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Abstract

The aim of this research is to demonstrate the benefits and limitations of 

selected techniques used to analyse data derived from , sport and exercise 

science research. Although statistical techniques are easy to access through 

software packages, supporting literature about their appropriate application is 

less common. Many researchers are unaware of the full benefits or potential 

pitfalls when using these techniques. An understanding of the appropriate use 

of statistics will benefit the researcher by maximising the potential for analysing, 

interpreting and applying data correctly. Furthermore, it will minimise wasted 

effort or dissemination of inaccurate information through incorrect analyses. In 

this thesis examples are derived from fifteen published articles based on five 

topics that illustrate the appropriate use of particular statistical techniques. 

Firstly, the use of ‘agreement’ and ‘least-products-regression’ as appropriate 

techniques for comparing repeated measures are demonstrated (e.g. 

Mullineaux et al., 1999). Both techniques revealed that over two separate days 

the peak-torque-extension of the knee of healthy females is unreliable. 

Secondly, the use of ‘allometric’ scaling of body size differences that should 

allow for meaningful comparisons between participants’ measurements is 

explored (e.g. Batterham, George and Mullineaux, 1997). Results showed that 

left ventricular mass is related to fat free mass to the power of 1.07 (0.92 to 

1.22; 95% Cl). Thirdly, mathematical modelling is used to explore a theory that 

would be difficult to test empirically (e.g. Payton, Hay and Mullineaux, 1997). 

Results revealed that body roll contributes substantially to the propulsive force 

in front crawl swimming. Fourthly, logistic regression is used to predict group 

membership from the combined effect of several independent variables (e.g. 

Mullineaux et al., 2001a). It was found that the likelihood of participation in 

adequate physical activity to promote health can be strongly predicted from six 

variables. Lastly, in an invited review paper, key features in the application of 

research methods and statistics in biomechanics and motor control are 

highlighted (e.g. Mullineaux et al., 2001b). These published papers form a body 

of work that will facilitate a greater and more appropriate use of selected 

statistical techniques in sport and exercise science.
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Introduction

Sport and exercise science contributes to many areas of life including 

education, leisure, sport and health. At the end of the last millennium this area 

experienced rapid growth in the UK. In education, between 1997 and 2000, 

undergraduate students enrolled on Sports Science categorised courses 

increased by 46% to 6848 (UCAS, 2001). During this same period, in leisure, 

consumer spending on active sport was forecast to increase by 11.2% to nearly 

£6 billion (Gratton etal., 1999, p. 54). In sport, National Lottery funding enables 

Sport England (1999) to promote sport for everyone via the Community 

Projects funding and to increase international recognition via the World Class 

funding. In health, the Government’s white paper ‘Saving Lives: Our Healthier 

Nation’ details aims to reduce substantially death rates from cancer, coronary 

heart disease, stroke, accidents and mental ill-health (Health Development 

Agency, 1999). Promoting physical activity has been recognised within the 

white paper as an important means to achieve such aims. This growth in 

education, leisure, sport and health related activity demands investigation and 

evaluation through applied research, a significant proportion of which will lie 

within the scope of sport and exercise science and its associated fields.

Research in sport and exercise science will only be useful if it is well planned, 

conducted, analysed and reported (Mullineaux and Bartlett, 1997). 

Technological advances have enhanced the potential of each of these facets of 

the research process. There is greater access to information to plan research 

(e.g. via the World Wide Web), improved technology to collect data (e.g. 

automated on-line motion capture systems), increased computational power to



analyse data (e.g. statistics software) and readily available software to report 

research (e.g. word processing packages). However, it is the improved access 

to comprehensive and advanced ‘black box’ statistics software packages that 

offers the greatest potential for misuse. This access provides a means to 

overcome the difficulty of performing the mathematical calculations, but it does 

not routinely provide information on the assumptions required for valid 

analyses. The ‘black box’ software also offers the user a wealth of statistical 

techniques that they would not necessarily have previously encountered.

There are many similar views on the definition of statistics. In general, statistics 

are “a mathematical technique by which data are organised, treated, and 

presented for interpretation and evaluation” (Vincent, 1999, p. 282). A specific 

application of predicting population parameters is referred to as inferential 

statistics which “consist of a set of statistical techniques that provide 

predictions about population characteristics based on information in a sample 

from that population” (Field, 2000, p. 4). The overall application of statistics 

provides benefits that include the ability to explore, synthesise and summarise 

data efficiently, simply and objectively. Statistics can also provide the scientific 

rigour and objectivity (Matthews, 1998) that ‘gatekeepers’ such as journal 

editors and funding bodies often seek (Mullineaux et al., 2001b). Despite such 

potential benefits, data should only be analysed via an appropriate statistic but 

the appropriateness of a statistic is not always obvious. The original rationale 

for the development of individual tests, the subsequent mathematics 

incorporated and the effects of different data properties must be considered
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before researchers apply statistical techniques within the context of their 

research.

The growth in sport and exercise science, the increasing availability of powerful 

‘black box’ statistics packages, the desire of journal editors for ‘statistical 

significance’ or ‘objectivity’ and researchers’ frequent lack of statistical 

expertise have led to instances where statistics have been inappropriately 

applied. This can produce inaccurate and misleading findings. For example, the 

f-test, originating from the work by Student (1908), can be used to assess 

whether chance can be discounted as an explanation for any differences 

between two mean scores. The f-test does not provide any indication of random 

variation between tests. However, Atkinson and Nevill (1998) identified that 

sixteen out of seventy studies at the forty-third American College of Sports 

Medicine conference had inappropriately used the f-test, or equivalent test, to 

assess reliability or validity.

A potential way to reduce the incidence of inappropriate statistical analyses is 

to publish more supporting literature on appropriate uses. Hence, the aim of 

this research is to provide supporting literature on the appropriate use of less 

well known, or developing, statistical tests in sport and exercise science. In this 

thesis five topics incorporating statistical techniques have been selected. 

Firstly, as measurement tools should be reliable as a prerequisite for validity, 

techniques of testing repeated measures reliability are explored (e.g. 

Mullineaux et al., 1999). The next three topics are concerned with selecting 

statistical analyses that are appropriate for the data based on a suitable
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underpinning theory. Allometric scaling is explored for testing the relationship 

between body dimensions and performance measures (e.g. Batterham, George 

and Mullineaux, 1997). Mathematical modelling is illustrated as a statistical 

technique for investigating theoretical propositions that would be difficult to 

provide support from empirical data (e.g. Payton, Hay and Mullineaux, 1997). 

Logistic regression as a technique for analysing relationships in data of a 

nominal or mixed level of measurement is illustrated (e.g. Mullineaux et al., 

2001a). Lastly, to promote further appropriate applications of statistical 

techniques in specific disciplines consideration is made of the benefits of 

review articles (e.g. Mullineaux et al., 2001b). A brief review of each of these 

topics includes an explanation of the contribution of the example published 

papers contained in Appendices 1 to 15 for demonstrating the application of the 

statistical techniques or highlighting their contribution to the body of 

knowledge. In addition, in these topics some clarification for future directions in 

research concerned with the appropriate use of statistics in sport and exercise 

science is offered.

4



Repeated measures reliability

Two important characteristics of a test or method of measurement are validity 

and reliability. Validity relates to the degree to which a test or instrument 

measures what it purports to measure. Reliability relates to the consistency and 

dependability of the measures. It can be inherently difficult to assess validity, 

but a sound research design evolved from theory can minimise uncertainty and 

ensuring reliability can further support validity.

Reliability needs to be carefully considered at the outset of research so that it 

is defined and tested appropriately within the study. For instance, 'alternative 

forms’ reliability involves using different tests to measure the same construct. 

Several other methods of reliability also exist, such as, ‘repeated measures’ 

reliability. This method is used to assess whether repeat measurements of the 

same response are reproducible (Sale, 1991). This can involve testing whether 

the measures obtained on two separate days, or by two testers, or with two 

instruments, are reproducible and thus reliable. Note that the research design 

used to assess repeated measures reliability should be considered with care. 

For example, if the number of days between repeat measures is too few, then 

an interaction of the pre-test with the post-test may influence the results.

Reliability is essential for validity. The tests available for appropriately 

assessing reliability are dependent on such aspects as the working definition of 

reliability, the number of repeat measures and level of measurement of the 

data. In this thesis the focus is on reproducible results where repeated 

measures reliability is most appropriate. Several tests are used for assessing



repeated measures reliability (see Table 1). There may be some alternative 

names for repeated measures reliability, such as, ‘test-retest reliability’ or 

‘stability’; Often more than one test is available, where the choice of which to 

use is dependent on such things as the preferences of researchers, 

supervisors and journal editors on the theory underpinning the test, the 

statistical assumptions and the type of data output. Although different authors 

critique the appropriateness of these tests it is generally accepted that the 

majority of alternative tests not listed in Table 1 are inappropriate (e.g. Pearson 

product moment correlation). In addition, Table 1 refers to reliability when 

assessing groups of participants, but when the data relate to a single 

participant then alternative tests are available. For example, when several 

measures at the interval or ratio level of measurement are obtained for a single 

person, then the percentage coefficient of variation is suitable to test repeated 

measures reliability (Sale, 1991; Atkinson and Nevill, 1998).

The reliability coefficient is the ratio of the true measurement variance to the 

observed measurement variance. True measurement variance is obtained by 

subtracting the error variance from the observed measurement variance. This 

can be calculated using interclass (e.g. Pearson product moment correlation) 

or intraclass correlations. Interclass correlation is inappropriate for repeated 

measures reliability as it requires independent variables, is limited to two sets 

of measurements and does not detect systematic errors (Thomas and Nelson, 

2001). These limitations are overcome by using intraclass correlations (R), and 

these are commonly used to assess reliability.
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Table 1. Tests for the assessment of repeated measures reliability appropriate 

for different levels of measurement.

Level of measurement 2 repeat measures 2+ repeat measures

Nominal Proportion of agreement3 

Kappa coefficient

Ordinal Cronbach’s alpha Cronbach’s alpha

Interval/Ratio Limits of agreementb,c,d Agreement boundary®

Intraclass correlation Intraclass correlation

Least products regression

Note, for tests of a nominal level of measurement see, for example, Robson (1993, p. 222) and 

for all other tests see text for references. Modifications to these tests include: 

a Extend the test and use bootstrapping to obtain confidence intervals for the coefficient

(Wilson and Batterham, 1999). 

b Use with the natural logs of the data to account for violations of assumptions (Nevill and 

Atkinson, 1997).

c Account for the degrees of freedom using the /-distribution instead of 1.96 (Hopkins, 2000). 

d More informative than the similar Technical Error of Measurement (Nevill and Atkinson, 

2001: also known as the Method error, or if presented as a ratio of the mean the Test-retest 

coefficient of variation, Sale, 1991). 

e Extension of the Standard Error of Measurement to provide 95% confidence (BSI, 1979).

When the measurement level is interval or ratio then reliability can be 

calculated in several ways. The ‘reliability coefficient’, ‘limits of agreement’ 

(LOA) and ‘least-products regression’ (LPR; Ludbrook, 1997) are appropriate 

techniques. LPR is also known as geometric mean regression (Ricker, 1973).

Analysis of variance (ANOVA) is often helpful for calculating the reliability 

coefficient, or specifically, intraclass correlation. A simple version of the 

intraclass correlation is the Average Measure R  (Equation 1; McGraw and
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Wong, 1996), where, the variances are separated into components for within- 

subjects (MSW) and between-subjects (MSB) effects.

Average Measure R  = (MSB-M S w)l MSB [Equation 1]

A similar equation is sometimes known as Cronbach’s Alpha or Alpha 

Coefficient (Equation 2; Vincent, 1999), where MSR is the within-subjects 

error/residual variance. This can be used to assess reliability for two or more 

measures at the ordinal level of measurement, or when the size of the means is 

to be ignored (Vincent, 1999). This equation ignores within-subject variance 

due to differences in between-subject means, and considers only the variance 

due to the within-subject order with respect to the repeated trials.

Cronbach's Alpha = (MSB- MSR)IM SB [Equation 2]

Two of the most common versions of the intraclass correlation are described in 

Equations 1 and 2. Other intraclass correlations have been described by 

McGraw and Wong (1996) and Shrout and Fleiss (1979), many of which 

feature in software packages such as SPSS (2001). These authors explain 

where these equations may be more appropriate. For example, when no 

systematic difference exists between the repeated measures then the Single 

Measure R  (Equation 3; McGraw and Wong, 1996; Shrout and Fleiss, 1979; 

where k is the number of repeat measures) is appropriate if each measurement 

is a single case. Alternatively, the Average Measure R  is appropriate if each
c-

case is an average of several trials.

8



Single Measure R = ( MSB-M S W ) / (MSB+(k  -1 )- MSW ) [Equation 3]

Interpretation of the different versions of the intraclass correlation varies 

between authors. Fleiss (1986) describes reliability as poor (R O .40), fair to 

good (0.40<R<0.75) and excellent (R>0.75). A more conservative interpretation 

was provided by Vincent (1999) with acceptable but questionable 

(0.70<R<0.80), moderate (0.80<R<0.90) and high (R>0.90).

The variety of intraclass correlations does, however, cause problems as it is 

often unclear which version of the intraclass correlation has been used thus 

making comparisons between studies difficult. Problems also arise from the 

reliability coefficient being severely affected by variability of the between- 

subjects effects. If this variance (MSB) is large, a larger reliability coefficient is 

given than for a smaller variance. This is supported by Looney (2000) who 

considers that correct interpretation of intraclass correlation requires a 

consideration of heterogeneity and that measurement error and differences 

between the means of the repeated measures should be taken into account. 

Atkinson and Nevill (1998) highlighted other potential limitations of intraclass 

correlation in their review of reliability testing of variables relevant to sports 

medicine. For example, no evidence could be found for analytical goals forming 

the basis for the interpretation of the ranges of R proposed in the literature (e.g. 

Vincent, 1999). Perhaps more important than the reliability coefficient is the 

estimation of the error in the repeated measurements. This can be established 

from ANOVA (see Mullineaux and Bartlett, 1997) or from LOA or LPR.

9



As intraclass correlation is a statistical relationship test, it has been proposed 

that it should not be used to assess reliability as it does not identify the degree 

of compatibility or agreement between data sets (Bland and Altman, 1986; 

Ottenbacher and Stull, 1993; Mullineaux et al., 1994). These authors propose 

that the LOA test is used as it overcomes these problems and provides more 

meaningful information in the form of descriptive statistics rather than as 

statistical values. LOA for two sets of measurements are calculated by firstly 

subtracting the values in one set from those of the other set and then 

calculating the mean (6) and standard deviation (a) of the differences. The LOA 

are calculated with 95% confidence using Equation 4 (Bland and Altman, 

1986). For more than two groups the Agreement Boundary, providing a single 

value is calculated with 95% confidence using Equation 5 (Bland, 2000; BSI, 

1979; Mullineaux et al., 1994 -  MSW also used instead of MSr to produce a 

similar result).

LOA = 6 ±1.96 cr [Equation 4]

Agreement Boundary = ±1.96 • ^2 • MSR [Equation 5]

In sport and exercise science, LOA is often favoured (e.g. Ottenbacher and 

Stull, 1993) as the calculation is simple and interpreting the data is 

straightforward because results are reported in the original units of 

measurement. Also, there is some measure of the fixed and proportional biases 

in the measurement that traditional tests do not assess. Fixed bias is where 

one method consistently measures differently to the other and proportional bias

10



is where one method measures proportionally differently to the magnitude of 

the other measurement. However, fixed and proportional biases often interact 

and agreement does not provide a means to account for the independent effect 

of each. It has therefore been proposed that to account for these related 

entities that a LPR is used (Ludbrook, 1997). Assumptions that must be met for 

LPR include random error in x and y, normal distribution of the errors, 

homoscedasticity (homogeneity of variance between the errors and the 

predicted scores, i.e. additive error) and a linear relationship between the 

measurements. LPR of the form y = a + b x can be calculated in several ways. 

The simplest are: b is a ratio of the standard deviations of the y and x values 

and a = y - b - x  (where y and x are the mean values of y  and x). In 

interpreting LPR, the gradient (b) should ideally be 1 and the constant (a) 

should ideally be 0. Whether any deviation from these ideal values is 

acceptable should be considered with respect to, for example, the research 

question where larger deviations may be acceptable for theory generating 

work. Confidence intervals for the gradient and constant can be obtained using 

bootstrapping (Zhu, 1997), the application of which has been illustrated by 

Mullineaux et al. (1998b; 1999). If criterion validity is being assessed, where a 

new technique is being compared to a ‘gold standard’, if no error is assumed to 

exist in the ‘gold standard’ an ordinary least-squares regression could be used 

instead of LPR.

The four techniques proposed in the literature to assess reliability are currently 

all acceptable (i.e. R , LOA, Agreement Boundary and LPR). Which to use is a 

matter of personal preference by the researcher or journal editor, and



dependent on which might provide the most meaningful statistical evaluation of 

the data. The important point is that an assessment of the data is made that 

supports reliability and, subsequently, validity of the chosen research design. 

Mullineaux et al. (1999) compared the application of LOA and LPR and 

demonstrated how the assumptions of each can be checked and the results 

interpreted. If the proposal that these methods are more appropriate is widely 

accepted, it is possible that LOA, Agreement boundary and LPR will supersede 

the statistical relationship measurement (i.e. R). Further research applying 

these techniques would be useful to confirm the benefits of these tests in 

assessing reliability.
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Allometric scaling

To express the relationship between physiological variables and body 

dimensions a form of scaling known as allometric scaling (Schmidt-Nielsen, 

1984) can be used to primarily identify non-linear relationships, although, the 

result may be linear. There has been a renewed interest in this area applied to 

humans, but Winter and Nevill (2001) cite scientific literature on allometry 

dating back to 1838. Generally, allometry is appropriate for identifying the 

extent to which performance differences are attributable to differences in size 

or to differences in qualitative characteristics of the body’s tissues and 

structures (Winter and Nevill, 2001, p. 275). In addition, as allometry can cater 

for non-linear relationships, it is suitable for addressing the non-isometric and 

isometric changes in dimensions with growth (e.g. Tanner, 1989). It is important 

that such analyses are underpinned by a theory. Dimensionality theory offers 

one possible theoretical underpinnings for an allometric scaling analysis.

Dimensionality theory is underpinned by the Systeme International d’Unites 

that comprises seven base units (mass, length, time, electric current, 

temperature, amount of substance and luminous intensity). From these seven 

units all other units can be derived (e.g. area, volume, density, force, pressure, 

energy, power, frequency).. Often for convenience, these units are renamed, 

such as, the units of force of kg.m.s'2 are denoted as Newtons (N). 

Dimensionality theory can be used for two main purposes (see, for example, 

Duncan, 1987): dimensional homogeneity and dimensional analysis.

Dimensional homogeneity can be used to check that an equation is correct by 

partitioning both sides of an equation into their base units. If the units on both
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sides are partitioned into the same base units then the equation is correct. 

Dimensional analysis can be used to predict the relationship between different 

dimensions as a means to provide a theoretical foundation for a research 

study, such as, between several continuous variables.

When there are two continuous variables (y and x), they can be scaled with 

each other in many forms, three of which are common: ratio standard 

(y  = b-x) ;  linear regression (y  = a + b- x )  and non-linear form (y  = a - x b), 

where a and b are some constants. The use of each of these scaling 

techniques should be dictated by theory. This theory is not always obvious. In 

addition, the mathematics of, and the assumptions for, a scaling technique 

delimit their use theoretically and statistically. For example, non-linear scaling 

may be appropriate for data that are not necessarily linear, theoretically 

requires a zero intercept and contain multiplicative error about the regression. 

The opposite of these is assumed in ratio standard or linear regression scaling 

analyses in that the data are linear, the intercept is not fixed at zero and the 

error is additive.

One form of dimensionality analysis that has been used to predict the 

relationship between body dimensions and physiological variables is the 

surface law relationship. This states that the surface area is proportional to its 

volume to the power of 0.67 (Schmidt-Nielsen, 1984). On this basis, Winter et 

al. (1991) showed that maximal oxygen uptake (V 0 2max) is proportional to body

mass (BM) to the power of 0.6 (i.e. \ /0 2max a BM06). Allometric scaling has also
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been used to scale a variety of body dimensions with performance measures or 

other body dimensions. These include body mass with cardiac dimensions (e.g. 

Batterham, George and Mullineaux, 1995; George, Batterham, Gates and 

Mullineaux, 1995), thigh cross sectional area with vertical jump performance 

(Batterham, Barnes and Mullineaux, 1999a; 1999b) and fat free mass with peak 

power output (Mullineaux et al., 1998a).

A further study by Batterham, George and Mullineaux (1997) showed that left 

ventricular mass (LVM) was proportional to body mass (BM) to the power of 

0.78 (0.65 to 0.91; 95% Cl). This is in agreement with the surface law 

relationship as the power exponent is not statistically significant (P>0.05) from 

0.67 as the 95% confidence intervals encompass this value. However, as 

participants vary in body composition (e.g. percentage of fat free mass, FFM), 

the predicted relationship derived from dimensionality analysis may be 

inaccurate. As a link between skeletal and cardiac muscles has been proposed 

(George et al., 1991), FFM may be more appropriate than BM as a predictor 

variable of LVM. As such, LVM was found to equal FFM to the power of 1.07 

(0.92 to 1.22, 95% Cl; Batterham, George and Mullineaux, 1997). Hence, ratio 

standard scaling using BM may overestimate participants’ LVM owing to 

greater percentages of body fat.

An additional benefit of allometric scaling is that more than one independent 

variable, including one dummy variable (i.e. a dichotomous independent 

variable coded as 0 and 1), can be included in a multiple non-linear scaling 

analysis. This will increase the explained variance and reduce the effect of
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extraneous variables, but a larger number of statistical assumptions (e.g. 

multicollinearity) need to be checked. Although simple non-linear scaling is 

easy to perform (i.e. y  = a - x b), when there is more than one independent

h  rl
variable (e.g. y  = a • + c • x2 , where Xi and x2 are independent variables,

and c and d are constants) it is easier to use a log-log transformation method in 

combination with multiple linear regression analyses. As the data are non­

linear, where the error is often multiplicative, then the first log transformation 

generally linearises the relationship, alters the error to being additive and 

improves the normality distribution of the data. These are all necessary 

assumptions underpinning a linear regression scaling analysis. At this stage 

the standard error of the estimate (SEe) is accurate as the additive error 

assumption is met. Subsequently, after the second log transformation is used to 

obtain the non-linear equation, the SEe needs to be used in multiplicative form

of ± e SEe. Alternatively, the error can be considered by reporting the 95% Cl for 

the power exponents obtained, for example, using bootstrapping (Zhu, 1997). 

Subsequently, Batterham, George and Mullineaux (1997) extended their 

analyses to include sex as an additional independent variable (i.e. as a dummy 

variable coded 0 for males and 1 for females) and provide 95% Cl for the 

power exponents. The data after the first log transformation are represented by 

Equation 6 (excluding the 95% Cl for simplicity of presentation). The second 

log transformation to obtain the non-linear equation, including the 95% Cl for 

the power exponents, are presented in Equation 7 (Batterham, George and 

Mullineaux, 1997, p. 184).
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In(LVM) = 0.96 -  0.18 • sex +1.07 • ln(FFMJ [Equation 6]

LVM = 2.6 • (eSEX )-°-18±0-10. FFM107±0/15 [Equation 7]

The confidence intervals allow for the power exponent to be assessed for 

differences from theoretical values. In this instance, the confidence intervals for 

the power exponent for FFM encompass one and is therefore not significantly 

different from linearity. In addition, the constant for males (i.e. 2.6 (e0)'0'18 = 2.6) 

and for females (i.e. 2.6 (e1)'0'18 = 2.2) from Equation 7 can be used to quantify 

differences between the groups represented by the dummy variable. Hence, 

independent of FFM, males possessed a LVM approximately 18% greater than 

for females (i.e. male to female ratio minus one then multiplied by 100, that is, 

( 2 .6 /2 .2 - 1 )  x 100).

In scaling analyses, providing a theory that supports the relationship identified 

can be difficult. In particular, this is difficult in data analyses that routinely use 

ratio standard or linear regression scaling analyses and yet their use is still 

common. Papers on allometric scaling (e.g. Batterham, George and Mullineaux, 

1997) address the need for a theoretical foundation for data analyses. A further 

limitation of ratio standard and linear regression scaling has been proposed by 

Batterham, George and Mullineaux (1997) in that extrapolation beyond the 

actual data range should be avoided as these tests would not generally meet 

the zero intercept assumption. However, this caution may also need to be 

applied to allometrically scaled relationships as the assumption of a zero 

intercept is beyond the data range that could be tested empirically. Future



research on allometrically scaled relationships requires further empirical data 

to support the theoretical relationships. For instance, this support could be 

provided by research providing evidence confirming the reliability of the data 

analyses.
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Mathematical modelling

The applications of many statistical techniques are delimited by several 

assumptions including the distribution of the sample. A statistical technique that 

is not restricted by the sampling distribution is mathematical modelling. This 

comprises one obligatory component (i.e. modelling) and three potential 

subsequent components (i.e. simulation, optimisation and evaluation). Figure 1 

illustrates the links between these four concepts:

• Modelling is “an attempt to represent reality” (Nigg, 1999, p. 427).

•  Simulation is “experimentation using a model” (Nigg, 1999, p. 429).

• Optimisation is an iterative process to identify the optimal simulation on a 

performance objective (Marshall and Elliott, 1998).

• Evaluation or validation is “providing evidence that the model is strong and 

powerful” (Nigg, 1999, p. 429).

Figure 1. The relationship between the components of mathematical modelling: 

modelling, simulation, optimisation and evaluation (from Bartlett, 1999, p. 189).

Modelling
Note assumptions of model

Evaluation not satisfactory 
. (evaluate assumptions)

Evaluation possible
Simulation Evaluation

Evaluation satisfactoryEvaluation not possible

Optimisation
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Modelling is used throughout sport and exercise science, including, 

dimensionality analysis in physiology (e.g. Batterham, George and Mullineaux, 

1997 -  see allometric scaling earlier), geometrical analysis in motor control 

(e.g. Lee, 1976) and the equations of motion in biomechanics (e.g. Payton, Hay 

and Mullineaux, 1997). Evaluating sport techniques on the basis of physical 

laws through mathematical modelling provides a potentially more appropriate 

method than using inferential statistical models. This is partly because of 

limitations of experimental methodologies and the corresponding benefits of 

mathematical modelling which include (Vaughan, 1984):

• It is safer than participants attempting potentially hazardous techniques.

• It saves time and money in running many simulations that have the potential 

to predict optimal performance.

• Appropriate variables are clearly selected on theoretical grounds.

• It demonstrates how the movement could be rather than how it is performed.

• Inferential statistical assumptions are not required and thus not violated.

• There is high experimental control enabling technique to be precisely 

manipulated to measure effects, or attribute changes to certain aspects of 

techniques that occur without additional alterations resulting.

Research in the biomechanics of swimming is an example of where 

mathematical modelling can be put to good use. This is because difficulties in 

experimental methodologies, such as filming underwater, has led to few studies
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and a poor understanding of the area (Hay, 1988). It has subsequently been 

proposed that mathematical modelling would probably contribute the most to a 

better understanding of swimming biomechanics (Martin, 1989). However, few 

mathematical models exist for swimming biomechanics (Gallenstein and 

Huston, 1973; Martin et a/., 1981; Hay et al., 1993; Payton, Hay and 

Mullineaux, 1995; Payton and Mullineaux, 1996; Payton, Hay and Mullineaux, 

1997). Although different types of models exist (i.e. analytical, deductive, black- 

box and conceptual; Nigg, 1999), a black-box approach, where a set of 

mathematical functions determine the input to output relationship, has typically 

been used in swimming biomechanics.

Mathematical modelling has its limitations (Vaughan, 1984). However, the 

principal concern for any model is whether or not it effectively represents the 

real world. Nigg (1999) suggested that the assumptions in the model required 

to simplify the real world can be evaluated through either direct, indirect or 

trend measurement methods (Nigg, 1999). In 1997, Payton, Hay and 

Mullineaux (1997) using a black-box model investigated the effect of body roll 

on hand path and hand speed in front crawl swimming. The simulations of the 

model demonstrated that body roll alone can account for the medio-lateral 

motions of the hand that are considered important in generating propulsive lift 

forces required for better performance (e.g. Schleihauf et al., 1983). Such 

models provide the basis for future research (e.g. Yanai, 2001). In addition, the 

model by Payton, Hay and Mullineaux (1997) was the subject of a ‘direct 

evaluation’ by Payton et al. (1999) where the results from the model were 

compared to empirical data. It was concluded that the model “fails to accurately
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represent the movements of the trunk and upper extremity used by the 

swimmers” as “the assumption that the trunk rolls away from the neutral 

position for the duration of the insweep ... was not the case ...” (p. 694). To 

clarify this comparison, the body roll angles for the model and for the swimmers 

are illustrated in Figure 2.

Figure 2. Body roll angles during the front crawl pull. Dashed line: breath- 

holding trials of swimmers throughout the four phases (Payton et al., 1999). 

Solid line: mathematical model throughout three equivalent phases (Payton, 

Hay and Mullineaux, 1997).
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It can be seen from Figure 2 that the shape of the model is similar to that of the 

empirical data. However, the timing of the maximal body roll in the model at 

approximately 62% of the pull time needs modifying so that it occurs at
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approximately 42% of the pull time as observed for the empirical data. This can 

be achieved by including the glide phase within the model. In addition, the 

modelling of the body roll, as a cosine function of the shoulder extension angle, 

needs modifiying so that positive values aswell as negative values can be 

obtained. Nevertheless, care should be taken that theory is used, and not the 

existing action by swimmers, to develop the mathematical model further 

because the action might not be optimal.

This mathematical model by Payton, Hay and Mullineaux (1997), although 

provided the basis for future research (see Yanai, 2001 and Payton et al 

1999), is currently at the stage of ‘evaluation not satisfactory’ (see Figure 1). 

However, the modifications to the black-box model to include the glide phase 

and to allow both positive and negative values will likely place the model at the 

stage of ‘evaluation satisfactory’. This is because the pattern, timing and 

magnitude of body roll angles in the model will more accurately simulate those 

observed in swimmers (see Figure 2). This model would subsequently provide 

the basis for future research on the ‘optimisation’ of technique and thus 

promote further understanding of the influence of body roll angles in front crawl 

swimming.
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Logistic regression

In sport and exercise science research, gathering data of a nominal level of 

measurement has benefits that include the ease of its presentation and 

interpretation of findings. As such, nominal data can be useful for publicising 

meaning for practical, professional and political aims. This is particularly the 

case for the often large data sets derived from surveys where the results are 

often presented in a simple uni-factorial form such as frequency counts. An 

example of such a survey is the Allied Dunbar National Fitness Survey of 

English adults (Activity and Health Research, 1992). In presenting the results 

from this survey only frequency data were reported in the original report. Such 

surveys on sport, health and exercise provide a wealth of information that 

allows for future secondary data analyses.

Secondary data analyses, owing to the more focused nature of the research 

and reduced data set, often extend the uni-factorial analyses of the original 

surveys and use advanced multi-factorial analyses such as discriminant 

analysis. Discriminant analysis has been used to predict factors that determine 

group membership. Although rarely used in sport and exercise psychology, 

Biddle et al. (2001) considers its wider use could be beneficial. Conversely, 

Munro (2001) considers logistic regression as a preferred test owing to a 

number of advantages over discriminant analysis. These advantages include 

that the independent variables can be of any level of measurement, 

assumptions of the data are fewer (e.g. the normal distribution is not required) 

and a quantification of the phenomena is calculated. This quantification is in
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the form of odds values that can be used to predict membership to each level of 

a dichotomous dependent variable.

As with all regression analyses, there must be a theoretical relationship 

between the dependent variable and independent variables. The complexity of 

the relationship between variables can be accounted for in logistic regression 

as the independent variables can be entered in three forms: categorical (e.g. 

sex), continuous (e.g. age) or interaction (e.g. sex by age as a two-way 

interaction). Examples in the literature use variables in combinations of the 

different forms. Mullineaux and Barnes (1997; 1998) and Mullineaux et al. 

(2001a) used the variables in categorical form. Brill et al. (2000) and Pollard 

and Reep (1997) used a mixture of categorical and continuous forms of the 

variables. Iwao et al. (2000) included variables in an interaction form. However, 

the variety of variable combinations and the traditional tabular presentation of 

the logistic regression model typically used in the literature can make 

interpretation of the results difficult. Additional limitations of logistic regression 

are that: the dependent variable is limited to two groups; the regression results 

are obtained by an ‘iterative process’ or ‘best guess’ and do not provide 

predictions based on an underlying mathematical theory and dissemination of 

findings is difficult as many practitioners’ understanding of ‘odds’ values is 

limited.

The aim of the study by Mullineaux et al. (2001a) was to demonstrate a use of 

logistic regression via a secondary data analysis of the Allied Dunbar National 

Fitness Survey (Activity and Health Research, 1992) and to emphasise
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processes to overcome some of the limitations of this statistical technique. For 

example, for ease of analysis: all independent variables were coded as 

categorical variables; variables with the lowest odds were coded appropriately 

so that only multiplication would be required in using the model and standard 

error estimates were omitted. In addition, as in the literature the logistic 

regression model is typically presented in tabular form, which is difficult to 

interpret, in the study by Mullineaux et al. (2001a) the data were presented in 

an alternative graphical form (Figure 3).

Figure 3. New alternative method for presenting logistic regression results 

(from Mullineaux et al., 2001 a).

Variables

Age Active Motivation Adequate
exercise

Education Lifestyle
problems

Reference Characteristics
(odds to be active are 0.0026)

75+ Not at all Very low Don’t know None Some

s i
Alternative Characteristics 

(multiply 0.0026 by odds for 1 characteristic from any number of variables to obtain odds to be active 
for an individual with the selected characteristics)

65-74 (2.2) Not very (2.1) Low (12 f  No (1.5)a School (1.7) None (1.6)
55-64(3.8) Fairly (6.6) Mod low (3.6) Yes (2.9) Other (1.8)

45-54(14.0) Very (11.6) Mod high (4.4)
35-44 (21.2) High (4.7)
25-34(22.1) Very high (5.2)
16-24 (14.8)

The same results from Figure 3 can be compared to the typical tabular form of 

the same data presented in Table 2. This graphical method provides a simpler
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presentation format for the logistic regression model by firstly better 

highlighting the characteristics included in the constant term and secondly by 

omitting the frequency data and confidence intervals for the odds that are not 

required when using the model. Subsequently, selecting characteristics from 

each variable are clearer to enable the odds of that individual to participate in 

adequate physical activity to be calculated more easily. It is suggested that this 

new graphical method will facilitate an easier application of logistic regression 

models.

There were, however, several limitations in the study by Mullineaux et al. 

(2001a). For instance, difficulty occurred in identifying any valid ethnic 

influence for participation in physical activity. This was due to a small and 

uneven sample proportions that led to an increase in the error and therefore 

uncertainty in the results (Menard, 1995). Nevertheless, such restrictions apply 

to many other statistical techniques and are not unique to logistic regression. 

Furthermore, the analysis compared only the ‘sedentary’ to ‘sufficiently active’ 

groups, and did not analyse the ‘some activity’ group that participated at a level 

lower than that deemed beneficial for health. Extending the study by Mullineaux 

etal. (2001a) to use a multinomial or polychotomous logistic regression (SPSS, 

2001) may overcome this latter limitation. This may provide greater information 

on using such statistical tests for analysing data of a nominal or mixed level of 

measurement to enable the dependent variable in the research to be defined 

with either two or more than two groups.
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Table 2. Typical tabular method used to present logistic regression results 

(data from Mullineaux et al., 2001a).

Variable Characteristic Frequency Odds 95%CI

Constant 0.0026 -3.50 to 3.51

Age 75+ 246

65 to 74 270 2.18 -0.57 to 4.94

55 to 64 276 3.80 0.96 to 6.63

45 to 54 295 14.02 11.19 to 16.86

35 to 44 313 21.23 18.38 to 24.10

25 to 34 336 22.13 19.26 to 25.00

16 to 24 269 14.78 11.88 to 17.67

Active Not at all 167

Not very 354 2.12 -0.51 to 4.76

Fairly 1038 6.57 3.96 to 9.18

Very 446 11.57 8.87 to 14.26

Motivation Very low 475

Low 145 1.20a -1.44 to 3.84

Mod low 270 3.63 1.08 to 6.17

Mod high 452 4.35 1.83 to 6.87

High 418 4.75 2.22 to 7.27

Very high 245 5.19 2.59 to 7.78

Adequate exercise Don’t know 60

No 760 1.48a -1.56 to 4.52

Yes 1185 2.95 -0.09 to 5.98

Education None 937

School 604 1.70 -0.59 to 3.99

Other 464 1.84 -0.46 to 4.14

Lifestyle problems Some 607

None 1398 1.63 -0.63 to 3.90

a No statistically significant difference from the first characteristic from each variable (P>0.05). 

These first characteristics from each variable together constitute the constant term.
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Review papers

In addition to analysing specific techniques, review papers addressing a 

breadth of issues for different disciplines of sport and exercise science provide 

additional benefits for researchers. Part of the title for a review paper on sport 

psychology by Schutz and Gessaroli (1993), ‘use, misuse and disuse’, 

highlights potential benefits of review papers. More specifically, benefits 

highlighted include the breadths of traditional and novel statistical applications 

that are relevant for different disciplines. In addition, an indication of the 

diversity of theoretical topics in the area is provided, papers can be more up to 

date than information provided in textbooks and existing publications may be 

critiqued for appropriate and inappropriate applications of statistics. Owing to 

the potential benefits of overview papers, several have been published for each 

of the main disciplines of sport and exercise science. These include papers by 

James and Bates (1997) and Mullineaux and Bartlett (1997) for biomechanics, 

Shultz and Sands (1995) for physiology and Schutz and Gessaroli (1993) for 

psychology.

More recently, I proposed that a special issue on Research Methods and 

Statistics be commissioned by the Journal of Sports Sciences. This has been 

published and is summarised through the editorial by Nevill, Atkinson and 

Mullineaux (2001). This issue included invited review papers for the four areas 

of sport performance research (Atkinson and Nevill, 2001), psychology (Biddle 

et al., 2001), physiology of exercise and kinanthropometry (Winter et al., 2001) 

and biomechanics and motor control (Mullineaux et al., 2001b). These papers 

further highlight current practice and recent developments in applications of
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statistics that will further facilitate more appropriate use of statistics in sport and 

exercise science.
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Summary

The aim of this thesis is to highlight some appropriate uses of statistical 

techniques through applied examples in sport and exercise science research. 

The preceding sections provide an overview of selected techniques on five 

topics. Firstly, as measurement tools should be reliable for validity, LOA and 

LPR were proposed as appropriate techniques of testing repeated measures 

reliability (e.g. Mullineaux et a l, 1999). The next three topics were concerned 

with the necessity to analyse data with respect to an underpinning theory. The 

use of allometric scaling was shown to be appropriate for testing the 

relationship between body dimensions and performance measures (e.g. 

Batterham, George and Mullineaux, 1997). The use of mathematical modelling 

was demonstrated as beneficial for investigating a research question that 

would be difficult to test empirically (e.g. Payton, Hay and Mullineaux, 1997). 

