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Abstract

The principal aim of this research project has been the utilisation of various proteomic 

techniques in the investigation of the Alzheimer’s disease amyloid precursor protein 

(APP) isoforms, namely APP695, APP751 and APP770. One of the most noticeable 

pathological characteristics of Alzheimer’s disease is the presence of neuritic plaques in 

brain tissue. The chief protein constituent of neuritic plaques is the beta amyloid peptide. 

This peptide is proteolytically cleaved from APP, as such the interest in APP isoforms is 

great and a rapid detection method for the presence of each isoform would be a huge 

advantage to the research effort with regards to the determination and concentration in 

both diseased and non-diseased states. Two-dimensional gel electrophoresis and peptide 

mass fingerprinting are two of the most important techniques in the proteomics arena and 

both are investigated fully in this work. Retinoic acid induced Ntera 2 cells, derived from 

a human teratocarcinoma cell line, were the in vitro source of APP. Initial isolation of 

APP was performed by immunoprecipitation, using a monoclonal antibody raised to 

amino acids 1-17 of the p-amyloid peptide sequence, which is present in all three alpha 

secretase cleaved isoforms of interest. The next step was to separate whole APP into its 

isoform components by two-dimensional gel electrophoresis. The resulting protein spots 

were then subjected to peptide mass fingerprinting employing the different digest 

reagents, trypsin, endoproteinase Asp-N and formic acid. Initial distinction between the 

APP isoforms could be seen upon examination of theoretical in silica digests using the 

various digest reagents mentioned. The in silica digests revealed peptides unique to each 

isoform that in theory could be used as indicators of isoform presence.
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Proteomic techniques are utilised in this research for the investigation of the 

Alzheimer’s disease amyloid precursor protein (APP) isoforms, namely the three 

isoforms implicated with Alzheimer’s disease; APP695, APP751 and APP770. This 

chapter provides a brief review of Alzheimer’s disease giving the reader an overall 

view of the history, clinical and pathological characteristics, aetiology, treatment and 

research into Alzheimer’s disease. This is followed by an introduction into proteomics 

covering the main techniques utilised in this science and finally the application of 

proteomics to Alzheimer’s disease research.

1.1 Alzheimer’s Disease

Alzheimer’s disease was first described in 19061 by Alois Alzheimer, an Austrian 

physician. Whilst working on staining techniques for the cerebral cortex Alzheimer 

observed nerve cell loss, plaques and tangles in tissue derived from a 51-year-old 

sufferer of presenile dementia.

Alzheimer’s disease (AD) is the most common single cause of dementia in the 

elderly. The number of afflicted individuals doubles every five years after the age of 

60. It is seen in ~1% of 60 year olds, rising to a prevalence of >40% in 85 year olds2. 

The disease typically begins in middle to late adult life and is noticeable from a series 

of clinical features, such as impairment of cognitive function (beginning with general 

forgetfulness and loss of recent or immediate recall), progressing to remote recall. It 

is a progressive, irreversible, neurodegenerative disorder, causing intellectual 

impairment, disorientation and eventually death. Sufferers show an inability to 

perform new and previously learned tasks that involve intellectual thinking and have 

impaired judgement and slowed responses. Mood swings are common, ranging from

2



euphoria to depression and anxiety and ending in a sullen vegetative state. Behaviour 

is uncharacteristic, often antisocial and disorientated. The disease gradually 

deteriorates over a period of five to fifteen years rendering patients bedridden and 

ending in death, either from organ failure or more commonly from complications 

arising from their bedridden state, such as bed sores and bladder infections. Whilst 

there are numerous pharmaceuticals accessible for the treatment of AD3 no cure is 

currently available4.

The pathological characteristics of AD include a profound loss of brain tissue, visible 

as valleys and troughs, rather than the clefts and fissures associated with healthy 

tissue. At a microscopic level an accumulation of fibrous proteins can be seen inside 

the cytoplasm of nerve cells within the cortex of the brain, forming dense 

neurofibrillary tangles. The cytoplasmic tangles are bundles of paired, helically 

wound, lOnm filaments (PHFs), combined with straight filaments5 (figure l)6. 

Tangles are present mainly in the entorhinal cortex, hippocampus, amygdala, 

associated cortexes of the frontal, temporal and parietal lobes and subcortical nuclei 

that project into these regions. The principal protein subunit of PHFs is a 

hyperphosphorylated version of a protein known as tau, 7 (figure 2 a)8, whose normal 

physiological role is the assembly of the microtubule skeleton and cellular transport, a 

function that is abolished by hyperphosphoiylation9. Normally occurring tau is highly 

soluble but hyperphosphorylation renders it insoluble causing it to aggregate in 

tangles, often complexed with ubiquitin. Ubiquitinated tangles are also a feature of

3



^  Synapse

Axonal Tau stabilizes Tau phosphorylation PHF
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Figure I6. Scheme showing a possible link between axonal transport, microtubules and tau in 
Alzheimer’s disease.
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*•>-$}£ ;***■:

Figure 28. (a) Neurofibrillary tangles characteristic of Alzheimer’s disease, containing the 
hyperphosphorylated forms of tau, (b) Extracellular amyloid plaques characteristic of Alzheimer’s 
disease, composed principally of amyloid beta peptide.
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other neuronal disorders, such as Parkinson’s and Lewy body disease. It is thought 

that the presence of ubiquitin may be an attempt to degrade the tangles by action of 

the proteosome, if this is the case, however, it is largely unsuccessful. The other 

pathological representation of AD most currently and enthusiastically researched is 

the presence of senile or neuritic plaques (figure 2 b), seen as an aggregation of fibrous 

proteins within the extracellular space. The major protein constituent of these plaques 

is an insoluble, highly aggregating, 4kDa (39 to 43 amino acids) peptide, known as 

the beta amyloid (AP) peptide, first isolated and characterised by Glenner and Wong, 

198410. Ap plaque formation is mainly within the cerebral and limbic cortices, 

deposits are also found on the walls of meningeal and cerebral blood vessels11. 

Plaques are present in two forms, fibrillar and non-fibrillar.

The non-fibrillar plaques present in AD brain are termed ‘diffuse’ and occur as 

insoluble clumps (8-1 Onm), granular in appearance and intermingled almost 

exclusively with non-fibrillar, 42-residue amyloidogenic AP peptide (AP42)12. Diffuse 

plaques appear within regions of the AD brain, not generally concerned with the 

disease and also in healthy aged brains. The fibrillar forms of plaques are termed 

‘neuritic’ plaques and exist solely within disease regions. These plaques are made up 

of a mixture of both the non-amyloidogenic AP40 and the amyloidogenic AP42, yet 

strangely enough it is the non-amyloidogenic version of the peptide that predominates 

here (~90%).

Although primarily associated with the elderly the aetiology of AD is still unknown. 

There are ever increasing reports of early onset (EOAD) 13, familial (FAD) 14 and links 

to Down’s syndrome15 suggesting a genetic aetiology, however, several other risk



factors are also apparent such as, metabolic disturbances, environmental origins, high 

blood pressure, bacterial/viral infections and head trauma, with genetic factors only 

accounting for around 5% of all cases3. One of the aspects that AD research has 

uncovered is the sheer complexity and multifactorial nature of this disease. The 

possibility cannot be ruled out, therefore, that genetics are more frequently involved 

than first thought, perhaps as an initial switch turned on, for example by the more 

obvious environmental, metabolic or bacterial factors. There are at least four genes 

implicated in the development of AD; the amyloid precursor protein (APP) gene, 

ApoE4 gene and the presinilin 1 (PS1) and 2 (PS2) genes, a list that is, however, by 

no means definitive16’17. Individuals exhibiting two copies of the ApoE4 gene have 

been shown to be at a greater risk of developing late onset AD18 and both FAD and 

EOAD are strongly linked with mutations in the APP, PS1 and PS2 genes19. There are 

also chromosomal links as opposed to just the gene loci themselves, the most 

prominent example being the association with Down’s syndrome20. A single gene on

the long arm of chromosome 21 (21q21) codes APP and was cloned in 1987 by Tanzi
01 _ . ' #

et al . This area is duplicated in Down’s syndrome and studies have shown this to be 

true in cases of AD22, providing evidence for the ‘gene dosage’ hypothesis, where it is 

thought that over expression due to duplication of the genes is causative of the 

disease, yet several other studies have shown this phenomenon to be unrepeatable23,24.

In 1987 Kang et al isolated and sequenced a 695 residue protein, using a probe 

designed from the JV-terminus of the Ap peptide. Initially termed the precursor of Ap 

peptide, later referred to as the amyloid precursor protein (APP). APP is part of a 

large family of transmembrane and secreted proteins, whose constitutive expression 

and evolutional conservation is seen in many cell types. The heterogeneity of APP
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arises from both alternative splicing and post-translational processing, including the 

addition of N- and O- linked sugars, phosphates and sulphates. The mammalian APP 

family has three members; APP and APP-like proteins, APLP1 and APLP226. APP 

exists in both secreted and membrane bound forms. Membrane bound APP is a type I 

integral membrane protein, whose primary structure strongly resembles a cell surface 

receptor with a signal sequence, a single transmembrane domain and a small

07cytoplasmic tail. The gene has 19 exons , of which exons 7, 8  and 15 can be 

alternatively spliced producing at least 10 protein isoforms (table l)28. The three most 

relevant isoforms with respect to AD are APP695 restricted to the central nervous 

system (CNS), APP751 and APP770 both expressed in peripheral and CNS tissues 

(figure 3). All three contain the full length Ap peptide and therefore have the ability to 

be processed into the potentially amyloidogenic Ap peptide. APP770 is the full length 

protein, APP751 lacks exon 8  that codes for a 19 residue domain with homology to the 

MRC OX-2 antigen found on the membrane of neurons and thymocytes29. APP695 

lacks both exon 8  and exon 7, the latter coding for a 57-residue domain bearing 

homology to a serine protease inhibitor of the Kunitz type (KPI)30. The serine 

protease inhibitory quality of the KPI containing isoforms, APP751 and APP770 

uncovers the function of these isoforms present in platelets, where they are involved 

in the inhibition of factors of the coagulation cascade. Splice variants lacking exon 15 

along with various combinations of exons 7 and 8  are referred to as leukocyte derived 

APP’s (L-APP’s) because of their initial identification from peripheral lymphocytes31, 

however, expression has since been observed in almost all tissues32. Exon 15 codes 

for an 18 residue domain proximal to the Ap peptide region, excision of this exon 

results in a chondroitin-sulphate-glycosaminoglycan attachment site. Attachment of 

this moiety results in a high molecular mass APP called appican33 involved in the

7



adhesion o f neural cells to the extracellular matrix and possible regulation o f neurite 

outgrowth within the brain.

Isoform Main cell types expressing the isoforms in brain

APP695 Neurons »  other cells

APP714 Meninges, glia, endothelia, neurons

APP751 Neurons > other cells

APP770 Meninges, glia, endothelia, > neurons

L-APP Lymphocytes, microglia. Not in neurons

APP365 Unknown

APP563 Unknown

Table 1. Localisation of APP mRNA isoforms in human brain

After synthesis on the ribosomes APP is co-translationally translocated into the 

endoplasmic reticulum (ER) by its signal peptide where A-glycosylation occurs. The 

next stage is maturation through the central secretoiy pathway to the trans-Golgi 

network (TGN) and it is here that O-glycosylation and sulphation occurs releasing the 

mature molecule (figure 4). Phosphorylation either takes place within the post-Golgi 

network or at the cell surface. Only a small fraction o f the holoprotein actually 

reaches the cell surface the majority being degraded within the secretoiy pathway34.

S
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Figure 3. Schematic diagram of APP?7{), APP?5i and APP69., showing regions distinct to each isoform 
and the cleavage site for a, {3 and y secretase (ail amino acid residues A P P ^ numbering). 
Abbreviations: Ap. beta amyioid sequence; ec, extracellular domain; ic, intracellular domain; KPL 
Kunitz type protease inhibitor; 0X2, 0X2 homology domain.
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Figure 46. Principal trafficking routes of APP.

APP has several different cleavage pathways performed by a , (3 and y secretase

-ic
(figure 5) . Proteolysis of APP performed by a-secretase requires the molecule to be 

membrane bound. It was initially thought that this principal secretoiy cleavage event 

occurred only at the cell surface, however, it is now believed to take place also within 

the late Golgi and trans-Golgi networks. Cleavage by a-secretase releases soluble 

APP (APPs-a) into the extracellular space whilst the C-terminus is internalised and 

degraded by endosomes and lysosomes. Any uncleaved APP present at the cell 

surface is rapidly internalised into clathrin-coated vesicles (CCV’s) entering the
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endosomal system and degradation . The a-secretase cleavage site is within the Ap 

domain and as such precludes the formation o f the Ap peptide. It was originally 

thought that the Ap peptides were only formed as a result o f aberrant processing37 but 

it is now known that they are part o f normal APP metabolism38. Formation o f AP 

peptides involves cleavage by p and y secretase. P-secretase cleavage occurs within 

the ER and as with a-secretase acts only upon the membrane bound molecule, 

yielding the Ap A-terminus and releasing the truncated form o f soluble APP (APPs-p) 

from the cell. The C-terminus o f Ap is formed by cleavage with y secretase and 

results in APmo, non-amyloidogenic peptide or Api-42, amyloidogenic peptide. It is 

uncertain whether production o f the peptides arises from two independent y-secretase 

enzymes, as it is believed that Api.42 is generated in the ER and intermediate Golgi

“JO
and Ap mo in the trans-Golgi .

The proteolytic mechanism o f a-secretase may have helped to uncover its true 

identity. APP processing involves both constitutive and regulated components with 

activation by either protein kinase C (PKC) or other second messenger cascades. 

Research into the ADAM (A Disintegrin And Metalloprotease) enzymes uncovered 

three family members as strong candidates; ADAM 10,40; ADAM 941 and ADAM 17 

also known as tumour necrosis factor-converting enzyme (TACE)42. TACE knockout 

mice showed deficits in APP secretion and cotransfection o f ADAM 9 and 10 with 

APP resulted in increased secretion o f soluble a  cleaved APP. Positive identification 

of p-secretase came in 1999 with the simultaneous publications from four independent 

groups43,44,45,46. Using separate approaches all four groups revealed p-secretase to be 

a novel aspartic protease termed BACE (beta site APP cleaving

11
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enzyme). BACE is a type I integral membrane protein, highly expressed in brain 

tissue and found to have a higher affinity for APP forms with the Swedish mutation 

known to be causative in FAD. Evidence exists that y-secretase is either the 

membrane protein presinilin l 47 or that presinilins are important cofactors in APP 

cleavage48 and that activity is due to a multiprotein complex49 (figure 6)50.

Although many of APP’s structural domains are now well documented (figure 7)~\ 

giving an excellent insight into its possible functionalities (table 2)~° they are as yet 

still poorly understood. Its overall structure suggests a role as a receptor or growth 

factor52 but functionality research has been confused by the presence of both secreted 

and membrane bound forms, most of the work being centred upon secreted APP as
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Figure 650. Components of the y-secretase complex30. The complex is made up of at least four integral 
membrane proteins. The active site is thought to reside in presinilin, which is cleaved into two pieces, 
indicated by the arrow, that remain associated as heterodimers. Glycosylated Nicastrin, APH1 and 
PEN2 proteins associate with the dimers and are required for protease activity.

Activity Proposed function

Binds and reduces copper 
Binds zinc

Metal ion homeostasis

Stimulates neurite out growth and synaptogenesis Regulation of neurite outgrowth and/or 
synaptic plasticity

Binds HSPG, glypican, collagen and laminin Regulation of neurite outgrowth

Stimulates cell extracellular matrix adhesion Mediator of cell matrix and cell-cell 
interactions

Stimulates mitogenesis, MAP kinases and G0 proteins Regulation of cell proliferation, 
differentiation and survival

Alters cGMP levels, calcium homeostasis and K+ 
channel activation

Protects against excitotoxicity, hyperglycaemia and 
brain ischaemia

Neuroprotection

Serine protease inhibition Regulation of blood coagulation

Table 250. Activities and corresponding function of APP52.
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detection of membrane bound proved problematic5 '. Jung et aly4 demonstrated using 

flow cytometry the presence of APP on the cell surface of neurons and it is now 

believed that both secreted and membrane bound APP have distinct functions in 

neuronal development and as receptors, the membrane bound version acting upon

14



signals from the extracellular matrix to the interior of the cell. Secreted APP is 

thought to exert neuronal survival by lowering intracellular calcium levels55 the site of 

neuroprotection localised to residues 666-687 (APP770 numbering). This domain is 

present within APPs-a but not APPs-p and as such suggests a possible reason for the 

different processing events. Other functional sub-domains identified are the RERMS 

sequence possibly involved in growth promotion56 and two heparin binding sites, 

HBD157 and HBD258 at residues 96-110 and 316-337 respectively. Heparin is a 

member of the glycosaminoglycan family involved in cytokine action, cell-adhesion, 

enzyme catalysis and regulating the structure and function of basement membranes. 

Williamson et al59 showed how the binding of heparin-like molecules, such as 

glypican and perlecan modulated APP induced neurite outgrowth. The highly 

conserved zinc (II) binding domain between residues 181-20060 has been shown to 

modulate heparin binding. This along with the findings of abnormal zinc (II) 

metabolism in AD and Downs syndrome61 and the presence of perlecan in amyloid 

plaques62 may be relevant in the pathology of AD and the early stages of plaque 

formation. Other metal binding sites at,residues 135-155 bind Cu (II) and reduce it to 

Cu(I), with the subsequent oxidation of cysteine residues at 144 and 158, resulting in 

the formation of new intramolecular disulphide bridges63. This is believed to play an 

important role in anti-oxidant defence, disparities in which could have causative 

effects for late onset AD, where aging coupled with environmental effects exacerbate 

Ap peptide formation. The best understood APP domain with respect to both structure 

and function is the KPI site present in APP770, APP751 and APLP2 also termed APPkpi 

isoforms. Involved in the coagulation cascade within platelets this serine protease 

inhibitor domain inhibits factors IXa, X and XIa. Johnson et al 199064 showed that the 

APP751/APP695 ratio was increased in the hippocampal and neocortical tissues during
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Alzheimer’s disease, suggesting a prevalence of alternatively spliced mRNAs during 

neurodegeneration and that the KPI domain itself is somehow involved in amyloid 

plaque build up.

The generation of Ap peptides was initially thought to be involved in AD pathology 

but is now known to be physiologically normal. Both Ap^o and AP1.42 are lipophilic 

metal chelators with the capacity to reduce Cu(II) and Fe(III), Api-42 being the most 

effective and binding to lipoproteins, apoliprotein E and J and high density lipoprotein 

inhibiting their metal catalysed oxidation. ApM2 has also been shown to be involved 

in phagocyte activation within the brain65, eliciting inflammatory responses as well as 

being active in tau aggregation and phosphorylation, of which both activities could be 

instrumental in the disease cascade.

It is well understood that Ap plaques are a significant marker in AD, however, there 

are several angles from which the aetiology of AD may be approached, yet the 

collection and succession of proteins involved is so widespread and complicated that a 

simple cascade covering every eventuality will probably never be found. Are the Ap 

plaques a cause or consequence of some other genetic or metabolic disturbance? Is an 

alteration or increase in APP processing the key to AD? Or is it a deviation in the 

cleavage pathway? It was essentially thought that APP695 was the most important 

isoform in AD, relative to APP751 and APP770, due to its abundance within the CNS, 

however, further studies show that this may not be the case. Research continues in 

order to find a cure for this debilitating disease but as might be expected with such a 

complex and multifactorial condition the list of therapeutic targets is extremely 

diverse. As AP peptides are a principal feature of AD they are a natural goal.



Inhibition or modulation of the proteases involved in Ap formation, namely p and y 

secretase being obvious approaches. Although the three-dimensional structure of p- 

secretase has been determined in complex with its substrate, APP (figure 8 a) 66 and 

APP derived substrates (figure 8 b) this only demonstrated further the difficulties in 

finding an inhibitor. The relatively big active site with two active aspartate residues 

currently only has large substrate inhibitors developed (figure 9) 67 thus limiting their 

ability to penetrate the blood brain barrier. This, however, is not the case for y- 

secretase and inhibitors capable of passing through the membrane are more readily 

available (figure 10) due to the hydrophobicity of the active site. Cleavage of APP by 

y-secretase is within the transmembrane domain and as such its active site needs to be 

hydrophobic a quality that aids passage across membranes and that inhibitors also 

possess. Clinical testing of inhibitors, however, is hindered by possible side effects on
/*o

signal proteins such as the Notch receptor showing the fundamental need of high 

specificity.

Extensive research into the inflammatory aspects of AD has uncovered the effect of 

non-steroidal anti-inflammatory drugs (NSAIDs) upon y-secretase specificity 

increasing its propensity towards Api-40 formation69, die non-amyloidogenic peptide. 

NSAIDs have no observed effect on Notch activity and are already known to be safe 

in humans prompting their passage into clinical trials.
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Considering that the amount of APP cleaved from the membrane is divided between a  

and p-secretase pathways, it is not unreasonable to state that stimulation of one route 

will decrease APP availability for the other. Ap peptides are not produced from APPs- 

a  so stimulation of this route will decrease the peptide formation. Muscarinic 

agonists70 are able to stimulate a-secretase by activation of PKC, however, side 

effects involving the over activation of muscarinic receptors may prove problematic. 

Enhanced Ap clearance from the cerebral cortex or prevention of oligomerisation 

have been reported71’72 by active immunisation with Ap and passive immunisation 

with AP antibodies. Results were promising showing a redistribution of Ap peptides 

into the periphery, loss of plaques and other AD neuropathological changes. Early 

clinical trials for active immunisation, however, uncovered an unacceptable 

inflammatory reaction of the CNS in a low percentage of subjects but the use of 

passive immunisation is still a possibility. Another clearance strategy targets a protein 

involved in plaque protection, serum amyloid P (SAP). Reduction of SAP using 

analogues of proline dimers showed a marked decrease in the serum levels of plaques

7̂in both mice and humans .

The genetic link of the ApoE4 gene, which codes for a protein involved in lipid 

binding, indicates a possible connection between high cholesterol levels and late onset 

AD74. It has been observed that sufferers of high cholesterol administered with 

cholesterol biosynthesis inhibitors such as statins have a lower incidence of AD75 and 

decreased Ap production. This was also reported both in vitro and in vivo76 and 

conversely the administration of high cholesterol diets to rabbits increased Ap

77production . Cholesterol lowering drugs are well tolerated and as such clinical trials 

are ongoing, as are trials for metal chelators like clioquinol78. Ap peptides are

20



lipophilic metal ion chelators. Both Cu(II) and Zn(II) are known to be involved in Ap 

aggregation and as such sequestration of these ions may help to prevent Ap deposits. 

Other therapeutic strategies involve interactions upstream of Ap formation, for

70example the inhibition of APP expression , modulation of tau phosphorylation and 

the use of antioxidants, neuroprotectants and neurotrophic agents. The current status 

of functional curative therapeutics with the ability to slow conjugative decline is non­

existent, the only validated treatments being those for AD symptoms such as 

acetylcholinesterase inhibitors, serotonin antagonists, benzodiazepines and non­

prescription medicines, such as vitamin E and melatonin.
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1.2 Proteomics80

The 20th century has seen remarkable advances in biomedical research, leading to the 

prevention and cure of many previously incurable diseases. Certain conditions, 

however, such as autoimmune deficiency syndrome (AIDS), tuberculosis, malaria, 

multiple sclerosis and Alzheimer’s still remain problematic. One of the reasons for 

this is the inability of researchers to unravel the elaborate interactions of proteins and 

genes at the genomic level. A major step towards reaching this goal was the recent 

publication of the human genome sequence81, and the sequences for many infectious 

organisms. Proteomics is a relatively new area of research allowing a more detailed 

and complete understanding of disease by systematically studying the proteins 

expressed by a cell. It has been driven by the dramatic increase in technology, 

creating rapid advances in protein identification with respect to speed and sensitivity. 

Structural conformation, abundance, modifications and involvement in multi-protein 

complexes are all studied by this science.

A protein’s role is reflected by its interaction with other molecules, thus the 

identification of a protein with respect to its cellular environment is critical to its 

understanding. Alternative splice events and post-translational modifications can lead 

to multiple protein forms. The estimated 35000-80000 genes predicted in the human 

genome, therefore, could easily produce at least several hundred thousand proteins. 

Since proteins perform most cellular functions, proteomics can give a more complete 

picture of the organism and as such it is more advantageous to study gene function by 

proteomics rather than studying protein function from genomic and transcriptive data.
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The techniques in proteomics embrace, separation science for the purification of 

proteins and peptides, analytical science for their subsequent identification and 

quantitation and bioinformatics for data management and analysis of results. The 

fundamental strategy involves separation of protein mixtures by either one­

dimensional sodium dodecylsulphate polyacrylamide gel electrophoresis (1D-SDS- 

PAGE) or two-dimensional electrophoresis (2DE). Two-dimensional electrophoresis 

is the principal technique in proteomics, due to its unrivalled resolving power 

enabling the separation of isoforms and modified proteins, quite often when referring 

to 2DE, proteomics is often the term used instead. Excision of the protein bands or 

spots from 1D-SDS-PAGE or 2DE followed by proteolytic digestion of the intact 

proteins using specific cleavage reagents is the next step. The cleavage pattern of 

these reagents is specific to the protein and yields a collection of peptide masses 

known as the ‘fingerprint’ of that particular protein. These masses can then be 

detected by mass spectrometry and the measured values identified by comparison with 

the theoretical values available in protein databases. The new breed of mass 

spectrometric techniques, namely matrix assisted laser desorption ionisation-mass 

spectrometry (MALDI-MS) and electrospray ionisation-mass spectrometry (ESI-MS), 

play a vital role in the proteomics scenario, offering sensitivity, resolution, accuracy 

and automation thus permitting speed of identification. Sample preparation prior to 

mass spectrometry is also of paramount importance and likewise advances in sample 

clean up and separation techniques have occurred. These advances have had an 

increasing impact on the understanding of cellular processes and discovery of disease 

markers. This is obviously a simplified illustration of proteomics, which in reality 

encompasses many wide ranging techniques, such as chromatography, capillary
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electrophoresis, antibody technology and isotopic or radio-labelling for quantitative 

purposes.

1.21 Protein separation

1.211 Sodium dodecylsulphate polyacrylamide electrophoresis

Electrophoresis is the process by which charged molecules are moved by application 

of an electric field, moving according to their charge, shape and size. Sodium 

dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) utilises this in the 

separation of proteins according to their molecular weight. SDS is an anionic 

detergent that denatures proteins, producing flexible protein rods with a net negative 

charge. Molecular weight is a linear function of peptide chain length, therefore, in 

sieving gels the proteins are separated by molecular weight as opposed to charge or 

shape. There are two types of buffer system utilised in SDS-PAGE, continuous and 

discontinuous. Continuous is the simplest, using only one buffer for both the tank and 

gel. The discontinuous system has a stacking gel and a resolving or separating gel, 

both gels and tank incorporating different buffers. Although set-up procedures for this 

type of gel are more laborious resolution is greater and it is less affected by sample
t» A

precipitation and aggregation. In 1970 Laemmli devised a discontinuous, denaturing 

buffer system in which treated proteins are concentrated in a stacking gel before 

entering the separating gel. The Laemmli method is now the most common system 

utilised in SDS-PAGE.
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Two-dimensional electrophoresis (2DE) 83 is an extension of SDS-PAGE, allowing the 

separation of complex protein mixtures, extracted from cells, tissues and other 

biological samples. It involves two discrete steps: isoelectric focussing (DEF) and 

SDS-PAGE. The first step, IEF separates proteins according to their isoelectric point 

(pi), the second step, as previously explained separates by molecular weight. Proteins 

are amphoteric, carrying a positive, negative or zero charge dependent upon the pH of 

their environment. The net protein charge is the sum of all the negative and positive 

charges present on its amino acid side chains and carboxyl terminus. The isoelectric 

point (pi) is the specific pH at which the protein charge is zero. The presence of a pH 

gradient is critical to IEF; this is achieved by the use of immobilised pH gradients in a 

gel format known as a dry strip. In a pH gradient under the influence of an electric 

field a protein will migrate to where its charge is zero. A protein with a net positive 

charge will move towards the cathode, becoming progressively less positive as it 

reaches its pi. Likewise, a protein that is negatively charged will move towards the 

anode, becoming less negative as it reaches its pi. If diffusion from the pi occurs the 

pH immediately causes a regain of charge and the protein will then return to its pi. 

This focussing effect concentrates proteins at their pi, allowing separation on the basis 

of very small differences in pi. 2DE offers unrivalled sensitivity and resolution in the 

separation of protein mixtures but in the same instance it is time consuming and 

requires manual dexterity in order to achieve reproducibility. The SDS-PAGE step 

resolves proteins further, allowing separation of individual proteins, splice variants 

and proteins differing due to post-translational modifications.
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Separated proteins are then visualised by various means, depending upon 

concentration. Quite often cellular proteins are low in concentration and as such the 

necessity for more sensitive staining methods has arisen. Traditionally colloidal 

Coomassie blue and silver staining were the methods of choice but quite often 

Coomassie was not sensitive enough and silver staining although sensitive involves 

many steps and is not fully compatible with mass spectrometry. The development of 

imaging systems has allowed fluorescent detection to come to the fore with a new
Qy| Of

generation of fluorescent stains such as Sypro orange, Sypro red and Sypro ruby , 

which have proven themselves to be comparably sensitive to silver staining yet 

affording ease and speed of application and compatibility with mass spectrometry. 

The disadvantages of 2DE are its incompatibility with hydrophobic and low 

abundance proteins, it is time consuming, limited by the dynamic range of the staining 

procedure and only semi-quantitative. Scanning densitometry86 can measure and 

compare 2DE spots but the data obtained is questionable due to reproducibility 

problems.

1.212 Western blotting

Blotting was first introduced in 1975 by Southern87 in the transfer of DNA to

membranes termed “Southern blotting”. Consistency of nomenclature followed with

the transfer of RNA being called “Northern blotting” and “Western blotting”

describing the transfer of proteins to membranes. Western blotting has established

itself as a highly sensitive technique for the detection and identification of proteins

using antibodies (figure 11). Protein mixtures separated by SDS-PAGE are transferred

from the gel onto a thin membrane support The membrane binds and immobilises
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proteins in the same configuration as the gel. Nitrocellulose or polyvinylidene 

difluoride (PVDF) membranes are the most common but there are several different 

types available all offering distinct properties88. Nitrocellulose affords good 

sensitivity, resolution and low background noise but is mechanically fragile. PVDF, 

however, is a more robust membrane with a high protein binding capacity. Transfer 

onto the membrane is either electrophoretically, by applying an electric field in a 

suitable buffered environment or by simple diffusion, using weights and a suitable 

buffer system (figure 12). The latter is ideal for the transfer of proteins directly from
»o

IEF dry strips . The membrane blot is then exposed to a solution of antibodies 

specific to the protein in question. Once bound the antibodies themselves are detected. 

Detection quite often involves a species-specific enzyme-linked secondary antibody 

with an appropriate chromogenic substrate, offering a detectable colour change upon 

reaction. This method is simple to perform but the chemicals involved may sometimes 

be hazardous and fading of the initial result occurs with time. An alternative approach 

is the use of chemiluminescence detection (ECL), which is more sensitive, affording 

reliable quantitation, fast processing, repeated film exposures and die capacity of blot 

stripping allowing reprocessing for different antigens. Although Western blotting adds 

another step of protein purification after SDS-PAGE, electrophoretic transfer is 

almost quantitative with very little sample loss occurring and proteins are transferred 

free of buffers and other contaminants such as SDS. It has, therefore, been exploited 

as a means of sample clean-up prior to MALDI-MS enabling protein extraction, 

proteolytic digestion of excised membrane bands and provides a robust sample 

support90,91 found to be particularly compatible with ionisation by IR laser 

desorption92.
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Figure l l 93. Indirect detection of blotted antigens, (a) Basic detection. The antigen specific primary 
antibody is detected by a species-specific secondary antibody, conjugated to a detection molecule or 
Protein A or G. Detection molecules include enzymes, such as horse radish peroxidase or alkaline 
phosphatase, fluorophores, colloidal gold and radioisotopes, (b) Enhanced detection. A ligand such as 
biotin is conjugated to the species-specific secondary7 antibody. A tertiary7 detection system with a 
suitable detection component then binds to the ligand.
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Figure 129j. Blotting transfer systems, (a) Electrophoretic transfer, (b) Passive transfer
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1.22 In-gel digestion

The technique of peptide mass mapping (PMM) or fingerprinting was introduced in 

199394’95’96’97. It involves cleavage of the intact protein, using specific reagents, 

followed by mass determination of the generated peptides and subsequent 

identification of the protein by matching the measured peptide masses with calculated 

masses of a theoretical digest based on protein sequence databases. Protein 

determination and structure analysis is less complex and more accurate when 

performed upon peptides derived from the larger protein. There are many cleavage 

reagents available, including chemicals such as formic acid and cyanogen bromide 

(CNBr), however, the most common reagents used are endoprotease enzymes, due to 

their inherent specificity, safety and ease of use. Endoproteases create peptides from 

intact proteins by cleaving particular peptide bonds with varying degrees of

specificity98. The specificity of the most frequently used reagents (table 3) is well

00established . Proteins of known sequence can, therefore, be digested using the most 

convenient protease. The complexity and number of peptides created is proportional 

to the number of targeted peptide bonds present and size o f the intact protein.

Much research has been aimed towards achieving complete digestions with full

sequence coverage. Peptide peak intensities vary significantly, however, and 40% to

60% coverage is typical as cleavage is often hampered or prevented. Problems

encountered include insolubility of the enzyme or substrate and substrate resistance to

cleavage. These issues can be overcome by solvent variation and denaturation of the

protein substrate, which allows ease of enzyme entry to the active sites. There are

several methods of denaturing proteins including SDS, urea, and reducing agents such
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as mercaptoethanol and dithiothreitol followed by alkylation. The latter method is 

routinely used in IDE  and the in-gel digestion of proteins separated by one­

dimensional SDS-PAGE, particularly those in low concentration. Cysteine residues 

within proteins readily react with one another forming disulphide bonds that are part 

of a protein’s tertiary structure. Reduction breaks these bonds, destroying the tertiary 

formation and alkylation caps them preventing reformation (figure 13).

There are many digestion procedures available within the literature, protocols have 

been developed to ensure optimal protease activity, however, these are not boundless 

and deviations away from the norm can sometimes achieve better results.

Reagent Cleavage Does not cleave N or C terminus

Arg-C R P C

Asp-N D - N

Chymotrypsin F/W/Y/L P C

CnBr M - C

Elastase G/A/S/V/L/I - c
Formic acid D - Nor C

Glu-C Ammonium bicarbonate E P C

Glu-C Phosphate E/D P C

Lys-C K P c
Pepsin F/L/E V/A/G c
Trypsin K/R P c

Table 3. Common cleavage reagents and their cleavage rules. For amino acid nomenclature see 
appendix 4, table 1.
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Proteolysis is most often done at 37°C but generally most enzymes work well 

between 20°C and 50°C. Optimal pH, on the other hand, is usually within a narrow 

range and should be adhered to. Reactions times range from 2 to 24 hours depending 

upon the protease used and whether the substrate is in solution or gel. Longer 

incubation times are necessary for in-gel digests in order to facilitate protease entry 

into the pores of the gel. Prolonging incubation times, however, provides no 

advantage whatsoever and generally if a reaction has not worked in the specified time 

it is due to incorrect enzyme to substrate ratio or experimental errors. On the whole 

in-gel digests have a much better recovery of peptides compared to digests performed 

upon membranes100.

Trypsin is often the protease of choice in peptide mass mapping due to its cost,

reliability and specificity, although it is known to suffer from autolysis. The presence

of autolysis peaks (appendix 2 , table 1 ) can be problematic, particularly in low level

samples as they can overshadow the analyte peaks. Using the correct enzyme to

substrate ratio to ensure no excess enzyme or using a higher-grade modified porcine

trypsin can reduce autolysis. Alternative proteases may be used which do not exhibit

the same degree of autolysis, such as Lys-C or Asp-N but these have their own

problems such as expense and missed cleavages. Other notable contaminants are

keratin digest peaks (appendix 2, table 2). Keratin is ubiquitous and as such methods

to prevent contamination are often necessary. These include the use of gloves and a

laminar flow hood for all experimental manipulations101. Another critical parameter is

the absorption of peptides to the sample tubes and other surfaces this again can be

particularly difficult when working in the femtomole range. Sample loss can be
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prevented, somewhat by careful quantitative handling, use of silanised tubes and 

addition of organic solvents to the digestion buffer to aid solubility. In the MALDI- 

MS of un-separated peptides altering the composition and acidity of matrix solvents 

or the matrix itself has also been known to improve results.

1.23 Protein detection 

1.231 Mass spectrometry

Mass spectrometry (MS) was traditionally a technique for the structural 

characterisation of small, volatile molecules (<500Da). Biopolymers such as proteins, 

polysaccharides and nucleic acids, were either too large and involatile or suffered 

from thermal decomposition during the harsh ionisation process. The invention and 

development over the last 2 0  years of so called ‘soft’ ionisation techniques, such as 

secondary ion mass spectrometry (SIMS), fast atom bombardment-mass spectrometry 

(FAB-MS)102, plasma desorption-mass spectrometry (PDMS) 103’104 and the natural 

progression of MS research towards the analysis of biological molecules, led to the 

development in the late 1980s of electrospray ionisation-mass spectrometry (ESI- 

MS) 105 and matrix assisted laser desorption ionisation-mass spectrometry (MALDI- 

MS)106. Both of these techniques show accuracy and sensitivity for the mass and 

structural analysis of high molecular weight compounds such as peptides, proteins, 

glycoconjugates and synthetic polymers.
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1.2311 Matrix assisted laser desorption ionization mass spectrometry

The MALDI-MS technique resulted from years of research into the use of lasers for 

biomolecule ionisation. In 1988 Karas and Hillenkamp described the ultraviolet laser 

desorption (UVLD) of biomolecules over 10,000 Daltons, following the lead of

107Tanaka et al , who reported the desorption of proteins up to 34,000 Daltons and 

oligomers of lysozyme containing up to seven monomers, using a pulsed N2 laser and 

a matrix of fine metal powder dispersed in glycerol. Karas and Hillenkamp 

demonstrated by co-crystallising analyte molecules with a large molar excess of a UV 

absorbing material, how large proteins could be ionised. They expanded the 

previously achieved molecular weight range up to 67,000 Daltons using an ultraviolet 

laser, operating at a wavelength of 266nm and an aqueous solution of nicotinic acid as 

the matrix. The obvious advantage of this technique created great interest and 

refinement was rapid, utilising different laser wavelengths108 and new matrices109,110' 

Within two years Karas, Bahr and Hillenkamp111 were routinely analyzing proteins 

within the 100,000 Dalton range with subpicomole sensitivity.

The key to ionisation in this technique is the incorporation of the sample with an

excess of matrix that absorbs within the wavelength of the laser. The sample does not

need to have a matching absorption peak because the matrix material absorbs the laser

radiation, some of which is passed onto the sample. When the laser radiation strikes

the matrix crystals, sublimation occurs, expanding both the matrix and sample into the

gaseous phase, where photo-ionisation is thought to cause ionisation of the sample by

gas phase photon reactions (figure 14). Typically nitrogen lasers are used in

commercial instruments operating at the UV wavelength of 337nm, however, infrared
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lasers (2.94 pm) have proved invaluable for the analysis of proteins directly from 

membranes1 i2. The principal step in analysis by MALDI-MS is sample preparation

and choice of matrix. A good matrix should provide the correct molecular surrounding 

to promote ionisation of the sample yet be insignificant in its contribution to the mass 

spectrum. The co-crystallisation of sample and matrix is performed by mixing 

solutions of each and allowing crystallisation through solvent evaporation, it is 

necessary to ensure, therefore, compatibility of the solvent systems. Matrices shown 

to be routinely useful at 337nm are the organic acids, 2,5-dihydroxybenzoic acid 

(DHB) and a-cyano-4-hydroxycinnamic acid (aCHCA) each one having its own 

advantages (appendix 3, table 1). Quite often a matrix is chosen because of its 

compatibility with a protein or peptide molecular weight but other aspects such as 

sensitivity, analyte adduct contamination10, internal energy production114, sample 

homogeneity115 and background noise generation are ail important factors.

Figure 14. A laser pulse strikes the surface of the matrix/analyte, depositing energy, which is absorbed 
by the matrix. Some of this energy is passed onto the analyte. The matrix/analyte lattice is broken 
down and both the analyte and the matrix are forced into the gaseous phase, where ionisation occurs. 
Ions are then pumped into the analyser of the mass spectrometer.

pulsed laser beam *

sample 
/  holder
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Once the desired matrix and solvent system are decided upon, a large molar excess of 

matrix solution is combined with the analyte. The optimum volume ratio of matrix to 

analyte should be in the range of about 102to 104 in the final deposit. Normally 0.5 to 

l.Opl is applied to the sample target, which is usually made of stainless steel but may 

be coated with gold or a non-conducting surface. After evaporation of the solvent the 

target can then be introduced into the MALDI source.

The MALDI technique is relatively tolerant of contaminants such as salts and buffers, 

which quite often remain in biological samples. This is partially due to the ‘self 

cleaning’ process encountered during crystallisation of the sample/analyte lattice. 

Improvements in spectral quality can be achieved, however, if contaminants remain 

problematic. Clean up procedures include cold water washes of the analyte/matrix 

crystals or analyte clean-up techniques using chromatographic material polymerised 

into pipette tips (ZipTips, Millipore). The ion species formed by MALDI are 

principally singly charged, intact molecules providing ease of structural 

determination.

Following ionisation the molecules go on to the mass spectrometer, which in effect 

organises the masses prior to detection (figure 15). The most common type of mass 

spectrometer coupled with MALDI is the time-of-flight (TOF) instrument116. These 

are ideally suited for use in systems generating a pulsed ion beam, in this case caused 

by a laser shot. Another advantage of TOF analysers is their lack of upper mass limits, 

allowing the detection of molecules in excess of 3OO,O0ODa117, a parameter necessary
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in MALDI due to the creation of mainly singly charged molecules. TOF analysers 

measure the time it takes for the ions to pass through a field free drift tube at constant 

acceleration voltage118. They operate on the principle that ions of the same kinetic 

energy will move with different velocities depending on their m/z values. This can be 

expressed mathematically as: -

E = lA mv2 Equation 1

Where: E = kinetic energy of ion

m = mass of ion

v = velocity of ion

Equation 1 can also be rearranged to give velocity in terms of kinetic energy and m/z:-

v = (2E/m) 0 '5 Equation 2

If the distance from the point of ion formation to the detector at some fixed point is 

du then the time-of-flight (TOF) will be given as follows: -

TOF = d\Jv = dJ(2E/mf3 Equation 3

Thus ions of a greater mass will travel slower than lighter ones, therefore, reaching 

the detector later.
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Figure 15u9. Schematic diagram of a MALDI-TOF mass spectrometer with both linear and reflectron 

detection.

