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“All things are poison and nothing is without poison; only the dose 

permits something not to be poisonous.”

Paracelsus (1493-1541)



Abstract

It has been estimated that, at any one time, more than one million people in the 
U.K. are taking the anticoagulant drug warfarin, for the treatment or prevention 
of venous thromboembolism. The incidence of life threatening haemorrhage, 
due to overdose, is approximately two per one hundred patient years. It is well 
known that there is great inter-individual variability in reaching and maintaining 
a therapeutic level of oral anticoagulants, in part, due to the combined effect of 
gender, age, body size and drug interactions.

In recent years, single nucleotide polymorphisms (SNPs) have been identified, 
which significantly reduce the amount of warfarin required for an individual to 
reach a therapeutic level. Consequently, the optimum dose of warfarin can be 
predicted in a higher percentage of patients using an algorithm, which includes 
pharmacogenomic information rather than one with clinical and demographic 
data alone.

The aim of this study was to create two rigorous, composite algorithms, one 
clinical and one pharmacogenetic, which combined as many influencing factors 
as possible, in an effort to improve the predictability of warfarin dosing beyond 
that of other published studies to date. The study was carried out using three 
groups of subjects, after obtaining ethical committee approval and informed 
consent. Group 1 subjects (n=12) were healthy, non-warfarin treated laboratory 
staff, whose DNA was used to optimise the DNA extraction procedure. Group 2 
subjects (n=207) consisted of warfarin patients, who had had a stable 
therapeutic International Normalised Ratio (INR) for at least two months. A 
comprehensive list of clinical and demographic data was obtained from each 
patient, as well as DNA samples for SNP analysis of the VKORC1, CYP2C9 
and CYP4F2 genes. Group 3 subjects (n=20) comprised of pre-warfarinised 
patients who provided the same data as in group 2. In addition, venous blood 
samples were obtained for the measurement of the baseline levels of the 
vitamin K dependent coagulation factors and albumin. The stable warfarin dose 
for each of the group 3 patients was obtained retrospectively, after several 
weeks of warfarin therapy.

The two algorithms were then constructed using the data from a random 
selection of group 2 patients (n=160). These were then used to predict the 
warfarin dose of the remaining patients in the group (n=47). By plotting the 
predicted dose against the actual stable dose, the percentage predictability of 
the new algorithms was calculated. In addition, the predictability of eleven 
previously published algorithms, eight pharmacogenetic and three clinical, was 
calculated using the same 47 patients. The clinical algorithm from this study 
showed the lowest predictability (R2=0.188) when compared to the three 
published algorithms (R2=0.203-0.268). However, the pharmacogenetic 
algorithm was able to account for a higher proportion of the warfarin dose 
(R2=0.553) than any of the other eight published algorithms (R2=0.383-0.525).

In the group 3 patients, no relationship was demonstrated between the warfarin 
dose and either the albumin levels or the baseline levels of the vitamin K- 
dependent coagulation factors, with the exception of factor IX, which showed a 
negative correlation.
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Chapter 1

1.1 Introduction

It is estimated that between 500,000 and 1 million people in the United Kingdom 

are currently being prescribed oral anticoagulant therapy (OAT) and of these 

warfarin is the main drug of choice among clinicians at the present time in the 

treatment of venous thromboembolism (VTE) (Greaves, 2005; Baglin et a/, 

2006).

Despite having few side effects, the commonest complication by far is the risk of 

haemorrhage, due to over-anticoagulation and which, if severe enough, can be 

life threatening. The rate of these occurrences is estimated to be in the order of 

2 per 100 patient years, with minor bleeding being more common. Conversely, 

under-anticoagulation may lead to the development of thrombosis or 

propagation of an existing thrombus, either of which may also be life threatening 

(Palareti et al, 1996). There are several causes for such serious adverse 

events; numerous factors are responsible for either potentiating or attenuating 

the pharmacological effects of OAT. The therapeutic range between over- and 

under-anticoagulation is narrow and compliance can be problematic, especially 

in elderly patients. Consequently, it has been estimated that patients are only 

within the target range between 50-70% of the time, even under the best 

available management (Greaves, 2005).

In order to fully understand the reasons behind the design and implementation 

of this study, the thesis will begin with an overview of the haemostatic 

mechanism and the pathophysiology of thromboembolism. After this, there will 

be a detailed review of warfarin, firstly through its history, pharmacology and 

dose monitoring, followed by a comprehensive evaluation of the clinical, 

demographic and genetic factors that affect OAT. Finally, the aims and 

objectives of this study will be discussed, in order to explain the design and 

methodology used in the ultimate development of one clinical and one 

pharmacogenetic algorithm for the prediction of the warfarin dose in patients 

prior to the commencement of treatment.
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1.2 The haemostatic mechanism

The coagulation cascade and platelets are vital mechanisms for the prevention 

of haemorrhage. Injury to the blood vessel endothelium results in the exposure 

of extravascular structures, with the consequent activation of platelets and the 

coagulation pathway. This ultimately forms a stable thrombus, consisting mainly 

of an insoluble fibrin mesh and platelets, which occludes the vascular damage 

(Dahlback, 2000).

The coagulation cascade involves a series of enzymatic reactions involving 

inactive zymogens and other cofactors, which are activated sequentially by 

proteolytic cleavage and result in an amplified chain reaction leading to the 

production of fibrin (Norris, 2003). This pathway is controlled simultaneously by 

the fibrinolytic system, whereby a number of negative feedback reactions 

involving natural anticoagulants prevent further activation of the cascade and 

therefore limit the propagation of the thrombus. Thrombosis occurs when one or 

more stages in the coagulation mechanism and/or the fibrinolytic system are 

affected by genetic or clinical factors, leading to the production of a thrombus, 

either in the absence of vascular injury or an inability to limit thrombus 

propagation as a result of vessel wall damage (Kroegel & Reissig, 2003). 

Traditionally, the coagulation cascade has been described by dividing it into 

three sections; the extrinsic (or tissue factor) pathway, the intrinsic (or contact 

factor) pathway and the common pathway and all the proteins involved are 

denoted by Roman numerals. Most of these proteins are serine proteases, with 

the exception of three cofactors, [factor V, factor VIII and high molecular weight 

kininogen (HMWK)] and one transglutaminase, factor XIII (Norris, 2003).

The intrinsic pathway involves the conversion of inactive factor XII to its active 

form (XIla) by contact with a negatively charged surface, particularly collagen, 

which is exposed during vascular injury. This in turn causes the activation of 

factor XI to Xla and, together with the cleavage of HMWK, results in the 

formation of factor IXa (Fig1.1) (Norris, 2003).

2
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The extrinsic pathway is initiated when tissue factor (TF), a cellular membrane- 

bound protein, becomes exposed to the plasma following vascular damage and 

binds to factor VII, forming the TF-Vlla complex, the most potent activator of the 

coagulation system. This complex then activates factor X to Xa, converging with 

the product of the intrinsic pathway (Norris, 2003).

The overall result of both pathways is to produce what is known as the ‘tenase’ 

complex, in which IXa, together with Villa, calcium and phospholipid, combine 

to activate factor X to Xa, (which is also produced by TF-Vlla). The ‘tenase’ 

complex is fundamental to the overall function of the coagulation cascade and 

deficiency in either factor VIII or factor IX results in one of two severe 

haemorrhagic disorders (haemophilia A and B respectively) (Norris, 2003). The 

‘tenase’ complex is responsible for the formation of the prothrombinase 

complex, which consists of Xa, the non-enzymatic cofactor Va, calcium and 

phospholipid, which in turn activates factor II (prothrombin) to lla (thrombin). 

Thrombin has a central role in the whole haemostatic mechanism, being 

responsible for the upstream activation of factors V, VIII, IX and XI, as well as 

platelets and the fibrinolytic protein C (Norris, 2003). Nonetheless, a pivotal 

function of thrombin is at the end of the coagulation cascade, involving the 

conversion of factor I (fibrinogen) to factor la (fibrin). However, fibrin is produced 

as soluble monomers and consequently forms an unstable thrombus. The 

monomers are cross-linked to form insoluble fibrin by the action of factor Xllla, 

which itself is activated by thrombin.

Although there are negative feedback loops within the coagulation cascade, 

mainly mediated by thrombin, the antithesis of fibrin clot formation is the 

fibrinolytic system. Using a similar notation to the coagulation pathway, the 

inactive zymogen plasminogen is activated either intrinsically (by FXIIa and 

kallikrein) or extrinsically by tissue plasminogen activator (t-PA) from the 

endothelium. The activated product, plasmin, is a serine protease which 

hydrolyses peptide bonds not only in fibrin, thereby degrading a thrombus, but 

also in fibrinogen, FV and FVIII, leading to their inactivation (Hoffbrand and 

Pettit, 1993).

5



A second pivotal pathway in fibrinolysis is the formation, by thrombin and 

thrombomodulin, of the activated protein C/protein S (PC/PS) complex, which 

not only inactivates t-PA inhibitors but more importantly it is responsible for the 

inactivation of the coagulation cofactors FVa and FVIIIa, resulting in further 

suppression of thrombus formation. In addition, activated FX (FXa) is inhibited 

by a glycoprotein, protein Z (PZ), which has a similar structure to PC and PS 

(Broze & Miletich, 1984).

1.3 The vitamin K cycle

Vitamin K was first suggested as being involved in the coagulation mechanism 

by Henrik Dam in the 1930’s, who noticed that chickens fed on a fat-free diet 

developed spontaneous haemorrhages (Lindh, 2009). Dam postulated the 

existence of a fat-soluble vitamin (designated vitamin K, from the German word 

‘Koagulation’) and, following its subsequent purification and the determination of 

its molecular structure, Dam was awarded the Nobel Prize for medicine with 

Edward Doisy in 1943.

Within the haemostatic mechanism, several factors produced in the liver (II, VII, 

IX, X, PC, PS and PZ) require the presence of vitamin K in order to become 

functional molecules and are known as the vitamin K-dependent factors 

(Hoffbrand and Pettit, 1993). A reduced form of vitamin K (vitamin Ki 

dihydroxyquinone) acts as an electron donor to the enzyme y-glutamyl 

carboxylase (GGCX) and, together with carbon dioxide and oxygen, causes the 

carboxylation of glutamic acid residues in the active site of the haemostatic 

proteins, producing a negatively-charged complex (fig. 1.2). This enables them 

to undergo conformational changes when activated by calcium cations, thereby 

allowing them to bind to co-factors present on phospholipid surfaces (Ansell et 

al, 2008). As a result, the reduced vitamin K is oxidised to vitamin K epoxide 

and must undergo two electron reductions in order to be regenerated 

(McDonald et al, 2009). This is mediated by the enzyme vitamin K epoxide 

reductase (VKOR), which is encoded for by the gene vitamin K epoxide 

reductase complex subunit 1 (VKORC1), and is the target molecule for the 

action of warfarin.

6
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1.4 The pathophysiology of venous thromboembolism (VTE)

In 1856, Virchov proposed three major causes of VTE, which came to be known 

as Virchov’s triad (Virchov, 1856). These were hypercoagulability, changes in 

the vessel wall and haemodynamic defects resulting in stasis. Although it has 

been modified over the years, the triad is still the basis of our understanding of 

VTE today (Sevitt, 1974).

Two distinct but interrelated aspects of VTE are pulmonary embolism (PE) and 

deep vein thrombosis (DVT), which are major causes of morbidity and mortality 

within the developed world. The incidence of these two diseases has not 

decreased significantly over several decades, despite improvements in 

diagnosis and treatment (Kroegel and Reissig, 2003) and it is estimated that 1 

in 1000 people are affected every year in the UK alone (Dahlback, 2000). The 

thrombus in VTE is mainly composed of fibrin, derived ultimately from activation 

of the coagulation cascade, some trapped erythrocytes and a small layer of 

platelets (Lopez et al, 2004), which is attached to the vessel wall. However, 

VTE is seldom associated with vessel wall damage (as occurs in arterial 

thrombosis), indicating that the coagulation mechanism must be activated by 

other means (Lopez & Chen, 2009). There is general agreement that VTE 

involves the initiation of coagulation via TF, but most research has involved the 

use of animal models with vessel wall damage (Esmon, 2009). However, other 

studies have shown that TF can originate from blood cells, especially 

monocytes, or from leukocyte-derived microparticles, which not only contain TF 

but also the cell-cell adhesion molecule P-selectin (Myers et al, 2003). Inhibition 

of P-selectin has been shown to inhibit thrombus formation (Myers et al, 2005) 

and, as it is important for platelet function and platelet-leukocyte interaction, it 

has been postulated that it is important for the production of the platelet 

component in the fibrin-dominant layer of a thrombus and therefore may confer 

stability to the clot (Esmon, 2009). Inflammation has also been implicated in 

thrombus formation, whereby there is localized activation of the vessel wall 

endothelium, causing the release of von Willebrand factor and P-selectin from 

Weibel-Palade bodies. However, both molecules remain attached to the 

endothelial surface and attract leukocytes, which in turn shed microparticles
9



from their membrane and result in activation of the coagulation pathway (Lopez 

and Chen, 2009).