The use of logistic regression to explore data of a nominal or mixed level of 

measurement was also highlighted (e.g. Mullineaux et al. , 2001a). Lastly, the 

benefits of review articles for promoting the understanding and appropriateness 

of applications of statistical techniques in specific disciplines were outlined 

(e.g. Mullineaux et al., 2001b). In addition to the brief review of each of these 

topics, the contribution of the appended published papers to highlighting an 

appropriate use of statistical analyses and directions for future research were 

provided. Statistical analysis techniques will continue to become more easily 

available and will allow increasingly complex questions to be investigated. As a 

result, the need for publications that emphasise the appropriate use of 

statistical techniques in sport and exercise science will continue.
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Many studies in the applied sciences have compared two methods of assessment for the same variable. The rationale for 
such comparisons may include assessment of reliability, objectivity or criterion validity. Comparative analysis of data has 
traditionally been undertaken using Pearson rho or Intraclass correlation co-efficients. These tests are inappropriate, 
however, because they do not identify fixed bias (one method consistently measuring differently to the other) or proportional 
bias (one method measuring proportionally differently to the magnitude of the measurement), as examples. More recently 
the ‘agreement’ technique (Bland and Altman, 1986, The Lancet, 1, 307-10) has been favoured, as the calculation is simple, 
and the interpretation of results is easy as they are reported in the original units of measurement. However, fixed and 
proportional bias often interact, and agreement does not provide the means to account for the independent effect of each. It 
has therefore been proposed that to account for these related entities that a ‘least products regression’ (LPR) should be used 
(Ludbrook, 1997, Clinical and Experimental Pharmacology Physiology, 24, 193-203). Assumptions that must be met for 
LPR include random error in x and y, normal distribution of the errors in LPR, homoscedasticity (homogeneity of variance 
between the errors in the LPR and the predicted scores, i.e. additive error) and a linear relationship between the 
measurements. To highlight the use of LPR, the release speed of the ball in 30 hockey flicks was determined through 
digitising by two operators. The release speed was found to be 10.99 ±  2.55 m.s'1 and 10.95 ±  2.57 m.s'1 by operator 1 and 
2, respectively. The necessary assumptions were all met: Z scores for the skewness and kurtosis of the errors were all within 
± 2 indicating a normal distribution; Levene’s test, was not significant (p = 0.88) indicating homoscedasticity; r = 0.99 
indicating a linear relationship. As the error is additive a LPR was performed in SPSS v 6,1 using the Loss function (NB: if  
the error was multiplicative the LPR would be weighted). Results provided are the parameter estimates (with 95% 
confidence intervals obtained by bootstrapping). For the regression equation the parameter estimate for the intercept was - 
0.12 (-0.43 to 0.19) and for the gradient was 1.01 (0.98 to 1.03). As the confidence intervals encompass 0 for the intercept 
and 1 for the gradient these indicate respectively that there is no fixed or proportional bias between the operators, thus 
confirming objectivity of the measurement. Least products regression provides the appropriate statistical analysis to 
compare two measurements, provided, the assumptions underpinning the analysis are met or controlled.
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Comparative analyses of a variable measured twice or against a “gold standard” tech­
nique should explore the existence of any fixed and proportional biases between the 2 
measurements. Levels of agreement (LOA) consider these biases together and least 
products regression (LPR) consider their effect independently. To compare the use of 
LOA and LPR, the peak torque extension (PTE) of the knee at 2.1 rad/sec during 
isokinetic dynamometry was obtained on 2 separate days {N= 17). The mean PTE (with 
standard deviations in parentheses) was found to be 93.6 (13.9)N- m on Day 1 and 92.5 
(11.5) N  • m on Day 2. The LOA were 1.06 ±  10.80 N  • m (95% confidence), and the 
LPR’s (with 95% confidence intervals in parentheses) intercept was-17.7 N - m  (-37.4 
to 2.03) and slope was 1.20 (1.01 to 1.40). LOA and LPR are suitable techniques to 
compare 2 measurements and, because the levels are large and the slope does not en­
compass 1, suggest that the knee’s PTE at 2.1 rad/sec is unreliable.
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A multitude of internal and external factors have the potential to impact upon ob­
taining measurements for assessing human performance even when great lengths 
are taken to minimize such influences. To ensure confidence in the results, an as­
sessment of the consistency or validity of the result is advisable. For example, the 
test-retest reliability o f equipment needs to be consistent so that a single measure­
ment can be justified. Also, for example, the results obtained simultaneously from 
measurements with an established technique and a new technique should be in 
agreement for criterion validity to be assured and to enable the new technique to be 
considered an acceptable alternative to the established technique. To support such 
comparisons, data should be analyzed using appropriate statistical tests.

The appropriateness o f the statistical test used to make comparisons between 
more than one measurement is dependent on many factors. Due consideration 
should be made o f the test’s principles (e.g., bivariate data), underpinning assump­
tions (e.g., normal distribution o f errors), and output (e.g., values in the original 
units o f measurement) so that the results obtained can be used to accurately assess 
the aim of the comparison. Authors may argue that the test they use is the most ap­
propriate one, and often the case for their argument can be convincing. Generally, 
however, no test is singularly ideal as the test may not be able to accommodate the 
number of repeated measurements, provide accurate results if  the statistical as­
sumptions by the data are violated, or provide results that are simple to interpret. 
This article therefore examines the appropriateness of statistical tests that are used 
for comparing two measurements on the same parameter at the interval or ratio 
level o f measurement.

COMPARING TWO MEASUREMENTS

The notion of two repeated measurements at the interval or ratio level o f measure­
ment agreeing can be illustrated by producing a scatter plot of the data. A visual in­
spection is important to qualitatively assess the two measurements as to (a) whether 
the relation is linear, because quantitative techniques can mask nonlinear trends 
with high linear correlation values, and (b) how close the agreement is that will aid 
in interpreting the quantitative results obtained. Data that do agree would lie along 
the linear line o f identity that passes through zero and possesses a slope o f 1 (Figure 
1, solid line). Plotting a least products regression (LPR) line (Figure 1, solid 
line)—appropriate because it minimizes errors in both* andy  measurements— and 
comparing this with the line o f identity facilitates comparison between the two 
measurements. If the LPR does not pass through zero, then this indicates that one 
measurement is consistently different from the other (Figure 1, dashed line). Also, 
if the regression line does not possess a slope equal to 1, then the measurements are 
proportionally different to each other (Figure 1, dotted line). These “none zero in­
tercept” and “a slope not equal to 1 ” have been defined asfixed  and proportional bi-
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FIGURE 1 Plots illustrating (a) line of identify (solid line), (b) regression with no bias (solid 
line), (c) regression with fixed bias (dashed line), and (d) regression with proportional bias (dot­
ted line).

ases, respectively (Ludbrook, 1997), and are important for interpreting the results 
of the comparison.

An additional important feature of the data is the distribution o f points around 
the LPR line. If the points are evenly distributed from the line throughout the full 
range of the measurements then the error is additive (or homoscedastic). Alterna­
tively, if  the points are not evenly spread then the error is multiplicative (or 
heteroscedastic). The boundaries of the distribution of these errors can be seen in 
Figure 2. Many statistical tests assume that error is additive, although in the areas 
of sports medicine and sports science, Nevill and Atkinson (1997) suggest that 
multiplicative errors are the norm. Data that have multiplicative errors can be sub­
jected to a “variance stability” transformation that will generally make the errors 
additive thus improving the accuracy o f interpretation in any comparison. Reasons 
proposed for multiplicative error include the following: (a) for smaller values the 
score must tend toward zero as no negative value can be obtained (assuming in this 
instance that the experimental design constrains the measurements to being posi­
tive); (b) biologically the response is often more varied with larger values; and (c) 
measurement error increases with larger values.

Comparative analysis of data has been proposed as appropriate via the use o f 
tests, including Pearson Product Moment correlation coefficients (e.g., Gravetter 
& Wallnau, 1996), intraclass correlation coefficients (e.g., Vincent, 1999), levels 
of agreement (LOA; e.g., Bland, 1995), least squares regression (LSR; e.g., 
Gravetter & Wallnau, 1996), and LPR (e.g., Ludbrook, 1997). Although no con­
sensus exists as to the most appropriate test, there are a number o f limitations in the
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FIGURE 2 Distribution of scores between two repeated measurements indicating the line of 
identity (solid line) and the boundaries of the distributions of the data when the errors are addi­
tive (dashed lines) and multiplicative (dotted lines).

use o f all o f these tests. The intention is not to cite each of these limitations as they 
have been provided previously (e.g., Atkinson &  Nevill, 1998; Bland & Altman, 
1995). Simply, a principal limitation with the majority of these tests is that they do 
not provide information to assess both fixed and proportional biases. Only LOA, 
LSR, and LPR that test these biases are appropriate. LSR is not appropriate, how­
ever, because it only measures error in one measurement whereas error should be 
assumed in both measurements. Two different equations would be produced, de­
pending on which measurement the error was minimized in for LSR. In contrast, 
LPR reduces the error in both measurements and would result in two differ- 
ent-looking equations, depending on which measurement was the dependent vari­
able. However, these two equations are the same as they are transformations of 
each other.

The assessment o f fixed and proportional biases in comparative studies must 
thus be undertaken using either LOA or LPR. Some researchers favor LOA be­
cause the calculation is simple and, because the results are reported in the original 
units of measurement with 95% boundaries, the interpretation o f the results is 
straightforward. However, fixed and proportional biases often interact, and the 
output from LOA does not provide the means to account for the independent effect
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of each. For example, a positive proportional bias and negative fixed bias could in­
teract and result in a zero mean difference. It has therefore been proposed that to 
account for these related entities LPR should be used because it provides separate 
measures of these biases. The calculation is more complex and the output is in sta­
tistical terms of reference in the form of y  =  a +  b -x. LPR may be considered the 
only “philosophically” correct technique, because it provides a separate assess­
ment of the biases and provides a predictor equation, but it is more sensitive to the 
spread of the data (although not as much as the more common LSR) and does not 
work with more than two repeated measurements. Although LOA does not sepa­
rate the biases, it does work with a small spread of data and can be extended to ac­
commodate more than two repeated measurements.

Assumptions underpinning both LOA and LPR include that the errors should 
be normally distributed, have a mean value of zero, and be additive, and that there 
are random errors and equal variance in both sets of measurements. When the nor­
mal distribution and additive error assumptions are violated for these tests, log-log 
transformations can be used to correct for these violations. Nevill & Atkinson 
(1997) provided strong evidence that “heteroscedastic errors are the norm and, as 
such, advocate the use of the log transformations when assessing measurement 
agreement” (p. 318). However, if  the normal distribution, linearity, or additive er­
ror assumptions are not violated, then these transformations should not be rou­
tinely used, because they can be misleading and are more difficult to interpret. 
Another solution for LPR only is to “weight” the calculation (Ludbrook, 1997), 
which is beneficial because it is simple and the results remain easy to interpret.

The aim of this study is to demonstrate the use of the LOA and LPR as “accept­
able” tests in comparing two measurements and to provide an insight into the inter­
pretation of their results.

METHOD

To illustrate the assessment of reliability, 17 healthy, active, female participants 
(means [with standard deviations in brackets] were: age, 20.9 [1.1] years; mass, 
59.6 [5.5] kg; height, 1.63 [0.06] m) volunteered and provided written informed 
consent to participate in this study. Peak torque extension (PTE) was obtained on an 
isokinetic dynamometer (Cybex Orthotron, Medway, MA) for the measurement of 
maximal voluntary strength of the knee extensors at 2.1 rad/sec. Two measures on 
the dominant leg were obtained 2 days apart and at the same time of day to limit cir­
cadian variations (Table 1).

Linearity of the Data

An initial check in assessing reliability is whether the two measures are linearly re­
lated. Production of a scatter plot provides a simple technique to assess this qualita-
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TABLE 1
Peak Torque Extension (A/ - m) of the Dominant-Leg Knee-Extensors at 2.1 rad/sec

Obtained on 2 Separate Days

Day 1 Day 2 Mean Difference Predicted Residual
Absolute
Residual

89 95 92 -6 96.56 -7.56 7.56
113 111 112 2 115.81 -2.81 2.81
64 76 70 -12 73.71 -9.71 9.71

108 99 103.5 9 101.37 6.63 6.63
108 104 106 4 107.39 0.61 0.61
94 92 93 2 92.95 1.05 1.05
87 88 87.5 -1 88.14 -1.14 1.14
96 98 97 -2 100.17 -4.17 4.17
85 89 87 -4 89.34 -4.34 4.34
88 84 86 4 83.33 4.67 4.67

111 104 107.5 7 107.39 3.61 3.61
76 77 76.5 -1 74.91 1.09 1.09

111 106 108.5 5 109.79 1.21 1.21
87 83 85 4 82.13 4.87 4.87

103 102 102.5 1 104.98 -1.98 1.98
91 94 92.5 -3 95.36 -4.36 4.36
80 71 75.5 9 67.69 12.31 12.31

M 93.6 92.5 93.1 1.06 93.6 -0.01 4.24
SD 13.9 11.5 12.5 5.51 13.9 5.47 3.28

Note. Mean = (Day 1 + Day 2)/2; Difference = Day 1 -  Day 2; Predicted is Day 1 = 1.2 x Day 2 -  
17.7 (from least products regression equation); Residual = Day 1 -  Predicted; Absolute residual = 
I Residual!.

tively, which is important because quantitative techniques can indicate a linear re­
lation for nonlinear data. Figure 3 illustrates a linear trend between the two 
measures, supported by the Pearson Product Moment correlation coefficient value 
(r = 0.92). Qualitatively, this illustration emphasizes that the data do not lie along 
the line o f identity. This deviation needs to be quantified to assess whether the 
isokinetic chair is reliable over two separate days for the experimental conditions 
described.

Analysis of the Errors

The distribution of errors around the regression line is important in providing confi­
dence in the results for accurate interpretation. Inspection of the deviation from the 
line of identity in Figure 3 can enable a qualitative assessment of the errors. Be­
cause the small and large errors appear to be evenly distributed throughout the 
range of scores, the error can be assumed to be additive. For the LPR this is quanti­
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FIGURE 3 Scatter plot to illustrate the linear trend ( r =0.92) between the two repeated mea­
surements of PTE (where deviation of the data from the line of identity [dotted line] can be 
viewed).

tatively supported, as there is no significant correlation between they values (Day 
1) and absolute residuals (r= -0 .48 ;p  > .05). For the LOA this is supported by a ran­
dom distribution of the differences plotted against the mean score for each pair o f  
measurements (Figure 4). No significant correlation between the differences and 
the mean score for each pair of measurements confirms that the errors in LOA are 
additive ( r - 0.43;p  >  .05).1 Finally, the error in the LPR should be zero, an assump­
tion that it met because the mean error is -0.01 N  • m (see Table 1).

Normality of the Data and Errors

The use of LPR and LOA are underpinned by the normality assumption. This can be 
confirmed if the Z scores for the skewness (skewness + SE skewness) and kurtosis 
(kurtosis -s- SE kurtosis) are within ±2 (Vincent, 1999). The raw data meet this as­
sumption for bothy (Z skewness = -0.51; Z kurtosis = -0.57) and x (Z skewness = 
-0.38; Z kurtosis = -0.75). In addition, this assumption needs to be met for the re­
siduals of the LPR (Z skewness = 0.64; Zkurtosis = 0.34) and the differences for the 
LOA (Z skewness = -1.13; Zkurtosis = 0.50), which are all acceptable.

‘Although the correlations are not significant (possibly due to the small sample size), they are large, 
and careful consideration should be made regarding whether to perform a “variance stability” transfor­
mation (i.e., log-log transformation or Weighted LPR) or consider removing any outliers. However, the 
qualitative assessment suggests the errors are additive and that, because the transformations would 
make the interpretation more difficult, none of these techniques have been implemented.
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FIG U R E 4 Differences between each pair of repeated measurements of PTE plotted against 
the mean score of each pair for assessment of additive or multiplicative error in the use of LOA.

Calculations

LOA for two sets of measurements were calculated by subtracting the values for 
Day 2 from those of Day 1 and then calculating the mean (8) and standard deviation 
(a) of the differences. The LOA were calculated as 8 ± 1.96 • c  (Bland & Altman, 
1986) with 95% confidence.2

LPR of the “Model Expression” formy= a  +  b - x  was calculated using SPSS for 
Windows (Release 8.0.0; SPSS, 1997) using the “nonlinear regression” and input­
ting the “user-defined loss function” formula as [y -  (a + b • x)]2/\b\ (where the pa­
rameters a and b were set to initial values of 0 and 1, respectively).3 The 95% 
confidence intervals (Cl) in a and b were obtained using the “bootstrap estimates 
of the standard error” bootstrapping option.4’5

The mean PTE (with standard deviations in parentheses) of the knee at 2.1 rad/sec 
during isokinetic dynamometry obtained for 17 healthy, active, female participants 
overtwo separate days was 93.6 (13.9) N ' m  and 92.5 (11.5) m for Days 1 and 2, 
respectively.

2For more than two groups, a fixed boundary value can be calculated as ±1.96 • V(2 • MSR) with 95% 
confidence (British Standards Institute, 1979; Mullineaux, Scott, & Batterham, 1994).

3If a weighted LPR were required then the “user-defined loss function” formula would be [y -  (<z + 6 •

4Because the Cl were obtained using bootstrapping, these will vary slightly each time they are calcu­
lated. See Zhu (1997) for a tutorial on bootstrapping.

5If the Cl are not required then the simple calculations are as follows: b is the ratio of the standard de­
viations of the y  and x values, and a - y r - b ' x r (where y  and x are the mean values ofy  and x, respec­
tively).

RESULTS

x)]2/\b\(x)(y).
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The calculation of the LOA was 1.06 ± 10.80 N  • m (95% confidence). The 
mean difference suggests that there is small fixed bias of Day 1 measuring 1.06 
N  • m more than Day 2. The 95% spread of the differences of ±10.80 N  • m 
equates to 11.6% of the mean PTE of 93.1 * m. Taking the fixed bias into ac­
count, this indicates that Day 1 could be up to 9.74 N  • m less (i.e., 1.06 -  10.80) 
and up to 11.86 N  - m more (i.e., 1.06 + 10.80) than on Day 2 (95% confidence). 
These equate to 10.46% (i.e., 9.74/93.1 x 100) and 12.74% (i.e., 11.86/93.1 x 
100) of the mean PTE, respectively. Because these values are large, it can be 
concluded that the data are not sufficiently reliable.

Results provided for the LPR are the parameter estimates (95% Cl). For the re­
gression equation the parameter estimate for the intercept was a =  -17.7 N  • m 
(-37.4 to 2.03) and for the slope was b = 1.20 (1.01 to 1.40), as illustrated in Figure 
5. The intercept o f -17.7 N  • m suggests that Day 1 measures less than Day 2, al­
though because the 95% Cl encompasses zero, no fixed bias between the repeated 
measures can be supported. However, because the Cl for the slope does not en­
compass 1, then proportional bias between the repeated measures exists such that 
Day 1 measures less than Day 2 with increasing magnitude. It can be concluded 
that LPR supports that the data are not sufficiently reliable.

CONCLUSIONS

The results of both LOA and LPR support that the measurement of PTE of the knee 
extensors at 2.1 rad/sec during isokinetic dynamometry for 17 healthy, active, fe-

120 T
= 1 .2 x -17.7

1 1 0 -

~  1 0 0 -

80 -

7 0 -

60 80 100 120

Day 2 (Nm)

FIGURE 5 Comparison of the line of identity (dotted line) and LPR (solid line) between two 
repeated measurements of PTE (with the LPR equation displayed).



204 MULLINEAUX, BARNES, BATTERHAM

male participants over two separate days is not sufficiently reliable. LOA indicates 
an unacceptable difference between the two sets of scores, and although LPR found 
no fixed bias, it supports the existence of a proportional bias. A direct comparison 
of the two statistical techniques is not possible because LOA integrates fixed and 
proportional biases whereas LPR separates these two entities.

LPR possesses some benefits over LOA. First, LPR is “philosophically” correct 
in that it provides separate measures of fixed and proportional biases, whereas 
LOA provides an interactive measure that can be misleading. Second, interpreta­
tion of the intercept and slope from LPR are unambiguous in that the Cl identifies 
whether the results deviate from the ideal, whereas identification of unacceptable 
differences is subjective in LOA. Conversely, LOA offers some benefits over 
LPR: It is easy to calculate; the results are “meaningful” because they are provided 
in the original units of measurement; and the technique can be extended to accom­
modate more than two repeated measurements.

LOA and LPR provide methods to statistically compare two measurements, 
provided the assumptions underpinning the analysis are met or controlled. 
Methods to control these have been proposed, including log-log transformations 
(Nevill & Atkinson, 1997) and weighted regressions (Ludbrook, 1997). The 
choice of test is dependent on whether the appropriate assumptions are met, the 
number of repeated measurements, and preference in the format of the results ob­
tained. The important factor is that an assessment of reliability is performed so that 
validity can subsequently be supported (Mullineaux & Bartlett, 1997). These tech­
niques can be extended to making comparisons between, for example, experimen­
tal and theoretical data or gold standard and new measurement methods.
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INTRODUCTION

Researchers in the field of sport and exercise sciences frequently implement improper research 

designs and employ inappropriate statistics. This problem is highlighted by the common practice of 

a large number of dependant variables being selected without a priori theorising and assessed for 

statistical significance. This "shopping basket" full of dependant variables being "checked out" for 

statistical significance often results in violations of alpha with a consequent incorrect and 

misleading statistical analysis.

The employment of the analysis of variance test for assessing the reliability of techniques or 

measures is a specific problem. The recommendation to estimate reliability with this method (e.g. 

Baumgartner, 1989; Thomas and Nelson, 1990) and the available intraclass correlation are 

inappropriate owing to the concept underpinning these tests. These tests aim to identify a difference 

and a relationship respectively between data sets and do not identify the degree of agreement 

between them. The use of the "agreement" technique is thus considered more appropriate.

For reliability to be assumed no statistical difference between repeated measures should be found 

using the analysis of variance. It is suggested by Bates et al. (1992) that the interpretation of non­

significant findings should be performed with a statistical power analysis. A power analysis will 

reveal the ability of the test to identify a difference. It is hypothesised that owing to the small 

differences that will often exist between repeated measures that the power of this test will be small. 

Hence, if the ability of the test to identify a difference is small, then the criteria for reliability of no 

statistical difference will have a high probability of being erroneously achieved.

The objective of this study was to compare the use of the analysis of variance method with the 

"agreement" method for assessing reliability. The process of digitising, frequently assessed for 

reliability, was chosen as an example for this demonstration. However, the comparison could have 

been performed with any sets of data that measure the same quantity by either the same or different 

techniques.



METHODOLOGY

Thirty hockey players of mixed ability and sex volunteered to participate in this study. A Panasonic 

F-15 camera was positioned with the optical axis of the lens aligned on the penalty spot and 

perpendicular to the length of a hockey pitch. Each subject was filmed in two dimensions 

performing one hockey flick each.

The ball in each sequence was digitised at 50 Hz by two experienced digitisers on an Archimedes 

440 micro computer running the Kine System (Bartlett and Bowen, 1993). For both digitisers the 

sequences were smoothed and analysed for the ball's release speed.

For each subject the two values obtained for the ball's release speed were used to assess the digitiser 

objectivity via the one-way analysis of variance (ANOVA) reliability model described by 

Baumgartner (1989) and the "agreement" method described by Bland and Altman (1986).

The ANOVA model required the data be input into an one-way within design. Assessment of 

reliability was determined by establishing whether a significant difference existed between data sets 

and by substituting data from the analysis of variance table into equation 1 to calculate the intraclass 

correlation (R) between data sets.

MSb -  MSW [Equation 1]
K — --------------------

(From Baumgartner, 1989)

The calculations for "agreement" involved, firstly subtracting the data values found by one digitiser 

from those found by the other digitiser and then calculating the mean (8) and standard deviation (a) 

of these differences. By substituting 8 and c  into equation 2, the boundaries of agreement between 

the digitisers were determined.

[Equation 2]
Boundaries o f Agreement = S±2.cr

(From Bland and Altman, 1986)

RESULTS

The mean release speed was found to be 10.99 ± 2.55 m.s-l by digitiser 1 and 10.95 ± 2.57 m.s’1 by 

digitiser 2.

The analysis of variance results (table 1) demonstrated that the F value of 2.53 was less than the 

tabled value of 4.18 (Cohen and Holliday, 1982) at the 0.05 significance level. Thus it was 

concluded that there was no significant difference between the ball's release speed found by the two 

digitisers (p < 0.05). A post hoc power analysis (for a two group design, n = 30, effect size index =



19
0.014 and a  = 0.05) revealed that there was less than a 6% chance of the ANOVA finding 

significance (extrapolated from Cohen, 1988).

Table 1: Analysis of Variance Results

Source of variation DF SS MS F
Between total (B) 29 379.26 13.08
Within total (W) 30 0.53 0.018
Digitisers 1 0.04 0.04 2.53

Residual OR) 29 0.49 0.017
Sub-total 30 0.53

Grand total 59 379.79

By substituting values from table 1 into equation 1 the intraclass correlation between the data sets 

was calculated as 0.99.

For the* "agreement" method the mean of the differences was 0.05 m.s“l and the standard deviation 

of the differences was 0.18 m.s-*. The boundaries of agreement were that the release speed of the 

ball could be found by digitiser 2 as 0.32 m.s‘l lower or 0.42 m.s”* greater than values found by 

digitiser 1 (95% confidence level).

DISCUSSION

The objective of the methodology was to provide a basis for comparing techniques of assessing 

reliability. Limitations within the research design, such as the sampling bias, are therefore 

peripheral to the objectives of the study and considered irrelevant.

The non-significance (p < 0.05) and intraclass correlation of 0.99 between data sets calculated from 

the ANOVA model would suggest that there is reliability between digitisers. The boundaries of 

agreement, where digitiser 2 could find the ball's release speed as 0.32 m.s"l lower or 0.42 m.s"* 

greater tfian by digitiser 1, would also suggest that there is reliability between digitisers.

With this worked example a conclusion that the digitising was reliable could be made from both 

techniques. However, the ANOVA model is not recommended owing to two principal limitations. 

Firstly, it is conceptually incorrect to use difference and correlation tests for assessing reliability. 

Secondly, there is often a low statistical power for the ANOVA test. For this data there was a 6% 

power which equated to a 94% chance of a type II error occurring. Frequently this low power for 

ANOVA will result in no significant difference with a high type II error probability, therefore, 

confounding any assessment of reliability.



It is recommended that boundaries of agreement should be reported for describing reliability. This 

is owing to "agreement" providing more useful information than ANOVA by quantifying the 

potential difference between measures. Further, the use of "agreement" is considered conceptually 

correct and does not have the problem, as with ANOVA, of a high probability of a type II error 

occurring.

For situations where more than two sets of repeated measures exist, an overall agreement boundary 

can be calculated by substituting data from the ANOVA table into equation 3.

 ----------  [Equation 3]
Agreement Boundary = ± 2  x J 2 x MSp

(Adapted from Fleiss, 1986)

For the current data, the agreement boundary was calculated from equation 3 as x  ± 0.368 m.s’l, 

where x  is any measured data value. This value is similar to two times the standard deviation of the 

differences (2 x a = 0.367 m.s'*) found by the "agreement" method. The exclusive use of ANOVA 

combined with equation 3, however, is not recommended for cases of two data sets as the 

"agreement" method described provides more information which may be used in an assessment of 

reliability.
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T h e  ab ility  to generate a high m u scu lar p o w e r o u tp u t u n d e r­
p ins m an y  actions in  soccer. T o  m a k e  v a lid  com parisons o f
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pe rfo rm an ce  betw een  players, the in flu e n ce  o f  b o d y  size m u st 
be ap p ro p ria te ly  p a rtitio n e d  o u t. T h e  aim  o f th is s tudy was to 

establish the m ost ap p ro p ria te  way to co n tro l fo r the in flu en ce  

o f  th igh  cross-sectional area fo r a test o f  ve rtica l ju m p in g  

po w er in  a group o f e lite  y o u th  soccer p layers.
N in e  health y m ale  professional soccer p layers (m e a n  ±  s: age 

18.1 ±  0 .6  years, h e ig h t 181 ±  6 cm , b o d y  mass 7 0 .5  ±  5 .0  kg) 

vo lun teered  to p a rtic ip a te . A fte r  a s tandard ized  w a rm -u p ,  
each p layer p e rfo rm e d  three ve rtica l ju m p s w ith  a co u n te r­
m o vem en t on a force p la tfo rm  ( A M T I  O R 6 -7 , W a te rto w n ,  
M A ,  U S A ) . V e rtic a l force was sam pled  at 10 00  H z  using a 

data acquisition system ( A M L A B , L a n e  C ove, A u s tra lia ). 
P ow er o u tp u t was derived  fro m  th e p ro d u c t o f  gross vertica l 
force and vertica l ve loc ity  o f  the centre  o f  mass (th e  im p u lse  o f  

the n e t ve rtica l force d iv id e d  by b o d y  m ass). T h e  h ighest value  

fo r the th ree tria ls  was reco rd ed  as peak p o w er o u tp u t. U s in g  
m agn etic  resonance im ag in g  (H o r iz o n  L X  1.5 T ,  G en era l 
E le c tric , M ilw a u k e e , W I ,  U S A ) ,  th ig h  m uscle cross-secdonal 
area was d e te rm in e d  fro m  an ax ia l T t-w e ig h ted  scan at the  

m id -p o in t o f  the fe m u r.
T h e  co m b in ed  cross-sectional area o f  the le ft an d  r ig h t th igh  

m uscles was 0 .3 3  ±  0 .0 3  m 2. T h e  p e ak  p o w er o u tp u t fo r the  
c o u n te r-m o ve m en t ju m p  was 4 9 8 1  ± 3 8 0  W . T h e  lo g -lin ear  

re la tion sh ip  betw een cross-sectional area and peak po w er  

o u tp u t w h en  expressed in the fo rm  y  =  a • xb gave a b expon en t 
o f  0 .6 7  (r*  =  0 .7 3 , 9 5 %  confidence in terva ls  =  0 .5 4 -1 .2 7 ) .  T h e  

9 5 %  confidence in tervals fo r the b ex p o n en t in  th is study  

spanned the expected va lue fro m  d im e n s io n a lity  th eo ry  o f  

u n ity . W e have shown th a t, w h en  co n tro llin g  fo r b o d y  size in  

in te r-in d iv id u a l com parisons o f  ve rtic a l ju m p in g  p erfo rm an ce  

am ong soccer players, ap p ro p ria te  scaling techn iques should  

be adopted .



Appendix 5

Batterham, A.M., George, K.P. and Mullineaux, D.R. (1995). Relationship 
between heart size and body dimensions: an allometric scaling approach. 
Medicine and Science in Sports and Exercise, 27, S158.



S158 Thursday, June 1

8 8 6  RELATIONSHIP BETWEEN HEART SIZE AND BODY
DIMENSIONS: AN ALLOMETRIC SCALING APPROACH 

A.M. Batterham, K.P. George, and D.R. Mullineaux,
Division o f Sport Science, The Manchester Metropolitan 
University, Crewe and Alsager Faculty, Alsager, England.

Many physiological variables have been found to relate to body mass (BM) or fat 
free mass (FFM) in a log-linear fashion, according to the general allometric 
equation y = a.BM^. Traditionally however, a ratio normalization approach has 
been adopted assuming that the exponent V  = 1. This practice is valid only if the 
criteria o f data linearity and zero intercept are met. The purpose o f this study 
therefore was to determine the proper relationship between left ventricular mass 
(LVM) and body dimensions in 142 men and women (age range 18-40 years). 
Echocardiography (M-mode) was used to define posterior wall thickness, septal 
thickness, and left ventricular internal dimensions at end diastole. LVM (g) was 
then calculated via a standard predictive equation. FFM was estimated via bicep, 
tricep, subscapular and suprailiac skinfolds. Initial data evaluation demonstrated 
that the criteria for ratio normalization had not been met. Allometric scaling 
revealed strong log-linear relationships between body size variables and LVM 
(InBM: InLVM, r = 0.73; lnFFM:lnLVM, r = 0.83). The proper value o f b was 
found to be 1.5 for BM and 1.45 for FFM. Hence it appears that LVM does not 
represent a constant proportion o f BM. Use o f a simple ratio standard (LVM/ 
BM or LVM/FFM) to compare individuals or groups would therefore penalize 
less massive subjects, and potentially lead to spurious conclusions. In this sample, 
the statistically correct scaling method would be LVM/BM* • 5 or LVM/FFM1-45. 
It is suggested that sample specific allometric equations should be generated in 
order to properly adjust echocardiographic indices o f cardiac dimension.
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ABSTRACT
B A T T E R H A M , A . M ., K . P. G EO RG E, and D . R. M U L L IN E A U X .  
Allometric scaling o f left ventricular mass by body dimensions in  
males and females. Med. Sci. Sports Exerc. Vo l. 29, N o. 2, pp. 
181-186, 1997. Physiological variables must often be scaled for body 
size differences to permit meaningful comparisons between subjects or 
groups. This study aimed to determine the proper relationship between 
body dimensions and left ventricular mass (L V M ) via allometric 
scaling (A S) in 142 subjects (78 males, 64 females; ages 1 8 -4 0 ) . A  
cubic formula was used to estimate L V M  from w all thicknesses and 
left ventricular internal dimensions derived from M-m ode echocardi­
ography. Fat free mass (F F M ) was predicted from anthropometry. 
“Best compromise” allometric equations (y =  a’xb) revealed a com­
mon body mass (B M ) exponent o f 0.78 (95%  C l, 0 .6 5 -0 .91 ). The 
widely adopted ratio scaling (RS) method assumes that the exponent 
b =  1. In  this sample, use o f RS would penalize heavier subjects by 
overcorrecting for B M . The equivalent mean F F M  exponent o f 1.07 
was not different from unity (95%  C l, 0 .92-1 .22). Hence, RS using 
B M  would appear to penalize those subjects who are heavier owing to 
excess fat not excess F F M . Gender differences in L V M  were 70, 44, 
and 18%, for absolute values per B M 0-78 and per F F M 107, respectively 
(P <  0.05). This reveals quantitative differences in heart size inde­
pendent o f body dimensions. W e conclude that sample specific AS  
permits meaningful intersubject or intergroup comparisons.

P O W ER  F U N C T IO N  A N A L Y S IS , A L L O M E T R Y , G E N D E R  
D IFFE R E N C E S, E C H O C A R D IO G R A P H Y .

Recently there has been renewed interest in the 
importance of body size as a potentially con­
founding influence in studies of physiological 

function (3). This paper will focus on how body dimen­
sion relates to cardiac dimension. First, the concept of 
scaling will be addressed, detailing various methods that 
have been adopted to relate body size variables to phys­
iological variables. Second, experimental data will show 
the proper relationships between echocardiographically 
determined left ventricular mass and body dimension in 
a sample of males and females. Third, the general impli­
cations of these findings for scaling in sports echocardi­
ography will be discussed.
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SCALING

A wide range of physiological variables are influenced 
by body dimensions, such that increments in body size 
result in an increase or decrease in the physiological 
response. To conduct meaningful interindividual or in­
tergroup comparisons, it is often essential to partition out 
this confounding influence via the derivation of a relative 
index that is allegedly size independent. “Scaling” in­
volves the normalization of a physiological variable (y) 
for differences in a body dimension variable (x).

Numerous approaches have been used to try to solve 
this problem. By far the most common approach is the 
use of ratio standards (RS) of the form y = b*x. Scaling 
via RS involves dividing the absolute physiological (de­
pendent) variable by a body dimension (independent) 
variable such as body mass (BM), fat free mass (FFM), 
or body surface area (BSA). The theoretical and mathe­
matical flaws in this method were recognized nearly fifty 
years ago (22), and yet its use remains widespread. The 
RS approach assumes a linear relationship between the 
anthropometric and physiological variables with the line 
of identity passing through or close to the origin. Viola­
tion of these assumptions may lead to erroneous conclu­
sions in research using the RS scaling method. An ex­
tension of RS involves the use of regression standards 
(RES) of the general form y =  a +  b*x +  G, where b 
represents the gradient of the trendline, a the y-intercept, 
and G the additive residual error term. Unfortunately, 
although often providing a better fit to the data with a 
reduction in residual error, positive intercepts are com­
mon, indicating that someone of zero body mass would 
exhibit a physiological response (3). Therefore, extrapo­
lation of the regression line beyond the actual range of 
data must be avoided.

ALLOMETRY

Research in comparative physiology has consistently 
revealed that many physiological variables relate to body 
size in a log-linear, rather than linear fashion (20). Plot­
ting log-transformed data thus results in a straight-line fit.
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This relationship is best described by a power function or 
allometric equation of the following general form:

y =  a-xb’G

where y is the physiological variable, x  is the body size 
variable, and a, b, and E represent the proportionality 
coefficient, the size exponent, and the multiplicative error 
term, respectively. The a and b values are derived from 
the log-log plot, with b representing the slope of the line 
and a the intercept at unity body mass (since the natural 
logarithm of 1 =  0, that is, the origin on the log-log plot).

The most commonly adopted body size variable has 
been BM, thus enabling mass exponents (b) for several 
physiological variables to be identified. For example, it 
has been shown that maximum oxygen uptake is properly 
scaled by the power function ratio V 02max (absolute)/ 
BM273 (16). This suggests that smaller individuals have a 
higher V 02max per unit body mass than larger individuals 
because the mass exponent is less than one. Expressing 
V 02max as a RS (ml*kg-1,min-1) to compare individuals 
or groups would thus penalize larger individuals by over­
correcting for body size.

Allometric models have provided a better fit to the data 
with less residual error and thus arguably represent a 
more valid method for producing a dimensionless phys­
iological variable (16). An advantage of such power 
function approaches over regression standards models is 
the assumption of a multiplicative error term. Many 
physiological data sets indicate heteroscedasticity, a ten­
dency for a greater spread in the data as body size 
increases, violating the assumption of constant error vari­
ance (homoscedasticity) in regression standards models. 
This further supports the statistical validity of allometric 
modeling (3).

RELATIONSHIP BETWEEN HEART SIZE AND 
BODY SIZE

There is little evidence in the literature of attempts to 
examine properly the relationship between left ventricu­
lar mass and body dimension indices in humans. The 
extant data indicate that cardiac dimensions may be 
closely correlated with fat free mass in particular, sug­
gestive of a possible relationship between skeletal and 
cardiac muscularity (12). Animal studies (18) have re­
vealed that the relationship between total heart mass 
(HM) and body mass (BM) is described best by the 
following equation: '

H M  =  0 .0 0 6 -A M 0 98 ±  0.02

The exponent of 0.98 essentially equals unity. Hence, 
HM in a range of mammals represents a constant pro­
portion of BM (0.6%). It has been assumed that a similar 
linear, proportional relationship exists in humans and that 
cardiac dimensions can therefore be properly scaled by 
RS methods constructing a LVM/BM ratio.

Use of RS scaling has been prevalent in echocardio- 
graphic studies in sports cardiology, particularly relating 
to the athletic heart (12). Attempts to document training 
specific adaptations in cardiac dimensions are clearly 
dependent upon the appropriate normalization of abso­
lute heart size data for groups of disparate body size, e.g., 
weight lifters and endurance athletes. It has been sug­
gested that use of a HM/BM index may be unsatisfactory 
as the mass of the organ is small relative to the mass of 
the body. Therefore, response of the organ weight may 
not be proportional to that of the whole body (17). In 
addition, failure to meet the RS assumptions of linearity 
and zero intercept would result in inappropriate scaling.

The correct relationship between body size and echo- 
cardiographic indices of cardiac dimension remains to be 
established. The purpose of this study is to examine the 
proper allometric relationships between left ventricular 
mass and body mass and fat free mass in a human subject 
sample. In addition to informing scaling practice, allom- 
etry may raise interesting questions concerning gender 
differences in heart size-body size relationships and en­
courage a reevaluation of training specific changes in 
echocardiographic studies.

METHODS

Subjects

One hundred and forty two subjects volunteered for the 
study (78 male, 64 female, mean age 22 ±  1.5 yr, range 
18-40). Subjects were screened medically with a stan­
dard laboratory questionnaire and all were found to be 
“apparently healthy,” asymptomatic and free from car­
diovascular disease and major risk factors for coronary 
heart disease. Additional exclusion criteria included obe­
sity and the chronic use of medications that may influ­
ence resting echocardiographic dimensions. Previous 
testing in the same laboratory had revealed no evidence 
of resting or exertional hypertension or electrocardio­
gram abnormalities.

The sample was drawn from a population of under­
graduate sport and exercise science students who ap­
peared relatively homogeneous with respect to habitual 
physical activity. A simple, “global” physical activity 
self-assessment tool was administered in a personal in­
terview. The instrument was modified from that used in 
the Allied Dunbar National (England) Fitness Survey (1), 
with the frequency and intensity of 20-min plus sessions 
in the previous 4 wk documented. An indication of life­
time physical activity participation was obtained from the 
proportion of years since age 14 that the subject had 
participated regularly in physical activity. All subjects 
were moderately to highly recreationally active, with 
55% of males and 53% of females reporting an average 
of three or more 20-min sessions per week at a “vigor­
ous” (7.5 kcal-min -1) intensity. The remainder reported
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an equivalent frequency of “moderate” (5 kcal*min_1) 
intensity activity. Group equivalence for physical activity 
indices was confirmed via the Kolmogorov-Smimov 
two-sample test (P > 0.05) suggesting that males and 
females represent the same population with respect to the 
distribution of physical activity indices.

Procedures were in accordance with the American 
College of Sports Medicine policy statement regarding 
the use of human subjects and written informed consent 
(2). A cross-sectional “snapshot” design was used, with 
subjects visiting the laboratory on one occasion.

Procedures

Echocardiography. A Hewlett Packard (Andover, 
MA) Sonos 100 ultrasound imaging system (2.5 Mhz 
transducer) in sector 2-D mode was used to image a 
longitudinal axis view of the left ventricle from the 
parasternal window. M-mode recordings were derived 
from a cursor line crossing the left ventricle at the tips of 
the mitral valve leaflets. All echocardiograms were con­
ducted and analyzed by a single experienced technician. 
The following measurements were made in centimeters 
according to the Penn convention (10): septal and pos­
terior wall thicknesses at end diastole (ST and PWT) and 
left ventricular internal dimensions at end diastole 
(LVIDd). All readings were obtained at the peak of a 
simultaneous EKG R-wave, with subjects in the supine or 
left lateral decubitus position. Measurements represented 
an average of 3-5 heart cycles.

Left ventricular mass (LVM, g) was estimated by 
means of the regression corrected cubic formula of De- 
vereux and Reichek (10). This method involves the sub­
traction of internal LV volume from total LV volume, 
multiplied by an assumed constant for cardiac muscle 
density of 1.04. The major limitation of this approach lies 
in the calculation of LV volume by means of cubing 
obtained LV dimensions. Clearly, any measurement er­
rors in ST, PWT, or LVIDd will inflate exponentially 
when estimating LVM. The 2.5 Mhz transducer repre­
sents a compromise between resolution and penetration, 
with optimal resolution of approximately 0.7-1.4 mm. A 
1-mm error in PWT measurement, for example, could 
result in a 15% error in LVM estimation (17). Notwith­
standing these limitations, Reichek and Devereux (19) 
reported a strong correlation between echocardiographic 
estimation of LVM and LVM determined at autopsy (r = 
0.96). Moreover, the aim of the current study was to 
examine relationships between LVM and body dimen­
sions using procedures commonly adopted in the extant 
literature (12) rather than criterion gold standard meth­
ods.

Body composition. Percent body fat was estimated 
by calculating the sum of bicep, tricep, subscapular, and 
suprailiac skinfolds (11). The mean skinfold of three 
rotations that agreed within 10% was used for subsequent

analyses. Total body mass (BM ±0.1 kg) and fat percent 
were used to partition body mass into its fat mass and fat 
free mass components.