Although the MALDI technique provided many advantages, initially mass accuracy 

and sensitivity were low, mainly due to the energy spread of ions during ionisation. 

Factors contributing to the energy differentiation were collisions between sample and 

matrix ions during expansion into the gaseous phase and inhomogeneity at the surface

190of the sample. Vorm et al improved resolution, accuracy and achieved attomole 

sensitivity by preparing thin sample/matrix layers and using volatile matrix solvents 

for fast evaporation. Jespersen et al attained similar results by reducing the size of 

sample spots from micro to nanolitre volumes’21. These innovations emphasised the 

significance of sample preparation but when considering instrumental improvements 

four of the most important innovations have been the introduction of pulsed or
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delayed ion extraction, reflectron TOF analysers, orthogonal MALDI and tandem 

mass spectrometry.

Delayed extraction introduced in 1995 by Brown and Lennon122,123 reduces the 

number and energy of collisions in the expanding plume, dramatically increasing 

resolution. It was based on the idea of ‘time lag focussing’, first described in 1955 by 

Wiley and McLaren124. Ions generated in the extraction field are delayed or ‘switched 

off, this delay allows the ions to spread out into the extraction gap according to their 

own velocity. Upon acceleration the ions spread out in space gaining different total 

kinetic energies, compensating for initial ion velocity distribution and therefore 

resolution. Previous laser designs operated with a short laser pulse, typically 1-5 ns, 

producing discrete ion packets in the ion source, which were then continuously 

extracted by application of a large static electric potential of around 25-30kV. The 

incorporation of pulsed ion extraction, (initially increasing pulse times to around 20 

ns) with high accelerating potentials (up to 30kV), vastly enhanced mass resolution 

for both small and large molecules. Delayed extraction corrects for the energy spread 

of ions prior to the analyser, whereas the reflectron corrects this phenomenon within 

the analyser.

There are two types of TOF analyser, the linear TOF (figure 16a) and the reflectron 

TOF (figure 16b). The basic linear instrument consists of an ion source, flight tube 

and detector, all of which, with the exception of the laser are under vacuum pressures 

of 10'5 to 10'8 Torr. Ions follow a straight field free path between the ion source and
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the detector. Limitations of this instrument are poor mass accuracy and low 

resolution, operating at a resolving power of ~ 450-600 for peptides and 50-400 for 

proteins. This means that the isotopic envelope of a peptide or peptides that only 

differ in mass by a few Daltons cannot be resolved The resolving power (R) of a TOF 

instrument can be simply defined as: -

R = mass of peak Equation 4

width of peak at Vi height

Reflectron based TOF instruments include an ion mirror within the flight path, which

1helps to improve resolution and mass accuracy .

Despite the MALDI pulsed ion beam providing a well-defined start for TOF 

measurement, the quality of pulsation affects both resolution and accuracy and 

although delayed extraction improved upon beam pulsing to a certain extent problems 

were still seen, including complex calibration routines, detector saturation after each 

laser shot and problems controlling the laser fluence126. In 1998 Krutchinsky and 

colleagues127 achieved a higher level of decoupling, converting the pulsed MALDI 

ion beam into a quasi-continuous beam allowing orthogonal injection into the TOF 

analyser. Previously several groups128,129 had developed this technique in the 

combination of ESI with reflectron TOF analysers. In contrast to scanning 

instruments, nearly all the ions formed were detected and the small energy spread of
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ions afforded mass resolution in excess of 10,000. Orthogonal MALDI with 

collisional cooling created a continuous beam by decreasing the time lapse between 

the laser pulses to nanoseconds, such that ion packets continuously flowed due to the 

rapidity of laser pulse. The quasi-continuous MALDI ion beam was comparable to the 

continuous ESI ion beam with regards to space and velocity distributions, thus giving 

orthogonal MALDI high resolution throughout an entire spectrum and comparable 

mass accuracy to that seen in ESI orthogonal TOF mass spectra.

Decomposition of the sample is often seen with MALDI. Ions with sufficient internal 

energy may fragment, either in the ion source, referred to as ‘prompt fragmentation’ 

or after the ion source, known as metastable or post source decay (PSD)130. PSD is the 

most abundant and quite often results in poor resolution in linear instruments. The 

origin of PSD peak broadening lies in the energetics of fragmentation. In order to 

fragment the ions must have sufficient internal or activation energy for the reaction. 

The fragment ions will be at a lower energy than the transition state for the reaction, 

leaving some excess energy within the system. Following the laws of dynamics, this 

energy must be dissipated, so it is passed onto the fragments, slightly altering their 

velocities and in turn their arrival time at the detector. The reflectron acts as an ion- 

focussing device, correcting for the kinetic energy variation of the fragments. When 

ions hit the reflectron they are slowed down until they stop, turned around and 

accelerated towards a second detector. Ions of greater energy reach the detector first 

and penetrate into the reflectron, ions of a lesser energy, however, reach the detector 

later but do not penetrate the reflectron as deeply, allowing them to ‘catch up’ and 

creating focussed packets of ions rather than an unresolved spread. The reflectron
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TOF can differentiate fragment ions from their precursors or parent ions. Although 

both are the same velocity they have different kinetic energy values. Equation 5 gives 

the kinetic energy value of a fragment (Ef) with respect to its parent ion131.

Ef = Ep/m ft=mF/nip) Equation 5

Where: Ep = kinetic energy of precursor ion

niF = mass of the fragment ion 

mp = mass of the precursor ion

Thus if the parent ion arrives at the detector at time tp, the arrival of the fragment tf, 

can be made equal to tp by lowering the potential of the reflectron to a value of tf/tp. So 

by scanning reflectron potentials it is possible to determine the m/z of the fragment 

ions by noting at which potential the fragment ion flight time is equal to that of the 

parent.
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Figure 16M9 (a). Schematic diagram of a linear TOF-MS shows how ions of the same molecular weight 
but different kinetic energy arrive at the detector at different times, resulting in peak broadening, (b) In 
the reflectron TOF-MS ions of greater kinetic energy reach the reflectron first and penetrate more 
deeply than their less energetic counterparts, giving them time to ‘catch up' and acting as an ion 
focussing device.
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The exploitation of PSD allowed the development of MALDI-MS for protein 

sequencing and gaining structural information. Kaufmann et al demonstrated how the 

resolving capabilities of the reflectron could discriminate between fragment ions and 

also by changing the reflector voltage complete PSD fragment ion spectrum could be 

acquired in segments . This development, nevertheless, was not without its problems 

that included complex fragmentation patterns, lack of computer algorithms for 

interpretation, and the resolving characteristics of delayed extraction reducing the rate 

of PSD fragmentation by at least one order of magnitude. Methods to improve 

fragmentation evolved with the addition of a collision cell and introduction of an inert 

gas, such as Argon generating collisionally induced dissociation (CID), peptide 

derivatisation methods132,133 and use of different analysers134,135,136 but the most 

important innovation to date has been the development of MALDI-MS/MS, namely 

the coupling of the MALDI source to a hybrid quadrupole time-of-flight mass 

spectrometer137,138,139 discussed later.
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1.2312 Electrospray Ionisation mass spectrometry

The principles of electrospray ionisation (ESI) were first proposed in 1974 by Beuhler 

et aluo, who stated that sufficient rapid energy transfer onto a molecule could cause 

vaporisation without decomposition. In 1989 Fenn and coworkers141 utilised this idea 

in the development of an instrument capable of ionising molecules up to 130,000 

Daltons at atmospheric pressure, using a quadrupole mass analyser with an upper 

molecular weight limit of 4000 Daltons. Electrospray generates a very fine liquid 

aerosol via electrostatic charging. A liquid is passed through a fine nozzle, syringe or 

capillary, to which a charge is applied. As the liquid is forced through the nozzle it 

begins to form droplets, which are forced to hold more and more charge until they 

become unstable. The tiny charged droplets are less than lOjom in diameter with an 

attraction for a potential surface of opposite charge to land on. As they move about 

solvent molecules evaporate from the surface of the droplets. When the liquid begins 

to exit the tip of the needle it forms a conical shape known as the Taylor cone142, this 

formation occurs because the conical shape is able to hold more charge than a sphere. 

Desolvation decreases the size of the droplets causing the distance between the 

electrical charges within to shrink. If they cannot find a surface upon which to 

dissipate their charge a critical point is reached where no more electrical charge can 

be held and at the tip of the cone the liquid is blown apart into a fine plume of charged 

droplets. Lord Rayleigh first noted this phenomenon in 1882143 and from then on it 

was termed ‘Rayleigh instability’, derived from the number of surface charges, Q r  

that exist on a droplet of radius R r  : -

Q r  = 87c (goyRr3)54 Equation 6
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A principal characteristic of ESI is the formation of multiply charged ion species, two 

models attest the exact mechanism by which multiple charging occurs, the first 

charged residue mechanism144 states that a series of droplet break-ups ends in the 

formation of a droplet with only one ion. Upon solvent evaporation the ion may be 

released into the gaseous phase. In the second model, termed ion evaporation, 145 the 

generation of gas phased ions is thought occur from small highly charged droplets. 

Repulsion of the charged ion by the other charges within the droplet may push the ion 

out of the droplet, after which solvent evaporation forms the gaseous ions. The second 

model also provides an explanation for the formation of multiply charged ions. The 

transfer of solution phase to gaseous phase is a strongly endothermic process, if the 

energy necessary to break a C-C bond was applied in one package over a short period 

of time, the act of freeing an organic ion from solvent molecules could also lead to 

fragmentation, however, desolvation in ESI occurs gradually by thermal energy at 

relatively low temperatures. Figure 17 shows the three main steps occurring in the ESI 

process. The ions are then sampled into the high vacuum region of the mass 

spectrometer. ESI is a continuous ionisation method and as such can be easily adapted 

to several different types of mass analysers and generally produces multiply charged 

ions. Multiple charging is particularly useful for the analysis of large molecules such 

as proteins as it lowers the m/z values to ranges that can easily be measured by a 

number of mass analysers. The number of charges acquired by a molecule is roughly 

equivalent to the number of sites of possible proton attachment, typically ESI 

generates ions that carry one charge per 1000 Daltons, the ion series for a protein, 

even a large protein, will fall in the m/z range of 800 to 3000 Daltons. The molecular 

mass of a protein is then determined by looking at the observed masses of any two 

adjacent ions in the series146. Normally these calculations are automatically performed



by the data system, using deconvolution algorithms, which transform the m/z axis into 

a molecular mass axis enabling ease of interpretation and presentation. Since each 

multiply charged peak provides an independent measure of the molecular mass of the 

protein, an ion series from a single experiment provides a measure of mass precision. 

Most often ESI is coupled with quadrupole or triple quadrupole analysers but others 

including ion trap (ITMS)i47,148, TOF149, and Fourier transform ion cyclotron mass 

spectrometry (FTMS)150 are employed.
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Figure 17i:,i. Schematic of the electrospray process. (1) The production of charged droplets at the 
capillary tip. (2) Shrinkage of the charged droplets by solvent evaporation and repeated droplet 
disintegrations leading to very small highly charged droplets capable of producing gas phase ions. (3) 
Production of gas phase ions from the very small highly charged droplets.

Quadrupole mass spectrometry achieves mass separation by establishing an electric

field in which ions of a particular m/z have a stable trajectory’. A quadrupole consists

of four parallel metal rods or quadrupoles through which ions are passed (figure 18).

The trajectory of an ion through a quadrupole is complex, comprising characteristic
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frequencies as they drift down the quadrupoies. By varying the strengths and 

frequencies of DC and RF voltages but keeping the precise DC to RF ratio, stable 

trajectories can be created allowing ions of specific m is  to pass through the 

quadrupoies and be focused onto the detector, whilst deflecting others. Two opposite 

rods will have a potential of +(U+Vcos(cot)), the other two rods being -(U+Vocs(G>t)), 

where U is a fixed potential and (Ycos(cot)) a radio frequency of amplitude V and 

frequency to. When cos(cot) cycles with time, t, the applied voltages on opposite pairs 

of poles will vary in a sinusoidal manner but in opposite polarity. Along the central 

axis of the quadrupole assembly and the axis between each adjoining rod the resultant 

electric field is zero. In the transverse direction of the quadrupoies, an ion will 

oscillate amongst the poles in a complex fashion, depending on its m % the voltages U 

and V and the frequency, co, of the alternating RF potential. By suitable choices of U,

Detector
1

norresonant ion --

de and ac voltages

Figure 18i 52. Schematic diagram of a quadrupole mass analyser showing the four quadripoles arranged 
so that the cross section forms two hyperbolae orthogonal to each other. The two rods o f one hyperbola 
are connected electrically with a positive DC voltage The other two surfaces are connected with a 
negative DC voltage. Application of an RF voltage at a fixed frequency, which has amplitude that 
oscillates between positive and negative, is also applied to all four surfaces. Eons of different mf'z values 
are accelerated into the quadrupole field that separates ions as a function of a given DC and RF 
amplitude ratio.



V and co only ions o f one m /z  will oscillate through the quadrupole mass analyser to 

the detector. All other ions will have greater amplitude o f oscillation causing them to 

strike one of the rods. In practice, the frequency co is fixed with typical values being 

l-2MHz. The length and diameter o f the poles will determine the mass range and 

ultimate resolution that can be achieved by the quadrupole assembly. The maximum 

range, however, normally attained is approximately 4000 Daltons and a resolution of 

around 2000. Mass resolution is dependant upon the number o f RF cycles an ion 

experiences in the field, more cycles, better resolution, however, this has an effect on 

the signal of selected m/zs. The maximum mass (m) range o f quadrupole may be 

calculated from the Mathieu parameters : -

m  = e U  and m  =  e V  Equation 7

2qn2f W

Where: m maximum mass

e electron charge

field radius

U maximum DC voltage between pole pairs

V maximum zero to peak amplitude o f the radio frequency

applied between pole pairs

/ frequency o f the RF
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and for a quadrupole operated in the first stability region: - 

a = 0.237

and q = 0.706

Equation 7 shows how the mass range may be increased; either by increasing both U 

and V respectively, decreasing ro, or by decreasing/but changes such as this can 

sometimes cause low resolution and loss of sensitivity154.

As with any ionisation technique the observation of analyte ions is optimal when 

samples are free from contamination. Although ESI is tolerant to low levels of 

buffers, salts and detergents, they have the potential to either suppress analyte ions or 

form adducts with the analyte, giving rise to ambiguous mass measurements. Due to 

the liquid state of samples and ionisation occurring at atmospheric pressure ESI is 

ideally suited to coupling with separation techniques such as capillary electrophoresis 

(CE) and high performance liquid chromatography (HPLC). Both systems provide a 

convenient online clean-up technique prior to ionisation.

Typical solvents used for proteins and peptides are a mixture of water, an organic 

modifier, such as acetonitrile and a low percentage (typically 0.05% to 0 .1 % by 

volume) of a volatile acid, such as formic, acetic or trifluoroacetic to enhance 

ionisation. It is fortuitous that such solvent systems are fully compatible with optimal
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separation in reversed-phase liquid chromatography systems (RPLC). Not only does 

LC fractionate complex mixtures prior to MS providing analyte pre-concentration and 

purification, saving time and sample losses but LC/MS data can be searched for 

components in minor levels. In an LC/MS experiment, mass spectra are recorded 

continuously. It is, therefore, advantageous to identify regions of data that may 

contain useful spectra. The data system produces a plot of the total number of ions 

detected during each mass spectrum scan versus time, known as the total ion current 

(TIC). When investigating the presence of a specific component and where it elutes 

the data system can be requested to display a selected ion current trace for the specific 

masses and probable ion charge states.

Traditionally HPLC used flow rates in the order of 1ml /min yet most mass 

spectrometers could only handle a few pl/min of solvent. In order to achieve the 

coupling of conventional LC systems to ESI a technique called Ionspray® (figure 19) 

was developed155. Also referred to as ‘pneumatically assisted electrospray’ because 

the dispersion of the sample liquid is supported by an inert gas, usually nitrogen. The 

device allowed flow rates of 2 0 0 pl/min, complementary to 1mm internal diameter 

(ID) narrow bore LC columns. Introduction of heat around the spray column 

increasing the surrounding temperature to 250°C produced flow rates as high as 

2 ml/min thus allowing interfacing to most conventional LC columns.
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The need to analyse biological samples in pieomole concentrations or less brought 

about sample introduction techniques more amenable to small volumes. Nanospray 

(NS) (figure 20) was introduced by Wilm and Mann in 1994i5S Originally a gold- 

coated glass capillary that was drawn out at one end to give an orifice of only 1-2am 

in diameter was used. The capillaries were loaded from the back with 0.5-5ul of 

sample solution and positioned in front of the mass spectrometer orifice al a distance 

of around l-2mm. Voltages of 500-100V applied to the capillary cause the sample 

solution to be drawn out by field forces, generating flow rates of about 20nl min. 

Although this is an offline technique its advantage lies in extremely low sample 

consumption.
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Figure 21159 Schematic diagram of the sheath flow capillary
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The ‘sheath flow’ technique (figure 21), introduced in 1988 by Smith et al160 allowed 

the coupling of capillaiy electrophoresis (CE) to ESI. Consisting of a fused silica 

capillary of 100pm ID, protruding about 0.2mm from a stainless steel tube of 

typically 0.25mm ID. The inner capillary carries the sample solution, whilst a ‘sheath’ 

liquid is fed through the outer capillary, to which a voltage is applied. Both liquids 

mix at the point of electrospray formation with flow rates of 0.25-1 pl/min and 3- 

5pl/min respectively for the sample and sheath solutions. The use of a sheath flow 

allows flexibility of the solvent system and as the analyte is surrounded by the sheath 

liquid.

One of the most important innovations over the last thirty years, not only in

quadrupole mass spectrometry but also in mass spectrometry itself, has been the

development of tandem mass spectrometers. In these instruments the coupling of mass

filters enables the detailed structural analysis of proteins161,162. This methodology

generically referred to as tandem mass spectrometry (MS/MS) can give complete or

partial amino acid sequence information at the femtomole to picomole level for

peptides containing up to 25 amino acid residues. In tandem mass spectrometry, two

consecutive stages of mass analysis are used to detect secondary fragment ions that

are formed from a particular precursor ion. The first stage is to isolate the peptide

precursor of interest based on its m/z and the second stage to mass analyse the product

ions formed from spontaneous or induced fragmentation of the selected precursor ion.

Compared to Edman sequencing, MS/MS excels, as it is able to provide sequence

information from peptides in complex mixtures due to the ability to select specific

precursor m/z values. MS/MS can sequence peptides even when modifications are
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present, is quicker than Edman sequencing because it is not a stepwise process and 

finally it is more sensitive. In triple quadrupole MS/MS (figure 22), a reaction or 

collision cell is positioned between the two quadrupoies, allowing the dissociation of 

ions36'. Collision cells involve the introduction of an inert gas and are typically 

constructed from a quadrupole without a DC voltage applied to the rods. This acts as a 

high pass mass filter allowing ail ions above a set mass through the quadrupole. 

Enclosure of the cell allows higher pressures, permitting multiple low energy 

collisions creating sufficient activation for fragmentation. One o f the main benefits of 

the quadrupole collision cell is the ability to focus ions after their interaction with the 

collision gas. The mass analysers can be set in different scanning modes, allowing the 

determination of structure and ions containing specific features1354. The simplest 

scanning mode is the ‘product ion scan’, where all fragments of a particular precursor 

are recorded, providing structural information. Here the first mass analyser is set to 

transmit only the precursor ion. The ‘precursor ion scan' allows the first mass 

analyser to be scanned over a range of m/z values and sets the second analyser to 

transmit only one m/z.
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Figure 22152 Triple quadrupole MS/MS showing the basic set-up of the quadrupoies and their main 
functions.
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This mode is particularly useful in the identification of structural motifs, such as 

glycosylation and phosphorylation. Other less common modes of scanning are the 

constant neutral ion loss scan and multiple reaction monitoring. Constant neutral loss 

looks at the loss of specific neutral moieties, both mass analysers are in the scanning 

mode but the second analyser is offset by the molecular weight of the moiety in 

question. Multiple reaction monitoring on the other hand fixes both analysers to look 

for parent and product ions in order to determine the presence of one analyte. Other 

tandem mass spectrometry instruments include the quadrupole ion trap mass 

spectrometer, time-of-flight/time-of-flight mass spectrometer and the hybrid 

quadrupole time-of-flight analyser (Qq-TOF). The reflectron time-of-flight mass 

spectrometer is sometimes referred to as a tandem system although this is not strictly 

true.

The Qq-Tof analyser will be focussed upon next, not only because of its inherent 

sensitivity, resolution and mass accuracy causing a notable impact upon the world of 

proteomics but because of its ability to be interfaced to both MALDI and ESI 

ionisation sources. In 1996 Morris et al165 produced the first commercial ESI-Q-TOFs 

in which two of the quadrupoies, QO and Q2 were replaced with hexapoles but the 

operating procedure was the same. MALDI-Q-TOF coupling came four years 

later166,167. Commonly termed Q-TOF, Q referring to the mass resolving quadrupole 

and TOF the time of flight element, whereas, q is noted only in an instrument capacity 

referring to the RF only collision cell. The instrumental arrangement can be easily 

described as a triple quadrupole system in which the third quadrupole (Q3) has been 

replaced by a TOF mass spectrometer. The Q-TOF configuration does, however, have
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an additional RF quadrupole (QO) affording collisional dampening. The fundamental 

instrumentation (figure 23) consists of three quadrupoies, QO, Q1 and Q2, followed by 

reflecting TOF analysers with orthogonal injection. Ions enter QO, where collisional 

cooling and focusing takes place. The ‘cooled’ ions are then transported through the 

quadrupoies for measurement of the whole mass spectrum in the TOF analyser. In 

single MS mode all three quadrupoies serve as RF only, the TOF analyser, generating 

high resolution, accuracy and the ability to record all ions in parallel without 

scanning, performs ion guiding and mass analysis. Q-TOF instruments have two 

modes of operation, product and precursor ion scans. In product ion scanning Q1 is 

operated as a mass filter, transmitting only the precursor ion of interest, which is 

accelerated into Q2, the collision cell where it undergoes CID upon interaction with 

the neutral collision gas molecules, typically argon or nitrogen. The resulting 

fragment ions and any remaining precursor are focused and cooled before entry into 

the TOF analyser. One of the main limitations of Q-TOF instruments is the lowered 

sensitivity in precursor ion scan mode relative to triple quadrupoies. Here the TOF 

analyser is fixed and does not need to record a full spectrum, thus the q-TOF is not 

benefiting from the simultaneous ion detection that TOF exploits. Although 

sensitivity may be lower than triple quadrupoies, Q-TOF compensates for this in other 

areas. In principle it is possible to cany out precursor scans for multiple ion products 

in one experiment and selection of the m/z fragment ion can be done with great 

resolution, thus increasing sensitivity and reducing chemical noise.
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1.24 Information Dependent Acquisition (IDA)

IDA is a software functionality that allows automated high-throughput MS/MS 

screening of samples from TOF/MS and LC/MS, maximising the amount of data 

available from a single analysis. This feature automatically selects the most intense 

ions in a spectrum and performs MS/MS under optimal conditions. The survey scan of 

a sample will produce a peak list, which is then edited to remove any peaks that do 

not correspond to predetermined criteria. A fraction of the most intense remaining 

peaks will then be subjected to MS/MS. In order to get the most out of an IDA 

experiment it needs to be tailored with regards to the sample. This is performed by 

setting variables such as number of most intense peaks to be scanned; mass range, 

setting parameters within the area of interest; collision energy, more than one energy 

may be added to allow data optimisation, although some software packages include 

rolling collision energy, which looks at the m/z and charge state of each parent ion in 

order to determine its optimal collision energy; quad resolution, usually set at low 

allowing the isotopes of parent ions to enter the quadrupoies rather than just the C12 

peak; charge state and intensity threshold. Predefining such parameters maximises the 

quantity and quality of information gathered uncovering data that otherwise may not 

be apparent. Initial LC/MS experiments performed by IDA give a set of 

chromatographic traces; the survey scan or total ion chromatograph (TIC), and 

extracted ion chromatograms (XICs). The XICs are created by looking at the first and 

second most intense peaks within the survey scan. For each a TIC of the product ion 

intensities generated by product ion scans is created. The peak list generated from 

these product ion scans are then automatically edited and MS/MS performed on up to 

eight ions at three different collision energies.
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1.25 Protein fragmentation

The structure and function of proteins is permanently entwined, the three dimensional 

structure of a protein being directly dependant upon its specific primary sequence. 

Determination of amino acid sequences and detection of modifications, therefore, is a 

fundamental building block in the understanding of protein function. Until recently 

amino acid sequence determination was almost exclusively performed through the 

analysis of the encoding gene. Mass spectrometry, however, has revived sequence 

analysis of the gene product, using sequencing via peptide fragmentation.

The general structure of all amino acids is the same, their specificity inherited from

the differences in the side chains or R groups, often termed as Ri, R2, R3 etc.

(appendix 4, table 1). Fragmentation patterns of proteins and peptides are unique,

1decay within a mass spectrometer occurring largely at the backbone amide bond, 

which joins the amino acids and resulting in fragments that are different in mass by 

one amino acid (figure 24). The difference in mass between two adjacent sequence 

ions of the same type defines the amino acid and of the twenty commonly occurring 

amino acids all but four have unique masses, the isomers leucine and isoleucine are 

identical and lysine and glutamine differ by only 0.04 Daltons. The occurrence of an 

anomalous mass not corresponding to any amino acid may be due to the presence of a 

post-translational modification.
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Figure 24. Amino acid structure and dehydration of two amino acids to form a dipeptide via the amide 
peptide bond. It is this bond that is fragmented in PSD, CID and MS/MS analysis.

Nomenclature for amino acid fragmentation was first proposed by Roepstorff and 

Fohlmann 1984169 but this was later modified by Johnson et al170. If the charge is 

retained on the N terminal fragment, the ion is classed as either a, b or c. If the charge 

is retained on the C terminal fragment the ion is referred to as x, y  or z type. A 

subscript indicates the number of residues within the fragment (figure 25a). Internal 

cleavage may also occur, resulting in a more complex array of smaller fragments. 

Immonium ions are in this category (figure 26a), formed from a and y  type cleavage 

giving a structure with a single side chain. This type of fragmentation is frequently 

observed from the amino acids tryptophan, tyrosine, phenylalanine, histidine and 

proline due to the steric pressure applied from their bulky side chains. Double
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backbone cleavage of the b and y  type forms another non-sequence specific ion, the 

amino acylium ion (figure 26b). Cleavage within the side chains at the beta carbon 

gives d, v and w ions (figure 26c), which can help to elucidate the isomeric structures 

of leucine and isoleucine. Every amino acid has its own characteristic fragmentation 

pattern, resulting in ions of various types (appendix 4, table 2) calculated using a 

general formulae (appendix 4, table 3) for fragment mass ions.

The method of fragmentation also dictates the type of ion produced. Low energy CID 

seen in triple quadrupole mass spectrometry give a predomination of a, b and y  ions. 

In this type of fragmentation the loss of either ammonia (-17Da) or water (-18Da) is 

seen, denoted as a*, b* and y* and a°, b° and y° respectively. Low energy CID does 

not allow enough activation energy for the breakage of the stronger side chains and so 

d  and w ions are not observed. High energy CID, however, creates all of the ions 

mentioned with the exception of ammonia and water losses. MALDI-TOF PSD 

fragmentation gives rise to a, b and y  ions, however, if a collision gas is used patterns 

then resemble high energy CID, showing all types of cleavage along with ammonia 

and water losses. The presence of an internal proline can cause strong internal 

cleavage in PSD, extending from the proline residue towards the C terminus.
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(c) Side chain cleavage resulting in d, v and w ions.
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1.26 Protein modifications

Most proteins exhibit some form of modification, quite often translated proteins are 

inactive not becoming physiologically effective until a post-translational modification 

(PTM) has taken place. PTM’s are important in the control of protein function, 

regulating enzyme activity, stabilising protein structures and altering the chemical 

functionality of a protein. As well as naturally occurring modifications proteins may 

also undergo accidental or deliberate adjustments during sample preparation. Principal 

examples being the accidental oxidation of methionine residues, due to oxidising 

agents such as ammonium persulphate present in polyacrylamide gels and 

carboxymethylation of cysteine residues, performed during sample work-up after 

reduction to prevent reformation of disulphide bonds (figure 13). It is important to be 

aware of such modifications (appendix 5, table 1) as the mass differences can create 

discrepancies if not noted in database searches.

Naturally occurring modifications as mentioned are an important characteristic of 

proteins, often unwanted modifications can result in a disease state and as such PTM 

research is extensive, the best method for identification and localisation being mass 

spectrometry. Most proteins undergo proteolytic cleavage during translation with 

removal of the signal peptide or terminal methionine transforming the inactive 

propeptide into its active counterpart. Post-translational phosphorylation is probably 

the most common PTM, quite often involved in the regulation of protein activity. One 

or more phosphate groups may be added and removed, acting as biological switches.
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One of the most studied PTMs with regards to its disease causative status is 

glycosylation172’173. Glycoproteins are proteins covalently linked to membrane 

associated carbohydrate groups, exclusively in the form of oligosaccharides. The 

predominant sugar groups attached are glucose, galactose, mannose, fructose, N- 

acetylgalactosaminyl (GalNac), TV-acetylglucosaminyl (GlcNac) and N- 

acetylneuraminic acid (NANA). Protein linkage is either by O-glycosidic or N- 

glycosidic bonds, in mammalian cells the JV-glycosidic bond is prominent. Attachment 

is within a consensus sequence of amino acids, N-X-S(T), where X is any amino acid 

except proline. Glycoproteins present on cell surfaces are important in cellular 

communication, maintenance of cell structure and self recognition by the immune 

system, enzyme deficiencies leading to erroneous glycosylation, therefore, can have 

profound physiological effects (table 4).

Disease Enzyme Deficiency Symptoms

Aspartylglycosaminuria Aspartylglycosamidase Progressive mental retardation, 
delayed speech and motor 
development, coarse facial features.

p-mannosidosis P-mannosidase Neurological defects and speech 
impairment

a-mannosidosis a-mannosidase Mental retardation, dystosis 
multiplex, hepatosplenomegaly, 
hearing loss and delayed speech.

GMj gangliosidosis P-galactosidase Glycosphingolipid storage disease.

GM2 gangliosidosis P-N-acetylhexosaminidases A and B Glycosphingolipid storage disease.
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Sialidosis Neuraminidase

Fucosidsis a-focosidase

Myoclonus, congenital ascites, 
foepatosplenamegaiy, coarse facial 
features, delayed mental and motor 
development.

Progressive motor and mental 
deterioration, growth retardation, 
coarse facial features, recurrent 
sinus and pulmonary infections.

Table 4174. Glycosylation enzyme deficiencies leading to disease
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1.27 Protein identification

1.271 Bioinformatics

Hwa Lim coined the term bioinformatics in the late 1980s but it wasn’t until the 1990s 

and the advent of the human genome project that its usefulness came to the fore. The 

science of bioinformatics concerns the use of computers in biological research, 

forming an integral part of many research areas, including proteomics, genomics, 

transcriptomatics, genetics and evolution. This new science uses databases and search 

engines for the storage and retrieval of information. Peptide libraries offer an 

invaluable means of providing functional information concerning protein interactions 

and protein modifying en2ymes. Advances in proteomics wet chemistry have 

increased the amount of data available, however, this data needs to be analysed and as 

such bioinformatics has become an essential part of the research effort.

The elucidation of protein spots from gels is often the first analysis step in proteomics, 

carried out by peptide mass mapping. Sequence tagging or tandem MS may then be 

used to further characterise proteins, using the many on-line services available for 

protein identification. The use of databases for peptide mass mapping such as MS-Fit 

(figure 27) involves the input of experimentally generated peptide mass values for 

comparison against theoretical values. Other parameters included are mass tolerance, 

number of peptides required to match, cleavage reagent used and number of missed 

cleavage sites, monoisotopic or average masses, instrument used and choice of protein 

database (table 5), optional constraints include taxonomy,
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protein molecular weight and pi, presence of any contaminating peaks and 

modifications. As the number of genomic sequences increases so does the accuracy of 

protein identification yet the uncertainty as to whether a protein possesses post- 

translational modifications can affect searches. The search may then be performed 

resulting in a display of search results in order of relevance, sometimes with a 

MOWSE score applied176 MOWSE is an acronym of Molecular Weight Search and 

was one of the first programs tor identifying proteins by peptide mass mapping. It is 

an algorithm scoring system that takes into account all information given on the basis 

of considered importance, allowing rapid searching and retrieval of data from fully 

indexed libraries. Mowse inspired the development of many other programs and itself 

has been radically upgraded since its first development to encompass amino acid 

sequencing and MS/MS data. It was renamed in 1998 to MASCOT after collaboration 

of the Imperial Cancer Research Fund, UK with the bioinformatics company. Matrix 

Science.

Name World-wide web address

Owl http://www.biochem.ucl.ac.uk

Swiss Prot http: //www. expasv. eh

NCBIrsr http://ncbi.nlm.nih. sov

Table 5. Showing the three main protein databases utilised by most search programmes.
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Name World-wide web address Application
AACompIdent http ://www. expasv. ch/tools/aacomp Amino add composition

AACompSim http://www.expasy.ch/tooIs/aacsim Amino add composition

Amino Acid 
Information

http://prowl.rockefeiler.edu/aainfo/contents.htm Amino acid properties

CombSearch http://www. expasy. ch/tools/combsearch/ Query system for several 
MS analysis programmes

Compute pI/Mw 
tool

http://www.expasy.ch/tools/pi_tcK5l.htmi Computation o f pi and 
MW

Exact Mass 
Calculator

http://www'.siswd).com/cgi-bimfmassl 1 .pi Mass calculation

FindMod http'i/www.expasy. ch/tools/findmod/ Prediction of post
fransJafioiial
modifications

GlycoMod http://www.expasy.ch/tooIs/glyconiod/ Prediction of attached
oligosaccharide
structures

JPAT 2.2 API ht£p://www.pixelgate.net/injones5ava^pat>5pat2f?R£A
DME.html

Query system for several 
MS analysis programmes

Mascot http://www.inatrixscience.com/cgi/index.pI?page= Jh 
ome.html

Peptide fingerprint and 
sequence tag analysis

MassSearch http://cbrg.ing.ethz.ch/Server/MassSearch.html Mass fragment search

Mass
Spectrometer

http://www. sisweb. com/cgi-bin/massS.pf Generation of mass 
spectrum chart

MOWSE http://www.hgrnp.mrc.ac.uk/Bioinfomiatics/Webapp/
mowse/

Peptide mass database

MS-Comp

MS-Digest

http://prospector.ucsf.edu/ucsfhtmL3 4/mscomp.htm 

http:// prospector.ucsf.edu/ucsflitml3 4/msdigest.htm

Amino acid composition 
comparison
Calculation of masses of 
protein cleavage products
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MS-Edman http:// prospector.ucsf.edU/ucsfhtml3.4/nisediiiajn.htm Peptide tag mass and
sequence search

MS-Fit http:// prospector.ucsf.edu/ucsflitmB .4/msflt.htm Peptide mass 
fingerprinting

MS-Isotope http:// prospector, ucsf edu/ucsfotmB.4/msaso. htm Calculation of isotope 
patterns

MS-Product http:// prospector.ucsf.edu/'ucstlittnl3.4/nisprod.htm Calculation o f masses of
protein cleavage products

MS-Seq http:// prospeetor.ucsf echj/ucsfhdiil3.4/msseq.litm Peptide sequence tag
analysts

MS-Tag http:// prospeetor.ucsf, eduAicsfotmLL4/mstagfd.htm Peptide sequence tag
analysis

Multildent http://wv«w.expasy.ch/'toolsmuitident/ Amino add composition 
mass and sequence tag 
analysis

PepFrag http://prowll.rockefeller.edu/prowkpepifagch.btml Peptide sequence tag
analysis

PeptideMass http://www, expasy. ch/tools/peptide-mass. htm! Peptide mass calculation

Pepldent http: //www expasy. ch/too Is/peptident. html Peptide mass 
fingerprinting

PeptideSearch http ://www. mann. emb l-heidelberg-
de/GroupPages/PageLink/

Peptide mass and 
sequence analysis

ProteinProspector http://prospector. ucsf edu/ Query system for several 
MS analysis programmes

PROWL http://prowl.rockefeller.edu/ Peptide mass and 
fragment ion search

Tagldent http://www.expasy.cli/tools/tagident.htmI Peptide mass and 
sequence analysis

Table 6 . Mass spectrometry programmes on the Internet.
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The most critical factor in database searching is the accuracy of peptide masses, 

accurate masses allow lower mass tolerance and, therefore, less ambiguous results. 

Table 6  shows some of the peptide mass mapping tools available on the Internet, 

along with other analysis tools such as protein molecular weight calculation, protein 

sequence tags, peptide sequence tags and amino acid composition.

2DE databases are available showing images of gels generated from various species, 

tissues, staining and experimental methods. Due to the diversity of image construction 

the usefulness with respect to comparison and quantification may be negligible, 

especially for low-level proteins. Qualitative and quantitative changes in protein 

expression can be observed by gel comparison using packages such as PDQuest 

(Biorad) and Melanie (GeneBio). Gels are scanned and processed to remove 

background noise prior to comparison. Care must be taken, however, to ensure 

experimental procedures are identical as inhomogeneities can arise from sample 

preparation, electrophoretic conditions and staining or unequal mobility within gel 

regions. Matching is performed either at the spot or pixel level and is laborious due to 

its lack of automation. This area is problematic, as is the need for database 

standardisation and both require attention to enable bioinformatics to proceed.
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1.28 Application of proteomics to the study of Alzheimer’s disease

The prevalence and lack of preventative treatment for Alzheimer’s disease (AD) has 

made it a sensitive issue in the world of scientific research and one, which the use of 

proteomic methodology is ideally suited due to the increasing stream of possible 

causative protein targets. One of the most significant proteomic approaches must be 

surface enhanced laser desorption/ionisation time-of-flight mass spectrometry 

(SELDI-TOF MS) first introduced by Hutchens and Yip177. This technique has since 

been utilised by Ciphergen in the production of the Protein Chip® system allowing 

selective analysis of proteins directly from biological samples within the femtomole 

range178. Using antibodies specific to the A(3 peptide the Protein Chip® system was 

employed to investigate Aj3 peptides present within lenses of AD patients suffering 

from cataracts. Expectedly the cataracts removed from AD patients showed a marked 

increase in the Ap peptide compared to non-AD sufferers 179. Protein Chips® were 

used again to monitor the levels of proteins in the cerebrospinal fluid (CSF) of AD 

patients180. Similarly CSF protein levels of AD patients and controls were investigated 

using the two-dimensional gel electrophoresis followed by mass spectrometry 

proteomic approach. The results were comparable to the Protein Chip® method, 

showing significant increases and decreases in CSF proteins present in CSF of AD 

patients181.

Although any successful research is significant the above work only shows the 

relative quantitation of proteins present in diseased verses non-diseased subjects. 

Recent work carried out by Merck Sharp & Dohme research laboratories, however, 

shows ultimate quantitation of APmo and AP1.42 present within the brains of
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transgenic mice using the SELDI- TOF approach in conjunction with a homogenous 

time resolved fluorescent immunoassay182.

Proteomics is now readily described as an effective new approach in the investigation

1of post-translationally modified and oxidised proteins occurring m AD. The 

increased accumulation of oxidatively modified proteins present are well documented 

184, 185, 186, 187 ^  phenotypic selection of a murine model of accelerated aging known 

as SAM (senescence accelerated mouse) was used to investigate the relationship 

between age associated oxidative stress on specific protein oxidation and age related 

learning and memory deficits188. This study looked at the variation in oxidised 

proteins between 4 month and 12-month-old mice and illustrated the increase and 

decrease in oxidation and its effect upon enzyme activity. A major factor shown to 

affect the risk and progression of late onset AD is ApoE gene polymorphisms. Using 

two-dimensional electrophoresis and mass fingerprinting the Molecular Aging Unit, 

Texas, USA189 showed how the ApoE gene product offers protection against age 

associated oxidative damage within the brain.

As well as the concentration and modification of AD related proteins their sub- 

cellular location is also important in the determination of function. Nicastrin is 

believed to be involved in the multiprotein complex involved in y-secretase cleavage 

of APP and a recent study has shown the location of nicastrin to be within the lysomal 

membrane190 this result is notable as it may help to unravel the formation pathway of 

the Ap peptide. None of the current AD research publications investigate APP 

isoform variation by proteomic methods and as such the work shown within this 

research is at present unique in its ability to detect APP and isolate isoform variations 

by mass fingerprinting.
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2.1 Reduction and alkylation of Ntera 2 conditioned media and Chinese Hamster 

Ovary (CHO) 770 cells

2ml of 0.5M Tris-HCl, pH 7.4 was added to 20ml of Ntera 2 or CHO 770 media, then 

1.3M dithiothreitol (DTT) (Sigma-Aldrich,), to yield a final concentration of lOmM 

and the solution incubated at room temperature for 3h or overnight at 4°C. The 

reduced sulphydyl bonds were then subjected to alkylation, producing carboxymethyl 

cysteine residues by the addition of fresh sodium iodoacetic acid (Sigma-Aldrich), to 

a final concentration of 12.5ug/ml and incubation at room temperature for lh. The 

necessary removal of excess reagents was performed by overnight dialysis of the 

resulting solution into excess de-ionised water. Removal of any insoluble material 

was performed by centrifugation (5 min at 10,000 rpm) prior to further use.

2.2 Immumoprecipitation of Amyloid Precursor Protein (APP)

Immunoprecipitation of APP was performed using the mouse monoclonal antibody 

AB10 (D.Parkinson, Biomedical Research Centre, Sheffield Hallam University) 

raised to amino acids 1-17 of the p amyloid peptide sequence and extracted using goat 

anti-mouse agarose beads (Sigma-Aldrich). 1ml of reduced and alkylated media was 

mixed with the primary antibody (400ul AB 10/ml), 0.5M Tris-HCl, pH 7.4 (lOOul/ml) 

and 40ul/ml of 50% slurry of goat anti-mouse agarose beads for 2h at room 

temperature. Initial optimisation of this method was performed comparing Protein G 

beads with the goat anti-mouse beads. The Protein G method was performed by 

substitution of 40|ul/ml goat anti-mouse beads for 40pl/ml Protein G. The protein- 

antibody-bead complex was collected by centrifugation (3 min at 1500 rpm) then 

washed by adding 1ml Tris buffered saline (TBS) and centrifuging as before. Bead
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elution was performed by incubation at 60°C for 10 min in a 50:50 100% urea/lxDTT 

solution (50jal), alternatively incubation in 100% urea (lOOpl) at 60°C for lh. 

Immunoprecipitation was performed in 20ml batches and the resulting solutions were 

combined then concentrated by ultrafiltration (5000 rpm) with a Centricon 10 

concentrator (Amicon) to a volume of around lOpl.