Two major contributors to the occurrence of VTE are stasis and hypoxia, due to 

either dysfunctional venous valves (Esmon, 2009), an increase in the 

haematocrit (Hamer et al, 1981) or possibly the down regulation of two 

fibrinolytic proteins, thrombomodulin and the protein C receptor (Brooks et al, 

2009). Endothelial cell components such as these are important in many 

haemostatic pathways and, when blood moves from larger to smaller vessels, 

there is a dramatic increase in the efficacy of these proteins, including TF 

pathway inhibitor (Esmon, 1989). This is partly due to an increase in the 

endothelial cell surface exposed to the blood. However, if venous stasis occurs, 

the blood stays in the large vessels for longer, where the natural anticoagulant 

properties are not as efficient as in the microcirculation, due to a reduced ratio 

of the endothelial surface to blood volume (Esmon, 2009). It has also been 

postulated that venous stasis results in the oxygen desaturation of 

haemoglobin, resulting in an hypoxic insult to the local endothelium and the 

spontaneous expression of P-selectin (Closse et al, 1997).

The third part of Virchov’s triad, hypercoagulability, has been the area of 

greatest advances in the past two decades. The discovery of the factor V 

Leiden genetic mutation (Dahlback et al, 1993) and activated protein C (APC) 

resistance has helped to explain 20-40% of all cases of hereditary VTE, 

predominantly in populations of Caucasian origin (Dahlback, 2000). In these 

cases, the FV molecule produced by a single point mutation has arginine 506 

replaced by glutamine, resulting in the loss of one of the activated protein C 

cleavage sites. As a consequence, the mutated FV is not sufficiently 

deactivated and continues with full procoagulant activity. The risk of VTE in 

cases of heterozygous APC resistance is approximately 5-10 fold, but increases 

dramatically in homozygotes to 50-100 fold (Dahlback, 2000).
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The second commonest genetic factor that confers hypercoagulability is the 

prothrombin 20210 gene, which was first described in 1996 by Poort et al. The 

mutation causes an increase in the plasma prothrombin concentration, which 

therefore not only allows for an increased production of thrombin, but also acts 

as an inhibitor of protein C. The 20210 gene is found in 2% of Caucasians and 

increases the risk of VTE by 3-5 fold (Dahlback, 2000). Changes in the levels of 

other haemostatic proteins have also been implicated in an increased risk of 

VTE; increased concentrations of factors VIII, VII and von Willebrand factor 

(Bertina, 2004) and decreases in protein C, protein S and antithrombin III 

(Dahlback, 2000) have all been shown to cause variable increases in the risk of 

thrombogenesis. Many acquired disorders and demographic factors are 

associated with an increased propensity for VTE. In the antiphospholipid 

syndrome, autoantibodies, or lupus anticoagulant, can cause both arterial and 

venous thrombosis. Antibodies are produced which target p2-glycoprotein 1 and 

occasionally prothrombin, and can also be responsible for an increased risk of 

miscarriage by forming thrombi in the placental circulation (Dahlback, 2000).

The risk of VTE increases with age but the exact reason is uncertain (Esmon, 

2009). However it is known that, in the elderly, there is an increase in the 

concentrations of some coagulation factors without a concomitant increase in 

anticoagulant proteins, as well as an increase in D-dimer levels, which suggests 

hypercoagulability (Lowe et al, 1997). Furthermore, there is an increased risk of 

immobility due to frailty and illness, leading to venous stasis (Esmon, 2009) as 

well as an increase in the number of co-morbidities (Silverstein et al, 2007). 

Malignancy increases the danger of venous thrombosis and approximately 20% 

of cases presenting with VTE have an underlying tumour (Lopez et al, 2004). In 

these cases, VTE risk is increased 6-10 fold (Bick, 2003) and is thought to be 

due to procoagulant particles containing TF being produced by tumour cells and 

initiating a coagulation response (Dvorak et al, 1981). Additionally, some 

tumours compress blood vessels and may lead to an increased risk of stasis 

(Esmon, 2009).

In summary, VTE is considered to be a multigenic disease (Dahlback, 2000)

and the risk factors are known to act synergistically. For example, obesity and

oral contraceptives are both associated with an increased risk of thrombosis (2
11



fold and 4 fold, respectively), however, when present together, the increased 

risk is far greater than that of the two combined (Abdollahi et al, 2003).

1.5 The anticoagulant drug warfarin

Warfarin [(RS)-4-hydroxy-3(-3-oxo-1-phenylbutyl)-2H-chromen-2-one] is a 

synthetic derivative of dicoumarol (4-hydroxycoumarin), which is in turn derived 

from coumarin, found naturally in many plants. It is one of a number of 

coumarin-based drugs, which has been used for many years in the field of 

antithrombotic therapy. Warfarin is prescribed both as a treatment for existing 

DVT and PE, in order to prevent further propagation and/or embolism of the 

thrombus, and prophylactically in cases where thrombosis is likely to occur, 

such as in patients with atrial fibrillation (AF), mechanical heart valves or with a 

genetic propensity for thrombus formation, also known as hereditary 

thrombophilia (Kamali et al, 2000b). At sub-therapeutic levels, the patient is at 

risk from propagation of the existing thrombus or the formation of new thrombi; 

at super-therapeutic levels, there is a high risk of haemorrhage and the rate of 

life-threatening bleeding is approximately two per one hundred patient years, 

with minor bleeding being more common (Palareti etal, 1996).

1.5.1 The history of warfarin
The serendipitous findings that led ultimately to the introduction of oral 

anticoagulants began in 1924, when Frank Schofield described a new fatal 

haemorrhagic disease in cattle, which had occurred almost simultaneously in 

North Dakota, USA and Alberta, Canada (Schofield, 1924). He traced the cause 

to the ingestion of sweet clover hay spoiled by the mould Aspergillus and the 

disease became known as ‘sweet clover disease’. Schofield also showed that it 

wasn’t the Aspergillus itself that caused either the bleeding or the prolonged 

blood clotting time and that the disease manifested itself as a slow decrease in 

clotting ability over approximately 15 days, resulting in fatal internal 

haemorrhage between 30-50 days (Copeland & Six, 2009).

In 1931, Lee Roderick demonstrated that the problem was caused by a marked 

reduction in one of the coagulation proteins, prothrombin but that the effects 

could be corrected with a bovine blood transfusion (Roderick, 1931). Moreover,
12



there was no effect on any of the other coagulation constituents known at that 

time, namely calcium, fibrinogen and platelets. Late in 1932, Karl Link was 

invited to set up a research team at the University of Minnesota, in order to 

study Roderick’s findings in more detail. Within a few weeks, Link was visited by 

a farmer, Ed Carlson, who arrived with a dead heifer, a milk churn full of non

clotted blood and a large sample of spoilt sweet clover. By 1939, one of the 

team, Harold Campbell, had isolated and purified 6mg of crystalline dicoumarin 

from the samples (Campbell, 1941). Two years later, Mark Stahman purified 

1.8g of dicoumarin and showed that spoilage of sweet clover by Aspergillus 

mould resulted in the oxidation of coumarin to 4-hydroxycoumarin (Link, 1959). 

Furthermore, in the presence of formalin, a product of additional decay, the 4- 

hydroxycoumarin was converted to 3,3’methylenebis-(4 hydroxycoumarin) or 

dicoumarin. Link patented the final product under the trade name dicoumarol.

The team tested dicoumarol on various animal species and made several 

observations, which still hold relevance for anticoagulant therapy today (Link, 

1943). Firstly, they noted that there was a considerable delay between ingestion 

and effect on the clotting mechanism and that repeated administration produced 

a cumulative response. Secondly, they found that reduced hepatic and renal 

function significantly influenced the intensity and duration of action. 

Furthermore, other drugs such as salicylates potentiated the action of 

dicoumarol and dietary vitamin K was shown to affect the intensity and duration 

of its action. Within days of publishing these findings, the Mayo Clinic requested 

samples of dicoumarol and, within 3 months, trials had shown its effect of 

increasing the blood clotting time in 6 human subjects (reviewed by Copeland 

and Six, 2009).

During this time, Link had also become aware of the similarities in biochemical 

structure between dicoumarol and vitamin K, a compound discovered by Henrik 

Dam in 1935 and synthesized by Edward Dosey in 1939. In a series of animal 

experiments, he demonstrated that vitamin K could reverse the anticoagulant 

effect of dicoumarol (Link, 1943). In 1942, field trials were conducted on 

dicoumarol for its use as a rodenticide, but it was found not to be potent enough 

(Link, 1959), so Link assembled a team to reappraise dicoumarol analogues 

and, in 1948, patented a more potent alternative with Mark Stahman and Lester
13



Scheel (Link, 1959). This was named warfarin, an acronym derived from the 

Wisconsin Alumni Research Foundation (WARF) and the ending “-arin”, 

denoting its link with coumarins and it was promoted as a rodent poison.

In 1950, Link recommended the use of the sodium salt of warfarin for use in 

clinical medicine, as it was at least five-times more potent than dicoumarol. 

Understandably, there was great reluctance from the medical profession to use 

a substance that had been promoted as a rat poison on human patients; 

however two events occurred soon after which would change the situation. In 

1955, a US navy inductee attempted suicide by ingesting 567mg of warfarin 

over a period of 6 days. He was subsequently treated with blood transfusions 

and intravenous vitamin K, and made a full recovery (Holmes & Love, 1952). In 

the same year, Colonel Byron Pollock, who was stationed at the Fitzsimons 

Army Hospital in Denver, presented a paper describing his use of warfarin on 

100 patients suffering from either myocardial infarction or DVT (Pollock, 1955). 

One of the patients was the then President, Dwight D. Eisenhower, following a 

heart attack and, within a year, warfarin was declared the anticoagulant of 

choice in American hospitals (reviewed by Lindh, 2009).

1.5.2 The pharmacology of warfarin
From a pharmacological perspective, warfarin is more complicated than many 

other drugs in use today. Its mode of action and elimination, interaction with 

other drugs, narrow therapeutic range, susceptibility to genetic influences and 

severe consequences of over- and under-dosing make it difficult to manage 

clinically. As a result, patients taking warfarin require frequent laboratory 

monitoring (see section 1.5.3) as well as clinical experience and a sound 

theoretical knowledge of the drug’s actions (Lindh, 2009).

Warfarin consists of a racemic mixture of two enantiomers, R and S (Figure 

1.3). S-warfarin is three to five times more potent in its anticoagulant effect and 

has a plasma half-life of approximately 29 hours, compared to R-warfarin, which 

has a half-life of 45 hours (Ansell et al, 2008). Warfarin is administered orally, 

usually as a sodium salt, and is readily absorbed from the Gl tract, reaching 

maximum plasma levels within two hours (Gage & Milligan, 2005). Here, it is 

99% bound to plasma proteins, mainly albumin, and it is the unbound drug that
14



is pharmacologically active (Beinema et al, 2008). The maximum effect of any 

one dose may occur up to 48 hours after administration and may continue for 

several days (D’Andrea et al, 2008).

The two enantiomers are metabolised by different pathways in the liver. S- 

warfarin is metabolised to S-7 hydroxywarfarin by the CYP2C9 enzyme of the 

cytochrome P450 system (Rettie et al, 1992) and is excreted in the bile (Ansell 

et al, 2008). R-warfarin, on the other hand, is metabolised by three different 

cytochrome enzymes, CYP1A1, CYP1A2 and CYP3A4, and is excreted via the 

kidneys (Gage & Milligan, 2005).

Figure 1.3 S- and R-enantiomers of warfarin.
* denotes the chiral carbon atom (adapted from Lindh, 2009)
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The mode of action of warfarin is the inhibition of the vitamin K epoxide 

reductase enzyme (VKOR) in the vitamin K cycle (see fig 1.2), thus preventing 

the reduction of vitamin Ki epoxide to vitamin Ki dihydroxyquinone (McDonald 

et al, 2009). When approximately 70% of the VKOR molecules have been 

inactivated in the liver by warfarin, the supply of vitamin Ki dihydroxyquinone 

available to y glutamyl carboxylase (GGCX) is no longer sufficient for the 

carboxylation of the coagulation factors to take place (Lindh, 2009). This results 

in the secretion into the circulation of large amounts of uncarboxylated factors II, 

VII, IX and X, which are unable to participate in the coagulation cascade and 

are known as PIVKA proteins (proteins induced by vitamin K absence or 

antagonism) (Hoffbrand and Pettit, 1993). The overall reduction in the activity of 

the coagulation mechanism takes place over several days following initiation of 

warfarin therapy, depending on the half-life of the clotting factors affected. 

Factor VII shows low levels of functionality within 48 hours, due to a half-life of 6 

hours, whereas the potency of factors II and X may take several more days to
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be sufficiently suppressed. In addition, warfarin rapidly reduces the 

carboxylation of the fibrinolytic proteins C, S and Z, which leads to the 

paradoxical state of hypercoagulability in the first few days of therapy (Reynolds 

et al, 2007).

1.5.3 The laboratory control of warfarin therapy
The laboratory test for the monitoring of oral anticoagulant therapy is based on 

the prothrombin time (PT), which measures the activity of factors I, II, V, VII and 

X (Hall & Malia, 1991). The patient’s plasma is incubated with tissue 

thromboplastin in vitro, in order to simulate the activation of the coagulation 

cascade in vivo. Calcium ions, in the form of CaCb, are then added and the time 

taken for a fibrin clot to form is measured. In order to standardise the control of 

anticoagulant therapy, it is necessary to be able to compare results between 

different laboratories, not only because of the wide variety of automated 

methods used, but also because of the numerous types and batches of 

thromboplastin available, each with differences in their sensitivity. 