Data analysis. Initially, it is essential to verify the 
inappropriateness of the RS approach before progressing 
to the allometry. Linearity checks were performed on BM 
against LVM and FFM against LVM. Scaling via RS can 
only be adopted if Tanner’s “special circumstance” is 
satisfied (22). The coefficient of variation for the body 
dimension variable (x) divided by the coefficient of vari­
ation for LVM (y) must equal the Pearson product mo­
ment correlation between the two variables: Vx/Vy =  r 
x,y (22). If this assumption is not met, RS scaling may 
lead to spurious conclusions.

Allometry. Prior to identifying a scaling index com­
mon to both genders, similarity of slopes of the relation­
ship between body size and LVM must be confirmed. 
Significant gender differences found in the b exponents 
(LVM =  a-BMb (or FFMb)) would preclude intergroup 
comparison of scaled LVM, as it would indicate that the 
groups were qualitatively different. Commonality of b 
exponents was tested by including a gender X In BM (or 
In FFM) interaction term in a multiple log-linear regres­
sion model:

In LVM  =  In a +  d- (gender X  In BM ) +  c • gender

+  b 'In  BM  +  In G

The interaction term for both In BM and In FFM was not 
significant (P >  0.05) indicating that the b exponents 
were similar between groups. A common “best compro­
mise” b exponent was then fitted by including “gender” 
as a predictor variable alongside BM or FFM in a mul­
tiple allometric regression model (16):

L V M  =  a  • (GENDER0) • B M b (or F F M b) • G

To derive the power function exponents, gender was 
entered as a dummy variable (males coded 0, females 
coded 1) in a log-transformed model:

In LVM  =  In a +  c • gender +  fc-ln B M  (or In F F M ) +  In G

The model provides a solution for a single b exponent, 
isolating the “gender independent” influence of body size 
on LVM. In addition, the equation allows for the deri­
vation of adjusted values of the proportionality coeffi­
cient a, isolating the effects on LVM owing only to 
gender. With a common b exponent, a values can thus be 
compared to test for size-independent gender differences 
in LVM (alternatively, using the best compromise" b 
exponent, the power function ratios LVM/BMb or LVM/ 
FFMb can be compared with exactly the same result).

All analyses were carried out using the SPSS 6.0 for 
Windows (SPSS Inc., Chicago, IL) statistical package, 
providing the power function equations and 95% confi­
dence intervals for the b exponents. Gender comparisons 
of LVM were conducted with independent r-tests for 
absolute values and the body size corrected values (using
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TABLE 1. Descriptive data for males (N =  7 8 ) and fem ales (N =  6 4 ), means ±  SD.

MALES FEMALES

BM (kg) 75 .8  ±  9 .4 * 6 1 .0  ± 9 . 4
FFM (kg) 6 6 .0  ±  6 .6 * 4 6 .9  ±  5 .7
LVIDd (cm ) 5 .36  ±  0 .4 * 4 .9  ±  0 .3
ST (cm ) 0 .97  ±  0 .1 3 * 0 .77  ±  0.1
PW T (cm ) 0 .97  ±  0 .1 4 * 0 .73  ± 0 . 1 2
LVM (g) 231 ±  5 2 * 135  ±  33

BM =  body mass; FFM =  fat free mass; LVIDd =  left ventricular internal dim ension at 
end diastole; ST =  septal thickness; PW T =  posterior wall thickness; LVM  =  left 
ventricular mass.
* D iffe ren t fro m  fem a les  (P <  0 .0 5 ) .

power function ratios constructed from the common ’’best 
compromise44 b exponents). The alpha level adopted for 
significance was P <  0.05.

RESULTS

Table 1 shows the descriptive data for BM, FFM, and 
LVM. Males were on average 14.8 kg heavier than fe­
males, with 19.1 kg greater FFM. Absolute LVM was 
approximately 70% greater in males than in females.

Linearity checks. All checks revealed that the crite­
ria for RS normalization of linearity and zero intercept 
had not been met. In all cases it was found that Vx/Vy did 
not equal r x,y. Use of RS scaling in the current study 
could thus distort the data.

Allometry. Kolmogorov-Smimov one-sample tests 
revealed that the log-transformed dependent and inde­
pendent variables, together with the allometric model 
residuals, were normally distributed (P > 0.1). In addi­
tion, no correlation was found (P >  0.05) between the 
absolute residual and the predictor variable (In BM or In 
FFM), indicating that the assumption of homoscedastic- 
ity for the log-linear allometric model was satisfied. The 
allometric power function equations are reported for BM 
against LVM and FFM against LVM. Kolmogorov-Smir- 
nov two-sample tests revealed that males and females 
represented different populations with respect to the fre­
quency distribution of left ventricular mass (P <  0.05). 
This further confirmed that multivariate allometry was 
warranted to identify common exponents. One test of the 
ability of the allometric model to correctly partition out 
the influence of body size is to correlate LVM/BMb (or 
FFMb) with BM (or FFM). The correlation should be 
close to zero if the power function ratio has properly 
scaled the data. That is, there should be no relationship 
between relative LVM and body size variables. Correla­
tions between the ratio standards LVM/BM and BM, and 
LVM/FFM and FFM are presented for comparison. If the 
power function correlations are closer to zero than the 
RS, this represents superior scaling of the data.

Body mass against left ventricular mass

LVM  =  7 .7  '{G E N D E R -  0 3 8  ±  0CM)  • BM0'78 ~ a13

(R2 =  0 .6 9 ,  P <  0 .0 5 )

MEDICINE AND SCIENCE IN SPORTS AND EXERCISE

The negative coefficient isolated for gender indicates the 
anticipated relationship-as gender tends towards zero 
(males) LVM increases. Proportionality constants (a) can 
be adjusted for the new common b exponent to compare 
the LVM of males and females independent of body 
mass:

MALE: LVM  =  7 .7 'B M 0 78 

Correlation checks

(r BM, LVM/BM0 78 =  0.06; r BM, LVM /BM  =  - 0 . 0 6 )

FEMALE: LVM  =  5.3 • BM078 

Correlation checks

(rB M , LVM/BM0 78 =  -  0.05; rB M , LVM /BM  =  -  0.17)

The a values reveal that, independent of body mass, 
males possess approximately 44% greater LVM (P  < 
0.05). The correlation checks reveal that the expression 
of LVM/BM0'78 did not penalize male or female subjects. 
For males, the power function ratio and the RS correctly 
partition out the influence of BM. For females, however, 
the correlation checks reveal that the RS approach results 
in a weak negative correlation, indicating that as body 
mass increases relative LVM decreases. The RS thus 
overcorrects for BM in females, penalizing heavier indi­
viduals in intersubject comparisons.

Fat free mass against left ventricular mass

LVM  =  2.6 • (GENDER ~ 018 -  01) • F F M 107 -  015

(R2 =  0.71, F <  0.05)

Similar to the results for BM, a negative gender coeffi­
cient was again revealed, indicating that independent of 
FFM males tend to have a higher LVM than females. The 
common b exponent of 1.07 results in the following 
adjustments to the proportionality constant a:

MALE: LVM  =  2.6 • F F M 107 

Correlation checks

(r FFM , LVM /FFM 101 =  0.12; r  FFM , LV M /FFM  =  0.16)

FEMALE: LVM  =  2 .2 -F F M 107 

Correlation checks

{r FFM , LVM /FFM 107 — -  0.06; r FFM , LV M /FFM  =  - 0 . 0 4 )  

The a values demonstrate that independent of FFM, 
males possess approximately 18% greater LVM than 
females (P  <  0.05). The correlation checks reveal that 
the common power function correctly partitions out the 
influence of FFM for the female subjects. A weak posi­
tive correlation of 0.12 for the male sample suggests that 
the power function is slightly undercorrecting for FFM, 
thus exerting a minor penalty on smaller males in inter­
subject comparisons. Note, however, that the allometric 
scaling is still superior to ratio scaling in the same sam­
ple. For the females, both the allometric and the RS
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correctly account for FFM differences, with correlations 
not different from zero (P > 0.05).

DISCUSSION

For a scaling technique to correctly partition out the 
influence of body size on a particular physiological vari­
able, the scaled variable should be independent of body 
size. The findings demonstrate the statistical validity of 
the allometric scaling approach, with correlations be­
tween the scaled variable and the body dimension vari­
able close to zero in all cases. In the female sample, ratio 
scaling of LVM resulted in a negative correlation with 
BM of —0.17. This overcorrection for BM would penal­
ize larger female subjects in within-gender comparisons. 
The opposite effect occurred in the male sample for FFM. 
Ratio scaling of LVM resulted in a positive correlation 
with FFM of 0.16. This undercorrection would con­
versely penalize smaller subjects in interindividual com­
parisons. The findings demonstrate the utility of allomet­
ric scaling in this sample. However, Schmidt-Nielsen 
(20) stated that the equations cannot be extrapolated 
beyond the range of data on which they are based. There­
fore, it is recommended that sample specific allometry be 
conducted in all studies where scaling is required. In the 
current study, intersubject and intergroup comparisons 
are best conducted using power function ratios con­
structed from the common best compromise b exponents 
identified from the multiple regression model.

The best compromise mean b exponent for BM was 
found to be 0.78 (95% confidence interval, 0.65-0.91). 
This exponent is different from unity (P < 0.05), con­
trary to the findings of Prothero for a range of mammals 
(18). The mass exponent indicates that LVM increases 
with body mass at a lesser rate than that predicted from 
simple linear proportionality. As the exponent is less than 
one, use of a simple ratio standard would appear to 
overcorrect for BM and exert a penalty on larger subjects. 
The theory of geometric similarity (20) indicates that as 
body surface area (BSA) is proportional to the square of 
height and body volume (BV) is proportional to height 
cubed, it follows that BSA is proportional to BV2/3' As 
body density is approximately equal to unity, BSA can be 
assumed to be proportional to BM2/3' It can be seen that 
the mass exponent identified in the current study is not 
different from 2/3 (P > 0.05). It would appear that LVM 
is therefore proportional to BSA. This relationship has 
been documented in numerous studies (9,13). However, 
some authors (25) have urged caution in scaling LVM 
using BSA, as the index may be confounded by differ­
ences in body composition. Clearly, any two individuals 
may present with similar BSA, yet differ widely in FFM. 
This may be of great importance given a proposed link 
between skeletal and cardiac muscularity (12).

The scaling of LVM for differences in FFM offers 
additional insight. The “best compromise” mean b expo­

nent of 1.07 (95% confidence interval, 0.92-1.22) is not 
different from unity, indicating that the relationship be­
tween LVM and FFM is close to constant proportion. 
Considering the BM and FFM exponents together, it 
would appear that ratio scaling of LVM per BM penalizes 
subjects who are heavier as a result of excess body fat, 
not excess FFM. Strikingly similar findings have been 
reported recently via allometric modeling of peak or 
maximal oxygen uptake in prepubertal children (4), adult 
women (23), and older adults (7). In these studies, the 
FFM exponent was not different from unity, whereas the 
BM exponent was significantly less than one. These 
findings, together with those of the current study, lend 
indirect support to the documented interrelationships be­
tween cardiac dimension, skeletal muscle mass, and func­
tional capacity (14). It appears that in echocardiographic 
studies requiring scaling body composition estimates 
must be secured. Correction of absolute cardiac dimen­
sions by BSA or BM may be problematic because of 
variance in body fat percentage.

The gender difference in absolute LVM of 70% (P <  
0.05) exceeded that reported in cross-sectional studies of 
41-52% (5,9). This may be a result of disparities in 
sample characteristics (age, activity history, genetic fac­
tors) and/or specific methods employed (including dif­
ferent conventions adopted for LVM estimation). Allo­
metric normalization of absolute LVM values for BM 
and FFM reduced the gender differences to 44 and 18%, 
respectively. These differences remained significant 
(P <  0.05). Independent of body size and composition 
then, males in this sample possessed larger left ventric­
ular masses than females. Although Schmidt-Nielsen 
(20) issues a caveat that allometry is descriptive and does 
not represent biological laws, it is possible to briefly 
postulate mechanisms for these gender differences.

The proposed link between cardiac and skeletal mus­
cularity suggests a possible dual role for testosterone. 
Testosterone has been used as a marker to reflect the 
general anabolic status of the body (8) and may positively 
influence cardiac growth. Gonadectomized male rats 
have been reported to have lower heart weights than 
controls (15). This regression was reversed with testos­
terone replacement. Several authors have reported lower 
basal levels of testosterone in women compared with 
men. In addition, there may be a lack of post-exercise 
testosterone spiking in women (24) although contradic­
tory evidence exists (6).

In addition to gender differences relating to testoster­
one, women have higher circulating levels of estrogens. 
Receptor sites for estrogen have been identified in car­
diac myocytes, indicating that the heart may be a target 
organ for estradiol (21). Estrogen may act as a testoster­
one antagonist in attenuating cardiac growth. This mech­
anism may be linked to the suggested cardioprotective 
influence of estrogen (12), based on epidemiological
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evidence of gender differences in the incidence of coro­
nary heart disease.

CONCLUSIONS

This study has examined the proper relationship be­
tween left ventricular mass and indices of body dimen­
sion in a human subject sample. Quantitative gender 
differences in cardiac dimension, independent of body 
size and composition, have been identified. The demon­
stration of the value of allometric scaling raises interest­
ing questions regarding previous studies in sports cardi-
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‘BOOTSTRAPPING’ FO R  STATISTICAL INFERENCE FROM  A SMALL SAMPLE
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INTRODUCTION
In biomechanical research time and cost restrictions often dictate that a small sample is used for 
data collection. Analytical formulae constrained by assumptions about the sample’s distribution, 
and rationale for a statistical test are typically used to infer the population parameters from the 
results. With the Pearson rho correlation coefficient, for example, it is assumed the distribution 
is normal and that the relationship between the dependent and independent variables is linear. 
Theoretical support and checks for these assumptions should be made to ensure accurate 
inferences.

Where small samples (n < 30) violate the assumption of the normal distribution to use the 
analytical formulae to generate the sampling distribution, the technique of ‘bootstrapping’ (Zhu, 
1997) can be employed as it operates independently of this assumption. This technique 
randomly draws, with replacement, a large number o f samples from the original sample, and 
performs statistics on each to produce a sampling distribution. The summary statistics for the 
distribution provide the estimate for the population.

In assessing the relationship between variables, allometric scaling may provide both statistically 
and biologically conceptually more viable technique to statistics confined to a linear relationship. 
This technique provides a zero intercept, multiplicative error and generally a smaller standard 
error, all necessary or beneficial in relating human performance to body size measures. For 
example, the peak power output (PPO) produced during a Wingate Anaerobic Test (WAnT) is 
influenced by the lean body mass (LBM). Although it is still common in the literature that a 
theoretical relationship is not fully explained, the surface law (Schmidt-Nielsen, 1984) in 
conjunction with dimensionality theory predicts that power should be proportional to LBM273.

To demonstrate the use o f these 2 techniques, PPO during WAnT will be allometrically scaled 
by LBM, and ‘bootstrapping’ used to infer the population parameters from a small sample. It 
should be noted however, that like all statistical tests, inappropriate uses of these techniques can 
simply provide a different problem. It is therefore important that the techniques only be 
considered amongst the myriad of conventional tests existing.

M ETHODS
Eight physically active, healthy, male subjects volunteered to participate in this study and 
provided written informed consent. The subjects’ descriptive statistics and LBM, determined 
using an air pressure system based on Boyle’s Law (Bod Pod ®, Life Measurement Instruments, 
USA) and utilising the formulas o f Siri (1961), are provided in table 1.

Table 1: Descriptive statistics and anthropometric data of the subjects.
Variable Range (min - max) Mean ± SD
Age (years) 1 7 -3 6 27 ± 7
Height (m) 1.65-1.84 1.75 ±0.07
Body mass (kg) 54.9 - 97.8 73.8 ± 14.0
LBM (kg) 43 .9-80 .8 61.6 =± 11.5

Following a cycling and stretching warm-up, subjects performed a 10 s WAnT on a friction 
braked cycle ergometer (Monark 814E, USA) with a load of 0.1 kp.kg'1. The PPO obtained was 
corrected for the inertia o f the flywheel (Smith software, Lakomy). The Z scores for the kurtosis 
and skewness of the PPO data were 1.9 and -2.2, respectively. As both are not within the 
boundaries o f ± 2, the data is not considered to be normally distributed (Vincent, 1995) thus
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violating m e use 0 1  param eiriu statistics. i o  aiiom etncany scaie tne reiationsnip oetween r r u  
and LBM via log-log transformations in linear regression analysis, 1000 bootstrap samples were 
taken and used (Resampling Stats Inc, USA).

RESULTS AND CONCLUSIONS
The results obtained were a PPO of 909 ± 185 W, and an allometrically scaled power = 8.5 • 
LBM1'13 ± 0,20 (parametric analysis) and 8.3 • LBM1'13 * 027 (bootstrapping analysis). Both 
regression formulas o f the form y = a • xb± 1SE are similar, and the b exponent is not significantly 
different from linearity. Both analyses are however significantly different from LBM273, hence 
not supporting predictions from dimensionality theory. With regard to the parametric and 
bootstrapping analyses, these are very similar. The primary difference is that the standard error 
o f the b exponent is different. Typically it would be expected that bootstrapping would provide a 
smaller SE, but is larger in this instance. It is hypothesised that owing to the. violation of the 
normal distribution required of the parametric analysis the error component has been 
underestimated. Although bootstrapping can work with between 8 and 30 subjects (Zhu, 1997), 
it is proposed that linear regression prefers a ratio 20:1 (Vincent, 1995). This paper demonstrates 
the use o f allometric scaling and bootstrapping, and emphasises that care should be taken in the 
use of all statistics for accurate inferences.
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INTRODUCTION
When front crawl swimmers move their hands vertically and medio-laterally 

through the water, forwardly directed hydrodynamic lift forces are generated. These 
lift forces can therefore make a significant contribution to propulsion in the front 
crawl. Since lift forces are proportional to the square of the hand speed, forwardly 
directed (propulsive) lift forces will be a function of the vertical and medio-lateral 
hand velocities produced by the swimmer.

Although it seems logical that elbow flexion and shoulder adduction should 
contribute to medio-lateral and vertical hand velocity, a recent simulation study [1] 
demonstrated that medial deviations of the hand to the midline of the trunk could be 
achieved with 19°-34° of body roll, without the need for elbow flexion or shoulder 
adduction. As this was well below the mean maximum body roll value of 60.8° 
exhibited by ten swimmers [2], it was suggested that swimmers move their arms 
laterally relative to the trunk in order to avoid pulling the hand too far across the 
midline of the trunk.

As body roll appears to influence medio-lateral hand displacement, it must also 
contribute to medio-lateral hand velocity and may therefore assist in the generation of 
propulsive lift forces in front crawl swimming. The objective of this study was to 
determine the effect of body roll on medio-lateral and vertical hand velocities in front 
crawl swimming.

METHODS
A previously reported three-dimensional model [1] was modified for this study. 

The right arm was represented by two rigid segments hinged at the elbow to enable 
flexion and extension. The arm was linked to a rigid trunk with a shoulder joint 
capable of extension and abduction/adduction. The trunk was free to rotate about its 
longitudinal axis - the body roll axis.

Three simulations were run, each with a pull time (tpuLL) of 0.7 s. The following 
two body movements were common to all three simulations:
1) The trunk rotated from a neutral position (shoulders horizontal) to a maximum body 

roll angle of 60° and back to the neutral position.
2) The shoulder extended through 180° from a position of full flexion.
Simulation 1 : The elbow remained fully extended and no shoulder abduction occurred. 
Simulation 2: The elbow flexed through 90° from an extended position and then fully 
extended again. The shoulder abducted through 55° from the neutral position and then 
fully adducted again.
Simulation 3: The elbow flexed through 90° from an extended position and then fully 
extended again. The shoulder abducted through 90° from the neutral position and then 
fully adducted again.

Elbow flexion and shoulder abduction angular velocities were modelled as sine 
functions and body roll angular velocity ( c o r r )  as a cosine function such that they had a 
value of zero at the midpoint of the pull (truuV2). The shoulder extension angular 
velocity was held constant (tc / tpuLL rad/s) throughout the pull.
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RESULTS

The mean medio-lateral (vx) and vertical ( v y )  hand velocity components from t  = 0 
to tpuLL/2 were determined for each simulation. The contribution to these components 
made by body roll, shoulder extension and ’arm movement' (shoulder abduction plus 
elbow flexion) were then computed. These data are presented in Table 1.

Table 1. The contribution of body roll, shoulder extension and arm movement to the 
mean medio-lateral (vx) and vertical ( v y )  hand velocities.

Simulation 1 Simulation 2 Simulation 3
v x  (m/s) v y  (m/s) v x  (m/s) v y  (m/s) v x  (m/s) v y  (m/s)

Body Roll. 1.28 0.16 1.21 0.07 1.47 -0.31
Shoulder Ext. 1.14 -2.01 1.04 -1.92 0.98 -1.87
Arm Movement. - - -0.39 0.33 -1.38 -0.03
Total. 2.42 -1.85 1.86 - 1.52 1.07 -2.21

DISCUSSION
Body roll provided the majority of medio-lateral hand velocity in all three 

simulations, with its estimated contribution ranging from 53% (simulation 1) to 137% 
(simulation 3). Body roll was less influential on vertical hand velocity. In simulation 2 
it reduced the total vertical hand velocity by 5%, whereas in simulation 3 it increased 
the total vertical hand velocity by 16%.

As the body roll angular velocity-time histories were identical for each 
simulation, the differences in the hand velocities, produced by body roll, can be 
attributed to differences in the length and direction of the radius from the hand to the 
body roll axis in each simulation.

Ann movement reduced the total medio-lateral hand velocity generated because 
it produced a hand velocity which had a lateral component, when body roll and 
shoulder extension were producing medial velocity components (and vice versa). The 
mean lateral hand velocity in simulation 3 was much greater that in simulation 2. This 
difference can be explained by the greater range of lateral hand movement produced in 
simulation 3 because of the increased range of shoulder abduction.

Shoulder extension created between 47% (simulation 1) and 91% (simulation 3) 
of the medio-lateral hand velocity. Without body roll, shoulder extension would make 
no contribution to the medio-lateral hand velocity. Body roll therefore increases the 
medio-lateral hand velocity indirectly by changing the plane in which shoulder 
extension occurs. The inverse is true for vertical hand velocity, body roll reduces the 
contribution of shoulder extension to this velocity component.

The results suggest that body roll makes a substantial contribution to medio- 
lateral hand velocity in the front crawl and may therefore play an important role in the 
generation of propulsive lift forces.
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The Effect of Body Roll on Hand Speed 
and Hand Path in Front Crawl 

Swimming—A Simulation Study

Carl J. Payton, James G. Hay and David R. Mullineaux

The aim of this study was to predict the effect of body roll on hand speed and hand 
path during the pull phase in front crawl swimming. An earlier three-segment model 
(Hay, Liu, & Andrews, 1993) was developed to enable the hand to move out of the 
plane through the shoulder parallel to the sagittal plane of the rotating trunk. Elbow 
flexion, shoulder abduction, and body roll angular velocities were modeled as sine or 
cosine functions. For a given elbow flexion, an increase in maximum body roll from 
45° to 60° produced a marked increase in medial hand motion. For a given body roll, 
an increase in maximum elbow flexion from 60° to 90° increased medial hand motion 
and reduced downward hand motion. An increase in body roll increased hand speed in 
the plane perpendicular to the swimming direction, thus increasing the potential of the 
hand to develop propulsive lift forces.

For many years, front crawl swimmers were instructed by coaches to pull their 
hands directly backward in a straight line beneath their bodies. It was believed that pro­
pulsion was gained entirely from the forward-acting drag forces that opposed the hand 
motion. Since the work of Brown and Counsilman (1971), it has been generally accepted 
that the hands of elite front crawl swimmers follow underwater trajectories that deviate 
considerably from a straight line. It has been suggested that in following such trajectories 
the hand behaves as a foil, creating lift forces that act perpendicular to the direction of 
movement of the hand (Brown & Counsilman, 1971; Schleihauf, 1979).

When front crawl swimmers move their hands vertically and mediolaterally in the 
water, perpendicular to the swimming direction, the lift force acts in a forward direction. 
It has therefore been suggested that lift forces contribute significantly to propulsion in the 
front crawl (Berger, Hollander, & De Groot, 1995; Schleihauf, Gray, & DeRose, 1983). 
Since lift forces are a function of the square of the hand speed relative to the water, for­
ward-directed (propulsive) lift forces are a function of the vertical and mediolateral hand 
speeds generated by a front crawl swimmer.

Although the importance of mediolateral and vertical hand speed in front crawl 
swimming is reasonably well understood (Counsilman, 1981), little attempt has been 
made to identify the body movements responsible for generating these hand speeds. 
Barthels (1979) suggested that during the insweep phase of the front crawl, vertical and

Carl J. Payton is with the Department of Exercise and Sport Science, Crewe+Alsager Faculty, 
The Manchester Metropolitan University, Stoke-on-Trent, ST7 2HL, UK. James G. Hay is with the 
Department of Exercise Science, University of Iowa, Iowa City, IA 52242. David R. Mullineaux is 
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medial hand speeds (and the resulting lift forces) are achieved by flexion of the elbow. 
It would also seem logical that abduction and adduction at the shoulder could contrib­
ute to the generation of mediolateral and, to a lesser extent, vertical hand speed in the 
front crawl.

In a recent study, Hay, Liu, and Andrews (1993) questioned the role played by the 
elbow and shoulder in creating mediolateral hand movement in the front crawl. Using a 
mathematical model, they demonstrated that movements of the hand away from/toward 
the midline of the trunk could be achieved entirely by body roll, without the need for 
elbow flexion or shoulder adduction. They also reported that the amount of body roll 
required to sweep the hand to the midline was only 19-34°. Because this was well below 
the average maximum body roll value of 60.8° exhibited by 10 male university swimmers 
(Liu, Hay, & Andrews, 1993), it was concluded that swimmers must move their arms 
laterally relative to the trunk in order to avoid pulling the hand too far across the midline 
of the trunk.

In the model proposed by Hay et al. (1993), the hand was constrained to move in the 
plane through the right shoulder and normal to the shoulder axis—the parasagittal plane 
(Figures 1 and 2). In their experimental study, Liu et al. (1993) demonstrated that this was 
an unrealistic constraint, because swimmers invariably moved their hands laterally rela­
tive to this plane.

Because body roll influences the mediolateral displacement of the hand relative to 
the water, it must also contribute to mediolateral hand speed. It thus follows that body roll 
may help generate propulsive lift forces in the front crawl. Prichard (1993) supported the 
view that front crawl swimmers generate high hand speeds and large propulsive forces by 
body roll. He suggested that range, speed, strength, and timing of hip rotation are impor­
tant determinants of front crawl performance.

The aim of this study was to predict the effect of body roll on hand speed and hand 
path during the pull phase in front crawl swimming.

Methods

The Model

The model used in this study was developed from the three-dimensional mathematical 
model proposed by Hay et al. (1993). The model in the present study allows the hand to 
move out of the parasagittal plane (Figures 1 and 2).

The right arm was modeled as two rigid segments hinged at the elbow to enable 
flexion and extension. The arm was linked to a rigid trunk with a shoulder joint capable of 
extension and abduction/adduction. The trunk was free to rotate about its longitudinal axis 
—the body roll axis.

The velocity of the distal end of the right hand was determined relative to the 
water by defining a right-handed inertial reference frame fixed in the pool. The x-axis 
of the frame was directed down the pool in the swimming direction, the y-axis was 
directed vertically upward, and the z-axis was directed horizontally to the right wall of 
the pool.

The following terms were used to describe the direction of hand motion:

• Right-hand movement along the x-axis: forward (+ve) or backward (-v*)
• Right-hand movement along the y-axis: upward (+ve) or downward (~ve)
• Right-hand movement along the z-axis: lateral (+ve) or medial (-ve).
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Figure 1 — Body roll model viewed from above.
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Figure 2 — Body roll model viewed from behind.

The velocity of the hand relative to the pool-fixed reference frame was modeled as 
a function of the following variables:

• Body roll angle (0): the angle between the line connecting the two shoulder joints 
(the shoulder axis) and the horizontal (x-z) plane (Figure 2).

• Body roll angular velocity (C0bR): the rate of change of 0 with respect to time.
• Shoulder extension angle (<]>): the angle between the shoulder-to-elbow position 

vector (rSE) and the x-axis, when projected onto the sagittal plane (Figure 3).
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Figure 3 — Body roll model viewed in the sagittal plane.

• Shoulder extension angular velocity (coSE): the rate of change of <|> with respect to 
time.

• Shoulder abduction angle (a ):  the angle between the shoulder-to-elbow position 
vector (rSE) and the parasagittal plane (Figures 1 and 2).

• Shoulder abduction angular velocity (C0sa): the rate of change of a  with respect to 
time.

• Elbow flexion angle ((3): the angle between the upper arm and lower arm segments 
subtracted from 180° (Figure 2).

• Elbow flexion angular velocity (C0eF): the rate of change of (3 with respect to time.
• Pull time (tPULL): the time taken for the arm to rotate from a 0° to 180° shoulder 

extension angle.
• Trunk velocity (vQ/P): the velocity of the trunk-fixed reference point Q along the x- 

axis.
• Half shoulder-width (IqS): the distance from the midpoint of the shoulders Q to the 

right shoulder S.
• Upper arm length (ISE): the distance from the right shoulder (S) to the right elbow

(B).
• Lower arm length (IEH): the distance from the right elbow (E) to the distal end of the 

right hand (H).

Model dimensions IQS, ISE, and IEH were held constant for all simulations. Angles <|>, 
0, a, and (3 were varied as a function of the pull time frPULL) within a simulation trial as 
described in the following section.

Variables

Body Roll Variables (6/ coBR). The trunk was rotated from the neutral position 
(0 = 0°) to a preselected angle of maximum body roll 0MAX and back to the neutral position 
in the pull time rPULL. The time to reach 0MAX was equated to half the pull time. Body roll 
angular velocity (Dbrwas modeled as a cosine function such that (0eR was maximum as the 
trunk rotated through the neutral position and zero at the instant of maximum body roll.
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Shoulder Extension Variables (i\), coSE). From a position of full flexion ((j) = 0°), the 
shoulder was extended at a constant rate through an angle of 180° in the time t?ULL. The 
shoulder extension angular velocity coSE was therefore a function of the pull time (coSE = 
180°/ /pull)*

Elbow Flexion and Shoulder Abduction Variables (p, coEF, a, coSA). The straight- 
bent-straight elbow pull pattern characteristic of front crawl swimming was simu­
lated in the model by allowing the elbow to flex from a fully extended position 
(p = 0°) to a specified maximum flexion angle PMAX and then back to full extension in 
the time /PULL. The shoulder joint was abducted from a neutral position (a  = 0°) to a 
specified maximum abduction angle a MAX and then back to the neutral position in the 
time /pull*

The elbow flexion angular velocity (cOgp) and shoulder abduction angular velocity 
(coSA) were both modeled as sine functions such that they were zero at the start and finish 
of the pull and at the instant of maximum body roll. The time to reach a MAX and pMAX 
therefore coincided with the time to reach maximum body roll (/PULL/2).

Computation of Hand Velocity

The velocity of the hand relative to the pool-fixed reference frame (vILrp) is equal to the 
sum of the velocity of the hand relative to the trunk-fixed reference point Q (Vh/q) and the 
velocity of Q relative to the pool-fixed reference frame (vQ/P) :

V  = v  + V  (1)
H/P T H/Q Q/P v '

The velocity of the hand relative to the trunk-fixed point Q has a component due to shoul­
der extension angular velocity (vSE), body roll angular velocity (vBR), elbow flexion angu­
lar velocity (vEF), and shoulder abduction angular velocity (vSA) and was calculated using 
Equation 2:

V H;Q = V SE + V BR + V Er + V SA (2)

The contribution to hand velocity made by the shoulder extension angular velocity (vSE) is 
given by Equation 3:

^ se  — ® se x  r sH ^ )

where rSH is the position vector from the right shoulder to the distal end of the right hand, 
and the symbol x denotes the vector cross product.

The forward-backward (vSE(X)), upward-downward (vSE(Y)), and mediolateral (vSE(Z)) 
components of vector vSE are given by Equations 4 ,5 , and 6, respectively:

V SE(X, = l(0SEX r SHlsin<l) i  <4>

V SE(Y) = l0)SE X i ’s h I COS <|) • COS 6 j  (5)

VsE(z) = |C0SE x rsH! cos <t> • sin e k (6)

where i, j,  and k are the unit vectors along the jc-, y-, and z-axes, respectively.
The contribution to hand velocity made by the body roll angular velocity (vBR) is 

given by Equation 7:

^ B R  “  ® B R  x  r XH ^

where is the perpendicular position vector from the body roll axis to the distal end of 
the right hand, as illustrated in Figures 1 and 2.
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The forward-backward (vBR(X)), upward-downward (vBR(Y)), and mediolateral (vBR(Z)) 
components of vector vBR are given by Equations 8,9, and 10, respectively:

VBB«, = 0 (8)

^BR(Y) ~  X r XK̂  C0S ^ J ^

^B R (Z) — ^®BR X  S^n  ^  ^

where 8 is the angle made by the vector rXH to the horizontal (negative z-axis) as shown in 
Figure 2.

The contributions to hand velocity made by the elbow flexion angular velocity 
(vEF) and shoulder abduction angular velocity (vSA) are given by Equations 11 and 12, re­

spectively:

^ E F ~  ® E F  x  r EH

^SA ~  ®SA X  r SH (X2)
where rEH is the position vector from the right elbow to the distal end of the right hand.
The three Cartesian components of vectors vEF and vSA were obtained directly from the
vector cross products described by Equations 11 and 12.

Input Parameters for Simulations

Anthropometric Data (lQS, lSE, lEH). Thehalf shoulder-width (IQS), upper arm length 
(ISE), and forearm plus hand length (IEH) were assigned values of 0.25 m, 0.35 m, and 0.5 
m, respectively. These were the mean values previously reported for 10 male competitive 
swimmers (Liu et al., 1993).

Elbow and Shoulder Abduction Angles Two arm pull conditions
were simulated. In each simulation, the elbow was allowed to flex to a maximum angle 
(Pmax) ° f  either 60° (low flex) or 90° (high flex). The shoulder was permitted to abduct to
a maximum angle (ocMAX) of 90° in each simulation. Shoulder abduction angles have not
previously been reported in the literature, so this figure was based on photographic evidence 
(Maglischo, 1982, Figure 2.61, page 58).

Body Roll Angle, Pull Time, and Trunk Velocity (0mx, tpuLL, vQ/f). Simulations 
were performed for maximum body roll angles of 45° (low roll) and 60° (high roll). These 
angles are similar to the mean values previously reported for front crawl swimmers by 
Beekman (1986) and Liu et al. (1993), respectively.

A pull time of either 0.75 s (fast) or 1.10 s (slow) was used in each simulation. 
These times were based on mean values reported for sprint swimming (Ringer & Adrian, 
1969) and distance swimming (Maglischo et al., 1988). A constant trunk velocity of 1.6 
m/s was maintained in each simulation. Although trunk velocity has been shown to influ­
ence forward-backward hand motion (Hay et al., 1993), it was not manipulated in the 
present study since it does not influence the effect of body roll on vertical or mediolateral 
hand motion.

A total of four simulations were performed in both the fast and slow pull times. 
Figures 4 to 7 illustrate the four simulations as viewed from behind, up to the point of 
maximum body roll.

Equations 3-12 were used to compute the contributions made by body roll, shoul­
der extension, elbow flexion, and shoulder abduction to hand velocity. As each simulation 
was symmetrical about its midpoint (rpULL/2), the velocity contributions were only calcu­
lated for the first half (t = 0 to rPULL/2) of each simulation (to avoid the positive and nega-
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PULU PULU ■PULU

Figure 4 — Low-roll/high-flex simulation involving 45° of body roll, 90° of elbow flexion, and 
90°of shoulder abduction, viewed from behind.

PULU ■PULU •PULU

Figure 5 — High-roll/high-flex simulation involving 60° of body roll, 90° of elbow flexion, and 
90° of shoulder abduction, viewed from behind.

t = 0

Figure 6 — Low-roll/low-flex simulation involving 45° of body roll, 60° of elbow flexion, and 
90° of shoulder abduction, viewed from behind.
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PULUPULU■PULU

Figure 7 — High-rolI/Iow-flex simulation involving 60° of body roll, 60° of elbow flexion, and 
90° of shoulder abduction, viewed from behind.

tive velocities canceling). Therefore, the results presented in the following section apply 
to the simulations up to the point of maximum body roll.

/ '

Results and Discussion

The effects of body roll on the three Cartesian components of the hand velocity are de­
scribed by Equations 8, 9, and 10. Equation 8 indicates that body roll makes no contribu­
tion to backward hand velocity, which suggests that body roll cannot be used to produce 
forward-acting (propulsive) drag forces on the hand. Shoulder extension, elbow flexion, 
and shoulder abduction may all help create propulsive drag forces, because they all have 
the potential to generate backward hand velocity, as evidenced by Equations 4,11, and 12, 
respectively.

The contribution made by body roll to hand velocity is confined to the plane per­
pendicular to the swimming direction (the y-z  plane), as indicated by Equations 9 and 10. 
Therefore, body roll has the potential to assist in the creation of forward-acting (propul­
sive) lift forces by the hand.

Hand Speed and Hand Speed Squared

Propulsive lift forces are created by moving or sculling the hand in a plane perpendicular 
to the swimming direction. The speed at which the hand moves in this plane (henceforth 
referred to as the hand sculling speed) influences the magnitude of the propulsive lift 
forces produced. Specifically, the propulsive lift force acting on the hand is proportional 
to the square of the hand sculling speed.

Simulations, for the fast pull time produced hand sculling speeds that were 47% 
higher than the equivalent simulations run for the slow pull time (Figure 8). Although 
there was little variation in hand sculling speed among the four simulations, the highest 
hand sculling speeds were found for the high-roll/low-flex simulation, and the lowest 
hand sculling speeds were found for the low-roll/high-flex simulation.

The extent to which body roll contributes to hand sculling speed depends on the 
body roll angular velocity (o&br) and the displacement of the hand from the body roll axis 
(rXH) as indicated by Equation 7. Figure 8 illustrates that for the fast pull time, body roll 
produced a mean hand sculling speed ranging from 1.15 m/s (low-roll/high-flex) to 1.70
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Figure 8 — The mean hand sculling speeds produced by the four simulations (Total) and the 
mean hand sculling speeds produced by body roll alone (Body Roll). Hand sculling speeds for 
the fast pull time (/PULL= 0.75 s) and slow pull time (/PULL = 1.10 s) are shown on the left and right 
vertical axes, respectively.

m/s (high-roll/low-flex). This variability was due to differences in cOgR and/or rXH between 
simulations.

The two simulations in which the body rolled to 60° in fPULL/2 produced greater 
body roll angular velocities than did those employing 45° of body roll in the same time. 
The displacement of the hand from the body roll axis (rXH) varied as a function of the pull 
time for the high and low elbow flexion conditions (Figure 9), with the two simulations 
involving 60° of elbow flexion yielding higher values of rXH than did those using 90° of 
flexion. Body roll thus made its greatest contribution to hand sculling speed in the high- 
roll/low-flex simulation, because this involved the highest values of and CDuR. Con­
versely, body roll contributed least to hand sculling speed in the low-roll/high-flex simu­
lation, where rXH and C0bR had their lowest values.

An increase in the hand sculling speed produced by body roll was not matched by 
an equivalent increase in the total hand sculling speed (Figure 8). This was because the 
hand velocity vector produced by body roll (vBR) did not necessarily coincide with the 
total velocity vector of the hand (v^), even when viewed in the plane perpendicular to the 
swimming direction (y-r-z plane). Only a component of vBR contributed to hand sculling 
speed at any instant during the pull, and the magnitude of this component varied between 
simulations. Additionally, although decreasing the maximum elbow angle from 90° to 60° 
increased the hand sculling speed produced by body roll (for a given maximum roll angle), 
it also reduced the hand sculling speed produced by elbow flexion. Figure 10 shows that 
simulations for the fast pull time (left vertical axis) produced mean squared hand sculling 
speeds that were 115% higher than for the equivalent simulations for the slow pull time 
(right vertical axis).

The squared hand speed data followed the same trend as the hand speed data (the 
results are in the same rank order), but the differences between simulations were more 
pronounced. For example, although the high-roll/low-flex simulation produced a mean
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Figure 9 — Displacement of the distal end of the hand from the body roll axis (r^) as a function 
of the pull time. The broken line shows the displacements for the high-roll/Iow-flex and low- 
roll/low-flex simulations. The solid line shows the displacements for the high-roll/high-flex and 
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Figure 10 — The mean squared hand sculling speeds produced by the four simulations (Total) 
and the mean squared hand sculling speeds produced by body roll alone (Body Roll). Squared 
hand sculling speeds for the fast pull time (/PULL= 0.75 s) and slow pull time (/PULL = 1.10 s) are 
shown on the left and right vertical axes, respectively.

hand sculling speed that was only 15% higher than for the low-roll/high-flex simulation, it 
yielded a mean squared hand sculling speed that was 31% higher.

Body roll produced the greatest squared hand sculling speed for the high-roll/low- 
flex simulation and the least for the low-roll/high-flex simulation. This can again be ex-
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plained by differences in body roll angular velocity and hand-to-roll axis distance dis­
cussed earlier.