2.3 Standard Protein Solutions

Bovine serum albumin (Sigma-Aldrich) was made up as a 5.0pg/ml solution in 0.1 M 

ammonium bicarbonate. The alpha secretase cleaved amyloid precursor protein 

standard, isoform 695 (Sigma-Aldrich) was purchased as a 0.15mg/ml solution in de­

ionised water, which was further diluted 1 in 10 to give a 15.0 pg/ml solution

2.4 One-dimensional SDS-PAGE

2.41 Stock solutions

High quality de-ionised water (dH20) was used when making these solutions. 

Resolving Acrylamide Final concentration Amount

(20% solution,-19:1 acrylamide/bis-acrylamide)

30%, 19:1 acrylamide/bis-acrylamide 20% 30ml

dH20  15ml
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Stacking Acrylamide

(8% solution, 19:1 acrylamide/bis-acryalmide) 

30%, 19:1 acrylamide/bis-acrylamide 

dH20

Resolving gel buffer (4x)

8% 6.66ml 

to 25ml

(1.5M tris.HClpH 8.8, 50ml)

Tris(FW 121.1) 1.5M 9.1g

dH20 30ml

HC1 to pH 8.8

dH20 to 50ml

Stacking gel buffer (4x)

(0.5M Tris.HCl pH  6.8, 50ml)

Tris(FW 121.1) 0.5M 3g

dH20 30ml

HC1 to pH 6.8

dH20 to 50ml

Electrode buffer

0.025M Tris, 0.192Mglycine, 0.1% SDS, pH  8.3, 2L)

Tris(FW 121.1) 0.025M 6g

Glycine (FW 75.07) 0.192M 28.8g

SDS 0.1% 2g
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dH20 to 2L

10% SDS

SDS (FW 288.38) 

dH20

5% Ammonium persulphate (APS)

10% lg

to 10ml

Ammonium persulphate (FW 228.2) 5% 0.05g

dH20

Prepare just prior to use or store in aliquots at -20°C.

to 1ml

60% Glycerol

Glycerol 60% 30ml

dH20 20ml

5% Tetramethylethylenediamine (TEMED)

TEMED 5% 0.05ml

dH20 to 1ml

Sample buffer (2xD TT)

Dithiothreitol (DTT; FW 154.2) 0.2M 0.31g

10% SDS 2% 2ml

60% glycerol 24% 4ml
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Stacking gel buffer (4x) 5ml

Bromophenol blue (2mg/ml) 0.01% 0.5ml

2.42 Additional Reagents

Prestained SDS-PAGE molecular weight protein standards; SDS-7B (Sigma- 

Aldrich), molecular weight range 26,600-180,000 Da (table 1); SDS-1B (Sigma- 

Aldrich), MW 58,000 Da and p-galactosidase (Sigma-Aldrich), MW 116,000 Da .

2.43 Equipment

BioRad Mini Protean II system

1.0 or 0.75mm thick combs and spacers

Glass plates

Water aspirator

Heater block

50ul Hamilton syringe

BioRad power supply

2.44 Table 7. SDS-7B Protein standards with approximate molecular weights

Source Triosephosphate

isomerase

Lactic

Dehydrogenase

Fumarase Pyruvate

kinase

Fructose-6- 

phosphate kinase

p-galactosidase a 2-macroglobulin

MW, Da 26,600 36,500 48,500 58,000 84,000 116,000 180,000
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2.45 Procedure

Preparation o f  the resolving gel

Clean, dry glass plates were assembled into the casting stand using either 0.75 or 

1.0mm spacers. 6.5% gels (table 8) of 1mm thickness were used to resolve samples 

used for in-gel digestion due to increased loading capacity, whereas 0.75mm gels 

were used when subsequent Western blotting was to be carried out due to increased 

resolution. To pour two mini-gels the following solutions were mixed:

2.6ml resolving acrylamide (2x)

1.4ml dH20

2ml resolving gel buffer (4x)

2ml 60% glycerol 

0.08ml 10% SDS 

0.08ml 5% TEMED

After mixing the above and immediately prior to pouring the gels 0.08ml of APS was 

added to initiate the polymerisation reaction. After loading the gels were overlaid with 

dH^O and allowed to set for approximately lh.

2.46 Table 8. Resolving gel percentages

% 6.0 6.5 7.0 7.5 8.0 9.0 10.0

20% acrylamide (ml) 2.4 2.6 2.8 3.0 3.2 3.6 4.0

dH20  (ml) 1.6 1.4 1.2 1.0 0.8 0.4 0.0
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Preparation o f the stacking gel

The resolving gel overlay was aspirated off before the insertion of relevant size Teflon 

comb. For two mini gels the following solutions were mixed:

2ml stack acrylamide (2x)

lml 60% glycerol

lml stacking gel buffer (4x)

0.04ml 10% SDS 

0.0.4ml TEMED

After mixing the above and immediately prior to pouring the gels 0.04ml of APS was 

added to initiate the polymerisation reaction. The gels were poured ensuring no air 

bubbles were trapped between the teeth of the comb and polymerisation allowed for 

approximately 45mins.

Samples were prepared by mixing with sample buffer (50:50) and heating at 60°C for 

30 mins. The combs were carefully removed from the gels and wells rinsed with 

dtkO. The reservoirs of the tank were filled with electrode buffer ensuring coverage 

of sample wells then 20pl of prepared samples and markers 7 Blue and p- 

galactosidase (Sigma-Aldrich), were loaded into each well using a Hamilton syringe. 

Connection to the power supply, running at constant volts, 100V initially until the 

stacking gel was cleared then 150V for the remainder of the run.
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Proteins subjected to in-gel digestion were visualised by overnight staining with 

SYPRO Ruby protein gel stain or the in-house equivalent (appendix E).

2.5 Two dimensional SDS-PAGE

2.51 Stock solutions

Rehydration solution Final concentration Amount

Urea (FW 60.06) 7M 21.9g

Thiourea (FW 79.12) 2M 7.9g

dH20  to 50ml

Do not heat to dissolve

IPG buffer (same range as IPG strip) 0.5% 250pl

To 48ml of the above solution add 230mg , 60mM DTT and 2g (4% w/v) CHAPS and 

trace of bromophenol blue (0.002%). Store in 2.5ml aliquots at -20°C.

Post IE F  equilibration buffer

Glycerol 

Tris(FW 121.1)

Vortex to mix

Urea (FW 60.06)

SDS (FW 288.38) 

dH20
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2.52 Equipment

Ettan IPGphor Isoelectric Focusing System 

Immobiline DryStrips pH 3-10, linear.7cm long 

BioRad Mini Protean II system 

Glass plates 

BioRad power supply

2.53 Procedure

The IPG strip holders were thoroughly cleaned and dried before pipetting 125pl 

rehydration solution into the strip holder, at a central point, ensuring even coverage 

and removing any large air bubbles. 15pl of sample was then added, 7.5pl to each 

side. The protective cover was removed from the dry strip starting at the acidic 

(pointed) end. The strip was positioned gel side down in the correct orientation within 

the strip holder, lowering the pointed end down first, slowly moving the strip back 

and forth along the surface of the solution to assure even and complete wetting. IPG 

cover fluid was then pipetted drop-wise over the whole strip, helping minimize 

evaporation and urea crystallization. The cover was placed on the strip holder, making 

certain the pressure blocks on the underside of the cover maintained a good contact 

with the electrodes. The strip holders were positioned correctly on the IEF platform 

with metal to metal contact, the following protocol programmed and IEF begun:

Step 1 -  12h rehydration 

Step 2 -3 0  min, 500V, 0.25kVh 

Step 3 -3 0  m in, 1000V, 0.5 kVh 

Step 4 -  lh 40min, 5000V, 7.5kVh
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NB. For protocols with short running times it is possible that the voltage required may 

not be reached within the time allowed and so it may be better to programme in Volt 

hours rather than voltage and time.

After IEF the second dimension electrophoresis step was carried out using the 

standard SDS-PAGE methods described previously. The IPG strip was positioned 

between the glass plates upon the surface of the gel with the plastic backing against 

one of the glass plates ensuring no air bubbles were trapped before sealing with 1% 

agarose gel. The power was set at constant volts, 100V for the whole of the run. For 

in-gel digestion proteins were visualised by overnight staining with SYPRO Ruby 

protein gel stain or the in-house equivalent (Appendix E).

2.6 Electro-transfer of proteins from polyacrylamide gels

2.61 Stock solutions

Transfer buffer Final concentration Amount o f

CAPS lOmM 2.2g

dH20  900ml

lMNaOH pH 10.3 ~2ml

Methanol 100ml

Dissolve CAPS in dH20 , adjust to pH 10.3 with NaOH before adding methanol and 

stirring for 10 min.
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2.62 Equipment

BioRad transfer cell with holder, cassette and two foam pads 

Filter paper

hnmobilon-P nitrocellulose membrane 

Stirrer bar *

2.63 Procedure

SDS-PAGE gels subjected to electrotransfer were generally run using 0.75mm spacers 

and combs as this allows greater resolution of proteins upon the membrane surface. 

The gel area to be transferred was cut out and immersed in transfer buffer for 

approximately 30 min. The apparatus was assembled with the gel sandwiched on top 

of the membrane and in between filter paper and foam pads. The cassette was inserted 

into the transfer holder ensuring the correct orientation. A stirrer bar and cooling pack 

was added before connection to the power supply running at constant current of 

200mA for 60 min.

2.7 Western Blotting

Membranes were blocked in 5% non-fat dried milk in tris buffered saline (TBS) 

containing 0.01% Tween 20 (Blotto) for 30 min at room temperature before reaction 

with primary antibody for 1.5h. Washes with TBS followed for 3 x 5 min, then 

alkaline phosphatase linked secondary antibody in Blotto was added and reaction 

allowed to take place over lh. Washes of 2 x 5 min with TBS and 1 x 5  min with 

dH20 were carried out, then equal volumes of bromochloroindolyl (15mg/ml in 50:50
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methanol:DMSO) and nitrobluetetrazolium (30mg/ml in methanol) in lOOmM Tris 

HC1 / lOOmM NaCl / 5mM MgCl2 (pH 9.5) added and staining allowed to develop. 

The reaction was stopped by the addition of water and membranes allowed to dry 

before visualisation.

2.8 In-gel digestion

2.81 Stock solutions

Rehydration solution Final concentration Amount

Ammonium bicarbonate (FW 79.06) 25mM O.lg

dH20 50ml

Dehydration solution

Ammonium bicarbonate (FW 79.06) 25mM 0.05g

dH20 25ml

Acetonitrile. 50% 25ml

Extraction solution

Trifluroacetic acid (TFA) 5% 2.5ml

Acetonitrile 50% 25ml

dH20 to 50ml
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Reduction solution

DTT (FW 154.2) lOmM 0.015g

Dissolve in 25mM ammonium bicarbonate (10ml) aliquot and store at -20°C.

Alkylation solution

Iodoacetic acid (FW 207.9) 55mM 0.0lg

Dissolve in 25mM ammonium bicarbonate (1ml).

Digest reagents

Trypsin pH 8.0 0.5pg/ml

Dissolve in 25mM ammonium bicarbonate. Enzyme to protein ratio of 1:10. 

Endoproteinase Asp-N  pH 4.0 40ng/pl

Dissolve in dH20. Enzyme to protein ratio of 1:20.

2% Formic acid pH 2.0 200pl

Acid to protein ratio 2:1 i.e.200pl of 2 % formic acid added to excised gel bands 

loaded with lOOpl protein.

2.82 Procedure

Ten protein "bands or spots of interest were excised from the stained polyacrylamide 

gels for each digest. Each gel slice was cut into ~lmm pieces and placed into 0.65ml 

tubes. Parallel controls were also run by carrying out the digest procedure upon gel 

pieces from protein free regions. Dehydration solution, lOOpl, or enough to cover the 

gel pieces was added before vortexing for 3 x 10 min. The gel particles were dried for
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~ 30 min in a freeze dryer before performing reduction and alkylation (figure 13) on 

bands from one-dimensional gels. Two-dimensional gels are already reduced and 

alkylated so this step is not necessary. The gel pieces were covered with lOmM DTT 

and reduced for lh  at 56°C then cooled to room temperature. Any excess DTT was 

pipetted off and replaced with equivalent amounts of 55mM iodoacetic acid before 

incubation in the dark at room temperature for -45 min, with occasional vortexing. 

The gels pieces were then washed with lOOpl rehydration solution, pH 8.0, for 10 min 

while vortexing then likewise with dehydration solution. The rehydration, dehydration 

step was then repeated. Any liquid phase was removed and the gel pieces freeze dried 

to complete dryness before rehydration of the gel pieces with digest reagent.

The enzyme volume needed for rehydration was calculated from the total gel volume 

excised (e.g., 2mm x  4mm x  1mm thickness x  3 lanes = 24 /£). The protein:enzyme 

ratio i.e. 1:10 for trypsin and 1:20 for Asp-N was calculated and the precise amount of 

enzyme added. Concentration of formic acid used, however, was calculated purely 

upon the starting volume of protein loaded (e.g. 20jal protein x 3 lanes = 60pl, 2:1 

acid:protein ratio, therefore 180pl formic acid added. After addition of the digest 

reagent the reaction was allowed to proceed for 16h at 37°C for enzymes and at 

100°C for 2h for the formic acid digest.

The next step was the aqueous and organic extraction of the digest. Digests were 

centrifuged for 3 min at 1500 rpm, vortexed for 5 min before adding -lOOpl dH20 

then vortexing, spinning (3 min at 1500 rpm) and sonicating for 5 min each. The 

aqueous solution was pipetted off into a clean 0.65ml tube, to which 5pi of the
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organic extraction solution had been added. The gel was then subjected to an organic 

extraction by adding 50pl of extraction solution, vortexing for 10 min., then spinning 

(3min at 1500 rpm) and sonicating for 5 min. With the omission of sonication the last 

step was repeated two times. Both the aqueous and organic extracts were combined, 

vortexed and spun for 5 min each at 1500 rpm and the total volume reduced to ~10pl 

by freeze drying. lOOpl of dtkO was added before vortexing and freeze-drying to 

IOjllI repeated and the final addition of 2-5pi extraction solution. Preliminary results 

showed whether or not further clean up was necessary by use of Millipore Ci8 

ZipTips.

2.9 Mass spectrometry

2. 91 Matrix- assisted laser desorption ionisation-mass spectrometry (MALDI-MS)

Intact spectra were obtained on a Finnigan MAT Vision 2000 reflectron time-of-flight 

mass spectrometer equipped with a nitrogen laser (337nm), (Finnigan MAT GMbH, 

Bremen, Germany) at an accelerating voltage of 20kV. The digest spectra were 

obtained using an API QSTAR™ Pulsar Hybrid LC-MS-MS system (Applied 

Biosystems-MDS Sciex, Toronto, Canada) with the orthogonal MALDI ion source 

fitted and running at 5-15kV. A lOmg/ml 2,5-dihydroxybenzoic acid dissolved in 

0.1% trifluoroacetic acid (TFA) and lOmg/ml 5-methoxysalicyclic acid dissolved in 

50:50 ethanokwater (9:1 v/v) matrix solution was used to obtain the intact protein 

spectra. The digest spectra were obtained using a solution of a-cyano-4- 

hydroxycinnamic acid (aCHCA) dissolved in 50% water (0.1% TFA added), 50%
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acetonitrile. Samples for mass spectrometry were prepared by using 2pi protein 

solution mixed with 20pi matrix, of which 0.5pl was applied to the stainless steel 

target and allowed to air dry before insertion into the mass spectrometer.

2.92 Liquid chromatography electrospray ionisation-mass spectrometry (LC-ESI- 

M S)/Information Dependant Acquisition (IDA).

All experiments were done on an API QSTAR™ Pulsar Hybrid LC-MS-MS system 

with a capillary LC interface. The LC system consisted of a LC Packings Ultimate™ 

nano-LC system equipped with a Famos™ autosampler (Dionex CA, USA). 

Separations were performed using a C l8 “Pepmap” column (15cm x75pm o.d., 3pm 

particle size). A linear gradient over 55 minutes was carried out between eluents A 

(95% water [containing 0.1% formic acid]: 5% acetonitrile) and B (95% acetonitrile: 

5% water [containing 0.1% formic acid]) at a flow rate of 0.2pl/min the gradient 

profile shown in table 9. Injection volume was 5pl of digest solution (2pl sample in 

5pi 1% acetonitrile in water [containing 0.1% formic acid]).

All MS/MS experiments were performed using the IDA software (Analyst QS 

version, Sciex, Toronto, Canada). IDA allows automated high-throughput MS/MS 

screening of samples from TOF/MS and LC/MS, maximising the amount of data 

available from a single analysis (refer to section 1.24). Certain parameters are needed 

in order to build the acquisition method tailoring the analysis to the sample. 

Depending upon the type of experiment i.e. MALDI or LC, experimental parameters 

were set up in the correct hardware profile (MALDI or LC) from the acquisition 

method menu as follows:
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Scan type -  

Ion mode -  

Collison energy -

Ion mode -

For ions greater than - 

For ions smaller than - 

With charge state - 

Which exceeds - 

Switch after -  

Quad resolution -  

Ignore peaks within -  

Declustering potention -  

Focussing potential -  

Argon CAD gas -  

Ignore peaks within -  

Survey scan accumulation - 

Independent scan accumulation

TOF MS or product 

Positive

0 invokes the rolling collision energy function 
(see section 1.24)

positive

300.0 m/z

1200.0 m/z

1 (MALDI) or 2 to3 (LC-ESI)

3 counts

2 spectra 

low

50.0 mmu

45.0

225.0

8.0

5.0 amu window 

1 second

3 seconds

Monitoring the 8 most intense ions from the survey scan peak list for the MS/MS 

experiments!
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Time (mins) Flow rate (pl/min) % A % B

0.0 0.2 5.0 95.0

30.0 0.2 65.0 35.0

31.0 0.2 99.0 1.0

40.0 0.2 99.0 1.0

40.0 0.2 5.0 95.0

55.0 0.2 5.0 95.0

Table 9. The elution profile used for LC/ESI-MS of all samples. A =95% water [containing 0.1% 
formic acid]: 5% acetonitrile and B = 95% acetonitrile: 5% water [containing 0.1% formic acid].

2.93 Nanospray-mass spectrometry

All experiments were done on an API QSTAR™ Pulsar Hybrid LC-MS-MS system 

with a Protana™ nanospray interface. Helium was used as a curtain gas at a flow rate 

of 0.25L/min. The capillary voltage was 1300V for all samples using fused silica 

capillaries (360pm o.d., 20pm i.d., 10pm tip diameter) (Picotips™, NJ, USA).
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Four different proteins are investigated here, two protein standards and two 

immunoprecipitated APP samples. The first standard protein examined was BSA due 

to its cost, availability, similarity in molecular weight to the APP samples and 

knowledge of expected results191. The second standard investigated was secreted 

alpha secretase cleaved APP isoform 695 (APPct69s) purchased from Sigma for use as 

a direct comparison with the immunoprecipitated APPCC695. The two samples, 

APPa77o and APPa were used as models of in vivo conditions. APP01770 was 

immunoprecipitated from Chinese hamster ovary cells192 (CHO 770) genetically 

modified to produce the APP770 isoform only. APPa was immunoprecipitated from 

Ntera 2 cells193, a teratocarcinoma cell line cell that differentiates into brain cells upon 

treatment with retinoic acid. The latter of the two samples secretes all three isoforms 

of interest (APPct695, APPa75i and APPa77o) and as such acts as a more plausible 

model of in vivo conditions.

The results shown here are laid out in the general order that they were performed. The 

initial stages of this work involved the isolation of APP samples from the CHO 770 

and Ntera 2 cell secretions (chapter 3.1). Once isolated these solutions were analysed 

intact by MALDI-MS and nanospray (chapter 3.2) or subjected to further purification 

by either one-dimensional (ID) electrophoresis or two-dimensional (2D) 

electrophoresis and Western analysis (chapters 3.11 and 3.12). Western blotting 

enabled the initial visualisation of proteins present within the ID and 2D gels. Unlike 

the protein standards (BSA and APPo69s) whose starting concentrations were known 

the concentrations of the immunoprecipitated samples was unknown and could only 

be estimated by comparison of the staining densities of samples verses standards 

present on a gel. Quite often, however, the sample proteins remained undetected by
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the staining technique employed (in-house fluorescent stain (appendices 6)), a major 

problem with low-level proteins. The staining method employed was an in-house 

equivalent to Sypro Ruby, which is comparative in sensitivity to silver staining194 but 

does not suffer from the same problems such as staining inhomogeneity, time 

consuming application and adduct interference. Western blotting is inherently more 

sensitive than the staining technique employed detecting protein levels within the low 

attomole range and as such was able to visualise blotted proteins previously unseen 

upon the gel. When performing 2D gel separation two gels were run in parallel, one 

was subjected to Western analysis to detect the presence and position of the protein 

sample, this could then be used as a template for excision of the protein in question 

from the 2D gel.

Background work for the in-gel digestion and analysis by mass spectrometry came 

next and involved the in silico digestion of the APP isoforms (chapter 3.3). Each of 

the secreted APP isoform sequences was put into the ExPASy’s peptide mass 

database as well as experimental parameters such as digest reagent, known 

modifications, mass range etc. A theoretical digest of the sequences then produced a 

list of peptides or theoretical mass fingerprint. Examination of these lists revealed the 

presence of isoform specific peptides (chapter 3.3, table 9). These unique peptides 

could then be used as ‘tags’ in the consequent in-gel digestions and analysis by mass 

spectrometry (chapter 3.4). Each experiment performed on the four samples is 

summarised in table 10 (chapter 3.4) with the exception of the intact data.
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3.1 Isolation of amyloid precursor protein (APP) isoforms from conditioned 
media

The isolation o f APP isoforms from conditioned media was carried out by one­

dimensional and two-dimensional gel electrophoresis, the latter being a principal 

strategy in the separation o f proteins due to its ability to resolve complex mixtures. 

The availability o f several primary antibodies raised to various epitopes within APP 

isoforms (figure 28) enabled Western blot analysis to be performed upon the 

electrophoretic separations. Quite often when extracting proteins, low concentration is 

a major problem and even the most sensitive staining techniques are unable to detect 

all proteins within a gel. The infinite sensitivity and specificity o f antibodies allows 

ultimate detection by Western blotting and so this technique was exploited as a 

primary detection method.

Initial electrophoresis work was performed using bovine serum albumin (BSA) as a 

standard (figure 29). The amyloid precursor protein isoforms needed to be isolated 

from conditioned media by immunoprecipitation prior to electrophoresis. Initial 

method development o f this procedure involved the comparison o f 

immunoprecipitation methods (figures 30(a), 30(b), 31(a) and 31(b)) and bead elution 

techniques (figures 32(a) and (b)). The optimal concentration o f AB10 primaiy 

antibody (figure 33) with regards to achieving the optimal saturation o f APP from the 

media was also determined before full investigation o f APP isoforms. Samples were 

obtained from two different sources; Chinese hamster ovary 770 (CHO770) cells 

excreting only A P P 0 1 7 7 0  and Ntera 2 cells, a human teratocarcinoma cell line that 

excretes all three isoforms o f interest (APPct695, APPCI751 and APPCI770). An alpha 

secretase cleaved APPct695 isoform (APPa69s) standard was purchased from Sigma for
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use as a direct comparison. It should be noted that all electrophoretic separations o f 

APP show the molecular weight of the isoforms to be around 116kDa when compared 

to the ladder o f protein standards, instead o f the desired 67,665kDa, 73,817kDa and 

75940kDa for APP695, APP751 and APP770 respectively. The slow running o f APP 

isoforms may be due to glycosylation or phosphorylation affecting the charge on the 

molecules.

APP770 N

1151

S P

993 DP23/2

KPI 0 X2

APP 751

N S P KPI

APP 695 N

S P

Figure 28. Schematic diagram of APP770, APP751 and APP695, showing regions distinct to each isoform 
and the binding epitopes for the antibodies, 1151, 993, DP23/2 and AB10. The antibody, 1151 is raised 
to a sequence C terminal to the signal peptide, present in all three isoforms; 993 is raised to the KPI 
domain present in APP^q and APP75]; DP23/2 is raised to the 0X2 homology domain present only in 
APP770; AB10 is raised to an epitope in 1-17 of the |3 amyloid peptide sequence. Abbreviations: Ab, 
beta amyloid sequence; CM, cell membrane; ec, extracellular domain; ic, intracellular domain; KPI, 
Kunitz type protease inhibitor; 0X2,0X2 homology domain.
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3.11 One-dimensional gel electrophoresis

3.111 One-dimensional gel electrophoresis of bovine serum albumin (BSA).

- 180kDa 

-< 1 1 6kDa
*

 -  84kD a
. . . . . . . . I rM ?H"

58kDa >

48.5kDa

tZwwiU-:*:.

mL .
m  . <  36.5kDa 
mL 26.6kDa

Figure 29. One-dimensional gel of BSA (lanes 2 and 3) stained with Coomassie and using 1-blue and 
7-blue (Sigma) markers (lanes 1 and 4 respectively).

Bovine serum albumin (BSA, monisotopic mass 66,389.86) was used as a standard 

due to its availability and similarity in molecular weight to the amyloid precursor 

protein isoforms ( A P P 0 1 6 9 5 ,  67,665.55, APPct75i, 73,817.11, A P P o t 7 7 o ,  75,940.25). 

Figure 29 shows a typical one-dimensional electrophoretic separation o f BSA. The 

protein gel bands were then excised and subjected to in-gel digestion.

3.112 Comparison of immunoprecipitation methods

The usual precipitation method o f APP from conditioned media was performed using 

mouse monoclonal antibody, AB10, raised to amino acids 1-17 o f the p amyloid
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peptide sequence, which is present in the alpha secretase cleaved isoforms o f  interest 

(APPCX695, APPct75i and APPc^o)- Extraction was then carried out using goat anti­

mouse agarose beads (Sigma-Aldrich) and the protein-antibody-bead complex 

collected by centrifugation. In order to achieve optimal binding, therefore harvesting 

as much APP as possible, the use o f a different extractant was considered. The goat 

anti-mouse secondary antibody adheres to both the Fc and FAB sites upon the primary 

antibody. Protein or antigen binding occurs at the antibody FAB portion and as such 

protein binding may be reduced if  these sites are occupied by the goat anti-mouse 

molecule. Protein G, on the other hand, binds exclusively to the antibody Fc portion 

leaving free both FAB sites for optimal protein binding.

(a) (b)

A

A
A  A

A A

^180kD a

^116kD a

^84kD a

^58kD a
48.5kDa

^180kD a

-«116kDa

^8 4 k D a

•<48.5kl)a

Figure 30. APP isolated from Ntera 2 cells using goat anti-mouse beads, (a) One-dimensional SDS- 
PAGE gel showing faint bands for the APP isoforms. (b) Western blot analysis using the primary 
antibody 1151 raised to an epitope C terminus to the signal peptide, which is present in all three 
isoforms. This gives the characteristic two band pattern shown, consisting of APPa^s highlighted by 
the red dashed line and unresolved APPa75] and APPa^o isoforms highlighted by the blue dashed line.
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Figure 31. APP isolated from Ntera 2 cells using Protein G. (a) One-dimensional SDS-PAGE gel. (b) 
Western blot analysis again using the primary antibody 1151. This time, however, the APP isoforms 
are not visualised.

The Western blot shown in figure 30(b) o f APP isolated from Ntera 2 cells using goat 

anti-mouse beads shows clearly the presence o f all three isoforms, validating this 

method o f extraction. The Western blot shown in figure 31(b), however, using Protein 

G does not show any measurable signs o f APP isoforms, therefore substantiating the 

efficacy o f the goat anti-mouse beads.

3.113 Comparison of bead elution methods

After collection o f the protein-antibody-bead complex by centrifugation elution o f the 

beads is performed. It was originally thought that the use o f urea would be the best 

method for elution o f the goat anti-mouse IgG beads rather than a 50:50 mixture o f 

dithiothreitol (DTT) and urea, the rational being that DTT may somehow interfere 

with the subsequent MALDI-MS analysis, however, this was not confirmed. Although 

earlier experiments demonstrated urea in high concentrations to have a deleterious 

effect upon MALDI-MS this could be combated by dialysis o f eluted samples into 

dLLO to remove excess urea.
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(a) (b)

^  APPa75i/APPa77o 
APPct695

Figure 32. Comparison of bead elution techniques, (a) One-dimensional SDS-PAGE gel showing in 
lanes 1-3 bead elution using a 50:50 solution of DTT/urea and urea only in lane 4. (b) Western blot 
(using the antibody 1151, which pulls out all three isoforms of interest) showing urea only elution in 
lanes 1 and 2 and DTT/urea in lanes 3 and 4.

The comparison o f elution techniques (figure 32) shows the addition o f DTT far 

superior as it elutes greater concentrations o f APP than urea alone. This is obvious in 

the Western analysis (figure 32b), which shows a lack o f APP isoforms in lanes 1 and 

2 resulting from the urea only elution, whereas the DTT/urea elution method gives 

strong staining (lanes 3 and 4). With low level proteins such as APP, concentration is 

always a problem so it is necessary not only to extract from the media as much o f the 

protein as possible but also from that stage forward keep experimental steps to a 

minimum. The use o f DTT improves in both these areas as it extracts more APP and 

cuts out the need for dialysis to remove excess urea, therefore facilitating protein 

isolation by cutting down on sample losses occurred during dialysis.
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3.114 Optimal concentration of AB10 primary antibody.

In order to achieve optimal saturation o f the antibody molecule immunoprecipitation 

was performed using increasing concentrations o f AB10 and the resulting solutions 

subjected to one-dimensional SDS-PAGE followed by Western analysis (figure 33).

Figure 33. Western blot of APP isolated from Ntera 2 cells using the primary antibody AB10 (raised to 
an epitope within 1-17 of the Ap peptide sequence, which is present in three isoforms). This gives the 
characteristic two band pattern shown consisting of APPa^s and unresolved APPa75i/ APPa^o 
isoforms. Serial concentrations of AB10 added to 5ml o f Ntera 2 solution are as follows; Lane 1- 0ml; 
Lane 2 -1ml; Lane 3 - 2ml; Lane 4 - 3ml; Lane 5 - 4ml; Lane 6 - 8ml.

The western analysis shown in figure 33 shows greatest staining in lane 5, using 4ml 

o f AB10 primary antibody in the immunoprecipitation procedure. Increasing the 

volume o f AB10 to 8 ml as seen in lane 6  did not show darker staining and so from 

these results it was concluded that 4ml o f AB10 to 5ml o f Ntera2 solution is the 

optimal saturation concentration.

APP0 I7 5 1 /A PPct770 
APP0695

* #

1 2 3 4 5 6
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3.115 One-dimensional gel electrophoresis of amyloid precursor protein (APP) 
isoforms.

^ APPa75i/APPa77o
APPct695

1 2 3 4
Figure 34. One-dimensional SDS-PAGE gel of APP isolated from Ntera 2 cells, which excretes all 
three isoforms of interest. This gel highlights the typical pattern seen in the one-dimensional analysis o f  
this solution.

(a) (b) (c)

APPa751/APPa77o „ APPa®* ►<- m APPa770

APPa695 ►

1151 993 DP23/2

Figure 35. Western blots of APP excreted from Ntera 2 cells utilising primary antibodies raised to 
various epitopes within APP isoforms (figure 1). (a) 1151 is specific for all three isoforms, seen here is 
the general pattern showing two bands made up of APPa77o/APPa75i and A PPo^ in the faster running 
band, (b) 993 is specific to APP77o and APP751 and as expected only one band is seen consisting of both 
these isoforms. (c) DP23/2 is specific for APP770 only. The faint staining shown on the here correlates 
with the concentration of APP770 expected in cells i.e. APP™ is in relatively low concentration 
compared with APP695 and APP75j.
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(a) _ _ _ _ _  (*>)

1 2 3 4 1 2 3

Figure 36. Comparison of APP isoforms. (a) One-dimensional SDS-PAGE gel o f APP isoforms 
derived from three different sources. Lane 1 shows APP excreted from the CHO770 cells showing just 
one band for APPa77o . Lanes 2 and 3 shows the APPa^s standard. Lane 4 illustrates APP excreted 
from Ntera 2 cells with the expected 2 band pattern, (b) Western analysis o f the afore mentioned 
solutions using 1151 antibody specific to all three isoforms (figure 28). Lane 1 shows the APPa695  

standard. Lane 2 shows APP excreted from Ntera 2 cells. Lane 3 shows APPa™ excreted from the 
CHO770 cell line.

The preliminary determination o f APP isoform presence within the one-dimensional 

gels was carried out by Western analysis. Due to the low concentration o f APP the 

cell extractions were concentrated by Centricon adapter prior to running down a gel. 

The use of a sensitive staining technique was also employed for APP allowing the 

visualisation o f isoform bands which could then be excised and subjection to in-gel 

digestion.
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3.12 Two-dimensional gel electrophoresis

3.121 Two-dimensional gel electrophoresis of bovine serum albumin (BSA).

BSA 
pi 5.60

<  66k  Da

pi 10.0-*-----------------------------------------------------------------------------  pi 3.0

Figure 37. Two-dimensional gels of BSA using pH 3.0-10.0 diy-strips and performed on a 7cm gel.

Bovine serum albumin (BSA, monisotopic mass 66,389.86) was used as a standard 

due to its availability and similarity in molecular weight to the amyloid precursor 

protein isoforms (APPct695, 67,665.55, A P P C C 7 5 1 ,  73,817.11, A P P C I 7 7 0 ,  75,940.25). 

Figure 37 shows a typical two-dimensional gel from which BSA was then excised and 

subjected to in-gel digestion.
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3.122 Two-dimensional gel electrophoresis of amyloid precursor protein (APP) 
isoforms.

3.1221 Two-dimensional gel electrophoresis of alpha secretase cleaved amyloid 
precursor protein standard, isoform 695 (APPo69s).

APP0t695 
pi 4.64

<  116kDa

pi 10.0^---------------------  pi 3.0

Figure 38. Two-dimensional gel of APPct695 standard using pH 3.0-10.0 dry strips and performed on a 
7cm gel. The APPa^s standard could then be excised from the gel then subjected to an in-gel
digestion.

<  116kDa

pi 10.0^-----------------------------------------------------------------------------pi 3.0

Figure 39. Western blot of a two-dimensional gel of the standard APPa^95 identical to the one shown in 
figure 38. The antibody 1151 was used which reveals the presence of all three isoforms of interest.
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The standard APPa695 isoform was subjected to two-dimensional analysis, which 

gave one major protein spot as expected at pi 4.64. This protein spot could then be in­

gel digested to allow a direct comparison by mass spectroscopy.
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3.1222 Two-dimensional gel electrophoresis of alpha secretase cleaved amyloid 
precursor protein, isoform 770 (APPa77o)-

<  116kDa

pKa 10.0<4------------------------------------------------------------------------------- pKa 3.0

Figure 40. Two-dimensional gel of APParro isoform extracted from CHO 770 cell line. The circle 
highlights the area in which APPa770 is expected.

A P P 0t 770 
pi 4.65

<  116kDa

pKa 10.0< ------------------------------------------------------------------------------- pKa 3.0

Figure 41. Western blot using 1151of a two-dimensional gel of APPa770 isolated from CHO 770 cells 
identical to the one shown in figure 40.

The two-dimensional gel o f A P P a 77 o  (figure 40) does not show any obvious signs o f 

the isoform even though the concentration o f isolated A P P a 77 o  loaded is similar to
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that loaded upon the one-dimensional gels. The nature of two-dimensional analysis, 

however, means that sample losses can occur generally but also the removal of any 

co-eluting species in the first dimension may also reduce staining in the areas 

observed. Although the isoform cannot be seen on the gel (figure 40) the discrete 

sensitivity of the antibodies used in Western blotting allows detection of very low- 

level proteins and visualisation of APPCI770 (figure 41). Identical gels were run and the 

Western analysis acted as a template for the excision of the APPCI770 from the gel.
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3.1223 Two-dimensional gel electrophoresis of alpha secretase cleaved amyloid 
precursor protein (APPa).

<  116kDa

pKa 10.0^------------------------------------------------------------------------- pKa 3.0

Figure 42. Two-dimensional analysis of APPa extracted from Ntera 2 cells. The circle predicts the area 
in which APP isoforms can be expected.

APPa77o
APPa7si

pi 4.63

pi 4.65

<  116kDa

APP0695 
pi 4.64

pi 10.0^ pi 3.0

Figure 43. Western blot using 1151 of a two-dimensional gel of APPa identical to figure 42.
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Again the two-dimensional gel of APPa (figure 42) does not show any sign of the 

isoforms even though the concentration loaded is similar to that loaded upon the one­

dimensional gels. The use of Western analysis, however, helps to combat this showing 

clearly the presence of all three isoforms (figure 43) in this sample as well as acting as 

a template for gel excision.

The concluding remarks from this section must be the ability of two-dimensional gel 

electrophoresis to resolve all three APP isoforms (figure 43) compared to one­

dimensional electrophoresis (figure 34), which is unable to resolve APPa77o from 

APPa75i due to closeness of molecular weights. The first dimension separation by 

isoelectric focusing point (pi) shows a vague separation between APPa77o at pi 4.65 

and APPa75i at pi 4.63. The pi of APP0C695 is in between at 4.64 and separation in this 

dimension may prove difficult but the difference in molecular weight of APP0 6 9 5  

allows a clear separation in the second dimension SDS-PAGE step. The two- 

dimensional gels shown here have all been performed using pH 3.0-10.0 drystrips and 

7cm gels. To improve separation in the first dimension the use of drystrips with a 

more optimal pH range could be used such as pH 4.0-7.0 and improvements in the 

second dimension could be achieved by using larger gels. The disadvantage of two- 

dimensional electrophoresis, however, is the reduction of sample concentration 

making visualisation of low-level proteins difficult and the sensitivity of the staining 

technique being the limiting step. Improvements in this area, however, will help 

circumvent such problems.
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3.2 Examination of intact bovine serum albumin (BSA) and amyloid precursor 
protein (APP).

3.21 MALDI-MS and nanospray analysis of intact BSA.

3.211 MALDI-MS of intact BSA

(A
C

f

o:o:o 12KS0

Figure 44. MALDI-MS spectrum of intact BSA, m/z 66,420 and its dimer at 132,448. The triply and 
doubly charged ions are also seen at 22,294 and 33,379 respectively.

3.212 Nanospray of intact BSA.
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Figure 45. Nanospray analysis of intact BSA.

114



66544.7834
2.2e4

2.0e4

1.8e4

1.6e4

1.4e4

I 12e4 &
I  1-0e4g

8000.0

6000.0

4000.0

2000.0 

0.0

66633.5933

\J
66726.0463

LA
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Figure 46. Bayesian reconstruction of intact BSA from figure 45, highlighting the presence of BSA 
isoforms.

The MALDI-MS spectrum for intact BSA (figure 44) gives a clean singly charged ion 

peak at m/z 66420.6 and although MALDI-MS gives predominantly singly charged 

ion species, in the analysis o f large molecules, such as proteins multiple charging can 

be seen due to the presence o f ionisable groups on the molecule. This is apparent with 

the peaks at m/z’s 33,779 and 22,294 representing the doubly and triply charged BSA 

molecules. The BSA dimer is also present at m/z 132,448. The Nanospray sprectrum 

(figure 45) shows a nicely resolved envelope for BSA, the deconvoluted spectrum 

showing the presence o f BSA isoforms (figure 46).
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3.22 MALDI-MS and nanospray analysis of intact alpha secretase cleaved 
amyloid precursor protein standard, isoform 695 (APPo^s).

3.221 MALDI-MS of intact standard APPo695

66703.3
64-

33470.462-

60- 

jjr 58-
CD

S  56-
22334.5

“  54-

52-

50-

20000 30000 40000 50000 60000 70000 80000
Mass, m/z

Figure 47. MALDI-MS spectrum of intact standard APPa^s, 67708.02MW. The single, double and 
triply charged ions are present at m/z’s 66703.3, 33470.4 and 22334.5 respectively.

3.222 Nanospray of intact standard APP0C695

m/z, amu

Figure 48. Nanospray analysis of intact standard A P Pa^
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Figure 49. Bayesian reconstruction of intact standard APPoc^s from figure 48.

The MALDI-MS spectrum of intact APPct695 (figure 47) displays resolved peaks for 

the singly charged species at m/z 66,703.3 as well as the doubly and triply charged 

molecules at 33,470.4 and 22,334.5 respectively. The nanospray data (figure 48) is 

less impressive, however, giving no clear indication o f the intact APP« 6 9 5  molecule 

and deconvolution o f the area o f interest (figure 49) again shows no obvious results.
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3.23 MALDI-MS and nanospray analysis o f intact alpha secretase cleaved 
amyloid precursor protein, isoform 77® (A PPa 77*)»

3.231 MALDI-MS o f intact A PForm

73738.7

122100.0 190780.1

35336.7

26361.3

Mass,m/z

Figure 50. MALDI-MS spectrum of intact APPa.7 7 0 , 75998.34 MW

3.232 Nanospray of intact APPOL770
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Figure 51. Nanospray analysis of intact APPa770.
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Figure 52. Bayesian reconstruction of intact APPa770 from figure 51.

The MALDI-MS spectra of intact APPa.770 (figure 50) shows a strong peak at m/z 

73,799.7 believed to be APPa^o, MW 75,940.3. Although the mass accuracy of this 

peak at 2.8% seems poor the size of the protein and calibration of the instrument play 

a large part. Nanospray (figure 51) gave no convincing data for APPo^to and the 

Bayesian reconstruction (figure 52) compounded this showing no specific peaks.
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3.24 MALDI-MS and nanospray analysis o f intact alpha seeretase cleaved 
amyloid precursor protein (A PPa).

3.241 MALDI-MS of intact APPo.

80000 100000 120000
Mass, m/z

Figure 53. MALDI-MS spectra of intact APPa, containing die isoforms, APP695. APP751 and 
APP770. The average theoretical molecular weights of 67,708.02, 73,863.85 and 75,988.34 
respectively corresponding to the observed m/z values.

3.242 Nanospray of intact A PPa.

1270.49

1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650
m /z , a m u

Figure 54. Nanospray analysis of intact APPa.
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The MALDI-MS spectrum of intact APPa (figure 53) showed a spectral pattern, 

which could potentially be the resolution of the three isoforms present within this 

sample. The mass accuracy of each peak is poor and inconsistency is seen between the 

isoforms. Explanations for this could be instrument calibration and manual peak 

picking not achieving a true centroid for each peak. The nanospray results were 

unsuccessful (figure 54) and the area of interest did not provide any reconstructed 

data.