Consequently, results are expressed as the International Normalised Ratio or 

INR (WHO, 1983). All thromboplastins are now calibrated against a WHO 

standard and their sensitivity is expressed as the International Sensitivity Index 

(ISI), where the primary standard has an ISI of 1.0. The manufacturer must 

calibrate every batch of thromboplastin and mark the ISI value clearly on the 

reagent label.

Within each laboratory, a normal range for the PT must be established every 

time a new batch or brand of thromboplastin is used, or when an automated 

system is replaced. This is determined by measuring the PT of at least 20 

healthy adults and calculating the geometric mean or Mean Normal Prothrombin 

Time (MNPT) (Hall and Malia, 1991). This is used for the calculation of all 

subsequent INRs using the formula:

INR =

r  ^

Patient PT 
MNPT

V  J

ISI
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1.5.4 Clinical indications for anticoagulation
In the UK, indications for the commencement and maintenance of OAT have 

been proposed by the British Committee for Standards in Haematology (BCSH, 

1998) and revised (BCSH, 2006) and broadly fall into two categories. Firstly, 

OAT is indicated in patients who have an increased risk of thrombosis i.e. AF 

and/or mechanical prosthetic heart valves, as well as patients with an inherited 

thrombophilia or following orthopaedic surgery (Baglin et al, 2006). Secondly, 

patients require OAT if they have an existing thromboembolic event, such as PE 

or DVT, in order to prevent further propagation of the thrombus and also to 

reduce the risk of embolisation.

In either case, therapy may be maintained for a short period of time, usually 3-6 

months, or life-long, depending on the risk of thrombus development. In 

addition, the level of anticoagulation needed for prevention or prophylaxis, as 

determined by the target INR, needs to be balanced against an individual’s risk 

of developing haemorrhagic complications (Dahlback, 2000).

Therapeutic monitoring is guided by maintaining the INR within +/- 0.5 units of 

the target (i.e. target 2.5, range 2.0-3.0 or target 3.5, range 3.0-4.0), as 

recommended by the BCSH (BCSH, 1998) and is summarised in Table 1.1.

1.5.5 Adverse effects of warfarin
Warfarin is one of many common drugs that has been linked to fatal medication 

errors in primary care (Baglin et al, 2006) and is near the top of a list of ten 

drugs associated with prescribing or dispensing errors in secondary care. In the 

UK, between 1990 and 2002, there were 480 cases of harm or near harm 

involving anticoagulant therapy, including 92 deaths directly attributable to 

warfarin; in addition, warfarin is in the top ten of drugs cited in errors leading to 

litigation against NHS Trusts (Baglin et al, 2006). The commonest cause of 

morbidity and mortality during warfarin therapy is due to haemorrhage, mainly 

due to accidental overdose (especially in the elderly), drug interactions or a high 

initiation dose and bleeding may manifest as bruising, haemoptysis, epistaxis, 

haematuria or melaena (Reardon etal, 1995).
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Table 1.1 Indications for oral anticoagulant therapy, target INR 

and recommended duration of therapy.

Indication Target INR Duration

PE DVT 2.5 3-6 months

Recurrent PE/DVT  

Inherited thrombophilia 

Atrial fibrillation 

Cardiomyopathy 

Antiphospholipid 

syndrome 

Arterial grafts 

Coronary artery 

thrombosis

2.5 lifelong

DVT/PE whilst on OAT 3.5 lifelong

Aortic mechanical heart 

valves

Mitral mechanical heart 

valves

2.5 or 3.0 

3.0 or 3.5

lifelong

BCSH, 2006.

PE = pulmonary embolism 

INR = International Normalised 

Ratio

OAT = oral anticoagulant therapy 

DVT = deep vein thrombosis
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The risk of haemorrhage during long term OAT has been estimated to be 

between 1-15% per year (Oden and Fahlen, 2002); however, the risk of major 

bleeding is greatest at the start of treatment rather than during maintenance, 

mainly due to the fact that the patient’s stable therapeutic dose is unknown 

(Gage and Eby, 2003; Linkins et al, 2003). In one study, 7% of patients (n=162) 

had some form of bleeding episode within one month of commencing warfarin 

therapy, which increased to 12% within two months (Beyth et al, 2000).

Heparin is administered when anticoagulation is required during pregnancy, due 

to the adverse effects of warfarin on the foetus. Firstly, warfarin is able to pass 

through the placental barrier and may cause foetal haemorrhage due to the 

immaturity of the foetal liver (BCSH Guidelines, 1998). This has been 

associated with spontaneous abortion and neonatal death (Schardein & Macina,

2007). Secondly, warfarin is a teratogen and the incidence of birth defects in 

foetuses exposed to it in utero has been estimated to be about 5% (Schardein & 

Macina, 2007). Known as foetal warfarin syndrome (FWS), these defects 

include skeletal abnormalities (particularly following exposure in the first 

trimester) and central nervous system disorders, such as seizures and eye 

defects, in the second and third trimesters. FWS has also been associated with 

a decrease in birth weight and developmental retardation (Loftus, 1996).

1.5.6 Initiation of OAT
There are several initiation dosing regimens and the decision as to which is 

used can depend on multiple factors. These include the age, gender and body 

size of the patient, as well as concomitant drugs and the morbidity and mortality 

implications of the thrombotic event. The positive diagnosis of a thrombotic 

event, such as PE or DVT, usually requires higher initial doses of OAT than in 

cases of prevention (i.e. AF), with concomitant once-daily administration of 

subcutaneous low molecular-weight heparin (LMWH) (BCSH, 1998).

Fennerty et al (1984) proposed a dosing schedule, tailored to each patient’s 

INR on days 2 and 3, using an initial dose of 10mg on the first day (Appendix 

IX). A prediction of the final maintenance dose was made according to the INR 

response on day 4 and all the patients in the study (n=50) were within the
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therapeutic range by day 6. The study showed a close correlation between the 

predicted and actual maintenance dose (r=0.867 p<0.001).

Similarly, a study by Kovacs et al (2003) showed that a 10mg initiation protocol 

not only resulted in patients achieving the therapeutic INR 1.4 days earlier than 

5mg (p<0.001), but that 83% reached the therapeutic range by day 5 (n=104) 

as opposed to 46% with the 5mg dose (n=97, p<0.001). There was no 

significant difference between the two groups in the number of INRs >5.0 and 

the study concluded that, like Fennerty et al (1984), a 10mg dosing protocol 

was superior to 5mg due to the fact that the therapeutic INR can be achieved 

more quickly.

While the Fennerty and Kovacs regimens proved to be useful for quickly 

reaching a stable therapeutic INR for in-patients with an existing thrombus, Tait 

and Sefcick (1997) designed an initiation protocol which was less intense, due 

to the fact that in many cases anticoagulant therapy is prophylactic with no 

immediate threat of thrombosis, especially in patients with AF. Moreover, a 

rapid induction protocol in elderly patients, using high doses of warfarin, has a 

high risk of over-anticoagulation and therefore haemorrhage. The Tait protocol 

(Appendix X), using an induction warfarin dose of 5mg for 4 days (n=36), was 

compared with that of Fennerty et al, with a loading dose of 10mg (n=33). The 

time taken to reach the therapeutic INR was similar in both groups; however, 

with the new regimen, there were fewer INRs >4.5 (2/36 vs. 9/33) as well as a 

more accurate prediction of the final maintenance dose (r=0.985). Similarly, 

Crowther et al (1999) found that more patients achieved a therapeutic INR 

within five days (21/32) on the 5mg induction dose than those on the 10mg 

dose (5/21, p<0.003).

The original guidance for the initiation of warfarin therapy in the UK (BCSFI, 

1998) recommended an initial oral dose of 10mg (Fennerty et al, 1984), with a 

subsequent change in dose for days 2, 3, and 4, depending on the INR 

response. This has been superseded (BCSFI, 2006) by taking a more cautious 

approach; for outpatients not requiring rapid anticoagulation, a smaller loading 

dose of 2mg (Oates et al, 1998) or 3mg (Janes et al, 2004) is recommended, as

these achieve the therapeutic INR within 3-4 weeks, while significantly reducing
20



the risks of haemorrhage through over-anticoagulation. In cases where more 

rapid anticoagulation is required, 5mg doses are recommended, as compared 

to 10mg, especially in cases of liver disease, cardiac failure, patients over 60 

years old and those at risk from haemorrhage (BCSH, 2006).

1.5.7 Reversal of OAT
The risk of haemorrhage with OAT has been shown to significantly increase 

when the INR reaches 5.0 or higher in a study of patients with mechanical heart 

valves, with 2 adverse events per 100 patient years for INRs between 2.5-4.9, 

rising sharply to 75 events per 100 patient years for INRs >6.5 (Cannegeiter et 

al, 1995). The mode of intervention for the reversal of excessive anticoagulation 

is dependent on the INR and the presence or absence of bleeding and its 

severity. The initial recommendations regarding the management of 

hypercoagulable states (BCSH, 1998) have since been revised and modified 

(BCSH, 2006) and these are summarised in Table 1.2.

1.6 Factors affecting warfarin therapy

1.6.1 The pharmacogenetics of warfarin treatment
Pharmacogenetics is the study of variations in the DNA sequence of a patient in 

relation to their response to a particular drug, and therefore its safety and 

efficacy (French et al, 2010). It is a rapidly developing field of science for 

predicting both the dose requirements and patients’ responsiveness to various 

drugs and can ultimately help clinicians make informed decisions with regard to 

dosing and improve patient outcomes (Gage & Lesko, 2008). The eventual aim 

is to develop personalised drug therapies and progress is becoming more 

widespread following recently available genetic testing (French et al, 2010). 

Pharmacogenetics is the molecular basis that drives the processes of 

pharmacokinetics (the effect of the body on a drug) and pharmacodynamics 

(the effect of drugs on the body) (French et al, 2010). Fundamentally, it is the 

detection of single nucleotide polymorphisms (SNPs), in which the nucleotide 

sequence at a particular position is changed from the most common one (wild 

type) by substitution, deletion, insertion or translocation (Al-Ghoul & Valdes,

2008).
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Table 1.2 Recommendations for the treatment of excessive 

anticoagulation

IN R  A c tio n

INR >3.0<6.0 (target 2.5) 

INR >4.0<6.0 (target 3.5)

Reduce warfarin dose or stop 

Restart when INR<5.0

INR >6.0<8.0 

Bleeding absent or minor

Stop warfarin 

Restart when INR<5.0

INR >8.0 

Bleeding absent or minor

Stop warfarin 

Restart when INR<5.0 

I f  risk factors for bleeding are 

present, administer 0.5-2.5mg 

vitamin K  orally

Major bleeding

Stop warfarin 

Give prothrombin complex 

concentrate (50U/kg)

Give 5mg vitamin K  (orally or i.v.)

BCSH 2006
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Several SNPs have been detected in recent years that appear to confer a 

greater sensitivity to warfarin and therefore such patients require a much lower 

daily dose than those exhibiting the wild-type gene (Elias and Topol, 2008).

1.6.1.1 Vitamin K epoxide reductase (VKOR) polymorphisms
The enzyme VKOR causes the reduction of vitamin K (see Fig 1.2), which is 

then responsible for the production of functionally active clotting factors II, VII, 

IX and X and it is this enzyme that is inhibited by warfarin (Reynolds et al, 

2007). Measurement of VKOR activity has been available since the 1970s, but it 

was not until 2004 that the gene, located on chromosome 16, was identified and 

designated VKORC1 (vitamin K epoxide reductase complex subunit 1) (Li et al, 

2004).

In recent years, several SNPs in VKORC1 have been shown to have a 

significant effect on warfarin dose requirements. However, complications have 

arisen in identifying which are responsible for warfarin sensitivity, due to the fact 

that the majority of VKORC1 SNPs are in linkage disequilibrium, i.e. they are 

located very close to one another on chromosome 16 and are therefore 

believed to be inherited together more often than would be expected by chance. 

Consequently, it is difficult to determine which individual SNP is responsible for 

the associated trait (Lindh, 2009). Further complications have occurred because 

several different notations have been used in the literature to designate the 

various VKORC1 polymorphisms (D’Andrea et al., 2005; Geisen at al., 2005; 

Reider et al., 2005) and these are shown in Table 1.3. Reider et al (2005) 

divided the VKORC1 SNPs into two main groups of jointly inherited 

polymorphisms, designated A and B, where group A is associated with a 

decrease in warfarin requirement and group B individuals show a requirement 

for higher warfarin doses. Geisen et al (2005) subdivided the VKORC1 variants 

into four groups, VKORC1 *1, *2, *3 and *4. VKORC1*1 is only found in African 

populations and VKORC1*2 is the equivalent of Reider’s group A and therefore 

confers warfarin sensitivity. Both VKORC1*3 and *4 relate to Reider’s group B 

and require much higher doses of warfarin to remain in the INR therapeutic 

range (Lindh, 2009). D’Andrea et al (2005) simply used the conventional 

nomenclature of the nucleotide change and its position.
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In order to maintain consistency, all further references in this thesis will refer to 

the VKORC1 polymorphisms using the D’Andrea notation.

