer, 10X (T4415); Tris Buffered Saline, 10X (T5912); Tween® 20 (P1379).

Stratagene Europe, Gebouw California, Hogehilweg 15, 1101 CB Amsterdam 

Zuidoost, The Netherlands

MVP™ Total RNA, Human Liver (540017); MVP™ Total RNA, Human Foetal Liver 

(540173).

Vector Laboratories Ltd, 3 Accent Park, Bakewell Road, Orton Southgate, 

Peterborough, UK

VECTASHIELD Mounting Medium with DAPI (H-1200).
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2.1.2 Manufacturers of Consumables

Amersham Biosciences, Part of GE Healthcare UK Ltd, Amersham Place, Little 

Chalfont, Amersham, Buckinghamshire, UK

Hybond-C Extra Nitrocellulose Membrane, 20 cm X 3 m (RPN203E).

Becton Dickinson UK Ltd, Between Towns Road, Cowley, Oxford, UK

Disposable 21-Gauge Needle (SZR-175-530R); Falcon 5 mL Polystyrene Round 

Bottom Tubes (352054); Plastipak™ 20 mL Sterile Syringes (BD300629).

Bio-Rad Laboratories Ltd, Bio-Rad House, Maxted Road, Hemel Hempstead, 

Hertfordshire, UK

iQ 96-well PCR plates (223-9441); Optical Quality Sealing Tapes (223-9444).

Fisher Scientific, Part of Thermo Fisher Scientific, Bishop Meadow Road, 

Loughborough, Leicestershire, UK

Azo Wipe®, Bactericidal Wipes (Hyg-231-001T); Disposable Centrifuge Tube, 15 mL 

(05-539-12), and 50 mL (05-539-8); Cover Glass 22 x 50 mm, 0.13-0.17 mm thick 

(102250); Filter paper (FAB-OFF-330W); Improved Neubauer Haemocytometer (MNK- 

510-020J); Lab-Tek II 8-well Chamber Slide with cover (TKT-210-916Y); 

Microcentrifuge Tubes, 1.5 mL with Cap (FB74031); Nalgene® Cryo 1°C Freezing 

Cantainer (CRY-120-010T); Nalgene® 2 mL Cryogenic Vials (CRY-100-021F); 

Nunclon™ Delta Surface Cell Culture Flasks, T25 (156367) and T75 (156472); 

Nunclon™ Delta Surface Cell Culture Plates with lid, 6-Well (140675), 24-Well (142475) 

and 96-Well (167008); Pechiney Plastic Packaging Parafilm M Laboratory Wrapping 

Film (13-374-10); Pipette Tips, 10 pL Crystal (FB34521), 200 pL Yellow (FB34531) and 

1000 ]uL Blue (FB31611); Pipettes, Sterile, 5 mL (13-676-1 OH), 10 mL (13-676-10J) 

and 25 mL (13-676-1 OK); Rexam Medical Autoclave Indicator Tape (AUY-170-030P); 

Semperit Medium Nitrile, Powder-free, Disposable Gloves (SAR-265-050G); Wash 

Bottle (03-409-22C); Weigh boats, Small (FB50333), Medium (FB50335) and Large 

(FB50337).

R & D Systems Europe Ltd, Barton Lane, Abingdon, Oxfordshire, UK 

Clear 96-Well Microplate (DY990).

Sarstedt Ltd, Boston Road, Beaumont Road, Beaumont Leys, Leicester, UK 

0.20 p,m filter, sterile (83.1826.001); Microcentrifuge Tubes, 0.5 mL with Cap (72.699). 

Sigma-Aldrich Company Ltd, The Old Brickyard, New Road, Gillingham, Dorset, UK 

0.6mL Clear-View Snap-Cap Microtubes (T2566); QuickDraw™ Blotting Paper (P6928).
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Starlab (UK) Ltd, Tanners Drive, Blakelands, Milton Keynes, UK

1-10 jlxL Graduated Filter Tips, Sterile (S1121-3810); 1-20 pL Bevelled Filter Tips, 

Sterile (S1120-1810); 1-200 pL Graduated Filter Tips, Sterile (S1120-8810); 101-1000 

jllL Extended Length Filter Tips, Sterile (S1122-1830)

VWR International Ltd, Hunter Boulevard, Magna Park, Lutterworth, Leicestershire, 

UK

BD Falcon Cell Scraper, 25 cm Handle/1.8 cm Blade (353086).

Whatman International Ltd, Springfield Mill, James Whatman Way, Maidstone, Kent, 

UK

Lens Cleaning Tissue (2105 862).

2.1.3 Manufacturers of Equipment

Amersham Pharmacia Biotech, Part of GE Healthcare UK Ltd, Amersham Place, 

Little Chalfont, Amersham, Buckinghamshire, UK

Electrophoresis Power Supply, EPS 301.

Anachem Ltd, Anachem House, Charles Street, Luton, Bedfordshire, UK 

Gilson Pipetman, P2, P10, P20, P100, P200 and P1000.

Applied Biosystems, Lingley House, Birchwood Boulevard, Warrington, Cheshire, UK 

Primer Express® Software V2.

Becton Dickinson UK Ltd, Between Towns Road, Cowley, Oxford, UK 

FACSCalibur Flow Cytometer with Cell Quest Pro Software.

Bio-Rad Laboratories Ltd, Bio-Rad House, Maxted Road, Hemel Hempstead, 

Hertfordshire, UK

iCycler iQ™ Real-Time Detection System; Mini-Protean III Electrophoresis Cell; Mini- 

Sub® Cell GT for Agarose Gel Electrophoresis.

Carl Zeiss Ltd, Woodfield Road, Welwyn Garden City, Hertfordshire, UK 

LSM 510 Laser Scanning Confocal Microscope with LSM 510 Software V3.2 SP2. 

Epson (UK) Ltd, Maylands Avenue, Hemel Hempstead, Hertfordshire, UK 

Epon Expression 1680 Pro Scanner.

Eurofins MWG Operon, Worple Road, Raynes Road, London, UK 

Primus Thermo Cycler.
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Fisher Scientific, Part of Thermo Fisher Scientific, Bishop Meadow Road, 

Loughborough, Leicestershire, UK

Fisherbrand Hydrus 300 pH meter; Stirring Hotplate; Stuart Scientific Blood Tube 

Rotator, SB1.

Forma Scientific, BOX 649, Marietta, Ohio, USA 

CryoMed Cell Dewar.

Grant Instruments (Cambridge) Ltd, Shepreth, Cambridgeshire, UK 

Digital dry block heating system, QBD2; Universal Unstirred Water Bath, SUB14. 

Heraeus Instruments, Kandro Laboratories Products, Germany 

HERAsafe Class II Microbiological Safety Cabinet; HERAcell Incubator.

Invitrogen Ltd, 3 Fountain Drive, Inchinnan Business Park, Paisley, Renfrewshire, UK 

Novex XCell StyreLock™ Mini Cell for electrophoresis.

Labtech International Ltd, Acorn House, The Broyle, Ringmer, East Sussex, UK 

Nanodrop® ND-1000 Spectrophotometer.

Leica Microsystems (UK) Ltd, Davy Avenue, Knowlhill, Milton Keynes, 

Buckinghamshire, UK

Light Microscope with Xli Camera and XLiCAP Imaging Software.

Mettler-Toledo Ltd, Boston Road, Beaumont Leys, Leicester, UK 

Analytical Balance, AB104-S.

MSE (UK) Ltd, Worsley Bridge Road, Lower Sydenham, London, UK 

MicroCentaur Benchtop Centrifuge, MSB010.CX2.5.

Microsoft Corporation, Redmond, Washington, USA 

Microsoft Office Excel 2007.

Perkin Elmer LAS (UK) Ltd, Chalfont Road, Seer Green, Beaconsfield, 

Buckinghamshire, UK

Wallac Victor2 1420 Multilabel Counter with Wallac 1420 Manager Software V 3.0.

Primer Design Ltd, Millbrook Technology Campus, Second Avenue, Southampton, 

Hampshire, UK

geNorm Software.
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Scientific Laboratory Supplies, Wilford Industrial Estate, Ruddington Lane, Wilford, 

Nottingham, UK

Clifton Cyclone Vortex Mixer; Integra Biosciences Pipetboy acu.

SPSS® Inc, Chicago, Illinois, USA

Statistical Package for Social Sciences (SPSS) 15.0 for Windows.

Thermo Scientific, Part of Thermo Fisher Scientific, Bishop Meadow Road, 

Loughborough, Leicestershire, UK

Sorvall Benchtop Centrifuge, RT7 PLUS.

TEW Electric Heating Equipment Co. Ltd, Nan Kang Road, Taipei, Taiwan, Republic 

of China

Impulse Sealer, TISH-300.

Ultra Violet Products Ltd, Trinity Hall Farm Estate, Nuffield Road, Cambridge, UK 

Bio-Imager with Labworks Image Acquisition & Analysis Software V4.

USF Elga Ltd, High Street, Lane End, High Wycombe, Buckinghamshire, UK 

Maxima Water Purification System.

2.2 Cell Culture

Three adherent liver cell lines were utilised in this study, HepG2, HuH-7 and LX-2. 

HepG2 cells are a human well-differentiated HCC cell line derived from a biopsy taken 

during the hepatic lobectomy of a 15-year old Caucasian male from Argentina in 1975 

(Aden et al, 1979). These transformed hepatocytes have an epithelial-like morphology, 

but tend to form islands of cells when cultured in vitro.

HuH-7 cells (a gift from Prof. M. Harris, Leeds University, Leeds, UK) are a human 

well-differentiated HCC cell line isolated on day 28 of the primary cell culture of 

hepatocytes derived from the surgical removal of the hepatoma of a 57-year old 

Japanese male in 1982 (Nakabayashi et al, 1982). Like the HepG2 cell line, HuH-7 

cells have an epithelial-like morphology, but form a monolayer in culture.

LX-2 cells (a gift from Dr. N.C. Bird, Royal Hallamshire Hospital, Sheffield University, 

Sheffield, UK), are a human activated HSC line obtained from normal liver tissue (Xu et 

al, 2005). The isolated HSCs were transfected with the plasmid pRSVTag that encodes 

the SV40 large T antigen, which confers immortality, and a single transfected clone 

was used to establish the LX-1 cell line. The LX-2 cell line was then established by 

selecting for a subline of LX-1 cells that were able to grow under reduced serum 

conditions. The LX-2 cell line has a retinoid phenotype typical of stellate cells, and a
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98.7% gene expression similarity to primary HSCs as determined by microarray 

analysis (Xu et al, 2005).

All cell culture procedures were carried out under aseptic conditions in a Class II 

Microbiological Safety Cabinet. Cell lines were grown in the appropriate complete 

culture medium (Table 2.1) in plasticware (T25 or T75 cell culture flasks, or 6-, 24- or 

96-well plates) in a cell incubator with a humidified atmosphere maintained at 37°C and 

buffered with 5% carbon dioxide.

2.2.1 Recovery of Cryofrozen Cells

Long-term culture of the cell lines was initiated by recovery of cryofrozen cells. 

Ampoules containing 1 mL of 1 x 106 cells/mL cryofrozen cells were left at room 

temperature for approximately 1 minute, and then transferred to a 37°C water bath for 

1-2 minutes until fully thawed. To decrease the risk of contamination ampoules were 

never fully immersed in the water bath and wiped with bactericidal wipes prior to 

opening. The contents of the ampoules were transferred into T25 flasks containing the 

appropriate, pre-warmed, complete cell culture medium (9 mL) and incubated in a cell 

incubator.

After 1-2 hours cells were observed under a light microscope at 100X magnification 

(10X ocular lens and 10X objective lens) for the attachment to the substratum. If 

attachment had occurred, medium was replaced to remove the toxic dimethyl sulfoxide 

(DMSO), which was used as a cryoprotector to prevent crystal formation in the cells 

when freezing. If attachment had not occurred, cells were left overnight to adhere to the 

substratum before replacement of the medium.

2.2.2 Cell Harvesting and Serial Passage of Cells

Long-term culture of adherent cell lines was achieved by serial passages of sub­

confluent monolayers of cells. Spent cell culture medium was aspirated from cell 

culture flasks and cells washed twice with 5 mL or 10 mL (for T25 or T75 respectively) 

Dulbecco's phosphate buffered saline (DPBS) without calcium and magnesium, to 

remove remaining medium. To detach the cells from the substratum 1.5 mL or 3 mL 

(for T25 or T75 respectively) of 0.05% trypsin/0.53 mM ethylenediaminetetraacetic acid 

(EDTA) solution was added to the washed cells and incubated in a cell incubator for 5 

minutes.

An equal volume of pre-warmed complete culture medium to trypsin/EDTA was added 

to the detached cells, mixed by gentle pipetting, and then transferred to a sterile 15 mL 

centrifuge tube. Suspended cells were centrifuged at 200 x g for 5 minutes to pellet the 

cells, and supernatant aspirated from the harvested cells to remove the trypsin/EDTA 

containing medium which is detrimental to cell growth.
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Cells were re-suspended in a known volume of fresh pre-warmed culture medium, and 

counted (Section 2.2.3) at this time if required for experimental procedures, or 1 mL of 

the suspended cells were decanted into a clean, sterile T25 or T75 culture flask and 

mixed by gentle pipetting with 9 mL or 19 mL pre-warmed complete culture medium, 

respectively. Culture flasks were placed in a cell incubator and observed after 1-2 

hours under a light microscope at 100X magnification (10X ocular lens and 10X 

objective lens) for reattachment of cells to the substratum.

2.2.3 Cell Counting

Harvested cells were re-suspended in a known volume of culture medium, from which 

the cell density was calculated using an improved Neubauer haemocytometer. Briefly, 

a quartz coverslip was placed over the counting chamber forming a void with a depth of 

0.1 mm. 10 (J.L cell suspension was introduced into this void via capillary action and 

viewed under a light microscope at 100X magnification. The number of cells in the 

central and four corner squares of the counting chamber grid were counted; this 

represents a surface area of 0.2 mm2 or a volume of 0.02 mm3. From this the number 

of cells per mL was calculated using the following equation:

Cell concentration per mL = Total Cell Count in 5 squares x 5 x 104

2.2.4 Cytokine Treatment of Cells

For qRT-PCR analysis cells were seeded into 24-well plates at a density of 1 x 105 

cells/well in a volume of 1 mL complete cell culture medium. Cells were allowed to 

adhere for 24 hours in a cell incubator, after which spent medium was aspirated from 

cells. Cells were washed twice with DPBS to remove all traces of serum from the 

complete culture medium, which may influence the experiment.

Cytokines were diluted to working concentrations of 0.001 mg/mL, 0.01 mg/mL and 0.1 

mg/mL in sterile water (IL-1 (3 and TNF-a) or 5 mM acetic acid (IL-6) and stored at -20C 

until required.

Cells were treated in triplicate wells with 1 ng/mL, 10 ng/mL or 100 ng/mL of IL-1 p, IL-6 

or TNF-a in 1 mL of serum-free medium and incubated in a cell incubator for 24 hours. 

As a control for IL-1 (3 and TNF-a treatment, untreated cells were incubated for 24 hours 

in 1 mL of serum-free medium. As a control for IL-6 treatment, cells were incubated for 

24 hours with 1 juL 5 mM acetic acid in 1 mL of serum-free medium, to ensure that any 

effect of IL-6 treatment was due to the cytokine and not the dissolving acetic acid.

Subsequently spent medium was aspirated from the treated cells and cells were 

washed twice with DPBS. 0.33 mL Tri Reagent was added to each well of treated cells
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and the triplicate samples were pooled. Total RNA was extracted from the treated cell 

lysates according to the manufacturers' protocol (Section 2.3.1).

Four independent experiments were performed to allow statistical analysis.

Minor alterations were made to this method to allow western blot analysis. Cells were 

seeded into 6-well plates at a density of 5.4 x 105 cells/well in a volume of 3 mL 

complete cell culture medium. Cells were treated with 1 ng/mL, 10 ng/mL or 100 ng/mL 

of IL-1 p, IL-6 or TNF-a in 3 mL of serum-free medium and incubated in a cell incubator 

for 48 hours. Supernatant was removed from cells and stored at -80C for analysis by 

enzyme-linked immunosorbant assay (ELISA) for shed fractalkine (Section 2.6). Cells 

were lysed by the application of 500 pL of supplemented CelLytic-M and protein 

extracted according to the manufacturers' protocol (Section 2.4.1). The remainder of 

the procedure was unaltered.

2.2.5 Short Interfering RNA (siRNA) Transfection

RNA interference (RNAi) is an evolutionally conserved phenomenon in eukaryotes, 

which represents a unique form of post-transcriptional gene silencing.

Post-transcriptional gene silencing was performed by the use of lipid-mediated siRNA 

transfection of HepG2 cells according to the manufacturers' protocol.

HepG2 cells were seeded into a 96-well plate at an optimum density of 1 x 104 

cells/well in 100 pL antibiotic-free, complete culture medium. Cells were allowed to 

adhere for 24 hours in a cell incubator, after which spent medium was aspirated from 

cells. Cells were washed twice with DPBS to remove all traces of serum from the 

complete culture medium, which may have influenced the experiment.

Cells were transfected in triplicate wells for mRNA analysis and 10-wells for protein 

analysis, with a control siRNA (ON-TARGETplus GAPDH control pool or ON- 

TARGETplus non-targeting pool), or siRNA for the target gene (ON-TARGETplus 

ADAM17 SMART pool). Untreated control samples containing antibiotic- and serum- 

free culture medium were used for a baseline reference. GAPDH siRNA was selected 

for the HepG2 experimental system as this positive control siRNA typically reduces 

GAPDH expression by 91% when measured at the mRNA level 24 hours after 

transfection with 100 nM siRNA.

For each lipid-mediated siRNA transfection, 5 pL of appropriate 2 pM siRNA solution 

was added to 5 pL antibiotic- and serum-free culture medium and mixed gently. In a 

separate tube, 0.4 pL DharmaFECT 4 transfection reagent was added to 9.6 pL 

antibiotic- and serum-free culture medium and mixed gently. Both tubes were 

incubated for 5 minutes before being combined, mixed gently and incubated for a
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further 20 minutes. 80 p.L antibiotic- and serum-free culture medium was then added to 

the transfection mix, for a total volume of 100 juL transfection medium.

Spent culture medium was removed from the cultured cells and 100 pL of the 

appropriate transfection medium added. Cells were incubated in a cell incubator for 48 

hours for mRNA analysis and 72 hours for protein analysis.

After the appropriate time, supernatant was removed from cells, and stored at -80 C for 

analysis by enzyme-linked immunosorbant assay (ELISA) for shed fractalkine (Section 

2.6). Cells were lysed as appropriate with a total volume of 250 jliL  Tri Reagent per 3- 

wells for mRNA analysis or 500 jliL  CelLytic-M supplemented with 10% protease 

inhibitor cocktail and 10 mM 1, 10-phenanthroline per 10-wells for protein analysis 

according to the manufacturers' protocols (Sections 2.3.1 and 2.4.1 respectively).

At least three independent experiments were performed to allow statistical analysis.

2.2.6 Cellular Proliferation Assay

Cellular proliferation was examined using the MTT based cell growth determination kit 

(Figure 2.1) according to the manufacturers’ protocol.

Cells were seeded into 96-well plates at 2.5 x 104 cells/well in 250 juL complete culture 

medium and allowed to adhere for 24 hours in a cell incubator. A standard curve of 

cells was also seeded. Spent medium was aspirated and cells washed twice with 250 

pL DPBS. Triplicate wells were treated with 250 juL of cytokines (Section 2.2.4) or 

serum-free medium for the standard curve, and left to incubate in a cell incubator for 24, 

48 or 72 hours.

5 mg/mL MTT solution was aseptically added to triplicate wells of experimental 

samples and duplicate wells of the standard curve in an amount equal to 10% of the 

culture volume, and incubated for 3 hours in a cell incubator. Spent medium was 

carefully removed, and resultant MTT formazan crystals dissolved in MTT solvent (0.1 

N HCI in anhydrous isopropanol; acidified isopropanol) in a volume equal to the original 

culture volume by gentle agitation and trituration.

The absorbance of the reaction solutions were measured at 570 nm in a Wallac Victor2 

plate reading spectrophotometer, and cells counted (Section 2.2.3) from the remaining 

repeat of the standard curve. From these data a standard curve of cell numbers was 

produced and cell numbers in the experimental samples determined using linear 

regression analysis of the form:

y = mx + c

y = absorbance; m = gradient; x = protein concentration; c = y intercept
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Minor alterations were made to this method to accommodate specific conditions 

required for successful siRNA transfection. HepG2 cells were seeded at 1.0 x 104 

cells/well in 100 pL/well antibiotic-free complete culture medium. In place of cytokine 

treatment, cells were subjected to siRNA transfection as described in Section 2.2.5 and 

left to incubate for 24, 48, 72 or 96 hours. The remainder of the procedure was 

unaltered.

Four independent experiments were performed to allow statistical analysis.

2.3 Quantitative Real-Time (Reverse Transcription) - Polymerase 

Chain Reaction (qRT-PCR)

qRT-PCR is the standard method commonly used to detect and quantify gene 

expression. Following the reverse transcription of RNA into complementary DNA 

(cDNA), PCR is used to amplify the target DNA molecule, which is quantified in real­

time by the accumulation of fluorescence after each amplification cycle.

2.3.1 Total RNA Extraction

Total RNA was extracted from cell cultures using Tri Reagent according to the 

manufacturers' protocol. Briefly, monolayer cells were lysed to form an homogenous 

cell lysate in an appropriate volume of Tri Reagent (1 mL per 10cm2 culture flask) and 

transferred into 1.5 mL microcentrifuge tubes. 0.2 mL of chloroform was added to 

samples, mixed vigorously and left to stand for 10 minutes.

Samples were centrifuged at 12,000 x g for 15 minutes at 4°C and the aqueous phase 

was collected and added to 0.5 mL isopropanol for RNA precipitation. After 10 minutes 

the samples were centrifuged at 12,000 x g for 10 minutes at 4°C. The resultant RNA 

pellets were washed with 75% ethanol, centrifuged at 7,500 x g for 5 minutes at 4°C, 

and then re-suspended in 10 pL diethyl pyrocarbonate (DEPC)-treated water. Extracted 

total RNA was stored at -80°C until required. All volumes stated are those required per 

1 mL Tri Reagent used in sample preparation, and were adjusted accordingly to 

accommodate different start volumes of Tri Reagent.

Total RNA from human adult and foetal livers was obtained from Stratagene Europe.

2.3.2 Deoxyribonuclease I (DNase I) Treatment o f RNA

Extracted total RNA was subjected to DNase I treatment using a DNase I amplification 

grade kit according to the manufacturers' protocol, in order to degrade any double or 

single stranded DNA contamination. Briefly, 8 pL of extracted RNA was added to a 

0.5 mL RNase-free PCR tube, together with 1 pL of 10X reaction buffer and 1 pL of 

amplification grade DNase I, the contents was mixed and allowed to stand for 15 

minutes at room temperature.
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1 jlxL of stop solution was then added to inactivate the DNase I prior to heating at 70 C 

for 10 minutes to denature the DNase I and the RNA. DNase I treated total RNA was 

stored at -80°C until required. All volumes stated are those required per 8 pL total RNA, 

and were adjusted accordingly to accommodate different start volumes of total RNA.

2.3.3 Agarose Gel Electrophoresis of Total RNA

The integrity and purity of DNase I treated total RNA was confirmed by the presence of 

two sharp bands on 1% agarose gels after electrophoresis with SYBR green I staining. 

The 2 bands were approximately 5 kb and 2 kb in size and represented the 28S and 

18S ribosomal RNA (rRNA) molecules respectively; these were present in a 2:1 ratio of 

28S:18S rRNA.

To prepare agarose gels 50 mL 1% agarose solution (0.5 g agarose in 50 mL 1X TBE 

buffer) was heated to melt the agarose, and allowed to cool slightly before being 

poured into a clean gel tray. A 15-well comb was inserted into the agarose solution and 

the gel was left to set for approximately 15 minutes.

Agarose gels were placed into an electrophoresis tank containing 1X TBE buffer and 

the well-forming comb removed prior to loading. A maximum volume of 2 pL of DNase I 

treated total RNA, mixed with 2 pL blue/orange loading dye and 1.5 pL SYBR green I 

dye, was loaded per well of the agarose gel.

Electrophoresis was carried out at a constant 100 volts (V) for 15 minutes. An image of 

the agarose gel was captured on a Bio-Imager system using the LabWorks 4 software 

package programmed for RNA/DNA gel capture.

2.3.4 RNA Quantification

The concentration of RNA (ng/pL) within a given sample of DNase I treated total RNA 

was quantified using the Nanodrop® ND-1000 spectrophotometer programmed for RNA 

measurements, according to the manufacturers' protocol.

Briefly, 1.2 pL DEPC-treated water was applied to the base measurement pedestal and 

the top measurement pedestal lowered into place. A measurement column of liquid 

was formed between the ends of the two optical fibres located in the measurement 

pedestals, and a spectrum of measurements taken between 200 nm and 350 nm. 

These initial absorbance measurements were used to blank the instrument and give a 

baseline measurement. 1.2 pL total RNA sample was then applied to the base pedestal 

and the absorbance measurement process repeated, resulting in the determination of 

RNA concentration (A260) and purity (A280 and A230).
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2.3.5 cDNA Synthesis

cDNA was synthesised from intact DNase I treated total RNA using the iScript™ cDNA 

synthesis kit according to the manufacturers' protocol.

Briefly, 4 pL of 5X iScript reaction mix, 1 pl_ of iScript reverse transcriptase, 1 pg 

DNase I treated total RNA, and variable nuclease-free water to a total volume of 20 pl_ 

were mixed in an RNase-free PCR tube on ice. The reaction mix was placed in a PCR 

thermocycler with the following conditions: 25C for 5 minutes, followed by 42°C for 30 

minutes, then 85°C for 5 minutes. The synthesised cDNA was cooled to 4°C prior to 

storage at -20°C until required.

2.3.6 qRT-PCR

Forward and reverse PCR primers were created for each of the target genes of interest 

using Primer Express® software (Haddock et al, 2006) (see Table 2.2 for full gene 

name, function and primer sequence).

PCR reactions were prepared on ice and performed in a volume of 20 pl_, containing 

10 pL 2X Absolute QPCR SYBR Green Fluorescein mix (product contains Thermo- 

Start™ DNA polymerase, dNTPs (dATP, dCTP, dGTP and dTTP), proprietary reaction 

buffer containing MgCI2and enhancers, SYBR Green I dye and fluorescein), 1 pL 12.5 

pmol/pL of each of the forward and reverse oligonucleotide primers for the gene of 

interest, 1 pL 25mM MgCI2, 4.5 pL RNase-free water and 2.5 pL cDNA template. 

Reactions were performed in duplicate and four independent experiments were 

performed to allow statistical analysis.

Amplification was carried out in a Bio-Rad iCycler, Multicolor Real-Time PCR Detection 

System using the following programme: 2 minutes at 50°C, 15 minutes at 95°C, 40 

cycles of 15 seconds at 95°C, then 1 minute at 60 C. Reactions were then subjected to 

30 seconds at 95°C, 30 seconds at 50 C, then 45 cycles of 10 seconds starting at 50°C 

with an increase of 1°C per cycle, enabling melt curve data collection.

Amplification data were plotted for each qRT-PCR reaction and used to calculate cycle 

threshold (CT) values, from which the difference in threshold cycles for target and 

reference, known as delta cycle threshold (ACT), was computed by use of the equation 

below.

ACT = Target CT value -  Reference CT value

The expression level of each target could then be calculated (Livak & Schmittgen, 

2001), assuming the primer efficiencies of the target and reference genes were 

approximately 100% (equation below).
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Target expression level = 2'(ACT)

The amplification data were also used to compute the difference in threshold cycles for 

the target control and target sample, known as delta cycle threshold of target gene 

(ACTtarget), by use of the equation below. A  delta cycle threshold of reference gene 

(A C T reference) was calculated in a similar manner, substituting target C T  values with 

reference C T  values (equation below).

ACTtarget = Control CT value -  Sample CT value

A negative A C T target value indicates decreased target gene expression, whereas a 

positive ACTtarget value denotes an increase in target gene expression.

To determine the fold change in the target gene an adapted form of the Northern 

formula (below) was applied, where efficiency relates to the efficiency of the primer pair 

used (Section 2.3.8).

Expression change of target = E ACTtarset

An Efficiency ACT target (EACT tar9et) >1 indicates a fold increase in the target gene 

expression, conversely an EACT target <1 signifies the fold decrease in target gene 

expression.

The Pfaffl equation (below) was used to calculate the relative expression ratio of a 

target gene in relation to an adequate reference gene (Pfaffl, 2001). A relative 

expression ratio >1 indicates a fold increase in the target gene expression after 

normalisation against a reference gene, conversely a relative expression ratio <1 

signifies the fold decrease in target gene expression after normalisation against a 

reference gene.

Relative expression ratio = (Efficiency target) ACTtarget

(Efficiency reference) A° T ref6r6nCe

In addition to melt curve analysis, correct PCR product amplification was verified by 

agarose gel electrophoresis as Section 2.3.3, but with the following alterations. A 

maximum volume of 10 pL of PCR product mixed with 2 pL blue/orange loading dye, 

was loaded per well of the 2.5% agarose gel containing 5 pL ethidium bromide. 

Samples were run concurrently with 6 pL of a 25 bp DNA ladder to allow product size 

to be calculated. Electrophoresis was carried out at a constant 100 V for 45 minutes.