The concluding remarks from the data shown in this chapter must be the utility for 

MALDI-MS towards the analysis of high molecular weight making it the obvious 

choice for intact protein molecules, as well as its sensitivity and tolerance of 

contaminants compared to nanospray.
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3.3 In-silico digestion of APP isoforms

Alternative splicing of the amyloid precursor protein (APP) gene transcript gives rise 

to nine named isoforms. With regards to Alzheimer’s disease (AD) research, however, 

only three of these isoforms appear to be significant; APP695, APP751 and APP770 all 

arising from exon variation. APP770, known as full length APP has a full series of 

exons, APP751, lacks exon 8, which codes for the OX2-homology domain, APP695 

lacks both exon 8 and 7. Exon 7 codes for the Kunitz-type inhibitor domain, present in 

both APP770 and APP751, designating them APPkpi isoforms. Differences between the 

isoform domains not only give rise to functional variations but also alter the primary 

amino acid sequences (figure 55). One of the research areas looking at AD pathology 

is isoform variation in AD and non-AD brains. The original hypothesis was that 

APP695 was the only isoform, which may be causative of AD as it was present only 

within brain cells, whereas APP751 and APP770 both existed within the periphery. 

Several studies, however, have since shown that this may not be the case, by revealing 

a predominance of the APPkpi isoforms in disease states. I f the pathology of AD does 

involve isoform peculiarity then rapid identification of the isoforms within disease 

states would be extremely advantageous. Proteomics could hold the key to this 

problem, utilising the inherent sensitivity of MS-fingerprinting. Neither one­

dimensional nor two-dimensional SDS-PAGE have the ability to separate out all three 

isoforms sufficiently. In one-dimensional SDS-PAGE, APP695 is resolved but APP751 

and APP770 run together. This problem could be overcome by two-dimensional SDS- 

PAGE utilising the resolving power of isoelectric focusing, however, although there is 

variation within the pi values of the two APPkpi isoforms (APP75i= 4.63 and APP770 = 

4.65) resolution is not always repeatable due to
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10 20 30 40 50 60

MLPGLALLLL AAWTARALEV PTDGNAGLLA EPQIAMFCGR LNMHMNVQNG KWDSDPSGTK

70 80 90 100 110 120

TCIDTKEGIL QYCQEVYPEL QITNWEANQ PVTIQNWCKR GRKQCKTHPH FVIPYRCLVG

140 150 160 170 180

130EF V SDALLVP DKCKFLHQER MDVCETHLHW HTVAKETCSE KSTNLHDYGM LLPCGIDKFR

190 200 210 220 230 240

GVEFVCCPLA EESDNVDSAD AEEDDSDVWW GGADTDYADG SEDKWEVAE EEEVAEVEEE

250 260 270 280 290 300

EADDDEDDED GDEVEEEAEE PYEEATERTT SIATTTTTTT ESVEEVVRfcV CSEQAETGPC

310 320 330 340 350 360

RAMISRWYFD VTEGKCAPFF YGGCGGNRNN FDTEEYCMAV CGSAMSOSLL KTTOEPLARD

370 380 390 400 410 420

PVKLPTT A A AS PTDAVDKYLE TPGDENEHAH FQKAKERLEA KHRERMSQVM REWEEAERQA

430 440 450 460 470 480

JNLPKADK.KA VIQQHFQEKVE SLEQEAANER QQLVETHMAR VEAMLNDRRR LALENYITAL

490 500 510 520 530 540

QAVPPRPRHV FNMLKKYVRA EQKDRQHTLK HFEHVRMVDP KKAAQIRSQV MTHLRVIYER

550 560 570 580 590 600

MNQSLSLLYN VPAVAEEIQD EVDELLQKEQ NYSDDVLANM ISEPRISYGN DALMPSLTET

610 620 630 640 650 660

KTTVELLPVN GEFSLDDLQP WHSFGAADSVP ANTENEVEPV DARPAADRGL TTRPGSGLTN

670 680 690 700 710 720

IKTEEISEVK MDAEFRHDSG YEVHHQKLVF FAEDVGSNKG AIIGLMVGGV VIATVIVITL

730 740 750 760 770

VMKKKQYTS IHHGWEVDA AVTPEERHLS k m q q n g y e n p TYKFFEQMQN

Figure 55. SWISS-PROT amino acid sequence entry for membrane bound, full length APP770 splice 
isoform, highlighting the differences in both APP695 and APP751. E = V in APP695; M =1 in APP75j; 
blue font missing in APP695 and underlined blue font missing in APP75|.
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tiExPASv Home Site Search Contact Swiss- Proteomics
page Map ExPASv us Prot tools

Swiss-Pl-ot/TrB/BL ▼ „ p05067 Go
Search for ___ _

Mass
Documentation is available.
The entered sequence is:
M LPG LALLLLAAWTARALEVPTDG NAG LLAEPQIAM FCG RLN M H M NVQNG KWDSDPSGTK 
TCIDTKEGILQYCQEVYPELQITNWEANQPVTIQNWCKRGRKQCKTHPHFVIPYRaVGEFVSDALLVP 
DKCKFLHQERMDVCETHLHWHTVAKETCSEKSTNLHDYGMLLPCGIDKFRGVEFVCCPLAEESDNVDS 
ADAEEDDSDVWWGGADTDYADGSEDKWEVAEEEEVAEVEEEEADDDEDDEDGDEVEEEAEEPYEEA 
TERTTSIAI I I I I I I hSVEEWREVCSEQAETGPCRAMISRWYFDVTEGKCAPFFYGGCGGNRNNFDTE 
EYCMAVCGSAMSQSLLKTTQEPLARDPVKLPTTAASTPDAVDKYLETPGDENEHAHFQKAKERLEAKHR 
ERMSQVMREWEEAERQAKNLPKADKKAVIQHFQEKVESLEQEAANERQQLVETHMARVEAMLNDRRR 
LALENYITALQAVPPRPRHVFNMLKKYVRAEQKDRQHTLKHFEHVRMVDPKKAAQIRSQVMTHLRVIYE 
RMNQSLSLLYNVPAVAEEIQDEVDELLQKEQNYSDDVLANM ISEPRISYGNDALMPSLTET 
KTTVELLPVN GEFSLDDLQP WHSFGADSVP ANTENEVEPV DARPAADRGL TTRPGSGLTN 
IKTEEISEVK MDAEFRHDSG YEVHHQKLVF FAEDVGSNKG AIIGLMVGGV VIATVIVITL 
VMLKKKQYTS IHHGWEVDA AVTPEERHLS KMQQNGYENP TYKFFEQMQN

The selected enzyme is: Trypsin
Maximum number of missed cleavages (MC): 2
All cysteines have been treated with Iodoacetic acid to form carboxymethyl- 
cysteine (Cys_CM).
Methionines have been oxidized to form methionine sulfoxide (MSO). 
Displaying peptides with a mass bigger than 500 Dalton.
Using monoisotopic masses of the occurring amino acid residues and giving 
peptide masses as [M+H]+.

Figure 57. Web page from ExPASy’s Peptide Mass site, which performs theoretical digests upon user 
supplied sequences creating insilico digest lists of peptide values.
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experimental variation and low protein concentration. It is possible that MS- 

fingerprinting could resolve the isoforms by means of the specific cleavage sites of 

reagents. It is a fair assumption, due to the amino acid differences between the 

isoforms that any cleavage occurring within the areas of difference may result in 

peptides of varying lengths from each isofonn. This, however, needs to be clarified by 

carrying out an insilico digest, utilising database facilities such as MS-Digest and 

ExPASy’s Peptide Mass, allowing user supplied sequences to be entered and 

theoretically digested. The antibody used in the immunoprecipitation procedure 

utilised in this study, namely AB10 raised to amino acids 1-17 of the p amyloid 

peptide sequence, thus the nature of the APP examined is secreted a-secretase cleaved 

(figure 56) and it is these isoform sequences that were entered into the database. 

Using ExPASy’s Peptide Mass site (figure 57) the isofonn sequences, cleavage 

reagents and type of modifications present were entered, from which a list of 

theoretical digest peptides were generated (appendix F). Examination of these lists 

highlighted several unique digest peptides (table 9) for both the trypsin and Asp-N 

digests highlighted in figure 58.

Monoisotopic M+H* of the Predicted Isoform Specific Peptides

Digest reagent APPa*.* APPa75i APPtt77o

Trypsin 1372.6954 3121.3434 2541.0764
1386.7111
915.4894

Asp-N 1327.7216 1872.8176 2150.9589
1297.6998

Formic acid 1327.7216 1872.8176 2150.9589
1297.6998

Table 9. Summarising the theoretical isoform specific peptides generated from the ExPASy’s peptide 
mass database.
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LEVPTDGNAG LLAEPQIAMF 
PELQITNWE ANQPVTIQNW 
QERMDVCETH LHWHTVAKET 
SADAEEDDSD VWWGGADTDY 
AEEPYEEATE RTTSIATTTT 
KAKERLEAKH RERMSQVMRE 
LVETHMARVE AMLNDRRRLA 
EHVRMVDPKK AAQIRSQVMT 
SDDVLANMIS EPRISYGNDA 
TENEVEPVDA RPAADRGLTT

CGRLNMHMNV QNGKWDSDPS 
CKRGRKQCKT HPHFVIPYRC 
CSEKSTNLHD YGMLLPCGID 
ADGSEDKWE VAEEEEVAEV 
TTTESVEEW  RVPTTAASTP 
WEEAERQAKN LPKADKKAVI 
LENYITALQA VPPRPRHVFN 
HLRVIYERMN QSLSLLYNVP 
LMPSLTETKT TVELLPVNGE 
RPGSGLTNIK TEEISEVKMD

APP(X695

GTKTCIDTKE GILQYCQEVY 
LVGEFVSDAL LVPDKCKFLH 
KFRGVEFVCC PLAEESDNVD 
EEEEADDDED DEDGDEVEEE 
DAVDKYLETP GDENEHAHFQ 
QHFQEKVESL EQEAANERQQ 
MLKKYVRAEQ KDRQHTLKHF 
AVAEEIQDEV DELLQKEQNY 
FSLDDLQPWH SFGADSVPAN 
AEFRHDSGYE VHHQK

LEVPTDGNAG LLAEPQIAMF CGRLNMHMNV QNGKWDSDPS GTKTCIDTKE GILQYCQEVY
PELQITNWE ANQPVTIQNW CKRGRKQCKT HPHFVIPYRC LVGEFVSDAL LVPDKCKFLH
QERMDVCETH LHWHTVAKET CSEKSTNLHD YGMLLPCGID KFRGVEFVCC PLAEESDNVD
SADAEEDDSD VWWGGADTDY ADGSEDKWE VAEEEEVAEV EEEEADDDED DEDGDEVEEE
AEEPYEEATE RTTSIATTTT TTTESVEEW REVCSEQAET GPCRAMISRW YFDVTEGKCA
PFFYGGCGGN RNNFDTEEYC MAVCGSAIPT TAASTPDAVD KYLETPGDEN EHAHFQKAKE
RLEAKHRERM SQVMREWEEA ERQAKNLPKA DKKAVIQHFQ EKVESLEQEA ANERQQLVET
HMARVEAMLN DRRRLALENY ITALQAVPPR PRHVFNMLKK YVRAEQKDRQ HTLKHFEHVR
MVDPKKAAQI RSQVMTHLRV IYERMNQSLS LLYNVPAVAE EIQDEVDELL QKEQNYSDDV
LANMISEPRI SYGNDALMPS LTETKTTVEL LPVNGEFSLD DLQPWHSFGA DSVPANTENE
VEPVDARPAA DRGLTTRPGS GLTNIKTEEI SEVKMDAEFR HDSGYEVHHQ K

APPa75i

LEVPTDGNAG LLAEPQIAMF CGRLNMHMNV QNGKWDSDPS GTKTCIDTKE GILQYCQEVY
PELQITNWE ANQPVTIQNW CKRGRKQCKT HPHFVIPYRC LVGEFVSDAL LVPDKCKFLH
QERMDVCETH LHWHTVAKET CSEKSTNLHD YGMLLPCGID KFRGVEFVCC PLAEESDNVD
SADAEEDDSD VWWGGADTDY ADGSEDKWE VAEEEEVAEV EEEEADDDED DEDGDEVEEE
AEEPYEEATE RTTSIATTTT TTTESVEEW REVCSEQAET GPCRAMISRW YFDVTEGKCA
PFFYGGCGGN RNNFDTEEYC MAVCGSAMSQ SLLKTTQEPL ARDPVKLPTT AASTPDAVDK
YLETPGDENE HAHFQKAKER LEAKHRERMS QVMREWEEAE RQAKNLPKAD KKAVIQHFQE
KVESLEQEAA NERQQLVETH MARVEAMLND RRRLALENYI TALQAVPPRP RHVFNMLKKY
VRAEQKDRQH TLKHFEHVRM VDPKKAAQIR SQVMTHLRVI YERMNQSLSL LYNVPAVAEE
IQDEVDELLQ KEQNYSDDVL ANMISEPRIS YGNDALMPSL TETKTTVELL PVNGEFSLDD
LQPWHSFGAD SVPANTENEV EPVDARPAAD RGLTTRPGSG LTNIKTEEIS EVKMDAEFRH
DSGYEVHHQK

APPa 770

Figure 58. Amino acid sequences of soluble APPa-secreatase cleaved isoforms of interest, highlighting 
peptides unique to each isoform for both trypsin (highlighted in blue) and Asp-N (underlined in red) 
digests.
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Trypsin shows unique peptides for APP695 at position 272-285, monoisotopic mass o f 

1371.5954; likewise for APP751 at position 312-341, monoisotopic mass 3120.2434 

and APP770 exhibits three peptides at positions 312-334, monisotopic mass 

2539.9764, 347-360, monoisotopic mass 1385.6111 and 335-342, monoisotopic mass 

914.3894. The Asp-N digest again produces unique peptides for APP695 (position 268- 

280, monoisotopic mass 1326.6216) APP751 (position 318-336, monoisotopic mass 

1871.7176) and APP770 (positions 318-337, monisotopic mass 2149.8589 and 343- 

355, monisotopic mass 1296.5998). The cleavage site o f formic acid is the same as 

Asp-N and so specific peptides are identical. All three methods o f digestion could, 

therefore in theory be used as diagnostic tests for the presence o f each isoform. 

Viability of the test, however, would be highly dependent upon optimal protease 

activity in order to provide good sequence coverage and, therefore a full range of 

digest peptides.
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3.4 Analysis by mass spectrometry of the in-gel digestions of bovine serum 
albumin (BSA) and amyloid precursor protein (APP).

This section of chapter three covers the analysis by mass spectrometry o f in-gel 

digests of BSA and APP. APP encompasses all three samples utilised, namely the 

standard APP0C695, immunoprecipitated APPa77o and immunoprccipitated APPa. 

Comparison of the in-gel digests from both I D and 2D gel electrophoresis is covered 

as well as the cleavage efficiency of the different digest reagents, trypsin Asp-N and 

formic acid. Mass spectroscopic analysis is performed firstly by MALDI-MS and then 

capillary LC/MS each method followed by subsequent MS/MS analysis.

The analysis by mass spectrometry (MALDI-MS followed by capillary LC/MS) ofthe 

ID in-gel digests are covered first in sections 3.41, 3.42 and 3.43, looking at the 

different digest reagents, trypsin, Asp-N and formic acid respectively. Finally analysis 

by mass spectrometry (MALDI-MS followed by capillary LC/MS) of the 2D in-gel 

digest is shown in sections 3.44, 3.45 and 3.46 again corresponding to the different 

digest reagent utilised, namely trypsin, Asp-N and formic acid respectively. All the 

experiments performed in this chapter are shown in table 10 and results from these 

sections are briefly summarised in table 105 showing the percentage sequence

The full or partial sequences achieved by both MALDI-MS/MS and LC/MS/MS are 

annotated and numbered as follows; if  the ‘fr* ion series predominates then the legend 

showing the sequence will read from left to right with regards to the amino acid 

sequence i.e. N  to C terminus, however, if the ‘y ’ series is dominant the legend will 

read from right to left.
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3.41 One-dimensional in-gel tryptic digestion of BSA and APP.

3.411 MALDI-MS analysis of a one-dimensional in-gel tryptic digestion of BSA.
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Figure 59. MALDI-MS spectrum of a one-dimensional in-gel tryptic digest of BSA. The annotated 
peaks at m/z 927.55 and 1567.82 gave the best results when subjected to MS/MS analysis (figures 60 
and 61). Calculation of the peptide sequences takes into account the molecular weight similarities 
between the isomers leucine (L) and isoleucine (I). Keratin contamination highlighted by the black 
diamond.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

703.41 703.01 212-218 0 VLASSAR
712.37 712.39 29-34 0 SEIAHR
927.49 927.55 161-167 0 YLYEIAR
974.46 974.48 37-44 0 DLGEEHFK
1193.60 1193.66 25-34 1 DTHKSEIAHR
1249.62 1249.68 35-44 1 FKDLGEEHFK
1349.55 1349.60 76-88 0 TCVADESHAGCEK
1399.69 1399.73 569-580 0 TVMENFVAFVDK
1439.81 1439.84 360-371 1 RHPEYAVSVLLR
1479.80 1479.82 421-433 0 LGEYGFQNALIVR
1567.74 1567.82 347-359 0 DAFLGSFL YE Y SR
1639.94 1639.01 437-451 1 K VPQ V STPTL VE V SR
1888.92 1888.02 169-183 0 HPYFYAPELLYYANK

Table 11. Mascot search results from the one-dimensional in-gel tryptic digest of BSA (figure 59), 
showing 18% sequence coverage. The peaks subjected to MS/MS analysis highlighted in blue.
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Figure 60. MALDI-MS/MS of peak at m/z 927.55 from the one-dimensional in-gel tryptic digest of 
BSA seen in figure 59. The uncovered ‘y’ ion sequence tag YEIAR corresponds to the peptide 
YLYEIAR, 926.48 MW.

Amino acid_____________________________ Ion type (M+H4)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

Y ,Tyr 163.06 136.07 119.04 164.07 147.04 651.34 634.31
E, Glu 129.04 102.05 265.11 248.09 293.11 276.08 488.28 471.25

I, lie 113.08 86.04 378.20 361.17 406.19 389.17 359.24 342.21

A, Ala 71.03 44.04 449.23 432.21 477.23 460.20 246.15 229.12

R, Arg 156.10 129.11 605.34 588.31 633.33 616.30 175.11 158.09

Table 12. Bio Analyst software results from the MALDI-MS/MS one-dimensional in-gel tryptic digest 
of BSA seen in figure 60. Shown is the ‘a’, ‘b’ and ‘y’ product ions available for the sequence YEIAR, 
highlighting the ions present.
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Figure 61. MALDI-MS/MS spectrum of the peak m/z 1567.82 from the one-dimensional in-gel tryptic 
digest of BSA seen in figure 59. This peak corresponds to the BSA tryptic peptide 
DAFLGSFLYEYSR, verified by the sequence tag GSFLYEYSR. Immonium as well as ‘b7 and ‘y7 
product ions can be seen.

Amino acid________________________________ Ion type (M+Hf)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

G, Gly 57.02 30.03 30.03 13.00 58.02 41.00 1121.52 1104.49
S, Ser 87.03 60.04 117.06 100.03 145.06 128.03 1064.50 1047.47
F, Phe 147.06 264.13 247.10 292.12 275.10 977.47 960.44
L, Leu 113.08 86.09 377.21 360.19 405.21 388.18 830.40 813.37
Y,Tyr 163.06 136.07 540.28 523.25 568.27 551.25 717.32 700.29
E, Glu 129.04 102.05 669.32 652.29 697.31 680.29 554.25 537.23
Y,Tyr 163.03 136.07 832.38 815.36 860.38 843.35 425.21 408.18
S, Ser 87.03 60.04 919.41 902.39 947.41 930.38 262.15 245.12
R, Arg 156.10 129.11 1075.52 1058.49 1103.55 1086.48 175.11 158.09

Table 13. BioAnalyst results from the MALDI-MS/MS spectrum of the peak m/z 1567.82 from the 
one-dimensional in-gel tryptic digest of BSA seen in figure 61, showing the possible and highlighting 
the actual ‘a7, ‘b7 and ‘y7 product ions for the sequence GSFLYEYSR.
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3.412 Capillary LC/MS analysis of a one-dimensional in-gel tryptic digestion of 
BSA.
(a)

(b)
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Figure 62. Capillary LC/MS run of a BSA one-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 63 and 64).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

395.23 788.45 257-263 0 LVTDLTK
461.79 921.39 249-256 0 AEFVEVTK
464.24 926.47 161-167 0 YLYEIAR
501.78 1001.55 598-607 0 LW STQTALA
507.80 1013.59 549-557 0 QTALVELLK
582.30 1162.59 66-75 0 LVNELTEFAK
653.34 1304.67 402-412 0 HLVDEPQNLIK
700.33 1398.65 569-580 0 TVMENFVAFVDK
480.60 1438.78 360-371 1 RHPE Y A V S VLLR
493.93 1478.77 421-433 0 LGEYGFQNALIVR
740.39 1478.77 421-433 0 LGE Y GFQNALIVR
756.41 1510.80 438-451 0 VPQVSTPTLVEVSR
523.24 1566.71 347-359 0 DAFLGSFL YE Y SR
784.36 1566.71 347-359 0 DAFLGSFL YE Y SR
547.31 1638.91 437-451 1 VPQVSTPTLVEVSR
630.30 1887.87 169-183 0 HP YF Y APELL Y Y ANK
652.60 1954.90 319-336 0 DAIPENLPPLTADFAEDK
978.46 1954.92 319-336 0 DAIPENLPPLTADFAEDK
682.32 2043.95 168-183 1 RHP YFYAPELLYY ANK
820.70 2459.08 319-340 1 DAIPENLPPLTADFAEDKDVCK

Table 14. Bio Analyst automatic data analysis (using Matrix Science software) of the chromatograms 
shown in figure 62 of a one-dimensional in-gel tryptic digest of BSA gave 27% sequence coverage. 
The data highlights the presence of both doubly and triply charged species seen with ESI-MS as 
opposed to the singly charged ions seen with MALDI-MS. The sequences highlighted in blue gave the 
best results when subjected to MS/MS (figures 63 and 64). Calculation of the peptide sequences takes 
into account the molecular weight similarities between the amino acids lysine (K) and glutamine (Q) 
and isomers isoleucine (I) and leucine (L).
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Figure 63. Capillary LC/MS/MS run of the doubly charged product ion at m/z 582.30, retention time 
12.7 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of BSA (figure 62b). This 
product is consistent with the BSA tryptic peptide, LVNELTEFAK and the full sequence coverage 
verifies this.
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Amino acid Ion type (M+Hf)
residue mass/Da Immonium a
L, Leu 113.08 86.09
V, Val 99.06 185.16
N , Asn 114.04 87.05 299.20
E, Glu 129.04 428.25
L, Leu 113.08 541.33
T, Thr 101.04 74.06 642.38
E, Glu 129.04 771.42
F, Phe 147.06 918.49
A, Ala 71.03 44.04 989.53
K, Lys 128.09 101.10 1117.62

a-NH3 b b-NH3 y y-NH3

69.06 114.09 97.06 1163.60 1146.58
168.13 213.15 196.13 1050.52 1033.47
282.18 327.20 310.17 951.45 934.42
411.22 456.24 439.21 837.41 820.38
524.30 569.32 552.30 708.36 691.34
625.35 670.37 653.35 595.28 578.25
754.39 799.41 782.39 494.23 477.21
901.46 946.48 929.46 365.19 348.16
972.50 1017.51 1000.49 218.12 201 .10

1100.59 1145.62 1128.59 147.08 130.06

Table 15. Bio Analyst results of the capillary LC/MS/MS spectrum of the product at m/z 582.30 from 
the one-dimensional in-gel tryptic digest of BSA shown in figure 63. The possible and actual product 
ions for the peptide LVNELTEFAK are shown highlighting good sequence coverage in ‘a \  ‘b’ and ‘y’ 
ions, as well as several immonium ions.
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Figure 64. Capillary LC/MS/MS run of the doubly charged product ion at m/z 464.24, retention time 
12.0 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of BSA (figure 62c). This 
product is consistent with the BSA tryptic peptide, YLYEIAR, 926.47 monoisotopic mass and the 
MS/MS results showing the sequence tag establish the validity of the peptide.

Amino acid_________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

L, Leu 113.08 249.15 232.13 277.15 260.12 764.41 747.38
Y ,Tyr 163.06 412.22 395.19 440.21 423.19 651.32 634.30
E, Glu 129.04 102.05 541.26 524.23 569.26 552.23 488.26 471.24
I, lie 113.08 654.34 637.32 682.34 665.31 359.22 342.19
A, Ala 71.03 44.04 725.38 708.36 753.38 736.35 246.13 229.11
R, Arg 156.10 881.48 864.46 909.48 892.45 175.10 158.07
Table 16. BioAnalyst results of the capillary LC/MS/MS spectrum of the product at m/z 424.24 from 
the one-dimensional in-gel tryptic digest of BSA shown in figure 64. Showing the possible and actual 
(highlighted) ‘a’, ‘b’ and ‘y’ product ions for the sequence LYELAR.
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Bovine serum albumin (BSA,66,432.96 MW) was used as a standard due to its 

availability , similarity in molecular weight to the amyloid precursor protein isoforms 

(APPct695, MW 67,708.02, APPct75i, MW 73863.85,, APPa77o, MW 75,988.34) and 

knowledge of the expected digests195,196.

The MALDI-MS analysis of the one-dimensional in-gel tryptic digest of BSA (figure 

59) resulted in 13 tryptic peptides covering 18% of the protein. LC-MS analysis 

(figure 62) of the same sample revealed 17 tryptic peptides for BSA, which covered 

27% of the protein sequence. MS/MS analysis of peaks from both MALDI-MS 

(figures 60 and 61) and LC/MS (figures 63 and 64) allowed automatic identification 

of BSA via the BioAnalyst software. The LC/MS/MS data gave one full amino acid 

sequence and a generous sequence tag for the chosen peptides and MALDI-MS/MS 

gave two sequence tags. The sequence coverage achieved for the BSA tryptic 

digestions (MALDI 18%, LC-MS 27%) are poor in comparison to literature 

references of up to 70% sequence coverage from tryptic in-gel digestions197.
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3.413 MALDI-MS analysis of a one-dimensional in-gel tryptic digestion of alpha
secretase cleaved amyloid precursor protein standard, isoform 695 (APPa^s).
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Figure 65. MALDI-MS spectrum of a one-dimensional in-gel tryptic digest of standard APPa^s- The 
annotated peaks at m/z 829.46 and 971.56 gave the best results when subjected to MS/MS analysis the 
results of which are shown in figures 66  and 67. The peak at 1372.58 MW, marked by a red asterisk is 
specific to A ppals, MS/MS analysis, however, was unsuccessful. The peak at m/z 1980.96 marked by 
the blue asterisk is present in all three isoforms of interest and is noted as a peptide with a possible N- 
glycosylation site. Further investigation of the unlabelled peaks prominent within the spectrum was 
needed, however, time restrictions did not allow this. The peaks annotated with a black diamond are 
thought to be keratin contamination.

mass
(M+lT)

mass
(experimental)

position
(APPCC695

numbering)

missed
cleavages

peptide sequence

768.33 768.37 579-584 0 MDAEFR
824.42 824.45 419-424 0 HFEHVR
829.43 829.46 118-123 0 FLHQER
888.48 888.51 397-403 0 HVFNMLK
947.46 947.35 369-376 0 VEAMLNDR
948.41 948.30 320-326 0 EWEEAER
971.51 971.56 436-443 0 SQVMTHLR
1099.59 1099.49 338-346 0 AVIQHFQEK
1212.62 1212.55 359-368 0 QQLVETHMAR
1266.67 1266.65 90-99 0 THPHFVIPYR
1285.61 1285.71 24-34 0 LNMHMNVQNGK
1336.60 1336.34 585-595 0 HDSGYEVHHQK
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1372.70 1372.58 272-285 0 VPTTAASTPDAVDK*
1374.65 1374.91 347-358 0 VESLEQEAANER
1414.80 1414.78 557-570 0 GLTTRPGSGLTNIK
1739.85 1739.80 494-509 0 ISYGNDALMPSLTETK
1876.89 1876.76 145-161 0 STNLHDYGMLLPCGIDK
1914.86 1914.91 286-301 0 YLETPGDENEHAHFQK
1980.90 1980.96 477-493 0 EQNYSDDVLANMISEPR*
2002.04 2001.99 414-429 2 QHTLKHFEHVRMVDPK
2022.15 2022.25 379-396 0 L ALENYITALQA VPPRPR
2127.07 2127.07 252-271 0 TTSIATTTTTTTESVEEVVR
Table 17. Mascot search results from the MALDI-MS of the one-dimensional in-gel tryptic digest of 
APPcx 9̂5 shown (figure 65) covering 33% of the peptide sequence. The peptides analysed by MS/MS 
highlighted in blue.
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Figure 6 6 . MALDI-MS/MS spectrum of peak at m/z 829.46 from the one-dimensional in-gel tryptic 
digest of standard APPa^s in figure 65. This peak corresponds to the A PPo^ tryptic peptide 
FLHQER, MW 828.33 and the MS/MS analysis results validate this by giving the full peptide 
sequence.

Amino acid__________________________Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

F,Phe 147.068 120.080 120.080 103.054 148.075 131.049 829.431 812.405
L,Leu 113.084 86.096 233.164 216.138 261.159 244.133 682.363 665.336
H,His 137.058 370.223 353.197 398.218 381.192 569.279 552.252
Q,Gln 128.058 101.070 498.282 481.255 526.277 509.250 432.220 415.193
E,Glu 129.042 102.055 627.324 610.298 655.319 638.293 304.161 287.135
R,Arg 156.101 129.113 783.426 766.399 811.420 794.394 175.119 158.092
Table 18. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel tryptic digest 
of A P P a^  shown in figure 66 . Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the peptide 
FLHQER, highlighting the products ions present.
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Figure 67. MALDI-MS/MS spectrum of peak at m/z 971.56 peak from the one-dimensional in-gel 
tryptic digest of APPa^95 in figure 65. This peak corresponds to the A P Pa^  tryptic peptide 
SQVMTHLR, MW 971.51 and the resulting ‘b7 ion sequence tag, QVMTHLR authenticates the peak.

Amino acid______________________________ Ion type (M+H )
residue mass/ Da immonium a a-NH3 b b-NH3 y y-NH3

Q, Gin 128.05 101.07 188.10 171.07 216.09 199.07 884.54 867.52
V, Val 99.06 72.08 287.17 270.14 315.16 298.13 756.48 739.46
M, Met 131.04 104.05 418.21 401.18 446.20 429.18 657.42 640.39
T, Thr 101.04 74.06 519.25 502.23 547.25 530.22 526.38 509.35
H, His 137.05 110.07 656.31 639.29 684.31 667.28 425.33 408.30
L, Leu 113.08 86.09 769.40 752.37 797.39 780.37 288.27 271.24
R, Arg 156.10 129.11 925.50 908.47 953.49 936.47 175.19 158.16

Table 19. Bio Analyst software results from the MALDI-MS/MS one-dimensional in-gel tryptic digest 
of APPct695 shown in figure 67. Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the sequence 
QVMTHLR, highlighting the products ions present.
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3.414 Capillary LC/MS analysis of a one-dimensional in-gel tryptic digestion of
standard APPct695.
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Figure 6 8 . Capillary LC/MS run of an A P P a^  one-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 69 and 70).
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mass
observed

mass
(experimental)

Position
(APPCX695

numbering)

missed
cleavages

peptide sequence

686.84 1371.66 272-285 0 VPTTAASTPDAVDK*
687.81 1373.61 347-358 0 VESLEQEAANER
870.42 1738.83 494-509 0 ISYGNDALMPSLTETK
660.97 1979.87 477-493 0 EQNYSDDVLANMISEPR*
990.94 1979.86 477-493 0 EQNYSDDVLANMISEPR*
674.71 2 0 2 1 . 1 2 379-396 0 LALENYITALQAVPPRPR
709.68 2126.02 252-271 0 TTSIATTTTTTTESVEEVVR
1064.01 2126.00 252-271 0 TTSIATTTTTTTESVEEVVR

Table 20. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 68 of a one-dimensional in-gel tryptic digest of standard APPa695 gave 16% sequence 
coverage. The data highlights the presence of both doubly and triply charged species seen with ESI-MS 
as opposed to the singly charged ions seen with MALDI-MS. The sequences highlighted in blue were 
subjected to MS/MS analysis, the isoform specific peptide sequence VPTTAASTPDAVDK (marked 
by a red asterisk) analysed in order to prove the sample to be A PPa^.
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Figure 69. Capillary LC/MS/MS run of the doubly charged product ion at m/z 686.84, retention time 
7.9 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of standard A P P a^  (figure 
68b). This product is consistent with the A P Pa^ tryptic peptide, VPTTAASTPDAVDK, MW 
1371.66, a peptide specific to the APPa^s isoform, validated by full sequence coverage in ‘b’ ions.

Amino acid________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

V, Val 99.06 72.08 72.08 55.05 100.07 83.04 1372.60 1355.58
P, Pro 97.05 70.06 169.13 152.10 197.12 180.10 1273.53 1256.51
T, Thr 101.04 74.06 270.18 253.15 298.17 281.14 1176.48 1159.45
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T, Thr 101.04 74.06 371.22 354.20 399.22 382.19 1075.43 1058.41
A, Ala 71.03 44.04 442.26 425.23 470.26 453.23 974.39 957.36
A, Ala 71.03 44.04 513.30 496.27 541.29 524.27 903.35 886.32
S, Ser 87.03 60.04 600.33 583.30 628.33 611.30 832.31 815.28
T, Thr 101.04 74.06 701.38 684.35 729.37 712.35 745.28 728.25
P, Pro 97.05 70.06 798.43 781.40 826.43 809.40 644.23 627.21
D, Asp 115.02 88.03 913.46 896.43 941.45 924.43 547.18 530.15
A, Ala 71.03 44.04 984.49 967.47 1012.49 995.46 432.15 415.13
V, Val 99.08 72.08 1083.56 1066.55 1111.56 1094.53 361.12 344.09
D, Asp 115.02 88.03 1198.59 1181.56 1226.58 1209.56 262.05 245.02
K, Lys 128.09 101.10 1326.69 1309.66 1354.68 1337.65 147.02 129.99

Table 21. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 686.84 from the one-dimensional in-gel tryptic digest of standard APPa^s shown in 
figure 69.
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Figure 70. Capillary LC/MS/MS run of the doubly charged product ion at m/z 687.81, retention time 
9.4 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of standard APPa^s (figure 
68b). This product is consistent with the A P P a^  tryptic peptide, VESLEQEAANER, MW 1373.61 
and the sequence tag ESLEQEAANER, verifies this.

Amino acid_____________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

E, Glu 129.04 102.05 2 0 1 .1 2 184.09 229.11 212.09 1275.53 1258.51
S, Ser 87.03 60.04 288.15 271.12 316.15 299.12 1146.49 1129.47
L, Leu 113.08 86.09 401.23 384.21 429.23 412.20 1059.46 1042.47
E, Glu 129.04 102.05 530.28 513.25 558.27 541.25 946.38 929.35
Q, Gin 128.05 101.07 658.34 641.31 686.33 669.30 817.33 800.31
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E, Glu 129.04 102.05 787.38 770.35 815.37 798.35 689.27 672.25
A, Ala 71.03 44.04 858.42 841.39 886.41 869.38 560.23 543.20
A, Ala 71.03 44.04 929.45 912.43 957.45 940.42 489.19 472.17
N, Asn 114.04 87.05 1043.50 1026.47 1071.49 1054.46 418.16 401.13
E, Glu 129.04 102.05 1172.54 1155.51 1200.53 1183.51 304.11 287.09
R, Arg 156.10 129.11 1328.64 1311.61 1356.63 1339.61 175.07 158.05

Table 22. Bio Analyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 687.81 from the one-dimensional in-gel tryptic digest of standard APPot^s shown in 
figure 70.

Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP695 isoform (APPct695) 

from E.coli origin.

The MALDI-MS examination o f the one-dimensional in-gel tryptic digestion o f 

APPct695 (figure 65) gave amino acid sequence coverage o f 33% o f the APPct695 

molecule from 22 tryptic peptides. The sequence coverage achieved from the LC/MS 

(figure 68) analysis was poorer giving 16% o f the protein sequence from 6 peptides. 

The inferior LC/MS results in this instance could be due to the variations in manual 

and automatic peak retrieval. Due to the automation o f LC/MS data it is possible that 

peaks o f interest may be overlooked. MS/MS examination o f both MALDI-MS 

(figures 66 and 67) and LC/MS (figures 69 and 70) showed excellent results, 

providing full peptide sequences for both methods. The unique tryptic peptide 

exhibited by APPot695 (position 272-285, monoisotopic mass 1378.6882, amino acid 

sequence VPTTAASTPDAVDK) was present in both the MALDI-MS and LC/MS 

data. Observed as the peak at m/z 1372.58 in the MALDI-MS spectrum (figure 65) 

and its presence within the LC/MS chromatograms were highlighted both in the 

BioAnalyst search results (table 20) as well as analysis by LC/MS/MS (figure 69) 

giving a full peptide sequence. Another peptide o f interest,
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EQNYSDDVLANMISEPR, position 477-493 (APPct695 numbering) seen in the 

MALDI-MS spectrum (figure 65) at m/z 1980.96, highlighted with a blue asterisk 

also present in the LC/MS data (table 20) in both double (m/z 990.94) and triply (m/z 

660.97) charged species is thought to have a possible TV-glycosylation site at position 

479. If glycosylation does occur at this point the mass of the peptide would increase 

and the species at 1980 and 1979 for MALDI-MS and LC/MS respectively would not 

be seen. The bacterial nature of the standard APPct695, however, means that 

glycosylation does not occur and as such the 1980 and 1979 ion species are visible. 

Contamination peaks visible within the MALDI-MS spectra needed further 

investigation by MS/MS to establish their identity, however, time limitations did not 

allow this. The peaks believed to be from keratin digestion (appendix 2, table 2) are 

highlighted.
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3.415 MALDI-MS analysis of a one-dimensional in-gel tryptic digestion of

immunoprecipitated alpha secretase cleaved amyloid precursor protein, isoform 

770 (APPa?7o).
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Figure 71. MALDI-MS spectrum of an in-gel tryptic digest of APPa^o from a one-dimensional gel. 
Annotated are the peptides upon which MS/MS analysis was performed (figures 72 and 73). Note the 
peak at m/z 915.34, specific to the APPa^o isoform. Keratin contamination marked with a black 
diamond.

mass
(M+H4)

mass
(experimental)

position
(sAPP77o

numbering)

missed
cleavages

peptide sequence

824.42 824.30 494-499 0 HFEHVR
829.43 829.13 118-123 0 FLHQER
915.49 915.34 335-342 0 TTQPELAR*
948.41 948.29 395-401 0 EWEEAER
971.51 971.38 511-518 0 SQVMTHLR
1099.59 1099.45 413-421 0 AVIQHFQEK
1212.62 1 2 1 2 . 6 6 434-443 0 QQLVETHMAR
1266.67 1266.36 90-99 0 THPHFVIPYR
1336.60 1336.42 660-670 0 HDSGYEVHHQK
1374.65 1374.46 422-433 0 VESLEQEAANER
1414.80 1414.66 632-645 0 GLTTRPGSGLTNIK
2022.15 2 0 2 2 . 0 1 454-471 0 LALENYITALQAVPPRPR
2127.07 2126.98 252-271 0 TTSIATTTTTTTESVEEVVR
2402.18 2402.03 1-23 0 LEVPTDGNAGLLAEPQIAMFCR
Table 23. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
tryptic digest (figure 71) yielding 19% sequence coverage. The sequences highlighted in blue gave the 
best results when subjected to MS/MS analysis. The red asterisk marks the tryptic peptide TTQPELAR 
specific to APPcrno, however MS/MS analysis of this peak did not give any comprehensive results.
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Figure 72. MALDI-MS/MS spectrum of peak at m/z 824.30 from the one dimensional in-gel digest of 
APPa77o (figure 71) corresponding to the APPa^o tryptic peptide HFEHVR. MS/MS analysis assigned 
the full sequence in ‘b’ and ‘y’ ions.

Amino acid___________________  Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

H, His 137.05 |  1 A 110.07 93.04 138.06 121.03 824.41 807.38

F, Phe 147.06 120.08 257.13 240.11 285.13 268.10 687.35 670.33
E, Glu 129.04 102.05 386.18 369.15 414.17 397.15 540.28 523.26
H, His 137.05 110.07 523.24 506.21 551.23 534.20 411.24 394.21
V, Val 99.06 72.08 622.30 605.28 650.30 633.27 274.18 257.16

R, Arg 156.10 129.11 778.41 761.38 806.40 789.37 175.11 158.09

Table 24. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel tryptic digest 
of APPa770 spectrum in figure 72. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
peptide HFEHVR, highlighting the ions present.
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Figure 73. MALDI-MS/MS spectrum of peak at m/z 948.29 from the one-dimensional in-gel tryptic 
digest of APPa77o (figure 71). This peak corresponds to the APPa770 tryptic peptide EWEEAER, 
947.31 monoisotopic MW. Full sequence coverage o f ‘b’ product ions substantiates the peak.

Amino acid_____________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

E, Glu 129.04 102.05 102.05 85.02 130.04 113.02 948.40 931.37
W, Trp 186.07 159.09 288.13 271.10 316.12 299.10 819.36 802.33
E, Glu 129.04 102.05 417.17 400.15 445.17 428.14 633.28 616.25
E, Glu 129.04 102.05 546.21 529.19 574.21 557.18 504.24 487.21
A, Ala 71.03 44.04 617.25 600.23 645.25 628.22 375.19 358.17
E, Glu 129.04 102.05 746.29 729.27 774.29 757.26 304.16 287.13
R, Arg 156.10 129.11 902.40 885.37 930.39 913.36 175.11 158.09

Table 25. Bio Analyst results from the MALDI-MS/MS one-dimensional in-gel tryptic digest of 
APPa77o seen in figure 73, showing the possible ‘a’, ‘b' and ‘y’ product ions and highlighting the ions 
present for the peptide EWEEAER.
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3.416 Capillary LC/MS analysis of a one-dimensional in-gel tryptic digestion of
immunoprecipitated APPa77o.
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Figure 74. Capillary LC/MS run of an APPa^o one-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from trace (b) was sorted according to 
predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks automatically 
sent for MS/MS (figures 75 and 76).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

404.87 1211.60 434-433 0 QQLVETHMAR
687.83 1373.64 420-431 0 VESLEQEAANER
580.61 1738.82 567-582 0 ISYGNDALMPSLTETK
870.42 1738.82 567-582 0 ISYGNDALMPSLTETK
674.72 2021.13 454-471 0 LALENYITALQAVPPRPR
709.69 2126.03 252-271 0 TTSIATTTTTTTESVEEVVR

Table 26. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 74 of a one-dimensional in-gel tryptic digest of APPa770 gave 11% sequence coverage. 
The data highlights the presence of both doubly and triply charged species seen with ESI-MS as 
opposed to the singly charged ions seen with MALDI-MS. The sequences that gave the best MS/MS 
results are highlighted in blue.
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Figure 75. Capillary LC/MS/MS run of the doubly charged product ion at m/z 870.42, retention time 
14.0 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of APPa770 (figure 74b). 
This product is consistent with the APPa770 tryptic peptide ISYGNDALMPSLTETK, 1738.83 MW and 
the sequence tag DALM seen in ‘y’ ions verify this.