1.6.1.2 VKORC1 polymorphisms in various populations
Many studies of VKORC1 polymorphisms and their effect on warfarin dosing 

have concentrated on non-Caucasian populations, especially Chinese and 

Japanese, whereas several North American groups have included Afro- 

Americans in their cohort (Yin & Miyata, 2007). Consequently, the results have 

shown a wide variation in SNPs, due to the genetic variations in the different 

ethnic groups. As the cohort for this present study does not include non- 

Caucasian warfarin patients (see Methods section 2.2.), the remainder of this 

section will give an overview of research performed on Caucasian subjects.

D’Andrea et al (2005) showed that in a group of male and female Southern 

Italians (n=147), the wild type (CC) of VKORC1 1173 C>T resulted in a mean 

optimum warfarin dose of 6.2mg/day, whereas two polymorphisms (CT and TT) 

reduced the dose significantly to 4.8mg/day (p=0.002) and 3.5mg/day (p<0.001) 

respectively. No other polymorphisms of VKORC1 showed any correlation to 

the warfarin dose. In a study of North Americans of southern German decent, 

Caldwell et al (2007), using a multiple regression model, showed that SNPs in 

VKORC1 1639 G>A resulted in a reduced warfarin dose requirement and made 

a significant contribution to predictive dosing when combined with the CYP2C9 

gene (see section 1.6.1.3), age, gender and body surface area (BSA).

Carlquist et al (2006), while studying 213 Swedish patients, found that VKORC1 

1173 C>T variants reduced the warfarin dose requirements by 65% (p<0.001) 

and that, together with CYP2C9, genetic testing explained 33% of dose 

variance, compared to 12% for clinical data alone. Similarly, Wadelius et al 

(2005) looked at three VKORC1 SNPs (1639 G>A, 1173 C>T and 2255 C>T) in 

201 Swedish subjects and showed that all had an effect on the maintenance 

dose required to keep the patients’ INR in the required therapeutic range. A 

study on British Caucasian patients was carried out by Sconce et al (2005), 

which showed that, in 297 subjects, the SNP in VKORC1 1639 G>A had a 

significant impact on dose requirements (p<0.001).
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Table 1.3 Nomenclature of the various VKORC1

polymorphisms (adapted from Lindh, 2009)

dbSNP Nucleotide

exchange

D’Andrea Reider 

A B

Geisen 

* !  *2 *4

rs9934438 C -*T 1173 C>T • •

rs9923231 G—»A 1639 G>A • •

rs8050894 G-^C 1542 G>C • •

rs2359612 C—>T 2255 C>T • •

rs7294 G—>A 3730 G>A • •

rs7200749 C-+T 3462 C>T • •

rs 17708472 C—>T 698 C>T • •

Nomenclature as described by D’Andrea et al (2005), Reider et al (2005) and 

Geisen et al (2005).

dbSNP = the Single Nucleotide Polymorphism Database 

(http://www.ncbi.nlm.nih.gov/projects/SNP/)

Nucleotides: A=adenosine, C=cytosine, G=guanine, T=thymidine

1.6.1.3 C ytochrom e P450 (CYP) po lym orph ism s

Cytochrome P450 (CYP) enzymes are a group of haem proteins, found in 

hepatocytes, lung and kidney (Gardiner and Begg, 2006). One isoform,
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CYP2C9 located on chromosome 10, is responsible for the metabolism of 

weakly acidic compounds such as non-steroidal anti-inflammatory drugs, oral 

antidiabetics and S-warfarin (Lai et al, 2006). SNPs of the gene for CYP2C9 

were the first to be identified as having a significant effect on the therapeutic 

dose of warfarin (Scordo et al, 2002) and have been designated CYP2C9*2 and 

CYP2C9*3. Both are relatively common in Caucasians, with frequencies of 11- 

16% and 7-10% respectively (Lindh, 2009) and are responsible for amino acid 

substitutions in the CYP2C9 molecule (Arg144Cys with CYP2C9*2 and 

lle359Leu with CYP2C9*3). In each case, the altered molecule remains 

functional, but has a reduced S-warfarin clearance compared to the wild-type 

CYP2C9*1 (Lindh, 2009). S-warfarin clearance is lower by approximately 20% 

and 45% in heterozygotes for CYP2C9*2 and CYP2C9*3 respectively (*1/*2 

and *1/*3) when compared with the wild-type (*1/*1). In contrast, homozygotes 

for CYP2C9*3 (*3/*3) have a 90% reduced clearance of S-warfarin (Lindh,

2009). Therefore, CYP2C9*2 and CYP2C9*3 patients have an increased risk of 

over-anticoagulation, especially during the initiation stage, with a concomitant 

increase in the risk of haemorrhagic complications. Margaglione et al (2000) 

found that CYP2C9 variants were responsible for a 2.6 fold increase in the odds 

of bleeding when compared to the wild-type.

D’Andrea et al (2005) showed a significant influence of CYP2C9 polymorphisms 

on dosing in southern Italian Caucasians (n=147, r=0.215, p<0.001), while 

Carlquist et al (2006) found that the CYP2C9 variants reduced the required 

warfarin dose by 18-72% (n=213, p<0.001), when compared with the wild-type 

allele. Gage et al (2004) were only able to predict 10% of warfarin dose 

variability using CYP2C9 testing alone and emphasised the need to combine it 

with other clinical and pharmacogenetic data for each individual. Similarly, 

Sconce et al (2005), using a large group of 297 subjects, confirmed that the 

highest warfarin dose was required in those with the wild-type CYP2C9 gene 

and, together with VKORC1, age and height, was able to predict the correct 

therapeutic level in 55% of patients.

Kamali et al (2004) showed that CYP2C9 SNPs accounted for >20% of warfarin 

dose variability but suggested that measuring S- and R-warfarin concentrations 

in blood might be a more useful marker for identifying those patients with 

CYP2C9 variants, since the enzyme is only responsible for the elimination of S-
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warfarin. However, such a technique would be beyond the budget of most 

laboratories and investing in genetic testing would also allow the measurement 

of other polymorphisms such as VKORC1.

1.6.1.4 CYP4F2
Cytochrome 4F2 (CYP4F2) is a vitamin Ki oxidase (Fig 1.2) and therefore its 

mode of action may be the counterpart to that of VKORC1 in the vitamin K cycle 

(McDonald et al, 2009). A SNP of CYP4F2 (1347C>T) results in an amino acid 

substitution of valine for methionine at position 433 (Glurich et al, 2010), with 

the wild type being CC. It has been postulated that the presence of a T allele 

(CT or TT) causes a decrease in enzymatic activity, resulting in a reduced 

ability to metabolise vitamin Ki (McDonald et al, 2009) and therefore an 

increase in hepatic levels of the vitamin, as compared to the wild type CC. In 

the case of anticoagulated patients, this would require higher doses of warfarin 

in order to inhibit the vitamin K cycle and it has been suggested that CYP4F2 is 

responsible for 2-7% of warfarin dose requirements (Jonas and McLeod, 2009).

SNPs in CYP4F2 were first suggested as having an influence on warfarin dose 

requirements by Caldwell et al (2008). In the study, three independent cohorts 

of American Caucasian warfarin patients (total n=625) showed an increase of 4- 

12% in the required warfarin dose per T allele present (p=0.023), which 

translated to an increase of approximately 1 mg/day more in TT subjects when 

compared to the CC wild type.

The study also showed that, using clinical factors and data for the presence of 

VKORC1 and CYP2C9 SNPs, warfarin dose predictability from multiple 

regression analysis was 54%. However, this could be increased to 56% with the 

addition of CYP4F2 SNP data. The study concluded that, although the inclusion 

of CYP4F2 data had a significant effect on the ability to improve warfarin dose 

predictability, the potential benefits depended on race, as the frequency of the T 

allele decreased from 30% in Caucasians to 7% in African/Afro-Americans. 

Other studies have concluded that the homozygous TT allele of CYP4F2 has a 

significant effect on warfarin dosing. Pautas et al (2010), in a study of French 

Caucasians, demonstrated an actual but statistically insignificant increase in 

warfarin requirement (mg per day) due to the presence of the T allele for CC,
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CT and TT variants of 2.8±1.5, 3.0±1.5 and 3.3±1.7 respectively (n=300 

p=0.13). When CYP4F2 was added to the effect of other variables, the warfarin 

dose predictability increased by 1.4% (p=0.0545).

Carlquist et al (2010) in the USA, showed that CYP4F2 increased the 

predictability from 42% to 47% when added to a regression model (n=170 

p<0.001) and Sagrieya et al (2010), who also studied the effect of CYP4F2 in 

the USA, found that the gene added 4% to the variability of warfarin dosing 

(n=108 p<0.05). However, the ethnicity of the subjects in both studies was not 

stated. Wells et al (2010) also showed a significant increase in the daily warfarin 

dose in the presence of the TT allele, when compared to CC or CT (p<0.001) in 

a study of Canadian warfarin patients (n=249), in which 94% were Caucasian, 

but the actual value in mg per day was not stated.

Conversely, some studies have questioned the significance of CYP4F2 SNPs in 

warfarin dosing. Lubitz et al (2010) did not find any significant effect (n=145 

p=0.15) in the USA, but postulated that this could have been due to the 

inclusion of various ethnic groups in the study. Similarly, Kringen et al (2011), in 

a study of 105 Norwegian Caucasian patients, only found a weak association 

between warfarin dose and CYP4F2 (p=0.09) and concluded that the 

contribution of the gene was negligible. However, out of the seven subjects with 

the homozygous TT allele, four had various combinations of the CYP2C9*3 and 

the VKORC1 (1173 C>T) TT variant, which have both been shown to confer 

warfarin sensitivity (see Sections 1.6.1.2 and 1.6.1.3) and which may have had 

a counteractive effect on the results.

1.6.1.5 Other genetic variants affecting warfarin dosing

The enzyme y glutamyl carboxylase (GGCX) is an integral part of the vitamin K 

pathway and is responsible for catalysing the reaction between the vitamin and 

clotting factors II, VII, IX and X (Lai et al, 2006). In one study, Reider et al 

(2007) found that only one SNP of the gene showed a significant correlation 

with warfarin dose. However, this only accounted for 2% dose variance, as 

compared with VKORC1 (21%) and CYP2C9 (8%), suggesting that GGCX has 

little impact on warfarin dose studies.
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Apolipoprotein E (APOE) is involved in the hepatic uptake of lipid-soluble 

vitamin K (Lai et al, 2006) and the effect of this gene in warfarin dosing has only 

been studied by two groups. Sconce et al (2006) found only one variant of the 

APOE gene made a significant but small contribution to the daily warfarin dose 

(mean +/- SD) when compared to the wild type (3.3mg +/- 1.9 versus 4.0 +/- 

1.8, p=0.03). Using an algorithm of age + height + CYP2C9 + VKORC1 + 

APOE, they were able to make an accurate dosing prediction in 57% of 

patients, but concluded that APOE polymorphisms are not likely to be clinically 

significant in predicting dose requirements. A similar conclusion was made by 

Caldwell et al (2007), who found that APOE variants did not significantly 

contribute to a predictive dose model (n=570).

Genetic variants for the coagulation factors II, VII, IX and X have only been 

investigated in Japanese patients (Shikata et al, 2004). Homozygosity in one FI I 

gene and two FVII genes showed the lowest warfarin maintenance dose 

requirement (n=45, p<0.05) and it was suggested that genotyping for these 

three variants, together with CYP2C9, could be useful in predicting the warfarin 

response of an individual.

1.6.2 The influence of age on warfarin dosing
Several groups, when looking at factors affecting warfarin dose, have found a 

statistically significant, negative correlation with age and have shown close 

agreement, despite the wide variation in the number of patients studied. Kamali 

et al (2000b) showed that age accounted for 25% of maintenance dose 

variation (R2=0.25) and a later study equated this to a decrease of 

approximately 0.6mg of warfarin for each decade increase in age between 55- 

85 years old (Kamali et al, 2004).

This was confirmed by Sconce et al (2005), who showed a maintenance dose 

decrease of 0.5-0.7 mg per decade in patients between 20-90 years old, 

irrespective of their genotype or height. The largest of these studies (Gage et al, 

2004) showed that age contributed to an 8% decrease in dose for every decade 

(n=329). Garcia et al (2005) used weekly (as opposed to daily) dosing and 

estimated that increasing age was responsible for a decrease of 0.4 mg per 

week every year (95% confidence interval, Cl, 0.37-0.44, p<0.001). This was
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shown to have a marked effect in the initiation phase of therapy, if age was not 

taken into consideration. Using the loading regime of 5mg once daily for three 

days resulted in an overdose in 82% of females and 65% of males >70 years of 

age, leading to a significant risk of haemorrhage in the early stages of 

treatment.

Many physiological, as well as demographic and clinical factors, have been 

postulated to be responsible for the significant effect of age with respect to 

warfarin dosing. Liver size is known to decrease with age and it is possible that 

a smaller liver volume could cause a decrease in the metabolism of warfarin 

and therefore a reduced oral requirement (Wynne et al, 1995). However, there 

are other factors that may be responsible, either individually or in synergy. 

Increasing age has been shown to significantly contribute to the decreased 

plasma clearance of warfarin (Sconce et al, 2005), which could either be as a 

result of decreased liver volume, renal function or both. As the risk of thrombotic 

episodes, and therefore the likelihood of warfarin therapy, increases with age, 

the age distribution of patients on OAT is not normal but skewed. Furthermore, 

the elderly are more likely to have other interfering co-morbidities and therefore 

polypharmacy with drugs known to potentiate the effects of warfarin (see 

section 1.6.6) (Gurwitz et al, 1992). In addition, there is an increasing risk of 

malnutrition with increasing age and consequently a decreased intake of dietary 

vitamin K, leading to an increased anticoagulant response (Reynolds et al, 

2007).