2.3.7 Selection of Housekeeping Genes for qRT-PCR

To ensure accurate gene expression measurements, results from qRT-PCR 

experiments were normalised against a reference gene unaffected by experimental
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conditions. Eight commonly used housekeeping genes ((3-actin, p2m, GAPDH, HRPT1, 

RPL13A, SDHA, UBC and YHWAZ) (see Table 2.3 for full gene name, function and 

primer sequence) were tested for their suitability in this role. Primer sequences for the 

potential housekeeping genes were obtained from published sequences 

(Vandesompele et al, 2002).

The housekeeping genes were subjected to qRT-PCR (Section 2.3.6), and discounted 

as suitable reference genes if there was no product amplification, if product 

amplification was too high, or if the melting temperature (Tm) of the gene product and 

the no template control (NTC) product were the same.

geNorm software was then utilised to select the two most stable housekeeping genes 

for each experimental system from the remaining housekeeping genes. geNorm 

analysis required the transformation of CT values obtained from qRT-PCR into relative 

quantification data, prior to input into the geNorm program. The ACT method was used 

to transform the data; ACT values were calculated by subtracting the highest CT value 

from all other CT values measured for each gene, then the equation 2 (‘ACT) was applied 

to each data point.

The geNorm applet determined the average expression stability measure (M) of each 

reference gene, and the stepwise exclusion of the least stable gene (highest M value) 

enabled the two most stable reference genes within each experimental system to be 

identified. Reference genes in an ideal system have an M <1.5.

2.3.8 Standard Curve Method

The standard curve method was used to establish the efficiency of nine primer pairs. 

Ideally, the efficiency of each primer pair should be 100%, such that the template is 

doubled during the exponential phase of each cycle, this is denoted by a slope of -3.32; 

the correlation coefficient should be 1.00, indicating a strong decreasing linear 

dependence between variables. However, a good qRT-PCR reaction should have an 

efficiency between 90 and 110%, which corresponds to a slope between -3.58 and 

-3.10, with a correlation coefficient close to 1.00.

cDNA from an appropriate cell line was subjected to a two-fold dilution series with 

ddH20, followed by qRT-PCR using the standard curve program on the iCycler, to 

generate a standard curve from the resultant data.

2.4 Western Blotting

Western blotting is an immunological technique used to detect and quantify a specific 

protein in a protein extract, cell lysate or tissue homogenate (Figure 2.2). It uses gel 

electrophoresis to fractionate denatured proteins by the length of their polypeptide
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A) SDS-PAGE
Protein Protein 

Standard Lysate

Polyacrylamide 
gel for protein 
separation

B) Western blotting

Proteins separated 
on basis of 
polypeptide length

Sponge 
Blotting Paper 

Gel (side view) 
Membrane 

Blotting Paper 
Sponge

Q A a
n . M .

Gel

Separated proteins 
transferred from 
gel to membrane

C) Immunoprobing

Primary antibody 
bound to antigen 
on blot

_Q_ i  m.

HRP conjugated 
secondary antibody 
bound to primary 
antibody

D) Chemiluminescent Immunodetection

Enzyme
substrate
applied

Chemiluminescent 
detection of 
immunoprobed 
target antigen

Figure 2.2: Western blotting method.

A) Proteins denatured by SDS are fractionated by gel electrophoresis, B) and 

electroblotted onto a membrane. C) Blots are immunoprobed with primary antibodies 

specific to the target protein, followed by a horseradish peroxidase-linked secondary 

antibody. D) The target protein is visualised by application of enzyme substrate to 

produce luminescence proportionate to the amount of protein present.
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chain, which are then transferred onto a nitrocellulose membrane (NCM) and probed 

with primary antibodies specific to the target protein. A horseradish peroxidise (HRP) - 

linked secondary antibody directed against the species-specific portion of the primary 

antibody in conjunction with a chemiluminescent reagent allows the visualisation of the 

protein. The amount of luminescence produced is proportionate to the amount of 

protein present.

2.4.1 Protein Extraction

Following cytokine treatment of cells (Section 2.2.4), protein lysates were prepared by 

the application of CelLytic-M supplemented with protease inhibitor cocktail (10%) and 

10 mM 1, 10-phenanthroline (8.5 mL CelLytic-M, 1 mL protease inhibitor cocktail, 500 

|uL 200 mM 1, 10-phenanthroline), according to the manufacturers' protocol. Briefly, 

monolayer cells were lysed in an appropriate volume of supplemented CelLytic-M. 

Samples were incubated with agitation for 15 minutes to form an homogenous cell 

lysate.

To increase total protein yield, cells were scraped from the substratum prior to the 

collection of the cell lysate. Samples were centrifuged at 12,000 x g for 15 minutes to 

pellet cellular debris, and protein-containing supernatants transferred into chilled tubes. 

Protein samples were stored at -80°C until required.

2.4.2 Bicinchoninic Acid (BCA) Assay for Protein Determination

Protein samples were subjected to protein determination by use of the BCA protein 

assay kit according to the manufacturers' protocol. Briefly, bovine serum albumin (BSA) 

protein standards of different concentrations ranging from 0.1 mg/mL - 20 mg/mL were 

prepared, with dilutions made in supplemented CelLytic-M. The required volume of 

BCA working reagent was prepared by mixing 50 parts of the BCA solution with 1 part 

copper (II) sulphate pentahydrate 4% solution. 200 pL of the BCA working reagent was 

added to 20 jaL of the BSA standards in triplicate and the unknown protein samples in 

duplicate in a 96-well plate, mixed and allowed to incubate at ambient temperature for 

30 minutes.

The absorbance of the reaction solutions were measured at 570 nm in a Wallac Victor2 

plate reading spectrophotometer. From these data a standard curve was produced and 

protein concentrations of the experimental samples determined using linear regression 

analysis of the form:

y = mx + c

y = absorbance; m = gradient; x = protein concentration; c = y intercept
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2.4.3 Trichloroacetic Acid (TCA) Precipitation of Protein

Protein lysates were precipitated using TCA according to the manufacturers' protocol, 

to allow the concentration of protein samples. Briefly, 50 pL (1/10 volume) 100% TCA 

(w/v) was added to each 500 pL cell lysate sample, vortexed for 15 seconds, placed on 

ice for 15 minutes, then centrifuged at 14,000 x g for 10 minutes. Following the removal 

of the supernatant, the resultant protein pellets were washed twice by the addition of 50 

pL acetone, mixing and centrifugation at 14,000 x g for 5 minutes. Protein pellets were 

air dried for 60 minutes at room temperature, prior to re-suspension in 50 pL DPBS 

(sample concentration factor = 10X).

2.4.4 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Protein samples (6 pg/lane) were fractionated under reducing conditions on pre-cast 

NuPage 10% Bis-Tris gels, using the sodium dodecyl sulphate polyacrylamide gel 

electrophoresis (SDS-PAGE) Laemmli system (Laemmli, 1970).

Protein samples were prepared by adding 50 pL protein lysate to 25 pL NuPage LDS 

sample buffer, 10pL mL NuPage sample reducing buffer and 15pL dH20. All protein 

samples were reduced by heating to 100°C for 5 minutes in a heating block.

Pre-cast mini gels were placed into a Novex electrophoresis tank containing NuPage 

MOPS SDS running buffer (25 mL 20X NuPage MOPS SDS running buffer, 475 mL 

dH20, 250 pL NuPage anti-oxidant), and the well-forming comb removed prior to 

loading. 6 pg of protein was loaded per well, and electrophoresis carried out at a 

constant 125 V for approximately 90 minutes.

Protein samples were run concurrently with SeeBlue Plus 2 pre-stained standard, 

which contained protein standards of known molecular mass.

2.4.5 Coomassie Blue Staining of Protein

To verify the correct running and equal loading of protein samples, fractionated 

proteins in SDS-PAGE gels were immersed in Coomassie Brilliant Blue stain (1% 

Brilliant Blue R, 60% dH20, 30% methanol, 10% glacial acetic acid) for 2 hours with 

gentle agitation. Gels were rinsed in destain (60% dH20, 30% methanol, 10% glacial 

acetic acid), and then left overnight in destain with gentle agitation to remove excess 

stain from the gel. An image of the gel was captured by use of a general purpose 

scanner.

2.4.6 Protein Electroblotting

Alternatively, fractionated proteins were transferred onto Hybond-C Extra nitrocellulose 

membrane, 0.45 pm pore size, according to the method of Towbin et al (1979). A piece
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of NCM was soaked for 10 minutes in transfer buffer (84.95% dH20, 10% methanol, 5% 

20X NuPage transfer buffer, 0.05% NuPage anti-oxidant), along with 2 pieces of 

Quickdraw blotting paper and 2 pieces of sponge per mini gel.

The transfer cassette was assembled whilst fully submerged to ensure no air bubbles 

were formed between each layer; bubbles would interfere with transfer. One sponge 

was placed on the opened transfer cassette, a piece of blotting paper was placed on 

top of the sponge followed by the NCM, the gel, a further piece of blotting paper and 

the final sponge. The cassette was closed and placed in the transfer chamber 

containing transfer buffer, ensuring the NCM was closest to the anode.

Protein transfer from SDS-PAGE gel to NCM was carried out at a constant 100 V for 60 

minutes on ice. To verify the transfer process had occurred correctly, blots were briefly 

immersed in Ponceau S Red to temporarily visualise proteins, then rinsed under 

running water to remove the stain.

2.4.7 Immunoprobing

Electroblotted proteins were subjected to immunoprobing of the protein of interest. 

Prior to probing with antibodies, blots were blocked for 90 minutes with gentle agitation, 

in 5% blocking buffer (5% non-fat milk powder, 100 mL Tris-buffered saline (TBS), 0.05% 

polyoxyethylene sorbitan monolaurate (Tween-20)); Tween-20 acts as a stringent 

blocking agent to reduce non-specific binding of antibodies to the NCM.

Blots were incubated overnight at 4°C with the primary antibody diluted to an 

appropriate concentration in TBS with 0.05% Tween-20 (TBS-T) with or without non-fat 

milk powder (Table 2.4). For negative controls, primary antibody was omitted from the 

blots. Unbound antibody was removed from the blot by washing three times for 10 

minutes each in TBS-T, with gentle agitation.

HRP-conjugated secondary antibodies diluted to an appropriate concentration in 

blocking buffer (Table 2.4) were placed onto the blots and incubated for 2 hours with 

gentle agitation. To eliminate excess secondary antibody, blots were washed twice in 

TBS-T for 5 minutes each with agitation, then once in TBS for 5 minutes with agitation.

2.4.8 Chemiluminescent Immunodetection

Chemiluminescent immunodetection of immunoprobed blots was carried out using the 

ECL Plus Chemiluminescence detection system, according to manufacturers' 

instructions.

Briefly, blots were placed onto a sheet of transparent plastic, ensuring they did not dry 

out, and the chemiluminescent substrate solution (2 mL Reagent A, 50 pL Reagent B) 

was applied evenly to the surface of the blot and allowed to develop for 5 minutes.
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Excess chemiluminescent substrate solution was removed from the blot prior to 

covering with a further clean piece of transparent plastic to form a membrane sandwich 

ready for luminography.

An image of the blot was captured on the UVP Bio-Imager system using the Labworks 

4 software package programmed for western blot capture. The molecular mass of the 

visualised target protein was calculated relative to the protein standards.

Labworks 4 software was also utilised to perform single band density analysis 

(densitometry). Using the 1D gel toolbar, uniform width lanes were drawn onto the blot 

and adjusted to surround the band of interest. Ensuring the band was centralised in the 

lane, the integrated optical density (IOD) was calculated using the background 

correction option ‘Joining Valleys’ (20%). This was subtracted from each lane profile 

prior to IOD calculation.

Analysis of an internal reference protein (actin) in each protein sample allowed the 

normalisation of the IOD from each protein of interest. The generation of relative lODs 

enabled comparisons to be made across multiple samples. Normalisation of data was 

achieved using the following equation:

Relative IOD = IOD of protein of interest -  IOD of internal control protein

2.4.9 Stripping of Western Blot Membrane

Primary and secondary antibodies were removed from the blots using Restore™ Plus 

Western Blot Stripping Buffer according to the manufacturers’ protocol.

Briefly, blots were washed for 5 minutes in TBS-T with agitation, incubated with a 

sufficient volume of stripping buffer to cover the blot for 5 minutes with agitation, and 

then washed for a further 5 minutes in TBS-T with agitation. Blots were re-blocked and 

probed for actin, which was used as an internal reference protein to allow normalisation 

between samples; method as described in Sections 2.4.7 and 2.4.8.

2.5 Immunocytochemistry (ICC)

ICC is an immunological technique used to detect specific antigens in cultured cells by 

the use of antibodies (Figure 2.3). A primary antibody specific to the antigen is applied 

to the cells and later a secondary antibody directed against a species-specific portion 

of the primary antibody is applied. The secondary antibody is conjugated to a 

fluorochrome, consequently the location of the primary antibody and the bound antigen 

can be visualised using laser scanning confocal microscopy or fluorescent microscopy.

Cells were seeded into 8-well chamber slides at a density of 1 x 105 cells/well in 400 pL 

complete cell culture medium and allowed to adhere for 24 hours in a cell incubator.

After this time, spent medium was aspirated and cells were washed twice with DPBS to.
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A)

Primary antibody

Antigen in cultured cells
Glass slide C

B)

Fluorochrome conjugated 
secondary antibodies

Primary antibody

Antigen in cultured cells
Glass slide t

C)

0  0

O 9

Primary antibody bound to 
target antigen present in 
cells cultured on a glass 
slide

Fluorochrome conjugated 
secondary antibody bound 
to primary antibody

Fluorescence microscopy 
image of immuno-labelled 
target antigen (red), with 
nuclei counter stain (blue).

Figure 2.3: Immunocytochemistry (ICC) method.

A) Cells are cultured on a chamber slide, and immunoprobed with primary antibodies 

specific to the target protein. B) A fluorochrome conjugated secondary antibody 

directed against a species-specific portion of the primary antibody is then applied. C) 

The target antigen is visualised using a fluorescence or confocal microscope. Cells can 

be counter stained to allow the visualisation of the cell nuclei.
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remove all traces of serum from the complete culture medium, which may influence the 

experiment

Cells were treated with 1 ng/mL, 10 ng/mL or 100 ng/mL of IL-1(3, IL-6 or TNF-ain 

400 pL of serum-free medium and incubated in a cell incubator for 48 hours. As a 

control for IL-1 p and TNF-a treatment, untreated cells were incubated for 48 hours in 

400 pL of serum-free medium. As a control for IL-6 treatment, cells were incubated for 

48 hours with 1 pL/mL 5 mM acetic acid in 400 pL of serum-free medium, to ensure 

that any effect of IL-6 treatment was due to the cytokine and not the dissolving acetic 

acid.

Subsequently spent medium was removed from the treated cells and cells washed 

twice with 200 pL DPBS per well for 5 minutes with gentle agitation. Cells were fixed for 

10 minutes with either 200 pL 4% paraformaldehyde (PFA) (4°C) to visualise cell 

surface antigens or 200 pL acetone (-20 C) to permeabilse cells and therefore visualise 

intracellular antigens.

Fixative was removed from all samples; cells fixed with 4% PFA were washed three 

times with 200 pL DPBS per well for 5 minutes each with gentle agitation. Whereas 

acetone fixed samples were allowed to air dry for 10 minutes, followed by one wash 

with 200 pL DPBS per well for 5 minutes with gentle agitation.

Cell preparations were incubated overnight at 4°C with the primary antibody diluted to 

an appropriate concentration in DPBS (Table 2.5). For negative controls, primary 

antibody was omitted from the well. Primary antibody was aspirated from the wells and 

unbound antibody removed by washing three times for 5 minutes each in 200 pL DPBS, 

with gentle agitation.

Fluorochrome conjugated secondary antibodies diluted to an appropriate concentration 

in DPBS (Table 2.5) were applied to the cell preparations and incubated for 1 hour with 

gentle agitation, in a darkened humidified chamber. Following aspiration of the 

secondary antibody, cell preparations were washed three times in DPBS for 5 minutes 

each with gentle agitation in darkness, to eliminate excess secondary antibody whilst 

preserving antibody fluorescence.

Chambers were removed from the slide and a cell nuclei counter-stain applied to the 

cells. A coverslip was applied to the slide and the sealed into place with nail varnish. 

ICC slides were visualised and imaged on a laser scanning confocal microscope at 

630X magnification with oil, using the LSM 510 software.

Minor alterations were made to this methodology to accommodate specific conditions 

required for successful siRNA transfection. HepG2 cells were seeded at 1.0 x 104
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cells/well in 100 p.L/well antibiotic-free complete culture medium. In place of cytokine 

treatment, cells were subjected to siRNA transfection as described in Section 2.2.5 and 

left to incubate for 72 hours. The remainder of the procedure was unaltered.

2.6 Enzyme-Linked Immunosorbant Assay (ELISA)

ELISA is used to detect the presence of and quantify the amount of a specific antigen 

within a sample by the use of antibodies against the antigen of interest (Figure 2.4). 

The DuoSet human CX3CL1/Fractalkine ELISA kit was used according to the 

manufacturers’ protocol, to determine the amount of fractalkine shed from the surface 

of HepG2 cells into the supernatant.

Briefly, 100 pL mouse anti-human fractalkine capture antibody (4.0 p,g/mL in DPBS) 

was applied per well of a 96-well microplate, the plate was sealed and left to incubate 

overnight. Capture antibody was aspirated and each well washed three times with 

wash buffer (0.05% Tween 20 in DPBS). To ensure the complete removal of liquid after 

each wash, the plate was inverted and blotted against clean paper towels. Plates were 

then blocked with 300|uL reagent diluents (1% BSA in DPBS) for 1 hour, this was then 

aspirated and the plate washed three times with wash buffer, as described above. 

100 pL sample (HepG2 conditioned medium) or fractalkine standards in reagent diluent 

were applied per well, covered with an adhesive strip and left to incubate for 2 hours, 

this was then aspirated and the plate washed three times with wash buffer, as 

described above. 100 |aL biotinylated mouse anti-human fractalkine detection antibody 

(500 ng/mL in reagent diluent) was applied per well, covered with a new adhesive strip 

and left to incubate for 2 hours, this was then aspirated and the plate washed three 

times with wash buffer, as described above.

100 pL streptavidin-HRP (1 part in 100 parts reagent diluent) was applied per well, 

covered with an adhesive strip and left to incubate for 20 minutes (avoiding direct 

sunlight). 50 pL stop solution (2 N H2S04) was applied to each well, and mixed by 

gentle tapping. Finally, the absorbance of the reaction solutions were measured at 450 

and 570 nm in a spectrophotometer, and the A570 readings subtracted from A450 

readings to correct for plate imperfections. From these data a standard curve was 

produced and the concentration of soluble fractalkine present in the experimental 

samples determined using linear regression analysis of the form:

y = mx + c

y = absorbance; m = gradient; x = protein concentration; c = y intercept

When the treatment under investigation was known to alter the proliferative capacity of 

the cell line, the amount of soluble fractalkine was quantified relative to the protein
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Enzyme
Substrate

Streptavidin-HRP

Biotinylated 
Detection Antibody

Target
Proteir

Capture Antibody

Figure 2.4: The sandwich ELISA method.

A monoclonal capture antibody against a target protein is attached to the walls of a 

microtiter plate, prior to the addition of a test sample. If target protein is present in the 

sample, it binds to the capture antibody. A biotinylated detection antibody that also 

recognises the target protein is then applied to each well, followed by streptavidin 

tetrameric protein conjugated with HRP reporter enzyme, which binds avidly to biotin. 

Enzyme substrate is then added and a colour change occurs to reveal the presence if 

enzyme-labelled antibody bound to target protein. This colour change is measured on a 

plate reading spectrophotometer.
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content of each well from which the supernatant was collected as determined by the 

BCA assay (Section 2.4.2). Resultant data were presented in the form of concentration 

of fractalkine (ng)/mg protein. When cellular proliferation was unaltered by treatment, 

soluble fractalkine was expressed in the form of ng/mL of fractalkine.

At least three independent experiments were performed to allow statistical analysis.

2.7 Flow Cytometry

HepG2 cells were seeded into T25 flasks at 1.4 x 106 cells/flask in 3 mL complete 

culture medium and allowed to adhere for 24 hours in a cell incubator. Spent medium 

was aspirated and cells washed twice with DPBS. Flasks were treated with 100 ng/mL 

IL-1p, IL-6 or TNF-a in 3 mL of serum-free medium (Section 2.2.4) and incubated in a 

cell incubator for 24 hours.

Subsequently spent medium was aspirated and cells washed twice with DPBS. Non- 

enzymatic cell dissociation solution (2 mL) was added to each flask of cells and 

allowed to act for 10 minutes in a cell incubator. Cells were transferred into 15 mL 

centrifuge tubes, centrifuged at 200 x g for 5 minutes to pellet the cells, and 

supernatant aspirated from the harvested cells.

Cells were re-suspended in 2 mL of chilled DPBS containing 1% foetal calf serum (FCS) 

to prevent non-specific binding of the primary antibody and left to incubate for 5 

minutes prior to cell counting (Section 2.2.3). Samples were centrifuged at 200 x g for 5 

minutes, supernatant decanted and cells re-suspended in the residual volume. Cells 

were re-suspended to a density of 1.0 x 106 cell/mL in chilled DPBS containing 1% 

FCS, and 200 pL of each cell suspension (1 x 105 cells) aliquoted into six separate flow 

cytometry tubes; three tubes for cell surface antigen detection and three tubes for 

intracellular antigen detection. Cells were then pelleted by centrifugation at 200 x g for 

5 minutes, supernatant decanted and cells re-suspended in the residual volume.

For cell surface antigen labelling, 10 pL FITC-conjugated ADAM17 antibody or FITC- 

conjugated isotype control antibody were added to separate tubes, mixed by gentle 

agitation and incubated in the dark at 4°C for 30 minutes. The third tube was used as 

an unlabelled control. 1 mL chilled DPBS containing 1% FCS was added to each tube, 

mixed by gentle agitation, incubated in the dark for 5 minutes, and then centrifuged at 

200 x g for 5 minutes. Supernatant was decanted and cells re-suspended in 300 pL of 

DPBS containing 1% FCS. Immediately before flow cytometric analysis, 25 pL of 

100 pg/mL propidium iodide was added to the ADAM17- and isotype control-labelled 

samples to allow viable cells to be identified.
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For intracellular antigen labelling, the IntraSure kit was used according to the 

manufacturers’ protocol. Briefly, 50 pL reagent A was added to the each sample, 

vortexed thoroughly and incubated in the dark for 5 minutes to fix the cells. 1 mL FACS 

lysing solution was then added, vortexed thoroughly and incubated in the dark for 10 

minutes to permeabilise the cells. Samples were centrifuged at 200 x g for 5 minutes 

and supernatant decanted. 25 pL reagent B was applied to each sample to further 

permeabilise the cells, and 10 pL of FITC-conjugated ADAM17 antibody or FITC- 

conjugated isotype control antibody were added to separate tubes, mixed by gentle 

agitation and incubated in the dark at 4°C for 30 minutes. The third tube was used as 

an unlabelled control. 1 mL chilled DPBS containing 1% FCS was added to each tube, 

mixed by gentle agitation, incubated in the dark for 5 minutes, and then centrifuged at 

200 x g for 5 minutes. Supernatant was decanted and cells re-suspended in 300 pL 1% 

PFA in the dark for 30 minutes to re-fix the cells. Samples were then analysed using 

the flow cytometer.

To determine whether ADAM17 protein was present in FlepG2 cells, a fluorescence 

index (FI) for each set of samples was calculated using the equation below.

Fluorescence Index = Antibody Fluorescence

Isotype Control Fluorescence

A FI >1 indicates specific antibody staining, whereas a FI <1 signifies no specific 

antibody staining.

Three independent experiments were performed to allow statistical analysis.

2.8 Statistical Analyses

Statistical analysis of experimental data was performed using Statistical Package for 

Social Sciences (SPSS) 15.0 for Windows, unless otherwise stated. Appropriate 

statistical tests were selected following consultation with a statistician (Dr. R. Jackson, 

Sheffield Hallam University, Sheffield, UK).

The one-sample Kolmogorov-Smirnov test was used to test the normality of the data 

(Zar, 1999); the mean, variance, skewness and kurtosis were also examined. If the 

distribution of the data was not normal (i.e. significant Kolmogorov-Smirnov test 

(P<0.05), and skewness and kurtosis statistics more or less than 0), logarithmic, 

square root or negative reciprocal transformations were performed, then one-sample 

Kolmogorov-Smirnov test and skewness and kurtosis statistics were repeated on the 

new variables, until normality of data was achieved.

One-way analysis of variance (ANOVA) was applied to the normalised data to analyse 

variation within an experiment, and test the null hypothesis that there is no variation
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between the treatment and control groups (Zar, 1999). If the ANOVA rejected the 

equality of the means (P<0.05), Levene's test was used to test for homogeneity of 

variances. If variances were found to be equal (P>0.05) a 2-sided Dunnett's test was 

used for post hoc pairwise analysis, if unequal variances were found (P<0.05) a 

Dunnett's T3 test was used. The Dunnett’s post hoc tests specifically compare the 

means of treatment groups against the mean of a control group, to identify treatment 

groups which are significantly different to the control group (Zar, 1999).

When data could not be transformed into a normal distribution, the non-parametric 

Kruskal-Wallis test was applied to the data to analyse variation within an experiment 

(Zar, 1999); the null hypothesis was the same as for the ANOVA, i.e. there is no 

variation between the treatment and control groups. This test uses the ranks of the 

data rather than the raw data values to calculate the statistic. The Kruskal-Wallis test 

rejected the equality of the means when P<0.05.

The student’s t-test was performed using Microsoft® Office Excel 2007, to assess 

whether the means of two groups were statistically different from each other when only 

two independent experiments were performed (Zar, 1999). The null hypothesis states 

that there is no variation between the treatment and control groups, and the equality of 

the means was rejected when P<0.05.
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Chapter 3

Proliferative Responses and Modulation of ADAM17, ADAMTS- 

1, -4, -5  and TIMP3 mRNA in Liver Cell Lines by IL-ip, IL-6 and 

TNF-a
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3.1 Introduction

This chapter describes investigations of the in vitro effects of three pro-inflammatory 

cytokines (IL-1p, IL-6 and TNF-a), which are often up-regulated in CRC and HCC 

patients, on the proliferative capacity of two human HCC cell lines, HepG2 and HuH-7, 

and one human activated HSC line, LX-2, and the modulation of ADAM17, ADAMTS-1, 

-4, -5 and TIMP3 gene expression in these cell lines.

3.1.1 Cell Culture

The culture of mammalian cells in vitro is a fundamental technique that facilitates the 

investigation of cell behaviour under defined conditions. Modification of these 

conditions, for example by addition of a specific cytokine or down-regulation of a 

specific gene, allows the effect of that variable to be examined on cell behaviour and 

compared to normal physiological (basal) cell behaviour. The most common types of 

cell culture are primary and secondary (cell lines), each of which has distinct 

advantages to the researcher.

Primary cultures contain cells separated and purified directly from mammalian tissues, 

and as such usually contain heterogeneous cell populations. Primary cell cultures 

generate physiologically relevant data as they closely correspond to the parent cell 

types and mimic the in vivo state of the tissue of origin. However, primary cells can only 

be utilised over a limited number of sub-cultures (passages) before they die or become 

altered from the parent phenotype.

Secondary cultures consist of immortalised cells which can be grown indefinitely and 

this can result in alteration from the parent cell genotype/phenotype. However, as most 

mammalian cell line cultures contain a homogenous (clonal) population of cells, 

consistent and reproducible data can be collected from secondary cell cultures.

3.1.2 Cell Viability and Proliferation

It is often important to know the effect a treatment has on the viability and proliferation 

of a cellular population. These factors can be effectively assessed by use of the 

colorimetric MTT metabolic activity assay, in which MTT is reduced by mitochondrial 

reductase into insoluble formazan crystals by viable cells. Absorbance measurements 

obtained after the solubilisation of formazan crystals allows the number of viable cells 

within an experimental culture to be ascertained when used in conjunction with a 

standard curve of cell numbers.

3.1.3 The Principle ofqRT-PCR

qRT-PCR is widely used to detect and quantify gene expression. It involves reverse 

transcription of RNA into cDNA followed by PCR to amplify the target cDNA molecule,
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which is quantified in real-time by accumulation of fluorescence after each amplification 

cycle.

Two distinct types of detection chemistries are used in qRT-PCR, namely probe- or 

non-probe based chemistries. Probe-based detection methods are termed specific, as 

they utilise amplicon-specific fluorescent probes that only generate a fluorescent signal 

when hybridised to their complementary target. Whereas non-probe detection methods 

rely on fluorescent dyes that intercalate with double-stranded DNA, unbound dye 

exhibits little fluorescence in solution, but as DNA polymerisation proceeds the dye 

binds to nascent DNA resulting in an increase in the fluorescence signal. Verification of 

the PCR product is then required in which a melt curve (dissociation curve) of the 

amplicon is generated that plots fluorescence as a function of temperature. This step is 

unnecessary for specific probe-based assays.

There are two established methods of PCR product quantification, relative and 

absolute. Relative quantification determines changes in the mRNA expression of a 

target gene across multiple samples and expresses it relative to an internal reference 

gene, such as a housekeeping gene. Several mathematical algorithms have been 

developed to produce the corrected relative expression ratio; these include relative 

quantification without primer amplification efficiency correction, e.g. the comparative CT 

method (Livak & Schmittgen, 2001), and relative quantification with primer amplification 

efficiency correction, e.g. the Pffafl method (Pfaffl, 2001).

