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Abstract
Antipsychotic drug-induced weight gain is a common adverse effect o f antipsychotic 
medication in patients w ith schizophrenia. Many factors including genetic and 
environmental factors may contribute to this adverse effect. The antipsychotic drugs 
and genetic factors may influence the weight gain through epigenetic mechanisms, 
including DNA methylation. The aim of this study was to  investigate the associations of 
antipsychotic drug-induced weight gain w ith genetic polymorphisms and DNA 
methylation o f HTR2C. In addition, the aim of this study was to investigate the effect of 
antipsychotic drug treatm ent on DNA methylation and mRNA expression o f HTR2C and 
on leptin secretion by adipocytes.

DNA samples from both first episode drug nave and chronic schizophrenic patients 
were genotyped using TaqMan® SNP Genotyping Assays and the extent o f DNA 
methylation was measured using bisulfite pyrosequencing. The MTHFR rsl801133 
genetic polymorphism was significantly associated w ith BMI change in firs t episode 
drug na ve Chinese Han and Spanish patients. In Chinese Han cohort, a significant 
association was also found of the MC4R rs489693 w ith BMI change. In addition, when 
patients were analysed as group receiving either risperidone or chlorpromazine, a 
significant genotype-drug interaction was observed w ith the HTR2A rs6311, and also 
found significant associations between the HTR2A rs6311 and ADRA2A rs l800544 with 
risperidone-induced weight gain.

Global DNA methylation was measured by determining methylation o f UNE-1 in 
chronic schizophrenia patients. Results show no significant association of LINE-1 
methylation w ith BMI, although the MTHFR rsl801133 and FTO rs9939609 SNPs had 
significant influence on LINE-1 methylation in this cohort. DNA methylation levels of 
the HTR2C prom oter sequence were also measured. The extent o f DNA m ethylation of 
the HTR2C prom oter sequences in samples taken before patients received 
antipsychotics was significantly higher in Chinese Han patients who subsequently had 
weight increase <7%; therefore, DNA methylation o f the HTR2C prom oter sequences 
may be a predictor fo r antipsychotic drug-induced weight gain in drug na ve patients. 
In addition, the T allele o f the HTR2C rs3813929 polymorphism was significantly 
associated w ith higher methylation o f the HTR2C prom oter sequence. This provides a 
mechanistic link between the HTR2C rs3813929 SNP and prom oter activity. The FTO 
rs9939609 SNP was significantly associated w ith DNA methylation o f the HTR2C 
prom oter sequences in Spanish male patients. In chronic patients, DNA m ethylation of 
the HTR2C prom oter sequence was not significantly associated w ith  BMI; however, it 
was significantly associated w ith the HTR2C rs3813929.

The effect o f antipsychotic drugs on the HTR2C methylation, mRNA expression, and 
leptin secretion were studied in cell culture models. Clozapine and haloperidol 
treatm ent in SH-SY5Y neuroblastoma cells show no significant change DNA 
methylation and mRNA expression o f the HTR2C. In 3T3-L1 adipocytes treated w ith 
clozapine, SB 242084, risperidone, and haloperidol show no significant changes in 
Htr2c mRNA expression and leptin secretion.

The associations o f genetic polymorphisms and DNA methylation of the HTR2C w ith 
antipsychotic drug-induced weight gain may indicate the underlying mechanisms and 
also provide genetic and epigenetic markers fo r antipsychotic drug-induced weight 
gain.
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Chapter 1: General Introduction

1.1 Schizophrenia

Schizophrenia is a chronic psychotic disorder characterized by a broad spectrum of 

disintegration of thought processes and emotional dysfunctions. In 1893, it was called 

"dementia praecox" by psychiatrist Emil Kraeplin. In 1911, schizophrenia was named 

by Eugen Bleuler, a Swiss psychiatrist, to  describe the chronic, severe, and disabling 

brain illness. The term  refers to the splitting o f mental associations tha t Bleuler 

believed was the fundamental cause of the abnormalities in schizophrenia (Emery and 

Oltmanns, 2000).

About 1% of the world's general population suffer from  this illness (Jablensky et al., 

1992). It requires a large economic burden in terms of hospitalization, chronic 

treatm ent, rehabilitation and loss o f productivity (Rice, 1999). The estimated total 

social cost o f schizophrenia in England was 11.8 billion pounds a year (Andrew et al., 

2012). This social cost was composed of the direct cost o f treatm ent and care tha t falls 

on the public fund was about 7.2 billion pounds, this equates to  an average social cost 

o f £60,000 and to  the public sector o f £36,000 per person w ith schizophrenia per year. 

These costs come from the direct costs, including in-patient hospital costs, and support 

from  community mental health teams, appearring as costs to  both society and the 

plublic sector. A huge burden of indirect costs to society includes the informal care, 

unpaid care and private expenditures to  families or friends. The costs o f lost 

productivity of patients due to  unemployment, absence from work and premature 

m orta lity represent huge costs fo r society and for the public sector due to  the loss of 

tax revenue. The low employm ent rate for patients w ith schizophrenia causes loss of 

productive capacity of £17,200 per individual, which can give rise to  an expected loss 

to  the English economy of £3.4 billion per year. This low employm ent rate also affects 

the finances of the plublic sector through losses in tax revenue (£715 m illion per 

annum) and payments of social security benefits (£470 million per year).
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1.1.1 Signs and symptoms of schizophrenia

People w ith schizophrenia exhibit many d ifferent symptoms. The full syndrome is 

characterized by positive symptoms, negative symptoms, and cognitive impairments. 

The symptoms typically develop during the first five to ten years and then clinical 

deterioration reaches a plateau (Lewis and Lieberman, 2000). Disturbance in basic 

cognitive functions such as attention, executive function, and specific forms of 

memory, particularly working memory, are thought to be central to the behavioural 

disturbance and functional disability o f schizophrenia. Moreover, many patients have 

concomitant mood symptoms including depression and anxiety tha t may contribute to 

the 10% lifetim e incidence of suicide in schizophrenia (Lewis and Lieberman, 2000).

Positive symptoms refer to the symptoms of schizophrenia tha t seem to  be excesses of 

normal thoughts, emotions, or behaviours (Comer, 2004). Positive symptoms include 

delusions and hallucinations. Delusions, the firs t positive symptoms, are characterized 

by false beliefs. A delusional person believes things that could not be true (Emery and 

Oltmanns, 2000). For example, they believe tha t there is someone or a group of people 

trying to  harm or injure them. Common delusions include the beliefs tha t ideas of 

other people are being inserted into the patients' head, and that people can read the ir 

thoughts. Sometimes the patients believe tha t they are being controlled by 

mysterious, external forces. Another positive symptom is hallucinations characterized 

by abnormal perceptions in the absence of actual external stimuli. For example, they 

may hear voices w ithout outside stimulus which is the most common type of 

hallucination. Sights, sounds and other perceptions in the absence of external stimuli 

are also considered hallucinations.

In contrast to the active presentations o f the positive symptoms o f schizophrenia, the 

negative symptoms usually indicate the absence or insufficiency of normal behaviour 

(Barlow and Durand, 2005). Such negative symptoms as lack o f in itia tive, social 

w ithdrawal, deficits in emotional response, and lack o f self-care are displayed in 

approximately 25% of persons w ith schizophrenia (Malla et al., 2002). These emotional 

disturbances exert effects on a person's social and occupational functioning. Primary 

negative symptoms are etilogically related to  the core pathophysiology of 

schizophrenia including blunted or fla t affect, poor rapport, emotional w ithdrawal,
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passive social w ithdrawal, poor social skills, poor grooming, alogia (poverty o f speech 

or poverty of content of speech), anergia, anhedonia, apathy, and avolition. Secondary 

negative symptoms are derivative of other symptoms of schizophrenia, o ther disease 

processes, medications, or environment such as the symptoms tha t result from 

positive psychotic symptoms, depression or demoralization, or medication side effects; 

therefore, secondary negative symptoms usually respond to treatm ent of the 

underlying cause (Lindenmayer and Khan, 2006).

The th ird type of schizophrenia symptom is cognitive impairments tha t show the 

manifestations of disorganized thoughts, speech and behaviour. Cognitive 

impairments affect m ultiple domains including working memory, selective attention, 

learning, and executive function (Konopaske and Coyle, 2015). People w ith 

schizophrenia may not be able to  think logically and may display inappropriate 

behaviour such as laughing or crying at improper times. Sometimes they show bizarre 

behaviour such as accumulating objects or acting in unusual ways in public. In addition, 

disorganized speech is another set of symptoms of people w ith schizophrenia. They 

tend to say things that are not sensible. The verbal communication problem and 

disorganized thinking exert effects on patients' lives. Cognitive im pairm ent is a core 

feature o f the illness. Among the symptoms, the positive symptoms respond best to 

antipsychotic medications, whereas the negative symptoms and cognitive inpairmant 

do not responsd well. Therefore, cognitive inpairments and negative symptoms are the 

best predictors o f function outcomes of schizophrenia treatm ent (reviewed by 

Konopaske and Coyle, 2015).

1.1.2 Diagnostic criteria for schizophrenia

The diagnostic criteria used to  diagnose schizophrenia defined by the American 

Association o f Psychiatry (American Psychiatric Association, 1994), a person must 

display signs and symptoms as follows:

The diagnostic criteria for schizophrenia from the DSM-IV

A) Characteristic symptoms: tw o or more o f the follow ing, each present fo r a 

significant portion of tim e during a one-month period (or less, if successfully 

treated)
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delusions

hallucinations

disorganized speech (e.g. frequent derailment or incoherence; speaking 

in abstracts)

grossly disorganized behaviour (e.g. dressing inappropriately; crying 

frequently) or catatonic behaviour

negative symptoms, i.e., affective flattening (lack or decline in 

emotional response), alogia (lack or decline in speech), or avolition (lack 

or decline in motivation)

Note: Only one criterion A symptom is required if delusions are bizarre or 

hallucinations consist o f hearing one voice participating in a running commentary of 

the patient's behaviour or thoughts or of hearing tw o  or more voices conversing w ith 

each other.

B) Social/ occupational dysfunction: for a significant portion of the tim e since the 

onset o f the disturbance, one or more major areas of functioning such as work, 

interpersonal relations, or self-care, are markedly below the level achieved 

prior to the onset or when the onset is in childhood or adolescence, failure to 

achieve expected level o f interpersonal, academic, or occupational 

achievement.

C) Duration: continuous signs of the disturbance persist fo r at least six months. 

This six-month period must include at least one month of symptoms (or less, if 

successfully treated) tha t meet criterion A. (i.e., active-phase symptoms) and 

may include periods of prodrom al (sym ptom atic o f the onset) or residual 

symptoms. During these prodrom al or residual periods, the signs o f the 

disturbance may be manifested by only negative symptoms or tw o  or more 

symptoms listed in criterion A present in an attenuated form  (e.g., odd 

beliefs, unusual perceptual experiences).

Additional criteria (D, E and F) are also given tha t exclude a diagnosis o f schizophrenia 

if symptoms of mood disorder or pervasive developmental disorder are present. 

Additionally, a diagnosis o f schizophrenia is excluded if the symptoms are the direct

result o f a substance (e.g. drug abuse, medication) or a general medical condition.
4



D) Schizoaffective and mood disorder exclusion: schizoaffective d isorder and 

mood disorder w ith psychotic features have been ruled out because e ither 

(1) no major depressive episode, manic episode, or mixed episode have 

occurred concurrently w ith the active-phase symptoms; or (2) if  mood 

episodes have occurred during active-phase symptoms, the ir to ta l duration 

has been b rie f relative to  the duration of the active and residual periods.

E) Substance/general medical condition exclusion: The disturbance is not due to  

the direct physiological effects o f a substance (e.g., a drug o f abuse, a 

m edication) or a general medical condition.

F) Relationship to  a pervasive developm ental disorder: If there is a h istory o f 

autistic disorder or another pervasive developmental disorder, the additional 

diagnosis o f schizophrenia is made only if p rom inent delusions or 

hallucinations are also present fo r at least a month (or less if successfully 

treated).
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1.1.4 Biology of schizophrenia

The study of the aetiology o f schizophrenia is ongoing. It is a m ultifactorial disease. 

There are several causes and risk factors tha t might contribute to the development of 

schizophrenia, including both environmental and genetic influences. Genetic factors 

play an im portant role in the development o f schizophrenia. Obviously, schizophrenia 

is an inherited disorder. Waddington et al. (2007) stated that;

"Schizophrenia is an inherited, likely complex genetic disorder tha t runs in 

families and the single best predictor fo r developing the illness is having an 

affected first-degree relative".

Nevertheless, many people are affected despite lacking the fam ily history. In addition, 

it has also been pointed out that the general population had an average risk of 

developing schizophrenia o f 1%; in other words, the lifetim e prevalence of 

schizophrenia is 1% worldw ide (American Psychiatric Association, 1994), whereas the 

first-degree relatives o f two parents w ith schizophrenia and monozygotic tw ins had 

risks of 46 and 48%, respectively (Gottesman, 1991). Although these figures show a 

high risk of developing schizophrenia in the first-degree relatives, none o f the 

schizophrenia tw in  studies has found tha t the risk reaches 100%. It is suggested that 

environmental factors also play an im portant role in developing schizophrenia.

There are many environmental influences that contribute to schizophrenia risk. The 

lack o f oxygen during pregnancy is an im portant factor that may lead to the disorder. 

For example, the situation o f the umbilical cord wrapping around the baby's neck 

results in the im pairm ent o f blood circulation and reduction of an oxygen delivery to 

the developing brain regions (McNeil et al., 1994). Maternal m alnutrition in the early 

months o f pregnancy can also lead to  an increased risk of schizophrenia in the 

offspring. It is similarly related to oxygen availability, because m alnutrition can cause a 

lack o f nutrient supply to the fetus's brain tissue. Normally, both oxygen and nutrients 

are im portant to normal development of the fetus's nervous system. As a result, 

impairm ent o f these factors may be a leading cause o f the brain-related disorders such 

as schizophrenia. Other environmental factors playing a role in developing 

schizophrenia are infection and drug treatm ent during pregnancy (Emery and 

Oltmanns, 2000).
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1.1.4.1 Neurodevelopmental hypothesis in schizophrenia

In normal neurodevelopment, the different brain regions are formed at d ifferent times 

during development. Therefore, the tim ing of the insult to the developing fetus is a 

major determ inant of the subsequent abnormality. Additionally, small abnormalities in 

early events can generate a large difference in subsequent stages. Beside these, 

specific molecular signals play specific roles at various stages of neurodevelopment, for 

example, noggin and follistatin play an im portant role in induction of the central 

nervous system; brain-derived neurotrophic factor (BDNF) and insulin-like growth 

factor (IGF) are the major signals fo r proliferation. Many proteins are also involved in 

neurodevelopment such as reelin and astrotactin which cause appropriate migration of 

the growing neurons to the specific location in the brain. Signals from  interneurons are 

thought to be im portant in the trim m ing process tha t occurs in adolescence. 

(Reviewed by Gupta and Kulhara, 2010). However, all of these proteins are controlled 

by specific genes. Abnormal regulation of fundamental neurodevelopmental processes 

may occur, or there may be disruption by various forms of insult, this is referred to  as a 

neurodevelopmental disorder.

The hypothesis that schizophrenia might be a neurodevelopmental disorder was firs t

proposed by Thomas Clouston who called itdevelopmental insanity (M urray and

Bramon, 2005). The neurodevelopmental hypothesis was proposed in response to

research findings of an association o f schizophrenia w ith  complications o f pregnancy

and delivery. This association was proposed by Rosanoff as early as 1934 (reviewed by

Gupta and Kulhara, 2010). In addition, several studies showed an increase in risk of

developing schizophrenia when the rate o f obstetric complications was higher (Cannon

et al., 2002; Zornberg et al., 2000; Geddes et al., 1999). Some studies reported an

association between development schizophrenia in the offspring and maternal

influenza infections, especially during the second trim ester (Mednick et al., 1988;

Kendell and Kemp, 1989; Kunugi et al., 1995). However, several studies show no

relation between maternal influenza infection and risk of schizophrenia (Crow and

Done, 1992; Selten and Slaets, 1994; Susser et al., 1994). Furthermore, an increased

risk fo r schizophrenia, about two-fold, has been reported in the offspring o f mothers

exposed to  famine in the Dutch Hunger W inter o f 1944-1945 (Susser et al., 1996). This

evidence shows an association o f schizophrenia in offspring w ith obstetric
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complications and prenatal exposure to infectious agents or toxins as well as maternal 

m alnutrition.

1.1.4.2 Neurotransmitter involvement in schizophrenia

1.1.4.2.1 Dopamine

Dopamine is a catecholamine neurotransm itter that is synthesized from  the amino acid 

tyrosine by dopaminergic neurons. The neuron stores dopamine in small 

compartments called vesicles in the axon terminals. Dopamine is released into the 

synaptic cleft through a process called exocytosis. The released dopamine in the 

synaptic cleft may undergo reuptake into the presynaptic term inal by the dopamine 

transporter on the presynaptic membrane.

To affect target cells, dopamine interacts w ith its receptors on the target cell 

membrane. Dopamine receptors are divided into two subfamilies, D l-like  receptor 

subfamily which includes the receptor subtypes D1 and D5, and D2-like receptor 

subfamily which include the receptor subtypes D2, D3 and D4 (Neve and Neve, 1997). 

Upon agonist binding, dopamine receptor signalling is mediated by the heterotrim eric 

G proteins. D l-like  receptor binding activates adenylyl cyclase through coupling to 

stim ulatory G protein Gsa /G 0|fa  subunits, resulting in an increase in the intracellular 

cAMP level. By contrast, D2-like receptors couple to G ja /G 0a  subunits to inh ib it the 

activation of adenylyl cyclase (reviewed by Neve et al., 2004).

Dopaminergic neurons originate in three cell groups located in the mesencephalon and 

diencephalon of the brain. The axons of dopaminergic neurons from  these cell groups 

provide widespread projections to regions o f the forebrain, form ing the follow ing 

three dopamine pathways in the brain.

The major pathway is the nigrostriatal pathway, where dopaminergic neurons tha t 

originate in the substantia nigra send axons projecting to  the dorsal striatum  which 

includes the caudate nucleus and putamen (CPU). This region is involved in learning to 

automatically execute complex movement triggered by a voluntary command. The 

degeneration of dopaminergic neurons in this brain region causes the m otor 

disturbances tha t are found in Parkinson's disease. Both Di and D2 receptors are found 

in the striatum.
9



The second dopamine pathway: neurons originating in the ventral tegmental area 

(VTA) send axons projecting to the limbic areas o f the brain (nucleus accumbens (NAs), 

ventral striatum and amygdala), known as the mesolimbic pathway, and to  the cortex 

(medial, prefrontal, cingulate and entorhinal cortex), known as the mesocortical 

pathway. These pathways are believed to be associated w ith schizophrenia. D1-D4 

receptors are localized in the limbic areas and associated w ith these pathways.

The final pathway is the tuberoinfundibular pathway, where neurons in the 

hypothalamus secrete dopamine into the hypophysial portal blood to have effects on 

dopamine receptors of the anterior p itu itary gland, where it acts as prolactin inh ib itory 

factor. This pathway plays an im portant role in the inhibitory regulation o f prolactin 

release mediated by the D2 receptor. An increased prolactin release is one of the side 

effects o f typical antipsychotic drugs, this can lead to  problems w ith reproductive 

dysfunction in both men and women.

The classical "dopamine hypothesis of schizophrenia" proposed that a hyperactivity of 

dopaminergic transmission leads to the symptoms of schizophrenia (Carlsson, 1988). It 

has been found tha t drugs tha t are effective at decreasing psychotic symptoms are 

dopamine receptor antagonists (Carlsson and Lindqvist, 1963) which block dopamine 

D2 receptors in the mesencephalic projections to the limbic striatum especially in the 

etiology o f positive symptoms (Creese et al., 1976; Seeman and Lee, 1975). 

Additionally, amphetamine, a dopamine agonist which increases synaptic monoamine 

levels, can induce psychotic symptoms (reviewed in Lieberman et al., 1987). In 1991, 

the dopamine hypothesis was reconceptualized to  subcortical hyperdopaminergia w ith 

prefrontal hypodopaminergia (Davis et al., 1991).

The dopaminergic hypothesis of schizophrenia is founded on the major fo llow ing facts: 

the therapeutic efficiency o f neuroleptics (dopaminergic antagonists); a positive 

correlation between plasma homovanillic acid (m etabolite o f dopamine) concentration 

and the severity o f schizophrenic illness; a higher density o f dopaminergic 02- 

receptors revealed by Positron Emission Tomography (PET), particularly in the 

striatum ; and an abnormal growth-horm one response to apomorphine (dopaminergic 

agonist) (Duncan et al., 1999; Lembreghts and Ansseau, 1993).
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1.1.4.2.2 Glutamate and Gamma (y)-Aminobutyric acid (GABA)

Besides the dysfunction in the dopamine system in the brain of schizophrenic patients, 

the dysfunction in glutamate and Gamma (y)-Aminobutyric acid (GABA) also plays an 

im portant role in the pathophysiology of schizophrenia.

Glutamate is a major excitatory neurotransm itter in the central nervous system (CNS) 

which acts through multip le excitatory receptors. It is synthesized in the nerve 

terminals from  two sources including glucose and glutamine. The N-methyl-D- 

aspartate (NMDA) receptor is one of glutamate receptors associated with 

schizophrenia. The NMDA receptor hypofunction hypothesis o f schizophrenia (Olney 

and Farber, 1995; Olney et al., 1999) was proposed from the observation tha t drugs 

such as phencyclidine (PCP) and ketamine, which are NMDA receptor antagonists, have 

effects tha t mimic schizophrenia-like psychotic symptoms including delusions, 

hallucinations, thought disorder and negative symptoms (Krystal et al., 1994). In 

addition, repeated subcutaneous injections o f NMDA channel blockers caused 

neurodegenerative changes in rat cortex which included posterior cingulate 

retrosplenial cortex, anterior cingulate, hippocampus, and amygdala. Changes in these 

regions coincide w ith the structural changes seen in schizophrenia (Olney and Farber, 

1995). The primary sites o f action fo r ketamine and PCP in inducing schizophrenia-like 

psychotic symptoms and neurotoxicity were NMDA receptors expressed on the 

GABAergic interneurons in the thalamus and basal forebrain (Olney and Farber, 1995).

Gamma (y)-aminobutyric acid (GABA) is the primary inhibitory neurotransm itter in the 

CNS. It is converted from  glutamic acid by the action o f glutamic acid decarboxylase 

(GAD). Many studies indicated that neurochemical abnormalities in the GABAergic 

system are implicated in the pathophysiology of schizophrenia. Dopamine production 

in dopaminergic cells is under the direct control of GABAergic neurons. An abnormally 

low concentration of GAD leads to  a low effective concentration of GABA, and results 

in promotion of dopamine production (Kaplan and Sadock, 1995). A decreased activity 

o f GAD has been reported in schizophrenics. This decreased activity has been found in 

the nucleus accumbens, putamen, amygdala and the hippocampus. In addition, a 

decrease in numbers and abnormalities in the distribution of GABAergic neurons in the 

cortex have been associated w ith schizophrenia. A decrease in GABAergic interneurons
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(parvalbumin staining cells) in the frontal cortex and hippocampal regions have been 

reported in schizophrenia (Nestler, 1997; Benes, 2000; Reynolds et al., 2004). This 

suggests tha t loss of neuroinhibitory control of GABA, in specific regions o f the brain, 

may be responsible for some symptoms of schizophrenia.

Dysregulation in GABAergic neurotransmission can cause cognitive im pairm ent in 

patients w ith schizophrenia. The findings from post-mortem brain studies suggest an 

association of schizophrenia w ith the impairm ent of GABA-mediated synaptic 

transmission (Gonzalez-Burgos et al., 2011). Alterations in cortical GABA 

neurotransmission and decreased mRNA expression of GAD67 in PFC have been 

reported in post-mortem studies (reviewed by Volh and Lewis, 2005). Injection of 

GABA receptor antagonists into monkey PFC impairs performance on working memory 

tasks (Sawaguchi et al., 1989). The role o f GABA in mediating synaptic transmission, 

which facilitates the flow  and processing of inform ation w ith in and between brain 

regions, may be essential fo r normal cognitive function (Fries, 2009). It has been 

suggested that selective GABA-A receptor agonists may be novel therapeutic strategies 

fo r treatm ent cognitive dysfunction in patients w ith schizophrenia (Stan and Lewis, 

2012).

1.1.4.2.3 Serotonin

Serotonin (5-hydroxytryptamine, 5-HT) is a monoamine neurotransm itter synthesized 

in serotonergic neurons in the CNS and enterochrom affin cells in the gastrointestinal 

tract. 5-HT is synthesized from  essential amino acid L-tryptophan. In the brain, the 

enzyme tryptophan hydroxylase catalyzes the hydroxylation reaction to  convert 

tryptophan to  5-hydroxytryptophan (5-HTP), which is immediately decarboxylated to 

yield 5-hydroxytryptam ine (5-HT) by enzyme amino acid decarboxylase. The principle 

route o f continued metabolism for 5-HT is deamination o f the side chain by 

monoamine oxidase (MAO) yielding a 5-hydroxyindole acid aldehyde, which can be 

fu rthe r oxidized to  5-hydroxyindole 3-acetic acid (5-HIAA), a primary m etabolite  o f 5- 

HT (Figure 1.1).
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Figure 1.1: 5-HT, biosynthesis and metabolism of 5-HT

The rate-lim iting step in 5-HT synthesis is the conversion of L-tryptophan to  5- 

hydroxytryptophan (5-HTP) which is catalysed by tryptophan hydroxylase. Then the 5- 

HTP is converted to 5-HT by decarboxylation catalysed by aromatic amino acid 

decarboxylase. 5-HT degradation is the side chain deamination by monoamine oxidase 

(MAO) producing 5-hydroxyindole-3-acetic acid (5-HIAA).

Source: From (Nichols and Nichols, 2008)

Synthesized 5-HT is packaged into vesicles. The action potential o f the axon causes 

membrane depolarization and calcium influx, and subsequently 5-HT is released into 

the synaptic cleft by membrane fusion of the vesicles. 5-HT diffuses across the cleft to 

activate receptors at post-synaptic neurons to in itia te intracellular signalling cascades. 

5-HT is removed from the synaptic cleft by the serotonin reuptake transporter (SERT)
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which pumps the free 5-HT back to the neuronal term inal where it is repackaged again 

into neurotransm itter vesicles. Free 5-HT in the cytoplasm is degraded by MAO in the 

m itochondrial membrane producing the biologically inert metabolite 5-hydroxyindole- 

3-acetic acid (5-HIAA) as illustrated in Figure 1.2.

Tryptophan i  

I I 5H T   5HTP l  |

Autoreceptor
(5HTia,'ib)

5HT 5HT

5HIAA

SERT

5H T

5HT

Postsynaptic receptor + 
heterotrim eric G-protein

(5HTi/n»®r; 5HT2a/b*c»5HT4; 
5H T5A/b; 5HT6 ; 5HT7 )

Figure 1.2: Serotonin synapse model

5-HT is packaged into the vesicles after synthesized. When calcium influx induced by 

membrane depolarization, vesicles fuse w ith the presynaptic membrane to  release 5- 

HT into synaptic cleft. 5-HT diffuses across the cleft to  activate post-synaptic receptors 

inducing signalling cascades w ith in the cells. Free 5-HT in the cleft is pumped back to 

presynaptic neuron by SERT to recycle. SERT, serotonin reuptake protein; 5-HTP, 5- 

hydroxytryptophan; MAO, monoamine oxidase; 5-HIAA, 5-hydroxyindole-3-acetic acid. 

Source: From (Nichols and Nichols, 2008)
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There are seven 5-HT receptor families, 5-HT1-7. The 5-HT receptor families are mostly 

seven putative transmembrane domains, G-protein coupled receptors, but one 

member, the 5-HT3 receptor, is a ligand-gated ion channel. Concentrating on the 

major human 5-HT receptors implicated in schizophrenia and its treatm ent, 5-HT1A is 

highly localized to the hippocampus, cortical regions (particularly cingulate and 

entorhinal cortex) and mesencephalic raphe nuclei. It has been found in both 

postsynaptically and somatodendritic sites of the 5-HT neuron. A high expression o f 5- 

HT2A receptors is found in many forebrain regions, but particularly cortical regions 

(neocortex, entorhinal and p iriform  cortex, claustrum), caudate nucleus, nucleus 

accumbens, olfactory tubercle and hippocampus. 5-HT2C binding sites are widely 

distributed and present in areas of cortex (olfactory nucleus, piriform , cingulate and 

retrosplenial), limbic system (nucleus accumbens, hippocampus, amygdala) and the 

basal ganglia (caudate nucleus, substantia nigra) (Barnes and Sharp, 1999).

A hyperserotonin hypothesis fo r schizophrenia was first proposed in 1954 when 

researchers found that a serotonin agonist, lysergic acid diethylamide (LSD), could 

induce hallucinations, a symptom associated w ith schizophrenia (Woolley and Shaw, 

1954). LSD competes fo r and occupies serotonin receptor sites w ith very high potency. 

Several post-mortem studies showed 5-HT dysfunction in cortical areas in patients w ith  

schizophrenia, fo r example, there is a decrease in 5-HT2A/C receptor density (Gurevich 

and Joyce, 1997) but an increase in 5-HT1A receptor density (Simpson et al., 1996) in 

schizophrenic patients compared to  controls.

1.1.5 Treatm ent of schizophrenia

Patients w ith schizophrenia are treated in psychosocial aspects. To relieve the 

symptoms and improve patients' quality o f life, they require close care and both 

physical and mental support from clinicians, psychiatrists, and the ir families. 

Schizophrenia is a complex disorder that must be treated over an extended period o f 

tim e. Most people suffering from the disorder have to deal w ith symptoms throughout 

the ir lives. Therefore, the clinicians and psychiatrists must be concerned about the 

treatm ent not only in the acute period, but also in the long run. In other words, the 

prevention of the future psychotic symptoms is essential care fo r schizophrenia 

patients. Furthermore, the patients and fam ily members should seek advice from  a
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psychiatrist to understand and accept the ir condition. The patients as well as the ir 

families w ill gain real advantages from this and can sometimes live happily in the ir own 

communities (Buckley et al., 2015; Okpokoro and Sampson, 2014).

1.2 Antipsychotic drug treatm ent in schizophrenia

1.2.1 Typical antipsychotic drugs

It is known that all typical antipsychotics are dopamine D2 receptor antagonists which 

remain the main pharmacological treatm ent o f schizophrenia. However, dopamine D2 

antagonists are generally effective in the relief o f positive symptoms which include 

hallucinations, delusions and thought disturbances, but do not fu lly  relieve negative 

symptoms. They also have risks o f side effects including extra pyramidal syndromes 

(EPS) including akathesia, dystonia, parkinsonism and tardive dyskinesia (TD) or tardive 

dystonia. Tardive dyskinesia affects up to 20-40% o f patients receiving chronic first- 

generation antipsychotic drugs.

An example of typical antipsychotic drugs is haloperidol which has a high a ffin ity  to 

dopamine D2 receptor and is associated w ith m otor side effects. It has been found tha t 

long term  treatm ent w ith antipsychotic drugs w ith high a ffin ity  fo r DRD2 like 

haloperidol induced DRD2 receptor upregulation in human (Silvestri et al., 2000) and 

rat striatal neurons (Bernard et al., 1991). In addition, it has been found tha t 5-HT2C 

receptor antagonism reduced m otor side effects induced by both acute and chronic 

haloperidol treatm ent suggesting tha t the 5-HT2C receptor is involved in m otor side 

effects induced by typical antipsychotic drug treatm ent and also tha t 5-HT2C receptor 

antagonism could be a potential target of new antipsychotic medications due to  the 

capability to  reduce this side effects (Creed-Carson et al., 2011).

1.2.2 Atypical antipsychotic drugs

Following the proposed role o f serotonin in schizophrenia, the newer or second 

generation, "atypical", antipsychotic drugs were firs t developed. Atypical antipsychotic 

drugs block both dopamine and serotonin receptors and can reduce problem atic side 

effect of the firs t generation drugs. This growing list o f drugs including: fo r example; 

clozapine, olanzapine, risperidone, quetiapine, ziprasidone, aripiprazole and
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amisulpride. Clozapine was the first atypical antipsychotic drug tha t was clinically 

introduced in 1970s. Atypical antipsychotic drugs can reduce EPS side effects of typical 

antipsychotic drugs but some of them can induce weight gain w ith varying degrees.

Dopamine receptors and 5-HT receptors are the targets of these atypical antipsychotic 

drugs.However, o ther neurotransm itter receptors are also affected including histamine 

H I, adrenergic, and muscarinic receptors. The drugs have d ifferent metabolic effects 

and also the ir affinities to  these receptors as shown in Table 1.2. The difference of 

potential to cause metabolic side effects and differential receptor affinities may 

contribute to  variability o f weight gain among patients w ith schizophrenia.

Recently, the NIMH-funded Clinical Antipsychotic Trials in Intervention Effectiveness 

(CATIE) project found that treatm ent of psychosis w ith  atypical antipsychotic drugs is 

not significantly more effective than w ith typical antipsychotic medications, although 

atypical antipsychotic drugs showed little  benefit fo r improving cognitive symptoms 

(Lieberman et al., 2005; Carpenter and Buchanan, 2008; Crossley et al., 2010). Atypical 

antipsychotic drugs may have advantages over typical antipsychotic drugs through 

the ir better safety profile that results in better adherence to treatm ent (Melnik et al., 

2010); the differences in side effects between atypical (e.g. weight gain) and typical 

(e.g. EPS) antipsychotic medications mean tha t atypical drugs are easier to  live w ith fo r 

patients w ith schizophrenia.
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Table 1.2: Antipsychotic drug affinities for receptors relative to dopamine D2 

receptor affinity

Dopamine D2 Ki Haloperidol Clozapine Olanzapine Risperidone Paliperidone Quetiapine Ziprasidone Aripriprazole Asenapine
(nM) 2.0 431 72 4.9 9.4 567 4.0 0.95 1.0
alA-adrenergic 0.17 270 0.66 0.98 3.8 25 0.22 0.038 1.1

[12] [1.6] [109] [5.0] [2.5] [22] [18] [25] [1.2]

a2A-adrenergic <10'2 3.0 0.24 0.032 2.0 0.16 0.025 0.012
[>1000] [142] [314] [151] [4.7] [3600] [160] [74] [1.3]

Histamine HI <10'2 220 15 0.96 1.7 76 0.031 0.032 1.3
[>1000] [2.0] [4.9] [5.2] [5.6] [7.5] [130] [28] [1.0]

Muscarinic M3 <10'2 17 1.4 <10 2 <10"2 0.29 <10'2 <10'2 <102

[>1000] [25] [51] [>104] [>104] [1943] [>1000] [>1000] [>1000]

5-HT1A <10'2 4.1(a) 0.036 0.011 0.015 1.3(a) 0.053(a) 0.17*(a) 0.52(a)
[>1000] [105] [2063] [427] [640] [430] [76] [5.6] [2.5]

5-HT1B 0.012 1.1 0.14 0.091 0.087 0.52 1.0(a) <10‘2 0.33
[165] [398] [509] [53.6] [109] [1109] [4.0] [830] [4.0]

5-HT2A 0.035 81 30 29 4.9 2.8 13 0.11* 18
[57] [5.35] [3.73] [0.17] [1.9] [200] [0.30] [8.7] [0.071]

5-HT2C <10'2 46 7.2 0.41 0.2 0.22 0.31 0.043* (a) 37
[>1000] [9.44] [10.2] [12] [48] [2500] [13] [22.4] [0.035]

5-HT6 <102 25 12 <10'2 <10'2 0.30 0.066 <102 5.2
[>1000] [17] [6.0] [>1000] [>1000] [1864] [61] [642] [0.25]

Values indicate drug affinity for the receptor expressed relative to dopamine D2 receptor 
affinity, calculated (D2 Ki-^receptor Ki) from Ki data provided in the PDSP Ki Database: 
http://pdsp.med.unc.edu/pdsp.php and, for asenapine, Shahid et ol.,(2009). Receptor Ki [nM] 
is included in square brackets below the relative affinity value.
Affinity values approaching unity and above (shown in bold type) indicate the likelihood of 
substantial receptor occupancy at normal clinical doses. These relative affinities generally 
reflect antagonist or inverse agonist effects; known agonist or partial agonist effects are 
indicated (a)
The partial agonist action of aripiprazole at D2 receptors permits high D2 receptor occupancy 
by drug without the emergence of dopaminergic side effects; therefore there may be 
significant binding to some lower affinity receptors (indicated with *) due to the high relative 
concentration of available drug.
Source: From (Reynolds and Kirk, 2010)

1.3 Antipsychotic drug-induced weight gain in patients with  

schizophrenia

Weight gain is a common side effect of many second-generation antipsychotic drugs 

and usually results from increased appetite tha t brings about the subsequent excessive 

food intake. Antipsychotic drugs have differed potential to  cause weight gain and 

metabolic phenotypes. As shown in Table 1.3, clozapine and olanzapine have the 

greatest risk for weight gain and ziprasidone and aripiprazole have the least risk.
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Table 1.3: Relative likelihood o f w eight gain and m etabolic disturbances o f 

antipsychotic drugs

Glucose Metabolic
Medication Weight Gain Metabolism Dyslipidemia Syndrome

Abnormalities
Aripiprazole Low Low Low Low
Clozapine High High High High
Haloperidol Low to mild Low to mild Low Low
Olanzapine High High High High
Perphenazine Low to mild Low to mild Low Low
Risperidone Mild to moderate Mild Mild Mild
Quetiapine Moderate Moderate High Moderate
Ziprasidone Low Low Low Low

Reference source: (Hasnain et al., 2009; Hasnain et al., 2010; Patel et al., 2009; Baker et 

al., 2009; Duncan et al., 2009; Lambert et al., 2006; Sikich et al., 2008)

The 5-HT receptor is a target of atypical antipsychotics. It has been suggested tha t 5- 

HT2 receptor antagonists can reduce EPS side effect problems induced by typical 

antipsychotics and the 5-HT2 receptor is a site at which antipsychotic drugs may 

relieve the negative symptoms of schizophrenia. Additionally, clinical and preclinical 

investigations indicate that several new atypical antipsychotic drugs improve cognition 

in schizophrenic patients and some of them display a ffin ity for several 5-HT receptors, 

including 5-HT1A, 5-HT4, 5-HT6 and 5-HT7 receptors in addition to  the 5-HT2A site 

(M illan, 2000; Meltzer and Sumiyoshi, 2003). Thus, the 5-HT system has been strongly 

suggested to  be involved in pharmacological treatm ent of schizophrenia. However, 

treatm ent w ith both typical and atypical antipsychotic drugs may be associated w ith 

weight gain.

Among the second generation antipsychotic drugs, clozapine was found to  be 

associated w ith the largest mean increase in body weight (4.45 kg over 10 weeks) 

studied by meta-analysis (Allison et al., 1999). The weight gain tended to  occur mainly 

in the first year o f treatm ent. Obesity and weight gain in adulthood have been 

associated w ith significant health complications including hypertension, type II 

diabetes, coronary heart disease, stroke, gallbladder disease, osteoarthritis, sleep 

apnea, respiratory problems and some types of cancers (Rubenstein, 2005; Pi-Sunyer, 

2009).
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It has been suggested that the serotonin system may be involved in regulating feeding 

behavior and weight gain. Both animal and human studies have shown that increasing 

serotonin causes decreased feeding and decreasing serotonin results in increased 

feeding (Comuzzie and Allison, 1998). Many studies have focused on the 5-HT2C 

receptors regarding the control of feeding and weight gain. The evidence supporting 

the role of the 5-HT2C receptor in feeding behavior was studied in 5-HT2C receptor 

knockout mice which found that the knockout mice tha t lack the 5-HT2C receptor were 

overweight compared to w ild-type mice (Tecott et al., 1995). The 5-HT2C receptor 

gene is located on the X chromosome at q24 (M ilatovich et al., 1992). It has a 

prom oter region which contains a polymorphism at position -759 in the 5' flanking 

region consisting of a C to T transversion. This 5' flanking region contains regulatory 

regions and a putative transcription factor binding region tha t may affect gene 

expression. This 5' flanking region contains many potential binding sites fo r various 

transcription factors including API, AP2, bHLH, GCF, HNF-5, LF-A1, NF-E1, NF-IL6, NF- 

kB, and TCF-1 (Xie et al., 1996). Among these transcription factor binding sites, the 

sites nearby the -759C/T and -697G/C SNPs are TCF-1, LF-A1, and bHLH, the SNPs may 

exert influence through the ir effect on the conformation of DNA tha t affects the 

a ffin ity for these transcription factors (Shastry, 2009). In humans, this 5-HT2C receptor 

polymorphism has been associated w ith the development o f obesity and type II 

diabetes in normal subjects; the researchers found that the variant T allele showed a 

higher frequency in the non-obese indicating a protective effect of this allele (Yuan et 

al., 2000). In one of the most consistently replicated pharmacogenetic findings, 

Reynolds et al has identified a common SNP (-759C/T) in the 5-HT2C receptor gene 

(HTR2C) that contributes substantially to  initial drug-induced weight gain (Reynolds et 

al., 2002; Templeman et al., 2005; M iller et al., 2005). Further studies have reported 

tha t this SNP has effects on prom oter activity (Hill and Reynolds, 2007, 2011); it seems 

likely tha t it is this effect on gene expression tha t mediates the association between 

HTR2C genotype and antipsychotic drug-induced weight gain.
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1.3.1 Normal body weight control

1.3.1.1 Regulation of food intake (Appetite)

Short-term regulation of appetite and satiety involves nutrient concentrations and 

hormonal signals to the CNS. During the inter-meal intervals, hunger develops in 

response to decreasing nutrients in blood circulation such as glucose, fa tty  acids, and 

amino acids and also increasing ghrelin hormone which is secreted from  the stomach 

during gastric emptying. A fter a meal, there are increasing nutrient concentrations and 

satiety hormones including 5-HT, cholecystokinin (CCK), PYY3-36, insulin, glucose-like 

peptides-1 (GLP-1) and decreasing hunger signals; these factors act on the CNS to 

inh ib it hunger and stimulate a feeling o f fullness (Wilding, 2010).

Long-term regulation of energy balance depends on the magnitude of energy stores 

and involves leptin which is secreted from  adipocytes. Leptin receptors and 

downstream signalling pathways are in the hypothalamus. When fa t mass is low and 

leptin decreases below a critical level, hunger signals are stimulated in hypothalamus 

such as neuropeptide Y (NPY) while pro-opiomelanocortin (POMC) is inhibited, 

resulting in stimulated food intake and inhibited thermogenesis (Wilding, 2010).

Energy balance is under the control o f the CNS, and the most im portant region is the 

hypothalamus. There are several hypothalamic nuclei involved in energy metabolism, 

including the arcuate nucleus (ARC), paraventricular nucleus (PVN), dorsomedial 

hypothalamus (DMH), ventromedial hypothalamus (VMH), and lateral hypothalamic 

area (LHA) (Hetherington and Ranson, 1940; Schwartz et al., 2000). Nucleus 

accumbens, amygdala, nucleus of the solitary tract and the area postrema are also 

involved in energy homeostasis (Schwartz et al., 2000). The firs t order neurons are 

located in ARC while the second order neurons are in other hypothalamic regions such 

as PVN, DMH, VMH, and LHA as illustrated in Figure 1.3 (Reynolds and Kirk, 2010). 

These hypothalamic nuclei receive signals from  both peripheral tissue hormones such 

as leptin, insulin, and ghrelin, and also signals from  extra-hypothalamic brain areas 

such as dopamine, serotonin, and noradrenaline.
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Figure 1.3: Relationship between neuropeptides, neurotransm itters and pathways in 

appetite  regulation in rat hypothalamus

Diagram illustrating the hypothalamic nuclei and the relationship between the 

appetite regulation neuropeptides, neurotransm itter, and pathways involved in 

appetite regulation. Orexigenic neuropeptides, neurotransm itters, and pathways are 

presented in green, anorexigenic are shown in red. □, leptin receptors; ARC, arcuate 

nucleus; AgRP, agouti-related peptide; BBB, blood brain barrier, CART, cocaine and 

amphetamine-related transcript; CCK, cholecystokinin; CRH, corticotrophin releasing 

hormone; DMH, dorsomedial nucleus; LHA, lateral hypothalamus; ME, median 

eminence; MCH, melanin-concentrating hormone; NPY, neuropeptide Y; POMC, 

proopiomelanocortin; PVN, paraventricular nucleus; TRH, thyrotrophin  releasing 

hormone; VMH, ventromedial hypothalamus.

Source: From (Reynolds and Kirk, 2010)
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The neurons in the ARC play an im portant role in regulating energy balance between 

food intake and energy expenditure. There are two neuronal groups in the ARC: the 

neuropeptide Y (NPY)/agouti-related protein (AgRP) neuron (orexigenic effect) and the 

pro opiomelanocortin (POMC)/cocaine- and amphetamine-related transcript (CART) 

neurons (anorexigenic effect) as shown in Figure 1.4. They receive peripheral 

hormonal signals including satiety factors such as leptin, insulin, CCK, bombesin, 

enterostatin, and GLP-1, and peripheral orexigenic factors such as ghrelin and 

adiponectin. These peripheral hormones have a direct influence on the neuropeptides 

in the hypothalamus.

The neuropeptides in ARC are affected by these peripheral signals which have d ifferent 

pathways in regulating food intake and energy expenditure as shown in Figure 1.4; fo r 

example: leptin and insulin stimulate POMC/CART and inhibit NPY/AgRP neurons 

leading to  increased POMC/CART neuropeptides and decreased NPY/AgRP 

neuropeptides, and ultim ately inh ib it food intake (Bell et a!., 2005). Whereas, ghrelin 

secreted from the stomach during gastric emptying directly stimulates its receptors, 

growth hormone secretagog receptors (GHSRs) on NPY/AgRP neurons (M eier and 

Gressner, 2004) which results in increased food intake.

Neurons in ARC have interaction w ith each other such as GABA secreted from  

NPY/AgRP neurons inhibits POMC neurons (Cowley et a!., 2001). They project to 

second-order neurons including PVN and LHA. The NPY/AgRP neurons release NPY 

which bind to  NPY 1 receptor (Y1R) while POMC/CART neurons release a-melanocyte 

stimulating hormone (a-MSH) which bind to MC4R in PVN neurons. Second-order 

neurons project to the nucleus of the solitary tract (NTS) where satiety signals are 

processed.

23



(Y 1R >  \M C 4R )

( Downstream '
I  effector neurons t

icrexigenic sigr

NPY/AGRP’
neurons

Additional inputs that include 
dopamine, serotonin and 
endocannabinoid signals

Changes in food intake 
and energy expenditure

Arcuate neucleus

POMC/CART V
neurons _ C 
\  —  A  LEF'R

Stomach
Nature

Figure 1.4: Hypothalamic contro l o f central energy balance

The ARC neurons, NPY/AgRP (orexigenic) and POMC/CART (anorexigenic), are

influenced by peripheral hormones including; PYY3-36 secreted from  colon inhibits 

NPY/AgRP via NPY Y2 receptor (Y2R); leptin from  adipocytes and insulin from  pancreas 

inh ib it NPY/AgRP but stimulate POMC/CART via leptin receptor (LEPR) and insulin

receptors, respectively; ghrelin from stomach stimulates NPY/AgRP via growth

hormone secretagog receptors (GHSRs). The NPY/AgRP neurons can inhib it

POMC/CART through GABA release. The downstream second-order neurons are 

influenced by the ARC neurons via NPY Y1 receptor (Y1R) and melanocortin receptor 

(MC4R) and also received modifying signals from  neurotransm itters such as dopamine, 

serotonin, and endocannabinoids. Source: From (Bell et a!., 2005)
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1.3.1.2 Regulation of metabolism

Body weight maintenance requires the balance between energy intake and energy 

expenditure and also balance between macronutrient intake and macronutrient 

oxidation. Individuals who have a tendency to gain weight seem to  have low energy 

expenditure, low spontaneous physical activity, low fat oxidation, or low sympathetic 

activity in addition to  excess energy intake (Galgani and Ravussin, 2008).

There are three components o f energy expenditure including the basal metabolic rate, 

the therm ic effect o f food (dietary thermogenesis), and the energy consumed during 

physical work, o f which the la tter part accounts fo r a variable amount o f tota l energy 

expenditure (Ravussin et a!., 1986). The basal metabolic rate is the energy required to 

maintain normal metabolism fo r example during sleep, normal breathing, and at rest. 

Although basal metabolic rate is not a large portion o f tota l energy expenditure, it may 

help determine the ability to resist weight gain in response to  overfeeding. The 

therm ic effect o f food is the energy used in food digestion and storage. The energy 

used for protein is the greatest, intermediate fo r carbohydrate, and very low fo r fats. 

This may partly explain why a high fa t intake is more likely to develop weight gain 

(Wilding, 2010).

Low energy expenditure due to  relative low resting metabolic rate and 24-hour energy 

expenditure is a risk factor fo r body weight gain (Ravussin et a t, 1988; Tataranni et at.,

2003). Spontaneous physical activity accounts fo r 8-15% of tota l daily energy 

expenditure (Ravussin et a i , 1986), and low spontaneous energy expenditure is related 

to  weight gain and fat mass gain (Zurlo et a!., 1992; Levine et a!., 1999).

Sympathetic activity is related to  energy expenditure in all components including 

resting metabolic rate (Spraul et a t, 1993), therm ic effect o f food (Schwartz et a t, 

1988), and spontaneous physical activity (Christin et a t, 1993). Spraul et a t (1993) 

found tha t individuals (Pima Indians) prone to  obesity have lower rates o f muscle 

sympathetic activity compared to weight-matched Caucasians.

25



1.3.2 Weight gain in patients w ith schizophrenia

Weight gain in patients w ith schizophrenia and other mental disorders is one common 

physical health problem which can result in progression towards the development of 

metabolic syndrome, diabetes, dyslipidemia, hypertension, and cardiovascular disease. 

The prevalence of obesity and metabolic syndrome in schizophrenia patients 

(particularly women) is about two-fo ld comparing to general population (Dickerson et 

al., 2006; De Hert et a i, 2006). Weight gain in patients w ith schizophrenia receiving 

antipsychotic drugs is likely to be due to  an accumulation of fat mass, particularly 

abdominal fa t reflected by an increase in waist-hip ratio (Stedman and Welham, 1993). 

Using magnetic resonance imaging an increased subcutaneous and intra-abdominal fat 

deposition was found in first episode drug naive schizophrenia patients who had 

received antipsychotic drugs fo r 10 weeks (Zhang et a i, 2004).

There are many factors contributing to  weight gain in patients w ith schizophrenia. In 

addition to antipsychotic drug treatm ent, the disease conditions of schizophrenia and 

its consequences, the dietary, lifestyle, physical activity, and the psychological and 

motivational factors; these may partly contribute to weight gain. The weight gain 

among patients w ith schizophrenia receiving antipsychotic drug treatm ent has high 

variability which may be the result of the contribution of the genetic, environmental, 

behavioural, and neurochemical factors.

The genetic factors which contribute to differences in the inherent biological processes 

between individuals are likely to  contribute to the variability of weight gain. The initial 

body weight or body mass index (BMI) before treatm ent is associated w ith  greater 

weight gain follow ing treatm ent w ith antipsychotic drugs (Lambert et a i, 2005). The 

genetic variation may also determ ine the d ifferent degree o f antipsychotic drug- 

induced weight gain. Genetic polymorphisms of other candidate genes are also 

implicated in antipsychotic drug-induced weight gain (Balt et a i, 2011) and are 

described in the next section (see section 1.4).

Other environmental, life style, and behavioural factors tha t influence energy balance 

are also likely to  contribute to  the variability o f weight gain. For example, the negative 

symptoms such as apathy and social w ithdrawal can lead to  reduced propensity to
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exercise, or because of weight gain, patients feel resistant to exercise socially. The side 

effect of antipsychotic drugs such as sedation may cause decreased physical activity.

Exposure to antipsychotic drugs, particularly second-generation drugs, are likely to 

cause weight gain (Newcomer, 2005). Although clozapine and olanzapine are the 

greatest risk factors fo r weight gain, other drugs also have influence on weight gain in 

various degrees, these may be due to  each drug exerting its action to a d ifferent 

degree on d ifferent neurotransm itter systems including serotonergic, dopaminergic, 

adrenergic, histaminergic and others (Reynolds and Kirk, 2010; Panariello et al., 2011) 

as shown in Table 1.2 (see section 1.2.2).

1.3.3 Mechanisms of atypical antipsychotic drug-induced weight gain

The mechanisms underlying antipsychotic drug-induced weight gain are not 

completely understood. Weight gain results from  excess energy intake over energy 

expenditure and antipsychotic drugs can affect these parameters in many ways; fo r 

example: by increasing appetite or decreasing satiety, affecting food preferences, 

changing blood circulating hormones, changing metabolic rate, inducing sedation. 

Therefore, antipsychotic drugs can induce weight gain through an influence on many 

interacting systems as shown in Figure 1.5.

Behaviour

Control of food intake 
(hypothalamic and 

mesolimbic)

Figure 1.5: Overview of mechanisms involved in antipsychotic drug-induced weight 
gain.

The mechanisms may involve many levels including behavioural, neural, and endocrine 

systems where antipsychotic drugs can directly or indirectly act at all these sites. 

Source: Adapted from  (Goudie et al., 2005)
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The mechanisms underlying antipsychotic drug-induced weight gain that have been 

investigated in most detail to  date are drug effects on receptors because many 

receptors tha t are the targets of antipsychotic drugs are involved in food intake and 

body weight regulation.

1.3.3.1 Disruption of hypothalamic control of energy balance

The disruption of hypothalamic control of energy homeostasis may be a mechanism of 

antipsychotic drug-induced weight gain. The role of the circulating hormone from 

adipose tissue, leptin, which acts at its receptor in the hypothalamus in the regulation 

o f food intake and energy expenditure, provides clues as to  the mechanism. Several 

studies have reported an increase in plasma leptin in patients receiving antipsychotic 

drugs both fo r 10 weeks treatm ent in first episode drug nave patients (Zhang et a i,

2004) and 1 year treatm ent (Perez-lglesias et al., 2008). Increased leptin levels are also 

related to  antipsychotic drugs induced weight gain; the magnitude of increased plasma 

leptin is positively correlated w ith the magnitude of increase in BMI 

(Venkatasubramanian et al., 2010). This is a normal response when body weight 

increases which increases fat deposition and results in increased leptin secretion from  

adipocytes. But the increased plasma leptin levels fail to  suppress food intake in 

patients receiving antipsychotic drugs. Therefore, it has been suggested tha t there may 

be disruptions o f leptin signaling in the hypothalamus by the antipsychotic drugs 

(Reynolds and Kirk, 2010). However, the mechanisms by which plasma leptin levels 

increase in patients receiving antipsychotic drugs still unclear. It could be a normal 

response w ith body weight gain which increases fa t deposition results in increased 

leptin secretion from adipocytes; however, a study reported tha t atypical antipsychotic 

treatm ent increased leptin secretion in human adipocytes in vitro  (Sarvari et al., 2014). 

Therefore, peripheral drug effect on adipocyte secreting leptin cannot be excluded.

In addition, the genetic polymorphism o f leptin gene [LEP), -2548A/G is associated w ith  

antipsychotic drug-induced weight gain. The G allele o f the SNP is associated w ith  

greater weight increase follow ing antipsychotic drug treatm ent in firs t episode 

schizophrenia patients (Templeman et al., 2005). The LEP -2548A/G also has a reported 

interaction w ith the HTR2C -759C/T polymorphism on BMI and waist circumference in 

chronic schizophrenia patients (Yevtushenko et al., 2008). Presence o f the LEP -2548G
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allele in patients w ith the HTR2C -759C allele is associated with higher BMI and waist 

circumference (Yevtushenko et al., 2008) and obesity (Gregoor et al., 2010).

Several neurotransm itter systems are involved in food intake and body weight 

regulation and many receptors in these neurotransm itter systems are the targets of 

the antipsychotic drugs. These neurotransm itter systems include serotonin, histamine, 

noradrenaline and dopamine.

1.3.3.1.1 Serotonin receptors

It is well known tha t the 5-HT plays an im portant role in regulating food intake. 

Considering the second-generation o f antipsychotic drugs have differences in 5-HT 

receptor a ffin ity compared to first-generation antipsychotic drugs, 5-HT receptors 

therefore have been of interest to search fo r molecular mechanisms of antipsychotic 

drug-induced weight gain. 5-HT is a potent satiety signal illustrated by 5-HT 

adm inistration decreasing food intake in rodents (Blundell and Leshem, 1975). The 5- 

HT1A and 5-HT2C receptors are related to  food intake regulation. 5-HT1A agonists 

increase food intake (Dourish et al., 1985) while 5-HT2C agonists decrease food intake 

(Clifton et al., 2000).

5-HT1A receptor agonists increase food intake in animals (Voigt et al., 2002). Clozapine 

which causes weight gain is a 5-HT1A partial agonist and has high a ffin ity  fo r the 

receptor, whereas olanzapine which also cause weight gain has low a ffin ity  fo r this 

receptor (Richelson and Souder, 2000). Moreover, ziprasidone and aripiprazole which 

do not cause weight gain are 5-HT1A partial agonists (Reynolds and Kirk, 2010).

5-HT2C antagonists can increase food intake and weight gain in rats (Bonhaus et al., 

1997) and also attenuate the decreased food intake which is induced by 5-HT2C 

agonists (Clifton et al., 2000; Hayashi et al., 2005). Another study in mice, knockout of 

the 5-HT2C receptor results in increased feeding and obesity (Tecott et al., 1995). 

Antipsychotic drugs such as clozapine and olanzapine which are related to  the greatest 

weight gain have high affinities fo r the 5-HT2C receptors.

It has been suggested tha t 5-HT regulates NPY in mice (Redrobe et al., 2005). The 5-HT 

1B/2C receptor agonist meta-Chlorophenylpiperazine (mCPP) results in the rat in
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decreased food intake and NPY levels in the PVN indicating that the NPY may mediate 

the effect o f 5-HT on food intake (Dryden et al., 1996). The PVN is an im portant region 

involving food intake and body weight regulation and it is rich in the 5-HT2C receptor 

(Abramowski et a i, 1995; Clemett et a i, 2000). In addition, 5-HT2C also has an 

interaction w ith leptin; 5-HT2C antagonists attenuate the decreased food intake which 

is induced by leptin in rats (Hay-Schmidt et a i,  2001). Antipsychotic drug treatm ent 

can affect NPY neuron expression; chronic treatm ent w ith clozapine results in an 

increase in NPY-immunoreactive cell density in rat arcuate nucleus (Kirk et al., 2006), 

indicating tha t antagonism of the 5-HT2C receptors may, in part, result in disinhibition 

o f the NPY neurons and also indicates the role of NPY in clozapine-induced weight 

gain.

The role o f the 5-HT2C receptor in antipsychotic drug-induced weight gain is also 

demonstrated by pharmacogenetic studies. For example, Yuan et a i  (2000) have 

identified several haplotypes of genetic polymorphisms (-995G/A, -759C/T and - 

697G/C) in the prom oter region of the 5-HT2C receptor gene which are associated w ith 

obesity and diabetes in which the frequency of -995/-759/ and -697/ variants (A-T-C) 

was higher in non-obese subjects and non-diabetic subjects. The association o f the 

HTR2C -759C/T w ith antipsychotic drug-induced weight gain is mentioned previously in 

section 1.3. In addition, the T allele o f the HTR2C is associated w ith higher leptin levels 

(Templeman et a i, 2005).

1.3.3.1.2 Histamine receptors

Histamine is involved in food intake regulation. Antihistamine drugs enhance food 

intake and increase appetite (Orthen-Gambill, 1988). Histamine H I (H I) receptors may 

be involved in antipsychotic drug-induced weight gain through influence on food 

intake regulation and lower physical acitivity (enery expenditure) because H I 

antagonism also cause sedation (Richelson and Souder, 2000). Many antipsychotic 

drugs have high histamine H I receptor affinities which are closely correlated w ith 

antipsychotic drug-induced weight gain such as tha t w ith clozapine and olanzapine. 

The H I receptor a ffin ity is suggested to be the most reliable predictor o f weight gain 

(Wirshing et a i, 1999). Consistent studies in animals show tha t H I receptor 

antagonism increases feeding in rodents and H I knockout mice are prone to  weight
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gain (Masaki et al., 2001; Masaki et al., 2004). In these H I knockout mice exhibit 

partially attenuated leptin-induced feeding suppression (Masaki et al., 2001; Masaki et 

al., 2004). These findings indicate the involvement of histamine neurons and the H I 

receptors regulating food intake in affecting downstream signaling o f leptin in the 

brain.

Olanzapine treatm ent, but not aripiprazole or haloperidol treatm ent, reduces H I 

receptor mRNA expression in the ARC and downstream regions (Han et al., 2008). In 

addition, olanzapine treatm ent increases histamine neurotransmission which may be 

related to the change in receptor expression (Davoodi et al., 2008). Furthermore, 

olanzapine, clozapine, and quetiapine, but not risperidone, enhance H l-receptor- 

mediated 5' adenosine monophosphate-activated protein kinase (AMPK) in the 

hypothalamus (Kim et al., 2007). Risperidone and quetiapine have relative similar 

effects on weight gain but exhibit d ifferent effect on AMPK in the hypothalamus 

suggesting tha t there are other receptors such as 5-HT2C receptors in conjunction w ith 

dopamine D2 receptor tha t may also contribute to  weight gain in d iffe rent degrees 

w ith d ifferent drugs.

1.3.3.1.3 Adrenergic receptors

The adrenergic system plays a role in food intake regulation. Acute injections of 

noradrenaline (norepinephrine) into rat PVN cause hyperphagia and chronic injections 

result in body weight gain (Leibowitz et al., 1984). Two subtypes of alpha-adrenergic 

receptors (a l-  and a2-adrenoceptors) w ith in  the hypothalamic PVN exert opposing 

effects on food intake regulation. Injection o f the a l-adrenocepto r agonists, 

phenylpropanolamine (PPA), cirazoline, methoxamine, or 1-phenylephrine into the rat 

PVN decrease food intake (Wellman and Davies, 1992), and systemic injections of the 

a l-adrenerg ic antagonist prazosin (PRAZ) can effectively reverse the anorexia induced 

by systemic injections of PPA as well as cirazoline (Wellman and Davies, 1992). 

Adm inistration of the a2-adrenoceptor agonist, clonidine, stimulates food intake when 

injection either into PVN (Goldman et al., 1985) or periphery (McCabe et al., 1984). 

Antagonist actions at a l-adrenoceptors o f antipsychotic drugs could account fo r 

weight gain (Richelson and Souder, 2000; Reynolds and Kirk, 2010). In addition, the
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genetic polymorphism of the a2A-adrenoceptors may also be involved in antipsychotic 

drug-induced weight gain (Park et al., 2006).

Beta-adrenoceptors ((3-adrenoceptors) also play a role in body weight regulation. 

Knockout mice for all (3-adrenoceptors ((31/(32/(33) develop a progressive obesity in 

adulthood (Bachman et al., 2002) indicating the role o f these receptors in resistance to 

obesity. In addition, implication o f (3-adrenoceptors in weight gain is suggested by 

pharmacogenetic studies. Meta-analysis of human studies found tha t the genetic 

polymorphism of (33-adrenoceptor (Trp64Arg) is associated w ith obesity (Fujisawa et 

al., 1998; Hoffstedt et al., 1999; Thomas et al., 2000); w ith  the presence of the arginine 

allele exhibiting higher BMI and predicting weight gain. One study in schizophrenia 

patients found a trend (p=0.1) between the Trp64Arg polymorphism and clozapine- 

induced weight gain (Basile et al., 2001). However, others studies fail to  observe the 

association (Allison and Heo, 1998). The central (3-adrenoceptors are not the sites of 

antipsychotic drugs. And the two drugs w ith the highest liability fo r weight gain, 

clozapine and olanzapine do not have significant a ffin ity fo r (3-adrenoceptors.

1.3.3.1.4 Dopamine receptors

Dopamine plays an im portant role in determ ining food intake through action in many 

areas of the brain including hypothalamus. The effects of dopamine can vary 

depending on brain areas and its concentrations. Dopamine release in nucleus 

accumbens is associated w ith the reinforcement effect in feeding (Hajnal et al., 1997). 