1.6.3 The influence of gender on warfarin dosing
Kamali et al (2004) showed that gender had no significant effect on the warfarin 

dose in a cohort of British adults, and that the mean dose for females was 

3.49mg and males 3.98mg (p=0.59). However, the total number of subjects was 

relatively low (n=121) compared with other studies. Conversely, in a study by 

Garcia et al (2005) in the USA, which examined 4616 patients prospectively and 

7586 retrospectively, it was shown that females required 4.5mg per week less 

than men. On average, the maintenance dose of warfarin for men was 

30mg/week, whereas that for women was 25mg/week (p <0.0001) and the 

lowest doses were prescribed to women over the age of 80 years.
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The suggested explanation for this gender difference is that females, on the 

whole, have a smaller mean body size (measured as body surface area), which 

is directly related to liver size and therefore a lower hepatic fat content. This 

could lead to a reduced hepatic clearance of warfarin by cytochrome P450 

enzymes. However, data suggested that gender-related differences in warfarin 

dosing were independent of body weight. Alternatively, it has been suggested 

that some cytochrome P450 enzymes are regulated by sex steroids (Niemela et 

al, 1999). It appears that gender per se is not directly responsible for the 

difference in mean warfarin dose between men and women, but that it is due to 

the secondary effects of body and/or liver size and the metabolic effects of the 

cytochrome enzymes.

1.6.4 The influence of body size on warfarin dosing
Several groups have used some form of body size data in an attempt to 

ascertain whether or not this influences warfarin dose requirement. Only one 

group (Sconce et al, 2005) used height as a separate variable, showing that it 

significantly contributed to S-warfarin and total warfarin clearance (p=0.001). 

Using a multivariate regression model including height, age and two genetic 

variants (VKORC1 and CYP2C9) in 297 British patients, the estimated warfarin 

dose could be predicted in 55% of cases.

Using body weight as a variable, Carlquist et al (2006), in the USA, found it to 

be a weak parameter for optimum dose prediction (n=213 p=0.021), forecasting 

only 12% of patient doses when used together with age and gender as opposed 

to 33% when including CYP2C9 and VKORC1 genetic variants. Zhu et al 

(2007), also in the USA, increased the predictability to 61% when weight 

(p<0.0001), age (p=0.0003) and gender (p=0.0024) were considered with 

CYP2C9 and VKORC1 polymorphisms (n=65). A third study in the USA found 

that increasing weight inversely correlated with warfarin response and therefore 

required a lower dose (n=530 p<0.001) (Gurwitz et al, 1992).

Some studies have used a combination of weight and height by calculating the 

body surface area (BSA). Sconce et al (2005) found that BSA contributed 

significantly in a regression model for dose prediction (r=0.21, p=0.005). Gage 

et al (2004) showed that BSA had a 15% effect on warfarin dose (r=0.50,
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p<0.0001), suggesting that it correlates with liver size and therefore hepatic 

warfarin clearance. However, Kamali et al (2004) demonstrated that, although 

both body weight (r=0.25, p=0.005) and BSA (r=0.21, p=0.02) had an influence 

on warfarin dose, neither contributed significantly when used in a regression 

model. Reynolds et al (2007) stated that body size, however it is measured, is 

likely to account for much of the gender based differences in warfarin dose 

requirements, while Garcia et al (2005), in trying to reconcile the differences in 

significance, compromised by stating that patients whose weight deviates 

significantly from the norm for their age should have their body mass taken into 

consideration in any dosing decision.

1.6.5 The influence of vitamin K concentration on warfarin dosing
Kamali and colleagues in the UK have done much of the work regarding vitamin 

K levels and the effects on warfarin dosage. An initial study (Kamali et al,

2000a) showed a significant negative correlation between vitamin K

concentration and INR (r=-0.39, p=0.034) and it was suggested that the 

variability in dietary intake of the vitamin should be considered in patients with 

unstable warfarin control. Later in 2000, work by the same group (Kamali et al, 

2000b) showed a significant correlation between vitamin K levels and both 

warfarin dose (p=0.034) and its metabolite vitamin K epoxide (p<0.0001).

Further studies showed that there is a diurnal variation in vitamin K

concentrations, with a mean maximum at 22.00 hours and a mean minimum 

(68% reduction of the maximum) at 10.00hrs (Kamali et al, 2001). When used in 

a regression model, vitamin K levels made no significant contribution to the 

predicted warfarin dose (Kamali et al, 2004).

Although these findings have provided further insight into the factors affecting 

the response to warfarin, they offer no practical solutions in determining the 

optimum dosage for an individual, due in part to the expense and complexity of 

the assays, except perhaps in advising patients on the need for a well balanced 

diet during OAT.

1.6.6 The influence of drugs on warfarin dosing
Several drugs available today are known to affect warfarin dosage, by either 

attenuating or potentiating its mode of action (BCSH Guidelines, 1998). Some
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are prescribed for short-term use e.g. antibiotics, steroids etc. However, others 

are required for longer periods by anticoagulated patients, due to the fact that 

many suffer from co-morbidities, and include statins (for the reduction of 

cholesterol) and amiodarone (an anti-arrhythmic).

Simvastatin has been shown to reduce the daily warfarin dose requirement by 

approximately 9% (Hickmott et al, 2003; Sconce et al, 2006) and this is most 

likely due to its competition with warfarin in its metabolism through the P450 

enzymes, CYP3A4 and CYP2C9, which are responsible for the breakdown of 

R- and S-warfarin respectively. Voora et al (2005) created an algorithm in which 

the effect of simvastatin, fluvastatin and amiodarone were included, together 

with polymorphisms for CYP2C9, resulting in a 42% dose variance prediction. 

However, SNPs of the coagulation factors and VKORC1 were not tested for and 

it was suggested that inclusion of all these factors would improve the accuracy 

of future dosing algorithms.

Gurwitz et al (1992) constructed a multiple linear regression model using 

medication with either a potentiating (amiodarone, allopurinol and propranolol) 

or attenuating (corticosteroids and sucralfate) interactive effect with warfarin, on 

a cohort of 530 warfarin patients. The results showed that only the three drugs 

that increase the effect of warfarin had a significant effect on the predicted 

anticoagulant dose.

1.7 The use of mathematical algorithms in warfarin dosing

As stated previously (section 1.5.6), the initiation of warfarin therapy has 

traditionally been a matter of trial and error, with some studies attempting to 

develop dosing strategies based on clinical information and/or the dose given in 

the first few days of therapy (Crowther et al, 1999; Fennerty et al, 1984; Janes 

et al, 2004; Kovacs et al, 2003; Oates et al, 1998 and Tait and Sefcick (1997). 

However, in recent years, with the discovery that certain SNPs (see above) can 

have a significant effect on the variability of warfarin dosing between patients, 

several studies have attempted to construct mathematical algorithms for the 

prediction of an individual’s stable maintenance dose, based on a combination 

of demographic, clinical and pharmacogenetic information (Shaw et al, 2010).
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Many of these algorithms have been constructed using racially homogenous 

populations (Lubitz et al, 2010), such as Caucasians, African-Americans and 

southern or south-eastern Asians. Since the frequency of the two main SNPs 

(CYP2C9 and VKORC1) is significantly different between races (Yin and 

Miyata, 2007), studies which have attempted to compare the accuracy of the 

various algorithms have found it difficult without statistically sufficient numbers 

of all the ethnic groups.

The warfarin patients available for this study in the Anticoagulant out-patient 

clinic at Huddersfield Royal Infirmary (n=808) consisted of 95.5% Caucasian 

(n=772), 1.5% Afro-Caribbean (n=12), 2.6% southern Asian (n=21) and 0.4% 

south-eastern Asians (n=3). Since there were statistically insufficient numbers 

of non-Caucasians for this study, the published algorithms used for comparison 

were only selected if either they were constructed from a cohort of Caucasian- 

only subjects or if race could be removed without any detriment to the final 

result (Gage et al, 2004; Gage et al, 2008; IWPC. 2009; Sconce et al, 2005; 

Voora et al, 2005; Wadelius et al, 2009; Zambon et al, 2011 and Zhu et al, 

2007).

In addition to genetic factors, three of the studies mentioned above also 

calculated the efficacy of algorithms constructed of clinical and demographic 

data only (Gage et al, 2008; IWPC, 2009 and Zambon et al, 2011). Whereas 

most have used age and a measure of body size (height, weight, BMI or BSA), 

other parameters such as interacting drugs, target INR, smoking status and 

gender have been used less frequently. The various parameters used in the 

published algorithms chosen for testing in this study are shown in Table 1.4.

1.8 Aims and objectives of the study

It is clear that OAT is a vital treatment in the prevention and treatment of 

thromboembolism. However, finding the correct therapeutic dose for any 

individual patient is difficult, due to the numerous interacting clinical, 

demographic and genetic factors that influence warfarin and its action. 

Achieving a therapeutic INR quickly and safely in the initial stages of treatment 

is, at the present time, one of trial and error in the vast majority of cases.
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Consequently, any mechanism by which an individual’s therapeutic dose could 

be predicted with more accuracy should, as a consequence, help in both 

achieving a safe state of anticoagulation more quickly and maintaining it for 

longer. The hypothesis is that, by designing a more comprehensive algorithm 

than has been achieved in previous studies, the warfarin dose requirement can 

be predicted in a greater number of patients, which can be applied in the future 

for patients during the initiation stage of warfarin therapy. This will be achieved 

by the following objectives:

Objective 1.

To test and validate the DNA extraction methodology, fingerprick blood samples 

will be taken from a small number of healthy adult volunteers.

Objective 2.

Capillary blood samples will be taken from approximately 200 stable 

warfarinised patients, together with demographic and clinical data. After PCR 

analysis of the samples, to determine the SNPs of each individual, all the data 

collected from 160 of these patients will be used to design two comprehensive 

dosing algorithms, one based on clinical and demographic data alone and one 

which includes genetic polymorphisms. The data collected on the remaining 

patients will then be entered into the new algorithms, as well as into published 

algorithms, to determine which one can most accurately predict the known 

stable therapeutic warfarin dose in this cohort.

Objective 3.

Venous and capillary blood samples, together with clinical and demographic 

data will be collected from approximately 40 patients before they begin warfarin 

therapy. The venous samples will be used to assay the baseline coagulation 

factors II, VII, IX and X, as well as albumin levels. The albumin and factor assay 

data will be examined by linear regression, in order to determine whether any of 

the parameters are significant in determining the eventual therapeutic dose. If 

so, these data could be used to design a future algorithm, because many district 

general hospitals would find an accurate dosing algorithm useful, and many do 

not have the facilities for PCR analysis, but do have the capability to assay 

coagulation factors and albumin. Therefore, it is hoped that the genetic data
37



may be substituted into the algorithm by albumin and coagulation factor levels 

and still maintain a high percentage of predictability, thereby producing a useful 

tool for many hospital anticoagulant departments in the UK.
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Chapter 2

Materials and methods 

2.1 Ethical approval

Ethical approval was obtained from the Leeds (Central) Research Ethics 

Committee for the National Research Ethics Service (Appendix I). Further 

approval was granted by the Research and Development Department, 

Calderdale & Huddersfield NHS Foundation Trust (Appendix II).

2.2 Subjects

Three separate groups of subjects were selected for the study; each group 

provided different information with regard to warfarin therapy that was ultimately 

used to produce the new dosing algorithms. Within each group, every subject 

was given a patient information sheet at least one week before their next clinic 

appointment and written consent was obtained prior to inclusion in the study. All 

subjects were Caucasian, due to the fact that previous studies have shown the 

absence of the selected SNPs in certain ethnic groups. In addition, less than 

10% of the patients attending the Anticoagulant Clinic at Huddersfield Royal 

(n=800) were non-Caucasian and consequently there were insufficient numbers 

to allow statistical analysis.

2.2.1 Group 1 - healthy controls
These consisted of healthy members of staff (n=12) from the Haematology 

Laboratory, Huddersfield Royal Infirmary.

2.2.2 Group 2 -  stable warfarin patients
These consisted of 207 individual patients, who regularly attended the out

patient warfarin clinic at Huddersfield Royal Infirmary. The time interval between 

appointments varied, depending on the stability of their INR result. However, no 

patient was allowed to go more than 12 weeks between tests. Each patient had
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been taking warfarin for several months, if not years, and were only included in 

the study if both their INR was within the therapeutic range at the time of their 

visit and there had been no warfarin dose change for at least the previous 8 

weeks. Data from 160 of these patients were used to construct the algorithms 

for determining the most appropriate warfarin dose in future patients. The data 

of the remaining 47 patients were used to test the predictability of the 

constructed algorithms.

2.2.3 Group 3 -  pre-warfarin treatment patients
Patients were recruited to this group (n=20) after referral to the Anticoagulant 

out-patient clinic but before they had commenced warfarin therapy. Data from 

this group were used to determine the baseline levels of the vitamin K 

dependent coagulation factors (Fll, FVII, FIX and FX) and serum albumin. The 

stable warfarin dose was recorded, once the INR had reached the therapeutic 

range.