In order for the former model to be valid, the primer amplification efficiencies of the 

target and reference genes must be approximately equal, which is not always the case. 

However, differences in primer amplification efficiencies are taken into consideration in 

the latter model, making it the more superior model of relative quantification. It is 

generally considered that relative quantification is adequate for investigating 

physiological changes in gene expression levels, though care must be taken to select a 

reference gene that is not affected by the treatment under investigation, or results may 

be misleading.

Absolute quantification uses a standard curve of CT values, generated from a dilution 

series of an external standard with known initial target copy number, to determine the 

absolute quantity of mRNA from a target gene within an unknown sample. The 

reliability of this method depends heavily on the accuracy of the standards. The 

strategy of absolute quantification is commonly used to quantify viral or tumour load in 

bodily fluids (Bustin & Mueller, 2005).

Advances in the technologies surrounding qRT-PCR have led to this technique having 

increasing importance not only in research, but also in clinical applications. However,
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some inherent problems still exist with this method, and reliable quantitative data can 

only be obtained when each step of the experimental protocol is properly validated.

3.1.4 Specific Objectives

• To determine the parental origin of the three cell lines (HepG2, HuH-7 and LX-2) 

utilised throughout these studies, by observing cell morphology and cellular 

markers.

• To establish appropriate controls for each of the cytokine treatments (IL-1 (3, IL-6 

and TNF-a) used.

• To determine the proliferative effect of each cytokine treatment on each of the 

three cell lines under investigation.

• To optimise the method of qRT-PCR for the detection of ADAM17, ADAMTS-1, 

-4, -5 and TIMP3 gene expression.

• To determine the modulating effect of each cytokine treatment on the gene 

expression of ADAM17, ADAMTS-1, -4, -5 and TIMP3 in each of the three cell 

lines under investigation.

3.2 Results

3.2.1 Cell Line Characterisation

All in vitro experiments in this study were performed on three human liver cell lines, 

HepG2, HuH-7 and LX-2, so it was necessary to validate the parental origin of these 

cell lines. The combination of phase contrast microscopy and ICC for cell markers 

confirms the phenotypes of these cells are consistent with their expected parental 

phenotype.

Phase contrast microscopy demonstrated that both well-differentiated HCC cell lines 

HepG2 and HuH-7 displayed an epithelial-like morphology, but with obvious differences 

in their growth patterns. HepG2 cells formed islands of cells with some areas of highly 

confluent cells and other areas with no cell coverage (Figure 3.1 A), whereas HuH-7 

cells formed a uniform monolayer of cells (Figure 3.1B). LX-2 cells also formed a 

monolayer in culture, but in contrast to HepG2 and HuH-7 cells they had a 

myofibroblast-like phenotype with protrusions emanating from the main body of the cell 

(Figure 3.1C).

Cells from each cell line were subjected to immunofluorescent ICC (Section 2.5) 

following acetone fixation to allow the intracellular staining of two cell markers, 

hepatocyte specific antigen and GFAP (Figure 3.1). Negative controls were also 

performed in which the primary antibody was omitted from the staining procedure. See 

Section 5.2.1 for the optimisation of this technique.
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GFAPHepG2

Negative

GFAP

Negative

Negative

Figure 3.1: Cultured A) HepG2, B) HuH-7 and C) LX-2 cells imaged by phase contrast 

microscopy (100X), and following ICC for hepatocyte specific antigen (HSA) and GFAP 

(both red). Nuclei stained with DAPI (blue) in all images. Scale bar is 20 |am.
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The characteristic granular cytoplasmic staining of hepatocyte specific antigen was 

visualised in both the HepG2 and HuH-7 cell lines, but was absent from LX-2 cells. 

This indicates that HepG2 and HuH-7 cells were derived from hepatocytes, but LX-2 

cells were not. Conversely, staining for GFAP revealed that HepG2 and HuH-7 cells 

had minimal intracellular staining for this neural cell marker. However, LX-2 cells, which 

were derived from activated HSCs with a neural origin, demonstrate intense GFAP 

staining.

3.2.2 Establishing Appropriate Controls for Cytokine Treatments

Throughout these investigations an untreated control sample (serum-free medium only) 

was used for the comparison of IL-1(3 and TNF-a treated samples, as these cytokines 

were dissolved in sterile distilled water as recommended by the manufacturer. An 

acetic acid-containing control sample (1 pL 5mM acetic acid in 1 mL serum-free 

medium) was used to allow comparisons of IL-6 treated samples, as this cytokine was 

dissolved in 5 mM acetic acid according to the manufacturers’ instructions. To establish 

the effect of the presence of acetic acid in the cell culture media, pH measurements 

were taken of the serum-free media and acetic acid-containing serum-free media for 

each cell line after 0, 3, 6 and 24 hours in a cell incubator.

The pH measurements of all samples indicate that they were weak alkaline solutions 

(Table 3.1), that underwent minor decreases in pH over the 24 hour time course, with a 

maximum decrease of 0.42 (HuH-7 controls) and a minimum of 0.3 (HepG2 untreated 

control). No differences in pH were observed between the HuH-7 and LX-2 untreated 

and acetic acid-containing serum-free media samples at any time point. However, a 

slight increase in pH was observed at all time points in the acetic acid-containing 

HepG2 control sample in comparison to the untreated serum-free control sample, 

ranging from 0.09 immediately after the addition of acetic acid to 0.02 after 24 hours.

3.2.3 Proliferative Responses of HepG2, HuH-7 and LX-2 Cell Lines to IL-1J3, IL-6 

and TNF-a

To determine whether the pro-inflammatory cytokines studied (IL-1p, IL-6 and TNF-a) 

altered the proliferation rate of HepG2, HuH-7 or LX-2 cells, cells were incubated for 24, 

48 or 72 hours with an appropriate concentration of each cytokine. Following this, the 

cell number of each cell population was determined using the MTT assay (Section 

2.2.6). A standard curve of actual cell numbers was used to convert the absorbance 

reading of metabolic activity into a cell number.

Each experiment included triplicate samples for each time point, and was performed 

four times to confirm trends found. IL-1p and TNF-a treated cells were compared to an
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untreated control sample, whereas IL-6 treated cells were compared to an acetic acid- 

containing control sample.

HepG2 Cells

The numbers of viable HepG2 cells following cytokine treatment with 1, 10 or 100 

ng/mL of IL-1p, IL-6 and TNF-a are shown in Figure 3.2. At the 24 hour time point, 10 

ng/mL IL-1p treated HepG2 cells were considerably increased compared to the control 

cells (P=0.039). An inverse concentration dependent increase in cell number was 

observed at both the 48 and 72 hour time points following IL-1(3 treatment, such that 1 

ng/mL IL-p treated samples had the highest cell number (mean value of 4.89 x 104 and 

8.30 x 104 cells/well respectively) and 100 ng/mL treated samples had the lowest 

number of cells (mean of 3.66 x 104 and 6.35 x 104 cells/well). When compared to the 

control sample, 1 ng/mL IL-p caused statistically significant increases in cell numbers 

at both the 48 and 72 hour time points (P=0.039 and P=0.008 respectively), as did 10 

ng/mL IL-p after 72 hours (P=0.016).

A concentration dependent increase in HepG2 cell number was observed following 24 

hours of IL-6 treatment, with a significant increase observed with 10 and 100 ng/mL as 

compared to the control (P=0.015 and P=0.014 respectively). IL-6 treatment for the 

extended time points of 48 and 72 hours did not result in differences in cell number 

when compared to the appropriate control.

TNF -a treatment of HepG2 cells did not alter cell number after 24 hours with any of the 

concentrations investigated. However after 48 hours of treatment with 1 ng/mL TNF-a, 

HepG2 cell numbers were increased significantly in comparison to the control (P=0.007) 

After 72 hours of application, TNF-a caused comparable increases in cell numbers that 

were statistically different to the control sample for all concentrations tested (P=0.025, 

P=0.024 and P=0.004 respectively).

HuH-7 Cells

The numbers of viable HuH-7 cells following cytokine treatment with 1, 10 or 100 

ng/mL of IL-1 p, IL-6 and TNF-a are shown in Figure 3.3. At the 24 hour time point, 100 

ng/mL of IL-1 p resulted in a statistically significant increase (P=0.038) in the number of 

HuH-7 cells from a mean value of 1.62 x 104 cells/well to 2.87 x 104 cells/well. This 

increase was not statistically significant at the later time points of 48 and 72 hours. 

Minor increases in cell numbers were observed at the 48 and 72 hour time points with 

1 and 10 ng/mL of IL-1 p, but these were not statistically different to their controls.
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Figure 3.2: Viable HepG2 cell numbers following treatment for A) 24 hours, B) 48 

hours, and C) 72 hours with varying concentrations of IL-1p, IL-6 or TNF-a. Data 

presented as mean ± SEM. Significant difference from control, * P<0.05, ** P<0.01 

(ANOVA with Dunnett’s test; n=4).
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Figure 3.3: Viable HuH-7 cell numbers following treatment for A) 24 hours, B) 48 hours, 

and C) 72 hours with varying concentrations of IL-1 (3, IL-6 or TNF-a. Data presented as 

mean ± SEM. Significant difference from control, * P<0.05, ** P<0.01, *** P<0.001 

(ANOVA with Dunnett’s test; n=4).
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IL-6 treatment of HuH-7 cells resulted in an approximately equal increase in cell 

numbers with 1, 10 and 100 ng/mL, however these changes were not statistically 

different from the control samples.

No differences were observed in HuH-7 cell numbers after 24 hours treatment with 

TNF -a at any of the concentrations examined. However at the 48 hour time point, 

concentration dependent increase of cell number was recorded with increasing 

concentration of TNF-a, culminating in a statistically significant increase of cells 

(P=0.008) in 100 ng/mL treated samples (a mean value of 3.41 x 104 cell/well 

compared to 1.38 x 104 cell/well for the control).

Cell numbers were also increased at the 72 hour time point, but in an inverse manner 

with increasing concentration of TNF-a. Such that 1 ng/mL TNF-a treated samples had 

the highest cell number (mean value of 8.11 x 104 cells/well) and 100 ng/mL treated 

samples had the lowest (mean of 4.44 x 104 cells/well). This equated to statistically 

significant increases of cell number in 1 and 10 ng/mL TNF-a treated samples 

compared to the control (P=0.0001 and P=0.012 respectively).

LX-2 Cells

The numbers of viable LX-2 cells following cytokine treatment with 1, 10 or 100 ng/mL 

of IL-1 p, IL-6 and TNF-a are shown in Figure 3.4. There were no statistically significant 

changes in cell number with any of the cytokine treatments at any time point when 

compared to the appropriate control. However, a trend of reduced cell number is 

observed with treatments of 1 and 100 ng/mL TNF-a at all three time points; these 

changes were not statistically different to the untreated controls.

3.2.4 qRT-PCR optimisation

qRT-PCR optimisation is paramount in obtaining good, reliable results. Initially a 

standard PCR protocol was tested; this had a 15 minute hot start at 95°C to activate the 

enzyme, followed by 40 cycles of 15 seconds at 95°C for denaturation, 15 seconds at 

58°C for primer annealing and 30 seconds at 72°C for polymerisation (elongation). The 

use of a hot start enzyme prevents unspecific amplification due to weak unspecific 

binding of primers during PCR setup. The amplification cycles were followed by melt 

curve data collection, consisting of 30 seconds denaturation, followed by 45 cycles of 

10 seconds starting at 50°C and increasing by 1C with each cycle.

Standard curve data generated using the above protocol indicated very poor primer 

efficiencies for all genes tested (p-actin, HRPT1, YWHAZ, ADAM17, ADAMTS-1, 

ADAMTS-4, ADAMTS-5 AND TIMP3), with no product amplification seen in many 

cases. An adjustment of the primer annealing temperature to 60 C and a subsequent
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Figure 3.4: Viable LX-2 cell numbers following treatment for A) 24 hours, B) 48 hours, 

and C) 72 hours with varying concentrations of IL-1 [3, IL-6 or TNF-a. Data presented as 

mean ± SEM. There were no significant differences in the data (ANOVA with Dunnett’s 

test; n=4).
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increase of the number of amplification cycles to 45 proved to have little effect.

The initial qRT-PCR protocol was further adapted and resulted in a highly efficient 

protocol suitable for all genes of interest. Prior to the 15 minute hot start at 95C, a 2 

minute step at 50°C was added to ensure nothing (in particular the primers) had 

precipitated out of the reaction mix. 40 cycles of 15 seconds at 95C (denaturation) and 

1 minute at 60 C (polymerisation) followed the hot start. The melt curve data collection 

and analysis step remained unchanged.

The reaction volume was optimised using HepG2 cDNA under the same reaction 

conditions, but with varying total reaction volumes (25 pL, 20 p.L and 15 pL) (Table 3.2). 

Observation of the CT values from two housekeeping gene transcripts indicated that 

reaction volumes of 25 pL and 20 pL gave comparable results (mean CT variation of 

0.3 for HPRT1 and 0.1 for YWHAZ). Whereas reduced reaction volumes of 15pL 

generated minor detrimental effects on the data (mean CT variation of 0.55 for HPRT1 

and 0.7 for YWHAZ). Hence, a reaction volume of 20 pL was selected for use in all 

qRT-PCR experiments.

To further increase the reliability of the results obtained from the qRT-PCR experiments 

concerning mRNA expression of specific genes within a system, extracted total RNA 

was treated with DNase I to degrade any contaminating genomic DNA (Figure 3.5; 

Section 2.3.1 - 2.3.2). The presence of DNA in a qRT-PCR could potentially be 

amplified and influence the results obtained, due to the sensitivity of the technique.

3.2.5 Selection of housekeeping gene transcripts

Eight widely used housekeeping gene transcripts (p-actin, p2m, GAPDH, HRPT1,

RPL13A, SDHA, UBC, and YWHAZ) were considered for their suitability to act as 

reference genes for the normalisation of qRT-PCR experiments (Section 2.3.7). Each 

of these internal control transcripts belongs to a different functional class (Table 2.3), 

which significantly reduces the chance that the genes might be co-regulated 

(Vandesompele et al, 2002).

From the eight potential reference gene transcripts, five were discarded after 

preliminary qRT-PCR experiments performed in the HepG2 experimental system 

(Table 3.3). p2m was excluded due to the lack of PCR product amplification in the 

conditions used; CT values of the experimental samples and the negative controls 

were comparable. SDHA and UBC were discounted as they had the same Tm as the

experimental samples and NTC, thus it was not possible to determine if specific

product or a contaminant was amplified without performing agarose gel electrophoresis 

of the samples. Finally, GAPDH and RPL13A were eliminated as reference transcripts
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Table 3.2: qRT-PCR data comparing different reaction mix volumes.

HRPT1 22.9 21.0 21.95 22.1 22 4 22.25 23.1 22.5 22.8

YWHAZ 20.5 20.1 20.30 20.0 20.8 20.40 21.0 21.2 21.1

28S rRNA 

18S rRNA

Dye front

Figure 3.5: Comparison of untreated total RNA to DNase I treated total RNA by 

agarose gel electrophoresis.

Both total RNA samples subjected to agarose gel electrophoresis were intact and of 

good integrity, demonstrated by the presence of the 28S and 18S rRNA subunits. The 

untreated total RNA sample (left) was contaminated with genomic DNA, seen as a high 

molecular weight species above the 28S rRNA band. Conversely, the total RNA 

sample subjected to DNase I treatment (right) had no genomic DNA contamination, 

due to the degrading action of DNase I. This is a negative image of the agarose gel.

genomic DNA

28S rRNA 

18S rRNA

Dye front

Untreated
RNA

T reated 
RNA
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Table 3.3: Suitability of reference gene transcripts for the normalisation of qRT-PCR 

experiments.*

H
B-actin1 24.2 89 24.0 89 23.9 90 34.1 80 Suitable

p2m 32.9 78 33.1 78 33.0 78 30.7 79 Not detected

GAPDH 13.9 86 15.3 86 14.0 86 >40 77 Too highly 

expressed

HRPT1 20.4 85 20.8 85 20.7 85 30.6 81 Suitable

r p l13a 13.7 85 13.4 85 14.2 85 35.5 79 Too highly 

expressed

SDHA 25.7 82 25.7 82 25.7 82 31.0 80 Comparable Tm for 

product and NTC**

UBC 22.0 87 22.0 87 22.0 87 33.9 87 Comparable Tm for 

product and NTC

YWHAZ 22.5 84 21.4 84 21.0 84 34.1 78 Suitable

* Data obtained from the HepG2 cell line.

** NTC = No template control.
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due to their high expression levels; the low CT value would act to skew the data 

resulting in inaccurate quantification of the RNA of interest.

The remaining three housekeeping gene transcripts, p-actin, HRPT1 & YWHAZ, were 

all good candidates for use as reference transcripts in the HepG2 cell line; they are 

from different functional groups, each have a different Tm for the specific product and 

negative controls allowing contamination to be easily identified, and all are expressed 

at moderate levels decreasing the possibility of skewed data.

For each experimental system, the expression stability measure (M) of the two most 

stable genes was determined using the geNorm applet (Section 2.3.7). These were 

then used as reference gene transcripts for that particular system allowing the 

normalisation of other transcripts within that system. Reference gene transcripts in an 

ideal system have an M-value less than 1.5; the lower the M-value the higher the 

reference transcripts stability.

The first experimental system tested was HepG2 cells treated with varying 

concentrations (1 ng/mL, 10 ng/mL or 100 ng/mL) of IL-1 p, IL-6 and TNF-a. The CT 

values obtained from each qRT-PCR experiment were converted into relative 

quantification data and subjected to geometric averaging by geNorm. Of the three 

housekeeping genes assessed, YWHAZ was the least stably expressed gene. After the 

stepwise elimination of YWHAZ, the M-value of the two most stably expressed genes 

for this experimental system, p-actin and HRPT1, was 0.703 (Table 3.4), indicating 

their suitability as reference gene transcripts for this system.

The second experimental system tested was HuH-7 cells treated in the same manner 

as the HepG2 experimental system. After data conversion and geNorm analysis, the 

two most stably expressed housekeeping genes tested were HRPT1 and YWHAZ, with 

the least stable being p-actin. The stepwise omission of p-actin resulted in an M-value 

of 0.905 for HRPT1 and YWHAZ (Table 3.4), demonstrating that these two gene 

transcripts are ideal reference transcripts for this system.

The final experimental system tested was LX-2 cells treated as above. Following qRT- 

PCR data transformation and entry into geNorm, the least stably expressed gene was 

YWHAZ. Stepwise removal of this gene yielded an M-value of 0.527 for p-actin and 

HPRT1 (Table 3.4). Therefore, p-actin and HPRT1 are ideal reference gene transcripts 

for this system.

Table 3.4 indicates some variance in stability of reference gene expression between 

independent experiments within each system. However, in all cases the M-values were 

less than 1.5, indicating their suitability as reference genes within these systems.
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Table 3.4: geNorm analysis from the HepG2, HuH-7 and LX-2 experimental systems, 

indicating the generated M-values for each independent experiment.

m m . r#t§
HepG2 p-actin & IL-1 (3 0.325

HPRT1 0.575 0.616
0.888

0.676

IL-6 0.636

1.100 0.775
0.642

0.723

TNF-a 0.357

1.077 0.717
0.165

1.269

Overall Mean M-value 0.703

HuH-7 HPRT1 & IL-1 (3 1.074

YWHAZ 1.020 0.885
1.217

0.229

IL-6

0.703 0.767
0.887

0.712

TNF-a 1.183

1.094 0.916
0.989

0.397

Overall Mean M-value 0.905
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Table 3.4 (continued): geNorm analysis from the HepG2, HuH-7 and LX-2 

experimental systems, indicating the generated M-values for each independent 

experiment.

LX-2 p-actin & IL-ip 0.414

HPRT1 0.347 0.382
0.132

0.633

IL-6 0.737

0.563 0.671
0.900

0.485

TNF-a 0.259

0.773 0.528
0.366

0.712
•

Overall Mean M-value 0.527
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3.2.6 Primer Efficiencies

After qRT-PCR optimisation and housekeeping transcripts selection, the amplification 

efficiency of eight primer pairs was assessed. cDNA from an appropriate cell line was 

subjected to a two-fold dilution series with ddH20, followed by qRT-PCR using the 

standard curve method (Section 2.3.8). The primer efficiency of the housekeeping 

transcripts, p-actin, HRPT1 and YWHAZ, were tested using cDNA from the HepG2 cell 

line; THP-1 (human acute monocytic leukaemia cell line) cDNA was used for ADAM17 

and TIMP3; and ADAMTS-1, -4 and -5 were assessed using cDNA from U373 cells 

(human glioblastoma-astrocytoma cell line).

Table 3.5 summarises the primer efficiencies obtained for each primer pair, along with 

the correlation coefficient and the slope of the line, whilst Figure 3.6 shows the actual 

standard curve plots generated following qRT-PCR using the standard curve method. 

The primer efficiencies for the genes tested ranged between 94.4% (ADAMTS-5) and 

100% (p-actin), with correlation coefficients of not less that 0.929 (ADAMTS-5) and not 

more than 0.996 (YWHAZ).

Although this is only a moderately small difference in efficiencies, it was decided that 

the Pfaffl method of quantification would be more suitable than the AACT method 

(comparative C T  method); the A ACT method assumes the amplification efficiencies of 

the target and the control gene are approximately equal, whereas the Pfaffl method 

allows quantification of genes when their efficiencies are unequal (Section 2.3.6).

3.2.7 qRT-PCR Products

To verify that only the expected qRT-PCR product was amplified in each reaction, 

amplification and melt curve data, together with agarose gel electrophoresis of the 

qRT-PCR products were examined (Sections 2.3.3 & 2.3.6).

qRT-PCR amplification data presented in graphical form allowed PCR product 

amplification to be tracked throughout cycling, and consequently the determination of 

CT values for each sample. Figure 3.7 illustrates the amplification curves generated 

after qRT-PCR for each of the selected housekeeping gene transcripts (p-actin, HPRT1 

and YWHAZ) and transcripts of interest (ADAM17, ADAMTS-1, -4, -5 and TIMP3) in 

duplicate, together with their NTC.

In all cases the duplicate samples showed a sigmoidal growth curve with a CT value of 

not more than 0.3 cycles difference, demonstrating the accuracy of this technique. The 

CT values of the experimental samples were in most cases more than 10 cycles (and 

not less than 4 cycles) lower than the CT value for the NTC, indicating that product is 

being amplified in the experimental samples. NTCs should not generate a CT value
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Table 3.5: qRT-PCR primer efficiencies for each primer pair, including correlation 

coefficient, slope of line and cDNA source.

■
p-actin 100 0.980 -3.321 HepG2

(Hepatoma)

HRPT1 98.9 0.961 -3.349 HepG2

(Hepatoma)

YWHAZ 99.9 0.996 -3.325 HepG2

(Hepatoma)

ADAM17 97.7 0.968 -3.379 THP-1

(Leukaemia)

ADAMTS-1 99.0 0.991 -3.347 U373

(Astrocytoma)

ADAMTS-4 95.0 0.949 -3.447 U373

(Astrocytoma)

ADAMTS-5 94.4 0.929 -3.464 U373

(Astrocytoma)

TIMP3

i ..................

99.1 0.961 -3.344 THP-1

(Leukaemia)
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A) p-actin
Correlation Coefficient: 0.980 Slope: -3.321 Intercept: 14,338 V =  -3.321 X +  14.338  
PCR Efficiency: 100.0 %
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Correlation Coefficient: 0,961 Slope: -3.349 Intercept: 17.822 Y =  -3.349 X +  17.822 
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C) YWHAZ
Correlation Coefficient: 0.996 Slope: -3.325 Intercept: 16.703 Y =  -3.325 X +  16,703 
PCR Efficiency: 99.9 %
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D) ADAM17
Correlation Coefficient: 0.968 Slope: -3.379 Intercept: 24.412 Y =  -3,379 X +  24.412  
PCR Efficiency: 97.7  %
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Figure 3.6: Standard curve plots generated from qRT-PCR data showing the PCR 

primer pair efficiencies for A) p-actin, B) HPRT1, C) YWHAZ and D) ADAM 17.
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E) ADAMTS-1
Correlation Coefficient: 0.991 Slope: -3.347 Intercept: 29.892 Y =  -3.347 X  +  29.892  
PCR Efficiency: 99.0 %
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F) ADAMTS-4
Correlation Coefficient: 0.949 Slope: -3 .447 Intercept: 35.820 Y =  -3,447 X  +  35.820  
PCR Efficiency: 95.0 %
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G) ADAMTS-5
Correlation Coefficient: 0.929 Slope: -3,464 Intercept: 33.726 Y =  -3.464 X  +  33.726  
PCR Efficiency: 94,4 %
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H) TIMP3

Correlation Coefficient: 0.961 Slope:-3.344 Intercept: 22.293 Y = -3 .3 4 4  X +  22.293 
PCR Efficiency: 99.1 %
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Figure 3.6 (continued): Standard curve plots generated from qRT-PCR data showing 

the PCR primer pair efficiencies for E) ADAMTS-1, F) ADAMTS-4, G) ADAMTS-5 and 

H) TIMP3.
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due to the absence of template; this was the case for p-actin, ADAM17, ADAMTS-1 

and TIMP3. However CT values were obtained from NTCs for HPRT1, YWHAZ, 

ADAMTS-4 and ADAMTS-5; this was due to primer dimer formation (explanation 

below).

PCR products have a unique Tm dependent upon their DNA base composition, thus 

melt curve analysis (Figure 3.7) allowed the verification of correctly amplified fragments. 

All duplicate samples demonstrated a single peak in fluorescence indicative of the 

amplification of a single product. Whereas, the NTC for each primer pair either 

generated no peak (p-actin and ADAM17), a slight peak (ADAMTS-1, ADAMTS-4 and 

TIMP3) or a peak of fluorescence notably different to the specific PCR product (HPRT, 

YHWAZ and ADAMTS-5).

Melt curve analysis also determined that primer dimers were formed in all samples 

probed for HPRT1, YWHAZ, ADAMTS-4 and ADAMTS-5, with a shoulder to the left of 

the product specific peak of the same Tm in both experimental samples and their NTC. 

Thus explaining the pseudo-amplification observed in HPRT1, YWHAZ, ADAMTS-4 

and ADAMTS-5 primer pair NTCs.

Agarose gel electrophoresis of qRT-PCR products further confirmed the specificity of 

each set of primer pairs (Figure 3.8). In all cases the amplified product size correlated 

with the expected band size from cDNA, indicating there was no genomic DNA 

contamination and that only specific product was amplified. No band was evident in any 

NTC, again demonstrating there was no amplification in NTCs.

3.2.8 Gene expression in adult and foetal liver samples

qRT-PCR was performed on reverse-transcribed total RNA obtained from the normal 

livers of an adult and foetus (Stratagene, The Netherlands), to determine the presence 

of ADAM17, ADAMTS-1, -4, -5 and TIMP3 at the level of gene expression. 2"ACT values 

were calculated from the qRT-PCR data with normalisation against YWHAZ, most 

stable housekeeping gene transcripts for these samples (adult liver M-value of 0.341 

and foetal liver M-value of 0.890).

All genes of interest were expressed in both adult and foetal liver samples. 

Examination of 2~ACT values for both adult and foetal liver samples (Figure 3.9) 

indicated that of the genes of interest, TIMP3 was the most highly expressed gene, 

followed by moderate levels of ADAMTS-1, ADAMTS-5 and ADAM 17. ADAMTS-4 

gene expression was only detected at very low levels in both adult and foetal liver 

samples.
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Figure 3.7 (continued): Amplification and melt curves generated from qRT-PCR data 

for E) ADAMTS-1, F) ADAMTS-4, G) ADAMTS-5 and H) TIMP3 (red) and NTC (blue).
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Figure 3.8: Agarose gel electrophoresis of the qRT-PCR products generated for A) the 

housekeeping genes, p-actin (140 bp), HPRT1 (94 bp) and YWHAZ (94 bp), and B) the 

genes of interest, ADAM17 (98 bp), ADAMTS-1 (89 bp), -4 (80 bp), -5 (92 bp) and 

TIMP3 (95 bp). Where 1 represents 25 bp marker, 2 signifies specific amplified product, 

and 3 denotes the NTC.
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Figure 3.9: ADAM 17, ADAMTS-1, ADAMTS-4, ADAMTS-5 and TIMP3 mRNA 

expression in normal foetal liver samples compared to normal adult liver samples. Data 

presented as mean ± SEM. Significant difference of foetal liver from adult liver samples, 

* P<0.05, ** P<0.001 (Students T-test; n=4).
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ADAM17 was expressed at a slightly higher level in the foetal liver sample than in the 

adult liver sample (P=0.009). Whereas all other genes of interest had lower gene 

expression in the foetal liver compared to the adult liver sample, with significance 

reached for ADAMTS-1 (P=0.010) and ADAMTS-5 gene expression (P=0.017).

3.2.9 Modulation of Gene Expression by IL-1J3, IL-6 and TNF-a

The pro-inflammatory cytokines IL-1 p, IL-6 and TNF-a were applied separately to each 

of the cell lines under investigation (HepG2, HuH-7 or LX-2) for 24 hours, after which 

qRT-PCR was performed to assess the influence of these treatments on the gene 

expression of ADAM17, ADAMTS-1, -4, -5 and TIMP3. The resultant data were 

quantified using the Pfaffl method, with normalisation against two suitable 

housekeeping gene transcripts as determined by geNorm analysis (Section 3.2.5).