In the hypothalamus, dopamine release in hypothalamic VMN and LHA affects the 

feeding pattern by influencing duration o f meal consumption (the size o f a meal) and 

the frequency of meals (Meguid et al., 2000). Amphetamine-induced anorexia is 

completely reversed by receiving the selective dopamine D1 receptor antagonist, but it 

is not affected by treatm ent w ith the selective D2 receptor antagonist (G ilbert and 

Cooper, 1985). However, intrahypothalam ic injections o f sulpiride, a specific D2 

receptor blocker, can attenuate amphetamine-induced anorexia in food-deprived rats 

and increase feeding and water drinking in satiated rats (Parada et al., 1988). In 

addition, D2 receptor antagonists illustrate the ir influence on feeding behaviour 

(Clifton et al., 1991). These studies suggest a role o f dopamine and its receptors in 

feeding regulation. Measurement by using PET and [C -ll]rac lop ride  (a radioligand fo r
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the dopamine D2 receptor), brain dopamine D2 receptor availability found to  be lower 

in obese individuals compared to controls; this decreased availability of dopamine D2 

receptor in obese subjects is correlated w ith increased BMI (Wang et al., 2001). Thus, 

it has been suggested that obese individuals have a dopamine deficiency which cause 

an increase in food intake leading to obesity. Treatment w ith antipsychotic drugs may 

decrease dopamine and induced food intake. However, atypical antipsychotic drugs 

which are associated w ith higher incidence o f weight gain have lower D2 receptor 

occupancy at effective doses compared to typical antipsychotic drugs (Kapur et al., 

2000; Pilowsky 2001).

1.4 Genetic variants associated with antipsychotic drug-induced 

weight gain in patients with schizophrenia

In addition to  the HTR2C -759C/T polymorphism tha t has influence on antipsychotic 

drug-induced weight gain as mentioned above (section 1.3), there are many other 

genetic polymorphisms that have been proposed or reported to  be associated w ith 

antipsychotic drug-induced weight gain which are shown in Table 1.4.

Table 1.4: Candidate genes associated w ith  antipsychotic drug-induced w e ight gain

Gene Name Location Function(s)* SNP related 
AIWG

Reference

ADIPOQ Adiponectin 3q27 fat metabolism, 
insulin sensitivity, 
direct anti-diabetic, 
anti-atherogenic and 
anti-inflammatory 
activities

rsl501299 (Wu et al., 
2011)

ADRA2A Adrenoceptor 
alpha 2A

10q25.2 modulation of 
neurotransmission, 
smooth muscle 
contraction, and 
thermoregulation

rsl800544 (Park et al., 
2006; Wang 
et al., 2005b; 
Sickert et al., 
2009)

ADRB3 Adrenoceptor 
beta 3

8pl2 lipolysis and 
thermogenesis

rs4994 (Ujike et al., 
2008)

BDNF Brain-derived
neurotrophic
factor

llp l4 .1 survival and 
differentiation of 
neurons, synaptic 
transmission and 
neuroplasticity

rs6265 (Zhang et al., 
200;, Zai et 
al., 2012; Tsai 
et al., 2011)

CCKBR Cholecystokinin 
B receptor

l lp l5 .4 anxiety, nociception, 
neuroleptic activity, 
gastric acid 
release, gastric

rs2929183 (Tiwari et al., 
2010b)
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Gene Name Location Function(s)* SNP related 
AIWG

Reference

mucosal cell growth 
and histamine release

CNR1 Cannabinoid 
receptor 1

6ql4-
q l5

is involved in the 
cannabinoid-induced 
CNS effects (including 
alterations in mood 
and cognition)

rs806378 (Tiwari et a i, 
2010a)

DRD2 Dopamine D2 
receptor

llq23.2 modulation of 
locomotion, reward, 
reinforcement and 
memory and learning

rs6277,
rsl079598,
rsl800497,
rs4436578,
rsl799732

(Muller et al., 
2012; Hong et 
al., 2010; 
Lencz et al., 
2010)

FTO Fat mass and 
obesity- 
associated 
protein

16ql2.2 Dioxygenase (repairs 
alkylated DNA and 
RNA by oxidative 
demethylation), 
regulation of 
energy homeostasis, 
body size and body 
fat accumulation

rs9939609,
rs9922047

(Reynolds et 
al., 2013; 
Song et al., 
2014; Tiwari 
et al., 2011)

GHRL Ghrelin 3p26-
p25

stimulation of hunger, 
appetite, gastric acid 
secretion and 
gastrointestinal 
motility, and adiposity

rs27647 (Yang et al., 
2012)

GNB3 Guanine 
nucleotide 
binding protein 
(G protein), 
beta
polypeptide 3

12pl3 modulator or 
transducer in various 
transmembrane 
signaling systems

rs5443 (Ujike et al., 
2008; Wang 
et al., 2005a)

HTR2A Serotonin 2A 
receptor

13ql4-
q2 i

appetite control, 
regulation of neural 
activity, perception, 
cognition, mood, 
behavior, sleep, and 
thermoregulation,

rs6311
rs6313

(Mou et al., 
2005; Ujike et 
al., 2008)

LEP Leptin 7q31.3 regulation of energy 
homeostasis, obesity, 
reproduction, glucose 
homeostasis, bone 
formation, wound 
healing and 
immune system

rs7799039,
rs4731426

(Templeman 
et al., 2005; 
Wu et al., 
2011; Kuo et 
al., 2011; 
Srivastava et 
al., 2008)

LEPR Leptin receptor lp31 receptor for 
mediating leptin 
effects

rsll37101 (Gregoor et 
al., 2009; 
Gregoor et 
al., 2011)

MC4R Melanocortin 4 
receptor

18q22 energy homeostasis, 
somatic growth,

rs489693,
rsl7782313,

(Malhotra et 
al., 2012;
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Gene Name Location Function(s)* SNP related 
AIWG

Reference

pigmentation, 
inflammation, 
immunomodulation, 
steroidogenesis, and 
temperature control

rs8087522,
rs2229616

Czerwensky 
et al., 2013a, 
2013b,
Chowdhury et 
al., 2013; Kuo 
eta!., 2011)

MTHFR Methylene
tetrahydrofolate
reductase

lp36.3 key enzyme in folate 
metabolism, 
important in 
epigenetic 
modification

rsl801131,
rsl801133

(Ellingrod et 
at., 2008; van 
Winkel et al., 
2010a, 
2010b)

NPY Neuropeptide
Y

7pl5.3 control of feeding, 
circadian rhytm, 
pituitary hormone 
release, anxiolysis

rsl6147,
rs5573,
rs5574

(Tiwari et al., 
2013)

PPARG Peroxisome
proliferator-
activated
receptor
gamma

3p25 regulation of
adipocyte
differentiation

rsl801282 (Herken et al., 
2009)

SNAP-
25

Synaptosomal- 
associated 
protein, 25kDa

20pl2-
p ll.2

regulation of
neurotransmission
release

rsl051312,
rs3746544,
rs8636

(Musil et al., 
2008)

AIWG, antipsychotic drug-induced weight gain; *data from database 

(www.genecards.org)

From Table 1.4, some of the genetic polymorphisms which are strong candidate 

polymorphisms associated w ith antipsychotic drug-induced weight gain include those 

in: MTHFR which is a strong candidate gene associated w ith epigenetic modification 

and metabolic syndrome; HTR2A and ADRA2A, which are antipsychotic drug target 

receptors and involved in appetite control; FTO, MC4R, and BDNF which are the strong 

candidate genes associated w ith BMI in GWAS; GNB3 which is involved in mediating 

the serotonergic effect. These strong candidate polymorphisms associated w ith 

antipsychotic drug-induced weight gain on which this work has focused w ill be 

described in the follow ing section.

1.4.1 MTHFR

Recently, genetic variants of the m ethylenetetrahydrofolate reductase (MTFIFR) gene 

have been proposed as potential predictors for antipsychotic induced metabolic side 

effects (Kuzman and Muller, 2012). MTHFR exerts an im portant role in fo late  and 

homocysteine metabolism by catalysing the reduction o f 5,10-
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m ethylenetetrehydrofolate to 5-m ethylenetetrahydrofolate (5-MTHF), which is used in 

methionine synthesis from homocysteine. The methionine is fu rther converted to  S- 

adenosylmethionine (SAM), which is a major methyl donor in a wide variety of 

enzymatic processes including the methylation of DNA (Fox and Stover, 2008). MTHFR 

deficiency can increase serum homocysteine while the decrease in 5-MTHF and SAM 

causes deficits in DNA methylation, DNA synthesis and repair, and may predispose to 

neurodevelopmental and oncogenic processes resulting in the development o f many 

disorders including cardiovascular disease, renal failure, cancer and congenital 

abnormalities (Ueland et al., 2001).

High plasma homocysteine is a risk factor fo r metabolic syndrome (Yakub et al., 2014), 

although the link between homocysteine and metabolic syndrome is not well 

established. Elevated homocysteine also is an independent risk factor fo r 

cardiovascular diseases such as coronary heart disease and stroke (Selhub 2008; Wang 

et al., 2007a). Homocysteine has been shown to  be a throm bogenic and atherogenic 

substrate that may be lead to atherosclerotic phenomena and adverse cardiometabolic 

events (Guilland et al., 2003). Hyperhomocysteinemia also has been linked to 

hypertension (Yakub et al., 2014; Lim and Cassano, 2002; Wang et al., 2014) via 

homocysteine-induced arterio lar vasoconstriction (Vermeulen et al., 2001; M ujum dar 

et al., 2002), vascular endothelia injury (Harker et al., 1983), and decreased vasodilator 

responsiveness (Cheng et al., 2011). On the other hand, homocysteine has been linked 

to lower high-density lipoproteins (HDL) (Yakub et al., 2014; Baszczuk et al., 2014). 

Global DNA hypomethylation in vascular smooth muscle cells has been suggested as a 

mechanism linking homocysteine to atherosclerosis (Obeid and Herrmann, 2009) as 

well as lipid accumulation in tissues (Yideng et al., 2007).

The functional polymorphisms of MTHFR located w ith in  the coding region include

677C/T (rsl801133) and 1298A/C (rsl801131). The T allele o f the 677C/T SNP causes

an amino acid substitution from  an alanine to  a valine at codon position 222 (exon 4)

(Frosst et al., 1995). The C allele o f the 1298A/C results in a change from  a glutamine

to alanine at codon position 429 (exon 7) and is found in the regulatory region o f the

MTHFR enzyme (van der Put et al., 1998). The variant alleles o f these SNPs (T allele o f

677C/T and C allele of the 1298A/C) are associated w ith reduction in MTHFR enzyme

activity (Le Marchand et al., 2002). Therefore, the SNPs located in coding regions tha t
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alter amino acids may affect protein funtion throught alteration of conformation or 

stability of protein especially at the catalytic binding site. In addition to  a change in the 

encoded amino acids (nonsynonymous), SNPs can be silent (synonymous) or occur in 

the noncoding regions. They may influence prom oter activity (and so gene expression), 

messenger RNA (mRNA) conformation (stability), and subcellular localization of mRNAs 

and/or proteins and hence may produce disease (Shastry, 2009), fo r example the T 

allele o f the MTHFR 677C/T is significantly associated w ith schizophrenia (Lochman et 

al., 2013).

The association of MTHFR polymorphisms w ith metabolic syndrome has been reported 

in the general population. Obesity has been associated w ith MTHFR 1298A/C (Terruzzi 

et al., 2007) and 677C/T genotypes (Lewis et al., 2006). Carriage of the 677T allele is 

associated w ith insulin resistance (Chen et al., 2010; Lunegova et al., 2011). 

Association of the 677T allele w ith central obesity, hypertriglyceridemia and low levels 

o f HDL cholesterol was also reported in the la tter study (Lunegova et al., 2011). A 

replicated study reported tha t the 677T allele but not the 1298A/C polymorphism of 

MTHFR was associated w ith a greater risk o f developing metabolic syndrome and the 

TT genotype was associated w ith risk o f insulin resistance w ith  greater central 

adiposity induced by antipsychotic treatm ent (Ellingrod et al., 2008, 2012). Others 

have reported the association o f metabolic syndrome in schizophrenia w ith the 

1298A/C polymorphism in 518 Caucasian patients (van Winkel et al., 2010a). These 

authors also reported tha t the 1298C variant was associated w ith an increased weight 

and impaired glucose tolerance in 104 Caucasian patients who had received 

antipsychotic treatm ent fo r 3 months (van Winkel et al., 2010b).

1.4.2 ADRA2A

Genetic variants of the adrenergic a-2a receptor (ADRA2A) gene have been proposed 

as a predictor fo r antipsychotic drug-induced weight gain. ADRA2A receptor has a 

critical role in regulating hypothalamic-pituitary-adrenal (HPA) axis and in regulating 

neurotransm itter release from  sympathetic and adrenergic nerves in the brain (Delitala 

et al., 1994; Langer, 1997; Hein et al., 1999). This receptor plays an im portant role in 

lipolysis, thermogenesis and also regulation of food intake (Park et al., 2006; Arner,

1992). Activation at alpha-2 adrenergic receptors decreases heat production and
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lipolysis rate (Arner, 1992). In addition, direct injection of a selective alpha-2 

adrenergic receptor agonist into the PVN of rats resulted in increased food intake 

(Wellman et al., 1993). Obesity-prone rats showed lack of ability to alter brain alpha-2 

adrenergic receptors in regulating glucose levels (Levin and Planas, 1993). In addition, 

a direct overexpression of ADRA2A in pancreatic beta cells of transgenic mice may 

alter the regulation of insulin secretion and glucose metabolism (Devedjian et al., 

2000 ).

The -1291C/G polymorphism is located in the prom oter region or regulatory region of 

the ADRA2A gene and could therefore affect the gene expression and so a lter receptor 

density. Previous findings found tha t the -1291C/G polymorphism was significantly 

associated w ith receptor binding and density (Deupree et al., 2006). The C allele o f this 

SNP is significantly associated w ith a protective effect for schizophrenia risk (Lochman 

et al., 2013). The G allele shows a better response to  methamphetamine treatm ent 

(Cheon et al., 2009; Polanczyk et al., 2007). This SNP has been reported to be 

associated w ith body fat accumulation (Garenc et al., 2002) and sympathetic-HPA 

system in the hypothalamus (Rosmond et al., 2002a).

The ADRA2A -1291C/G polymorphism has been associated with olanzapine-/clozapine- 

induced weight gain in Asian schizophrenia patients (Park et al., 2006; Wang et al., 

2005b); G allele carriers showed more weight gain. However, European samples have 

shown the opposite; the G allele was reported to  be protective against weight gain 

follow ing antipsychotic treatm ent (Sickert et al., 2009); some studies did not observe 

an association of the SNP w ith weight gain or metabolic syndrome in schizophrenia 

patients (De Luca et al., 2011; Risselada et al., 2010).

1.4.3 HTR2A

The 5-HT2A receptor is an im portant site of action of atypical antipsychotic agents 

(Kane, 1994). Several post-mortem studies have shown a decrease in 5-HT2A receptor 

density in the fronta l cortex o f schizophrenic patients (M ita et al., 1986; Laruelle et al.,

1993). In addition, association between the HTR2A 102T/C polymorphism and 

schizophrenia has been reported (Arranz et al., 1995; Williams et al., 1996).
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The 5-HT2A receptor is also involved in food intake and cortisol secretion (Currie and 

Coscina, 1998; Rittenhouse et al., 1994). There is evidence illustrating the role of 

cortisol in abdominal obesity (Bjorntorp and Rosmond, 2000). It has long been 

recognized that the serotonin is involved in regulating cortisol secretion or HPA axis 

function (Dinan, 1996), and it has been suggested tha t cortisol secretion is regulated 

by central 5-HT2A (Rittenhouse et al., 1994). Furthermore, adm inistration of 5-HT2A 

receptor agonists decreased the NPY stimulated food intake in rats (Currie and 

Coscina, 1998).

The HTR2A -1438G/A polymorphism is located in the prom oter region and is 

associated w ith prom oter activity; the presence of an A allele has greater prom oter 

activity relative to  the G allele (Parsons et al., 2004), although an earlier study failed to 

find the difference between the G and A alleles in luciferase reporter gene expression 

(Spurlock et al., 1998). Therefore, the effect o f genetic polymorphism on 

transcriptional activity o f the HTR2A gene to bring about a difference in receptor 

expression is still unknown.

In the general population, the HTR2A -1438 GG genotype is associated w ith  greater 

BMI, waist-to-hip ratio, and abdominal sagittal diameter along w ith less suppression of 

cortisol suggesting the involvement o f the HPA-axis and serotonergic system in the 

pathology of abdominal obesity (Rosmond et al., 2002b). In addition, the HTR2A - 

1438A allele is associated w ith lower energy intake and alcohol consumption in a 

French sample of overweight subjects (Aubert et al., 2000); however, the association 

was not significant after correction fo r the number o f comparisons. Some studies 

found tha t the HTR2A -1438G/A was not related to  BMI or obesity (Aubert et al., 2000; 

Hinney et al., 1997). The HTR2A -1438G/A was associated w ith clinical response to  

clozapine in which homozygosity fo r the G allele was more frequent among non

responders than in responders (Arranz et al., 1998). Ujike et al. (2008) reported the 

association between multip le genetic polymorphisms of the 102T allele o f HTR2A 

rs6313, the 825T allele o f G-protein beta3 subunit (GNB3), the 23Cys allele of HTR2C 

w ith olanzapine-induced weight gain in schizophrenia patients in Japan). O ther studies 

reported the association between the 102T allele and risperidone-induced weight gain 

in Chinese patients, and the association between TT genotype and weight gain in

Caucasians w ith multip le antipsychotic drug treatm ents (review by (Balt et al., 2011).
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Another study found no significant association of the HTR2A -1438G/A polymorphism 

w ith antipsychotic drug-induced weight gain in Chinese Han patients w ith 

schizophrenia (Mou et a i, 2005). The HTR2A -1438G/A is in complete linkage 

disequilibrium (LD) w ith the HTR2A 102C/T polymorphism (A w ith T) (McMahon et al., 

2006).

1.4.4 MC4R

The melanocortin-4-receptor (MC4R) is a key in regulating food intake, body weight, 

and glucose homeostasis (Cone, 2006). MC4R is a G protein-coupled receptor activated 

by cx-Melanocyte-stimulating hormone (a-MSH) and blocked by agouti-related protein 

(AgRP) (Hinney et a i,  2013; Tao 2010). MC4R is not only associated w ith regulation of 

energy balance by decreasing food intake and increasing energy expenditure (Fan et 

a i,  1997), it has also been associated w ith nutrient absorption, lipid metabolism, 

adiposity, thermogenesis, insulin secretion, and appetite (Adan et a i,  2006; Malhotra 

et al., 2012). In addition, the melanocortin pathway has interactions w ith  other 

pathways or hormones such as leptin, 5-HT (Zhou et al., 2007), NPY, AgRP, POMC 

(Biebermann et al., 2012), and autonomic nervous system (Rossi et al., 2011; Sohn et 

al., 2013), glucagon-like peptides (Guan et al., 2012; Ma et al., 2007), cholecystokinin 

(Fan et al., 2004), and vagal afferent fibers (Gautron et al., 2010).

The MC4R is a very strong candidate gene influencing antipsychotic drug-induced 

weight gain. The rsl7782313, a common genetic variant is located 188 kb downstream 

from  MC4R gene has no known functional relevance but it has been recently identified 

as a gene for obesity susceptibility in a genome-wide association study (GWAS) of 

249,796 individuals (Speliotes et a i, 2010) in which the C allele has been associated 

w ith higher BMI, food intake, body fa t mass, weight, and risk o f obesity (Loos et a i,  

2008; Stutzmann et a i,  2009; Xi et a i, 2012; Loos 2011). The mechanistic link may be 

due to the risk allele o f this polymorphism influencing reward mechanisms, particularly 

in females because a recently study reported tha t female homozygous risk allele 

carriers showed significant increase in grey m atter volume in the right amygdala, 

which is a region known to  influence eating behaviour, and in the right hippocampus 

(Horstmann et a i,  2013). In addition, the obesity effect o f the risk allele may be due 

cerebral insulin resistance (Tschritter et a i,  2011). It has been hypothesized tha t the
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polymorphism may down-regulate the MC4R function or MC4R expression but fu rther 

study is required to address this question.

There have been two studies investigating the association of the rsl7782313 C/T and 

antipsychotic drug-induced weight gain; the firs t study found the significant 

association between the C allele and weight gain after a 4-week second generation 

antipsychotic drug treatm ent in Caucasian patients (Czerwensky et al., 2013a). 

However another study did not observe any association between rsl7782313 and 

antipsychotic drug-induced weight gain after a 14-week treatm ent in European- 

ancestry patients (Chowdhury et al., 2013). Therefore, further studies are needed to 

confirm  the association of this polymorphism w ith antipsychotic drug-induced weight 

gain.

Another SNP, the rs489693 A/C polymorphism located approximately 190 kb 

downstream from  the MC4R gene has no known functional relevance but it has been 

identified in GWAS to be associated w ith second generation antipsychotic drug- 

induced weight gain in 4 cohorts (Malhotra et al., 2012) in which the AA genotype was 

associated w ith greater weight gain. This finding has been replicated in another study 

o f Caucasian schizophrenia patients (Czerwensky et al., 2013b).

1.4.5 GNB3

The G-protein beta3 subunit (GNB3) protein plays im portant roles in intracellular signal 

transduction and adipogenesis (Allison et al., 1999; Comuzzie and Allison, 1998; 

Malbon, 1997). The GNB3 825C/T polymorphism is located on exon 10 o f the GNB3 

gene; the T allele was found to  be associated w ith the alternative splicing w ith  a 

deletion of 41 amino acids, this splicing variant is active (enhances G-protein 

activation) and increases cellular responses, and thus increased In vitro  cell 

proliferation and increased intracellular signal transduction (Siffert et al., 1998). The 

polymorphism has been associated w ith many pathophysiological conditions, fo r 

example: the T allele is associated w ith an increased risk fo r hypertension (Siffert et al., 

1998), BMI and obesity (Siffert et al., 1999), type II diabetes (Kiani et al., 2005), and 

depression (Klenke et al., 2011). The influences of GNB3 825C/T polymorphism on 

lipolysis has been also reported tha t the T allele results in decreased GNB3 production
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in fa t cells and thus inh ib it lipolysis via p i- ,  p2~, and p2a-adrenergic receptor signalling 

(Ryden et a i, 2002).

The TT genotype of the GNB3 825C/T polymorphism has been associated with 

antipsychotic drug-induced weight gain in Japanese schizophrenia patients who are 

receiving olanzapine fo r 8-24 weeks (Ujike et al., 2008) and also in Chinese 

schizophrenia patients who are receiving clozapine fo r 13 months (Wang et al., 2005a). 

However, several studies and meta-analyses failed to observe a significant association 

(Tsai et al., 2004; Park et al., 2009; Bishop et al., 2006; Souza et al., 2008). These 

controversies suggest tha t more studies are needed to  elucidate this association. 

Interestingly, the C allele o f the GNB3 825C/T polymorphism which exhibits lower 

signal transduction has been associated w ith clinical improvement w ith antipsychotic 

treatm ent in schizophrenia patients (M uller et al., 2005; Kohlrausch et a i, 2008). This 

finding suggesting tha t the genetic susceptibility fo r decreased signal transduction may 

enhance antipsychotic efficacy as well as antipsychotic adverse effects.

1.4.6 BDNF

Brain-derived neurotrophic factor (BDNF) plays critical roles in the nervous system 

including neuronal cell growth and maintenance, d ifferentiation, activity-dependent 

plasticity and survival o f neurons in the central nervous system (Noble et al., 2011). 

BDNF influences many neurotransm itters such as noradrenergic, dopaminergic, 

serotonergic, glutamatergic, and cholinergic neurotransm itters (Gratacos et a i,  2007; 

Russo-Neustadt, 2003; Tapia-Arancibia et a i,  2004). Therefore, BDNF is implicated in 

many mental disorders and disturbed behaviors (Russo-Neustadt, 2003). Serum BDNF 

was found to  be decreased in schizophrenia patients (Zakharyan and Boyajyan, 2014). 

In addition, the antipsychotic drugs may also affect the synthesis of BDNF in the brain; 

chronic olanzapine or risperidone treatm ent resulted in decrease BDNF in rat brains 

(Angelucci et a i,  2000; Angelucci et a i,  2005).

It is reported tha t BDNF is im portant in food intake and body weight regulation

(Lebrun et a i,  2006). Studies in animals and humans indicated tha t hypothalamic BDNF

and its receptor, tropomyosin-related kinase B (TrkB) appear to inh ibit food intake and

increase energy expenditure, being therefore related to body weight gain and obesity

(Unger et a i, 2007; Toriya et a i, 2010; Zhang et a i, 2007). On the other hand, brain
42



infusion of BDNF in rats resulted in appetite suppression, weight loss, and increases in 

5-HT (Pelleymounter et al., 1995). BDNF is highly expressed in the VMN hypothalamus 

(Unger et al., 2007) which is involved in regulation of energy balance. Nicholson et al. 

(2007) demonstrated tha t activation of MC4R causes an increase in BDNF release from  

hypothalamus in both in vitro  and in vivo experiments, indicating that BDNF is an 

im portant downstream mediator of MC4R signaling in regulation of food intake. The 

effect of BDNF in MC4R signaling is dependent on TrkB activation (Tsao e ta l., 2008).

The BDNF rs6265 G/A polymorphism is a missense change (G196A) in the coding exon 

of the BDNF gene at position 66 which results in a non-conservative amino acid change 

from  valine to  methionine and it appears to disrupt cellular processing, protein 

trafficking, and activity-dependent BDNF secretion (Egan et al., 2003; Chen et al.,

2004). This SNP was also associated w ith the dendritic targeting disruption o f BDNF 

mRNA (Chiaruttini et al., 2009). The Met allele (or A allele) has been associated w ith 

decreased BDNF in schizophrenia patients (Zakharyan and Boyajyan, 2014), while the 

Val/Val genotype was associated w ith the improvement in clinical symptom response 

to  olanzapine (Nikolac Perkovic et al., 2014) and clozapine (Zai et al., 2012; Zhang et 

al., 2013b). However, other studies have found no association of the polymorphism 

w ith treatm ent response to  risperidone (Xu et al., 2010), clozapine (Hong et al., 2003), 

chlorpromazine (Xu et al., 2008), or typical antipsychotic drugs (Anttila et al., 2005). 

The genetic polymorphism of BDNF rs6265 M e t/M e t (or AA) genotype has been 

reported to be associated w ith  antipsychotic drug-induced weight gain, especially in a 

male subgroup in Chinese chronic schizophrenia (Zhang et al., 2008). Furthermore, a 

haplotype of BDNF rs6265 and BDNF rsl519480 (G-A haplotype) was associated w ith 

atypical antipsychotic drug-induced weight gain in European ancestry chronic 

schizophrenia (Zai et al., 2012). However, one study did not find the association 

between the BDNF rs6265 G/A polymorphism and antipsychotic drug-induced weight 

gain in Chinese chronic schizophrenia treated w ith atypical antipsychotic drugs 

including clozapine, olanzapine, or risperidone but the BDNF rs ll03 0 10 1  TT genotype 

and the rsll030101-T-alle le-re lated haplotype (rs ll030101 , rs6265, and rsl2291186) 

was also associated w ith weight gain (Tsai et al., 2011).
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1.4.7 FTO

The fat mass and obesity-associated gene (FTO) gene was the first obesity-related gene 

discovered by large-scale GWAS in 2007 and it was strongly associated w ith BMI and 

obesity (Frayling et a i,  2007) which was replicated in d ifferent populations (Fawcett 

and Barroso, 2010). Epidemiological and functional studies suggest tha t FTO confers an 

increased risk fo r obesity through change in food intake and preference (Loos and Yeo, 

2014). FTO is highly expressed in the hypothalamus which regulates energy balance 

(W ilier et a i,  2009). The expression of FTO has been associated w ith food intake. 

Studies in mice reported that complete or partial inactivation o f the Fto gene 

protected from  obesity (Church et a i,  2009; Fischer et a i, 2009) whereas the 

overexpression o f Fto increased food intake and obesity (Church et a i,  2010). The 

expression of FTO is nutritionally regulated; deprivation o f the essential amino acids 

caused down-regulation of FTO mRNA and protein in mouse and human cell lines 

suggesting a role o f FTO in sensing of essential amino acid availability (Cheung et a i, 

2013). The FTO protein is involved in the hypothalamic leptin signaling pathway (Wang 

et a i, 2011). These findings suggested that the expression of FTO and leptin signaling 

pathway may influence the regulation o f food intake.

Another biological function of FTO is a nucleic acid demethylase. Several in vitro  

studies have shown that FTO is a single-stranded DNA and RNA demethylase and is 

involved in nucleic acid repair or modification processes (Jia et a i,  2008; Gerken et a i,  

2007; Han et al., 2010), and this role of FTO may influence the expression of certain 

genes through epigenetic modification.

The FTO rs9939609 polymorphism is located in intron-1 o f the FTO gene (Cheung and 

Yeo, 2011), and the association of the m inor A allele o f the polymorphism w ith 

increased BMI has been well documented (Frayling et al., 2007; Qi et al., 2014). The 

FTO rs9939609 polymorphism has been associated gene expression; the A allele o f FTO 

rs9939609 was associated w ith increased levels o f the FTO transcripts studied in skin 

fibroblasts and peripheral blood (Berulava and Horsthemke, 2010). The FTO rs9939609 

m inor A allele was also associated w ith increases in tota l, fat, and prote in dietary 

intake (Timpson et a i, 2008; Speakman et a i,  2008), and increased hunger and 

decreased satiety (Wardle et a i,  2008; den Hoed et a i,  2009). In addition, the

44



participants w ith the A allele o f the FTO rs9939609 polymorphism were more likely to 

prefer a meat-based diet compared w ith the TT participants who preferred a plant- 

based diet (Yang et al., 2014).

There have been several studies that demonstrated the association of polymorphisms 

of FTO w ith DNA methylation of FTO gene itself. Bell et al. studied the genotype- 

epigenetic interaction and identified haplotype-specific methylation in the FTO LD 

block (46kb) T2DM/obesity-susceptibility locus. They found increased DNA methylation 

on an FTO obesity susceptibility haplotype tagged by the rs8050136 risk allele A. The 

FTO obesity susceptibility haplotype contained rsl421085 (C allele), rsl7817449 (G 

allele), rs8050136 (A allele) which was a tagged risk allele, rs3751812 (T allele), 

rs9939609 (A allele), rs7202116 (G allele), and rs9930506 (G allele) which were in 

complete linkage disequilibrium (LD) (Bell et al., 2010). Toperoff et al. (2012) reported 

a significant hypomethylation of a CpG site in the firs t intron of the FTO gene o f type 2 

diabetes mellitus (T2DM) subjects relative to controls and this effect was independent 

o f the polymorphism; the CpG methylation site is located near rs ll2 1 9 8 0  which is a 

T2DM/obesity-associated polymorphic site. These studies demonstrate the association 

of FTO DNA methylation and associated diseases as well as the association between 

the FTO polymorphisms and FTO DNA methylation tha t might provide an epigenetic 

marker o f diseases.

Not only FTO polymorphisms had an effect on DNA methylation in FTO gene itself, it 

also had an effect on DNA methylation on other genes; the first evidence was provided 

by Almen et al. (2012) using genome-wide analysis to determine the association o f the 

FTO rs9939609 w ith epigenetic changes in Greek preadolescent girls and they reported 

a significant d ifferential methylation level in many genes between carriers o f the FTO 

rs9939609 TT and AA (risk allele), and also found a significant d ifferential m ethylation 

level in many genes between obesity and normal-weight female controls.

Not only DNA methylation, but also RNA methylation is influenced by FTO. An in vitro  

study showed tha t recombinant human FTO protein exhibited slightly higher efficiency 

in oxidative demethylation of 3-methyluracil (3-meU) in single-stranded RNA (ssRNA) 

than 3-methylthym ine (3-meT) in single-stranded DNA (ssDNA) which suggesting tha t 

the methylated RNAs are the preferred substrates fo r FTO (Jia et al., 2008). Analysis of
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global N(6)-methyladenosine (m(6)A) modification o f RNA in the midbrain and striatum 

of Ffo-deficit mice found that there was an increase in adenosine methylation in a 

subset of RNAs im portant fo r neuronal signaling, including dopamine transmission 

(Hess et al., 2013). Study in mice showed the Fto gene was a transcriptional coactivator 

tha t enhanced the binding of the CCAAT/enhancer binding proteins (C/EBPs) to 

unmethylated and methylated DNA, this results in promotion of the transcriptional 

functions of C/EBP family, suggesting a role o f Fto in epigenetic regulation of 

adipogenesis (Wu et al., 2010).

Association between the FTO rs9939609 polymorphism and antipsychotic drug- 

induced weight gain has been published. A study in first episode Chinese Han 

schizophrenia patients (n=250) demonstrated that the body weight and BMI o f the TT 

genotype carriers were significantly lower than those of the A allele patients both at 

baseline and after risperidone treatm ent fo r 6 months (Song et a i, 2014). In another 

study o f first episode schizophrenia patients in Spain (n=239) found a significant 

association of the AA genotype of the FTO rs9939609 polymorphism w ith the higher 

baseline BMI compared to  AT/TT group but there was no significant difference of 

weight increase between tw o groups of genotype after 1 year antipsychotic treatm ent 

(Perez-lglesias et a i, 2010). Reynolds et al. (2013) demonstrated tha t the A allele of 

the FTO rs9939609 polymorphism has been associated w ith BMI in chronic 

schizophrenia patients but not w ith weight gain in first-episode schizophrenia patients, 

although the AA genotype had higher baseline weight and baseline BMI than T allele 

carriers. However, other studies in chronic schizophrenia failed to  observe the 

association between the polymorphism and BMI or antipsychotic drug-induced weight 

gain (Watanabe et al., 2012; Shing et al., 2014).
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1.5 Epigenetic factors associated with antipsychotic drug- 

induced weight gain

1.5.1 Epigenetic mechanisms

Normally, a cell contains the complete hereditary inform ation in the form  of DNA. The 

complete DNA sequences in a cell are known as the genome. The basic building blocks 

of DNA are nucleotides tha t contain bases Adenine (A), Thymine (T), Cytosine (C), and 

Guanine (G). The DNA chain wraps around histones form ing a structure known as 

nucleosome. M ultip le nucleosomes form  chromatin. The chemical m odification on 

DNA and histones that does not alter the DNA sequences which control gene 

expression, is known as epigenetics; in other words, epigenetics is the study of changes 

in gene function that does not involve changes in DNA sequence. The epigenetic field is 

growing rapidly; but the definition o f epigenetic terms is still evolving. Mann (2014) 

has summarized current definitions of epigenetics as shown in Table 1.5.

Table 1.5: Some current defin itions o f epigenetics

The study of changes in gene expression, which occur in organisms w ith d ifferentiated 

cells, and the m itotic inheritance of given patterns of gene expression' (Holliday,

1994).

The study of m itotically and/or meiotically heritable changes in gene function that 

cannot be explained by changes in DNA sequence' (Riggs et al., 1996).

'...the structural adaptation o f chromosomal regions so as to  register, signal or 

perpetuate altered activity states' (Bird, 2007).

'An epigenetic tra it is a stably heritable phenotype resulting from  changes in a 

chromosome w ithout alterations in the DNA sequence' (Berger et al., 2009).

'...the inheritance of variation (-genetics) above and beyond (epi-) changes in the DNA 

sequence' (Bonasio et al., 2010).

Source: From (Mann, 2014)

The main mechanisms of epigenetics include DNA methylation, histone protein 

modifications, and the non-coding RNA strands. DNA methylation and histone protein 

modifications can regulate gene expression through inducing the change in chromatin 

structure while the activity o f non-coding RNA strands can regulate gene expression at
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the transcriptional and post-transcriptional levels; it plays role in chromatin 

remodeling, histone modification, DNA methylation targeting, and gene silencing. Non

coding RNA molecules are functional RNA that are transcribed from  DNA but are not 

translated into proteins. They have a wide range of functions, including control of 

chromosome dynamics, splicing, RNA editing, translational inhibition and mRNA 

destruction (M attick and Makunin, 2006).

1.5.1.1 DNA methylation

DNA methylation refers to  the covalent addition of a methyl group to  position 5 of the 

cytosine pyrim idine ring (C) o f a cytosine-guanine dinucleotide (CpG) on DNA, giving 

rise to 5-methylcytosine (5mC). In mammalian cells, approximately 3% to 5% of the 

cytosine residues in genomic DNA are present as methylated cytosine (5mC) (Ehrlich et 

at., 1982), and 70% to 80% o f 5mC residues are found in the CpG islands (Bird, 1986). 

CpG islands are often located at the promoters or regulatory regions o f the house

keeping genes and can be also observed in the tissue-specific genes (Antequera, 2003). 

Unmethylated CpG islands are associated w ith the housekeeping genes, whereas the 

CpG islands of many tissue-specific genes are found to be methylated, except in the 

tissue where they are expressed. CpG islands are also located in coding region of the 

genes or the downstream of the transcription start site such as human APOE gene 

(Larsen et o i, 1992). Methylation o f CpG islands downstream of transcription in itia tion 

site does not block the transcriptional in itiation or elongation in mammalian cells 

(Jones, 1999).

In mammals, DNA methylation is involved in many biological processes including the 

genomic imprinting, X-chromosome inactivation, regulation o f gene expression, and 

silencing o f transposable elements (Li and Zhang, 2014). The correct pattern o f DNA 

methylation is necessary fo r normal mammalian development (Li et o i, 1993, 2002). 

Aberrant DNA methylation due to  failure to maintain correct methylation patterns can 

lead to  several diseases including neurodevelopmental defects, neurodegenerative, 

neurological diseases, autoimmune diseases, and cancers (Lv et a i,  2012).

DNA methylation is known to  be associated w ith silencing of genes; however, there are

an increasing number of genes found to  be activated by DNA m ethylation such as

mouse insulin-like growth factor 2 (Igf2 ) in which DNA methylation blocks the binding
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of repressor proteins to  a silencer element in the gene (M urrell et al., 2001; Eden et 

al., 2001).

DNA methylation regulates gene expression through several mechanisms including: (1) 

methylation of cytosine residues can directly prevent the binding o f transcription 

regulatory factors to  the ir target sites on DNA sequences. In this way, DNA methylation 

affects gene transcription by changing transcription factor binding a ffin ity to  a gene 

promoter. (2) DNA methylation can affect gene expression through many methyl-CpG- 

binding proteins (MECPs) which read the DNA methylation pattern. There are 6 MECPs 

tha t have been identified in mammals including MECP2, MBD1, MBD2, MBD3, MBD4 

and Kaiso (Li, 2002). Methyl-CpG-binding protein contains a methyl-CpG-binding 

domain (MBD) and a transcription repression domain (TRD). The MECPs can bind to 

methylated DNA and insulates the binding o f the transcription factor to  DNA. For 

example, MECP2 forms the complex w ith histone deacetylase (HDACs) and a co

repressor protein, Sin3a, to repress transcription in methylation-dependent manner 

(Nan et a i,  1998; Jones et al., 1998). The MECP2-Sin3a-HDAC provides the firs t 

molecular evidence linking DNA methylation to histone deacetylation in transcription 

repression. Another example, MBD2 can form  a complex w ith the m ultisubunit NuRD 

complex, which contains an ATP-dependent chromatin-rem odelling protein, Mi-2, and 

HDACs (Zhang et al., 1999; Wade et al., 1999). The MBD2-NuRD complex previously 

known as MeCPl can repress methylated promoters and also remodel methylated 

chromatin (Feng and Zhang, 2001). This evidence provides a mechanistic link between 

DNA methylation and histone deacetylation in transcriptional repression. (3) DNA 

methylation can alter chromatin structure in which methylated DNA leads to  more 

compact DNA by the action of chromatin remodeling enzymes, thereby affect 

accessibility o f transcription factors and/or DNA binding proteins to  heterochrom atin. 

The model of the mechanism of DNA methylation on gene transcription is illustrated in 

Figure 1.6.
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Figure 1.6: Mechanism models o f the effect o f DNA m ethylation on gene expression. 

Transcription can be initiated in unmethylated DNA sequences (A); DNA methylation 

can affect gene transcription in several ways including; (B) methylated CpG 

dinucleotide interfere binding o f transcription factors tha t are sensitive to methylated 

DNA to DNA resulting in in itiation of transcription cannot occur; (C) Methyl-CpG- 

binding proteins can bind to methylated DNA and insulates transcription factor binding 

to  DNA; (D) methylated DNA can be made more compact to  heterochrom atin by 

chromatin remodeling enzymes tha t affect accessibility of the transcription factors. TF, 

transcription factor; RNA Pol, RNA polymerase; MeCP2, methyl CpG binding protein 2; 

Sin3a, SIN3 transcription regulator fam ily member A; HDAC, histone deacetylases. 

M odified from : (Zhang and Pradhan, 2014)

DNA methylation involves the enzymatic methylation of CpG sites. DNA m ethylation 

takes place after DNA replication and is catalysed by DNA methyltransferase (DNMTs) 

using S-adenosyl methionine as the methyl donor. A number o f DNA methyltransferase 

enzymes (DNMT1, DNMT2, DNMT3a and DNMT3b) have been identified by 

biochemical and sequence analysis. The maintenance DNMT1 uses hem i-methylated 

DNA as a preferential tem plate, so it plays an im portant role in maintaining the 

identical methylation pattern after DNA replication tha t is characteristic fo r each type 

of differentiated cell (Turker and Bestor, 1997). DNMT3a and DNMT3b catalyse de
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novo methylation because they can methylate both hemi-methylated and 

unmethylated DNA templates w ith equal efficiency (Xie et al., 1999). Therefore, they 

are critical fo r the establishment of DNA methylation during development (Okano et 

al., 1999). Importantly, the activity of DNMTs and DNA CpG methylation in a variety of 

tissues, including CNS, are sensitive to the social environment, ischemia, 

environmental toxins, nicotine, alcohol, psychostimulants, and antipsychotic drugs 

(reviewed by Akbarian, 2010).

DNA methylation is lim ited by the availability o f the methylation substrate, S-adenosyl 

methionine, the synthesis o f which is under the control o f MTHFR as mentioned 

previously in section 1.4.1. MTHFR is thus im portant in DNA methylation (Lucock, 

2000) in which its functional genetic variants can influence the extent of such 

methylation (de Arruda et al., 2013). The T allele o f the common MTHFR 677C/T 

genotype results in reduced enzyme activity, and elevated plasma homocysteine under 

conditions of impaired folate status (Ueland et al., 2001). This and other 

polymorphisms of MTHFR are reported as genetic risk factors fo r several disorders and 

drug-induced side effects including weight gain and metabolic pathology in subjects 

receiving antipsychotic drugs (van Winkel et al., 2010a; Ellingrod et al., 2008). 

Conceivably this could indicate tha t MTHFR polymorphisms might interact w ith  SNPs in 

other genes (e.g. the -759C/T HTR2C SNP) in determ ining the extent o f drug-induced 

weight gain.

1.5.1.2 Histone modifications

Histone modifications refer to  the addition and removal o f the covalent moieties to 

the specific amino acid residues of the histone protein. Histones are the main protein 

component o f chromatin. The core histones which are H2A, H2B, H3, and H4 form  the 

nucleosome. Histone modifications are covalent post-translational modifications. 

These modifications which include acetylation, methylation, and phosphorylation 

influence the degree to which the DNA associates w ith the histones. Histone 

modifications result in chromatin structure remodeling tha t can affect gene expression 

regulation. Chromatin condensation to  heterochromatin impedes gene expression, 

while unwinding to  euchromatin encourages transcription. Generally, histone 

acetylation and phosphorylation promote gene transcription whereas histone
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methylation has been associated w ith both repressed and activated gene transcription 

(reviewed by Jiang et al., 2008; Meaney and Ferguson-Smith, 2010). The effect of each 

histone modification can be highly residue-specific. The effect o f histone methylation 

on gene expression depends on the exact amino acid residue methylated and also the 

number o f methyl groups being added (reviewed by Rahn et al., 2013).

Each type of histone modification which includes addition and removal o f chemical 

groups is catalysed by specific enzymes. For instance, the addition of acetyl groups to 

histones in histone acetylation is catalysed by histone acetyltransferases (HATs) 

whereas the removal o f acetyl groups (histone deacetylation) is catalysed by histone 

deacetylases (HDACs).

1.5.1.3 Non-coding RNAs

Non-coding RNAs (ncRNAs) or non-protein coding RNAs are transcribed, but not 

translated into proteins. They are transcribed in tissue-specific and cell-specific 

patterns to regulate cell d ifferentiation and development. Non-coding RNAs act as the 

regulators of gene expression and epigenetics. They are subdivided into 4 subclasses 

based on length, characteristics and function including microRNAs (miRNAs), piwi- 

interacting RNAs (piRNAs), small interfering RNAs (siRNAs), and long-non-coding RNAs 

(IncRNAs) (Kaikkonen et al., 2011). For example, 20-24 nucleotide-long miRNAs have 

been postulated to control the activity o f approximately 50% o f all protein-coding 

genes in a cell at the post-transcriptional level (Krol et al., 2010). A recent report 

suggests that miRNAs can destabilize the target mRNA to reduce protein expression 

(Guo et al., 2010).

PiRNAs are small ncRNAs of 24-31 nucleotides tha t have the primary role in 

suppression of transposon activity during germ line development (Brennecke et al., 

2007; Gunawardane et al., 2007) and in somatic cells (Malone et al., 2009). However, 

the regulation of the transposon activity in mammals during spermatogenesis also 

occurs through de novo DNA methylation and this process is regulated by piRNAs 

(Kuramochi-Miyagawa eta l., 2008).

SiRNAs (20-24 nucleotides) mediate post-transcriptional silencing similar to  miRNA 

silencing. SiRNAs have also been found to  direct gene silencing at sequence-specific
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transcriptional level by increasing epigenetic modifications characteristic of 

heterochromatin (Carthew and Sontheimer, 2009; Grewal, 2010). SiRNAs also play a 

role in regulating genome functions and it has been suggested tha t siRNAs may play a 

similar role as piRNAs in suppressing transposon activity (Watanabe et al., 2006; Yang 

and Kazazian, 2006).

LncRNAs are the majority o f the non-protein-coding transcripts. LncRNAs, which are 

arbitrarily considered as >200 nucleotides in length are transcribed from  various 

regions of eukaryotic genomes and can be classified according to  the ir proxim ity to 

protein coding genes including sense, antisense, bidirectional, intronic, and intergenic 

(Ponting et al., 2009). These IcnRNAs are im portant regulators fo r epigenetic 

modification, transcription, and translation and they play crucial roles in cell 

d ifferentiation, development and disease progression processes (Nie et al., 2012). A 

large number o f IncRNAs recruit chromatin modifying enzymes tha t facilitate 

chromatin modification and u ltim ately changing gene expression (Schmitz et al., 2010). 

The IncRNAs also play roles in X chromosome inactivation. One of tw o copies o f the X 

chromosome of the female mammalian genome needs to  be transcriptionally silent to 

have proper levels of gene expression. The process o f X chromosome inactivation is 

mediated by the X chromosome inactivation centre which consists o f four ncRNAs 

genes (Xist, Tsix, Jpx, and Ftx). The IncRNA Xist RNA is loaded onto X chromosome by 

YY1 protein which is a bivalent protein capable of binding both RNA and DNA (Jeon and 

Lee, 2011). Xist RNA induces chromosome-wide silencing by spreading along the X 

chromosome and recruiting polycomb repressive complexes (PRC) which mediates 

DNA methylation, histone hypoacetylation, and MacroH2A deposition throughout the 

entire targeted X chromosome resulting in transcriptional inactivation o f e ither the 

paternal or maternal copy of the X chromosome (Pinter et al., 2012).

1.5.2 The role of epigenetic modifications

It is now well known that epigenetics plays an essential role in normal development 

and disease susceptibility in adults (Dolinoy et al., 2007). Epigenetic alterations 

contribute to a number o f age related disorders including cancer and autoim m une 

disorders (Lu et al., 2006) as well as many nervous system diseases including
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neurodevelopmental disorders, brain cancer, neurodegenerative diseases, and mental 

illness that includes schizophrenia (Zhang et al., 2013d).

DNA methylation regulates gene expression and also helps stabilize chromatin. DNA 

hypomethylation can lead to  genomic instability by predisposing to  strand breakage 

and derepression of repetitive sequences (Lu et al., 2006). In addition, DNA 

hypomethylation of CpG in prom oter regions can result in gene activation which brings 

about aberrant gene expression (Attwood et al., 2002).

The effect o f DNA hypomethylation on genomic instability is the chromosomal 

translocations in DNMT (DNMT1 and/or DNMT3b) deficiency studied in DNMT- 

deficient HCT116 cells (Karpf and Matsui, 2005). In addition, DNA methylation plays an 

im portant role in regulating activity o f the transposable elements (TEs) which are 

mobile DNA sequences representing a substantial fraction of most genomes. Insertions 

of the transposable elements w ith in genome are the source of genetic variation and 

may be the cause of genetic dysfunction and influence gene expression tha t u ltim ately 

result in cancer and other human diseases. The TE repeats can induce chromosome 

rearrangement; in addition, the TE insertions can alter gene expression through many 

modifications fo r example by creating new polyadenylation sites or new exons 

(exonization), by exon skipping or splicing, and also by the alteration o f regulatory 

sequences (Chenais, 2015). DNA methylation is known to inh ib it transpositional 

activity o f diverse transposons. For example, silent transposable elements are 

methylated in plants (Martienssen, 1998) and also in animals (Yoder et al., 1997), and 

they can be reactivated in m ethylation-defective mutants (Miura et al., 2001; Walsh et 

al., 1998).

Global DNA hypomethylation is commonly found in a number o f cancers, including 

thyroid, breast, cervical, prostate, stomach, lung, bladder, esophagus, colorectum, and 

liver (reviewed by Arooj et al., 2013). The alteration in global methylation is considered 

to  be mainly due to  hypomethylation o f repetitive sequences fo r example long 

interspersed nuclear element 1 (LINE-1).

In contrast to  hypomethylation, DNA hyperm ethylation, particularly o f CpG islands or

prom oter CpGs can result in inappropriate gene silencing and development o f disease

states. For example, hypermethylation o f CpG islands of the tum or suppressor gene
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leads to silencing of the gene and predisposes to carcinogenesis (Attwood et al., 2002). 

Hypermethylation of specific genes may correlate w ith  decreased gene expression that 

associated w ith disease condition. For instance, the fibulin-1 (FBLN1), a m u lti

functional extracellular matrix protein, prom oter CpGs hypermethylation is found in 

accordance w ith downregulation o f FBLN1 protein and mRNA levels in colorectal 

cancer (Xu et al., 2015), renal cell carcinoma (Xiao et al., 2013), and gastric cancer 

(Cheng et al., 2008).

1.5.3 Association of DNA methylation and schizophrenia

Schizophrenia is associated w ith multiple risk factors, including both environmental 

and genetic influences (section 1.1.4). There are several genetic factors that have been 

reported to  be associated w ith schizophrenia and antipsychotic treatm ent response 

and side effects such as BDNF and FITR2A (section 1.4). The study of epigenetic 

regulators o f gene expression including DNA methylation and histone modifications is 

an attractive field to  explore the molecular pathology of schizophrenia.

To date, recent studies provided evidence tha t pathogenesis of psychiatric disorders 

may be due to epigenetic aberrations. Researchers focus on the DNA methylation 

changes in schizophrenia postmortem brain, especially in prefrontal areas of cerebral 

cortex. Epigenetic alterations in dopaminergic system genes were reported in 

schizophrenia and bipolar disorder (Abdolmaleky et al., 2008). Hypermethylation- 

mediated silencing of the reelin gene (RELN), which encodes a glycoprotein essential 

fo r brain development and neuronal connectivity, was reported in the fronta l lobe of 

post-mortem brain which was correlated w ith schizophrenia and bipolar disorder 

(Abdolmaleky et al., 2005; Grayson et al., 2005). Hypomethylation membrane-bound 

catechol-O-methyltransferase (MB-COMT), which is involved in dopamine degradation, 

was also reported in schizophrenia and bipolar disorder compared to  control subjects 

and this hypomethylation was associated w ith significant higher MB-COMT transcript 

level (Abdolmaleky et al., 2006).

Related to  serotonin receptor genes, it has been found tha t DNA methylation status

was increased in HTR1A gene prom oter in schizophrenia (Carrard et al., 2011) which

may be the cause of the alteration of the receptor expression (Hashimoto et al., 1991;

Sumiyoshi et al., 1996). In addition, methylation at a transcription factor-binding site
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on the 5-HT1A receptor gene close to  the functional polymorphism, -1019C/G (rs6295) 

correlates w ith negative symptom treatm ent response in first episode schizophrenia 

patients (Tang et al., 2014). In addition, the hypomethylation of 5-HT2A receptor gene 

at and around 102T/C polymorphic site was reported in schizophrenia and bipolar 

disorder (Ghadirivasfi et al., 2011; Abdolmaleky et al., 2011), but prom oter DNA o f the 

HTR2A was hypermethylated at and around the -1438A/G polymorphic site 

(Abdolmaleky et al., 2011), and these epigenetic changes influence expression of the 

HTR2A gene (Abdolmaleky et al., 2011). DNA hypermethyation of the serotonin 

transporter (5-HTT) prom oter and its correlation w ith the reduction in 5-HTT 

expression were reported in drug naive schizophrenia patients both in DNA from saliva 

and post-mortem brain samples (Abdolmaleky et al., 2014). These studies support the 

epigenetic influences in etiology of psychotic disease and might provide new targets in 

antipsychotic drug development..

1.5.4 Association of epigenetic factors and antipsychotic drug-induced 

weight gain

The genetic risk factors have been of interest and provide a focus for much research 

investigating the causes of disease and treatm ent responses. Recently the epigenetic 

factors have also been extensively researched. In addition to  genetic factors, 

environmental factors such as nutritional, chemical and physical factors have the 

potential to  alter gene expression through epigenetic modification. In other words, 

epigenetic mechanisms are influenced by the environment. Several factors have been 

shown to  modulate epigenetic modification, fo r example, age (Bjornsson et al., 2008), 

sun exposure (Gronniger et al., 2010), radiation exposure (Chaudhry and Omaruddin, 

2012), diet (Heijmans et al., 2008; McKay et al., 2012), alcohol consumption (Philibert 

et al., 2012; Zhang et al., 2013a), tobacco smoking (Flom et al., 2011; Wangsri et al., 

2012), and air pollution (Tarantini et al., 2009; Salam et al., 2012); some of these 

factors such as age could be a confounding factor in establishing a correlation study 

relating to DNA methylation. Treatment w ith antipsychotic drugs can also affect 

epigenetic modifications which will be described in the next section (section 1.5.4.1).
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1.5.4.1 Antipsychotic drugs and epigenetic modifications

Study of a mouse model w ith relevance to schizophrenia found that clozapine and 

sulpiride but not haloperidol or olanzapine treatm ent induced DNA demethylation as 

well as histone acetylation at reelin and GAD67 promoters in the frontal cortex and 

striatum (Dong et a i, 2008; Guidotti et al., 2009). However, olanzapine treatm ent in 

rats caused genome-wide DNA methylation change in genes of dopamine 

neurotransmission in hippocampus, cerebellum and liver (Melka et al., 2014). This 

research group analysed DNA methylation extents w ith in  a tota l 40 genes in dopamine 

(DA) pathway and found tha t 19 genes including genes encoding fo r DA receptors (D l, 

D2, and D5), DA transporter, DA synthesis, and DA metabolism (COMT) had d ifferent 

methylation between olanzapine and control rats, and most (17/19) genes showed 

increased methylation (Melka et al., 2013). This study supports the dopamine 

hypothesis o f schizophrenia tha t olanzapine may reduce DA activity by changing DNA 

methylation. Melas et al. (2012) found decreased global DNA methylation in patients 

w ith schizophrenia compared to  normal controls, especially in early onset o f disease, 

and they also found tha t global DNA methylation was increased to nearly the levels of 

normal controls in patients receiving haloperidol. These data suggest tha t epigenetic 

changes influenced by disease and/or antipsychotic treatm ent may involve, in part, the 

symptom response and also may account fo r certain adverse effects including weight 

gain after antipsychotic drug treatm ent. Further studies are required to  understand 

the effect o f antipsychotic drugs on epigenetic change, gene expression and variable 

outcome to treatm ent.

1.5.4.2 Epigenetic modifications and antipsychotic drug-induced weight gain

A recent study reported the association of lower DNA methylation of the HTR2A gene 

prom oter w ith decreased body weight, BMI, and fat mass after six months of weight 

loss treatm ent in subjects w ith metabolic syndrome (Perez-Cornago et al., 2014) 

indicating the influence of epigenetic modification in genes of the serotonin system on 

body weight change in response to  drug treatm ent. Few studies have investigated the 

relationship between epigenetic mechanisms and antipsychotic drug-induced weight 

gain. Two studies have investigated the association between DNA methylation of the 

MTHFR and COMT genes and metabolic syndrome in schizophrenia. Burghardt et al.
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(2012) studied the MTHFR 677C/T poylmorphism and LINE-1 DNA methylation in 133 

patients w ith schizophrenic disorder. They did not find an association between global 

LINE-1 methylation and MTHFR genotypes, but they found a significant interaction 

between the MTHFR 677C/T variant and gender on global LINE-1 DNA m ethylation, in 

which females w ith the MTHFR 677TT genotype had the lowest global LINE-1 DNA 

methylation level compared w ith other groups.

Another study found a significant association between the COMT V a ll58M e t (rs4680) 

polymorphism, COMT prom oter methylation, physical activity, and metabolic 

syndrome in 85 patients w ith schizophrenia receiving atypical antipsychotic treatm ent 

(Lott et al., 2013). They observed that the COMT genotype was a significant indicator 

o f methylation status at tw o CpG sites in the COMT prom oter region. They found tha t 

physical activity had a negative correlation w ith COMT prom oter m ethylation in 

Val/Val homozygous patients whereas positive correlation was found in M e t/M e t 

carriers. In addition, patients w ith M e t/M e t genotype had a positive correlation 

between COMT prom oter methylation and metabolic syndrome. These findings 

indicate tha t prom oter methylation of COMT is influenced by its genotype and physical 

activity. These data indicate the influence of a genetic polymorphism on DNA 

methylation and this relationship may influence the interindividual variation in 

symptom response and adverse effects in schizophrenia patients received 

antipsychotic drugs.

Many of the functional consequences of genetic polymorphisms, particularly those in 

prom oter regions tha t may influence binding o f transcription factors, are likely to 

affect gene expression. Additionally, some polymorphisms may modify the CpG 

sequences tha t are the sites o f DNA methylation, and thus may influence gene 

transcription by affecting this methylation. Particularly notable in pharmacogenetic 

findings is tha t the SNPs in HTR2C tha t are associated w ith drug-induced weight gain 

are often also at CpG sites o f DNA methylation -  e ither d irectly disrupting CpG 

sequences (e.g. the -759C/T SNP, -697G/C SNP) or close to  other CpG sites. Thus DNA 

methylation provides a further potential influence on drug induced weight gain -  by, 

fo r example methylation of the -759C site or nearby CpG sites - in addition to  the 

established pharmacogenetic association of HTR2C SNPs.
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1.6 Main objectives

Overall aim

The hypothesis is tha t genetic factors may influence antipsychotic drug-induced weight 

gain. In addition to  the -759C/T polymorphism of the HTR2C gene, the genetic 

polymorphisms of several candidate genes related to antipsychotic drug-induced 

weight gain including HTR2A, ADRA2A, BDNF, GNB3, MC4R, FTO, and MTHFR may have 

influence on antipsychotic drug-induced weight gain. These genes encode drug target 

receptors, hormones or neuropeptides involved in food intake regulation, or genes 

tha t might be involved in DNA methylation modification. In addition, epigenetic factors 

may also influence antipsychotic drug-induced weight gain. DNA methylation o f CpGs 

in the prom oter sequences of the HTR2C may associate w ith antipsychotic drug- 

induced weight gain, and it also may be affected by those genetic polymorphisms. 

Moreover, antipsychotic drugs may affect DNA methylation levels o f the HTR2C 

prom oter sequences tha t may cause alteration in mRNA expression. Furthermore, 

antipsychotic drugs may affect leptin secretion from  adipocytes which may be 

mediated by changing HTR2C mRNA expression. The genotype discrim ination of 

genetic polymorphisms, the extent o f DNA methylation, the expression o f mRNA, and 

the secretion o f leptin were measured by using a variety o f molecular, biochemical and 

cell culture based assays.

The specific goals were:

1. To investigate the influence of SNPs on antipsychotic drug-induced weight gain in

patients w ith  schizophrenia.

2. To investigate the association of DNA methylation in the prom oter region o f the 

HTR2C gene on antipsychotic drug-induced weight gain in patients w ith 

schizophrenia.

3. To investigate the genotype effect o f SNPs on DNA methylation in the HTR2C gene.

4. To investigate the effect of antipsychotic drug treatm ent on DNA m ethylation and 

mRNA expression of the HTR2C gene in neuroblastoma cells.

5. To investigate the effect of antipsychotic drug treatm ent on leptin secretion and 

Htr2c gene expression in mouse adipocyte cells.

59



Chapter 2: Association of genetic polymorphisms 

and antipsychotic drug-induced weight gain in 

patients with schizophrenia

2.1 Introduction

Schizophrenia is a severe, complex and chronic disorder which fo r many patients is 

inadequately treated. Antipsychotic drugs can in many individuals relieve the positive 

psychotic symptoms but have various adverse effects; notably several o f the drugs can 

induce a substantial weight gain in susceptible individuals, particularly second 

generation antipsychotics such as clozapine, olanzapine and risperidone (reviewed by 

Panariello et al., 2011). However, first-generation antipsychotic drugs (FGAs) also have 

been linked to  weight gain to  a lesser degree (Lett et al., 2012). This weight gain may 

not only increase treatm ent non-compliance but also affect m orbid ity from  metabolic 

consequences including lipid abnormalities, insulin resistance and diabetes mellitus 

(Henderson et al., 2000). W eight gain also reduces quality of life in patients suffering 

from  schizophrenia (Lett et al., 2012; Allison et al., 2003). Patients receiving 

antipsychotic treatm ent can develop metabolic abnormalities w ith increased risk of 

cardiovascular disease and m orta lity (Casey et al., 2004; DE Hert et al., 2009). The 

mean age of death fo r schizophrenia patients is 22.5 years younger than general 

population (57.4 years fo r schizophrenia and 79.9 years fo r general population) 

(Tiihonen et al., 2009). This difference is, in part, attributable to  the metabolic side- 

effects o f antipsychotic treatm ent (Gautam and Meena, 2011).

Susceptibility to antipsychotic-induced weight gain varies substantially between 

individuals in ways tha t cannot be fully explained by differences between d iffe rent 

drug effects or other environmental factors. Thus genetic influences are strongly 

implicated, and associations between many genetic polymorphisms and antipsychotic 

drug-induced weight gain have been reported. The most consistently reported genetic 

factors involved in antipsychotic induced weight gain include polymorphisms in genes 

fo r 5-hydroxytryptam ine 2C (5-HT2C), 5-HT2A, adrenergic alpha 2A and melanocortin 4
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receptors, as well as leptin and fa t mass and obesity associated (FTO) genes (Reynolds, 

2012).

The inter-individual variability o f weight gain in response to antipsychotic drug 

treatm ent is partly due to genetic variability. The most consistent genetic variant 

associated w ith antipsychotic drug-induce weight gain is the -759C/T polymorphism of 

HTR2C gene, o f which the T allele is a protective allele against obesity (Yuan et a i, 

2000) and antipsychotic drug-induced weight gain in both firs t episode (Templeman et 

a i,  2005; Reynolds et a i, 2002) and chronic schizophrenia patients (M ille r et a i, 2005; 

Ellingrod et a i,  2005). The 5-HT2C receptor is involved in obesity and food intake 

regulation. Adm inistration of a 5-HT2C receptor antagonist resulted in increased food 

intake and weight gain in rats (Bonhaus et a i,  1997). 5-HT2C receptor antagonist can 

attenuate the reduced food intake which is induced by 5-HT2C agonists (Hayashi et a i,

2005). It is a target fo r atypical antipsychotic drugs such as clozapine and olanzapine 

which have high affinities fo r the 5-HT2C receptor (Roth et a i, 2004; Reynolds and Kirk, 

2010). Endogenous 5-HT inhibits neuropeptide Y (NPY) (Heisler et a i,  2006) which 

controls satiety. Clozapine (the 5-HT2C receptor antagonist) disinhibits hypothalamic 

NPY neurons resulting in elevated NPY (Kirk et a i, 2006). 5-HT increases POMC activity 

via 5-HT2C receptor by modulating POMC neuronal excitability (Roepke et a i,  2012; 

Qiu et a i, 2007; Sohn et a i, 2011). Therefore, it has been suggested the involvem ent 

o f 5-HT2C receptor mechanisms in atypical antipsychotic drug-induced weight gain is 

by modulating POMC and NPY activity (Balt et a i, 2011).