2.3 Blood samples

2.3.1 Group 1 subjects

A finger prick blood sample of approximately 100 pi was obtained and placed on 

an FTA® card (Whatman International Ltd.). This was used to optimise the DNA 

extraction procedure and the PCR methodology. Samples were randomly 

numbered from 1 to 12 and anonymized.

2.3.2 Group 2 subjects

As part of their routine clinic appointment, patients have a 50 pi finger prick 

blood sample taken, in order to measure their INR using a Thrombotrak 2® 

point-of-care testing machine (Axis-Shield Ltd). For the study, a further 100 pi of 

blood for DNA analysis was obtained from the same puncture site and this was 

applied to an FTA® card, which was then labelled with the patient’s unique 

hospital number for identification purposes.
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2.3.3 Group 3 subjects

Similarly, each group 3 subject had 100 pi of blood taken for DNA analysis. As 

is the case for all patients before the commencement of warfarin therapy, 

routine venous blood samples were taken for full blood count (FBC), liver 

function tests (LFTs), urea and electrolytes (U&Es) and a coagulation screen. 

Permission was obtained in the consent form to use any remaining plasma from 

these samples to assay albumin levels and the vitamin K dependent 

coagulation factors.

2.4 Demographic information

All the demographic information required for the patients on warfarin therapy 

was obtained from the DAWN AC anticoagulation software (4S Information 

Systems Ltd). This software package is used as a tool to enable the Biomedical 

Scientists at the Calderdale and Huddersfield NHS Foundation Trust 

Anticoagulant Service to determine the optimum warfarin dose and next test 

interval on each individual patient, following an INR test result.

From the database, the gender and age were obtained for each patient in 

groups 2 and 3. The height and weight of all patients in both groups were 

obtained by a health care assistant at their out-patient clinic visit at the time of 

blood sampling.

2.5 Clinical information

The following clinical data were also obtained from the DAWN AC software for 

all patients in group 2:

• Clinical indication for anticoagulant therapy

• Target INR

• Concomitant medications

• Stable warfarin dose

In the case of group 3 patients, the clinical indication for warfarin therapy, 

concomitant medications and target INR were all obtained from the patients’

referral form. The patients’ stable INR and warfarin dose were obtained from the
41



DAWN AC database retrospectively, several weeks after the commencement of 

therapy.

2.6 DNA analysis

2.6.1 FTA® Elute cards
FTA® filter paper discs are designed for the collection and stabilisation of DNA 

from biological samples, prior to PCR analysis. They are impregnated with 

patented chemicals which both lyse cells to release the nucleic acids and also 

protect the DNA from microbial and fungal degradation. The blood samples are 

stable for several years, if stored in sealed pouches in a dry environment 

(www.whatman.com/FTAEIute.aspx#Orderinglnformation). Approximately 100 

pi of capillary whole blood was obtained from each subject in all three groups, 

which was applied to two separate areas on an FTA® card and allowed to dry at 

room temperature for over 2 hours. These were then stored in sealed plastic 

bags at room temperature, containing a desiccant packet.

Before the DNA extraction procedure, four 2mm sample discs were cut from 

each individual FTA® card, using a 2mm Harris Uni-Core device (Whatman 

International Ltd) and transferred to a pre-autoclaved 1.5ml PCR grade 

microcentrifuge tube (VWR International Ltd).

2.6.2 DNA extraction methods
Initial studies using the healthy control spots were performed to optimise the 

method for DNA extraction for subsequent PCR analysis.

2.6.2.1 QIAamp®DNA mini kit method (QIAGEN)
All the buffers provided by the manufacturer were proprietary with unknown 

chemical composition and concentration. Using the FTA® card samples from the 

group 1 subjects (n=12), 1 80jlxI buffer ATL was added to each microcentrifuge 

tube and incubated in a heating block at 85°C for 10 minutes.

After briefly centrifuging at room temperature and 6000g for 30 seconds, 20pl 

Proteinase K stock solution was added, the samples were vortexed and

incubated in a 56°C heating block for 60 minutes. Following a brief
4 2

http://www.whatman.com/FTAEIute.aspx%23Orderinglnformation


centrifugation as above, 200pl Buffer AL was added and, after immediate 

vortexing, the samples were incubated for a further 10 minutes at 70°C. The 

samples were again briefly centrifuged as above, before the addition of 200pl 

absolute ethanol and then vortexed thoroughly. Each sample was decanted by 

pouring into an individual Mini Spin Column, supplied in the kit, fitted to a 2ml 

tube and centrifuged at 6000g for 1 minute at room temperature. The filtrate 

was then discarded and 500pl Buffer AW1 added without wetting the rim of the 

column.

After a second centrifugation at 6000g for 1 minute, the filtrate was discarded 

and 500pl Buffer AW2 was added to the column. The samples were centrifuged 

at 20,000g for a further 3 minutes, the filtrate was discarded and the columns 

were re-centrifuged at 20,000g for 1 minute. The collection tubes were 

discarded, clean tubes attached to the columns and 150pl Buffer AE was added 

to each. These were incubated at room temperature for 1 minute before 

centrifugation at 6000g for a further minute. The columns were discarded, the 

DNA solution was then pipetted into a sterile Eppendorf tube, labelled and 

stored at -70°C. The DNA extracted from the samples was quantified using the 

Nanodrop® technique (section 2.6.2.2).

2.6.2.2 DNA quantification by NanoDrop®
All the samples of extracted DNA were quantified using a NanoDrop® ND-100 

Spectrophotometer (NanoDrop Technologies Inc., http://www.nanodrop.com). 

The absorbance at 260nm, using 1pl of each sample, gave the DNA 

concentration in ng/ml and the purity was determined from the ratio of the 

absorbance at 260nm to the absorbance at 280nm.

2.6.2.3 PCR analysis of the extracted DNA from the Group 1 subjects
A Taqman® allele probe for a common SNP unrelated to the study was used in 

order to assess the quality of the DNA, together with a Universal PCR Master 

Mix (Applied Biosystems Ltd.). The extracted DNA was analysed by PCR, in 

order to determine its integrity. The total reaction volume for each well of a 96- 

well Microamp™ optical plate was 10pl, consisting of 5pl Master Mix, 0.5pl 

probe and 4.5pl DNA (diluted in sterile pre-DEPC treated water) to a
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concentration of 10ng/4.5pl. A negative control was included in two wells of 

each run which, instead of DNA, consisted of 4.5|j| pre-DEPC treated water 

only. Each sample was run in duplicate.

2.6.2.4 QIAamp®DNA mini kit modified method (QIAGEN)
As poor results were obtained from the initial extraction method above (see 

results section 3.1), the following modifications to the protocol were made:

a) After the addition of Buffer AW2 and centrifugation, the tube and filter 

were cleaned thoroughly with a tissue.

b) Following the centrifugation at 20,000g, each filter was cleaned with a 

tissue after the collection tube had been discarded.

c) The final incubation with Buffer AE at room temperature was extended 

from 1 to 5 minutes.

The extracted DNA was again quantified using the Nanodrop® technique, as 

above.

2.6.2.5 Ethanol precipitation of haem
Due to the poor PCR results from section 2.6.2.2 (see results section 3.1), the 

extracted DNA samples were treated in order to remove any haem 

contamination derived from the original FTA® cards.

A 1/10 volume (4pl) of sodium acetate (3M, pH 5.2) and 120pl of 100% ethanol 

was added to 40pl of each extracted DNA sample in a 1.5ml microcentrifuge 

tube. These were incubated overnight at -20°C and centrifuged at >14,000x g 

for 30 minutes at room temperature. The supernatant was discarded, taking 

care not to lose the DNA pellet, which was then rinsed with 70% ethanol and 

centrifuged as before for 15 minutes. After discarding the supernatant, the DNA 

was resuspended in 60pl of sterile water for injection. The extracted DNA was 

again quantified using the Nanodrop®technique.

A total of five samples, covering a range of DNA concentrations (0.6-3.3ng/pl), 

were chosen for PCR analysis, as in section 2.6.2.2, with each sample being 

analysed in duplicate.
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2.6.2.6 Whatman® method for DNA extraction
Following poor results from the ethanol precipitation samples (see results 

section 3.1), a third DNA extraction method, as recommended by Whatman®, 

was performed. As only a small amount of sample remained from the group 1 

FTA® cards, discs were used from the first four group 2 subjects.

Four 2mm FTA® sample discs were each placed in a 1.5ml microcentrifuge 

tube, 500pl of sterile water for injection was added and pulse vortexed three 

times for a total of five seconds. Excess liquid was removed from the discs by 

gentle squeezing against the side of the tube with a sterile pipette tip, before 

transferring the disks to a clean, pre-autoclaved microcentrifuge tube containing 

75pl of sterile water for injection. All the tubes were transferred to a heating 

block at 95°C for 30 minutes, with pulse vortexing half way through the 

incubation. At the end of the incubation, each tube was pulse vortexed for 

approximately 60 times and briefly centrifuged for 30 seconds, in order to 

separate the discs from the eluate containing the eluted DNA. Using a sterile 

pipette tip, the discs were removed from each tube and the eluted DNA was 

measured by the Nanodrop® technique before storing at '20°C until analysis.

2.6.3 PCR methodology

2.6.3.1 General principles
The PCR methodology is based on the use of a thermostable DNA polymerase 

enzyme from the Thermophilus aquaticus bacterium (Taq), which amplifies DNA 

segments. The process occurs in three stages, with approximately 40-50 cycles 

at each stage:

1. Denaturation causes the hydrogen bonds between the double strands of 

DNA to be broken, forming two separate strands. This occurs at approximately 

95°C.

2. An annealing phase, at 55-65°C, allows two specific primers, or 

oligonucleotides, to match and bind to complementary sequences on the DNA 

strands, resulting in amplification of the region of interest. The primers are
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present in excess, compared to the DNA concentration, in order to maximise 

the chance of encountering the correct template.

3. The extension phase occurs at approximately 72°C, where the Taq 

polymerase adds a deoxynucleotide triphosphate (present in the reaction 

mixture) to an exact complementary match on the DNA template. This creates a 

DNA chain which complements the template.

2.6.3.2 Applied Biosystems TaqMan® Drug Metabolism Genotyping 

Assays
Each genotyping assay kit contains two specific TaqMan® probes 

(www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/general 

documents/cms_040597.pdf) each with a reporter dye at the 5’ end. The probe 

for allele 1 is linked to a VIC® reporter dye and the allele 2 probe to a FAM™ 

reporter dye. In addition, each probe is attached to a Minor Groove Binder 

(MGB) and a non-fluorescent quencher. The MGB allows the design of shorter 

probes by increasing the melting temperature for the specific probe length, 

while the quencher, at the 3’ end, allows detection of the reporter dye. In 

addition to the probes, each SNP assay requires TaqMan® Universal PCR 

Master Mix. This contains the DNA polymerase (AmpliTaq Gold®), the 

deoxynucleotide triphosphates and ROX™ Passive reference, an internal 

reference dye, which allows the signal from the reporter dye to be normalized, 

in order to correct for any internal fluctuations in the fluorescence. A graphic 

representation of the SNP assay is shown in Fig. 2.1.

2.6.3.3 Methodology for the SNPs VK0RC1, CYP2C9*2 and *3 & CYP4F2.
All samples from patient groups 2 and 3 were analysed for each of the four 

selected SNPs. In every run, each sample was assayed in duplicate in a 96-well 

MicroAmp™ Optical plate. The total reaction mixture for each well was 10pl, 

consisting of 5pl Master Mix, 0.5pl probe and 4.5pl DNA (diluted in sterile pre- 

DEPC treated water) to a final concentration of 10ng/4.5pl. A negative control 

was included in two wells of each run which, instead of DNA, consisted of 4.5pl 

pre-DEPC treated water. Each plate was covered with MicroAmp™ Optical 

Adhesive Film before placing in the Applied Biosystems’ StepOne™ Real-Time
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PCR Thermal Cycler and programming the recommended setting, as given in 

the assay data sheet (Table 2.1).

Table 2.1 Applied Biosystems PCR thermal cycler 

conditions

Times and temperatures

Initial step Denature Anneal/extend
Hold 50 cycles

10 min at 95°C 15 secs at 92°C 90 secs at 60°C

A 2 min HOLD step at 50°C was recommended prior to the initial 10 min at 95°C 

when using the TaqMan® Universal Master Mix.

2.6.3.4 Nucleotide sequences of the assay probes.
The nucleotide sequence of the forward primer with the SNP in square brackets 

were as follows:

CYP4F2
CCCCGCACCT CAGGGT CCGGCCACA[C/T]AGCT GGGTT GT GAT GGGTT CC 

GAAA

CYP2C9*2
GAT GGGGAAGAGGAGCATT GAGGAC[C/T]GT GTT CAAGAGGAAGCCCGCT 

GCCT

CYP2C9*3
TGTGGT GCACGAGGTCCAGAGATAC[C/A]TT GACCTT CTCCCCACCAGCCT 

GCC

VKORC1
GATTATAGGCGTGAGCCACCGCACC[G/A]GGCCAATGGTTGTTTTTCAGGT

CTT
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2.6.3.5 Reading and analysis of the plates

The StepOne™ software performed a genotype on the whole reaction plate 

simultaneously by plotting the fluorescent intensity of the reporter dyes from 

each well as an Allelic Discrimination Plot (Fig. 2.2) and assigned a genotype to 

each cluster of results according to their position. Fluorescence from the VIC® 

dye probe indicated the presence of allele 1 and allele 2 was denoted by 

fluorescence from the FAM™ dye. Heterozygosity for both alleles appeared as 

a diagonal cluster.