Amino acid_____________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

(534.23) 534.23 n/a 507.24 490.22 535.24 518.21 1739.80 1722.78
D, Asp 115.02 88.03 622.26 605.23 650.25 633.23 1205.58 1188.55
A, Ala 71.03 44.04 693.30 676.27 721.29 704.26 1090.55 1073.52
L, Leu 113.08 806.38 789.35 834.38 817.35 1019.51 1002.49
M, Met 131.04 937.42 920.39 965.42 948.39 906.43 889.40
(756.36) 756.36 n/a 1693.80 1676.77 1721.79 1704.77 1662.28 1645.76
Table 27. BioAnalyst automated searching of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 870.42 from the one-dimensional in-gel tryptic digest of APPa^o shown in figure 75, 
shows the product ions from the sequence tag DALM as well as the amino acid residues upstream and 
downstream from this sequence, which make up the full amino acid sequence.
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Figure 76. Capillary LC/MS/MS analysis of the triply charged product ion at m/z 709.69, retention time
13.9 minutes from the LC/ MS run of a one-dimensional in-gel tryptic digest of APPttno (figure 74b). 
This product is consistent with the APPa^o tryptic peptide TTSIATTTTTTTESVEEVVR, 2126.03 
MW and the sequence tag VSET expands this.

Amino acid_____________________________ Ion type (M+Hf)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

(1079.48) 1079.48 n/a 1052.49 1035.47 1080.49 1063.46 2127.00 2109.98
T, Thr 101.04 1153.54 1136.52 1181.54 1164.51 1047.52 1030.49
E, Glu 129.04 1282.58 1265.56 1310.58 1293.55 946.47 929.44
S, Ser 87.03 60.04 1369.62 1352.59 1397.61 1380.59 817.43 800.40
V, Val 99.06 1468.69 1451.66 1496.68 1479.65 730.39 713.37
(612.31) 612.31 n/a 2081.00 2063.97 2108.99 2091.97 1342.70 1325.68
Table 28. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the one­
dimensional in-gel tryptic digest of APPa77o shown in figure 76, highlights the product ions from the 
sequence tag TESV.

The alpha secretase cleaved amyloid precursor protein, isoform 770 (APPct77o) was 

immunoprecitated from CHO 770 cell secretions. 

The MALDI-MS examination o f the one-dimensional in-gel tryptic digestion o f 

APP01770 (figure 71) gave amino acid sequence coverage o f 19% o f the A PPa77o
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molecule from 14 tiyptic peptides. The sequence coverage achieved from the LC/MS 

(figure 74) analysis was poorer giving 11% of the protein sequence from 5 peptides. 

The low sequence coverage achieved was to be expected considering the low initial 

concentration of in vivo APP. Again the inferior LC/MS results could be due to the 

variations in manual and automatic peak retrieval as the information dependant 

acquisition software functionality (IDA) allows automatic searching of LC/MS peak 

lists, whereas the MALDI-MS peak lists were edited and searched manually. As the 

LC/MS data is processed without human intervention it is possible that peaks of 

interest may be overlooked. MALDI-MS/MS examination of two tryptic peptides 

produced full sequence coverage in both cases (figures 72 and 73), whereas the results 

from the LC/MS/MS (figures 75 and 76) were less notable generating only sequence 

tags. This was, however, sufficient to achieve positive results from the automated 

search engine. APPa77o produces three unique tiyptic peptides; position 312-334, 

monoisotopic mass 2540.076; position 347-360, monoisotopic mass 1385.6111; 

position 335-342. monisotopic mass 914.3894, the latter is present in the MALDI-MS 

spectrum (figure 71) at m/z 915.34 marked by a red asterisk. None of the other unique 

peptides were resolved and attempts at assigning the sequence for the 915.34 peptide 

were insufficient for protein identification. Identification of the contaminating species 

present in the MALDI-MS spectra (figure 71) was not performed due to time 

limitations.
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3.417 MALDI-MS analysis of a one-dimensional in-gel tryptic digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 77. MALDI-MS spectrum of an in-gel tiyptic digest of APPa from a one-dimensional gel. 
Annotated are the peaks upon which MS/MS analysis was performed (figures 78 and 79). Keratin 
contamination peaks highlighted by the black diamond.

mass
(M+H4)

mass
(experimental)

Position
s AP P 770 

numbering

missed
cleavages

peptide sequence

824.42 824.45 494-499 0 HFEHVR
829.43 829.46 118-123 0 FLHQER
948.41 948.46 395-401 0 EWEEAER
1212.62 1 2 1 2 . 6 6 434-443 0 QQLVETHMAR
1266.67 1266.74 90-99 0 THPHFVIPYR
1374.65 1374.70 422-433 0 VESLEQEAANER
1414.80 1414.86 632-645 0 GLTTRPGSGLTNIK
1980.90 1981.99 552-568 0 EQNYSDDVLANMISEPR
2022.15 2 0 2 2 . 2 2 454-471 0 LALENYIT ALQ AVPPRPR
2127.07 2127.13 252-271 0 TTSIATTTTTTTESVEEVVR

Table 29. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
tryptic digest of APPa (figure 77), containing the three isoforms of interest (695, 751 and 770), giving 
coverage of 17% of the peptide sequence although no specific isoforms are seen. The sequences 
highlighted in blue gave the best MS/MS results (figures 78 and 79).
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Figure 78. MALDI-MS/MS spectrum of peak at m/z 824.45 from the one dimensional in-gel digest of 
APPa (figure 77) corresponding to the APPa tiyptic peptide HFEHVR, 824.42 MW. MS-MS analysis 
assigned the full sequence in ‘b’ and ‘y’ ions.

Amino acid____________________________ Ion type (M+Hf)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

H, His 137.05 110.07 93.04 138.06 121.03 824.41 807.38
F, Phe 147.06 257.13 240.11 285.13 268.10 687.35 670.33
E, Glu 129.04 102.05 386.18 369.15 414.17 397.15 540.28 523.26
H, His 137.05 523.24 506.21 551.23 534.20 411.24 394.21
V, Val 99.06 72.08 622.30 605.28 650.30 633.27 274.18 257.16
R, Arg 156.10 129.11 778.41 761.38 806.40 789.37 175.11 158.09

Table 30. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel tryptic digest 
of APPa spectrum in figure 78. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
peptide HFEHVR, emphasizing the ions present.
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Figure 79. MALDI-MS/MS spectrum of peak at m/z 1266.74 from the one dimensional in-gel tryptic 
digest of APPa (figure 77) corresponding to the APPa tryptic peptide THPHFVIPYR 1265.67 
monoisotopic mass. MS/MS analysis revealed the sequence tag PHFVIP in ‘b’ ions.

Amino acid_____________________________ Ion type (M+H )
residue Mass /Da immonium a a-NH3 b b-NH3 y y-NH3

P, Pro 97.05 70.06 110.07 93.04 98.06 81.04 1028.56 1011.53
H, His 137.05 207.12 190.09 235.11 218.09 931.51 914.48
F, Phe 147.06 120.08 354.19 337.16 382.18 365.16 794.45 777.42
V, Val 99.06 72.08 453.26 436.23 481.25 464.22 647.38 630.36

I, He 113.08 86.09 566.34 549.31 594.36 577.31 548.31 531.29
P, Pro 97.05 70.06 663.39 646.37 691.39 674.36 435.23 418.20

Table 31. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel tiyptic digest 
of APPa spectrum in figure 79. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
sequence PHFVIP, highlighting the ions present.
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3.418 Capillary LC/MS analysis of a one-dimensional in-gel tryptic digestion of
immunoprecipitated APPa.
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Figure 80. Capillary LC/MS run of an APPa one-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 81 and 82).
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mass mass position missed peptide sequence
observed (experimental) (SAPP770

numbering)
cleavages

687.83 1373.64 422-433 0 VESLEQEAANER
709.69 2126.04 252-271 0 TTSIATTTTTTTESVEEVVR

Table 32. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 80 of a one-dimensional in-gel tryptic digest of APPa gave sequence coverage of 4%. 
Both of the peptides were then subjected to MS/MS analysis (figure 81 and 82).
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Figure 81. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 687.82, retention 
time 9.3 minutes from the LC/MS run of a one-dimensional in-gel tryptic digest of APPa (figure 80b). 
This product is consistent with the APPa tryptic peptide VESLEQEAANER, 1373.63 monoisotopic 
mass and the sequence tag ESLEQEAANER verifies this.

Amino acid Ion type ( M+ H)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

E, Glu 129.04 102.05 201.12 184.09 229.11 212.09 1275.53 1258.51
S, Ser 87.03 60.04 288.15 271.12 316.15 299.12 1146.49 1129.46
L, Leu 113.08 86.09 401.23 384.21 429.23 412.20 1059.46 1042.43
E, Glu 129.04 102.05 530.28 513.25 558.27 541.25 946.38 929.35
Q, Gin 128.05 101.07 658.34 641.31 686.33 669.30 817.33 800.31
E, Glu 129.04 102.05 787.38 770.35 815.37 798.35 689.27 672.25
A, Ala 44.04 858.42 841.39 886.41 869.38 560.23 543.20
A, Ala 44.04 929.45 912.43 957.45 940.42 489.19 472.17
N, Asn 114.04 87.05 1043.50 1026.43 1071.49 1054.46 418.16 401.13
E, Glu 129.04 102.05 1172.54 1155.51 1200.53 1183.51 304.11 287.09
R, Arg 156.10 129.11 1328.64 1311.61 1356.63 1339.61 175.07 158.05

Table 33. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the one­
dimensional in-gel tiyptic digest of APPa shown in figure 81, highlighting the product ions from the 
sequence tag ESLEQEAANER.

157



36
34
32
30
28
26
24
22
20
18
16
14
12
10
8
6
4H
2
0

175.103

(354)
203.096

631.318

E y 3 V (1310)

272.114
354.195

72.076

290.125

502.282

373.246

456 235 474 250
438.237 575.283

730.399
y4 817.434

y5

157.092 403.214 640.295
488.230

946.459 1047 51
b1

1148.53

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500
m/z, amu

Figure 82. Capillary LC/MS/MS analysis of the triply charged product ion at m/z 709.69, retention time
13.9 minutes from the LC/ MS run of a one-dimensional in-gel tryptic digest of APPa (figure 80c). 
This product is consistent with the APPa tryptic peptide TTSIATTTTTTTESVEEVVR, 2126.05 MW 
and the sequence tag EE VS expands this.

Am ino acid____________________________________ Ion type (M +H 4)
residue m ass/D a immonium a a-N H 3 b b-N H 3 Y y-N H 3
(1309.57) 1309.57 n/a 1282.58 1265.56 1310.58 1293.55 2127.00 2109.98
S, Ser 87.03 60.04 1369.61 1352.59 1397.61 1380.58 817.43 800.40
V , Val 99.06 72.08 1468.68 1451.66 1496.68 1479.65 730.40 713.37
E, Glu 129.04 1597.72 1580.70 1625.72 1608.69 631.33 614.30
E, Glu 129.04 1726.77 1709.74 1754.76 1737.74 502.28 485.26
(354.22) 354.22 n/a 2081.00 2063.97 2108.99 2091.97 373.24 356.22
Table 34. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the one­
dimensional in-gel tryptic digest of APPa in figure 82, highlighting the product ions from the sequence 
tag EE VS.

The alpha secretase cleaved am yloid precursor protein (A P P a ) used w as  

immunoprecitated from Ntera 2 cell secretions. A P P a  encom passes all three isoform s  

o f  interest (A P P a 695, A PPaysi, A P P a 77o) and as such is a more plausible m odel o f  in 

vivo conditions.
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The MALDI-MS results from the one-dimensional in-gel tiyptic digestion of APPa 

(figure 77) gave amino acid sequence coverage of 17% of the APPa molecule from 10 

tryptic peptides. The sequence coverage achieved from the LC/MS (figure 80) 

analysis was poorer giving 4% of the protein sequence from only 2 peptides. 

Sequence coverage for model proteins can range from 40-90%, low sequence 

coverage achieved from the immunoprecitated APPa was expected due to low 

concentration of in vivo APP. The inferior LC/MS results in this instance could be due 

to the variations in manual and automatic peak retrieval. MALDI-MS/MS analysis of 

two tiyptic peptides provided a sequence tag and a full peptide sequence (figures 78 

and 79). LC/MS/MS (figures 81 and 82) gave two sequence tags. All the MS/MS data 

was adequate in protein verification. Disappointingly neither the MALDI-MS or 

LC/MS data showed any specific tiyptic peptides, however, the peptide significant for 

its probable JV-glycosylation site (EQNYSDDVLANMISEPR, position 552-568 

APPa77o numbering) at position 554 may be present in the MALDI-MS data (figure 

77) at m/z 1981.99, although attempts to validate the peptide by MALDI-MS/MS 

were unsuccessful. If this peptide is authentic there is a strong argument for 

presuming that the site may not be glycosylated. MS/MS identification of the 

prominent contaminating peaks visible in the MALDI-MS spectra (figure 77) was not 

performed due to time limitations and ideally should be investigated further. The 

peaks thought to be keratin contamination are highlighted and the remaining peaks 

may be due to antibodies remaining from the immunoprecipitation procedure.
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3.42 One-dimensional in-gel Asp-N digestion of BSA and APP.

3.421 MALDI-MS analysis of a one-dimensional in-gel Asp-N digestion of BSA.
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Figure 83. MALDI-MS spectrum of a one-dimensional in-gel Asp-N digest of BSA The annotated 
peaks at m/zs 1440.75 and 1468.85 and were chosen for MS/MS analysis due to their intensity, the 
results shown in figures 84 and 85.

mass
(M+FT)

mass
(experimental)

position missed
cleavages

peptide sequence

838.48 838.56 62-68 0 EHVKLVN
1107.55 1107.66 526-534 1 DEKLFTFHA
1133.60 1133.67 96-105 1 DELCKVASLR
1146.58 1146.67 87-96 1 EKSLHTLFGD
1285.78 1285.87 543-553 0 EKQIKKQTALV
1440.68 1440.75 335-346 2 DKDVCKNYQEAK
1468.77 1468.85 25-36 1 DTHKSEIAHRFK
1476.75 1476.84 153-163 1 DEKKFWGKYLY
1639.74 1639.83 278-291 3 DDRADLAKYICDNQ
1671.93 1672.05 474-487 0 DYLSLILNRLCVLH
1735.91 1736.01 315-330 3 EVEKDAIPENLPPLTA
2123.19 2123.27 554-571 2 ELLKHKPKATEEQLKTVM

Table 35. Mascot search results from the one-dimensional in-gel Asp-N digest of BSA (figure 83), 
showing 20% sequence coverage. The sequences highlighted in blue subjected to MS/MS analysis 
(figures 84 and 85).
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Figure 84. MALDI-MS/MS of peak at m/z 1440.75 from the one-dimensional in-gel Asp-N digest of 
BSA seen in figure 83. The uncovered ‘y’ ion sequence tag YQEAK corresponds to the peptide 
DKDVCKNYQEAK, 1439.58 MW.

Amino acid___________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
Y,Tyr 163.06 136.07 119.04 164.07 147.04 638.31 621.28
Q, Gin 128.05 101.07 264.13 247.10 292.12 275.10 475.25 458.22

E, Glu 129.04 102.05 393.17 376.15 421.17 404.14 347.19 330.16

A, Ala 71.03 44.04 464.21 447.18 492.20 475.18 218.14 201.12

K, Lys 128.09 101.10 592.30 575.28 620.30 603.27 147.11 130.08

Table 36. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel Asp-N digest 
of BSA seen in figure 84. Showing the ‘a’, ‘b’ and ‘y* product ions available for the sequence YQEAK, 
highlighting the *y* product ions present.
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Figure 85. MALDI-MS/MS of peak at m/z 1468.85 from the one-dimensional in-gel Asp-N digest of 
BSA seen in figure 83. The uncovered ‘b’ ion sequence tag KHTD corresponds to the peptide 
DTHKSELAHRFK, 1467.67 MW.

Amino acid Ion type (M+H*)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
K, Lys 128.09 101.10 101.10 84.08 129.10 112.07 500.24 483.21
H, His 137.05 110 .0 7 238.16 221.13 266.16 249.13 372.15 355.12

T, Thr 101.04 74.06 339.21 322.18 367.20 350.18 235.09 218.06

D, Asp 115.02 88.03 454.24 437.21 482.23 465.20 134.04 117.01

Table 37. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel Asp-N digest 
of BSA seen in  figure 85. The *b’ product ions for the sequence KHTD highlighted.
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3.422 Capillary LC/MS analysis of a one-dimensional in-gel Asp-N digestion of
BSA.
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Figure 86. Capillary LC/MS run of a BSA one-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 87 and 88).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

405.75 809.49 136-142 0 LPKLKPD
535.26 1068.50 518-526 0 DETYVPKAF
554.26 1106.51 527-535 0 DEKLFTFHA
555.31 1108.61 133-142 1 SPDLPKLKPD
625.85 1249.68 320-331 0 AIPENLPPLTAD
856.91 1711.80 320-335 1 AIPENLPPLT ADF AED
652.66 1954.95 320-337 2 AIPENLPPLTADFAEDKD
978.48 1954.95 320-337 2 AIPENLPPLT ADF AEDKD

Table 38. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
shown in figure 86 of a one-dimensional in-gel Asp-N digest of BSA gave 7% sequence coverage. The 
data highlights the presence of both doubly and triply charged species seen with ESI-MS as opposed to 
the singly charged ions seen with MALDI-MS. Successful MS/MS analysis was performed on the blue 
highlighted sequences (figures 87 and 88).
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Figure 87. Capillary LC/MS/MS run of the doubly charged product ion at m/z 535.26, retention time 
12.8 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of BSA (figure 86b). This 
ion is consistent with the peptide DETYVPKAF, 1069.52 MW and LC/MS/MS analysis uncovering the 
full peptide sequence verifies this.

Amino acid Ion type (M+IT+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
D, Asp 115.02 88.03 88.03 71.01 116.03 99.00 1069.49 1052.47
E, Glu 129.04 102.05 217.08 200.05 245.07 228.05 954.47 937.44
T, Thr 101.04 318.12 301.10 346.12 329.09 825.42 808.40
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Y ,Tyr 163.06 481.19
V, Val 99.06 72.08 580.26
P, Pro 97.05 70.06 677.31
K, Lys 128.09 101.13 805.40
A, Ala 71.03 44.04 876.44
F, Phe 147.08 1023.51

464.16 509.18 492.16 724.38 707.35
563.23 608.25 591.22 561.31 544.29
660.28 705.30 688.28 462.24 445.22
788.35 833.40 816.37 365.19 348.16

859.41 904.44 887.41 237.10 220.07
1006.48 1051.50 1034.48 166.06 149.03

Table 39. BioAnalyst results of the capillary LC/MS/MS spectrum of the product at m/z 535.26 from 
the one-dimensional in-gel Asp-N digest of BSA shown in figure 87. The possible and actual ‘a’, ‘b’ 
and ‘y’ product ions for the peptide DETYVPKAF are shown.
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Figure 88. Capillary LC/MS/MS run of the doubly charged product ion at m/z 554.26, retention time 
13.2 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of BSA (figure 86c). This 
product is consistent with the BSA Asp-N peptide DEKLFTFHA, 1106.51 MW and the MS/MS 
analysis giving the full sequence corresponds with this.

Amino acid________________  Ion type (M+Hf)
residue Mass/Da immonium a a-NH3 b b-NH3 y y-NH3
D, Asp 115.02 88.03 88.03 71.01 116.03 99.00 1107.54 1090.57
E, Glu 129.04 102.05 217.08 200.05 245.07 228.05 992.51 975.49

K, Lys 128.09 101.10 345.17 328.15 373.17 356.14 863.47 846.44

L, Leu 113.08 86.09 458.26 441.23 486.25 469.22 735.37 718.35

F, Phe 147.06 120.08 605.32 588.30 633.32 616.29 622.29 605.26

T, Thr 101.04 74.06 706.37 689.35 734.37 717.34 475.22 458.20
F, Phe 147.06 120.08 853.44 836.41 881.44 864.41 374.17 357.15

H, His 137.05 110.07 990.49 973.46 1018.49 1001.46 227.11 210. 09
A, Ala 71.03 44.04 1061.52 1044.49 1089.52 1072.49 90.06 73.04

Table 40. BioAnalyst results of the capillary LC/MS/MS spectrum of the product at m/z 554.26 from 
the one-dimensional in-gel Asp-N digest of BSA shown in figure 88.
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Bovine serum albumin (BSA, MW 66,432.96) was used as a standard due to its 

availability, similarity in molecular weight to the amyloid precursor protein isoforms 

(APPot695, MW 67,708.02, APPa75i, MW 73,863.85, APPa770, MW 75,988.34) and 

previous characterisation by in-gel digestion197.

The MALDI-MS determination of the one-dimensional in-gel Asp-N digest of BSA 

(figure 83) resulted in 12 Asp-N peptides covering 20% of the protein. LC/MS 

analysis (figure 86) of the same sample revealed 7 Asp-N peptides for BSA, which 

covered 7% of the protein sequence. Noticeably both MALDI-MS (table 34) and 

LC/MS (table 37) showed a relatively higher presence of peptides with missed 

cleavage sites compared to the tryptic digests. Sequence coverage for a model protein 

such as BSA should be in the range of 40 to 60 %201. The low sequence coverage 

proves the need to investigate experimental parameters such as protein loss, solubility 

and digest procedures. MS/MS analyses for both methods enabled automatic 

determination of BSA from the subsequent peptide sequences. MALDI-MS/MS 

resulted in two sequence tags (figures 84 and 85), whereas LC/MS/MS gave frill 

peptide sequences (figures 87 and 88).
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3.423 MALDI-MS analysis of a one-dimensional in-gel Asp-N digestion of alpha
secretase cleaved amyloid precursor protein standard, isoform 695 (APPc^s).
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Figure 89. MALDI-MS spectrum of a one-dimensional in-gel Asp-N digest of standard APPa^s. The 
annotated peaks at m/zs 774.38 and 935.49 gave good results when subjected to MS/MS analysis 
(figures 90 and 91). The peak at m/z 1327.75, marked by a red asterisk is specific to A P P a^  MS/MS 
analysis of this peak, however, was unsuccessful.

mass
(m+lT)

mass
(experimental)

position
(APPCX695

numbering)

missed
cleavages

peptide sequence

752.31 752.35 122-127 1 ERMDVC
774.35 774.38 580-585 1 DAEFRH
935.46 935.49 491-498 0 EPRISYGN
997.40 997.59 166-173 0 EFVCCPLA(CM)
980.46 980.58 572-579 2 EEISEVKM(MSO)
1021.49 1021.60 573-581 2 EISEVKKMDA
1154.66 1154.68 325-334 0 ERQAKNLPKA
1199.54 1199.58 586-595 1 DSGYEVHHQK
1213.67 1213.69 335-344 0 DKKAVIQHFQ
1327.72 1327.75 268-280 1 E VVR VPTT A ASTP*
1354.74 1354.79 323-334 1 EAERQAKNLPKA
1366.65 1366.66 472-482 2 ELLQKEQNYSD
1506.77 1506.81 499-512 1 DALMPSLTETKTTV
2245.18 2245.19 555-575 2 DRGLTTRPGSGLTNIKTEEIS

Table 41. Mascot search results from the MALDI-MS of the one-dimensional in-gel Asp-N digest of 
APPot695 shown (figure 89) covering 18% of the peptide sequence. The sequences highlighted in blue 
gave successful MS/MS data (figures 90 and 91)

167



340
320
300
280
260
240

in 220
L.3O 200
O

180
Wc 160d)c 140

120
100
80
60
40
20

50

774.425

156.167

i,
312.225

y2
110.083 a2 

. ^187. .097 322.222 
305.191 351.104

y3
459.291

522.318

588.37%37

y4

b

.354

619.340
I59.403

ys
504.319 585.314

b6
756.424

m/z, amu

Figure 90. MALDI-MS/MS spectrum of peak at m/z 774.38 from the one-dimensional in-gel Asp-N 
digest of APPa695 in figure 89. This peak corresponds to the APPot^s tryptic peptide DAEFRH, 773.25 
MW and the MS/MS results validate this by giving the full peptide sequence.

Amino acid_______________________________ Ion type (M+H )
residue m ass/D a immonium a a-N H 3 b b-N H 3 y y-N H 3
D , A sp 115.02 88.03 88.03 71.01 116.03 99.00 774.35 757.32

A , A la 71.03 44.04 159.07 142.04 187.07 170.04 659.32 642.29

E, Glu 129.04 288.11 271.09 316.11 299.08 588.28 571.26

F, Phe 147.06 435.18 418.16 463.18 446.15 459.24 442.21

R, Arg 156.10 129.11 591.28 574.26 619.28 602.25 312.17 295.15

H, H is 137.05 110.07 728.34 711.32 756.34 739.38 156.07 139.05

Table 42. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel Asp-N digest 
of APP(X695 shown in figure 90. Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the peptide 
DAEFRH, highlighting the products ions present.
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Figure 91. MALDI-MS/MS spectrum of peak at m/z 935.49 from the one-dimensional in-gel Asp-N 
digest of APPa695 in figure 89. This peak corresponds to the APPa^s Asp-N peptide EPRISYGN, 
934.36 MW and the resulting ‘b’ ion sequence tag, authenticates the peak.

Amino acid_____________________________ Ion type (M+H4)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
E, Glu 129.04 102.05 102.05 85.02 130.04 113.02 935.45 918.43
P, Pro 97.05 70.06 199.10 182.08 227.10 210.07 806.41 789.38
R, Arg 156.10 129.15 355.20 338.18 383.20 366.17 709.36 692.33
I, lie 113.08 86.09 468.29 451.26 496.28 479.26 553.26 536.23
S, Ser 87.03 60.04 555.32 538.29 583.31 566.29 440.17 423.15

Y ,Tyr 163.06 136.07 718.38 701.36 746.38 729.35 353.14 336.11

G, Gly 57.02 30.03 775.40 758.38 803.40 786.31 190.08 173.05

Table 43. BioAnalyst software results from the MALDI-MS/MS one-dimensional in-gel Asp-N digest 
of APPa^s shown in figure 91. Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the sequence 
EPRISYG, highlighting the ‘b’ ions present.
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3.424 Capillary LC/MS analysis of a one-dimensional in-gel Asp-N digestion of
standard APPc^s*
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Figure 92. Capillary LC/MS run of an APPa^s one-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum, however, no data is seen due to the low intensity of the 
second most intense peak. The peak list generated from trace (b) was sorted according to predefined 
parameters (chapter 2.92, page 93) and a selection of the most intense peaks automatically sent for 
MS/MS (figures 93 and 94). (c) Gave no data showing that the intensity of the second most intense 
peak to be below the threshold of instrumental sensitivity.
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mass
observed

mass
(experimental)

Position
(APPQ695

numbering)

missed
cleavages

peptide sequence

424.20 846.40 499-506 0 DALMPSLT
461.73 921.44 284-291 1 DKYLEDPG
468.23 934.45 491-498 0 EPRISYGN
489.23 976.44 482-490 1 DDVLANMIS
579.27 1156.52 525-534 0 DLQPWHSFGA
636.78 1271.55 524-534 1 DDLQPWHSFGA
664.36 1326.71 268-280 0 EVVRVPTTAASTP*
669.76 1337.50 235-245 6 DEVEEEAEEPY
673.82 1345.63 345-356 3 EKVESLEQEAAN
683.70 1365.39 471-481 2 DELLQKEQNYS
750.34 1498.67 535-548 3 DSVPANTENEVEPV
753.89 1505.76 499-512 1 DALMSLTETKTTV

Table 44. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 92 of a one-dimensional in-gel Asp-N digest of standard A P P a^  gave 17% sequence 
coverage. The sequences highlighted in blue were subjected to MS/MS analysis. MS/MS 
characterisation of the doubly charged peptide EWRVTTAASTP, 1326.71 specific to the A P P a^  
isoform, however, was unsuccessful.
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Figure 93. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 579.27, retention 
time 15.1 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of standard APPa^95 
(figure 92b). This product is consistent with the A P P a^  Asp-N peptide DLQPWHSFGA, 1156.52 
MW.
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Amino acid Ion type (M+ H)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
L, Leu 113.08 201.12 184.09 229.11 212.09 1042.51 1025.48
Q, Gin 128.05 101.07 329.18 312.15 357.17 340.15 929 .42 912.39
P, Pro 97.05 70.06 426.23 409.20 454 .22 437.20 801.36 784.34
W, Trp 186.07 159.09 612.31 595.28 640.30 623.28 704.31 687.28
H, His 137.05 749.37 732.34 777.36 760.34 518.23 501.20
S, Ser 87.03 60.04 836.40 819.37 864.39 847.37 381.17 364.15
F, Phe 147.06 120.08 983.47 966.44 1011.46 994.44 294.14 277.11

G, Gly 57.02 30.03 1040.44 1023.46 1068.48 1051.46 147.07 130.04

A, Ala 71.03 44.04 1111.53 1094.50 1139.52 1122.50 90.05 73.02
Table 45. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at 579.27 m/z from the one-dimensional in-gel Asp-N digest of standard APPa^s shown in 
figure 93.
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Figure 94. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 489.23, retention 
time 16.2 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of standard APPo^95 
(figure 92b). This product is consistent with the A P Pa^  Asp-N peptide DDVLANMIS, 976.44 MW 
and the sequence tag VLAN, verifies this.

Amino acid___________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(335.11) 335.11 n/a 308.12 291.09 336.11 319.09 977.45 960.43
V, Val 99.06 407.19 390.16 435.18 418.16 642 .34 625.31
L, Leu 113.08 520.27 503.24 548.27 531.24 543 .27 526.25

A, Ala 71.03 44.04 591.31 574.28 619.30 602.28 43 0 .1 9 413.16

N, Asn 114.04 87.05 705.35 688.32 733.35 716.32 359 .15 342.13
(226.09) 226.09 n/a 931.45 914.42 959.44 942.42 245.11 228.08
Table 46. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 489.23 from the one-dimensional in-gel Asp-N digest of standard APPa^s shown in 
figure 94.
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Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP695 isoform (APPCC695) 

from E.coli origin.

The MALDI-MS analysis of the one-dimensional in-gel Asp-N digestion of APP0 C695 

(figure 89) gave amino acid sequence coverage of 18% of the APP01695 molecule from 

14 Asp-N peptides. The sequence coverage achieved from the LC/MS (figure 92) was 

very similar covering 17% of the protein sequence from 12 peptides and both methods 

again showed missed cleavage peptides suggesting that Asp-N under the conditions 

applied is cleaving inefficiently and factors regarding the digest procedure may need 

to be adjusted. MS/MS data was available for both techniques giving conclusive 

evidence of the peptides authenticity. MALDI-MS/MS uncovered a full sequence 

(figure 90) and a generous sequence tag (figure 91) and the LC/MS/MS examination 

gave two sequence tags (figures 93 and 94). The unique Asp-N peptide exhibited by 

APPct695 (position 268-280, monoisotopic mass 1326.6216, amino acid sequence 

EVVPTTAASTP) was present in both the MALDI-MS and LC/MS data. Observed as 

the peak at m/z 1327.75 in the MALDI-MS spectrum (figure 89) and its presence 

within the LC/MS chromatograms was highlighted in the BioAnalyst search results 

(table 43). MS/MS confirmation of this peptide, however, was not achieved.
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3.425 MALDI-MS analysis of a one-dimensional in-gel Asp-N digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein, isoform
770 (APPa770).
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Figure 95. MALDI-MS spectrum of an in-gel Asp-N digest of APPa770 from a one-dimensional gel. 
The peaks believed to be due to keratin contamination are marked with a black diamond. Other 
unmarked peaks are of unknown origin.

mass
(M+Ff)

mass
(experimental)

position
(APPa770

numbering)

missed
cleavages

peptide sequence

777.40 777.09 665-670 0 EVHHQK
990.44 990.18 423-431 2 ESLEQEAAN
1006.43 1006.16 190-198 1 DVWWGGADT
1157.54 1157.24 600-609 0 DLQPWHSFGA
1174.52 1174.21 610-620 2 DSVPANTENEV
1272.56 1272.25 599-609 1 DDLQPWHSFGA

Table 47. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
Asp-N digest (figure 95) yielding 6% sequence coverage. Although MS/MS analysis was attempted 
upon all the peaks present within the MALDI-MS spectrum (figure 95) none were successful.
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3.426 Capillary LC/MS analysis of a one-dimensional in-gel Asp-N digestion of
immunoprecipitated APPa77o»
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Figure 96. Capillary LC/MS run of an APPa^o one-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 97 and 98).

Time, min
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mass mass position missed peptide sequence
observed (experimental) (APPa770

numbering)
cleavages

636.78 1271.55 599-609 1 DDLQPWHSFGA
683.82 1365.62 546-556 2 DELLQKEQNYS

Table 48. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 96 of a one-dimensional in-gel Asp-N digest of APPa770 gave 3% sequence coverage.
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Figure 97. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 683.82, retention 
time 9.7 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of APPa770 (figure 
96b). This product is consistent with the APPa™ Asp-N peptide DELLQKEQNYS, 1365.62 MW and 
the sequence tag ELL verifies this.

Amino acid  Ion type (M+H4)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(116.22) 115.02 n/a 88.03 71.01 116.03 99.00 1408.65 1391.63
E, Glu 129.04 102.05 217.08 200.05 245.07 228.05 1293.63 1276.60

L, Leu 113.08 330.16 313.13 358.16 341.13 1164.58 1147.56

L, Leu 113.08 443.25 426.22 471.24 454.21 1051.50 1034.47
(895.46) 895.46 n/a 1338.71 1321.68 1366.70 1349.67 1946.96 1929.93
Table 49. BioAnalyst automated searching of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 683.82 from the one-dimensional in-gel Asp-N digest of APPa770 shown in figure 97, 
shows the ‘a’, ‘b’ and ‘y’ product ions from the sequence tag ELL.
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Figure 98. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 636.78, retention 
time 14.9 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of APPa770 (figure 
96c). This product is consistent with the APPa770 Asp-N peptide DDLQPWHSFGA, 1271.55 MW and 
the sequence tags DDLQ (‘b’ ions) and HSFG (‘y’ ions) expand this.

Amino acid___________________________ Ion type (M+H*)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
D, Asp 115.02 88.03 88.03 71.01 116.03 99.00 1272.56 1255.53

D, Asp 115.02 88.03 203.06 186.03 231.06 214.03 1157.53 1140.51
L , Leu 113.08 316.15 299.12 344.14 327.11 1042.51 1025.48

Q, Gin 128.05 444.20 427.18 472.20 455.17 929.42 912.39

P, Pro 97.05 70.06 541.26 524.23 569.25 552.23 801.36 784.34

W, Trp 186.07 159.09 727.34 710.31 755.33 738.30 704.31 687.28

H, His 137.05 110.07 864.39 847.37 892.39 875.36 518.23 501.20

S, Ser 87.03 60.04 951.43 934.40 979.42 962.40 381.17 364.15

F, Phe 147.06 120.00 1098.50 1081.47 1126.49 1109.46 294.14 277.11

G, Gly 57.02 30.03 1155.52 1138.49 1183.51 1166.49 147.07 130.04

A, Ala 71.03 44.04 1226.55 1209.53 1254.55 1237.52 90.05 73.02
Table 50. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the one­
dimensional in-gel Asp-N digest of APPa770 shown in figure 98, shows the ‘a’, ‘b’ and ‘y’ product ions 
for the sequence DDLQPWHSFGA, highlighting the ions present.

The alpha secretase cleaved amyloid precursor protein, isoform 770 (APP01770) was 

immunoprecitated from CHO 770 cell secretions.
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The MALDI-MS examination of the one-dimensional in-gel Asp-N digestion of 

APPot77o (figure 95) gave amino acid sequence coverage of 6% of the APPc^o 

molecule from 6 Asp-N peptides. The sequence coverage achieved from the LC/MS 

(figure 96) analysis was poorer giving 3% of the protein sequence from 2 peptides. 

The poor sequence coverage may possibly be due to low protein concentration and 

insufficient digestion by Asp-N. The inferior LC/MS data may be a result of 

variations in manual and automatic peak retrieval. As the LC/MS data is processed 

without human intervention it is possible that peaks of interest may be overlooked, 

however, with low-level digests, such as these, although peptides may be visible 

within the MALDI-MS spectra the low concentrations make it such that MS/MS 

analysis is unattainable. LC/MS/MS analysis was more successful resulting in two 

sequence tags (figures 97 and 98) sufficient to achieve positive results from the 

automated search engine. APPct77o produces two unique Asp-N peptides (position 

318-337, MW 2149.8589 and position 343-355, MW 1296.5998) regrettably neither 

of these peptides was detected by either technique.
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3.427 MALDI-MS analysis of a one-dimensional in-gel Asp-N digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 99. MALDI-MS spectrum of an in-gel Asp-N digest of APPa from a one-dimensional gel. The 
overwhelming presence of contaminating species within this spectrum needs further investigation, 
which in turn may help reveal why the Asp-N digests are not achieving adequate sequence coverage.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

761.29 761.05 363-369 2 ETPGDEN
823.42 823.02 356-362 1 DAVDKYL
990.44 990.07 423-431 2 ESLEQEAAN
1006.43 1006.05 190-198 1 DVWWGGADT
1157.54 1157.12 600-609 0 DLQPWHSFGA

Table 51. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
Asp-N digest of APPa (figure 99), containing the three isoforms of interest (695, 751 and 770), giving 
possible sequence coverage of 5% of the peptide sequence although no specific isoforms are seen and 
MS/MS analysis was unsuccessful.
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3.428 Capillary LC/MS analysis of a one-dimensional in-gel Asp-N digestion of
immunoprecipitated APPa.
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Figure 100. Capillary LC/MS run of an APPa one-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak list generated from trace (b) was sorted according to 
predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks automatically 
sent for MS/MS (figure 101).
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mass
observed

mass
(experimental)

position
(sAPP-770

numbering)

missed
cleavages

peptide sequence

489.23 976.44 556-565 1 DDVLANMIS
636.80 1271.59 599-609 1 DDLQPWHSFGA

Table 52. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 100 of a one-dimensional in-gel Asp-N digest of APPa gave sequence coverage of 2%. 
The sequence highlighted in blue was the only peptide that gave useful MS/MS data.
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Figure 101. Capillary LC/MS/MS analysis of the doubly charged product ion at 636.80 m/z, retention 
time 14.8 minutes from the LC/MS run of a one-dimensional in-gel Asp-N digest of APPa (figure 
100b). This product is consistent with the APPa Asp-N peptide DDLQPWHSFGA, 1271.59 MW and 
the sequence tag HSFG verifies this.

Amino acid___________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(754.28) 754.28 n/a 727.29 710.26 755.28 738.26 1272.50 1255.48
H, His 137.05 110.07 864.35 847.32 892.34 875.32 518.22 501.19

S, Ser 87.03 60.04 951.38 934.35 979.38 962.35 381.15 364.13

F, Phe 147.06 120.08 1098.45 1081.42 1126.44 1109.42 294.13 277.10

G, Gly 57.02 30.03 1155.47 1138.44 1183.47 1166.44 147.06 130.03
(71.02) 71.02 n/a 1226.50 1209.47 1254.49 1237.47 90.04 73.01

Table 53. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the one­
dimensional in-gel Asp-N digest of APPa shown in figure 101, shows the product ions from the 
sequence tag HSFG.
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The alpha secretase cleaved amyloid precursor protein (APPa) was immunoprecitated 

from Ntera 2 cell secretions. APPa encompasses all three isoforms of interest 

(APPa695, APPa75i, APPa77o) and as such is a more plausible model of in vivo 

conditions.

The MALDI-MS results from the one-dimensional in-gel Asp-N digestion of APPa 

(figure 99) gave amino acid sequence coverage of 5% of the APPa molecule from 5 

Asp-N peptides. The sequence coverage achieved from the LC/MS (figure 100) 

analysis was poorer giving 2% of the protein sequence from only 2 peptides. The Asp- 

N digestion methodology needs to be investigated in order to establish a possible 

cause for the low sequence coverage. Again the inferior LC/MS results in this 

instance could be due to the variations in manual and automatic peak retrieval. 

Although MALDI-MS/MS analysis was insufficient for protein verification the 

LC/MS/MS data gave one sequence tag (figure 101) from the two peptides revealed 

allowing protein identification using the online search engine. APPa encompasses all 

three isoforms of interest (APPct695, APPa75i and APPa77o) all of which exhibit 

specific Asp-N peptides, disappointingly none of these were detected.
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3.43 One-dimensional in-gel formic acid digestion of BSA and APP.

3.431 MALDI-MS analysis of a one-dimensional in-gel formic acid digestion of 
BSA.

213
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140

1468.61
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Figure 102. MALDI-MS spectrum of a one-dimensional in-gel formic acid digest of BSA dominated 
by the presence of noise and contamination that may be caused by the formic acid digestion being too 
harsh cleaving areas within the protein other than the specified bonds (N  and C termini of aspartic acid) 
or perhaps the presence of intermediates present within the cleavage pathway.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

1250.66 1250.53 319-330 1 DAIPENLPPLTA
1353.72 1353.58 303-314 1 DKPLLEKSHCIA
1468.77 1468.61 25-36 1 DTHKSEIAHRFK
1583.80 1583.61 319-333 2 DAIPENLPPLTADFA
1639.74 1639.67 278-291 3 DDRADLAKYICDNQ

Table 54. Mascot search results from the one-dimensional in-gel formic acid digest of BSA (figure 
102), showing 5% sequence coverage. MS/MS analysis of the peptide sequences shown was 
unsuccessful.
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3.432 Capillary LC/MS analysis of a one-dimensional in-gel formic acid digestion
of BSA.
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Figure 103. Capillary LC/MS run of a BSA one-dimensional in-gel formic acid digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS, unfortunately no data was achieved.
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mass mass position missed peptide sequence
observed (experimental) cleavages
856.91 1711.80 320-335 1 AIPENLPPLTADFAED
652.65 1954.94 319-336 4 D AIPENLPPLT ADFAEDK

Table 55. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
shown in figure 103 of a one-dimensional in-gel formic acid digest of BSA gave 3% sequence 
coverage.

Bovine serum albumin (BSA, MW 66,432.96) was used as a standard due to its 

availability and similarity in molecular weight to the amyloid precursor protein 

isoforms (APPa695, MW 67,708.02, APPa75i, MW 73,863.85, APPa770, MW 

75,988.34).