The HTR2C -759C/T polymorphism is located in the prom oter region near the

regulatory transcription factor binding sites which may affect gene expression (Xie et

a i, 1996). The transcription factor binding sites located nearby the -759C/T SNP are

TCF-1, LF-A1, and bHLH (Xie et a i, 1996). Yuan et a i (2000) demonstrated tha t the

HTR2C prom oter haplotype containing either the -997A, -759T or -697C allele has

increased prom oter activity in Chinese hamster embryonic carcinoma cells. The same

prom oter haplotype showed decreased expression in SH-SY5Y neuroblastoma cells (Hill

and Reynolds, 2007). The haplotype of 4 polymorphisms containing -759T or -977G

(the study did not include the -697G/C site) resulted in increased prom oter activ ity in

human cell lines, HEK293t and TE671 (Buckland et a i,  2005). Another study did not

find any significant influence of the prom oter haplotype containing -759T and -697C
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and other 5' polymorphisms on prom oter activity while haplotype w ith -759T and - 

697C showed 21% less activity compared to  the major haplotype; -759C and -697G 

(McCarthy et al., 2005). The d ifferent findings may be due to  the difference of 

prom oter fragm ent sequences tha t included -697 or not and addition o f o ther SNPs. 

Although the function of individual prom oter polymorphisms in regulating prom oter 

activity is unclear, the removal or addition of a particular site may affect the prom oter 

activity since some sites may affect the a ffin ity o f the transcription factor binding site. 

The methods used for transfection including transient or stable transfection may also 

influence the findings. The transfected plasmid DNA is usually not integrated into the 

host genome in transient transfection; therefore, the foreign DNA is diluted through 

mitosis or degraded. In stable transfection, the transfected plasmid DNA is integrated 

into host genome and is replicated when cell mitosis occurs; therefore, the transfected 

gene remains in the genome of the cell and daughter cells (reviewed by Kim and 

Eberwine, 2010). In addition, the different cell lines used in transfection may 

contribute to  the different findings; the d ifferent cell lines provide d ifferent 

transcriptional machinery or regulatory elements required for transcription o f the 

gene. Furthermore, the d ifferent plasmid constructs also contribute to  the d ifferent 

findings. The prom oter enhancers such as SV40 or CMV viral enhancer in both 

experimental and reference plasmids used in the luciferase assay have strong activity 

compared to  the plasmids w ithout the enhancer and this may affect the transcription 

rate of the tested plasmid. It has been proposed tha t the reduced prom oter activity of 

the T allele o f the -759C/T polymorphism of the HTR2C may results in the decreased 

expression o f the 5-HT2C receptors leading to subsequent compensatory changes in 

other systems in regulating food intake (Hill and Reynolds, 2007). The alteration in 5- 

HT2C receptor expression influenced by prom oter polymorphisms might be involved in 

antipsychotic drug-induced weight gain.

The T allele o f HTR2C -759C/T polymorphism was associated w ith higher plasma leptin 

levels at baseline in schizophrenia patients compared to  C/CC genotype (Templeman et 

al., 2005). However, the mechanistic link or interaction between leptin and 5-HT2C 

receptor is still unclear and needs fu rther study to  elucidate the interaction o f these 

tw o pathways. Leptin induction of central 5-HT turnover via a nitric oxide dependent 

pathway has been reported (Calapai et al., 1999). There is evidence showing tha t
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central leptin-induced anorexia is mediated via the 5-HT2C receptor and the specific 

5-HT2C receptor antagonist (SB 242084) attenuated anorexia induced by leptin 

adm inistration (von Meyenburg et al., 2003a). Peripheral adm inistration of the 5-HT 

precursor (5-hydroxytryptophan) increases serum leptin in mice (Yamada et al., 1999). 

Immuno-histochemical evidence suggests an inverse relationship between 5-HT and 

leptin levels in the hypothalamus and dorsal raphe (Fernandez-Galaz et al., 2010). A 

study in 5-HTT deficient mice found tha t increased 5-HT in various brain regions was 

paralleled by increased leptin levels (Chen et al., 2012). However, the change in leptin 

could be independent o f 5-HT and both leptin and 5-HT may have separate pathways 

in the control o f food intake (Halford and Blundell, 2000). Thus, fu rthe r experimental 

verification is required.

In addition to  the HTR2C -759C/T polymorphism, there are other genetic risk factors 

tha t are likely to contribute to  determ ining weight gain associated w ith  antipsychotic 

drug treatm ent, including polymorphisms for leptin, melanocortin receptor 4, 

adrenergic a2A and g-protein beta3 among many others (Reynolds, 2012). In addition, 

the associations of the other genetic polymorphisms w ith antipsychotic drug-induced 

weight gain were previously discussed in chapter 1 and are summarized in Table 2.1.

Table 2.1: Summary and main finding of the association between SNPs and 
antipsychotic drug-induced weight gain

SNPs Patient Main findings Reference

MTHFR
677C/T,
MTHFR
1298A/C

58 schizophrenia patients 
receiving atypical 
antipsychotic drugs fo r 
>12 months (cross- 
sectional analysis),, 
treated at least 12 months 
w ith various antipsychotics

the 677T allele but not the 
1298A/C of MTHFR was 
associated w ith a greater 
risk o f developing metabolic 
syndrome and the TT 
genotype was associated 
w ith risk o f insulin 
resistance w ith greater 
central adiposity induced by 
antipsychotic treatm ent

Ellingrod 
et al., 2008

MTHFR 
677C/T, 
MTHFR 
1298A/C

237 subjects w ith bipolar 
or schizophrenia receiving 
an antipsychotic fo r at 
least 6 months (cross- 
sectional analysis), various 
antipsychotics (54% were 
under poly-pharmacy),

Not associated w ith BMI 
but the MTHFR 677T was 
related to age, smoking, 
and metabolic syndrome

Ellingrod 
et al., 2012
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SNPs Patient Main findings Reference

72% were white
MTHFR
677C/T,
MTHFR
1298A/C

518 patients w ith a 
schizophrenia spectrum 
disorder, 97.3% were 
white), olanzapine, 
clozapine, quetiapine, 
risperidone, palipeidone

MTHFR A1298C, but not 
C677T, was associated w ith 
the metabolic syndrome, 
C/C genotypes having a 2.4 
times higher risk compared 
to A/A genotypes

van Winkel 
et al., 2010a

MTHFR
677C/T,
MTHFR
1298A/C

104 schizophrenia 
patients, a 3-month 
follow-up period after 
in itiation of an SGAs, 
various antipsychotics, 
some taken medication for 
other somatic disorders 
(e.g. hypertension)

The 1298C variant, but not 
C677T was associated w ith 
increased w e ig h t, waist 
circumference, fasting 
glucose and impaired 
glucose tolerance

van Winkel 
et al., 2010b

ADRA2A
-291C/G

62 Korean chronic 
schizophrenia, (not FEP), 
long-term olanzapine 
treatm ent (> 3 months)

The G allele was 
significantly higher 
frequency in patients who 
had severe weight gain 
(>10% weight increased 
from  baseline)

Park et al., 
2006

ADRA2A
-291C/G

93 Chinese chronic 
schizophrenia treated w ith 
clozapine (14±6.2 months)

The GG genotype had 
higher body weight gain 
than CC genotype

Wang et al., 
2005b

ADRA2A

-291C/G

129 chronic schizophrenia 
or schizoaffective disorder 
(60 European-Americans 
and 39 African-Americans), 
6-14 weeks treated with 
clozapine/olanzapine

The C allele carriers gained 
more weight compared to 
GG genotype in European- 
Americans but not in 
African-Americans

Sickert et al., 
2009

ADRA2A
-291C/G

139 schizophrenia patients 
w ith various ethnicity, 6-14 
weeks treatm ent w ith 
clozapine (91), olanzapine 
(22), haloperidol (12), 
risperidone (14)

No association w ith weight 
gain

De Luca 
et al., 2011

ADRA2A
-291C/G

470 schizophrenia 
patients, cross-sectional 
study

No association w ith 
metabolic syndrome

Risselada 
et al., 2010

HTR2A
rs6313

164 schizophrenia patients 
in Japan, olanzapine

The 102T allele o f HTR2A 
was associated with 
olanzapine-induced weight

Ujike et al., 
2008
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SNPs Patient Main findings Reference

treatm ent (8-24 weeks) gain

HTR2A
-1438G/A

84 (FEP) Chinese Han 
schizophrenia patients, 10 
weeks of treatm ent w ith 
risperidone or 
chlorpromazine

No association o f the 
/-/77?2/4-1438G/A w ith 
weight gain

Mou et al., 
2005

MC4R
rsl7782313

345 white inpatients 
schizophrenia, various 
atypical antipsychotics 
(clozapine, olanzapine, 
risperidone, paliperidone, 
quetiapine, or amisulpride) 
treatm ent for 4 weeks

The C-allele had a 
significantly higher risk of 
weight gain and BMI 
increase

Czerwensky 
et al., 2013a

MC4R
rsl7782313

224 schizophrenia patients 
(European-ancestry), 14 
weeks treatm ent

No association w ith weight 
gain

Chowdhury 
et al., 2013

MC4R
rs489693

4 cohorts consisted of 139 
pediatric patients w ith first 
exposure to SGAs treated 
w ith SGAs for 12 weeks. 
The 3 additional cohorts 
consisted of 73, 40, and 92 
subjects treated fo r 6 and 
12 weeks.

The AA genotype was 
associated w ith greater 
weight gain

Malhotra 
et al., 2012

MC4R
rs489693

341 Caucasian inpatients 
schizophrenia receiving at 
least one SGA drug 
(olanzapine, clozapine, 
risperidone, paliperidone, 
quetiapine, or amisulpride) 
fo r 4 weeks

A-allele showed a 2.2 times 
higher weight increase

Czerwensky 
et al., 2013b

GNB3
825C/T

164 schizophrenia patients 
in Japan, olanzapine 
treatm ent (8-24 weeks)

T allele was significantly 
associated w ith olanzapine- 
induced weight gain

Ujike et al., 
2008

GNB3
825C/T

134 Chinese schizophrenia 
patients, long-term 
treatm ent w ith clozapine 
(13.4 months)

Patients w ith the TT 
genotype had significantly 
greater weight gain

Wang et al., 
2005a

GNB3 87 treatm ent-resistant 
schizophrenic patients,

Not associated w ith 
clozapine-induced body

Tsai e t al.,
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SNPs Patient Main findings Reference

825C/T clozapine treatm ent fo r 4 
months

weight change 2004

GNB3
825C/T

79 Korean schizophrenic 
patient group receiving 
olanzapine treatm ent at 
least 3 months

No association w ith weight 
gain

Park et a i, 
2009

GNB3
825C/T

42 schizophrenia patients 
treated w ith olanzapine 
fo r 6 weeks

No association w ith weight 
gain

Bishop et al., 
2006

GNB3
825C/T

a meta-analysis o f 18,903 
subjects

CC genotype showed a 
trend association w ith 
lower BMI

(Souza et al., 
2008)

BDNF
rs6265

196 Chinese schizophrenia 
on long-term antipsychotic 
medication

M e t/M e t (or AA) genotype 
was associated w ith weight 
gain, w ith strong effect in 
male but not female

Zhang et al., 
2008

BDNF
rs6265

257 schizophrenia patients 
o f European ancestry

a haplotype of rs6265 and 
rsl519480 (G-A haplotype) 
was associated w ith atypical 
antipsychotic drug-induced 
weight gain

Zai et al., 
2012

BDNF
rs6265

481 schizophrenic patients 
treated w ith clozapine (n = 
266), olanzapine (n = 79), 
or risperidone (n = 136) for 
an average of 49.2 ± 28.2 
months

The BDNF Val66Met SNP 
was not associated with 
body weight gain, but the 
BDNF rs ll03 0 10 1  TT 
genotype was associated 
w ith weight gain

Tsai et al., 
2011

FTO
rs9939609

250 Chinese Han 
schizophrenia patients 
(FEP), risperidone 
treatm ent fo r 6 months

The TT genotype carriers 
had significantly lower body 
weight and BMI than the A 
allele (both at baseline and 
after treatm ent)

Song et al., 
2014

FTO
rs9939609

239 schizophrenia patients 
in Spain (FEP), 1 year 
antipsychotic treatm ent

The AA genotype was 
significant associated w ith 
the higher baseline BMI 
compared to AT/TT group 
but the weight increase 
between tw o groups of 
genotype was not 
significant difference after 1 
year antipsychotic

Perez- 
Iglesias 
et al., 2010
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SNPs Patient Main findings Reference

treatm ent

FTO
rs9939609

Chronic and FEP 
schizophrenia patients

The A allele was associated 
w ith BMI in chronic 
schizophrenia patients but 
not w ith weight gain in first- 
episode schizophrenia 
patients, although the AA 
genotype had higher 
baseline weight and 
baseline BMI than T allele

Reynolds 
et al., 2013

FTO
rs9939609

351 chronic schizophrenia 
and 342 age- and sex- 
matched healthy subjects

No association between the 
SNP and BMI or weight gain 
in patients w ith 
schizophrenia but the 
carriers of A allele had 
significant higher BMI than 
those of TT genotype in 
healthy subjects

Watanabe 
et al., 2012

FTO
rs9939609

218 chronic schizophrenia 
or schizoaffective disorder 
treated mostly w ith 
clozapine or olanzapine for 
up to  14 weeks

No association between the 
polymorphism and BMI or 
antipsychotic drug-induced 
weight gain

Shing et al., 
2014

BMI, body mass index; FEP, First episode psychosis; SGAs, Second generation 

antipsychotics

Therefore, these SNPs were studied to investigate the ir influence on weight gain in 

firs t episode or BMI in chronic patients w ith schizophrenia. These SNPs are strong 

candidates relating to  epigenetic modification (MTHFR polymorphisms), 

neurotransm itter receptors fo r antipsychotic drugs (ADRA2A and HTR2A), the GWAS 

SNPs associated w ith BMI and obesity [FTO, MC4R, and BDNF), and the 5-HT signaling 

transduction (GNB3).

2.1.1 TaqMan®-based SNP Genotyping

The principle o f the TaqMan®-based SNP genotyping technology relies on the S'-B' 

nuclease activity o f Taq polymerase and fluorophore-based detection. In addition to 

unlabelled specific primers (forward and reverse primers) targeting the region flanking 

the SNP site, each SNP assay contains tw o TaqMan® fluorescent probes w ith the same
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sequence except at the SNP site, w ith one probe complementary to  the first allele and 

the other probe complementary to the second allele. 5' end of each probe is labelled 

or attached covalently w ith a d ifferent fluorophore (VIC or FAM) as a reporter. 3' ends 

of both probes are covalently linked to  a non-fluorescent quencher preventing 

liberation of the reporter fluorescence if the probe is not degraded.

In the PCR cycling, during the denaturation step DNA was denatured to  separate 

double-stranded DNA into single-stranded DNA providing DNA templates fo r the 

follow ing annealing step in which primers bind specifically to DNA tem plate while 

probes hybridize specifically to the targeted SNP site. During PCR extension or 

polymerisation step, the binding probe is displaced and cleaved by the 5' nuclease 

activity o f the Taq polymerase which releases the reporter and quencher dyes and 

then the fluorescence of corresponding fluorophore is detected. Only the perfectly 

hybridized probes are destroyed by exonuclease activity of Taq polymerase, since a 

mismatched probe does not bind to  DNA template; therefore, it w ill not be recognized 

and cut by the Taq polymerase; therefore, un-hybridized probe not complem entary to 

the SNP site remains intact and the fluorescence of tha t reporter is suppressed (Figure 

2.1).

The fluorescent signals fo r the tw o reporter dyes are measured at the end o f the PCR 

cycle. These signals are normalized using the signal o f a th ird dye fo r example ROX dye, 

o f which the fluorescent intensity is proportional to the tem plate DNA concentration 

and the extent o f the PCR reaction. Typically, the reporter dye signals are visualized in 

a plot (Figure 2.2). The ratio o f the signals w ill be indicative o f the genotype o f the 

sample (Table 2.2).
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A) Hybridization

Perfect match TaqMan0 Probe

IVI 0

3’

C
G

Single m ismatch TaqMan0 Probe

5* 3’

Q
/

5'

B) Polymerisation

Q

3’
- C
-G- 5*

-G

Probe cleavage: signal Probe displacement: no signal

C) Polymerisation completed

V ) Dye1: VIC® dye Q Quencher

( J )  Dye2: FAM™ dye j aq q n a  polymerase

—► Forward primer

Figure 2.1: Overview of TaqMan® based SNP genotyping principle
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Allele D iscrim ination Plot (SNP Assay: SNP Assay 1)

2 .3

t.s

1.3

Cl.8

•  m

0.3

0.1 0.3 0.5 0.7 0.9 1.1

A l le le  1

Legend
♦  Homozygous 1 /1 •  Homozygous 2/2
*  Heterozygous 1 !2 xUndetermined

Figure 2.2: Genotyping result discriminating 3 groups of alleles

Figure shows homozygous allele 1 (red), homozygous allele 2 (blue), and heterozygous 

both alleles (green) w ith undeterm ined negative control.

Table 2.2: Categorization of SNP from fluorescent signal ratio after genotyping

VIC® dye fluorescence only Homozygosity fo r allele 1

FAM™ dye fluorescence only Homozygosity fo r allele 2

Both fluorescence signals Heterozygosity fo r allele 1 and allele 2
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2.1.2 Aims

The main objective o f the work reported in this chapter is to identify single-nucleotide 

polymorphisms associated w ith antipsychotic drug-induced weight gain.

1. To investigate the influence of polymorphisms in the MTHFR, ADRA2A, HTR2A, 

MC4R, GNB3, BDNF, and FTO genes on antipsychotic drug-induced weight gain in firs t 

episode schizophrenia patients.

2. To investigate the influence of polymorphisms in the MTHFR gene on body weight in 

chronic schizophrenia patients.

3. To investigate the gene-gene and drug-gene interactions on weight gain and body 

mass index follow ing antipsychotic drug treatm ent.

4. To investigate the influence of previous findings in the HTR2C -759C/T, FTO 

rs9939609, and/or leptin -2548A/G polymorphisms on antipsychotic drug induced 

weight gain and BMI, as well as the gene-gene and drug-gene interactions.
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2.2 Materials and methods

2.2.1 Study population and DNA samples

DNA samples used in this study were from  three d ifferent populations; tw o cohorts of 

first-episode, in itia lly antipsychotic drug-na'Ve patients w ith schizophrenia (Spanish 

and Chinese cohorts) and one cohort o f chronic schizophrenia patients (Belfast 

cohort). All patients received treatm ent according to normal clinical practice as 

described below in section 2.2.1.1-2.2.1.3 and gave w ritten  informed consent to  the 

procedure of the study. Ethical approval fo r the studies was granted by the relevant 

local ethical committees.

2.2.1.1 Chinese first episode drug naive schizophrenia patients

Chinese Han (n=182) cohort of first-episode, in itia lly antipsychotic drug-na'Ve patients 

who met DSM-IV criteria for schizophrenia were studied. Patients who had evidence of 

previous antipsychotic drug treatm ent or other medical or neurological illness, and 

fam ily history o f diabetes or eating disorder were excluded. Height and weight to 

determ ine body-mass index (BMI) were measured on in itiation o f antipsychotic drug 

treatm ent and after 8 or 10 weeks and weight gain was determined by change in BMI 

over the treatm ent period. Blood samples were collected on the in itia tion of 

antipsychotic drug treatm ent. Initial antipsychotic drug treatm ent consisted prim arily 

o f chlorpromazine (n=60) and risperidone (n=114); eight patients received clozapine, 

fluphenazine or sulpiride.

2.2.1.2 Spanish first episode drug naive schizophrenia patients

A Spanish Caucasian (n=72) cohort of first-episode, in itia lly antipsychotic drug-na i/e

schizophrenia patients diagnosed by DSM-IV criteria were studied. Patients w ith

comorbid DSM-IV diagnosis o f substance abuse or dependence, or w ith any physical

illness, were excluded from the study. None of the patients had a prior history o f

medication w ith antipsychotic, antidepressant or mood stabilizer drugs. Height and

weight to  determ ine BMI were measured on in itiation o f antipsychotic drug trea tm ent

and after 3 months and weight gain was determined by change in BMI over the

treatm ent period. Blood samples were collected on in itiation o f antipsychotic drug

treatm ent. Initial antipsychotic drug treatm ent consisted primarily o f risperidone
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(n=21) or olanzapine (n=22) and tw o received both, others had quetiapine (n=10), 

haloperidol (n=8) or ziprasidone (n=6) w ith three other treatments.

2.2.1.3 Belfast series of chronic schizophrenia patients

In this cross-sectional study, a series o f patients from  Northern Ireland w ith a DSM-IV 

diagnosis o f schizophrenia or schizoaffective disorder currently receiving antipsychotic 

drug therapy (n=72) were studied. All patients were of Irish/British Caucasian descent, 

except one Malaysian Chinese. Each patient was interviewed about personal disease 

history and fam ily psychiatric disease, diabetes and smoking history. All patients were 

tested fo r random blood glucose level, cholesterol, high-density (HDL) and low-density 

lipoproteins (LDL), and triglycerides; blood pressure and waist circumference were 

measured and body mass index (BMI) calculated from weight and height. These data 

were used to  determine metabolic syndrome which was defined using the 

International Diabetes Federation (IDF) criteria (w w w .idf.org) by presence of central 

obesity, i.e. waist circumference >94 cm in men and >80 cm in women, plus any tw o 

fu rthe r risk factors from  the following:

(a) raised triglycerides (>1.7 m m ol/l) or specific treatm ent fo r this lipid abnormality;

(b) reduced HDL cholesterol (<1.03 m m ol/l in men and <1.29 m m ol/l in women) or 

specific treatm ent fo r this lipid abnormality;

(c) raised blood pressure (systolic >130 mmHg or diastolic >85 mmHg) or trea tm ent o f 

previously diagnosed hypertension;

(d) raised fasting blood glucose (>5.6 m m ol/l) or previously diagnosed type 2 diabetes.

Patients received antipsychotic drugs consist o f clozapine (n=12), olanzpine (n=10), 

risperidone (n=10), haloperidol (n= l), amisulpride (n=3), aripiprazole (n=2), 

zuclopenthixol (n=2), flupentixol (n=12), quetiapine (n=3), chlorpromazine (n=2), 

sulpiride (n=2), trifluoperazine (n=3), zotapine (n=5), fluphenazine (n= l), thioridazine 

(n= l), one received zuclopenthixol and amisulpride, one received zuclopenthixol and 

chlorpromazine, and one was not receiving antipsychotics.
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2.2.2 Genotyping assays

Genomic DNA previously isolated from blood using standard techniques was 

genotyped fo r polymorphisms including MTHFR 677C/T (rsl801133), MTHFR 1298A/C 

(rsl801131), ADRA2A -1291C/G (rsl800544)/ MC4R rsl7782313 C/T, MC4R

rs489693A/C, GNB3 825C/T (rs5443), HTR2A -1438G/A (rs6311) and BDNF 196G/A 

(rs6265) using Custom TaqMan® SNP Genotyping Assays (Applied Biosystems, USA). 

The HTR2C -759C/T was genotyped previously in all cohorts. The FTO rs9939609 

genotype was genotyped previously in Spanish and Belfast cohorts by Professor Gavin 

Reynolds' research group (Reynolds et a i, 2013) and was included in analyses in this 

study of both genetic association and epigenetic association (next chapter) to 

antipsychotic induced weight gain. The genotyping SNPs and the ir cohorts are listed in 

Table 2.3.

Table 2.3: Genotyping SNPs and cohorts that have been genotyped.

rs number Gene Genetic
variants

TaqMan®SNP 

Genotyping Assay ID
Cohorts Previous

data

rs3813929 HTR2C -759C/T Spanish,

Chinese,

Belfast

rsl801133 MTHFR 677C/T

Ala222Val

C_1202883_20 Spanish,

Chinese,

Belfast

rsl801131 MTHFR 1298 A/C 

Glu429Ala

C_850486_20 Spanish,

Chinese,

Belfast

rsl800544 ADRA2A 1291C/G C_7611979_10 Chinese -

rsl7782313 MC4R C/T C 32667060 10 Chinese -

rs489693 MC4R A/C C_3058718_10 Chinese -

rs5443 GNB3 825C/T C_2184734_10 Chinese -

rs6311 HTR2A -1438G/A C_8695278_10 Chinese -

rs6265 BDNF 196G/A C_11592758_10 Chinese -

rs9939609 FTO A/T C_30090620_10 Chinese Spanish,

Belfast
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Genotyping PCR reactions were set up in a 96-well qPCR plate in a tota l volume of 10 

jul as listed in Table 2.4. Control was also set up by adding DNase-free water instead of 

gDNA. The reactions were set up in duplicate. The plate was covered with adhesive 

film  and centrifuged briefly before running on a StepOne Plus Real-Time PCR System 

(Applied Biosystems, USA) according to  PCR run condition in Table 2.5.

Table 2.4: PCR reaction set up for genotyping using TaqMan® SNP Genotyping Assays

PCR reaction component Volume for 10 pL PCR reaction 
(|iL/well)

TaqMan®GTXpress™ Master Mix (2x) 5.0

Custom TaqMan® SNP Genotyping Assays (40x) 0.25

Genomic DNA tem plate (1-10 ng) 2.0

DNase-free water 2.75

Table 2.5: PCR condition for genotyping using TaqMan® SNP Genotyping Assays

Stage Step Temperature Time

Holding DNA polymerase activation 95 °C 20 sec

Cycling Denature 95 °C 3s

(40 cycles) Anneal/Extend 60 °C 30 s

Allelic discrim ination was performed using a post-read tem perature 25°C.

2.2.3 Statistical analysis

All statistical analysis o f results was performed using SPSS version 18.0. Data were 

expressed as mean ± standard deviation. Stepwise linear regression was used to  

determ ine where appropriate, the potential confounding effects o f baseline BMI, sex, 

and age on weight gain. Univariate analysis o f variance was used to  determ ine the 

association between genotypes or genetic risk factor and clinical measures. Also, it was 

used to determine any gene-gene interaction and drug-gene interaction. The 

Bonferroni post hoc analysis was performed in olanzapine (Spanish), and risperidone 

and chlorpromazine (Chinese) subgroups after finding a drug-genotype interaction. 

The subgroup o f antipsychotic drugs was analyzed based on receptor binding
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characteristic o f antipsychotic drugs. Chi-squared analysis was used to  determine the 

association between categorical measures including genotype, sex distribution, 

percentage of weight change more or less than 7% which is considered clinically 

significant and is consistent w ith the Food and Drug Adm inistration's defin ition of 

significant weight gain fo r studies of psychotropic drugs (Sachs and Guille, 1999), 

present/absence of central obesity and metabolic syndrome.

Hardy-Weinberg Equilibrium was calculated by web tool 

(http://www.had2know.com /academ ics/hardy-weinberg-equilibrium -calculator-2- 

alleles.html). Linkage disequilibrium (LD) of the MTHFR 677C/T and 1298A/C as well as 

the MC4R rsl7782313 and rs489693 polymorphisms were analysed by SHEsis (Shi and 

He, 2005).

In the present study, an association of the -759C/T polymorphism of the HTR2C w ith 

weight gain which had previously been reported in these cohorts (Reynolds et al., 

2002; Templeman et al., 2005; Yevtushenko et al., 2008) was also included in a 

combined analysis w ith other SNPs in each cohort. In the Belfast cohort, the FTO 

rs9939609 polymorphism was also included in a combined analysis w ith  o ther SNPs.

Statistical significance was assumed fo r p values less than 0.05. The largest sample size 

of 171 subjects (Chinese cohort) had approximately 90% power to identify a significant 

genotype difference for a medium effect size o f 0.5.
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2.3 Results (Part 1): First-episode antipsychotic drug naive 

schizophrenia

2.3.1 General characteristics of population studies and genotyping 

results

General characteristics o f population studies o f first-episode antipsychotic drug na ive 

Chinese Han and Spanish patients w ith schizophrenia are shown in Table 2.6. 5-10% of 

samples from each cohort underwent repeated genotyping and provided reproducible 

results (data not shown).

2.3.1.1 Chinese Han cohort

The genotype distributions and allele frequency fo r all genotyped SNPs are listed in 

Table 2.7. Genotype frequencies did not deviate from  Hardy-Weinberg equilibrium 

expectations fo r all SNPs (p>0.05) (Table 2.7). Previous HTR2C -759C/T SNP data had 

genotype distribution C=68, T=13 in male, and CC=73, CT/TT=25 in female, and the 

allele d istribution in each gender was not significantly d ifferent (x2=2.374, p=0.123).

On regression analyses, baseline BMI but not age had a significant confounding effect 

on weight gain after 8-10 weeks treatm ent (F=19.90, P<0.001), whereas age had a 

significant confounding effect on baseline BMI (F=8.78, p=0.003). Therefore, the 

subsequent analyses were carried out w ith adjustment fo r age or baseline BMI as 

covariates.

2.3.1.2 Spanish cohort

The genotype distributions and allele frequency fo r all genotyped SNPs are listed in 

Table 2.8. Genotype frequencies did not deviate from  Hardy-Weinberg equilibrium  

expectations fo r all genotyped SNPs (p>0.05) (Table 2.8). Previous HTR2C -759C/T SNP 

data had genotype distribution C=42, T = l l  in male, and CC=12, CT/TT=7 in female, and 

the genotype distribution in each gender was not significantly d iffe rent (x2=1.93, 

p=0.165). In addition, previous FTO rs9939609 data had genotype distribution AA=14, 

AT=35, and TT=21 which are in Hardy-Weinberg equilibrium (x2=0.0074, p =0.933) and 

the allele frequency fo r A allele was 0.45 and T allele was 0.55.
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On regression analyses, age but not baseline BMI had a significant confounding effect 

on weight gain at 3 months after treatm ent (F=7.026, P=0.010). Therefore, the 

subsequent analyses were carried out w ith adjustment for age as a covariate.

Table 2.6: General characteristics of Spanish and Chinese Han cohorts

Chinese Han Total Males Females

Number 182 83 99

Age (years) 26.24 ±7.35 26.3017.40 26.1917.34

Baseline weight (kg) 58.83 ±10.69 65.12110.25 53.55 1 7.84

Baseline BMI (kg/m 2) 21.34 ±2.87 22.1612.93 20.65 1 2.64

Change in BMI (kg/m 2) 1.2111.21 1.27 11.30 1.1511.12

Spanish Total Males Females

Number 72 53 19

Age (years) 25.35 1 6.80 24.1915.63 28.581 8.70

Baseline weight (kg) 63.361 12.37 67.241 11.38 52.561 7.89

Baseline BMI (kg/m 2) 21.8913.70 22.4613.62 20.3113.53

Change in BMI (kg/m 2) 2 .1811.60 2.2811.53 1 .9011.80

Data is expressed as mean ± SD.
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Table 2.7: Genotype distribution and allele frequency in Chinese Han cohort

rs number Gene Genetic
variants

Genotype
distribution

Allele
frequency

Chi-Square, 
p value

rsl801133 MTHFR 677C/T CC=54,
CT=94,
TT=28

C=0.57, T=0.43 %2=1.4899
p =0.222

rsl801131 MTHFR 1298 A/C AA=114,
AC=56,
CC=5

A=0.81, C=0.19 X2=0.3643 
p =0.546

rsl800544 ADRA2A 1291C/G CC=21,
CG=81,
GG=69

C=0.36/ G=0.64 X2=0.1383 
p =0.710

rsl7782313 MC4R C/T CC=13,
CT=51,
TT=109

C=0.22, T=0.78 %2=3.7890 
p =0.052

rs489693 MC4R A/C AA=7,
AC=55,
CC=112

A=0.20, C=0.80 %2=0.0058 
p =0.939

rs5443 GNB3 825C/T CC=40,
CT=83,
TT=50

C=0.47, T=0.53 %2=0.2406 
p =0.624

rs6311 HTR2A -1438G/A GG=38,
GA=86,
AA=49

G=0.47, A=0.53 X2=0.0006
p =0.982

rs6265 BDNF 196G/A GG=39,
GA=89,
AA=45

G=0.48, A=0.52 X2=0.1567 
p =0.692

rs9939609 FTO A/T AA=3,
AT=35,
TT=141

A=0.11; T=0.89 X2=0.2294 
p =0.631

Table 2.8: Genotype distribution and allele frequency in Spanish cohort

rs number Gene Genetic
variants

Genotype
distribution

Allele
frequency

Ch-Square, 
p value

rsl801133 MTHFR 677C/T CC=20,
CT=36,
TT=13

C=0.55,
T=0.45

%2=0.2047 
p =0.652

rsl801131 MTHFR 1298 A/C AA=45,
AC=21,
CC=3

A=0.80,
C=0.20

X2=0.0759 
p =0.784
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2.3.2 Association of MTHFR 677C /T and 1298A/C polymorphisms with  

weight gain in first episode drug naive schizophrenia patients

2.3.2.1 MTHFR 677C/T

Table 2.9: Effect o f MTHFR 677C/T polym orphism  on changes in body w e ight in firs t 

episode drug na'K/e schizophrenia patients

MTHFR 677C/T genotype

CC CT TT p value

Chinese Han sample n=54 n=94 n=28

Sex M/F (%male) 25/29 (46.3%) 57/65 (46.7%) 13/15 (46.4%) 0.998a

Age (years) 25.0416.84 26.2117.18 28.45 18.60 0.136

Baseline BMI (kg/m2) 20.9912.69 21.4312.77 21.92 1 3.53 0.607c

Change BMI (kg/m2) 1.5811.25 0.9211.15 1.43 11.10 0.003b

Spanish sample n=20 n=36 n=13

Sex M/F (%male) 14/6 (70.0%) 29/7 (80.6%) 9/4(69.2%) 0.5783

Age (years) 27.6018.34 24.2515.69 23.921 6.96 0.168

Baseline BMI (kg/m2) 21.4413.78 22.061 3.70 22.2914.01 0.780

Change BMI (kg/m2) 2.8611.53 2.091 1.44 1.85 1 1.81 0.049c

a p values obtained from Chi-squared test, o ther p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate. Data is expressed as mean ± SD.

As shown in Table 2.9, the baseline BMI, age, and sex distribution of both samples 

were not significantly d ifferent between genotypes of the MTHFR 677C/T 

polymorphism. Dividing genotype into tw o groups by combining m inor risk (T) allele 

carriers found that the CC genotype had greater changes in BMI than T allele carriers: 

1.58±1.25 versus 1.0411.16 kg/m 2 in Chinese (p=0.012) and 2.8611.53 versus 

2.02+1.54 kg/m 2 in the Spanish sample (p=0.017) (Figure. 2.3). Analysis in the 

subgroup of Chinese Han schizophrenia patients who had received risperidone, the CC 

carriers had higher BMI change than T allele carriers; 1.6911.24 (n=33) versus 

1.0011.17 kg/m 2 (n=75), p=0.051.
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Figure 2.3: The association between MTHFR 677C/T genotype and w e ight gain 

The T allele o f the MTHFR 677C/T polymorphism shows significantly lower in BMI 

change in both cohorts; (a) Chinese Han and (b) Spanish comparing to  CC genotype. 

Data is expressed as mean ± SEM.

Dividing the Spanish cohort into patients who had received or did not receive 

olanzapine, and the Chinese cohort into those receiving either risperidone or 

chlorpromazine, did not identify a significant drug x MTHFR 677C/T genotype 

interaction (p=0.193 and p=0.667 fo r Spanish and Chinese cohort, respectively). These 

results indicate tha t the genotype effect o f the MTHFR 677C/T on weight gain is 

independent o f drug effect; in other word, the genotype effect on weight gain is not 

d ifferent between drug treatments.

2.3.2.2 MTHFR 1298A/C

The baseline BMI, age, and sex distribution of both study populations were not 

significantly associated w ith the MTHFR 1298A/C polymorphism (Table 2.10). Dividing
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the sample into two genotype groups by combining m inor risk (C) allele found tha t the 

changes in BMI o f both study populations were still not significantly d ifferent between 

1298A/C AA genotype and C allele carriers: 1.27±1.24 versus 1.0811.17 kg/m 2 in 

Chinese Han samples (p=0.242) and 2.1811.66 versus 2.4011.45 kg/m 2 in Spanish 

samples (p=0.621) respectively.

Table 2.10: Effect o f MTHFR 1298A/C polym orphism  on changes in body w eight in 

firs t episode drug na‘K/e schizophrenia patients

MTHFR 1298A/C genotype

AA AC CC p value

Chinese Han sample n=114 n=56 n=5

Sex M/F (%male) 53/61 (46.5%) 24/32 (42.9%) 4/1 (80%) 0.279a

Age (years) 26.5417.77 25.611 6.61 27.2015.54 0.710

Baseline BMI (kg/m2) 21.4713.06 21.201 2.59 21.7811.51 0.895c

Change BMI (kg/m2) 1.271 1.24 1.041 1.18 1.63 10.94 0.228b

Spanish sample n=45 n=21 n=3

Sex M/F (%male) 32/13 (71.1%) 17/4 (81%) 3/0(100%) 0.412a

Age (years) 25.3617.36 24.7616.38 25.001 1.73 0.949

Baseline BMI (kg/m2) 21.9213.62 21.9914.16 21.4513.76 0.973

Change BMI (kg/m2) 2.1811.66 2.4611.52 2.0310.99 0.807c

a p values obtained from Chi-squared test, o ther p values obtained from univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate. Data is expressed as mean 1 SD.

Dividing the Spanish cohort into patients who had received or did not receive 

olanzapine, and the Chinese cohort into those receiving either risperidone or 

chlorpromazine, did not identify a significant drug x MTHFR 1298A/C genotype 

interaction (p=0.296 and p=0.363 fo r Spanish and Chinese cohort, respectively).

The MTHFR 677C/T and 1298A/C polymorphisms were in strong linkage disequilibrium 

in both Chinese and Spanish cohorts: D'=0.866, r2=0.127 fo r Chinese and D'1.000, 

r2=0.198 fo r Spanish cohort.
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2.3.2.3 Gene-gene in te ra c tio n

Previous findings in these tw o cohorts (Reynolds et al., 2002; Templeman et al., 2005) 

showed the T allele o f the HTR2C -759C/T polymorphism had a protective effect 

against antipsychotic-induced weight gain. Association o f this polymorphism w ith 

changes in BMI were as follows: in the Chinese cohort T allele carriers 0.71+1.11 kg/m 2 

(n=38), C/CC genotype 1.33±1.21 kg/m 2 (n=141), p=0.004; in the Spanish cohort T 

allele carriers 1.24±1.46 kg/m 2 (n=16), C/CC genotype 2.4811.54 kg/m 2 (n=50) p=0.012. 

Previous findings in the Spanish cohort showed the FTO rs9939609 had no influence on 

BMI change (Reynolds et al., 2013).

The relationship between the effects o f the HTR2C -759C/T and the MTHFR 677C/T 

polymorphisms was investigated. Analysing the association o f weight gain w ith both 

polymorphisms together in each cohort, no significant interaction between the 

polymorphisms was detected but a significant overall effect was observed (p<0.001 in 

Chinese sample; p=0.019 in Spanish sample) indicating an independent effect of the 

tw o polymorphisms. Thus carriage of tw o risk factors (HTR2C C/CC genotype and 

MTHFR 677 CC genotype) was significantly associated w ith mean BMI gains in Chinese 

and Spanish cohorts (Table 2.11).

Table 2.11: Combined genetic risk genotype o f HTR2C -759C/T and MTHFR 677C/T

Number 

o f risk 

genotype

Chinese Han Spanish

BMI change 

(kg/m 2)

n p value BMI change 

(kg/m 2)

n p value

0 0.63 11.20 25 0.001 1.3611.57 10 0.005

1 1.1011.11 107 2.1411.46 39

2 1.8111.26 41 3.23 11.46 14

BMI change values are expressed as mean ± SD. p value was obtained from  univariate 

analysis o f variance w ith  baseline BMI and age as covariates fo r Chinese and Spanish 

cohorts, respectively.
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2.3.3 Association of ADRA2A rsl800544 (-1291C/G) polymorphism 

with weight gain in Chinese Han schizophrenia patients

The baseline BMI, age, and sex distribution o f were not significantly associated w ith 

the ADRA2A -1291C/G polymorphism (Table 2.12). Dividing genotypes into tw o  groups 

by combining risk (G) allele carriers found tha t the G allele carriers tended to  have a 

greater change in BMI than that o f CC genotype but this did not reach statistical 

significance: 1.25±1.21 versus 0.84±1.09 kg/m 2 (p=0.126). However, there was a non

significant indication of drug x ADRA2A -1291C/G genotype interaction in the analysis 

o f patients receiving either risperidone or chlorpromazine (p=0.072). Therefore, post 

hoc analysis was performed in a subgroup of patients who had received risperidone 

and this analysis found a significantly greater change in BMI in G allele carriers than CC 

genotype: 1.30±1.19 kg/m 2 (n=91) versus 0.47±1.14 kg/m 2 (n=12), p=0.027 (Figure 

2.4).

Table 2.12: Effect of ADRA2A -1291C/G polymorphism on changes in body weight in 

Chinese Han schizophrenia patients

ADRA2A -1291C/G genotype

CC CG GG p value

Chinese Han sample n=21 n=81 n=69

Sex M/F (%male) 8/13 (38.10%) 39/42 (48.15%) 33/36 (47.8%) 0.695a

Age (years) 25.14±7.02 25.801 6.88 26.8818.09 0.537

Baseline BMI (kg/m2) 21.3613.07 21.1312.79 21.69 + 2.94 0.601c

Change BMI (kg/m2) 0.8411.09 1.2411.29 1.2511.13 0.279b

Baseline weight (kg) 57.761 12.18 58.281 10.48 60.231 10.62 0.496d

Weight change (kg) 2.1713.05 3.381 3.60 3.4313.16 0.2066

Weight change (%) 4.3414.91 6.161 6.55 6.1115.51 0.2476

Weight increase>7% n=8/13 (38.1%) n=37/81 (45.7%) n=33/69 (47.8%) 0.735a

a p values obtained from  Chi-squared test, o ther p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates, 6 analyses w ith  baseline 

weight as a covariate. Data is expressed as mean ± SD.
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Figure 2.4: The association between ADRA2A -1291C/G genotype and w eight gain in 

Risperidone trea tm en t group o f Chinese Han cohort

The relationship between the effects o f the ADRA2A -1291C/G, the HTR2C -759C/T, 

and the MTHFR 677C/T polymorphisms was investigated. Analysing the association of 

weight gain w ith ADRA2A -1291C/G and HTR2C -759C/T or ADRA2A -1291C/G and 

MTHFR 677C/T polymorphisms or all three polymorphisms together, no significant 

interaction between the polymorphisms was detected but a significant overall effect 

was observed (p<0.001) both in tota l cases and in the subgroup receiving risperidone 

treatm ent indicating an additive effect of the three polymorphisms.

2.3.4 Association of HTR2A rs6311 (-1438G/A) polymorphism with 

weight gain in Chinese Han schizophrenia patients

The baseline BMI, age, and sex distribution were not significantly associated w ith  the 

HTR2A -1438G/A polymorphism (Table 2.13). Dividing genotype into tw o groups by 

combining risk (A) allele carriers found that the A allele carriers had a slightly greater 

change in BMI than tha t of GG genotype but this did not reach statistical significance: 

1.25±1.15 versus 1.03±1.36 kg/m 2 (p=0.326). However, there was a significant drug x 

HTR2A -1438G/A genotype interaction in the analysis o f patients receiving either 

risperidone or chlorpromazine (p=0.017) (Figure 2.5). Therefore, post hoc analysis was 

performed in the subgroup of patients who had received risperidone and this found a 

significant greater change in BMI in A allele carriers than GG genotype: 1.3511.18 

kg/m 2 (n=79) versus 0.7911.20 kg/m 2 (n=26), p=0.047 (Figure 2.6).
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Table 2.13: Effect of HTR2A -1438G/A polymorphism on changes in body weight in

Chinese Han schizophrenia patients

HTR2A -1438G/A genotype

GG GA AA p value

Chinese Han sample n=38 n=86 n=49

Sex M/F (%male) 18/20 (47.37%) 43/43 (50%) 20/29 (40.8%) 0.5883

Age (years) 24.9717.83 26.9116.82 25.6517.87 0.349

Baseline BMI (kg/m2) 21.45 ± 2.77 21.221 2.89 21.4913.01 0.657c

Change BMI (kg/m2) 1.0311.36 1.311 1.17 1.1511.11 0.509b

Baseline weight (kg) 60.21110.69 58.471 10.88 58.621 10.66 0.310d

Weight change (kg) 2.8613.83 3.5413.29 3.0913.11 0.609e

Weight change (%) 5.2117.18 6.5115.68 5.53 + 5.38 0.5326

Weight increase>7% n=14/38 (36.8%) n=46/86 (53.5%) n=19/49 (38.8%) 0.119a

a p values obtained from Chi-squared test, other p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,e analyses w ith  baseline 

weight as a covariate. Data is expressed as mean ± SD.

O jO

00

<uCUO
cre-Cu

2
Chlorpromazine

Risperidone
1.5

p=0.017
1

0.5

0
GA/AAGG

HTR2A -1438G/A genotype

Figure 2.5: The interaction between HTR2A -1438G/A genotype and antipsychotic 

drug treatment on weight gain in Chinese Han cohort in the analysis of subgroup of 
patients receiving either risperidone or chlorpromazine
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Figure 2.6: The association between HTR2A -1438G/A genotype and w e ight gain in 

risperidone trea tm en t group o f Chinese Han cohort

The relationship between the effects o f the HTR2A -1438G/A, the ADRA2A -1291C/G, 

the HTR2C -759C/T, and the MTHFR 677C/T polymorphisms was investigated. 

Analysing the association o f weight gain w ith HTR2A -1438G/A polymorphism and the 

other three polymorphisms together, no significant interaction between the 

polymorphisms was detected but a significant overall effect was observed (p<0.002) 

both in the analysis o f to ta l cases and in a subgroup of risperidone treatm ent 

indicating an additive effect of the four polymorphisms.

2.3.5 Association of rsl7782313 and rs489693 polymorphisms near 

MC4R gene with weight gain in Chinese Han schizophrenia 

patients

The baseline BMI, age, and sex distribution were not significantly associated w ith  

polymorphisms near MC4R; rsl7782313 C/T polymorphism (Table 2.14) and rs489693 

A/C polymorphism (Table 2.15).

Dividing MC4R rsl7782313 genotype into tw o groups by combining m inor risk (C) allele 

found that changes in BMI were not significantly d ifferent between MC4R rsl7782313 

TT genotype and C allele carriers: 1.31±1.06 (n=109) versus 1.02±1.39 kg/m 2 (n=64), 

p=0.163. However, TT genotype had a higher frequency of percentage of weight 

changes over than 7% (n=56/109, 51.38%) compared to C allele carriers (n=23/64, 

35.94%), x 2=3 .874, p=0.049. No drug x MC4R rsl7782313 genotype interaction was
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observed when analysing patients receiving either risperidone or chlorpromazine 

(p=0.822).

The MC4R rs489693, dividing by genotype into two groups by combining C allele vs AA 

genotype based on BMI change found tha t BMI change in the C allele carriers was 

significantly greater than tha t o f carriers w ith AA homozygous genotype: 1.25±1.21 

(n=167) versus 0.31±1.19 (n=7) kg/m 2 (p=0.040)(Figure 2.7). The genotype distribution 

of AA and AC/CC was not significantly d ifferent between groups of patients who had 

weight changes more than 7% and less than 7%. The percentage of weight change in C 

allele carriers was higher than tha t of AA genotype: 6.16±6.00 vs 1.45±5.69% 

(p=0.052). No drug x MC4R rs489693 genotype interaction was observed when analysis 

patients receiving either risperidone or chlorpromazine (p=0.810).

The relationship between the effects of the HTR2C -759C/T, MTHFR 677C/T, MC4R 

rsl7782313 and MC4R rs489693 polymorphisms was investigated. No significant 

interaction between the HTR2C -759C/T or MTHFR 677C/T and the MC4R rsl7782313 

as well as MC4R rs489693 polymorphisms in the ir effect on BMI change was detected 

in this Chinese Han cohort.

The MC4R rsl7782313 and rs489693 polymorphisms were in weak LD: D'=0.196, 

r2=0.007.
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Table 2.14: Effect of MC4R rsl7782313 C/T polymorphism on changes in body weight

in Chinese Han schizophrenia patients

MC4R rsl7782313 genotype

CC CT TT p value

Chinese Han sample n=13 n=51 n=109

Sex M/F (%male) 6/7 (46.15%) 26/25 (50.98%) 49/60 (44.9%) 0.775a

Age (years) 24.4616.63 25.45 1 5.97 26.6518.00 0.443

Baseline BMI (kg/m2) 21.1112.52 21.661 3.32 21.23 12.72 0.529c

Change BMI (kg/m2) 0.9711.41 1.03 11.40 1.3111.06 0.354b

Baseline weight (kg) 58.9219.15 60.691 12.35 58.05 1 10.07 0.328d

Weight change (kg) 2.6513.75 2.7813.89 3.5613.02 0.4508

Weight change (%) 4.8617.26 5.35 17.22 6.3615.10 0.6836

Weight increase>7% n=4/13 (30.8%) n=19/51 (37.3%) n=56/109 (51%) 0.132a

a p values obtained from Chi-squared test, o ther p values obtained from univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,8 analyses w ith  baseline 

weight as a covariate. Data is expressed as mean ± SD.

Table 2.15: Effect o f MC4R rs489693 A/C polym orphism  on changes in body w e ight in 

Chinese Han schizophrenia patients

MC4R rs489693 genotype

AA AC CC p value

Chinese Han sample n=7 n=55 n=112

Sex M/F (%male) 4/3 (57.14%) 26/29 (47.27%) 50/62 (44.6%) 0.791a

Age (years) 24.71 + 6.58 25.66 + 6.55 26.67 + 7.79 0.603

Baseline BMI (kg/m2) 21.5812.49 21.43 1 3.15 21.38 + 2.74 0.916c

Change BMI (kg/m2) 0.3111.19 1.21 + 1.35 1.26 + 1.13 0.119b

Baseline weight (kg) 61.29 + 8.06 59.49 1 11.54 58.49 + 11.54 0.775d

Weight change (kg) 0.93 + 3.27 3.26 + 3.71 3.41 + 3.19 0.2058

Weight change (%) 1.45 + 5.69 6.14 + 7.03 6.16 + 5.46 0.1498

Weight increase>7% n=l/7  (14.3%) n=25/55 (45.5%) n=54/112 (48%) 0.2163

a p values obtained from Chi-squared test, o ther p values obtained from univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,0 analyses w ith  baseline 

weight as a covariate. Data is expressed as mean ± SD.
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Figure 2.7: The association between MC4R rs489693 A/C genotype and w eight gain in 

Chinese Han cohort

2.3.6 Association of GNB3 rs5443 (825C/T) polymorphism with weight 

gain in Chinese Han schizophrenia patients

The baseline BMI, age, and sex distribution were not significantly associated w ith  the 

GNB3 825 C/T (Table 2.16). Dividing genotype into tw o  groups by combining m inor (C) 

allele carriers found that changes in BMI were not significantly d iffe rent between 

GNB3 rs5443825 C allele carriers and TT genotype: 1.23±1.24 (n=123) versus 1.13±1.10 

kg/m 2 (n=50), p=0.503. No significant difference of weight changes and percentage of 

weight changes were found between TT genotype and C allele carriers. Genotype 

distribution was not d ifferent between groups of patients who had percentages of 

weight changes over 7% and less than 7%. No drug x GNB3 825C/T genotype 

interaction was observed when analysing patients receiving e ither risperidone or 

chlorpromazine (p=0.459).
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Table 2.16: Effect o f GNB3 825 C/T polym orphism  on changes in body w eight in

Chinese Han schizophrenia patients

GNB3 825C/T genotype

CC CT TT p value

Chinese Han sample n=40 n=83 n=50

Sex M/F (%male) 20/20 (50%) 37/46 (44.58%) 24/26 (48%) 0.8363

Age (years) 26.73 17.01 25.7517.22 26.2817.94 0.781

Baseline BMI (kg/m2) 20.77 1 2.65 21.7112.95 21.20 + 2.93 0.149c

Change BMI (kg/m2) 1.2011.34 1.2511.18 1.13 11.10 0.569b

Baseline weight (kg) 57.15 110.58 60.171 11.21 58.1719.97 0.053d

Weight change (kg) 3.0913.77 3.4313.32 3.1113.12 0.5926

Weight change (%) 6.1916.90 6.0616.00 5.5715.11 0.6396

Weight increase>7% n=21/40(52.5%) n=37/83 (44.6%) n=21/50 (42%) 0.588a

a p values obtained from Chi-squared test, other p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,e analyses w ith baseline 

weight as a covariate. Data is expressed as mean ± SD.

2.3.7 Association of BDNF rs6265 196G/A (Val66Met) polymorphism 

with weight gain in Chinese Han schizophrenia patients

The baseline BMI, age, and sex distribution were not significantly associated w ith the 

BDNF rs6265 G/A (Table 2.17). Dividing genotype into tw o groups by combining m inor 

risk (G) allele carriers found tha t changes in BMI were not significantly d ifferent 

between BDNF rs6265 G allele carriers and AA genotype: 1.1411.20 (n=128) versus 

1.3611.19 kg/m 2 (n=45), p=0.519. No significant difference of weight changes and 

percentage of weight changes were found between AA genotype and G allele carriers. 

Genotype distribution was not d ifferent between groups of patients who had 

percentages of weight changes over 7% and less than 7%. No drug x BDNF rs6265 G/A 

genotype interaction was observed when analysis patients receiving e ither risperidone 

or chlorpromazine (p=0.100).
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Table 2.17: Effect o f BDNF rs6265G/A polym orphism  on changes in body w e ight in

Chinese Han schizophrenia patients

BDNF rs6265 (Val66Met) genotype

GG GA AA p value

Chinese Han sample n=39 n=89 n=45

Sex M/F (%male) 16/23 (41.03%) 41/48 (46.07%) 24/21 (53.3%) 0.519a

Age (years) 25.33 17.38 25.9817.34 27.1117.44 0.526

Baseline BMI (kg/m2) 21.6813.25 21.4512.92 20.85 1 2.44 0.234c

Change BMI (kg/m2) 1.1611.41 1.1411.10 1.3611.19 0.788b

Baseline weight (kg) 59.541 12.31 59.48 1 10.45 57.1819.87 0.054d

Weight change (kg) 3.0413.77 3.13 13.15 3.7213.41 0.725s

Weight change (%) 5.9017.30 5.5415.32 6.8015.91 0.742s

Weight increase>7% n=15/39(38.5%) n=39/89 (43.8%) n=25/45 (55.6%) 0.2583

a p values obtained from Chi-squared test, other p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,8 analyses w ith baseline 

weight as a covariate. Data is expressed as mean ± SD.

2.3.8 Association of FTO rs9939609 A/T polymorphism with weight 

gain in Chinese Han schizophrenia patients

The baseline BMI, age, and sex distribution were not significantly associated w ith  the 

FTO rs9939609 A/T (Table 2.18). Dividing genotype into tw o groups by combining the 

risk allele A and AT/TT genotype (Perez-lglesias et al., 2010) found tha t changes in BMI 

were not significantly d ifferent between FTO rs9939609 AA genotype and T allele 

carriers: 1.02±1.46 (n=3) versus 1.2111.20 kg/m 2 (n=176), p=0.937. No significant 

difference of weight changes and percentage of weight changes were found between 

AA genotype and T allele carriers. Genotype distribution was not d iffe rent between 

groups of patients who had percentages of weight changes over 7% and less than 7%. 

No drug x FTO rs9939609 genotype interaction was observed when analysis patients 

receiving either risperidone or chlorpromazine (p=0.752).
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Table 2.18: Effect o f FTO rs9939609A/T polym orphism  on changes in body w eight in

Chinese Han schizophrenia patients

FTO rs9939609 genotype

AA AT TT p value

Chinese Han sample n=3 n=35 n=141

Sex M/F (%male) 1/2 (33.33%) 14/21 (40%) 67/74 (47.5%) 0.660a

Age (years) 32.0011.73 27.1917.27 25.92 17.39 0.260

Baseline BMI (kg/m2) 22.2912.03 20.9812.62 21.45 12.93 0.525c

Change BMI (kg/m2) 1.0211.46 1.2910.96 1.1911.26 0.987b

Baseline weight (kg) 60.671 12.22 56.8019.42 59.361 10.92 0.459d

Weight change (kg) 2.5013.91 3.43 12.62 3.23 13.51 0.9476

Weight change (%) 4.9716.65 6.3214.60 5.8916.32 0.9748

Weight increase>7% n=2/3(66.7%) n=18/35 (51.4%) n=61/141 (43%) 0.517a

a p values obtained from Chi-squared test, other p values obtained from  univariate 

analysis o f variance test, b analyses w ith baseline BMI as a covariate, c analyses w ith 

age as a covariate, d analyses w ith age and sex as covariates,0 analyses w ith baseline 

weight as a covariate. Data is expressed as mean ± SD.

2.3.9 Association of combined five polymorphisms associated with 

weight gain in Chinese Han schizophrenia patients

Taking the results o f part one in the first episode schizophrenia patients together, 

there were five polymorphisms tha t showed significant associations w ith BMI gains 

from  both the analysis o f tota l cases as well as a subgroup of patients who had 

received risperidone; HTR2C -759C/T, MTHFR 677C/T, MC4R rs489693 A/C, ADRA2A - 

1291C/G, and HTR2A -1438 G/A polymorphisms. The HTR2C -759C/T, MTHFR 677C/T, 

and MC4R rs489693 A/C polymorphisms were associated w ith weight gain in the 

analysis o f tota l cases, while the ADRA2A -1291C/G and HTR2A -1438 G/A 

polymorphisms were associated w ith weight gain in the analysis o f a subgroup of 

patients who had received risperidone, although MTHFR 677C/T showed a trend of CC 

genotype w ith a higher BMI gain than T allele carriers (p=0.051).

Analysis o f the gene-gene interactions among these polymorphisms did not show a 

significant interaction in ethier the analysis o f tota l cases or as a subgroup o f patients
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who had received risperidone, but always found a significant overall effect indicating

an additive effect of these polymorphisms on BMI change.

Analysing the association o f weight gain w ith five polymorphisms together, carriage of 

5 risk genotypes [HTR2C C/CC, MTHFR 677 CC, MC4R rs489693 AC/CC, ADRA2A CG/GG, 

HTR2A GA/AA genotype) was significantly associated w ith mean BMI gains o f 1.98 

kg/m 2 (n=24); smaller BMI gain values fo r subjects carrying fewer risk genotypes was 

observed; however, no patients carried either 0 or 1 risk genotype as shown in Table

2.19.

Table 2.19: Combined genetic risk genotype o f the HTR2C -759C/T, MTHFR 677C/T, 

MC4R rs489693 A/C, ADRA2A -1291C/G, and HTR2A -1438 G/A polym orphism s in 

Chinese Han cohort

Number of Chinese Han Chinese Han

risk (total cases) (risperidone subgroup)

genotype BMI change 

(kg/m 2)

n p value BMI change 

(kg/m 2)

n p value

2 0.05 ±0.52 10 <0.001 -0.05 ± 0.44 5 <0.001

3 0.93 ± 1.24 53 0.76 ±1.19 30

4 1.28 ±1.18 78 1.31 ±1.21 48

5 1.98 ±0.93 24 2.21 ±0.75 14

BMI change values are expressed as mean ± SD. p value was obtained from  univariate 

analysis o f variance w ith baseline BMI as a covariate.
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2.4 Results (Part 2): Chronic schizophrenia patients

2.4.1 General characteristics of population studies and genotyping 

results

The general characteristics of Belfast chronic schizophrenia patients are listed in Table

2.20. The genotype distributions fo r all genotyped SNPs are listed in Table 2.21. A 5% 

of samples underwent repeated genotyping and obtained reproducible results (data 

not shown). Genotype frequencies for MTHFR 677C/T and 1298A/C did not deviate 

from  Hardy-Weinberg equilibrium expectations (p>0.05) (Table 2.21). Previous HTR2C - 

759C/T SNP data had genotype distribution 0=33, T=8 in male, and CC=20, CT/TT=11 in 

female, and the genotype distribution in each gender was not significantly d ifferent 

(X2=2.318, p=0.128). In addition, previous FTO rs9939609 data had genotype 

distribution AA=14, AT=27, and TT=31 which was in Hardy-Weinberg equilibrium  

(x2=3.0496, p =0.081) and the allele frequency for A allele was 0.38 and T allele was

0.62.

On regression analyses, age and sex did not have a significant confounding effect on 

BMI. Sex had significant confounding effects on plasma leptin (d f= l, F=61.364, p<0.001 

and d f= l, F=19.491, p<0.001 respectively) and waist:hip ratio (d f= l, F=6.320, p=0.014), 

and HDL (d f= l, F=7.817, p=0.007). Therefore, the subsequent analyses were carried 

out w ith adjustment fo r sex variables as covariates as appropriate.

Table 2.20: General characteristics of chronic schizophrenia patients (Belfast cohort)

DNA series Belfast

Sex (M,F) n=72 (41,31)

Age (years) 44.07 ± 11.28

BMI (kg/m2) 28.4616.87

Weight (kg) 81.941 19.37
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Table 2.21: Genotype d istribu tion  and allele frequency in Belfast cohort

rs number Gene Genetic
variants

Genotype
distribution

Allele
frequency

Ch-Square, 
p value

rsl801133 MTHFR 677C/T CC=34,
CT=31,
TT=7

C=0.69,
T=0.31

X2=0.0003 
p =986

rs!801131 MTHFR 1298 A/C AA=38,
AC=30,
CC=4

A=0.74,
C=0.26

X2=0.3771 
p =0.539

2.4.2 Association of MTHFR 611C /T  and 1298A/C polymorphisms with 

body weight in chronic schizophrenia patients

2.4.2.1 MTHFR 677C/T

Table 2.22: Effect o f MTHFR 677C/T polym orphism  on the measurements o f obesity 

and presence o f m etabolic syndrome in chronic schizophrenia patients

MTHFR 677C/T genotype

CC CT TT p value

n=72 34 31 7

Sex M/F (%male) 18/16 (52.9%) 19/12 (61.3%) 4/3 (57.1%) 0.794a

Age (years) 43.29 ± 11.72 45.4219.70 41.861 16.15 0.652

BMI (kg/m2) 29.35 18.39 27.8115.18 27.0615.31 0.580

Weight (kg) 82.831 23.01 82.641 18.78 78.93 1 15.01 0.897

Waist circumference (cm) 101.42 119.35 99.13115.22 98.361 14.74 0.836

W aist: hip ratio 0.9410.12 0.9010.10 0.9210.12 0.221b

BMI >30 kg/m2 n=15/33(45.5%) n=9/30(30%) n=2/7 (28.6%) 0.396a

Triglycerides (mmol/l) 2.4411.51 2.1911.59 1.4310.56 0.264

HDL (mmol/l) 1.0710.33 1.1910.28 1.2610.33 0.101b

Central obesity n=24/32(68.8%) n=24/31(77.4%) n=4/7(57.1%) 0.537a

Metabolic syndrome n=13/33(39.4%) n=14/31(45.2%) n=3/7(42.9%) 0.896a

a p values obtained from Chi-squared test, other p values obtained from  univariate 

analysis o f variance test, b analyses w ith sex as a covariate. Data is expressed as mean

± SD.

As shown in Table 2.22, sex distribution, age, BMI, weight, waist circumference,

waist:hip ratio, triglycerides, HDL, and presence of central obesity and metabolic

syndrome were not significantly associated w ith the 677C/T MTHFR polymorphism .
96



Nor were the BMI significantly d ifferent between 677C/T CC genotype and T allele 

carriers: 29.35±8.39 kg/m 2 (n=33) versus 27.66±5.14 kg/m 2(n=37), p=0.310; however, 

it was noted tha t T allele carriers had 1.69 kg/m 2 lower BMI compared to  CC genotype. 