2.7. Coagulation factor assays

Citrated whole blood samples from group 3 subjects were centrifuged at 4000g 

for 8 minutes at room temperature. The plasma was aliquoted into screw 

capped polypropylene tubes, which were labelled with the patient’s hospital 

number and stored at -70°C within 2 hours of collection. Coagulation factors 

have previously been shown to be stable at this temperature for at least 18 

months (Woodhams et al, 2001). Assay of factors II, VII, IX and X were 

performed on an ACL TOP® analyser (Instrumentation Laboratory Ltd), using 

the vitamin K factor assay programme. The assays are based on the principle of 

turbidimetric clot detection. The coagulation end-point is determined by 

measuring the change in optical density of the samples during the reaction via 

transmitted light at 671 nm. The light absorption of the sample increases in 

proportion to the formation of a fibrin clot and consequently the decreasing 

transmittance through the sample is measured by a photo detector. The signal 

is then processed via computer software to determine the clot end-point. Before 

the analysis of the patients’ samples, a new calibration curve was constructed 

for each of the coagulation factors and all subsequent assay runs included a 

normal and a low control sample (HemosIL® normal control plasma and 

HemosIL® special test control level II).
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Fig. 2.2 Allelic discrimination plot
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Reproduced with kind permission from Applied Biosciences.

2.8 Albumin assay

Albumin levels on group 3 patients were performed in the Clinical Chemistry 

Department, Huddersfield Royal Infirmary, using a Randox Albumin 2 kit 

(Randox Laboratories Ltd.) and the Siemens Advia 2400 analyser (Siemens 

Healthcare Diagnostics, IL, USA). Briefly, the assay uses the indicator 5,5-
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dibromo-o-cresolsulphonphthalein (bromocresol purple, BCP), which binds 

quantitatively to serum albumin. The absorbance of the albumin-BCP complex 

is them measured using a spectrophotometer method at 600nm. The assay was 

calibrated using Randox Calibration serum Level 3 and controlled daily with 

Randox Assayed multisera levels 2 and 3. The method is linear up to 60.0 g/L 

and has a minimum detectable albumin concentration of 5.98g/L.

2.9 Statistical analysis

Statistical analyses were performed using MedCalc for Windows version 9.6.0.0 

(MedCalc Software, Mariakerke, Belgium). The Box and Whisker plots were 

produced using Microsoft® Excel Starter 2010 version 14.0.6112.5000 

(Microsoft Corporation). All data were tested for normality using the Kolmogorov 

Smirnov test and any which proved to be non-parametric were logarithmically 

transformed before analysis. The Pearson correlation coefficient was used to 

test the relationship between continuous variables and the warfarin dose; the 

means and standard deviations of the non-continuous parameters were 

analysed using the Student t-test. Comparisons between the means of 

continuous data was performed using the Analysis of Variance (ANOVA) and 

for non-continuous data by the Chi squared (x2) test. In all cases, a p value 

<0.05 was regarded as significant.
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Chapter 3 

Results

3.1 Demographic data

The demographic data is shown in Table 3.1. Only age and weight showed a 

non-parametric distribution, using the Kolmogorov Smirnov test, so these data 

were logarithmically transformed in order to calculate the means. Of the group 2 

subjects (n=207), 111 were male and 96 were female, with a mean age of 66.2 

years. The height (mean 1.69m) and weight (mean 85.8Kg) were used to 

calculate both the BSA (mean 2.00m2) and the BMI (mean 30.0 Kg/m2), using 

the following formulae:

BSA = Vfweiqht in Kg x height in m) (Mosteller, 1987)

36

BMI = weight (Kg) (World Health Organisation)

[Height (m)]2

The subjects were divided into two groups (based on the numerical order of 

their unique hospital number) consisting of an algorithm construction cohort 

(n=160) and an algorithm validation cohort (n=47). The analysis of variance 

(ANOVA) between the two groups showed no significant differences for age 

(p=0.815), height (p=0.116), weight (p=03821), BSA (p=0.671) and BMI 

(p=0.230). The pre-warfarinised patients (group 3, n=20) consisted of 15 males 

and 5 females, with an age range of 42-85 years (mean 68.6).

3.2 Clinical data

The clinical data, shown in Table 3.2, was taken from each subject’s entry on 

the DAWN 4S® dosing software and had been provided initially, at the start of 

the warfarin therapy, by the referral from the patient’s GP or consultant. The 

majority of all group 2 subjects (n=207) had a target INR of 2.5 (81.2%) and 

significantly less with a target of 3.0 or 3.5 (6.7% and 12.1% respectively). The 

commonest clinical indication for warfarin therapy was AF (51.2%), followed by 

DVT (17.4%), mechanical prosthetic heart valve (13.5%) and PE (9.7%). Other 

indications totalled 8.4%. Of the long term drugs which are known to interact.
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with warfarin, 72 subjects (34.8%) were taking simvastatin, 28 (13.5%) 

omeprazole, 24 (11.6%) low dose aspirin and 20 (9.7%) amiodarone.

Using analysis of variance (ANOVA), there was no significant difference 

between the means of the construction cohort (n=160) and the validation cohort 

(n=47), with respect to the daily warfarin dose (F=0.603, p=0.4.8) and the target 

INR (F=1.097, p=0.296). The majority of subjects in both of these sub groups 

had a target INR of 2.5 (81.9% and 78.7% respectively). Comparison of the 

non-continuous data between the construction and validation cohorts was done 

using the Chi squared test (x2) and, in all the clinical details and interacting 

drugs, no significant differences were shown between the two groups.

The serum albumin and vitamin K dependent coagulation factors were assayed 

on all group 3 (pre-warfarinised) subjects (n=20) and all the parameters showed 

a normal distribution (Table 3.3).

Table 3.3 Albumin and coagulation factor levels for group 3 

subjects (n=20)

Mean ±SD Range

Albumin, g/L 39.9 2.8 34-45

F II, % 96.6 12.7 69-131

F VII, % 105.3 20.8 68-151

F IX, % 147.5 20.5 120-212

F X, % 104.3 12.3 75-125

3.3 DNA extraction

The DNA yield obtained by the different extraction methods is shown in Table 

3.4. The concentration, obtained from blood spots on the FTA® cards by the 

QIAamp mini kit (section 2.6.2.1), ranged from 6.2-12.4 ng/pl (mean=9.5 ng/pl, 

SD±1.71). The PCR analysis of the samples failed to produce any allelic 

discrimination using the common SNP assay (Fig 3.1). After implementing some 

modifications to the QIAamp method (section 2.6.2.3), the amount of DNA 

extracted was significantly lower than the original method, ranging from 2.0-6.9
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ng/pl (mean=3.6 ng/pl, SD±1.37). Consequently, PCR analysis of the samples 

was not performed. The samples were treated in order to remove any haem 

contamination and produced even lower amounts of DNA 

(range 0.4-3.3 ng/pl, mean=1.6 ng/pl, SD±0.82). PCR analysis of samples 4, 7, 

8, 9 and 11 (which were chosen as they covered a range of DNA 

concentrations) using the same SNP assay, did not show any allelic 

discrimination (Fig 3.2).Table 3.5 shows the DNA yield from a selection of group 

2 subjects (n=4), using the Whatman® extraction method (section 2.6.2.5). The 

amount of DNA obtained was significantly higher than with the previous 

methods (range 17.0-32.3 ng/pl, mean=21.3 ng/pl, SD 7.33). PCR analysis, 

using the VKORC1 SNP assay (Fig 3.3) showed good allelic discrimination in 

three samples. Subjects 2 and 3 were homozygous for each allele (GG and AA 

respectively) and sample 4 was heterozygous. Sample 1 was undetermined. 

Therefore, for future genotyping experiments, the Whatman® extraction method 

was used to extract the DNA from all the patient samples.

Table 3.4 DNA yields using various extraction methods

DNA (ng/pl)

Sample number QIAamp method Modified 

QIAamp method

After haem 

extraction

1 6.2 3.4 1.8

2 7.4 3.5 0.4

3 9.5 2.0 1.2

4 8.5 2.8 1.8

5 9.8 5.4 1.5

6 9.3 2.4 1.7

7 10.6 4.0 1.0

8 10.0 3.3 0.6

9 12.4 3.4 3.3

10 10.4 3.0 1.1

11 8.2 6.9 2.3

12 11.3 2.5 2.4

Mean 9.5 3.6 1.6

SD 1.71 1.37 0.82
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Table 3.5 DNA yields of selected group 2 subjects using the 

Whatman® extraction method

Sample number DNA (ng/pl
1 18.2

2 32.3

3 17.0

4 17.8

Mean 21.3

±SD 7.33
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Fig 3.1 Allelic discrimination plot of group 1 

subject DNA (n=12) using the QIAamp  

extraction method.

All samples were assayed singularly and the sample number is indicated by 

each allele plot.

Neg ctrl= negative control using water instead of DNA.

Allelic D iscrim ination Plot

123.1

.6

2.1

11

101.0

1.1

0.6

0.1

-0.4

N e g  C trl

-0.2 0.0 0.2 0.4 0.6 0.8-0.4
Allele 1

Legend

•  Homozygous Allele 1 /Allele 1 •  Homozygous Allele 2/Allele 2
•  Heterozygous Allele 1 /Allele 2 xUndeterm ined
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Fig 3.2 Allelic discrim ination plot of selected  

group 1 subjects DNA (n=5) following the precipitation 

of haem.

All samples were assayed in duplicate and the sample number is indicated by 

the side of each allele plot.

Neg ctr!= negative control using water instead of DNA.

Allelic Discrim ination Plot

0.055
X  7 X s

0.045

n eg  Ctrl

110.035

n eg  Ctrl

0.025

0.015

0.0050

-0.0050

11

0.048 0.053 0.058 0.063 0.068 0.073
Allele 1

Legend

•  Homozygous Allele 1 /Allele 1 m Homozygous Allele 2/Allele 2
•  Heterozygous Allele 1 /Allele 2 xUndeterm ined
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Fig 3.3 VK0RC1 SNP assay results of selected  

group 2 DNA samples (n=4) using the 

Whatman® extraction method.

All samples were assayed in duplicate and the sample number is indicated 

by the side of each allele plot.

Neg ctrl= negative control using water instead of DNA

Allelic Discrimination Plot
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2
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Legend

•  Homozygous Allele 1 /Allele 1 •  Homozygous Allele 2/Allele 2
•  Heterozygous Allele 1 /Allele 2 xUndetermined
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3.4 Pharmacogenetic data
The pharmacogenetic data for all groups of subjects is shown in Table 3.6. In 

the case of the VKORC1 polymorphisms, there were slightly more GA types 

(44.9%) compared to the wild-type GG (40.6%) in all group 2 subjects (n=207). 

For CYP2C9, the frequencies of the *2 and *3 alleles (*2/*2, *2/*3 and *3/*3) 

(5.8%) were much lower than either the homozygous wild-type (*1/*1) or 

heterozygous *1 alleles (*1/*2 and *1/*3) (94.2%). The majority of group 2 

subjects were homozygote wild-types for the CYP4F2 C allele (59.4%), with 

only 40.6% possessing one or two T alleles. There were no significant 

differences in the numbers of the three SNPs between the construction and 

validation cohorts, as demonstrated by the Chi squared test.

3.4.1 The variation of the warfarin dose within the various SNPs
Figure 3.4 shows the effect of each individual polymorphism on the stable 

warfarin dose, using data from the construction cohort (n=160). The median 

daily warfarin dose was 4.0mg in the CYP2C9 homozygous wild type (*1/*1), 

which was the same as in the *1/*2 genotype. However, this was significantly 

higher than found in *1/*3 (2.7mg), *21*2 (2.0mg), *2/*3 (1.0mg) and *3/*3 

(0.5mg). The median daily dose was 5.3mg in the VKORC1 wild type (GG), 

which was higher than that found in the GA (3.5mg) and AA (2.3mg) genotypes. 

The wild type CYP4F2 (CC) had a median dose of 3.5mg/day, which increased 

in the presence of the T allele (CT 4.0mg and TT 5.5mg).

3.4.2 The effect of the number of SNPs on the warfarin dose
Using the data from all the group 2 subjects (n=207) in order to obtain a 

significant number of allele combinations, each subject was categorised 

depending on the number of polymorphisms they possessed (Figure 3.5). 

Those who exhibited only the wild type for each of the three genes (VKORC1 

GG, CYP2C9 *1/*1 and CYP4F2 CC) had a median daily warfarin dose of 

5.8mg. An increase in the number of SNPs present (1, 2 or 3) showed a 

corresponding decrease in the median dose (3.7mg, 3.5mg and 3.0mg 

respectively), despite the possible presence of a CYP4F2 SNP which has the 

effect of increasing the warfarin dose.
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3.5 Construction of the clinical/demographic algorithm

Using the data from the construction cohort (n=160), correlation analysis was 

performed between each continuous variable (age, weight, height, BSA and 

BMI) and the stable warfarin dose (Table 3.7 a). Since age and weight were 

shown to be non-parametric, using the Kolmogorov Smirnov test, these data 

were logarithmically transformed. For each of the non-continuous variables 

(gender, smoking status and the interacting drugs), a Student-t test was 

performed to compare the means and SDs of the stable warfarin dose, 

depending on whether the variable was present or absent, i.e. smoker and non- 

smoker, male and female etc. These data are shown in Table 3.7 b. There was 

a strong correlation between age and the warfarin dose (p<0.001). Similarly 

height, weight, BMI and BSA showed significant correlations; however, this 

would be expected as height and weight are functions of the BSA and BMI. For 

the non-continuous variables, gender (p=0.020), smoking status (p=0.018) 

amiodarone use (p=0.012), AF (p<0.0001) and DVT (p=0.030) appeared to 

have a significant effect on the stable warfarin dose.