Each experiment included triplicate wells of samples that were pooled to minimise well- 

to-well variation and reactions were performed in duplicate. Four independent 

experiments were performed to confirm trends found. IL-1 p and TNF-a treated cell 

were compared to an untreated control sample, whereas IL-6 treated cells were 

compared to an acetic acid-containing control sample.

Sample preparation

Following cytokine treatment, total RNA was extracted from each sample, and treated 

with DNase I to degrade any contaminating genomic DNA (Sections 2.3.1 - 2.3.3). 

Samples were subjected to agarose gel electrophoresis (Figure 3.10), where it was 

determined, by the presence of both 28S and 18S rRNA subunits, that all samples 

contained intact, high quality RNA. The absence of genomic DNA was also established.

The DNase I treated total RNA was quantified spectrophotometrically (Section 2.3.4), 

as bases in nucleic acids absorb UV light with an absorption peak of 260 nm. 

Additional absorbance readings at 280 nm (A280) and 230 nm (A230) were used to 

determine the RNA purity and presence of contaminants. An absorbance A260/A280 

ratio of 2.0 indicates a pure RNA preparation, with a range of 1.8-2.0 being acceptable. 

An absorbance A260/A280 ratio of <1.8 indicates the presence of protein contaminants. 

Similarly, an absorbance A260/A230 ratio of <1.0 indicates contamination of the RNA 

preparation by chaotropic salts and phenol, with a value close to 2.0 indicative of no 

contaminants. In all cases the A260/A280 and A260/A230 ratios were within an 

acceptable range.

Total RNA (1 pg) from each sample was then reverse transcribed and the resulting 

cDNA used as template in qRT-PCR experiments (Sections 2.3.5 -  2.3.6).
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Figure 3.10: Agarose gel electrophoresis of DNase I treated RNA samples extracted 

from A) HepG2, B) HuH-7, and C) LX-2 cells following 24 hours of treatment with 

varying concentrations of IL1-p, IL-6 or TNF-a.
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The HepG2 experimental system

The examination of 2 ACT values for normalised untreated HepG2 samples (Figure 

3.11 A) indicates that of the five genes of interest, TIMP3 was the most highly 

expressed gene (2'ACT=5.327), followed by ADAM17 (2'ACT=0.097) and ADAMTS-1 

(2'act=0.079). ADAMTS-4 gene expression was only detected at low levels 

(2'act=0.014) and ADAMTS-5 was not expressed at a detectable level in any HepG2 

sample, untreated or treated.

Modulations of the expression of ADAM17, ADAMTS-1, -4, -5 and TIMP3 in the HepG2 

experimental system following 24 hours of cytokine treatment with 1, 10 or 100 ng/mL 

of IL-ip, IL-6 and TNF-a is shown in Figure 3.12. qRT-PCR data obtained from FlepG2 

cells were normalised against p-actin and HPRT1, to ensure the accurate quantification.

IL-1p treatment of HepG2 cells did not cause significant changes in the expression of 

ADAM17 or TIMP3 in comparison to untreated control cells. However, moderate 

increases in ADAMTS-1 gene expression were observed with 1,10 and 100 ng/mL of 

IL-1(3 (2.79-fold (P=0.002), 5.44-fold (P=0.0001) and 4.51-fold (P=0.0001) increases 

respectively), yielding a concentration dependent response with a peak at 10 ng/mL. A 

concentration dependent response curve was also observed for ADAMTS-4, but with 

smaller increases in gene expression, again peaking with 10 ng/mL of IL-1(3 treatment. 

However, a statistically significant albeit small increase in ADAMTS-4 gene expression 

was only achieved following 100 ng/mL of treatment (1.80-fold increase; P=0.023).

IL-6 treatment of HepG2 cells did not affect the expression of ADAM17, ADAMTS-4 or 

TIMP3 in comparison to the control sample. However, a concentration dependent 

increase in ADAMTS-1 gene expression occurred after treatment with 1,10 and 100 

ng/mL IL-6, yielding a 28.03-fold increase in expression after 100 ng/mL of treatment 

(P=0.001).

The gene expression of ADAM17, ADAMTS-1 ADAMTS-4 and TIMP3 in HepG2 cells 

was not significantly altered following TNF-a treatment. Although 10 and 100 ng/mL of 

treatment did result in 3.64-fold and 2.82-fold increases of ADAMTS-1 respectively, 

and although these increases were at a higher level than those seen after IL-ip 

treatment, they were not deemed to be statistically significant due to their large SEM. 

Similarly, 10 ng/mL TNF-a resulted in a 5-fold increase in ADAMTS-4 expression; 

significance was not reached due to the large SEM even though the increase was 

larger than that seen after IL-1 p treatment.
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The HuH-7 experimental system

The 2'act values for normalised untreated HuH-7 samples (Figure 3.11B) show that 

amongst the genes of interest, TIMP3 and ADAMTS-1 were both highly expressed 

(2'ACT=13.211 and 2 ACT=9.795 respectively), and ADAM17 was expressed at 

intermediate levels (2ACT=1.243). ADAMTS-4 and ADAMTS-5 were only detected at 

very low levels at the gene level (2"ACT=0.022 and 2'ACT=0.011), with ADAMTS-4 being 

detected in 25% of the control samples and ADAMTS-5 detected in 50% of them.

Modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 at the gene expression level by 

varying concentrations (1, 10 or 100 ng/mL) of IL-1 (3, IL-6 and TNF-a is shown in 

Figure 3.13. qRT-PCR data obtained from the HuH-7 experimental system were 

normalised against HPRT1 and YWHAZ, to ensure the accurate quantification.

IL-1 p treatment of HuH-7 cells did not result in any statistically significant modulations 

in the gene expression of ADAM17, ADAMTS-1, ADAMTS-4 or TIMP3. ADAMTS-5 

was not detected in any of these samples. Similarly, IL-6 treatment did not produce any 

significant alterations in expression of the genes of interest.

TNF-a treatment did not alter the gene expression of ADAM17, ADAMTS-1, -4 or -5. 

However, TIMP3 gene expression was slightly down-regulated following 10 and 100 

ng/mL of TNF-a treatment in a concentration dependent manner (1.88-fold (P=0.049) 

and 2.45-fold (P=0.006) decreases respectively).

The LX-2 experimental system

The 2'act values for normalised untreated LX-2 samples (Figure 3.11C) showed that 

TIMP3 was the most highly expressed gene of interest (2'ACT=2.109), followed by 

ADAMTS-1 (2 act=2.002), ADAMTS-5 (2'ACT=0.098) and ADAMTS-4 (2ACT=0.018). The 

lowest level of gene expression was observed for ADAM17 (2 ACT=0.014).

The effect of IL-1 p, IL-6 and TNF-a treatment on the expression of ADAM17, ADAMTS- 

1, -4, -5 and TIMP3 in LX-2 cells is shown in Figure 3.14. qRT-PCR data obtained from 

the LX-2 experimental system were normalised against p-actin and HPRT1, to ensure 

accurate quantification.

IL-1 p treatment of LX-2 cells did not cause significant differences in the gene 

expression of ADAM17, ADAMTS-5 or TIMP3, with the exception of increases in 

ADAM17 expression following 1 ng/mL of treatment and TIMP3 following 100 ng/mL. 

Treatment of cells with 1 ng/mL of IL-1 p resulted in the small increases of ADAMTS-1 

and ADAMTS-4 (2.05-fold (P=0.022) and 1.96-fold (P=0.047) increases respectively). 

Further increases were also observed in the expression of ADAMTS-4 following 10 and 

100 ng/mL of treatment, although significance was not reached.

120



A)

ADAM 17 ADAMTS-1 ADAMTS-4 ADAMTS-5

IL-1 p treatment of HuH-7

B) 7.0

6.0

I  50
t? 4.0
ax
03
a>>♦3
JSa>a:

3.0

2.0 

1.0 

0.0

TIMP3

ADAM 17 ADAMTS-1 ADAMTS-4 ADAMTS-5 TIMP3

IL-6 treatment of HuH-7

ADAM 17 ADAMTS-1 ADAMTS-4 ADAMTS-5 TIMP3 
TNF-a treatment of HuH-7

h 0 ng/mL h 1 ng/mL m 10 ng/mL h 100 ng/mL

Figure 3.13: ADAM 17, ADAMTS-1, ADAMTS-4, ADAMTS-5 and TIMP3 mRNA 

expression in HuH-7 cells following 24 hours of treatment with varying concentrations 

of A) IL-1 p, B) IL-6 or C) TNF-a. Data presented as mean ± SEM. Significant difference 

from control, * P<0.05, ** P<0.01 (ANOVA with Dunnett’s test; n=4). Some controls < 1, 

as not detected in all samples.
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A) IL-1 (3, B) IL-6 or C) TNF-a. Data presented as mean ± SEM. Significant difference 
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Application of IL-6 to LX-2 cells did not result in any significant changes in the 

expression of any of the genes of interest, however a minimal decrease in ADAMTS-1 

was observed with 1 ng/mL of treatment (0.10-fold decrease) and slight increases with 

10 and 100 ng/mL (1.89-fold and 1.48-fold increases respectively). A small 

concentration dependent increase in ADAM17 gene expression was also observed, 

which did not reach significance.

TNF -a treatment of LX-2 cells did not cause significant changes in the gene expression 

of ADAMTS-1, -4 or -5. ADAM17 gene expression was down-regulated following TNF- 

a treatment at all concentrations tested, however these decreases were not significant 

due to their large SEM. A concentration dependent decrease in the gene expression of 

TIMP3 was observed following TNF-a treatment. A minor decrease in TIMP3 

expression was observed in comparison to the control following 1 ng/mL of TNF-a 

(1.41-fold decrease), with 10 and 100 ng/mL resulting in significant down-regulation of 

this gene (1.57-fold (P= 0.026) and 2.21-fold (P=0.002) decreases respectively).

3.2.10 Summary of Results

The results presented in this chapter are summarised in Table 3.6.
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3.3 Discussion

The objectives of these investigations were to verify the hepatic origin of the HepG2, 

HuH-7 and LX-2 cell lines, determine the proliferative effect of the pro-inflammatory 

cytokines IL-1 p, IL-6 and TNF-a on these cells, and determine if these treatments 

modulate the gene expression of ADAM17, ADAMTS-1, -4, -5 and TIMP3.

3.3.1 Characterisation of the Cell Lines HepG2, HuH-7 and LX-2

The first objective of this study was to confirm the parental origin of the adherent cell 

lines HepG2, HuH-7 and LX-2 used throughout this study. Phase contrast microscopy 

permitted the morphological comparison of the cultured cells to documentation detailing 

their growth characteristics. Additionally, ICC was used to demonstrate the presence of 

cell specific markers in each of the three liver cell lines. These evaluations were 

necessary to establish that the cell line phenotypes had not been substantially altered 

from their parental phenotype by serial passage.

HepG2 and HuH-7 cell lines were derived over a quarter of a century ago from well- 

differentiated HCCs developed from malignant hepatocytes (Aden et al, 1979; 

Nakabayashi et al, 1982), whereas LX-2 cells were established recently from human 

activated HSCs by Xu et al (2005). The visible characteristics of each cell line observed 

under phase contrast microscopy were as previously described. Specifically, both 

hepatoma cell lines had an epithelial-like morphology, although easily observed 

differences in their In vitro growth patterns were evident, such that cultured HepG2 

cells formed islands of cells and HuH-7 cells a monolayer. LX-2 cells also grew in a 

monolayer, but had a distinct myofibroblast-like phenotype characteristic of activated 

HSCs.

Hepatocyte specific antigen is an uncharacterised antigen present in adult and foetal 

hepatocytes and the majority of malignant hepatocytes forming hepatomas. HepG2 

and HuH-7 cells, but not LX-2 cells displayed the granular cytoplasmic staining 

characteristic of this antigen, substantiating the claim that both HepG2 and HuH-7 cells 

were derived from transformed hepatocytes, and LX-2 cells had a different cellular 

origin. Similarly, LX-2 cells, but not HepG2 or HuH-7 cells stained positive for neural 

cell marker GFAP characteristic of activated HSCs, authenticating the claim that LX-2 

cells were derived from this cell type, and HepG2 and HuH-7 cells were not.

3.3.2 IL-1J3, IL-6 and TNF-a Differentially Increase Cellular Proliferation of 

Hepatoma Cell Lines, but Not the Activated Hepatic Stellate Cell Line

The second objective in this study was to determine the proliferative responses of 

HepG2, HuH-7 and LX-2 cells to treatment with pro-inflammatory cytokines, IL-1 (3, IL-6
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and TNF -a, thought to be important in HCC and CRC progression and tumour growth 

within the liver (Section 1.5.1).

The cytokines studied had no proliferative effect on the activated HSC line LX-2 at any 

time point. However, statistically significant increases in cell number were observed in 

the two hepatoma cell lines, HepG2 and HuH-7, although these changes were not 

consistent between the cell lines.

IL-1 (3 treatment significantly increased HepG2 and HuH-7 cell numbers at the 24 hour 

time point as compared to controls. This effect was observed at two further time points 

for HepG2 cells, but not for HuH-7 cells. This cytokine therefore has differential effects 

on the growth of these cell lines, which may reflect underlying genetic differences 

between these HCC cell lines.

IL-6 treatment did not alter HuH-7 cell proliferation. However, a concentration- 

dependent increase in cellular proliferation was observed in HepG2 cells after 24 hours; 

this effect was diminished at later time points of 48 and 72 hours. This suggests that IL- 

6 acts in the short term to promote HepG2 cell proliferation, possibly by activation of 

the JAK/STAT pathway and subsequent activation of STAT3 and transcription of a 

number of cell cycle genes including cyclin D (Section 1.5.1), an effect also observed in 

primary hepatocytes (Gao, 2005).

Conversely, TNF-a had no proliferative effect on either HepG2 or HuH-7 cells at the 24 

hour time point, but significant increases in cell number were observed at the later time 

points of 48 and 72 hours in both cell lines. This indicates that TNF-a can act to 

promote tumour formation, possibly by the induction of angiogenic factors (Balkwill & 

Mantovani, 2001).

3.3.3 IL-1J3, IL-6 and TNF-a Differentially Modulate the Gene Expression of 

ADAM17, ADAMTS-1, -4, -5 and TIMP3 in Liver Cell Lines

The major objective addressed in this chapter was the modulation of expression of four 

proteolytic enzymes, ADAM 17 and ADAMTS-1, -4 and -5, and their major endogenous 

inhibitor TIMP3 in HepG2, HuH-7 and LX-2 cell lines by the cytokines IL-1 (3, IL-6 and 

TNF-a.

Previous researchers have documented the increased expression of ADAM17 mRNA 

in HCC as compared to paired non-cancerous liver tissue (Ding et al, 2004), and the 

increased expression of ADAM17 and TIMP3 mRNA in CRC as compared to normal 

colonic mucosa (Blanchot-Jossic et al, 2005; Powe et al, 1997; Zeng et al, 2001). 

Conversely, ADAMTS-1 mRNA was found to be decreased in HCCs, compared to 

cirrhotic liver (Masui et al, 2001). However, the expression of the other proteolytic
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genes of interest have not been examined in CRC, HCC or normal liver tissue.

Following the optimisation and validation of the qRT-PCR method for the detection of 

ADAM17, ADAMTS-1, -4, -5 and TIMP3 gene transcripts, it was determined that all of 

these genes were expressed in non-cancerous adult and foetal liver tissue at a 

moderate level, with the exception of ADAMTS-4 which had low level expression. The 

differential expression of these genes was also observed in HepG2, HuH-7 and LX-2 

cells, with moderate levels present unless otherwise stated below. HepG2 cells 

expressed low levels of ADAMTS-1 mRNA, and ADAMTS-5 mRNA was not detected; 

HuH-7 cells expressed ADAMTS-4 and -5 mRNA at very low and sometimes 

undetectable levels; LX-2 cells had low ADAMTS-4 mRNA expression and very low 

ADAM 17 mRNA levels.

In each of the experimental systems tested, including the normal adult and foetal liver 

samples, comparable levels of TIMP3 gene expression were observed, at a higher 

level than the other genes examined. This is contradictory to data presented by Powe 

et al (1997) and later by Zeng et al (2001), in which they described TIMP3 mRNA to be 

increased in CRC compared to normal colon mucosa. These differences may result 

from the fact that paired tumour and non-tumour samples were used in their 

investigation, but due to the use of cell lines this was not possible in these 

investigations.

It was possible to modulate the expression of the 5 genes of interest by cytokine 

treatment in the three experimental cell lines investigated; these modulations were 

generally minor and differed between the cell lines. IL-1 p treatment of HepG2 cells 

resulted in the overall increase of ADAMTS-1 (P=0.0001) and -4 (P=0.040) mRNA 

yielding a concentration dependent response peaking at 10 ng/mL. A concentration 

dependent increase in ADAMTS-1 mRNA was also observed following IL-6 treatment 

of these cells (P=0.004), with a maximum fold increase of 28.03. These findings are in 

contrast to the down-regulation of ADAMTS-1 mRNA observed in hepatocellular, 

pancreatic and mammary carcinomas (Porter et al, 2004; Masui et al, 2001). 

Furthermore, TNF-a treatment of HepG2 cells yielded an overall increase in ADAMTS- 

4 expression when compared to the control group of cells (P=0.003).

Although minor modulation of gene expression was observed in the HuH-7 cell line 

following cytokine treatment, the only statistically significant modulation occurred 

following TNF-a application when a concentration dependent decrease in TIMP3 gene 

expression was observed (P=0.007). The same trend in TIMP3 mRNA down-regulation 

was also observed in LX-2 cells following TNF-a treatment (P=0.005). This reduction in 

the endogenous inhibitor of the proteolytic enzymes studied could permit their

uninhibited action and consequently aid tumour progression.
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Similarities between the LX-2 and the HepG2 cell lines were also observed, such that 

IL-1 p increased ADAMTS-4 gene expression yielding a concentration dependent 

response peaking at 10 ng/mL of treatment (P=0.001), and IL-6 increased ADAMTS-1 

gene expression (P=0.037).

ADAM17 mRNA was not modulated by cytokine treatment in any of the cell lines 

investigated. However, it was expressed at a higher level in the two hepatoma cell lines 

than the normal activated HSC line, indicating it may play a fundamental role in the 

transformation of hepatocytes cells from normal to malignant, and later in other aspects 

of cancer development and progression (Section 1.6.4). For example, activation of the 

EGFR signalling pathway via ADAM17-mediated cleavage of EGFR ligands can result 

in tumour associated-angiogenesis (Vazquez et al, 1999) and enhanced tumour cell 

proliferation (Itabashi et al, 2008).

Similarly, ADAMTS-5 mRNA was not modulated by cytokine treatment in these cell 

lines. However, this gene was expressed at a moderate level in the non-cancerous liver 

cell line LX-2, but was undetectable in HepG2 cells and only present at very low levels 

in HuH-7 cells. This may indicate that ADAMTS-5 mRNA expression is eliminated or 

greatly reduced in hepatic tumours in order to decrease the presence of the anti- 

angiogenic ADAMTS-5 protein. This could increase the ability of the tumour to form 

neovasculature to aid tumour growth.

If the observed modulations in mRNA are reflected in changes at the protein level, 

these data could suggest that tumour cell invasion of the liver is influenced by the 

decreased expression of the inhibitor TIMP3 and anti-angiogenic protein ADAMTS-5, 

and the simultaneous increased proteolytic actions of ADAM17 and ADAMTS-1, and - 

4. These combined effects may allow the cancer cell to sculpt a pathway through the 

liver ECM and adhere to a site distant from the primary tumour and undergo 

angiogenesis to form a metastatic colony.

3.4 Summary

These data presented in this chapter illustrate the expected phenotypic characteristics 

of the liver cell lines HepG2, HuH-7 and LX-2, and their differential proliferative 

responses to cytokine treatments. Furthermore, preliminary investigations indicate that 

mRNA for ADAM17, ADAMTS-1, -4, -5 and TIMP3 were detected in non-cancerous 

adult and foetal liver tissue. These data also demonstrate the differential expression 

and modulation of these genes in each of the cell lines investigated with key findings 

being the very low expression levels of ADAMTS-5 in the hepatoma cell lines and the 

concentration dependent down-regulation of TIMP3 following TNF-a treatment in both 

the HuH-7 hepatoma cell line, and LX-2 activated hepatic stellate cell line.
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Chapter 4

Modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 Protein in 

Liver Cell Lines by IL-1 IL-6 and TNF-a
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4.1 Introduction

This chapter describes the in vitro expression and modulation of ADAM17, ADAMTS-1, 

-4, -5 and TIMP3 proteins by the cytokines IL-1p, IL-6 and TNF-a in three previously 

characterised liver cell lines, HepG2, HuH-7 and LX-2. This investigation also allowed 

the proteolytic status of these proteins to be determined.

4 .1 .11mmunodetection of Proteins

Western blotting is a valuable technique used by researchers to determine the 

presence of specific proteins, after fractionation, by the use of antibodies directed 

against the protein of interest (Section 2.4). Monoclonal or polyclonal antibodies can be 

utilised in this method, with each type having distinct advantages.

Monoclonal antibodies are directed against individual epitopes, and can be consistently 

produced from single hybridoma clones. Hybridoma cells are generated by the fusion 

of myeloma cells and spleen cells from the host, usually a mouse, immunised with a 

specific antigen. Each successful hybrid cell is assayed for antigen specificity of the 

synthesised antibody, and stable and productive clones are selected for application. 

This process is time consuming and costly, and due to their very specific nature, even 

a small change in the antigen’s epitope structure can reduce antibody function (Lipman 

et a/, 2005).

In comparison, polyclonal antibodies are directed against several epitopes on a single 

antigen, and consequently often more effective at detecting specific antigens than 

monoclonal antibodies. Polyclonal antibodies are generated by the immunisation of 

multiple animals, e.g. rabbits, with a single antigen, such that polyclonal antibodies to 

this antigen are produced by a large number of B-cells. This is a rapid process, and 

consequently less expensive than monoclonal antibody production. However, the 

avidity of the polyclonal antibody for its antigen may alter over time, and antibody 

productivity is limited by the lifespan and size of the producing animal.

In addition to selecting a suitable antibody, the method of protein extraction is also very 

important, particularly when studying proteins capable of auto-cleavage, e.g. ADAM17. 

The addition of broad spectrum hydroxamate-based metalloproteinase inhibitors, such 

as 1, 10-phenanthroline and batimastat (BB-94), greatly reduces the mature form of 

ADAM17 cleaving its own cytoplasmic tail by the chelation of its essential zinc ion, 

allowing the examination of mature ADAM17 protein (Schlondorff et al, 2000).

130



4.1.2 Specific Objectives

• To optimise the western blotting method for the detection of ADAM 17, 

ADAMTS-1, -4, -5 and TIMP3 proteins.

• To establish an appropriate method of protein extraction to allow the full length 

ADAM 17 form to be studied.

• To determine the modulating effect of IL-1(3, IL-6 or TNF-a treatments on the 

expressions of ADAM17, ADAMTS-1, -4, -5 and TIMP3 in each of the three cell 

lines under investigation.

4.2 Results

4.2.1 Western Blotting Optimisation

Western blot optimisation is essential to ensure the immunodetection of the 

fractionated protein of interest. A previously described western blotting protocol 

(personal communication, Dr. G. Haddock, Sheffield Hallam University, Sheffield, UK) 

was initially used to detect ADAM 17 protein in samples extracted using the Tri-Reagent 

method from HepG2 cells. This protocol consisted of running 6 pg of protein sample 

per lane (as determined by BCA) on a 10% Bis-Tris precast gel for approximately 1.5 

hours at 125 V under reducing conditions. Fractionated proteins were transferred onto 

NCM by electroblotting for 1 hour at 100V on ice and subsequently blocked with 5% 

blocking buffer for one hour at room temperature.

Blots were immunoprobed with 1 ng/mL (1:1000 dilution) of polyclonal ADAM17 

antibody (ab2051, Abeam) in 5% blocking buffer, followed by 0.3956 ng/mL (1:45000 

dilution) of goat anti-rabbit IgG HRP-conjugated antibody (A9169, Sigma-Aldrich) in 5% 

blocking buffer. The detection of actin protein was used as a positive control to 

determine that the blot was performed correctly; 11.8 pg/mL (1:1000 dilution) polyclonal 

actin antibody and 0.3956 ng/mL (1:45000 dilution) goat anti-rabbit IgG antibody, both 

in 5% blocking buffer. A negative control was also performed where the primary 

antibody was omitted from the immunoprobing procedure (0.3956 ng/mL secondary 

antibody in 5% blocking buffer only) to determine if any non-specific binding of the 

secondary antibody had occurred.

The same non-specific band pattern was observed with the ADAM 17 and actin primary 

antibodies; a smear (62 kDa) was also present on all blots including the negative 

control (data not shown). Therefore the membrane blocking time was increased from 1 

hour to 1.5 hours to eliminate the binding of the primary antibody to non-specific 

proteins, and the secondary antibody concentration was decreased to 0.2225 ng/mL (1 

in 80000 dilution) to eliminate the background binding of the secondary antibody to the
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membrane. Additionally, to ensure ADAM17 detection the primary antibody 

concentration was increased to 1 in 500, as reported by Plumb et al (2006).

Two methods of protein extraction were compared to ensure that post-lysis protein 

degradation was minimal. This study was performed in two cell lines, HepG2 and 

hCMEC/D3 (human cerebral microvascular endothelial cell line) cells, in collaboration 

with Dr. L.A. Hurst to eliminate any worker error. Figure 4.1 illustrates that ADAM 17 is 

present in both cell lines, but with different band patterns in each. When protein was 

extracted with Tri Reagent, a doublet of 98 and 88 kDa was detected in both cell lines, 

however when protein was extracted using CelLytic supplemented with 10% protease 

inhibitor cocktail and 10 mM 1, 10-phenanthroline only the 98 kDa band was present. 

Hence supplemented CelLytic proved to be the better method of protein collection for 

this study.

A number of antibodies were tested for their suitability in the detection of ADAM17 

(ab2051, Abeam; AB19027, Chemicon; MAB2129, R & D; sc-25782, Santa Cruz), with 

the latter being selected as it resulted in consistent band detection. Similarly, a number 

of TIMP3 antibodies were tested for the detection of this inhibitor (ab2169 & ab39184, 

Abeam; MAB973, R & D); the latter was selected as it was the only antibody that 

detected TIMP3 in the collected samples. This monoclonal TIMP3 antibody did result in 

some non-specific staining, however the predominant 30 kDa band was of an 

appropriate molecular mass for glycosylated TIMP3 protein. ADAMTS-1, -4 and -5 

antibodies previously validated by Haddock et al (2006) were used for the study of 

these enzymes. In all cases the primary antibody concentration and blocking for the 

primary and secondary antibodies were adjusted to ensure specific protein detection 

(Table 2.4).

4.2.2 Modulation of Protein Expression by IL-1/3, IL-6 and TNF-a

Various concentrations (1, 10 and 100 ng/mL) of the pro-inflammatory cytokines IL-1(3, 

IL-6 and TNF-a were applied separately to each of the cell lines under investigation 

(HepG2, HuH-7 or LX-2) for 48 hours, and western blot analysis was performed to 

assess the effect of these treatments on the levels of ADAM17, ADAMTS-1, -4, -5 and 

TIMP3. This technique also allowed changes in the processed and degraded forms of 

each protein to be observed. The obtained data were quantified using IOD analysis, 

with normalisation against the internal control protein actin represented by a 42 kDa 

band. Each band was examined individually and the combined band densities (total 

protein data) displayed on the relative quantification plots.
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ADAM17 immunoprobed Protein Samples
RMM
(kDa)

Actin
42 >

HepG2

Tri Reagent

180 > 
9 8 ^  
8 8 ^

60 > 
49 >

HepG2

CelLytic

hCMEC/D3

Tri Reagent

hCMEC/D3

CelLytic

Figure 4.1: ADAM17 immunoprobed (AB19027, Chemicon) western blot of SDS-PAGE 

fractionated HepG2 and hCMEC/D3 duplicate protein samples following extraction with 

Tri Reagent or supplemented CelLytic methods. Equal loading of protein samples (6 pg) 

was verified by actin immunoprobing.
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The negative control for each immunoblot demonstrated no staining, indicating there 

was no non-specific binding of the secondary antibodies to the membrane itself or to 

the protein samples (data not shown).

Each experiment was only performed once in each cell line, and should therefore be 

regarded as preliminary data. Hence the significance of any modulations seen could 

not be assessed. IL-1 p and TNF-a treated cells were compared to an untreated control 

sample, whereas IL-6 treated cells were compared to an acetic acid-containing control 

sample.

Sample Preparation

Following cytokine treatment, cells were lysed and protein extracted from each sample 

in the presence of protease inhibitors to prevent the degradation of the protein samples 

(Section 2.4.1). Protein concentration was determined by BCA assay before SDS- 

PAGE under reducing conditions and Coomassie blue staining (Sections 2.4.2 -  2.4.5; 

Figure 4.2), which verified the equal loading of all protein samples. The Coomassie 

stains demonstrated no alterations in band patterns after cytokine treatment, although 

they were subtly different in each cell line tested.