The mean squared hand sculling speed for the high-roll/high-flex simulation was 
18% higher than for the low-roll/high-flex simulation. Similarly, the high-roll/low-flex 
simulation created 14% more squared hand sculling speed than the low-roll/low-flex simu­
lation. Because propulsive lift forces are proportional to the square of the hand sculling 
speed, it could be inferred from these results that, for a given pull time, a front crawl 
technique that involves 60° of body roll has the potential to generate more propulsive lift 
than one involving 45° of body roll. Finally, it is worth noting that, for a given maximum 
body roll, simulations involving 60° of elbow flexion produced higher squared hand sculling 
speeds than those using 90° of elbow flexion.

While the results in Figures 8 and 10 indicate which techniques produce the highest 
hand sculling speeds, they give no indication of the path followed by the hand during the 
pull. The handpath is an important feature of front crawl swimming and has previously 
been shown to be influenced by body roll (Hay et al., 1993). The present model provided 
an opportunity to revisit some issues concerning the effect of body roll on the geometry of 
the handpath.

Mediolateral Hand Motion

Figure 11, a-d, illustrates the top view of the handpath of the right hand relative to the 
water, for the four simulations conducted for the fast pull time. In the high-roll/high-flex 
simulation (Figure 11a), the right hand was medially displaced 38 cm at the point of maxi­
mum body roll. This took the hand beyond the midline of the trunk (the vertical plane 
containing the body roll axis). When the body roll angle was reduced by 15° and the same 
degree of elbow flexion was used, the medial deviation of the hand was reduced to 18 cm, 
as shown by the low-roll/high-flex simulation (Figure lib). The high-roll/low-flex simu­
lation (Figure 11c) medially displaced the hand 20 cm by maximum body roll. In contrast, 
the low-roll/low-flex simulation (Figure lid) resulted in a slight lateral displacement of 
the hand by maximum body roll.

a) High roll/High flex, b) Low roll/High flex, c) High roll/Low flex, d) Low roll/Low flex.

Figure 11 — Overhead view of the path followed by the right hand (relative to the water) in the 
four simulations. Handpaths shown are for the fast pull time (tPVLL= 0.75 s) and a trunk velocity 
of 1.6 m/s. The position of the trunk and upper extremity at the instant of maximum body roll 
is also shown.



Front Crawl Swimming 311

Two conclusions can be drawn from these observations: An increase in body roll 
increased medial hand movement, and an increase in the maximum elbow flexion angle 
also increased medial hand movement. Although the first conclusion is in agreement with 
the results of the previous simulation study by Hay et al. (1993), the second conclusion is 
not. Hay et al. (1993) found that the medial deviation of the hand was inversely propor­
tional to the maximum elbow flexion angle. This contradictory finding was due to a dif­
ference in the two models. In the Hay et al. (1993) model, the hand was constrained to 
move in the parasagittal plane through the right shoulder normal to the shoulder axis 
(Figures 1 and 2), and an increase in elbow flexion simply reduced the displacement of 
the hand from the body roll axis (rXH). This inevitably reduced the medial deviation of 
the hand for a given body roll. In the present model, the hand was free to move out of 
this parasagittal plane (Figure 1), and an increase in the maximum elbow flexion angle 
from 60 to 90° had two effects. First, it brought the hand closer to the body roll axis (as 
in the earlier model), which is illustrated in Figure 9. Second, when the elbow was al­
lowed to flex to 90°, the hand remained closer to the parasagittal plane than when the 
elbow only flexed 60°. That is, 90° of elbow flexion more effectively counteracted the 
tendency of shoulder abduction to move the hand laterally away from the parasagittal 
plane than did 60° of elbow flexion. The closer the hand was to the parasagittal plane at 
maximum body roll, the greater was its medial displacement (for a given rXH and maxi­
mum roll angle).

The displacement values of Table 1 were obtained by integrating the respective 
velocity-time functions. For example, the contribution of body roll to medial hand dis­
placement was defined as the definite integral of Equation 10 between t = 0 and rPULL/2.

Although an increase in the maximum elbow flexion angle from 60 to 90° reduced 
the contribution that body roll made to medial hand movement, medial hand movement 
was still enhanced. This was because elbow flexion and shoulder extension made increased 
contributions to medial hand motion. Also, the tendency of shoulder abduction to cause 
lateral hand motion was reduced when the maximum elbow flexion angle was increased 
from 60 to 90° (Table 1).

In the high-roll/high-flex simulation, the hand was medially displaced 38 cm by the 
point of maximum body roll, compared to only 20 cm in the high-roll/low-flex simula-

Table 1 Mediolateral Hand Displacement Up to t?vu/2 and the Contribution to This 
Displacement From Body Roll, Shoulder Extension, Elbow Flexion, and Shoulder 
Abduction (cm)

High roll/ Low roll/ High roll/ Low roll/
high flex high flex low flex low flex

Mediolateral displacement -38 -18 -20 +5

Contribution
Body roll -52 -38 -58 -41
Shoulder extension -35 -27 -34 -26
Elbow flexion -58 -67 -45 -49
Shoulder abduction +107 +114 +117 +121
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tion. Although the body roll contribution to medial hand displacement was 6 cm less in the 
high-roll/high-flex simulation than in the high-roMow-flex simulation, this was more 
than compensated for by increased contributions from elbow flexion (13 cm more) and 
shoulder extension (1 cm more). Also, the tendency of shoulder abduction to cause lateral 
hand motion was 10 cm less in the high-roll/high-flex simulation than in the high-roll/ 
low-flex simulation. The same pattern is seen in the data when the low-roll/high-flex 
simulation is compared to the low-roll/low-flex simulation.

The extent to which shoulder extension contributes to mediolateral hand motion is 
determined by the amount of body roll. Equation 6 shows that shoulder extension is only 
able to contribute to mediolateral hand motion once body roll has commenced (0 ̂  0), and 
that for a given shoulder extension angle <|>, the greater the body roll, the greater is the contri­
bution. Table 1 indicates that shoulder extension made a considerable contribution to medial 
hand motion in all four simulations. When maximum body roll was increased from 45 to 60°, 
this contribution increased by 8 cm in both the high and low elbow flexion conditions.

Vertical Hand Movement
The downward motion of the hand in the two simulations involving 60° of elbow flexion 
(Figure 12, c and d) was considerably greater than in the simulations involving 90° of 
elbow flexion (Figure 12, a and b). The displacement values of Table 2 were obtained by 
integrating the respective velocity-time functions. For example, the contribution of body 
roll to vertical hand displacement was defined as the definite integral of Equation 9 be­
tween t = 0 and /pmx/2. Table 2 shows that an increase in elbow flexion from 60 to 90° 
reduced downward hand motion from 95 to 77 cm in the high-roll simulations and from 
91 to 78 cm in the low-roll simulations.

When the elbow was allowed to flex to 90°, a distinct upward indentation in the 
handpath was produced prior to maximum body roll (Figure 12, a and b). This feature was 
not present in the handpaths when elbow flexion was reduced to 60° (Figure 12, c and d). 
This finding is consistent with the observations of Schleihauf (1979), who suggested that 
techniques which involved limited elbow flexion during the inward scull and elbow ex-

a) High roll/High flex, b) Low roll/High flex, c) High roll/Low flex, d) Low roll/Low flex.

Figure 12 — Side view of the path followed by the right hand (relative to the water) in the four 
simulations. Handpaths shown are for the fast pull time (/PULL= 0.75 s) and a trunk velocity of 
1.6 m/s. The position of the trunk and upper extremity at the instant of maximum body roll is 
also shown.
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Table 2 Vertical Hand Displacement Up to fpuLL/2 and the Contribution to This 
Displacement From Body Roll, Shoulder Extension, Elbow Flexion, and Shoulder 
Abduction (cm)

High roll/ 
high flex

Low roll/ 
high flex

High roll/ 
low flex

Low roll/ 
low flex

Vertical displacement -7 7 -7 8 -9 5 -91

Contribution
Body roll -11 -1 5 -1 8 -21
Shoulder extension -6 5 -71 -6 5 -7 0
Elbow flexion +49 +39 +24 +16
Shoulder abduction -5 0 -31 -3 6 -1 6

tension during the outward scull produced handpaths without an upward indentation. Tech­
niques that employed a greater range of movement at the elbow were characterized by 
handpaths with a distinct upward indentation.

A change in the maximum body roll angle had relatively little effect on the down­
ward motion of the hand. When maximum body roll was increased from 45 to 60° in the 
low-flex simulations, an additional 4 cm of downward hand motion was produced. In 
contrast, the same increase in body roll in the high-flex simulations created 1 cm less 
downward hand motion (Table 2).

Body roll tended to assist downward hand motion in the first half of all four simu­
lations. In the low-roll/low-flex simulation, body roll was responsible for 21 cm of the 
downward hand displacement compared to only 11 cm in the high-roll/high-flex simula­
tion.

Equation 9 indicates that once the hand has moved beyond the midline of the trunk 
(where passes the vertical and 8 is less than 90°), body roll makes a positive (upward) 
contribution to hand motion until maximum roll is reached. Thus, in the high-roll/high- 
flex simulation (Figure 12a), body roll aids downward hand motion until the hand crosses 
the midline of the trunk at a roll angle of approximately 44°. The remaining 16° of body 
roll reduces the downward hand motion. Because the hand does not reach the midline of 
the trunk in the other three simulations (Figure 12, b-d), body roll assists downward hand 
motion until maximum roll is achieved.

Backward Hand Movement
Although Equation. 8 indicates that body roll has no effect on backward hand motion, a 
couple of observations are still worthy of comment. Figure 12, a-d, shows that the hand 
exited the water 67 cm behind the point at which it entered for each simulation run for the 
fast pull time (t?VLL = 0.75 s). Although this feature is characteristic of some world-class 
swimmers, many swimmers use the “classic technique” (Schleihauf, 1979), in which the 
hand leaves the water ahead of its point of entry. To achieve this, the swimmer’s mean 
forward trunk speed must exceed the mean backward hand speed between hand entry and 
exit. When each simulation was conducted for the slow pull time (/PULL =1-1 s), this con­
dition was met and the hand left the water 5 cm ahead of its entry point.
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Model Evaluation

A number of assumptions are inherent in the model presented in this paper. The main 
assumptions are as follows:

1. The line joining the two shoulders (the shoulder axis) remains perpendicular to the 
swimming direction (the x-axis).

2. The right shoulder, elbow, and distal end of the hand remain in a plane perpendicu­
lar to the parasagittal plane.

3. The right forearm and hand act as a single rigid segment; that is, there is no wrist 
motion.

4. The shoulder always abducts to 90° regardless of the maximum elbow flexion and 
body roll angles.

5. Maximal values of body roll, elbow flexion, and shoulder abduction are all reached 
midway through the pull (rPULL/2).

6. An increase in maximum body roll from 45° to 60° can be achieved without an 
increase in pull time.

Although the model appears to capture the essential features of the front crawl tech­
nique, further work is still necessary to fully evaluate each of these assumptions.

Conclusions

The following conclusions can be drawn from the results of this study:

1. Body roll influences both mediolateral and vertical hand motion in front crawl swim­
ming and therefore contributes to hand speed in the plane perpendicular to the swim­
ming direction.

2. For a given maximum elbow flexion, an increase in maximum body roll from 45° to 
60° markedly increases medial hand motion but has relatively little effect on verti­
cal hand motion.

3. For a given maximum body roll, an increase in maximum elbow flexion from 60 to 
90° increases medial hand motion and reduces downward hand motion.

4. An increase in body roll is accompanied by an increase in the squared hand speed in 
the plane perpendicular to the swimming direction. Therefore, an increase in body 
roll increases the potential of the hand to develop propulsive lift forces.

Because the validity of the model presented in this paper has not yet been estab­
lished, the results must only be considered as preliminary indications of how body roll 
affects hand speed and hand path. Nevertheless, the results suggest that coaches and front 
crawl swimmers should view body roll as a means of enhancing hand speed and conse­
quently propulsion from lift forces, rather than as simply a reaction to other parts of the 
stroke.
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. Abstract
A mathematical model was developed [1] to evaluate the contribution of body roll to 
medial-lateral (vx) and vertical (vz) hand velocities in freestyle swimming. The right 
arm was modelled as two rigid segments joined at the elbow to enable flexion and 
extension. The arm was linked to a rigid trunk with a joint capable of shoulder 
extension and abduction/adduction.
Simulations were performed for pull times (tpuLL) from 0.7 s to 1.1 s and maximum 
body rolls ( G m a x )  from 50° to 70° with a straight arm, and with the elbow flexing 
through 90°. For a simulation involving elbow flexion (tpuix = 0.7 s, G m a x  = 60°), 
mean values for vx and vz were 1.86 m/s and 2.24 m/s respectively. These values 
were 24% and 22% less, respectively, than those obtained from an equivalent 
simulation performed with a straight aim. These reduced velocities were due to the 
elbow flexion: 1) reducing the hand's radii of rotation, and 2) creating a hand velocity 
component which opposed that resulting from body roll.
It was concluded that body roll makes a substantial contribution to medial-lateral and 
vertical hand velocities in freestyle swimming and may therefore play an important 
role in the generation of propulsive lift forces.
Keywords: Body roll, freestyle swimming, hand velocity, modelling.

1 Introduction

When freestyle swimmers scull their hands vertically and medial-laterally, a forwards 
acting lift force is generated. It has been suggested that these lift forces can make a 

-significant contribution to propulsion [2]. Since lift forces are proportional to the 
kpiare of the hand speed, forwardly directed (propulsive) lift forces will be a function 
of the vertical and medial-lateral hand velocities produced by the swimmer.
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Little attempt has been made to identify the body movements responsible for 
generating medial-lateral and vertical hand velocities in the freestyle. Although it 
seems logical that elbow flexion and shoulder adduction should make a contribution 
to hand velocity, a recent study [1] questioned the role played by elbow and shoulder 
movements. Using a mathematical model the authors demonstrated that medial 
deviations of the hand to the midline of the trunk could be achieved entirely with 
body roll, without the need for elbow flexion or shoulder adduction. It was also found 
that the amount of body roll required to sweep the hand to the midline was only 19V 
34°. As this was well below the mean maximum body roll value of 60.8° exhibited 
by ten male university swimmers [3], it was suggested that swimmers may move their 
arms laterally relative to the trunk in order to avoid pulling the hand too far across the . 
midline of the trunk.

As body roll appears to influence medial-lateral displacement of the hand relative : 
to the water, it must also contribute to medial-lateral hand velocity. It then follows 
that body roll may assist in the generation of propulsive lift forces in freestyle 
swimming. The aim of this study was to determine the effect of body roll on medial- 
lateral and vertical hand velocities during the pull phase in freestyle swimming.

2 Methods

A previous three-dimensional model [1] was modified for this study. The right arm 
was modelled as two rigid segments hinged at the elbow (E) to enable flexion and 
extension. The arm was linked to a rigid trunk with a joint (S) capable of shoulder 
extension and shoulder abduction/adduction (Figure 1).

BR

X

HS

Plane of 
hand motion

Body ro 
axis

Shoulder
axis

SWIM

o > S E

Figure 1. Model viewed in frontal plane (a), transverse plane (b) and sagittal plane (c).



The trunk was free to rotate about its long axis - the body roll axis. The hand (H) 
was constrained to move in the plane located through joint S and normal to the 
shoulder axis - the line connecting the two shoulder joints. The shoulder abduction 
angle (a) was therefore a function of the elbow angle ((3) to ensure the hand remained 
in this plane - the plane o f hand motion.

The half shoulder width ( Iq s ) ,  upper arm length ( Is e )  and forearm plus hand length 
( Ie h )  were assigned values of 0.25 m, 0.35 m and 0.5 m respectively, based on 
reported anthropometric data on competitive swimmers [3].

Simulations were run for fast (0.7 s), medium (0.9 s) and slow (1.1 s) pull times. 
Within this time:
1. The trunk rotated from a neutral position (0 = 0°) to a pre-selected maximum body 

roll angle (G m a x )  of either 50°, 60° or 70°, and back to the neutral position.
2. The shoulder extended through 180° from a position of full flexion (<j> = 0°).
3. The elbow flexed through 90° from an extended position (P = 0°) and then fully 

extended again.

The body roll and elbow flexion Angular velocities ( cobr and cop respectively) were 
modelled as sine functions such that they were zero at the start, midpoint (tpuix/2) and 
end of each simulation. The shoulder extension angular velocity ( cose)  was held 
constant in each simulation. The effect of cobr on hand velocity was dependent on the 
perpendicular vector from the hand to the body roll axis ( I y h ) .  Similarly, the effect of 
cose on hand velocity was a function of the shoulder to hand vector ( Is h ) .

The elbow flexion angular velocity, coupled with the shoulder abduction angular 
velocity (coa), produces a hand velocity component ( v h s )  directed toward the shoulder 
(Figure lb). The effect of co« and cop on Vhs was determined by the lengths of the two 
arm segments ( Is e  and Ie h ) .

The equations used to compute the medial-lateral (vx), superior-inferior ( v y )  and 
vertical (vz) components of the hand velocity, relative to a pool-fixed Cartesian 
reference frame (Figure la), are presented in Table 1.

Table 1. Equations for computing the Cartesian components of the hand velocity.

Body roll Shoulder extension Elbow flexion

V x  = cobr . Iyh . sin 8 + cose . Ish . cos <|>. sin 0 + vhs . sin <|). sin 0 (1)

. VY = cose . Ish . sin <{) + Vhs . cos <}). cos 0 + Vswim (2)

V z  = cobr . Iyh . cos 8 + cose . Ish . cos <|). cos 0 + vhs . sin <J). cos 0 ( 3 )

where 8 is the angle vector I y h  makes to the vertical.

3 Results

Table 2 presents the mean hand velocity components from a representative simulation 
performed without elbow flexion (0 m a x  = 60°, tpum = 0.7 s). Table 3 presents mean



hand velocity components from an equivalent simulation performed with the elbow 
flexing through 90°. Mean hand velocity components were defined as the mean 
absolute value (magnitude) of the hand velocity component from t = 0 to tpuLL.

The contributions made by body roll, shoulder extension and elbow flexion to the 
mean hand velocity components are also shown in Tables 2 and 3. The contributions 
made by elbow flexion to Vx and Vz have been assigned a negative value. This 
indicates that elbow flexion served to reduce the mean value of these two velocity 
components. Swimming velocity (v s w im ) was assumed to remain constant within each 
simulation and was given an arbitrary value of 1.8 m/s. This value has been included 
in the calculation of the mean superior-inferior (Vy) hand velocity values.

Table 2. Mean hand velocity components from a simulation with 60° of body roll, a 
pull time of 0.7 s, a swim velocity of 1.8 m/s and no elbow flexion.

Body roll 
contribution (m/s)

Shoulder ext. 
contribution (m/s)

Mean
velocity (m/s)

Vx 1.67 0.78 2.45
vy - 2.43 0.63
vz 0.71 2.17 2.88

Table 3. Mean hand velocity components from a simulation with 60° of body roll, a 
pull time of 0.7 s, a swim velocity of 1.8 m/s and the elbow flexing through 90°.

Body roll 
contribution (m/s)

Shoulder ext. 
contribution (m/s)

Elbow flexion 
contribution (m/s)

Mean
velocity (m/s)

vx 1.52 0.68 -0.35 1.85
vY - 2.05 0.30 0.55
vz 0.56 2.07 -0.39 2.24

4 Discussion

The effect of body roll on the medial-lateral (vx), superior-inferior (vy) and vertical 
(vz) hand velocities are described by equations 1, 2 and 3 respectively. The equations 
reveal that body roll angular velocity has a direct influence on medial-lateral and 
vertical hand velocities but has no effect on the superior-inferior component.

When the body rolls through 60° in 0.35 s (tpuix/2) with a fully extended arm, the 
mean medial-lateral and vertical hand velocities produced are 2.45 m/s and 2.88 m/s 
respectively (Table 2). For identical body roll conditions, but with the elbow flexing 
through 90°, the mean medial-lateral hand velocity is reduced by 24% to 1.85 m/s. 
There is also a 22% reduction in the mean vertical hand velocity to 2.24 m/s resulting 
from elbow flexion. Although it has previously been suggested [4] that elbow flexion



makes a positive contribution to medial-lateral and vertical hand velocities, these 
. results do not support this view.

Elbow flexion reduces the mean medial-lateral and vertical hand velocities in two 
ways. Firstly, elbow flexion reduces the shoulder to hand distance Is h . Consequently, 
for any given shoulder extension angle <j), the perpendicular distance from the hand to 
the body roll axis Iy h  is also reduced. These shortened radii reduce the body roll and 
shoulder extension contributions to the mean medial-lateral and vertical velocities 
(Table 3). Secondly, elbow flexion, coupled with shoulder abduction, produces a 
hand velocity component ( v h s )  directed toward the shoulder (Figure lb). The medial- 
lateral and vertical components of v h s  will always oppose the direction of the body 
roll and shoulder extension contributions to hand velocity.

Of the 24% reduction in medial-lateral hand velocity caused by elbow flexion, 
10% is attributable to the shortening of Is h  and Iy h .  The remaining 14% reduction is 
due to the direction of the medial-lateral component of v h s . Similarly, of the 22% 
decrease in vertical hand velocity, 8% results from the shortened radii with the 
vertical component of V h s accounting for the remaining 14%.

In addition to directly contributing to hand velocity ( cobr a  I y h ) ,  body roll also 
influences the medial-lateral and vertical velocicities produced by shoulder extension. 
Equation 1 shows that once body roll has commenced (0 * 0), shoulder extension 
makes a contribution to medial-lateral hand velocity. For a given shoulder extension 
angle <|), the greater the body roll, the greater is the contribution. The inverse is true 
for vertical hand velocity (Equation 3), as body roll increases (for a given <|)) the 
magnitude of this component decreases.

The validity of the model presented in this paper has not yet been established. The 
results must therefore only be considered as tentative indications of how body roll 
affects hand velocity in the freestyle. Nevertheless, body roll may make a substantial 
contribution to medial-lateral and vertical hand velocities in freestyle swimming and 
therefore play an important role in the generation of propulsive lift forces.
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D e te r m in a n ts  o f p ro p e n s ity  to  p a rta k e  in  ad e q u a te  
p hys ica l a c tiv ity  to p ro m o te  h ea lth

D . M u llin e a u x  and C . B arnes

School of Social Sciences, University of Teesside, Middlesbrough, UK

A p p ro p ria te  physical ac tiv ity  is w id e ly  accepted as being  

benefic ia l fo r h e a lth  and fitness. T h e  A m e ric a n  C o lleg e  o f  

Sports M e d ic in e  ( A C S M )  sum m arizes the benefits as e ither

p ro m o tin g  h e a lth  by red u c in g  the risk fo r d eve lo p m en t or 

recu rren ce  o f  disease, or en h an c in g  physical fitness. T h e s e  

redu ced  risks resu lt in  im p ro ve d  h e a lth  and feelings o f  

w e ll-b e in g , a b e tte r  q u a lity  o f  life , lo w er costs fo r in d iv id u a ls , 
g o v e rn m e n t and in d u s try , and  a lo w er inc idence o f  disease.

In  lig h t o f  the p o te n tia l h e a lth -re la te d  benefits o f  physical 
ac tiv ity , reco m m en d atio n s  fo r  a p p ro p ria te  and safe exercise 

p rescrip tio ns have been prop osed . W ith  regard to ca rd io ­
resp ira to ry  en d u ran ce , in d iv id u a ls  are reco m m en d ed  to  

p a rta k e  in  rh y th m ic  ac tiv ity  at an in ten s ity  o f 5 5 -9 0 %  o f  
m a x im u m  h e a rt ra te , 2 0 -6 0  m in , 3 - 5  days p e r w eek. T h e s e  are 

s im ila r to the level 5 reco m m en d atio n s  in c lu d ed  in the H e a lth  

E d u c a tio n  A u th o r ity ’s re p o rt on the  A llie d  D u n b a r  N a tio n a l  
Fitness S urvey  ( A D N F S ) ,  th a t an in ten s ity  o f  6 0 -8 0 %  o f  

m a x im u m  h e a rt rate shou ld  be m a in ta in e d  fo r a t least 20  m in  

on a m in im u m  o f  th ree occasions p e r w eek. R ece n tly , it  has 

been suggested th a t h e a lth  benefits  can be accrued th ro u g h  

exercising at lo w er in tensities (P ate  et al., 1 9 9 5 ), in c lu d in g  

3 0  m in  o f  ‘m o d e ra te ’ ac tiv ity  on m o st days o f the w eek.
O n  th e  basis o f  th e  A C S M  reco m m en d atio n s , the  C en ters  

fo r  D isease C o n tro l and  P re v e n tio n  (C D C P )  rep o rted  th at 
a p p ro x im ate ly  7 3 %  o f  A m e ric a n s ’ physical ac tiv ity  levels are 

in su ffic ie n t. S im ila r ly , in  the U K ,  results fro m  the A D N F S  

revealed th a t ap p ro x im ate ly  7 0 %  o f  E ng lish  adults  do n o t 
engage in su ffic ien t physical ac tiv ity  to gain h e a lth  benefits . 
E x is tin g  analyses tend  to  be u n i-fa c to r ia l and descrip tive and  

do n o t id e n tify  those factors w h ich  are associated w ith  a 
sedentary lifesty le . T h e  use o f  a lo g istic  regression analysis 

considers the co m b in e d  effect o f  variables and pred icts the  

‘o d ds’ fo r w h e th e r an in d iv id u a l is sedentary or is su ffic ien tly  

active to reap the associated h e a lth  benefits . T h e  a im  o f  

th is study was to p ro d u ce  a m u ltifa c to r ia l m o d e l to in d ica te  

in d iv id u a l p ro p en s ity  to p a rtic ip ita te  in  an adequate level o f  
physical ac tiv ity  to p ro m o te  he a lth .

T h e  database o f  th e  A D N F S  o f  1 9 9 0  co nta ined  responses 

fro m  4 3 1 6  subjects (1 6 +  years o ld ) to  m u ltip le  levels o f  

122  questions on m e n ta l, physical, social and en v iro n m en ta l 
factors associated w ith  in vo lv em en t in  physical ac tiv ity . 
Responses to questions on m o d e , in ten s ity , d u ra tio n  and  

freq u en cy  o f  physical ac tiv ity  a t h o m e , w o rk  and d u rin g  le isure  

tim e  w ere co m b in ed  to defin e  subjects as sedentary (in vo lved  

in  no  m o d e ra te  o r v igorous bo uts  o f  ac tiv ity ) o r su ffic ien tly  

active to  accrue benefits  to h e a lth  (fu lf i llin g  e ither the level 5 

c rite ria  o f  the  A D N F S  o r the reco m m en d atio n s  o f  C D C P /  
A C S M .  T w e n ty  p o te n tia l in d e p e n d e n t variab les w ere selected  

on the basis o f  th e ir  use in p rev iou s research. T o  m a in ta in  a 

h ig h  level o f  p o w er, o n ly  variables w ith  m o re  th an  a 9 0 %  

response rate  w ere in c lu d ed  in  the analysis.
A  lo g istic  regression was ru n  on S P S S  on  W in d o w s  v. 6 .1  to  

p re d ic t th e  odds o f  m em b ersh ip  to e ither the sedentary  
(w =  8 7 0 ) or active ( n = 1 1 3 5 )  groups. T h e  analysis was a 

fo rw a rd  lik e lih o o d  m o d e l. B y  in c lu d in g  th e  ‘co n s tan t’ in  the  

m o d e l, a ‘reference p e rs o n ’ was d e fin ed  by the  level o f  each 

in d e p e n d e n t va riab le  th a t described the person as least like ly  

to be active . T h e  in d e p e n d e n t variables w ere defi ned as in d ic a ­
tors and th e  basis fo r th e ir  in c lus ion  in  th e  m o d e l was d ic ta ted  
by setting statistical s ignificance to an a lp h a  level o f  0 .0 5 .

F ro m  th e p o p u la tio n  o f  4 3 1 6  subjects, 2 0 .5 %  (n =  8 8 3 )  

w ere ca tegorized  as sedentary  and 2 6 .5 %  (rz =  1 1 4 4 ) w ere  

deem ed su ffic ien tly  active to gain  h e a lth  benefits . C o n -
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sequently , 5 3 .0 %  (rz =  2 2 8 9 ) o f  the sam ple w ere physically  

active to a lesser degree th an  th a t deem ed ben efic ia l fo r  

h e a lth , and w ere exclud ed  fro m  th e regression analysis. T h e  

respective percentages are < 1 %  d iffe re n t to those fro m  the  

A D N F S .  T h e s e  values are n o t d irec tly  co m p arab le , how ever, 
as the crite ria  fo r g rou p  m em b ersh ip  w ere n o t co rrected  fo r  

age and sex as in  the A D N F S .
T h e  accuracy o f the log istic  regression m o d e l was good , 

correctly  p red ic tin g  7 2 %  o f the sedentary grou p  and 8 9 %  

o f the active g rou p. M o re  im p o rta n tly , the lo w  ‘goodness-o f- 
f i t ’ value (1 9 0 9  and 1985  d f )  ind ica tes th a t th e  m o d e l has 

a h igh ‘p ro b a b ility  p o w e r’ to p red ic t co rrec tly . T h e  fin a l 
m o d e l co nta ined  six in d e p e n d e n t variables: one ‘ph ys ica l’ 
(age), one ‘social’ (acad em ic  q u a lifica tio n s) and fo u r ‘a tt itu d e -  

based’ (m o tiva tio n  to exercise] physically  active] exercise 

enough] lifestyle p ro b le m s ). A lte rn a tiv e  variables th a t w ere  

n o t in c lu d ed  w ere hypothesized  as havin g  a sm all effect, or  

having  an effect catered fo r by  th e  variables re ta ined  in  the  

analysis. A ge has the greatest e ffect on physical ac tiv ity  

p a rtic ip a tio n  and accounts fo r  a lm ost h a lf  the p o w er, b u t all 
variables co n trib u te  statis tica lly  s ig n ifican t (P  <  0 .0 5 )  p o w er  
to the m ode l.

T h e  ‘reference p e rs o n ’ (d e fin ed  as: 7 5 +  years]possessing no  

qualifications or o f  C S E  grades 2 - 5 ) j  very lo w  m o tiv a tio n  to  be  

active] perceives them selves as physically  inactive] does n o t 
know  w h eth er they exercise en ou gh fo r benefits ] and has life ­
style p rob lem s fro m  h e a lth ) has odds o f  0 .0 0 2 6 , the rec ip ro cal 
o f w h ich  indicates they are 3 8 5  tim es m ore  lik e ly  to be  

sedentary than to be active . C h a n g in g  the ‘reference pe rs o n ’ to 

the m ost lik e ly  person to be active (d e fin ed  as: 2 5 -3 4  years] 
possessing o th er q u a lifica tion s] h ig h ly  m o tiv a te d ; very active; 
gets enough exercise; and has no lifestyle p ro b lem s) results in  

som eone w h o  is 31 tim es m o re  lik e ly  to be active th an  to be 

sedentary. T h u s , persons w ith  a tendency to be active are 

generally  yo un ger, possess fu rth e r  q u a lifica tion s , are h igh ly  

m o tiv a te d , perceive them selves as active and g e ttin g  enough  

exercise, and have no lifestyle prob lem s.
T h e  sm all percentage o f  p eop le  involved in  a su ffic ien t 

a m o u n t o f  physical ac tiv ity , as defined  in recent reco m m en d a­
tio ns , em phasizes th e  need fo r effective h e a lth  p ro m o tio n  

cam paigns. T h is  m o d e l could p ro v id e  a to o l fo r develo p in g , 
evaluating  and prescrib in g  h e a lth  p ro m o tio n  in itiatives by  

id en tify in g  and q u an tify in g ’ ta rg et groups w h o  face h ea lth  

prob lem s due to in active  lifestyles. E ffic ie n t and econo m ical 
h e a lth  p ro m o tio n  m ay  w a rra n t ta rg etin g  sedentary in d iv id ua ls  

id en tified  from  the m o d e l as h av in g  b e tte r odds to becom e  

active. F u rth e r  research is needed  to co n firm  w h y certa in  

factors in fluence p a rtic ip a tio n  in  physical ac tiv ity , and  

evaluate the effects o f  associated h e a lth  p ro m o tio n  in itia tives .



Appendix 12

Mullineaux, D.R., Barnes, C.A. and Barnes, E.F. (2001a). Factors affecting the 
likelihood to engage in adequate physical activity to promote health. Journal of 
Sports Sciences, 19, 279-88.



Journal of Sports Sciences, 2001, 19, 279-288 m
Factors affecting the likelihood to engage in adequate 
physical activity to promote health

DAVID R. MUIXJNEAUX,1* CHRISTOPHERA. BARNES2 and 
ELIZABETH F. BARNES3

lSchool of Sport and Leisure Management, Sheffield H allam  University, Collegiate H a ll, Sheffield S 10 2B P,
2Middlesbrough Football Club Training Headquarters, Hurzvorth Place, Darlington D L 2  2 D H  and 3School o f Health ,
University o f Teesside, Middlesbrough TS1 3 B A , U K

Accepted 18 December 2000

T h e  a im  o f  this s tudy was to  assess th e  lik e lih o o d  o f  in d iv id u a ls  to  p a rtic ip a te  in  en o u g h  physical a c tiv ity  
to  p ro m o te  fitness an d , m o re  co nservatively , to  accru e o n ly  h e a lth  benefits . S e d e n ta ry  (n  =  8 8 3 ;  2 0 .5 % )  

and active (n  =  1 1 4 4 ; 2 6 .5 % )  groups w ere  id e n tifie d  fro m  th e  1 9 9 0  A llie d  D u n b a r  N a t io n a l F itness S u rvey  o f  

E nglish adults (n =  4 3 1 6 ) .  T h e  da ta  w ere  analysed us ing logistic regression. P artic ip an ts  w ere  d escribed  using  

2 0  variables id e n tifie d  fro m  prev iou s research, six o f  w h ic h  m ad e  a s ig n ifican t c o n tr ib u tio n  to  th e  m o d e l 
(P  <  0 .0 5 ) .  T h e  odds o f  b e in g  sed en tary  increased w ith  age, se lf-p ercep tio n  o f  lifesty le  p ro b lem s , an d  lo w e r  

scores on  ed u ca tio n , se lf-p ercep tio n  o f  m o tiv a tio n  to  exercise, p e rc e p tio n  o f  ow n  p a rt ic ip a tio n  in  physical a c tiv ity  

an d  reco g n itio n  o f  exercising en ou gh fo r  h e a lth  benefits . T h e  odds o f  b e in g  active w ere  associated w ith  the  

opposite characteris tics to  those observed fo r  seden tary  b eh av io u r. T h e  ex tre m e  scores va rie d  fro m  in d iv id u a ls  

w h o  m a y  be 3 8 5  tim es  m o re  lik e ly  to  b e  seden tary , to  those w h o  w ere  2 9  tim es  m o re  lik e ly  to  b e  ac tive , 
d e p en d in g  on  scores on  the  se lected variables. T h e  results o f  this s tudy p ro v id e  a m eans to  d e te rm in e  in d iv id u a l 
pro p en s ity  to  p a rtic ip a te  in  ad equ ate  physical ac tiv ity , an d  to  id e n tify  those w h o  m a y  b e n e fit m ost fro m  h e a lth  

p ro m o tio n  cam paigns.

Keywords', age, ed u ca tio n , h e a lth  p ro m o tio n , odds, seden tary , se lf-p ercep tion .

Introduction

Appropriate physical activity is widely accepted as being 
beneficial for health and fitness. The American College 
of Sports Medicine (ACSM, 1995) summarized the 
benefits as either promoting health by reducing the risk 
for development or recurrence of disease, or enhancing 
physical fitness. These reduced risks result in improved 
health and feelings of well-being, better quality of life, 
lower costs for individuals, government and industry, 
and a lower incidence of disease. Increased participation 
in physical activity by adults reduces the risk of coronary 
heart disease, stroke, hypertension, non-insulin- 
dependent diabetes mellitus, osteoporotic fractures, 
depression and some cancers (Riddoch and Boreham, 
1995).

On the basis of the ACSM  recommendations, the US 
Centers for Disease Control and Prevention (CDCP,

* Author to whom all correspondence should be addressed, e-mail: 
d.mullineaux@shu.ac.uk

1995) reported that approximately 73% of Americans’ 
physical activity is insufficient. This tendency towards 
a sedentary lifestyle has been estimated to be respon­
sible for 250,000 premature deaths a year in the USA  
(Hahn et al., 1990). Similarly, in the U K , results from 
the Allied Dunbar National Fitness Survey (ADNFS) 
revealed that approximately 70% of English adults do 
not engage in sufficient physical activity to accrue health 
benefits (Activity and Health Research, 1992).

Several large surveys of English adults have identified 
factors indicating those individuals who engage in suf­
ficient physical activity to gain health benefits. In  the 
most comprehensive survey of physical activity patterns 
of English adults (w = 4316), the A DNFS showed activ­
ity to vary greatly between the sexes, across age groups 
and from one socio-economic group or ethnic group to 
another (Activity and Health Research, 1992). Similar 
findings were reported in the U K  Health Education 
Authority’s (HEA) National Survey of Activity and 
Health (« = 2837; Walker and Hoinville, 1995) and in 
the Department of Health’s Health Survey of England
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in 1991 and annually since 1993 (for example, in 
1998, n -  15,908; Prior, 1999). The analysis of these 
more recent surveys for the purpose of identifying 
factors that determine individual involvement in 
physical activity is less appropriate than the ADNFS, as 
they used reduced methods of the ADNFS and analysed 
fewer factors. The factors identified for the U K  are 
similar to those in other Western countries. For 
example, in the USA, analysis of the Third National 
Health and Nutrition Examination Survey from 1988 to 
1994 revealed that physical inactivity is more prevalent 
for the less educated, those living below the poverty 
line, those living in households with incomes below 
US$20,000 and retired persons (Crespo et al.3 1999). 
More generally, the USA’s National Institutes of Health 
(Luepker et a l., 1996) consensus statement on physical 
activity and cardiovascular health identified age, socio­
economic status, cultural influences and health status 
as factors that influence adopting and maintaining a 
physically active lifestyle.

Although much information has been accumulated 
from such surveys on health status and behaviours, 
analysis of the resultant data has often tended to be 
unifactorial and descriptive, and thus may have been 
limited in its power to identify key factors associated 
with a sedentary lifestyle. For example, although a 
strong association was found between physical inactivity 
and multiple indicators of social class (Crespo et al.3 
1999), the interrelation between these variables was not 
assessed. Additional limitations apply to the ADNFS  
classification of ‘appropriate physical activity’ for 
health benefits. The level 5 criteria within the ADNFS  
(Fentem et al.3 1994) are the same as the H EA’s (1995) 
target of vigorous exercise at 60-80% of maximum 
heart rate for at least 20 min on a minimum of three 
occasions per week. The analysis does not consider 
recent recommendations on exercise prescription, such 
as those proposed by Pate et al. (1995), who suggested 
that cumulative bouts of lower intensity exercise could 
also potentially improve health status such as through 
accumulation of 30 min of moderate activity on most 
days of the week. This has been reflected in the ACSM  
(1998) modifying its exercise prescription guidelines, 
such that the 20-60 min of continuous exercise can also 
be accumulated in 10 min bouts throughout the day. 
Within these ACSM  guidelines, moderate activity is 
defined as exercising between 55 and 69% of maximum 
heart rate.

A  greater understanding of the factors that have a 
positive influence on patterns and amounts of partici­
pation in physical activity should facilitate the 
implementation of more efficient and effective health 
promotion strategies and, subsequendy, lead to 
improved health status of the nation through more 
active lifestyles. Such factors may not appear significant

in isolation and, indeed, may only be shown to exert an 
influence in conjunction with others. As such, before 
producing recommendations regarding promotional 
activities, a thorough data analysis must be undertaken. 
Many multi-factorial statistical tools exist and are 
routinely used for such purposes. Logistic regression is 
one such tool that can be used to determine the com­
bined effect of a number of independent variables, of 
any level of measurement and not necessarily normally 
distributed, towards predicting the odds of a participant 
falling in one category or another on a dichotomous 
dependent variable. The latest Health Survey of 
England (Prior, 1999) in 1998 did consider more recent 
recommendations on exercise prescriptions (e.g. Pate 
et al.3 1995) and did use logistic regression, but the 
number of variables used was small and still the analysis 
was unifactorial in that several independent variables 
were not combined in the logistic regression analysis. 
The aim of this study was to conduct a secondary 
analysis on the data of the Allied Dunbar National 
Fitness Survey to produce a multifactorial model to 
predict individuals’ likelihood to participate in adequate 
physical activity to promote health while catering for 
more recent exercise prescription guidelines.

Methods

The Allied Dunbar National Fitness Survey (ADNFS) 
of 1990 is considered to provide a good estimate of 
the physical activity profile of the English population 
(Activity and Health Research, 1992). Permission was 
obtained from the U K  Sports Council and Health 
Education Authority to perform a secondary data 
analysis on the ADNFS database provided by The Data 
Archive (Activity and Health Research, 1995). Full 
details of the methods used in the ADNFS are described 
elsewhere (Fentem et al.3 1994), a summary of which is 
presented below.