Similar to BMI, a lower frequency of patients who had BMI over than 30 kg/m 2 was 

observed in T allele carriers (n = ll/3 7 , 29.73%) compared to CC genotype group 

(n=15/33, 45.45%) but it did not reach a statistically significant level.

2A.2.2 MTHFR 1298A/C

Table 2.23: Effect o f MTHFR 1298A/C polym orphism  on the measurements o f obesity 

and presence o f metabolic syndrome in chronic schizophrenia patients

MTHFR 1298A/C genotype

AA AC CC p value

n=72 38 30 4

Sex M/F (%male) 23/15 (60.5%) 17/13 (56.2%) 1/3 (33.3%) 0.394a

Age (years) 43.791 10.11 45.001 13.07 39.75 1 8.06 0.672

BMI (kg/m2) 28.53 ± 6.95 27.85 1 6.12 32.35 1 11.59 0.472

Weight (kg) 83.321 19.94 80.05 1 19.06 90.75 1 35.47 0.570

Waist circumference (cm) 100.89 1 16.75 97.83 1 15.28 109.25130.63 0.422

W aist: hip ratio 0.92 + 0.10 0.9010.12 0.9711.16 0.298b

BMI >30 kg/m2 n=12/36(33.3%) n=12/30(40%) n=2/4(50%) 0.736s

Triglycerides (mmol/l) 2.2711.56 2.1811.40 2.2712.07 0.972

HDL (mmol/l) 1.1710.31 1.1210.31 0.9710.34 0.212b

Central obesity n=29/37(78.4%) n=20/29(69%) n=3/4(75%) 0.685s

Metabolic syndrome n=18/37(48.7%) n=ll/30(36.7%) n=l/4(25%) 0.474s

a p values obtained from Chi-squared test, o ther p values obtained from  univariate 

analysis o f variance test, b analyses w ith sex as a covariate. Data is expressed as mean

± SD.

As shown in Table 2.23, sex d istribution, age, BMI, weight, waist circumference, 

waist:hip ratio, triglycerides, HDL, and presence o f central obesity and metabolic 

syndrome were not significantly associated w ith the 1298A/C MTHFR polymorphism. 

Nor were the BMI significantly d ifferent between 1298A/C AA genotype and C allele 

carriers: 28.53±6.95 kg/m 2 (n=36) versus 28.38±6.88 kg/m 2(n=34), p=0.927.

The MTHFR 677C/T and 1298A/C polymorphisms were in strong LD in this chronic 

(Belfast) cohort: D'=1.000, r2=0.163.

97



2.4.3 Previous findings and gene-gene interaction

Previous findings in this chronic schizophrenia patient group showed tha t neither the 

HTR2C -759C/T nor leptin -2548A/G polymorphisms was significantly associated w ith 

measures of obesity including BMI, BMI>30 kg/m 2, central obesity, and waist 

circumference; whereas, the leptin -2548A/G, but not HTR2C -759C/T polymorphism 

was significantly associated w ith metabolic syndrome (Yevtushenko et a!., 2008). These 

effects were not apparent in re-analysis in this study probably due to the smaller 

sample size. In addition, previous findings also reported a significant association 

between the FTO rs9939609 polymorphism and the measurements o f obesity in this 

cohort including BMI, waist circumference, waist:hip ratio, and central obesity 

(Reynolds et a l.„ 2013). Re-analysis in this study still observed the association between 

the FTO rs9939609 polymorphism and BMI in which each A allele was associated with 

greater BMI: AA=31.95±7.27 (n=13), AT=29.26±7.37 (n=27), TT=26.22±5.51 (n=30), 

p=0.029.

The relationships between the effects o f the FTO rs9939609A/T polymorphism and 

other polymorphisms including HTR2C -759C/T, MTHFR 677C/T, MTHFR 1298A/C, and 

leptin -2548A/G were investigated and no interactions between genotypes o f these 

polymorphisms were observed. No drug-FTO rs9939609 genotype interaction was 

observed when patients were analysed as groups who had received either clozapine or 

olanzapine (p=0.614).
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2.5 Discussion

The experiments in this chapter aimed to  investigate the association of genetic 

polymorphisms w ith antipsychotic drug-induced weight gain and BMI in patients w ith 

schizophrenia. These genetic polymorphisms are in the genes relating to  antipsychotic 

drug-induced weight gain, food intake regulation, and DNA methylation processes. 

Various functional polymorphisms from  strong candidate genes were genotyped using 

custom TaqMan SNP genotyping assays in first episode and chronic schizophrenia 

patients.

2.5.1 MTHFR 677C/T associated with antipsychotic drug-induced 

weight gain in first episode patients with schizophrenia

This study indicated tha t the MTHFR FFI1Q.IT polymorphism is associated w ith 

antipsychotic induced weight gain in first-episode patients w ith  schizophrenia. 

Individuals carrying the T allele showed less weight gain compared to the common CC 

genotype after 8-10 weeks or 3 months treatm ent w ith antipsychotic drugs. This 

finding was observed in tw o patient cohorts o f d ifferent ethnicity, this indicates the 

effect to be a robust and reproducible one. The study had 90% power to  identify a 

medium (0.50) effect size in the main cohort; previous studies o f association of the 

well-replicated -759C/T polymorphism o f HTR2C w ith antipsychotic drug-induced 

weight gain in a subgroup of the Chinese sample and in the Spanish sample have 

demonstrated substantially larger effect sizes of 0.90 and 0.86 respectively (Reynolds 

et al., 2002; Templeman et a!., 2005). In order fo r pharmacogenetic risk factors to 

explain a good proportion of the variance and thereby to  have substantial predictive 

value, strong effects are needed. This study is aided substantially by the cohorts 

studied here; each only included first-episode patients who had never previously 

received antipsychotic drug treatm ent. This eliminates much of the variance associated 

w ith prior drug treatm ent, which can induce significant weight gain w ith in  a few weeks 

of initial treatm ent (Zhang et a!., 2004).

The absence of an effect in the 1298A/C polymorphism, despite it being in strong 

linkage disequilibrium (high D' values) w ith the significantly associated 677 genotype,
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presumably relates to the large differences in allele frequency between the two 

polymorphisms, as reflected by low r2 values.

In tw o previous cross-sectional studies the 677C/T polymorphism was associated with 

metabolic syndrome follow ing antipsychotic drug treatm ent (Ellingrod et al., 2008; 

2012), although these authors find the 677T allele to be a risk factor, while this study 

found a consistent effect o f the 677T allele in protecting against antipsychotic drug- 

induced weight gain. This may well indicate the difference between effects on initial 

weight gain and its long-term consequences, in which differing pharmacogenetic 

influences are apparent (Reynolds et al., 2013). In another study the 1298A/C but not 

677C/T polymorphism was associated w ith metabolic syndrome in schizophrenia (van 

Winkel et al., 2010a). The one previous longitudinal study of changes in weight and 

metabolic parameters follow ing 3 months treatm ent w ith second generation 

antipsychotics also found an association w ith the 1298A/C but not 677C/T 

polymorphism (van Winkel et al., 2010b). This study differed from  the present 

investigation of firs t episode drug na'K/e patients in tha t weight but not BMI were 

measured, and the 104 patients were older (mean 31.3y) w ith firs t admission on 

average over 6y previously; thus prior treatm ent may well have confounded 

subsequent weight gain. However the ir finding that the 1298A allele is associated w ith 

less weight gain is not inconsistent w ith the result of this study given the close linkage 

disequilibrium between the tw o polymorphisms studied. As discussed by van Winkel et 

al (2010b), there are no clinical or ethnic factors identified tha t may be responsible fo r 

the discrepancies between these findings, although it is notable tha t most studies 

were not powered to identify significant differences between the effects o f the tw o 

closely linked polymorphisms. Nevertheless these various reports all indicate tha t 

functional genetic variation in MTHFR can influence antipsychotic drug-induced weight 

gain.

It is conceivable tha t pharmacogenetic associations such as that identified here may 

vary depending on the treatm ent regime. D ifferent drugs may have d iffering 

mechanisms underlying the ir effect on body weight -  certainly the greater effect o f 

olanzapine over risperidone and several other antipsychotics supports this -  and these 

pharmacological mechanisms may be d ifferentia lly influenced by genetic
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polymorphisms; however, fu rther work needs to address the possible drug specificity 

o f such pharmacogenetic findings.

There was no significant interaction between -759C/T of HTR2C and 677C/T of MTHFR 

on antipsychotic induced weight gain indicating that both polymorphisms exert 

independent influences on this side effect.

The exact mechanism by which MTHFR polymorphisms m ight contribute to 

determ ining antipsychotic drug-induced weight gain is unclear. Both variant alleles of 

677C/T and 1298A/C MTHFR polymorphisms cause decreased enzyme activity 

(Weisberg et al., 1998), although it is not easy to distinguish effects o f tw o  closely- 

linked polymorphisms in vivo. MTHFR is an im portant enzyme in one-carbon 

metabolism and, via its role in DNA synthesis and methylation (Sugden, 2006), may 

influence gene expression (Jirtle and Skinner, 2007); such epigenetic effects could be 

involved in antipsychotic drug-induced weight gain. Diminished levels o f genomic DNA 

methylation (Stern et al., 2000) and gene-specific DNA methylation (Burghardt et al., 

2012) have been reported to  be associated w ith the 677TT genotype. It is therefore 

possible that decreased MTHFR enzyme activity in 677TT genotype results in 

decreased DNA methylation of genes involved in body weight regulation tha t was 

investigated in the next chapter.

DNA methylation status is influenced by gene-nutrient interaction. It has been 

suggested tha t the MTHFR 677TT genotype affects DNA methylation status through an 

interaction w ith folate status (Friso and Choi, 2002). These authors found tha t genomic 

DNA methylation in peripheral blood mononuclear cells was directly correlated w ith 

folate status, inversely correlated w ith homocysteine levels, and only 677TT subjects 

w ith low folate accounted fo r decreased DNA methylation (Friso et al., 2002). Thus 

folate status in addition to the 677C/T MTHFR polymorphism might modulate DNA 

methylation of genes relating to  the regulation of food intake, energy expenditure, or 

body weight regulation, and thus could be an unexplored factor contributing to the 

variance in this and previous studies.

In conclusion, this present study indicates the association of the MTHFR 677C/T single

polymorphism with weight gain follow ing initial antipsychotic drug treatm ent in first-

episode psychotic patients. Furthermore, the effect o f the 677T allele appears to  have
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a protective effect additional to that of the well-established HTR2C -759T allele against 

antipsychotic induced weight gain. These two polymorphisms, in addition to  several 

other possible genetic factors, might be valuable as pharmacogenetic markers o f this 

im portant and lim iting side effect.

2.5.2 ADRA2A rsl800544 (-1291C/G) and HTR2A rs6311 (-1438G/A 

polymorphisms associated with antipsychotic drug-induced 

weight gain in first episode patients with schizophrenia 

receiving risperidone

The present finding did not identify an association o f the ADRA2A -1291C/G and the 

HTR2A -1438G/A polymorphisms w ith weight gain in first episode Chinese Han 

schizophrenia patients, but drug-genotype interactions were identified. Post hoc 

analysis in a subgroup of patients who had received risperidone showed association of 

the ADRA2A -1291C/G and the HTR2A -1438G/A polymorphisms w ith weight gain.

Individuals carrying the G allele o f the ADRA2A -1291C/G showed more weight gain 

compared to  the common CC genotype after 8-10 weeks treatm ent w ith risperidone. 

This finding is consistent w ith tw o Asian population studies; although w ith differences 

in drug treatm ent: olanzapine treatm ent at least 3 months in Korean chronic 

schizophrenia patients (Park et al., 2006) and clozapine treatm ent in chronic Chinese 

schizophrenia patients (Wang et al., 2005b). Taken together, this suggests tha t this 

polymorphism may have an influence in both initial drug na ve and long-term weight 

gain. However, this finding is not inconsistent w ith Sickert et al who found tha t the G 

allele was a protective allele against clozapine-/olanzapine-induced weight gain in 

European schizophrenia patients (Sickert et al., 2009). This study differed from  the 

present investigation in that ethnicity was European-Americans and African- 

Americans, and the drug treatm ent consisted o f olanzapine and clozapine fo r 6-14 

weeks. Thus it may well indicate the difference in ethnicity may be responsible fo r the 

discrepancies between these findings.

The underlying mechanism of the association between the ADRA2A -1291C/G 

polymorphism w ith risperidone induced weight gain is unclear. It may relate to  the role 

o f the adrenergic system on energy balance regulation via the control of
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thermogenesis, lipolysis (Park et al., 2006; Arner, 1992), food intake (Wellman et al., 

1993), and glucoregulation (Levin and Planas, 1993). The ADRA2A -1291C/G 

polymorphism has been found to  be associated w ith body fat accumulation (Garenc et 

al., 2002). The genetic influence of this polymorphism on weight change might be due 

to an influence on the sympathetic-HPA system (Rosmond et al., 2002a) and the 

regulation of neurotransm itter release (Langer, 1997). As the ADRA2A -1291C/G 

polymorphism is located in the prom oter region of the alpha2a-adrenoceptor gene it 

may influence transcription regulation and gene expression. The alteration in receptor 

expression due to a genetic variant may cause changes in hypothalamic regulation of 

food intake and lipid metabolism that might result in weight gain. Further study 

regarding the influence o f ADRA2A -1291C/G on receptor expression is required. 

Risperidone has high a ffin ity at the alpha-2 adrenergic receptor and a trend of 

risperidone-/AD/?/42A -1291C/G genotype interaction was observed in this study; thus, 

via its effect on the receptor, the drug may cause glucose and lipid metabolism 

changes via sympathetic-HPA system resulting finally in changes in body weight (Wang 

et al., 2005b; Rosmond et al., 2002a).

Individuals carrying the A allele of the HTR2A -1438G/A showed more weight gain 

compared to  the common GG genotype after 8-10 weeks treatm ent w ith risperidone. 

This finding is consistent w ith previous studies which reported the association o f the 

102T allele of the HTR2A (rs6313), which is in complete LD w ith -1438A allele o f HTR2A 

(rs6311), and antipsychotic drug-induced weight gain across d ifferent ethnicities (Ujike 

et al., 2008; Balt et al., 2011), although there were difference in drugs; olanzapine in 

Japanese, risperidone in Chinese, and m ultip le drug treatm ent in Caucasian patients 

w ith schizophrenia. However, one finding by Mou et al. showing no association of the 

HTR2A -1438G/A and weight gain is not inconsistent w ith results in the present study 

even though the first episode Chinese Han received risperidone or chlorpromazine for 

10 weeks (Mou et al., 2005). The lack o f significant association in the Mou study might 

be due to  smaller sample size (n=84).

The A allele of the HTR2A -1438G/A was associated w ith weight gain in patients who

had received risperidone treatm ent in this study but this is not in line w ith findings in

general population studies as those found the GG genotype was associated w ith  higher

energy intake (Aubert et al., 2000) and greater BMI (Rosmond et al., 2002b). The
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different finding may well indicate tha t the effect o f the polymorphism together w ith 

the effect of antipsychotic drugs on weight gain in patients w ith schizophrenia was 

different from the general population as well as d ifferent between d ifferent kinds of 

antipsychotic drugs as shown in the drug-genotype interaction results section 2.3.4. 

On the other hand, there are studies that did not find the association between the 

HTR2A -1438G/A and BMI or obesity (Aubert et al., 2000; Hinney et al., 1997). The 

d ifferent findings might be due to the d ifferent methods used fo r assessing energy 

intake, the individual factors such as disease symptoms, diet, physical activity, the 

environmental factors, and the psychosocial and socioeconomic handicaps, as well as 

ethnic differences. Therefore, the association of HTR2A -1438G/A polymorphism and 

obesity in the general population as well as in antipsychotic drug treatm ents need to 

be confirmed.

The mechanisms underlying the association of the HTR2A -1438G/A polymorphism and 

antipsychotic drug-induced weight gain are unknown. The explanation might be that 

risperidone, which is a potent antagonist of 5-HT2A receptor may increase NPY to 

stimulate food intake and may also change the cortisol level and ACTH concentrations 

through effects on 5-HT2A (Currie and Coscina, 1998; Rittenhouse et al., 1994). The 

HTR2A -1438G/A polymorphism is located in the prom oter region and is associated 

w ith prom oter activity; the presence of an A allele has greater prom oter activity 

relative to the G allele (Parsons et al., 2004). In addition, the A allele o f the HTR2A 

-1438G/A polymorphism was associated w ith better clinical response to  clozapine 

(Arranz et al., 1998). Therefore, it is possible tha t the genetic polymorphism may affect 

transcription of HTR2A gene to bring about a difference in receptor expression and 

consequently affect treatm ent response as well as weight gain through 5-HT2A 

receptor regulating food intake and cortisol secretion. The interaction between the 

receptor action o f risperidone and the HTR2A -1438G/A polymorphism may explain the 

association w ith risperidone-induced weight gain found in this study.

There was no significant interaction between the associations of-1291C/G o f ADRA2A, 

-1438G/A of HTR2A, -759C/T o f HTR2C, and 677C/T of MTHFR w ith antipsychotic drug- 

induced weight gain indicating tha t these polymorphisms exert independent influences 

on this side effect.
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In conclusion, this study demonstrates novel associations of the ADRA2A -1291C/G and 

HTR2A -1348G/A polymorphisms w ith weight gain follow ing risperidone treatm ent in 

first-episode Chinese Han schizophrenia patients.

2.5.3 Association of rsl7782313 and rs489693 polymorphisms near 

MC4R gene and antipsychotic drug-induced weight gain in first 

episode patients with schizophrenia

The human melanocortin 4 receptor gene (MC4R) is a very strong candidate gene fo r 

involvement in antipsychotic drug-induced weight gain. The aim of this study was to 

investigate whether the genetic polymorphisms near the MC4R gene, rsl7782313 and 

rs489693, associate w ith antipsychotic drug-induced weight gain in first-episode 

Chinese Han schizophrenia patients. The results in this study indicated tha t rs489693 

but not rsl7782313 was associated w ith antipsychotic drug-induced weight gain in 

these subjects. Individuals carrying the C allele o f rs489693 showed more weight gain 

compared to the AA genotype after 8-10 weeks treatm ent. This finding is opposite to 

previous findings tha t found the significant association of the AA genotype w ith weight 

gain in schizophrenia patients who had received second generation antipsychotics 

(M alhotra et al., 2012; Czerwensky et al., 2013b). The d ifferent findings compared w ith 

the present study may be due to the difference in ethnicity. Other factors may also 

influence the result such as prior drug treatments, environmental factors, and clinical 

factors including age (e.g. Czerwensky et al. (2013b) studied patients aged 19 years of 

age or younger). Czerwensky et al. (2013a) also found the association o f the C allele of 

rsl7782313 w ith weight gain after 4-week treatm ent. A lack of significant association 

o f this SNP w ith weight gain in the present study may be due to the longer treatm ent 

duration (8-10 week-treatment). This result was similar to  a study by Chowdhury et al., 

(2013) tha t did not find an association of this SNP w ith weight gain a fter 14-week 

treatm ent. Further studies are needed to  confirm the association o f this polymorphism 

and antipsychotic drug-induced weight gain.

The rs489693 and rsl7782313 are not in linkage disequilibrium in this study while 

Malhotra et al (2012) find in the ir sample tha t they are in strong LD; although w ith  low 

r2 values. The m inor allele frequencies (A=0.20 fo r rs489693 and C=0.22 fo r 

rsl7782313) were lower than those in previous studies; however, they did not deviate
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from  HapMap data fo r Chinese Han (A=0.189 fo r rs489693, C=0.193 for rsl7782313) 

(http://hapm ap.ncbi.nlm .nih.gov/cgi-perl/gbrowse/hapm ap28_B36). This may be 

another factor responsible for the discrepancies of the findings.

There was no significant interaction between the rs489693, rsl7782313, HTR2C - 

759C/T, and MTHFR 677C/T polymorphisms on antipsychotic drug-induced weight gain 

indicating tha t these polymorphisms exert independent influences on this side effect.

The exact mechanism underlying the association o f rs489693 and antipsychotic drug- 

induced weight gain is unknown. No functional relevance of this polymorphism is 

known. The rs489693 may be controlled by other remote regulatory sites located at 

considerable distance from  the polymorphism such as the folding of chromosome 

(Espinoza and Ren, 2011), thus factors affecting chromosome folding may influence 

the role o f this polymorphism on weight gain. It is also possible tha t rs489693 may be 

linked to another polymorphism that has actual biological function in the regulation of 

body weight; for example: a polymorphism in the MC4R prom oter region tha t might 

influence MC4R gene expression.

2.5.4 Association of GNB3 rs5443825 C/T, BDNF rs6265 (Val66Met), 

and FTO rs9939609 A/T polymorphisms with weight gain in 

Chinese Han schizophrenia patients

The G-protein beta3 subunit gene (GNB3) 825C/T polymorphism is a strong candidate

gene related to  antipsychotic drug-induced weight gain (Balt et al., 2011). Therefore,

the association of this polymorphism and antipsychotic drug-induced weight gain was

investigated. No association between the GNB3 825C/T polymorphism and weight gain

in first episode Chinese Han schizophrenia was observed in this study. This result has

not replicated previous findings (Ujike et al., 2008; Wang et al., 2005a) tha t found the

T allele to  be associated w ith antipsychotic drug-induced weight gain. Those studies

differed from  the present study in tha t inpatients w ith schizophrenia receiving

olanzapine fo r 17.9 weeks or clozapine fo r 13.4 months were investigated, whereas

risperidone was the main drug treatm ent in first-episode schizophrenia patients in this

study; thus prior treatm ent, current treatm ent and treatm ent duration may influence

the finding. It is possible tha t this polymorphism might be associated w ith  weight gain

in long-term treatm ent and response to certain antipsychotic drug treatm ents.
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However, the lack of significant association between the polymorphism and weight 

gain found in this study supported several previous studies showing no association in 

Asian and Caucasian studies (Tsai et al., 2004; Park et al., 2009; Bishop et al., 2006). 

The present study found a trend for association o f the CC genotype w ith  lower 

baseline weight (p=0.053) as well as lower baseline BMI. These trends were similar to 

previous studies; there was a trend of TT allele w ith weight gain after olanzapine 

treatm ent fo r 6 weeks in Caucasians (Bishop et al., 2006) and a meta-analysis also 

reported a trend of CC genotype association w ith lower BMI and lower antipsychotic 

drug-induced weight gain (Souza et al., 2008). The lack of significant association found 

in this study is likely the result o f a modest gene effect and the small sample size. Thus 

w ith inconsistent findings of the association between the GNB3 825C/T polymorphism 

and antipsychotic drug-induced weight gain, fu rther studies w ith larger sample sizes 

are needed.

Recent studies in animals and humans have found tha t BDNF plays an im portant role in 

food intake and body weight regulation (Unger et al., 2007; Toriya et al., 2010; Zhang 

et al., 2007). The role of the BDNF polymorphism in antipsychotic drug-induced weight 

gain has not been examined in first-episode schizophrenia patients; therefore, the 

association between the BDNF rs6265 G/A polymorphism and antipsychotic drug- 

induced weight gain in first-episode schizophrenia was determined in this study. No 

significant association between the polymorphism and weight gain in firs t episode 

Chinese Han schizophrenia was observed in the present study, although the AA 

genotype (M et/M e t) showed a higher BMI change and weight change than carriers o f 

the G allele.

This finding was not consistent w ith previous studies tha t found a significant

association between the M e t/M e t (AA) genotype of the BDNF rs6265 polymorphism

and greater body weight gain after chronic antipsychotic drug treatm ent in Chinese

patients w ith schizophrenia (Zhang et al., 2008). That study differed from  the present

investigation in tha t subjects received chronic treatm ent w ith m ultiple antipsychotic

drugs fo r 18y on average; thus BDNF rs6265 may be a marker fo r long-term rather than

initial weight gain. However, other studies found haplotypes which included BDNF

rs6265 G/A polymorphism (rs6265-rsll030101-rsl2291186, G-T-A) associated w ith

antipsychotic drug-induced weight gain in Chinese, chronic patients w ith schizophrenia
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(Tsai et al., 2011). The A allele o f BDNF rsl519480 and the haplotype of BDNF rs6265 

and BDNF rsl519480 (G-A haplotype) were also found to  be associated w ith weight 

gain in European ancestry chronic patients w ith schizophrenia (Zai et al., 2012). The 

BDNF rs6265 is in strong linkage disequilibrium w ith the BDNF rs ll0 3 0 1 0  (Licinio et al.,

2009) and rsl519480 (Zai et al., 2012). It is also possible tha t rs6265 does not have a 

direct effect or has a modest effect on antipsychotic drug-induced weight gain, but it is 

the other SNPs in linkage disequilibrium or haplotype patterns in the BDNF gene that 

might have the strong effect on antipsychotic drug-induced weight gain.

The association of the FTO rs9939609 polymorphism w ith food intake has been well 

documented and it is a gene that is strongly associated w ith BMI and obesity in 

d iffe rent populations (Frayling et al., 2007, Fawcett and Barroso, 2010). In addition, 

FTO is a demethylase tha t can modulate epigenetic processes in both DNA and RNA 

that might affect expression o f a certain subgroup of genes and eventually influence 

food intake and body weight regulation. The present study aimed to determ ine the 

association of the FTO rs9939609 polymorphism w ith antipsychotic drug-induced 

weight gain in Chinese first-episode schizophrenia patients. No significant association 

between the polymorphism and weight gain or baseline BMI was observed in this 

study, although those homozygous fo r the risk allele A had a higher baseline BMI and 

baseline weight that the AT/TT group.

This result is consistent w ith  a previous study (Reynolds et al., 2013) tha t found no 

significant association between the FTO rs9939609 polymorphism w ith antipsychotic 

drug-induced weight gain in first-episode Caucasian schizophrenia patients although 

the AA genotype had higher baseline weight and baseline BMI than T allele carriers. 

Studies in larger samples are more likely to  detect any significant association between 

genetic polymorphism and BMI or body weight at baseline (Perez-lglesias et al., 2010; 

Song et al., 2014). However, after antipsychotic treatm ent, changes in BMI or body 

weight were inconsistent. Therefore, the absence of significant association between 

the SNP and weight gain in this study might be due to a small sample size relative to 

the modest FTO genotype effect on antipsychotic drug-induced weight gain. Further 

studies in independent large sample size are needed to elucidate the role o f the FTO 

polymorphism in antipsychotic drug-induced weight gain.
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2.5.5 Association of genetic polymorphisms with body weight in 

chronic schizophrenia patients

The association o f the MTHFR 677C/T and MTHFR 1298A/C polymorphisms w ith body 

weight in chronic schizophrenia patients was also determined in this study. No 

significant association between the MTHFR 677C/T or MTHFR 1298A/C polymorphism 

and BMI was detected, although the CC genotype of the MTHFR 677C/T polymorphism 

showed the higher BMI, waist-hip ratio, frequency of subjects who have BMI>30kg/m2, 

and triglyceride level than T allele group. This might be due to the modest effect o f the 

MTHFR polymorphisms on body weight together w ith a very small sample size tha t 

reduces the statistical power to  detect the modest genotype effect on body weight.

However, the effect of FTO rs9939609 A/T polymorphism on BMI was still found in this 

subgroup tha t has been reported previously (Reynolds et al., 2013); the AA genotype 

was associated w ith higher BMI than the T allele carriers. The present finding was not 

in line w ith other studies; the significant association o f the A allele w ith  greater BMI 

was found in healthy subjects but not in Japanese chronic schizophrenia patients 

(Watanabe et al., 2012). Another study found a trend of AA genotype gained higher 

weight in European chronic schizophrenia patients receiving antipsychotic drugs fo r up 

to  14 weeks (Shing et al., 2014). These studies differed from  the present investigation 

in tha t the 351 patients were older (mean 52.32y) than this study (mean 44.07y) and 

there was a ethnicity difference in Watanabe's study, while there was m ultip le 

antipsychotic drug treatm ents fo r 6 or 14 weeks in 3 subgroups of patients w ith  small 

sample sizes in Shing's study.

The mechanisms underlying the association of the FTO rs9939609 polymorphism and 

antipsychotic drug-induced weight gain remain poorly understood. The FTO gene is 

highly expressed in the hypothalamus which regulates the energy balance (W ilier et 

al., 2009). The overexpression o f FTO has been associated w ith increased food intake 

and obesity (Church et al., 2009; Church et al., 2010). The A allele o f FTO rs9939609 

was associated w ith increased levels o f the FTO transcripts (Berulava and Horsthemke,

2010). The FTO protein is a demethylase involved in demethylation o f DNA and RNA 

(Jia et al., 2008; Gerken et al., 2007; Han et al., 2010) tha t may influence the 

expression of the FTO gene itself (Bell et al., 2010) or other genes (Almen et al., 2012).
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Fto-deficient mice showed an increase in adenosine methylation in a subset of RNAs 

im portant fo r neuronal signaling, including dopamine transmission (Hess et al., 2013). 

Therefore, it is possible tha t FTO may also influence other neurotransm itter pathways 

tha t could influence food intake regulation. The FTO protein is involved in the 

hypothalamic leptin signaling pathway (Wang et al., 2011). Study in mice showed the 

Fto gene was a transcriptional coactivator tha t enhanced the binding o f C/EBPs to  both 

unmethylated and methylated DNA tha t promoted transcriptional functions o f the 

C/EBP fam ily in adipogenesis (Wu et al., 2010). The SNPs located in non-coding regions 

such as FTO rs9930609, which is located in the first intron, may influence prom oter 

activity (gene expression), messenger RNA (mRNA) conformation (stability), and/or 

proteins (Shastry, 2009).This may cause differences in expression and structure of FTO 

tha t may result in d ifferential functional ability such as the binding o f FTO protein to 

the C/EBPs and subsequent binding to unmethylated and methylated DNA which may 

change the extent o f adipogenesis. Collectively, these findings suggest tha t the FTO 

polymorphism may modulate food intake through epigenetic modification o f certain 

genes as well as certain groups of RNAs relating to  neurotransm itter systems involved 

in energy balance and may result in the alteration of FTO and other genes' expression 

tha t bring about the modification of energy balance and also adipogenesis. Further 

studies are required to  elucidate the role o f FTO in antipsychotic drug-induced weight 

gain or obesity risk.

2.5.6 Limitations in this study

This study has some lim itations. First, the sample size is small that leads to a decrease 

in statistical power to detect small or modest genetic effects. However, every cohort 

has been observed previously and a significant association of the polymorphism and 

weight gain or BMI can be detected depending on the effect size. Larger sample size 

studies are needed to confirm the association between the polymorphism and 

antipsychotic drug-induced weight gain. Second, the chronic study is a cross-sectional 

study and could not determine the change in BMI during each antipsychotic drug 

treatm ent. Third, environmental factors which could contribute to  the weight gain 

such as diet, physical activity, were not assessed. These factors may influence body 

weight in this study. Taking these lim itations into account, fu rther investigations are

needed to  understand the genetic risk o f antipsychotic drug- induced weight gain.
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2.5.7 Conclusions

The findings in this chapter demonstrate that the MTHFR 677C/T polymorphism is 

associated w ith antipsychotic drug-induced weight gain in the first-episode drug-na we 

schizophrenia in both Chinese Han and Spanish patients in which the T allele was a 

protective allele fo r antipsychotic drug-induced weight gain.

This MTHFR 677C/T showed an additive effect to the well-established HTR2C -759C/T 

polymorphism. Therefore, these two genetic polymorphisms m ight be valuable as 

pharmacogenetic markers o f weight gain follow ing antipsychotic treatm ent. The 

association between the MC4R rs489693 and antipsychotic drug-induced weight gain 

observed in this study remains in need of fu rther study to elucidate and replicate this 

association.

The analysis o f a subgroup of patients who had received risperidone indicated tha t the 

polymorphisms of the ADRA2A -1291C/G and HTR2A -1438G/A were associated w ith 

risperidone-induced weight gain. In addition, the CC genotype of the MTHFR 677C/T 

polymorphism showed a trend of higher BMI gain than the T allele carriers in this 

group.

Combined analysis o f five genetic polymorphisms showed that there were no gene- 

gene interactions between each pair o f polymorphisms indicating the additive effect o f 

each significant finding on BMI change.

Therefore, in addition to the genetic polymorphism of the HTR2C prom oter region, the 

MTHFR 677C/T and the MC4R rs489693 polymorphisms may be used as genetic 

markers fo r antipsychotic drug-induced weight gain in firs t episode schizophrenia 

patients. In addition, the ADRA2A -1291C/G and HTR2A -1438G/A polymorphisms may 

be used as genetic markers fo r risperidone-induced weight gain. The gene-gene and 

gene-drug interactions provide more understanding o f the mechanism underlying 

antipsychotic drug-induced weight gain. However, fu rthe r studies w ith larger sample 

sizes are required to  confirm these findings.
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Chapter 3: Association of DNA methylation and 

antipsychotic drug-induced weight gain in patients 

with schizophrenia

3.1 Introduction

Not only genetic factors influence antipsychotic drug-induced weight gain as described 

in the previous chapter, but also epigenetic factors may play im portant roles in 

antipsychotic drug-induced weight gain. DNA methylation is one of the most widely 

studied epigenetic mechanisms in the regulation of gene expression. Changes in DNA 

methylation both in genome-wide and gene-specific levels have been reported relating 

to body weight. For example, Crujeiras et al. (2013) found that the weight-regainers 

had higher methylation levels than non-regainers in POMC and lower levels on NPY 

CpG sites; the lower methylation levels o f POMC were associated w ith  weight-loss 

maintenance, while lower methylation levels o f the NPY prom oter were associated 

w ith  higher risk o f weight regain. Burgio et al. (2015) summarise the recent findings of 

epigenetic biomarkers which include many genes related to  obesity and type 2 

diabetes mellitus; fo r example: the methylation status o f CpG islands located in clock 

genes (CLOCK, BMAL1 and PER2) was associated w ith obesity, metabolic syndrome and 

weight loss; lower methylation of the leptin gene was found in infants born to  pre

pregnancy obese mothers; increased DNA methylation of the insulin prom oter was 

found in type 2 diabetes mellitus. Moreover, many factors have influences on DNA 

m ethylation such as exercise, diet, medications, as well as medical conditions or 

diseases.

Several studies have investigated the changes in DNA methylation in patients w ith 

schizophrenia. Melas et al. (2012) determined genome-wide DNA m ethylation levels in 

blood from  schizophrenia patients and reported a global DNA hypom ethylation 

independent of drug treatm ent which was most prom inent in early-onset 

schizophrenia. In addition, haloperidol treatm ent was associated w ith  greater 

methylation. Gene-specific DNA methylation associated w ith schizophrenia has also 

been examined. Hypermethylation o f the prom oter regions of soluble catechol-o-
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methyltransferase (S-COMT) in patients w ith schizophrenia was reported (Melas et al., 

2012). In addition, DNA hypermethylation of 5-HTT prom oter and its correlation w ith 

the reduction in 5-HTT expression were reported in drug nave schizophrenia patients 

both in DNA from  saliva and post-mortem brain samples (Abdolmaleky et al., 2014). 

The correlation between GTP cyclohydrolase (GCH1) prom oter hyperm ethylation and 

the reduction in GCH1 expression was reported in the blood of first-episode 

schizophrenia patients (Ota et al., 2014). This enzyme catalyzes the conversion o f GTP 

to  D-erythro-7,8-dihydroneopterin triphosphate, the firs t and rate-lim iting step in 

tetrahydrobiopterin  (BH4) synthesis. BH4 is an im portant cofactor fo r the 

hydroxylation of the aromatic amino acids by phenylalanine hydroxylase (PAH), 

tyrosone-3-hydroxylase (TH), and tryptophan 5-hydroxylase (TPH); therefore, GCH1 

plays an im portant role in the synthesis o f dopamine and serotonin (Richardson et al., 

2005). In addition, downregulation of GAD67, reelin (RELN), BDNF, and other genes 

expressed in telencephalic GABAergic and glutamatergic neurons in schizophrenia and 

bipolar disorder patients was correlated w ith hyperm ethylation on the ir prom oter 

domains (Guidotti et al., 2005; Costa et al., 2007). These data indicate the im portant 

role of DNA methylation in regulating gene expression as well as its involvem ent in the 

pathophysiology of schizophrenia. Dysregulation o f DNA methylation may therefore 

provide a new target fo r antipsychotic drug action. The reversal o f DNA 

hypermethylation in specific genes involved in schizophrenia in order to  restore the ir 

gene expression is a potential pharmacological strategy (Guidotti and Grayson, 2014).

In addition to schizophrenia itself, o ther environmental factors affecting schizophrenic 

patients including antipsychotic medication also influence epigenetic modification. 

Study in a mouse model w ith relevance to  schizophrenia demonstrated tha t clozapine 

and sulpiride but not haloperidol or olanzapine treatm ent induced DNA dem ethylation 

as well as histone acetylation at reelin and GAD67 promoters in the mouse fronta l 

cortex and striatum (Dong et al., 2008; Guidotti et al., 2009). However, olanzapine 

treatm ent in rats caused genome-wide DNA methylation change in genes of dopamine 

neurotransmission in the hippocampus, cerebellum and liver (Melka et al., 2014). The 

changes in methylation include increases in methylation in 1,140, 1,294 and 1,313 

genes and a decrease in 633, 565 and 532 genes in the hippocampus, cerebellum and 

liver, respectively. Most genes affected are tissue specific. Only 41 affected genes
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showed an increase and no genes showed a decrease in methylation in all three 

tissues. The affected genes are involved in pathways affecting dopamine signalling, 

molecular transport, neuronal development and functions in the hippocampus; 

adrenergic receptor signalling and synaptic long-term potentiation in the cerebellum; 

and tissue morphology, cellular assembly and organization in the liver. These data 

suggest that epigenetic changes after antipsychotic drug treatm ent may underlie the 

improvement o f symptoms and may also account fo r certain adverse effects including 

weight gain after antipsychotic drug treatm ent.

Although epigenetic mechanisms are targets fo r environmental factors, genetic factors 

also influence epigenetic modifications and this genetic-epigenetic interaction may 

contribute to the phenotypes. The interaction between the MTHFR 677C/T variant, 

gender, and global DNA methylation, as measured using a LINE-1 DNA methylation 

assay has been reported to be associated w ith metabolic syndrome in schizophrenia 

patients, in which females w ith the MTHFR 677TT genotype had the lowest global 

methylation level compared w ith other groups (Burghardt et al., 2012). Another study 

reported a significant association between the COMT V a ll58M et (rs4680) 

polymorphism, COMT prom oter methylation, physical activity, and metabolic 

syndrome in patients w ith schizophrenia (Lott et al., 2013). In addition, they observed 

tha t the COMT genotype was a significant indicator of methylation status at tw o  CpG 

sites in the COMT prom oter region. These data indicate the influence o f genetic 

polymorphisms on DNA methylation and this relationship may influence the in ter

individual variation in symptom response and adverse effects in schizophrenia patients 

receiving antipsychotic drugs.

This chapter describes the examination of the association between antipsychotic drug-

induced weight gain and DNA methylation in the HTR2C prom oter sequences near the

HTR2C -759C/T, the most consistent polymorphism associated w ith antipsychotic drug-

induced weight gain in firs t episode and chronic schizophrenia patients. In addition,

associations between polymorphisms, especially MTHFR and FTO polymorphisms tha t

play an im portant role in DNA methylation, and the extent o f DNA m ethylation, were

determined. The results from  this chapter may provide the mechanistic link between

the genetic risk factor o f the HTR2C, MTHFR, and FTO polymorphisms and

antipsychotic drug-induced weight gain and may also provide an epigenetic marker fo r
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this adverse effect. DNA methylation levels were measured using pyrosequencing of 

the bisulfite modified genomic DNA by PyroMark Q24 pyrosequencer.

3.1.1 Principles of pyrosequencing method

DNA methylation levels of the target DNA sequences can be determined using bisulfite 

conversion and pyrosequencing. There are many steps to  complete in determining 

DNA methylation status including genomic DNA extraction, bisulfite treatm ent, PCR 

and gel electrophoresis, and pyrosequencing. A work flow  is shown in Figure 3.1.

Figure 3.1: Work flow for DNA methylation study

3.1.1.1 Bisulfite conversion of genomic DNA

The bisulfite treatm ent o f extracted genomic DNA results in conversion of 

unmethylated cytosine to uracil while methylated cytosine remains a methylated 

cytosine. Therefore, bisulfite treatm ent creates d ifferent DNA sequences for 

methylated and unmethylated DNA as shown in Table 3.1 fo r example. It is the most 

critical step fo r the correct measurement o f DNA methylation because incomplete 

conversion of unmethylated cytosine residues results in higher methylation levels than 

the correct level. The complete conversion is achieved by incubating the DNA in high 

concentration of bisulfite salt at high tem perature and low pH tha t are harsh 

conditions which often lead to  DNA fragm entation and loss of DNA during fu rthe r 

purification. As shown in Figure 3.2, in the bisulfite treatm ent reaction, all 

unmethylated cytosines are sulfonated, deaminated and desulfonated, converting to 

uracils, while methylated cytosines (5-methylcytosines) remain unaltered.

Sulfonation Hydrolytic Alkali
NH2 NH2 deamination Q desulfonation 9

hs°3 n A  h;o hnA  oh

0 H  0 ^ ^ N ^ ^ S 0 3 ^  O ^ ' N  S 0 3‘ h s ° 3  O ^ ' N
h h NH; H H

cytosine cytosine uracil uracil
sulphonate sulphonate
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Figure 3.2: Bisulfite reaction converting unm ethylated cytosine to  uracil base

Modified from Pappas et al., (2013)

Table 3.1: M odification o f DNA sequence a fte r b isu lfite  trea tm ent

Original sequence Bisulfite modified sequence

Unmethylated DNA 

Methylated DNA

N-C-G-N-C-N-C-G-N-C-N

N-C-G-N-C-N-C-G-N-C-N

N-U-G-N-U-N-U-G-N-U-N

N-C-G-N-U-N-C-G-N-U-N

3.1.1.2 Amplification of bisulfite converted DNA

Bisulfite treated DNA is then amplified by PCR. In this step, the uracil bases are 

converted to  thym ine while methylated cytosine is presented as cytosine (Figure 3.3). 

In the PCR reaction, it is necessary tha t one of the PCR primers in the opposite 

direction o f the sequencing primer must be labelled w ith biotin. The biotinylated 

prim er is im portant in the preparation of the single-stranded DNA tem plate fo r 

pyrosequencing; in the vacuum work station, biotin molecules are immobilized by 

binding to the streptavidin beads. The principle o f PCR is described in the next chapter 

(see section 4.1.3).

G G T C A G T G A
^Bisulfite Conversi

G G T U A G T G A
|  PCR

G G T T A G T G A

mCG

H
CG

1
CG

G G T C A G T G A
Bisulfite Conversic ▼

G G T U A G T G A
|  PCR

G G T T A G T G A

CG
n
▼
U G 

T G

Figure 3.3: Changing in DNA sequences fo llow ing  b isu lfite  conversion and PCR steps 

Bisulfite treatm ent converts unmethylated cytosine to  uracil while methylated cytosine 

remains cytosine. During PCR, uracil is converted to  thym ine while methylated cytosine 

was presented as cytosine.

1 1 6



3.1.1.3 Gel electrophoresis of amplified DNA

The PCR product is run on agarose gel to determ ine tha t the product of the expected 

length has been obtained before processing the subsequent pyrosequencing. The 

result from  gel electrophoresis also indicates the intensity of the PCR product that can 

be used to  approximate the amount o f PCR product used in pyrosequencing as well as 

checking fo r contamination in the negative PCR reaction.

3.1.1.4 Pyrosequencing

Pyrosequencing is based on sequencing by synthesis which can be used to  quantify 

DNA methylation at specific CpG sites w ith in  the target region of interest. In addition, 

pyrosequencing can be used for DNA sequencing, genotyping and SNP analysis, allele 

quantification, and whole genome sequencing.

The principle o f pyrosequencing is described by the manufacturer's resource as 

follows;

Step 1: Preparation of DNA template and hybridization with sequencing primer

The amplified PCR products are separated into the single-stranded DNA for 

pyrosequencing by the PyroMark Q24 vacuum workstation which consists o f a series of 

solutions fo r denaturation and washing the DNA. A fter denaturation, a single-stranded 

biotinylated PCR product is separated and allowed to hybridize w ith the sequencing 

primer (Figure 3.4). The hybridized primer and tem plate are incubated w ith the 

enzymes (DNA polymerase, ATP sulfurylase, luciferase, and apyrase) as well as the 

substrates (adenosine 5' phosphosulfate (APS), and luciferin).

Step 2: Incorporation of the first dNTP to DNA template

When the first deoxyribonucleotide triphosphate (dNTP) is added to the reaction and if 

it is complementary to  the base in the tem plate strand, the DNA polymerase enzyme 

catalyzes the incorporation of the dNTP into the new strand DNA next to  the 

sequencing primer. Each incorporation event is accompanied by release of 

pyrophosphate (PPi) in a quantity equimolar to the amount o f incorporated nucleotide 

(Figure 3.4).
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► Forward PCR primer

Biotinylated reverse PCR primer o
IBiotinylated single-stranded 

template

Polymerase

3 ' C G T  C C G G A G G C C A A G T  T C C A  5 '
I I I I I I I I I I I i I
I I I I 1 I I 1

G C  A G G C  C T

i i i r

3'

Sequencing primer

Polymerase

(DNA)n + dNTP (DNA)n+, + PPi

Figure 3.4: Pyrosequencing showing hybridization of sequencing primer with 

biotinylated single-stranded DNA template (step 1) and incorporation of the 

complementary nucleotide into sequencing primer (step 2).

Step 3: Enzymatic reactions convert PPi to pyrogram peak

A released pyrophosphate (PPi) is converted to ATP by the enzyme ATP sulfurylase in 

the presence of adenosine 5' phosphosulfate (APS) substrate. This ATP drives the 

conversion of luciferin to oxyluciferin mediated by the luciferase enzyme. This 

conversion reaction generates visible light in amounts tha t are proportional to  the 

amount o f ATP. The light signal is detected by a charge coupled device (CCD) chip and 

seen as a peak (pyrogram) in the raw data output. The height o f each peak (light signal) 

is proportional to the number o f nucleotides that are incorporated (Figure 3.5).

Step 4: Degradation of unincorporated nucleotides and ATP
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Unincorporated nucleotides and ATP are degraded continuously by apyrase which is a 

nucleotide-degrading enzyme (Figure 3.6). When degradation is complete, another 

nucleotide is added to start the next cycle of enzymatic reactions.

Sulfurylase

/
LightAPS+PPi ATP

luciferin oxyluciferin\
Luciferase

i
ATP Light

Time
Nucleotide incorporation generates light 
seen as a peak in the Pyrogram trace

Figure 3.5: Pyrosequencing step 3 showing enzymatic reactions convert PPi to 

pyrogram peak.

Figure 3.6: Pyrosequencing step 4 showing degradation of unincorporated 

nucleotides and ATP by apyrase enzyme.

Step 5: Sequential addition of dNTPs

Addition o f dNTPs is performed sequentially according to the dispensation sequences.

As the process continues, the complementary DNA strand is elongated and the

nucleotide sequence is determined from  the signal peaks in the pyrogram trace (Figure
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3.7). In the pyrosequencing processes, the deoxyadenosine alpha-thio triphosphate 

(dATPaS) is used as a substitute for the natural deoxyadenosine triphosphate (dATP), 

because it is efficiently used by the DNA polymerase, but not recognized by the 

luciferase.

Nucleotide sequence
G C -  A GG CC T

C G CG A TT

Nucleotide added

Figure 3.7: Pyrosequencing step 5 showing a sequential add ition o f dNTPs to  

generate the nucleotide sequence represented by signal peaks in the pyrogram trace.

Analysing DNA methylation level at each CpG site

The ratio o f cytosine and thym ine showing at each CpG site is determ ined, and it 

reflects the methylation level o f that CpG site in genomic DNA. The calculation 

equation of the methylation level at each CpG site is as follow ing equation.

Methylation level (%) = peak height o f C*100/(peak height of C + peak height o f T)

3.1.2 Aims

1. To investigate the relationship between DNA methylation o f the HTR2C 

prom oter sequences near the HTR2C -759C/T polymorphism, and the 

sequences from  position +1 to  +14 relative to the -759C/T polymorphism, and 

antipsychotic drug-induced weight gain in first episode schizophrenia patients.
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2. To investigate the effect of DNA methylation of the HTR2C promoter sequence 

near the HTR2C -759C/T polymorphism, and global DNA methylation, with BMI 

in chronic schizophrenia patients.

3. To investigate the influence of genetic polymorphisms of the HTR2C -759C/T, 

MTHFR 677C/T, MTHFR 1289A/C and FTO rs9939609 A/T on the extent of DNA 

methylation in first episode and chronic schizophrenia patients.
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3.2 Materials and methods

3.2.1 Study population and DNA samples

The study populations in this chapter were the same as in the previous chapter 

including the tw o cohorts o f first-episode, in itia lly antipsychotic drug-naive patients 

w ith schizophrenia (Spanish and Chinese cohorts) and one cohort of chronic 

schizophrenia patients (Belfast cohort). All patients received treatm ent according to 

normal clinical practice and gave w ritten  informed consent to the procedure of the 

study; which was approved by local ethical committees. The characteristics o f studied 

populations were described previously in the section 2.2.1.

3.2.2 Primer design

There were tw o regions o f interest for DNA methylation of HTR2C gene; the first 

region is located in the prom oter region of HTR2C gene near the -759C/T and includes 

the -697G/C polymorphism (from -698 to -640 relative to  -759C/T), identified by the 

PubMed gene bank (GeneBank accession number NG_012082.1). The second region is 

located at position +1 to +14 relative to  the -759C/T polymorphism identified and 

designed by Qiagen, the Hs_H77?2C_01_PM PyroMark® CpG assay (Cat.no. 

PM00033691). The sequence alignments of both regions are shown in Figure 3.8.

Another region of interest was the LINE-1 human transposon DNA consensus sequence 

including three CpG sites in positions o f 331 to 318 o f LINE-1 (GeneBank accession 

number X58075.1). LINE-1 methylation represents the genome-wide or global DNA 

methylation.
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Figure 3.8: Sequence alignments o f HTR2C gene containing tw o  regions fo r DNA 

m ethylation  study

Figure shows HTR2C -697G/C and Hs_H77?2C_01_PM as underlined sequences w ith 

CpG methylation sites shown in bold. HTR2C rs3813929 (-759C/T) and rs518147 (- 

697G/C) were highlighted in green.

The HTR2C -697G/C primers were designed using PyroMark Assay Design Software 2.0 

(Qiagen) whereas UNE-1 primers (PyroMark® Q24 CpG LINE-1) and Hs_H7/?2C_01_PM 

PyroMark® CpG assays were purchased from Qiagen. Primer sequences fo r PCR and 

pyrosequencing are listed in Table 3.2.

Table 3.2: The sequences o f primers used in DNA m ethylation study

Primer Sequence PCR
length

HTR2C -697G/C Fwd: 5'- GTTAGTAGGTTTTAGATGTATTAAGAGAT-3' 

Rev: 5/-[btn]AACAACCAAAACTAACAATCTAAC-3/ 

Seq: 5 '- GAGGTAGGAG 1 1 1 IGGTGTTTG-3'

241 bp

Hs_H7/?2C_01_PM 

PyroMark CpG assay

Unknown primer sequences but included the 

sequence to  analyse of CGCGCAAATCGCGA

159 bp

UNE-1 PyroMark® 

CpG assay

Unknown primer sequences but included the 

sequence to analyse of CTCGTGGTGCGCCGTTT

146 bp
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3.2.3 DNA methylation in different cohorts

Table 3.3 shows the DNA methylation assays in each cohort.

Table 3.3: D ifferent DNA m ethylation assays were investigated in each study 

population.

Belfast V

Chinese V S X

Spanish V V X

3.2.4 Bisulfite conversion of genomic DNA

There were tw o bisulfite conversion kits used in this study, the EpiTech Plus DNA 

Bisulfite kit and EpiTech Fast DNA Bisulfite kit (Qiagen). The general procedure was the 

same fo r bisulfite conversion; genomic DNA was exposed to bisulfite which mediated 

conversion of unmethylated cytosines to uracils. The converted single-stranded DNA 

was then bound to  the membrane of a MinElute DNA spin column followed by washing 

and desulfonation. Then washing was performed to  remove the desulfonation agent. 

Finally, converted DNA was eluted.

These tw o kits from  Qiagen used spin column technology and provided reagents in 

aliquots tha t more convenient. In addition, the reagents are supplied in a unique 

form ulation, fo r example, bisulfite mix which provided the optimal pH fo r complete 

conversion of cytosine to uracil w ithout the need fo r tedious pH adjustment. The 

difference between the tw o kits was the Bisulfite Mix o f the EpiTech Plus Bisulfite Kit 

was a powder tha t need to be dissolved in 800 jllI RNase-free water before use while 

the bisulfite solution in the EpiTech Fast Bisulfite Conversion kit was ready-to-use 

solution. In addition, DNA protect buffer was used to prevent the fragm entation of 

DNA usually associated w ith bisulfite treatm ent at high tem peratures and low pH. In 

addition, the DNA protect buffer also provided effective denaturation to separate 

double-stranded to  single-stranded DNA that is necessary fo r complete cytosine 

conversion. Moreover, the DNA protect buffer contains a pH indicator dye which has a 

green colour which should turn to  blue after addition to the bisulfite m ixture indicating
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sufficient mixing and correct pH for the bisulfite conversion reaction. Another 

difference from the first kit is a series of incubation steps which were performed in the 

therm al cycler.

The procedure was carried out according to the manufacturer's protocols as follows. 

The bisulfite reaction was setup at room tem perature in a 0.2 ml PCR tube containing 

gDNA, bisulfite solution, and DNA protect buffer in a tota l volume of 140 pi as shown 

in Table 3.4. The combined volume of DNA and RNase-free water was depended on 

the concentration of DNA, 20 pi fo r high concentration and up to  40 pi fo r low 

concentration DNA samples.

Table 3.4: Bisulfite reaction components

Component High concentration DNA 

(1-2 pg)

Low concentration DNA 

(1-500 ng)

DNA Variable 1-20 pi Variable 1-40 pi

RNase-free water Variable Variable

Bisulfite solution 85 pi 85 pi

DNA Protect buffer 35 pi 15 pi

Total volume 140 pi 140 pi

The bisulfite reaction was mixed thoroughly indicated by DNA protect buffer turn ing 

from  green to blue. Then the reaction m ixture was incubated in a therm al cycler w ith 

heated lid programmed as listed in Table 3.5.

The differences between EpiTech Plus DNA Bisulfite Kit and the EpiTech Fast DNA 

Bisulfite Conversion kit were the series o f incubation steps in the therm al cycler fo r 

which the EpiTech Plus required about 5 hours whereas 30-50 minutes were required 

fo r the EpiTech Fast kit fo r DNA denaturation and subsequent sulfonation and cytosine 

deamination.
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Table 3.5: Bisulfite treatment thermal cycler conditions

EpiTech Plus Bisulfite Kit EpiTech Fast Bisulfite Conversion kit

Step Time Temperature Step Time Temperature

Denaturation 5 min 95°C Denaturation 5 min 95°C

Incubation 25 min 60°C Incubation 10-20 min 60°C

Denaturation 5 min 95°C Denaturation 5 min 95°C

Incubation 85 min 60°C Incubation 10-20 min 60°C

Denaturation 5 min 95°C Hold Indefinite 20°C

Incubation 175 min 60°C

Hold Indefinite 20°C

The next step was cleanup of bisulfite converted DNA. The complete bisulfite reaction 

from  the thermal cycler was briefly centrifuged and transferred to a 1.5 ml tube. Then 

310 pi of freshly prepared buffer BL containing 10 pg/m l carrier RNA was added to 

each tube followed by mixing and brief centrifugation. Absolute ethanol, 250 pi, was 

added to each tube followed by pulse vortexing fo r 15 seconds and brief 

centrifugation. The mixture was transferred into the MinElute DNA spin column and 

then centrifuged at maximum speed fo r 1 minute. The flow-through was discarded. 

Wash buffer (buffer BW) 500 pi was added to each spin column and then centrifuged 

at maximum speed for 1 minute. The flow-through was discarded. Desulfonation 

buffer (buffer BD) 500 pi was added and then the lid of the spin column was closed 

before incubation at room tem perature for 15 minutes. Then the spin column was 

centrifuged at maximum speed for 1 minute. The flow-through was discarded. Wash 

buffer 500 pi (buffer BW) was added followed by centrifugation and discard the flow 

through. The wash step was repeated one additional time. Absolute ethanol, 250 pi, 

was added to  each spin column followed by centrifugation. Another additional 

centrifugation of the spin column into a new collection tube was perform ed at 

maximum speed fo r 1 m inute to  remove any residual liquid before the elution step. 

The spin column was placed into a new 1.5 ml tube and 15-20 pi o f elution buffer 

(buffer EB) was added directly onto the center o f the spin column membrane. The lid 

o f the spin column was gently closed. The spin column was incubated at room 

tem perature for 1 minute followed by centrifugation fo r 1 minute at 15,000xg (12,000 

rpm) to elute the DNA. The bisulfite converted DNA was stored at -20°C until use.
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3.2.5 Amplification of bisulfite treated DNA by PCR

Bisulfite converted DNA was amplified by PCR to amplify the region of interest using 

the PyroMark PCR kit (Qiagen). The PCR reaction was set up in a 0.2 ml PCR tube in a 

tota l volume of 25 pi containing 10-50 ng of bisulfite converted DNA, PyroMark PCR 

Master Mix, 2x (HotStartTaq DNA Polymerase, 3 mM MgCI2, dNTPs), and primers 

according to Table 3.6. The final concentration o f PCR primers and MgCI2 were 0.2 pM 

and 1.5 mM, respectively. The negative PCR reaction was also set up in every PCR 

setup to  detect possible contamination. All PCR reaction tubes were briefly centrifuged 

before placing into the thermal cycler.

Table 3.6: PCR reaction composition for amplification of bisulfite converted DNA

Component Volume per reaction

PyroMark PCR Master Mix, 2x 12.5 pi

CoralLoad Concentrate, lOx 2.5 pi

PCR Primers (5 pM) 1 pi (0.2 pM  final conc.)

RNase-free water variable

Bisulfite converted DNA tem plate 1-5 pi (10-50 ng)

Total volume 25 pi

The thermal cycler instruments used in this study including the Veriti™  Thermal Cycler 

(Applied Biosystems, USA), the TC-5000 gradient therm al cycler (TECHNE, USA), the 

MWG-Biotech Primus 96 Plus Thermal Cycler and the Primus 25 Thermal Cycler 

(Biotech Equipment Sales Inc., CA). The therm al cycler, w ith heated lid, was 

programmed according to PCR conditions in Table 3.7. The PCR products were stored 

at 2-8°C overnight or at -20°C fo r longer storage. 5-20 pi o f PCR product was used for 

subsequent pyrosequencing analysis while 5 pi was run on an agarose gel to  check the 

product and possible contamination.
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Table 3.7: Optimized PCR condition using thermal cycler

PCR cycling Time Temperature

Initial heat activation 15 min 95°C
Denaturation 30 s 94°C

45-50 -< Annealing 30 s 50°C, 56°C, 60°C *
cycles Extension 30 s 72°C

Final extension 10 min 72°C
Hold Indefinite 4°C

*The annealing tem perature fo r LINE-1, HTR2C -697G/C and Hs_/-/77?2C_PM were 50°C, 

60°C, and 56°C, respectively.

3.2.6 Checking PCR product by agarose gel analysis

The amplified PCR product of bisulfite modified DNA was assessed fo r the specificity of 

PCR amplification in which a single product at the expected size was obtained. In 

addition, the intensity o f the PCR product on the gel was used to approximate the 

amount fo r use in pyrosequencing. Moreover, any possible contamination during the 

PCR processes was also assessed.

The 2.0% (w/v) gel was prepared by adding 40 ml o f lxTAE or TBE to  0.8 g o f agarose 

powder. The mixture was then heated to melt and dissolve the agarose thoroughly 

using a microwave for 1 minute. A fter the gel was completely melted and cooled down 

to  about 60°C, the gel was mixed w ith 0.4 pi o f 5 mg/m l ethidium bromide solution 

immediately prior to  pouring into a prepared gel casting plate w ith a plastic comb. The 

agarose gel was allowed to set at room tem perature. Once the agarose gel was ready, 

it was then placed into an electrophoresis tank filled w ith 1XTAE buffer.

5 pi o f PCR product was loaded directly onto the agarose gel w ithout prior addition o f 

loading buffer because the PCR product contained the CoralLoad® Concentrate which 

contains a gel loading reagent and 2 gel tracking dyes. 5 pi of 100 bp DNA marker 

(GeneRuler 100 bp DNA Ladder, Cat.no. SM0241, Thermo Scientific, UK) was also 

loaded onto the gel.

Electrophoresis was carried out at 100V for approximately 50 minutes or until the dye 

had reached the bottom  of the gel to ensure the appropriate separation of DNA ladder 

and PCR products. Then the gel was viewed under a UV light or CCD camera fitted  to  a 

UV transilum inator. The gel was exposed to  UV until a clear image was obtained.
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3.2.7 Pyrosequencing

Pyrosequencing was carried out using the PyroMark Q24 systems. There were 4 main 

steps to complete the analysis o f DNA methylation using pyrosequencing including (1) 

assay and run setup, (2) immobilization of PCR products to streptavidin sepharose HP 

beads, (3) preparation of samples fo r pyrosequencing analysis, (4) quantification of 

CpG methylation as described by manufacturer.

3.2.7.1 Assay and run setup

The assay fo r CpG methylation analysis was setup in PyroMark Q24 Software (Qiagen) 

by selecting "New CpG Assay" and entering the nucleotide sequence in "Sequence to 

Analyze". Dispensation order o f nucleotides was created by clicking a "Generate 

Dispensation Order" button and the internal control fo r the completion of bisulfite 

treatm ent was manually added by adding a C dispensation before or a fter the 

dispensation of T that was converted from C. The assay was saved. This assay setup 

was performed only the firs t tim e the assay was run. The gene bank sequence, the 

sequence to analyze which was the sequence after bisulfite conversion, and the 

dispensation order (included internal control fo r bisulfite conversion) o f each DNA 

methylation assay are listed in Table 3.8. The dispensation orders were presented as 

histograms as shown in Figure 3.9.

The run file was created by selecting "New Run" and the plate was setup by adding the 

assay parameters to  each wells. The run setup file was saved into a USB stick. A list o f 

required volumes of reagents and the plate setup can be printed out from  "Pre Run 

Inform ation" from  the "Tools" menu bar.

More inform ation about how to  setup the assays and run the files is provided in the 

PyroMark® Q24 Software User Guide (Qiagen).

Before starting the next steps, the PyroMark Q24 system and the heat block were 

turned on to  warm up. The heat block was set at 80°C and the plate holder was also 

placed on the heat block.
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Table 3.8: The DNA sequences o f each DNA m ethylation assay

Sequence

HTR2C -697G/C assay (Number of CpG site : 5)

Gene bank Sequence:

CG G AG G ACG CTT CCTT CCTC AG ATG C ACCG AT CTT CCCG ATACTG CCTTT G G AG CG G CT 

Sequence to  Analyze:

YGGAGGAYGTTTTTTTTTTTAGATGTATYGATTTTTTYGATATTGTTTTTGGAGYGGTT 

Dispensation order:

ACT CG G AGT AT CGT CT AG AT GT CG AT CGT ATT CG AT CAT GTT GAT GT CG

Hs_H77?2C_01_PM PyroMark CpG assay (Number of CpG site : 4)

Gene bank Sequence: CGCGCAAATCGCGA 

Sequence to Analyze: YGYGTAAATYGYGA 

Dispensation order: GTCGTCGTCAATCGTCG

Hs_LINE-l PyroMark® CpG assay (Number o f CpG site : 3)

Gene bank Sequence: CTCGTGGTGCGCCGTTT 

Sequence to Analyze: TTYGTGGTGYGTYGTTT 

Dispensation order: GCTCGTGTAGTCAGTCG

The methylation cytosine sites are in bold (C or Y) or highlighted in blue; the internal 

controls for completion o f bisulfite treatm ent (C) were highlighted in yellow; Y was 

described fo r pyrimidine (C or T); the underline in HTR2C -697G/C assay was the 

position of-697G/C polymorphism.
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(A) HTR2C -697G/C CpG assay
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(C) UNE-1 CpG assay

Figure 3.9: Histograms for dispensation order of CpG assays for HTR2C -697G/C (A), 

Hs_H77?2C_01_PM (B), and LINE-1(C). The controls (C or cytosine) for completion of 
bisulfite treatment are highlighted in yellow.