The MALDI-MS analysis of the one-dimensional in-gel formic acid digest of BSA 

(figure 102) resulted in 5 formic acid peptides covering 5% of the protein. LC/MS 

analysis (figure 103) of the same sample revealed 2 formic acid peptides for BSA, 

which covered 3% of the protein sequence. Neither MALDI-MS/MS nor LC/MS/MS 

analysis of the peaks revealed failed to uncover any of the sequences placing a 

question mark over the actual authenticity of the data achieved.
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3.433 MALDI-MS analysis of a one-dimensional in-gel formic acid digestion of
alpha secretase cleaved amyloid precursor protein standard, isoform 695
(APPCC695).
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Figure 104. MALDI-MS spectrum of a one-dimensional in-gel formic acid digest of standard A PPa^. 
The principal peaks shown here are possibly due to the presence of adduct formation or contamination 
as a result of the formic acid cleavage pathway.

mass
(M+H+)

mass
(experimental)

position
(APPa77o

numbering)

missed
cleavages

peptide sequence

627.37 627.96 108-113 0 DALLVP
990.44 990.02 423-431 2 ESLEQEAAN
1157.54 1157.05 600-609 0 DLQPWHSFGA

Table 56. Mascot search results from the MALDI-MS of the one-dimensional in-gel formic acid digest 
of APPoc695 (figure 104) covering 2% of the peptide sequence although lack of any MS/MS data to 
support these peptides places uncertainty over their authenticity.

186



3.434 Capillary LC/MS analysis of a one-dimensional in-gel formic acid digestion
of standard APPo^s-
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Figure 105. Capillary LC/MS run of an A P P a^  one-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum.
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Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP isoform 695 

(APPCC695) from E.coli origin.

The MALDI-MS examination of the one-dimensional in-gel formic acid digestion of 

APP<x695 (figure 104) gave amino acid sequence coverage of 2% of the APPct695 

molecule from 3 formic acid peptides, however, MS/MS analysis of these peaks did 

not reveal any peptide sequences. The LC/MS analysis (figure 105) did not reveal any 

formic acid peptides for APPct695 and as such no LC/MS/MS data was achieved. The 

appearance of both the MALDI-MS spectrum and LC/MS chromatograph as well as 

the lack of MS/MS data places uncertainty over the results achieved. It is possible that 

the formic acid digest procedure is either hydrolysing at more positions within the 

peptide than stated or an incomplete reaction has occurred creating intermediates of 

the reaction pathway.
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3.435 MALDI-MS analysis of a one-dimensional in-gel formic acid digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein, isoform
770 (APPct77o).
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Figure 106. MALDI-MS spectrum of an in-gel formic acid digest of APPa^o from a one-dimensional 
gel. Veiy poor spectra overwhelmed by noise puts forward the strong possibility that the annotated 
peaks may not be real.

mass mass position missed peptide sequence
(M+H*) (experimental) (APP0C695

numbering)
cleavages

633.27 633.16 520-524 2 EEIQD
1480.67 1480.62 368-378 2 ERMSQVMREWE

Table 57. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
formic acid digest (figure 106) yielding 2% sequence coverage. Low sequence coverage, lack of 
MS/MS data and the appearance of the MALDI-MS spectrum (figure 106) places ambiguity over these 
results.
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3.436 Capillary LC/MS analysis of a one-dimensional in-gel formic acid digestion
of immunoprecipitated APPa77o-
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Figure 107. Capillary LC/MS run of an APPCI770 one-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum, however, lack of data shows the poor quality of the sample.
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The alpha secretase cleaved amyloid precursor protein, isofonn 770 (APP0C770) was 

immunoprecitated from CHO 770 cell secretions.

The MALDI-MS examination of the one-dimensional in-gel formic acid digestion of 

APP0C770 (figure 106) gave amino acid sequence coverage of 2% of the APP0C770 

molecule from 2 formic acid peptides, however the appearance of the peaks, 

background ‘noise’ and lack of MS/MS data discredit the validity of the peaks. 

LC/MS analysis again failed to reveal any data and as such no MS/MS data was 

achieved. The overall lack of results proves the inadequate quality of the sample. As 

all the digests performed within this work were carried out in parallel keeping all 

steps constant the sample clarity or lack of can only be due to the formic acid 

digestion procedure. Reasons for this are unknown, although it is not a widely used 

method successful digestions yielding sequence coverage of up to 43% have been 

reported198.
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3.437 MALDI-MS analysis of a one-dimensional in-gel formic acid digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 108. MALDI-MS spectrum of an in-gel formic acid digest of APPa from a one-dimensional gel. 
Appearance of spectra poor dominated by noise.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

1480.67 1480.86 387-397 2 ERMSQVMREWE
2245.18 2245.92 630-650 2 DRGLTTRPGSGLTNIKTEEEIS
2229.17 2229.96 574-594 2 DALMPSLTETKTTVELLPVNG

Table 58. Mascot search results from the MALDI-MS mass fingerprint of the one-dimensional in-gel 
formic acid digest of APPa (figure 108), containing the three isoforms of interest (695, 751 and 770), 
giving coverage of 4%, although these results are spurious due to the unconvincing MALDI-MS data 
(figure 108).
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3.438 Capillary LC/MS analysis of a one-dimensional in-gel formic acid digestion
of immunoprecipitated APPa.
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Figure 109. Capillary LC/MS run of an APPa one-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum, however, lack of data is due to low quality sample.
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The alpha secretase cleaved amyloid precursor protein (APPa) used was 

immunoprecitated from Ntera 2 cell secretions. APPa encompasses all three isoforms 

of interest (APPcc695, APPa75i, APPa77o) and as such is a more plausible model of in 

vivo conditions.

The MALDI-MS results from the one-dimensional in-gel formic acid digestion of 

APPa (figure 108) gave amino acid sequence coverage of 4% of the APPa molecule 

from three formic acid peptides. LC/MS did not provide any formic acid peptides. 

Again the appearance of the MALDI-MS spectra, lack of LC/MS data and MS/MS 

data allows a question mark to hang over the MALDI-MS results attained. This can 

only be due to sample quality. As mentioned earlier all the digests were performed in 

parallel keeping all steps constant except the digest reagent and as successful digest

10ftresults have been reported earlier further investigation of this digest method is 

needed.
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3.44 Two-dimensional in-gel tryptic digestion of BSA and APP.

3.441 MALDI-MS analysis of a two-dimensional in-gel tryptic digestion of BSA.
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Figure 110. MALDI-MS spectrum of a two-dimensional in-gel tryptic digest of BSA. The annotated 
peaks at m/zs 1479.64 and 1567.58 subjected to MS/MS analysis, the results of which are shown in 
figures 111 and 112.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

927.49 927.39 161-167 0 YLYEIAR
1283.71 1283.65 361-371 0 HPEYAVSVLLR
1439.81 1439.66 360-371 1 RHPEYAVSVLLR
1479.80 1479.64 421-433 0 LGEYGFQNALIVR
1567.74 1567.58 347-359 0 DAFLGSFL YE Y SR
1633.66 1633.51 184-197 0 YNGVFQECCQAEDK
1667.81 1667.66 469-482 0 MPCTED Y SLILNR
1756.73 1756.61 581-597 1 CCAADDKEACFAVEGPK
2045.03 2044.92 168-183 1 RHPYFYAPELLYYANK

Table 59. Mascot search results from the two-dimensional in-gel tryptic digest shown in figure 110 
covering 17% of the protein sequence. The sequences highlighted in blue were chosen for MS/MS 
aanlysis due to their intensity within the MALDI-MS spectrum (figure 110).
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Figure 111. MALDI-MS/MS spectrum of the peak at m/z 1479.64 from the two-dimensional in-gel 
tryptic digest of BSA seen in figure 110. The ‘b’ product ion sequence tag EYG corresponds to the 
peptide LGEYGFQNALIVR, MW 1478.70 and allowed automatic determination via the BioAnalyst 
software.

Amino acid__________________________ Ion type (M+H+)
residue 
L, Leu 
G, Gly
E, Glu 
Y ,Tyr 
G, Gly
F, Phe 
Q, Gin 
N, Asn 
A, Ala 
L, Leu 
I, lie 
V, Val 
R, Arg

Table 60. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of BSA seen in figure 111. The ‘a’, ‘b’ and ‘y’ product ions for the peptide LGEYGFQNALIVR are 
shown highlighting the ions present.

mass/Da immonium a a-NH3 b b-NH3 y y-NH3
113.08 86.09 86.09 69.06 114.09 97.06 1479.79 1462.76
57.02 30.03 143.11 126.09 171.11 154.08 1366.71 1349.68
129.04 102.05 272.16 255.13 300.15 283.12 1309.68 1292.66
163.06 136.07 435.22 418.19 463.21 446.19 1180.64 1163.68
57.02 30.03 492.24 475.21 520.24 503.21 1017.58 1000.54
147.06 120.08 639.31 622.28 667.30 650.28 960.56 943.53
128.05 101.07 767.37 750.34 795.36 778.34 813.49 796.46
114.04 87.05 881.41 864.38 909.41 892.38 685.43 668.40
71.03 44.04 952.45 935.42 980.44 963.42 571.39 554.36
113.08 86.09 1065.53 1048.50 1093.53 1076.50 500.35 483.32
113.08 86.09 1178.62 1161.59 1206.61 1189.58 387.27 370.24
99.06 72.08 1277.68 1260.66 1305.68 1288.65 274.18 257.16
156.10 129.11 1433.79 1416.76 1461.78 1444.75 175.11 158.09
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Figure 112. MALDI-MS/MS spectrum of the peak at m/z 1567.58 from the two-dimensional in-gel 
tryptic digest of BSA seen in figure 110. This peak corresponds to the BSA tryptic peptide 
DAFLGSFLYEYSR, MW 1566.64, which is verified by the ‘y’ ion sequence tag DAFLGSFLY.

Amino acid__________________________ Ion type (M+H )
residue 
D, Asp 
A, Ala
F, Phe 
L, Leu
G, Gly 
S, Ser 
F, Phe 
L, Leu 
Y ,Tyr

Table 61. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of BSA seen in figure 112. Shown are the ‘a’, ‘b’ and ‘y’ product ions possible for the peptide 
sequence DAFLGSFLY, highlighting the ones present.

mass/Da immonium a a-NH3 b b-NH3 y y-NH3
115.02 88.03 88.03 71.01 116.03 99.00 1567.59 1550.56
71.03 44.04 159.07 142.04 187.07 170.04 1452.56 1435.53
147.06 120.08 306.14 289.11 334.13 317.11 1381.52 1364.50
113.08 86.09 419.22 402.20 447.22 430.19 1234.46 1217.43
57.02 30.03 476.25 459.22 504.24 487.21 1121.37 1104.34
87.03 60.04 563.28 546.25 591.27 574.25 1064.35 1047.32
147.06 120.08 710.35 693.32 738.34 721.31 977.32 960.29
113.08 86.09 823.43 806.40 851.42 834.40 830.25 813.22
163.06 136 07 986.49 969.47 1014.41 997.46 717.17 700.14
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3.442 Capillary LC/MS analysis of a two-dimensional in-gel tryptic digestion of
BSA.
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Figure 113. Capillary LC/MS run of a BSA two-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 114 and 115).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

461.76 921.50 249-256 0 AEFVEVTK
464.26 926.50 161-167 0 YLYEIAR
501.80 1001.60 598-607 0 LVVSTQTALA
507.82 1013.63 549-557 0 QTALVELLK
582.33 1162.65 66-75 0 LVNELTEFAK
435.92 1304.74 402-412 0 HLVDEPQNLIK
708.35 1414.69 569-580 0 TVMENFVAFVDK
480.62 1438.84 360-371 1 RHPEYAVSVLLR
740.41 1478.81 421-433 0 LGEYGFQNALIVR
504.63 1510.86 438-451 0 VPQ V STPTL VE V SR
756.44 1510.87 438-451 0 VPQVSTPTLVEVSR
784.39 1566.76 347-359 0 DAFLGSFLYEYSR
547.40 1639.18 437-451 1 VPQVSTPTLVEVSR
652.67 1955.00 319-336 0 DAIPENLPPLTADFAEDK

Table 62. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 113 of a two-dimensional in-gel tryptic digest of BSA gave 22% sequence coverage. The 
data highlights the presence of both doubly and triply charged species seen with ESI-MS as opposed to 
the singly charged ions seen with MALDI-MS. The sequences highlighted in blue produced good 
results when subjected to MS/MS analysis (figures 114 and 115).
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Figure 114. Capillary LC/MS/MS run of the doubly charged product ion at m/z 582.33, retention time 
12.5 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of BSA (figure 113b). 
This product is consistent with the BSA tryptic peptide, LVNELTEFAK, MW 1162.65 and the 
sequence tag VNELTEFAK, verifies this.
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Amino acid__________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
V, Val 99.06 185.16 168.13 213.15 196.13 1050.57 1033.54
N, Asn 114.04 299.20 282.18 327.20 310.17 951.50 934.47
E, Glu 129.04 102.05 428.25 411.22 456.24 439.21 837.46 820.43
L, Leu 113.08 541.33 524.30 569.32 552.30 708.41 691.39
T, Thr 101.04 642.38 625.35 670.37 653.35 595.33 578.30
E, Glu 129.04 102.05 771.42 754.39 799.41 782.39 494.28 477.26
F, Phe 147.06 120.08 918.49 901.46 946.48 929.46 365.24 348.21
A, Ala 71.03 44.04 989.53 972.50 1017.51 1000.49 218.17 201.15
K, Lys 128.09 101.10 1117.62 1100.59 1145.62 1128.59 147.13 130.11

Table 63. BioAnalyst results of the capillary LC/MS/MS spectrum of the product at m/z 582.30 from 
the two-dimensional in-gel tryptic digest of BSA shown in figure 114. The possible and actual ‘a’, ‘b’ 
and ‘y’ product ions for the sequence VNELTEFAK are shown, highlighting the sequence coverage in 
‘a’, ‘b’ and ‘y’ ions, as well as several immonium ions.
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Figure 115. Capillary LC/MS/MS analysis of the doubly charged peak at m/z 740.41, retention time
12.9 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of BSA (figure 113c). This 
product is consistent with the peptide LGEYGFQNALIVR, 1478.81 MW. Note that the annotation 
upon the spectrum substitutes a lysine (K) for glutamine (Q) and a leucine (L) for isoleucine (I), due to 
similarities in molecular weight.

Amino acid Ion type (M+H*)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
Y, Tyr 163.06 136.07 136.07 119.04 164.07 147.04 1180.65 1163.63
G, Gly 57.02 30.03 193.09 176.07 221.09 204.06 1017.59 1000.59
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F, Phe 147.06 340.16 323.13 368.16 351.13 960.57 943.54
Q, Gin 128.09 468.26 451.23 496.25 479.22 813.50 796.47
N, Asn 114.04 87.05 582.30 565.27 610.29 593.27 685.41 668.38
A, Ala 71.03 44.04 653.34 636.31 681.33 664.30 571.36 554.34
L, Leu 113.08 766.42 749.39 794.41 777.39 500.33 483.30
I, lie 113.08 879.50 862.48 907.50 890.47 387.24 370.22
V, Val 99.06 72.08 978.57 961.55 1006.52 989.54 274.16 257.13
R, Arg 156.10 129.11 1134.67 1117.65 1162.67 1145.64 175.09 158.06

Table 64. BioAnalyst automated results of the capillary LC/MS/MS spectrum of the product at m/z 
740.41 from the two-dimensional in-gel tryptic digest of BSA shown in figure 115. The possible ‘a’, 
‘b’ and ‘y* product ions for the sequence YGFQNALIVR are shown highlighting the ones pre

Bovine serum albumin (BSA, 66,432.96 MW) was used as a standard due to its 

availability and similarity in molecular weight to the amyloid precursor protein 

isoforms (APPa695, MW 67,708.02, A PPa75i, MW 73,863.85, A PPa770, MW 

75,988.34).

The MALDI-MS analysis o f the two-dimensional in-gel tiyptic digest o f BSA (figure 

110) resulted in 9 tryptic peptides covering 17% of the protein. LC/MS analysis 

(figure 113) of the same sample revealed 14 tryptic peptides covering 22% o f the 

protein sequence. The sequence coverage achieved for the BSA tryptic digestions is 

poor compared to usual 40-60% within the literature197. This should be investigated 

further with regards to optimising protein coverage for both standards and samples. 

MS/MS analysis of peaks from both MALDI-MS (figures 111 and 112) and LC/MS 

(figures 114 and 115) created long sequence tags, which allowed automatic 

identification of BSA via the BioAnalyst software.
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3.443 MALDI-MS analysis of a two-dimensional in-gel tryptic digestion of alpha
secretase cleaved amyloid precursor protein standard, isoform 695 (APPc^s).
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Figure 116. MALDI-MS spectrum of a two-dimensional in-gel tryptic digest of standard A PPa^. The 
annotated peaks at m/zs 824.46 and 947.50 were subjected to MS/MS analysis the results of which are 
shown in figures 117 and 118. The peak at m/z 1372.75 marked by a red asterisk is specific to APPa^s 
and the peak at 1980.82 marked by the blue asterisk, has a site of probable glycosylation. Attempts to 
sequence these important peptides, however, were unsuccessful.

mass
(M+H+)

mass
(experimental)

position
(sAPP695

numbering)

missed
cleavages

peptide sequence

751.36 751.44 314-319 0 MSQVMR
824.42 824.46 419-424 0 HFEHVR
829.43 829.41 118-123 0 FLHQER
888.47 888.52 397-403 0 HVFNMLK
947.46 947.50 369-376 0 VEAMLNDR
971.51 971.56 436-443 0 SQVMTHLR
1099.59 1099.64 338-346 0 AVIQHFQEK
1212.62 1212.75 359-368 0 QQLVETHMAR
1266.67 1266.75 90-99 0 THPHFVIPYR
1285.62 1285.68 24-34 0 LNMHMNVQNGK
1336.60 1337.08 585-595 0 HDSGYEVHHQK
1372.70 1372.75 272-285 0 VPTTAASTPDAVDK*
1374.65 1374.91 347-358 0 VESLEQEAANER
1414.80 1414.88 557-570 0 GLTTRPGSGLTNIK
1739.85 1739.97 494-509 0 ISYGNDALMPSLTETK
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1980.90 1980.80 477-493 0 EQNYSDDVLANMISEPR*
2022.15 2022.25 379-396 0 LALENYITALQAVPPRPR
2127.07 2127.12 252-271 0 TTSIATTTTTTTESVEEWR

Table 65. Mascot mass fingerprint analysis of the MALDI-MS of the two-dimensional in-gel tryptic 
digest of APPa695 shown in figure 116 gave 29% sequence coverage using the Mascot search engine. 
The peak at m/z 1372.75, amino acid sequence VPTTAASTPDAVDK being specific to APPct695 
although MS/MS data was not achieved for this peptide. The sequences highlighted in blue, however, 
did give good MS/MS results (figures 117 and 118).
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.Figure 117. MALDI-MS/MS spectrum of peak at m/z 824.46 from the two-dimensional in-gel tryptic 
digest of APPcc695 in figure 116. This peak corresponds to the A P P a^  tryptic peptide HFEHVR, 
823.41 monoisotopic mass and the MS/MS analysis results validate this by giving the full peptide 
sequence in both ‘b’ and ‘y’ product ions.

Amino acid____________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
H, His 137.05 110.07 110.07 93.04 138.06 121.03 824.41 807.38
F, Phe 147.06 120.08 257.13 240.11 285.13 268.10 687.35 670.33
E, Glu 129.04 102.05 386.18 369.15 414.17 397.15 540.28 523.26
H, His 137.05 110.07 523.24 506.21 551.23 534.20 411.24 394.21
V, Val 99.06 72.08 622.30 605.28 650.30 633.27 274.18 257.16
R, Arg 156.10 129.11 778.41 761.38 806.40 789.37 175.11 158.09

Table 66. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa695 shown in figure 117. Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the peptide 
HFEHVR, highlighting the products ions present.
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Figure 118. MALDI-MS/MS analysis of peak at m/z 947.50 from the two-dimensional in-gel tryptic 
digest of APPo695 in figure 116. This peak corresponds to the peptide VEAMLNDR, 946.45 
monoisotopic mass and the sequence tag shown here confirms this.

Amino acid______________________________ Ion type (MTU4)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
M, Met 131.04 104.05 403.20 386.17 431.19 414.16 648.31 631.28
L, Leu 113.08 86.09 516.28 499.25 544.27 527.25 517.27 500.24
N, Asn 114.02 87.05 630.32 613.30 658.32 641.29 404.18 387.16
D, Asp 115.02 88.03 745.35 728.32 773.34 756.32 290.14 273.11

R,Arg 156.10 129.11 901.45 884.42 929.45 912.42 175.11 158.09

Table 67. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa695 shown in figure 118. Listed are all the possible ‘a’, ‘b’ and ‘y’ product ions for the 
sequence MLNDR, highlighting the products ions present.

204



3.444 Capillary LC/MS analysis of a two-dimensional in-gel tryptic digestion of 
standard APPc^s*
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Figure 119. Capillary LC/MS run of an A P P a^  two-dimensional in-gel tryptic digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92. page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figures 120 and 121).
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mass
observed

mass
(experimental)

position
(■SAPP695

numbering)

missed
cleavages

peptide sequence

404.87 1211.60 359-368 0 QQLVETHMAR
686.84 1371.66 272-285 0 VPTTAASTPDAVDK*
687.83 1373.64 347-358 0 VESLEQEAANER
870.42 1738.83 494-509 0 ISYGNDALMPSLTETK
878.42 1754.83 494-509 0 IS Y GNDALMPSLTETK (MSO)
660.97 1979.88 477-493 0 EQN Y SDDVLANMISEPR*
990.95 1979.88 477-493 0 EQNYSDDVLANMISEPR*

Table 68. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 119 of a two-dimensional in-gel tryptic digest of standard A PPo^ gave sequence 
coverage of 10%. The data highlights the presence of both doubly and triply charged species seen with 
ESI-MS as opposed to the singly charged ions seen with MALDI-MS. The presence of the peptide 
sequence VPTTAASTPDAVDK (marked by a red asterisk) proves the sample to be A P P a^  as it is 
isoform specific.
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Figure 120. Capillary LC/MS/MS run of the doubly charged product ion at m/z 686.84T retention time
7.9 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of standard APPa ,̂95 (figure 
119b). This product is consistent with the A P P a^  tryptic peptide, VPTTAASTPDAVDK, MW 
1371.66 and the sequence tag, PTTAASTPDAVDK verifies this.
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Amino acid_____________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
P, Pro 97.05 169.13 152.10 197.12 180.10 1273.59 1256.57
T, Thr 101.04 74.06 270.18 253.15 298.17 281.14 1176.54 1159.51
T, Thr 101.04 74.06 371.22 354.20 399.22 382.19 1075.49 1058.47
A, Ala 71.03 44.04 442.26 425.23 470.26 453.23 974.45 957.42
A, Ala 71.03 44.04 513.30 496.27 541.29 524.27 903.41 886.38
S, Ser 87.03 60.04 600.33 583.30 628.33 611.30 832.37 815.35
T, Thr 101.04 74.06 701.38 684.35 729.37 712.35 745.34 728.31

P, Pro 97.05 70.06 798.43 781.40 826.43 809.40 644.29 627.27

D, Asp 115.02 88.03 913.46 896.43 941.45 924.43 547.24 530.21

A, Ala 71.03 44.04 984.49 967.47 1012.49 995.46 432.21 415.19

V, Val 99.06 72.08 1083.56 1066.54 1111.56 1094.53 361.18 344.15

D, Asp 115.02 88.03 1198.59 1181.56 1226.58 1209.56 262.11 245.08

K, Lys 128.09 101.10 1326.69 1309.66 1354.68 1337.65 147.08 130.05

Table 69. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at m/z 686.84 from the two-dimensional in-gel tryptic digest of standard APPa^s shown in 
figure 120. Shown is the ‘a’, ‘b’ and 4y’ product ions possible for the sequence PTTAASTPDAVDK 
highlighting in red the ‘y’ product ion present within the spectrum.
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Figure 121. Capillary LC/MS/MS analysis of the triply charged product ion at m/z 660.97, retention 
time 16.7 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of APPa^s (figure 
119c). This product is consistent with the APPa^s tryptic peptide EQNYSDDVLANMISEPR, 1979.88 
monoisotopic mass and the sequence tag ANMI expands this.
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Amino a c i d __________________ Ion type (M+fT)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(1063.47) 1063.47 n/a 1036.48 1019.46 1064.48 1047.45 1980.90 1963.88
A, Ala 71.03 44.04 1107.52 1090.50 1135.52 1118.49 917.42 900.40
N, Asn 114.04 1221.56 1204.54 1249.56 1232.53 846.39 829.36
M, Met 131.04 1352.61 1335.58 1380.60 1363.57 732.34 715.32
I, lie 113.08 1465.69 1448.66 1493.68 1476.66 601.30 584.28
(469.20) 469.20 n/a 1934.90 1917.87 1962.89 1945.87 488.22 471.19

Table 70. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel tryptic digest of APPa^s shown in figure 121, shows the product ions from the 
sequence tag ANMI.

Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP, isoform 695 

(APPa695) from E.coli origin.

The MALDI-MS examination o f the two-dimensional in-gel tryptic digestion o f 

APPci695 (figure 116) gave amino acid sequence coverage o f 29% o f the APPct695 

molecule from 18 tryptic peptides. The sequence coverage achieved from the LC/MS 

(figure 119) analysis uncovered 10% o f the protein sequence from 6 peptides. MS/MS 

examination of both MALDI-MS (figures 117 and 118) and LC/MS (figures 120 and 

121) peaks provided one full peptide sequence (figure 117) and generous sequence 

tags. The unique tryptic peptide exhibited by A PPa^s (position 272-285, 

monoisotopic mass 1372.6954, amino acid sequence VPTTAASTPDAVDK) was 

present in both the MALDI-MS and LC/MS data. Observed as the peak at m/z 

1372.75 in the MALDI-MS spectrum (figure 116) highlighted in the BioAnalyst 

search results of the LC/MS data (table 67) and analysis by LC/MS/MS (figure 126). 

Another peptide of interest, EQNYSDDVLANMISEPR, position 477-493 (APPot695 

numbering) was seen in the MALDI-MS spectrum (figure 116) at m/z 1980.96. The 

LC/MS data (table 67) also showed its presence in both doubly (m/z 990.95) and
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triply (m/z 660.97) charged species as well as LC/MS/MS analysis (figure 121) giving 

a sequence tag. The significance of this peptide is the possible N-glycosylation site at 

position 479. If glycosylation does occur at this point the mass of the peptide would 

be increased and the species at 1980 M+H* for MALDI and 660 M+SH* and 990 

M+2H+ for LC/MS would not be seen. The bacterial nature of the standard APPct695, 

however, means that glycosylation does not occur and as such the peptide may be 

present.
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3.445 MALDI-MS analysis of a two-dimensional in-gel tryptic digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein, isoform
770 (APPa77o).
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Figure 122. MALDI-MS spectrum of an in-gel tryptic digest of APPa™ from a two-dimensional gel. 
Annotated are the peptides upon which MS/MS analysis was performed (figures 123 and 124). Note the 
peaks at m/zs 915.60 and 1386.71 (marked with a red asterisk) specific to the APPa™ isoform.

mass
(M+H4)

mass
(experimental)

position
(APPa77o

numbering)

missed
cleavages

peptide sequence

824.42 824.27 494-499 0 HFEHVR
829.43 829.47 118-123 0 FLHQER
915.49 915.60 335-342 0 TTQEPLAR*
948.41 948.21 395-401 0 EWEEAER
971.51 971.30 511-518 0 SQVMTHLR
1099.59 1099.66 413-421 0 AVIQHFQEK
1266.67 1266.25 90-99 0 THPHFVIPYR
1336.60 1336.32 660-670 0 HDSGYEVHHQK
1374.65 1374.35 422-433 0 VESLEQEAANER
1386.71 1386.41 347-360 0 LPTT A ASTPD A VDK*
1914.86 1914.46 286-301 0 YLETPGDENEHAHFQK
1980.90 1981.98 552-568 0 EQNYSDDVLANMISEPR
2022.15 2022.36 454-471 0 LALENYITALQAVVPPRPR
2127.07 2127.60 252-271 0 TTSIATTTTTTTESVEEVVR
2171.19 2171.48 506-523 2 AAQIRSQVMTHLRVIYER
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2402.18 2402.49 1-23 0 LEVPTDGNAGLLAEPQIAMFCGR
3092.39 3092.55 272-298 2 EVCSEQAETGPCRAMISRWYFDVTEGK

Table 71. Mascot search results from the MALDI-MS mass fingerprint of the two-dimensional in-gel 
tryptic digest of APPa770 (figure 122) showing 21% sequence coverage. The red asterisks marking the 
tryptic peptides TTQPELAR, m/z 915.60 and LPTTAASTPDAVDK, 1385.61 monoisotopic mass 
specific to APPa770, attempts to sequence these peptides, however, failed.
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Figure 123. MALDI-MS/MS spectrum of peak at m/z 829.25 from the two-dimensional in-gel digest of 
APPa770 (figure 122) corresponding to the APPc^o tryptic peptide FLHQER, 828.33 monoisotopic 
mass. MS/MS analysis assigned the full sequence in ‘y’ ions.

Amino acid_____________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
F, Phe 147.06 120.08 103.05 148.07 131.04 829.43 812.40
L, Leu 113.08 86.09 233.16 216.13 261.15 244.13 682.36 665.33

H, His 137.05 370.22 353.19 398.21 381.19 569.27 552.25

Q, Gin 128.05 101.07 498.28 481.25 526.27 509.25 432.22 415.19

E, Glu 129.04 102.05 627.32 610.29 655.31 638.29 304.16 287.13

RA l ... 156.10 129.11 783.42 766.39 811.42 794.39 175.11 158.09

Table 72. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa770 spectrum in figure 123. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
peptide FLHQER, highlighting the ions present.
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Figure 124. MALDI-MS/MS analysis of the peak at m/z 1266.25 (figure 122). Shown is the full 
sequence coverage for the peptide THPHFVIPYR.

Amino acid_____________________________ Ion type (M+H+)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
T, Thr 101.04 74.06 74.06 57.03 102.05 85.02 1266.67 1249.64
H, His 137.05 211.11 194.09 239.11 222.08 1165.62 1148.60
P, Pro 97.05 70.06 308.17 291.14 336.16 319.14 1028.56 1011.54
H, His 137.05 445.23 428.20 473.22 456.19 931.51 914.48
F, Phe 147.06 120.08 592.29 575.27 620.29 603.26 794.45 777.42
V, Val 99.06 72.08 691.36 674.34 719.36 702.33 647.38 630.36
I, lie 113.08 86.09 804.45 787.42 832.44 815.41 548.31 531.29
P, Pro 97.05 70.06 901.50 884.47 929.49 912.47 435.23 418.20
Y ,Tyr 163.06 136.07 1064.56 1047.54 1092.56 1075.53 338.18 321.15
R,A rg 156.10 129.11 1220.66 1203.64 1248.66 1231.63 175.11 158.09

Table 73. BioAnalyst results from figure 124 showing the possible and actual 4a% ‘b’ and ‘y’ MS/MS 
products available for the peptide THPHFVIPYR.
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3.446 Capillary LC/MS analysis of a two-dimensional in-gel tryptic digestion of
immunoprecipitated APPct77o.
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Figure 125. Capillary LC/MS run of an APPc^o two-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum, however, no data is seen due to the poor quality of the 
sample. The peak lists generated from trace (b) was sorted according to predefined parameters (chapter 
2.92, page 93) and a selection of the most intense peaks automatically sent for MS/MS (figures 126 and 
127).
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mass
observed

mass
(experimental)

position
(sAPP770

numbering)

missed
cleavages

peptide sequence

458.25 914.47 335-342 0 TTQEPLAR*
474.23 946.45 444-451 0 VEAMLNDR
404.87 1211.60 434-433 0 QQLVETHMAR
693.91 1385.61 347-360 0 LPTTAASTPDAVDK*
870.42 1738.83 569-584 0 IS Y GNDALMPSLTETK
878.42 1754.83 569-584 0 ISYGNDALMPSLTETK(MSO)
674.72 2021.13 454-471 0 LALEN YITALQA VPPRPR
709.69 2126.03 252-271 0 TTSIATTTTTTTESVEEVVR

Table 74. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 125 of a two-dimensional in-gel tryptic digest of APPa™ gave 12% sequence coverage. 
The data highlights the presence of two APPa™ specific peptides unfortunately only one of these 
unique peptides was sequenced (highlighted in blue).
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Figure 126. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 693.91, retention 
time 8.9 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of APPa770 (figure 
125b). This product is consistent with the APPa™ tryptic peptide, LPTTAASTPDAVDK, MW 
1385.61. This tryptic peptide is unique to the APPa™ isoform and the sequence tag PTTAAS 
uncovered validates its presence.

A m ino acid Ion type (M H 4 )
residue m ass/D a immonium a a-N H 3 b b-N H 3 y y-N H 3
P, Pro 97.052 70.065 183.15 166.13 211.14 194.12 1259.57 1242.54
T, Thr 101.047 74.060 284.20 267.18 312.19 295.17 1162.52 1145.49
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T, Thr 101.047 74.060 385.24 368.22 413.24 396.22 1061.47 1044.44
A, Ala 71.037 44.049 456.29 439.26 484.28 467.26 960.43 943.41
A, Ala 71.037 44.049 527.32 510.29 555.31 538.29 889.39 872.37
S, Ser 87.032 60.044 614.36 597.33 642.35 625.33 818.35 801.33

Table 75. Bio Analyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa77o shown in figure 126. Listed are all the possible product ions for the sequence PTTAAS, 
highlighting the product ions present.
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Figure 127. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 870.42, retention 
time 14.1 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of standard APPa770 
(figure 125b). This product is consistent with the APPa770 tryptic peptide, ISYGNDALMPSLTETK, 
1738.83 monoisotopic mass and the sequence tag, SYGNDALMP verifies this.

Amino acid______________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
S, Ser 87.03 60.04 173.12 156.10 201.12 184.09 967.41 950.39
Y,Tyr 163.03 136.07 336.19 319.16 364.18 347.16 880.38 863.36
G, Gly 57.02 30.03 393.21 376.18 421.20 404.18 717.32 700.29
N, Asn 114.04 507.25 490.22 535.25 518.22 660.30 643.27
D, Asp 115.02 622.28 605.25 650.27 633.25 546.25 529.23
A, Ala 71.03 44.04 693.32 676.29 721.31 704.28 431.23 414.20

L, Leu 113.08 806.40 789.37 834.39 817.37 360.19 343.16

M, Met 131.04 104.05 937.44 920.41 965.43 948.41 247.11 230.08

P, Pro 97.05 70.06 1034.49 1017.47 1062.45 1045.46 116.0706 99.04

Table 76. BioAnalyst software results of the capillary LC/MS/MS spectrum in figure 127. The ‘b’ 
product ions highlighted show the presence of the sequence tag SYGNDALMP.

215



The alpha secretase cleaved amyloid precursor protein, isoform 770 ( A P P 0 1 7 7 0 )  was 

immunoprecitated from CHO 770 cell secretions.

MALDI-MS analysis o f the two-dimensional in-gel tryptic digestion o f APPct77o 

(figure 122) gave amino acid sequence coverage o f 21% of the APP01770 molecule 

from 17 tryptic peptides. The sequence coverage achieved from the LC/MS (figure 

125) analysis was inferior in comparison, uncovering 12% o f the protein sequence 

from 7 peptides. Although the sequence coverage seem low compared to expected 

values the very low concentration o f in vivo  APP makes it a difficult molecule to 

isolate and investigate. MALDI-MS/MS examination o f two tryptic peptides produced 

full sequence coverage in both cases (figures 123 and 124), whereas the results from 

the LC/MS/MS (figures 126 and 127) were less notable generating only sequence tags 

but they were sufficient to achieve positive results from automated searching. 

APP01770 produces three unique tryptic peptides; position 312-334, MW 2539.976; 

position 347-360, MW 1385.6111; position 335-342. MW 914.3894, the latter two are 

present in the both the MALDI-MS spectrum (figure 122) at m/zs 915.60 and 1386.71 

marked by red asterisks and the LC/MS data (table 73) as the doubly charged species 

at m/zs 458.25 and 693.91 for the peptides 914.38 MW and 1385.61 MW 

respectively. Due to the relevance o f these peptides verification by MS/MS analysis 

was attempted and although it was not achieved for 914.47, LC/MS/MS determination 

of 1385.61 MW was realised (figure 126). Presence o f the possible A-glycosylated 

peptide in the MALDI-MS spectrum (figure 122) at m/z 1981.98 again suggests that 

glycosylation within this peptide does not occur, however, further investigation o f this 

peptide would be necessary to prove its authenticity.
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3.447 MALDI-MS analysis of a two-dimensional in-gel tryptic digestion of
immunoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 128. MALDI-MS spectrum of an in-gel tryptic digest of APPa from a two-dimensional gel. The 
peaks annotated were analysed by MS/MS (figures 129 and 130). The red asterisk marks the peak at 
m/z 1372.65 specific to the APPa^s isoform proving its presence within this sample. No other isoform 
specific peptides, however, were detected for either APP751 or APP770.

mass
(M+lT)

mass
(experimental)

position
(APPa77o

numbering)

missed
cleavages

peptide sequence

824.42 824.46 494-499 0 HFEHVR
829.43 829.47 118-123 0 FLHQER
948.41 948.46 395-401 0 EWEEAER
971.51 971.56 511-518 0 SQVMTHLR
1212.62 1212.69 434-443 0 QQLVETHMAR
1266.67 1266.69 90-99 0 THPHFVIPYR
1336.60 1336.68 660-670 0 HDSGYEVHHQK
1372.70 1372.65 272-285 0 VPTTAASTPDAVDK*
1374.65 1374.73 422-433 0 VESLEQEAANER
1414.80 1414.88 632-635 0 GLTTRPGSGLTNIK
1980.90 1981.04 552-568 0 EQNYSDDVLANMISEPR
2022.15 2023.01 454-471 0 LALENYITALQAVPPRPR

Table 77. Mascot search results from the MALDI-MS mass fingerprint of the two-dimensional in-gel 
tryptic digest of APPa (figure 128), containing the three isoforms of interest (695, 751 and 770) and 
covering 19% of the sequence. The red asterisk marks the peptide specific to the APPa^95 isoform and 
the position numbering in red is APPa695 numbering.
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Figure 129. MALDI-MS/MS spectrum of peak at m/z 824.46 from the two-dimensional in-gel digest of 
APPa (figure 128) corresponding to the APPa tryptic peptide HFEHVR, 823.32 monoisotopic mass. 
MS/MS analysis assigned the full sequence in ‘b’ ions.

Amino acid__________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
H, His 137.05 110.07 93.04 138.06 121.03 824.41 807.38

F, Phe 147.06 1 ̂ U.Uo 257.13 240.11 285.13 268.10 687.35 670.33
E, Glu 129.04 102.05 386.18 369.15 414.17 397.15 540.28 523.26

H, His 137.05 110.07 523.24 506.21 551.23 534.20 411.24 394.21
V, Val 99.06 72.08 622.30 605.28 650.30 633.27 274.18 257.16

R, Arg 156.10 129.11 778.41 761.38 806.40 789.37 175.11 158.09

Table 78. Bio Analyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa spectrum in figure 129. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
peptide HFEHVR, emphasizing the ions present.
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Figure 130. MALDI-MS/MS spectrum of peak at m/z 1266.65 from the two-dimensional in-gel digest 
of APPa (figure 128) corresponding to the APPa tryptic peptide THPHFVIPYR 1265.57 monoisotopic 
mass. MS/MS analysis revealed the sequence tag HFVIPYR in ‘b’ ions allowing automated searching 
to achieve a positive for APP.

Amino acid Ion type (M+H4)
residue
H, His 
F, Phe 
V, Val
I, lie 
P, Pro 
Y,Tyr 
R, Arg

mass/Da immonium a a-NH3 b b-NH3 y y-NH3
137.05 1 i n H7 207.12 190.09 235.11 218.09 931.51 914.48
147.06 120.08 354.19 337.16 382.18 365.16 794.45 777.42
99.06 72.08 453.26 436.23 481.25 464.22 647.38 630.36
113.08 86.09 566.34 549.31 594.33 577.31 548.31 531.29
97.05 70.06 663.39 646.37 691.39 674.36 435.23 418.20
163.06 136.07 826.46 809.43 854.45 837.42 338.18 321.15
156.10 129.11 982.56 965.53 1010.55 993.53 175.11 158.09

Table 79. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel tryptic digest 
of APPa spectrum in figure 130. Shown is the list of ‘a’, ‘b’ and ‘y’ product ions available for the 
sequence HFVIPYR, highlighting the ions present.
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3.448 Capillary LC/MS analysis of a two-dimensional in-gel tryptic digestion of
immunoprecipitated APPa.
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Figure 131. Capillary LC/MS run of an APPa two-dimensional in-gel tryptic digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Should shows the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum. Lack of data however, may be due to low sample 
concentration. The peak list generated from trace (b) was sorted according to predefined parameters 
(chapter 2.92, page 93) and a selection of the most intense peaks automatically sent for MS/MS (figures 
132 and 133).
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mass
observed

mass
(experimental)

position
(SAPP770

numbering)

missed
cleavages

peptide sequence

687.82 1373.63 422-433 0 VESLEQEAANER
870.40 1738.79 569-584 0 ISYGNDALMPSLTETK
674.71 2 0 2 1 . 1 1 454-471 0 LALENYITALQAVPPRPR
709.69 2126.05 252-271 0 TTSIATTTTTTTESVEEWR

Table 80. Bio Analyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 131 of a two-dimensional in-gel tryptic digest of APPa giving 8% of the peptide 
sequence. The peptides sequences highlighted in blue were then subjected to MS/MS analysis (figures 
132 and 133).
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Figure 132. Capillary LC/MS/MS analysis of the triply charged product ion at m/z 674.71, retention 
time 16.0 minutes from the LC-MS run of a two-dimensional in-gel tryptic digest of APPa (figure 
131b). This product is consistent with the APPa tryptic peptide LALENYITALQAVPPRPR, 2021.11 
monoisotopic mass and the sequence tag LALE verifies this.

Amino acid____________________________ Ion type (M+H4)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3

(1317.75) 1317.75 n/a 1290.76 1273.74 1318.76 1301.73 2022 .10 2005.08
L, Leu 113.08 1403.85 1386.82 1431.84 1414.82 704.35 687.32
A, Ala 71.03 44.04 1474.89 1457.86 1502.88 1485.85 591.26 574.24
L, Leu 113.08 86.09 1587.97 1570.94 1615.96 1598.94 520.22 503.20
E, Glu 129.04 102.05 1717.01 1699.99 1745.01 1727.98 407.14 390.11
(259.08) 259.08 n/a 1976.10 1959.07 2004.09 1987.07 278.10 261.07

Table 81. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel tryptic digest of APPa shown in figure 132, shows the ‘a’, ‘b’ and ‘y’ product ions 
from the sequence tag LALE.
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Figure 133. Capillary LC/MS/MS analysis of the triply charged product ion at m/z 709.69, retention 
time 14.0 minutes from the LC/MS run of a two-dimensional in-gel tryptic digest of APPa (figure 
131b). This product is consistent with the APPa tryptic peptide TTSIATTTTTTTESVEEWR, 
2126.05 monoisotopic mass and the sequence tag ESVE expands this.