The ADNFS contained responses from 4316 ran­
domly sampled participants (16+ years old) to multiple 
levels of 122 questions on mental, physical, social and 
environmental factors associated with involvement in 
physical activity. The responses to questions about the 
mode, intensity, duration and frequency of physical 
activity, whether at home, in the workplace or during 
leisure time, were combined in this study to re- 
categorize participants as either ‘sedentary’ or ‘active’. 
Where no moderate or vigorous bouts of activity were 
reported, the participant was deemed ‘sedentary’. The 
definition within this study for ‘active’ (i.e. sufficient to 
accrue benefits to health), therefore, was defined using 
both the level 5 criteria of the ADNFS (Fentem et al.3 
1994) and the recommendations of Pate et al. (1995), 
and are outlined in detail in the introduction to this
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paper. To identify those characteristics that determine 
or predict whether an individual is likely to engage in 
adequate physical activity, 20 independent variables 
(detailed in Table 1), which were not used to categorize 
participants as either sedentary or active, were selected 
from the database. Many of these have been cited in 
previous research (e.g. Activity and Health Research, 
1992; Walker and Hoinville, 1995; Luepker et a l.3 1996; 
Crespo et al.3 1999; Prior, 1999) together with explan­
ations for their effects on participation in physical 
activity. For ease of interpretation, all independent 
variables were analysed by dividing the responses into 
characteristic groupings. These are described in Table 1 
and in greater detail for the subsequent variables 
retained in the logistic regression model (Table 2).

A  logistic regression was run on SPSS (1999) to 
predict the odds of membership to either the sedentary 
(n = 883) or active (n =  1144) groups. The analyses used 
the forward likelihood-ratio selection procedure and the 
‘constant’ was included in the model so that the results 
defined Reference Characteristics that describe one 
person by the first characteristic from each of the 
independent variables retained in the model. The 
remaining characteristics within each variable are 
collectively termed the Alternative Characteristics. The

variables were defined as indicators; the basis for their 
inclusion in the model was dictated by setting alpha at 
0.05, a value that is considered appropriate for research 
in the social sciences (Cohen, 1988).

As logistic regression selects only participants that 
possess responses to all independent variables, the 
analysis was re-run with the unselected variables 
removed. The final model resulted in the deletion of 13 
participants from the sedentary group and nine from the 
active group. When it is possible to define the Reference 
Characteristics by the level within each independent 
variable possessing the lowest odds, then only multipli­
cation and no division is required in using the logistic 
regression model. To simplify the results, the regression 
was re-run to define the Reference Characteristics by 
the level within each independent variable possessing 
the lowest odds of being active. The odds of being active 
for a person with Alternative Characteristics can then 
be obtained by multiplying the odds of the Reference 
Characteristics with up to one Alternative Character­
istic’s odds within each variable. Where the Reference 
and Alternative Characteristics within a variable are not 
statistically significantly different, then no multipli­
cation is required (see ‘Using the logistic regression 
model’ below for clarification).

T a b le  1 . In d e p e n d e n t variables selected fo r  th e  logistic  regression g ro u p ed  u n d e r  physical, social an d  se lf-p ercep tio n  types

T y p e  V a r ia b le 0 D e s c rip tio n

Physical Age A ll age groups fro m  16 years a n d  u p w a rd
D ie t D ie t ’s n u tr it io n a l q u a lity
H e a lth  status S elf-appra isal o f  c u rre n t h e a lth
H e a lth  th resho ld S elf-appra isal o f  resistance to  p o o r h e a lth  based on  ex isting  h e a lth  

prob lem s
Sex M a le  or fem ale
S m o k in g S m o k e r, ex -sm oker o r  n o n -s m o k e r

Social Education H ig h es t ed u ca tio n a l ce rtifica te  o b ta in e d
E th n ic /ra c ia l b a ckg ro u n d C lassified in  accordance w ith  th e  19 9 1  census (O P C S )
M a r ita l  status M a r r ie d , single or o th er
S oc ia l class B ased on th e  ‘c lassification o f  o ccu p atio n s ’ (O P C S , 1 9 8 0 )
S o c io -e co n o m ic  grou p B ased on  ‘h e ad  o f  h o u s eh o ld ’ (O P C S , 1 9 8 0 )

S elf-perceptio n Active S e lf-re p o rt on  level o f  p a rt ic ip a tio n  in  physical a c tiv ity
Adequate exercise P ercep tio n  o f  w h e th e r p a rtic ip a te  in  en ou gh  exercise to  b e n e fit h e a lth
F itness S e lf-re p o rt on  p e rc e p tio n  o f  o w n  fitness
Im p o rta n c e  o f  a c tiv ity P ercep tio n  o f  th e  im p o rta n c e  o f  a c tiv ity  fo r  h e a lth
Lifestyle problems S e lf-re p o rt o f  any h e a lth  p ro b lem s th a t a ffec t lifesty le
Motivation T h e  reco g n itio n  th a t exercise w ill  c o n tr ib u te  to  ac h iev in g  som e im p o rta n t  

personal goals

O n e  vigorous b o u t P a rtic ip a tio n  in  th is m u c h  a c tiv ity  p e r  w eek: yes o r  n o
T h re e  v igorous bouts P a rtic ip a tio n  in  th is m u c h  a c tiv ity  p e r  w eek: yes o r no
W e ll-b e in g Positive o u tlo o k  on  life

“ Italics indicate the six variables that were included in the resultant regression model and which make up the Reference and Alternative 
Characteristics depending on the level o f  the characterisdc within the variable.
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T a b le  2 . In d e p e n d e n t variab les an d  th e ir  characteris tics used to  d e te rm in e  th e  R e fe re n ce  an d  A lte rn a tiv e  

C harac teris tics  as re ta in e d  in  th e  logistic regression m o d e l and th e ir  fre q u e n c y  o f  responses fo r  a ll pa rtic ip an ts  

(n =  4 3 1 6 )  an d  fo r  the sam ple in  th is s tu d y  («  =  2 0 0 5 )

V ariab le C h arac teris tic  0

A ll pa rtic ip an ts T h is  s tudy

F re q u e n c y % F re q u e n c y %

A g e 6 7 5 + 3 6 7 8 .5 2 4 6 1 2 .3
6 5 - 7 4 5 5 6 1 2 .9 2 7 0 1 3 .5
5 5 - 6 4 6 1 6 1 4 .3 2 7 6 1 3 .8
4 5 - 5 4 6 8 8 1 5 .9 2 9 5 1 4 .7
3 5 —4 4 7 4 0 17 .1 3 1 3 1 5 .6
2 5 - 3 4 7 7 3 1 7 .9 3 3 6 1 6 .8
1 6 -2 4 5 7 6 1 3 .3 2 6 9 1 3 .4

E d u c a tio n N o n e ' 1 7 9 9 4 1 .7 9 3 7 4 6 .7
S c h o o ld 1 4 1 5 3 2 .8 6 0 4 3 0 .1
O th e r ' 1 1 0 2 2 5 .5 4 6 4 2 3 .1

Active-^ N o t  at all 2 4 2 5 .6 1 6 7 8 .3
N o t  ve ry 8 6 5 2 0 .0 3 5 4 1 7 .7
F a ir ly 2 3 8 3 5 5 .2 1 0 3 8 5 1 .8
V e ry 7 9 0 1 8 .3 4 4 6 2 2 .2

A d e q u a te  exercise D o n ’t  k n o w 1 1 7 2 .7 6 0 3 .0
N o 1 8 9 3 4 3 .9 7 6 0 3 7 .9
Yes 2 3 0 6 5 3 .4 1 1 8 5 5 9 .1

L ifes ty le  p rob lem s S om e 3 1 8 5 7 3 .8 1 3 9 8 6 9 .7
N o n e 11 31 2 6 .2 6 0 7 3 0 .3

M o tiv a tio n V e ry  lo w 8 1 2 1 8 .8 4 7 5 2 3 .7
L o w 3 3 6 7 .8 1 4 5 7 .2
M o d e ra te ly  lo w 6 7 4 1 5 .6 2 7 0 1 3 .5
M o d e ra te ly  h igh 1 0 7 6 2 4 .9 4 5 2 2 2 .5
H ig h 9 1 7 2 1 .2 4 1 8 2 0 .8
V e ry  h igh 5 0 1 1 1 .6 2 4 5 1 2 .2

“ The first characteristic from each of the six variables defines the Reference Characteristics; the remaining characteristics are 
the Alternative Characteristics.

6 Age of all participants = 47 ± 1 9  years (m ean±j; range = 16-96 years); age of sample in the present study = 44 ± 1 6  years 
(range = 16-74 years).

* Includes grades 2-5 in the U K  Certificate of Secondary Education (CSE) qualification taken at age 16 years. 
d 1 6 -or 18-year-old school leaving certificate higher than CSE grades 2-5 .
' Vocational or higher academic qualifications than for the School characteristic. 
sThirty-six non-responses.

Results

Group constituents

The percentages of the sample classified as sedentary 
and active are shown in Table 3. The respective percent­
ages for this study are approximately no more than 1 % 
different from those identified in the ‘ADNFS modified 
criteria’ (Activity and Health Research, 1992). This 
demonstrates that the present study has classified the 
physical activity patterns of the English adult population

in a similar fashion to the Allied Dunbar National 
Fitness Survey (ADNFS). These values are not directly 
comparable, however, as the criteria for group member­
ship in this study were not adjusted for age and sex as 
in the ‘ADNFS modified criteria’ (see Table 3). Twenty- 
two participants were excluded from the final analysis 
as they failed to respond to one or more questions. 
This resulted in 870 sedentary and 1135 active partici­
pants (i.e. 20.2% and 26.3% of the original sample, 
respectively).
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T a b le  3 . P ercentage o f  th e  sam ple fo r  a ll ages (n =  4 3 1 6 )  an d  1 6 - to  7 4 -y e a r-o ld s  (n =  3 9 4 9 )  d e fin e d  as ac tive , irre g u la rly  active  

an d  seden tary  based on  th e  c r ite ria  o f  th e  o rig in a l an d  m o d ifie d  A llie d  D u n b a r  N a tio n a l F itness S u rvey  ( A D N F S )  an d  o f  the  

present study

G ro u p

A D N F S  o rig in a l c r ite r ia 0 A D N F S  m o d ifie d  c r ite r ia 6 P resen t study*

A ll  ages 1 6 -7 4  years A ll  ages 1 6 -7  4  years A ll  ages 1 6 -7 4  years

A ctive 8 .2 9 .0 2 7 .5 2 9 .3 2 6 .5 2 8 .6
Ir re g u la rly  active d 7 1 .2 7 4 .7 5 1 .9 5 4 .4 5 3 .0 5 5 .0
S edenta ry * 2 0 .6 1 6 .3 2 0 .6 1 6 .3 2 0 .5 1 6 .4

“ Active is defined as fulfilling the level 5 criteria of the AD N FS (Fentem et al., 1994).
‘ Active is defined as fulfilling the level 5 criteria of the AD N FS (Fentem et a l ,  1994) and controlling for age and sex (Activity and Health 

Research, 1992) where less physical activity is required for health benefits with increases in age and smaller increases in age for women.
‘ Active is defined as fulfilling the level 5 criteria of the A D N FS (Fentem eta l., 1994) or the recommendations of Pate et al. (1995).
J Engaging in physical activity but less than either an accumulation of 30 min of moderate exercise in at least 10 min bouts (Pate et al., 1995) or 

three 20 min bouts of vigorous exercise (Fentem et a l ,  1994) per week.
" Engaging in no physical activity sufficient to gain health benefits (i.e. no bouts of at least 10 min of moderate exercise).

Independent variables

The accuracy of the logistic regression model resulted in 
the correct prediction of 72% of the sedentary group, 
89% of the active group and 81% overall. The Hosmer 
and Lemeshow goodness-of-fit (x2 = 3.70, d.f. = 8, 
P =0.88 ), which compares the observed to the pre­
dicted probabilities, was non-significant, indicating that 
the model fits well. Although issues related to statistical 
power are not yet covered for logistic regression, includ­
ing this goodness-of-fit value that is analogous to the 
standard error in linear regression (Munro, 2001), the 
high P-value for the goodness-of-fit suggests that 
the model’s ability to predict correctly is high. This is 
confirmed by the large extremes of the odds for pre­
dicting some participants to either the sedentary or 
active groups.

The final model contained six independent variables: 
one ‘physical’ (age), one ‘social’ (education) and four 
‘self-perception’ (active, adequate exercise, lifestyle 
problems and motivation). All variables have been 
included in the model as categorical variables, of which 
columns 1 and 2 of Table 2 describe their name and 
characteristics, respectively. The frequencies for each 
characteristic within each variable tended to have an 
equal distribution with no individually small sample 
proportion that is beneficial for logistic regression 
(Menard, 1995). The sequence of inclusion of the 
independent variables in the model was determined by 
a significant improvement in x2» as detailed in Table 4. 
This value indicates the explanatory power of the model 
(Munro, 2001). Age had the greatest effect on physical 
activity participation and accounted for almost half 
the explanatory power, but all variables contributed 
statistically significant explanatory power to the model 
(P < 0.001).

Logistic regression model

The final model is presented in Fig. 1, which illustrates 
the variables, Reference Characteristics and Alternative 
Characteristics for the model. The numbers are the beta 
coefficients (/?) presented as odds (i.e. odds = ep) } of 
which the constant is referred to as the Reference 
Characteristics. The calculations of each odds value to 
be active, for a person defined by combinations of 
these characteristics, can take account of standard error 
estimates in their presentation, although for simplicity 
of presentation, calculation and interpretation of these 
have not been included or used.

Using the logistic regression model

The logistic regression model illustrated in Fig. 1 was 
used to identify the likelihood of a categorized person 
participating in adequate physical activity. The Refer­
ence Characteristics (i.e. those characteristics described 
in the middle box of the model) have an ‘odds value’ 
of 0.0026, and suggest this is the least likely person 
defined by the model to be active. An odds value of less 
than 1 indicates that the defined person is more likely 
to be sedentary; the lower this value, the greater this 
tendency. The reciprocal of odds less than 1 provides 
the odds to be sedentary; hence the reciprocal of 
0.0026 indicates that a person possessing these char­
acteristics is 385 times more likely to be sedentary 
than to be active. In  this example, the Reference 
Characteristics are defined as: 75+ years old; perceives 
oneself as not at all active, very low motivation to 
be active and don’t know whether I  participate in 
adequate exercise for benefits; possessing no education; 
and perceives oneself has some lifestyle problems from 
health.
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Multiplying the odds for the Reference Character­
istics with one Alternative Characteristic’s odds, from 
any number of variables, provides the odds for a newly 
described person to be active. For example, changing 
the Reference Characteristics to the following -  25-34  
years old; perceives oneself as very active, very highly 
motivated and gets adequate exercise; possessing other 
education; and perceives oneself has no lifestyle 
problems -  provides odds of 29 (i.e. 0.0026 X 22.1 X  

1 1 . 6 x 5 .2 x 2 .9 x 1 .8 x 1 .6 ) .  This person is 29 times 
more likely to be active than to be sedentary and is the

T a b le  4 . S equence o f  in c lu s io n  o f  variables in  th e  logistic  

regression, in c lu d in g  an  in d ic a tio n  o f  th e  m o d e l’s exp lan a to ry  

p o w er an d  accuracy to  p re d ic t physical a c tiv ity  status

V ariab le

E x p la n a to ry  p o w e r0
A c c u ra c y 6 
(%  co rrec t)y? d .f.

A ge 6 9 8 6 7 7
A ctive 9 6 3 9 8 0
M o tiv a tio n 1 0 2 8 14 81
A d e q u a te  exercise 1 0 5 3 16 81
E d u c a tio n 1 0 7 2 18 81
Lifes ty le  p rob lem s 1 0 8 4 19 81

“ The inclusion of variables provides a significant improvement in the 
explanatory power of the model to predict participants as either 
sedentary or active as indicated by y? (P < 0.001). 

h The overall accuracy of the model to correctly predict participants as 
either sedentary or active.

most likely person to be defined by the model as active. 
An odds value of greater than 1 indicates that the 
defined person is more likely to participate in physical 
activity; the greater this value, the greater this tendency.

As all the Alternative Characteristics’ odds are greater 
than zero, changing any characteristic from the Refer­
ence Characteristics will increase the odds for a person 
to be active. Also, the further the deviation from the first 
Alternative Characteristic, within a variable, the greater 
the likelihood the individual will be active (with the 
exception of the youngest age category where the odds 
reduce slightly). Defining a person with any combin­
ation of Alternative Characteristics makes a statistically 
significant difference (P  <  0.05) from the Reference 
Characteristics in all except for two conditions. There 
are no significant differences between defining a person 
as perceiving they have a Very low’ or ‘low’ motivation 
to be active, and between whether they perceive that 
they ‘don’t know’ or ‘do not’ get enough exercise. I f  
a person possesses the latter element to either pair 
of these responses, then changing to these Alternative 
Characteristics from the Reference Characteristics is 
not required. Essentially, individuals with a tendency to 
be active are generally younger, perceive themselves to 
be active, getting enough exercise and highly motivated 
to be active, more educated and having no lifestyle 
problems. Example individuals identified from the 
logistic regression model are provided in Table 5, 
indicating their odds to be active at equal intervals on 
a linear scale of the beta coefficients (/?), where 
P =  ln(odds).

Variables

Age Active Motivation Adequate Education Lifestyle
exercise problems

ETTETT
Reference Characteristics

(odds to be active are 0.0026)

75+ Not at all Very low Don't know None Some

$ IT S
Alternative Characteristics

(multiply 0.0026 by odds for 1 characteristic from any number of variables to obtain odds to be 
active for an individual with the selected characteristics)

65-74 (2.2) 
55-64 (3.8) 

45-54 (14.0) 
35-44(21.2) 
25-34(22.1) 
16-24 (14.8)

Not very (2.1) 
Fairly (6.6) 
Very (11.6)

Low (1.2)* 
Mod low (3.6) 
Mod high (4.4) 

High (4.7) 
Very high (5.2)

No (1.5)* 
Yes (2.9)

School (1.7) 
Other (1.8)

None (1.6)

F i g .  1. S im u lta n eo u s  logistic regression m o d e l fo r  ca lcu la tin g  in d iv id ua ls* odds to  p a rtic ip a te  in  ad eq u ate  physical ac tiv ity . T h e  

R eference  C harac teris tics  odds o f  0 .0 0 2 6  shou ld  b e  m u ltip lie d  b y  th e  odds fo r  on e  A lte rn a tiv e  C h a ra c te ris tic  fro m  any n u m b e r  o f  

variables to  o b ta in  n e w  odds fo r the  d e fin ed  in d iv id u a l to  b e  active . “N o  statis tica lly  s ig n ifican t d iffe re n c e  fro m  th e  respective  
R eference  C harac teris tics  (P  >  0 .0 5 ) .
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T a b le  5 . E x e m p la r  person characteris tics and th e ir  odds to  be  active ran g in g  fro m  th e  m ost lik e ly  to  be sed en tary  to  the m ost 
lik e ly  to  p a rtic ip a te  in  ad equ ate  physical a c tiv ity  fo r  h e a lth  benefits

E x e m p la r characteris tics

O d d s  to  b e  ac tive0
A ge
(years) A ctive M o tiv a t io n

A d e q u a te
exercise E d u c a tio n

life s ty le
p ro b lem s

7 5 + N o t  a t all V e ry  lo w D o n ’t  kn o w N o n e S om e 0 .0 0 2 6  (3 8 4 .6 )
5 5 -6 4 N o t  a t a ll V e ry  lo w D o n ’t  kn o w School S om e 0 .0 1 6 8  (5 9 .5 )
5 5 -6 4 N o t  ve ry V e ry  h igh D o n ’t  kn o w N o n e S om e 0 .1 0 7 9  (9 .3 )
2 5 -3 4 N o t  ve ry M o d e ra te ly  lo w D o n ’t  kn o w N o n e N o n e 0 .6 9 5 0 ( 1 .4 )
1 6 -2 4 F a ir ly M o d e ra te ly  lo w Yes School S om e 4 .5
2 5 -3 4 V ery V e ry  h igh Yes O th e r N o n e 2 8 .9

“ The logistic regression results provide the odds to be acuve for a person possessing these six characteristics. Where the defined person is more 
likely to be sedentary than acuve (i.e. odds <1), then the reciprocal of the odds (i.e. odds to be sedentary) are described in parentheses. The odds 
range from the most likely to be sedentary at the top of the table down to the most likely to be active in equal intervals on a linear scale of the beta 
coefficients (/?), where /?= ln(odds).

Discussion

The proportion of this sample of English adults that was 
deemed to participate in a sufficient amount of physical 
activity for health benefits was 26.5%. The remaining 
73.5% participated in less activity than is deemed to be 
beneficial to health (Fentem et al., 1994; Pate et al., 
1995). This includes 20.5% of the sample who lead a 
sedentary lifestyle. These findings are similar to those 
from previous studies in the U K  (see Table 3) and USA  
(24% sedentary; Crespo et al., 1999), and the small 
percentage of people involved in sufficient physical 
activity emphasizes the need for effective health 
promotion campaigns.

The results of the logistic regression model provided 
additional information on the physical activity of 
English adults by combining several independent 
variables and by using these to quantify their likelihood 
to participate in physical activity. The six variables 
included one ‘physical’ (age), one ‘social’ (education) 
and four ‘self-perception’ (active, adequate exercise, 
lifestyle problems and motivation).

The results of our analysis demonstrate that age is 
the strongest indicator of those individuals who are 
likely to be active. Participation is greatest between 25 
and 44 years of age and decreases rapidly with increas­
ing age. Life-changes towards a more independent life­
style (Sallis and Hovell, 1990) have been hypothesized 
to explain the young (16-24 years) being less active than 
25- to 44-year-olds, whose lives tend to be more struc­
tured. The Allied Dunbar National Fitness Survey 
(Activity and Health Research, 1992) proposed two 
theories for the decline in physical activity participation 
after the age of 44. First, the ageing process itself can be 
a deterrent for physical activity, although on its own this 
is extremely difficult to substantiate given the large

differences in the rates of age-related changes across the 
population (McArdle et al., 1996). The rate of ageing 
has been proposed to be causally linked to inactivity 
(Wood, 1992), which is supported by a deterioration of 
body functions in response to physical inactivity (Bortz, 
1984). Secondly, the opportunities to participate in 
vigorous physical activity have increased dramatically 
with an increase in leisure facilities and sports provision. 
This is supported by the Leisure Industries Research 
Centre in the U K  (Gratton et al., 1999), who link an 
increase in consumer spending on active sport since 
1993 to: an increase in the provision of health and 
fitness clubs, changes in self-perceptions towards a 
greater preference to engage in physical activity, and 
a rise in the number of 15- to 24-year-olds who have a 
tendency to be active. It  is possible that the older gener­
ation has had little experience of vigorous physical 
activity other than through walking, physical tasks and 
occupations, but with future generations this may 
change.

With increasing age there may also be changes in 
self-perceptions, although the interaction of age with 
the self-perception variables retained in the analysis 
has not been explored. Nevertheless, as perceptions of 
competence in physical activity have been linked to high 
efficacy and thus to intrinsic motivation for participa­
tion in exercise (McAuley et al., 1991), there may be a 
reduction in such competence associated with ageing 
that would in itself result in reduced motivation. Self­
perceptions made a significant independent contribu­
tion to the model. Individual perceptions of physical 
activity patterns were found to be accurate where assess­
ments were made of one’s own participation, particu­
larly whether this was adequate to promote health. 
Those who perceive themselves to be in good health 
are more likely to exercise (Sallis and Hovell, 1990).
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Similarly, perceptions of possessing higher motivation 
and possessing no barriers to participation through 
lifestyle problems from health were found to increase 
the likelihood of participation. Participation has been 
related to those who recognize the benefits of exercise, 
and to a belief in one’s control over health outcomes 
(Dishman, 1982). An understanding of the potential for 
improved health may explain why a high risk of heart 
disease has been proposed to be a strong determinant 
of participation in exercise, although Dishman et al. 
(1985) reported contradictory evidence that men at risk 
of coronary heart disease are less likely to participate. 
Education and the development of positive self­
perceptions would appear, therefore, to be a useful 
tool to increase participation, but this may only be a 
means of stimulating initial participation rather than 
promoting better adherence. Further research is needed 
to explore whether intervention strategies to increase 
participation can also increase ongoing participation in 
exercise.

The results of our analysis suggest that individual 
perceptions of participation could be useful to identify 
who should be targeted in future health promotion 
campaigns. Identifying who to target based on a 
combination of several variables may be beneficial, 
whereas targeting based on single variables in isolation 
may result in key persons being omitted from health 
promotion activities. For example, motivation as 
an isolated factor has not been shown to relate to com­
pliance with exercise programmes (Wankel et al.3 1985).

One ‘social’ variable was found to influence partici­
pation in physical activity. The greater the education of 
an individual, the more likely it was he or she would 
participate in sufficient physical activity. This was also 
identified in a study in the USA (Crespo et al.3 1999). In  
addition, as the characteristics of self-motivation and 
exercise behaviour skills have been linked with an 
increased likelihood of the more educated to be active 
(Dishman et al.} 1985), then educational achievement as 
a predictor of participation is inherently linked to self­
perceptions and knowledge. The better educated might 
understand and value the benefits of exercise (Crespo et 
al.y 1999) and other lifestyle behaviours affecting health, 
such as diet, which may lead to greater participation 
in physical activity. Another factor associated with 
educational attainment is environmental barriers. 
Environmental features and related perceptions of 
the environment have been reported to be barriers to 
exercise (Barnes et al.3 1994). The factors described 
within this include family and social support, physical 
environment and availability of facilities. I f  less edu­
cation is related to socio-economic status, then it is 
likely that the less educated will perceive more con­
straints to participation. In the USA, it was reported 
that only education made a significant contribution to

a logistic regression model in women of different 
ethnic groups (Ransdell and Wells, 1998). Four possible 
mechanisms were described for lower participation with 
less education or lower social class, although the authors 
did emphasize that further research is required. The 
four mechanisms were that these individuals could be 
less informed, have less disposable income, work longer 
and more inflexible hours, and participate in more 
physically demanding jobs, which has previously 
been shown to be inversely related to physical activity 
participation (White et al.s 1987).

Other variables that were not included were hypothe­
sized to have a small effect, or to have an effect catered 
for by the variables retained in the analysis. For instance, 
the inclusion of education may have excluded socio­
economic group and social class. Education and socio­
economic group have been considered as part of a 
multi-factorial measure of social class (Crespo et al.3 
1999), but the probable strong relationship between 
these factors may clarify why education alone has been 
retained in the model. It is also beneficial to include 
education as an indicator because it is widely used, 
considered a stable measure for adults and is often a 
precursor to income and occupational status (Crespo 
eta l.3 1999).

The sex of the individual also made no significant 
contribution to our model. Although there is evidence 
to suggest that participation patterns do differ between 
the sexes (Sallis eta l.3 1985; Stephens et a l.3 1985), there 
is little evidence that sex is a predictor of participation. 
Its absence from our model could suggest that the 
physical differences between the sexes and sociological 
issues of gender affecting individuals’ participation in 
physical activity can be explained by the combined 
effect of the variables retained in the model. For 
example, as almost one-quarter of women are family or 
home keepers (Central Statistical Office, 1990 -  taken 
from the same year as the ADNFS and the definition 
used then), who perceive their health to be significantly 
worse than those with other occupations (Stonks et al.3 
1997), then a difference between the sexes may be 
accounted for by the self-perception of ‘lifestyle prob­
lems’ variable retained in the analysis. Alternatively, 
these differences could simply exist within the irregu­
larly active group, which was omitted from the analysis. 
Although this sample is considered to provide a good 
estimate of the physical activity profile of the English 
population (Activity and Health Research, 1992), any 
traits of minority groups are obscured by logistic 
regression and many other statistical techniques simply 
owing to the problems of small and uneven sample 
proportions that increase the error and uncertainty in 
the results (Menard, 1995). Therefore, identifying any 
valid ethnic influence on physical activity participation 
is difficult and further confounded by the proportionally
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large difference between the non-white British popula­
tion of 5.9% (Office of Public Censuses and Surveys, 
1991) compared with 3.6% in this sample.

The resultant model from this study presents a power­
ful and accurate (81% correct) means to provide odds 
for selected individuals to participate in physical activity 
based on specific characteristics. The model spans a 
surprisingly large range in propensity to be sufficiendy 
active, supported by the high explanatory power of 
the model (Hosmer and Lemeshow goodness-of-fit, 
P=0.88).  The odds to be active range from 0.0026 
(i.e. the reciprocal of which provides those who are 385 
times more likely to be sedentary than active) to 29 
(i.e. those who are 29 times more likely to be active than 
sedentary). These ranges suggest that the tendency of 
the sedentary group to remain sedentary is much 
greater than that for the active group to remain active. 
This is supported by the ability of the model to correcdy 
predict 89% of the sedentary group versus 72% of the 
active group. The results can be used to identify people 
that should and could be targeted in future health 
promotion campaigns. Efficient and economical health 
promotion may thus warrant targeting sedentary 
individuals with high odds to be active (e.g. from 0.6950 
to 1), as they may more easily be encouraged to change 
and thus participate in adequate physical activity to 
promote health. In  addition, targeting individuals who 
are more likely to be active than sedentary but with low 
odds (e.g. odds from 1 to 4.5) may be beneficial so 
that they remain active. The Transtheoretical Model 
of behaviour change (see, for example, Marcus and 
Simkin, 1994) may support targeting individuals with 
these odds to be active from 0.6950 to 4.5, which 
encompass one-fifth of the linearized range of odds 
as presented in Table 5. As this is the fourth of the 
five stages in Table 5, potentially this can be aligned 
with the ‘action’ stage of the Transtheoretical Model. 
Hence, changing the behaviour of this group to possess 
odds greater than 4.5 would put them in the top one- 
fifth of the odds range, potentially classifying them in 
the ‘maintenance’ stage of the Transtheoretical Model. 
Exploring these stages, and owing to the self-perception 
variables retained in the model, linking them with the 
self-efficacy component of the model may provide a 
focus for future work on changing physical activity 
participation behaviour. In  addition, in targeting these 
individuals successfully in health promotion inter­
ventions, consideration should also be made of other 
factors, such as the appropriateness of specific inter­
vention strategies for different points in the odds 
continuum and in light of other barriers to partici­
pation. A  variety of barriers to participation and 
intervention strategies available to the practitioner have 
previously been highlighted (Barnes et al., 1994; 
Dishman and Buckworth, 1996).

Future research should include only variables that 
have an a priori rationale for their effect on activity 
participation. Consideration should be given to: (1) 
confirming how the combined effect of these variables 
influences participation in physical activity; (2) utilizing 
this information in the development of subsequent 
large-scale analyses on physical activity; (3) investi­
gating the irregularly active group potentially using a 
multinomial logistic regression (SPSS, 1999); and (4) 
assessing the effectiveness of health promotion strate­
gies implemented to promote appropriate involvement 
in physical activity. Attention must also be given to the 
type of physical activity in which people engage, as there 
is evidence to suggest that predictors of participation 
differ according to the nature of activity or exercise 
(Sallis and Hovell, 1990). This work will test the validity 
of this model and approach, and provide more inform­
ation on the effect of the English culture on physical 
activity participation.
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7 RESEARCH METHODS AND STATISTICS 

7.1 Introduction

Advances in sport and exercise biomechanics depend on many factors; these are 
technical, personnel and research-based. For advances to occur, developments are 
needed not only in equipment, but also in the experience, knowledge and expertise 
of personnel, so that researchers propose, conduct and report research correctly 
and thoroughly. The aim of this chapter is to highlight research design and statistical 
issues that should be considered in all research. An understanding of these issues 
should assist in the production of quality research that will advance sport and 
exercise biomechanics. This chapter provides an overview of the important factors to 
be considered; further details on specific aspects (particularly the use of discrete 
tests) should be sought from more detailed texts, such as those listed in section 7.8.

7.2 Types of research

Research is often categorised as basic or applied; within each of these there are 
many ways to classify research. Research is generally positioned on a continuum 
from descriptive (where events are observed and described) to experimental (events 
are manipulated and effects analysed). Typically the results are described as being 
either qualitative or quantitative. Scientific research should be systematic, empirical, 
reductive, logical and replicable (Tuckman, 1978), as described in Table 7.1.

Feature Characteristics

Systematic Identifying and labelling variables, and designing research to test 
associations between them.

Empirical Collecting data to allow evaluation of the problem and hypotheses.

Reductive Synthesising data to establish general associations or relationships.

Logical Examining the procedures used to allow researchers to evaluate 
conclusions.

Replicable Recording all important information to allow others to test the findings 
or to build on the results.

Table 7.1. Characteristics of research.

In sport and exercise biomechanics, empirical research is generally quantitative; this 
research forms the basis of this chapter. The research designs commonly used in 
biomechanics are experimental, quasi-experimental and correlational. Much 
laboratory-based research in sport and exercise biomechanics falls into the first two 
of these categories, and often involves looking at the effects of an experimental 
treatment on differences in variables between groups. Much field based research in 
sports biomechanics is not truly experimental, as no control is exercised through the 
use of independent or categorical variables. Such research is often more correctly 
described as correlational research.
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7.2.1 Experimental research

Experimental research involves the experimenter manipulating treatments - the 
experimental or independent variable - to monitor possible effects on selected 
dependent variables. The experimenter tries to control all factors except the 
dependent variable.

7.2.2 Quasi-experimental research

Quasi-experimental research includes designs in which selection and 
assignment of subjects to treatments are not random. This principally includes 
non-probability sampling, and the use of independent variables that cannot be 
manipulated and are categorical (e.g. age, sex, skill level) rather than under 
the experimenter’s control. An example, incorporating a categorical variable, is 
an ex post facto design studying groups of skilled and unskilled subjects to 
establish variables that distinguish between the groups.

7.2.3 Correlational research

Correlational research is a branch of descriptive research that explores 
relationships that exist among variables. The basic distinction between this and 
experimental research is that the experimenter neither manipulates 
independent variables nor administers experimental treatments. Such research 
is designed to collect data on several variables from the same subjects, to 
analyse the relationships that exist among these variables, and, possibly, to 
predict values of a dependent variable. This research is often most valuable at 
the descriptive stage of the research process. The data are usually analysed 
by correlation-regression statistics.

7.3 Planning research

Research may be considered as four primary processes: research design, conduct
of the investigation, statistical analysis, and reporting of the research (Table 7.2).

Research process Characteristics

Research design Hypotheses formulation, group selection, experimental 
design, and control of extraneous variables.

Conduct of investigation Control for experimental error, establishment of
uncertainties (errors) in experimental data, objectivity and 
reliability checks, data processing, and error propagation.

Statistical analysis Justifying and implementing statistics to describe 
(descriptive statistics), support (effect size statistics) and 
test hypotheses (inferential statistics).

Reporting of studies Information needed for interpretation and replicability.

Table 7.2. The four processes of research.
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The initial stages of research involve a broad consideration of all the components of 
the study. The four processes of research (Table 7.2) are considered together, with 
the aim of establishing whether the results expected would provide an answer to the 
research question, using the best methods available to the researcher (Figure 7.1). 
If this is achieved, the study can be implemented; otherwise modifications should be 
made within any of the four processes.

No

Yes
/  Uses best \  

available equipment 
^ an sw e rs  research 

\  Q u e s tio n ?  /

Implement study

Methods

Research question

Results

Data analysis

Figure 7.1. Planning research.

The planning initially involves the identification of a research question that is both 
worthy of attention and should contribute to the body of knowledge. Through a 
subsequent literature review, an appropriate research design (method) should 
emerge that is realistic and ethical. The design should incorporate all considerations 
essential for suitable and accurate descriptive, inferential and effect size statistical 
analysis.

Often inferential statistics are used as the penultimate component of the research 
process, before reporting. Such statistics have a single purpose, to identify the 
probability of obtaining the results if chance caused them (Carver, 1978). Inferential 
statistics show nothing about the odds of occurrence, generality, reliability, validity, 
or importance of the findings (Table 7.3). From the information that is provided by 
testing the null hypothesis (H0), inferential statistics may be used to support results 
from descriptive and effect size statistics. The implementation of an appropriate 
research design, however, is of greater importance than an overemphasis on 
statistical issues. As the method is the most important part of the research process 
(O’Brien and Israel, 1987) it must be carefully planned and implemented; a good 
research design will, in turn, aid in the appropriate choice of any statistical analysis.
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The following will highlight mechanisms for developing a good research design 
suitable for sport and exercise biomechanics, that should inherently result, where 
necessary, in appropriate descriptive, inferential and effect size statistics.

Information 
supposedly provided

Actually
provided

Reason for or alternative 
method to obtain information

Probability of results Yes Probability of getting the results when chance 
is assumed to have caused them is provided.

Odds of occurrence No The probability that the results were due to 
chance cannot be calculated.

Generalisation No Inference or generalisation is not possible.

Reliability No Should be provided within the research design 
and by replication of the study.

Validity No Rigorous theorising, careful planning, and 
replication can assist this.

Importance No Discussion of the results in relation to research 
question, previous literature, theory, and 
limitations can highlight the importance of the 
results.

Table 7.3. Information provided by inferential statistics (partly derived from Carver, 
1978).

The many considerations in planning research include sampling, sample size, trial 
size, statistical significance level and power desired. The following subsections 
focus on nine important issues in the broad topic of research design.

7.3.1 Hypothesis formulation and testing

The normal progression from the defined research question is to formulate 
testable research hypotheses. The hypotheses, developed from theories 
highlighted in previous research, should be formulated to be what the 
researcher logically and justifiably expects. These hypotheses will then provide 
the basis for the subsequent study, and the aim is to accept or reject them.

The use of previous research is vital to increase the probability, which is never 
determinable, of rejecting or accepting the hypotheses. In using the literature it 
is beneficial to access research that is unpublished and that had results that 
were not statistically significant, possibly by writing to key authors. This is 
important because of a tendency in the literature to report only statistically 
significant findings; this can introduce a bias into research. Both published and 
unpublished research can be of high and low quality; it is up to the researcher 
to justify the quality of such work.
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The testing of hypotheses by the scientific method requires that the research 
hypothesis (Hi) be evaluated first, mainly by inspection and discussion of 
descriptive and effect size statistics. Alternative hypotheses (including the null 
or chance hypothesis) should then be evaluated; directional, or research, 
hypotheses are usually altered to the null hypotheses that are statistically 
tested. Simply disregarding the theory-derived research hypothesis for the 
convenient null hypothesis, necessary for inferential statistical analysis, can 
corrupt the scientific method and can hinder correct analysis. Use of post hoc 
and unsuitable theoretical propositions (particularly if H0 is rejected at a given 
a  level and H / is accepted) is problematic. It is not correct to assume that the 
probability of Hi is 1-a; rejection of H0 does not prove hh (see Dracup, 1995, for 
a lucid account).

Inferential statistics only test the null hypothesis, and do not provide any 
support for an alternative hypotheses. Correct research requires that the 
research hypothesis and data be discussed first, possibly with the aid of 
descriptive and effect size statistics. Other hypotheses should then be 
assessed, including the testing of the null hypothesis, using inferential 
statistics. This ensures that the data, and not the inferential statistics, drives 
the methods, analysis, and interpretation of the research.

7.3.2Research design

Research design is often expressed by its paradigm (e.g. experimental 
research), links between groups (e.g. within design), and the number and 
timings of treatments and measurements. A clear design is important and 
assists readers in understanding and interpreting research. A good research 
design should develop from theory, with due consideration of constraints 
imposed by the research question, previous literature, resources, and ethics. 
The research design is at least as important as any subsequent statistical 
analysis; if the research design and methods are flawed, the value of the 
results is greatly reduced.

7.3.3 Sampling

Research questions posed in sport and exercise biomechanics often require 
subjects with specific characteristics. For example, a study of the techniques of 
elite hammer throwers will not require random sampling from the population, 
but purposive sampling of elite hammer throwers. To help readers to make 
their own inferences, it is important that the sampling used is described.

The choice of statistical analysis is affected by the type of sampling and the 
often small population of interest in biomechanical studies. The use of some 
statistics in such instances may not be appropriate, as both the sampling and 
small sample size may violate assumptions of the statistical tests. For instance, 
the mathematics of the normal probability curve underpins the tabulated 
sampling distribution of many statistical tests. Sampling sufficient numbers from 
a population with random or equivalent techniques will, by probability theory, 
result in a normal sampling distribution, allowing the use of these statistical 
tests. In biomechanical research, however, the use of non-random sampling 
and reliance on small numbers probably results in sampling distributions that
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are not normal. This can lead to misleading descriptive statistics and can 
cause severe problems in the control of type I errors in certain statistical tests.

7.3.4 Sample size

An early consideration in the design of any research is the determination of the 
required sample size (n). The probability of a biased sample increases as the 
sample size decreases; this increases the sampling error - the error in the 
estimate of a population parameter from a sample statistic. Often the sample 
size is unambiguously dictated by availability. The required numbers should, 
however, be determined a priori based on considerations complementary to the 
appropriate use of statistics. Several methods exist to calculate the appropriate 
sample size including statistical tables, characteristics of the sample, or 
requirements of the statistical test.

If the results of a research study, based on a randomly selected sample, are to 
be generalised to the population from which that sample was drawn, then 
statistical tables can be used to determine the sample size, n, for a given 
population size, N. For such generalisations to hold, the sample statistic should 
be a reliable, and unbiased, predictor of the population parameter. For the 
researcher to be confident that this is the case, the sample size should be in 
accord with tables such as Table 7.4. These are very easy to use, but are 
limited, as identifying the population size may be difficult in the first place. 
However, generalisations based on smaller sample sizes must be viewed with 
considerable caution. Fortunately, as discussed below and in later sections, 
when the findings of a research study are not to be generalised to a larger 
population, then the constraints on sample size can be considerably relaxed.