3.2.7.2 Immobilization of PCR products to streptavidin sepharose HP beads

In this step, DNA tem plate was immobilized to  streptavidin sepharose HP beads for 

subsequent analysis using the PyroMark Q24. The reactions were set up in 24-well PCR 

plates in the tota l volume of 80 pi according to Table 3.9. The PCR plate was sealed 

using adhesive film  to  ensure tha t no leakage is possible between the wells. The PCR 

plate was agitated constantly at 1,400 rpm for 10 minutes at room tem perature (15- 

25°C) using a mixer. As sepharose beads sediment quickly, the capturing o f beads in 

the next step to prepare samples fo r pyrosequencing was performed im m ediately 

once the agitation was completed. During agitation, the biotin-labelled DNA was 

immobilized to streptavidin-coated beads.
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Table 3.9: Components o f master m ix and PCR product fo r DNA im m obilization

Component Volume per sample

Pyromark binding buffer, 2x 40 pi

Streptavidin sepharose HP beads 2 pi

RNase-free water 18 pi or less

PCR product 20 pi or less

Total volume 80 pi

3.2.7.3 Preparation of samples fo r pyrosequencing analysis

This step was carried out using the PyroMark Q24 Vacuum W orkstation (Qiagen) to 

prepare single-stranded DNA tem plate and anneal the sequencing primer to  the 

tem plate before pyrosequencing analysis. The Vacuum work station was prepared 

before starting by filing five separate troughs according to Figure 3.10. The filte r probe 

was washed once tim e by flushing w ith high-purity water (M illi-Q  18.2MQxcm) in 

trough 5. Trough 5 was refilled w ith 70 ml high-purity water.

PyroMark Q24 Vacuum Workstation

IB
1 Ethanol (70%) 50 ml

2 Denaturation 40 ml

3 Wash Buffer ( lx ) 50 ml

4 High-purity w ater 50 ml

5 High-purity w ater 70 ml

Parking position PyroMark plate

Figure 3.10: PyroMark Q24 Vacuum W orkstation preparation
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The sequencing primer was diluted to the concentration of 0.3 pM in annealing buffer 

(Qiagen) and 25 pi of 0.3 pM sequencing primer was added to the PyroMark Q24 plate.

Once the PCR plate agitation was completed, the beads containing immobilized DNA 

tem plate were captured immediately w ith in 1 m inute since the plate was agitated 

according to manufacturer's protocol. The PCR plate was placed in the workstation. 

The pump was switched on and the vacuum switched on to apply vacuum to  the tool. 

The filte r probes were carefully lowered into the PCR plate for 15 seconds until all 

beads were captured. The tool was carefully picked up and transferred to  trough 1 

containing 70% ethanol to  flush the filte r probes fo r 5 seconds. The PCR reaction 

components except fo r the immobilized DNA tem plate were washed out in this step. 

Then the tool was moved to  trough 2 containing denaturation solution fo r 5 seconds. 

The double-stranded DNA was separated into single-stranded DNA; only the 

biotinylated strands were captured by beads. Unbiotinylated strands and denaturation 

solution were completely washed when the filte r probes was flushed in trough 3 

containing wash buffer fo r 10 seconds. The tool was raised to beyond 90° vertical fo r 5 

seconds to drain liquid from  the filte r probes before holding the too l over the 

PyroMark plate. The vacuum switch was turned o ff before lowering the filte r probes 

into the PyroMark plate containing sequencing primer. The beads were released by 

gently shaking the too l in the wells fo r 15 seconds. The tool was then transferred to 

trough 4 containing the high-purity water and agitated fo r 10 seconds before moving 

to trough 5 containing the high-purity water and applying vacuum to  flush the filte r 

probes fo r 5 seconds. The tool was raised to  beyond 90° vertical fo r 5 seconds to  drain 

the liquid from  the filte r probes before the vacuum switch was o ff and then the tool 

was placed in the parking position. The vacuum pump was turned off.

The PyroMark plate containing the pyrosequencing templates and sequencing prim er 

was heated at 80°C for 2 minutes using the PyroMark Q24 plate holder. The samples 

were cooled down to room tem perature fo r at least 5 minutes before proceeding in 

the PyroMark Q24 pyrosequencer. During the tim e the samples were cooled down, the 

sequencing primers annealed to the templates.
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3.2.7.4 Quantification of CpG methylation

The PyroMark Gold Q24 reagents including dNTPs, enzyme, and substrate mixtures, 

which were purchased from Qiagen were carefully loaded w ithout air bubbles into the 

PyroMark Q24 cartridge according to the volume reported in the pre run inform ation. 

All reagents and the cartridge were allowed to reach room tem perature before placing 

into the PyroMark Q24 followed by placing the PyroMark plate on the heating block. 

The USB stick w ith set up run file was inserted into pyrosequencer, and then 

pyrosequencing was started. When pyrosequencing was finished, the processed run 

file  was automatically saved to  the USB stick. The plate was discarded and the 

cartridge was cleaned according to the PyroMark Q24 user manual guide. The 

PyroMark Q24 was shutdown and switched off.

The processed run file was analyzed in the CpG mode in PyroMark Q24 Software. The 

quantification of CpG methylation and quality assessment were displayed above each 

CpG site in the program trace. For reliable results the manufacturer had recommended 

tha t the single peak heights should be above 30 relative light units (RLU) which was set 

as the 'required peak height for passed quality' in assay setup.

3.2.8 Statistical Analyses

All statistical analyses were carried out using SPSS for W indow.

The methylation levels of all CpG sites were tested fo r outliers and normal d istribution 

before testing association. Stepwise linear regression was used to  analyse the 

confounding effect of age or gender on methylation levels. The partial correlation were 

used in analysing the correlation between methylation at each CpG site and interval or 

ratio scale variables such as baseline weight, baseline BMI or BMI, weight change, BMI 

change. The association between genetic polymorphisms and DNA m ethylation was 

analyzed using a general linear model (univariate analysis o f variance) w ith  covariates 

as appropriate. Mann-W hitney U test and Kruskal-Wallis one-way ANOVA test were 

used if the data were not normally distributed. Chi-square was used to  analyze the 

difference between categorical variables. Significant differences between means were 

determined at a level o f p < 0.05.
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3.3 Results

3.3.1 Validation of methodology: DNA methylation study

The validation of the method fo r determ ining DNA methylation using bisulfite 

treatm ent of genomic DNA and pyrosequencing was determined as described below.

1. DNA samples were tested fo r the precision o f the bisulfite treatm ent throughout 

pyrosequencing. Initially, DNA samples were subjected to 3 bisulfite treatm ents, then 

each bisulfite modified DNA was amplified by PCR and subsequently pyrosequenced 

together. Figure 3.11A shows the DNA methylation levels o f three d ifferent bisulfite 

treatm ents (per sample) fo r the determ ination o f LINE-1 methylation. The coefficients 

o f variation were less than 5% (1.15-3.10%). The result indicates high precision o f 

m ultip le bisulfite reactions.

2. 3 modified DNA samples were tested fo r the precision o f the PCR step. Each bisulfite 

modified DNA was amplified by 3 independent PCRs, and then underwent 

pyrosequencing together. Figure 3.11B shows the DNA methylation levels o f three 

d ifferent PCRs (per bisulfite modified DNA sample) in determ ination o f 

Hs_/-/77?2C_01_PM methylation. The variation coefficients were less than 10% (0.83- 

7.33%). The result indicates the high precision o f m ultip le PCR reactions.

3. 3 modified DNA samples were tested fo r the precision o f the pyrosequencing step. 

Each PCR product underwent pyrosequencing separately (3 times). Figure 3.11C shows 

the DNA methylation levels o f three d ifferent pyrosequencing which were performed 

using the same PCR product fo r determ ination of the HTR2C -697A/C m ethylation. The 

coefficients o f variation were less than 10% (0.5-9.5%). The result indicates the high 

precision o f m ultiple pyrosequencing.

The results o f DNA methylation levels o f each sample were calculated fo r coefficient o f 

variation (CV) using the follow ing formula:

Coefficient o f variance (%) = Standard deviation *100 /  Mean
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(A) Precision of bisulfite treatment using DNA from peripheral blood and buccal cells
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(C) Precision of pyrosequencing step
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Figure 3.11: DNA methylation levels and coefficient of variation showing the 

precision of each step of DNA methylation measurement
(A) precision o f bisulfite treatm ent step, (B) precision of PCR step, and (C) precision of 

pyrosequencing step.
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3.3.2 DNA methylation of the HTR2C promoter sequences and global 

methylation in chronic schizophrenia patients (Belfast cohort)

DNA methylation levels o f two regions o f the HTR2C gene and one region o f LINE-1 

were investigated in the chronic Belfast cohort. The mean age of male patients was 

42.6y (n=41) and 46.ly  fo r female (n=31). Gender was significantly related to 

methylation in both HTR2C regions in which females had higher methylation levels 

than males at all CpG sites (p<0.05), and the CpGl o f LINE-1 (p=0.016). Age was 

significantly associated w ith some CpGs including the CpG -691, -670, -661, and -644 of 

the HTR2C-697G/C region, and the CpGl and CpG2 o f the Hs-/-/77?2C_01_PM region 

(p<0.05) in which methylation levels wereincreased w ith age. Age did not associate 

w ith methylation o f LINE-1. The mean age of patients receiving olanzapine or clozapine 

(37.ly )  was significantly lower than tha t o f the remaining patients receiving all o ther 

drugs (47.2y, p<0.001). Therefore, gender and age were included as covariates in 

subsequent analyses as appropriate. The methylation of LINE-1 at all CpG sites was 

normally distributed; thus parametric tests were used in analyses, whereas the non- 

parametric tests were used in analysing the association o f the HTR2C -697G/C and 

Hs_H77?2C_01_PM regions where results were not normally distributed.

3.3.2.1 Global DNA methylation

M ethylation of LINE-1 was not associated w ith age at any of the 3 CpG sites (Figure 

3.12) in either male or female subgroups (p>0.05). However, it was associated w ith 

gender; the methylation levels o f the LINE-1 in males was significantly higher than tha t 

o f females at CpGl o f the LINE-1 region (male 78.98±1.44%, n=36 vs female 

78.04±1.67%, n=30, p=0.016) while the other tw o  CpG sites showed the same pattern 

(Figure 3.13A). In addition, tobacco smoking was also associated w ith  m ethylation o f 

LINE-1; smokers had higher methylation of the LINE-1 than non-smoking patients and 

the difference reached statistical significance at CpG3 (p=0.019) as shown in Figure 

3.13B.

Patients receiving olanzapine or clozapine had slightly lower global DNA m ethylation 

levels than those patients receiving all o ther drugs (Figure 3.13C) but it did not reach 

statistical significance. No significant association of obesity (BMI>30 kg /m 2), central
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obesity, or metabolic syndrome and methylation levels was observed at any CpG sites 

of this region (Figure 3.13 D-F).
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Figure 3.12: Association o f age w ith  global LINE-1 DNA m ethylation in chronic 

(Belfast) cohort

The figure shows no correlation o f age and global methylation of the LINE-1 at CpGl 

(A), CpG2 (B), and CpG3 (C).
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The influence of the polymorphisms and the extent of DNA methylation o f the LINE-1 

were investigated and results show tha t patients who carried the AA genotype of the 

FTO rs9939609, associated w ith higher BMI in this cohort, were more likely to have 

higher LINE-1 methylation than the T allele carriers although this did not reach 

significance (p=0.055 at CpG3) (Figure 3-14A).

The HTR2C -759C/T and the MTHFR 1298A/C polymorphisms did not influence the 

methylation levels o f LINE-1 (Figure 3-14 B and D). The MTFIFR 677C/T polymorphism, 

T allele showed a significant influence on LINE-1 methylation at CpG3 (p=0.026, 

correcting fo r smoking) compared to CC genotype (Figure 3-14C).

In addition, the interaction between the MTFIFR 677C/T polymorphism and gender, 

controlling fo r smoking (p=0.042, overall effect 0.006, r2=0.165) (Figure 3-15A).

Females w ith the T allele had higher methylation than those w ith CC genotype at CpG3 

(p=0.003, overall effect 0.010, r2=0.255). There was a significant interaction between 

the MTFIFR 677C/T polymorphism and smoking on LINE-1 methylation at CpG3 

(p=0.009, overall effect p=0.001, r2=0.213)(Figure 3-15B). Smoking increased LINE-1 

methylation at CpG3 in patients who carried the MTHFR 677T allele (67.33±1.37%, 

n=22) compared to  CC genotype carriers (65.88±1.19%, n=18), p=0.001, r2=0.227.
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3.3.2.2 DNA methylation of the HTR2C-697G/C region

There was a gender effect on methylation of the HTR2C -697G/C region, females had 

significantly higher methylation than males at all CpG sites (p<0.001) as shown in 

Figure 3.16A. This is because of the HTR2C gene is located on chromosome X, thus 

females have more methylation in order to inactivate one of sex chromosome. A 

similar pattern o f lower methylation of the HTR2C -697G/C region o f smokers was 

opposite w ith tha t o f the LINE-1 (Figure 3.16B); however, the olanzapine or clozapine 

treatm ent showed similar patterns in LINE-1 methylation; treatm ent w ith these drugs 

had slightly lower methylation of the HTR2C-697G/G region (Figure 3.16C). No 

significant association of the BMI obesity (>30 kg/m 2), central obesity, and metabolic 

syndrome and methylation levels was observed at any CpG sites o f this region (Figure 

3.16 D-F), although there was a similar pattern o f higher methylation in patients who 

had BMI obesity (>30 kg/m 2) or central obesity.

The influence of polymorphisms on methylation of the HTR2C -697G/C regions showed 

only the HTR2C -759C/T polymorphism had a significant association w ith  methylation 

levels. All CpG sites except CpG -698 showed a similar pattern tha t carriers w ith  C/CC 

genotype had lower methylation levels than T allele carriers and the statistical 

significance were reached at CpG-670 (p=0.020) and CpG-661 (p=0.030) (Figure 3.17B). 

The GG genotype of the leptin -2548G/A polymorphism showed significantly higher 

methylation at CpG-698 (p=0.023)(Figure 3.17E). The FTO rs9939609, the MTHFR 

677C/T, and the MTHFR 1298A/C polymorphisms did not influence the m ethylation of 

this region o f the HTR2C (Figure 3.17 A,C,D).
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(A), smoker and non-smoker (B), olanzapine or clozapine treatm ent and all o ther drugs 
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syndrome (F). Data are expressed as meaniSD. * * *  p<0.001. Gender was included as a 

covariate in the analyses B-F in the parametric test (GLM; UNIANOVA).
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3.3.2.3 DNA methylation of the Hs_HTR2C_01_PM region

In the Hs_H77?2C_01_PM region, females had significantly higher methylation than 

males at all CpG sites (p<0.001) (Figure 3.18A). No significant association o f DNA 

methylation w ith smoking, olanzapine or clozapine treatm ent, BMI obesity, and 

metabolic syndrome was observed (Figure 3.18 B-D, and F), although the smoker 

group and olanzapine or clozapine groups were more likely to  have lower methylation, 

and the lower methylation levels were found in BMI obesity <30 kg/m 2, absence of 

metabolic syndrome and absence of central obesity. The absence of central obesity 

patient group had significantly lower methylation at CpGl (p=0.023) (Figure 3.18E).

There were no significant associations between the FTO rs9939609, HTR2C -759C/T, 

MTHFR 677C/T, and MTHFR 1298A/C polymorphisms and m ethylation o f the 

Hs_H77?2C_01_PM regions. However, there were similar patterns o f the results o f the 

FTO rs9939609 and the HTR2C -759C/T polymorphisms on methylation levels as 

observed in the HTR2C-697G/C region in which the AA genotype of the FTO rs9939609 

and the T allele of the HTR2C -759C/T exhibited slightly higher m ethylation levels 

(Figure 3.19); fo r example: the FTO rs9939609 AA genotype showed slightly higher 

levels o f methylation than the T allele group at CpG3 (6.92+3.32% vs 5.28±3.13%, 

p=0.092), and the C/CC genotype of the HTR2C -759C/T had slightly lower levels o f the 

methylation than T/CT/TT genotype at CpG3 (5.28±3.00% vs 6.57±3.67%, p=0.150). 

Interestingly, the GG genotype of the leptin -2548G/A polymorphism showed 

significantly higher methylation at CpGl (p=0.025) and CpG4 (p=0.009) (Figure 3.19E).
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Figure 3.18: DNA m ethylation o f the Hs_HTR2C_01_PM in chronic (Belfast) cohort 

The methylation of the Hs_H77?2C_01_PM region compared between male and female 

(A), smoker and non-smoker (B), olanzapine or clozapine treatm ent and all o ther drugs

(C), BMI obesity <30 and >30 kg/m 2 (D), presence of central obesity (E), and metabolic 

syndrome (F). Data are expressed as mean±SD. * p<0.05, * * *  p<0.001. Gender was 

included as a covariate in the analyses B-F in the parametric test (GLM; UNIANOVA).
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Hs_H77?2C_01_PM region in chronic (Belfast) cohort

The methylation o f the Hs_H77?2C_01_PM region compared between genotype 

subgroups of the FTO rs9939609 (A), HTR2C -759C/T (B), MTHFR 677C/T (C), MTHFR 

1298A/C (D), and leptin -2548G/A (E) polymorphism. Data are expressed as meaniSD. 
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3.3.3 Association of DNA methylation of the HTR2C promoter

sequences with antipsychotic drug-induced weight gain in first 

episode Chinese Han and Spanish schizophrenia patients

DNA methylation levels o f two regions o f the HTR2C gene were investigated in both 

Chinese Han and Spanish cohorts. There were significant differences in DNA 

methylation levels of HTR2C between males and females in that females always had 

higher methylation levels than males at all CpG sites of both regions.

3.3.3.1 Chinese Han cohort

3.3.3.1.1 Methylation and weight gain

The percentages of methylation levels at each CpG site were tested fo r normal 

distribution against testing subgroups; fo r example: the analysis comparing two 

subgroups of patients having weight increase >7% and <7% found tha t methylation 

levels at all CpG sites o f Hs_HT/?2C_01_PM region and CpG-698, -691, and -644 o f the 

HTR2C -697G/C region were not normally distributed and therefore nonparametric 

statistical analyses were used; whereas the CpG-670 and -661 were normally 

distributed and parametric statistical analyses were performed. The outliers were also 

determined at each CpG site against d ifferential testing subgroups (for example, male 

vs female, weight increase >7% vs <7%, risperidone vs other drug treatm ent, HTR2C - 

759 T allele vs C/CC genotype, MTHFR 677 T allele vs CC genotype, etc.), then the 

outliers o f these tests were sumarized and removed before subsequent statistical 

analyses. The outlier removal citeria in SPSS is based on Tukey's hinges (Tukey, 1977) 

which calculate the upper and lower fences using equations as described below.

Interquartile range (IQR) = Q3-Q1 (equation 1)

Q1 is the first quartile (the 25th percentile) and Q3 is th ird quatile (the 75th percentile)

Then the IQR has been used to calculate fences 1.5 hinge-spreads below and above the 

hinges using equations below.

The lower fence (FenceLower) = Q1 - (1.5)(IQR) (equation 2)

The upper fence (Fenceupper) = Q3 + (1.5)(IQR) (equation 3)
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The extreme outliers located ouside the lower or upper fences were exclued. These 

outliers can be identified from stem-and-leaf plots and boxplots (box-and-whiskers 

plot) which show the frequncy and the raw data values at lower and upper fence.

Stepwise linear regression indicated a significant effect of gender, but not age on 

methylation at all CpG sites in both regions of the HTR2C; therefore, this was included 

in subsequent analysis as a covariate. M ethylation levels at all CpG sites, except at CpG 

-691, were normally distributed. No significant correlation of methylation levels w ith 

baseline weight, change in weight, baseline BMI, or change in BMI was observed in this 

cohort (p>0.05, data not shown).

Interestingly, the association between methylation levels at five CpG sites in the HTR2C 

-697G/C regions and weight change groups (>7% vs <7%) was observed in patients who 

had a weight increase of >7%, these patients had lower mean methylation at all CpG 

sites compared to  patients who had a weight increase of <7%, where only methylation 

at -644 site showed a significant difference (p=0.046) (Table 3.10, the raw data w ithout 

outlie r cut o ff is shown in Appendix 1, Table 1). Gender distribution between two 

weight change groups were not significantly d ifferent (%2=2.160, p=0.142). In this 

HTR2C -697G/C region, there was a genotype effect on methylation at the firs t CpG (- 

698) site, because the nucleotide sequences at positions -698,-697(SNP site G/C), and - 

696 was CGG; thus if the SNP was G, the methylation site was at position -698, but if 

the SNP was C, the methylation site was at position -697.

Table 3.10: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups o f w eight increase in Chinese Han patients

HTR2C -697G/C CpGl CpG2 CpG3 CpG4 CpG5
promoter region -698 -691 -670 -661 -644
Weight increase>7% 19.5214.98 20.3915.74 19.1216.07 21.3016.36 17.8413.69
(n) (70) (82) (82) (81) (81)
Weight increase<7% 19.8214.87 21.1915.70 20.6216.13 23.2816.44 19.2013.81
(n) (76) (100) (100) (100) (93)

p value 0.654 0.424 0.355 0.165 0.046
Data is expressed as meaniSD.

The association between methylation levels at four CpG sites in the Hs_H77?2C_01_PM 

region and weight change groups (>7% vs <7%) were similar to the HTR2C -697G/C 

region; patients who had a weight increase of >7% had lower mean m ethylation at all
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CpG sites compared to patients who had a weight increase of <7%, when only 

methylation at the CpG3 site showed a significant difference (p=0.042) (Table 3.11, the 

raw data w ithou t outlier cut o ff is shown in Appendix 1, Table 2). Gender distribution 

between tw o weight change groups were not significantly d ifferent (%2=1.774, 

p=0.183).

Table 3.11: Methylation levels at 4 CpGs in the Hs_HT/?2C_01_PM sequences 

comparing between two subgroups of weight increase in Chinese Han patients

Hs HTR2C 01 PM CpGl CpG2 CpG3 CpG4
Weight increase>7% 
(n)

6.3912.81
(75)

6.8512.93
(78)

8.9413.58
(75)

5.2711.58
(67)

Weight increase<7% 
(n)

7.0812.75
(91)

7.5912.73
(92)

10.2913.56
(93)

5.6011.63
(86)

p value 0.296 0.240 0.042 0.458
Data is expressed as mean+SD.

These results suggest tha t the methylation levels in both regions of the HTR2C may be 

able to  be used in prediction o f weight increase in first episode schizophrenia patients 

follow ing antipsychotic drug treatm ent.

3.3.3.1.2 Polymorphisms and methylation

The influence of the polymorphisms and the extent o f DNA methylation o f the HTR2C 

were investigated and results show tha t patients who carried the C/CC genotype o f the 

HTR2C -759C/T polymorphism (which had missing genotype data n=3) had lower 

methylation levels compared to T allele carriers at all CpG sites except the -698 site. 

Methylation at -670 and -644 sites showed significant differences between the tw o 

genotype groups (p=0.010 and p=0.014) as shown in Table 3.12, the raw data w ithou t 

outlie r cut o ff is shown in Appendix 1, Table 3. Gender distribution between tw o 

genotype groups was not significantly d ifferent (%2=2.374, p=0.123 for CpG -670 and 

%2=2.761, p=0.097 fo r CpG -644). This result suggests tha t at some CpG sites DNA 

methylation o f the HTR2C is influenced by the HTR2C -759C/T polymorphism and the 

difference in DNA methylation may be a link between the HTR2C -759C/T 

polymorphism and antipsychotic drug-induced weight gain.
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Table 3.12: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups o f the HTR2C -759C/T genotype in Chinese Han 

patients

HTR2C
-759C/T

CpGl
-698

CpG2
-691

CpG3
-670

CpG4
-661

CpG5
-644

C/CC 20.1515.06 20.4115.45 19.2815.57 21.9716.32 18.1613.78
(n) (114) (141) (141) (140) (136)
T/CT/TT 17.2612.49 21.9916.26 22.5517.34 23.9916.67 20.2013.56
(n) (29) (38) (38) (38) (35)

p value 0.004 0.214 0.010 0.265 0.014
Data is expressed as meaniSD.

The results in the Hs_H77?2C_01_PM region showed a similar direction in tha t the C/CC 

genotype group had lower methylation than tha t o f the T allele group; however, the 

difference in methylation between the genotype groups did not reach statistical 

significance (p>0.05) (Table 3.13, the raw data w ithout outlier cut o ff is shown in 

Appendix 1, Table 4).

Table 3.13: M ethyla tion  levels at 4 CpGs in the Hs_H77?2C_01_PM sequences 

comparing between tw o  subgroups o f the HTR2C -759C/T genotype in Chinese Han 

patients

HTR2C -759C/T CpGl CpG2 CpG3 CpG4

C/CC (n) 6.6512.70(131) 7.1912.89 (134) 9.4613.64(131) 5.3411.56 (118)

T/CT/TT (n) 7.4012.92 (34) 7.6612.48(35) 10.8413.16 (35) 5.8511.77 (34)

p value 0.352 0.846 0.148 0.236
Data is expressed as mean+SD.

The MTHFR 677C/T and MTHFR 1298A/C polymorphisms did not influence the 

methylation of the FITR2C at any CpG sites in either region (p>0.05, data not shown). 

The FTO rs9939609 A/T had an effect on methylation at CpG -698 in that there was a 

trend of the T allele to  be associated w ith lower methylation at CpG -698 than the AA 

genotype (19.9214.81 (n=140) vs 14.3915.61 (n=3), p=0.052). Gender d istribution 

between tw o subgroups of genotype was not significantly d ifferent (%2=0.355, 

p=0.551).

In addition, the BDNF rs6265G/A polymorphism also showed a significant difference in 

DNA methylation at CpG-698; the AA genotype carriers had higher m ethylation levels
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than the G allele carriers (21.22±5.23 (n=38) vs 19.32±4.70 (n=99), p=0.043. Gender 

distribution between two subgroups of genotype was not significantly d ifferent 

(X2=0.650, p=0.420).

The genotype of the HTR2A -1438G/A had a significant influence on DNA methylation 

o f the Hs_/-/77?2C_01_PM region at CpG3; the A allele carriers had lower methylation 

levels than the GG genotype group (9.44±3.70 (n=124) vs 10.74±3.57 (n=36), p=0.030. 

Gender distribution between tw o subgroups of genotype was not significantly 

d ifferent (%2=0.029, p=0.865).

3.3.3.2 Spanish c o h o rt

3.3.3.2.1 Methylation and weight gain

Methylation data at each CpG site were tested fo r normal d itribution and outliers. The 

methylation levels at CpG-698 were not normally distributed, thus non-parametric 

tests were used in analyses. Gender, but not age, showed a strong effect on 

methylation extent at all CpG sites in both regions of the HTR2C (p<0.05, data not 

shown).

The methylation levels were not significantly correlated w ith baseline weight, baseline 

BMI, BMI change, weight change, or percentage o f weight change at all CpG sites of 

both regions of the HTR2C sequences (p>0.05, data not shown).

The association of methylation levels w ith weight increase of >7% compared to  <7% 

after antipsychotic drug treatm ent fo r 3 months (missing data n=6) showed a similar 

direction to  the Chinese Han cohort in tha t patients who had a weight increase of >7% 

had lower mean methylation than patients who had a weight increase o f <7% at all 

CpG sites in both regions o f the HTR2C, the HTR2C -697G/C prom oter region (Table 

3.14, the raw data w ithou t outlier cut o ff is shown in Appendix 2, Table 5) and the 

Hs_H77?2C_01_PM region (Table 3.15, the raw data w ithou t outlier cut o ff is shown in 

Appendix 2, Table 6). However, the differences of methylation levels between the tw o 

subgroups of weight increase did not reach statistical significance.
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Table 3.14: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups o f w eight increase in Spanish patients

HTR2C -697G /C C p G l CpG2 CpG3 CpG4 CpG5
p ro m o ter region -698 -691 -670 -661 -644

Weight increase>7% 18.79±16.90 15.00±9.31 16.62±10.55 16.44±11.37 15.67±9.15
(n) (43) (43) (42) (41) (43)
Weight increase<7% 20.17±17.54 17.61±11.38 16.41±10.28 20.19±12.77 18.09±10.04

(n) (23) (23) (22) (21) (23)

p value 0.666 0.620 0.496 0.842 0.538

Data is expressed as meaniSD.

Table 3.15: M ethyla tion  levels at 4 CpGs in the Hs_H77?2C_01_PM sequences 

comparing between tw o  subgroups o f w eight increase in Spanish patients

Hs HTR2C 01 PM CpGl CpG2 CpG3 CpG4
Weight increase>7% 
(n)

5.05±2.39
(42)

5.2811.24
(28)

7.2713.47
(42)

4.1911.97
(43)

Weight increase<7% 
(n)

5.9512.56
(20)

5.5211.60
(15)

9.1114.02
(23)

4.7712.24
(23)

p value 0.337 0.624 0.330 0.949
Data is expressed as meaniSD.

3.3.3.2.2 Polymorphisms and methylation

The influence of the polymorphisms on the extent o f DNA methylation o f the HTR2C 

were investigated and results show tha t the HTR2C -759C/T polymorphism did not 

influence the methylation levels at any CpG sites in e ither regions o f the HTR2C, except 

the methylation at CpG-698; the C/CC genotype carriers had higher m ethylation levels 

than that of the T allele carriers (C/CC 21.19±17.35 (n=54) vs T/TC/TT 10.94±12.83 

(n=18), p=0.037). There is a genotype effect on the methylation at this position as 

described before (section 3.3.3.1.1).

Patients who carried the T allele o f the FTO rs9939609 polymorphism (which had 

genotype missing data n=2) had lower methylation levels compared to  the AA 

genotype group at all CpG sites o f the HTR2C -697G/C region (Table 3.16, the raw data 

w ithou t outlier cut o ff is shown in Appendix 2, Table 7). Gender d istribution between 

tw o subgroups of the FTO genotype was tested and it was not significantly d iffe ren t at 

any CpGs (p>0.05, data not shown), except the CpG-670. However, there was only one 

female patient who carried the AA genotype o f the FTO rs9939609 at all CpG sites and 

no female patient who carried the AA genotype at CpG-670; therefore, analysis in male
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patients was carried out. The results were in a similar direction to  the analysis in the 

tota l patient group as shown in Figure 3.20. There was a trend of the AA genotype of 

FTO rs9939609 associated w ith higher DNA methylation levels o f the 

Hs_/-/T/?2C_01_PM region at CpG4 in male patients (p=0.060). No significant effect of 

the HTR2C -759C/T and the FTO rs9939609 A/T genotype interaction on DNA 

methylation of the HTR2C -697G/C region was found indicating an additive effect of 

these tw o polymorphisms.

Table 3.16: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups of the FTO rs9939609 genotype in Spanish 

patients.

FTO
rs9939609

C p G l
-698

CpG2
-691

CpG3
-670

CpG4
-661

CpG5
-644

AA 3 0 .8 6 il6 .3 5 21.07i8.67 19.08i7.64 20 .2 3 il0 .7 6 19.00i9.43
(n) (14) (14) (13) (13) (14)
AT/TT 16 .1 6 il5 .7 8 14 .52 il0 .11 1 5 .6 9 ill.2 9 17 .00 il2 .08 15.73i9.67
(n) (56) (56) (55) (53) (56)

p value 0.004 0.001 0.009 0.020 0.072
Data is expressed as meaniSD.
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Figure 3.20: DNA m ethylation levels o f the HTR2C-697G/C prom oter region 

comparing between tw o  subgroups o f the FTO rs9939609 genotype.

Data are expressed as meaniSD. * indicates statistical significant difference at p<0.05, 

* *  p<0.01, * * *  pcO.001.
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The MTHFR 677C/T and MTHFR 1298A/C polymorphisms did not show a significant 

influence on the methylation of the HTR2C at any CpG sites in both regions (p>0.05). 

However, the CC genotype of the MTHFR 677C/T had slightly higher methylation levels 

than the T allele at all CpG site of the HTR2C -697G/C region; whereas, the AA 

genotype of the MTHFR 1298A/C had slightly lower methylation levels than the T allele 

carriers (Figure 3.21).
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Figure 3.21: DNA m ethylation levels o f the HTR2C-697G/C prom oter region 

comparing between tw o  subgroups o f genotype o f the MTHFR 677C/T (A), and the  

MTHFR 1298A/C polym orphism  (B).

Data are expressed as meantSD.
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3.4 Discussion

The experiments in this chapter aimed to investigate the association of DNA 

methylation w ith antipsychotic drug-induced weight gain and BMI, and the influence 

of genetic polymorphisms in schizophrenia in both first episode and chronic patients. 

In chronic schizophrenia patients, DNA methylation of global LINE-1 repetitive 

elements and of the specific target gene, the HTR2C prom oter at and nearby the - 

697G/C polymorphism and the region nearby TSS, Hs_H77?2C_01_PM, were 

determined using bisulfite pyrosequencing. DNA methylations of the HTR2C o f both 

regions were also investigated in first episode schizophrenia patients.

3.4.1 DNA methylation of the HTR2C and global DNA methylation in 

chronic (Belfast) schizophrenia patients - key findings

•  LINE-1 methylation: Gender effect (F<M), no age effect, smoker effect (higher 

methylation), olanzapine/clozapine (trended lower methylation), no association 

w ith BMI, central obesity and metabolic syndrome, MTHFR 677C/T (T allele 

higher methylation) and FTO rs9939609 (AA genotype trends higher 

methylation).

•  HTR2C (-697G/C sequence) methylation: Gender effect (F>M), m ethylation 

increased w ith age, no association w ith smoking, drug treatm ent, BMI, central 

obesity and metabolic syndrome, HTR2C -759C/T SNP (T allele higher 

methylation), no association w ith FTO and MTHFR SNPs.

•  HTR2C (Hs_H77?2C_01_PM) methylation: Gender effect (F>M), m ethylation 

increased w ith age, central obesity (higher methylation), no association w ith  

smoking, drugs treatm ent, BMI, and metabolic syndrome, FTO AA trends higher 

methylation, no MTHFR, -759C/T HTR2CSNPs effect.

3.4.1.1 Global LINE-1 DNA methylation in chronic (Belfast) patients

The results showed females had lower levels o f the global LINE-1 m ethylation than 

males 0.55% on average. This finding is consistent w ith previous studies in children 

(Fluen et a t, 2014; Perng et al., 2013), adults (W ilhelm et at., 2010; El-Maarri et al., 

2011; Zhang et al., 2011) and also in cord blood (Burris et al., 2012; Fluen et al., 2014). 

This gender-specific effect on LINE-1 methylation is likely due to the association of
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LINE-1 w ith X-chromosome inactivation. One recent study measured DNA methylation 

o f 39 LINE-l\oc\ on the X-chromosome and 5 loci in autosomes and found the 

differential methylation in male and female was prim arily located in the X 

chromosome and also found the inactive X chromosome is hypomethylated (Singer et 

al., 2012).

The lack o f the significant correlation between age and LINE-1 DNA methylation 

observed in this study confirmed several previous findings tha t have reported a weak 

inverse relationship or no association o f age w ith LINE-1 methylation (Bollati et al., 

2009; Jintaridth and Mutirangura, 2010; El-Maarri et al., 2011). The weak or no 

association may be due to the small sample size and other factors such as life style, 

smoking, diet, exercise, disease conditions, and antipsychotic drug treatm ent tha t may 

contribute to  epigenetic changes.

Smoking was associated w ith higher levels o f LINE-1 methylation (0.76% on average) in 

the present study (see a diagram in Figure 3.22A) which was in line w ith  some other 

studies tha t found smoking is associated w ith global DNA hyperm ethylation 

(Piyathilake et al., 2001; Lin et al., 2007); in contrast to other studies tha t found 

hypomethylation (Smith et al., 2007; Hsiung et al., 2007). However, these studies 

investigated cancer cells or cancer patients tha t may lim it the relevance of these works 

to  the present study. Nicotine is one of the epigenetic modifiers tha t cause DNA 

hypermethylation and histone acetylation (Abdolmaleky, et al., 2013). Previous work 

found tha t nicotine induced DNA methylation o f the fragile histidine triad [FHIT) gene 

and was associated w ith increased DNMT3a expression in human esophageal 

squamous epithelial cells (Soma et al., 2006). However, nicotine adm inistration in mice 

caused a decrease in DNMT1 expression and GAD67 prom oter m ethylation in 

GABAergic interneurons which was also associated w ith an increase in GAD67 

expression in the fronta l cortex (Satta et al., 2008). A previous study using blood 

samples has reported a decrease in global DNA methylation in schizophrenia patients 

(n=28) while it was increased in healthy controls (n=26) (Bromberg et al., 2008). The 

differences between this study and the present study are d ifferent m ethod to 

characterize methylation which was based on the restriction by m ethylation-sensitive 

or insensitive enzymes; and also the patients were younger (39 years). The present 

study found a significant association of smoking w ith LINE-1 m ethylation at one of
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three CpG sites indicating a weak effect o f smoking on global DNA methylation. The 

influence of smoking on epigenetic modifications may be tissue specific or gene 

specific and it needs further studies in large sample sizes to  elucidate this effect.

The T allele o f the MTHFR 677C/T polymorphism was associated w ith higher levels of 

the methylation of LINE-1 (CpG3), specifically in female chronic schizophrenia patients 

(see a diagram in Figure 3.22A). The one previous study found the lowest level o f LINE- 

1 methylation in female patients w ith the TT genotype. That study differed from  the 

present investigation in the chronic patients in tha t the 133 patients had a d ifferent 

genotype frequency of the MTHFR 677C/T in tha t CC/CT/TT frequency was 61/30/9% 

(47/43/10% in the present study). However, fu rther studies in larger sample sizes are 

required to  elucidate the association of the MTHFR polymorphism and global DNA 

methylation.

In addition, this study found an interaction between smoking and the MTHFR 677C/T 

polymorphism on the methylation o f LINE-1 CpG3; smoking MTHFR 677T allele carriers 

had highest LINE-1 methylation levels. Previous studies in the general population have 

reported the association of the MTHFR 677C/T polymorphism and smoking behavior; 

the TT genotype had a higher frequency in smokers (Johnson et al., 2001; Linnebank et 

al., 2012). The interaction of this polymorphism and smoking on plasma homocysteine 

levels was also observed; plasma homocysteine levels were higher in smokers as well 

as in the T allele carriers, and the smoking MTHFR 677TT individual had the highest 

plasma homocysteine levels, non-smoking 677CC individuals the lowest (Linnebank et 

al., 2012). Although the MTHFR variant had an association w ith the decrease o f MTHFR 

enzyme activity and increased plasma homocysteine levels which disrupt DNA 

m ethylation (Friso and Choi, 2002), there is a recent study tha t reported the 

association o f an increment o f homocysteine and higher LINE-1 methylation (Perng et 

al., 2014). The increased global DNA methylation in smoking MTHFR 677T allele in this 

study may be due to this study investigating chronic schizophrenia patients who were 

receiving antipsychotic drugs. Responsiveness to  the drug treatm ent, physical activity, 

and genetic vulnerability may influence DNA methylation. However, this study 

provides evidence tha t the MTHFR 677C/T polymorphism-smoking interaction plays a 

role in epigenetic modification tha t might be implicated in human health and diseases. 

Further studies are needed to confirm this interaction.
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This study did not observe a significant association o f the methylation of LINE-1 w ith 

BMI, body weight, waist circumference, waist-hip ratio, triglyceride, LDL, HDL, 

cholesterol, and plasma leptin. Lack of significant association o f LINE-1 methylation 

and BMI is in line w ith a recent study in postmenopausal overweight woman which 

found no significant difference in LINE-1 methylation levels in any intervention group 

(independent and combined effects of a reduced-calorie weight-loss diet, and exercise 

program for 1 year) versus control and also found no association o f LINE-1 methylation 

and weight loss at 12 months (Duggan et al., 2014). Other studies reported the 

association of weight gain and an increased LINE-1 methylation (Martin-Nunez et al., 

2014; Perng et al., 2014). A study in school-age children reported the association of 

adiposity development and lower LINE-1 methylation in boys (Perng et al., 2013). 

Another study in visceral adipose tissue of the severely obese found lower LINE-1 

methylation was negatively associated w ith fasting glucose, diastolic pressure, and 

metabolic status (Turcot et al., 2012). Therefore, the association of LINE-1 methylation 

and body weight is inconsistent which may be due to  the methylation o f LINE-1 may be 

influenced by gender, age, diet, tissue-specific, and other factors. Further studies are 

required to confirm this association.

3.4.1.2 DNA methylation of the HTR2C promoter regions in chronic (Belfast) 

patients

Similar to findings in first episode patients, gender had significant effect on the levels 

of DNA methylation of the HTR2C in both regions in chronic patients in which females 

had higher methylation levels at all CpG sites than males, this is probably due to  the X- 

chromosome inactivation.

Age was positively associated w ith  DNA methylation o f the HTR2C in both regions in 

the chronic (Belfast) study suggesting the influence o f age on gene-specific DNA 

methylation. Increased methylation of the HTR2C prom oter w ith age may result in 

decreased 5-HT2C receptor expression and modulate the control o f food intake. The 

influence o f aging on DNA methylation has been reported (Bell et al., 2012). A recent 

study has reported tha t CpG islands tended to  increase methylation while non-CpG 

islands lose methylation w ith increasing age suggesting tha t the age-related changes in 

DNA methylation are not homogeneous across a human genome (Christensen et al.,
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2009). An example of age-related hypermethylation is the increased DNA methylation 

of Arc (activity-regulated cytoskeletal-associated protein) prom oter region in the 

hippocampus which was accompanied by decreased Arc transcripts in aged rats 

compared w ith adult rats (Penner et al., 2011). There has been a study in postmortem 

human brain samples that reported age effects on the HTR2C expression and/or 

histone H3 acetylation at lysine 9/14 in schizophrenia patients (Tang et al., 2011). 

There have been several studies reporting tha t treatm ent w ith histone deacetylase 

(HDAC) inh ib itor as well as DNMT inhibitors can improve the expression of several 

genes fo r schizophrenia in mouse brain.

Although the FTO rs9939609 polymorphism showed significantly associated w ith BMI 

in this chronic Belfast cohort, this polymorphism did not show a significant effect on 

DNA methylation o f the HTR2C prom oter region. However, the AA genotype which was 

significantly associated w ith higher BMI had slightly higher methylation levels o f the 

HTR2C in both regions. The AA genotype of the FTO polymorphism associated w ith 

higher HTR2C methylation may decrease 5-HT2C receptor expression to  reduce 5-HT 

neurotransm itter function resulting in increased food intake and obesity. Lack o f 

statistical significance may be due to  small sample size, thus fu rther studies in larger 

sample size are needed to confirm this finding.

The T allele of the FITR2C -759C/T polymorphism was significantly associated w ith  

higher DNA methylation of the HTR2C prom oter region (-697G/C region) in which the 

CpG sites are located near the polymorphism (Figure 3.22). This finding indicates the 

polymorphism may have a strong influence on nearby cytosine m ethylation rather 

than the long distance region (Hs_H77?2C_01_PM region) or other polymorphisms from  

other genes such as the MTFIFR and FTO polymorphisms.

However, interestingly, the leptin -2548G/A polymorphism showed significant 

associations w ith the methylation o f the F1TR2C in both regions (CpGl and CpG4 o f the 

Hs_H77?2C_01_PM, and CpG-698 of the HTR2C -697G/C prom oter regions). Finding 

tha t carriers w ith the GG genotype had significantly higher levels o f m ethylation than 

the A allele carriers (Figure 3.22) indicating the influence of the leptin polymorphism 

on DNA methylation of the FITR2C tha t might fu rther affect 5-HT2C receptor 

expression. In this cohort of chronic patients, the GG genotype o f leptin -2548G/A
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polymorphism had slightly higher plasma leptin compared to AG/AA genotype (not 

significant). However, the role of 5HT-leptin interaction in controlling food intake is still 

unclear. The 5-HT2C receptors have been reported to  be involved in leptin-induced 

anorexia (von Meyenburg et al., 2003b; Yamada et al., 2003). Other studies reported 

that leptin did not have a direct influence on 5-HT neurons and did not modulate 

appetite via 5-HT neuron function (Lam et al., 2011). It also has been suggested that 

leptin and 5-HT have separate pathways in the control of food intake and suggested 

tha t the effects o f leptin are long lasting (tonic) whereas 5-HT is involved in short 

acting (episodic) satiety signals (Weigle et al., 1995).

The present study did not find a significant association of the leptin -2458G/A 

polymorphism and plasma leptin as well as BMI in chronic schizophrenia patients. 

However, the GG genotype had slightly higher plasma leptin and this may affect 5- 

HT2C receptor expression by increased methylation o f the HTR2C prom oter region. No 

link between leptin polymorphism and methylation o f the HTR2C was investigated. A 

study in 39 non-obese female subjects has reported tha t the AA genotype o f the leptin 

-2548G/A polymorphism was associated w ith increased plasma leptin and increased 

adipose tissue leptin mRNA and leptin secretion than G allele subjects (Hoffstedt et al., 

2002). However, meta-analysis did not find any difference of the leptin mRNA 

expression between the leptin -2548G/A genotypes among d ifferent ethnicities (He et 

al., 2013). Templeman et al. (2005) has reported a trend of A allele o f the -2548G/A 

polymorphism and higher plasma leptin in first episode schizophrenia patients. The 

variability o f leptin among leptin genotypes in these studies and the present study may 

be due to  differences in subjects that gender, age, obese or non-obese, ethnicity, first- 

episode or chronic schizophrenia patients, and the antipsychotic drug trea tm ent may 

affect plasma leptin. In addition, the small sample size may confound the findings. 

Therefore, fu rthe r studies are needed to elucidate the association o f the leptin 

polymorphism or plasma leptin and DNA methylation of the HTR2C or 5-HT2C receptor 

expression.

The same direction w ith global LINE-1 methylation, antipsychotic drugs (olanzapine or 

clozapine) treatm ent decreased methylation of the HTR2C prom oter sequences was 

also observed (Figure 3.22B, and C) indicating tha t not only the global DNA 

methylation but also the specific HTR2C prom oter was modified by antipsychotic
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drugs. Whereas smoking was more likely to increase global DNA methylation, it 

decreased methylation levels of the HTR2C prom oter sequences suggesting the gene- 

specific influence of smoking on DNA methylation.
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3.4.2 DNA methylation of the HTR2C in first episode drug naive 

schizophrenia patients - key findings

Chinese Han cohort:

•  HTR2C (-697G/C sequence) methylation: Gender effect (F>M), no age effect, no 

association w ith baseline BMI and change in BMI, HTR2C -759C/T SNP (T allele 

higher methylation), HTR2C SNP effect on CpG-698 site, FTO rs9939609 T allele 

(trends lower methylation at -698 site), no MTHFR SNPs effect

• HTR2C (Hs_H77?2C_01_PM) methylation: Gender effect (F>M), no age effect, no 

association w ith  baseline BMI and change in BMI, no effects o f HTR2C -759C/T, 

FTO and MTHFR SNPs

Spanish cohort:

•  HTR2C (-697G/C sequence) methylation: Gender effect (F>M), no age effect, no 

association w ith baseline BMI and change in BMI, HTR2CSNP effect on CpG-698 

site, FTO rs9939609 (T allele lower methylation, in male), no MTHFR SNPs 

effect

•  HTR2C (Hs_H77?2C_01_PM) methylation: Gender effect (F>M), no age effect, no 

association w ith baseline BMI and change in BMI, FTO rs9939609 (T allele 

trends lower methylation, in male), no effects o f HTR2C -759C/T and MTHFR 

SNPs

The results o f this section revealed that the methylation levels of the HTR2C -697G/C 

region and the Hs_/-/77?2C_01_PM region in peripheral blood at baseline were 

negatively associated w ith body weight change groups (>7% vs <7%) fo llow ing 

antipsychotic drug treatm ent in first episode schizophrenia patients. In addition, the 

lower methylation levels o f both regions were found in the CC/C genotype o f the 

HTR2C -759C/T polymorphism compared to T allele carriers. The results were 

predominantly seen in the Chinese Han cohort; however, a similar directionwas found 

in the Spanish cohort indicating replication of the findings (Figure 3.23). The statistical 

significant differences tha t were found at some CpG sites in Chinese cohort and the 

lack o f significant difference in Spanish cohort may be due to  the small sample size or 

the weak association of methylation levels on weight gain as well as genotype effect
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on methylation levels. Further studies in larger sample size are required to confirm 

these findings.

This is the first study investigating the association of the DNA methylation of the 

HTR2C prom oter sequences and antipsychotic drug-induced weight gain. The 

association between the extent of DNA methylation o f the HTR2C prom oter regions 

and the weight increase after receiving antipsychotics in both Chinese Han and Spanish 

cohorts as summarized diagram in Figure 3.23, suggests that the epigenetic changes in 

the HTR2C may be used to  predict the extent o f weight gain follow ing antipsychotic 

drug treatm ent in firs t episode, drug na we schizophrenia patients.
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Figure 3.23: Diagrams summarize the association of the DNA m ethyla tion  o f the 

HTR2C -697G/C and Hs_H7Y?2C_01_PM regions and polymorphism s in Chinese (A, B) 

and Spanish (C, D) cohorts.

The effect of gender on the methylation o f the HTR2C in this study may be due to  the

contribution from  the X-chromosome inactivation because it is located on the X

chromosome and one of the X chromosomes in females is subject to  inactivation

resulting in CpG sites exhibiting highly significant difference between gender w ith

hemi-methylated patterns in female (Bell et al., 2011). The selection o f the X

chromosome to be inactivated is random in somatic cells (Goto and Monk, 1998). The
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X-chromosome inactivation is accompanied by changing in DNA methylation 

particularly in CpG islands which the m ajority of CpG islands show increased 

methylation on the inactive X chromosome which silences gene expression; however, 

about 7% of CpG islands show decreased methylation levels (Sharp et al., 2011) and 

about 5% of X-linked genes have been reported to have increased expression in 

females compared to male (Johnston et al., 2008). There are some X-linked genes 

escaping X-chromosome inactivation to some degree and they are expressed from  

both X chromosomes (Carrel and Willard, 2005). A report shows many CpG sites 

located at upstream of the HTR2C transcription start site (TSS) had similar patterns of 

DNA methylation in both male and female thus it was suggested tha t the HTR2C gene 

escapes from  X-chromosome inactivation in human (Hernando-Herraez et al., 2013); 

however, the authors did not provide specific CpG sites or regions. In addition, a 

female-specific increased expression o f the HTR2C gene was not observed in the 

published RNAseq data (Brawand et al., 2011). It has been also suggested tha t many 

genes escaping X-chromosome inactivation show no clear gender differences in 

expression levels (Johnston et al., 2008). Therefore, it is clear that the tested CpG sites 

of the HTR2C in this study are subject to X-chromosome inactivation. The contribution 

of X-chromosome inactivation of the HTR2C in various degrees in individuals may be 

the causes of the high variability o f measured DNA methylation in this study.

Comparing between two regions, the DNA methylation levels of the HTR2C -697G/C 

region were always higher than those o f the Hs_H77?2C_01_PM region which are 

located around the TSS of the gene. This result supported previous findings tha t there 

are differences in DNA methylation distribution across the genome in which CpG sites 

located around TSS are not methylated while CpG sites tha t are located in the gene 

body, intergenic, and distant to TSS, around lkb-1.5kb, are highly methylated (Bell et 

al., 2011; Hernando-Herraez et al., 2013). M ethylation of CpG sites o f the TSS is 

associated w ith long-term silencing such as X-chromosome inactivation, im printing, 

and w ith some tissue specific genes (Jones, 2012). Thus, lower methylation o f CpGs at 

TSS of the gene allows transcription in itiation.

The influence of the HTR2C -759C/T polymorphism on DNA methylation o f the HTR2C 

prom oter region provides an additional fu rthe r mechanism underlying the previous 

finding by Hill and Reynolds which reported the reduction o f prom oter activity in the
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presence of the HTR2C -759T or -697C allele (Hill and Reynolds, 2007)(Figure 3.24). The 

T allele o f the HTR2C -759C/T polymorphism that was the less active allele was more 

likely to be methylated than the active C allele. This finding indicates the influence of 

the HTR2C -759C/T polymorphism on the nearby DNA methylation of the prom oter 

region of the HTR2C gene tha t may be a link between the polymorphism and prom oter 

activity, and also antipsychotic drug-induced weight gain. Further study requires 

investigating the influence of the HTR2C -759C/T polymorphism and/or the 

methylation of this prom oter region on 5-HT2C receptor expression.

HTR2C -7 5 9 C /T  

T a lle le

(Reynolds e t o i,  
2002)(H ill and  Reynolds, 

2007) /
M ore HTR2C 

m ethyla tion

Less
prom oter
.a c t iv ity

Figure 3.24: Diagram summarizes the association o f the DNA m ethylation  o f the 

HTR2C -697G/C region and HTR2C -759C/T polym orphism .

The BDNF rs6265 G/A polymorphism showed significant association w ith DNA 

methylation levels at only the CpG-698 SNP site, but a similar pattern at o ther CpG 

sites o f the HTR2C -697G/C prom oter region was also observed in the Chinese Han 

cohort; patients w ith the AA genotype had higher methylation levels than the G allele 

carriers. The link between the polymorphism of the BDNF and this specific CpG 

methylation o f the HTR2C prom oter is unknown. The variant methionine (A allele) was 

associated w ith decreased BDNF synthesis and secretion (Chen et al., 2004). BDNF 

influences the serotonergic system and is associated w ith schizophrenia and eating 

disorders (Gratacos et al., 2007; Lyons et al., 1999). Brain infusion of BDNF in rats 

resulted in appetite suppression, weight loss and increased 5-HT (Pelleymounter et al., 

1995). The AA genotype which had slightly higher change in BMI (see chapter 2) 

showed higher DNA methylation of the FITR2C prom oter compared to  G allele. This
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result may provide a link between the reduction o f BDNF of the AA genotype and the 

seroternergic dysfunction; high methylation may decrease 5-HT2C receptor expression 

and result in weight gain (Figure 3.25). However, fu rther studies are required to 

address the role of BDNF on the expression and DNA methylation o f the HTR2C gene.

BDNF  rs6265  G /A

Methylation 
of HTR2C t

^ 4 , 5 - H T 2 C ^
Receptor

5-HT dysfunction

H y p e rp h a g ia

Figure 3.25: Diagram summarizes the association o f the DNA m ethyla tion  o f the 

HTR2C -697G/C region and BDNF rs6265 G/A polym orphism .

The HTR2A polymorphism at CpG3 of the Hs_H77?2C_01_PM region was significantly 

associated w ith weight gain in the Chinese Han cohort and similar patterns were also 

found at other CpGs in this region. The link between the HTR2A and the m ethylation of 

the HTR2C is unknown.

In the Spanish cohort, the influence o f the HTR2C -759C/T polymorphism and DNA 

methylation of the HTR2C show the same direction but did not reach statistical 

significant levels. However, patients w ith the AA genotype of the FTO rs9939609 A/T 

showed significantly higher levels o f HTR2C DNA methylation than the T allele carriers, 

particularly in males. The A allele o f this polymorphism has been reported to  be 

associated w ith increased BMI (Frayling et al., 2007) and also increased FTO transcripts 

(Berulava and Horsthemke, 2010), although no significant association between the SNP 

and change in BMI was observed in firs t episode Chinese and Spanish cohorts. 

However, in the Spanish cohort, the BMI at baseline o f patients who carried the AA 

genotype of the FTO rs9939609 had higher than those of T allele carriers but did not
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reach statistically significant differences (23.50±3.41 kg/m 2, n=14 vs 21.58±3.71 kg/m 2, 

n=56, p= 0.172 correction fo r gender). The influence of the FTO polymorphism on the 

HTR2C prom oter methylation may explain the obesity associated w ith  FTO rs9939609 

(Figure 3.26) tha t the AA genotype of the FTO polymorphism caused increase 

methylation of the HTR2C prom oter region and may result in decreased 5-HT receptor 

expression and serotonergic neurotransm itter system and that affects food intake and 

satiety. However, the exact mechanism is still unknown, as the FTO play a role in 

DNA/RNA demethylation. FTO may act on other components such as RNA or other 

genes.

Figure 3.26: Diagram summarizes the association o f the DNA m ethyla tion  o f the 

HTR2C -697G/C region and FTO rs9939609 A /T  polymorphism .

3.4.3 Comparison between chronic and first episode schizophrenia

Some findings were observed in both chronic and firs t episode patients including; 1) 

there was strong gender effect on DNA methylation o f the FITR2C sequences between 

males and females; 2) DNA methylation o f the FITR2C sequences was not associated 

w ith BMI or BMI changes; 3) FITR2C -759C/T polymorphism was associated w ith 

methylation of HTR2C prom oter sequence; 4) MTFIFR SNPs did not have an effect on 

methylation of FITR2C in both chronic and first episode patients.

FTO rs9939609 A /T

Methylation 
of HTR2C t T'Food in take  

4 .S a tie ty

A

45-HT2C
receptor 5-HT

function

patients

The d ifferent findings between chronic and first episode patients and d iffe rent findings 

between global UNE-1 methylation and specific FITR2C methylation including; 1) there
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was an age effect on DNA methylation of the HTR2C sequences in chronic but not first 

episode patients; 2) smoking and antipsychotic drugs influence global LINE-1 

methylation but not HTR2C methylation in chronic patients; 3) FTO and MTHFR SNPs 

did not influence methylation of HTR2C gene but there were effects on global 

m ethylation in chronic patients; 4) FTO SNP did not influence methylation of HTR2C in 

chronic patients but it has strong effect in firs t episode Spanish male patients.

3.4.4 Limitations in this study

In firs t episode schizophrenia patients, DNA methylation was determined at baseline 

but not after antipsychotic drug treatm ent. Therefore, comparison of the methylation 

changes between before and after antipsychotic drug treatm ent as well as the 

association of DNA methylation and weight gain cannot be investigated.

The small sample size leads to lack of statistical power in determ ining small effect of 

polymorphisms on DNA methylation, or DNA methylation on BMI gain or BMI.

DNA samples from  peripheral blood of schizophrenia patients were used to  determ ine 

DNA methylation o f the HTR2C and global LINE-1 methylation may be lim itation in the 

present study to reflect the alteration of DNA methylation in brain. Because o f the 

extent o f global DNA methylation differs between tissues (Lokk et al., 2014) and the 

antipsychotic drugs or the environmental factors may affect DNA m ethylation in a 

tissue-specific manner (Shimabukuro et al., 2006). Although, there have recently been 

several studies reported tha t the DNA methylation changes in peripheral blood or 

saliva were well correlated w ith tha t o f d ifferent brain regions and could serve as 

markers fo r disease diagnostic and/or therapeutic biomarkers fo r schizophrenia 

(Horvath et al., 2012; Abdolmaleky et al., 2014; Ota et al., 2014; M ill and Petronis, 

2007), fu rthe r studies are required to  compare DNA methylation o f the HTR2C gene in 

peripheral blood and brain in animal models.

3.4.5 Conclusions

In this study, the association of the DNA methylation of the HTR2C prom oter regions at

baseline w ith increased weight groups (<7% vs >7%) was observed suggesting the DNA

methylation status of the HTR2C prom oter may account fo r the weight gain in firs t

episode schizophrenia patients a fter receiving antipsychotic drugs. The HTR2C -759C/T
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and the FTO rs9939609 associated w ith the extent o f DNA methylation of the HTR2C 

prom oter sequences indicating tha t the genetic-epigenetic interaction may influence 

the HTR2C -759C/T or the FTO rs9939609 polymorphism-associated weight changes 

in schizophrenia patients. In o ther words, the polymorphisms of the FITR2C and FTO 

may affect the body weight regulation through epigenetic modification. The findings 

give a novel insight into the mechanistic link between the genetic polymorphism 

effects and weight gain.

In chronic schizophrenia patients, the significant association of the FITR2C -759C/T 

polymorphism w ith the extent o f methylation of the FITR2C prom oter at CpG sites 

located near the SNP suggests that the effect o f the polymorphism on epigenetic 

changes may strongly influence at nearby CpG sites rather than at distant CpG sites. 

The leptin -2458G/A polymorphism was associated w ith the methylation levels o f the 

HTR2C at CpG sites near the transcription start site, although lack o f the link between 

leptin and FITR2C methylation, these results indicate the interaction between leptin 

genotype and the FITR2C methylation tha t might be involved in the control o f satiety.

Data in this chronic patient group also showed tha t smoking was significantly 

associated w ith higher global LINE-1 methylation while olanzapine/clozapine 

treatm ent tended to have lower methylation. These results indicate tha t 

environmental factors impact on global DNA methylation. Furthermore, the 

association between the MTFIFR 677C/T polymorphism and global LINE-1 m ethylation 

suggests a genetic-epigenetic interaction and tha t the influence o f the MTFIFR 

polymorphism on global DNA methylation may be related to  obesity in schizophrenia. 

The significant interaction between smoking and the MTFIFR 677C/T polymorphism on 

global DNA methylation also indicates a genetic-environment interaction tha t may play 

an im portant role in body weight regulation in schizophrenia patients.

Therefore, the DNA methylation of the FITR2C prom oter region may be used as an 

epigenetic marker fo r antipsychotic drug-induced weight gain. The genetic-epigenetic 

interactions provide more understanding of the molecular mechanism underlying 

antipsychotic drug-induced weight gain. However, fu rthe r studies in a larger sample 

size are required to  obtain confirmation o f these findings.

170



Chapter 4: Effect of antipsychotic drugs on DNA 

methylation and expression of the HTR2C gene in 

SH-SY5Y cells

4.1 Introduction

This chapter describes experiments that aim to  determ ine the effect o f antipsychotic 

drugs on DNA methylation of the HTR2C prom oter and 5-HT2C receptor mRNA 

expression. Two antipsychotics, clozapine and haloperidol, were chosen according to 

the ir a ffin ity fo r the 5-HT2C receptor fo r these cell culture experiments. Clozapine has 

a high a ffin ity to  the 5-HT2C receptor w ith  an equilibrium dissociation constant (Kd) = 

4.8 nM whereas haloperidol has a markedly low affin ity  to the 5-HT2C receptor w ith 

Kd = 4,700 nM in human brain (Richelson and Souder, 2000). A few  studies have 

reported a reduction of 5-HT2C receptor binding in rat brain (Kuoppamaki et al., 1993, 

1995), but no alteration in HTR2C mRNA expression after chronic clozapine and 

haloperidol treatm ent (Burnet et al., 1996). However, some studies found clozapine 

and haloperidol treatm ent causes changes in HTR2C mRNA expression in specific 

regions o f rat brain (Buckland et al., 1997; Huang et al., 2007). There have been no 

previous studies on the effect o f antipsychotic drugs on HTR2C mRNA expression as 

well as on HTR2C DNA methylation in cell culture. As mentioned in the previous 

chapter, the -759C/T polymorphism of the HTR2C gene is the most consistently 

identified SNP associated w ith antipsychotic drug-induced weight gain (see section 

2.1), however the nearby -697G/C SNP has also been implicated. Due to the repetitive 

nucleotides and high GC density o f the sequence at and nearby the -759C/T it proved 

impossible to  design suitable primers to  amplify this sequence. Therefore, the effects 

o f antipsychotic drug treatm ent on DNA methylation levels around the nearest SNP 

(-697G/C) were investigated.

In the present study 5-Aza-2-deoxycytidine, a demethylating agent inh ib iting DNA 

methyltransferase, was also used in cell culture treatm ent to serve as a positive 

control fo r DNA methylation inhibition. These experiments use the SH-SY5Y neuronal
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cell line and PCR techniques to  investigate the effects of these drugs on receptor gene 

expression and specific prom oter sequence DNA methylation around the -697G/C 

polymorphism of the HTR2C gene.

4.1.1 SH-SY5Y human neuroblastoma cell

SH-SY5Y human neuroblastoma cells (ATCC® CRL-2266™) are a neuronal-like cell line 

originally established from a bone marrow biopsy o f a woman patient w ith 

sympathetic adrenergic ganglial neuroblastoma and deposited w ith the American Type 

Culture Collection (ATCC) by June L. Biedler in the early 1970's (Biedler et al., 1973). 