A m ino acid______________________________________ Ion type (M +t-T)
residue m ass/D a im monium a a-N H 3 b b-N H 3 y y -N H 3
(1180.58) 1180.58 n/a 1153.59 1136.57 1181.59 1164.56 2127.04 2110.18
E, Glu 129.04 102.05 1282.63 1265.61 1310.63 1293.60 946.46 929.43
S, Ser 87.03 60.04 1369.67 1352.64 1397.66 1380.64 817.42 800.39
V , Val 99.06 1468.74 1451.71 1496.73 1479.70 730.38 713.36
E, Glu 129.06 102.05 1597.78 1580.75 1625.77 1608.75 631.32 614.29
(483.26) 483.26 n/a 2081.04 2064.01 2109.03 2092.01 502.27 485.25

Table 82. BioAnalyst automated searching of the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel tryptic digest of APPa shown in figure 133, shows the ‘a’, ‘b’ and ‘y’ product ions 
from the sequence tag ESVE.

The alpha secretase cleaved am yloid precursor protein (A P P a ) used w as  

immunoprecitated from Ntera 2 cell secretions. A P P a  encom passes all three isoform s 

o f  interest (A P P a 695, A P P a 75i, A P P a 77o) and as such is a more plausible m odel o f  in 

vivo conditions.
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MALDI-MS results from the two-dimensional in-gel tryptic digestion of APPa 

(figure 128) uncovered 19% of the amino acid sequence in 12 peptides. The sequence 

coverage achieved from the LC/MS (figure 131) analysis was less impressive giving 

8% of the protein sequence from only 4 peptides. Again the inferior LC/MS results 

are most likely due to differences in manual and automatic peak retrieval. MALDI- 

MS/MS analysis of two tryptic peptides provided a full sequence and a tag (figures 

129 and 130). LC/MS/MS (figures 132 and 133) gave two sequence tags both of 

which were adequate in protein verification. The MALDI-MS data (figure 128) 

exhibited a specific tryptic peptide at m/z 1372.65, however, MALDI-MS/MS 

analysis was not achieved on this peak. The peptide significant for its probable N- 

glycosylation site (EQNYSDDVLANMISEPR, position 552-568 APPa77o 

numbering) at position 554 is present in the MALDI-MS data (figure 128) at m/z 

1981.94, however, attempts to validate this by MALDI-MS/MS were unsuccessful. A 

final comment upon examination of all the MALDI-MS data seen here is the lack of 

contaminating species seen with the two-dimensional in-gel digests compared to the 

one-dimensional in-gel digests and although the sequence coverage of the standard 

proteins (BSA and APPct695) is lower the coverage for immunoprecipitated samples is 

higher relative to the one-dimensional in-gel digests, thus showing the excellence of 

two-dimensional electrophoresis for resolving complex samples.
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3.45 Two-dimensional in-gel Asp-N digestion of BSA and APP.

3.451 MALDI-MS analysis of a tw o-dimensional in-gel Asp-N digestion of BSA.
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Figure 134. MALDI-MS spectrum of a two-dimensional in-gel Asp-N digest of BSA. The spectrum is 
dominated by contamination, the equidistant clusters signifying some form of polymer or adduct 
formation. None of the peaks present within this spectrum were able to provide convincing MS/MS 
data.

mass
(M+ET)

mass
(experimental)

position missed
cleavages

peptide sequence

672.36 672.06 317-322 1 EKDAIP
682.25 682.02 190-195 1 ECCQAE
854.46 854.09 323-330 0 ENLPPLTA
877.40 877.06 535-542 1 DiCTLPDT
900.50 899.19 30-36 0 EIAHRFK
954.49 954.18 518-525 0 ETYVPKAF
1069.52 1069.14 517-525 1 DETYVPKAF
1081.43 1081.11 465-473 2 ESERMPCTE
1293.75 1293.10 554-564 1 ELLKHKPKATE
1468.77 1468.85 25-36 1 DTHKSEIAHRFK

Table 83. Mascot search results from the two-dimensional in-gel Asp-N digest of BSA (figure 134), 
showing 10% sequence coverage although this is ambiguous due to the appearance of the MALDI-MS 
spectrum and lack of MS/MS data to substantiate any of the peaks listed.
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3.452 Capillary LC/MS analysis of a two-dimensional in-gel Asp-N digestion of
BSA.

47,5

(a)

(b)

(c)

44.2
38.9 38.5

f  4«

e  2.0e

22.4

4.0e >

Time, mai

3.oe

R- 2.4e
>. 2.2e

22 8 25 726 5
-

14.118.55000.0
4000.u
2000.0

Time, mm
29e

i.20e

l.10e

:' -
9000.0

8000.0

- 7000.0

6000.0

5000.0
4000.0

3000.0

>000 e

1000.0

Time, nun

Figure 135. Capillary LC/MS run of a BSA two-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from traces (b) and (c) were sorted 
according to predefined parameters (chapter 2.92, page 93) and a selection of the most intense peaks 
automatically sent for MS/MS (figure 136).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

625.82 1249.63 320-331 0 AIPENLPPLTAD
856.91 1711.80 320-335 1 AIPENLPPLTADFAED
978.45 1954.89 320-337 2 AIPENLPPLTADFAEDKD
790.30 2367.88 114-131 0 CC EK QE PE RN ECFLSH K D

Table 84. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
shown in figure 135 of a two-dimensional in-gel Asp-N digest of BSA gave 5% sequence coverage. 
The sequence highlighted in blue wus subjected to MS/MS analysis (figure 136).
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Figure 136. Capillar}' LC/MS/MS analysis of the doubly charged product ion at 625.82 m/z, retention 
time 16.1 minutes from the LC/MS run of a two-dimensional in-gel Asp-N digest of BSA (figure 
135b). The sequence tag LPPLTAD is consistent with the BSA Asp-N peptide AIPENLPPLTAD, 
1249.63 monoisotopic mass.

Amino acid_________________________Ion type (M+H )
residue m ass/Da immonium a a-N H 3 b b-N H 3 y y -N H 3
L, Leu 113.08 86.09 69.06 114.09 97.06 726.42 709.39
P, Pro 97.05 70.06 183.14 166.12 211.14 194.11 613.34 596.31
P, Pro 97.05 280.20 263.17 308.19 291.17 516.28 499.26

L, Leu 113.08 393.28 376.25 421.28 404.25 419.23 402.20

T, Thr 101.04 494.33 477.30 522.32 505.31 306.15 289.12

A , A la 71.03 44.04 565.37 548.34 593.36 576.33 205.10 188.07
D, Asp 115.02 88.03 680.39 663.37 708.39 691.31 134.06 117.03
Table 85. BioAnalyst results of the capillar}' LC/MS/MS spectrum of the product at 625.82 m/z from 
the two-dimensional in-gel Asp-N digest of BSA shown in figure 136. The possible and actual *a’, ‘b’ 
and V  product ions for the sequence LPPLTAD are shown.
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Bovine serum albumin (BSA, MW 66,432.96) was used as a standard due to its 

availability and similarity in molecular weight to the amyloid precursor protein 

isoforms (A PPa695, MW 67,708.02, A PPa75i, MW 73,863.85, A PPa770, MW 

75,988.34).

The MALDI-MS analysis o f the two-dimensional in-gel Asp-N digest o f  BSA (figure 

134) resulted in 10 Asp-N peptides covering 10% o f the protein. LC/MS analysis 

(figure 135) o f the same sample revealed 4 Asp-N peptides for BSA, which covered 

5% o f the protein sequence. The protein sequence coverage o f  methods both was poor 

for a model protein such as BSA and needs further investigation to optimise the Asp- 

N digest procedure. The MALDI-MS spectrum (figure 34) was dominated by 

contamination that looked like some form o f polymer or adducts. The difference 

between the peaks was approximately 16Da, which might suggest the addition o f a 

NH2 moiety. Further investigation o f theses peaks and experimental procedure is 

needed. Particularly prominent in the LC/MS results (table 83) are the presence o f 

missed cleavages suggesting insufficient cleavage. None o f the peaks present within 

MALDI-MS spectrum were able to provide convincing MS/MS data, however, 

LC/MS/MS gave one sequence tag (figure 136).
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3.453 MALDI-MS analysis of a two-dimensional in-gel Asp-N digestion of alpha
secretase cleaved amyloid precursor protein standard , isoform 695 (APPcms).
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Figure 137. MALDI-MS spectrum of a two-dimensional in-gel Asp-N digest of standard APPa6Q5- The 
peak at m/z 1327.24, marked by a red asterisk is specific to APPct695- The annotated peaks at m/zs 
774.24 and 935.32 gave the best results when subjected to MS/MS analysis the results of which are 
shown in figures 138 and 139. The contaminating species present within the spectrum are unknown and 
further identification should ideally be carried out by MS/MS particularly upon the peak at m/z 1850.

mass
(M+LT)

mass
(experimental)

position
(APP0695

numhering)

missed
cleavages

peptide sequence

752.31 752.24 122-127 1 ERMDVC
774.35 774.24 580-585 1 DAEFRH
935.46 935.32 491-498 0 EPRISYGN
997.40 997.39 166-173 0 EFVCCPLA(CM)
1154.66 1154.68 325-334 0 ERQAKNLPKA
1327.72 1327.24 268-280 0 EVVRVPTTAASTP*
1354.74 1354.79 323-334 1 EAERQAKNLPKA
1480.67 1480.86 312-322 2 ERMSQVMREWE
2245.18 2245.19 555-575 2 DRGLTTRPGSGLTNIKTEEIS
2334.19 2334.23 409-426 2 EQKDRQHTLKHFEHVRMV(MSO)

Table 86. Mascot search results from the MALDI-MS of the two-dimensional in-gel Asp-N digest of 
APPa695 shown (figure 137) covering 15% of the peptide sequence. The sequences highlighted in blue 
gave to best results when subjected to MS/MS analysis. Sequencing of the specific peptide 
EVVRVPTTAASTP (highlighted with a red asterisk), however, was unsuccessful.
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Figure 138. MALDI-MS/MS spectrum of peak at m/z 774.24 from the two-dimensional in-gel Asp-N 
digest of APPa695 in figure 137. This peak corresponds to the APPct695 Asp-N peptide DAEFRFL 
773.25 MW and the MS/MS analysis results validate this by giving the full peptide sequence.

Amino acid _______________________ Ion type (M+FT)
residue mass/Da immonium a
D, Asp 115.02 88.03 88.03
A, Ala 71.03 44.04 159.07
E, Glu 129.04 102.05 288.11
F, Phe 147.06 120.08 435.18
R, Arg 156.10 129.11 591.28
H, His 137.05 110.07 728.34

a-NH3 b b-NH3 V y-NH3
71.01 116.03 99.00 774.35 757.32
142.04 187.07 170.04 659.32 642.29
271.09 316.11 299.08 588.28 571.26
418.16 463.18 446.15 459.24 . 442.21
574.26 619.28 602.25 312.17 295.15
711.32 756.34 739.38 156.07 139.05

Table 87. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel Asp-N digest 
of APPa695 shown in figure 138. Listed are all the possible ‘a’, ‘b* and ‘y’ product ions for the peptide 
DAEFRH, highlighting the products ions present.
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m/z, amu
Figure 139. MALDI-MS/MS spectrum of peak at m/z 935.32 from the two-dimensional in-gel Asp-N 
digest of APPa695 in figure 137. This peak corresponds to the APPa,,95 Asp-N peptide EPRISYGN. 
934.26 monoisotopic MW and the resulting ‘b’ ion sequence tag authenticates the peak.

Amino acid__________________________ Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
E, Glu 129.04 102.05 102.05 85.02 130.04 113.02 935.45 918.43
P, Pro 97.05 70.06 199.10 182.08 227.10 210.07 806.41 789.38
R, Arg 156.10 129.11 355.20 338.18 383.20 366.17 709.36 693.33
I, lie 113.08 86.09 468.29 451.26 496.28 479.26 553.26 536.23
S, Ser 87.03 60.04 555.32 538.29 583.31 566.29 440.17 423.14
Y, Tyr 163.06 136.07 718.38 701.36 746.38 729.35 353.14 336.11

Table 88. BioAnalyst software results from the MALDI-MS/MS two-dimensional in-gel Asp-N digest 
of APPot695 shown in figure 139. Listed are all the possible 'a \  'b ' and ‘y product ions for the 
sequence EPRISY, highlighting the product ions present.



3.454 Capillary LC/MS analysis of a two-dimensional in-gel Asp-N digestion of
standard A PP a 695*
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Figure 140. Capillar}' LC/MS run of an APPa^s two-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum, however, only mobile phase peaks can be seen. The peak list 
generated from trace (b) was sorted according to predefined parameters (chapter 2.92, page 93) and a 
selection of the most intense peaks automatically sent for MS/MS (figures 141 and 142 ).

231



mass
observed

mass
(experimental)

Position
(APPCX695

numbering)

missed
cleavages

peptide sequence

395.67 789.33 190-196 0 DVWWGGA
461.72 921.43 284-291 1 DKYLETPG
489.23 976.44 482-490 1 DDVLANMIS
579.26 1156.51 525-534 0 DLQPWHSFGA
636.78 1271.59 524-534 1 DDLQPWHSFGA
664.35 1326.69 268-280 0 EWRVPTTAASTP*
683.81 1365.61 471-481 2 DELLQKKEQNYS
494.40 1480.18 471-482 '> DELLQKKEQNYSD
750.33 1498.65 535-548 3 DSVPANTENEVEPV
753.88 1505.74 499-512 1 DALMPSLTETKTTV

Table 89. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
seen in figure 140 of a two-dimensional in-gel Asp-N digest of standard A P Po^ gave 15% sequence 
coverage.
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Figure 141. Capillary LC/MS/MS analysis of the doubly charged product ion at m/z 489.23, retention 
time 16.5 minutes from the LC/MS run of a two-dimensional in-gel Asp-N digest of standard APPot^ 
(figure 140b). This product is consistent with the APPcv« Asp-N peptide DDVLANM1S, 976.44 
monoisotopic mass.

A m ino acid Ion type (M + H )
residue m ass/D a immonium  
(329.12) 329.12 n/a 
L, Leu 113.08

a
302.13
415.22

a-NH3 b b-NH3 
285.11 330.13 313.10 
398.19 443.21 426.18

y
977.45
648.33

y-N H 3
960.43
631.30
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A, Ala 71.03 44.04 486.25 469.23 514.25 497.22 535.24 518.22
N, Asn 114.04 87.05 600.30 583.27 628.29 611.26 464.21 447.18
M, Met 131.04 104.05 731.34 714.31 759.33 742.30 350.16 333.14
(200.11) 200.11 n/a 931.45 914.42 959.44 942.42 219.12 202.10

Table 90. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at 489.23 m/z from the two-dimensional in-gel Asp-N digest of standard APPa^95 shown in 
figure 141.
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Figure 142. Capillary LC/MS/MS run of the doubly charged product ion at 395.67 m/z, retention time 
17.3 minutes from the LC/MS run of a two-dimensional in-gel Asp-N digest of standard APPon,^ 
(figure 140b). This product is consistent with the APPa(«5 Asp-N peptide DVWWGGA, 789.33 
monoisotopic mass and MS/MS analysis revealing the full peptide sequence verifies this.

Amino acid_________________________Ton type (M+IG)
residue mass/Da immonium a a-NHs b b-NH3 y y-NH3
D, Asp 115.02 88.03 88.03 71.01 116.03 99.00 790.30 773.28
V, Val 99.06 72.08 187.10 170.08 215.10 198.07 675.28 658.25
W, Trp 186.07 159.09 373.18 356.16 401.18 384.15 576.21 559.18
W, Trp 186.07 159.09 559.26 542.23 587.26 570.23 390.13 373.10
G, Gly 57.02 30.03 616.28 599.26 644.28 627.25 204.05 187.02
G, Gly 57.02 30.03 673.30 656.28 701.30 684.27 147.03 130.00
A, Ala 71.03 44.04 744.34 727.31 772.34 755.31 90.012 72.98

Table 91. BioAnalyst software results of the capillary LC/MS/MS spectrum of the doubly charged 
product at 395.67 m/z from the two-dimensional in-gel Asp-N digest of standard A P P a^  shown in 
figure 142.
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Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP, isoform 695 

(APPa695) from E.coli origin.

The MALDI-MS determination o f the two-dimensional in-gel Asp-N digestion o f 

A PPa695 (figure 137) gave amino acid sequence coverage o f 15% o f the APPaegs 

molecule from 10 Asp-N peptides. The sequence coverage achieved from the LC/MS 

(figure 140) was veiy similar covering 15% o f the protein sequence from 1 0  peptides. 

MALDI-MS/MS analysis uncovered a full sequence (figure 138) and a generous 

sequence tag (figure 139), likewise for the LC/MS/MS examination (figures 141 and 

142). The unique Asp-N peptide exhibited by APPCC695 (position 268-280, MW 

1326.6216, amino acid sequence EW PTTAASTP) was present in both the MALDI- 

MS and LC/MS data. Observed as the peak at m/z 1327.24 in the MALDI-MS 

spectrum (figure 137) and its presence within the LC/MS chromatograms was 

highlighted in the BioAnalyst search results (table 8 8 ). MS/MS confirmation o f this 

peptide, however, was not achieved.
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3.455 MALDI-MS analysis of a two-dimensional in-gel Asp-N digestion of
im m unoprecipitated alpha secretase cleaved amyloid precursor protein, isoform
770 (APPCX770).
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Figure 143. MALDI-MS spectrum of an in-gel Asp-N digest o f A PPa 7 7o from a two-dimensional gel. 
There are several unknown peaks dominating the spectrum and as such need further investigation, 
however time restraints did not allow for this. Peaks thought to be due to keratin are marked with a 
black diamond. MS/MS analysis upon the annotated peaks present within the spectrum did not give any 
positive data.

mass
(M+H*)

mass
(experimental)

position
( A P P ( X 7 7 0

numbering)

missed
cleavages

peptide sequence

774.35 774.22 655-660 1 DAEFRH
935.46 935.30 566-573 0 EPRISYGN
1199.54 1199.34 661-670 1 DSGYEVHHQK
1272.56 1272.35 599-609 1 DDLQPWHSFGA
1893.90 1893.57 557-573 2 DDVLANMISEPRJ S YGN
2245.18 2245.80 630-650 1 DRGLTTRPGSGLTNIKTEEIS

Table 92. Mascot search results from the MALDI-MS mass fingerprint o f the two-dimensional in-gel 
Asp-N digest (figure 143) yielding 10% sequence coverage, although these results could not be 
confirmed by MS/MS.
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3.456 Capillary LC/MS analysis of a two-dimensional in-gel Asp-N digestion of
im m unopreeipitated APPCX770.
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Figure 144. Capillary LC/MS run o f an A PPa 77 0 tvvo-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92. page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC tor the product ion 
intensities generated by product ion scan o f the most intense peak in the normal mass spectrum, (c) 
Should show' the TIC for the product ion intensities generated by product ion scan of the second most 
intense peak in the normal mass spectrum, however, no data is present which is probably due to low 
sample concentration or poor sample quality. The peak list generated from trace (b) was sorted 
according to predefined parameters (chapter 2.92. page 93) and a selection o f the most intense peaks 
automatically sent for MS/MS (figures 145 and 146).
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mass
observed

mass
(experimental)

position missed
cleavages

peptide sequence

461.72 921.43 359-366 1 DKYLETPG
489.24 976.45 557-565 1 DDVLANMIS
636.79 1271.58 599-609 1 DDLQPWHSFGA
683.80 1365.60 546-556 2 DELLQKEQNYS

Table 93. BioAnalyst automatic data analysis (using Matrix Science software) o f the chromatograms 
shown in figure 144 o f  a two-dimensional in-gel Asp-N digest o f  A PPa77o gave 1 1  % sequence 
coverage.
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Figure 145. Capillary LC/MS/MS analysis o f the doubly charged product ion at m/z 489.24 m/z, 
retention time 16.5 minutes from the LC/MS run o f a two-dimensional in-gel Asp-N digest o f A PPa^o 
(figure 144b). This product is consistent with the A PPa Asp-N peptide DDVLANMIS. 976.45 MW 
and the sequence tag VLAN expands this.

Amino acid___________________________ ion type (M+H*)
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(335.12) 335.12 n/a 308.13 291.10 336.13 319.10 977.45 960.43
V, Val 99.06 72.08 407.20 390.17 435.19 418.17 642.33 625.30

L, Leu 113.03 86.09 520.28 503.26 548.28 531.25 543.26 526.23

A, Ala 71.03 44.04 591.32 574.29 619.32 602.29 430.18 413.15

N, Asn 114.04 87.05 705.36 688.34 733.36 716.33 359.14 342.11
(226.08) 226.08 n/a 931.45 914.42 959.44 942.42 245.10 228.07

Table 94. BioAnalyst automated searching o f  the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel Asp-N digest o f A PPa 77 0  in figure 144, shows the "a \ *b’ and ‘y’ product ions from 
the sequence tag VLAN.
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Figure 146. Capillar} 7 LC/MS/MS analysis o f the doubly charged product ion at 636.79 m/z, retention 
time 15.1 minutes from the LC/MS run o f a two-dimensional in-gel Asp-N digest o f  A PPa77o (figure 
144b). This product is consistent with the APPa770 Asp-N peptide DDLQPWHSFGA, 1271.58 
monoisotopic mass and the sequence tag DDLQP expands this.

A m ino acid_______________________________ Ion type (M +H  )
residue m ass/D a im m onium a a-NH;, b b-N H 3 y y-N H 3
D, A sp 115.02 88.03 88.03 71.01 116.03 99.00 1272.56 1255.53

D, A sp 115.02 88.03 203.06 186.03 231.06 214.03 1157.53 1140.51

L, Leu 113.08 86.09 316.15 299.12 344.14 327.11 1042.51 1025.48

Q, Gin 128.05 101.09 444.20 427.18 472.20 455.17 929.42 912.39

P, Pro 97.05 70.06 541.26 524.23 569.25 552.23 801.36 784.34

Table 95. BioAnalyst automated searching o f the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel Asp-N digest o f A PPa77o shown in figure 146, show's the V ,  T f and "y’ product 
ions from the sequence tag DDLQP.

The alpha secretase cleaved am yloid precursor protein, isoform  770 ( A P P G I 7 7 0 )  w as 

immunoprecitated from CHO 770 cell secretions.
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The MALDI-MS examination o f the two-dimensional in-gel Asp-N digestion o f 

APPot77o (figure 143) gave amino acid sequence coverage o f 10% o f the APPct77o 

molecule from 6 Asp-N peptides. The sequence coverage achieved from the LC/MS 

analysis (figure 144) was 11% o f the protein sequence from 4 peptides. Sequence 

coverage by both methods was low, however, this can be attributed to the low in vitro  

concentration of APP. The MALDI-MS spectrum (figure 143) was dominated by 

unknown contamination. The peaks believed to be due to keratin were assigned, 

however, further investigation would be needed to identify the other peaks. None o f 

the MALDI-MS peaks yielded any sequence information, but the LC/MS/MS analysis 

was more successful resulting in two sequence tags (figures 145 and 146). APPCC770  

produces two unique Asp-N peptides (position 318-337, MW 2149.8589 and position 

343-355, MW 1296.5998) regrettably neither o f these peptides was detected by either 

technique.
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3.457 MALDI-MS analysis of a two-dimensional in-gel Asp-N digestion of
im m unoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 147. MALDI-MS spectrum o f an in-gel Asp-N digest o f A PPa from a two-dimensional gel. 
None o f the annoted peaks gave any MS/MS data. The spectrum appears to be contaminated by 
polymer adducts.

mass
(M+fT)

mass
(experimental)

Position
(APP0l770

numbering)

missed
cleavages

peptide sequence

627.37 627.96 108-113 0 DALLVP
765.31 765.17 272-278 1 EVCSEQA
777.40 777.91 665-670 0 EVHHQK
946.48 946.95 264-271 2 ESV EEW R
990.44 991.02 423-431 2 ESLEQEAAN
1156.58 1156.05 2-13 1 EVPTDGNAGLLA

Table 96. Mascot search results from the MALDI-MS mass fingerprint o f the two-dimensional in-gel 
Asp-N digest o f APPa (figure 147), containing the three isoforms o f  interest (695. 751 and 770). giving 
coverage of 5% o f the peptide sequence although no specific isoforms were seen and none o f  the 
sequences were confirmed by MALDI-MS/MS analysis.
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3.458 Capillary LC/MS analysis of a two-dimensional in-gel Asp-N digestion of
immunoprecipitated A PPa.

(a)

(b)

(c)
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Figure 148. Capillar}' LC/MS run o f an A PPa two-dimensional in-gel Asp-N digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan o f the most intense peak in the normal mass spectrum, (c) 
Should show the TIC for the product ion intensities generated by product ion scan o f  the second most 
intense peak in the normal mass spectrum, however, no data can be seen as this may be due to low- 
sample concentration. The peak list generated from trace (b) was sorted according to predefined 
parameters (chapter 2.92, page 93) and a selection o f the most intense peaks automatically sent for 
MS/MS (figures 149 and 150).
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mass mass position missed peptide sequence
observed (experimental) (APPa77o

numbering)
cleavages

636.78 1271.54 599-609 1 DDLQPWHSFGA
683.81 1365.61 546-556 2 DELLQKEQNYS

Table 97. BioAnalyst automatic data analysis (using Matrix Science software) o f the chromatograms 
seen in figure 148 of a two-dimensional in-gel Asp-N digest o f A PPa gave sequence coverage o f 6%. 
Both of the above peptides were analysed by LC/MS/MS the data shown in figures 149 and 150.

344.12447
45 (128) (653)

40

801.363
242.144

*2c3oo

(/)!Z
CD 231.061c

518.219
472.19415 147.070

421069
y4 655.274 

99 - 508.227 63Z2S7
203 454.1 912.432

90J

200 300 500 600 
m/z, amu

700100 400 800 1000 1100900

Figure 149. Capillary LC/MS/MS analysis o f the doubly charged product ion at 636.78 ni/z. retention 
time 15.1 minutes from the LC/MS run of a two-dimensional in-gel Asp-N digest o f A PPa (figure 
148b). This product is consistent with the A PPa Asp-N peptide, 1271.54 MW and the sequence tag 
WHSF verifies this.

Amino acid_________________________Ion type (M+H )
residue mass/Da immonium a a-NH3 b b-NH3 y y-NH3
(653.38) 653.38 n/a 626.39 609.36 654.38 637.36 1357.63 1340.64
W, Trp 186.07 159.09 812.47 795.44 840.46 823.44 704.25 687.23
H, His 137.05 110.07 949.53 932.50 977.52 960.49 518.17 501.15

S, Ser 87.03 60.04 1036.56 1019.53 1064.55 1047.53 381.12 364.09
F, Phe 147.06 120.08 1183.63 1166.60 1211.62 1194.59 294.08 277.06
(128.00) 128.00 n/a 1311.63 1294.60 1339.62 1322.60 147.02 129.99

Table 98. BioAnalyst automated searching o f the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel Asp-N digest o f A PPa shown in figure 149, highlighting the ‘y’ product ions from 
the sequence tag WHSF.
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Figure 150. Capillary LC/MS/MS analysis o f the doubly charged product ion at 683.81 m/z, retention 
time 9.7 minutes from the LC/MS run o f a  two-dimensional in-gel Asp-N digest o f  APPa (figure 
148b). This product is consistent with the APPa Asp-N peptide DELLQKEQNYS, 1365.61 MW and 
the sequence tag LQKEQNY expands this.

Am ino acid Ion type ( M + H )
residue mass/Da imm onium a a-N H 3 b b-N H 3 y y-N H 3
L, Leu 113.08 199.18 182.15 227.17 210.14 1009.49 992.46

Q, Gin 128.05 101.07 327.23 310.21 355.23 338.20 896.41 879.38

K, Lys 128.09 101.10 455.33 438.30 483.32 466.30 768.35 751.32

E, Glu 129.04 102.05 584.37 567.35 612.37 595.34 640.25 623.23

Q, Gin 128.05 101.07 712.43 695.40 740.43 723.40 511.21 494.18

N, Asn 114.04 87.05 826.47 809.45 854.47 837.44 383.15 366.12

Y, Tyr 163.06 136.07 989.54 972.51 1017.53 1000.50 269.11 252.06

Table 99. BioAnalyst automated searching o f the capillary LC/MS/MS spectrum from the two- 
dimensional in-gel Asp-N digest o f APPa in figure 150, highlighting the product ions present for the 
sequence tag LQKEQNY.

The alpha secretase cleaved am yloid precursor protein (A P P a) used was 

im m unoprecitated from N tera 2 cell secretions. A P P a  encom passes all three isoform s 

o f  interest (A P P a 6 9 5 , A P P a 7 5 i, A P P a 77o) and as such is a m ore plausible m odel o f  in 

vivo conditions.
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The MALDI-MS results from the two-dimensional in-gel Asp-N digestion o f A PPa 

(figure 147) gave amino acid sequence coverage o f 5% o f the A PPa molecule from 6 

Asp-N peptides. The sequence coverage achieved from the LC/MS (figure 148) 

analysis was poorer giving 6% of the protein sequence from only 2 peptides. MALDI- 

MS/MS analysis, however, was insufficient for sequencing but the LC/MS/MS data 

revealed two sequence tags from the peptides resolved (figure 149 and 150) allowing 

protein identification using the online search engine. Disappointingly none o f the 

specific peptides was detected.
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3.46 Two-dimensional in-gel formic acid digestion of BSA and APP.

3.461 MALDI-MS analysis of a two-dimensional in-gel formic acid digestion of 
BSA.

854.54119

110
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Figure 151. MALDI-MS spectrum of a two-dimensional in-gel formic acid digest of BSA dominated 
by the presence of contamination that may be caused by the formic acid digestion being too harsh and 
cleaving areas within the protein other than the specified bonds (N and C termini of aspartic acid) or 
perhaps the presence of intermediates present within the cleavage pathway. The formation of the peaks 
in equidistant clusters, however, suggests the presence of polymers or adducts very similar to those 
seen previously in the two-dimensional Asp-N in-digest of BSA. Further investigation of these peaks 
may help to establish the nature of the contaminating species and why sufficient cleavage by formic 
acid cleavage is not being achieved

mass
(M+Ff)

mass
(experimental)

position missed
cleavages

peptide sequence

838.48 838.55 62-68 0 EHVKLVN
854.46 854.54 323-330 0 ENLPPLTA
877.40 877.43 535-542 1 DICTLPDT

Table 100. Mascot search results from the two-dimensional in-gel formic acid digest of BSA (figure 
151), showing 2% sequence coverage although the appearance of the MALDI-MS spectrum and lack of 
MS/MS data to validate these peptides may suggest that they are not real
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3.462 Capillary LC/MS analysis of a two-dimensional in-gel formic acid digestion
of BSA.

(a)

(b)

(c)
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Figure 152. Capillary LC/MS run of a BSA two-dimensional in-gel formic acid digest performed using 
information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, page 
92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product ion 
intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from (b) and (c), however, did not give 
MS/MS data relating to the sample.
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mass mass position missed peptide sequence
observed (experimental) cleavages
625.83 1249.65 319-330 1 DAIPENLPPLTA

Table 101. BioAnalyst automatic data analysis (using Matrix Science software) of the chromatograms 
shown in figure 152 of a two-dimensional in-gel formic acid digest of BSA gave 1% sequence 
coverage.

Bovine serum albumin (BSA, MW 66,432.96) was used as a standard due to its 

availability and similarity in molecular weight to the amyloid precursor protein 

isoforms (APPot695, 67,708.02, APPot75i, 73,863.85, APPct77o, 75,988.34).

The MALDI-MS analysis o f the two-dimensional in-gel formic acid digest o f BSA 

(figure 151) resulted in 3 formic acid peptides covering 2%  o f the protein. LC/MS 

analysis (figure 152) o f the same sample revealed 1 formic acid peptide for BSA, 

which covered 1% of the protein sequence. MALDI-MS/MS and LC/MS analysis o f 

the peaks failed to determine any o f the sequences. The poor spectral quality seen in 

figure 151 and lack o f peak validation would suggest that the data provided here is 

indefinite. This experiment has been performed on several occasions previously and 

no reliable data has been achieved suggesting that the formic acid digest procedure

1 OStaken from the literature needs further investigation.
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3.463 ^1ALDI-MS analysis of a two-dimensional in-gel formic acid digestion of
alpha secretase cleaved amyloid precursor protein standard, isoform 695
(APPCC695).
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Figure 154. MALDI-MS spectrum of a two-dimensional in-gel formic acid digest of standard APPo^s- 
Dominant peaks in the spectrum due to contamination rather than desired peptide species.

mass
(M+H+)

mass
(experimental)

position missed
cleavages

peptide sequence

627.37 627.96 108-113 0 D ALL VP
946.48 946.05 264-271 2 ESVEEVVR
990.44 990.02 423-431 2 ESLEQEAAN
1157.54 1157.05 600-609 0 DLQPWHSFGA

Table 102. Mascot search results from the MALDI-MS of the two-dimensional in-gel formic acid 
digest of APPo^^ shown (figure 154) covering 3% of the peptide sequence. Lack of MS/MS data to 
validate the peptides places uncertainty over their authenticity.
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3.464 Capillary LC/MS analysis of a two-dimensional in-gel formic acid digestion
of standard  A PPc^s-
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Figure 155. Capillary LC/MS run of an A P P a^  two-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum, however, only peaks due to the mobile phase are present. The peak 
list generated from (b) did not give MS/MS data relating to the sample
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Amyloid precursor protein standard was purchased from Sigma for use as a direct 

comparison. The standard was the alpha secretase cleaved APP isoform 695 

(APPa695) from E.coli origin.

The MALDI-MS examination o f the two-dimensional in-gel formic acid digestion o f 

APPci695 (figure 154) gave amino acid sequence coverage o f  3% o f  the APPct695 

molecule from 4 formic acid peptides, however, MS/MS analysis o f  these peaks did 

not reveal any peptide sequences. The LC/MS analysis (figure 155) did not reveal any 

formic acid peptides for APPct695 and as such no LC/MS/MS data was achieved. The 

appearance o f the MALDI-MS spectrum as well as the lack o f MS/MS data shows the 

improbability o f the results and further investigation o f  the contaminating species seen 

in the MALDI-MS spectrum (figure 154) may help to reveal why the formic acid 

digest procedure is not yielding the desired cleavage peptides. It is possible that the 

formic acid digest procedure is either hydrolysing at other positions within the peptide 

than stated or an incomplete reaction has occurred creating intermediates o f the 

reaction pathway.
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3.465 MALDI-MS analysis of a two-dimensional in-gel formic acid digestion of
im m unoprecipitated alpha secretase cleaved amyloid precursor protein, isoform
770 (A PPa77o).
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Figure 156. MALDI-MS spectrum of an in-gel formic acid digest of APPa.770 from a two-dimensional 
gel. Spectrum dominated by noise and contamination. None of the annotated peaks were able to 
provide positive results when subjected to MS/MS analysis.

mass
(M+LT)

mass
(experimental)

position
(APPa77o

numbering)

missed
cleavages

peptide sequence

806.31 806.25 177-184 2 DNVDSADA
815.38 815.09 617-623 2 ENEVEPV
925.47 925.05 621-629 1 EPVDARPAA
953.44 953.38 50-57 0 EGILQYCQ
1049.49 1049.17 267-275 2 EEVW REVCS
1081.51 1081.12 150-159 0 DYGMLLPCGI

Table 103. Mascot search results from the MALDI-MS mass fingerprint of the two-dimensional in-gel 
formic acid digest (figure 156) yielding 5% sequence coverage, although appearance of the MALDI- 
MS spectra and lack of MS/MS data pose the credibility of the results.
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3.466 Capillary LC/MS analysis of a two-dimensional in-gel formic acid digestion
of im m unoprecipitated A P P a 77o*
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Figure 157. Capillary LC/MS run of an APPa770 two-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from (b) and (c), however, did not give 
MS/MS data relating to the sample.
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The alpha secretase cleaved amyloid precursor protein, isoform 770 (APPa77o) was 

immunoprecitated from CHO 770 cell secretions.

The MALDI-MS examination o f the two-dimensional in-gel formic acid digestion o f 

APP(X77o (figure 156) gave amino acid sequence coverage o f 5% o f  the APPct770 

molecule from 6 formic acid peptides, however the appearance o f  the peaks, 

background ‘noise’ and lack o f MS/MS data discredit their validity. Likewise for 

LC/MS analysis, which again failed to reveal any data and as such no MS/MS data 

was achieved. All the protein extraction and purification techniques were carried out 

in parallel keeping every step constant, the only difference being the variation in 

digest reagent. Due to the obvious advantages o f this method adjustment o f the formic 

acid digestion parameters such pH, time or temperature are well worth exploring as 

they may yield better results.
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3.467 MALDI-MS analysis of a two-dimensional in-gel formic acid digestion of
im m unoprecipitated alpha secretase cleaved amyloid precursor protein (APPa).
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Figure 158. MALDI-MS spectrum of an in-gel formic acid digest of APPa from a two-dimensional gel. 
Very poor spectrum consisting mainly of background noise. The annotated peaks within the signal to 
noise ratio therefore low in credibility.

mass mass position missed peptide sequence
(M+H4) (experimental) (APPcq,^

numbering)
cleavages

1916.02 1916.69 555-572 1 DRGLTTRPGSGLTNIKTE
1981.99 1981.67 352-369 2 EAANERQQLVETHMARV

Table 104. Mascot search results from the MALDI-MS mass fingerprint of the two-dimensional in-gel 
formic acid digest of APPa (figure 158), containing the three isoforms of interest (695, 751 and 770), 
giving coverage of 2% of the peptide sequence. As mentioned earlier in previous formic acid digest 
sections the poor spectral resolution and lack of MS/MS data to corroborate the authenticity of these 
results place a question mark over their validity.
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3.468 Capillary LC/MS analysis of a two-dimensional in-gel formic acid digestion
of im m unoprecipitated A PPa.
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Figure 159. Capillary LC/MS run of an APPa two-dimensional in-gel formic acid digest performed 
using information dependant acquisition (IDA) software. For experimental conditions see chapter 2.92, 
page 92. (a) Shows the survey scan or total ion chromatogram (TIC), (b) Shows the TIC for the product 
ion intensities generated by product ion scan of the most intense peak in the normal mass spectrum, (c) 
Shows the TIC for the product ion intensities generated by product ion scan of the second most intense 
peak in the normal mass spectrum. The peak lists generated from (b) and (c), however, did not give 
MS/MS data relating to the sample.
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The alpha secretase cleaved amyloid precursor protein (APPa) used was 

immunoprecitated from Ntera 2 cell secretions. A PPa encompasses all three isoforms 

o f interest (APPot695, A PPa7 5i, A PPa77o) and as such is a more plausible model o f in  

vivo  conditions.

The MALDI-MS results from the two-dimensional in-gel formic acid digestion o f 

A PPa (figure 158) gave amino acid sequence coverage o f 2% o f the A PPa molecule 

from 2 formic acid peptides. LC/MS did not provide any formic acid peptides. Again , 

the appearance o f the MALDI-MS spectra, lack o f LC/MS data and MS/MS data for 

both techniques does create uncertainty over the authenticity o f the results achieved. 

The formic acid digest method has several advantages, cleavage occurs at both the 

amino and carboxy termini o f aspartic acid residues. The abundance o f  aspartic acid 

residues in proteins is comparable to lysine and arginine and as such cleavage at these 

bonds creates peptides useful for sequencing. Cleavage by this method is unselective 

in that all groups o f amino acids are cleaved equally for example trypsin is not as 

efficient in cleaving hydrophobic or basic protein. Finally the method is easy, none 

time consuming and the cost o f the reagent is low. It may be worthwhile, therefore 

investigating experimental parameters o f this method further looking at temperature, 

reaction time and pH.
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Three factors have been investigated within this chapter; the efficacy o f different 

digest reagents; variation in results achieved from both one-dimensional and two- 

dimensional gel electrophoresis and the ability o f two different mass spectroscopic 

techniques in analysing those results, all o f which are summarised in table 105. The 

table is split into four main sections each one illustrating the results from the various 

samples used (BSA standard, APPot695 standard, immunoprecipitated APP0 C770 and 

immunoprecipitated A PPa). With regards to in  vivo  experimental data the last section 

headed A PPa is the most important as this is the best model o f in  vivo  conditions. The 

best protein sequence coverage seen in this section is 19% seen from the two- 

dimensional in-gel tryptic digest analysed by MALDI-MS.

The digest reagents used were chosen for various reasons; trypsin because it is the 

most commonly utilised digest reagent in proteomics due its specificity, cost and 

availability. Trypsin is not without its drawbacks, however, and is known to suffer 

from autodigestion199, that can be a significant problem in low-level protein 

examination and hence other digest reagents were investigated, namely 

endoproteinase Asp-N and formic acid. Asp-N is thought to be less troubled by 

autodigestion200 but is not as cost effective as trypsin and formic acid. One other 

requirement o f all the digest reagents is the ability to create specific digest patterns .for 

each o f the APP isoforms in which peptides unique to each isoform could be seen. 

Examinations o f the results show trypsin to be the most effective reagent, yielding the 

most peptides including isoform specific peptides. Asp-N works well when examining 

standard proteins (BSA and APPo69s) but seems less effective in the cleavage o f 

sample proteins (APPa77o and APPa), possibly due to the lower concentration o f
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these proteins. The results for formic acid are negligible for both standard and sample 

proteins.

Comparison o f one-dimensional and two-dimensional in-gel digests shows a divide in 

the results. The number o f peptides cleaved from standard proteins run on one­

dimensional gels is generally better than those from standard proteins run on two- 

dimensional gels. The opposite is true for the sample proteins and the best results, 

including the number o f isoform specific peptides are achieved from the in-gel digests 

o f two-dimensional gel separations. One possible answer for this may be that 

increased sample loss, which occurs in two-dimensional gel electrophoresis reduces 

the amount o f protein available for digestion and as such lessens the concentration o f 

the standard proteins present within the two-dimensional gel relative to that present in 

a one-dimensional gel. In the electrophoresis o f sample proteins, however, it is 

possible that more than one protein is present in the one-dimensional gel bands and as 

such these contaminant proteins may obscure the protein o f interest. Excision and 

digestion o f the protein band therefore will include digest peptides o f  the 

contaminating species, which if  in greater concentration than the desired protein may 

overshadow further analysis. Two-dimensional gel electrophoresis overcomes this 

problem by separating similar molecular weight species in the first dimension 

isoelectric focussing step.