N n N n N n

10 10 500 217 7000 364

15 14 650 242 10000 370

20 19 800 260 15000 375

25 24 1000 278 20000 377

50 44 1300 297 30000 379

100 80 1600 310 40000 380

200 132 2000 322 50000 381

300 169 3000 341 75000 382

400 196 4000 351 1000000 384

Table 7.4. Sample size (/?) required for a given population size (A/) to provide 
90% confidence that the variation between the sample statistics and population 
parameters will be less than 5% (adapted from Krejcie and Margan, 1970).
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Previous research can be used to determine the size of the effect between 
groups. This is important, as the power of a test is affected by the effect size as 
well as by the sample size at a given a  (significance) level for a specific test. If 
a specific test power is desired, and if the effect size is known, the required 
sample size can be determined from published tables and equations (e.g. 
Cohen, 1988). Power, effect size, the a  level, and the assumptions of statistical 
tests will be discussed in more detail below.

The requirements of specific statistical tests also affect the sample size. For 
example, in regression analysis the ratio of the sample size (n) to the number 
of predictor variables (p) is important. For small ratios of n:p high correlations 
can occur by chance and the generality of the regression equation will be 
seriously limited; for random data, the correlation coefficient is 1 for n = p+1. At 
the opposite extreme, for a large enough n almost any multiple correlation will 
be statistically significant. Vincent (1995) cited a minimum ratio of 5:1 with an 
ideal value of around 20:1, and an even greater ratio of 40:1 for stepwise 
multiple regression. Different authors provide somewhat different, usually more 
conservative, figures (e.g. Harris, 1985; Howell, 1992). A good rule of thumb is 
never to have n.p less than 10:1, and ideally between 20:1 and 40:1, with the 
top end of the range for stepwise multiple regression.

In testing differences between groups, a sample size of no less than 30 has 
been recommended per group (Baumgartner and Strong, 1994). Such sample 
sizes increase the probability of a normal sampling distribution on the 
dependent variable, an assumption on which statistical tables, such as those of 
the t and F-statistic, are based. However, the size of the samples, providing 
they are equal, is regarded by some authorities as something of a side issue 
(e.g. Howell, 1992). An important factor here is to seek to assess any effect of 
a small sample size on the probability (P) value, for example through power 
analysis (e.g. Cohen, 1988).

7.3.5 Trial size

Analysis of a single trial in sport and exercise biomechanics is both common 
and fraught with problems. These problems can often arise when one trial is 
assumed to be representative of a subject’s technique, and when it is analysed 
along with the trials of other subjects. Individual performances should only be 
grouped after verification of similarities as, from probability theory, similarities 
are likely to prove to be exceptions (Bates et al., 1992). Grouping may result in 
the characteristics of individual techniques being ‘washed-out’ by combining 
the data. This consideration lends strong support to the use of within-subject 
designs (Bates eta!., 1992).

For within-subject designs, the statistical power is influenced by the number of 
trials. For 90% power to be achieved, it has been recommended that 10, 5 and 
3 trials should be used for sample sizes of 5, 10 and 20 respectively (Bates et 
al., 1992). This use of repeated measures is supported by Carver (1978) who 
pointed out that it is desirable to build replication into designs, even though this 
can involve a more complex analysis.
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7.3 .6Statistical significance level

All too often in biomechanics, and other research, an arbitrary statistical 
significance level (alpha, a) is selected with no rationale provided and with no 
consideration of power and type II errors. This raises several important issues 
relating to type I errors (reject the null hypothesis when it should have been 
accepted) and type II errors (accept the null hypothesis when it should have 
been rejected). The type I and II errors are on a balanced continuum (i.e. as 
the chance of making one increases, the chance of the other will decrease). 
The chances of making either type of error should be controlled by setting a 
justifiable value for a.

The chosen value of a  should be based on how the cost of a wrong decision 
can be calculated (Morrison and Henkel, 1969); this can often be difficult. 
Generally, the level set depends on whether type I or type II errors are more 
likely and important in your research. Setting a  too low is likely to lead to a low 
power test (unless subject numbers are very high) and might discourage further 
research by not rejecting a false null hypothesis. Setting a  too high might send 
researchers on a wild goose chase. However, higher values may be more 
useful when developing theories, for example, than when testing theories. The 
value of 0.05 often chosen in the scientific literature needs careful 
consideration in relation to the power of the resultant test; alternative a  levels 
can be used. Regardless of whether a  = 0.05, justification of the selected 
statistical significance level should be given (Franks and Huck, 1986) and P  
values should be reported, so that readers can make their own interpretation.

7.3.7 Control of type I error rates

Type I error rates can be increased by the use of inappropriate statistical 
analysis. A principal control for type I errors is to treat the set of tests as one 
statistical test at the chosen a  level. The three primary type I error rates are as 
follows (e.g. Howell, 1992).

•  Error rate per comparison. This (PC) is the probability of making a type I 
error on any single comparison (a).

• Error rate per experiment. This (PE) is the number of type I errors that would 
be expected in an experiment if the null hypothesis is true; note that this is a 
frequency and not a probability. If the comparisons (c) are of the same type 
(e.g. all t-tests), then PE = cot.

• Familywise error rate. This (FW) is the probability that a set of conclusions 
derived from a set of comparisons (e.g. of group means) will contain at least 
one type I error. For independent comparisons FW  = 1 - (1-a)c. It is for the 
researcher to decide on the familywise error rate that is acceptable for any 
set of comparisons, and to report the upper bound on FW  accordingly.

The issue of control of type I error rates is of great importance whenever an 
experiment involves several comparisons. This frequently occurs in follow-up 
tests to ANOVA, where control of multiple comparisons is built into the post hoc 
test (e.g. Tukey and Scheffe tests).
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Large type I error rates can also arise, for example, either when comparisons 
are made of many dependent variables between groups using multiple f-tests 
or when correlations are made between many variables. If, for example (these 
figures are based on Scheirman et al., 1988), consider that a  is set to the 
commonly used value of 0.05 per comparison and that 48 comparisons are 
made; if the comparisons are independent and H0 is true, PE is 2.4 (i.e. 
probably two or three type I errors are made) and the probability of at least one 
type I error (FW) is 91 %, both clearly unacceptable.

Possible solutions to reducing type I error rates are to:

• Make only a few comparisons planned in advance.

• Use an adjustment technique, such as the ‘Bonferroni inequality’, and set PE 
to a  and the individual comparison value to a/c. This will control type I errors
but increase the probability of type II errors and reduce the power of the test
significantly.

• Use an alternative statistic, such as MANOVA.

• Accept a higher FW  but report it so that the reader can judge.

7.3.8 Type II errors and power

The power of a test is the probability of rejecting a false null hypothesis; it 
depends on the overlap of the sampling distributions of the null hypothesis and 
the research hypothesis. The power is 1-p, where p is the type II error rate. 
Several factors determine the power of an inferential statistical test to identify 
any statistical significance. Power is affected by the sample size, a  level, 
statistical test, and effect size index. The research design should directly 
control the sample size, a  level and the statistical test to be used. Sample 
selection and research design can also influence the effect size, but the effect 
is not quantifiable. It is essential that factors affecting power are appropriately 
controlled to reduce the occurrence of type I or type II errors. The effect size 
can either be estimated from previous research or set at a size for the 
differences considered to be important by the experimenter. Effect size can be 
used in equations (along with n and a) for appropriate tests, as in Cohen 
(1988), to estimate the power of the analysis.

As a rule of thumb, conventions of small, moderate and large effect sizes 
equating to <0.1, 0.3, and >0.5, respectively, were proposed by Cohen (1988). 
Different tests, and various authors (e.g. Cohen, 1988; Vincent, 1995) give 
different values for these effect sizes. For example, for a  = 0.05, using a two- 
tailed, one-sample f-test, the relations between effect size, power and n are 
described in Table 7.5 (Cohen, 1988).

It can be seen from Table 7.5 that effect size, power and the sample size can 
vary greatly. The main way for the researcher to increase power is to alter the 
sample size (as described earlier). It should be noted that, if n is made as large 
as possible, it is always possible to obtain statistical significance (Hays, 1963).
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Power should always be quoted to support non-statistically significant findings 
(Bates etal., 1992).

Effect size Power for n = 9 n for power of 0.80

Large 0.67 13

Moderate 0.32 32

Small <0.07 196

Table 7.5. Power, effect size and n for a two-tailed, one-sample f-test 
(a = 0.05).

7.3.9 Choice of test

During the planning stage of research, the choice of test needs to be 
considered. This is particularly important for considerations of type I errors, 
power, and discussion of the results. This will be referred to in more detail in 
section 7.5.2.

7.4 Conduct of an investigation

When conducting an investigation, it is paramount that errors are controlled and that 
the effectiveness of the study is assessed. This assessment can be performed in 
several ways, including estimating errors and checking reliability. The following 
subsections will broadly describe methods both to control errors and to assess their 
impact. Consideration should always be given, during the planning and conduct of 
research, to ethical clearance, obtaining informed consent, and subject care; further 
reference to these issues will not be made in this chapter (but see, for example, 
appendix 3).

7.4.1 Control of errors

Many factors can introduce errors into the results of an experiment. These can 
arise from the research design, the apparatus, the experimenter, the subjects, 
and interactions between these. Methods can be incorporated into the research 
design to reduce these errors. Unfortunately, the variety of research means 
that no general rules exist for control of errors; however, there are general 
principles to consider. Examples of the sources and the control of error are 
described in Tables 7.6 and 7.7 and below. W e also recommend reference to 
Baumgartner and Strong (1994) and other detailed texts (e.g. Thomas and 
Nelson, 1996).
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Error source Description

History Additional activity over the period of the 
experiment.

Maturation Subjects develop over the experiment period.

Testing Subjects learn from pre- to post-tests.

Individuality Subjects’ responses to error sources are random.

Experimental mortality Loss of participants in the experiment.

Hawthorne effect Experimental group perform better as they know 
they are being tested.

John Henry effect Control group tries harder to be better than the 
experimental group, and succeeds.

Interaction of testing Subjects’ responses are different from anything 
natural.

Experimental setting Subjects’ responses are altered from normal.

Multi-treatment interference Pre-tests make post-tests unrepresentative.

Table 7.6. Sources of error though the subjects.

Error source Description

Selection bias Results ‘not general’ (e.g. from a convenience 
sample).

Assignment bias Biased assignment of subjects to groups.

Rating or halo effect Prior results influence results awarded by the 
experimenter.

S-researcher interaction Conflict or rapport between the subjects (S) and the 
researchers.

Experimenter bias Results are found to be, or reported, as expected.

Instrumentation Quality, reliability, and validity of measuring 
devices.

Statistical regression Tendency for extreme pre-test scores to be less 
extreme on post-tests.

Post hoc error Interpretation incorrect.

Table 7.7. Sources of error through the experiment.
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Methods to control these errors are many, and include:

• Trying to keep the testing as natural as possible.

• Minimising the information that needs to be provided to the subjects.

• Physically manipulating subjects’ actions before and during test period.

• Matching subjects between groups to control for extraneous variables (or 
using a within-subject design).

• Counterbalancing for subjects receiving several treatments by varying the 
order of administration for different subjects.

• Introducing control groups (e.g. placebo) and using single or double blind 
designs.

• Ensuring experimenters are competent in using the equipment and the 
procedures involved.

•  Calibrating equipment.

• Using the best available equipment.

• Using appropriate statistical analysis and methods to factor out extraneous 
variables (e.g. ANCOVA).

There are many methods for controlling error. Much experience can be gained 
through a thorough literature review. Good, comprehensive research, and 
attention to detail during the conduct of the research, will greatly help to reduce 
error.

7.4.2 Estimation and propagation of experimental errors

If the errors in measurements (which are estimates of the true values) were 
known, then these could be removed to find the true values. Unfortunately, 
except for calibration, which can remove some systematic error sources, this is 
not possible. What is important is to provide a reasonable estimate of the 
uncertainty (or error) in the measurements and to assess how these propagate 
in any calculations based on those measurements. Fortunately, this is now 
becoming far more common in the sport and exercise biomechanics literature. 
More in-depth information is contained in chapter 8; the following provides a 
few examples of error estimation and propagation.

• The estimate of error can be obtained for example from the repeated 
digitising of analysed sequences. Then the estimate of error can be based 
on MSe/2 (where MSE is the error variance obtained from ANOVA); the 
estimate of measurement error can, for example, be taken as 1.96 MSE/2 to 
provide 95% confidence limits. The estimate of measurement error can also 
be made in other ways (see, for example Taylor, 1982). Unbiased estimates 
of error are preferable.
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• For all smoothing and differentiating routines, Lanshammer (1980) has 
provided formulae that can be used to estimate the maximum attainable 
precision in the values of the derivatives. The error (noise) removal 
capabilities of all filtering, smoothing, and differentiating routines used 
should be assessed using this formula: ok2 > (a2T©s2/c+1)/(7c(2/c+1)). In this 
equation, is the standard deviation of the normally distributed, random 
noise in the estimated /c*h derivative, a  is the standard deviation of the noise 
in the measured displacement data, Tis the sampling interval (the inverse of 
the sampling rate in Hz). The term ©s is the ‘bandwidth' of the signal (the 
range of frequencies that it encompassed) in rad-s'1. This would be I O 7 1  

rad-s'1 for a movement with a maximum signal frequency of 5 Hz. If such a 
signal was sampled at 100 Hz (7 =  1/100s) - this is twenty times the 
maximum frequency - the standard deviation of the noise in the filtered and 
differentiated acceleration data (k = 2) would be 140 times that of the noise 
in the raw displacement data. It would be even worse for lower sampling 
rates (see also chapter 8).

• Error propagation should be investigated for all calculations based on error 
contaminated data, such as calculations of joint moments (see chapter 8 for 
more details and examples) and segmental energy levels. The error 
propagation formulae based on the chain rule of differential calculus are well 
known and widely published (e.g. Taylor, 1982; Holman, 1989).

7.4.3Reliability and validity

Two important characteristics of a test or measurement are validity and 
reliability. The former relates to the degree to which a test or instrument 
measures what it purports to; the latter relates to the consistency and 
dependability of the measures. It can be inherently difficult to assess validity, 
but a sound research design evolved from theory can minimise uncertainty. 
Validity can further be supported by assuring reliability, if this can be 
measured. In some instances, reliability cannot be assessed because of 
unique and unrepeatable testing; however, this rarely occurs in sport and 
exercise biomechanics.

Reliability is essential for validity. When the measurement depends on human 
intervention, such as manual digitising, two types of reliability are defined: 
intra-operator (often referred to simply as reliability) and inter-operator 
reliability (referred to as objectivity). These are calculated, for interval or ratio 
level data, either by the use of a ‘coefficient of reliability’ or by ‘boundaries of 
agreement’.

The coefficient of reliability is the ratio of the true measurement variance to the 
observed measurement variance. The former is obtained by subtracting the 
error variance from the observed measurement variance. Possible ways of 
obtaining this include interclass (e.g. Pearson product moment coefficient) or 
intraclass correlations. Interclass correlation is totally inappropriate as it 
requires independent variables, is limited to two sets of measurements, and 
does not detect systematic errors (Thomas and Nelson, 1996).

The analysis of variance (ANOVA) has often been accepted as an appropriate 
way of calculating the reliability (intraclass correlation) coefficient. The
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reliability coefficient, R = (MSB - MSW)/MSB, where the variances are partitioned 
into components: trial or operator (MSW = (SST + SSE)/(dfT + dfE), using trial (T) 
and error (E) variances); repeated measures or frames (MSB). Interpretation of 
the reliability coefficient as indicating whether reliability is good or otherwise 
varies between authors. Fleiss (1986) described reliability as poor (R <  0.40), 
fair to good (0.40 < R < 0.75), and excellent (R > 0.75). A more conservative 
interpretation was provided by Vincent (1995) with acceptable but questionable 
(0.70 < R  < 0.80), moderate (0.80 < R <  0.90), and high ( R > 0.90). For ordinal 
level data, the equation R = (MSB - MSE)/MSB can be used for assessing 
reliability (Vincent, 1995).

Unfortunately, far too much emphasis has been placed on the calculation of the 
reliability coefficient. It should be the least-biased estimate of the population 
ratio of the true measurement variance to the observed measurement variance. 
The equations most commonly used to calculate this coefficient, given above, 
are not unbiased (see Winer et al., 1991), and it should be noted that R tends 
to -oo as MSb tends to zero, a somewhat undesirable property. Problems also 
arise from the reliability coefficient being severely affected by the variability 
within frames (effects); if this variance (MSB) is large, it will give a larger 
reliability coefficient than for a smaller variance. More important by far than the 
reliability coefficient is the estimation of the error in the (repeated) 
measurement. This can be established from ANOVA, as discussed in the 
previous subsection, or from the method of Bland and Altman (1986).

Bland and Altman (1986) proposed that, as the intraclass correlation is an 
inferential statistical test, it should not be used to assess reliability. It does not 
identify the degree of compatibility or agreement between data sets (see also 
Ottenbacher and Stull, 1993; Mullineaux et al., 1994). These authors propose 
that an alternative test should be used, that of ‘limits of agreement’, as this 
overcomes the difficulties mentioned. Such a test is more appropriate, as it is 
not an inferential statistical test and provides more meaningful information. 
Agreement for two sets of measurements is calculated by firstly subtracting the 
values in one set from those of the other set, and then calculating the mean (5) 
and standard deviation (a) of the differences. The boundaries of agreement are 
calculated as 5 ± 1.96a (Bland and Altman, 1986) with 95% confidence. For 
more than two groups, a fixed boundary value can be calculated as 
± 1.96V(2MSe) with 95% confidence (BSI, 1979; Mullineaux et al., 1994; Bland, 
1995). This method is not, as sometimes suggested, limited to two sets of data, 
and it can be extended to any number of repeated measures or trials.

Both repeated measures ANOVA and the Bland and Altman method are 
acceptable ways of assessing reliability, providing that inappropriate 
conclusions are not drawn, for example, by exclusive reliance on the use of the 
intraclass correlation coefficient. The important factor is that an assessment is 
made that reliability, and subsequently validity, can be supported.
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7.5 Data analysis

In analysing research data, three main statistical methods are available: descriptive, 
inferential, and effect size. The use of each is largely dependent on the 
characteristics of the sample and the aim of the analysis. Generally, they should be 
used as follows.

• Descriptive statistics describe the characteristics of the sample. When the sample 
is not representative of the population then no other tests are needed.

• Inferential statistics provide the probability of obtaining the results if chance was 
assumed to have caused them. They do not indicate anything else about the data.

• Effect size statistics quantify the difference between groups, or the strength of a 
relationship.

The use of each of these can substantially ease the interpretation of analysed data. 
Unfortunately, inappropriate use can waste time and complicate an analysis, 
masking important information or, worse, misinforming the reader. Misuse may arise 
from poor research designs, inappropriate editorial prerogative, or from research 
that cannot justify inclusions of a particular test. The last of these can be avoided by 
always ‘justifying’ the use of particular statistical tests, thereby assuring that the 
assumptions of the test are sufficiently met (a check list of these is contained in 
Table 7.8). Scientific journal editors vary in their insistence on the use of inferential 
statistics; this has caused many problems and there is now a shift towards effect 
size becoming mandatory. Insistence on an appropriate statistical analysis would be 
a far better policy and would mark a positive advance for research in sport and 
exercise biomechanics. The effect of these problems was partly illustrated by 
Armstrong (1987), who noted that generalisation is often incorrect; inference should 
be performed with great care to compensate for this. Carefully observation of the 
data, possibly using descriptive statistics, may be more important in research than 
the often misleading use of inferential (and other) statistical tests (Armstrong, 1987).

In choosing a statistical test, it should be noted that some tests make assumptions 
about the population from which the sample was drawn (such as its normality). 
These assumptions may also influence the selection of subjects (e.g. sample size, 
random selection and assignment). Such tests, that involve estimation of one or 
more population parameters, are known as parametric tests; nonparametric tests do 
not rely on parameter estimation or distribution assumptions. If the assumptions of a 
specific parametric test are met, then data of ordinal, interval and ratio levels of 
measurement are appropriate for such tests (Howell, 1992; Safrit and Wood, 1995).

Parametric tests are robust to violations of many assumptions (e.g. Howell, 1992), 
and the use of parametric tests is generally preferable as they have advantages over 
non-parametric tests. These include: that they are more powerful (i.e. more likely to 
reject a false null hypothesis), and that, in tests of more that two groups, the location 
of the differences can be found statistically. For severe violations, however, 
nonparametric tests are more powerful and valid in that they reduce type I error 
rates. There are many examples in biomechanics where parametric statistics were 
used without the authors making the appropriate justifications. Examples can also be 
given where parametric statistics could have been justified and would have provided
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a more powerful test with implications for a correct analysis and better interpretation.
Implications for analysis, from the violation of assumptions for inferential statistics,
also apply to descriptive statistics.

7.5.1 Descriptive statistics

Descriptive statistics are probably the most important component of data 
analysis; they enable the findings to be described and indicate trends. These 
trends form the basis for subsequent analysis, interpretation and discussion. 
As with other statistics, descriptive statistics should be used under prescribed 
conditions (Vincent, 1995). The mean and standard deviation are preferred as 
they are sufficient, unbiased and efficient estimators (see Howell, 1992 for an 
explanation of these terms). However, the mean and standard deviation are 
unduly affected by outliers. As a result, the median and interquartile range are 
generally more appropriate for data that do not satisfy the requirements for 
parametric tests.

7.5.2 Inferential statistics

The choice of the appropriate statistical test should be made according to a 
‘decision tree’ (see, for example, Vincent, 1995, and Table 7.8 for clarification).

Choice o f test. There are many considerations in choosing an appropriate 
statistical test. Before the initiation of the study, the choice of test should be 
narrowed down by known characteristics. These are the research question 
(whether it addresses an association or correlation), the level of measurement 
(location of the dependent variable in one of the four main categories on the 
measurement continuum), and the sampling and assignment of subjects. The 
next stage is to check that the assumptions for parametric tests are met.

Testing normality. Parametric statistical tests usually assume that the 
sampling distribution (of the mean, for example) is normally distributed. This 
can be best approximated by the use of large samples and random sampling; 
the sampling distribution then approaches normality even for non-normal 
populations (the central limit theorem): this is the main reason for requiring 
certain sample sizes before using parametric statistical tests. Any single 
sample can provide an estimate of the sampling error; for example the standard 
error of the mean is the ratio of the sample standard deviation to the square 
root of the sample mean. For this, and other sample statistics, to give unbiased 
estimates of the population parameters, it is assumed that the characteristics of 
the normal curve apply to the sample data. This is less likely, and the sampling 
error is larger, for small non-random samples. It is, therefore, important to 
describe the distribution of the sample’s dependent variables. To assess 
normality, Vincent (1995) suggests that the Z  scores for kurtosis (scores 
congregating in the tails of the distribution) and skewness (one tail more 
pronounced than the other) should be within a range of ± 2. These Z  scores 
are obtained, for example, for the kurtosis by dividing the kurtosis value by the 
standard error of the kurtosis. These values are often produced by software 
packages (e.g. SPSS for Windows ®).
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Test specific assumptions. There can be many assumptions that should be 
met for the justification of specific statistical tests. A selection of tests and their 
principal assumptions are given in Table 7.8. Violations principally result in the 
increase in the occurrence of type I errors: adjustments must therefore be 
made to correct for this. It should also be noted that robustness to assumptions 
often exists and can allow test results to be accurate. Reference to suitable 
texts (e.g. Kinnear and Gray, 1994) should be made to determine the meaning 
and assessment of assumptions and how to correct for their violation. Three 
main assumptions will be discussed below: homogeneity of variance for several 
parametric tests of association, cause and effect for tests of relationships, and 
linearity for linear correlation and regression analyses.

• Homogeneity of variance. Homogeneity of variance is the assumption that 
the variances of groups are similar. It can be assessed in many ways, such 
as by using the Levene’s test or the test proposed by O’Brien (1981). 
Homogeneity of variance should not be tested using F-ratios, however, as 
these are badly affected by non-normality. A simple check is to assume 
homogeneity of variance if the ratios of variances between groups are not 
greater than four (Howell, 1992) or, more strictly, two (Vincent, 1995). The 
position regarding the violation of homogeneity of variance (and normality) is 
summarised below for f-tests.

♦ If sample sizes are equal, violation of homogeneity of variance produces 
an a  value within 0.02 of the nominal value, which is tolerable. A similar 
comment applies for violations of normality assumptions if the populations 
are roughly the same shape or both symmetric. Tests are robust to 
normality and homogeneity of variance violations for distributions of 
different shape if the sample sizes exceed 25 (Box 1953; Boneau, 1960). 
If the populations are markedly skewed, particularly in opposite 
directions, serious problems arise unless variances are fairly equal, and t- 
tests are then not recommended.

♦ If sample sizes are not equal and heterogeneity of variance exists, the 
actual and nominal a  values differ considerably (Boneau, 1960). 
However, the Welch-Satterthwaite solution (see Howell, 1992) may 
reinstate robustness even under these conditions.
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Test Design Assumptions
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Figure 7.8. Assumptions required for the use of various statistical tests. Each 
notation indicates an assumption that should be fulfilled by the respective test, 
where: N is nominal data; O is ordinal data; l/R is interval or ratio data; B is a 
between design; W  is a within design; x is a criteria to meet; each number 
represents its value (and upwards by a +) and x separates the required number 
for each group or factor or IV for a test.
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It is also worth noting that larger sample sizes will tend to give a better 
chance of meeting the two main assumptions (homogeneity of variance and 
normality). Sample sizes of less than five are not suitable. With small 
sample sizes it is particularly important to ensure that the necessary checks 
have been carried out into whether violations have been made and if they 
are important. Non-parametric tests, as mentioned previously, may have 
greater power when parametric assumptions are violated (Blair and Higgins, 
1985). The violation of homogeneity of variance (and normality) for ANOVA 
can be summarised as follows.

♦ The test is very robust regarding normality violations if sample sizes are 
equal. If the populations are symmetric or similar in shape (such as 
skewed in the same direction), and if the ratio of the largest to the 
smallest variance is less than four, the results are likely to be valid. A box 
plot or stem-and-leaf diagram (see Howell, 1992) can be used to check 
the shapes of the distributions of the samples quickly.

♦ Unequal sample sizes and heterogeneity of variance should not be mixed. 
However, use of the Welch (1951) solution may reinstate robustness 
under these conditions.

♦ Violations of the independence assumptions can seriously affect an 
analysis (Kenny and Judd, 1986).

♦ For repeated-measures designs, a further assumption is the ‘compound 
symmetry of the covariance matrix’. This requires homogeneity of both 
variance (the leading diagonal of the matrix) and covariance (the off 
diagonal terms of the matrix). When compound symmetry is not 
demonstrated, several adjustments are available, such as that of Huynh 
and Feldt (1970). One of these should be applied, or alternative methods 
that do not require this assumption (such as MANOVA) should be used 
(e.g. Howell, 1992).

• Cause and effect Correlation and regression analyses are often assumed to 
prove cause and effect: they do not, as only an underlying theory can do 
this, supported by a well-designed experiment. As in all statistics, what is 
provided is the reliability or an effect size that is either acceptable or as 
large as predicted. The effect size quantifies the strength of meaningfulness 
of the effect, that is the variance in the dependent variable that can be 
accounted for by the variance in the independent variables. The 
meaningfulness of the effect of interest can, for example, be quantified (as a 
ratio or percentage) by the use of the coefficient of determination (R2). 
However, this does not necessarily tell us much about the real importance of 
the finding, which should be assessed by reference to the underlying theory 
that it is proposed to support.

• Linearity. Many examples occur in the literature of the use of linear 
correlations on non-linear data, such as between release speed and 
distance thrown when, in the absence of aerodynamic forces, the 
relationship is nearly quadratic. The following advice can help in avoiding 
this problem.
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♦ Never perform a correlation without first drawing a scattergram to 
investigate the underlying relationship.

♦ If an underlying theoretical relationship is non-linear, find a transformation 
to linearise the data, or use a non-linear regression package.

♦ In the absence of an underlying theory, the ‘principle of parsimony’ can be 
evoked to support linear relationships, if a non-linear relationship makes 
only a modest improvement to the correlation coefficient. If the dependent 
variable must be zero when the independent variable is zero, then this 
might be considered as an underlying theory that should be enforced.

7.5.3 Effect size statistics

Effect size, also referred to as magnitude of effect or the effect size index in 
statistical tests, can be calculated for given associations or correlations 
between data sets. The effect size can provide a percentage value of the 
association or correlation between groups that is due to, or explained by, the 
experiment. In correlation analyses this is represented simply be the ft2 value; 
in association tests, specific formulas are used to calculate effect size. 
Reference to two tests (f-test and ANOVA) will be made below for the 
calculation of effect size.

For two groups, effect size = ( Xi - x2) I a, where Xi and x2 are the means of 
groups 1 and 2 respectively, and a is the pooled standard deviation of the two 
groups. Effect sizes of <0.2 represent small differences, 0.5 moderate 
differences, and >0.8 large differences (Cohen, 1988).

For ANOVA, two methods of calculating effect size are common: eta squared 
(rj2), and omega squared (o2). The calculation of t\2 is simple; rj2 = SSB / SST. A 
more accurate measure tries to account for the unexplained variance (and will 
probably produce a smaller value) as oo2 = (SSB - (/c-1 )(MSE))/(SST + MSE). For 
both these, an effect size of <0.05 is small, 0.10 is medium, and >0.20 is large 
(Cohen, 1988). Refer to section 7.4.3 for a clarification of the notation (where k 
is the number of groups).

The benefit of reporting the magnitude of effect is highlighted by the probability 
of either a type I or II error occurring. For example, through a small sample size 
and large variance a non-statistically significant finding can result (type II 
error). Alternatively, for a large n and small variances, a statistically significant 
result can be found (type I error). Both of these are problematic, but reporting 
effect size can indicate whether the statistical findings are meaningful.

Increasing the sample size has been proposed as a simple solution to many 
sampling problems, if time and resources permit. Reporting the effect size is 
much simpler, and provides readers with a means to interpret the importance of 
the findings.
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7.6 Reporting of a study

Reporting of studies is covered in the various chapters of these guidelines, and 
some of the other issues are addressed by Yeadon and Challis (1994). Accuracy of 
reporting (e.g. referencing) is of great importance, as it reflects scientific rigour and 
quality (Morrow, 1991; Stull etal., 1991). In general the reporting of research should 
include the following (where relevant).

• Sufficient details for the replication of the experiment, including sample
characteristics and selection.

• The research design, including timing and numbers of measurements and
treatments.

• Methods of controlling errors.

• Justification for chosen data analyses.

• Informative results, particularly descriptive statistics.

• Justification of the level of inferential statistical significance (a), probability values
(P) for each comparison made, and the power of the tests used.

• Effect size, if only to support inferential statistical analyses.

• Reliability checks.

• Establishment and quantification of uncertainties in experimental data.

• Uncertainty propagation.

• Useful sections and content, such as discussion, conclusions and 
recommendations; these should not ‘stretch’ the implications of the research, and 
should consider the research question, theory, previous literature, results, 
limitations and future research.

7.7 Conclusions

This chapter has tried to highlight major issues associated with performing and 
reporting ‘quality’ research in sport and exercise biomechanics. Research design is 
a complex area, but comprehensive planning and careful implementation of a ‘good’ 
method can overcome many pitfalls. One particular problem, that of the misuse of 
statistics, can be minimised by the use of descriptive statistics, careful evaluation of 
the use of any inferential statistics and confirming their implications through effect 
size statistics.

For further advances in sport and exercise biomechanics, more innovative and 
correctly conducted research needs to evolve. The review paper of Yeadon and 
Challis (1994) provides a good starting point, and many useful references, for further 
study of the area. In addition, accurate and comprehensive reporting of this evolving 
research will greatly aid these advances.
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Further texts for research methods in the sport and exercise sciences (e.g. Thomas 
and Nelson, 1996), statistics (e.g. Howell, 1992; Vincent, 1995), software package 
use (e.g. Kinnear and Gray, 1994, for SPSS for Windows ®), and error analysis 
(Taylor, 1982) are recommended. The examples given here are very readable.

W e would ask the reader to note that, in the contents of this chapter, we have tried 
not only to provide guidance on the correct use of inferential statistics, but also to 
reflect current trends in the use of statistics in research. These trends include, for 
example, tendencies to move away from routine use of inferential statistical tests 
and to make more use of effect size statistics.
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B iom echan ics  an d  m o to r  co n tro l researchers m easure h o w  th e b o d y  m oves an d  in terac ts  w ith  its  e n v iro n m e n t  

T h e  a im  o f  this rev ie w  p a p e r is to  consider som e key issues in  research m eth ods  in  b iom ech an ics  an d  m o to r  

c o n tro l. T h e  rev ie w  is o rgan ized  in to  fo u r sections: prop os ing , c o n d u c tin g , analys ing an d  re p o rt in g  research. In  

the firs t o f  these, w e em phasize the  im p o rta n c e  o f  d e fin in g  a w o rth y  research q u estio n  an d  o f  p la n n in g  th e  s tudy  

before  its im p le m e n ta tio n  to  p re v e n t la te r  d ifficu lties  in  th e  analysis an d  in te rp re ta tio n  o f  d a ta . In  th e  second  

section, w e cover se lection  o f  tr ia l sizes an d  suggest th a t us ing  th re e  tria ls  o r m o re  m a y  b e  b e n e fic ia l to  p ro v id e  
m ore  ‘representa tive ’ an d  v a lid  data. T h e  th ird  section on  analysis o f  d a ta  co ncentrates on  e ffec t size statistics, 
qu alita tive  and n u m e ric a l tre n d  analysis an d  cross-correlations. A s sam ple sizes are o fte n  sm all, th e  use o f  e ffect 
size is re c o m m e n d e d  to  su p p o rt the  results o f  statis tica l s ignificance testin g . In  us ing  cross-co rre la tio ns, w e  

re c o m m e n d  th a t scatterp lo ts o f  on e  variab le  against the  o th e r, w ith  th e  id e n tifie d  t im e  lag  in c lu d e d , b e  in spected  

to  co n firm  th a t the lin e a r  re la tio n sh ip  assum ption  u n d e rp in n in g  th is statistic is m e t a n d , i f  a p p ro p ria te , th a t a 

lin e a r ity  tran s fo rm atio n  be ap p lied . F in a lly , w e co nsider im p o rta n t in fo rm a tio n  re la te d  to  th e  issues above th a t 
should be in c lu d e d  w h e n  re p o rt in g  research. W e  re c o m m e n d  re p o rtin g  checks o r co rrection s  fo r  v io la tio n s  o f  

u n d e rp in n in g  assum ptions, an d  th e  e ffect o f  these checks o r co rrec tio n s , to  assist in  advan cin g  kn o w le d g e  in  

b iom ech anics  a n d  m o to r  co ntro l.

Keywords: cross-correla tions, e ffec t size, tr ia l size, va ria b ility .

Introduction

The science of research methods is continually develop­
ing, due largely to advances in technology and computer 
power. For biomechanics and motor control, the collec­
tion and analysis of data on muscle recruitment, force 
generation and movements by a sport performer and of 
the resulting outcomes is becoming easier. Measure­
ments of these types of data share common ground 
in biomechanics and motor control, but the research 
questions that need to be answered are quite diverse 
both within and between these areas. The aim of this 
review is to clarify some issues of research design and 
statistics related to the measurement of data in bio­
mechanics and motor control. These issues will be 
considered under four stages of research: proposing, 
conducting, analysing and reporting (Mullineaux and

* Author to whom all correspondence should be addressed, e-mail: 
d.mullineaux@shu.ac.uk

Bartlett, 1997). The main focus of the review is on 
issues in conducting research (i.e. trial size) and the 
analysis of data (i.e. effect size statistics, qualitative and 
numerical trend analysis and cross-correlations); a 
few pertinent issues on proposing (i.e. planning) and 
reporting (i.e. related to issues in the other three sec­
tions) research will also be included. This review should 
be read in conjunction with the other reviews in this 
issue, which cover issues relevant to research in the sport 
and exercise sciences. These include multivariate stat­
istics and qualitative approaches in psychology (Biddle 
et alf), regression and analysis of variance in physiology 
(Winter et ah’) and experimental control and reliability 
testing in sports performance (Atkinson and Nevill).

Proposing research

The unique nature of scientific research was illustrated 
by Gould (1981, p. 22), who stated that science
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‘progresses with hunch, vision and intuition’. In 
planning research, Kraemer and Thiemann (1987, 
p. 96) consider that ‘a considerable degree of expertise 
in the field of application, ejqperience, instinct, and 
creativeness’ is required. It is difficult to cater for these 
elements in planning scientific research because of their 
subjective nature and, as there is a vast diversity of 
potential research questions, only common elements 
can be considered. We consider two common elements 
that should be fulfilled.

First, we must define a research question. Tuckman 
(1978) suggested that a research question should fulfil 
five criteria: provide practical value, have sufficient scope 
for a study, interest the researcher, possess theoretical 
worth and possess workability. For it to have practical 
value, the question must be currently unanswered and 
we must expect that the answer would contribute to 
knowledge. The scope for the study includes whether 
there are sufficient variables and potential results, 
and enough to write about. The researcher’s interest 
can enhance the contribution to quality research from 
the subjective elements identified earlier and through 
the probable greater effort devoted to the task. Most 
importantly, the research question should possess 
theoretical worth -  that is, it should be underpinned by 
a theory.

A  worthy research question may fall into one of three 
categories: try to develop a theory to explain observa­
tions, lend support to a theory (e.g. repeatability) or 
improve a theory. A  good theory ‘must accurately 
describe a large class of observations on the basis of a 
model that contains only a few arbitrary elements, and 
it must make definite predictions about the results 
of future observations’ (Hawking, 1996, p. 15). Con­
sequently, a theory should be testable through the 
implementation of a study. For example, kinematic data 
showing that non-long jumpers (n = 11) decrease their 
variability in foot placement positions in the run-up 
to the take-off board (Scott et al.} 1997) were used to 
support the theory that gait is visually regulated. In con­
trast, the breaststroke turns by age-group swimmers 
(« = 23) were described using descriptive statistics on 21 
variables, and the relationships between 19 of these were 
reported using a Pearson correlation matrix (Blanksby 
et al.s 1998), subsequently providing information that 
can be used to develop theory. The restriction on the 
length of journal papers prevents a theoretical explana­
tion to be provided for all these variables and statistical 
analyses; such large numbers of analyses also introduce 
problems with respect to statistics (e.g. statistical power; 
see, for example, Kraemer and Thiemann, 1987). In 
some research, it may be appropriate to present the pre­
dictions from the theory as hypotheses. I f  hypotheses 
are presented, then these should be stated in terms 
of what is logically and justifiably expected. I f  any

statistical significance testing is required, then it is 
paramount that the hypotheses are stated in this way, 
as significance testing is influenced by the context, prior 
knowledge and plausibility of the results (Matthews, 
1998a). The importance of plausibility is highlighted in 
a report to the European Science and Environment 
Forum that concluded, ‘By failing to take into account 
the intrinsic plausibility of the hypothesis under test, 
frequentist methods (i.e. statistical significance testing) are 
capable of greatly exaggerating both the size and the 
significance of effects which are in reality the product 
of mere chance’ (Matthews, 1998b; emphasis added). 
Although plausibility is never absolutely determinable, 
prior knowledge and theory can assist in estimating the 
plausibility of the results. Prior knowledge can be of 
varying quality, whether published or not, and it is up to 
the reader to decide on its worth.

The final criterion offered by Tuckman (1978) in 
defining a research question, the issue of workability, 
brings us to the second element in planning research. 
Workability refers to the logistical considerations in 
planning research and has been addressed by several 
authors. For example, Coolican (1999, p. 19) considers 
that the variables, sample, design and analysis should 
all be reviewed in the planning stage. More broadly, 
Mullineaux and Bartlett (1997) consider that all the 
components of a research study (i.e. proposing, con­
ducting, analysing and reporting) should be considered 
together to establish whether the results expected would 
provide an answer to the research question using the 
best methods available to the researcher. Much of this 
preparation can be enhanced through the influence of 
the researcher and through a literature review, from 
which should emerge an appropriate research design 
(i.e. structure of the data collection; see section on 
‘Conducting research’) and method (i.e. process of 
conducting the study). Careful planning and imple­
mentation of the method is desirable, as O ’Brien and 
Israel (1987) considered that this is the most important 
part of the research process. In biomechanics and 
motor control, a variety of research designs are used, 
although in general the results obtained are quantitative, 
requiring that the research design should incorporate 
all considerations essential for suitable and accurate 
descriptive, inferential and effect size statistical analyses. 
Nevertheless, the implementation of a good research 
design is of more importance than an over-emphasis 
on statistical issues to ensure that the results, and 
not the statistics, drive the analysis and interpretation 
of the research. The research question and method 
should be worthy, realistic and ethical and should be 
kept simple to enable ease of analysis, reporting and 
understanding by the reader. Although the researcher 
should already have considered the methods during 
the formulation of hypotheses, the next step is to
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formulate explicitly the methods for conducting the 
research.

Conducting research

When conducting research, with the aim of obtaining 
high-quality results that are of use in trying to answer 
the research question, consideration should be given 
to ethics, research design, and sources and control 
of errors. Researchers may often be bound by ethical 
stipulations set by funding, medical, ethical, legal and 
professional bodies. For example, members of the 
British Association of Sport and Exercise Sciences are 
bound by the profession’s code of conduct (BASES, 
1995) governed by three main principles. These 
emphasize: that clients should receive the highest 
standards of professionalism, consideration and respect; 
that research and testing should be carried out with 
utmost integrity and that working practices are safe; 
and that the welfare of the client is paramount. These 
principles are met by working within the guidelines of 
obtaining ethical clearance and informed consent, and 
ensuring care of the participants throughout.