The HepG2 Experimental System

The modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 levels following 48 hours of 

treatment with 1, 10 or 100 ng/mL of IL-1 (3, IL-6 or TNF-a in the HepG2 experimental 

system was investigated by western blotting. Initial observations of the immunoprobed 

blots indicated that each protein of interest was present in the HepG2 cell line, and that 

these proteins were present at different levels and in different forms.

The ADAM17 blot (Figure 4.3A) showed multiple bands ranging in size from 58 kDa to 

210 kDa. The 210 kDa band may indicate dimerisation of ADAM17 protein or a highly 

glycosylated form. The 130 kDa band probably represents ADAM17 zymogen, with 

active ADAM17 at 110 kDa. The lower molecular weight bands (66 and 58 kDa) may 

be processed or degraded ADAM17 protein.

Total band intensity analysis of ADAM 17 protein (Figure 4.3B) revealed a slight

decrease after IL-1 p treatment at all concentrations tested, whereas a large fold

increase was evident following IL-6 treatment, this included the concentration

dependent increase in active (110 kDa) ADAM 17 (data not shown), as determined by

intensity analysis. Total ADAM 17 protein was also increased following treatment with 1

ng/mL of TNF-a, although treatment with higher concentrations of this cytokine had no

effect on total ADAM17 protein level. Again there was a concentration dependent

increase in the 110 kDa active band of ADAM17 with this treatment (data not shown),

as identified through densitometric analysis.
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Figure 4.2: Coomassie stain of SDS-PAGE fractionated A) HepG2 and B) HuH-7 and 

LX-2 protein lysates following 48 hours of treatment with varying concentrations of IL1- 

(3, IL-6 or TNF -a. Equal loading of protein samples (6 pg) was verified.

135



C)  LX-2 Protein Lysates___________________

(kDa) 'L-1p (ng/mL) IL-6 (ng/mL) TNF-a (ng/mL)

191

97
i t  S i b

64
51 ' - * r  m m m  i

39

28

19
14
6

m : mm m

0 1 10 100 0 1 10 100 0 1 10 100

fe
00  mm 00  00

-a-°'  .

Figure 4.2 (continued): Coomassie stain of SDS-PAGE fractionated C) LX-2 protein 

lysates following 48 hours of treatment with varying concentrations of IL1-p, IL-6 or 

TNF -a. Equal loading of protein samples (6 ^g) was verified.
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Figure 4.3: A) ADAM 17 immunoprobed western blot of SDS-PAGE fractionated 

HepG2 protein lysates following 48 hours of treatment with varying concentrations of 

IL1-(3, IL-6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAM 17 protein after actin 

normalisation. (n=1).
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Figure 4.4A shows the blot for ADAMTS-1 with multiple bands present. Zymogen was 

only detected in the IL-113 treated samples (110 kDa), however full length active 

ADAMTS-1 (87 kDa) and a predominant band representing the truncated active form of 

ADAMTS-1 (60 kDa) were evident. The 50, 48 and 42 kDa bands may represent C- 

terminally processed forms or breakdown products of ADAMTS-1.

Figure 4.4B demonstrates the reduced amount of ADAMTS-1 protein following 1 and 

10 ng/mL of IL-113 treatment as determined by densitometry; this decrease was also 

evident following 1 and 100 ng/mL IL-6 treatments. Whereas, application of 10 ng/mL 

of TNF-a increased total ADAMTS-1 protein expression, with increases observed in 

both active forms (87 and 60 kDa) of this protein.

The immunoblot for ADAMTS-4 (Figure 4.5A) showed the zymogen (110 kDa), 

predominant 64 kDa active form, and a C-terminally processed isoform of this active 

form (53 kDa). The other bands visible at 82, 60 and 49 kDa may represent other forms 

of this protein.

Densitometric analysis of ADAMTS-4 total protein (Figure 4.5B) revealed very small 

decreases after 1 and 10 ng/mL of IL-1 (3, but an increase following 100 ng/mL of 

treatment. However, the active 64 kDa form of this protein was subject to a 

concentration dependent decrease following this treatment (data not shown). This 

same trend in overall protein was observed following IL-6 treatment. Whereas 

moderate decreases of ADAMTS-4 protein levels were seen after 10 and 100 ng/mL 

TNF-a.

The ADAMTS-5 probed blot (Figure 4.6A) indicated a predominant band of 120 kDa 

representing zymogen, with a faint band also evident at 110 kDa. Active ADAMTS-5 

was present (70 kDa), as was a breakdown product (48 kDa).

ADAMTS-5 protein was shown by band intensity analysis (Figure 4.6B) to decrease 

slightly following 1 ng/mL of IL-1 p treatment, with a greater decrease observed after 10 

and 100 ng/mL of treatment. IL-6 treatment of 1 and 100 ng/mL caused minor 

increases in ADAMTS-5 protein, whilst 10 ng/mL decreased this protein. Little 

modulation of ADAMTS-5 protein was observed following TNF-a treatment, although a 

concentration dependent increase in active ADAMTS-5 (70 kDa) was observed with 

this treatment, peaking with 10 ng/mL (data not shown).

TIMP3 protein was evident as a 30 kDa band on the immunoblot (Figure 4.7A). This 

protein was shown by densitometry (Figure 4.7B) to decrease in response to IL-1 (3 

treatment in a concentration dependent manner with the maximum effect at 10 ng/mL. 

Variable increases in TIMP3 protein were observed following IL-6 treatment with the
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Figure 4.4: ADAMTS-1 immunoprobed western blot of SDS-PAGE fractionated HepG2 

protein lysates following 48 hours of treatment with varying concentrations of IL1 -(3, IL- 

6 or TNF-a. Equal loading of protein samples (6 jug) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-1 protein after actin 

normalisation. (n=1).
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Figure 4.5: ADAMTS-4 immunoprobed western blot of SDS-PAGE fractionated HepG2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-(3, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-4 protein after actin 

normalisation. (n=1).
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Figure 4.6: ADAMTS-5 immunoprobed western blot of SDS-PAGE fractionated HepG2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-(3, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-5 protein after actin 

normalisation. (n=1).
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Figure 4.7: TIMP3 immunoprobed western blot of SDS-PAGE fractionated HepG2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-(3, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total TIMP3 protein after actin 

normalisation. (n=1).
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maximal effect seen after 100 ng/mL of treatment. Large decreases in TIMP3 protein 

were observed after 1 and 100 ng/mL of TNF-a treatment, although 10 ng/mL had no 

effect.

The HuH-7 Experimental System

Western blotting for ADAM17, ADAMTS-1, -4, -5 and TIMP3 proteins demonstrated 

that each protein of interest was present in HuH-7 protein lysates in different forms. 

Differential modulations of these proteins following 48 hours of treatment with 1, 10 or 

100 ng/mL of IL-1 (3, IL-6 or TNF-a were also observed.

ADAM17 was present on the blot (Figure 4.8A) as three predominant bands 

representing zymogen (130 kDa) and processed forms (66 and 58 kDa), and a further, 

lesser band representative of active ADAM17 (110 kDa).

Densitometry of total ADAM17 protein (Figure 4.8B) revealed minor decreases 

following 1 and 10 ng/mL of IL-1 p. Moderate decreases were evident after 1 and 10 

ng/mL of IL-6 treatment, with a lesser decrease with 100 ng/mL. Conversely, total 

ADAM17 protein was increased following treatment with 100 ng/mL of TNF-a; this was 

accompanied by a concentration dependent increase in active ADAM17 (110 kDa), 

peaking with 10 ng/mL of treatment (data not shown).

ADAMTS-1 zymogen was not present on the blot immunoprobed for ADAMTS-1 

(Figure 4.9A); however a clear band at 87 kDa demonstrates active ADAMTS-1. The 

bands of 50, 48 and 42 kDa may represent processed forms or breakdown products of 

ADAMTS-1.

Densitometry (Figure 4.9B) indicates that ADAMTS-1 protein was reduced after 10 

ng/mL of IL-1 p treatment. This protein was also decreased following 10 and 100 ng/mL 

of IL-6. Slight increases of ADAMTS-1 protein were observed after application of and 1 

and 10 ng/mL of TNF-a, but 100 ng/mL resulted in a decrease in this protein.

The ADAMTS-4 immunoblot (Figure 4.10A) allowed the visualisation of zymogen (110 

kDa), active form (64 kDa), and a C-terminally processed isoform of this active form (53 

kDa). Other possible forms of ADAMTS-4 can be seen at 82, 60 and 49 kDa.

Total ADAMTS-4 protein band intensity analysis (Figure 4.10B) highlighted an increase 

of this protein following application of 1 ng/mL of IL-1 p, with minimal effects at the other 

concentrations tested. IL-6 treatment yielded a minor increase in ADAMTS-4 protein 

after 1 ng/mL of treatment, with moderate decreases with 10 and 100 ng/mL. However, 

a concentration dependent increase in active ADAMTS-4 (64 kDa), peaking with 10 

ng/mL, was seen following IL-1 p and IL-6 treatments (data not shown). A slight 

increase of ADAMTS-4 protein occurred with 100 ng/mL of TNF-a treatment.
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A) ADAM17 immunoprobed HuH-7 Protein Lysates
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Figure 4.8: ADAM17 immunoprobed western blot of SDS-PAGE fractionated HuH-7 

protein lysates following 48 hours of treatment with varying concentrations of IL1-p, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAM 17 protein after actin 

normalisation. (n=1).
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A) ADAMTS-1 immunoprobed HuH-7 Protein Lysates
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Figure 4.9: ADAMTS-1 immunoprobed western blot of SDS-PAGE fractionated HuH-7 

protein lysates following 48 hours of treatment with varying concentrations of IL1 -|3, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-1 protein after actin 

normalisation. (n=1).
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A) ADAMTS-4 immunoprobed HuH-7 Protein Lysates
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Figure 4.10: ADAMTS-4 immunoprobed western blot of SDS-PAGE fractionated HuH- 

7 protein lysates following 48 hours of treatment with varying concentrations of IL1-P, 

IL-6 or TNF -a. Equal loading of protein samples (6 |ug) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-4 protein after actin 

normalisation. (n=1).
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The blot for ADAMTS-5 protein (Figure 4.11 A) showed a predominant band 

representative of zymogen (120 kDa), with a faint band at 110 kDa. Active ADAMTS-5 

protein was present as a 70 kDa band.

Densitometry of ADAMTS-5 (Figure 4.11B) showed that IL-1 p treatment caused little 

modulation of this protein, whereas 100 ng/mL of IL-6 resulted in a marked increase in 

ADAMTS-5 protein expression. Treatment with TNF-a had variable effects on 

ADAMTS-5 levels; 1 ng/mL of treatment marginally increased its expression, and 10 

and 100 ng/mL caused minor decreases in ADAMTS-5 protein expression.

A 30 kDa band on the immunoblot represented TIMP3 protein (Figure 4.12A). Band 

intensity analysis (Figure 4.12B) demonstrated a minor increase and a moderate 

decrease in protein expression following 1 and 100 ng/mL of IL-1 p treatment 

respectively. Variable modulations were obtained following IL-6 treatment, such that 

increases in TIMP3 protein were observed following 1 and 100 ng/mL and a slight 

decrease was seen after 10 ng/mL of treatment. A concentration dependent increase in 

TIMP3 protein was seen with TNF-a treatment, peaking at 10 ng/mL.

The LX-2 Experimental System

The modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 proteins in the LX-2 

experimental system following 48 hours of cytokine treatment with 1, 10 or 100 ng/mL 

of IL-1 p, IL-6 and TNF-a was assessed by western blot analysis. Each protein of 

interest was present in the LX-2 cell line at different levels and in various forms.

The blot probed for ADAM 17 (Figure 4.13A) indicated the presence of the 130 kDa 

zymogen, but not the 110 kDa active form. Three processed or degraded forms of 

ADAM 17 protein (66, 58 and 39 kDa) were also evident.

Densitometry of total ADAM 17 protein (Figure 4.13B) revealed minor increases 

following 1 and 10 ng/mL of IL-1 p. A minor increase was evident after 1 ng/mL of IL-6 

treatment, with moderate decreases after 10 and 100 ng/mL. Total ADAM 17 protein 

was decreased following treatment with 1 and 10 ng/mL of TNF-a, but increased after 

100 ng/mL.

When probed for ADAMTS-1 (Figure 4.14A) the 110 kDa zymogen was not present on 

the blot, although a faint band at 165 kDa may represent a glycosylated form of the 

zymogen. The 87 kDa band indicates the presence of active ADAMTS-1 protein, with a 

truncated active form of ADAMTS-1 (60 kDa) also evident. Degraded or highly 

processed forms of ADAMTS-1 protein may be present as 50, 48 and 42 kDa bands.
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A)  ADAMTS-5 immunoprobed HuH-7 Protein Lysates
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Figure 4.11: ADAMTS-5 immunoprobed western blot of SDS-PAGE fractionated HuH- 

7 protein lysates following 48 hours of treatment with varying concentrations of IL1-(3, 

IL-6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-5 protein after actin 

normalisation. (n=1).
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Figure 4.12: TIMP3 immunoprobed western blot of SDS-PAGE fractionated HuH-7 

protein lysates following 48 hours of treatment with varying concentrations of IL1-p, IL- 

6 or TNF -a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total TIMP3 protein after actin 

normalisation. (n=1).
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Figure 4.13: ADAM 17 immunoprobed western blot of SDS-PAGE fractionated LX-2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-|3, IL- 

6 or TNF -a. Equal loading of protein samples (6 jug) was verified by actin 

immunoprobing. B) Relative quantification of total ADAM17 protein after actin 

normalisation. (n=1).
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Figure 4.14: ADAMTS-1 immunoprobed western blot of SDS-PAGE fractionated LX-2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-p, IL- 

6 or TNF-a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-1 protein after actin 

normalisation. (n=1).
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Densitometry of ADAMTS-1 protein (Figure 4.14B) showed that this protein was 

reduced after IL-1 p treatment with the maximal decrease at 1 ng/mL, this was reflected 

by the active form (87 kDa) (data not shown), as observed through densitometry. The 

same trend occurred with TNF-a treatments. Variable decreases were observed 

following IL-6 treatments.

Multiple bands were present on the ADAMTS-4 blot (Figure 4.15A) representing 

various forms of this protein. The 240 kDa band could indicate a highly glycosylated 

form of the zymogen, with zymogen present at 110 kDa, active form at 64 kDa, and C- 

terminally processed isoforms of this active form at 53 and 40 kDa. Other possible 

forms of ADAMTS-4 were seen at 82, 62, 60 and 49 kDa.

Total ADAMTS-4 protein densitometry (Figure 4.15B) revealed marked increases 

following 1 and 100 ng/mL of IL-1 p, but 10 ng/mL had no effect, although there was a 

consistent concentration dependent increase in the active form (64 kDa; data not 

shown). Minimal modulation occurred with 1 and 100 ng/mL of IL-6 treatment, but a 

moderate increase was seen after 10 ng/mL. A dose dependent increase in ADAMTS-4 

protein was observed after TNF-a treatment, peaking with 10 ng/mL.

The ADAMTS-5 protein immunoblot (Figure 4.16A) showed a predominant band 

representative of zymogen (120 kDa), with a faint band at 110 kDa. Active ADAMTS-5 

protein was evident as a 70 kDa band. A band at 195 kDa may represent a 

glycosylated form of the zymogen, whilst the 48 kDa band could be a breakdown 

product of ADAMTS-5 protein.

ADAMTS-5 band density analysis (Figure 4.16B) showed IL-1 p treatment caused minor 

but comparable decreases at 10 and 100 ng/mL, however active ADAMTS-5 (70 kDa) 

showed a concentration dependent increase, peaking with 10 ng/mL of IL-1 p (data not 

shown). A decrease was also observed following 10 ng/mL of IL-6. Minimal modulation 

of ADAMTS-5 resulted from TNF-a treatment.

TIMP3 protein was evident as a 30 kDa band on the blot (Figure 4.17A). Densitometry 

(Figure 4.17B) showed an increase in TIMP3 protein after 1 ng/mL of IL-1 p treatment, 

and a moderate and large decrease respectively following 10 and 100 ng/mL of this 

treatment. A large concentration dependent increase in TIMP3 protein was observed 

with IL-6 treatment. TNF-a treatment caused slight increases in TIMP3 protein with 1 

and 10 ng/mL, but a decrease in this protein was seen after 100 ng/mL.

4.2.3 Summary of Results

The results presented in this chapter are summarised in Table 4.1.
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Figure 4.15: ADAMTS-4 immunoprobed western blot of SDS-PAGE fractionated LX-2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-p, IL- 

6 or TNF-a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-4 protein after actin 

normalisation. (n=1).
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A) ADAMTS-5 immunoprobed LX-2 Protein Lysates
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Figure 4.16: ADAMTS-5 immunoprobed western blot of SDS-PAGE fractionated LX-2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-(3, IL- 

6 or TNF-a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total ADAMTS-5 protein after actin 

normalisation. (n=1).
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A) TIMP3 immunoprobed LX-2 Protein Lysates
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Figure 4.17: TIMP3 immunoprobed western blot of SDS-PAGE fractionated LX-2 

protein lysates following 48 hours of treatment with varying concentrations of IL1-f3, IL- 

6 or TNF-a. Equal loading of protein samples (6 pg) was verified by actin 

immunoprobing. B) Relative quantification of total TIMP3 protein after actin 

normalisation. (n=1).

155



Ta
bl

e 
4.

1:
 S

um
m

ar
y 

the
 

m
aj

or
 s

pe
cie

s 
an

d 
m

od
ul

at
io

ns
 

of 
A

D
A

M
17

, 
A

D
A

M
TS

-1
, 

-4
, 

-5 
an

d 
TI

M
P3

 
pr

ot
ei

ns
 

by 
cy

to
ki

ne
s 

as 
de

te
rm

in
ed

 
by 

w
es

te
rn

 

bl
ot

tin
g.

CM

to X

,e !

o
O

CM
0Q.
0
X

0>
oro
oc
to
Q
ooID
oQ
O
00

0)c

03 CDc

CDc
oO
03
o

0 
- I—>TO
L _
0
■0o

CDc

O)C
oo

0
TOi_
0"OO

TO
O
OID
oS
h-
00

CDc

©a

0 
-*—*TOi—
0"0O

O)c
oo

_l _
E _l

E0 )c 0 )
o c
o oT- T—
©a ©a
t— T—
v—' ■ -
0 0
TO TO
0 0■0 ■0O O

o>c
oo

TO
QJXL
00ID
o3
CDCD
cT
00

O)c

oa

CDC

o8

0
TO
i _

0■0o

CDc
oo

0M-»TO
i _

0■DO

C
0"0C
0
Q .
0"0
C
o
TO
C
0oc
o
O

CDC

TO
TO
0
Q .

E
OM—
0>
oTO

TO

QXL
CO
oa
oID
CO

CDc

0
TO
0T3O

CDC
oo

oa
o

0 -*—» TO 1—
0■DO

0)C

TO
Q
00ID
oa
o
00

0)c
o
o

o3
o

0)c
oo

©a
o

0 -*—* TOt_
0
■0O

E E
o oM— M—
0 0> >
o oTO TO

4— <4—O O
-t—> •*->c c0 0■0 ■0c c0 0Q.0 nr

Q.
0

■0 E T3
C Co 0 ) oc
TO TOi—+-> -—• -i—»C _̂ C
0 . 0o o Oc c
o o
O 1 O

TO
Q
CO
©a
oCD
00

0)c

oa

cdc
oo

oa

0)c

0 -•—» TOi_
0
■0O

O-Q

C
0
■0C
0Q.
0"0
Co
TO
■4—'c
0Oc
o
O

0 )c:

TO
X L
TO
0£.
(/)
Ei—
o

uoissejdxg ujejoid

15
6



Ta
bl

e 
4.1

 
(c

on
tin

ue
d)

: 
Su

m
m

ar
y 

the
 

m
aj

or
 s

pe
cie

s 
an

d 
m

od
ul

at
io

ns
 

of 
A

D
A

M
17

, 
A

D
A

M
TS

-1
, 

-4
, 

-5 
an

d 
TI

M
P3

 
pr

ot
ei

ns
 

by 
cy

to
ki

ne
s 

as 
de

te
rm

in
ed

 

by 
we

st
er

n 
bl

ot
tin

g.
03
Q
CM
CO

oQ
O

I  50 3  X 5
~ c 0 

Q . 0 ■a

o
o

06

0 -♦—* 
03 
1—

0"OO

c
o

-4—»
CO

•*—*C.
0oc
o
O

O)C

0 -+—» CO
0

T 3O

CO

C
0Oc
oo
0O)
i _
03

0 
-t—■
03
i _

0■a
o

a>c

03

03
0Q.

C
0T3C
0
Q .
0■D

O
03

03
Q

CO

o3
O

0 3c

0
CO
0"OO

C
0

T 3C
0
Q .
0"O
Co

‘■4—'
CO
1—

c
0oc
o
o

0 3c

03
J *
CO
0
Q .

0 3C

0 3C
oo

o«
o

0 
-*—» 
03
L .
0"D
o

c
0■oc
0
Q _
0"O
Co

-4—<CO
c
0oc
o
o

0 3c

03

CO
0
Q .

0 3c
oo

03
a

CO

o&
CM
CO

c
0

T 3C
0

E "o
0 3  C
oo

c
o
ro
i — 

•4—>c
0oc
o
O

0 3C
oo

0
0 3
k _
03

0 3C
oo

o6 
o

0-I—*ro
0
■oo

uojssejdxg ujejoJd

15
7



Ta
bl

e 
4.1

 
(c

on
tin

ue
d)

: 
Su

m
m

ar
y 

the
 

m
aj

or
 s

pe
cie

s 
an

d 
m

od
ul

at
io

ns
 

of 
A

D
A

M
17

, 
A

D
A

M
TS

-1
, 

-4
, 

-5 
an

d 
TI

M
P3

 
pr

ot
ei

ns
 

by 
cy

to
ki

ne
s 

as 
de

te
rm

in
ed

 

by 
we

st
er

n 
bl

ot
tin

g.

ro
Qjx:
o
CM

c.
- J 0
E 7 3
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4.3 Discussion

4.3.1 IL-1J3, IL- 6  and TNF-a Differentially Modulate the Protein Expression of 

ADAM17, ADAMTS-1, -4, -5 and TIMP3 in Liver Cell Lines

The objectives of these investigations were to determine whether ADAM17 and 

ADAMTS-1, -4 and -5 proteinases, and their inhibitor TIMP3 are expressed in HepG2, 

HuH-7 and LX-2 cell lines, and whether their levels are modulated by cytokines IL-ip, 

IL-6 and TNF-a.

Following the optimisation and validation of the western blotting procedure, it was 

shown that all of these proteins were expressed in the studied cell lines albeit at 

different levels and forms. However, there is a need for caution when interpreting 

western blot data due to the difficulty in the verification of antibody specificity. This 

technique only allows the relative quantification of protein bands, and densitometric 

analysis of each blot demonstrated the generally minor, but differential modulations of 

each protein of interest by the cytokine treatments.

Previously researchers have documented an increased expression of ADAM17 protein 

in CRCs (Blanchot-Jossic et al, 2005) and metastases resulting from CRCs (Merchant 

et al, 2008), as compared to paired non-cancerous tissue. ADAM17 expression has 

only been studied at the mRNA level in HCCs (Ding et al, 2004), although it is present 

in some HCC cell lines, including HepG2, HuH-7, HLF, Li-7 and PLC/PRF/5 (Itabashi et 

al, 2008).

These data show that ADAM17 was present in two predominant forms in both HepG2 

and LX-2 cells, zymogen (130 kDa) and a processed or degraded form (58 kDa), with 

an additional predominant 66 kDa band also evident in HuH-7 cells. Active ADAM17 

(110 kDa) was present in the hepatoma cell lines, but absent from the hepatic stellate 

cell line; furthermore HepG2 and HuH-7 cells expressed more total ADAM17 protein 

than the LX-2 cell line, as determined by band intensity analysis of the blots. This may 

indicate that active ADAM17 aids liver tumour development, possibly by the promotion 

of cellular proliferation and/or angiogenesis as demonstrated in other human tumour 

types including colon carcinomas (Vazquez et al, 1999; Blanchot-Jossic et al, 2005).

Furthermore, IL-1p and TNF-a treatments had opposing effects on ADAM17 

expression in the hepatoma and LX-2 cell lines, such that IL-1 p caused a decrease in 

total ADAM 17 in the hepatoma cell lines and an increase in LX-2 cells, and TNF-a 

caused an increase in total ADAM 17 protein in the hepatoma cells and a decrease in 

LX-2 cells. IL-6 treatment resulted in varied modulation of ADAM17 in the cell lines 

examined with an increase in active and total ADAM17 protein observed in HepG2
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cells, a decrease in total ADAM17 protein in HuH-7 cells and variable effects in LX-2 

cells dependent upon the concentration of treatment.

The expression of ADAMTS-1, -4 or -5 proteins has not previously been examined in 

HCC, CRC, or normal liver tissue. So establishing the expression of these classical 

aggrecanases in three liver cell lines may identify a mechanism by which liver ECM is 

processed to enable its invasion by tumour cells.

Although ADAMTS-1 zymogen was rarely detected, full length active ADAMTS-1 was 

present as a predominant 87 kDa band in the liver cell lines examined, with more 

ADAMTS-1 protein detected in the hepatoma cell lines than the non-cancerous LX-2 

cell line, as determined by band intensity analysis. This over-expression of full length 

ADAMTS-1 may promote tumour angiogenesis and invasion, as shown by other 

researchers in TA3 mammary carcinoma, Lewis lung carcinoma (Liu et al, 2006b), and 

CHO cell lines (Kuno et al, 2004). Ordinarily though ADAMTS-1 protein inhibits tumour 

angiogenesis by the sequestration of the tumour angiogenesis mediator, VEGF165, and 

is down-regulated in a number of tumours e.g. mammary and pancreatic tumours, in 

order to counteract this effect (Porter et al, 2004; Masui et al, 2001). This indicates that 

the proteolytic status of ADAMTS-1 protein determines the effect of this protein on 

cancer development and dissemination.

IL-1(3 and IL-6 treatments of the liver cell generally caused decreases in ADAMTS-1 

protein, as did TNF-a treatment in LX-2 cells. However, this latter treatment resulted in 

increases in total ADAMTS-1 protein in the HCC cell lines, with concentration 

dependent increases in both forms of active protein (87 and 60 kDa) in HepG2 cells. 

Therefore the finding that IL-1 p and IL-6 treatments of liver cell lines decrease active 

ADAMTS-1 could provide a mechanism by which liver tumours could facilitate the 

development of a neovasculature during hepatic injury when circulating levels of these 

cytokines are elevated.

Total ADAMTS-4 protein was expressed at a higher level and with twice as much 

active ADAMTS-4 in LX-2 cells than the hepatoma cell lines, as determined by band 

intensity analysis. A specific role for ADAMTS-4 in cancer has not yet been elucidated, 

but its up-regulation is thought to contribute to the tumours invasive potential (Held- 

Feindt et al, 2006). Furthermore, various forms of ADAMTS-4 were present in the liver 

derived cell lines, which may indicate C-terminal processing and altered substrate 

specificity (Kashiwagi et al, 2004).

Generally IL-1(3 and IL-6 treatments increased total ADAMTS-4 protein expression in 

all of the examined cell lines, however in contrast to the total protein level, a 

concentration dependent decrease in active ADAMTS-4 was seen in HepG2 cells
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following IL-1 p treatment, as determined by band intensity analysis. Increased 

ADAMTS-4 protein was also observed following TNF-a treatment in LX-2 cells, but was 

decreased in the hepatoma cell lines.

Previously researchers have identified a dual role for ADAMTS-5 in cancer progression. 

Firstly, its down-regulation could permit tumour angiogenesis by the decreased actions 

of its anti-angiogenic central TSR (Sharghi-Namini et al, 2008). Secondly, elevated 

ADAMTS-5 protein expression could increase the invasive potential of tumours by 

accelerating ECM processing (Viapiano et al, 2008). ADAMTS-5 protein was observed 

in the experimental cell lines, although the active form was only detectable in low levels 

in the hepatoma cell lines and was undetectable in the LX-2 cell line. IL-6 treatment did 

not modulate ADAMTS-5 protein expression; however IL-1 (3 increased it in a 

concentration dependent manner (peak at 10 ng/mL) in HuH-7 and LX-2 cells, with the 

same trend observed in HepG2 cells following TNF-a treatment.

Zeng et al (2001) demonstrated that TIMP3 was consistently decreased in CRCs at the 

protein level when compared to paired normal colon mucosa; this is in contrast to their 

findings that TIMP3 mRNA was increased in CRCs. In this study TIMP3 was detected 

in the glycosylated 30 kDa form in all of the liver cell lines examined, with more of this 

protein observed in HepG2 cells than the HuH-7 and LX-2 cells. Variable responses 

were observed following IL-1 p and TNF-a treatments, but IL-6 treatment increased this 

inhibitor protein in all cell lines, with a clearly observed concentration dependent 

increase seen in the LX-2 cell line.

These initial observations could suggest that tumour cell invasion of the liver is 

influenced by the combined effects of increased ADAM 17, ADAMTS-4 and -5 protein 

expressions, and decreased ADAMTS-1 expression. These up-regulations may 

outweigh the subtle increase observed in their inhibitor, TIMP3. These combined 

effects could aid liver tumour formation by increasing liver tumour cell proliferation and 

ECM sculpting, whilst allowing tumour angiogenesis to occur.