The final area o f discussion is the comparison o f mass spectroscopic methods, 

MALDI-MS and LC/MS. Both are established techniques for the analysis o f low-level 

proteins each having its own distinct advantages. Although the number o f isoform 

specific peptides identified is similar for both methods the general pattern observed is
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a slightly greater number o f cleavage peptides detected by MALDI-MS compared to 

LC/MS. One explanation for this could be the variation between peptide peak 

detection in these experiments for each technique. Although automatic peak lists were 

generated from the MALDI-MS spectra closer manual examination o f  a spectrum 

quite often uncovered peaks o f interest, which if  considered real were then included in 

the data search lists. The LC/MS data on the other hand was fixlly automated and peak 

lists were sent directly for analysis by the online search engines. For MS/MS, 

however, LC/MS/MS gives better data compared to MALDI-MS/MS due to the 

increased internal energy present in the multiply charged species generated by ESI 

relative to the singly charged ions seen with MALDI.
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4.0 Conclusions and Future Work



The most significant pathological feature of AD is the presence of neuritic plaques 

within post-mortem brain tissue. The chief protein constituent of these plaques is the 

Ap peptide, subsequently a great deal of research is centred on causes for its 

seemingly increased levels. The presence and increase of A P P  isoforms found in the 

CNS is a major area of investigation in order to find out if the increase in Ap peptide 

is due to defective A P P  processing. The strategic aim of this work has been the 

separation, detection and identification of the A P P  isoforms, A P P 0 C 6 9 5 ,  A P P C C 7 5 1  and 

A P P C C 7 7 0  (due to their presence within the CNS) efficiently using proteomic 

techniques. Two protein models were employed; BSA due to its similarity in

107molecular weight to the APP isoforms and common knowledge o f  expected results 

201 and standard APP0C695 for use as a direct comparison. Other samples were 

immunoprecipitated directly from the cell media o f  CHO 770 cells, excreting APP0C770 

only and conditioned Ntera 2 cells able to mimic brain cells and excrete A PPa, which  

comprises all three isoforms o f  interest (A PPa695, A PPa75i, A PPa77o) and as such is 

the most plausible model o f  in vivo conditions. Gel loading concentrations for the 

protein standards was 77fmol and 231fm o 1 for B SA  and A PPa695 respectively. 

Comparison o f  staining density o f  samples verses standards showed the 

immunoprecipitated sample concentrations to be much lower than the standards, 

possibly within the low  femtomole or attomole range.

Separation o f  the three isoforms was attempted by one and two-dimensional gel 

electrophoresis. One-dimensional electrophoresis gave only two bands, the faster 

running band consisting o f  A PPa695 and the slower running band made up o f  both 

A PPa75 i and A PPa77o running together due to their similarity in molecular weight.
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Separation o f  all three isoforms was achieved by two-dimensional gel electrophoresis 

o f  A PPa and is observed by Western blot (figure 43). The resolution o f  the two- 

dimensional separation was poor but optimisation o f  those results may be 

accomplished using narrower range pH strips to increase resolution in the IEF step 

and larger gels to aid resolution in the second step providing clearer more resolved 

protein spots, which could then be excised and digested individually. Attempts to 

identify large intact molecules such as proteins by mass spectrometry has always 

proved difficult and lacked resolution. Separation o f  APP isoforms, however, was 

attempted by both MALDI-MS and nanospray. Figure 53 shows three peaks that may 

be the separate isoforms but the peak resolution was very poor and overshadowed by 

the presence o f  noise making the viability o f  these results doubtful.

Mass fingerprinting is a technique that allows the separation o f  large m olecules by 

creating resolvable peptides. Theoretical digestion o f  the three isoforms using tiypsin, 

Asp-N and formic acid generates specific peptides for each isoform (figure 58). Mass 

fingerprinting, therefore, should in theory be able to reveal the presence o f  each 

isoform upon detection o f  isoform specific peptides. This technique was investigated  

looking at the differences between one-dimensional and two-dimensional in-gel 

digestion utilising the digest reagents trypsin, Asp-N and formic acid. The results 

from this work for all standards and samples are summarised in table 105. With 

regards to in vivo experimental data the last section headed A PPa is the most 

important as this is the best model o f  in vivo conditions and as such only these results 

will be focused upon here.
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The general trend visible in table 105 when comparing the results from both one­

dimensional and two-dimensional in-gel digests for all three digest reagents is better 

sequence coverage for the model proteins (BSA and standard APPCC695) is achieved 

from the one-dimensional in-gel digests, whereas sequence coverage for the sample 

proteins (immunoprecipitated APP(X77o and APPa) was better from the two- 

dimensional in-gel digests. One explanation for this could be increased sample loss 

occurring in two-dimensional gel electrophoresis 202 reducing the amount of protein 

available for digestion lowering the concentration of the standard proteins present 

within the two-dimensional gel relative to that present in a one-dimensional gel. The 

solution of sample proteins, however, may contain more than one protein and if the 

contaminant proteins are similar in molecular weight to the sample proteins on a one­

dimensional gel these contaminants may obscure the protein of interest. Excision and 

digestion of the protein band therefore will include digest peptides of the 

contaminating species, which if in greater concentration than the desired protein may 

overshadow further analysis. Two-dimensional gel electrophoresis overcomes this 

problem by separating similar molecular weight species in the first dimension 

isoelectric focussing step.

The most efficient digest reagent not only for APPa but all digested proteins 

investigated here was trypsin, proving itself to be consistent and yielding the greatest 

sequence coverage. Both MALD-MS and LC/MS have their own distinct advantages; 

MALDI-MS gave better sequence coverage, whereas LC/MS gave better MS/MS 

results. As discussed earlier the desired outcome of this research was the ability to 

investigate APP isoforms by visualisation of isoform specific peptides, in view of 

APPa only one isoform specific peptide was observed in the MALDI-MS analysis of
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the two-dimensional in-gel tryptic digest even though this sample is known to consist 

of all three isoforms. The peptide seen at m/z 1362.65 (figure 128) corresponds to the 

APPoc695 specific peptide VPTTAASTPDAVDK and although MS/MS data would be 

preferred in order to fully substantiate its authenticity in this instance it was not 

achieved probably due to low concentration. Of the three isoforms APP0C695 is known 

to be the most abundant form in brain tissue. Due to the low concentration of the 

APPa sample it may be that the APPCC751 and APPct77o were present within the sample 

but in concentrations lower than the limits of detection.

The approach used in this research work is viable for the investigation of not only 

APP isoforms but also any closely related molecules compliant to digestion and the 

formation of specific fragments. Based upon the data created in this research the 

preferred strategy for APP isoform investigation would be two-dimensional gel 

separation, optimising the two dimensional step as previously stated in order to fully 

resolve each isoform. The separate isoform spots could then be excised and digested 

individually using trypsin as this was found to be the most efficient in this research, 

however, the benefits of both Asp-N200 and formic acid198 previously described 

suggest that further investigation of these digest reagents may be worthwhile. 

Analysis of the digest peptides could then be performed by LC/MS and MALDI-MS 

as both methods offer their own distinct advantages followed by MS/MS investigation 

of peaks of interest. Overall the sequence coverage achieved for both model and

107  •sample proteins was poor in comparison to literature references and this essentially 

needs to be the first point of any future investigation. Peptide recovery from in-gel 

digests is a frequent problem with low-level proteins, sample losses occurring at each 

stage in an experiment. Two of the major factors that limit peptide recoveries are
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1Q7 OAT
adsorptive losses and reduced protease activity at low substrate concentration ’

Improvements in protein recovery should be investigated looking at parameters such

• • • •  1 ̂  • •as protein/enzyme solvent systems, denvitisation , protein adsorption and clean-up

procedures. Time spent on initial method development in order to improve peptide 

recovery would be beneficial in the long term. Due to the low level of sample proteins 

any increase in peptide recovery could mean the difference between observing 

isoform specific peptides or not.

A continuation of this research using the results achieved, as a foundation would be 

the investigation of isoform expression in both stressed and non-stressed cells. Work 

carried out previously by Shepherd et al204 looked at changes in the isoform 

expression of cells subjected to heat shock using reverse transcription-polymerase 

chain reaction. Their research showed an increase in the A P P 7 7 0  isoform under 

conditions of stress. This work could be repeated using the proteomics approach to 

reiterate or contradict those findings. Another area of interest would be the further 

investigation of TV-glycosylation sites in order to fully determine the presence and type 

of sugar groups present again within both stressed and non-stressed cells.
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5.0 Appendices



5.1 Appendix 1 -  Presentations and conferences attended

Oral Presentation

Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f Alzheimer’s Disease Amyloid Precursor Protein.

British Mass Spectrometry Society (BMSS) 26th Annual Meeting, Loughborough 

University, 8th - 1 1th September 2002.

Poster Presentations

Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f Alzheimer’s Disease Amyloid Precursor Protein.

International Society for Mass Spectrometry (ISMS) 16th Annual Meeting, 

Edinburough, U.K. August 31st -  5th September 2003.

Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f Alzheimer’s Disease Amyloid Precursor Protein.

American Society fro Mass Spectrometry (ASMS) 51st Annual Meeting, Montreal, 

Canada June 8th -  12th 2003.

Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f the Amyloid Precursor Protein o f Alzheimer’s disease. 

Royal Society o f Chemistry Analytical Division, Analytical research Forum 

(Incorporating R & D Topics), Kingston University, 15th-!7 th July 2002.
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Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f the Amyloid Precursor Protein o f Alzheimer’s disease. 

British Mass Spectrometry Society (BMSS) 25th Annual Meeting, University o f 

Southampton, 9th-12th September 2001

Isolation and Examination by Matrix Assisted Laser Desorption Ionisation-Mass 

Spectrometry o f the Amyloid Precursor Protein o f Alzheimer’s disease. 

Royal Society o f  Chemistry Analytical Division, Analytical research Forum 

(Incorporating R & D Topics), University o f East Anglia, 16th-! 8th July 2001.
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5.2 Appendix 2 - In-gel digestion

Bovine Trypsin (TRY 1 BOVIN)

Residue number Mass (mono, avg) Sequence

1 1 0 - 1 1 1 259.19 259.35 LK

157-159 362.20 362.49 CLK

238-243 632.31 632.67 QTIASN

64-69 658.38 658.76 SGIQVR

112-119 804.41 804.86 SAASLNSR

221-228 905.50 906.05 NKPGVYTK

160-169 1019.50 1020.17 APILSDSSCK

229-237 1110.55 1111.33 VCNYVSWIK

146-156 1152.57 1153.25 SSGTSYPDVLK

207-220 1432.71 1433.65 LQGIVSWGSGCAQK

191-206 1494.61 1495.61 DSCQGDSGGPWCSGK

70-89 2162.05 2163.33 LGEDNINWEGNEQFISASK

170-190 2192.99 2194.47 SAYPGQITSNMFCAGYLEGGK

90-109 2272.15 2273.60 SIVHPSYNSNTLNNDIMLIK

120-145 2551.24 2552.91 VASISILPTS.. .LISGWGNTK

21-63 4550.12 4553.14 IVGGYTCGA... WSAAHCYK

Porcine Trypsin (TRYPPIG)

52-53 261.14 261.28 SR

54-57 514.32 514.63 IQVR

108-115 841.50 842.01 VATVSLPR

209-216 905.50 906.05 NKPGVYTK

148-157 1005.48 1006.15 APVLSDSSCK

98-107 1044.56 1045.16 LSSPATLNSR

134-147 1468.72 1469.68 SSGSSYPSLLQCLK

217-231 1735.84 1736.97 VCNYVNWIQQTIAAN

116-133 1767.79 1768.99 SCAAAGTECLISGWGNTK

158-178 2157.02 2158.48 SSYPGQ1TGNMICVGFLEGGK
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58-77 2 2 1 0 . 1 0 2211.42 LGEHN1DVLEGNEQFINAAK

78-97 2282.17 2283.63 IITHPN FN GNTLDNDIMLIK

179-208 3012.32 3014.33 DSCQGDSGG.. .SWGYGCAQK

Table 1. Autolysis peaks for both bovine and porcine trypsin205. 
MALDI-MS for internal calibration.

Quite often these peaks are used in

Keratin digest peaks (Da)

804.410 1016.501 1277.710 1707.713

823.390 1033.516 1300.530 1716.851

832.489 1092.503 1302.715 1993.997

874.499 1125.542 1357.696 2383.952

910.415 1141.519 1383.690 2508.145

973.531 1179.600 1475.749 3312.308

999.445 1217.616 1475.785

1006.430 1265.637 1657.793

Table 2. Human keratin tryptic digest peaks206. All peaks are average values.
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5.3 Appendix 3 -  Mass spectrometry

Matrix______________________________
a-cyano-4-hydroxycinnamic acid (a-CHCA)

Application _________________________
Peptides, proteins, pharmaceutical products, 
polymers and DNA

COOH

Solvents___________________________________________________ Observed ions (Da)
50% acetonitrile/ 0.1% TFA M+ 189.04

(M+H)+ 190.05
50% methanol/0.1% TFA

50% ethanol

50% isopropyl alcohol

Matrix____________________________________ Application_______________________________
2,5-dihydroxybenzoic acid (DHB, gentinsic acid) Peptides, low molecular weight proteins, DNA,

lipids and oligosaccharides

COOH

I
Solvents___________________________________________________ Observed ions (Da)
50% acetonitrile/ 0.1% TFA (M+H-H20)+ 137.02

50% methanol/0.1% TFA M+ 154.03

50% ethanol (M+H)+ 155.03

50% isopropyl alcohol
(M+Na)+ 177.02

Acetone
(M+K)+ 192.99
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(2M+H-2HiO)+ 273.04

Matrix Application
Trans-3,5-dimethoxy-4-hydroxycinnainic acid 
(sinapinic acid)

Peptides, high molecular weight proteins, DNA 
and glycoproteins

CH3CK ^ ^ ^ C00H

H(

OCH3

Solvents Observed ions (Da)
50% acetonitrile/ 0.1% TFA 

50% methanol/0.1% TFA 

50% ethanol 

50% isopropyl alcohol

M+

(M+H)+

224.07

225.08

Matrix Application
3-hydroxypicolininc acid (3-HPA) Oligonucleotides, DNA and RNA

COOH

OH

Solvents Observed ions (Da)
50% acetonitrile/ 0.1% TFA (M+H-C02)+ 96.04

M+ 139.03

(M+H)+ 140.03

(2M+H-C02)+ 235.07

Table 1. Commonly used matrices and their applications. Matrices can be made up as saturated 
solutions but quite often a lOmg/ml concentration is used.
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5.4 Appendix 4 -  Protein fragmentation

Symbols Name and 
composition

Residue structure Mass (mono, avg)

Ala A Alanine

C3H5NO

CH3

-NH-CH-CO-
71.03711,71.0788

Arg R Arginine

C6H12N40

CH2-(CH2)2-NH-C-NH2 

-NH-CH-CO- NH
156.10111,156.1876

Asn N Asparagine CH2-CONH2

-NH-CH-CO-
114.04293,114.1039

Asp D Aspartic acid 

C4H5NO3

CH2-COOH
-NH-CH-CO-

115.02694,115.0886

Cys C Cysteine

C3H5NOS

ch2-sh

-NH-CH-CO-
103.00919,103.1448

Glu E Glutamic acid

c 5h 7n o 3

CH2-CH2-COOH
-NH-CH-CO-

129.04259,129.1155

Gin Q Glutamine

c 5h 8n 2o 2

CH2-CH2-CONH2

-NH-CH-CO-
128.05858,128.1308

Gly G Glycine

C2H3NO

H
1

-NH-CH-CO-

57.02146,57.0520

His H Histidine

C6H7N30

-NH-CH-CO-

137.05891,137.1412

lie I Isoleucine

C6H„NO

j:H(CH3)CH2-CH3

-flH-CH-CO-
113.08406,113.1595

Leu L Leucine

C6H„NO

CH2CH(CH3)2

-NH-CH-CO-
113.08406,113.1595

Lys K Lysine

c 6h 12n 2o

CH2-(CH2)3-NH2

-NH-CH-CO-

128.09496,128.1742

Met M Methionine

C5H9NOS

CH2-CH2-S-CH3 

-NH-CH-CO-
131.04049,131.1986
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Phe F

Pro P

Ser S

Thr T

Tip W

Tyr Y

Val V

Table 1. Most common amino acid residue structures and their masses.

Amino acid residue Immonium Related ions (m/z)
_____________________________________________________ ions (m/z)______________________________
Alanine Ala A 44

Arginine Arg R 129 59, 70, 73, 87, 100, 112

Asparagine Asn N 87 70

Aspartic acid Asp D 88 70

Cysteine Cys C 76

Acylamide modified cysteine Cys C 147

Carboxyamidomethylated Cys C 133

cysteine

Carboxymethylated cysteine Cys C 134

Phenylalanine

C9H9NO

Proline

C5H7NO

Serine

C 3H5N O 2

Threonine

c4h 7n o 2

Tiyptophan

c „ h I0n 2o

Tyrosine

c 9h 9n o 2

Valine

C5H9NO

147.06841, 147.1766

CHZ
I

N H - C H - C O -

- N H - C H - C O

CH2OH

- N H - C H - C O -

C H (0H )C H 3

N H - C H - C O -

- N H - C H - C O

/  \
2 h c

OH

N H - C H - C O -

CH(CH3 ) 2
- N H - C H - C O -

97.05276, 97.1167

87.03203, 87.0782

101.04768, 101.1051

186.07931, 186.2133

163.06333, 163.1760

99.06841,99.1326
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Pyridylethyl cysteine Cys C 106

Glutamic acid GIu E 102

Glutamine Gin Q 101 56,84,129

Glycine Gly G 30 82,121, 123,138, 166

Histidine His H 1 1 0

Isoleucine Iso I 86 44, 72

Leucine Leu L 86 44,72

Lysine Lys K 101 70, 84,112,129

Methionine Met M 104 61

Phenylalanine Phe F 1 2 0 91

Proline Pro P 70

Serine Ser S 60

Threonine Thr T 74

Tryptophan Try W 159 77,117,130,132,170,171

Tyrosine Tyr Y 136 91,107

Phosphotyrosine Tyr Y 216

Valine Val V 72 41, 55,69

Table 2. Common fragment ions of amino acids. Bold face indicating strong signals, italic indicating 
weak165.

Ion type Formulae Ion type Formulae

a [N]+[M]-CO D a-partial side chain

a* a-NH3 V y-complete side chain

a0 a-H20 w z-partial side chain

a++ (a+H)/2 X [C]+[M]+CO

b [N]+[M] Y [C]+[M]+H2

b* b-NH3 Y* y-NH3

b° b-H20 Y° y-H20

b++ (b+H)/2 Y++ (y+H)/2

c [N]+[M]+NH3 Z [C]+[M]-NH

Table 3. Formulae to calculate fragment ion masses. [N] is the mass of the N terminal group, [C] is the 
mass of the C terminal group and [M] is the mass sum of all the amino acid residue masses .

276



5.5 Appendix 5 -  Protein modifications

Modification Reagent Site Mass difference 
(mono, avg)

Acetylation N-term K 42.01057,42.037

Amidation C-term -0.98402, -0.985

Biotinylation N-term K 226.07760,226.293

Carbamidomethyl C 57.02147, 57.052

Carbamyl Cyanate from alkaline decomp, of urea N-term K 43.00581,43.025

Carboxymethyl Iodoacetic acid C 58.00548, 58.037

Deamidation N,Q 0.98402, 0.985

Formylation N-term 27.99492,28.010

Homoserine CNBr cleavage C-term M -29.99281,-30.087

Homoserine lactone CNBr cleavage C-term M -48.00337, -48.103

ICAT dO C 442.22500,442.572

ICAT d8 C 450.27522,450.622

Methyl ester C-term D,E 14.01565, 14.027

NIPCAM N-isopropyl iodoacetamide C 99.06842, 99.132

,80  label C-term 2.000424,2.000

Oxidation H,M,W 15.99492,15.999

PEO biotin C 414.19370,414.519

Phosphorylation S,T,Y 79.96633, 79.980

Propionamide Acrylamide C 71.03712,71.079

Pyro-cys Cyclisation of carboxyamidomethyl cys N-term C -17.2655,-17.030

Pyro-glu N-term Q -17.2655,-17.030

Pyro-glu N-term E -18.01057,-18.015

S-pyridylethyl C 10.05785, 105.139

SMA N-succinimidyl(3-morpholine acetate) N-term K 127.06333, 127.143
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Sodiation C-term D,E 21.98194,21.982

Sulphone M 31.98983,31.999

207Table 1. Common protein modifications from natural sources"- , accidental artifacts and sample 
preparation. It should be noted that glycosylation is not mentioned here as it is difficult to give an 
average mass difference due to the varying lengths of attached sugar groups.
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5.6 Appendix 6 - Fluorescent stain, Ruthenium II bathophhenanthroline194

Potassium pentachloroaquoruthenate (K2CI5RU.H2O, Alfa Aesar) 0.2g was dissolved 

in 2 0 ml boiling water and kept under reflux until a deep red-brown colour resulted. 

Three molar equivelants of anhydrous bathophenanthroline disulphonate, disodium 

salt added and refluxing continued for 2 0  minutes at which time the solution turned 

greenish brown with some foaming. 5ml sodium ascorbate solution, 500mM was 

added to the reaction solution and refluxing continued for a further 2 0  min. 

Considerable foaming was seen and the solution turned orange-brown. Upon cooling 

the pH was adjusted to 7.0 with sodium hydroxide then dH2 0  added to 26ml and the 

20mM stock solution stored at 4°C.

Staining procedure

Gels were fixed overnight in 30% ethanol/ 10% acetic acid, before thorough rinsing 

for 4x30 min in 20% ethanol to remove acetic acid, known to have a quenching effect 

upon fluorescence. A staining solution of 5 to lOpl stock solution per 1L 20% ethanol 

was prepared and used to stain gels at room temperature for 3-6h. After staining the 

gels were washed in dĤ O for 2 x 10 min before imaging on a UV table and image 

capture.
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  ÂQ
5.7 Appendix 7- Theoretical digest lists for APP isoforms

mass
(M+H+) position # missed 

cleavages
artiflcial.modification(s) peptide sequence

TTVELLPVNGEFSLDDLQPWHSFGADSVPAN
5105.43 510-556 0 TENEEPVDARPAADR

VVEVAEEEEVAEVEEEEADDDEDDEDGDEVE
5057.98 208-251 0 EEAEEPYEEATER

GVEFVCCPLAEESDNVDSADAEEDDSDVWW
4712.84 164-207 0 CysCM: 169, 170 4828.85 GG ADTDY ADGSEDK

EG1LQYCQEVYPELQ1TNVVEANQPVTIQNWC
3849.88 50-82 0 CysCM: 56, 81 3965.89 K

3188.60 449-476 0 MSO: 449 3204.59 MNQSLSLLYNVPAVAEEIQD EVDELLQK

2402.18 1-23 0 Cys CM: 21 
MSO: 19

2460.18
2418.17

LEVPTDGNAGLLAEPQ1AMFCGR

2127.06 252-271 0 TTSIATTTTTTTESVEEVVR

2022.14 379-396 0 LALENYITALQAVPPRPR

1980.89 477-493 0 MSO: 488 1996.89 EQNYSDDVLANM1SEPR

1914.86 286-301 0 YLETPGDENEHAHFQK

1876.89 145-161 0 Cys CM: 157 
MSO: 153

1934.89
1892.88

STNLHDYGMLLPCG1DK

1806.84 124-138 0 Cys CM: 127 
MSO: 124

1864.84
1822.83

MDVCETHLHWHTVAK.

1739.85 494-509 0 MSO: 502 1755.84 IS Y GNDALMPSLTETK

1704.88 100-115 0 CysCM: 100 1762.89 CLVGEFVSDALLVPDK

1414.80 557-570 0 GLTTRPGSGLTNIK

1374.64 347-358 0 VESLEQEAANER

1372.69 272-285 0 VPTTAASTPDAVDK

1336.60 585-595 0 HDSGYEVHHQK

1285.61 24-34 0 MSO: 26, 28 1317.60 LNMHMNVQNGK

1266.67 90-99 0 THPHFVIPYR

1212.61 359-368 0 MSO: 366 1228.61 QQLVETHMAR

1099.58 338-346 0 AVIQHFQEK

992.43 35-43 0 WDSDPSGTK

971.50 436-443 0 MSO: 439 987.50 SQVMTHLR

948.40 320-326 0 EWEEAER

947.46 369-376 0 MSO: 372 963.45 VEAMLNDR

934.47 571-578 0 TEE1SEVK

888.47 397-403 0 MSO: 401 904.47 HVF'NMLK

829.43 118-123 0 FLHQER

824.41 419-424 0 HFEHVR

768.33 579-584 0 MSO: 579 784.32 MDAEFR

751.35 314-319 0 MSO: 314, 318 783.34 MSQVMR

696.28 139-144 0 Cys CM: 141 754.29 ETCSEK
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680.32 44-49 0 CysCM: 45 738.33 TCIDTK

679.37 444-448 0 VIYER

626.36 414-418 0 QHTLK

589.30 425-429 0 MSO: 425 605.29 MVDPK

558.33 431-435 0 AAQIR

Table 1. Theoretical tryptic digest peptides for APPoc^ All cysteines have been treated with 
iodoacetic acid to form carboxtmethyl-cysteine (Cys CM) and methionines oxidised to form 
methionine sulphoxide (MSO). All masses shown are monoisotopic M+HT Isoform specific peptides 
are highlighted in blue.
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mass
(M+ET) position # missed 

cleavages artificial modification(s) peptide sequence

5105.43 566-612 0 TTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVD
ARPAADR

5057.98 208-251 0 VVEVAEEEEVAEVEEEEADDDEDDEDGDEVEEEAEEPYEE
ATER

4712.84 164-207 0 CysCM: 169, 170 4828.85 GVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADG
SEDK

3849.88 50-82 0 Cys CM: 56, 81 3965.89 EGILQYCQEVYPELQITNVV EANQPVT1QNWCK

3188.60 505-532 0 MSO: 505 3204.59 MNQSLSLLYNVPAVAEEJQD EVDELLQK

3121.34 312-341 0
Cys CM: 320, 324 

MSO: 321

3237.35

313733
NNFDTEEYCMAVCGSA1PTT AASTPDAVDK

2402.18 1-23 0 Cys CM: 21 

MSO: 19

2460.18

2418.17

LEVPTDGNAGLLAEPQIAMF CGR

2127.06 252-271 0 TTSIATTTTTTTESVEEVVR

2022.14 435-452 0 LALENYITALQAVPPRPR

1980.89 533-549 0 MSO: 544 1996.89 EQNY SDDVLANMISEPR

1914.86 342-357 0 YLETPGDENEHAHFQK

1876.89 145-161 0 CysCM: 157 

MSO: 153

1934.89

1892.88

STNLHDYGMLLPCGIDK

1806.81 124-138 0 CysCM: 127 

MSO: 124

1864.84

1822.83

MDVCETHLHWHTVAK

1739.85 550-565 0 MSO: 558 1755.84 ISYGNDALMPSLTETK

1704.88 100-115 0 CysCM: 100 1762.89 CLVGEFV SDALL VPDK

1414.80 613-626 0 GLTTRPGSGLTNIK

1408.58 272-284 0 Cys CM: 274,283 1524.59 EVCSEQAETGPCR

1374.64 403-414 0 VESLEQEAANER

1348.55 299-311 0 Cys CM: 299, 307 1464.56 CAPFFYGGCGGNR

1336.60 641-651 0 HDSGYEVHHQK

1285.61 24-34 0 MSO: 26, 28 1317.60 LNMHMNVQNGK

1266.67 90-99 0 THPHFV1PYR

1212.61 415-424 0 MSO: 422 1228.61 QQLVETHMAR

1144.53 290-298 0 WYFDVTEGK

1099.58 394-402 0 AV1QHFQEK
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992.43 35-43 0 WDSDPSGTK

971.50 492-499 0 MSO: 495 98730 SQVMTHLR

948.40 376-382 0 EWEEAER

947.46 425-432 0 MSO: 428 963.45 VEAMLNDR

934.47 627-634 0 TEEISEVK

888.47 453-459 0 MSO: 457 904.47 HVFNMLK

829.43 118-123 0 FLHQER

824.41 475-480 0 HFEHVR

768.33 635-640 0 MSO: 635 78432 MDAEFR

751.35 370-375 0 MSO: 370,374 78334 MSQVMR

696.28 139-144 0 Cys_CM: 141 75439 ETCSEK

680.32 44-49 0 CysjCM: 45 73833 TCIDTK

67937 500-504 0 VIYER

626.36 470-474 0 QHTLK

589.30 481-485 0 MSO: 481 60539 MVDPK

577.31 285-289 0 MSO: 286 59330 AM1SR

558.33 487-491 0 AAQIR

Table 2. Theoretical tryptic digest peptides for APPa75 i. All cysteines have been treated with iodoacetic 
acid to form carboxtmethyl-cysteine (Cys CM) and methionines oxidised to form methionine 
sulphoxide (MSO). AH masses shown are monoisotopic M+H*. Isoform specific peptides are 
highlighted in blue.
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mass
(M+FF) position # missed 

cleavages artificial .modification(s) peptide sequence

5105.43 585-631 0
TTVELLPVNGEFSLDDLQPWHSFGADSVPANTENEVEPVDAP
AADR

5057.98 208-251 0
WEVAEEEEVAEVEEEEADDDEDDEDGDEVEEEAEEPYEETE
R

4712.84 164-207 0 CysCM: 169, 170
GVEFVCCPLAEESDNVDSADAEEDDSDVWWGGADTDYADG 

4828.85 SEDK

3849.88 50-82 0 Cys CM: 56, 81
on EGILQYCQEVYPELQITNVV EANQPVTIQNWCK 

jy o io v

3188.60 524-551 0 MSO: 524 3?04 59 MNQSLSLLYNVPAVAEELQD EVDELLQK

2541.07 312-334 0 Cys CM: 320,324 
MSO: 321,328 NNFDTEEYCMAVCGSAMSQS LLK

Z j /j.Uo

2402.18 1-23 0 Cys CM: 21 
MSO: 19

2460.18 LEVPTDGNAGLLAEPQIAMF CGR 
2418.17

2127.06 252-271 0 TTS1ATI i 1 i  1 TESVEEV VR

2022.14 454-471 0 L ALENY1TALQ A VPPRPR

1980.89 552-568 0 MSO: 563 1996.89 EQNYSDDVLANMISEPR

1914.86 361-376 0 YLETPGDENEHAHFQK

1876.89

1806.84

1739.85

145-161

124-138

569-584

0

0

0

Cys CM: 157 
MSO: 153 
Cys CM: 127 
MSO: 124

MSO: 577

1934 89
189^88 s t n l h d y g m l l p c GIDK 
1864 84
1 8 ^  83 MDVCETHLHWHTVAK 
|?55 g4 1SYGNDALMPSLTETK

1704.88 100-115 0 CysCM: 100 1762.89 CLVGEFVSDALLVPDK

1414.80 632-645 0 GLTTRPGSGLTNIK

1408.58 272-284 0 Cys CM: 274, 
283 1524.59 EVCSEQAETGPCR

1386.71 347-360 0 LPTTAASTPDAVDK

1374.64 422-433 0 VESLEQEAANER

1348.55 299-311 0 Cys CM: 299, 
307

1464.56 CAPFFYGGCGGNR

1336.60 660-670 0 HDSGYEVHHQK

1285.61 24-34 0 MSO: 26,28 1317.60 LNMHMNVQNGK

1266.67 90-99 0 THPHFVIPYR

1212.61 434-443 0 MSO: 441 1228.61 QQLVETHMAR

1144.53 290-298 0 WYFDVTEGK

1099.58 413-421 0 AV1QHFQEK

992.43 35-43 0 WDSDPSGTK

971.50 511-518 0 MSO: 514 987.50 SQVMTHLR

948.40 395-401 0 EWEEAER

947.46 444-451 0 MSO: 447 963.45 VEAMLNDR

934.47 646-653 0 TEEISEVK

915.48 335-342 0 TTQEPLAR

888.47 472-478 0 MSO: 476 904.47 HVFNMLK

829.43 118-123 0 FLHQER

824.41 494-499 0 HFEHVR

768.33 654-659 0 MSO: 654 784.32 MDAEFR

751.35 389-394 0 MSO: 389, 393 783.34 MSQVMR

696.28 139-144 0 CysCM: 141 754.29 ETCSEK

680.32 44-49 0 Cys CM: 45 738.33 TCIDTK
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679.37 519-523 0 VIYER

62636 489-493 0 QHTLK

589.30 500-504 0 MSO: 500 605.29 MVDP^

577.31 285-289 0 MSO: 286 593JO AMISR
558.33 506-510 0 AAQIR

Table 3. Theoretical tryptic digest peptides for APPa-no. All cysteines have been treated with iodoacetic 
acid to form carboxtmethyl-cysteine (Cys CM) and methionines oxidised to form methionine 
sulphoxide (MSO). All masses shown are monoisotopic M+H+. Isoform specific peptides are 
highlighted in blue.
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mass
(M+HO position #MC artif.modification(s) peptide sequence

4007.05 70-103 0 Cys CM: 81, 88, 100 4 181.07 EANQPVTIQN WCKRGRKQCKTHPHF VIP YRCLVG

3211.76 382-408 0 MSO: 401 3227.76 ENYITALQAVPPRPRHVFNM LKKYVRA

2604.20 14-35 0
Cys CM: 21 

MSO: 19,26, 28

2662.21
EPQIAMFCGRLNMHMNVQNG KW

2652.19

2354.31 427-446 0 MSO: 439 2370.30 DPKKAAQIRSQVMTHLRVTY

1904.98 447-463 0 MSO: 449 1920.98 ERMNQSLSLLYNVPA VA

1786.97 555-571 0 DRGLTTRPGSGLTN1KT

1484.74 250-263 0 ERTTSIATTTTTTT

1358.69 128-138 0 ETHLHWHTVAK

1327.72 268-280 0 E V VRVPTT A ASTP

1213.66 335-344 0 DKKAVIQHFQ

1181.61 412-420 0 DRQHTLKHF

1157.53 525-534 0 DLQPWHSFGA

1154.66 325-334 0 ERQAKNLPKA

1095.56 295-303 0 EHAHFQKAK

1081.50 150-159 0
CysCM: 157 

MSO: 153

1139.51
DYGMLLPCGI

1097.50

1036.50 312-319 0 MSO: 314, 318 1068.49 ERMSQVMR

1018.51 114-121 0 CysCM: 116 1076.51 DKCKFLHQ

953.43 50-57 0 Cys CM: 56 1011.44 EGILQYCQ

935.45 491-498 0 EPRISYGN

921.43 38-46 0 CysCM: 45 979.44 DPSGTKTCI

915.51 62-69 0 ELQITNVV

899.55 375-381 0 DRRRLAL

881.38 166-173 0 CysCM: 169, 170 997.40 EFVCCPLA

862.43 483-490 0 MSO: 488 878.42 DVLANMIS

847.42 499-506 0 MSO: 502 863.41 DALMPSLT

843.41 363-369 0 MSO: 366 859.40 ETHMARV

828.42 143-149 0 EKSTNLH

790.35 190-196 0 DVWWGGA
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777.40 590-595 EVHHQK

772.43 357-362 0

770.39 421-426 0 MSO: 425

741.41 513-519 0

730.37 6-13 0

721.39 160-165 0

70332 535-541 0

67836 507-512 0

6403 5 307-311 0

64035 477-481 0

6303 8 472-476 0

627.37 108-113 0

60031 549-554 0

58838 582-585 0

57736 370-374 0 MSO: 372

53838 284-287 0

50734 58-61 0

506.26 576-579 0 MSO: 579

ERQQLV 

78639 EHVRMV 

ELLPVNG

DGNAGLLA

DKFRGV

DSVPANT

ETKTTV

EAKHR

EQNYS

ELLQK

DALLVP

DARPAA

EFRH 

59335 EAMLN 

DKYL

EVYP 

52235 EVKM

Table 4. Theoretical Asp-N digest peptides for APPa69s. All cysteines have been treated with iodoacetic 
acid to form carboxtmethyl-cysteine (Cys_CM) and methionines oxidised to form methionine 
sulphoxide (MSO). All masses shown are monoisotopic M+H*. It should be noted that formic acid has 
the same cleavage pattern as Asp-N. Isoform specific peptides are highlighted in blue.
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mass
(M+H+) position #MC artif.modification(s) peptide sequence

4007.05 70-103 0 Cys CM: 81, 88, 100 4181.07 EANQPVT1QNWCKRGRKQCK THPHFVIPYRCLVG

3211.76 438-464 0 MSO: 457 3227.76 ENYITALQAVPPRPRHVFNM LKKYVRA

2604.20 14-35 0
CysCM: 21 

MSO: 19, 26, 28

2662.21
EPQIAMFCGRLNMHMNVQNG KW

2652.19

2354.31 483-502 0 MSO: 495 2370.30 DPKKAAQIRSQVMTHLRVIY

2037.86 296-314 0 Cys CM: 299, 307 2153.88 EGKCAPFFYGGCGGNRNNF

1904.98 503-519 0 MSO: 505 1920.98 ERMNQSLSLLYNVPAVA

1872.81 318-336 0
CysCM: 320,324 

MSO: 321

1988.82
EYCMAVCGSAIPTTAASTP

1888.81

1786.97 611-627 0 DRGLTTRPGSGLTNIKT

1716.79 279-292 0
Cys CM: 283 

MSO: 286

1774.80
ETGPCRAMISR WYF

1732.79

1484.74 250-263 0 ERTTSIATTTTTIT

1358.69 128-138 0 ETHLHWHTVAK

1213.66 391-400 0 DKKAVIQHFQ

1181.61 468-476 0 DRQHTLKHF

1157.53 581-590 0 DLQPWHSFGA

1154.66 381-390 0 ERQAKNLPKA

1095.56 351-359 0 EHAHFQKAK.

1081.50 150-159 0
CysCM: 157 

MSO: 153

1139.51
DYGMLLPCGI

1097.50

1036.50 368-375 0 MSO: 370, 374 1068.49 ERMSQVMR

1018.51 114-121 0 CysCM: 116 1076.51 DKCKFLHQ

953.43 50-57 0 Cys CM: 56 1011.44 EGILQYCQ

935.45 547-554 0 EPR1SYGN

921.43 38-46 0 CysCM: 45 979.44 DPSGTKTCI

915.51 62-69 0 ELQ1TNVV

899.55 431-437 0 DRRRLAL

881.38 166-173 0 CysCM: 169, 170 997.40 EFVCCPLA

862.43 539-546 0 MSO: 544 878.42 DVLANM1S

847.42 555-562 0 MSO: 558 863.41 DALMPSLT
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843.41 419-425 0 MSO: 422 859.40 ETHMARV

828.42 143-149 0 EKSTNLH

790.35 190-196 0 DVWWGGA

777.40 646-651 0 EVHHQK

772.43 413-418 0 ERQQLV

770.39 477-482 0 MSO: 481 78639 EHVRMV

741.41 569-575 0 ELLPVNG

730.37 6-13 0 DGNAGLLA

721.39 160-165 0 DKFRGV

70332 591-597 0 DSVPANT

678.36 563-568 0 ETKTTV

640.35 363-367 0 EAKHR

640.25 533-537 0 EQNYS

63038 528-532 0 ELLQK

62737 108-113 0 DALLVP

600.31 605-610 0 DARPAA

58838 638-641 0 EFRH

57726 426-430 0 MSO: 428 59325 EAMLN

53828 340-343 0 DKYL

50724 58-61 0 EVYP

506.26 632-635 0 MSO: 635 52225 EVKM

502.29 268-271 0 EVVR

Table 5. Theoretical Asp-N digest peptides for APPa751. All cysteines have been treated with iodoacetic 
acid to form carboxtmethyl-cysteine (Cys_CM) and methionines oxidised to form methionine 
sulphoxide (MSO). All masses shown are monoisotopic M+H+. It should be noted that formic acid has 
the same cleavage pattern as Asp-N. Isoform specific peptides are highlighted in blue.
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mass
(M+H+) position #MC artif.modification(s) peptide sequence

4007.05 70-103 0 CysCM: 81, 88, 100 4181.07 EANQPVTIQNWCKRGRKQCKTHPHFVIPYRCLVG

3211.76 457-483 0 MSO: 476 3227.76 ENYITALQAVPPRPRHVFNM LKKYVRA

2604.20 14-35 0
CysCM: 21 

MSO: 19,26,28

2662.21
EPQIAMFCGRLNMHMNVQNG KW

2652.19

2354.31 502-521 0 MSO: 514 2370.30 DPKKAAQIRSQVMTHLRVIY

2150.95 318-337 0
CysCM: 320,324 

MSO: 321,328

2266.96
EYCMAVCGSAMSQSLLKTTQ

2182.94

2037.86 296-314 0 Cys CM: 299, 307 2153.88 EGKCAPFFYGGCGGNRNNF

1904.98 522-538 0 MSO: 524 1920.98 ERMNQSLSLLYNVPAVA

1786.97 630-646 0 DRGLTTRPGSGLTMKT

1716.79 279-292 0
Cys CM: 283 

MSO: 286

1774.80
ETGPCRAMISRWYF

1732.79

1484.74 250-263 0 ERTTS.ATTTTnT

1358.69 128-138 0 ETHLHWHTVAK

1297.69 343-355 0 DPVKLPTTAASTP

1213.66 410-419 0 DKKAV1QHFQ

1181.61 487-495 0 DRQHTLKHF

1157.53 600-609 0 DLQPWHSFGA

1154.66 400-409 0 ERQAKNLPKA

1095.56 370-378 0 EHAHFQKAK

1081.50 150-159 0
CysCM: 157 

MSO: 153

1139.51
DYGMLLPCG1

1097.50

1036.50 387-394 0 MSO: 389, 393 1068.49 ERMSQVMR

1018.51 114-121 0 CysCM: 116 1076.51 DKCKFLHQ

953.43 50-57 0 Cys CM: 56 1011.44 EGILQYCQ

935.45 566-573 0 EPRISYGN

921.43 38-46 0 Cys CM: 45 979.44 DPSGTKTCI

915.51 62-69 0 ELQITNVV

899.55 450-456 0 DRRRLAL

881.38 166-173 0 CysCM: 169, 170 997.40 EFVCCPLA
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862.43 558-565 0 MSO: 563 878.42 DVLANMIS

847.42 574-581 0 MSO: 577 863.41 DALMPSLT

843.41 438-444 0 MSO: 441 859.40 ETHMARV

828.42 143-149 0 EKSTNLH

790.35 190-196 0 DVWWGGA

777.40 665-670 0 EVHHQK

772.43 432-437 0 ERQQLV

770.39 496-501 0 MSO: 500 78639 EHVRMV

741.41 588-594 0 ELLPVNG

730.37 6-13 0 DGNAGLLA

721.39 160-165 0 DKFRGV

70332 610-616 0 DSVPANT

678.36 582-587 0 ETKTTV

640.35 382-386 0 EAKHR

640.25 552-556 0 EQNYS

630.38 547-551 0 ELLQK

627.37 108-113 0 DALLVP

600.31 624-629 O' DARPAA

588.28 657-660 0 EFRH

585.33 338-342 0 EPLAR

577.26 445-449 0 MSO: 447 59335 EAMLN

538.28 359-362 0 DKYL

507.24 58-61 0 EVYP

506.26 651-654 0 MSO: 654 52235 EVKM

502.29 268-271 0 EVVR

Table 6. Theoretical Asp-N digest peptides for APPa-Tro. All cysteines have been treated with iodoacetic 
acid to form carboxtmethyl-cysteine (Cys_CM) and methionines oxidised to form methionine 
sulphoxide (MSO). All masses shown are monoisotopic M+FT. It should be noted that formic acid has 
the same cleavage pattern as Asp-N. Isoform specific peptides are highlighted in blue.
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