SH-SY5Y cells are a sub-line of the parental line SK-N-SH which were subcloned three 

times (SK-N-SH to SH-SY, SH-SY to SH-SY5, and SH-SY5 to SH-SY5Y). SH-SY5Y cell culture 

properties are mixed type of adherent and floating cells and both of them are viable. 

The cells grow as clusters or clumps and pile on top of each other. For this reason, they 

slough o ff into the media. The cells attach better when they are more dilute; 

therefore, to facilitate cell attachment, subculturing at a high subculture ratio (1:20 to 

1:50) fo r 100% confluence should be done. The SH-SY5Y cell line has been extensively 

used in various experimental neurological studies; fo r example: neurodegenerative 

and neuroadaptive processes, neurotoxicity, and neuroprotection (Xie et al., 2010).

The SH-SY5Y cell line exhibits neuronal marker enzyme activity such as tyrosine 

hydroxylase and dopamine-|3-hydroxylase, specific uptake fo r norepinephrine, as well 

as expressing neurofilam ent proteins, and opioid, muscarinic and nerve growth factor 

receptors (Ciccarone et al., 1989). The SH-SY5Y cell line constitutively expresses HTR2C 

mRNA (Biedler et al., 1978; Cavarec et al., 2013). It also expresses HTR1A, HTR1B and 

HTR2A in addition to dopamine D1 and D2 receptors (Rohm et al., 2013). Furthermore, 

SH-SY5Y cells release dopamine, norepinephrine and serotonin (Shaul et al., 2003; 

Rohm et al., 2013).

Due to  its capability o f proliferating in culture fo r long periods w ithout contam ination

this SH-SY5Y cell line is suitable fo r in vitro  study. In addition, SH-SY5Y cells exhibit

stem cell properties because they are derived from  imm ature neoplastic neural crest

cells, and can be induced to differentiate to  more mature neuron-like cells upon

treatm ent w ith a variety of agents such as retinoic acid (Singh and Kaur, 2007). Other

agents used to induce d ifferentiation are phorbol ester 12-0-tetradecanoylphorbol-13-
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acetate (TPA)(Pahlman et al., 1981), brain-derived neurotrophic factor (BDNF) 

(Cernaianu et al., 2008), dibutyryl cyclic AMP (dBcAMP)(Kume et a i,  2008), purine 

(Guarnieri et al., 2009), or staurosporine (Mollereau et a i,  2007). However, both 

differentiated and undifferentiated SH-SY5Y cells have been w idely used in 

neuroscience research.

4.1.2 Differentiation of SH-SY5Y human neuroblastoma cell by 

retinoic acid

Upon differentiation, cells become a functionally mature neuronal phenotype showing 

extensive outgrowth o f neurites (Cheung et a i, 2009). Cells stop pro liferating and 

become a stable population and have biochemical, ultrastructural, morphological, and 

electrophysiological sim ilarity to neurons when differentiated. They express various 

neuronal-specific markers; fo r example: growth-associated protein (GAP-43), 

noradrenaline (NA), neuropeptides, neuronal nuclei (NeuN), receptors for 

neurotrophic factors, neuron-specific enolase (NSE), neurosecretory granula, vesicle 

proteins such as synaptophysin, and neuronal-specific cytoskeletal proteins such as 

m icrotubule associated protein (MAP), Tau, and neurofilam ent proteins (Cheung et al., 

2009; Fagerstrom et al., 1996). GAP-43, MAO, NeuN, and synaptophysin are the 

classical markers o f mature neurons.

Different agents used in differentiation induction can bring about various phenotypes 

of SH-SY5Y cells, including cholinergic, adrenergic, or dopaminergic phenotypes. For 

example, treatm ent w ith phorbol esters induces d ifferentiation to  an adrenergic 

neuronal phenotype, whereas retinoic acid treatm ent results in cholinergic (Pahlman 

et al., 1984) and dopaminergic phenotypes (Korecka et al., 2013).

Retinoic acid (RA) is the most common method used fo r inducing d ifferentia tion of SH- 

SY5Y cells (Kovalevich and Langford, 2013). The effects o f RA on SH-SY5Y cells are well 

described; RA exerts its effect by acting at two classes o f non-steroid nuclear hormone 

receptors, including the retinoic acid receptors (RARs) and the retinoic X receptors 

(RXRs). Although RA can bind only to the RAR receptors, activated RAR is able to 

heterodimerize w ith RXR and then RAR/RXR heterodimers can bind to  the RA response 

element (RARE) giving rise to transcriptional activation (Joshi et al., 2006).
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4.1.3 Polymerase Chain Reaction (PCR)

The polymerase chain reaction (PCR) is the most powerful laboratory technique used 

in molecular biology to  amplify a huge number of copies of a specific segment o f DNA. 

The key components to  enable selective and repeated amplification are the primers 

and DNA polymerase. Primers are oligonucleotides or short DNA fragments containing 

sequences complementary to  the target region. DNA primers are required fo r in itiation 

o f DNA synthesis at a specific region. DNA polymerase used in PCR is a heat-stable DNA 

polymerase, such as Taq polymerase which is an enzyme originally isolated from  the 

bacterium Thermus aquaticus. This DNA polymerase enzymatically assembles a new 

DNA strand from the nucleotides by using single stranded DNA as a tem plate.

The PCR is performed in a therm al cycler and relies on thermal cycling which consists 

o f cycles o f repeated heating and cooling of the reaction for DNA melting and 

enzymatic replication of DNA. There are three major steps in a PCR cycle (Figure 4.1), 

which are repeated fo r 25-50 cycles.

•  Denaturation or DNA melting at 94°C

During this denaturation step, the double stranded DNA tem plate is heated to 

94-95°C fo r separating to single-stranded DNA, the hydrogen bonds which hold 

the two strands together are broken. In the first step, this may also serve to 

activate the DNA polymerase.

•  Annealing or connecting at annealing temperature

After separating the double stranded DNA, each single-stranded is then used as 

the tem plate in DNA synthesis. The tem perature is decreased to the annealing 

tem perature, around 54-60°C so primers can bind to  a specific point on the 

single-stranded DNA tem plate. The DNA polymerase can then attach and start 

copying the DNA template. The annealing tem perature (Ta) depends on the 

primers used in the PCR reaction, usually 5°C lower than the melting point o f 

the primers.

•  Extension at 72°C

This tem perature is the ideal working tem perature fo r the DNA polymerase. In 

this final step, the DNA polymerase enzyme synthesizes the com plem entary
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strand of DNA. In other words, the bases that are complementary to the DNA 

tem plate are coupled to the primer on the 3' side.

PCR : Polymerase Chain Reaction

30 - 40 cycles o f 3 steps :

Step 1 : denaturation

mi nut 94 °C

5'rriTiTnTiTim

5 f  .ijM

Step 2 : annealing

45 seconds 54 °C

forward and reverse 
primers !!!

Step 3 : extension

2 minutes 72 CC 
only dNTP's

Figure 4.1: Cycling reaction o f PCR

(http ://users.ugent.be/~avierstr/princip les/pcr.htm l)

As PCR progresses, the amplified DNA products act as a tem plate fo r am plification in 

the next cycle. Because both strands are copied during PCR, there is an exponential 

increase of the number o f copies o f the gene.

At the end of PCR, the PCR products are checked by gel electrophoresis to  see whether 

there is product amplified and whether it is the expected size.

4.1.4 Real-time PCR

Real-Time PCR is a valuable technique used extensively in biological research 

nowadays in order to quantify nucleic acid amplification and detection. In real-time 

PCR, the accumulation of amplified PCR product is detected and measured as the
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reaction progresses. The detection of PCR product is made by including fluorescent 

molecules in the PCR reaction. The fluorescence used includes DNA-binding dyes and 

fluorescently labelled sequence specific primers or probes. In addition, the fluorescent 

dye, the components of real-time PCR are similar to  traditional PCR. The measured 

fluorescence reflects the amount o f amplified product in each cycle.

During the progression of the real-time PCR assay, the fluorescence which is 

proportional to the amount o f amplified product is detected and can be used to 

generate an amplification plot (Figure 4.2). In this plot, the PCR cycle number is shown 

on the x-axis and the fluorescence is shown on the y-axis. The plot shows two phases, 

an exponential phase followed by a plateau phase. In the first phase, the amount of 

PCR product approximately doubles in each cycle. However, the reaction components 

are consumed as the reaction proceeds, and ultim ately one or more of the 

components becomes lim iting. So the reaction slows and enters the plateau phase.

Exponential phase
O .G

m 0 2  CD
V>
CD
b3

CT valuem

Threshold line

0 10 20 30 40

Cycle

Figure 4.2: Am plifica tion p lo t from  RT-qPCR

(http://www.gene-quantification.de/real-tim e-pcr-guide-b io-rad)

Initially, an increase in fluorescence cannot be detected, so it remains at the 

background levels (cycle 1-18) even though the PCR products are accumulated 

exponentially. Eventually, the amplified PCR products are accumulated enough to  

yield a detectable fluorescent signal. The cycle number at which the amplified products 

are detectable is called the threshold cycle, or Ct (Figure 4.2). This Ct value is measured
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in the exponential phase in which the reagents are not lim ited. The Ct value is 

determined mainly by the amount of tem plate present at the start o f the amplification 

reaction. If a large amount of DNA tem plate is present at the start o f the reaction, the 

reaction will have an early or low Ct value, meaning tha t relatively few  PCR cycles are 

required to  accumulate enough PCR products to  give a fluorescent signal above 

background. In contrast, if a small amount o f DNA tem plate is present at the start of 

the PCR reaction this will result in late or high Ct value, meaning tha t more PCR cycles 

are required fo r the fluorescent signal to  rise above background. This relationship is 

the basis fo r the quantitative aspect o f real-time PCR.

Real-time PCR results can either be qualitative (the presence or absence of a 

sequence) or quantitative (number o f copies o f DNA) which is also known as qPCR. In 

addition, real-time PCR data can be evaluated w ithou t gel electrophoresis, therefore, 

the experimental tim e is reduced.

4.1.5 Quantitative Reverse Transcription PCR (RT-qPCR)

Quantitative reverse transcription PCR (RT-qPCR) is the combination of techniques to 

determ ine mRNA expression level. It is a combination of reverse transcription PCR and 

real-time PCR. The principle o f RT-PCR is tha t the starting material is mRNA tha t is 

reverse transcribed into complementary DNA (cDNA) by reverse transcriptase which is 

then used as a tem plate fo r amplification using PCR.

The mRNA expression level o f the gene of interest can be determined by tw o  methods; 

standard curve and relative methods. The standard curve (or absolute quantification) 

method is used to determine the absolute target quantity of transcripts in samples. 

The amplification of samples and a standard dilution series containing a range of 

known quantities of transcripts are measured. Data from  the standard d ilu tion series 

are used to  generate a standard curve, then the absolute quantity o f target in the 

samples are obtained.

The relative quantification method uses the house-keeping gene transcripts which act 

as reference transcripts used to  normalize the target transcripts o f samples. The best 

reference genes should be expressed at a constant level between the cells o f d ifferent 

tissues and under d ifferent experimental conditions (Thellin et al., 1999). Selection of
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the housekeeping genes is a crucial requirem ent for real-time RT-PCR experiments 

because they are highly specific fo r a particular experimental model. Experimental 

conditions can induce an alteration in gene expression of some housekeeping genes 

causing the high variability and affecting the reliable normalization (Dheda et al., 

2004). The house keeping genes w ith high variability can lead to  increased noise or 

erroneous results (Bustin, 2000). Therefore, the appropriate validation of internal 

reference genes is necessary to  avoid m isinterpretation o f gene expression results.

Once normalized, the relative transcripts o f mRNA among m ultip le samples or 

treatm ents or d ifferent gene transcripts can be compared. By this relative method, the 

quantification of the results is analyzed by comparing the linear range o f both target 

and internal control amplification; therefore, it is essential to  determ ine the 

amplification efficiency prior to starting the analysis. The details o f calculations of the 

relative expression and amplification efficiency are described in the methods (see 

section 4.2.6).

4.1.6 Aims

1. To determine the effect o f antipsychotic drugs on 5-HT2C receptor mRNA 

expression using reverse-transcription real-time PCR to  quantify 5-HT2C 

receptor mRNA levels.

2. To determ ine the effect o f antipsychotic drugs on DNA methylation of the 

HTR2C prom oter sequences around the -697G/C polymorphism using bisulfite 

pyrosequencing to quantify DNA methylation levels.
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4.2 Materials and methods

4.2.1 Materials

All solutions for cell culture were purchased from Life Technologies including fetal 

bovine serum (FBS), trypsin/EDTA, Dulbecco's modified Eagle's medium (DMEM), 

Penicillin-Streptomycin, Phosphate-Buffered Saline (PBS). 3-(3, 4-dimethylthiazol-2-yl)- 

2, 5-diphenyltetrazolium bromide (MTT), retinoic acid (RA), clozapine, haloperidol, 5- 

Aza-2-deoxycytidine, 2-mercaptoethanol (2-ME), ethidium bromide, ethanol, and 

dimethyl sulphoxide (DMSO) were purchased from Sigma-Aldrich, UK. Agarose was 

purchased from Invitrogen, UK. Bisulfite conversion kit, DNA extraction kit, all solutions 

fo r pyrosequencing, RNA extraction kit and RT kit were purchased from  QIAGEN, UK.

4.2.2 Cell culture

The human neuroblastoma SH-SY5Y cell line was maintained in Dulbecco's modified 

Eagle's medium (DMEM) supplemented w ith 10% fetal bovine serum, 100 U/mL 

penicillin and 100 U/mL streptomycin in a humidified, 5% C02, 37°C incubator. Cells 

were subcultured before confluence was reached. Cell passage numbers o f less than 

15 were used in the experiments.

4.2.3 Cell line stocks

SH-SY5Y cells were suspended in 1 ml of fetal bovine serum containing 10% (v/v) of 

DMSO. Cells were stored in cryovial tubes immersed in liquid nitrogen until required 

fo r use.

4.2.4 Drug Treatment

The drug treatm ents were designed using three models; 1) trea tm ent in 

undifferentiated SH-SY5Y cells, 2) treatm ent in differentiated SH-SY5Y cells, and 3) 

treatm ent in undifferentiated cells and then induced differentiation after treatm ent.

4.2.4.1 Treatment in undifferentiated SH-SY5Y cells

The SH-SY5Y cells were plated into 6-well plates at a density o f 5x10s cells per well and 

cultured fo r 24 hours before drug treatm ent. Cells were treated w ith clozapine at
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doses of 2 pM and 10 pM and haloperidol at doses of 10 nM and 10 pM for 48 hours. 

Cells were also treated w ith 5-Aza-2-deoxycytidine at the doses of 0.5, 1, and 2 pM for 

72 hours. The freshly prepared medium containing drugs was replaced every 24 hours. 

The control (no drug) was also performed by treatm ent w ith DMSO at the same 

concentration as in the drug treatm ent (control 0.01% DMSO fo r clozapine and 

haloperidol treatm ent, and control 0.002% DMSO for 5-Aza-2-deoxycytidine 

treatm ent). The treated cells were harvested by trypsinization and washed w ith PBS 

before being stored at -80°C until used. DNA was extracted to  determ ine DNA 

methylation o f HTR2C gene, while RNA was extracted to  determine mRNA expression 

o f 5-HT2C receptor. The experiments were performed in trip licate and 3 independent 

experiments were carried out.

4 .2A .2  T re a tm e n t in  d if fe re n tia te d  SH-SY5Y ce lls

To induce differentiation of human neuroblastoma SH-SY5Y cells to become more 

mature neuronal cells, the SH-SY5Y cells were seeded into 75 cm2 culture flask at the 

density o f 2 x l0 4 cells/cm2 in the culture medium containing 10 pM retinoic acid 

(Cheung et al.,, 2009). The differentiation induction was carried out fo r 7-8 days prior 

to  treatm ent.

In order to  study the effect o f antipsychotic drugs on gene expression and DNA 

m ethylation of the HTR2C gene in mature neuronal cells, d ifferentiated cells at the 

density o f 5 x l0 5cells/well were seeded overnight into 6-well plates. Cells were treated 

w ith clozapine at the doses of 2 pM and 10 pM and haloperidol at the doses o f 10 nM 

and 10 pM for 48 hours. Differentiated cells were also treated w ith 5-Aza-2- 

deoxycytidine at the doses of 0.5, 1, and 2 pM fo r 72 hours. The freshly prepared 

medium containing drugs was replaced every 24 hours. The control (no drug) was also 

performed by treatm ent w ith DMSO at the same concentration as drug treatm ent 

(control 0.01% DMSO for clozapine and haloperidol treatm ent, and control 0.002% 

DMSO for 5-Aza-2-deoxycytidine treatm ent). The treated cells were fu rthe r processed 

to  determine DNA methylation o f HTR2C gene and mRNA expression of 5-HT2C 

receptor as described in section 4.2.4.1.
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4.2A.3 Treatment in undifferentiated SH-SY5Y cells followed by 

differentiation induction

The SH-SY5Y cells were plated into 6-well plate at a density o f 5x10s cells per well and 

cultured for 24 hours before drug treatm ent. Cells were treated w ith 5-Aza-2- 

deoxycytidine at a dose of 0.5 pM for 72 hours. The freshly prepared medium 

containing drugs was replaced every 24 hours. The control (no drug) was also 

performed by treatm ent w ith DMSO at the same concentration as drug treatm ent 

(control 0.002% DMSO). A fter 72 hours of treatm ent, the culture medium w ith drug 

was removed and replaced by culture medium containing retinoic acid (10 pM) to  

induce differentiation or replaced by 0.001% DMSO which served as a parallel control 

undifferentiation induction. At the end of d ifferentiation period (7 days), the treated 

cells were fu rther processed to determine DNA methylation o f HTR2C gene and mRNA 

expression o f 5-HT2C receptor as described in section 4.2.4.1.

4.2.5 Determination of cell viability by MTT assay

Cell v iability was determined by a mitochondria enzyme dependent reaction of MTT 

(Datki et al., 2003; Cheung et al., 2009). Briefly, the SH-SY5Y cells at a density o f 1 x 104 

cells per well were cultured onto 96-well plates fo r 24 hours before treatm ent. A fter 

treatm ent, 10 pi o f MTT stock solution (5 mg/m l) was added to  each well (100 pi) and 

left to incubate at 37°C for 3 hours. Metabolically active cells cleaved the yellow 

tetrazolium salt MTT to purple formazan crystal. At the end of incubation tim e, the 

medium was removed and the formazan crystals were solubilised w ith 150 pi of 

DMSO. The absorbance was measured by a m icroplate reader at 570 nm. Results were 

expressed as percentage of the vehicle control. All MTT assays were perform ed in 

trip licate model.

4.2.6 Determination of HTR2C mRNA expression by real time RT-PCR

4.2.6.1 RNA extraction

The extraction of RNA from cultured cells was carried out w ith the RNeasy Mini Kit 

(QIAGEN) follow ing the protocol provided by the manufacturer. This kit used spin 

columns to extract RNA.
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Initially, cell lysis solution was prepared by addition o f 10 pi of 2-mercaptoethanol (2- 

ME) per 1 ml o f provided lysis buffer (Buffer RLT). 350 pi of 2-ME/lysis solution was 

added to each cell pellet and mixed thoroughly by vortexing to lyse the cells and 

inactivate RNases. The lysate was also homogenized and DNA sheared by passing at 

least 5 times through a 20-gauge needle (0.9 mm diameter) fitted  to an RNase-free 

syringe. An equal volume (350 pi) of 70% ethanol was added to  the homogenized 

lysate to prepare fo r RNA binding. The lysate/ethanol solution was transferred to an 

RNeasy spin column which was placed in a 2 ml collection tube. Then centrifugation 

was done at 8000xg fo r 15 seconds. RNA was bound to the spin column membrane. 

The flow-through was discarded and the collection tube was reused.

The spin column w ith bound RNA was washed by addition of 700 pi o f wash buffer 1 

(buffer RW1) followed by centrifugation at 8000xg for 15 seconds. The flow-through 

was discarded and the collection tube was reused. Then 500 pi of wash buffer 2 (buffer 

RPE) was run through the spin column by fu rther centrifugation at 8000xg fo r 15 

seconds. This step was repeated w ith a th ird column wash w ith buffer RPE and was 

again centrifuged at 8000xg for 2 minutes to  dry the column. The spin column must be 

free of ethanol before the elution step; therefore, a further drying spin column was 

performed by centrifugation at maximum speed fo r 1 minute.

The RNA was eluted from the spin column by adding 40 pi of elution buffer d irectly to 

the centre o f membrane. A fter incubation at room tem perature fo r 1 minute, the spin 

column was centrifuged at 8000xg fo r 1 minute. The purified RNA was stored at -80 °C.

4.2.6.2 Determination of RNA quantity and quality

The yield o f each tota l RNA sample was obtained from  A26o measurements w ith 

Nanodrop-1000 UV-VIS spectrophotom eter in RNA-40 nucleic acid mode. Absorbance 

at 260 nm, 1 absorbance unit (A26o) equals 40 pg o f single-stranded RNA/ml. Initially, 

the spectrophotom eter was initialised using nuclease-free water, and then blanked 

using the elution buffer from  the kit or nuclease-free water. 1 pi o f each RNA sample 

was used to  obtain the accurate RNA concentration. RNA was stored at -80°C for use in 

cDNA synthesis.
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Extracted RNA must be clear from  any contaminants such as salt, protein, solvents and 

genomic DNA (gDNA). Poor quality RNA can interfere w ith downstream processing. 

The purity o f RNA was estimated by spectrophotom etry from  the relative absorbance 

at 230, 260, and 280 nm i.e. A260/A 280 and A260M 230 ratios. Pure RNA exhibits A260/A 280 

ratios range of 1.7 to 2.1. A low RNA ratio refers to  contamination by salt, solvent, 

protein, etc. A low A260M 280 ratio is typically due to  protein contamination while a low 

A260M 230 ratio is typically due to  salt or solvent contamination such as guanidine 

thiocyanate.

RNA integrity was determined using agarose gel electrophoresis. The ratio o f 28S to 

18S eukaryotic ribosomal RNAs should be approximately 2:1 by ethidium  bromide 

staining, indicating that no gross degradation of RNA has occurred. In RNA samples 

tha t have been degraded, 28S:18S ratio will be reversed because the 28S rRNA 

characteristically is degraded to an 18S-like species.

4.2.6.3 Complementary DNA (cDNA) synthesis

The first strand complementary DNA (cDNA) synthesis was carried out using the 

QuantiTect Reverse Transcription Kit (QIAGEN). Complementary DNA was synthesized 

according to the manufacturer's protocol. In brief, the gDNA elim ination reaction was 

initia lly set up which consisted of 1 pg o f the tota l RNA adjusted to a volume of 12 pi 

using a variable amount o f nuclease-free water and 2 pi o f gDNA W ipeout Buffer (7x). 

The reaction was set up on ice in a 0.2 ml m icrocentrifuge tube. Then the reaction was 

incubated at 42°C fo r 2 minutes and placed immediately on ice. The reverse- 

transcription master mix was prepared on ice and consisted o f 1 pi of Quantiscript 

Reverse Transcriptase, 1 pi o f RT Primer Mix, and 4 pi o f Quantiscript RT Buffer(5x). 

The master mix (6pl) was added to the tem plate RNA from the previous gDNA 

elim ination step and then the reaction m ixture was mixed and stored on ice. A fte r this 

the reaction mixture was incubated for 15 minutes at 42°C. The reverse-transcription 

reaction was inactivated by incubating the reaction m ixture at 95°C fo r 3 minutes. The 

cDNA was stored on ice and preceded directly to  real-time PCR or stored at or below - 

20°C for later use.
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4.2.6.4 Reference gene selection

Twelve housekeeping (HK) genes including ACTB, ATP5B, B2M,CYC1, EIF4A2, GAPDH, 

RPL13A, SDHA, TOPI, UBC, YWHAZ, and 18S from Primerdesign (Primerdesign, UK) 

were tested on SH-SY5Y cells across differentiated and undifferentiated cells under 

d ifferent treatm ent conditions such as clozapine and haloperidol treatm ent by using 

RT-qPCR to assess the stability of expression (Table 4.1). Each sample was carried out 

in duplicate. A negative control PCR reaction o f each gene was performed in which no 

cDNA tem plate was added. The expression stability o f these HK genes were analysed 

using GeNorm qbasePLUS Software (Precision, Primer Design, UK), w ith  stability 

defined by M  value, where higher M  value indicates less stability (Vandesompele et al., 

2002). The Ct values of HK genes obtained from  real-time PCR were input into software 

which were log2 transformed and obtained the expression ratios calculated by the 

equation:

^(C t o f contro l- Ct o f sample)

The control in this case was the lowest expressing sample (the highest Ct value) to 

have positive values for all expression ratios. The software calculated the most stable 

expressing HK genes by step-wise removal o f genes after analysis by pair-wise variation 

o f all possible combinations of all HK genes then the most stable expressing HK gene 

was left w ith  a lowest stability value M. Two or three HK genes tha t were the most 

stable expressing genes selected from  the GeNorm were used as reference control 

genes in determ ining relative expression of gene of interest.
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Table 4.1: Housekeeping genes analysed for expression stability in SH-SY5Y cells 
using RT-qPCR

Gene symbol Name and function

ACTB beta-actin, cytoskeletal structural protein

ATP5B ATP synthase subunit beta, H+ transporting, m itochondrial FI 

complex, beta polypeptide, ATP production

B2M Beta-2-microglobulin, beta-chain of major h istocom patibility 

complex class 1 molecules

CYC1 Cytochrome c-1, electron transport chain

EIF4A2 Eukaryotic translation in itiation factor 4A2, ATP-dependent 

RNA helicase, mRNA binding to  ribosome

GAPDH Glyceraldehyde-3-phosphate dehydrogenase, oxidoreductase 

in glycosis and gluconeogenesis

RPL13A Ribosomal protein L13a, structural component o f the large 

60S ribosomal subunit

SDHA Succinate dehydrogenase complex, subunit A, flavoprotein 

(Fp), electron transporter in the TCA cycle and respiratory 

chain

TOPI Topoisomerase 1, DNA repair

UBC Ubiquitin C, protein degradation

YWHAZ Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase 

activation protein, zeta polypeptide, signal transduction by 

binding to  phosphorylated serine residues on a variety o f 

signalling molecules

18S 18S ribosomal RNA, ribosome subunit
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4.2.6.5 D e te rm in a tio n  o f  p r im e r  e ffic iency

The amplification efficiency o f primers used in this expression study including 5-HT2C 

receptor, GAPDH and CYC1, was determined using RT-qPCR. To determ ine primer 

efficiency o f 5-HT2C receptor, the cDNA tem plate was diluted in d ilution series (1:5, 

1:10, 1:50 and 1:100) w ith nuclease-free distilled water and 4 pi o f each dilution 

sample was a subject to  real-time PCR reaction (section 4.2.6.6). The serial d ilutions of 

1:1, 1:10, 1:100, and 1:1000 were also performed to determine prim er efficiency of 

GAPDH and CYC1. Each sample was carried out in duplicate. The prim er efficiency of 

each prim er set was calculated by the method described by Pfaffl (2001) as follows:

Efficiency (E) = 10('1/slope)

Percentage of Efficiency = (10(1/slope)-l)*1 0 0

The slope was calculated by plotting semi-log between cDNA concentration or d ilution 

factor on the x axis of a scatter plot and Ct values on y axis using M icrosoft Excel 

software. An ideal efficiency value 2.00 representing 100 percent efficiency was 

corresponded to a slope of -3.32 which indicated precisely double am plify the amount 

o f PCR product during each cycle o f PCR. Primer efficiencies between 90-110% were 

considered acceptable fo r use in subsequent analyses (Pfaffl, 2001).

4.2.6.6 Q u a n tita tiv e  RT-PCR (RT-qPCR)

The expression of reference genes and the 5-HT2C receptor were assessed using the 

cDNA as the template. The reaction mixture volume o f 20 pi was prepared containing 

cDNA, 20 ng, (4pl), 1 pi o f 10 pM oligonucleotide forward and reverse primers, and 10 

pi o f (2x) qPCR mastermix (Precision, Primer Design) and nuclease-free distilled water. 

This mastermix contains 2x reaction buffer, 0.025 U/pl Taq Polymerase, 5 mM MgCI2, 

dNTP mix (200 pM each dNTP), and SYBR®Green and ROX passive reference dye.

The prim er sequences of 5-HT2C receptor were shown in Table 4.2 which were 

purchased from  Primerdesign.
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Table 4.2: O ligonucleotide prim er sequences fo r 5-HT2C receptor mRNA

Primer Sequence (5'-3') Tm (°C) Product length

HTR2CJ G CAAGTTG AG AATTT AG AGTT ACCA 56.7 97 bp

HTR2C_R CGTAGGAAAAGACTGTGCTGTT 57.4

The PCR reactions were set up in a 96-well PCR plate, the reactions were then run in a 

real-time PCR system, StepOne Plus (Applied Biosystems, USA). The PCR cycles fo r 

determ ining 5-HT2C receptor mRNA expression were set as follows;

95°C for 10 minutes to  activate hotstart enzyme 

94°C for 15 seconds

64°C for 30 seconds w ith data collection ^  40 cycles

72°C for 30 seconds 

M elt curve 

95°C for 15 seconds

50°C for 60 seconds increasing in 1°C increment

The PCR cycles fo r determ ining mRNA expression of HK gene were set as follows;

95°C for 10 minutes to  activate hotstart enzyme

94°C for 15 seconds V 40 cycles

60°C for 1 m inute w ith data collection

M elt curve

95°C for 15 seconds

50°C for 60 seconds increasing in 1°C increment

The final melt curve step was used to estimate the specificity o f the primers in 

SYBR®Green real-time RT-PCR. One single peak o f melt curve should be obtained to  

ensure only one PCR product was amplified. If the primers have low specificity binding 

to  tem plate sequences, more than one PCR products were amplified and resulted in 

m ultiple peaks showing on melt curve.
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The expression o f 5-HT2C receptor mRNA transcript was normalized to those of 

reference genes and relative to control treatm ent using the comparative Ct method 

(2’AACt method) according to formula below (Livak and Schmittgen, 2001).

Expression ratio = 2-[ACtsample-ACtcontrol]

Expression ratio = 2~AACt

Where AC{ sample -  sample "  Q : reference 

and ACt control = contro l '  Q: reference

4.2.7 Determination of DNA methylation of HTR2C gene

The prom oter sequence of the HTR2C gene at and nearby the -697G/C SNP site was 

used to investigate the effect o f antipsychotic drug treatm ent on the extent of DNA 

methylation o f CpGs in this region. Initially, the CpGs at and nearby the -759C/T SNP 

site were targetted but there was a problem w ith pyrosequencing as mentioned in 

section 4.1. Instead, the nearby region (at -697G/C and nearby CpG sites) was 

investigated.

The extraction of DNA from cultured cells was carried out using QIAamp® DNA Mini

and Blood Mini kit (Qiagen) follow ing the protocol provided by the manufacturer.

Initially, cell lysis solution was prepared by resuspending the cell pellet w ith 200 pi o f

PBS, and then 20 pi o f proteinase was added into the mixture followed by the addition

of 200 pi o f lysis buffer (Buffer AL) and mixing by pulse-votexing fo r 15 seconds. The

lysate was incubated at 56°C for 10 minutes. 200 pi o f 70% ethanol was added to  the

lysate and mixed by pulse-vortexing fo r 15 seconds to prepare for DNA binding. Then

the mixture was transferred to  a QIAamp Mini spin column which was placed in a 2 ml

collection tube. Then centrifugation was done at 6,000xg (8,000 rpm) fo r 1 m inute.

DNA was bound to the spin column membrane. The flow-through was discarded and

then the QIAamp M ini spin column was placed in a new 2.0 ml collection tube. The

spin column w ith bound DNA was washed by addition o f 500 pi of wash buffer 1

(buffer AW1) followed by centrifugation at 6,000xg for 1 minute. The flow -through was

discarded and the spin column was placed in a new 2.0 ml collection tube. Then 500 pi

o f wash buffer 2 (buffer AW2) was run through the spin column by fu rthe r

centrifugation at full speed 20,000xg (14,000 rpm) fo r 3 minutes. The column was
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again centrifuged at full speed fo r 1 minute to dry the column. The DNA was eluted 

from  the spin column by adding 50 pi o f elution buffer (buffer AE) or distilled water 

directly to  the centre o f membrane. After incubation at room tem perature fo r 1 

minute, the spin column was centrifuged at 6,000xg fo r 1 minute. The purified DNA 

was stored at -20°C.

Genomic DNA was extracted and used in bisulfite pyrosequencing. The methods for 

bisulfite treatm ent, PCR, gel electrophoresis, and pyrosequencing were mentioned 

earlier in a previous chapter (see chapter 3, section 3.2). All methods fo r determ ining 

DNA methylation, analysing CpG sites, PCR primers and conditions, sequencing primer, 

and the pyrosequencing protocol were the same as described in the previous chapter 

(see section 3.2).

4.2.8 Statistical analysis

The effects o f antipsychotic drugs on HTR2C mRNA expression and DNA m ethylation of 

HTR2C prom oter sequence were tested using SPSS for Windows. The expression of 

HTR2C mRNA was expressed as fold change comparing to  control untreated group. 

DNA methylation o f HTR2C prom oter sequence was expressed as mean percentage 

m ethylation of all CpGs. The normal d istribution was tested by using the Kolm ogorov- 

Smirnov test. One-way ANOVA was used to compare means between m ultip le groups 

when the values had a normal distribution w ith Bonferroni post hoc test. The Kruskal- 

Wallis test was used for non-parametric tested when the values did not have normal 

d istribution. Statistical significance was considered when P value was less than 0.05.
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4.3 Results

4.3.1 Effect of antipsychotic drug treatments on cell viability

The cell viability o f various drug treatments in SH-SY5Y cells at 24, 48, 72, and 96 hours 

determined by the MTT assay is shown as percentage of control at each tim e period. 

The highest concentration of DMSO that can be used as a drug solvent and the highest 

concentration o f drugs tha t can be used in the experiment were determ ined as when 

the cell viabilities were more than 80% of the ir untreated controls. The results showed 

tha t the highest concentration of chemicals tha t can be used in the experiments were 

up to 1% for DMSO, 20 pM for 5-Aza-2-deoxycytidine (w ithin 72h incubation period), 

50 pM for haloperidol, and 25 pM for clozapine (Figure 4.3 and Figure 4.4). The cell 

viability o f some cell treated w ith DMSO (1%) at 96h was increased above 100% of the 

control. In addition, treatm ent w ith 5-Aza-2-deoxycytidine (<5pM) fo r 24-72h resulted 

in increased cell viability.
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Figure 4.3: The percentage o f cell v iab ility  when treated w ith  (A) DMSO (n=4); and (B) 

5-Aza-2-deoxycytidine (n=3) fo r 24, 48, 72, and 96 hours compared to  contro l 

untreated cells (0% DMSO).

Data presented as mean±SEM.
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4.3.2 Effect of antipsychotic drug treatments on HTR2C mRNA 

expression

4.3.2.1 RNA extraction

The total RNA was extracted from  cultured cells and its concentration was determined 

using the Nanodrop-1000 spectrophotometer. The absorbance ratio o f A260M 280 and 

A260/A 230 were between 1.8 to  2.2 (data not shown) tha t reflected the purity of 

extracted RNA. In addition, the integrity o f RNA was also determined by running on 

agarose gel electrophoresis. The ratio o f 28S to 18S ribosomal RNAs showed 

approximately 2:1 by ethidium bromide staining, indicating that no gross degradation 

of RNA occurred (Figure 4.5).

18S

Figure 4.5: RNA on gel electrophoresis determining integrity of RNA
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4.3.3 Selection of housekeeping genes as internal control genes

The internal reference control genes fo r normalizing the expression of the gene of 

interest were selected from 12 HK genes. Initially, the expression of 12 HK genes was 

analysed in undifferentiated SH-SY5Y cells treated w ith clozapine compared to 

untreated control. The melt curve of each reference gene showed a single peak 

indicating that single specific PCR product was amplified; the amplification plots and 

melt curves of reference genes were illustrated in Figure 4.6.
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Figure 4.6: Amplification plots and melt curves of the house keeping genes tested for 

transcript expression stability
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The results from qPCR were evaluated by GeNorm software to select HK genes with 

the most stable expression fo r using as internal reference control genes. The results 

from the GeNorm software indicated several HK genes that had high average 

expression stability values (M  value or geNorm M  <0.2) (Figure 4.7). The program 

elim inated the worst-scoring HK gene tha t is the one w ith the highest M  value and 

recalculated of new M  values fo r the remaining genes. Therefore, genes w ith the 

lowest M  values have the most stable expression. The software suggested GAPDH and 

CYC1 as the most stable reference genes. In addition, the minimum required number 

o f HK gene was suggested by a geNorm V value which should be lower than 0.15 

(Figure 4.8) indicating that at least tw o reference genes should be used in subsequent 

analyses. This V value indicates the systemic variation fo r repeated RT-qPCR 

experiments on the same gene reflecting the variation o f the machine, enzymatic 

reaction and pipetting error. In summary, the most stable expressing HK genes 

observed across undifferentiated and differentiated cells and all treatm ents were 

found to  be GAPDH and CYC1. Two HK genes were used as reference internal control 

genes fo r subsequent quantitative reverse transcription PCR analyses.
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4.3.4 The primer efficiency of HTR2C, GAPDH and CYC1

The amplification efficiency of primers including HTR2C, GAPDH, and CYC1 were 

determined. The slopes tha t were obtained from  semi-log plots between cDNA 

concentration and Ct values of each primer set were used to calculate primer efficiency 

(Figure 4.9). The slope values fo r HTR2C, GAPDH, and CYC1 were -3.1418, -3.375,

and -3.4457, respectively. It should be noted that the narrow range of HTR2C dilution 

series compared to HK genes indicated the low quantity o f transcripts. The percentage 

of primer efficiency were calculated as described in section 4.2.6.5; E(%) = ( io (1/slope)- 

1)*100, and shown in Table 4.3.

In addition, the specificity o f each prim er set was also assessed by m elt curves as 

shown in Figure 4.10. Every primer set amplified only one single product indicating 

tha t no non-specific PCR product was amplified.

Table 4.3: The amplification efficiencies of primers used in expression study in SH- 

SY5Y cells

Primers Efficiency (%) (mean ± SD) (n=3)

HTR2C 108.12 ± 1.40

GAPDH 97.86 ± 1.90

CYC1 95.11 ±2.15
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(A) Primer efficiency HTR2C
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Figure 4.9: Semi-log plots between cDNA concentrations and Ct values o f each prim er 

set using fo r primers efficiency calculation

Efficiencies o f all primer sets were determined including HTR2C, GAPDH, and CYC1. The 

Ct values of each dilution series o f each transcript were used to calculated slope o f the 

trend line. Data presented as mean±SD (n=3). The percentage of efficiency was 

calculated using E= [ I0 (1/slope)- l ]  *100. The slope values fo r HTR2C, GAPDH, and CYC1 

were -3.1418, -3.375, and -3.4457, respectively. The means calculated prim er 

efficiency (n=3) of HTR2C, GAPDH, and CYC1 were 108.12%, 97.86%, and 95.11%, 

respectively.
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Melt Curve Melt Curve

HTR2C GAPDH

CYC1

Figure 4.10: M e lt curve o f HTR2C, GAPDH, and CYC1 transcripts when am plified by 

primers which used in determ ining o f prim er efficiency in SYBR Green rea l-tim e RT- 

PCR in SH-SY5Y cells

4.3.5 Effect of drug treatment on HTR2C mRNA expression in 

undifferentiated SH-SY5Y cells

The effect of antipsychotic drug treatm ent on the expression o f the HTR2C transcript in 

undifferentiated SH-SY5Y cells was determined by quantitative RT-PCR. Treatm ent w ith 

clozapine fo r 48 hours in undifferentiated SH-SY5Y cells at doses of 2 pM and 10 pM as 

well as treatm ent w ith haloperidol at doses of 0.01 and 10 pM had no effect on the
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expression o f the HTR2C transcript relative to control untreated cells (DMSO 0.01%) at 

day 0 as shown in Figure 4.12. However, treatm ent w ith 5-Aza-2-deoxycytidine, a 

demethylating reagent, at doses of 0.5, 1, and 2 pM resulted in an increase in the 

expression of the 5-HT2C receptor transcript, but this did not reach significant levels 

(p>0.05) a fter 72 hours o f treatm ent (Figure 4.13). In addition to  observing the melt 

curve, the PCR products from  RT-qPCR were run using gel electrophoresis which 

confirmed that only one PCR product was amplified w ithout any non-specific PCR 

product, indicating the specificity o f primer sets used in SYBR®Green RT-qPCR (Figure 

4.11).

4.3.6 Effect of drug treatment on HTR2C mRNA expression in 

differentiated SH-SY5Y cells

The expression of the HTR2C transcript in d ifferentiated cells was also determ ined by 

quantitative RT-PCR and results were similar to previous experiments in 

undifferentiated SH-SY5Y cells. Treatment w ith clozapine fo r 48 hours in d ifferentiated 

SH-SY5Y cells at doses of 2 pM and 10 pM as well as treatm ent w ith haloperidol at 

doses of 0.01 and 10 pM had no effect on the expression o f HTR2C transcript relative 

to control untreated cells at day 0 (Kruskal-Wallis test) as shown in Figure 4.14. 

However, treatm ent w ith 5-Aza-2-deoxycytidine, a demethylating reagent, at doses of 

0.5, 1, and 2 pM resulted in an increase in the expression o f the HTR2C transcript but 

this did not reach significant levels (p>0.05) after 72 hours o f treatm ent (Figure 4.15).

Figure 4.11: PCR products resulted from RT-qPCR were run on agarose gel 
electrophoresis to assess the specificity of primer sets used in SYBR®Green RT-qPCR
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Figure 4.12: HTR2C mRNA expressions o f various concentrations o f clozapine and 

haloperidol trea tm en t in undifferentia ted  SH-SY5Y cells. Expression was normalized 

to  GAPDH and CYC1.

Data presented as meaniSEM.
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Figure 4.13: Expression o f HTR2C transcrip t when trea tm en t w ith  5-Aza-2- 

deoxycytidine 0.5, 1, and 2 pM  in und ifferentia ted  SH-SY5Y cells fo r 72 hours. 

Expression was normalized to  GAPDH and CYC1.

Data presented as meaniSEM.
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Figure 4.14: HTR2C mRNA expressions o f various concentrations o f clozapine and 

haloperidol trea tm en t in d iffe rentia ted  SH-SY5Y cells. Expression was normalized to  

GAPDH and CYC1.

Data presented as meaniSEM.

o
'+ ->
03i _
C
o
‘inin
CDV -
Q.
X
CD

CD>
_TD
CD
CU

12

9

6

3

0
Control Oh Control 72h Aza 0.5 pM Aza 1 pM Aza 2 pM

Figure 4.15: HTR2C mRNA expressions o f various concentrations o f 5-Aza-2- 

deoxycytidine trea tm en t in d iffe ren tia ted  SH-SY5Y cells. Expression was normalized 

to  GAPDH and CYC1.

Data presented as meaniSEM.
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4.3.7 Effect of 5-Aza-2-deoxycytidine treatment on HTR2C mRNA 

expression in undifferentiated SH-SY5Y cells followed by 

differentiation induction

The results from  previous sections showed tha t the antipsychotic drugs, clozapine and 

haloperidol, did not have an effect on HTR2C mRNA expression whereas 5-Aza-2- 

deoxycytidine treatm ent led to increased HTR2C mRNA expression in both 

undifferentiated and differentiated SH-SY5Y cells. Therefore, in this experim ent only 5- 

Aza-2-deoxycytidine treatm ent was carried out to  assess the effect o f 5-Aza-2- 

deoxycytidine on HTR2C mRNA expression in undifferentiated cells followed by 

d ifferentiation induction using retinoic acid fo r 7 days. The results show that 5-Aza-2- 

deoxycytidine had a long lasting effect on HTR2C mRNA expression even if it was 

removed before induction of d ifferentiation (Figure 4.16B). This effect was observed in 

undifferentiated cells when cells were grown for the same period o f tim e w ith no 

retinoic acid treatm ent, as well as differentiated cells; 5-Aza-2-deoxycytidine resulted 

in an increase in 5-HT2C receptor transcript under both conditions (Figure 4.16A).
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Figure 4.16: HTR2C mRNA expression w ith  0.5 pM  5-Aza-2-deoxycytidine trea tm en t 

fo r 72 hours in und ifferentia ted SH-SY5Y cells fo llow ed by w ith  (B) o r w ith o u t (A) 

d iffe ren tia tion  induction fo r 7 days.

Expression was normalized to  GAPDH and CYC1. Data presented as meaniSEM. * 

indicates statistical significant difference compared to control (DMSO 0.002%) at day 0, 

# indicates statistical significant difference compared to  the ir control treatm ents 

(DMSO 0.002% (-RA) or retinoic acid (+RA) fo r same experimental periods).
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4.3.8 Effect of drug treatment on DNA methylation extent of HTR2C 

gene in undifferentiated SH-SY5Y cells

The effect o f antipsychotic drug treatm ent on DNA methylation of the 5-HT2C receptor 

gene (HTR2C) in undifferentiated SH-SY5Y cells was determined by bisulfite 

pyrosequencing. Treatment w ith clozapine fo r 48 hours in undifferentiated SH-SY5Y 

cells at doses o f 2 pM and 10 pM as well as treatm ent w ith haloperidol at doses of 

0.01 and 10 pM had no effect on DNA methylation of HTR2C prom oter sequences 

compared to  tha t of control untreated cells at day 0 (treated w ith DMSO 0.01% as 

same as treatm ent solution) as shown in Figure 4.17. However, trea tm ent w ith 5-Aza- 

2-deoxycytidine, a demethylating reagent, at doses of 0.5, 1, and 2 pM significantly 

decreased DNA methylation of HTR2C (p<0.001) when compared to  control (DMSO 

0.002%) at 72 hours of treatm ent period (Figure 4.18).

4.3.9 Effect of drug treatment on DNA methylation extent of HTR2C in 

differentiated SH-SY5Y cells

The effect o f antipsychotic drug treatm ent on DNA methylation o f HTR2C gene in 

d ifferentiated SH-SY5Y cells was also determined by bisulfite pyrosequencing and the 

results were similar to undifferentiated cells. Treatment w ith clozapine fo r 48 hours in 

differentiated SH-SY5Y cells at doses of 2 pM and 10 pM as well as trea tm ent w ith 

haloperidol at doses of 0.01 and 10 pM had no effect on DNA m ethylation of HTR2C 

prom oter sequences compared to that o f control untreated cells at day 0 (treated w ith 

DMSO 0.01% as same as treatm ent solution) as shown in Figure 4.19. However, 

treatm ent w ith 5-Aza-2-deoxycytidine at doses of 0.5, 1, and 2 pM significantly 

decreased DNA methylation o f HTR2C (p<0.001) when compared to  control (DMSO 

0.002%) at 72 hours of treatm ent period (Figure 4.20).
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Figure 4.17: Mean DNA m ethylation levels o f 5 CpGs o f HTR2C p rom oter sequences 

trea tm en t w ith  clozapine 2 pM  and 10 pM  and haloperidol 0.01 pM  and 10 pM 

compared to  contro l (DMSO 0.01%) at Oh and 48h in und ifferentia ted  SH-SY5Y cells.

Data presented as meaniSEM.

xPax
Co
4->

>•
_c

QJ

O

£
3:
c
re
QJ

50

45

40

35

30

25

20

15

10
5

0
Control Oh Control 72h Aza 0.5 pM Aza 1 pM Aza 2 pM

Figure 4.18: Mean DNA m ethylation levels o f 5 CpGs o f HTR2C p rom oter sequences 

trea tm en t w ith  5-Aza-2-deoxycytidine 0.5, 1 and 2 pM  compared to  contro l (DMSO 

0.002%) at Oh and 72h in und ifferentia ted  SH-SY5Y cells.

Data presented as meaniSEM. * indicates statistical significant difference compared to 

control (DMSO 0.002%) at Oh, # indicates statistical significant difference compared to 

control (DMSO 0.002% at 72h.
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Figure 4.19: Mean DNA m ethylation levels o f 5 CpGs o f HTR2C p rom oter sequences 

trea tm en t w ith  clozapine 2 pM and 10 pM and haloperidol 0.01 pM  and 10 pM 
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Data presented as meaniSEM.
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Figure 4.20: Mean DNA m ethylation levels o f 5 CpGs o f HTR2C p rom oter sequences 

trea tm en t w ith  5-Aza-2-deoxycytidine 0.5, 1 and 2 pM  compared to  contro l (DMSO 

0.002%) at Oh and 72h in d iffe rentia ted  SH-SY5Y cells.

Data presented as meaniSEM. * indicates statistical significant difference compared to 

control (DMSO 0.002%) at Oh, # indicates statistical significant difference compared to 

control (DMSO 0.002% at 72h.
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4.3.10 Effect of 5-Aza-2-deoxycytidine treatment on DNA methylation 

extent of HTR2C in undifferentiated SH-SY5Y cells followed by 

differentiation induction

The results from previous sections showed tha t the antipsychotic drugs, clozapine and 

haloperidol, did not have an effect on DNA methylation of HTR2C prom oter sequences 

around the -697G/C polymorphism whereas 5-Aza-2-deoxycytidine treatm ent led to  a 

decrease in DNA methylation in both undifferentiated and differentiated SH-SY5Y cells. 

Therefore, this experiment aimed to  assess the effect of 5-Aza-2-deoxycytidine 

treatm ent on undifferentiated cells followed by d ifferentiation induction using retinoic 

acid fo r 7 days. The results showed that 5-Aza-2-deoxycytidine had a long lasting effect 

on DNA methylation even if it was removed before induction o f d ifferentiation (Figure 

4.21B). This effect was observed in undifferentiated cells when cells were grown for 

the same period o f tim e w ith no retinoic acid treatm ent, as well as d ifferentiated cells; 

5-Aza-2-deoxycytidine resulted in a decrease in DNA methylation o f the HTR2C 

prom oter sequences (Figure 4.21A).
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Figure 4.21: Mean DNA m ethylation levels o f 5 CpGs o f HTR2C p rom oter sequences 

trea tm en t w ith  0.5 pM  5-Aza-2-deoxycytidine fo r 72 hours in und iffe ren tia ted  SH- 

SY5Y cells fo llow ed by w ith  (b) or w ith o u t (a) d iffe ren tia tion  induction fo r 7 days.

Data presented as meaniSEM. * indicates statistical significant difference compared to 

control (DMSO 0.002%) at day 0, # indicates statistical significant difference compared 

to  the ir control treatments (DMSO 0.002% (-RA) or retinoic acid (+RA) fo r same 

experimental periods).
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4.4 Discussion

Previous findings reported the association o f HTR2C -759C/T and -697G/C 

polymorphisms and antipsychotic drug-induced weight gain (Reynolds et al., 2002; 

Shao et at., 2008; Godlewska et al., 2009); however, the mechanisms underlying this 

association were unknown. In addition, the -759T and -697C allele o f the HTR2C 

polymorphisms are associated w ith lower prom oter activity (Hill and Reynolds, 2007). 

Antipsychotic drugs might cause the alteration in HTR2C expression via, in part, 

epigenetic modification. Therefore, the experiments in this chapter were carried out 

w ith  the aim o f investigating the effect o f antipsychotic drugs on HTR2C gene 

expression and DNA methylation o f HTR2C prom oter sequences at and near -697G/C 

SNP site, (but not at and near -759C/T site due to  technical difficulties (see section 4.1) 

by using RT-qPCR and bisulfite pyrosequencing in SH-SY5Y human neuroblastoma cell 

line.

4.4.1 Validation of methodology

4.4.1.1 MTT assay

Clozapine, haloperidol, 5-aza-2-deoxycytidine, and DMSO which was used as the drug 

solvent were tested for cytotoxicity using the MTT assay. The drugs used in the 

experiments did not affect cell viability o f SH-SY5Y cells.

4.4.1.2 Reverse-transcription real-time PCR

4.4.1.2.1 RNA

RNA used in this study had a good quality observed from  the clear sharp bands o f 28S 

and 18S on the agarose gel whereby the 28S/18S rRNA ratio was approximately 2:1. 

The assessment o f RNA quality was determined by quantification of 28S and/or 18S 

ribosomal RNA on ethidium bromide gels (Sambrook and Russel, 2001). This method is 

a common and traditional method. RNA qua lity /in tegrity  affects downstream 

applications such as RT-qPCR and microarrays (Copois et al., 2007); therefore, it is 

essential to assess the integrity o f extracted RNA prior to  perform downstream 

applications to ensure the reliability o f the subsequent analysis.
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4.4.1.2.2 Housekeeping gene validation

In the present study GAPDH and CYC1 were selected as the most stably expressed 

housekeeping genes using GeNorm software in order to  use them as internal reference 

control genes to normalise the expression of the gene of interest. These reference 

genes had the least M value determined by GeNorm software under various 

experimental conditions.

4.4.1.2.3 Amplification efficiency of primers

The amplification efficiency of the primer pairs used in this study was determ ined to 

quantify the relative gene expression. The primer efficiencies of all primer sets were 

w ith in the acceptable range, 90-110%. At 100% efficiency in PCR 1 cycle corresponds 

to  a 2-fold change. The analysis o f gene expression was calculated using the 

comparative Ct method according to the Livak and Schmittgen (Livak and Schmittgen, 

2001).

4.4.2 Validation of experimental procedure in determining HTR2C 

DNA methylation and mRNA expression using 5-aza-2- 

deoxycitidine

The present study demonstrates that treatm ent w ith 5-Aza-2-deoxycytidine, a 

demethylating agent inhibiting DNA methylation, increased mRNA expression of 

HT2CR whereas it decreased DNA methylation levels of the HTR2C prom oter 

sequences. These results not only verified the experimental model and procedure that 

indicated the change in mRNA expression level of the HTR2C in response to  treatm ent 

in SH-SY5Y cells, but also confirmed the role o f DNA methylation in the regulation of 

HTR2C gene expression. It should be noted that the effect of 5-Aza-2-deoxycytidine on 

the expression of HTR2C mRNA in undifferentiated cells was higher than in 

differentiated cells (approximately 5 fold higher). In addition, the effect o f 5-Aza-2- 

deoxycytidine on methylation showed levels approximately 10% lower in 

undifferentiated cells compared to  differentiated cells. This may be due to  the high 

potential for changes in DNA methylation in undifferentiated cells and/or tha t the 

d ifferentiated cells have a much less dynamic transition in gene expression pattern 

when comparing the differentiated state to  pluripotency (reviewed by Meissner, 

2010).
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5-aza-2-deoxycytidine and 5-azacytidine are epigenetic drugs tha t inh ib it DNA

methylation and have been widely studied especially in cancer research. 5-aza-2-

deoxycytidine and 5-azacytidine were first synthesized about 50 years ago and recently 

used in clinical as standards o f care fo r patient w ith myelodysplastic syndromes 

because of its antim etabolic activities which can lower malignant progression to acute 

myeloid leukemia and increase survival o f patients (Estey, 2013). There are many other 

diseases treated w ith 5-Azacytidine such as beta-thalassemia, sickle cell anemia,

leukemias, metastatic lung cancer, androgen insensitive prostate cancer, cervical

cancer, testicular cancer, colorectal, head and neck, renal malignant melanoma, 

ovarian cancer (Santini et al., 2001; Wongtrakoongate, 2015). Since these drugs are 

already in clinical use, and this study has shown tha t 5-aza-2-deoxycytidine can modify 

DNA methylation and change mRNA expression of HTR2C in this study, it m ight be 

useful in the future for alleviation of weight gain side effects follow ing antipsychotic 

drug treatm ent.

4.4.3 Effect of antipsychotic drugs on HTR2C mRNA expression

Clozapine, an atypical antipsychotic drug having a high a ffin ity for the 5-HT2C receptor 

was expected to  have an effect on 5-HT2C receptor comparing to  haloperidol which 

has a low a ffin ity to 5-HT2C receptor. The results in the present study show no 

alteration in the HTR2C mRNA expression after clozapine and haloperidol treatm ent 

fo r 48 hours in both undifferentiated and differentiated SH-SH5Y cells. The lack o f an 

effect o f clozapine at the mRNA level suggests tha t clozapine may affect the 5-HT2C 

receptor at the level o f translational or post-transcriptional regulation, whereas 

unaltered expression o f the HTR2C mRNA after haloperidol treatm ent m ight be due to 

its low affin ity fo r this receptor (Leysen et al., 1993).

The results in this study are consistent w ith previous studies in rats; an early study 

reported tha t chronic treatm ent w ith clozapine and haloperidol fo r 14 days did not 

change Htr2c mRNA levels in choroid plexus or other areas (Burnet et al., 1996). 

Another study did not find a change in the levels o f mRNA encoding the 5-Ht2c 

receptor in midbrain (containing choroid plexus cells) and also in whole brain o f rats 

a fter chronic clozapine treatm ent fo r 32 days (Buckland et al., 1997). However, chronic
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treatm ent w ith clozapine fo r 14 days caused down-regulation of the 5-HT2C receptor 

binding in the choroid plexus, while no change was found w ith haloperidol, 

chlorpromazine or risperidone treatm ent (Kuoppamaki et al., 1993, 1995). It is has 

been suggested tha t the decrease in 5-HT2C receptor binding can be explained by 

translational or post-transcriptional regulation (Burnet et al., 1996).

However, the results in the present study are not in line w ith several previous studies 

that reported an effect o f antipsychotic drug treatm ent on mRNA expression o f Htr2c 

in rat brain. One study found a reduction of mRNA levels of Htr2c in hippocampus, 

cerebellum and cortex after chronic treatm ent o f clozapine whereas chronic 

haloperidol treatm ent elicited a decrease in mRNA levels o f Htr2c in midbrain, 

cerebellum and cortex (Buckland et al., 1997). Another study found changes o f Htr2c 

mRNA levels in many brain areas after chronic clozapine treatm ent fo r 36 days, after 2 

hours of last drug adm inistration there was a decrease of Htr2c mRNA levels in 

posteromedial cortical amygdaloid nucleus (PMCo)(limbic system) and substantia nigra 

(SN)(brainstem), while at 48 hours after the drug w ithdrawal there was a decrease 

mRNA levels in PMCo, SN, superior colliculus and ventral tegmental area; haloperidol 

caused mRNA reduction only in SN at both 2 hours and 48 hours drug w ithdrawal 

(Huang et al., 2007). These findings indicate the region-specific and complex pattern of 

changes of Htr2c mRNA expression follow ing antipsychotic treatm ent.

The effect of acute treatm ent o f clozapine also has been reported by Buckland's group, 

acute treatm ent w ith clozapine (4 days) caused increased Htr2c mRNA levels in whole 

brain and also midbrain whereas Htr2c mRNA levels decreased in cerebellum and 

cortex. The transient rise in Htr2c mRNA levels may be explained by a classical 

compensation in response to  initial antagonism o f the receptor by clozapine leading to 

up-regulation o f 5-Ht2c receptor by increasing transcription (Buckland et al., 1997).

The different findings between the present study and these studies may be due to  the 

difference o f experimental model. Those studies were conducted in animal models 

tha t may have many other factors tha t affect the expression of the Htr2c gene for 

example female hormones can influence Htr2c mRNA (Zhou et al., 2002; Rivera et al., 

2012) and protein expression (Henderson and Bethea, 2008). The neuroblastoma SH- 

SY5Y cell line used in the current study may provide a good model to  study the direct
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effect of antipsychotic drugs on HTR2C expression because of its relevance to human 

neurons and the reproducible level o f HTR2C mRNA expression reported in these cells 

(Biedler et al., 1978; Cavarec et al., 2013); but, 5-HT2C receptor protein expression in 

this cell line has not been reported so far. However, because it is a neuroblastoma cell 

line, the properties o f the cells may d iffer from normal neurons and may cause 

d ifferent response to antipsychotic drugs. Further studies are required to  confirm  this 

finding.

4.4.4 Effect of antipsychotic drugs on DNA methylation of HTR2C 

promoter sequences

Clozapine and haloperidol treatm ents resulted in unaltered levels o f DNA methylation 

of the HTR2C prom oter sequences. These results were in accordance w ith the mRNA 

expression results showing tha t these tested antipsychotic drugs did not exert the ir 

effect on the expression o f HTR2C mRNA. Lack o f influence on DNA methylation and 

mRNA expression suggests that clozapine may have an effect on post-transcriptional 

regulation rather than transcriptional regulation, while haloperidol did not have any 

effect due to its low a ffin ity to 5-HT2C receptor. Post-transcriptional modification of 

HTR2C mRNA editing in SH-SY5Y by adenosine deaminases acting on RNA was reported 

by Cavarec et al., (2013); this regulation was altered in depressed suicide victims. This 

adenosine deamination editing mRNA of 5-HT2CR brings about a substantial increase 

in the functional plasticity o f the receptor and is thought to contribute to  homeostatic 

mechanisms in neurons (Di Narzo et al., 2014). No other studies have looked at the 

effect o f antipsychotic drugs on DNA methylation o f the HTR2C gene. Further studies 

are required to confirm the effect of antipsychotic drugs on HTR2C m ethylation.

4.4.5 Limitations

The lim itation in this study is the low expression levels o f the HTR2C mRNA. Although it 

has been shown tha t there is constitutive expression of the HTR2C in this cell line, SH- 

SY5Y human neuroblastoma cells (Biedler et al., 1978; Flomen et al., 2004; Cavarec et 

al., 2013), it may lim it the magnitude of alteration in both DNA methylation and mRNA 

expression. However, the SH-SY5Y cells response to  treatm ent at least w ith  the 5-aza- 

2-deoxycytidine and the changes in methylation and mRNA expression o f HTR2C gene 

can be detected.
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4.4.6 Conclusions /  further work

In summary, the results o f this chapter have shown no alteration o f HTR2C mRNA 

expression and DNA methylation of the HTR2C prom oter under treatm ent w ith 

clozapine and haloperidol. However, the results linked the increased mRNA expression 

of HTR2C and induced DNA hypomethylation after treatm ent w ith 5-aza-2- 

deoxycytidine. This observation might be relevant to  fu rther therapeutic development 

to  increase the receptor numbers in patients w ith  schizophrenia.
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Chapter 5: Effect of antipsychotics on leptin 

secretion and Htr2c mRNA expression in 3T3-L1 

adipocytes

5.1 Introduction

Weight gain is an im portant side effect o f antipsychotic medication, which increase a 

risk fo r developing chronic diseases or obesity-related complications such as type 2 

diabetes and cardiovascular diseases (Allison et al., 1999; Casey et al., 2004). Little is 

currently known about the mechanisms of antipsychotic drug-induced weight gain. 

One common hypothesis is an increase in appetite and food intake (Casey and Zorn, 

2001). In this context, many studies have investigated the role o f leptin in regulating 

appetite and adiposity during treatm ent w ith antipsychotic drugs.

Leptin is primarily secreted by adipocytes (Hamilton et al., 1995) which is a major 

source o f plasma leptin. The plasma leptin level is strongly and positively correlated 

w ith adiposity or BMI (Klein et al., 1996; Haupt et al., 2005; Venkatasubramanian et al.,

2010). The plasma leptin level is gender dependent w ith females normally having 

higher leptin levels than males (Wang et al., 2007b; Sentissi et al., 2009). This may 

explain the relationship o f adiposity and leptin levels because females have a higher 

percentage of adipose mass than men (Ranasinghe et al., 2013). Another explanation 

may be due to the effect o f sex hormones on leptin production. There is evidence that 

estrogen stimulates leptin expression in females, whereas testosterone levels in males 

are correlated w ith  decreased leptin levels (Wabitsch et al., 1997; Machinal et al., 

1999; Machinal-Quelin et al., 2002). However, this gender difference in leptin has been 

found in groups treated w ith conventional antipsychotics but not in the olanzapine or 

clozapine treatm ent groups (Melkersson and Hulting, 2001).

Increased plasma leptin levels during treatm ent w ith atypical antipsychotic drugs,

particularly olanzapine and clozapine have been reported in several studies. For

example, olanzapine treatm ent causes increased BMI, plasma leptin, adiponectin,

insulin, lipids, and neuropeptides (Melkersson et al., 2000; Amano et al., 2012; Ak et

al., 2013). Plasma leptin levels and body weight increase rapidly in the firs t 1-2 weeks
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after treatm ent w ith SGAs, but not FGAs haloperidol (Kraus et al., 1999; M onteleone et 

al., 2002; Sentissi et al., 2008), and was also observed after 6 weeks of treatm ent 

(Atmaca et al., 2003). Increased plasma leptin levels correlate w ith increased BMI after 

treatm ent w ith clozapine or olanzapine for 6 weeks (Kluge et al., 2009). Increased 

leptin levels, body weight, BMI, body fat mass, and lean body mass after 10 weeks of 

clozapine treatm ent has been reported (Bromel et al., 1998).