4.4 Summary

Preliminary data presented in this chapter demonstrate the differential expression and 

modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 proteins in each of the cell lines 

investigated. Key findings include the presence of active ADAM17 protein in the 

hepatoma cell lines, but its absence from the HSC line, and its concentration 

dependent increase following TNF-a treatment in the hepatoma cell lines. Furthermore, 

ADAMTS-1 protein was increased in the liver cancer cell lines compared to LX-2 cells.
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Chapter 5

Cellular Localisation ADAM17, ADAMTS-1, -4, -5 and TIMP3 in 

Liver Cell Lines and the effect of IL-1 fi, IL-6 and TNF-a on this
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5.1 Introduction

This chapter describes an investigation of the cellular localisation of ADAM17, 

ADAMTS-1, -4, -5 and TIMP3 protein in the three previously characterised liver cell 

lines, HepG2, HuH-7 and LX-2, and their distribution after treatment with IL-1 (3, IL-6 

and TNF -a. Qualitative changes in protein expression level were also examined after 

cytokine treatments.

The proteolytic enzymes under investigation are synthesised as inactive zymogens that 

require the removal of their prodomain by furin-like proprotein convertases to become 

proteolytically active (Schlondorff et al, 2000). This activation is accompanied by a 

change in their cellular location, such that the inactive zymogens are located 

intracellularly, whilst the active proteinases have a cell membrane (ADAM17), or 

extracellular location (ADAMTS-1, -4 and -5) (Turner et al, 2009). The combined 

approach of ICC with confocal laser scanning microscopy allowed the in situ 

visualisation of specific proteins in cultured cells, both on the surface of cells and 

intracellularly.

5.1.1 Confocal Laser Scanning Microscopy (CLSM)

CLSM allows an in-focus image to be obtained from any depth of the specimen, a 

process known as optical sectioning. The basic principle of this technique (Figure 5.1) 

involves a laser beam of the correct excitation wavelength being passed through a light 

source (pinhole) aperture, and focussed by an objective lens onto a single focal point 

within the specimen, the confocal beam path. Following fluorochrome excitation, the 

emitted photons together with scattered and reflected light, pass back through the 

objective lens and are deflected by a dichroic beam splitter through the light detector 

aperture, which acts to suppress light not originating from the focal point. An emission 

filter located in front of the light detector eliminates light not of the correct emission 

wavelength, prior to the detection of the light intensity by the light detector, usually a 

photomultiplier tube; these data are then converted into a digital format. The number of 

photons emitted reflects the intensity of the fluorochrome excitation (Wilhelm et al, 

c2006).

By the sequential scanning of the laser across the specimen in the horizontal plane, 

using oscillating mirrors, a whole image can be generated pixel by pixel. This image 

represents a specific optical plane within the sample. Adjusting the height of the 

microscope stage, in-focus images from different optical planes (depths) of the 

specimen can be obtained allowing three-dimensional reconstructions of the cellular 

locations of specific fluorescently-labelled proteins. This also allows the cell surface 

profiling of samples, as well as intracellular imaging.
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Beam splitter

Light source

Q.

CL
—{--------  Aperture

Light detector
LL

Figure 5.1: Principle of confocal microscopy.

A laser light source (red line) passes through a pinhole aperture, and is focused by an 

objective lens onto a single point in the focal plane of the sample. Fluorophores in the 

fluorescently labelled sample become excited by the laser and emit photons (blue line), 

which together with scattered and reflected light (grey dashed line) pass back through 

the objective lens and are deflected by a beam splitter towards the light detector. 

Focused light emitted from the sample passes through a second aperture, and is 

detected by a light detector. The data are then digitised to form a single pixel of an 

image. Scanning the sample enables a whole image to be formed.
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5.1.2 Specific Objectives

• To optimise the ICC procedure to detect cell surface and intracellular ADAM17, 

ADAMTS-1, -4, -5 and TIMP3 protein expression.

• To determine the modulating effect of IL-1 p, IL-6 or TNF-a treatments on the 

cellular location and gross expression levels of ADAM 17, ADAMTS-1, -4, -5 and 

TIMP3 proteins in each of the three cell lines under investigation.

5.2 Results

5.2.1 ICC Optimisation

ICC optimisation is required to ensure the immunodetection of specific antigens in 

cultured cells. Optimal conditions must be determined for each individual situation, i.e. 

for each antibody and cell type.

Initially a previously described protocol was used to detect ADAM17 protein in HepG2 

cells (personal communication, Dr G. Haddock, Sheffield Hallam University, Sheffield, 

UK). Briefly, HepG2 cells were seeded at a density of 1x105 cells/chamber in 400 juL 

complete cell culture medium and allowed to adhere for 24 hours in a cell incubator. 

Cells were then washed twice by submersion in DPBS for 5 minutes with gentle 

agitation, and fixed for 10 minutes with 4% PFA, followed by three further DPBS 

washes. Cells were immunoprobed with 20 pg/mL or 10 p.g/mL (1 in 50 or 1 in 100 

dilutions) of polyclonal ADAM17 antibody (ab2051, Abeam), followed by three DPBS 

washes, 4 pg/mL (1:500 dilution) of Alexa Fluor® 568 conjugated secondary antibody 

(A11011, Invitrogen), and three further DPBS washes. DAPI (4', 6-diamidino-2- 

phenylindole) cell nuclei counter-stain was then applied to the cells.

Actin staining was used as a positive control to assess whether the procedure had 

worked correctly; two concentrations, 0.236 mg/mL and 0.118 mg/mL (1 in 50 and 1 in 

100 dilutions), of polyclonal actin antibody (A5060, Sigma-Aldrich) were tested. 

Negative controls containing no primary antibody, were performed in duplicate with a 

secondary antibody concentration of 4.0 jig/mL (1 in 500 dilution), as recommended by 

the manufacturer.

Staining was present for both ADAM 17 (20 jug/mL primary antibody) and actin (0.236 

mg/mL primary antibody) proteins in HepG2 cells, however very few cells were present 

on the chamber slides (data not shown). Therefore, the cell washing technique was 

altered from submersion in DPBS with gentle agitation to the addition of 200|uL DPBS 

per well with gentle agitation. The absence of non-specific staining on the negative 

control slides confirmed that 4.0 jug/mL of secondary antibody dilution was appropriate.
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Acetone (-20°C) fixation of HepG2 cells for 10 minutes was confirmed as a suitable 

method of cell permeabilisation prior to protein immunodetection as further 

permeabilisation of cells with 1% Triton-X-100 v/v with DPBS for 10 minutes did not 

result in any observable differences in staining (data not shown).

Following the optimisation of the conditions, the optimal concentrations of ADAM17, 

ADAMTS-1, -4, -5 and TIMP3 primary antibodies were determined in each cell line 

(Table 2.5).

5.2.2 Redistribution of Proteins following IL-1J3, IL- 6  and TNF-a Treatment

HepG2, HuH-7 or LX-2 cells were treated with 100 ng/mL of either IL-1 p, IL-6 or TNF-a 

for 48 hours. ICC analysis was then performed (Section 2.5) to determine the cellular 

location of these proteins in control samples, and to assess whether they were 

redistributed due to cytokine treatment. The negative control for each experiment 

demonstrated only the DAPI stained nuclei of the cells, with no non-specific staining of 

the secondary antibody (Figure 5.2).

Each experiment was only performed once in each cell line, and therefore should be 

regarded as preliminary data. IL-1 p and TNF-a treated cells were compared to an 

untreated control sample, whereas IL-6 treated cells were compared to an acetic acid- 

containing control sample.

The HepG2 Experimental System

ADAM 17 protein was located in a punctate pattern on the cell surface of HepG2 cells 

(Figure 5.3A & D); its expression was not altered by IL-1 p treatment (Figure 5.3B), 

however more intense staining was observed following IL-6 and TNF-a treatments 

(Figure 5.3C & E). In addition, ADAM17 was situated diffusely within the cell cytoplasm, 

with some perinuclear vesicles present (Figure 5.3F & I). Treatments with IL-1 (3 and 

TNF-a did not alter the expression level or intracellular distribution of ADAM17 (Figure 

5.3G & H), however, the perinuclear vesicles were not present following IL-6 treatment 

(Figure 5.3J).

A low level expression of ADAMTS-1 protein was associated with FlepG2 cell surfaces 

(Figure 5.4A & D); this did not change with IL-1 p treatment (Figure 5.4B). ADAMTS-1 

surface protein was increased following IL-6 and TNF-a treatments, and the protein 

was distributed evenly across the membrane (Figure 5.4C & E). Intracellular ADAMTS- 

1 was present throughout the cytoplasm, with some perinuclear vesicle staining (Figure 

5.4F & I). More perinuclear vesicles were present following IL-1 p and IL-6 treatments 

(Figure 5.4G & J), and completely absent following TNF-a treatment (Figure 5.4H).
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A)

Cell Surface

B)

Intracellular

20 pm

20 pm

Figure 5.2: Negative controls for the ICC examination of cell surface (4% PFA) and 

intracellular (-20°C acetone) ADAM17, ADAMTS-1, -4, -5 and TIMP3 proteins in A & B) 

HepG2, C & D) HuH-7, E & F) LX-2 cells. Nuclei stained with DAPI (blue) in all images. 

Scale bar is 20 p.m.
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Low levels of ADAMTS-4 were associated with the surface of certain HepG2 cells 

(Figure 5.5A & D). Comparable staining was observed following IL-1 p and IL-6 

treatments (Figure 5.5B & E); however ADAMTS-4 was associated with the surface of 

all HepG2 cells following TNF-a treatment (Figure 5.5C). Permeabilisation of cells 

revealed intense cytoplasmic staining of ADAMTS-4 (Figure 5.5F & I); this was not 

altered by cytokine treatment (Figure 5.5G, H & J).

Low levels of ADAMTS-5 protein were associated with the surface of cells with a 

punctate distribution (Figure 5.6A & D), and little effect was observed following IL-1 [3 

and IL-6 treatments (Figure 5.6B & E). In contrast TNF-a treatment increased the cell 

surface association of ADAMTS-5 protein (Figure 5.6C). Intense granular 

perimembrane ADAMTS-5 was observed following permeabilisation of HepG2 cells 

(Figure 5.6F), although the intracellular localisation in the acetic-acid containing control 

displayed a diffuse cytoplasmic pattern of this protein (Figure 5.6I). Each of the 

cytokine treatments also altered the distribution pattern of ADAMTS-5, such that 

intense perinuclear vesicles were present with minimal cytoplasmic presence (Figure 

5.6G, H & J).

Minimal, but evenly dispersed TIMP3 was detected on the cell surface of HepG2 cells 

(Figure 5.7A & D). It was present with increasing intensity following IL-1 p, IL-6 and 

TNF -a treatments, with a distinct speckled pattern (Figure 5.7B, C & E). Intracellular 

TIMP3 had a diffuse cytoplasmic location with increased intensity at the perimembrane 

(Figure 5.7F & I); this was unaltered by cytokine treatment (Figure 5.7G, H & J).

The HuH-7 Experimental System

ADAM 17 protein was located in a punctate pattern on the cell surface of HuH-7 cells 

(Figure 5.8A & D); its expression was not altered by cytokine treatment (Figure 5.8B, C 

& E). Intracellular ADAM 17 had a granular appearance throughout the cell cytoplasm 

(Figure 5.8F & I), treatment with IL-1 p decreased intracellular ADAM17 protein levels 

(Figure 5.8G), but with IL-6 and TNF-a treatments the protein level appeared to be 

unaltered (Figure 5.8H and J).

ADAMTS-1 protein was associated with the surface of HuH-7 cells with a speckled 

distribution (Figure 5.9A & D); the distribution of this protein was unaltered by cytokine 

treatments (Figure 5.9B, C & E). However, following IL-1 p and more noticeably IL-6 

treatments, ADAMTS-1 was absent from some cells (Figure 5.9B & E). Intracellular 

ADAMTS-1 was distributed uniformly throughout the cytoplasm, with some speckled 

perinuclear staining (Figure 5.9F & I). Increased cytoplasmic and perinuclear ADAMTS- 

1 protein levels were evident following IL-1 p and IL-6 treatments (Figure 5.9G & J), but 

remained unaltered following TNF-a treatment (Figure 5.9H).
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Some ADAMTS-4 was associated with the surface of some HuH-7 cells (Figure 5.10A 

& D), with comparable staining following cytokine treatments (Figure 5.1 OB, C & E). 

Permeabilisation of these cells revealed intense perimembrane staining of ADAMTS-4 

(Figure 5.1 OF & I), with each cytokine treatment altering this to a diffuse cytoplasmic 

location (Figure 5.10G, H & J). Intracellular ADAMTS-4 was increased in some cells 

and decreased in others after IL-1 p and IL-6 treatments, whereas TNF-a treatment 

consistently increased intracellular ADAMTS-4 levels (Figure 5.10J).

Low levels of ADAMTS-5 were associated with the surface of this cell type with a 

punctate distribution (Figure 5.11A & D); this was unaltered by IL-6 and TNF-a 

treatments (Figure 5.11C & E). In contrast, ADAMTS-5 was associated with the surface 

of fewer HuH-7 cells following IL-1 p treatment (Figure 5.11B). Intracellular ADAMTS-5 

had a diffuse cytoplasmic location (Figure 5.11F & I). IL-1 p treatment decreased the 

level of cytoplasmic ADAMTS-5 protein (Figure 5.11G), the opposite was true of IL-6 

treatment (Figure 5.11J). TNF-a treatment of HuH-7 cells altered the distribution 

pattern of ADAMTS-5 such that intense perinuclear vesicles were evident (Figure 

5.11H).

Minimal levels of TIMP3 with a distinct speckled pattern were associated with the cell 

surface of HuH-7 cells (Figure 5.12A); more TIMP3 protein was detected in the acetic 

acid-containing control compared to the untreated control (Figure 5.12D), with 

comparable levels seen in the cytokine treated samples (Figure 5.12B, C & E). 

Intracellular TIMP3 had a diffuse cytoplasmic location with intense granular perinuclear 

staining (Figure 5.12F). This perinuclear localisation is absent from the acetic acid- 

containing control (Figure 5.121), and decreased following cytokine treatments (Figure 

5.12G, H& J).

The LX-2 Experimental System

ADAM 17 protein was located in a punctate pattern on the cell surface of LX-2 cells 

(Figure 5.13A & D); its expression was not altered by cytokine treatment (Figure 5.13B, 

C & E). Intracellular ADAM17 had a granular appearance throughout the cell cytoplasm, 

with possible perinuclear vesicles present (Figure 5.13F & I). Treatment with IL-1 p 

decreased cytoplasmic ADAM17 protein levels, but increased the intensity of the 

nuclear vesicles (Figure 5.13G). Conversely, IL-6 and TNF-a treatments increased the 

cytoplasmic level of ADAM17 (Figure 5.13H and J).

Low levels of ADAMTS-1 protein were associated with the surface of LX-2 cells with a 

punctate distribution (Figure 5.14A & D); cytokine treatments did not appear to alter the 

distribution of this protein (Figure 5.14B, C & E). Intracellular ADAMTS-1 was evident
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uniformly throughout the cytoplasm, with some perinuclear vesicles (Figure 5.14F & I). 

Cytoplasmic staining was unaltered by cytokine treatments (Figure 5.14G, H & J). 

However increased vesicular ADAMTS-1 protein levels were evident following IL-1 p 

and IL-6 treatments (Figure 5.14G & J).

ADAMTS-4 protein was associated with the surface of LX-2 cells in a filamentous-like 

form (Figure 5.15A & D), with comparable staining after cytokine treatments (Figure 

5.15B, C & E). Intracellular ADAMTS-4 protein had a diffuse cytoplasmic location 

(Figure 5.15F & I), which was unaltered by TNF-a and IL-6 treatments (Figure 5.15H & 

J) and slightly decreased after IL-1 (3 treatment (Figure 5.15G).

ADAMTS-5 protein had a punctate distribution across the surface of LX-2 cells (Figure 

5.16A & D); this was unaltered by cytokine treatments (Figure 5.16B, C & E). 

ADAMTS-5 had a granular cytoplasmic location, with some speckled perinuclear 

staining (Figure 5.16F & I). IL-1 (3 treatment decreased ADAMTS-5 protein levels 

without altering its intracellular distribution pattern (Figure 5.16G), however TNF-a and 

IL-6 treated cells had increased cytoplasmic ADAMTS-5 protein (Figure 5.16H & J), 

with higher levels of perinuclear protein present following IL-6 treatment (Figure 5.16J).

Minimal TIMP3 protein, with a distinct speckled pattern was observed associated with 

the cell surface of LX-2 cells (Figure 5.17A & D); this was unaltered by the cytokine 

treatments (Figure 5.17B, C & E). Higher levels of intracellular TIMP3 protein were 

detected with a granular cytoplasmic location (Figure 5.17F & I); again it was not 

affected by cytokine treatments (Figure 5.17G, H & J).

5.2.3 Summary of Results

The results presented in this chapter are summarised in Table 5.1.
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5.3 Discussion

5.3.1 IL-1/3, IL-6 and TNF-a Differentially Modulate the Cellular Location of 

ADAM17, ADAMTS-1, -4, -5 and TIMP3 Proteins in Liver Cell Lines

The objective of investigations described in this chapter was to determine whether the 

cellular locations of ADAM17 and ADAMTS-1, -4, -5 and TIMP3 proteins in HepG2, 

HuH-7 and LX-2 cells are modulated by the cytokines IL-1 p, IL-6 and TNF-a, and to 

determine gross qualitative changes in their level of expression as a result of exposure 

to these cytokines.

Following the optimisation of the ICC procedure for the detection of cell surface and 

intracellular ADAM17, ADAMTS-1, -4, -5 and TIMP3 proteins, it was determined that 

each of these proteins were expressed in HepG2, HuH-7 and LX-2 cells, and present 

at different levels on the cell surface and intracellularly. Furthermore their expression 

levels and cellular locations could be modulated by cytokine treatments.

Blanchot-Jossic, et al (2005) demonstrated by immunohistochemistry that ADAM17 

was strongly expressed by neoplastic colon carcinomas as compared to paired normal 

colonic mucosa, with expression on the basolateral plasma membrane and a diffuse 

intracellular staining pattern. They also determined that ADAM 17 was co-expressed 

with the active phosphorylated form of EGFR in the colon cancer cells and ECs of the 

stromal reaction of the tumour, suggesting a role for ADAM17 protein in tumour 

angiogenesis via the activation of endothelial EGFR signalling pathway.

These data show that ADAM 17 protein was present on the surface of the hepatoma 

cell lines and to a lesser extent on LX-2 cells, with a punctate distribution observed for 

all cell lines; ADAM17 was increased in this location following IL-6 and TNF-a 

treatments in HepG2 cells. Intracellular ADAM17 was present throughout the 

cytoplasm of the observed liver cell lines, with vesicle-like staining evident over the 

nuclei of HepG2 and LX-2 cells. IL-1 p treatment decreased the abundance of 

cytoplasmic ADAM 17 in HuH-7 and LX-2 cells; this was accompanied by an increase in 

the vesicular-like staining in LX-2 cells. In contrast, IL-6 treatment resulted in the 

elimination of vesicular ADAM17 in HepG2 cells. This may indicate that ADAM17 is 

packaged and stored as intracellular secretory vesicles after processing in the trans- 

Golgi network until an appropriate signal is received, upon which it migrates to and 

fuses with the cell membrane. This would effectively increase the amount of active 

ADAM17 present on the cell surface, and promote angiogenesis possibly by EGFR 

pathway activation (Blanchot-Jossic et al, 2005).

The cellular localisation of ADAMTS-1, -4 or -5 proteins in HCC, CRC, or normal liver 

tissue has not previously been examined.
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ADAMTS-1 protein was associated with the cell membrane of HuH-7 and LX-2 cells 

with a punctate distribution; less of this protein was associated with HepG2 cells. 

Opposing effects of IL-1 p and IL-6 on the hepatoma cell lines were observed, such that 

cell surface associated ADAMTS-1 was increased on HepG2 cells and absent from 

some HuH-7 cells. This protein was located diffusely within the cytoplasm of all cells 

with some perinuclear vesicle-like staining present. In all cases IL-1 (3 and IL-6 

increased the vesicular ADAMTS-1 protein levels; however this was not seen following 

TNF -a treatment of HepG2 cells. These vesicles could be secretory vesicles as 

observed in cells isolated from ovulating ovaries of mice (Russell et al, 2003).

These data could indicate that IL-1 (3 and IL-6 act as a signal to liver cells to form active 

ADAMTS-1 protein-containing secretory vesicles that could be released when an 

appropriate signal is received. This could act as a protective mechanism against 

tumour formation by increasing the amount of extracellular anti-angiogenic ADAMTS-1 

protein. However, over-expression of ADAMTS-1 has been observed in some cancers, 

e.g. mammary and Lewis lung carcinomas, where it has an angiogenic and invasive 

effect, which would promote tumour growth and dissemination (Kuno et al, 2004; Liu et 

al, 2006b). These effects could be mediated by the promotion of heparin-binding EGF 

(HB-EGF) and amphiregulin shedding, and the consequent increased activation of 

EGFR as observed when ADAMTS-1 is over-expressed in TA3 mammary carcinoma 

cells (Liu et al, 2006b); these events are more often associated with ADAM17 activity.

Low levels of cell surface associated ADAMTS-4 with a diffuse distribution were 

observed in the hepatoma cell lines, with some HepG2 cells devoid of ADAMTS-4. 

TNF -a treatment of HepG2 cells resulted in all cells having cell surface ADAMTS-4. In 

contrast, a very distinctive filamentous-like arrangement of ADAMTS-4 protein was 

evident on the surface of LX-2 cells, which was decreased by IL-1 p treatment. This 

could indicate the slight permeabilisation of these cells by PFA (4%), revealing part of 

the intracellular cytoskeleton.

Furthermore, intracellular ADAMTS-4 staining showed that HuH-7 cells had intense 

perimembrane ADAMTS-4, which was modulated by cytokine treatments to a diffuse 

cytoplasmic location, as seen in HepG2 and LX-2 cells. Intracellular ADAMTS-4 levels 

were decreased in LX-2 cells after IL-1 p cells, whereas this treatment had variable 

effects in HuH-7 cells, decreasing expression in some cells and increasing expression 

in others. This effect was also observed in HuH-7 cells after IL-6 treatment. Conversely, 

TNF-a treatments of HuH-7 cells consistently increased intracellular ADAMTS-4 levels.

Low levels of ADAMTS-5 were associated with the extracellular surfaces of the 

hepatoma cell lines, with more evident on LX-2 cells. In all cases it had a punctate
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distribution. TNF-a treatment increased cell surface associated ADAMTS-5 in HepG2 

cells, whilst IL-1 p decreased the number of HuH-7 cells with extracellular ADAMTS-5 

associations. This down-regulation in anti-angiogenic ADAMTS-5 protein could provide 

a growth advantage to liver tumours, by permitting the development of neovasculature 

within the tumour (Sharghi-Namini et al, 2008).

Differential ADAMTS-5 staining patterns were observed intracellularly in the three cell 

lines. HepG2 cells had minimal cytoplasmic staining with intense vesicular and 

perimembrane staining, whereas HuH-7 cells had a diffuse cytoplasmic stain that was 

decreased with IL-1 (3, increased with IL-6 and had vesicle formation following TNF-a 

treatment. Granular cytoplasmic staining was observed in LX-2 cells with some 

vesicles evident. TNF-a and IL-6 increased LX-2 cytoplasmic ADAMTS-5, with 

increased vesicle formation following IL-6 treatment.

There is increasing evidence that TIMP3 has a protective role against tumour 

development by the suppression of tumour growth, metastasis and angiogenesis, and 

the induction of tumour cell apoptosis (Darnton et al, 2005). In a number of human 

cancers, including salivary gland, renal, pancreatic endocrine tumours, uveal 

melanomas, oesophageal adenocarcinomas (Darnton et al, 2005) and oesophageal 

squamous cell carcinomas (Miyazaki et al, 2004), TIMP3 has a largely cytoplasmic 

location. Further to this, a reduction in TIMP3 expression has been reported in a wide 

range of human cancers, which has been attributed to the hyper methylation of its 

promoter. This hyper methylation was not seen in their corresponding normal tissue 

samples (Miyazaki et al, 2004).

Minimal TIMP3 protein was evident on the surface of the liver cell lines, but it was 

notably increased following each cytokine treatment in the hepatoma cell lines. 

Intracellular TIMP3 had a diffuse cytoplasmic location, which increased in abundance 

towards the perimembrane in HepG2 cells; HuH-7 cells had intense vesicular staining 

that was increased by cytokine treatment.

If future investigations confirm these preliminary findings, these data could suggest that 

liver tumour development is encouraged by increased ADAM17 protein expression, 

and decreased ADAMTS-1, -4, -5 and TIMP3 proteins in cellular locations associated 

with their active forms. These combined effects could promote tumour angiogenesis, 

and tumour cell invasiveness.
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5.4 Summary

Preliminary data presented in this chapter demonstrate the different expression and 

cellular locations of ADAM17, ADAMTS-1, -4, -5 and TIMP3 in the cell lines 

investigated. Effects of IL-1 p, IL-6 and TNF-a on these characteristics are also 

described. Key findings include the increased presence of cell surface ADAM 17 protein 

following IL-6 treatment, which may correlate with the induced absence of ADAM17- 

containing secretory vesicles. Furthermore, TIMP3 protein is largely absent from the 

surface of all the liver cell lines investigated, which could be due to its sequestration 

into the ECM.
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Chapter 6

Assessment of ADAM 17 Activity in HepG2 Cel is
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6.1 Introduction

This chapter describes an investigation into the in vitro effects of IL-1 (3, IL-6 and TNF-a 

on the shedding of fractalkine as an indicator of ADAM 17 proteolytic activity in HepG2 

cells, together with a quantitative assessment of ADAM17 cellular redistribution in 

response to these cytokines by use of flow cytometry. Furthermore, the effect of down- 

regulation of ADAM 17 gene expression by siRNA on fractalkine shedding was 

assessed.

Increased ADAM 17 activity is often associated with cancer-related angiogenesis and 

enhanced cellular proliferation, for example by the shedding of EGFR ligands (Sahin et 

al, 2004; Itabashi et al, 2008). However, elevated ADAM17 levels may not correlate 

with increased activity if for example the protein is inactive; therefore it is important to 

perform activity assays. The examination of ADAM 17 activity is notoriously difficult, 

with many commercially available assays yielding inconsistent data (personal 

communication, Dr. L.A. Hurst, Sheffield Hallam University, Sheffield, UK). Therefore, 

as fractalkine is a substrate of ADAM 17 (Umehara et al, 2004), the assessment of its 

shedding from HepG2 cells (by use of a fractalkine-directed ELISA) was selected as an 

appropriate alternative to commercial ADAM17 activity assays. Elevated levels of this 

substrate have also been associated with cancer progression (Section 6.1.1), so it was 

of particular interest.

6.1.1 Fractalkine

Chemokines are a family of over 50 members of soluble chemotactic cytokines, divided 

into four classes dependent upon the number of conserved N-terminal cysteine 

residues: C, CC, CxC, and Cx3C (Bazen et al, 1997; Efsen et al, 2002). Fractalkine, 

also known as Cx3CL1, is the only member of the Cx3C group of chemokines, and one 

of only two chemokines, the other is CxCL16, known to exist in two forms, soluble and 

membrane-bound (Hyakudomi et al, 2008). Its receptor, Cx3CR1, is expressed on 

leucocytes, including monocytes, NK cells, cytotoxic T-cells (CTLs; CD8+ T-cells), and 

to a lesser extent CD4+ T-cells (Efsen et al, 2002).

Soluble fractalkine, shed from the surface of cells by ADAM17, ADAM10, MMP-2 and 

cathepsin S, induces the chemotactic migration of leucocytes in the same manner as 

conventional chemokines (Umehara et al, 2004; Hyakudomi et al, 2008; Dean & 

Overall, 2007; Clark et al, 2007). Whereas, membrane-bound fractalkine acts as an 

adhesion molecule, independent of integrin and selectin, facilitating the adhesion of 

fractalkine expressing cells and Cx3CR1 expressing leucocytes (Umehara et al, 2004).

Fractalkine is an important inflammatory mediator, and is linked to a number of 

inflammatory diseases, including rheumatoid arthritis (Volin et al, 2001),
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atherosclerosis (Lee et al, 2006) acute hepatitis (Efsen et al, 2002) and cancer 

(Hyakudomi et al, 2008; Ohta et al, 2005), with both protective and disease promoting 

effects.

When fractalkine is up-regulated in certain cancers, e.g. CRC and gastric 

adenocarcinomas, it can invoke anti-tumour responses by the recruitment of tumour 

infiltrating lymphocytes (TILs), comprising mainly NK cells and cytotoxic T-cells 

(Hyakudomi et al, 2008; Ohta et al, 2005). These cytotoxic effector cells induce target 

HCC cell line (HLE, HLF, HuH-7, SK-Hep1, Chang Liver & Hep3B) apoptosis via the 

secretion of perforin, which forms a pore in the target cell membrane through which 

granzyme B enters the target cell, and activates caspase 3 to initiate target cell 

apoptosis (Hayashida et al, 2000).

Generally CRC patients have impaired local and systemic immune responses, with few 

TILs. However, fractalkine is up-regulated by some CRCs with these tumours 

containing a large fraction of TILs, which correlates with a better prognosis of disease- 

free survival (Ohta et al, 2005). Similarly, fractalkine is up-regulated in gastric 

adenocarcinomas compared to normal gastric mucosa, which again correlates with an 

increased level of TILs and a better prognosis of disease-free survival than for patients 

with lower fractalkine expression levels (Hyakudomi et al, 2008).