A  good research design -  and research question -  
should develop from theory, with due consideration of 
constraints imposed by the research question, previous 
literature, resources, ethics and methods. The research 
design and method are very important because if they 
are flawed the value of the results is greatly reduced. A  
clear design assists readers in understanding and inter­
preting research. Describing the design clearly in terms 
of the paradigm -  that is, the conceptual framework 
or type of research (e.g. experimental research) -  
links between groups (e.g. within-individuals), and the 
number and timings of treatments and measurements is 
essential if results are to be properly interpreted.

When conducting an investigation, it is important 
that errors are controlled and that their effect on the 
study is assessed. This assessment can be performed in 
several ways, including estimating errors and checking

reliability. Errors in the results of an experiment can 
arise from such sources as the research design, 
apparatus, experimenter, participants and interactions 
between these factors (Mullineaux and Bartlett, 1997). 
Methods can be incorporated into the research design 
to reduce these errors. Because research is so varied, 
no general rules exist for controlling errors; however, 
some basic principles can be considered (see Table 1). 
For details on these, readers are directed to Thomas and 
Nelson (1996), Mullineaux and Bartlett (1997) and 
Baumgartner and Strong (1998). Applications of these 
principles are often implicit within a research design, 
for which the most pertinent ones to the specific topic 
can be identified through a thorough literature review.

In  conducting research with humans, many research 
design issues need to be considered to ensure that the 
results obtained are valid and can be analysed to answer 
the research question. The cost and time commitment 
of testing introduces several issues, including the trade- 
oflfbetween the chosen and required sample size versus 
trial size. This issue will be further explored below, 
as the time-consuming nature of collecting, analysing 
and interpreting data is becoming less restrictive with 
technical developments. With more time available, 
should researchers use a larger sample or more trials?

T r ia l  s izes  re q u ire d  f o r  h u m a n  p e r fo r m a n c e  
re s e a rc h

The validity of results obtained in an experiment 
include whether the results are representative of the 
‘typical’ response for the experimental conditions. 
For example, this response can be considered to be a 
measure of performance (e.g. outcome measure) or a 
measure of technique (e.g. movement kinematics 
measure). One definition of a representative response is 
that it is the central tendency score (e.g. Kroll, 1957), 
which subsequently requires that variability -  ‘The 
degree of difference between each individual score and 
the central tendency score’ (Thomas and Nelson,

T a b le  1 . E x a m p le  m eth o d s  to  co n tro l fo r  e x p e rim e n ta l erro rs (fro m  M u llin e a u x  an d  B a r t le t t ,  1 9 9 7 , p. 9 2 )

A tte m p ts  to  keep th e  tes tin g  as n a tu ra l as possible
M in im iz e  th e  in fo rm a tio n  th a t i t  is necessary to  p rov ide to  th e  pa rtic ip an ts  

Physical m a n ip u la tio n  o f  p a rtic ip a n ts ’ actions before an d  d u rin g  test p e rio d
M a tc h in g  p a rtic ip an ts  b e tw e e n  groups to  co n tro l fo r  extraneous variables (o r  use a w ith in - in d iv id u a l design)
C o u n te rb a la n c in g  fo r  p a rtic ip an ts  receiv ing  several trea tm e n ts  b y  v a ry in g  the  o rd e r o f  a d m in is tra tio n  fo r  d iffe re n t p a rtic ip a n ts
In tro d u c tio n  o f  co n tro l groups (e .g . p laceb o ) an d  using single- or d o u b le -b lin d  designs
E nsu re  ex p erim en ters  are c o m p e te n t in  using the e q u ip m e n t an d  th e  p rocedu res in vo lved
C a lib ra tio n  o f  eq u ip m e n t
U se o f  the best available e q u ip m e n t
A p p ro p ria te  statistical analysis and use o f  m eth ods  to  fa c to r o u t extraneous variables (e .g . A N C O V A )
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1996, p. 100) -  is measured. To obtain these measures, 
several trials need to be recorded.Trial size is influenced 
by experimental errors, robustness of the assumptions 
of the analysis method, research design, consistency of 
participants’ responses and definition of variability used. 
Below, we discuss some factors that influence variability 
(consistency of participants’ responses and sources of 
variation), methods for estimating the number of trials 
required within a research design, and methods of 
assessing variability and analysing multiple trials.

Consistency of participants’ responses

Because of the complexity of human beings -  from the 
vast array of neural connections to the multidimension­
ality of joints, and the unique experiences, perceptions, 
intentions and expectations that are brought to the 
experimental setting (Dufek et al.s 1995) -  the same goal 
(i.e. outcome measure) can be achieved using many 
different techniques (i.e. motor equivalence). This 
inherent variability has been seen as being functional, in 
that it permits the flexibility to adapt to a non-stationary 
environment and hence changing task demands (for 
a review, see Newell and Corcos, 1993). Bearing this 
variability in mind, it can be implied that, when data 
collection involves humans, the analysis of a single trial 
may be inappropriate, as the assumption of a single per­
formance or technique measure being representative 
of the typical response should be viewed with caution 
(Bates et a l., 1992). Subsequently, the use of single­
individual designs in which multiple trials are analysed 
have been proposed by Bates (1996), although 
Reboussin and Morgan (1996) suggest these are only 
beneficial in the early stages of research for hypothesis 
generation partly because of problems of generalizability 
(see James and Bates, 1997, for a review on the analysis 
of single-individual designs, i.e. the analysis of several 
trials of one participant in a study). In  multiple- 
individual designs, for reasons such as time and cost 
restrictions, ease of sampling and statistical analysis, a 
single trial is still often used. I f  within-trial consistency 
in response measures is shown to be high, as seen for 
example in highly skilled performers (Hubbard and 
Seng, 1954; Bootsma and Van Wieringen, 1990), then 
analysing a single trial in multiple-individual designs 
may be justified. Nevertheless, there are still potential 
problems with using multiple-individual designs 
because the distribution of within-trial variability is 
mediated by the specific task demand.

In a study of elite table tennis players performing the 
attacking forehand drive, Bootsma and Van Wieringen 
(1990) found that the variability of the direction of 
travel of the bat declined from the moment of initiation 
to the moment of bat on ball contact. Therefore, rather 
than exhibiting an increase in variability throughout the

drive as a result of noise in the system (i.e. magnification 
of error over time in performing the specific task), elite 
players used a strategy in which the variability was 
reduced throughout the drive to a minimum at bat on 
ball contact (see also Bootsma et al.} 1991). A  further 
example of a reduction in variability in certain key 
variables has been reported by Arutyunyan et al. 
(1968). Based on their work on pistol shooting, they 
suggested that compensatory movements of the upper 
arm enabled expert marksmen to achieve low variability 
in the position of the pistol barrel. Novice marksmen, 
in contrast, were unable to demonstrate such com­
pensatory movements and, therefore, exhibited more 
variability in the position of the pistol barrel. Clearly, 
in these tasks an analysis at certain temporal parts of 
the movement (e.g. initiation of drive compared to bat 
on ball contact) or at specific locations (e.g. upper arm 
compared to the pistol barrel) could have indicated dif­
ferent amounts of variability. I f  inappropriate variables 
are selected, then the results could be misleading in 
suggesting that elite performers are less consistent than 
novice performers.

Sources of variation

As well as intra-individual differences, there are often 
large inter-individual differences in participants’ 
responses. With a research design that examines dif­
ferences in responses within a group of performers* 
individual differences in performance or technique 
may be masked (Michaels and Beek, 1996). For 
example, Temprado et al. (1997) found that although 
both expert and novice groups of volleyball players 
exhibited three types of joint pair coordination, in 
which there were group differences in the frequency of 
occurrence, this tri-modal pattern was not found in two 
of the six experts. In  recognition of this, Bates et al. 
(1992) suggested that individuals’ responses should 
only be grouped after verification of any similarities or 
trends in the data, as similarities are likely to prove to be 
exceptions. Burden et al. (1998) studied the hip and 
shoulder rotations of seven golfers. Despite the golfers’ 
similarly high standard (mean±s: golf handicap of 
7± 1 ), Burden et al. found large inter-individual vari­
ations (e.g. maximum shoulder angle of 102±16°, 
range 80-126°). Informative and understandable results 
were provided by simple data analyses including 
descriptive statistics of the group and individuals’ 
deviations from these. The use of simple analyses has 
merit, as combining such data (e.g. in an analysis of 
variance, ANOVA) could be problematic despite similar 
abilities, and lends support for other less advanced 
statistical or data analyses (e.g. angle-angle diagrams; 
see section on ‘Trend analysis’).

Clearly, both inter- and intra-individual variation
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are possible. These variations influence reliability and 
statistical significance testing. Classical test theory (see 
Safrit and Wood, 1995) considers that variance in the 
observed score (ax2) equals the sum of the variances in 
the true ((xt2) and error (<re2) scores. Reliability is sub­
sequently defined as the ratio of the true to observed 
variance:

reliability = (<xx2 -  a * ) / a *  (1)

In an ANOVA, this can be presented as a version of 
the intra-class correlation coefficient:

R  = (MSb -  M Sw)/M Sb (2)

where M SB and M SW denote the mean-square variance 
between-groups (variance of the group means from the 
grand mean) and within-groups (variance of the indi­
vidual scores from the mean of its group), respectively. 
Assuming that only M SB changes, if this increases 
then reliability increases but statistical power decreases 
because individual heterogeneity increases. Alter­
natively, if only M SW increases then, as this is assumed 
as error, the reliability and the power of the test 
decreases because M SB forms part of the denominator 
for effect size, which influences statistical power. This 
example emphasizes that it is important to identify the 
source of variation in an experiment. For example, 
the intra-class correlation coefficient is recommended 
in many textbooks (e.g. Thomas and Nelson, 1996; 
Vincent, 1999). However, because of limitations -  
including the conflicting effects of variability -  others 
have criticized it and proposed different techniques. 
These include limits of agreement (Bland and Altman, 
1986) and least-products regression (Ludbrook, 1997). 
Often the limitations are specific to the data. Hence, 
more recently, some authors have proposed the use of 
either a combination of tests (e.g. Rankin and Stokes, 
1998, recommend the intra-class correlation coefficient 
plus limits of agreement) or recommend a test that 
meets the underpinning assumptions (e.g. Mullineaux 
et al.3 1999, compare limits of agreement and least- 
products regression). For a review on reliability testing, 
see Atkinson and Nevill (1998).

An extension of classical test theory is generalizability 
theory, in which sources of variation in a measurement 
can be quantified (see Safrit and Wood, 1995). The 
principal benefits of this theory are that it: enables 
sources of error to be quantified; provides future 
research with information to use in designing methods 
to minimize error and increase reliability and power; 
and aids in interpreting future results by providing a 
quantification of variability. Salo and Grimshaw (1998) 
have applied generalizability theory to the kinematic 
analysis of sprint hurdles. They considered that total 
variance of a single observation in digitized data

equalled the sum of variance from three sources: 
between-individuals (4 females, 3 males), within- 
individuals repeated trials (n =  8) and redigitization 
(n =  8 for one male and one female). They reported per­
centage coefficients of variation (%CV) ranging from 
1.0% for the women’s centre of mass height at landing 
to 209.7% for the men’s centre of mass horizontal dis­
tance from the hurdle at maximum clearance height. 
For redigitization, the variability in results for male 
participants was better than for female participants. 
For the males, the mean % CV of 9.1% ranged from 
0.1% for the centre of mass mean horizontal velocity to 
93.1% for the centre of mass horizontal distance from 
the hurdle at maximum clearance height. The authors 
commented that the more computations required, the 
greater the variability (e.g. displacement versus centre 
of mass variables) and, subsequently, that more trials 
would be required to obtain a representative measure. 
The authors did recognize that, as the %CV contains 
the mean (5c) as the denominator,

%CV =100 six (3)

then as the mean approaches zero, the %CV will 
increase even for low absolute standard deviations (s). 
For example, as the women’s mean centre of mass 
horizontal velocity and vertical take-off velocity were 6.9 
and 1.6 m-s_1, respectively, both with a standard devi­
ation of 0.2 m-s-1, then the coefficients of variation are 
different at 2.9% and 12.5%, respectively. This con­
sideration of the delimitations of statistics is invaluable 
in analysing results, as knowledge of these can also help 
in designing and interpreting a study. Hence, using 
%CV in the example above would suggest that the take­
off velocity is more variable in the vertical than in the 
horizontal, but this is partly attributable to a limitation 
of the statistic being its inability to cater for different 
sizes in the mean score. All statistics have delimitations, 
a few further examples of which will be illustrated later.

Estimate of the number o f trials required

Generalizability theory is limited to the sources of 
variances investigated and the context in which the 
theory is studied. Salo and Grimshaw (1998) considered 
between-individuals, within-individuals repeated trials 
and redigitization variances; further research is required 
to identify variances from other factors, including 
sampling frequency, the ability of the performer and an 
individual’s years of experience at the task. The context 
of this study applies to the particular research design 
involving manual digitizing, a sampling frequency of 
50 Hz, a large field of view and analysis of variables 
requiring various amounts of data processing (e.g. dif­
ferentiated versus raw data). As a measure of consistency,



744 Mullineaux et al.

Salo et al. (1997) calculated the number of trials 
required in sprint hurdles to obtain a reliability of 0.90 
using the intra-class correlation coefficient on a variety 
of kinematic variables. Depending on the consistency of 
certain variables, between 1 (e.g. maximum knee angle 
of the lead leg during clearance for males and females) 
and 78 trials (e.g. decrease in centre of mass horizontal 
velocity from touchdown to landing for males) can be 
needed for a reliable and representative measure of the 
hurdler’s average technique to be obtained. Although 
the context of this experiment is quite limited, it does 
emphasize that a single measurement can be unrepre­
sentative of the average movement pattern.

This type of research on quantifying variability is use­
ful in determining factors that influence variability, but 
few studies in biomechanics and motor control provide 
such information, and even fewer use such findings for 
designing studies or interpreting results. Interpreting 
results with respect to sources of variability identified in 
the literature is simple. The importance of this simple 
approach is illustrated below, as determining the 
required trial size and methods of analysis of multiple 
trials for an experiment to quantify variability is not 
straightforward.

As outlined above, there are many sources of 
variability that can influence data validity and, sub­
sequently, that more than one trial will probably be 
required to obtain a representative measure of a per­
former’s technique or outcome measurement. However, 
including more than one trial in an experiment intro­
duces new problems such as fatigue and learning, and 
time and cost restrictions.These potential problems can 
be addressed by appropriate research designs, solutions 
that are often described in the literature (see Table 1). 
To provide some insight into aspects of the research 
designs adopted in biomechanics, Table 2 describes 
some relevant features of research papers published in 
the Journal of Applied Biomechanics in 1998.

In biomechanics research, the sample and trial sizes 
used are often small. Table 2 shows that more trials were 
recorded (mean of 3.9) than were analysed (mean of 
2.9), and in 50% of papers only one trial was analysed. 
The use of multiple trials is rare, yet earlier we illus­
trated the potential problem of using only one trial as a 
representative measure of a performer’s technique and, 
subsequently, the effect on the validity of the results. 
There are also benefits of more than one trial for 
statistical significance testing, which is discussed later. It  
is on this basis that Bates era/. (1992) recommended the 
number of trials that should be included in a repeated- 
measures design. They suggested that, for statistical 
power of 90%, the ability to detect a one standard devi­
ation difference between the group means, trial sizes of 
10, 5 and 3 should be used for sample sizes of 5, 10 and 
20, respectively. Interestingly, their results showed that 
if trial size is increased, then the required sample size 
decreases at a proportionally greater rate. This decrease 
is beneficial, as fewer data are required, but this has yet 
to be explored fully. However, as Carver (1978) pointed 
out, even though it is desirable to build replication into 
designs, this can involve a more complex process of 
analysis. The criteria used for selecting which trials to 
analyse from those recorded and the methods of data 
treatment of more than one trial used in studies pub­
lished in the Journal of Applied Biomechanics in 1998 are 
described in Table 3.

Analysing multiple trials and quantifying variability

Generally, three approaches exist in the methods for 
selecting the number of trials to be analysed from those 
recorded (see Table 3): only one trial collected (26.9% 
of studies), all trials are used (38.5%) or the best of 
several trials is used (23.1%). In  a few cases, it was not 
clear what the criteria had been for selecting trials 
(11.5%). In  50.0% of studies, one trial was used as

T a b le  2 . S u m m a ry  o f  selected research design features fro m  research papers  («  =  2 2 )  p u b lis h ed  in  th e  
Journal o f Applied Biomechanics in  1 9 9 8

M e a n  ±  s R a n g e * N o te s

S am ple  size 1 4 .5  ±  1 3 .5 3 - 6 7 M o s t  p a rtic ip a n ts  w ere  h u m a n  (ra th e r  th a n  ob jects)
G ro u p s /c o n d itio n s 2 .4  ± 2 . 6 1 -1 4 M o s t  used one g ro u p  an d  several co n d itio n s
T ria ls  reco rd ed 3 .9  ± 3 . 0 1 -1 0 2 6 .9 %  re c o rd e d  o n ly  o n e . O n e  s tu d y  se lected  the  

n u m b e r  o f  tria ls  on  th e o re tica l g rou nd s  d e riv e d  fro m  

the  lite ra tu re
T r ia ls  analysed 2 .9  ± 2 . 8 1 -1 0 5 0 %  analysed o n ly  one tr ia l
T o ta l trials 8 0 ±  12 6 5 - 5 0 4 T h is  is th e  p ro d u c t o f  sam ple size, g ro u p /c o n d itio n s  

an d  tria ls  analysed

Note: The complexity of designs has necessitated some simplification. Five papers as technical notes and one invited 
review paper have been excluded from the summary. * The normal distribution assumption required of the mean and 
standard deviation statistics is violated, hence the range has been included to clarify the data dispersion.
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T a b ic  3 . C r ite r ia  fo r  se lecting tria ls  fro m  those reco rd ed  an d  d a ta  tre a tm e n t m eth ods  

o f  tria ls  described  in  papers (n =  2 2 )  p u b lis h ed  in  th e  Journal o f Applied Biomechanics in  

1 9 9 8

C r ite r ia  fo r  
se lecting  tria ls P ercentage

D a ta  tre a tm e n t  

o f  tria ls P ercen tag e

O n ly  one reco rd ed 2 6 .9 N o n e  (o n ly  one availab le) 5 0 .0
B est one o f  several 2 3 .1 A veraged 3 0 .8
A ll tria ls 3 8 .5 U n k n o w n 1 9 .2
U n k n o w n 1 1 .5
T o ta l 1 0 0 .0 T o ta l 1 0 0 .0

either it was the only one collected or the ‘best’ trial was 
selected. Where more than one trial was selected, the 
average of these was used in subsequent analyses 
(30.8%); in the remaining studies, the methods for 
treating trials was not clear (19.2%).

This simple summary of the criteria for selecting the 
number of trials and data treatment of trials in bio­
mechanical research is quite informative (Table 3). In  
this instance, only two techniques for treating multiple 
trials on the same condition have been identified: taking 
the ‘best’ or taking the ‘average’. Either technique can 
produce ‘better’ results, but the choice should be based 
on a sound foundation. Kroll (1957) suggested that 
if  the trial-to-trial error variance is random and un­
correlated, confirmed by a non-significant between- 
trials F-statistic on a one-way repeated-measures 
ANOVA, then choosing the average score is the only 
correct method. Other methods, such as taking the 
‘best’, violate the operating assumption of random, 
uncorrelated error variance. However, if  the error 
variance is not random or uncorrelated -  examples 
of which were described earlier (e.g. the variability in 
some joint pairs is used to reduce variability in the pistol 
barrel by elite performers; Arutyunyan et al.3 1968) -  
then the choice of appropriate methods is not so defini­
tive. Kroll (1957) considered that methods including 
the average or best could be defensible, but preferably 
the researcher should identify a measurement schedule 
for random and uncorrelated error variance. This again 
highlights that appropriate analysis based on a priori 
theorizing should be used to obtain valid results.

One other feature of these papers was that variability 
had occasionally been quantified for data interpretation 
or controlled for statistical purposes. For example, 
Caldwell et al. (1998) used the coefficient of variation 
and Young and Marteniuk (1997) used the root mean 
square to quantify variability. Also, Barrentine et al.
(1998) used repeated-measures ANOVA to control for 
variability between individuals. Other techniques avail­
able to control variability, in instances where this 
is required, include analysis of covariance (ANCOVA),

matched-individuals designs and further methods 
described later (see section on ‘Trend analysis’ and 
Table 6). Shultz and Sands (1995, p. 272), in their 
review of measurement and statistics for exercise 
specialists, supported the use of reducingvariance owing 
to individual heterogeneity. They considered that the 
resulting increase in effect size is the most cost-effective 
method of increasing statistical power, especially instead 
of increasing the sample size. All of these methods have 
their benefits, notably that they provide some quantifi­
cation or control of variability; however, they also have 
their limitations. A  limitation of the coefficient of vari­
ation was illustrated earlier (see equation 3). To use 
another example, as ANCOVA uses regression to adjust 
the values of the dependent variable for each group so 
that there is an equal proportional relationship with a 
covariate, this adjustment intro duces error into the data. 
Although this will increase the statistical power, it 
decreases data validity if care is not taken in its use. The 
importance of using any of these statistical techniques is 
that they can help determine how many trials might be 
required in future research so that more valid results can 
be obtained.

Summary

We hope we have highlighted the conceptual import­
ance of increasing trial size, particularly in obtaining 
more valid results by being more representative of 
performance or technique. To determine an appro­
priate trial size, Caldwell et al. (1998) used the co­
efficient of variation and Salo and Grimshaw (1998) 
used generalizability theory to assess variability. These 
measures or assessments can provide an insight into 
methods of experimental control and they stress the 
need to increase trial sizes that will subsequently 
increase reliability and statistical power. Simpler and 
more apparent methods of determining trial size are 
limited. We noted earlier the recommendations of 
Bates etal. (1992) on the trial sizes required for different 
sample sizes to obtain a 90% power to detect statistically
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a one standard deviation difference between the groups’ 
means. As statistical significance is affected by many 
factors, this interaction between trial and sample sizes 
was extended by Dufek et al. (1995) to assess the influ­
ence of single-individual versus group analyses, effect 
size and variability on statistical power. In general, larger 
trial sizes are required to detect statistically significant 
findings for inter-individual analyses, when effect sizes 
are small and when variability is large. Their tabulated 
and graphical results can be of further use in identi­
fying the number of trials required in designing an 
experiment.

As resources are limited, increasing the trial size is 
often at the expense of sample size. Sample size is often 
increased to increase statistical power; however, experi­
mental control of variation and increased trial size can 
perform this task more economically. Also, increasing 
trial size may be more suitable when the available 
sample sizes are small. In  analysing multiple trials, trials 
are commonly averaged, as this decreases the within- 
individual variation and increases statistical power, 
or they are analysed in repeated-measures analyses 
of variance. In summary, we recommend that some 
assessment of variability should be included or reported 
and, where possible, more than one trial should be used. 
Ifpossible, trial size should be determined a priori based 
on considerations complementary to the inherent 
variability in the movement and appropriate use of 
statistics. The simple recommendation of using the 
average of three trials may have some merit as a practical 
way of meeting the theoretical basis for obtaining more 
valid results both experimentally and statistically. In 
addition, rather than just controlling variability for 
statistical purposes, it can be meaningful to discuss 
variability in the light of its importance in the successful 
control and outcomes of movements (see, for example, 
Arutyunyan etal ., 1968).

Data analysis

The many methods of analysing data include the use of 
qualitative analysis (e.g. describing the coordination of 
two segments as ‘tightly coupled’; see section on ‘Trend 
analysis’) and the three major forms of statistics (i.e. 
descriptive, inferential and effect size). The choice is 
dependent on the aim of the analysis, characteristics of 
the sample, type of data, research design, political 
interventions and the experimenter’s statistical training. 
The correct use of each of these can have substantial 
benefits for the interpretation of analysed data. Un­
fortunately, their inappropriate use can waste time and 
over-complicate an analysis. This, in turn, can mask 
important information or misinform the reader. Data in 
biomechanics and motor control research often possess

two features: the sample size is small and the data form 
time series. The former is usefully analysed by effect size 
statistics, the latter by trend analysis.

E ffe c t s ize

Effect size forms part of the mathematics underpinnii^ 
many inferential statistics and influences the signifi­
cance value obtained. It has most often been observed 
ejqplicitly in research forming the basis for meta­
analysis. Effect size statistics provide a quantification 
of the magnitude of the association between data. 
Alternatively, Shultz and Sands (1995, p. 266) define 
effect size as ‘an index of the degree of departure from 
the null hypothesis and is mathematically related to 
the noncentrality parameter of most test statistics’. 
These two definitions support two different applications 
of effect size as descriptive or inferential statistics, 
respectively. This section primarily emphasizes the 
use of effect size as a descriptive statistic, as many of 
the limitations of inferential statistics described in the 
literature could also apply.

The recommendation of effect size as a descriptive 
statistic in research has mostly arisen from the debate 
over the usefulness of inferential statistics. This debate 
appears to contain one universally accepted component 
significance values (P) only provide the probability of 
obtaining the result assuming it were due to chance. In 
a recent paper, Chow (1998) set out the arguments 
for using inferential statistics, principally in theory- 
corroboration research. The many responses to his 
paper illustrate the varied support and opposition to this 
position (see Open Peer Commentary in Chow, 1998, 
pp. 194-228). In theory-corroboration, ‘Statistical 
significance means only that chance influences can be 
excluded as an explanation of data; it does not identify 
the nonchance factor responsible’ (Chow, 1998, p. 169). 
Many of the opponents of significance testing agree with 
this statement (e.g. Carver, 1978), but the problem 
is that, if  the null hypothesis (H 0) is rejected, most 
researchers automatically accept the research hypoth­
esis without trying to discount the many other alterna­
tive hypotheses. Others believe that the null hypothesis 
should be considered with respect to the ‘plausibility’ of 
the result (e.g. Matthews, 1998a,b), otherwise many of 
the significant results are meaningless flukes. Many 
authors have highlighted other limitations of inferential 
statistics (e.g. Carver, 1978; Armstrong, 1987). One of 
the practical limitations is the binary output (accept 
or reject) produced by rejecting a hypothesis when a 
specific level of significance (a) is exceeded, and that no 
quantification of the finding by a unit of measurement 
is provided. It is also possible to obtain either a type I  
or I I  error. A  large sample size and small variability
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predispose towards the former, where differences are 
small but the null hypothesis is rejected. A  small sample 
size and large variability predispose to type I I  errors, 
where differences are large but the null hypothesis is 
accepted. Armstrong (1987) noted that generalization is 
often incorrect and that inference should be performed 
with great care to compensate for such problems. 
Some of this dissatisfaction has led researchers to pro­
pose alternatives, including confidence intervals (e.g. 
Borenstein, 1997; Sim and Reid, 1999), graphical repre­
sentation (e.g. Wainer and Thissen, 1981) and effect 
size statistics (e.g. Cohen, 1988).

A  particular limitation in biomechanics and motor 
control research is that the reliance on small sample 
sizes reduces the statistical power and may result in 
non-significant findings. These, in turn, can lead to 
misleading inferential statistics and can cause major 
problems in the control of type I  errors in certain 
statistical tests. Several solutions exist. Increasing the 
sample size is an obvious simple solution if  time and 
resources permit; however, although this would increase 
the power, it would not negate the above criticisms. 
Simpler still would be to report effect sizes and provide 
readers with a means to interpret the importance of the 
findings (Mullineaux and Bartlett, 1997). It  is unlikely 
that inferential statistics will become obsolete; therefore, 
it would be beneficial to use effect sizes to support rejec­
tion or acceptance of the null hypothesis (e.g. to justify 
there is no type I  or I I  error) or to support results from 
descriptive statistics.

Effect size has been proposed as an alternative to 
inferential statistics because it is easy to calculate and it 
provides more meaningful results. The notion of effect 
size statistics has become more widespread in recent 
years (e.g. Vincent, 1999). They have been usedin a few 
studies in biomechanics (e.g. Goosey et al., 1998), often 
together with inferential statistics. But how common 
is their use generally? The results of a simple search 
for ‘effect size’ on the Science Citation Index (Web of 
Science, 2000), in comparison to ‘r-test’ and ‘ANOVA’, 
are reported in Table 4.

In  all years, ‘ANOVA’ has generally been reported the 
most, followed by ‘r-test’ and then ‘effect size’. Between

the start of the Science Citation Index database in 1981 
and 1990, the frequency of occurrence of ‘effect size’, 
‘r-test’ and ‘ANOVA’ remained small and relatively 
constant. Since 1991, the frequency of the reporting of 
each of these terms has steadily increased, but the size 
of the database also almost doubled each year up to 
1998. Despite some early publications (e.g. Cohen, 
1969) and later ones (e.g. Ottenbacher and Barrett, 
1991) that proposed the benefits of effect size statistics, 
it appears that they have not been widely adopted. 
Possibly, the use of inferential statistics still provides 
researchers with ‘objectivity’ and the ‘gatekeepers’ (e.g. 
journal editors and funding bodies) still seek this sup­
posed objectivity. Researchers may find comfort in this 
‘objectivity’ (Matthews, 1998a). However, inferential 
statistical analysis is complex and requires underpinning 
knowledge for correct use. Some researchers do not 
possess that knowledge and, therefore, use inferential 
statistics incorrectly. It  is possible to obtain more useful 
results by simplifying the analysis, an example of which 
was described earlier (see Burden et a l., 1998, on p. 742).

Although effect size statistics have primarily been 
proposed as an alternative to inferential statistics, care 
must still be taken to ensure that they are used correctly. 
Authors rarely report whether the assumptions under­
pinning inferential statistical tests have been met. This 
may be due to their complexity, the availability of 
computer statistical packages and the views of some 
journal editors. Effect size may fall into the same trap, as 
few textbooks mention the underpinning assumptions 
required for a valid calculation. ‘Justifying’ the use of 
any statistical test by ensuring that the assumptions of 
the test are sufficiently met or controlled has implica­
tions for a correct analysis and better interpretation. 
The most common effect size statistics are parametric, 
requiring random sampling and normally distributed 
data. Each test also has specific assumptions. For 
example, omega-squared, which can be used to support 
a between-groups ANOVA, also requires homogeneity 
of variance between the groups. Effect size suffers from 
the same problem as inferential statistics in that checks 
and corrections for the assumptions are not routinely 
performed.

T a b le  4 . F re q u e n c y  o f  statis tica l tests re p o rte d  in  th e  t it le , abstract o r  keyw ords o f  artic les c o n ta in e d  in  th e  S cien ce C ita tio n  

In d e x  (W e b  o f  S c ien ce , 2 0 0 0 )  fro m  1 9 8 1  to  1 9 9 9

Y ear E ffe c t size A N O V A r-test N o te s

1 9 8 1 -9 0 0 - 3 2 - 1 5 2 - 9 T h e  size o f  th e  database re m a in e d  co n stan t a t c. 1 2 0 0  a rtic les  p e r year
19 91 3 0 2 9 8 32 1 In  1 9 9 1 , the  database c o n ta in e d  c. 2 4 0 0  artic les a n d  alm ost d o u b led  

each year u p  to  c. 1 8 0 ,0 0 0  a rtic les  in  1 9 9 8  (d e r iv e d  fro m  B ID S  IS I  
D a ta  S erv ice , 1 9 9 8 )

1 9 9 9 13 0 1 0 8 2 9 5 6 F re q u e n c y  o f  all tests g ra d u a lly  increased fro m  1991
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Calculations of effect size can be performed for many 
research designs. There are two main types, explained 
variance and effect size statistics, although additional 
names include magnitude of effect, effect size index 
and the individual names of tests such as eta-squared. 
Effect size is calculated in the original units of measure­
ment. The most common is a standardized score (i.e. Z ) 
indicating by how many standard deviations the group 
means differ. In general, an effect size of 0.2, 0.5 
and >0.8 represents small, moderate and large dif­
ferences (Cohen, 1988), respectively, where a moderate 
difference is considered visible to an experienced 
researcher (Cohen, 1992, p. 156). The ejqfiained vari­
ance, in contrast, indicates the amount of association or 
correlation between groups that is due to, or explained 
by, the experiment or treatments. The output is pro­
vided as a decimal (e.g. 0.60) or percentage (e.g. 60%) 
where, for example, a coefficient of determination (r2) of 
0.6 indicates that 60% of differences or variance are due 
to the variability in the treatment and 40% are due to 
extraneous variables. Although the explained variance is 
typically presented in this way without units, it can be 
converted to an effect size (see Cohen, 1988). However,

Shultz and Sands (1995, p. 268) suggest that effect 
size is underestimated by the explained variance. For 
example, an effect size of 0.8, although considered large 
(Cohen, 1988), only equates to an ejqslained variance of 
14% (see Shultz and Sands, 1995, for the conversion 
formula). Such an explained variance appears small and 
might be misleading, hence such a conversion is not 
recommended.

As effect size can be beneficial in supporting signifi­
cance tests, several tests are provided in Table 5 for sup­
porting Pearson rho correlation coefficient, r-test and 
one-way ANOVA inferential statistical tests. To identify 
effect size statistics (e.g. a two-way between-group 
ANOVA) that are of use in supporting other inferential 
statistics, see, for example, Howell (1997) and Thomas 
and Nelson (1996, p. 166). Matching effect size statistics 
with inferential statistics is beneficial, as both generally 
share the same assumptions. I f  the data violate the 
respective assumptions for the inferential statistic, then 
either a correction should be applied or an appro­
priate non-parametric statistic should be used. These 
assumptions are described in many textbooks and many 
statistical packages have corrections as features.

T a b le  5 . E xam p le s  o f  exp la in ed  variance , effect size o r eq u iv a len t tests ( * )  su itab le to  s u p p o rt  

analyses w ith  se lected in fe re n tia l statistics

Test0 E x p la in e d  variance* E ffe c t size'

Pearson r 2 * S E h =  sy • V( 1 — r 2)
f-test (B ) co2 =  ( t2 — 1 ) /(£ 2 +  m, +  n2 — 1) £ E S b =  (x , -  x 2)/sc
£-test (W ) * P C  =  1 0 0  * ((Xposr ~  * prh) / * pkh) E S W =  (xposr — * frk) / sprh 

* L O A = < 5+ 2 <r
A N O V A  (B ) t]2=  SSjj/SS,.

w 2 =  (S S B -  (k -  1 ) • M S H) / ( S S r  +  M S h)
E S b fo r  p a irs  o f  m eans

A N O V A  (W ) N / A E S a  =  (xjviax — xMIN)/sw 

* L O A b =  ± 2  • V 2 M S h

Note: See Bland and Altman (1986) for LOA, Bland (1995) for LOAu, Park and Schutz (1999) for ESA and 
Vincent (1999) for remaining formulae. N /A =  not applicable.
“Pearson product-moment correlation coefficient (Pearson); between-groups factor (B), within-groups 
factor (W ).
* Coefficient o f determination (r2); omega-squared for a between-groups design r-test (a>,2); r-test statisdc (r); 
group 1 sample size («,); group 2 sample size (w2); percentage change (PC); post-test mean (icroST) ;  pre-test 
mean (icrRK); eta-squared (rj2); sum of squares between groups or treatment variance (SSj*); sum o f squares 
total or total variance (SS.,.); omega-squared for a between-groups F-statistic (to /); number of groups (&); 
mean-square errorvariance (MSy).
c Standard error of the estimate (SEH); standard deviation of dependent variable (rv); coefficient of determin­
ation (r2); effect size of between-factor (ESU); group 1 mean (x,); group 2 mean (x2); standard deviadon of 
control group (sc); effect size of within-factor (ESW); post-test mean (xROST); pre-test mean (xPR1!); standard 
deviadon of pre-test (srRH); levels of agreement (LOA); mean of differences (5); standard deviadon of the 
differences (cr); effect size of within-factor for ANOVA (ESA); largest within-factor mean ( ic ^ ) ;  smallest 
within-factor mean (xM1N); mean within cell standard deviation (rw); levels of agreement boundary (LOA„); 
mean-square errorvariance (M S ^ .
^W hen jc is not available, use the pooled standard deviadon, j r = V(s,2'n , -  1 +s22,n2-  1 )/(n, + n2 -  2), 
including the standard deviadons of groups 1 (i,) and 2 (s2), and sample sizes of groups 1 (n ,) and 2 (n2).
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For a correlation between two sets of data, the 
explained variance provides the most appropriate 
measure of the size of the effect. I f  the data meet 
the assumptions of a Pearson correlation, then the 
explained variance is simply the coefficient of deter­
mination -  that is, the correlation coefficient squared 
(r2). In  the instance where there is a dependent variable 
and an independent variable, then the coefficient 
of determination indicates the amount of variance in 
the dependent variable that can be explained by the 
variance in the independent variable. Interpretation is 
specific to the circumstances. For example, a low co­
efficient of determination may be acceptable if you 
anticipate a relationship, but a higher value may be 
required if  you need to use the independent variable to 
predict the dependent variable. There are no effect size 
statistics for correlated data; however, the standard error 
of the estimate or confidence intervals can be useful. 
Confidence intervals can provide added benefits and 
can be obtained through parametric confidence inter­
vals or non-parametric bootstrapping (see Zhu, 1997, 
for a tutorial on bootstrapping). I t  has been suggested 
that confidence intervals can be used as an alternative 
method to effect size for supporting inferential statistics. 
Care should be taken in their interpretation as, like 
inferential statistics, confidence intervals are based 
on probabilities and suffer from some of the above 
problems.

To support an ANOVA (between-group design), two 
methods of calculating the explained variance are 
common: eta-squared (rj2) and omega-squared (co/). 
Eta-squared (Vincent, 1999, p. 165) is the ratio of the 
treatment variance (SSB) to total variance (SST). A  more 
accurate measure is omega-squared, which will prob­
ably produce a smaller value (Vincent, 1999, p. 166), as 
it tries to account for the unexplained variance. For 
these tests, an effect size of 0.05 is small, 0.10 is inter­
mediate and >0.20 is considered large (Cohen, 1988).

For a within-group ANOVA, although there are no 
formulae for explained variance, Park and Schutz
(1999) provide -  in their paper on calculating power for 
repeated-measures ANOVA -  a formula for estimating 
effect size (see Table 5). In addition, as agreement 
quantifies the differences between repeat measures, we 
propose that agreement can be used as an equivalent 
test to effect size. The agreement boundary (LOAB) 
provides a comparison for all measurements (BSI, 1979; 
Bland, 1995). Between pairs of means, the limits of 
agreement (LOA) can be used (Bland and Altman, 
1986). Two benefits of agreement are that the output 
is in the same units of measurement as the data and 
that they are also easy to calculate. Results from agree­
ment should be interpreted with respect to the specific 
circumstances and what is considered a meaningful 
magnitude (e.g. based on previous literature) or

greater than measurement errors (e.g. identified 
• through reliability testing).

We outlined earlier some effect sizes reported in the 
literature that indicate whether the differences between 
the data are large, medium or small (e.g. Cohen, 1988). 
Hopkins (1997) describes alternative interpretations 
of some effect size statistics: small (0.2), moderate (0.6), 
large (1.2), very large (2.0) and nearly perfect (4.0). 
The use of all these criteria has some limitations in that 
they are not individualized to the experiment. Hopkins 
et al. (1999) suggested that differences between elite 
performers are very small. As such, much smaller effect 
sizes might be meaningful in such circumstances. This 
example supports the view that, generally, interpretation 
should be based on a priori theorizing. This may involve 
identifying from previous literature what is an important 
difference theoretically, ethically, economically and 
practically, and considering whether the differences are 
bigger than limits identified for error, reliability and 
variability analyses. Using the values reported in the 
literature as a guide can be useful in identifying the size 
of the effect. Using effect size statistics should involve 
four steps: (1) identify the appropriate test based on the 
research design; (2) use a p rio ri theorizing to identify 
acceptable results for interpretation; (3) collect data and 
test assumptions underpinning the effect size statistic, 
and correct for any violation; and (4) perform the 
correct test and interpret.

To summarize, in describing data, effect size statistics 
quantify the magnitude of the association between data 
in an experiment. The limitations of these statistics 
include: (a) there is no test for every experimental 
design; (b) the complexity of tests will increase with a 
perceived need for more tests and increased computer 
power; (c) the lack of literature suggests they will 
be used infrequendy and, because the assumptions 
required are not detailed, they are likely to be misused; 
and (d) they are only descriptive,hence external validity 
and extrapolation is limited. The benefits, however, are 
that they: (a) are simple to calculate; (b) quantify 
the difference between groups; (c) provide results in the 
original units of measurementthat are easier to interpret 
and can be applied practically; (d) can be used to sup­
port P-values, which alone can be misleading; and (e) 
can support qualitative data. Graphing and observing 
data can also be used to support all statistics, which 
alone can be misleading (Armstrong, 1987).