Risperidone is one of the second generation antipsychotic drug that cause weight gain 

follow ing treatm ent in schizophrenia patients (Goeb et al., 2010) and it also has been 

related to the increase in plasma leptin levels (Zhang et al., 2003, 2004). Risperidone 

treatm ent fo r 4 weeks increases BMI and plasma leptin in psychotic patients (Yanik et 

al., 2013). It has been hypothesized tha t antipsychotic drugs including risperidone 

induced weight gain may be in part, due to its action through 5-HT antagonism that 

a lter hypothalamic neuropeptides regulating appetite and food intake (Kursungoz et 

al., 2015).

Although an early increase in plasma leptin levels is observed after antipsychotic 

treatm ent, it has been suggested that the increased leptin levels are most likely due to 

weight gain during antipsychotic drug treatm ent rather than a direct effect of 

antipsychotic drugs on leptin production and release from  adipocytes (Bromel et al., 

1998; Kraus et al., 1999; Melkersson et al., 2000). The correlation o f plasma leptin and 

antipsychotic treatm ent does not appear after controlling fo r BMI or comparing to 

BMI-matched controls (Haupt et al., 2005; Jin et al., 2008). In this study, it has also 

been hypothesized tha t antipsychotic drugs including clozapine and risperidone 

treatm ent might a lter leptin secretion from adipocytes comparing to  haloperidol.

Genetic polymorphisms have also been reported to  be associated w ith  elevation of 

plasma leptin levels during antipsychotic medications. The SNP in the prom oter region 

o f the leptin gene, -2548A/G, is associated w ith obesity and plasma leptin levels 

(Mammes et al., 2000; Hinuy et al., 2008). The polymorphisms of leptin -2548A/G and 

the HTR2C -759C/T are associated w ith antipsychotic drug-induced weight gain 

(Templeman et al., 2005; Wu et al., 2011) and influence plasma leptin levels in 

schizophrenia patients (Templeman et al., 2005).
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The expression of 5-HT receptors including 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1F, 5-FIT2A, 

5-HT2C, 5-HT5A, 5-HT6, and 5-HT7 have been detected in mouse preadipocyte 3T3-L1 

cells and treatm ent w ith 5-HT enhances adipocyte differentiation while treatm ent w ith 

the 5-HT2A antagonist (ketanserin) and the 5-HT2C receptor antagonist (SB 242084) 

result in inhibited adipocyte differentiation (Kinoshita et al., 2010). This study 

identified 5-HT in adipose tissue as a novel autocrine factor tha t is required for 

adipocyte differentiation (Kinoshita et al., 2010). The role o f the 5-HT2C receptor in 

adipocyte differentiation and a decrease of this process when treated w ith a 5-HT2C 

receptor antagonist indicate the role o f the 5-HT2C receptor in adipogenesis. The 

functional system for serotonin synthesis, reuptake, and receptors including 5-HT2C 

and 5-HT2A receptors are also expressed in rat adipocytes and peripheral serotonin 

adm inistration fo r 5 days or longer treatm ent fo r 4 months results in decreased plasma 

leptin (Stunes et al., 2011); however, this reduction of leptin levels could be secondary 

effect o f serotonin decreasing insulin secretion from  pancreatic (3 cells (Zhang et al., 

2013c). The role of the 5-HT2C receptor on leptin secretion and the direct effect of 

antipsychotic drugs on the expression o f the 5-HT2C receptor in adipocytes as well as 

on leptin secretion in adipocytes have not been studied yet. The present study 

hypothesizes tha t treating adipocytes w ith antipsychotic drugs may change the mRNA 

expression o f the HTR2C and also alters leptin secretion. The results o f this study may 

provide data about the peripheral effect o f atypical antipsychotic drugs on weight gain.

5.1.1 Principle of ELISA in leptin secretion determination

An enzyme-linked immunosorbent assay (ELISA) is a technique used in this study fo r

determ ining leptin concentration in culture medium. It is a quantitative sandwich

enzyme immunoassay using tw o polyclonal antibodies specific to  m ouse/rat leptin.

The plate surface is pre-coated w ith the polyclonal antibody specific fo r m ouse/rat

leptin. The leptin in samples is bounded by the immobilized antibodies (Figure 5.1,

step 1). The unbound substances arewashed away before adding the enzyme-linked

polyclonal antibody specific fo r mouse/rat leptin (Figure 5.1, step 2). The enzyme used

in this assay kit is horseradish peroxidase (HRP). The unbound enzyme-linked

antibodies have been washed away before adding the substrate solution to  the wells.

The substrate solution contains tetramethylbenzidine and hydrogen peroxide. The

enzyme reaction yields a blue product o f tetramethylabenzidine diim ine which turns
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yellow when adding stop solution containing diluted hydrochloric acid (Figure 5.1, step 

3).

Quantikine® ELISA Assay Principle

Step 1 Step 2
Analyte

\
< r

HRP Hflp

Y VY\
Antibody-coated 
microplate

y V y
,HRP

Step 3
TMB substrate

hrp hrp hrp

/ / /
TMB 

HRP Substrate

Legend

Analyte

Capture antibody

- HRP HRP-conjugated 
A detection antibody

-----------j   i i  m n t ) r  iu o s ira ie
microplate « it V

Y /  / 1
A microplate pre-coated 
with capture antibody is 
provided. Samples or 
standards are added and 
any analyte present is 
bound by the immobilized 
antibody. Unbound 
materials are washed 
away.

A second HRP-iabeled 
antibody (detection antibody) 
is added and binds to the 
captured analyte. Unbound 
detection antibody os washed 
away.

Yellow

Tetramethylbenzidine (TMB) substrate 
solution is added to the wells and a blue 
color develops in proportion to the 
amount of analyte present In the sample. 
Color development is stopped timing the 
color in the walls to yellow. The 
absorbance of toe color at 450 nm is 
measured.

Figure 5.1: ELISA assay principle 

(modified from  R&D Systems™ website;
www.rndsystems.com/product_detail_objectname_quantikineelisaassayprinciple.aspx) 

HRP, horseradish peroxidase; TMB, tetramethylbenzidine.

5.1.2 Aims

1. To investigate the influence of antipsychotic drugs on leptin secretion from  3T3-L1 

adipocytes.

2. To investigate the influence of antipsychotic drugs on Htr2c mRNA expression in 

3T3-L1 adipocytes.
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5.2 Materials and methods

The mouse 3T3-L1 preadipocyte cell line was cultured and induced by d ifferentiation 

to  be mature adipocyte cells fo r using in antipsychotic drug treatm ent experiments. 

Sterile cell culture techniques were performed to  avoid the contamination throughout 

the experimental period. The leptin concentration in the culture media was measured 

using ELISA and the mRNA expression of the Htr2c was determined using RT-qPCR. The 

experiments were carried out at least 3 times w ith tw o replicates fo r all experimental 

conditions.

5.2.1 3T3-L1 preadipocyte cell line

The mouse 3T3-L1 preadipocyte cell line obtained from  the American Type Culture 

Collection (ATCC, UK), was maintained in DMEM high glucose (Gibco®, UK) 

supplemented w ith 10% fetal bovine serum (FBS) and 1% Penicillin/Streptomycin 

(Complete Medium or CM) in a humidified, 5% C02, 37°C incubator. The medium was 

changed every 2-3 days. Cells were subcultured before 70-80% confluency was 

reached. Cell passage numbers of less than 6 were used in the experiments.

Cells were cultured in 75 cm2 culture flasks in 15 ml medium until 70-80% confluency 

was reached, cells then were trypsinized using 2-3 ml o f trypsin/EDTA solution (0.05% 

trypsin in 0.53mM EDTA, Gibco®, UK) after removing medium and briefly rinsing the 

cell layer w ith trypsin/EDTA solution. The flask was incubated at 37°C fo r 3-5 minutes 

or until cells have detached from  the surface. Once the cells' detachment was checked 

under a microscope, 6-8 ml o f complete medium was added to inh ib it the action of 

trypsin. The cell suspension was transferred to a sterile 50 ml Falcon tube and 

centrifuged at 1,000 rpm fo r 5 minutes. The supernatant was discarded and the cells 

were resuspended in 2-5 ml fresh complete medium. The cells were counted by mixing 

10 pi o f cell suspension w ith 10 pi o f 0.4% trypan blue solution (Gibco®, UK) and the 

cells were allowed to  stain at room tem perature fo r 1 minute. The m ixture (10 pi) was 

loaded into a Countess™ chamber slide (Countess™, Invitrogen, UK). Viable and dead 

cells were counted using an automated cell counter (Countess™, Invitrogen, UK). Live 

cells are not coloured whereas dead cells are stained blue. Total cell count, live cells, 

dead cells, cell viability, were obtained from  the instrument. An average o f live cell
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number was calculated from tw o slides and the viable cells were used in plating fo r the 

experiments, subculturing, or freezing.

5.2.2 Freezing and thawing

Mouse 3T3-L1 preadipocytes (T75 cm2 flask) were trpysinized, and resuspended in 3 ml 

of freezing medium containing 90% fetal bovine serum and 10% DMSO. Then 1 ml of 

cell suspension (1 -I.5 x l0 6 cells) was aliquoted into cryovial tubes. The tubes were 

wrapped w ith tissue and plastic bubble wrap then stored at -80°C fo r several days 

before transferring the tubes into a liquid nitrogen tank where the cells were 

immersed in liquid nitrogen vapour until required fo r use.

All pieces of equipment fo r cell culture, including a tube containing culture medium 

was prepared (9-10 ml in 50 ml-Falcon tube) in a laminar flow  tissue culture hood 

before taking the frozen cells from liquid nitrogen. The cryovial tube o f cells was 

agitated gently in a water bath at 37°C to thaw cells quickly, w ith in 2-3 minutes. Once 

the ice crystals were melted, the tube was decontaminated by spraying 70% ethanol. 

Cells were transferred into the prepared tube containing medium, gently mixed and 

centrifuged at 1,000 rpm for 5 minutes. The supernatant was discarded to  remove 

DMSO and the cells were resuspended in 1-2 ml of complete medium before 

transferring to a culture flask (T75 cm2) containing complete medium and mixing 

thoroughly by gentle rocking. The cultures were observed after 24 hours.

5.2.3 Differentiation induction of 3T3-L1 cells

To differentiate 3T3-L1 cells from  fibroblastic phenotype to adipocytes, the firs t stage 

is growth arrest which is achieved by contact inhibition at post confluence. The 

growth-arrested postconfluent 3T3-L1 preadipocytes re-enter the cell cycle (called 

m ito tic clonal expansion) immediately after induction by the d ifferentiating reagents, 

and start the adipocyte differentiation (Rosen and Spiegelman, 2000). The most 

commonly used reagents are insulin, dexamethasone, and 3-isobutyl-l-m ethylxanth ine 

(IBMX). Rosiglitazone was also added in the induction medium in the present study. 

These chemicals were purchased from Sigma-Aldrich, UK. The d ifferentia tion induction 

was performed according to  the methods described by Eseberri et al. (2013) w ith  slight 

modifications. Briefly, cells were seeded into 6-well plate at a density o f 5 x l0 4
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cells/well (in 2 ml). The complete medium was replaced every 48 hours until cells 

reached confluency which took about 5-7 days. On the day tha t cells reached 

confluency, the medium was replaced and the cells fu rther grown for 48 hours. A fter 

48 hours (day 0), differentiation was induced by changing the medium to  DMEM 

containing 10% FBS, 1% Penicillin/Streptomycin, 0.5 mM IBMX, 1 pM dexamethasone, 

10 pg/m l insulin, and 2 pM  rosiglitazone (differentiation medium, DMI). A fte r 48 h (day 

2), the medium was changed to  DMEM containing 10% fetal bovine serum, 1% 

Penicillin/Streptomycin, and 10 pg/m l insulin (DMII) and this medium was refreshed 

every 48 hours until drug treatm ent on day 14, which represents the usual tim e 

required to acquire a fully differentiated phenotype (Sertie et a!., 2011). The protocol 

fo r d ifferentiation induction was shown in Figure 5.2.

Day -2 to day 0 
(48 h confluence)

Complete medium 
(CM)

DMEM high glucose 
10% FBS
P/S

Day 0-2 (48 h) Differentiation medium I 
(DMI)

CM.
IBMX 0.5 mM
Insulin 10 pg/ml'
Dexameihason© 1 \M  
Rosiglitazone 2 pM

Day 2-14 
(every 48 h)

Day 14

Day 15

Differentiation medium II 
(DMII)

Antipsychotics treatment

Medium and cell collection

CM
Insulin 10 pg/ml

CM
insulin 10 pg/mfi
Antipsychotics
DMSO (final 0.1%)

Figure 5.2: Flowchart of 3T3-L1 differentiation protocol throughout the experimental 

period

5.2.4 Oil Red 0 staining

In this study, oil Red O staining was performed to  illustrate the presence o f lipids in the 

3T3-L1 differentiated adipocytes which is used as a marker o f d ifferentia tion, fo r 

fu rthe r details, see section 5.3.1. The oil red O is an oil-soluble dye which has high 

solubility in fa tty  substances. The staining results in bright red of lipid droplets in
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adipocytes when observed under microscope. Staining protocol was carried out 

according to the method described elsewhere (Oh et al., 2012; Mukherjee and Yun, 

2013) w ith slight modifications. In brief, 0.35% Oil Red 0  stock solution was prepared 

by stirring 0.7g Oil Red 0  in 200 ml isopropanol overnight. The overnight solution was 

filtered through a 0.2-pM filte r paper and stored at 4°C. Oil Red O working solution 

was freshly prepared by mixing stock solution w ith distilled water (6:4), followed by 

incubation at room tem perature fo r 10 min and fu rther filtra tion. The working solution 

was stable in 2 hours. Cells were washed tw ice w ith PBS and fixed w ith  4% 

formaldehyde in PBS at room tem perature fo r 1 hour. Cells were washed 3 times w ith 

distilled water, followed by 60% isopropanol, and then stained w ith Oil Red O working 

solution fo r 1 hour at room tem perature. Cells were then washed 4 times or more w ith 

distilled water and photographed.

5.2.5 Antipsychotic treatment

Differentiated cells were treated w ith antipsychotic drugs on day 14 after 

d ifferentiation induction when the full d ifferentiation was obtained. The antipsychotic 

drugs were dissolved in complete medium containing insulin 10 pg/m l. The treatm ent 

volume was 1 m l/well. The control treatm ent group was carried out in each 

experiment using the same amount o f DMSO (0.01%) tha t has been used as a solvent 

o f drug dissolves. The amount o f DMSO in all drug concentrations was equal 

concentration (at 0.1%) to elim inate the effect of unequal DMSO levels in d iffe rent 

drug concentrations.

Antipsychotics used in this study were composed of clozapine, SB 242084 (serotonin 

2C receptor antagonist), haloperidol, and risperidone which were purchased from  

Sigma-Aldrich, UK. The cells were treated fo r 24 hours before the medium was 

collected. Then the collected medium was centrifuged at 3,000 rpm for 30 minutes to 

remove remaining particles or cell debris. The supernatants were assayed to 

determ ine leptin level immediately or stored at -20° C fo r later use, in which case 

repeated freeze-thaw cycles were avoided.
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5.2.5.1 Dose response curve of antipsychotic treatment on leptin secretion

The adipocyte cells were treated w ith various concentrations o f antipsychotics 

including clozapine, SB 242084, haloperidol, and risperidone as shown in Table 5.1. 

The chosen concentrations covered the therapeutic plasma levels and the inhibition 

constant (Ki). All o f the cell culture experiments were performed in duplicate.

Table 5.1: Concentrations of antipsychotic drugs used in this study

Antipsychotics/chemicals Concentrations

Clozapine 0.3, 1, 10 pM

SB 242084 0.01, 0.1, 1 pM

Haloperidol 0.03, 0.1, 1 pM

Risperidone 0.01, 0.03, 0.3 pM

5.2.6 Determination of leptin secretion

The concentrations of leptin secreted from  adipocytes into the cell culture medium 

were measured by using the mouse leptin immunoassay (Mouse Leptin Quantikine® 

ELISA Kit, from  R&D SYSTEMS, UK). The assay procedures were perform ed follow ing 

the manufacturer's instructions. In brief, all reagents and samples were allowed to 

warm at room tem perature before perform ing the assay, and then the standard 

dilutions, wash buffer, and microplate strips were prepared. The serial d ilutions o f 

mouse leptin standard was performed at concentrations 62.5, 125, 250, 500, 1000, 

2000, and 4000 pg/ml w ith calibrator diluent RD5-3.

The assay was started by adding 50 pi of assay diluent RD1W to each well followed by 

adding of 50 pi of standards, control, or samples. The mixture was gently mixed by 

tapping the plate frame for 1 minute, and then the plate was covered by an adhesive 

strip before incubating fo r 2 hours at room tem perature. The m ixture was aspirated 

from  the wells and the wells were washed five times w ith wash buffer using a squirt 

bottle. A fter the last wash, the remaining liquid or wash buffer was completely 

removed using aspiration pump followed by inverting the plate and b lo tting it against 

clean paper towels. Then 100 pi o f mouse leptin conjugate was added into each well 

before covering w ith a new adhesive strip, and the plate was incubated fo r 2 hours at
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room tem perature. The mixture was aspirated from  the wells and the wells were 

washed five times w ith wash buffer using a squirt bottle. Then 100 pi o f substrate 

solution was added into each well followed by incubation at room tem perature fo r 30 

minutes protecting from  light. 100 pi o f stop solution was added into each well. The 

plate was mixed thoroughly by gently tapping before the optical density was read at 

450 nm w ith in 30 minutes using microplate reader. The readings at 450 nm were 

corrected using 570 nm readings which corrected fo r optical imperfections in the plate. 

All samples were assayed in duplicate.

5.2.7 Determination of Htr2c mRNA expression

5.2.7.1 RNA isolation and cDNA synthesis

After the culture medium was collected to  determine leptin level, cells were harvested 

by trypsinization and washed w ith PBS before extracting tota l RNA using RNeasy Mini 

kit (Qiagen). The extraction protocols were carried out follow ing the manufacturer's 

protocol as described in the previous chapter (see section 4.2.6.1).

RNA concentrations were quantified by Nanodrop-1000 UV-VIS spectrophotom eter 

and A260/A 280 as well as A260/A 230 ratios were recorded. RNA quality was checked on 

1.5% agarose gel as described before (see section 4.2.6.2).

Total RNA, 1000 ng, was reverse-transcribed using oligodT and random primers 

(QuantiTech Reverse Transcription kit, Qiagen) according the manufacturer's protocols 

as described in the previous chapter (see section 4.2.6.3). The minus RT (-RT) controls 

were performed by replacing reverse transcriptase w ith RNase-DNase free water 

during the RT step to  serve as negative control to assess to contam ination o f genomic 

DNA in RNA samples. In general, cDNA samples were diluted 1:10 in RNase-DNase free 

water before using in qPCR.

5.2.7.2 Reference controlgene(s) selection

Reference control gene selection was carried out using 8 housekeeping genes from  the 

mouse geNorm™ housekeeping gene selection kit (PrimerDesign Ltd, UK) and 11 

samples from d ifferent antipsychotic drug treatm ents and control untreated group. 

Candidate genes are listed in Table 5.2. The genes from  this geNorm kit were assessed
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because the primer sets were guaranteed by the company to have high efficiencies. 

The genes included members from distinct cellular pathways and they are groups of a 

number o f classical housekeeping genes which are in common use in expression 

studies.

Table 5.2: geNorm housekeeping gene candidates fo r selecting o f the most stable 

expressing gene(s) to  use as a reference contro l gene(s)

Gene symbol Gene name Function/Pathway/Process

Actb (3-actin Cytoskeletal protein

Gapdh Glyceraldehide-3-phosphate

dehydrogenase

Glycolysis

Canx Calnexin Protein folding

Atp5b ATP synthase subunit 5B Mitochondrial ATP synthesis

18s 18S ribosomal RNA Protein synthesis

Ywhoz Tyrosine 3-

monooxygenase/tryptophan 5- 

monooxygenase activation 

protein, zeta

Signal transduction

R pll3a Ribosomal protein L13A Protein synthesis

Ubc Ubiquitin C Protein turnover

The PCR reactions were set up in a 96-well PCR plate. The reactions were then run in a 

real-time PCR system, StepOne Plus (Applied Biosystems, USA). The PCR reaction 

m ixture consisted o f 10 ng o f cDNA tem plate (2 pJ o f 1:10 dilution), 1 pJ o f 10 p,M 

forward and reverse primers, 10 pJ of 2x qPCR Mastermix (Precision, PromerDesign) 

and nuclease-free distilled water to  a final volume of 20 pJ. The precision Mastermix 

contains 2x reaction buffer, 0.025 U/pJ Taq Polymerase, 5 mM MgCI2/ dNTP mix (200 

pM each dNTP), and SYBR®Green and ROX passive reference dye. The PCR condition 

was set as shown in Table 5.3. The stability o f expression o f candidate reference genes 

were compared using geNorm software Demo version 2.6.1.
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Table 5.3: PCR condition fo r selecting the most stable expressing housekeeping 

gene(s)

Step Time Temperature

Enzyme activation 10 min 95°C

Denaturation 15 s 95°C Cycling

x40Data collection 60s 60°C

M elt curve 15 s 95°C

30 s 60°C increasing in 0.3°C 

increment till 95°C

5.2.7.3 Determination of primer efficiency

The amplification efficiencies o f primers used in this expression study including Htr2c 

and the most stable expressing housekeeping genes identified by geNorm including 

Actb, Ywhaz, and Canx were determined. Serial dilutions of cDNA samples were used 

to  determine primer efficiency as described in the previous chapter (section 4.2.6.5). 

The primer sequences for Htr2c, Actb, Ywhaz, and Canx are listed in Table 5.4.

Table 5.4: Nucleotide sequences of primers used in Htr2c expression in 3T3-L1 cells

Gene Primer sequences Product length

Htr2c Forward 5'-TCTCCCTTCCTTCCGTATTCC-3' (21bp) 

Reverse 5'-ACATCAACTTTTCCACATTCACAA-3' (24bp)

95 bp

Actb Forward 5'-CCTGTGCTGCTCACCGAGGC-3‘ (20bp) 

Reverse 5'-GACCCCGTCTCTCCGGAGTCCATC-3' (24bp)

174 bp

Ywhaz Forward 5'-AAAAACAGCTTTCGATGAAGCC-3' (22bp) 

Reverse 5'-GCCGGTTAAI 1 1 ICCCCTCC-3' (20bp)

168 bp

Canx No data

5.2.7.4 Determination ofHtr2cgene expression

The PCR reaction and PCR condition were set as described in the previous section in 

determ ining o f reference genes. The PCR conditions fo r determ ination o f Htr2c 

expression were slightly d ifferent (Table 5.5). Following qPCR, melt curve analysis and 

agarose gel electrophoresis were carried out to  identify the PCR product.
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Table 5.5: PCR condition fo r determ ining o f the Htr2c expression

Step Time Temperature

Enzyme activation 10 min 95°C

Denaturation 15 s 95°C

Cycling x40Annealing 30 s 62°C

Data collection 30 s 72°C

M elt curve 15 s 95°C

30 s 60°C increasing in 0.3°C 

increment till 95°C

5.2.8 Statistical Analyses

The effects of antipsychotic drugs on leptin secretion and Htr2c gene expression were 

tested using SPSS for Windows. Leptin secretion was expressed as a percentage of 

control (untreated) group. The expression o f Htr2c was expressed as fold change 

comparing to  control untreated group. The normal d istribution was tested by using the 

Kolmogorov-Smirnov test. One-way ANOVA was used to  compare means between 

multiple groups when the values were normally distributed w ith either Bonferroni post 

hoc test when variances were equal or Tamhane's T2 when variances were not equal. 

Kruskal-Wallis test was used fo r non-parametric data when the values were not 

normally distributed. Statistical significance was considered when P value was less 

than 0.05.
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5.3 Results

5.3.1 Differentiation induction of 3T3-L1 preadipocytes to mature 

adipocytes

The morphology o f a 3T3-L1 preadipocyte cell line was changed after inducing 

d ifferentiation from fibroblast-like cells to mature adipocytes. The process of 

d ifferentiation was easily observed under the microscope both w ith and w ithou t oil 

Red 0  staining. The d ifferentiated cells show characteristics o f lipid droplets. The 

intracellular lipid droplets started to be visible at around day 5 and increased in both 

number and size throughout the follow ing days of induction. A fter day 12 of 

d ifferentiation induction, the cells contained lipid droplets of d ifferent sizes and this 

d ifferentiation state was not changed until at least day 16 of observation (Figure 5.3). 

The differentiated 3T3-L1 adipocyte cells at day 14 were chosen in the subsequent 

experiments of antipsychotic drug treatm ents to  ensure the cells had been fu lly 

d ifferentiated.

Figure 5.3: M orphology o f 3T3-L1 cells

Figure shows the morphology of the 3T3-L1 preadipocyte cells before d ifferentia tion 

induction (A, xlOO), after d ifferentiation induction at day 5 (B, x200), day 12 (C, x200), 

day 14 (D, x200), day 16 (E, x200), and oil red O staining at day 16 (F, x200).
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5.3.2 Effect of antipsychotic treatment on leptin secretion from 3T3-L1 

adipocytes

The effects of clozapine, SB 284104, risperidone, and haloperidol at various 

concentrations on the amount o f leptin secreted from  mature adipocyte cells were 

determined by ELISA assay. The medium containing the same amount of DMSO 

(0.1%DMSO) was carried out as a control group.

The clozapine treatm ent at concentrations of 0.3, 1, and 10 pM did not show 

significant change in leptin levels compared to the control group (p>0.05) (Figure 

5.4A). Similar results were observed when treatm ent w ith SB 242084 at concentrations 

o f 0.01, 0.1, and 1 pM (Figure 5.4B), risperidone treatm ent at concentrations of 0.03, 

0.1, and 1 pM (Figure 5.4C), and haloperidol treatm ent at concentrations o f 0.01, 0.03, 

and 0.3 pM(Figure 5.4D).
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Figure 5.4: Effect of antipsychotic drug treatment on leptin secretion in 

differentiated 3T3-L1 cells

The figure shows the effect o f antipsychotic drugs; clozapine (A), SB 242084 (B), 

risperidone (C), and haloperidol (D) on leptin amount in mature adipocyte 3T3-L1 cells. 

Data are expressed as mean percentage o f control (±SEM), n=3-4.
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5.3.3 Effect of antipsychotics treatm ent on Htr2c mRNA expression in 

3T3-L1 adipocytes

5.3.3.1 RNA extraction

RNA was extracted from adipocyte 3T3-L1 cells at the end of antipsychotic drug 

treatm ent experiments. Extracted RNA concentration and purity were determined 

using Nanodrop spectrophotometry. The gel electrophoresis was performed to 

investigate the integrity of extracted RNA which presents both 28s and 18s rRNA bands 

indicating the good quality o f RNA (Figure 5.5).

28s

18s

Figure 5.5: Agarose gel electrophoresis o f RNA extracted from  3T3-L1 adipocytes 

Figure shows clearly visible bands of 28s and 18s ribosomal RNA w ith the 2:1 ratio o f 

28s:18s indicating the good integrity o f RNA extracted from 3T3-L1 adipocytes.

5,3.3.2 Reference gene(s) selection

The stability of expression o f eight housekeeping genes was determined using GeNorm 

software. Eleven cDNA samples from  d ifferent experimental conditions including 

control, clozapine, SB 242084, risperidone, and haloperidol treatm ents were used to 

determ ine reference genes. The GeNorm software calculates the expression ratio of 

each housekeeping gene from  input Ct values. The M value calculated by the software 

indicates the stability of each housekeeping gene. The lowest M value is the most 

stable expressing gene. As shown in Figure 5.6, the Actb, Canx, and Ywhaz were the
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most stably expressed housekeeping genes. The optimal number o f housekeeping 

genes was represented as V value. The result o f GeNorm V value indicates tha t 2 or 3 

most stable genes (GeNorm V <0.15) were optimal number of selected housekeeping 

genes fo r using as the reference genes in this experimental situation (Figure 5.7).
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5.3.3.3 Primer efficiency and specificity

Serial dilutions o f cDNA were amplified w ith the prim er sets of the Htr2c and selected 

reference genes, Actb, Canx, and Ywhaz to determine the ir primer efficiencies. The Ct 

values of dilutions of each prim er set were used to calculate the slope of the trend line 

when plotting Ct values against log cDNA concentrations (Figure 5.8). Then the prim er 

efficiency of each primer set was calculated using the equation %E = ( io ( 1/slope)- l )  x 

100. The percentage efficiencies o f the Htr2c, Actb, Canx, and Ywhaz were 107.48%, 

102.77%, 106.70%, and 102.49%, respectively.
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Figure 5.8: Efficiency o f prim er used in SYBR®Green RT-PCR in adipocyte 3T3-L1 cells 

The Ct values of each dilution series of each transcript were plotted against log cDNA 

concentrations to  obtain slope o f the trend line of the Htr2c (A), Actb (B), Canx (C), and 

Ywhaz (D). The slope has been used in prim er efficiency calculation. Data are 

expressed as mean ±SEM (n=3-4).
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The specificity o f each primer set was observed by melt curve analyses follow ing RT- 

qPCR as shown in Figure 5.9 and it was also observed by agarose gel electrophoresis 

(Figure 5.10). Each primer sets amplified one single product indicates that no non

specific PCR product was amplified.

(A) Htr2c (B) Actb (C) Canx (D) Ywhaz

I
I
1

I
i]

i
i;i

Figure 5.9: Melt curve of transcripts when amplified by different primer sets in 

adipocyte 3T3-L1 cells

Single peak of each transcript was obtained when amplified by prim er sets o f the Htr2c

(A), Actb (B), Canx {C), and Ywhaz (D) in SYBR®Green real-time RT-PCR in adipocyte 

3T3-L1 cells indicating the specificity of the primers used in this study.
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200  —
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Figure 5.10: PCR products of the Htr2c, Actb, Canx, and Ywhaz transcripts
Single PCR product o f each transcript was amplified indicating high specificity o f each

prim er set used in this RT-PCR experiment.
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5.3.3.4 Effect of antipsychotics treatment on Htr2c mRNA expression

The effect o f antipsychotic drug treatm ent on the expression o f the Htr2c mRNA in 

adipocyte 3T3-L1 cells was determined by RT-qPCR. Treatment w ith clozapine for 24h 

at concentrations o f 0.3, 1, and 10 pM produced no significant changes in expression 

of Htr2c mRNA relative to control group (p>0.05) as shown in Figure 5.11A. However, 

the expression levels o f the Htr2c mRNA treated w ith clozapine seems slightly 

decreased at or below the therapeutic concentration (0.3 and 1 pM).

Adipocyte 3T3-L1 cells treated w ith SB 242084 at the concentrations of 0.01, 0.1, and 1 

pM did not have a significant change in Htr2c mRNA expression (p>0.05), although it 

seems to  slightly increase the expression at all three concentration compared to 

control (Figure 5.11B).

Treatment w ith risperidone at concentrations of 0.03, 0.1, and 1 pM as well as 

haloperidol at concentrations o f 0.01, 0.03, and 0.3 pM produced no significant 

changes the Htr2c mRNA expression in adipocyte 3T3-L1 cells (p>0.05), although 

treatm ent w ith both drugs at all concentrations slightly decreased the expression 

(Figure 5.11C and D).
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Figure 5.11: Effect o f antipsychotic drug trea tm en t on Htr2c mRNA expression in 

d iffe ren tia ted  3T3-L1 cells

The figure shows the effect o f antipsychotic drugs; clozapine (A), SB 242084 (B), 

risperidone (C), and haloperidol (D) on Htr2c mRNA expression in mature adipocyte 

3T3-L1 cells. Data are expressed as mean percentage o f control (±SEM), n=3-4.
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5.4 Discussion

Plasma leptin level is strongly and positively correlated w ith adiposity or BMI (Klein et 

al., 1996; Haupt et al., 2005; Venkatasubramanian et al., 2010). Increased plasma 

leptin levels during atypical antipsychotic treatm ent, particularly olanzapine and 

clozapine (and risperidone), but not typical antipsychotic, haloperidol have been 

reported in several studies (Sentissi et al., 2008; Kluge et al., 2009; Kraus et al., 1999; 

Yanik et al., 2013; Zhang et al., 2004). It has been suggested tha t the increased leptin 

levels are most likely due to  weight increased during antipsychotic drug treatm ent 

rather than a direct effect o f antipsychotic drugs on leptin production and release from 

adipocytes. The 5-HT2C receptor is expressed in mature adipocytes and it plays role in 

adipocyte differentiation (Kinoshita et al., 2010). No previous study has investigated 

the role o f 5-HT2C receptor in regulating leptin secretion from mature adipocytes. In 

addition, the effects of antipsychotic drugs on expression of the 5-HT2C receptor in 

adipocytes and leptin secretion from adipocytes have not been studied yet. The 

present study hypothesizes that antipsychotic drugs treatm ent may change the mRNA 

expression of the HTR2C and also alter the leptin secretion from  adipocytes. The 

experiments in this chapter were carried out w ith the aim of investigating the effect o f 

antipsychotic drugs on leptin secretion and mRNA expression of the Htr2c  in 

adipocytes. The experiments were carried out in the 3T3-L1 adipocyte cell line tha t was 

induced by differentiation to become mature adipocytes fo r testing the effect o f 

antipsychotic drugs.

5.4.1 Validation of methodology

5.4.1.1 Differentiation of3T3-Ll cells

Full d ifferentiation of the preadipocyte 3T3-L1 was obtained from  day 12 after

induction of d ifferentiation. When observed under a microscope, the cell size and the

accumulation o f lipid droplets in the cells indicating the phenotype of an adipocyte cell

were not increased after day 12. D ifferentiated cells at day 14 were used in

antipsychotic drugs experiments in the present study to  ensure tha t the cells reached

full d ifferentiation. Other studies have reported tha t by about day 10 to day 14

follow ing differentiation induction by the standard method (w ithout rosiglitazone),

90%-95% of the 3T3-L1 cells d ifferentiated into adipocytes (Fu et al., 2005; Yang and
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Kim, 2015; Vestri et al., 2007). The detected leptin secretion from  3T3-L1 cells into 

culture medium after d ifferentiation induction also indicates the phenotype of 

adipocyte cells.

5.4.1.2 Housekeeping gene selection, primer efficiency and specificity

RNA extracted from cell cultures was intact and had a good quality observed from  the 

clear sharp bands of 28s and 18s on an agarose gel whereby the 28S/18S rRNA ratio 

was approximately 2:1.

The analysis o f a selection o f the most stably expressed reference genes to  be used in 

relative quantification of mRNA expression by using GeNorm software identified the 

Actb, Canx, and Ywhaz as the most stably expressed transcripts in 3T3-L1 adipocytes 

under the experimental conditions in this work.

The amplification efficiencies o f the Htr2c, Actb, Canx, and Ywhaz primers used in the 

present study were w ith in the acceptable range. The 2"AACt method was therefore used 

in the calculation o f the relative expression of the transcript.

The melt cure analysis in SYBR®Green real-time PCR and also the gel electrophoresis of 

the PCR product showed one single product was amplified indicating the specificity of 

the primers.

5.4.2 Effect of antipsychotic drugs on leptin secretion from 3T3-L1 

adipocytes

The effect o f antipsychotic drugs on leptin secretion from adipocytes was investigated 

using differentiated 3T3-L1 adipocytes. Cells were exposed to clozapine, SB 242084, 

risperidone, and haloperidol fo r 24h. Leptin levels in the culture medium were 

measured using ELISA kits.

5.4.2.1 Clozapine treatment and leptin secretion from 3T3-L1 adipocytes

There was no effect o f clozapine at the concentrations of 0.3, 1, and 10 pM on leptin 

secretion. The therapeutic plasma concentration of clozapine is 1.07-1.84 pM (Hiemke 

et al., 2011), thus clozapine even at a concentration about 10-fold higher than the 

typical plasma concentrations did not affect leptin secretion from  adipocytes. This
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result is consistent w ith previous findings in human differentiated adipocytes treated 

w ith clozapine at concentrations of 10"9-1CT5 M for 24h which showed no clozapine 

effect on leptin production and leptin mRNA expression (Hauner et al., 2003). The 

authors suggested tha t the clozapine may cause weight gain via central pathways 

rather than a peripheral action. However, there has been a study in 3T3-L1 cells that 

reported that clozapine at doses as low as 5 pM were able to directly impair insulin 

actions by reduced glucose transport, increased lipogenesis, and decreased lipolysis 

(Vestri et al., 2007). In addition, impaired insulin induced glucose uptake and insulin 

signaling has been reported both In vitro  and in vivo (Panariello et al., 2012). 

Furthermore, clozapine has been reported to enhance adipogenesis in white 

adipocytes, and 3T3-L1 cells (Yang et al., 2009; Hu et al., 2010), whereas it inhibited 

the differentiation accompanied by decreased mRNA expression o f leptin and other 

lipogenic genes in brown adipocytes (Oh et al., 2012). One study reported tha t 

clozapine treatm ent did not change intracellular triglyceride content during adipogenic 

d ifferentiation o f the human adipose-derived stem cells compared to  the control 

DMSO group (Sertie et al., 2011). However, a study in human adipocytes showed tha t 

clozapine treatm ent enhanced differentiation (Hemmrich et al., 2006). The d ifferent 

findings o f clozapine on adipogenesis may be due to  the d iffe rent cell types or 

d ifferent species, as well as the method for inducing differentiation. Taken together, 

clozapine may affect insulin-stimulated glucose uptake enhancing lipogenesis and 

adipogenesis during d ifferentiation rather than an acute effect on leptin secretion 

from  mature adipocytes. However, clozapine at the lowest concentration under this 

investigation (0.3pM) exceeds the binding affinities fo r many receptors in addition to 

5-HT2C including 5-HT2A, a l- ,  a2- adrenergic, H I, H2 receptors which are expressed in 

3T3-L1 adipocytes (Correll 2008; M orrow  et al., 2010), thus these receptors may 

mediate a clozapine effect on leptin secretion by way of antagonist action tha t may 

result in unchanged leptin levels. Further studies are required to elucidate the effect of 

antipsychotic drugs on leptin secretion.

5.4.2.2 SB 242084 treatment and leptin secretion from 3T3-L1 adipocytes

3T3-L1 adipocytes cells were treated w ith SB 242084, a selective 5-HT2C receptor 

antagonist to investigate whether the 5-HT2C receptor is involved in leptin secretion. 

SB 242084 treatm ent at concentrations of 0.01, 0.1, and 1 pM did not change leptin
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levels. The binding a ffin ity (Ki) of SB 242084 for 5-HT2C receptor is 9 nM (Kennett et 

al., 1997), thus the lowest concentration in this study was at the Ki, the second 

concentration is 10-fold, and the th ird concentration is 100-fold higher than the 

concentration at the Ki. The result did not observe any significant effect o f SB 242084 

on leptin secretion from  adipocyte 3T3-L1 cells. This is the first study tha t investigates 

the role o f 5-HT2C receptor in leptin secretion in adipocytes. The action o f SB 242084 

on adipogenesis has been reported in previous studies; SB 242084 treatm ent at high 

doses (40 pM and 80 pM) during induction of d ifferentiation significantly inhibited 

adipocyte differentiation in 3T3-L1 cells (Kinoshita et al., 2010). This study indicates the 

role o f the 5-HT2C receptor in adipogenesis, although the effect is only detectable at 

very high doses and they did not determine the cytotoxicity o f drug treatm ent. 

Therefore, SB 242084 may have a direct effect on adipogenesis or cytotoxicity and at 

very high doses of the substance may cause the reduction of d ifferentiation rate. In the 

present study, adipocytes were induced to  differentiate before treatm ent w ith 

antipsychotic drugs, however drug concentrations were not as high as in Kinoshita and 

colleague's work, thus any change in leptin secretion may not be detectable. Further 

treatm ent w ith higher concentration may cause detectable changes. Further studies 

are needed to  elucidate the role of 5-HT2C receptor in leptin secretion as well as in 

adipogenesis.

5.4.2.3 Risperidone treatment and leptin secretion from 3T3-L1 adipocytes

The effect o f risperidone treatm ent on leptin secretion from adipocytes 3T3-L1 cells

was investigated in this study. The result did not show any significant change o f leptin

levels when the adipocytes were treated w ith risperidone at concentration o f 0.03, 0.1,

and 1 pM compared to control group. The therapeutic plasma level o f risperidone is

50-150 nM (Hiemke et al., 2011) and the Ki of risperidone fo r 5-FIT2C receptor is 32 nM

(Correll, 2008) to 112 nM (Kuoppamaki et al., 1995). Thus the drug concentrations

used in this study cover the therapeutic plasma levels and Ki fo r 5-FIT2C receptor, as

well as 10-time higher than plasma level. The present study is the firs t study tha t

investigated the direct effect o f risperidone on leptin secretion from  adipocytes.

Risperidone has been reported to  impair insulin-stimulated glucose uptake and insulin-

mediated antilipolysis in primary cultured rat adipocytes (Vestri et al., 2007). Another

study reported that risperidone treatm ent at high doses (25pM and 50pM) showed
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significantly enhanced adipogenesis in 3T3-L1 cells w ithout drug-induced cytotoxicity 

(Hu et al., 2010). The current study, investigated the drug effect on leptin secretion 

from  mature adipocytes but not adipogenesis. The drug concentrations were not very 

high, although they covered therapeutic plasma levels. The lack of a significant effect 

of risperidone in this study may be due to the relatively low concentrations o f drug in 

treatm ent o f the cells. Further studies w ith supra-physiological concentration may 

result in detectable changes.

5.4.2.4 Haloperidol treatment and leptin secretion from 3T3-L1 adipocytes

The effect of haloperidol treatm ent on leptin secretion from  adipocytes 3T3-L1 cells 

were investigated in this study which aimed to  investigate the effect o f typical 

antipsychotic drugs compared to  atypical antipsychotic drugs. Adipocyte 3T3-L1 cells' 

treatm ent w ith haloperidol at concentrations of 0.01, 0.03, and 0.3 pM had no effect 

on leptin secretion into the culture medium. Haloperidol has very low 5-HT2C receptor 

binding affin ity compared to other tested drugs. The Ki o f haloperidol fo r 5-HT2C 

receptor is 4,700 nM and 2.6 nM for Dopamine D2 receptor (D2R) (Correll, 2008). The 

therapeutic plasma concentration of haloperidol is 2.66-26.6 nM (Hiemke et al., 2011) 

to  50 nM (Coryell et al., 1998). Thus drug concentrations used in this study are the 

therapeutic plasma concentration and about 10-fold higher than plasma level; 

however, all concentrations are lower than the Ki value o f haloperidol fo r the 5-HT2C 

receptor but cover the D2R. D2 receptors are expressed in 3T3-L1 adipocytes 

(Mukherjee and Yun, 2013). No significant change of leptin secretion a fter treatm ent 

w ith haloperidol was observed in this study indicating tha t D2R may not be associated 

w ith regulating leptin secretion.

The present study is the first study tha t investigated the direct effect o f haloperidol on 

leptin secretion from  adipocytes. A previous study in human in vitro  adipocyte-derived 

stem cells has reported tha t haloperidol had an effect on the control of the adipocyte 

differentiation program by increasing the gene expression levels o f peroxisome 

proliferator-activated receptor gamma 2 (PPARy2) and lipoprotein lipase (LPL) but only 

at high doses (20 pM and 40pM), the doses at therapeutic plasma concentrations and 

10-fold higher than this level had no effect; however, these high concentrations had no 

effect on triglyceride accumulation (Sertie et al., 2011). The authors also reported that
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haloperidol at 40 and 100 pM decreased insulin-stimulated lipogenesis (Sertie et al.,

2011). However, these studies may not reflect the results o f the present study because 

as mentioned above, the drugs were added to the differentiated cells instead of 

investigating adipogenesis, and also the relative low concentrations o f drugs may 

contribute to  the lack o f change in leptin secretion. Further studies are required to 

elucidate the role of haloperidol on leptin secretion from adipocytes.

5.4.3 Effect of antipsychotic drugs on Htr2c mRNA expression in 3T3- 

L1 adipocytes

The detection o f Htr2c mRNA expression in this study confirmed the expression o f the 

5-HT2C receptor in d ifferentiated 3T3-L1 adipocytes (Kinoshita et al., 2010). The 

expression o f Htr2c mRNA levels o f adipocyte 3T3-L1 cells treated w ith antipsychotic 

drugs were determined using real-time RT-qPCR. Treatm ent o f 3T3-L1 adipocytes w ith 

clozapine, SB 242084, risperidone, and haloperidol at the same concentrations as 

tested in the leptin secretion study did not alter the levels o f Htr2c mRNA expression 

compared to  the control (DMSO) group. A previous study investigated the expression 

of Htr2c mRNA in 3T3-L1 adipocytes and found an increase in the Htr2c mRNA levels 

during adipocyte differentiation. Treatment w ith the 5-HT2C receptor antagonist SB 

242084 inhibited adipocyte differentiation, although this inh ib itory effect is only 

detectable at high doses (Kinoshita et al., 2010). These authors also identified 5-HT in 

adipose tissue as a novel autocrine factor tha t is required fo r adipocyte d ifferentia tion 

(Kinoshita et al., 2010). The role o f 5-HT and the 5-HT2C receptor in adipocyte 

differentiation, suggest it is possible tha t the 5-HT2C receptor may also play a role in 

regulating leptin production and secretion. This is the firs t study tha t investigated the 

influence of antipsychotic drugs on mRNA expression o f HTR2C in adipocytes tha t 

might affect the secretion o f leptin. The lack o f significant changes o f the HTR2C mRNA 

expression as well as leptin secretion follow ing antipsychotic treatm ent in this study 

may be due to  the low concentrations of drugs tha t might not be high enough to 

induce intracellular changes at both mRNA or protein levels. Further studies are 

required to  elucidate the role o f antipsychotic drugs on the expression o f gene-related 

to leptin secretion that may provide more understanding about the effect of 

antipsychotic drugs on weight gain side effect through peripheral actions.
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To date, there have been several studies that reported the effect o f antipsychotic drug 

treatm ent at gene expression levels. Treatment w ith atypical antipsychotic drugs 

increased mRNA expression of proinflam m atory and adipogenic genes in human 

adipocytes in vitro  (Sarvari et al., 2014). Olanzapine treatm ent at high dose (50 pM) 

induced adipogenesis and triglyceride accumulation in 3T3-L1 cells, increased sterol 

regulatory element-binding protein 1 (SREBP-1) mRNA and protein levels upon 

treatm ent fo r 24h (50pM), and also increased mRNA expression of adiponectin and 

fa tty  acid synthase [FAS) upon treatm ent at lOpM  for 48h (Yang et al., 2007). 

Clozapine treatm ent in 3T3-L1 cells inhibited mRNA and protein expression o f LPL and 

increased mRNA expression of adipocyte determ ination and d ifferentiation 

factorl/SREBPic [ADD1/SREBP1C] (Yang et al., 2009). Risperidone (50pM) treatm ent in 

3T3-L1 cells fo r 8 days during differentiation resulted in increased mRNA expression o f 

gene involved in SREBP-1 pathway (SREBP-1, PPARy, C/EBPa, low density lipoprotein 

receptor (LDLR), adiponectin, and FAS), similar to  clozapine (15pM) treatm ent which 

also increased mRNA expression of these genes except FAS (Hu et al., 2010). A study in 

human adipocyte-derived stem cells showed tha t treatm ent w ith clozapine, 

olanzapine, or haloperidol increased mRNA expression of PPARy2 and LPL ((Sertie et 

al., 2011). A fu rthe r study in rat adipocytes treated w ith olanzapine fo r 5 weeks 

showed decreased lipolytic activity, decreased mRNA expression of hormone-sensitive 

lipase [FISL), and increased FAS mRNA expression (M inet-Ringuet et al., 2007). The 

effect of antipsychotic drugs on these adipogenesis-related genes indicates the 

influence of drugs in cellular processes of adipocytes tha t might include the production 

and secretion of adipokines.

In addition, the expression of other receptors that are the targets o f antipsychotic 

drugs has also been detected in adipocytes. The mRNA expression of histamine H I 

receptor has been reported in both preadipocytes and fu lly d ifferentiated adipocytes 

whereas the expression o f the H2 receptor was found only a fter d ifferentia tion 

(Kawazoe et al., 2004). This study also showed that knockdown of the H I receptor by 

small interfering RNA impaired insulin-induced adipogenesis (Kawazoe et al., 2004). 

Melanocortin MC2 and MC5 receptors are expressed in 3T3-L1 adipocytes and may 

mediate the ACTH and alpha-MSH actions in inhibiting leptin expression and secretion 

(Norman et al., 2003) as well as actions in stimulating lipolysis (M oller et al., 2011).
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Adrenergic receptors are also expressed in adipocytes (Fain et al., 1983); for examples, 

a2-adrenergic (Mukherjee and Yun, 2013), and (33-adrenergic receptors (M ottillo  et al., 

2010). Dopamine receptors are expressed in adipocytes (Borcherding et al., 2011; 

Pasqualini et al., 2009). Therefore, treatm ent w ith antipsychotic drugs may mediate 

the ir effect on leptin secretion through some of these receptors; there may be 

antagonistic actions that may result in a lack o f change in the net amount of leptin. 

Further studies are needed to elucidate the specific role o f the 5-HT2C receptor in 

leptin secretion and also the influence of antipsychotic drugs on 5-HT2C receptor- 

mediated leptin secretion.

5.4.4 Limitations of this study

The 3T3-L1 cell line is derived from  Swiss 3T3 mouse embryo fibroblasts. This, together 

w ith the differentiation induction protocol to  induce 3T3-L1 preadipocyte to  become 

mature adipocytes, may not represent human adipocyte cells. The drug concentrations 

used in the present experiments may not be specific to  only the 5-HT2C receptors; 

therefore, the effect o f antipsychotic drugs on leptin secretion may be the outcome of 

the drug effect on many receptors as well as affecting the expression of other 

receptors.

5.4.5 Conclusions

Antipsychotic drugs, both second generation including clozapine and risperidone, the 

selective 5-HT2C receptor antagonist SB 242084, and first generation haloperidol did 

not change the levels o f leptin secretion and the HTR2C mRNA expression in 3T3-L1 

adipocytes.
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Chapter 6: General discussion

6.1 Introduction

Weight gain follow ing antipsychotic treatm ent, particularly second generation 

antipsychotic drugs, is the most common and im portant adverse effect tha t increase a 

schizophrenic patient's risk o f many consequent diseases, such as cardiovascular 

disease and type 2 diabetes mellitus, as well as increasing the risk o f relapse because 

o f a lack o f compliance to  the medication. The mechanism underlying this adverse 

effect is not fu lly understood. There is high inter-individual variability o f weight gain 

and there are many factors tha t contribute to  this variation. The influence of types o f 

antipsychotic drugs, genetic factors, epigenetic factors, and other environmental 

factors may in part contribute to the aetiology of weight gain. Therefore an increased 

understanding of the mechanism involved in antipsychotic drug-induced weight gain is 

im portant and may be useful in recommending a therapeutic approach which brings 

about the least adverse effects. Study o f genetic factors as well as epigenetic factors in 

antipsychotic drug-induced weight gain may provide genetic or epigenetic markers fo r 

predicting the adverse effect o f an individual to design personal medication.

The common hypothesis used to  explain antipsychotic drug-induced weight gain is tha t 

they induce an abnormality in the regulation of appetite leading to an increase in 

energy intake and eventually weight gain. The target receptors fo r antipsychotic drugs 

have been of interest and have been investigated. One of the most consistent findings 

to  be associated w ith antipsychotic drug-induced weight gain is the genetic 

polymorphism of the HTR2C receptor -759C/T. However, other SNPs in many receptor 

genes of antipsychotic drugs such as HTR2A and ADRA2A, or the genes tha t encode 

neuropeptides involved in regulation of food intake such as MC4R, GNB3, BDNF, and 

FTO have been also reported, but there is still a lack o f replication of these studies. The 

aim of this study was, therefore, to  investigate the influence of genetic polymorphisms 

o f these genes on weight gain follow ing antipsychotic treatm ent in schizophrenia 

patients. In addition, the SNPs in the genes relating to  DNA methylation including 

MTFIFR (and FTO) have been hypothesized to be associated with weight gain and were 

investigated in this study.
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Although the HTR2C -759C/T polymorphism is the most consistently associated with 

antipsychotic drug-induced weight gain, the mechanistic link is still unclear. The 

influence of the polymorphism on the expression of the receptor may be the link. A 

previous study by Hill and Reynolds found an association o f the T allele of the HTR2C 

-759C/T polymorphism and lower prom oter activity in human neuroblastoma SH-SY5Y 

cells (Hill and Reynolds, 2007). It has been hypothesized tha t the difference in 

prom oter activity might be due to an epigenetic regulation. The aim of this study was 

therefore to investigate the association between levels o f DNA methylation o f the 

HTR2C prom oter sequences and antipsychotic drug-induced weight gain as well as the 

influence of genetic polymorphisms in patients w ith schizophrenia.

The effect of antipsychotic drugs on the expression o f the HTR2C has not been studied 

yet. In addition to weight gain, increased plasma leptin during antipsychotic drug 

treatm ent has been reported, but it has been suggested tha t the increased leptin 

levels might be due to the increased body weight or adiposity. The present study also 

hypothesized that the antipsychotic drugs may have an effect on DNA methylation and 

expression of the HTR2C and they may also have a direct effect on leptin secretion and 

expression o f the HTR2C in adipocyte cells. Therefore, the aims of this study were to 

investigate the role of antipsychotic drugs on DNA methylation and mRNA expression 

o f the HTR2C gene in human neuroblastoma cells, as well as the ir role on leptin 

secretion and Htr2c mRNA expression in 3T3-L1 adipocytes.

Data of the patient groups, the number o f patients, im portant characteristic of the 

patients, and the source of samples is summarized as shown in table 6.1.

Table 6.1: Summary of studied population groups

Groups Number Characteristic Sample

Chinese Han patients 182 First episode, drug na ve Blood DNA

schizophrenia

Spanish patients 72 First episode, drug na i/e Blood DNA

schizophrenia

Belfast patients 72 Chronic schizophrenia Blood DNA
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6.2 Genetic polymorphisms in antipsychotic drug-induced weight 

gain in patients with schizophrenia

6.2.1 First episode drug naive schizophrenia patients

6.2.1.1 MTHFR 677C/Tpolymorphism is associated with antipsychotic drug- 

induced weight gain in first episode schizophrenia patients

This study identified MTHFR 677C/T as a genetic risk factor fo r antipsychotic drug- 

induced weight gain in the first episode drug-na i/e  schizophrenia in both Chinese Han 

and Spanish patients, and showed that the T allele was a protective allele for 

antipsychotic drug-induced weight gain. This MTHFR 677C/T polymorphism showed an 

additive effect to the well-established HTR2C -759C/T polymorphism. The MTHFR 

enzyme plays an im portant role in DNA methylation, DNA synthesis and repair. The T 

allele causes decreased enzyme activity (Weisberg et al., 1998), via its role in DNA 

synthesis and methylation (Sugden, 2006) and may influence gene expression (Jirtle 

and Skinner, 2007). However, the MTHFR 677C/T polymorphism did not show an 

influence on DNA methylation o f the HTR2C prom oter sequences either in Chinese Han 

or Spanish patients. This may be due to  the small sample sizes relative to the modest 

effect o f this genetic factor on epigenetic change.

6.2.1.2 MC4R rs489693 polymorphism is associated with antipsychotic drug- 

induced weight gain in first episode Chinese Han schizophrenia 

patients

Another genetic risk factor, the MC4R rs489693 was also associated w ith antipsychotic 

drug-induced weight gain in first episode Chinese Han patients w ith schizophrenia; the 

C allele carriers had greater weight gain compared to the AA genotype. This finding is 

opposite to a previous finding tha t the AA genotype was associated w ith weight gain 

follow ing second generation antipsychotic treatm ent (Malhotra et al., 2012; 

Czerwensky et al., 2013b). This study differs from the present study in ethnicity; in 

addition, o ther factors such as prior drug exposure, the difference in drug treatm ents, 

clinical factors (19 years o f age or younger in Czerwensky's study patients), as well as 

environmental factors could influence antipsychotic drug-induced weight gain. Further 

studies are needed to elucidate the association between the MC4R rs489693 and
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antipsychotic drug-induced weight gain. The exact mechanism underlying the 

association of the MC4R rs489693 and antipsychotic drug-induced weight gain is 

unknown. No functional relevance of this polymorphism has been reported. The 

influence of the rs489693 may relate to other remote regulatory sites (Espinoza and 

Ren, 2011), or another polymorphism which is in LD tha t has actual biological function 

in the regulation of body weight.

6.2.1.3 HTR2A -1438G/A and ADRA2A -1291C/G polymorphisms are

associated with risperidone-induced weight gain in first episode 

Chinese Han schizophrenia patients

An interaction o f drug and genetic polymorphism was observed in Chinese Han 

schizophrenia patients. There was a significant drug x HTR2A -1438G/A genotype 

interaction and a non-significant indication of drug x ADRA2A -1291C/G genotype 

interaction when patients were analysed as groups receiving either risperidone or 

chlorpromazine. The drug-genetic polymorphism interaction may be due to  the high 

binding a ffin ity of the risperidone at the HTR2A and ADRA2A receptors. Therefore, 

post hoc analysis in a subgroup o f patients who had received risperidone was 

performed and found a significantly greater weight gain in the A allele carriers o f the 

HTR2A -1438G/A compared to GG genotype and also found a significantly greater 

weight gain in patients who carried the G allele of the ADRA2A -1291C/G compared to 

CC genotype carriers.

6.2.2 Chronic patients with schizophrenia

6.2.2.1 MTHFR 677C/Tand MTHFR 1298A/Cpolymorphisms are not 

associated with BMI in chronic schizophrenia patients

In chronic schizophrenia patients, the MTHFR 677C/T and 1298A/C were not 

associated w ith BMI. Previous findings did not observe associations between the 

polymorphisms of the HTR2C -759C/T and leptin -2548A/G w ith BMI in this chronic 

patient cohort (Yevtushenko et a t, 2008), whereas the FTO rs9939609 polymorphism 

was previously found to  be associated w ith  the measurements of obesity including 

BMI, waist circumference, waist-hip ratio, and central obesity (Reynolds et a i,  2013). It
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has been suggested that the FTO polymorphism may be enhanced in patients w ith 

chronic treatm ent and may also interact w ith other polymorphisms relating to 

antipsychotic drug-induced weight gain (Reynolds et a!., 2013), whereas the HTR2C - 

759C/T polymorphism may have strong effects on initial weight gain but lesser effects 

on long-term weight gain (Yevtushenko et a!., 2008). Taken together, the results 

suggest that the MTHFR and HTR2C polymorphisms may influence early weight gain 

while FTO polymorphism may affect long-term weight gain follow ing antipsychotic 

drug medication.

The findings o f the association of genetic polymorphism and weight gain or BMI in first 

episode and chronic patients w ith schizophrenia were summarized as shown in table 

6.2. Gender distribution between subgroups o f genotype of each polymorphism was 

tested using chi-square and there was no significant gender d istribution between each 

genotype group.
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Table 6.2: Summary of results of genetic polymorphism associated with weight gain 

or BMI in each studied population groups

Groups SNP rs number Result (finding) p value

Chinese Han HTR2C rs3813929* C allele -->greater WG 0.004

MTHFR rsl801133 C allele -->greater WG 0.003

MTHFR rsl801131 NA NS

ADRA2A rsl800544 G allele-->greater WG in 

risperidone subgroup

0.027

HTR2A rs6311 - A allele-->greater WG in 

risperidone subgroup

- genotype-drug interaction

0.047

0.017

MC4R rsl7782313 NA NS

MC4R rs489693 C allele ->grea te r WG 0.040

BDNF rs6265 NA NS

GNB3 rs5443 NA NS

FTO rs9939609 NA NS

Spanish MTHFR rsl801133 C allele -->greater WG 0.049

MTHFR rsl801131 NA NS

HTR2C rs3813929* C allele -->greater WG 0.012

FTO rs9939609* NA NS

Chronic (Belfast) MTHFR rsl801133 NA NS

MTHFR rsl801131 NA NS

HTR2C rs3813929* NA NS

FTO rs9939609* A alle le->greater BMI 0.029

LEP rs7799039* NA NS

In firs t episode drug na i/e  schizophrenia patients (Chinese Han and Spanish corhorts), 

the SNPs were analyzed w ith  weight gain (change in BMI), and w ith BMI in chronic 

patients.

* Previous genotyped SNPs (Reynolds et al., 2002; Templeman et al., 2005; 

Yevtushenko et al., 2008; Reynolds et al., 2013); WG, weight gain (change in BMI); NA, 

no association w ith weight gain or BMI; NS, non-significant statistical p value.
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6.3 DNA methylation of the HTR2C  promoter regions and 

antipsychotic drug-induced weight gain in patients with  

schizophrenia

6.3.1 First episode drug naive schizophrenia patients

The present study is the first study to investigate DNA methylation of the HTR2C in 

relation to  antipsychotic drug-induced weight gain as well as the influence of genetic 

polymorphisms of the HTR2C, MTHFR, and FTO on DNA methylation o f the HTR2C. The 

results indicated tha t there was a gender difference of DNA methylation o f HTR2C 

prom oter sequences in both Chinese Han and Spanish patients; females have higher 

methylation levels than males. This is because of X-chromosome inactivation in 

females leading to higher methylation levels.

6.3.1.1 DNA methylation of the HTR2C promoter sequences may be used as a 

predictor for antipsychotic drug induced weight gain in first episode 

schizophrenia patients

In first episode drug na ve schizophrenia patients, the methylation of the HTR2C 

prom oter sequences did not show any correlation w ith body weight and BMI. 

However, Chinese Han patients who have a weight increase by >7% had lower 

methylation levels of the HTR2C prom oter sequences than the <7% weight increase 

group. Because the levels o f DNA methylation were measured at baseline but not after 

treatm ent; therefore, DNA methylation should be in itia lly used to  predict the weight 

gain because other factors such as antipsychotic treatm ent, dietary, exercise, or 

smoking may contribute to  alterations in DNA methylation during trea tm ent of 

antipsychotic drugs. A similar effect was also observed in the Spanish cohort but it did 

not reach statistically significant levels which may be due to a small sample size or the 

difference in ethnicity that may contribute to the weak association. It should be noted 

tha t the methylation levels of the HTR2C at both regions in Chinese Han patients were 

slightly higher than those of Spanish patients (Table 3.10-Table 3.13).
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6.3.1.2 The T allele of the HTR2C-759C/T polymorphism is associated with 

higher DNA methylation of the HTR2C promoter sequences

The influences of genetic polymorphisms on DNA methylation o f the HTR2C prom oter 

polymorphisms in firs t episode drug na ive schizophrenia patients illustrated the effect 

of the HTR2C -759C/T polymorphism on the methylation of the cytosine bases in the 

prom oter region o f the HTR2C-, the T allele carriers had higher methylation levels of 

the HTR2C prom oter region near the SNP site compared to C/CC genotype. This finding 

may explain the previous finding tha t the T allele o f the HTR2C -759C/T had lower 

prom oter activity (Hill and Reynolds, 2007) in tha t the higher methylation levels of the 

T allele lead to lower prom oter activity, and this may result in decreased transcription 

and receptor expression, and finally influence antipsychotic drug-induced weight gain. 

The results from  this study may provide evidence of a link between epigenetic 

modification and prom oter activity and may also make the link between this genetic 

polymorphism and weight gain.

This effect of -759C/T polymorphism on DNA methylation o f the HTR2C was observed 

at the CpG sites tha t are located near the SNP site, whereas the CpG sites located far 

away near the transcription start site (TSS) did not show a significant difference 

indicating tha t the polymorphism may influence locally near the SNP sites. A similar 

direction was observed in first episode Spanish schizophrenia patients but did not 

reach statistical significance.