Conversely, fractalkine can act as a mediator of pathogenic angiogenesis. For example, 

fractalkine present in the synovial fluid of rheumatoid arthritis patients promotes 

angiogenesis in vitro (Volin et al, 2001), by increasing EC proliferation, migration and 

tube formation in a manner similar to VEGF (Lee et al, 2006). Similarly, fractalkine can 

facilitate inflammation related angiogenesis via the activation of the G-protein coupled 

receptor mediated Raf-1/MEK/ERK and PI3-K/Akt/endothelial nitric oxide synthase 

pathways In vivo (Lee et al, 2006). This could mean that fractalkine-dependent 

angiogenesis is also possible in inflammation related cancers, e.g. HCC.

6.1.2 Flow Cytometry

Flow cytometry is a high-throughput technique used to analyse and quantify the 

physical and/or chemical properties of individual cells (Figure 6.1). It can also be used 

to sort cells according to these characteristics to allow further biological analysis.

Typically, a specific antigen of interest, e.g. a cell surface or intracellular protein, is 

targeted by a fluorochrome-conjugated antibody prior to the introduction of a cell 

suspension into the flow cytometer. To allow access of the labelling antibody to 

intracellular antigens, cells must first be fixed and permeabilised. The labelled sample 

is subjected to hydrodynamic focussing, where the randomly distributed cell 

suspension is ordered by a fluidics system into a single stream. This system consists of
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Detectors

Fluidics system

Lasers

Electronics and co m puter  

system

Figure 6.1: Principle of flow cytometry (Invitrogen tutorial).

The fluidic system sorts the fluorescently-labelled sample into a column of single cells 

(red spheres), which are passed through a laser beam (narrow blue). Light scattered in 

the forward direction (FSC; widest blue) is detected and converted into a voltage 

proportional to its intensity. Side scattered light (SSC; mid-width blue) and fluorescent 

light (red, yellow, green) emitted from the excited sample pass through a number of 

filters that function to direct light of the correct wavelength to its appropriate detector 

where it is also converted into voltage. These data are processed by a computer to 

allow the analysis and quantification of the collected data. FSC indicates cell size; SSC 

indicates cell granularity; fluorescence indicates abundance of a specifically labelled 

antigen.
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a central core through which the sample is injected and an outer sheath of fast flowing 

fluid, which draws the sample through the narrowing central cavity creating a single 

column of cells or particles (Rahman et al, 2005).

Particles then pass through a beam from a light source, usually a laser beam, resulting 

in light being scattered off the particle; this scatter pattern is characteristic to each 

individual particle. Light scattered in the forward direction, i.e. light scattered less than 

20° from the direction of the light source, also known as forward scatter channel (FSC), 

can be used as a measure of particle size, with a higher intensity indicative of a larger 

particle. FSC can therefore be used to distinguish between cellular debris, intact cells 

and clumps of cells. Side scatter on the other hand, i.e. light scattered at a 90° angle 

from the light source, also known as side scatter channel (SSC), provides information 

concerning the intracellular granular and structural complexity of the cell. The 

combination of FSC and SSC are used to differentiate between cell types in a 

heterogeneous sample; during data analysis specific regions on the SSC versus FSC 

plot can be gated to allow the selective analysis of particular cell types (Rahman et al, 

2005).

The laser also acts to excite fluorophores on the labelled cells. Any emitted fluorescent 

light is channelled down the same path as side scattered light, where it is further 

directed through a series of filters positioned at 45° angles to ensure the correct 

wavelength of light is delivered to the appropriate detector, whilst other light is 

deflected. These filters are described as “long pass”, “short pass”, or “band pass”, and 

allow light >500 nm, <560 nm, or of a specified narrow range of wavelengths to pass 

through respectively. Histogram plots of the fluorescent data can then be used to 

display the number of immunopositive cells within the sample (Rahman et al, 2005).

In all incidences the detectors convert detected light into voltage proportional to the 

intensity of the detected light. The voltage is then converted into a numerical value 

used for data quantification.

Suitable control samples must be used in this technique to distinguish between non­

specific background fluorescence and specific primary antibody fluorescence. Typically 

an isotype control antibody, i.e. an antibody that is species and isotype matched to the 

primary antibody, is used for this purpose in flow cytometry.

6.1.3 RNA interference (RNAi)

RNAi is an evolutionally conserved phenomenon in eukaryotes, which represents a 

unique form of post-transcriptional gene silencing. Exploitation of this naturally 

occurring process has allowed researchers to more clearly understand the roles of 

individual proteins.
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The RNAi pathway (Figure 6.2) is triggered by dsRNA molecules which are processed 

by an RNase-lll like enzyme (Dicer, to generate short interfering RNA duplexes. 

Alternatively chemically synthesised siRNA can be used to trigger the pathway. siRNA 

is incorporated into an RNA-induced silencing complex (RISC), which then probes the 

target mRNA for complementary sequences. When it finds this, RISC mediates mRNA 

cleavage, and consequently silencing of gene expression (Boese, 2004).

To ensure accurate interpretation of experimental data it is crucial to employ several 

critical controls. Without these, non-specific effects of the transfection procedure itself 

or siRNA-indirect gene knockdown may lead to data misinterpretation. Firstly, a 

baseline reference of untreated controls must be used to allow the comparison and 

normalisation of all other samples.

Secondly, a positive silencing control should be used to check RNAi functionality in a 

particular experimental system. Typically a validated siRNA targeting an endogenous 

housekeeping gene, such as GAPDH or cyclophilin B, is used. GAPDH was selected 

for the HepG2 experimental system, as this siRNA typically reduces GAPDH gene 

expression by 91% when measured at the mRNA level 24 hours after transfection 

under optimal conditions (Boese, 2004).

Finally, a negative silencing control should be used to highlight off-target effects 

caused by the activation of the RNAi pathway. Mock transfections where lipid 

transfection reagent is applied to cells in the absence of siRNA could be performed to 

ensure cellular function is not disrupted by the lipid transfection reagent. However, a 

more biologically relevant control is transfection with either functional, non-targeting 

siRNA or non-functional, non-targeting siRNA together with lipid transfection reagent.

6.1.4 Specific Objectives

• To determine the effect of IL-1 (3, IL-6 and TNF-a treatments on the shedding of 

fractalkine from the surface of HepG2 cells.

• To optimise the method of HepG2 cell detachment for the analysis of ADAM17 

by flow cytometry.

• To establish whether IL-1 p, IL-6 and TNF-a treatments alter the cellular location 

of ADAM 17 in HepG2 cells.

• To optimise the method of ADAM17 gene silencing by siRNA, and determine 

siRNA transfection efficiency.

• To demonstrate effective ADAM17 gene and protein silencing in HepG2 cells.

• To determine the effect of ADAM 17 silencing on HepG2 cell proliferation.

• To determine the effect of ADAM 17 silencing on the shedding of fractalkine 

from the surface of HepG2 cells.
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Figure 6.2: The RNAi pathway (Adapted from Boese, 2004).

The RNAi pathway is initiated in the cytoplasm of host cells by long dsRNA molecules 

or small hairpin RNA (shRNA) molecules that have sequence-specific homology for a 

“target” mRNA. Similarly, non-coding microRNAs (miRNAs) synthesised in the nucleus 

can be processed by Drosha into pre-miRNAs (~70mers) and exported into the 

cytoplasm where they too can trigger RNAi.

These RNA molecules are processed in the cytoplasm by the ATP-dependent RNase- 

lll-like enzyme Dicer, to generate short interfering RNA (siRNA) duplexes, the 

mediators of RNAi. Alternatively, chemically synthesised siRNAs can be used to trigger 

RNAi. siRNA is incorporated into an RNA-induced silencing complex (RISC), which 

activates the ATP-dependent helicase activity of RISC to unwind the siRNA duplex.

The siRNA-RISC then probes the target mRNA for complementary sequences, and 

when high sequence complementarity is found, RISC mediates site-specific mRNA 

cleavage, and consequently gene silencing. The siRNA-RISC is released and recycled 

following mRNA cleavage to further deplete the target mRNA pool. However, when 

sequence complementarity is lower, gene silencing occurs by translation repression, 

where the siRNA-RISC does not cleave the target mRNA, but remains bound to it; this 

halts the progression of mRNA translation to protein. The siRNA-RISC is not available 

for further target probing when gene silencing occurs by this method.
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6.2 Results

6.2.1 Fractalkine Shedding from HepG2 Cells

To determine the effect of cytokine treatment on the shedding of fractalkine from the 

surface of HepG2 cells, 1, 10 or 100 ng/mL of IL-1 (3, IL-6 or TNF-a was applied to the 

cells for 24 or 48 hours. The supernatant was collected and an ELISA directed against 

fractalkine was used to quantify the amount of shed fractalkine (Section 2.6). No 

optimisation of this technique was required. These treatments are known to influence 

the proliferative capacity of HepG2 cells (Figure 3.2); therefore the amount of soluble 

fractalkine was expressed per mg of protein. Supernatants from IL-1 p and TNF-a 

treated cells were compared to supernatants from untreated control samples, whereas 

supernatants from IL-6 treated cells were compared to supernatants from acetic acid- 

containing control samples.

At the 24 hour time point approximately 35.6 ng fractalkine/mg protein was shed from 

untreated HepG2 cells (Figure 6.3A). IL-1 p treatment significantly increased the 

amount of fractalkine shed from HepG2 cells following 10 and 100 ng/mL of treatment 

(145.9 & 142.9 ng fractalkine/mg protein respectively; both P=0.0001). A concentration 

dependent increase in shed fractalkine was also seen after TNF-a treatment, reaching 

significance with 10 and 100 ng/mL (82.4 & 113.4 ng fractalkine/mg protein; P=0.001 & 

0.0001 respectively). IL-6 treatment did not affect fractalkine shedding relative to its 

acetic acid-containing control. However, fractalkine was shed at a higher level in the 

acetic acid-containing control compared to the untreated control (99.3 ng fractalkine/mg 

protein; P=0.001).

These trends in shed fractalkine levels were paralleled after 48 hours of treatment 

(Figure 6.3B), albeit with higher levels of fractalkine shed. HepG2 cells shed 90.9 ng 

fractalkine/mg protein under control conditions; this was significantly increased 

following 1,10 and 100 ng/mL of IL-1 p (171.8, 203.6 & 212.7 ng fractalkine/mg protein; 

P=0.005, 0.001 & 0.0001 respectively). Similarly, TNF-a treatment caused significant 

increases in the amount of fractalkine shed from HepG2 cells with 1,10 and 100 ng/mL 

(124.8, 172.8 & 205.6 ng fractalkine/mg protein; P=0.046, 0.005 & 0.001 respectively). 

No significant changes were observed following 48 hours of IL-6 treatment, and 

fractalkine shedding in the untreated and acetic acid-containing controls were 

comparable.

ICC analysis (Section 2.5) was then performed on HepG2 cells after 24 hours of 

treatment with 100 ng/mL of IL-1 p, IL-6 or TNF-a to determine whether the cellular 

location of fractalkine was redistributed in response to cytokine treatment as compared
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Figure 6.3: Amount of fractalkine (ng) per mg of protein shed from the surface of 

HepG2 cells into the supernatant following cytokine treatment for A) 24 hours and B) 

48 hours with varying concentrations of IL-113, IL-6 or TNF-a. Data presented as mean 

± SEM. Significant difference from control, * P<0.05, ** P<0.01, ***P<0.001 (ANOVA 

with Dunnett’s test; n=3).
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to an appropriate control (Figure 6.4). This cytokine concentration was selected as it 

caused the most extreme alterations in fractalkine shedding in this cell line.

Each cytokine treatment was only performed once, and should therefore be regarded 

as preliminary data. IL-1 p and TNF-a treated cells were compared to an untreated 

control sample, whereas IL-6 treated cells were compared to an acetic acid-containing 

control sample. Details of the optimisation of the ICC technique are in Section 5.2.1.

Fractalkine protein was distributed evenly across the cell surface of HepG2 cells 

(Figure 6.4A); its expression was increased in the acetic acid-containing control (Figure 

6.4D), and to a comparable level following each cytokine treatment (Figure 6.4B, C & 

E). In addition, fractalkine was situated diffusely within the cell cytoplasm (Figure 6.4F 

& I), cytokine treatments did not alter intracellular levels or distribution of fractalkine 

(Figure 6.4G, H & J). The negative control for each experiment demonstrated only the 

DAPI stained nuclei of the cells, with no non-specific staining caused by the secondary 

antibody (Figure 6.4K & L).

6.2.2 Flow Cytometry Optimisation

Optimisation of the sample preparation procedure prior to flow cytometric analysis is 

essential in obtaining accurately quantified data. A previously described flow cytometry 

sample preparation protocol (personal communication, Dr. S.L. Haywood-Small, 

Sheffield Hallam University, Sheffield, UK) was adapted to incorporate the optimum 

conditions for ADAM17 fluorescein-conjugate staining of HepG2 cells determined by 

the manufacturer (Section 2.7).

Three methods of HepG2 cell dissociation were tested for their suitability in cell surface 

ADAM 17 detection; these were 0.02% EDTA solution (E8008, Sigma-Aldrich), non- 

enzymatic cell dissociation solution (C5914, Sigma-Aldrich), and manual cell scraping 

plus DPBS. A 0.05% trypsin-EDTA solution was not tested as it can cleave proteins 

and may therefore influence the results. Each method yielded a single cell suspension 

suitable for flow cytometry analysis. Appropriate light detectors were set to voltages 

capable of detecting forward and side scattered light and emitted fluorescence from 

fluorescein and propidium iodide.

Test samples (isotype control and ADAM17 antibody labelled samples, dual labelled 

with propidium iodide) were analysed and their fluorescence indices (FI) calculated 

(Figure 6.5A). The largest shift in fluorescence (Fl=2) was observed in cells lifted from 

the substratum using non-enzymatic cell dissociation solution, hence this dissociation 

method was selected for cell surface antigen detection. Cell dissociation by 0.02% 

EDTA solution gave the lowest FI (1.4).
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Figure 6.4 (continued): K) Cell surface (4% PFA) and L) intracellular (-20°C acetone) 

negative controls for the ICC examination of cell surface and intracellular fractalkine in 

HepG2 cells. Nuclei stained with DAPI (blue) in all images. Scale bar is 20 pm.
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Figure 6.5: A) Fluorescence indices from different HepG2 cell dissociation methods for 

the detection of cell surface ADAM17 by flow cytometry (n=1). Representative plots of 

B) gated intact and C) gated viable HepG2 cells, and D) the fluorescence shift from 

isotype control labelled cells (blue) to ADAM17 labelled cells (red) prepared for cell 

surface antigen detection (linear fluorescence scale).
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During the analysis of the flow cytometry data, intact cells were gated on the FSC 

versus SSC plot (Figure 6.5B) to ensure fluorescence data was only analysed from 

these intact cells and not cellular debris (lower left hand corner of plot) or cell clumps 

(far right hand side of plot). Similarly, viable cells, indicated by propidium iodide, were 

gated to ensure only data collected on viable cells was analysed (Figure 6.5C).

Four cell dissociation methods were tested for their suitability in intracellular ADAM 17 

detection; these were 0.02% EDTA solution, non-enzymatic cell dissociation solution, 

manual cell scraping plus DPBS, and 1% PFA fixation followed by manual cell scraping. 

Following cell dissociation, cells were fixed and permeabilised using the IntraSure kit 

according to the manufacturers’ protocol, prior to antigen labelling. A final fixation step 

preceded flow cytometric analysis. Again the light detector voltage settings were 

adjusted to detect forward and side scattered light and emitted fluorescein fluorescence 

using a combination of unlabelled and isotype control labelled samples; due to the 

fixation steps during sample preparation, cells were not viable and so propidium iodide 

was not used.

Test samples (isotype control and ADAM17 antibody labelled samples) were analysed 

and their FIs calculated (Figure 6.6A). As for cell surface ADAM17 detection, non- 

enzymatic cell dissociation solution had the highest shift in fluorescence (Fl=1.49), so 

this method was selected for intracellular antigen detection. Cell dissociation by 0.02% 

EDTA solution had a negative shift in fluorescence (Fl=0.9), indicating a high level of 

background staining with the isotype control and no positive signal from the ADAM17 

antibody. Intact cells were gated on the FSC versus SSC plot (Figure 6.6B) to ensure 

only fluorescence data from these cells was analysed.

6.2.3 Modulation of ADAM17 Cellular Location by IL-1J3, IL-6 and TNF-ain HepG2 

Cells

Cells were treated with 100 ng/mL of IL-1 (3, IL-6 or TNF-a for 24 hours, after which flow 

cytometry was performed to quantify the influence of these treatments on the cellular 

location of ADAM17 (Section 2.7). Three independent experiments were performed to 

confirm the trends found. IL-1 p and TNF-a treated cells were compared to an untreated 

control, whereas IL-6 treated samples were compared to an acetic acid-containing 

control sample.

These data indicate that more ADAM17 protein is expressed intracellularly than on the 

surface of HepG2 cells, evident by the higher FIs obtained following intracellular 

antigen detection (Figure 6.7). This correlates with ICC data for this protein (Figure 5.3).
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Figure 6.6: A) Fluorescence indices from different HepG2 cell dissociation methods for 

the detection of intracellular ADAM17 by flow cytometry (n=1). Representative plots of 

B) gated intact HepG2 cells, and C) the fluorescence shift from isotype control labelled 

cells (blue) to ADAM17 labelled cells (red) prepared for intracellular antigen detection 

(logarithmic fluorescence scale).
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Figure 6.7: Fluorescence indices for A) cell surface and B) intracellular ADAM17 in 

HepG2 cells following 24 hours of treatment with 100 ng/mL of IL-1 (3, IL-6 or TNF-a. 

There were no significant differences in the data (Kruskal-Wallis test; n=3).
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Furthermore, cell surface (Figure 6.7A) and intracellular (Figure 6.7B) ADAM17 

proteins were not significantly altered by cytokine treatment when compared to their 

appropriate controls. However, IL-1 (3 treatment did increase both cell surface and 

intracellular ADAM 17 expression (Fl=1.55 & Fl=3.13 respectively) to a level higher than 

the untreated control (Fl=1.33 & Fl=2.32 respectively); TNF-a treatment also increased 

cell surface and intracellular ADAM17 expression, but to a lesser extent than IL-1 p 

treatment (Fl=1.38 & Fl=2.69 respectively).

Furthermore, ADAM17 was expressed at an elevated level both on the cell surface and 

intracellularly in the acetic acid-containing control (Fl=1.43 & Fl=3.32 respectively) 

compared to the untreated control. IL-6 treated cells expressed levels of ADAM17 

(Fl=1.44 & Fl=3.19 respectively) comparable to its control, indicating that acetic acid 

influences ADAM17 expression, and not IL-6.

These data combined with the data regarding fractalkine shedding may suggest that 

100 ng/mL of IL-1 p and TNF-a, and 5 |^M/mL of acetic acid increase the shedding of 

fractalkine from the surface of HepG2 cells by increasing ADAM17 expression.

6.2.4 siRNA Optimisation

The optimisation of siRNA lipid-mediated transfection conditions combined with the use 

of appropriate control samples was essential in obtaining effective target gene silencing 

with accurate data interpretation.

Three control samples were used to assess the effectiveness of target gene silencing 

(Section 6.1.3). An untreated control was employed as a baseline reference, GAPDH 

gene silencing with a GAPDH targeted siRNA was use as a positive control and a 

mock transfection with a non-targeting siRNA was used as a biologically relevant 

negative control.

The manufacturers’ recommended transfection conditions for HepG2 cells were verified 

by use of a fluorescent transfection indicator (siGLO), i.e. for a 96-well plate format, 1 x 

104 cells/well, 0.4 pL/well DharmaFECT reagent 4, and 100 mM/well appropriate siRNA. 

Three independent ICC experiments were performed after 24 hours of transfection with 

siGLO alone (100 mM/well; Figure 6.8A) or siGLO plus GAPDH siRNA, non-targeting 

siRNA or ADAM17 siRNA (50 mM/well + 50 mM/well); untreated HepG2 cells were 

used as negative controls (Figure 6.8B). Cells were fixed with 4% PFA, as acetone can 

affect the fluorescence of siGLO. Three frames from each of these samples were 

viewed by confocal microscopy, and the transfection efficiency calculated to be >90% 

(Table 6.1), i.e. the mean percentage of cells with nuclear and perinuclear siGLO 

fluorescence was more than 90%.
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Figure 6.8: ICC examination of A) siGLO transfected HepG2 cells (green), and B) its 

negative control. Nuclei stained with DAPI (blue) in all images. Scale bar is 20 |um. 

Images representative of three independent experiments.

Table 6.1: siRNA transfection efficiencies for HepG2 cells.

siGLO alone 93.24%

siGLO + GAPDH 91.81%

siGLO + Non-Targeting 93.18%

siGLO + ADAM17 91.51%
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The down-regulation of ADAM17 and GAPDH mRNA and protein in HepG2 cells was 

assessed by qRT-PCR and western blotting. Optimisation details are in Sections 3.2.4 

and 4.2.1 respectively.

It was determined by geNorm analysis that HPRT1 was the single most stable 

reference transcript tested in the siRNA transfected HepG2 experimental system (ft/l­

value = 1.072). The primer pair efficiency for GAPDH detection was shown to be 99.6% 

by use of the standard curve method (Figure 6.9A). Analysis of the amplification and 

melt curve data (Figure 6.9B) together with agarose gel electrophoresis of the resultant 

qRT-PCR products obtained (Figure 6.9C) confirmed the correct product amplification; 

no amplification was seen in the NTC. The verification of HPRT1 and ADAM17 

detection by qRT-PCR were previously described in Sections 3.2.6 and 3.2.7.

Optimisation details of ADAM 17 and actin protein detection by western blot are 

described in Section 4.2.1. GAPDH immuno-detection was previously optimised 

(personal communication, Dr. G.A. Frentzou, Sheffield Hallam University, Sheffield, 

UK). Blots were first probed for ADAM 17, stripped and re-probed for actin, and finally 

stripped and re-probed for GAPDH. This order of probing proved to be the most 

effective, as GAPDH antibody could not be effectively stripped from the membrane due 

to its very high binding avidity.

6.2.5 Down-Regulation of ADAM17 expression

Following the optimisation of siRNA transfection conditions in HepG2 cells, qRT-PCR 

was performed to assess the level of ADAM 17 gene down-regulation after 24 and 48 

hours of transfection with an ADAM 17 targeted siRNA (Sections 2.2.5 & 2.3.6). 

GAPDH gene down-regulation using a GAPDH targeted siRNA was used as a positive 

control for the technique, and non-targeting siRNA acted as a negative control to 

assess the off-target effects caused by activation of the RNAi pathway. qRT-PCR data 

were normalised against HPRT1, to ensure accurate data quantification. See Section 

3.2.9 for sample preparation details.

GAPDH expression was reduced in the non-targeting siRNA transfected samples 

(62.2% reduction; P=0.032) and ADAM17 siRNA transfected samples (51% reduction; 

insignificant) after 24 hours; highlighting the off-target effects of RNAi pathway 

activation at this time point. Small comparable decreases in GAPDH expression were 

observed in the non-targeting and ADAM17 siRNA transfected samples after 48 hours 

(26.3% & 35.1% gene silencing respectively; insignificant), demonstrating GAPDH 

expression recovery.

ADAM17 gene expression (Figure 6.1 OB) was not significantly reduced after 24 hours 

of transfection with ADAM 17 siRNA transfected samples (55.8% gene silencing).
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Figure 6.9: A) Standard curve plot generated from qRT-PCR data showing the PCR 

primer pair efficiency for GAPDH. B) Amplification and melt curves generated from 

qRT-PCR data for GAPDH. C) Agarose gel electrophoresis of the qRT-PCR products 

generated for GAPDH (87 bp), where 1 represents 25 bp marker, 2, signifies specific 

amplified product, and 3 denotes the NTC.

GAPDH mRNA levels (Figure 6.10A) were significantly lower after 24 and 48 hours of 

transfection, by 77.3% (P=0.005) and 71.3% (P=0.033) respectively. In addition,
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Figure 6.10: A) GAPDH mRNA expression in HepG2 cells following siRNA transfection 

for 24 and 48 hours. B) ADAM17 mRNA expression in HepG2 cells following siRNA 

transfection for 24 and 48 hours. Data presented as mean ± SEM. Significant 

difference from control, * P<0.05, ** P<0.01 (ANOVA with Dunnett’s test; n=3).
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ADAM17 expression was slightly increased in the GAPDH siRNA transfected samples 

after 24 hours (11.8% gene up-regulation), whilst it was decreased in the non-targeting 

siRNA transfected samples (27% gene silencing); significance was not reached. 

However, ADAM17 gene expression was significantly down-regulated after 48 hours of 

transfection with ADAM17 targeted siRNA (78.3% gene silencing; P=0.031). Small 

comparable decreases in ADAM 17 expression also were observed after 48 hours of 

transfection with GAPDH and non-targeting siRNAs (17.2% & 19.1% gene silencing 

respectively; statistically insignificant).

To confirm whether these findings translated from the mRNA to the protein level, 

western blot analysis was performed after 48, 72 and 96 hours of siRNA transfection 

(Section 2.4). The obtained data were quantified using IOD analysis, with normalisation 

against the internal control protein actin. Each band was examined individually and 

where appropriate the combined band densities (total protein data) displayed on the 

relative quantification plots.

ADAM17 was present on the blots as two predominant bands representing processed 

forms (66 and 58 kDa) in the control and GAPDH siRNA transfected samples (Figure 

6.11A). The 66 kDa band was reduced or absent from the non-targeting and ADAM17 

siRNAs transfected samples. Total band intensity analysis of ADAM17 (Figure 6.11B) 

showed that after 48 hours of transfection ADAM 17 protein was slightly decreased in 

the ADAM 17 siRNA transfected sample. Larger decreases in ADAM 17 were also 

observed in the ADAM17 siRNA transfected samples after 72 and 96 hours, although 

significance was not reached. At these later time points the non-targeting and GAPDH 

siRNAs transfected samples also had decreased ADAM 17 expression.

GAPDH protein was present in all samples as a 37 kDa band (Figure 6.11 A), and it 

was evident that the GAPDH siRNA transfected samples at the 72 and 96 hour time 

points contained less GAPDH protein compared to all other samples. This was 

confirmed by densitometry (Figure 6.11 B); GAPDH was also expressed at a slightly 

lower level after 48 hours of transfection. Small decreases in GAPDH expression were 

also evident in non-targeting and ADAM 17 siRNAs transfected samples after 72 and 96 

hours.

ICC analysis of ADAM 17 was performed after siRNA transfection for 72 hours to 

confirm the western blot results, and determine whether cell surface and/or intracellular 

ADAM17 protein was reduced (Section 2.5). Experiments were performed three times 

to confirm any observed trends. The negative control for each experiment 

demonstrated only DAPI stained nuclei, with no non-specific staining of the secondary 

antibody (Figure 6.12E and J).

214



A) ADAM17 and GAPDH immunoprobed HepG2 Protein Lysates
RMM
(kDa) 48 hours 72 hours 96 hours

GAPDH

Actin

B)

TS
C(0
OQ

c
o
O

< <
z z
cz czC/5 C/5
X 05
Q c
CL 05< 05
CD TO

C
oZ

CZ
C/5
I"-

<o<

48 hours

c
o
O

< <Z Z
CZ CZC/5 'c/5
X 05
Q C

CL
"«4—»05< 05

CD I—TOh-
C
OZ

CZC/5
N-

<Q<

72 hours 

sa GAPDH HADAM17

c
o
O

< <
z z
cz czC/5 C/5
X 05
QCL 05< 05
CD L—TO

K
C
o
Z

96 hours

czC/5
f-

<Q<

Figure 6.11: A) ADAM 17 and GAPDH immunoprobed western blots of SDS-PAGE 

fractionated HepG2 protein lysates following 48, 72 and 96 hours of transfection with 

GAPDH (G), non-targeting (N) or ADAM17 (A) siRNAs, and an untreated control (C). 

Equal loading of protein samples (6 pg) was verified by actin immunoprobing. B) 

Relative quantification of total ADAM 17 and GAPDH proteins after actin normalisation. 

There were no significant differences in the 72 hour data (ANOVA with Dunnett’s test; 

n=3). Statistics not performed on 48 and 96 hour data (n=1).
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ADAM17 protein was located in a punctate pattern on the cell surface of HepG2 cells 

(Figure 6.12A), its expression pattern and staining intensity were comparable in 

GAPDH and non-targeting siRNAs transfected samples (Figure 6.12B & C). However, 

less ADAM 17 was present on the surface of ADAM 17 siRNA transfected cells (Figure 

6.12D). Additionally, ADAM17 was situated diffusely within the cytoplasm, with possible 

perinuclear secretory vesicles (Figure 6.12F), GAPDH and non-targeting siRNAs did 

not alter the expression level or intracellular location of ADAM17 (Figure 6.12G & H). 

The secretory vesicles were absent from the ADAM17 siRNA transfected cells, and the 

cytoplasmic staining was less intense (Figure 6.121). These data support the western 

blot data in the finding that ADAM17 protein is down-regulated following the 

transfection of HepG2 cells with ADAM 17 siRNA for 72 hours.

6.2.6 Proliferative Responses of HepG2 Cells after ADAM17 Down-Regulation

To determine whether ADAM17 down-regulation altered the growth rate of HepG2 cells, 

cells were transfected with GAPDH, non-targeting or ADAM17 siRNAs for 24, 48, 72 or 

96 hours, prior to the number of cells in each cell population being determined by the 

MTT assay (Section 2.2.6). A standard curve of actual cell numbers was used to 

convert the absorbance reading of metabolic activity to a cell number. Four 

independent experiments were performed to allow statistical analysis of the data 

obtained.