T re n d  a n a ly s is : k in e t ic 3 s p a t ia l  a n d  te m p o ra l  
d a ta  a n a ly s is

The previous section outlined the many factors that 
influence the variability of human movement and some 
of the implications for statistical design were discussed.
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However, once it has been accepted that variability is 
inherent in all human movement, the question still 
remains: What techniques are available to the bio­
mechanics and motor control researcher for analysing 
time-series data (e.g. kinematic, kinetic, electro­
myographic)? Traditionally, much research in these 
disciplines has been concerned with the relative timing 
and magnitude of discrete kinematic and kinetic vari­
ables. For example, work on javelin throwing has shown 
that the peak speed of distal segments is higher than that 
of proximal segments, elite athletes achieve higher peak 
speeds of distal segments than novices, and 50% of the 
javelin’s final speed is generated during the 50 ms before 
release (Best et al.} 1993; Bartlett et al.} 1996; Morriss 
and Bartlett, 1996). However, since the generation of 
peak speeds in the javelin throw requires the transfer 
of momentum from the proximal to distal segments, 
it follows that coordination in either inter- or intra­
segments is of crucial importance to successful per­
formance. Coordination is the bringing together of the 
movement system components into proper relation with 
each other (see Turvey, 1990). Various qualitative and 
quantitative methods are used to analyse intra-segment 
(e.g. thigh with calf) and inter-segment (e.g. trunk with 
thigh) coordination.

For qualitative analysis, two methods involve the 
inspection and interpretation of position-time graphs 
and position-position graphs. With the former, the 
positions of pairs of segments are plotted as a function 
of time. Then, the researcher visually inspects the 
graph for signs of locking (i.e. a specific element of 
coordination with movement in the same or opposite 
direction, but not necessarily with equal magnitude) 
between the pairs of segments. Although the pair of 
segments to be plotted is based typically on intuition 
about which would be expected to be coordinated, this 
approach requires care as the coordination strategy is 
not always obvious (e.g. linearly related). An example 
of this approach is shown in Fig. 1, in which the lower 
and upper arm segment angles (calculated relative to 
the vertical axis) during an underarm throwing task 
are plotted as a function of time. It  can be seen that the 
movements of the lower and upper arm are locked 
throughout the entire duration of an underarm throwing 
task. Although potentially useful for showing the extent 
of locking (i.e. giving an indication of the amount of 
coordination) between pairs of joints, the position-time 
plot does not provide a suitable means of depicting the 
variability in this coordination across trials. This is par­
ticularly evident when considering the number of pairs 
of joints, the number of trials and the number of parti­
cipants who are typically analysed in an experiment.

The use of variable-variable plots (angle-angle plots, 
e.g. Vereijken et al.s 1992; velocity-position plots or 
phase-plane portraits, e.g. Schmidt and Lee, 1999,
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p a n t p e rfo rm in g  an  u n d e ra rm  th ro w in g  task (d a ta  fro m  A l-  
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p. 34) provides a solution to this problem of depicting 
the variability in this coordination across trials. For 
example, plotting the position of one segment as a 
function of the position of a second segment for several 
trials on the same figure enables a visual inspection 
of the amount of variability and the pattern of coordi­
nation to be assessed. An example is shown in Fig. 2, in
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which the lower arm angle is plotted against the upper 
arm angle for five trials by the same person performing 
an underarm throwing task. With this simple move­
ment, we can infer that the coordination strategy 
between the upper and lower arm is reflected by an 
essentially positive linear relationship. For each change 
in the lower arm angle, a similar change occurs in the 
direction and magnitude of the upper arm angle. In  
addition, we can see that the size and shape of the curve 
for each trial is relatively similar. This indicates that the 
lower and upper arm are coordinated such that they 
move in a similar direction and with a similar range 
of motion (i.e. small variability) across the five trials 
examined.

With a more complex coordinated movement, such 
as that of the hip and knee in running, a different 
pattern emerges. As can be seen in Fig. 3, the relation­
ship between the angles of the hip and knee is essentially 
non-linear. Beginning at heel-strike, the hip angle 
extends then hyper-extends, while the knee angle tends 
to extend only slightly (heel-strike to toe-off). This is 
then followed by a period of hyper-flexion and flexion 
of the hip and flexion of the knee (toe-ofF to knee 
minimum). While the hip continues to flex, the knee 
begins to extend (knee minimum to hip maximum). 
During the final phase, the knee continues to extend 
while the hip extends (hip maximum to heel strike). It  
can also be seen that the size and shape of the curve for 
each trial is similar, again indicating that the movements 
are coordinated in a similar way and with a similar range 
of motion across the three trials.

With qualitative analysis, as in the two examples 
above, one may discuss such vague concepts as the 
movements between pairs of joints being ‘tightly 
coupled’. However, it is possible to perform a quantita­
tive analysis on these data. To quantify the variability 
within a single variable history, several techniques

180 n
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F ig .  3 .  In tra - l im b  a n g le -an g le  d iag ram  o f  th e  h ip  an d  knee  

angles d u rin g  ru n n in g  over th re e  tria ls . In  th e  an ato m ica l 
s tand ing  p o s itio n , th e  h ip  is a t 0 °  an d  th e  knee is at 1 8 0 °. 

Values are positive fo r  h ip  fle x io n  an d  negative fo r  h ip  h y p e r- 
extension . T h e  raw  d a ta  fo r  each o f  th e  th re e  tria ls  are co n ta in ed  
in  A p p e n d ix  1.

are available as described in Table 6. In addition to 
assessing the variability of a single variable, intra- and 
inter-segment coordination can be assessed using a 
combination of two variables. For example, the ratio of 
hip and knee angles over a single displacement history 
could be used as the dependent variable in a coefficient

T a b le  6 . Statistics used in  th e  lite ra tu re  fo r  q u a n tify in g  v a ria b ility  o f  rep e a t tria ls  (fro m  

M u llin e a u x , 2 0 0 0 )

S ta tis tic 0 E q u a tio n 6 E x c e l fo rm u la '

s VS?. , ( * - * , ) 7 ( » - l ) =  S T D E V ( A 1 :C 1 )

R M S D ^ £ ? = i(x c -x ,- )7 n =  S T D E V P (A 1 :C 1 )

9 5 % C I
% C V
% R M S D

1.9  6s/Vn 
lOOs/x
lO O R M S D /V Z 'L  , (x c)7 «

=  1 .9  6 * S T D E V ( A 1  :C 1 ) / C O U N T ( A l  :C 1 )  A0 .5  

=  1 0 0 * S T D E V (A 1  :C 1 ) /A V E R A G E (A 1  :C 1 )
=  1 0 0 * S T D E V P (A 1 :C 1 ) /A V E R A G E (A 1  :C 1 )

“ Sample standard deviation (s); root mean-square difference (R M S D ); 95%  confidence intervals (9 5% C l);  
percentage coefficient o f variation (% C V ); percentage R M S D  (% R M S D ).
* M ean (x); variable fo ); sample or trial size («); criterion value (xc).
1 W here no criterion exists, the mean value o f the data is appropriate and the equations simplify to com­
binations of: r (S T D E V ); population standard deviation, a (S T D  E V P ); ic(AVERAGE); rz (C O U N T ). T h e  
formulae provided for Excel 97 (M icrosoft Corporation, Redmond, W A , U S A ) assume three trials w ith the 
data contained in cells A 1 ,B 1  and C l .
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of variation equation. When there are multiple trials, 
the variability can be quantified at key times (e.g. at 
the moment of toe-off or heel-strike) using the tech­
niques described in Table 6. Variability over the whole of 
several trials can be quantified for a single variable or the 
ratio of two variables across a normalized time interval 
using the same techniques. However, complex non­
linear human movements may require the use of poly­
nomial interpolation for the normalization procedure of 
the time to equal lengths over trials; an alternative is to 
analyse trials of equal time intervals (see Whitall and 
Caldwell, 1992).

All of the statistical techniques described in Table 6 
are similar and, subsequently, provide results that are 
predictably different from each other (Mullineaux, 
2000). For certain trial sizes, the magnitude of the 
variability is fixed for n <  3 (smallest to largest: RMSD, 
5, 95%CI), n = 3 (smallest to largest: RMSD, 95%CI, 
s) and « > 3 (smallest to largest: 95%Cl, RM SD, s). For 
normalized techniques, the root mean-square difference 
(RMSD) provides a smaller value for variability than 
percentage coefficients of variation (%CV) for all trial 
sizes. This predictable nature is useful for comparison of 
findings to previous literature on variability. Further­
more, as the trial size is included in the denominator in 
the equation of all these techniques, the quantification 
of variability decreases predictably for increases in trial 
size. A  table of these conversions for trial sizes ranging 
from 1 to 10 is provided by Mullineaux (2000); it is a 
useful resource for enabling variability between different 
studies to be compared. In  general, Mullineaux (2000) 
recommends that, to quantify variability for small n3 use

the root mean-square difference and use normalized 
techniques only when the means are similar. To illus­
trate the use of the statistical techniques described in 
Table 4, they have been applied to the data illustrated in 
Fig. 3 to provide the results shown in Table 7. Hence, 
as n = 3, the root mean-square difference provides the 
smallest measure of variability. In  interpreting the vari­
ability, for example, the root mean-square difference for 
the hip indicates that its movement is more variable 
at the key time of ‘min knee’ (4.11°) compared to at 
‘max hip’ (1.89°). However, as the mean scores are not 
similar, the % RMSD provides contrary results, indicat­
ing that the movement in the hip is less variable at ‘min 
knee’ (2.57%) than at ‘max hip’ (13.12%), which 
emphasizes that normalized techniques should be used 
with care.

An emerging quantitative analysis method involves 
the use of cross-correlations. Cross-correlations are 
based on the assumption of a linear relationship 
between the dependent variables (e.g. pairs of joints), 
but do not assume that these variables change in 
synchrony during the movement. Rather, through the 
introduction of time lags, ranging from plus or minus 
one sample less than the number of data points 
(although Amblard et al.3 1994, recommend up to ±  7 
to protect against type I  errors, as a proportion of 
the correlation coefficient decreases with an increase 
in the number of lags), we can find high correlations 
between two variables in which there is a constant lag 
between them. For this reason, it has been suggested 
that cross-correlations are particularly suited to human 
movement, in which there are often time lags between

T a b le  7 . Q u a n tific a tio n  o f  v a ria b ility  in  h ip  and knee angles fo r  ru n n in g  over th re e  tria ls

K e y  t im e 0 V ariab le  6
M e a n

(° )

V a r ia b ility

s O

R M S D

o
9 5 %  C l

n
% C V
(% )

% R M S D
(% )

H e e l-s tr ik e H i p : knee 0 .2 5 0 .0 3 0 .0 2 0 .0 3 1 0 .7 8 8 .8 1
H ip 3 4 .3 3 3 .7 9 3 .0 9 4 .2 8 1 1 .0 3 9 .0 0
K n e e 1 3 6 .3 3 0 .5 8 0 .4 7 0 .6 5 0 .4 2 0 .3 5

T o e -o f f H i p : knee - 0 . 1 8 0 .0 3 0 .0 2 0 .0 3 - 1 6 .4 8 - 1 3 . 4 6
H ip - 2 8 .6 7 5 .0 3 4 .1 1 5 .7 0 - 1 7 .5 6 - 1 4 . 3 4
K n e e 1 6 1 .6 7 2 .3 1 1 .8 9 2 .6 1 1 .4 3 1 .1 7

M a x . h ip H i p : knee 1 .0 0 0 .0 6 0 .0 5 0 .0 7 6 .4 0 5 .2 2
H ip 7 3 .3 3 2 .3 1 1 .8 9 2 .6 1 3 .1 5 2 .5 7
K n e e 7 3 .6 7 2 .3 1 1 .8 9 2 .6 1 3 .1 3 2 .5 6

M in .  knee H i p : knee 0 .9 6 0 .1 3 0 .1 0 0 .1 4 1 3 .2 5 1 0 .8 2
H ip 3 1 .3 3 5 .0 3 4 .1 1 5 .7 0 1 6 .0 6 1 3 .1 2
K n e e 3 2 .6 7 1 .5 3 1 .2 5 1 .7 3 4 .6 8 3 .8 2

“ Raw data for each key time are highlighted in bo ld  in Appendix 1. 
1 N o  units for h ip : knee ratios.
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F ig .  4 . C ro ss-co rre la tio n  fu n c tio n  b e tw e e n  th e  lo w er and  
u p p e r a rm  angles (so lid  lin e ) an d  th e  h ip  an d  knee angles 

(dashed lin e ) . T h e  data w ere  sam p led  at 5 0  H z  an d  th e  tim e  

lags co rresp o n d in g  to  th e  p e ak  cross-correla tions are in d i­
cated . See captions to  F igs 1 an d  3 fo r d e fin itio n s  o f  angles. 
T h e  raw  h ip  an d  knee angles are tr ia l 3  p res en ted  in  A p p e n d ix  

1, and th e  cross-co rre la tio n  values are p ro v id e d  in  A p p e n d ix  2 .

coordinated segments (Amblard et al., 1994), to identify 
the time lag at which the peak correlation occurs. An 
example of a cross-correlation function computed on 
the angular displacement data of the lower and upper 
arm in Fig. 1 is shown in Fig. 4. I t  can be seen that there 
are high correlations across the entire data set because 
of the linear trend between the variables (Fig. 1), with a 
positive peak of 0.97 at a zero time lag. This indicates 
that the two segments do in fact move in synchrony and 
in the same direction. A  negative peak would indicate 
that the variables are inversely linearly related (i.e. as 
one increases, the other would decrease).

The cross-correlation between the hip and knee angle 
data (shown in Fig. 3) for one trial is also shown in 
Fig. 4. In  this instance, a negative lag indicates that 
the knee moves after the hip, whereas a positive lag 
would indicate that the knee moves before the hip. 
As there is a high positive peak (r=  0.83) at the eighth 
positive lag (at a sampling frequency of 50 Hz, this 
equates to + 0.16 s), this suggests that the knee is linearly 
coordinated with the hip when the knee moves before 
the hip by 0.16 s.

The results from a cross-correlation can be subjected 
to statistical analysis. A simple analysis has been 
proposed by Li and Caldwell (1999), where the phase 
shifting is significant if the peak correlation is greater 
than the 95% confidence intervals for the correlation 
at zero lag. However, Grimm (1993) proposed that, 
before statistically analysing the data obtained from the 
whole cross-correlation function, we may first need to 
compute the Z-transform, as we would not expect the 
cross-correlation coefficients to be normally distributed. 
We can then test if any of the correlation coefficients

across the range of lags is different from zero lag 
(Amblard et al., 1994) using coefficient data averaged 
over individuals or trials in a repeated-measures 
ANOVA. Because the probability of type I  errors 
increases with the number of lags, supportingthe recom­
mendation of time lags up to ± 7 (Amblard et al., 1994), 
in practice it is more common to establish if there are 
any differences in the correlation coefficients at zero lag 
for a given pair of variables (see, for example, Vereijken 
era/., 1992; Whiting and Vereijken, 1993). Alternatively, 
testing for differences in the cross-correlation co­
efficients between the peaks or between the time lags for 
the peaks could be used to assess differences. Although 
these approaches may be appropriate for examining 
the effects of an experimental manipulation on the 
coordination at this specific lag, caution should be taken 
when suggesting that the movements of joint pairs 
become less correlated. It  could quite simply be the case 
that the correlation at the specific time lag changes while 
the actual peak correlation value remains unaffected, 
although it occurs at a different time lag.

Recently, however, some concern has been expressed 
about the use of cross-correlations with human move­
ment data because of the assumption of linearity in 
correlation analysis (Amblard eta l., 1994; Sidaway etal., 
1995). In a cross-correlation function, the time lag of a 
peak is an average estimate over the whole of the period 
analysed and, therefore, relies on the relationship 
between the two variables being linear throughout the 
range of data. When a significantly large part of the time 
interval contains a linear relationship between two vari­
ables, it follows that high cross-correlation coefficients 
will be obtained, but it is not clear how much of a given 
time interval between two variables needs to be linearly 
related.

To confirm that the linearity assumption is met, 
which is necessary to improve the validity of the analysis, 
the relationship between the two variables when the 
time lag is included on one variable can be qualitatively 
assessed by plotting the data against each other in a 
scatterplot. For example, in Fig. 5, the knee angle data 
are plotted against the hip angle data without any lag 
and against the hip angle data with the +0.16 s lag 
included.lt is clear that there is a linear trend between 
the data when the time lag is included, but still the rela­
tionship is evidently more complicated than a simple 
linear relationship. This results in a lower peak cross­
correlation for the hip and knee angles (r=  0.827) than 
for the lower and upper arm angles data illustrated in 
Fig. 2 (r = 0.973). I t  could, therefore, be interpreted that 
greater coordination existed for the lower and upper 
arm angles, simply because these more linearly related 
data more closely meet the linearity assumption of 
the cross-correlation. When visually inspecting the hip- 
knee angle-angle plots for several trials (see Fig. 3), it is
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F i g .  5. In tra - lim b  a n g le -an g le  d iag ram  o f  th e  h ip  and knee  

angles d u rin g  ru n n in g  over th ree  tria ls  w ith  no  lag  (so lid  lin e ) 
an d  a lag o f  0 .1 6  s in  th e  h ip  angle (d ashed lin e ) . See ca p tio n  to  

F ig . 3 fo r  de fin itio n s  o f  angles. T h e  ra w  data w ith  no  lag  is 
co n ta in e d  in  A p p e n d ix  1 (tr ia l 3 ) .

apparent, however, that the non-linear relationship that 
exists between the two variables is consistent. Hence, it 
would be more accurate to assume that the knee and hip 
movements are coordinated, but in a non-linear rela­
tionship that is performed consistently across trials that 
cross-correlations are unable to detect. For non-linear 
data, a transformation could be applied that linearizes 
the data (e.g. log-log transformations; see Snedecor 
and Cochran, 1989, for further details on types of 
transformations) and then cross-correlations could be 
applied. I f  the cross-correlations are small, then it is 
possible that the transformation is still non-linear and 
a more complex relationship may exist between the 
variables.

The limitation of cross-correlation analysis is particu­
larly relevant when comparing the changes in co­
ordination tendencies that occur with practice. Sidaway 
et al. (1995) examined the differences in coordination 
between the angles of the left and right knee on a ski- 
simulator task with experts and novices. Novices with 3 
days of practice exhibited a somewhat negative linear 
relationship between the left and right knee angles that 
yielded a cross-correlation coefficient o f-0 .83 . Experts 
exhibited a non-linear relationship between the left

and right knee angles that yielded a cross-correlation 
coefficient of -0 .22 . Based on the cross-correlation 
coefficients alone, it would be tempting to conclude 
that less coordination existed between the left and right 
knees in experts. However, observation of the angle- 
angle plots showed that the non-linear relationship was 
performed with high consistency across trials and hence 
the angles were highly coordinated. The proposal by 
Sidaway et al. (1995) to use the normalized root mean- 
square (NoRMS) error may provide an alternative 
method to examine the consistency in linear and non­
linear patterns of coordination (see equation 4):

N o r m s  =

100 Z j = 1 \E,-= i(xA -  xAiy  + (xB -  xBi) 2ln /k R  (4)

where A  and B  denote the two variables, R  is the 
resultant excursion as defined in Appendix 1, and the 
remaining notation is described in Table 6. An example 
of the use of NoRM S is illustrated in Appendix 1.

In general, the implication is that, in the case of 
human movement in which the relationship between 
the two variables is non-linear in a significant portion of 
the time interval, the use of cross-correlation analysis 
might need to be extended to involve some form of 
transformation.

In this section, we have discussed some of the 
advantages and disadvantages of the qualitative and 
quantitative methods of analysing intra-segment and 
inter-segment coordination data. We have shown that 
the suitability of a particular method will depend on the 
relationship between the variables analysed (i.e. linear 
or non-linear) and the type of coordination between 
the variables being assessed (i.e. continuously over the 
duration of the movement or discretely at key times 
during the movement). In using cross-correlations 
to assess coordination, we recommend that a scatter- 
plot of the data with the identified time lag is inspected 
for meeting the linearity assumption and, where this 
is violated, an appropriate linearity transformation 
may need to be applied first. To quantify variability, 
Mullineaux (2000) has recommended the root mean- 
square difference for small trial sizes and normalized 
techniques only when the means of different variables 
are similar.

Reporting research

Many issues have to be addressed if  research is to be 
reported well. A  good research report should be intelli­
gible to its reader, leaving that person to concentrate on 
the research itself and not the way it is presented. Most 
authorities on good writing style, and most scientific 
journal editors, would agree that many scientific papers
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submitted for review are poorly written. The use of 
incorrect punctuation and syntax, too much jargon 
and overuse of abbreviations can make research papers 
difficult to read. Any writer of a scientific report is 
recommended to read a good text on scientific writing, 
such as Palmer (1993), O ’Connor (1991) or Day 
(1995). It is neither the intention of this section to enter 
into a diatribe about poor scientific writing, nor to cover 
the reporting of empirical biomechanical research, 
which are dealt with in the various chapters of Bartlett 
(1997). Instead, in this section, we briefly focus on the 
reporting of issues that have been highlighted in this 
review.

The pressure on space in scientific journals does not 
permit full details to be presented in any paper. Suf­
ficient details should be provided to enable the reader to 
understand the theoretical underpinningof the research 
question, use the findings to support future research, 
replicate the study and interpret the findings. We illus­
trated earlier examples where data were used to support 
a theory (e.g. Scott et al.3 1997) or to develop a theory 
(e.g. Blanksby et al., 1998). However, in replicating a 
study, Table 3 illustrated that the criteria for selecting 
(11.5%), or methods for treating (19.2%), trials were 
not clear in a selection of biomechanics papers. In  inter­
preting findings, providing details on the assessment 
of the assumptions underpinning the statistical tests 
is necessary, otherwise doubt will be cast on the validity 
of the findings.

A  judicious use of reference to standard procedures 
and statistical analyses provides one solution to the 
pressure on space. The writer might well consider that 
researchers in biomechanics and motor control are 
normally well-versed in empirical protocols (a strength 
of the disciplines) but not in the selection and use of the 
best statistical analysis (a weakness of the disciplines). 
Rather more emphasis might, therefore, be placed on 
the latter than the former, for which accurate refer­
encing to standard sources might be adequate. This 
applies in particular when the researcher is using an 
analysis tool that is relatively new to the discipline, for 
example cross-correlations of time series (see section on 
‘Trend analysis’). Clearly, accurate referencing is very 
important to the scientific rigour and quality of the final 
report (e.g. Morrow, 1991; Stull et al.3 1991).

Sufficient information needs to be provided on the 
conduct of the research that enables the reader to assess 
the validity of the data provided. Providing information 
on methods to control for experimental errors (see 
Table 1) and details on the sample characteristics 
and selection are important. In addition, clarifying 
the timing, number and sequence of measurements, 
including details on trial size, is important for other 
issues such as statistical power (see section on ‘Trial 
sizes’).

The choice of statistical test should be based on 
whether it will provide any valid and meaningful results 
that can be used to support the interpretation of the 
data. Descriptive statistics are recommended in most 
cases, as they provide simple data of practical value. 
When using statistical significance testing, there are 
some issues regarding the validity of such tests. Never­
theless, their use will continue and we suggest that when 
statistical significance tests provide useful information, 
then the researcher should justify the level of statistical 
significance (a), the probability (P) for each comparison 
made and the power of the tests used (see Cohen, 
1988, for methods of calculating power). The use of 
effect size may assist in this issue; hence in biomechanics 
and motor control research the use of these are recom­
mended either to supplement or supplant significance 
tests.

When using any statistical test, it is advisable that the 
justification for the chosen methods of data analysis is 
fully reported. The writer should give due attention to 
the appropriateness or otherwise of any statistical tests 
used, and whether the data satisfied the assumptions of 
the particular tests. In  many scientific papers, the 
assumptions about the data underpinning parametric 
statistical tests are often not satisfied or corrected for. 
Many standard statistical texts now provide simple 
explanations of the underlying assumptions of various 
tests and the consequences of their violation (see, for 
example, Howell, 1997). Many statistical packages pro­
vide checks on and methods to treat violations of the 
assumptions of particular tests, but generally neither the 
checks nor the adjustments are automatically carried 
out by these software packages. When using cross- 
correlations, we recommend that checks on the testing 
of the linearity assumption are reported.

Variability can be inherent (i.e. inability to exactly 
replicate a movement) or functional (i.e. used to control 
the outcome of movements). When interpreting this 
variability, it is important that the researcher attends to 
all of the issues that affect the accuracy of the measure­
ments made, and provides estimates of the measure­
ment ‘errors’ or uncertainties. How these uncertainty 
estimates were arrived at should be clearly stated and 
justified. The propagation of these uncertainties in 
all calculations of important variables or parameter 
values should be assessed (see, for example, Challis, 
1997). Reliability and objectivity checks should also be 
reported (see section on ‘Trial sizes’), together with 
all calibration procedures and any other attempts to 
ascertain the validity of any measurements.

Presenting information in the most appropriate for­
mat is also crucial to good report writing. Presenting 
data as either a chart, if  a visual inspection is required, 
or a table, if  exact values are important, is appropriate, 
but duplication should be avoided. There are many
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examples of incorrectly or poorly presented data. 
For example, presenting dichotomous relationships by 
means of line graphs -  which imply a continuous 
relationship -  rather than, correctly, bar charts, is quite 
common. Also, three-dimensional graphical representa­
tions of data are now easily accessed through most com­
puter graphics packages, but these can cause confusion 
rather than keeping the presentation simple, which is 
recommended (see Day, 1995, for further examples).

Generally, statistical analyses should not be spuriously 
used to tempt the researcher into ‘stretching’ the 
research, especially the discussion of the results and 
their meaning. Instead, the report should concentrate 
on the research question that was addressed, the under­
lying theory, previous related research, the importance 
of the results of the new study -  and how they contribute 
to existing knowledge -  and a frank assessment of the 
limitations of the study, including the data analyses 
used.

Conclusions

The research methods and statistical techniques avail­
able to the researcher are continually on the increase. 
The aim of this review has been to highlight some 
pertinent and contemporary issues associated with 
planning, conducting, analysing and reporting bio­
mechanics and motor control research. In  planning 
research, the researcher should first define a research 
question, the answer to which would be expected to 
contribute to knowledge. Secondly, the workability of 
the methods should be considered as to whether the 
results could be obtained in a format suitable to answer 
the research question using the best methods available. 
In  conducting research, inter- and intra-individual vari­
ability can affect the results differently. We recommend 
including, reporting or discussing some assessment of 
variability and including more than one trial where 
possible. In analysing data, effect size statistics can pro­
vide informative and simple analyses of results, and may 
be beneficial in supporting P-values that alone can be 
misleading. In  analysing trends, cross-correlations 
provide a means to test intra- and inter-segment co­
ordination. Reporting research should be in an accurate 
and comprehensive style, demonstrating the theoretical 
foundations and including an assessment of the limita­
tions of the study and analyses. Research methods 
and statistics adopted in biomechanics and motor con­
trol are unlikely to change much in the near future, 
although many of the issues touched upon are develop­
ing. Carefully checking or correcting for violations of 
underpinning assumptions in statistics and reporting 
the effect of these are useful for improving the quality of 
future research.
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Appendix 1

H ip  an d  knee angles d a ta  fo r  ru n n in g  over th re e  tria ls  an d  c a lcu la tio n  o f  N o R M S  (S id aw ay et al.3 1 9 9 5 )  us ing  E xce l 9 7  (M ic ro s o ft  

C o rp o ra tio n , R e d m o n d , W A , U S A ) . U n its  in  degrees unless in d ic a te d ; N o R M S  =  A V E R A G E (J 2 9  :L 2 9 ) /L 3 2 *  1 0 0  =  3 .7 %

A B C D E F G H I J K L

1 T im e  (s) T r ia l  1 T r ia l  2 T r ia l  3 M e a n  trace R e s u lta n t
2 H ip K n e e H ip K n e e H ip K n e e H ip K n e e T r ia l  1 T r ia l  2

3 0 .0 0 4 0 3 5 4 2 3 5 4 2 3 5 4 1 .3 3 5 .0 1 .8 0 .4 0 .4

4 0 .0 2 5 6 4 3 5 5 4 4 5 8 4 4 5 6 .3 4 3 .7 0 .6 1 .9 2 .9

5 0 .0 4 6 9 5 5 6 6 5 8 6 8 5 8 6 7 .7 5 7 .0 5 .8 3 .8 1.1

6 0 .0 6 7 6 71 7 2 7 5 7 2 7 5 7 3 .3 7 3 .7 1 4 .2 3 .6 3 .6

7 0 .0 8 7 6 9 0 7 2 9 3 6 9 9 3 7 2 .3 9 2 .0 1 7 .4 1.1 12 .1

8 0 .1 0 6 9 10 8 6 5 1 1 0 6 0 1 0 9 6 4 .7 1 0 9 .0 1 9 .8 1.1 2 1 .8

9 0 .1 2 5 9 1 2 2 5 6 1 2 2 5 0 1 2 2 5 5 .0 1 2 2 .0 1 6 .0 1 .0 2 5 .0
10 0 .1 4 4 8 131 4 6 1 3 0 4 0 131 4 4 .7 1 3 0 .7 1 1 .2 2 .2 2 1 .9

11 0 .1 6 3 7 137 3 6 136 3 0 136 3 4 .3 1 3 6 .3 7 .6 2 .9 1 8 .9

12 0 .1 8 2 7 141 2 6 1 3 8 2 0 1 3 8 2 4 .3 1 3 9 .0 11 .1 3 .8 1 9 .8

13 0 .2 0 18 141 18 1 3 7 10 1 4 0 1 5 .3 1 3 9 .3 9 .9 1 2 .6 2 8 .9
14 0 .2 2 10 1 4 0 10 1 3 6 - 2 1 4 5 6 .0 1 4 0 .3 16 .1 3 4 .8 8 5 .8

15 0 .2 4 1 14 3 - 2 1 4 2 - 1 5 1 5 4 - 5 . 3 1 4 6 .3 5 1 .2 2 9 .9 1 5 2 .2

16 0 .2 6 - 1 2 151 - 1 6 1 5 3 - 2 6 1 6 3 - 1 8 . 0 1 5 5 .7 5 7 .8 11 .1 1 1 7 .8

17 0 .2 8 - 2 4 159 - 2 8 163 - 3 4 163 - 2 8 . 7 1 6 1 .7 2 8 .9 2 .2 3 0 .2

18 0 .3 0 - 3 1 15 7 - 3 5 1 6 0 - 3 7 1 5 0 - 3 4 .3 1 5 5 .7 1 2 .9 1 9 .2 3 9 .2

19 0 .3 2 - 3 1 1 4 4 - 3 5 1 4 3 - 3 3 1 2 7 - 3 3 . 0 1 3 8 .0 4 0 .0 2 9 .0 1 2 1 .0
20 0 .3 4 - 2 8 1 2 2 - 3 0 1 1 8 - 2 6 101 - 2 8 . 0 1 1 3 .7 6 9 .4 2 2 .8 1 6 4 .4

21 0 .3 6 - 2 3 9 9 - 2 4 9 3 - 1 9 7 8 - 2 2 . 0 9 0 .0 8 2 .0 1 3 .0 1 5 3 .0
22 0 .3 8 - 1 8 7 9 - 1 8 7 3 - 1 2 5 9 - 1 6 . 0 7 0 .3 7 9 .1 11 .1 1 4 4 .4

23 0 .4 0 - 1 0 61 - 1 0 5 8 - 3 4 5 - 7 . 7 5 4 .7 4 5 .6 1 6 .6 1 1 5 .2

24 0 .4 2 1 4 6 0 4 6 8 3 7 3 .0 4 3 .0 1 3 .0 1 8 .0 6 1 .0
25 0 .4 4 15 3 3 14 3 6 21 3 4 1 6 .7 3 4 .3 4 .6 9 .9 1 8 .9
26 0 .4 6 21 3 2 2 0 3 5 2 5 3 4 2 2 .0 3 3 .7 3 .8 5 .8 9 .1
27 0 .4 8 2 6 31 2 5 3 4 3 2 3 4 2 7 .7 3 3 .0 6 .8 8.1 1 9 .8

28 0 .5 0 3 5 3 3 3 6 3 3 4 0 3 5 3 7 .0 3 3 .7 4 .4 1 .4 1 0 .8
29 V M e a n 4 .9 3 .2 7 .3
3 0 M a x 7 6 15 9 7 2 1 6 3 7 2 1 6 3 7 3 .3 1 6 1 .7 8 2 .0 3 4 .8 1 6 4 .4

31 M in - 3 1 31 - 3 5 3 3 - 3 7 3 4 - 3 4 . 3 3 3 .0 0 .6 0 .4 0 .4
32 1 4 0 .5

Mean trace is the average of the three trials’ hip or knee angle coordinates at each time instance (e.g. H 3  = AVERAGE(B3,D3,F3); 
13 = AVERAGE(C3,E3,G3)).

Resultant is the absolute distance between each trial’s hip and knee coordinates and the mean trace (e.g. J3 = (B3 -  £H 3)A2 + (C3 -  $ I3 )A2; 
K3 = (D 3 -  £H 3)A2 + (E3 -  $ I3 )A2; L3 = (F3 -  $H 3)A2 + (G3 -  £ I3 )A2).

Rows 29 to 31 provide, respectively, the square root o f the mean (^Mean), maximum (Max) and minimum (M in) scores of the data located in 
rows 3-28 for each column presented.

L32 = SQRT((H17 -  H 27)A2 + ( I1 7 - I2 7 ) A2).This is R, the ‘resultant excursion of the mean angle-angle curve over the entire cycle’ (Sidaway et 
al., 1995, p. 188), esdmated using the hip and knee data corresponding to the maximum and minimum values at either the hip or knee, depending 
on which had the greatest range. The data for the maximum and minimum values for the hip were used, as the range for the hip was larger (161.8 
to 33.0 = 128.8) than for the knee (73.4 to -34 .3  = 107.7), hence L32 = SQRT((161.8 -  33.0)A2 + (-29 .0  -  27.7)A2).

Bold numbers indicate key times: maximum hip (0.06 s); heel-strike (0.16 s); toe-off (0.28 s); minimum knee (0.48 s for trials 1 and 3 and 0.50 s 
for trial 2).
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Appendix 2

C ro ss -co rre la tio n  d a ta  fo r F ig . 4

T im e  lag L o w e r /u p p e r  a rm  (9 5 % C I) H ip /k n e e  ( 9 5 % C I ) *

- 0 . 2 0 0 .5 0 4  (0 .2 4 7 ) - 0 .0 3 5  (0 .4 9 0 )
- 0 . 1 8 0 .5 6 7  (0 .2 4 5 ) - 0 .1 5 4  (0 .4 7 6 )
- 0 . 1 6 0 .6 2 7  (0 .2 4 3 ) - 0 .2 8 3  (0 .4 6 3 )

- 0 . 1 4 0 .6 8 4 ( 0 .2 4 1 ) - 0 .4 1 2  (0 .4 4 9 )
- 0 . 1 2 0 .7 3 8  (0 .2 3 9 ) - 0 .5 3 0  (0 .4 3 9 )
- 0 . 1 0 0 .7 8 8  (0 .2 3 7 ) - 0 .6 2 8  (0 .4 2 7 )

- 0 . 0 8 0 .8 3 5  (0 .2 3 5 ) - 0 .6 9 5  (0 .4 1 7 )
- 0 . 0 6 0 .8 7 7  (0 .2 3 5 ) - 0 .7 1 8  (0 .4 1 0 )
- 0 . 0 4 0 .9 1 4  (0 .2 3 3 ) - 0 .6 8 5  (0 .4 0 0 )
- 0 . 0 2 0 .9 4 6  (0 .2 3 1 ) - 0 .5 8 8  (0 .3 9 2 )

0 0 .9 7 3  (0 .2 2 9 ) - 0 .4 2 6  (0 .3 8 4 )
0 .0 2 0 .9 5 9  (0 .2 3 1 ) - 0 .1 6 8  (0 .3 9 2 )
0 .0 4 0 .9 3 9  (0 .2 3 3 ) 0 .0 8 7  (0 .4 0 0 )
0 .0 6 0 .9 1 3  (0 .2 3 5 ) 0 .3 2 2  (0 .4 1 0 )
0 .0 8 0 .8 8 2  (0 .2 3 5 ) 0 .5 2 7  (0 .4 1 7 )
0 .1 0 0 .8 4 6  (0 .2 3 7 ) 0 .6 7 9  (0 .4 2 7 )
0 .1 2 0 .8 0 5  (0 .2 3 9 ) 0 .7 7 8  (0 .4 3 9 )
0 .1 4 0 .7 5 9  (0 .2 4 1 ) 0 .8 2 5  (0 .4 4 9 )
0 .1 6 0 .7 1 0  (0 .2 4 3 ) 0 .8 2 7  (0 .4 6 3 )
0 .1 8 0 .6 5 7  (0 .2 4 5 ) 0 .7 8 3  (0 .4 7 6 )
0 .2 0 0 .6 0 2  (0 .2 4 7 ) 0 .6 9 5  (0 .4 9 0 )

* Calculated for the Tria l 3 data presented in Appendix 1.
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Editorial

New horizons in research methods

This special issue was conceived in the knowledge that 
the range and variety of methods used to conduct 
sport science research are continuously developing. As 
such, there is a need to identify and report regularly 
contemporary trends, as well as good practice, in 
research methods adopted in Biomechanics,Physiology, 
Psychology and Sports Performance. With this aim 
in mind, the Journal of Sports Sciences invited leading 
sport scientists in the U K , who specialize in research 
methods, to write articles identifying the key issues, 
themes and trends associated with research within their 
particular fields. Consequently, this issue contains four 
papers to inform readers of the most important and rele­
vant issues in research methods. However, readers are 
strongly advised not to read only the paper most closely 
associated with their own specialist area of research, but 
to read all four papers in this special issue, since some of 
the methods and topics discussed are common.

The paper by Mullineaux and co-workers highlights 
the pertinent and contemporary issues associated with 
the planning, conducting, analysing and reporting of 
research in biomechanics and motor control. The 
importance of planning, by defining a research question 
expected to contribute to knowledge, is emphasized. 
The authors go on to discuss the importance of 
reporting inter- and intra-individual variability, together 
with the advice to include the results from more than 
one trial wherever possible. In  describing the results of 
biomechanics and motor control research, the authors 
recommend reporting effect size statistics as well as P- 
values, which, when reported alone, can be misleading. 
When analysing trends, the authors recommend using 
cross-correlations as a means to test intra- and inter­
segment coordination. The authors also recommend 
the careful checking and, if  necessary, correcting of 
violations of the underpinningassumptionsin statistical 
analyses, a theme echoed in a recent editorial (Nevill, 
2000); advice likely to improve and advance the 
future quality of research in biomechanics and motor 
control.

The paper on research methods in physiology of 
exercise and kinanthropometry by Winter and co- 
workers emphasizes the importance of well-designed 
studies and appropriately analysed results. The authors 
acknowledge that, with the recent advances in personal

computing and the availability of statistical soft­
ware, increased opportunities to investigate data with 
increasing sophistication are now available. At the 
same time, the ease with which such analyses can be 
performed can mask underlying philosophical and 
epistemological shortcomings. Winter et al. examine 
in detail the use of four techniques that are especially 
relevant to physiological studies: bivariate correlation 
and linear and non-linear regression; multiple regres­
sion; repeated-measures analysis of variance; and multi­
level modelling. The authors stress the importance of 
adhering to underlying statistical assumptions and ways 
to accommodate violations when these assumptions are 
not met, which is an important and re-occurring theme 
that appears in all four papers in this issue.

The wide-ranging paper on aspects of research 
methods in sport and exercise psychology by Biddle and 
co-workers is organized around the major themes of 
quantitative and qualitative research. The authors high­
light areas that can be problematic or controversial 
(e.g. stepwise statistical procedures), underused (e.g. 
discriminant analysis), increasingly used (e.g. meta­
analysis, structural equation modelling, qualitative 
content analysis) and emergent (e.g. realist tales of 
writing). Perspectives range from the technical and 
speculative to the controversial and critical. Biddle et al. 
deliberately avoid providing a ‘cookbook’ approach to 
research methods, but provide enough material to help 
researchers appreciate the diversity of potential methods 
and to adopt a more critical perspective in their own 
research consumption and production. The section 
dealing with qualitative research methods is particularly 
welcome, an emergent research method that the Journal 
of Sports Sciences has adopted with the recent publica­
tion of the paper by Roberts et al. (2001).

Adopting a similar approach to that of Biddle et a l., 
the paper on research methods in sports performance 
by Atkinson and Nevill addresses issues relevant to the 
design of research in this area, rather than providing 
an authoritative ‘cookbook’ of methods. The authors 
communicate some possible solutions to the general 
problem of how to maintain both internal and external 
validity in applied sport performance research. The 
authors argue that some sport performance research has 
been overly concerned with physiological predictors 
of sport performance, at the ejqpense of not providing 
a valid and reliable description of the exact nature of
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the sport performance task in question. Adopting 
competitive sport performances as dependent variables, 
the authors illustrate how the influence of certain 
explanatory factors can be identified using linear or 
logistic regression. They stress the importance of check­
ing the assumptions of any statistical tests, in particular 
those associated with repeated-measures analysis of 
variance. Indeed, when these assumptions are found to 
be questionable, the authors recommend a little-used 
and simpler technique known as ‘analysis of summary 
statistics’. Other experimental designs are considered, 
including the use of matched-pairs subject designs 
and their value when designing experiments such as 
training studies (intervention and control). Finally, the 
authors promote the use of confidence intervals to help 
researchers make statements about the probability of 
the population difference in performance exceeding the 
value designated as being worthwhile or not.

The four articles contained in this ‘Research 
Methods’ issue were not designed to provide a com­
prehensive list of all methods used in sport and exercise 
science research. The main objective is to provide the 
readership of the Journal of Sports Sciences with an

insight into the way research methods are evolving and 
developingin our main disciplines.Hopefully, the topics 
discussed in this issue will at least provide our readers 
with some ‘food for thought’ and possibly provoke some 
researchers into novel and, as yet, uncharted research 
paradigms!
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