In addition, a lack o f a significant difference of DNA methylation at the CpG sites 

located near the TSS may be due to the CpG sites near the TSS maintaining low 

methylation levels in order to  facilitate transcription in itiation (Jones, 2012). As it has 

low levels and only slight changes of DNA methylation in this region, the influence of 

genetic polymorphisms was not observed. However, the influence of the HTR2C - 

759C/T polymorphism on DNA methylation o f the HTR2C near the TSS was observed to 

be in a similar direction (but not statistically significant) in first episode drug na'^e 

schizophrenia patients.
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6.3.1.3 The FTO rs9939609 polymorphism is associated with DNA methylation

of the HTR2C promoter sequences in Spanish male first episode

schizophrenia patients

The FTO rs9939609 polymorphism shows a significant effect on DNA m ethylation o f 

the HTR2C prom oter sequence in Spanish male patients in that the T allele carriers had 

lower methylation levels o f the HTR2C -697G/C region compared to the AA genotype. 

In this cohort, FTO rs9939609 did not show a significant association w ith weight gain 

(Reynolds et al., 2013). The result o f the influence of the FTO rs9939609 on 

methylation o f the FITR2C prom oter sequences suggests an indirect effect o f the FTO 

polymorphism on weight gain mediated through HTR2C DNA methylation, and this 

may also fu rther change the level o f receptor expression. Here is the firs t study 

demonstrating the effect o f the FTO polymorphism on DNA methylation o f the FITR2C 

prom oter sequence, although the finding was not replicated in the other firs t episode 

group of Chinese Han schizophrenia patients who have d ifferent ethnicity. However, 

fu rther studies in larger sample sizes are required to  confirm this finding.

6.3.2 Chronic schizophrenia patients

In chronic schizophrenia patients, global LINE-1 DNA methylation levels as well as DNA 

methylation o f FITR2C prom oter sequences were determined to  investigate the 

association o f the methylation levels w ith  BMI and antipsychotics, as well as the 

influence of genetic polymorphisms.

6.3.2.1 Global LINE-1 DNA methylation is not associated with BMI in chronic 

schizophrenia patients

The methylation levels o f LINE-1 did not correlate w ith BMI and also did not show a 

difference between BMI obesity groups (>30 vs <30 kg/m 2), central obesity, and 

metabolic syndrome in the chronic Belfast schizophrenia patients. This finding is 

similar to  a recent study in postmenopausal overweight woman tha t reported no 

association of LINE-1 methylation and weight loss at 12 months comparing a reduced- 

calorie weight-loss diet and/or exercise program intervention groups and control 

group (Duggan et al., 2014). However, studies in the adult general population reported 

the association of weight gain and an increased LINE-1 methylation (M artin-Nunez et
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al., 2014; Perng et al., 2014), whereas a study in school-age children reported the 

association of adiposity development and lower LINE-1 methylation in boys (Perng et 

al., 2013). A study in visceral adipose tissue of severely obese people found lower LINE- 

1 methylation was negatively associated w ith fasting glucose, diastolic pressure, and 

metabolic status (Turcot et al., 2012). In addition, global DNA methylation was 

inversely associated w ith plasma vitamin A, female gender, and C-reactive protein (a 

marker o f chronic inflammation), while positively associated w ith maternal BMI and 

socioeconomic status (Perng et al., 2012). An inconsistency of the association o f LINE-1 

methylation and body weight may be due to influences of gender, age, diet, tissue- 

specific variability, and other factors. The inform ation o f the association o f LINE-1 

methylation and body weight or BMI in schizophrenia patients is lim ited. The disease 

conditions, symptoms, medications, and patient's life style may also contribute to 

epigenetic modifications in both global and specific gene levels. Further studies are 

required to  confirm this association.

6.3.2.2 Gender difference and age associated of global LINE-1 DNA 

methylation in chronic schizophrenia patients

Gender had an influence on LINE-1 methylation in chronic schizophrenia patients. 

Females had lower levels o f the global LINE-1 methylation than males (0.55% on 

average). This finding is consistent w ith previous studies in normal populations (Huen 

et al., 2014; Perng et al., 2013; W ilhelm et al., 2010; El-Maarri et al., 2011; Zhang et al., 

2011; Burris et al., 2012). This gender-specific effect on LINE-1 methylation is likely due 

to  the association of LINE-1 w ith X-chromosome inactivation (Singer et al., 2012).

Age was not correlated w ith global LINE-1 DNA methylation in the chronic patients 

studied here which confirmed several previous studies that found a weak inverse 

relationship or no association o f age w ith LINE-1 methylation (Bollati et al., 2009; 

Jintaridth and Mutirangura, 2010; El-Maarri et al., 2011). The weak or no association 

may be due to the modest age effect on LINE-1 methylation and other factors such as 

life style, smoking, dietary, exercise, disease conditions, and antipsychotic drug 

treatm ent tha t may have a stronger effect on global DNA methylation.
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6.3.2.3 Smoking is associated with higher global LINE-1 DNA methylation in 

chronic schizophrenia patients

Tobacco smoking was significantly associated w ith higher global LINE-1 DNA 

methylation at CpG3 and a similar trend at CpG2. The effect of smoking on global DNA 

methylation is still controversial in which studies in lung cancer found 

hyperm ethylation (Piyathilake et al., 2001; Lin et al., 2007); in contrast to  studies in 

head and neck cancer tha t found hypomethylation (Smith et al., 2007; Hsiung et al., 

2007). Smoking associated w ith higher global UNE-1 methylation may be due to the 

effect o f nicotine which has been reported to cause DNA hyperm ethylation and 

histone acetylation (Abdolmaleky et al., 2013).

6.3.2.4 Olanzapine or clozapine treatment trends to decrease global LINE-1 

DNA methylation in chronic schizophrenia patients

No significant differences o f global DNA methylation levels were observed between 

patients receiving olanzapine or clozapine and patients receiving all o ther 

antipsychotic drugs, although patients on olanzapine or clozapine trea tm ent had 

slightly lower levels o f global DNA methylation (0.46% on average, p=0.059 at CpG3) 

than all o ther drugs. This finding is in line w ith previous studies tha t reported the 

association of decreased methylation of reelin and GAD67 prom oters and 

antipsychotic drugs, particularly clozapine and the benzamide sulpiride, but not 

haloperidol and risperidone (Guidotti and Grayson, 2014; Melas et al., 2012; Guidotti 

et al., 2009; Melka et al., 2014; Dong et al., 2008). Melas et al. (2012) found global 

hypomethylation in schizophrenia patients and also reported tha t haloperidol 

treatm ent increased (normalized) this global hypomethylation. However, the role of 

antipsychotic drugs such as clozapine or olanzapine on global DNA m ethylation needs 

fu rthe r studies.

6.3.2.5 The MTHFR 677C/T and FTO rs9939609 polymorphisms and global 

LINE-1 DNA methylation in chronic schizophrenia patients

MTHFR 677C/T polymorphism was significantly associated w ith global LINE-1 DNA 

methylation in chronic patients w ith schizophrenia (Belfast cohort) in tha t the T allele 

carriers had higher methylation levels at CpG3 than the CC genotype carriers. At

255



another SNP, the FTO rs9939609 T allele carriers had a trend of lower methylation 

levels o f LINE-1 than AA genotype at CpG2 and CpG3. The polymorphisms o f the 

MTHFR and FTO are involved in methylation processes tha t may influence the global 

DNA methylation. There was no MTHFR x FTO interaction on LINE-1 m ethylation, but 

interactions o f the MTHFR x smoking, and MTHFR x gender (correcting fo r smoking) 

were observed in that the T allele o f the MTHFR 677C/T polymorphism in smokers or in 

females had higher methylation than in other groups. The relationship o f the MTHFR 

677C/T polymorphism and smoking has been reported in previous studies in tha t the 

TT genotype of the MTHFR 677C/T polymorphism had higher frequency in smokers 

(Johnson et al., 2001; Linnebank et al., 2012). The alteration in plasma homocysteine 

may be a link between genetic factors and smoking. Linnebank et al. (2012) found 

increased levels o f plasma homocysteine in smokers as well as in the T allele carriers of 

the MTHFR 677C/T, and the smoking MTHFR 677TT carriers had the highest plasma 

homocysteine levels, the non-smoking 677CC carriers the lowest. A recent study 

reported the association of an increment o f homocysteine and higher LINE-1 

methylation (Perng et al., 2014). However, the present study did not obtain patient's 

plasma homocysteine levels.

6.3.2.6 The methylation of the HTR2C promoter sequences is gender difference 

in chronic schizophrenia patients

Females have higher levels o f DNA methylation in both regions o f the HTR2C (HTR2C - 

697G/C and Hs_/-/7Y?2C_01_PM). Taken w ith results in firs t episode schizophrenia 

patients, gender has a strong effect on the extent o f DNA methylation o f the HTR2C 

prom oter sequences, both before and after long-term antipsychotic treatm ent.

6.3.2.7 Smoking and antipsychotic treatment do not change the methylation 

levels of the HTR2C promoter sequences in chronic schizophrenia 

patients

Although tobacco smoking significantly increases global LINE-1 DNA m ethylation in this 

chronic schizophrenia cohort, it does not influence the methylation of the HTR2C 

prom oter sequences; in contrast, it is likely to decrease the methylation. These results 

suggest a gene specific influence o f smoking on DNA methylation.
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The same direction of decreased DNA methylation levels o f LINE-1 in patients receiving 

antipsychotic drugs (olanzapine or clozapine) was also observed in the HTR2C 

prom oter sequences indicating tha t not only the global DNA methylation but also the 

specific HTR2C gene was modified by antipsychotic drugs.

6.3.2.8 The methylation of the HTR2C promoter sequences is not associated 

with BMI in chronic schizophrenia patients

The methylation of the HTR2C prom oter sequences is not correlated w ith BMI in 

chronic (Belfast) schizophrenia patients. Levels o f DNA methylation of the HTR2C 

prom oter sequences of patients who have BMI obesity (>30 kg/m 2), central obesity, 

and metabolic syndrome were not d ifferent (slightly higher methylation levels) 

compared to patients who have BMI <30 kg/m 2, absence of central obesity and 

absence of metabolic syndrome. The lack o f association between HTR2C methylation 

and BMI or obesity may be due to  small sample size. Further studies in larger sample 

sizes are required to elucidate this association.

6.3.2.9 The genetic polymorphisms and the methylation of the HTR2C 

promoter sequences in chronic schizophrenia patients

The genetic polymorphisms of the HTR2C -759C/T and the leptin -2548G/A are 

associated w ith the methylation levels of the HTR2C prom oter sequences, whereas 

FTO rs9939609, MTHFR 677C/T and MTHFR 1298A/C polymorphisms are not 

associated w ith methylation levels o f the HTR2C prom oter sequences. A similar finding 

has been observed w ith firs t episode schizophrenia patients in tha t an association o f 

the T allele o f the HTR2C -759C/T polymorphism w ith higher levels o f the HTR2C 

methylation was also observed in chronic patients (at CpG-670, CpG-661, and trend at 

CpG-644). A similar direction was observed in the Hs-H77?2C_01_PM region but it did 

not reach significant levels. The result indicates the local effect o f the HTR2C -759C/T 

SNP on nearby DNA methylation rather than the distant CpG sites.

In contrast, the leptin -2548G/A polymorphism shows significant effects on the HTR2C 

prom oter methylation at CpG-698 (SNP site-697G/C) o f the HTR2C -697G/C region, and 

at the CpGl and CpG4 of the Hs_H77?2C_01_PM region. This finding is interesting 

because the leptin -2548G/A polymorphism affects the extent o f DNA m ethylation of
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the HTR2C at the SNP site and at the CpGs near the transcription start site which 

normally is associated w ith lower methylation to  in itiate transcription. An effect on 

this region indicates the role o f the leptin polymorphism on HTR2C methylation that 

might fu rther influence the transcription and expression of the 5-HT2C receptors.

Although the HTR2C -759C/T and the leptin -2548G/A polymorphisms are not 

associated w ith BMI in this chronic cohort, the effect o f these polymorphisms on DNA 

methylation of HTR2C suggests, at least, the interaction between leptin and HTR2C 

genes. However, the effect o f these tw o polymorphisms on HTR2C DNA methylation 

may not directly link to body weight or BMI.

The results o f the association of DNA methylation of the HTR2C and global LINE-1 

methylation w ith weight gain or BMI, and genetic polymorphism in firs t episode and 

chronic patients w ith schizophrenia are summarized in table 6.3.
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6.4 Effect of antipsychotic drugs on the HTR2C mRNA expression 

and DNA methylation of the HTR2C promoter sequences in 

SH-SY5Y cells

Methylation o f the HTR2C prom oter sequence near the -759C/T HTR2C SNP site as well 

as the mRNA expression of the 5-HT2C receptor were determined in a cell culture 

model to investigate the effect o f antipsychotic drug treatm ent on the expression of 

the HTR2C mRNA and DNA methylation o f the HTR2C prom oter sequence. Non

differentiated and differentiated SH-SY5Y cells were used in this study to  compare the 

effect o f drugs on undifferentiated neuroblastoma cells and the more neuron like 

differentiated cells. Antipsychotic drugs used in this study consisted o f clozapine and 

haloperidol in order to make a comparison between second-generation and first 

generation antipsychotic drugs. In addition, 5-aza-2'-deoxycytidine was also used in 

this study to investigate the effect o f inhibiting DNA methylation on mRNA expression 

of the HTR2C gene.

Decreased DNA methylation of the HTR2C prom oter sequence near the HTR2C -759C/T 

polymorphism and including the -697G/C polymorphism was observed on treatm ent 

w ith 5-aza-2'-deoxycytidine in both undifferentiated and differentiated SH-SY5Y cells. 

Treatm ent w ith this substance also showed an increase in the levels o f the HTR2C 

mRNA expression. The changes in DNA methylation and mRNA expression o f HTR2C in 

response to 5-aza-2/-deoxycytidine treatm ent suggest the suitability o f the cells for 

studying the effect o f antipsychotic drugs on DNA methylation and mRNA expression 

o f HTR2C.

Clozapine and haloperidol did not change HTR2C prom oter DNA methylation and 

mRNA expression in both undifferentiated and differentiated SH-SY5Y cells. A lack o f 

significant changes of the HTR2C prom oter DNA methylation and mRNA expression 

after treatm ent w ith clozapine may be due to  the low concentration used (2 and 10 

pM) or the very small effect o f clozapine on the HTR2C prom oter DNA methylation and 

mRNA expression. However, SH-SY5Y cells may respond to  antipsychotic drugs in a 

d ifferent way from normal mature neurons because they are derived from  

neuroblastoma cells.

262



The lack o f haloperidol influence on the HTR2C prom oter DNA methylation and mRNA 

expression may be due to the low binding affin ity o f the haloperidol for the 5-HT2C 

receptors resulting in a lack of alteration in any cellular signalling including the DNA 

methylation of the HTR2C prom oter and mRNA expression observed in the present 

study.

6.5 Effect of antipsychotic drugs on leptin secretion and the Htr2c 

mRNA expression in 3T3-L1 adipocytes

The present study is the firs t study to investigate the effect o f antipsychotic drugs 

including clozapine, risperidone, haloperidol, and SB 242084 which is a selective 5- 

HT2C receptor antagonist, on leptin secretion from adipocytes, although there is one 

previous study tha t reported tha t clozapine treatm ent did not influence leptin 

secretion in human adipocytes (Hauner et al., 2003). This study did not observe any 

change in leptin levels in the culture medium o f the 3T3-L1 adipocytes exposed to 

antipsychotic drugs compared to control cells. The concentrations of the drugs used in 

this study were the therapeutic plasma concentrations and about a 10-fold higher 

concentration. The lack o f an effect of antipsychotics on leptin secretion indicates tha t 

drugs may induce weight gain by acting at central pathways rather than peripheral 

action. Otherwise, the low concentrations of antipsychotic drugs used in this study 

may be the cause of no significant alteration, or the drugs may have effects on other 

receptors that might have antagonistic actions and result in unchanged leptin levels.

A previous study has reported an increased expression o f the Htr2c mRNA in 3T3-L1 

adipocytes during adipocyte differentiation and used these cells to investigate the role 

of this receptor in adipocyte differentiation (Kinoshita et al., 2010). The measurable 

mRNA expression of the Htr2c in the differentiated 3T3-L1 adipocytes in this study may 

provide a cellular model fo r investigating the effect o f antipsychotic drugs on its 

expression. This study did not find any change of the Htr2c mRNA expression in 3T3-L1 

adipocytes after treatm ent w ith antipsychotic drugs compared to  a control group. No 

influence of antipsychotic drugs on mRNA expression o f the Htr2c in adipocytes 

supports the theory o f central influence of antipsychotic drugs in inducing weight gain 

rather than the peripheral action. However, a change may be visible if cells are treated 

w ith very high concentrations of antipsychotic drugs.
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6.6 Future studies

Further studies need to be carried out to  confirm the findings o f the present study and 

to  establish the role o f genetic and epigenetic factors in antipsychotic drug-induced 

weight gain in patients w ith schizophrenia. The novel genetic risk factors for 

antipsychotic drug-induced weight gain and replicates o f the findings o f the previously 

identified genetic risk factors still need further investigation.

The work in the area of DNA methylation in this study may extend into o ther genes 

relating to antipsychotic drug-induced weight gain; fo r example: the MC4R, ADR A2A, 

HTR2A, MTHFR and FTO polymorphisms which are the SNPs associated w ith 

antipsychotic drug-induced weight gain in the present work.

Further studies in cell culture could be carried out using SH-SY5Y human 

neuroblastoma cells to confirm the findings in this study and to investigate the role of 

antipsychotic treatm ent on DNA methylation and also the expression o f the HTR2C 

gene or other genes.

The differentiated mouse 3T3-L1 adipocyte cells provide a good model fo r studying the 

leptin secretion and expression of the Htr2c transcripts. Further studies need to 

confirm  the effect o f antipsychotic drugs on leptin and the Htr2c mRNA expression by 

testing at the higher concentrations of antipsychotic drugs to point out the role o f the 

5-HT2C receptors in the regulation o f leptin secretion.

6.7 General conclusions

The key novel findings of this study include:

•  This study has identified a genetic risk factor fo r antipsychotic drug-induced 

weight gain in first episode schizophrenia. The T allele o f the MTHFR 677C/T 

polymorphism was a protective allele fo r antipsychotic drug-induced weight 

gain. The MC4R rs489693 was also associated w ith weight gain in firs t episode 

Chinese Han schizophrenia patients.

•  There are interactions o f drug x genetic polymorphism of HTR2A and ADRA2A

and these polymorphisms were associated w ith BMI gain in the risperidone

subgroup of first episode Chinese Han schizophrenia patients.
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•  The FTO rs9939609 was previously reported to be associated w ith BMI in 

chronic (Belfast) schizophrenia patients in which the A allele carries had higher 

BMI than the TT genotype in this cohort.

•  Global LINE-1 methylation was not associated w ith BMI in chronic (Belfast) 

patients. In addition, the FTO rs9939609 and FITR2C -759C/T polymorphisms 

are not associated w ith global LINE-1 DNA methylation. However, the MTHFR 

677C/T polymorphism was associated w ith the global LINE-1 DNA methylation 

(CpG3) in chronic Belfast schizophrenia patients.

•  The HTR2C prom oter DNA methylation showed a gender difference (females 

had higher methylation levels than males). The methylation of HTR2C also 

showed regional differences (the methylation levels of CpG sites located near 

the transcription start site have lower than those located far away from  the 

transcription start site). The HTR2C SNP was more likely to  have an effect on 

the extent o f DNA methylation o f the CpG sites tha t are located near to  the SNP 

site than the CpG sites that are located at distance from the SNP site.

• The association o f the T allele of the HTR2C -759C/T polymorphism and the 

higher levels o f the HTR2C prom oter DNA methylation in the firs t episode 

Chinese Han cohort and chronic (Belfast) patients may explain previous findings 

tha t the T allele has lower prom oter activity (Hill and Reynolds, 2007). 

Therefore, this finding may add more evidence to the mechanistic link between 

the polymorphism and antipsychotic drug-induced weight gain.

•  FTO rs9939609 was associated w ith HTR2C prom oter methylation (-697G/C 

region), especially in first episode Spanish male patients w ith  schizophrenia; 

however, no association between the FTO polymorphism and HTR2C prom oter 

methylation was observed in chronic (Belfast) schizophrenia patients.

•  The antipsychotic drugs, clozapine and haloperidol treatm ent did not have an 

effect on the HTR2C prom oter DNA methylation and mRNA expression in 

human neuroblastoma SH-SY5Y cells. Whereas treatm ent w ith 5-aza-2'- 

deoxycytidine inhibited DNA methylation of the HTR2C prom oter sequence and 

increased the HTR2C mRNA expression.

• The antipsychotic drugs including clozapine, risperidone, haloperidol treatm ent 

and the 5-HT2C receptor antagonist, SB 242084 treatm ent did not have any
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effect on Htr2c mRNA expression and leptin secretion from mouse 3T3-L1 

adipocyte cells.

The genetic factors and epigenetic factors implicated in antipsychotic drug-induced 

weight gain may provide genetic and epigenetic markers for weight gain following 

antipsychotic drug medication. This study provides more understanding of the 

mechanism underlying antipsychotic drug-induced weight gain. These genetic and 

epigenetic factors may be useful in the future for designing clinical medications such as 

antipsychotic drug treatment that is suitable for each individual (personalised 

medicine) in order to gain the most therapeutic efficacy and least adverse side effects.
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Appendix

1. Raw data analyses all cases of Chinese Han schizophrenia patients

Table 1: Methylation levels at 5 CpGs in the HTR2C -697G/C promoter sequences 

comparing between two subgroups of weight increase in Chinese Han patients

HTR2C -697G/C 
promoter region

CpGl
-698

CpG2
-691

CpG3
-670

CpG4
-661

CpG5
-644

Weight increase>7% 
(n=82)

20.5117.81 20.3915.74 19.1216.07 21.6016.88 17.6613.99

Weight increase<7% 
(n=100)

22.5919.82 21.1915.70 20.6216.13 23.2816.44 19.8015.18

p value 0.176 0.424 0.355 0.308 0.004
Data is expressed as mean+SD.

Table 2: Methylation levels at 4 CpGs in the Hs_H77?2C_01_PM sequences comparing 

between two subgroups of weight increase in Chinese Han patients

Hs_H77?2C_01_PM CpGl CpG2 CpG3 CpG4
Weight increase>7% 
(n=82)

7.4814.88 7.3813.71 9.5214.84 5.5012.87

Weight increase<7% 
(n=100)

7.8813.70 8.3613.74 10.8614.52 6.2613.13

p value 0.187 0.101 0.050 0.126
Data is expressed as mean±SD.

Table 3: Methylation levels at 5 CpGs in the HTR2C -697G/C promoter sequences 

comparing between two subgroups of the HTR2C -759C/T genotype in Chinese Han 

patients
HTR2C CpGl CpG2 CpG3 CpG4 CpG5
-759C/T -698 -691 -670 -661 -644

C/CC (n=141) 22.1518.78 20.4115.45 19.2815.57 22.1416.61 18.2314.63

T/CT/TT (n=38) 19.5319.72 21.9916.26 22.5517.34 23.9916.67 21.1714.81

p value 0.017 0.370 0.010 0.362 0.002
Data is expressed as mean+SD.

Table 4: Methylation levels at 4 CpGs in the Hs_H77?2C_01_PM sequences comparing 

between two subgroups of the HTR2C -759C/T genotype in Chinese Han patients

HTR2C -759C/T CpGl CpG2 CpG3 CpG4

C/CC (n=141) 7.3713.89 7.7013.62 9.8614.58 5.7012.85

T/CT/TT (n=38) 8.2413.72 8.4813.75 11.8214.62 6.6713.38

p value 0.116 0.345 0.017 0.063
Data is expressed as mean+SD.
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2. Raw data analyses all cases of Spanish schizophrenia patients

Table 5: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups o f w eight increase in Spanish patients

HTR2C -697G/C 
promoter region

CpGl
-698

CpG2
-691

CpG3
-670

CpG4
-661

CpG5
-644

Weight increase>7% 
(n=43)

18.79±16.90 15.0019.31 17.37111.54 19.05116.33 15.6719.15

Weight increase<7% 
(n=23)

20.17117.54 17.61111.38 18.09112.87 24.87120.04 18.09110.04

p value 0.666 0.620 0.651 0.261 0.538
Data is expressed as mean+SD.

Table 6: M ethyla tion  levels at 4 CpGs in the Hs_H77?2C_01_PM sequences comparing 

between tw o  subgroups o f w eight increase in Spanish patients

Hs_H77?2C_01_PM CpGl CpG2 CpG3 CpG4
Weight increase>7% 
(n=43)

5.2812.80 5.7113.56 7.6514.26 4.1911.97

Weight increase<7% 
(n=23)

7.3614.46 6.8713.16 9.1114.02 4.7712.24

p value 0.064 0.172 0.043 0.949
Data is expressed as mean+SD.

Table 7: M ethyla tion  levels at 5 CpGs in the HTR2C -697G/C prom oter sequences 

comparing between tw o  subgroups of the FTO rs9939609 genotype in Spanish 

patients.

FTO CpGl CpG2 CpG3 CpG4 CpG5
rs9939609 -698 -691 -670 -661 -644

AA (n=14) 30.86116.35 21.0718.67 21.64112.09 23.21115.21 19.0019.43

AT/TT (n=56) 16.16115.78 14.52110.11 16.29112.04 20.21118.08 15.7319.67

p value 0.004 0.001 0.007 0.325 0.072
Data is expressed as mean±SD.
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Abstract

Genetic variants of the methylenetetrahydrofolate reductase (MTHFR) gene involved in homocysteine 
metabolism may be important predictors of antipsychotic drug-induced weight gain (AIWG). We tested whether 
two functional MTHFR polymorphisms are related to AIWG. Weight gain was studied in two cohorts of 
first-episode, initially drug-naive schizophrenia patients; Chinese Han (n = 182) and Spanish Caucasians (n =72) 
receiving antipsychotics for 10 wk and 3 months respectively. Blood DNA was genotyped for 677C/T and 
1298A/C MTHFR polymorphisms. Patients with the 677 CC genotype had a significantly greater increase in 
BMI compared to T-allele carriers in both Chinese (p = 0.012) and Spanish (p = 0.017) samples. The 677C/T 
MTHFR polymorphism showed an additive effect, but no significant interaction, with the -759C/T HTR2C 
polymorphism previously associated with AIWG.

These results suggest that the 677C/T MTHFR polymorphism might, along with the -759C/T HTR2C poly
morphism and other genetic factors, provide a useful marker for the important and limiting side effect o f AIWG.
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First published online 13 November 2013

Key words: Antipsychotic, genotype, MTHFR polymorphism, schizophrenia, weight gain.
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In troduction

Schizophrenia is a severe, complex and chronic disorder, 
which for many patients is inadequately treated. A n ti
psychotic drugs can, in many individuals, relieve the 

positive psychotic symptoms but have various adverse 

effects; notably several of the drugs can induce a substan
tial weight gain in susceptible individuals. This weight 
gain may not only increase treatment noncompliance, 
but also affect m orbidity from metabolic consequences 

including lipid abnormalities, insulin resistance and dia
betes mellitus (Henderson et al., 2000). Patients receiving 

antipsychotic treatment can develop metabolic abnor
malities with increased risk of cardiovascular disease 
and m ortality (Casey et al., 2004; De Hert et al., 2009).

Susceptibility to antipsychotic-induced weight gain 

varies substantially between individuals in ways that can
not be fully explained by differences between drug effects 

or other environm ental factors. Thus genetic influences

Address for correspondence: U. Srisawat, Sheffield Hallam University, 
Sheffield SI 1WB, UK.
Tel.: +44 774 173 9517 Fax: +44 (0)114 225 4449 
Email: labboom@hotmail.coni

are strongly implicated, and associations between  

many genetic polymorphism s and antipsychotic-induced  

weight gain have been reported. The most consistently 

reported genetic factors involved in antipsychotic- 
induced weight gain include polym orphism s in genes 

for 5-hydroxytryptam ine 2C (5-HT2C), 5-H T2A , adrener
gic alpha 2A and melanocortin 4 receptors, as well as 

leptin and fat mass and obesity associated (FTO ) genes 

(Reynolds, 2012).
Recently, genetic variants of the m ethylenetetra

hydrofolate reductase (M T H FR ) gene have been pro
posed as potential predictors for antipsychotic-induced  

metabolic side effects (Kuzm an and Muller, 2012). 
M TH FR  exerts an im portant role in folate and hom o
cysteine metabolism by catalysing the reduction of
5,10-m ethylenetetrehydrofolate to 5-m ethylenetetrahy- 
drofolate (5-M TH F), which is used in m ethionine syn
thesis from homocysteine. The m ethionine is further 

converted to S-adenosylmethionine (S A M ), which is a 

major methyl donor in a wide variety of enzym atic pro
cesses including the methylation of D N A . M T H F R  de
ficiency can increase serum homocysteine, whereas the 

decrease in 5 -M TH F  and SAM  causes deficits in D N A  

methylation, D N A  synthesis and repair, and may
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predispose to neurodevelopmental and oncogenic pro
cesses, resulting in the development o f many disorders 

including cardiovascular disease, renal failure, cancer 

and congenital abnormalities (Ueland et al., 2001).
The association of M TH FR  polymorphism s with meta

bolic syndrome has been reported in the general popu
lation. Obesity has been associated with M T H F R  

1298A/C (Terruzzi et al., 2007) and 677C/T genotypes 

(Lewis et al., 2006). Carriage of the 677T allele is asso
ciated with insulin resistance (Chen et al., 2010; 
Lunegova et al., 2011). Association of the 677T allele 

with central obesity, hypertrig lyceridem ia and low levels 

of high-density lipoprotein cholesterol (H D L-C ) was also 
reported in the latter study (Lunegova et al., 2011). A  

replicated study reported that the 677T allele but not 
the 1298A/C polym orphism  of M TH FR  was associated 
with a greater risk o f developing metabolic syndrome 

and the T T  genotype was associated with risk of insulin  

resistance with greater central adiposity induced by anti
psychotic treatment (Ellingrod et al., 2008, 2012). Others 

have reported the association of metabolic syndrome in 

schizophrenia with the 1298A/C polym orphism  in 518 

Caucasian patients (van Winkel et al., 2010a). These 

authors also reported that the 1298C variant was asso
ciated with an increased weight and impaired glucose 

tolerance in 104 Caucasian patients who received antipsy
chotic treatment for 3 months (van Winkel et al., 2010b). 
In the present study, we examined the association of 
the M TH FR  677C/T and 1298A/C polym orphism s w ith  

antipsychotic-induced weight gain in first-episode 
drug-naive patients with schizophrenia.

M ethods  

Study p o p u la t io n

Two cohorts of first-episode, initially antipsychotic 
drug-naive patients with schizophrenia receiving 

treatment according to normal clinical practice were 
studied; one main sample of Chinese Han (n = 182) and 

a replication sample of Spanish Caucasians (n = 72). A ll 
patients gave written inform ed consent to the procedure 

of the study, which was approved by local ethical 
committees. Height and weight to determ ined body- 
mass index (B M I) were measured on initiation of anti
psychotic drug treatment and after 8 or 10 wk (Chinese 

cohort) or 3 months (Spanish cohort) and weight gain 

was determ ined by change in B M I over the treatment 
period. Initial antipsychotic drug treatment for Chinese 

Han patients consisted prim arily of chlorpromazine  

(n = 60) risperidone (n = 114); eight patients received cloza
pine, fluphenazine or sulpiride. Patients in the Spanish 

cohort received p rim arily  risperidone (n = 21) or olanza
pine (n = 22)and two received both; others had quetiapine 

(n = 10), haloperidol (n = 8) or ziprasidone (n = 6) with three 

not receiving antipsychotics. In this group, as with a sub
sample of the Chinese cohort (Reynolds et al., 2002),

association of the -759C/T polym orphism  of H TR 2C  

with weight gain had previously been identified  

(Templeman et al., 2005). These results were also included  

in a combined analysis with the M TH F R  findings.

G enotyp ing  o f M TH FR  p o lym o rp h ism s

Genomic deoxyribonucleic acid (D N A ) was isolated from  
blood using standard techniques and was genotyped for 
M TH FR  677C/T (rs l801133) and 1298A/C (rs l801131) 

using TaqM an00 SNP genotyping assays: assay ID
C_1202883_20 and C_850486_20, respectively (A pplied  
Biosystems, USA). The PCR conditions consisted of initial 
denaturation at 95 °C for lOmin, followed by 40 cycles o f 
95 °C for 15 s and 60 °C for 1 min. Assays were run on a 

Step One Plus Real-Time PCR System (A pp lied  
Biosystems, USA).

S ta t is t ic a l a n a ly s is

A ll statistical analysis o f results was perform ed using  

SPSS version 18.0. Data were expressed as mean±s.D. 
Stepwise linear regression was used to determ ine the po
tential confounding effects of baseline B M I and age on 

antipsychotic-induced weight gain. Analysis of variance 

was used to determ ine the association between M T H F R  

genotypes and weight gain. Statistical significance was 

assumed for p values less than 0.05. The main Chinese co
hort of 182 subjects had approxim ately 90% pow er to 

identify a significant genotype difference for a m edium  
effect size of 0.5.

Results

C lin ic a l ch a ra c te r is tic s  and genotype resu lts

The 182 (83 men, 99 w om en) Chinese Han patients had a 

mean age 26.24+7.35 years. The genotype distribution for 

677C/T M TH FR  was as follows: CC (n = 54), T T  (n = 28), 
and CT (n = 94), six samples failing genotyping, and for 

1298A/C was A A  (n=114), CC (n = 5), and AC (n = 56) 
with seven samples failing genotyping. On regression 

analyses, baseline B M I but not age had a significant con
founding effect on weight gain after 8 -10  wk treatm ent 
(F = 2 4 .189, p< 0.001), whereas age had a significant con
founding effect on baseline B M I (F=  11.036, p = 0.001). 
Therefore, the subsequent analyses were perform ed  

with adjustment for age or baseline B M I as covariates.
The second study sample of 72 (53 men, 19 w om en) 

Spanish patients had a mean age of 25.35 ±6.80 years. 
The 677C/T genotype distribution was CC (n = 20), TT  

(n = 13), and CT (n = 36) and the 1298A/C  genotypes 

were A A  (n=45), CC (n = 3 ), and AC (n = 21) with three 

samples failing genotyping. On regression analysis, age 

but not baseline B M I had a significant confounding effect 
on weight gain at 3 months (F = 7.026, p = 0.010). Therefore, 
the subsequent analysis was perform ed with adjustment 
for age as a covariate.
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Table 1. Sociodemographics, baseline body mass index (BMI) and change in BMI among methylenetetrahydrofolate reductase (M THFR) 
677C/T and 1298A/C genotypes in Spanish and Chinese Han samples. Data are expressed as Mean+s.D.

MTHFR 677C/T genotype MTHFR 1298A/C genotype

CC CT TT p* AA AC CC p*

Chinese Han sample

inIIc n=94 n=28 IIc n = 56 n=5
Age 25.04 ±6.84 26.21+7.18 28.45±8.60 0.136 26.54 ±7.77 25.61 ±6.61 27.20±5.54 0.710
Gender M/F (%male) 25/29 (46.3%) 57/65 (46.7%) 13/15 (46.4%) 0.998 53/61 (46.5%) 24/32 (42.9%) 4/1 (80%) 0.279
Baseline BMI (kg/m2) 20.99+2.69 21.43+2.77 21.92±3.53 0.607 21.47±3.06 21.20±2.59 21.78± 1.51 0.895
Change BM I (kg/m2) 1.58 + 1.25 0.92±1.15 1.43 + 1.10 0.003 1.27 ±1.24 1.04 ±1.18 1.63 ±0.94 0.228

Spanish sample n=20 n=36 n = 13 3 II -£■ n=21 n=3
Age 27.60+8.34 24.25+5.69 23.92+6.96 0.168 25.36±7.36 24.76±6.38 25.00 ±1.73 0.949
Gender M/F (%male) 14/6 (70.0%) 29/7 (80.6%) 9/4(69.2%) 0.578 32/13 (71.1%) 17/4 (81%) 3/0(100%) 0.412
Baseline BMI (kg/m2) 21.44+3.78 22.06+3.70 22.29+4.01 0.780 21.92±3.62 21.99±4.16 21.45±3.76 0.973
Change BMI (kg/m2) 2.86 + 1.53 2.09+1.44 1.85 + 1.81 0.049 2.18 ± 1.66 2.46 ±1.52 2.03±0.99 0.807
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Fig. 1. The association between methylenetetrahydrofolate reductase (MTHFR) 677C/T genotype and weight gain for Spanish 
(a) and Chinese Han (b) schizophrenia patients. Data are expressed as mean+s.E.M. BMI: body mass index.

The two polym orph ism s were found to be in strong  
linkage d isequilibrium  (D '= 0.866 and 1.00, 1^=0.127 and  
0.198 in Chinese and Spanish groups respectively) in  
which the 677T allele was almost exclusively carried 
with the 1298A allele.

A sso c ia tio n  o f  MTHFR 677C/T and 1298A/C  
p o ly m o rp h ism s  w ith  weight gain

As sh ow n  in Table 1, the baseline BMI, age, and gender  
distribution o f  both sam ples were not significantly differ
ent betw een  genotypes o f  the 677C/T MTHFR p o ly 
m orphism . The CC gen otyp e  had greater changes in 

BMI than T allele carriers: 1.58 + 1.25 vs. 1.04 +1.16 k g /m 2 

in Chinese (p= 0.012) and 2.86 + 1.53 vs. 2.02 +1.54 kg/m 2 
in the Spanish sample (p=0.017) (Fig. 1).

D iv id ing  the Spanish cohort into patients who received  
or did not receive o lanzapine, and the Chinese cohort into  
those receiving either risperidone or chlorprom azine, 
resulted in the absence o f a significant drug x MTHFR  
gen otyp e  interaction.

The baseline BMI, age, and gender distribution o f both  
study populations were not significantly associated w ith

the 1298A/C MTHFR po lym orph ism . Nor were the  
changes in BMI o f either study p op u lation  significantly  
different betw een  1298A/C AA g en o ty p e  and C carriers: 
1.27+1.24 vs. 1.08 + 1.17 k g /m 2 in Chinese Han sam ples  
(p = 0.242) and 2.18 + 1.66 vs. 2.40 +1.45 k g /m 2 in Spanish  
sam ples (p = 0.621) respectively.

Gene-gene in tera c tio n

Previous findings in these two cohorts (Reynolds et al., 
2002; T em plem an et al., 2005) sh o w ed  that the T allele o f  
the 5-HT2C receptor gene (HTR2C) -759C/T polym orp h 
ism had a protective effect against an tipsych otic-ind uced  
weight gain. A ssociation  o f  this p o ly m o rp h ism  w ith  
changes in BMI were as follows: in the Chinese cohort T  

carriers 0.71 + 1.11 k g /m 2 (n = 38), C/CC gen o ty p e  1 .33 +  
1.21 kg/m 2 (n = 141) p=0.004; in the Spanish cohort T car
riers 1.24 ± 1.46 kg/m 2 (n = 16), C/CC g en otyp e  2 .4 8  + 1.54 

kg/m 2 (n = 50) p = 0.012. The relationsh ip  b etw een  the  
effects o f the HTR2C -759C/T and the MTHFR 677C/T  
polym orphism s was investigated . A n alysin g  the associ
ation o f weight gain with both polym orph ism s together  
in each cohort, no sign ifican t interaction b e tw een  the
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polymorphism s was detected but a significant overall 
effect was observed (p = 0.001 in the Chinese sample; 
p = 0.019 in the Spanish sample), indicating an additive  

effect of the two polymorphisms. Thus carriage of two  

risk factors (HTR2C C/CC genotype and M TH FR  677 

CC genotype) was associated with mean gains of 3.23 

and 1.81 kg /m 2 in Spanish (n = 14) and Chinese (n=41) 
cohorts respectively; equivalent values for subjects 
carrying neither risk factor were 1.35 (n=10) and 0.63 

(n = 25) kg /m 2.

Discussion

This study indicated that M TH FR  677C/T polymorphism  

is associated with antipsychotic-induced weight gain 

in first-episode patients with schizophrenia. Individuals  

carrying the T  allele showed less weight gain compared 

to the common CC genotype after 8-10 wk or 3 m onths’ 
treatment with antipsychotic drugs. This finding, 
observed in two patient cohorts of different ethnicity, 
indicates the effect to be a robust and reproducible one. 
The study had 90% pow er to identify a m edium  (0.50) 
effect size in the main cohort; previous studies of associ
ation of the well-replicated -759C/T polymorphism of 
HTR2C with antipsychotic drug-induced weight gain in 

a subgroup of the Chinese sample and in the Spanish 

sample have demonstrated substantially larger effect 
sizes of 0.90 and 0.86 respectively (Reynolds et al., 2002; 
Tem plem an et al., 2005). In order for pharmacogenetic 

risk factors to explain a good proportion of the variance 

and thereby to have substantial predictive value, strong 

effects are needed. In this we are aided substantially by 

the cohorts studied here; each only included first-episode 

patients who had never previously received antipsychotic 

drug treatment. This eliminates much of the variance 

associated with prior drug treatment, which can induce 

significant weight gain w ith in  a few weeks of initial treat
ment (Zhang et al., 2004).

The absence of an effect in the 1298A/C polym orphism , 
despite it being in strong linkage disequilibrium  (high D ' 
values) with the significantly associated 677 genotype, 
presumably relates to the large differences in allele fre
quency between the two polymorphisms, as reflected by 

low r2 values.
In two previous cross-sectional studies the 677C/T  

polym orphism  is associated with metabolic syndrome 

following antipsychotic drug treatment (Ellingrod et al., 
2008, 2012), although these authors find the 677T allele 

to be a risk factor, whereas we find a consistent effect of 
the 677T allele in protecting against antipsychotic 

drug-induced weight gain. This may well indicate the d if
ference between effects on initial weight gain and its long
term consequences, in which differing pharmacogenetic 

influences are apparent (Reynolds et al., 2013). In another 

study the 1298A/C but not 677C/T polym orphism  was 

associated with metabolic syndrome in schizophrenia 

(van Winkel et al., 2010a). The one previous longitudinal

study of changes in weight and metabolic parameters fo l
lowing 3 months’ treatment with second-generation anti
psychotics also found an association with the 1298A/C  

but not 677C/T polym orphism  (van Winkel et al., 
2010b). This study differed from the present investigation 

of first-episode drug-naive patients in that weight but 
not B M I was measured, and the 104 patients were older 

(mean 31.3 yr) with first admission on average over 6yr 
previously; thus prior treatment may well have con
founded subsequent weight gain. How ever, their 

finding that the 1298A allele is associated with less weight 
gain is not inconsistent with our finding given the close 

linkage disequilibrium between the two polymorphism s  

studied. As discussed by van Winkel et al. (2010b), 
there are no clinical or ethnic factors identified that may 

be responsible for the discrepancies between these 

findings, although it is notable that most studies were 

not powered to identify significant differences between 

the effects of the two closely linked polymorphism s. 
Nevertheless these various reports all indicate that func
tional genetic variation in M TH FR  can influence antipsy
chotic drug-induced weight gain.

It is conceivable that pharmacogenetic associations 
such as that identified here may vary depending on the 

treatment regime. Different drugs may have differing  

mechanisms underlying their effect on body weight -  cer
tainly the greater effect of olanzapine over risperidone 

and several other antipsychotics supports this -  and
these pharmacological mechanisms may be differentially  

influenced by genetic polymorphism s. Our study was 

not powered to subdivide samples into treatment sub
groups; however, further work needs to address the poss
ible drug specificity of such pharmacogenetic findings.

There was no significant interaction between -75 9 C /T  

of HTR2C and 677C/T of M TH FR  on antipsychotic- 
induced weight gain, indicating that both polym orphism s  

exert independent influences on this side effect. H ow ever, 
the gene-gene analysis resulted in substantial increases in 

statistical significance, demonstrating an additive effect of 
the two polymorphisms. Clearly there are other genetic 

influences that are likely to contribute to determ ining
initial weight gain associated with antipsychotic  drug  

treatment, including polymorphism s for genes for 

leptin, melanocortin receptor 4, adrenoreceptor alpha2A  

and g-protein beta3 among probably many others 

(Reynolds, 2012).
The exact mechanism by which M TH FR  polym orph

isms might contribute to determ ining antipsychotic 

drug-induced weight gain is unclear. Both variant alleles 

of 677C/T and 1298A/C M TH FR  polymorphisms cause 

decreased enzyme activity (Weisberg et al., 1998),
although it is not easy to distinguish effects of tw o
closely linked polymorphism s in vivo. M TH FR  is an im 
portant enzym e in one-carbon metabolism and, via its 

role in D N A  synthesis and methylation (Sugden, 2006), 
may influence gene expression (Jirtle and Skinner, 2007); 
such epigenetic effects could be involved in antipsychotic
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drug-induced weight gain. D im inished levels o f genomic 

D N A  methylation (Stem et al., 2000) and gene-specific 

D N A  m ethylation (Burghardt et al., 2012) have been 

reported to be associated with the 677TT genotype. It is 

therefore possible that decreased M TH FR  enzym e activity 

in 677TT genotype results in decreased D N A  methylation  

of genes involved in body weight regulation.
D N A  methylation status is influenced by gene-nutri

ent interaction. It has been suggested that the M TH F R  

677TT genotype affects D N A  m ethylation status through  

an interaction with folate status (Friso and Choi, 2002). 
These authors found that genomic D N A  methylation in 

peripheral blood mononuclear cells was directly corre
lated with folate status, inversely correlated with homo
cysteine levels, and only 677TT subjects with low folate 

accounted for decreased D N A  m ethylation (Friso et a l,  
2002). Thus folate status in addition to the 677C/T  

M TH FR  polym orphism  might modulate D N A  methyla
tion of genes relating to the regulation of food intake, 
energy expenditure or body weight regulation, and thus 

could be an unexplored factor contributing to the vari
ance in this and previous studies.

In conclusion, this present study indicates the associ
ation of the M TH FR  677C/T single polym orphism  w ith  

weight gain following initial antipsychotic drug treat
ment in first-episode psychotic patients. Furthermore, 
the effect o f the 677T allele appears to have a protective 

effect additional to that o f the well-established H TR 2C  

-759T allele against antipsychotic-induced weight gain. 
These two polymorphisms, in addition to several other 

possible genetic factors, might be valuable as pharmaco- 
genetic markers of this important and limiting side effect.
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Abstract

Individual variability and inadequate response of negative symptoms are major lim itations of antipsychotic treat
ment in schizophrenia. A functional polymorphism, rs6295, in the 5-HT1 A-receptor gene (HTR1A) contributes to 
this variability in negative symptom response. The DNA sequence containing rs6295 is rich in cytosine methyla
tion (CpG) sites; CpG methylation is an epigenetic factor that, like rs6295, can modify transcriptional control. To
investigate whether DNA methylation influences response to antipsychotic treatment, we determined methyla
tion at CpG sites close to rs6295 in DNA from 82 Chinese subjects with a first psychotic episode. Methylation o f
one CpG site w ith in  a recognition sequence for HES transcriptional repressors was found to correlate w ith
changes in total PANSS score (p = 0.006)and negative factor sub-score (p<0.001) following 10 wk initial antipsy
chotic treatment, as well as with baseline negative factor score (p = 0.019); the effect on symptom change remained 
after correction for this baseline score. An effect of rs6295 on negative symptom response was not seen in this 
sample, which may not have provided sufficient power for the pharmacogenetic association. These prelim inary 
results indicate that epigenetic modification of transcriptional regulation by specific cytosine methylation may 
modulate HTR1A expression, resulting in effects on emotional dysfunction and negative symptom response 
to antipsychotic treatment.
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Introduction

Response to antipsychotic drug treatment shows substan
tial inter-individual variability, as well as a generally 
poorer im provem ent of negative than positive symptoms. 
In pharmacogenetic studies addressing this differential 
response, a replicated finding is the association of nega
tive symptom response with the — 1019C/G polym orph
ism (rs6295) in the 5-HT1 A-receptor gene (H TR 1A ) 
(Reynolds et al., 2006; Wang et al., 2008; Mossner et al.,
2009). This polym orphism , first found to be associated 

with depression and suicide (Lemonde et al., 2003), is 

also associated with response to antidepressant drugs 

(Lemonde et al., 2004; Yevtushenko et al., 2010). It is 
found to influence gene expression; the risk allele (G) dis
rupts the repressor activity of the DEAF1, HES1 and 

HES5 transcription factors, resulting in overexpression 

of the presynaptic 5 -H T1 A-receptor (Lemonde et al., 
2003; Jacobsen et al., 2008).
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M ethylation of D N A  sequences is another established 
influence on transcription factor binding (Sharma et al.,
2010). Cytosine residues at CpG dinucleotide sequences 

are sites of D N A  methylation, one of several epigenetic 

mechanisms for the m odulation of D N A  function. It is 

notable that rs6295 is found w ith in  an island of 13 CpG  

sites in the HTR1A prom oter sequence; these adjacent 
m ethylation sites could conceivably contribute, along 

with rs6295, to m odifying the binding of transcription fac
tors such as DEAF1. We hypothesised that the percentage 

m ethylation of one or more CpG sites close to the rs6295 

polym orphism  in the prom oter sequence of H TR 1A  may 

also influence symptom response to treatm ent with anti
psychotic drugs.

M ethod

Chinese Han inpatients presenting with a first psychotic 

episode (45 male, 37 female; mean age 25.8 + 7.1 years) 
participated in our study. All patients met criteria for a 

diagnosis of schizophrenia according to the Diagnostic 

and Statistical M anual of the Am erican Psychiatric 
Association 4th Edition (D S M -IV ). Exclusion criteria
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included  prior history o f m edication with antipsychotics, 
antidepressants or mood stabilisers, co-morbid D SM -IV  
diagn osis o f substance abuse or dependence or other  
physical illness. Study subjects were treated according  
to standard clinical practice; initial treatm ent was w ith  
chlorprom azine (n= 57), risperidone (n = 18), clozapine  
(n = 4) or fluphenazine (n = 3) Drug treatm ent w as  
rev iew ed  after approxim ately 6 wk and m odified  as 
needed; this resulted in a further 26 subjects receiving  
clozapine: 21 from the chlorprom azine group and 5
from the risperidone group. A n ticholinergic and benzo
diazep ine co-m edication were adm inistered as required  
for the alleviation o f  extrapyram idal sy m p to m s and  
need for sedation, respectively. The Positive and  
N egative  Syndrom e Scale (PANSS) was used for assess
ment and evaluation  o f p sych opathology and therapeutic  
response to antipsychotic treatm ent. All patients were  
assessed  on the day o f  adm ission  by a psychiatrist trained  
in the use o f  PANSS and subsequently reassessed after 
10 wk o f antipsychotic treatment. PANSS items w ere  
d iv id ed  into five sym ptom  factors according to the con
sensus scheme o f W allw ork et al. (2012). The five factors 
are defined by the following PANSS items: Positive  
Factor: P I, P3, P5, G9; N egative  Factor: N l,  N2, N3, N4, 
N6, G7; D isorganised/C oncrete Factor: P2, N5, G il ;  
Excited Factor: P4, P7, G8, G14; D epressed Factor: G2, 
G3, G6. The Nanjing Brain H ospital Ethical C om m ittee  
approved the study, and all patients gave written  
inform ed consent.

Genomic DNA, extracted from blood sam ples taken  
on the day o f  adm ission  prior to initiation o f  drug treat
ment using a standard ch loroform -phenol m ethod, w as 
bisu lfite-m odified  to convert unm ethylated  cytosine resi
dues to uracil using the EpiTect Fast Bisulfite Kit (UK) 
with a calculated mean conversion o f 99%. For analysis, 
a sequence containing 13 CpGs in the HTR1A prom oter  
(GRCh37.plO, C hrom osom e 5 bases 6 3 2 5 8 5 2 5 -6 3 2 5 8  
684) including the rs6295 C/G polym orphism , (w hich  
enables/rem oves CpG12) was identified  and am plified  
by PCR using prim ers, including a biotinylated reverse  
prim er, as follows: 5'-AGTAAGGTTGGATTGTTAGA- 
TGA-3' (forward) and 5'-[btn]CCTAAATCAATCTC- 
CCAATTATTACTAA-3' (reverse) (Eurofins M W G  
Operon). PCR reaction was carried out with 20 ng  
bisulfite-converted DN A using the PyroM ark PCR kit 
(UK) in a final volum e o f 25 pi containing 12.5 pi lx  Pyro
Mark PCR Master Mix, 2.5 pi lx  CoralLoad Concentrate,
1 pi o f each prim er in a final concentration o f  0.05 p M , 

7 pi RNase-free water. A m plification conditions were as 
follows: 95°C for 15 min, 45 cycles o f  94°C for 30 s, 56°C  
for 30 s and 72°C for 30 s, finally, 72°C for 10 min. M ethy
lation status o f  the sequence w ithin  the CpG island  
around rs6295, containing sites CpG9-13 (Fig. la), was de
term ined with a PyroM ark Q24 pyrosequencer (Q iagen  
UK) using 15-20 pi PCR product and em p lo y in g  a 
sequ en cing  primer, 5'-TTTAGGTTGGAGTGTAATG-3' 
(Eurofins MWG Operon). Pyrosequence setup and data

(a)
-14(H) -12(H) -1 0 0 0  -8 0 0  -6 0 0  -4 0 0  -2 0 0  0

 I________ !________ I________ 1________ !________ I________ L

9 t f T '  11 *  12 (rx6295)  13
ATOeCCCCACAACCGAOGTACCTTTTT AAAAAHc /O I  GVCACAjOCT C c fc T C ^ _ _  
T*CCOCCCTCTTCCCTCCATCG«A>AAl I I I I K G /C K I i t l d fcTGACqC A S ^ ^ ^

DEAF1 H E S l,H E S 5 a n d  
Binding site  HES6 Binding site

(b)
25

20
T-T0.41O 
p<().(H) 115

10

o cc
•  C (i and GCi

5

0
20 250 5 10 15

Change in negative factor

Fig. 1. (a) CpG sites (numbered 9-13) are shown in bold in the 
DNA sequence of HTR1A that underwent pyrosequencing, 
with the rs6295 polymorphism in brackets and binding sites for 
DEAF1 and HES transcription factors shown in frames.
(b) Correlation between % methylation at CpG13 and 
improvement in the negative factor score.

reading were condu cted  by PyroM ark Q24 2.0.6.20 soft
ware (UK). Samples underw ent PCR and pyrosequencing  
in duplicate; any inconsistencies betw een sam ples w ere  
resolved  fo llo w in g  further repetition. P yrosequencing  
also perm itted determ ination o f  gen o ty p e  for rs6295.

Data analysis was undertaken using SPSS version 16.0 
(SPSS Inc., USA). Pearson’s correlation was used to deter
mine ind ividual relationships betw een  clinical m easure
ments and percentage m ethylation. As we initially  
investigated  five CpG sites adjacent to, and including  
that of, the rs6295 p o lym orph ism  for their correlation  
with sym ptom  response, statistical significance was set 
at p<0.01 for a conservative Bonferroni correction; for  
subsequent, post-hoc analysis we app lied  p < 0 .0 5 . 
Stepwise regression analysis was used to determ ine the  
influence o f  clinical and dem ographic factors on sym p
tom m easures. Power analysis dem onstrated that the  
sample size was adequate to identity a m edium  effect 
size (r=0.3) with 80% p o w er  at p< 0 .05 . Where sh ow n , 
variance in data is expressed as standard deviation .

R esu lts

Initial mean PANSS score on adm ission  was 99 .6+14.4; 
this reduced to 49.6 ±9 .6  after lO w k initial treatm ent 
with antipsychotic drugs. Mean m ethylation  was deter
mined at m ethylation sites CpG9, CpG 10, CpG 11 and  
CpG13 as 13.8, 18.1, 20.5 and 13.9%, r esp e ctiv e ly ; at 
CpG12 (rs6295 C-allele carriers) it was 21.0%. R esults 
for CpG9 and CpG13 each contained one extreme outlier  
(z> 5 ) and were not norm ally distributed; rem oval o f  the 
two outlier data points norm alised  the distributions

exon 1
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Table 1. Methylation at CpG sites and their correlation with symptom changes after 10wk' treatment with antipsychotic drugs

Percentage methylation (mean+s.D.) 
Spearman's r and p values

CpG9 (n = 81) CpG 10 (n == 82) C pG ll (n = 82)
CpG 12 at C 
allele (n = 76) CpG 13 (n = 81)

13.60+2.73 18.10+4.35 20.49+3.87 21.01+4.74 13.73+2.91

r P r P r P r P r P

Change in total PANSS 0.15 0.17 0.11 0.31 0.04 0.74 0.13 0.27 0.30 0.006
Changes in symptom factors

Excited factor 0.25 0.024 0.15 0.18 0.08 0.49 0.07 0.53 0.16 0.17
Negative factor 0.09 0.41 0.11 0.35 0.08 0.49 0.13 0.26 0.41 0.000
Disorganised/concrete factor 0.01 0.92 -0 .06 0.61 -0.08 0.46 -0.04 0.75 0.10 0.36
Positive factor 0.11 0.34 0.05 0.67 -0.02 0.88 -0.00 0.99 0.09 0.45
Depressed factor 0.15 0.17 0.17 0.13 0.09 0.40 0.07 0.53 0.21 0.065

(Shapiro-W ilk test; p = 0.264, 0.234 respectively). O nly  
methylation at CpG13 showed a significant correlation 

with clinical measures (Table 1). CpG 13 m ethylation  

was significantly correlated with change in total PANSS 

(r = 0.300, n = 81, p = 0.006). This reflected a highly signifi
cant positive correlation with change in the negative fac
tor (r = 0.410, p <0.001) (Fig. lb). Stepwise linear regression 

indicated a significant effect of negative factor score be
fore treatment on change in negative symptoms, but no 

significant effect o f age, sex or whether patients received 

clozapine. A significant correlation with CpG 13 methyla
tion was also observed with this negative factor baseline 

score (r = 0.261, p = 0.019) but not with the baseline score 

of any other factor. After controlling for baseline negative 

symptom score the correlation between CpG 13 m ethyla
tion and change in negative symptoms remained highly  

significant (r = 0.353, p = 0.001). CpG13 m ethylation  had 

a small effect on the change in the depressed factor 

(r = 0.206, p = 0.065); correlations with changes in other 

factors were also not significant (p > 0.1).
The subjects were found to have the following rs6295 

genotypes: 46 CC, 30 CG and 6 GG. Genotype had no 

significant influence on methylation of the invariant 
CpG sites, nor was genotype significantly related to 

PANSS measures of symptom response to treatment, in
cluding negative symptom response. Thus CC genotype 

and G allele carriers had mean values for change in nega
tive score of 7.93 ±3.93 and 7.31+4.22, respectively. W e  

investigated the relationship between CpG 13 methylation  

and change in negative symptoms separately w ith in  two  

rs6295 genotype subgroups of the sample. The correlation 

remained in both the CC genotype (r = 0.422, n=46, 
p = 0.004) and the G carrier (r = 0.421, n = 35, p = 0.012) sub
jects (Fig. lb).

Discussion

In a hypothesis-driven search for effects o f D N A  methyla
tion in the promoter region of a gene (H TR 1A ) known to

be associated with symptom response to antipsychotic 

medication, we have identified a correlation of the change 

in negative symptoms following initial antipsychotic 
drug treatment with m ethylation, determ ined prior to 

onset of treatment, at a specific CpG site adjacent to the 

functional polym orphism  rs6295. Thus epigenetic vari
ation, as well as a genetic polym orphism , in a specific 

D N A  sequence in the HTR1A prom oter region can in flu 
ence negative symptoms in schizophrenia and their sub
sequent response to antipsychotic drug treatment.

CpG 13 is found w ith in  a recognition site for the re
pressor activity of transcription factors HES1 and HES5 

(Fig. la); HES5 activity is also influenced by the nearby  
rs6295 allele (Jacobsen et al., 2008). The strong repressor 

activity of HES1 is thought to play an essential role in 

the developmental repression o f HTR 1A  expression, 
while the inhibitory effect o f HES6 on HES1, HES5 and 

DEAF1 repressor activity may regulate H TR 1A  ex
pression (Jacobsen et al., 2008). Thus a m ethylation- 
induced variability  in the balance between effects of 
these transcriptional regulators may modulate the devel
opmental control of HTR 1A  transcription and its effects 

on affective circuitry (Richardson-Jones et al., 2011); 
leucocyte D N A  m ethylation as determ ined here may  

well reflect epigenetic changes during, or even prior to, 
early developm ent (Rosa et al., 2008). However, effects 

on expression of H TR 1A  in the adult may also be im port
ant; it is notable that a negative correlation between  

5-H T1  A-receptor binding potential in the am ygdala  

and PANSS-derived negative and depression/anxiety  

symptom scores has been reported in drug-free schizo
phrenia (Yasuno et al., 2004). Certainly dysfunction of 
the am ygdala and its connectivity with the prefrontal cor
tex are proposed to be involved in the emotional dysregu- 
lation underlying negative symptoms of schizophrenia  

(Aleman and Kahn, 2005).
By analogy with the association o f rs6295 with antipsy

chotic drug response (Reynolds et al., 2006), we hypoth
esise that poor symptom response to drug treatm ent
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is associated with loss of inhibitory control of H TR 1A  

expression, with a consequent increase in 5-H T1A  auto 

receptors and reduction in serotonin neurotransmission. 
That we find poorer response to be correlated w ith  

dim inished methylation at CpG 13, suggests that m ethyla
tion might enhance transcriptional repressor activity, per
haps by recruiting m ethyl-binding repressor proteins. 
However, the finding of a greater reduction in am ygdala  

5-H TlA -receptors in patients with more severe negative 

symptoms (Yasuno et al., 2004), along with our obser
vation of a positive correlation between CpG13 m ethyla
tion and baseline negative factor score, would be 

consistent with an alternative view where greater methy
lation resulted in suppression of HTR1A expression. This 

could be brought about by disruption o f the enhancer ac
tivity of DEAF1 on HTR 1A  expression that is found at 
post-synaptic sites (Czesak et al., 2006).

The 5-H T1 A-receptor is increasingly being recognised 

as a potential target for antipsychotic drug action, par
ticularly with respect to negative and cognitive symptoms 

of schizophrenia (Newm an-Tancredi and Kleven, 2011). 
Certainly the 5-H T  system is implicated in negative 

symptoms and their response to drugs; selective sero
tonin reuptake inhibitors as an adjunct to antipsychotic 

treatment can improve negative symptoms in some sub
jects (Silver, 2004). Our findings add further evidence 

for 5-H T 1A receptor involvem ent in negative symptoms 

and response to antipsychotic drug treatment. These 

receptors mediate the action of atypical antipsychotic 

drugs on dopam ine release in the frontal cortex 
(D iaz-M ataix et al., 2005), one mechanism proposed to 

underlie drug effects on negative symptoms (e.g. 
Ichikawa et al., 2001). Thus genetically or epigenetically 

determined differences in 5 -H T  1 A -receptor density or 

its regulatory control may influence subsequent negative 

symptom response to antipsychotic drugs.
We recognise that the assessment of peripheral blood 

DN A , rather than D N A  from brain tissue, is an inevitable  

lim itation of our study, H ow ever, others have found psy
chiatric correlates of H TR 1A  m ethylation in blood D N A : 
methylation of the HTR 1A  proxim al promoter region is 

reportedly increased in schizophrenia (Carrard et al.,
2011). Notably, a site-specific hypomethylation of the 

5-H T2A-receptor gene in schizophrenia and bipolar dis
order is found in both brain- and saliva-derived D N A  

(Ghadirivasfi et al., 2011). We were unable to replicate 

in this sample the previously reported association o f 
rs6295 with negative symptom response to treatment. 
This is not easily explained given that the original result 
was seen with a smaller sample (Reynolds et al., 2006), 
although the combination of sample size, lower G allele 

frequency and perhaps other factors associated with this 

Asian population may have contributed.
Nevertheless, the sample demonstrates a strong effect 

of m ethylation at the recognition site for transcription fac
tors implicated in the effect of the rs6295 polymorphism  

on HTR1A gene expression (Jacobsen et al., 2008). This

finding is replicated internally w ith in  the two genotype 

groups and represents a uniquely specific observation 

of an epigenetic factor relating to symptom response in 

the initial drug treatment of schizophrenia. As such the 

findings have an impact far beyond an understanding  

of the epigenetic influences on antipsychotic treatment 
response; as well as raising the question whether there 

might be an association of CpG 13 m ethylation w ith  

schizophrenia, they im m ediately generate hypotheses re
lating to depression and antidepressant response, w ith  

which the adjacent HTR 1A  polym orphism  has estab
lished associations (Lemonde et al., 2003; 2004).
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