Figure 6.13 illustrates that siRNA transfection of HepG2 cells did not significantly alter 

the number of viable cells at any time point when compared to an untreated control. 

However, cell numbers were moderately increased following 24 hours of GAPDH, non­

targeting and ADAM17 siRNA transfection, although statistical significance was not 

reached.

6.2.7 Fractalkine Shedding from HepG2 Cells after AD AM 17 Down-Regulation

To determine whether the down-regulation of ADAM17 altered fractalkine shedding 

from the surface of HepG2 cells, cells were transfected with GAPDH, non-targeting or 

ADAM17 siRNAs for 24, 48, 72 or 96 hours, prior to supernatant collection and 

fractalkine ELISA analysis (Sections 2.2.5 & 2.6). Transfection of HepG2 cells with the 

test siRNAs did not statistically alter the proliferative capacity of HepG2 cells (Figure 

6.13), so the amount of soluble fractalkine was expressed as ng/mL.

siRNA transfection did not significantly alter the amount of fractalkine shed from HepG2 

cells at any time point examined (Figure 6.14). However, marginally less fractalkine 

was shed from ADAM 17 silenced cells after 48 hours (5.4 ng/mL fractalkine) compared 

to the untreated control, GAPDH and non-targeting siRNA transfected samples (9.7, 

7.8 & 6.8 ng/mL fractalkine respectively; Figure 6.14B). Furthermore, comparable
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Figure 6.13: Viable HepG2 cell numbers following transfection with siRNA for A) 24 

hours, B) 48 hours, C) 72 hours, and D) 96 hours. Data presented as mean ± SEM. 

There were no significant differences in the data (ANOVA with Dunnett’s test; n=4).
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There were no significant differences in the data (ANOVA with Dunnett’s test).
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levels of fractalkine were shed from siRNA transfected samples at the 72 time point 

(~14.2 ng/mL fractalkine), at a lower level than the control (20.8 ng/mL fractalkine). 

Similar results were obtained at the 96 hour time point.

6.2.7 Summary of Results

The results presented in this chapter are summarised in Table 6.2.
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Table 6.2: Summary of the results presented in Chapter 6.

Soluble

Membrane-bound

Intracellular

Membrane-bound

Intracellular

mRNA

Total protein

Membrane-bound

Intracellular

Cellular proliferation

Soluble fractalkine

Observation

t  by IL-1 (3, TNF -a  and acetic acid (24 hours)

f  by IL-1 (3 and TNF-a (48 hours)

Evenly distributed; t  by IL-1 p, TNF-a and acetic acid 

(24 hours)

Diffuse cytoplasmic; cytokines no effect

Minor |  by IL-1 (3, TNF -a  and acetic acid (24 hours)

Minor f  by IL-1 (3, TNF -a  and acetic acid (24 hours) 

78.3% down-regulated; P=0.031 (48 hours)

76.7% down-regulated; P=0.138 (72 hours)

I  (72 hours) 

i  (72 hours)

Down-regulation no effect 

Down-regulation no effect
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6.3 Discussion

The aim of investigations described in this chapter was to determine whether IL-1 p, IL- 

6 and TNF -a modulated the shedding of fractalkine from the surface of the hepatoma 

cell line HepG2, and whether these modulations were due to alterations in ADAM17 

activity.

6.3.1 Fractalkine Shedding from HepG2 Cells as an Indicator of ADAM17 Activity

Fractalkine is expressed at the gene and protein level in HepG2 cells (Efsen et al, 2002) 

and in agreement with Efsen et al (2002) it was determined that soluble fractalkine was 

present in HepG2 media, indicating its cleavage from the surface of these cells. Further 

to this, fractalkine shedding was significantly increased after 24 hours of treatment with 

10 and 100 ng/mL IL-1 p (comparable levels) and 10 and 100 ng/mL TNF-a 

(concentration dependent increase). IL-6 treatment did not alter fractalkine shedding 

compared to its control, although increased shedding did occur in the acetic acid- 

containing control to a level comparable with that seen after 10 ng/mL of TNF-a 

treatment.

These findings were paralleled at the 48 hour time point with respect of IL-1 p and TNF- 

a, with significant increases in soluble fractalkine observed at all concentrations tested. 

Other researchers have also noted similar increases in soluble fractalkine in response 

to IL-1 p in the intestinal epithelial cell line T-84 (Muehlhoefer et al, 2000) and in 

response to TNF-a in the endothelial cell line hCMEC/D3 (Hurst et al, 2009).

These data may indicate that liver tumours, in particular well-differentiated liver 

tumours, up-regulate soluble fractalkine in response to pro-inflammatory cytokines that 

are elevated during times of hepatic injury and hepatic tumour development (Whitworth 

et al, 2006; Kuninaka et al, 2000). Furthermore, HepG2-conditioned medium is 

chemotactic for cells over-expressing Cx3CR1 (Efsen et al, 2002), suggesting that 

soluble fractalkine recruits Cx3CR1 expressing inflammatory cells and activated HSCs 

(Wasmuth et al, 2008) to the tumour site. The combination of these recruited 

lymphocytes, which are important in the inflammatory phase of the fibrogenic response, 

and activated HSCs, which are important in the later stages of liver fibrogenesis, may 

facilitate the formation of the fibrotic capsule (desmoplastic reaction) surrounding well- 

differentiated primary and metastatic CRC liver tumours.

Additionally, soluble fractalkine is an angiogenic mediator, inducing the chemotaxis and

chemokinesis of ECs both in vitro and in vivo by the binding of fractalkine to its receptor

on the surface of ECs (Volin et al, 2001). This same study also demonstrated that

soluble fractalkine can induce ECs to form tubes in vitro and functional blood vessels in

vivo, establishing its angiogenic properties. As fractalkine is elevated by cytokines
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present during the initial stages of liver tumour formation, it is possible that soluble 

fractalkine could attract ECs to the tumour and induce the formation of a 

neovasculature capable of supplying blood to the developing tumour.

Flow cytometry demonstrated minor increases in cell surface and intracellular ADAM17 

in response to IL-1 (3, and TNF-a (significance was not reached). And as observed for 

fractalkine shedding, ADAM17 was increased in the acetic acid-containing control 

compared to the untreated control, without further increases following IL-6 treatment. 

This suggests that minor modulations of the proteolytically active membrane-bound 

form of ADAM 17 can potentially control the amount of fractalkine cleaved from the 

surface of HepG2 cells, although it must be remembered that other enzymes could also 

be involved (see below).

To determine whether fractalkine shedding was solely facilitated by ADAM 17 in the 

HepG2 system, ADAM17 was post-transcriptionally silenced and the amount of soluble 

fractalkine in their supernatants assessed after 72 hours of siRNA transfection when 

ADAM17 protein was effectively silenced (as shown by western blotting and ICC). 

Fractalkine shedding was not significantly altered by ADAM17 silencing, indicating that 

perhaps other proteases, e.g. ADAM10, MMP-2 or cathepsin S, are involved in 

fractalkine cleavage in this system.

ICC analysis of fractalkine in HepG2 cells demonstrated that intracellular fractalkine 

expression was unaffected by the cytokine treatments investigated, whereas its 

membrane-bound expression was slightly increased following IL-1 p and TNF-a 

treatment for 24 hours. A comparable increase in cell surface fractalkine was also 

observed in the acetic acid-containing control, without further increases following IL-6 

treatment. This parallels the trends of soluble fractalkine under the same treatments in 

HepG2 cells, and is also in agreement with the finding that the expression of 

membrane-bound fractalkine can be greatly induced on ECs by certain pro- 

inflammatory cytokines, including IL-1 p, TNF-a and IFN-y (Umehara et al, 2004; Hurst 

et al, 2009).

Membrane-bound fractalkine mediates the firm adhesion of cells carrying Cx3CR1, 

independent of integrins, calcium, or an opposing cell membrane (Schafer et al, 2004). 

This could explain the dense lymphocytic infiltrate and activated HSCs present in the 

desmoplastic reaction of well-differentiated liver tumours (Vermeulen et al, 2001; 

Wasmuth et al, 2008).

223



6.4 Summary

The data presented in this chapter demonstrate that fractalkine is shed from the 

surface of HepG2 cells, and that it is also present in its membrane-bound form in this 

cell type. Furthermore, IL-1 p and TNF-a treatment of cells significantly increased the 

soluble form of fractalkine, and marginally increased cell surface ADAM 17 (significance 

was not reached), indicating that ADAM17 may be involved in the regulation of 

fractalkine shedding in this system. Flowever, post-transcriptional silencing of ADAM17 

did not alter fractalkine shedding, indicating that other proteases may compensate for 

ADAM17 down-regulation.
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Chapter 7

General Discussion
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The overall aim of this project was to determine whether ADAM17 and ADAMTS-1, -4 

and -5 are potential mediators of tumour cell invasion and metastasis in the liver. A 

review of the literature revealed that the dysregulated expression of these proteolytic 

enzymes is associated with the development and dissemination of many human 

tumours, but their role in liver tumours, primary or metastatic, has not been extensively 

investigated.

The current study has described the expression of these enzymes, and their 

endogenous inhibitor TIMP3, in human adult and foetal liver total RNA samples, and in 

two HCC cell lines (HepG2 & HuH-7) and an activated HSC line (LX-2). The 

modulation of ADAM17, ADAMTS-1, -4, -5 and TIMP3 expression by specific pro- 

inflammatory cytokines was also examined in the cell lines, as was the effect of these 

cytokines on cell proliferation. Furthermore, the cleavage of fractalkine from HepG2 

cells in combination with the analysis of cell surface ADAM 17 levels was used as a 

potential indicator of ADAM17’s sheddase activity.

7.1 In  V itro  Model of Liver Cancer

Primary HCC and CRC liver metastases (the most common metastatic liver tumour) 

are distinct malignancies, but share many morphological characteristics (Vermeulen et 

al, 2001; Nakashima et al, 1983), in fact more than CRC liver metastases share with 

their primary colorectal tumour (Rajaganeshan et al, 2007). This suggests that the host 

tissue microenvironment sculpts the development of the tumour.

There are many established HCC cell lines available for the in vitro study of primary 

liver tumours, e.g. HLE, HLF, HuH-7, SK-Hep1, HepG2 & Hep3B cells. Two cell lines 

derived from well-differentiated HCCs, HepG2 and HuH-7, were selected for use in this 

study, as the majority of these tumours are surrounded by a fibrous capsule 

(desmoplastic reaction) (Nakashima et al, 1983) and require the secretion of proteolytic 

enzymes in order to breakdown liver ECM enabling their growth and expansion 

(lllemann et al, 2009). An activated HSC line, LX-2, derived from a healthy human liver, 

was also studied as this cell type is responsible for the secretion of proteolytic enzymes 

and the production of neomatrix in response to liver damage.

Currently there are no commercially available cell lines derived from CRC liver 

metastases, although one such cell line, CLY, has recently been developed from a 

poorly differentiated CRC liver metastasis (Li et al, 2007). Numerous primary CRC cell 

lines are, however, available, e.g. Caco-2, HT29 and HCA-24, but these were deemed 

unsuitable for use in this study as CRC liver metastases exhibit growth characteristics 

more closely associated with primary HCCs than primary CRCs. Therefore in the 

absence of specific CRC liver metastases cell lines, the selected HCC cell lines were
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used as an appropriate substitute model for the in vitro assessment of well- 

differentiated CRC liver metastases.

HCC can be described as an inflammation-associated cancer developing 

predominantly in patients with chronic hepatitis and cirrhosis (Parkin et al, 2005; Ryder, 

2003), conditions characterised by persistent liver injury, inflammation and 

hepatocellular proliferation (Berasain et al, 2007). Therefore the elevated presence of 

three pro-inflammatory cytokines, IL-1 p, IL-6 and TNF-a, within the liver during times of 

injury is unsurprising (Zimmers et al, 2003). Serum and peritoneal concentrations of 

these cytokines are also elevated in many patients with CRC (Simpson et al, 1997; 

Whitworth et al, 2006). Consequently these cytokines may be important in liver cancer 

progression, as they are with other tumour types, e.g. prostate and breast cancers 

(Dunlop & Campbell, 2000; Reed et al, 2009; Chung & Chang, 2003; Balkwill & 

Mantovani, 2001), but their specific functions remain to be determined.

Following the verification of the parental origin of HepG2, HuH-7 and LX-2 cells 

(Section 3.2.1), the proliferative effects of IL-1 (3, IL-6 and TNF-a were examined on 

these cell lines (Section 3.2.3). The cytokines studied had no proliferative effect on the 

normal liver cell line LX-2, however differential increases in cell numbers were 

observed in the hepatoma cell lines, HepG2 and HuH-7, highlighting genetic variances 

in these cell lines.

Specifically, IL-1 p induced a rapid proliferative response in both hepatoma cell lines, 

which was prolonged in HepG2 cells and short-lived in HuH-7 cells. IL-6 also induced a 

short term increase in HepG2 cell proliferation, an effect also observed in primary 

hepatocytes (Gao, 2005), but not HuH-7 cells. Furthermore, TNF-a induced a delayed, 

but prolonged increase in the cellular proliferation of both hepatoma lines.

Combined, these findings could suggest that pro-inflammatory cytokines elevated in 

the liver when tumour formation is initiated could act sequentially to induce the 

sustained proliferation of liver tumour cells, and consequently aid tumour development.

7.2 ADAM17, ADAMTS-1, -4, -5 and TIMP3 Expression in Liver Cell 

Lines

7.2.1 ADAM 17

ADAM17 was first identified as the major sheddase of TNF-a (Black et al, 1997), but 

many substrates have since been identified (Table 1.3). ADAM17 is now acknowledged 

as the principle EGFR (ErbB1) ligand sheddase (Blobel et al, 2009), and as such has a 

well established function in the EGFR signalling pathway, which is critical in both 

normal development (Sahin et al, 2004) and the development and progression of an
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increasing number of cancers, including HCC (Fischer et al, 2003; Borrel-Pages et al, 

2003; Ding et al, 2004).

Although the role of ADAM17 in liver cancer has not been extensively studied, Ding et 

al (2004) initially documented the up-regulation of ADAM17 mRNA in primary HCC, 

before determining that poorly differentiated HCCs have a significantly higher level of 

ADAM 17 mRNA than well and moderately differentiated HCCs. ADAM 17 has since 

been found to be over-expressed at the protein level in both primary and metastatic 

CRC, including liver metastases, when compared to normal colonic mucosa (Blanchot- 

Jossic et al, 2005; Merchant et al, 2008).

This study demonstrated that ADAM17 was expressed at a higher level in hepatoma 

cells than activated HSCs, and that the level of ADAM17 mRNA expression correlated 

with the level of ADAM17 protein expression in the liver cell lines examined. The 

western blot data also indicated that active ADAM17 (110 kDa) was present in both 

hepatoma cell lines, but was not present at a detectable level in LX-2 cells.

Furthermore, Caja et al (2007) demonstrated in a rat model (male Wistar rats) that 

adult hepatocytes had very low ADAM17 mRNA expression, with increased expression 

observed in hepatoma cells (FaO cells). It was also determined that ADAM17 mRNA 

status correlated with the ability to transactivate EGFR pathway signalling, such that 

this pathway was not activated in adult hepatocytes, but was in hepatoma cells (Caja et 

al, 2007). Together these data may indicate that active ADAM 17 is up-regulated in liver 

tumour cells compared to normal liver cells, where it may promote tumour progression 

via the transactivation of the EGFR signalling pathway. This pathway can lead to the 

acquisition of cellular properties associated with cancer progression, including growth, 

proliferation, survival (Oda et al, 2005), and angiogenesis (Blanchot-Jossic et al, 2005).

This study also demonstrated that ADAM17 expression was not significantly modulated 

by the cytokines investigated at the mRNA or protein level in any of the cell lines 

examined, although minor to moderate differential alterations were observed. 

Modulations at the mRNA level did not correlate with modulations at the protein level, 

indicating ADAM17 may have other methods of regulatory control, for example post- 

translational modifications of the protein including protein activation or modulation of its 

inhibitor TIMP3. These data may also indicate that ADAM17 activity is more important 

than the level at which it is expressed.

The presence of ADAM17 does not necessarily equate to its functionality. Therefore, to 

determine whether ADAM17 was present as a functional proteinase, fractalkine 

shedding from HepG2 cells was examined before and after ADAM17 down-regulation. 

Fractalkine was of interest not only as a substrate for ADAM17 (Umehara et al, 2004),

but also as it is a mediator of pathogenic angiogenesis (Volin et al, 2001). Although it
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must be remembered that other proteases may also be involved in the shedding of 

fractalkine, including ADAM10, cathepsin S and MMP-2 (Umehara et al, 2004; 

Hyakudomi et al, 2008; Dean & Overall, 2007; Clark et al, 2007). Soluble fractalkine, 

which acts as a conventional chemokine (Umehara et al, 2004; Efsen et al, 2002), was 

significantly increased following IL-1 p and TNF-a treatments. Interestingly, some 

increases albeit minor in cell surface and intracellular ADAM 17 protein were also 

observed in the same conditions.

So it would be possible to postulate that minor alterations in ADAM17 can greatly 

increase its functionality. However, the post-transcriptional silencing of ADAM 17 did not 

significantly reduce fractalkine shedding as would be expected if this hypothesis were 

true, indicating that other proteases are involved in the cleavage of membrane-bound 

fractalkine in this system, and that these proteases could compensate for the 

loss/reduction of functional ADAM 17. A similar conclusion was also reached by Hurst 

et al (2009) in relation to fractalkine shedding from the endothelial cell line hCMEC/D3.

7.2.2 ADAMTS-1, -4 and -5

ADAMTS-1, -4 and -5 are primarily known for their ability to cleave aggrecan (Jones & 

Riley, 2005), the major structural component of cartilage. However, they can also 

influence cancer progression, as the central TSRs of ADAMTS-1 and -5 convey anti- 

angiogenic properties (Vazquez et al, 1999; Sharghi-Namini et al, 2008), whilst the 

over-expression of full-length ADAMTS-1 has the opposite effect by promoting 

angiogenesis (Kuno et al, 2004; Liu et al, 2006b). A distinct role for ADAMTS-4 in 

cancer is yet to be elucidated; however its altered expression has been associated with 

cancer progression (Held-Feindt et al, 2006).

This study demonstrated that ADAMTS-1 mRNA was expressed at a moderate level in 

HuH-7 cells, which was translated to the protein level. However, very low levels of 

ADAMTS-1 mRNA generated a moderate level of protein in HepG2 cells, and an 

inverse relationship was observed in LX-2 cells where a moderate level of mRNA 

produced a low level of protein. This demonstrates that higher levels ADAMTS-1 

protein in hepatoma cells may induce angiogenic responses within the tumour, aiding 

its growth past the critical 2mm sphere of an avascular tumour (Lodish et al, 2000), 

and/or providing a route for the dissemination of tumour cells throughout the body 

(Handsley & Edwards, 2005).

Interestingly though, this study also showed that the cellular distribution of ADAMTS-1 

varied between the hepatoma cell lines, with higher levels of cell surface-associated 

ADAMTS-1 on HuH-7 cells than HepG2 cells. ADAMTS-1 in this location is thought to 

be in its full-length active conformation (Seals & Courtneidge, 2003) where over­
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expression can promote angiogenesis by the promotion of HB-EGF and amphiregulin 

shedding and the subsequent increase in EGFR transactivation (Liu et al, 2006b).

Conversely, HepG2 cells contained more intracellular ADAMTS-1 -containing vesicles, 

thought to be secretory vesicles, indicating an extra level of regulatory control over 

ADAMTS-1 in HepG2 cells. These data could suggest that anti-angiogenic ADAMTS-1 

is initially down-regulated in HepG2 cells allowing the initiation of angiogenesis, 

possibly by VEGF signalling, and then following an appropriate signal and the 

subsequent release of ADAMTS-1-containing secretory vesicles, the over-expression 

of ADAMTS-1 could elicit its angiogenic and invasive effect (Kuno et al, 2004; Liu et al, 

2006b) to further promote tumour growth and dissemination.

A specific role for ADAMTS-4 in cancer progression is yet to be determined; however 

this study suggests that active ADAMTS-4 is present at lower levels in hepatoma cells 

than LX-2 cells. ADAMTS-4 mRNA was only detected at low levels in HepG2 and LX-2 

cells, and very low levels in HuH-7 cells. This translated to low protein expression in 

HepG2 cells, moderate levels in HuH-7 cells and moderate to high levels in LX-2 cells, 

with double the amount of active ADAMTS-4 detected in LX-2 cells compared to the 

hepatoma cell lines (determined by band intensity analysis). Furthermore, minimal cell 

surface-associated ADAMTS-4 was observed on some, but not all hepatoma cells; 

ADAMTS-4 in this location is in its full-length active conformation (Seals & Courtneidge, 

2003).

This could indicate that less ADAMTS-4 in liver tumours mediates a growth advantage 

to the tumour. A contrasting conclusion was reached by Held-Feindt et al (2006) who 

suggested that the over-expression of ADAMTS-4 increased the growth and invasive 

capacity of glioblastoma cells via the cleavage of brevican, which can lead to EGFR 

transactivation (Hu et al, 2008). This protein can also undergo C-terminal processing, 

which can effect its substrate specificity (Kashiwagi et al, 2004), and may therefore 

influence ECM sculpting.

This study also determined that ADAMTS-5 mRNA was expressed at a higher level in 

LX-2 cells than in the hepatoma cell lines, where it was not detected in HepG2 cells 

and only present at very low levels in HuH-7 cells. This correlated with low levels of 

mature ADAMTS-5 protein associated with the extracellular surfaces of the hepatoma 

cell lines, with more evident on LX-2 cells; again ADAMTS-5 is in its active 

conformation in this location (Seals & Courtneidge, 2003). However, comparable levels 

of total ADAMTS-5 protein were present in each of the liver cell lines. Combined, these 

data may suggest that the active form of ADAMTS-5, which purveys anti-angiogenic 

effects, is lower in liver cancer cells than in activated HSCs.
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This study further demonstrated that ADAMTS-1 and -4 mRNA expressions were 

significantly increased by IL-1f3 in HepG2 and LX-2 cells; ADAMTS-1 expression was 

also increased significantly by IL-6 in HepG2 cells. The cytokine treatment of cells also 

resulted in modulations at the protein level, although these modulations were generally 

minor and differed between the cell lines.

The obvious next step in this investigation would be to examine the functionality of 

each of these proteinases, although this is complicated by their overlapping substrates. 

The identification of novel substrates would be beneficial to this purpose, particularly as 

substrate specificity changes with C-terminal processing of these enzymes (Kashiwagi 

et al, 2004). A number of substrates have already been identified for these enzymes 

e.g. ECM PGs, but it remains to be determined whether these are biologically relevant 

in the liver.

7.2.3 TIMP3

TIMP3 is an endogenous inhibitor of all of the proteinases investigated in this study 

(Nagase et al, 2006), with ADAM17 being one of its major targets In vivo (Mohammed 

et al, 2004). TIMP3 also effectively regulates the proteolytic actions of ADAMTS-4 and 

-5 (Hashimoto et al, 2001; Kashiwagi et al, 2001), and can partially inhibit ADAMTS-1 

activity (Rodriguez-Manzaneque et al, 2002). Under normal physiological conditions 

TIMP3 acts to tightly regulate the activity of these enzymes preventing them from 

having pathological effects.

However, the dysregulated expression of TIMPs can occur at various stages of cancer 

progression, with their down-regulation being associated with increased tumour cell 

invasiveness and their over-expression providing a protective effect by reducing tumour 

growth, metastasis formation and angiogenesis, and inducing tumour cell apoptosis 

(Lambert et al, 2004; Darnton et al, 2005). Furthermore, TIMP3 expression has been 

shown to be inhibited in brain ECs by the simultaneous application of IL-ip and TNF-a 

(Bugno et al, 1999), two of the pro-inflammatory cytokines associated with liver tumour 

formation.

The expression of TIMP3 has previously been examined in CRC by Zeng et al (2001), 

where it was found to be consistently down-regulated at the protein level compared 

with paired normal colon mucosa; this is in contrast to its increased mRNA expression 

in CRC. TIMP3 expression in HCC and CRC liver metastases has not been examined. 

Therefore, this study demonstrates for the first time that TIMP3 mRNA expression was 

higher than that of the proteolytic enzymes it acts upon in all of the systems examined, 

liver cell lines and adult/foetal liver samples, with comparable levels in all samples. In
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addition, TIMP3 mRNA expression was significantly down-regulated by TNF-a 

treatment in HuH-7 and LX-2 cells.

Although TIMP3 is usually found associated with sulphated GAGs present in the ECM 

(Lambert et al, 2004; Hashimoto et al, 2004), it can also be associated with the cell 

membrane (Hashimoto et al, 2004). This study demonstrated that minimal amounts of 

TIMP3 were associated with the surface of each liver cell line examined, with the 

majority of the protein present in the cytoplasm. This is in agreement with Miyazaki et 

al (2004) and Darnton et al (2005) who found that TIMP3 is largely cytoplasmic in many 

human tumours including renal carcinomas, pancreatic endocrine tumours, uveal 

melanomas and oesophageal adenocarcinomas.

Due to the findings above, it is probable that the western blot data presented in this 

study largely reflects intracellular TIMP3 levels, with more of this protein observed in 

HepG2 cells compared to the HuH-7 and LX-2 cells. The down-regulation of TIMP3 

mRNA by TNF-a in LX-2 cells translated to the down-regulation of TIMP3 protein; this 

was not true for HuH-7 cells, although TIMP3 was decreased in HepG2 cells. 

Furthermore, IL-1p treatment of each cell line resulted in a general decrease in TIMP3, 

whilst IL-6 treatment resulted in the over-expression of this inhibitor.

This data could suggest that TIMP3 expression can be differentially modulated by 

cytokines in normal and cancerous liver cells and this may yield tumour promoting or 

tumour suppressive effects depending upon its expression status.

7.3 Conclusions

Due to the absence of clinical symptoms, HCC and CRC liver metastases are often 

diagnosed at an advanced stage when curative therapies are limited to surgical 

resection (Burke & Allen-Mersh, 1996; Harris et al, 2003). As this treatment option is 

only feasible in a minority of HCC patients (Ryder, 2003), and only 20% of all CRC liver 

metastases patients (Burke & Allen-Mersh, 1996) it is of paramount importance that an 

effective, widely available treatment is developed.

This preliminary investigation showed higher expression levels of ADAM17 and 

ADAMTS-1 and lower expression levels of ADAMTS-4 and -5 in the hepatoma cell 

lines HepG2 and HuH-7 than in the LX-2 cell line. The expression of ADAM17, 

ADAMTS-1, -4, -5 and TIMP3 can be modulated by pro-inflammatory cytokines present 

during liver tumour development, namely IL-1p, IL-6 and TNF-a, in all of the 

experimental cell lines investigated; however these modulations were generally minor 

and differed between the cell lines. In addition, cellular proliferation was increased in 

hepatoma cells, but not in LX-2 cells by these cytokine treatments.
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Furthermore, fractalkine shedding, used as an indicator of ADAM17 activity, 

determined that although IL-1(3 and TNF-a significantly increased fractalkine shedding 

from HepG2 cells, this did not correlate with the minor up-regulation of ADAM17 protein 

following these same treatments. Also, the down-regulation of ADAM 17 by siRNA did 

not influence fractalkine shedding, indicating the involvement of other proteases in this 

process, e.g. ADAM10,

Collectively this data may suggest that the dysregulated expressions of ADAM17, 

ADAMTS-1, -4 -5 and TIMP3, and their modulation by pro-inflammatory cytokines act 

synergistically to promote the formation of liver tumours. Further studies into this 

research area may establish specific roles for these proteins in this process, enabling 

the development of novel liver tumour treatments.

Some of the experimental results and findings included in this thesis have been 

presented at a number of conferences and departmental events; details of which are 

included in Appendix A.

7.4 Future Work

Previous research into adamalysins in liver cancer is very limited, although ADAM 17 

and ADAMTS-1, -4 and -5 have been identified as mediators of tumorigenesis in other 

tumour types. The current study has provided evidence that the expression of these 

enzymes and their inhibitor TIMP3 is dysregulated in liver cancer cell lines, which if 

paralleled in vivo could facilitate liver tumour development. The current knowledge 

could be enhanced by additional work including the following:

• Substantiation of the preliminary protein data concerning the modulation of 

ADAM 17, ADAMTS-1, -4, -5 and TIMP3 expression and cellular location in vitro 

by IL-1f3, IL-6 and TNF-a.

• The continued investigation of ADAM17 activity, and examination of ADAMTS-1, 

-4 and -5 activity in HCC cell lines, to determine whether these proteins are 

functional, and an investigation of their substrates in the liver.

• Investigations into the role of ADAM17 or other proteases in the shedding of 

fractalkine and other substrates relevant to tumour invasion/metastasis.

• Investigations of ADAM17, ADAMTS-1, -4, -5 and TIMP3 expression in CRC 

liver metastases cell lines, e.g. CLY, to allow comparisons to HCC cell lines.

• Investigations of ADAM17, ADAMTS-1, -4, -5 and TIMP3 expression in primary 

and metastatic liver tumours compared to paired normal liver tissue, with the 

aim of establishing a definite role for these proteinases in liver cancer 

progression.
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