3.5.1 Simple regression analysis of the clinical and demographic variables

As the published algorithms use either the square root (V) or log of the warfarin 

dose (see Appendix XI), these data in the construction cohort were tested using 

Kolmogorov Smirnov analysis, to determine which transformation produced the 

best indication of normality. Raw warfarin dose data was rejected as having a 

normal distribution (p=0.036), but both the log and square root of the data were 

shown to be parametric (p=0.256 and p=0.544 respectively). It was therefore 

decided that, in the following regression analyses and the final algorithms, the 

square root of the warfarin dose would be used, due to it having a higher p 

value.

3.5.1.1 Simple regression analysis of the continuous clinical and 

demographic variables versus actual warfarin dose
In order to determine if the continuous variables would require transformation in

the final algorithms, regression analyses were performed between the Vdose

and either the raw data, the V data or the log data (Table 3.8).
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Table 3.7a Correlation coefficients (r) between the actual 

warfarin dose and the continuous demographic and clinical 

variables for the construction cohort (n=160).

Significant p value <0.05

r P

Age -0.4953 <0.0001

Weight 0.3097 0.0001

Height 0.3136 <0.0001

BSA 0.3407 <0.0001

BMI 0.2123 0.0070

Table 3.7b Student t-test for the stable warfarin dose versus the 

presence or absence of the non-continuous clinical and 

demographic variables in the construction cohort (n=160).

Significant p value <0.05

t statistic P

Male -2.344 0.020

Female 2.344 0.020
Smoking status -2.386 0.018

Simvastatin 1.774 0.078
Amiodarone 2.555 0.012

Omeprazole 1.377 0.171

Aspirin 0.361 0.719

AF 4.541 <0.0001
DVT 2.188 0.030

PE 0.719 0.473
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Table 3.8 Regression analysis of the actual warfarin dose 

versus the continuous clinical and demographic variables

a) Vdose vs. variable

b) Vdose vs. ^variable

c) Vdose vs. log variable

p values significant if <0.05

a
R* F ratio P

Age 0.236 48.898 <0.001

Weight 0.100 17.588 <0.001

Height 0.069 11.688 0.001

BSA 0.120 21.505 <0.001

BMI 0.049 8.111 0.005

b
R* F ratio P

VAge 0.229 46.907 <0.001

VWeight 0.106 18.734 <0.001

^Height 0.069 11.738 0.001

VBSA 0.121 21.708 <0.001

VBMI 0.050 8.370 0.004

c

R* F ratio P
log Age 0.218 43.991 <0.001

log Weight 0.107 18.998 <0.001

log Height 0.069 11.783 0.001

log BSA 0.120 21.612 <0.001

log BMI 0.051 8.511 0.004

All the variables had similar R2, F ratio and p values, irrespective of the 

transformation method, when compared to the raw data. It was therefore

decided, for simplicity, to use the raw data in the multiple regression analysis.
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3.5.1.2 Simple regression analysis of the non-continuous clinical and 

demographic variables versus actual warfarin dose
As the non-continuous variables (smoking status, gender, clinical indication for 

warfarin therapy and use of interacting drugs) could not be transformed, simple 

regression analysis was performed on these data (Table 3.9), in order to 

confirm the results of the Student t-test (Table 3.6b).

Table 3.9 Sim ple regression analysis for the actual warfarin  

dose versus the non-continuous clinical and dem ographic  

variables in the construction cohort (n=160).

Significant p value <0.05

R F ratio P
Smoking status 0.028 4.579 0.034

Simvastatin 0.012 1.984 0.161
Amiodarone 0.039 6.414 0.012

Omeprazole 0.013 2.081 0.151

Aspirin 0.001 0.087 0.769

Male 0.027 4.321 0.039

Female 0.027 4.321 0.039
AF 0.124 22.342 <0.001
PE 0.004 0.626 0.430

DVT 0.027 4.398 0.038

The results showed that the variables with a significant effect on the warfarin 

dose were smoking status (p=0.0.34), amiodarone use (p=0.012), gender 

(p=0.039), AF (p<0.001) and DVT (p=0.038), confirming the results of the 

Student t-test.
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3.5.1.3 Simple regression analysis of the target INR versus actual warfarin 

dose

Although the target INR is a non-continuous variable, there are three possible 

values i.e. 2.5, 3.0 and 3.5. In order to perform the regression analysis, these 

data were converted into the dummy variables Zi and Z2:

Target INR 2.5 3.0 3.5

Z1 1 0 0

Z2 0 1 0

Using these dummy variables in a regression analysis, the target INR showed a 

significant effect on the warfarin dose (F ratio 16.975, p<0.001) and therefore it 

was included in the final algorithms.

3.5.1.4 Multiple regression analysis of the significant clinical and 

demographic variables
The multiple regression analysis, for the construction of the algorithms may be 

performed either forwards or backwards, with the possibility of different results 

by the two methods. Therefore, the clinical data, which had previously been 

shown to have a significant effect on the warfarin dose, was entered into the 

multiple regression calculation by both methods (Table 3.10).

There was no difference in the outcome of the results when using either the 

forward or backward regression. The same variables (age, BSA, smoking 

status, amiodarone use and target INR) were included in both methods and 

showed exactly the same co-efficient and p values. Both methods removed 

weight, height, BMI, gender, AF and DVT from the regression model. 

Consequently, the final clinical/demographic algorithm was constructed using a 

forward multiple regression model.
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Table 3.10 Multiple regression analysis of the actual warfarin  

dose versus the significant clinical and demographic data, by 

the a) forward and b) backward methods, for the construction  

cohort (n=160).

Significant p value <0.05

a)
Dependent Y Vwarfarin dose
Method Forward
Enter variable if P< 0.05
Remove variable if P> 0.1
Sample size 160
Coefficient of determination R2 0.3595
Readjusted 0.3387
Multiple correlation coefficient 0.5996
Residual standard deviation 0.4061
Regression Equation
Independent variables Coefficient Std. Error t P
(Constant) 1.3139
age -0.01239 0.002627 -4.718 <0.0001
BSA 0.4058 0.1235 3.285 0.0013
smoking status 0.2073 0.09332 2.222 0.0278
amiodarone -0.3187 0.1030 -3.096 0.0023
target INR 0.2602 0.09412 2.765 0.0064
F-Ratio 17.2855
Significance level P0.001

b)
Dependent Y 
Method
Enter variable if P< 
Remove variable if P>

Vwarfarin dose
Backward
0.05
0.1

Sample size
Coefficient of determination R2 
Readjusted
Multiple correlation coefficient 
Residual standard deviation

160
0.3595
0.3387
0.5996
0.4061

Independent variables Coefficient Std. Error
-... . - ' - V

t P
(Constant) 1.3139
age -0.01239 0.002627 -4.718 <0.0001
BSA 0.4058 0.1235 3.285 0.0013
smoking status 0.2073 0.09332 2.222 0.0278
amiodarone -0.3187 O'1030 -3.096 0.0023
target INR 0.2602 0.09412 2.765 0.0064
F-Ratio 17.2855
Significance level P<0.001
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3.5.1.5 The clinical/demographic algorithm
Using the data from the forward multiple regression analysis of the significant 

clinical and demographic data (Table 3.10a), the following algorithm was 

constructed:

Warfarin dose = [1.3139 - (0.01239 x age) + (0.4058 x BSA)

(mg/day) + (0.2073 x smokes) - (0.03187 x amiodarone)

+ (0.2602 x target INR)]2

where: age (in years) and BSA (in m2)

smokes = 1 for a smoker and 0 for a non-smoker 

amiodarone = 1 (present) or 0 (absent)

3.6 Simple regression analysis of the genetic polymorphisms versus 

the actual warfarin dose

A simple regression calculation was performed on each of the polymorphisms 

(Table 3.11). The results showed that four of the twelve SNPs had no significant 

effect on the Vwarfarin dose, CYP2C9 *1/*2 (p=0.862), VKORC1 GA (p=0.346), 

CYP4F2 CT (p=0.205) and CYP4F2 TT (p=0.053). From the Box and Whisker 

plot of the various SNPs (Figure 3.4), the median warfarin dose for CYP *M*2 

was the same as for the wild-type *1/*1; however, the other three 

polymorphisms did display a visible difference in the median dose as compared 

to the wild-type. Following this discrepancy, it was decided to include all the 

SNPs in a multiple regression analysis.

3.6.1. Multiple regression analysis of the genetic polymorphisms versus 

the actual warfarin dose
A multiple regression analysis, both forwards and backwards, was performed on 

all the polymorphism data against the square root of the warfarin dose, without 

the clinical or demographic variables, but no results could be calculated. The 

process was repeated without inputting the wild-type genes (CYP2C9 *1/*1, 

VKORC1 GG and CYP4F2 CC). The results are shown in Table 3.12.
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The forward regression model removed the CYP4F2 CT and TT SNPs and 

produced an adjusted R2 of 0.3582 (F ratio 13.675, p<0.001). Using the 

backward regression produced a higher adjusted R2 of 0.3686 but a lower F 

ratio of 12.6008 (p<0.001). This method also included CYP4F2 TT, but with a 

high p value of 0.0631. Based on these data, it was decided to use the forward 

regression method for the final calculation of the pharmacogenetic algorithm, 

based on the higher F ratio.

Table 3.11 Simple regression analysis for the actual warfarin  

dose versus the SNPs in the construction cohort (n=160).

Significant p value <0.05

SNP R2 F ratio P

CYP *1/*1 0.0662 10.776 0.001

CYP *1/*2 0.0002 0.030 0.862

CYP *1/*3 0.0378 6.213 0.014

CYP *21*2 0.0270 4.390 0.038

CYP *2 I*Z 0.0675 11.437 0.001

CYP *3/*3 0.0419 6.912 0.009

VKORC1 GG 0.1211 21.778 <0.001

VKORC1 GA 0.0056 0.593 0.346

VKORC1 AA 0.1494 22.761 <0.001

CYP4F2 CC 0.0310 5.046 0.026

CYP4F2 CT 0.0101 1.618 0.205

CYP4F2 TT 0.0235 3.804 0.053
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Table 3.12 Multiple regression analysis of the actual warfarin  

dose versus the SNPs in the construction cohort (n=160) by a) 

forward and b) backward methods.

Significant p value <0.05

a)
Dependent Y Vwarfarin dose
Method Forward
Enter variable if P< 0.05
Remove variable if P> 0.1
Sample size 160
Coefficient of determination R2 0.3864
Readjusted 0.3582
Regression Equation
Independent variables Coefficient Std. Error t P

I (Constant) 2.3100
VKORC1 GA -0.2336 0.06922 -3.374 0.0009
VKORC1 AA -0.6978 0.1023 -6.818 <0.0001
CYP2C9 *1/*2 -0.1968 0.08055 -2.444 0.0157
CYP2C9 *1/*3 -0.5586 0.1399 -3.993 0.0001
CYP2C9 *21*2 -0.5866 0.1845 -3.179 0.0018
CYP2C9 *21*2 -0.9429 0.2347 -4.017 0.0001
CYP2C9 *3/*3 -0.9051 0.4098 -2.209 0.0287
Variables not included in the model
CYP4F2 CT
CYP4F2 TT
F-Ratio 13.6750
Significance level P<0.001

b)
Dependent Y Vwarfarin dose
Method Backward
Enter variable if P< 0.05
Remove variable if P> 0.1
Sample size 160
Coefficient of determination R2 0.4003
Readjusted 0.3686
Regression Equation

Coefficient Std. Error t P
(Constant) 2.2811
VKORC1 GA -0.2109 0.06972 -3.026 0.0029
VKORC1 AA -0.7046 0.1016 -6.937 <0.0001
CYP2C9 *M*2 -0.1909 0.07996 -2.387 0.0182
CYP2C9 *1/*3 -0.5448 0.1390 -3.920 0.0001
CYP2C9 *21*2 -0.5757 0.1831 -3.145 0.0020
CYP2C9 *2/*3 -0.9193 0.2331 -3.943 0.0001
CYP2C9 *3/*3 -0.8694 0.4069 -2.137 0.0342
CYP4F2 TT 0.2382 0.1273 1.872 0.0631
Variables not included in the model
CYP4F2 CT
F-Ratio 12.6008
Significance level P<0.001
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3.6.2 Multiple regression analysis of all the relevant clinical, demographic 

and genetic data versus the actual warfarin dose.
Using the clinical and demographic data from 3.5.1.5 and the genetic data from

3.6.1, a forward multiple regression analysis was performed (Table 3.13). This 

gave an adjusted R2 value of 0.6268 (F ratio 23.250, p<0.001). CYP4F2 CT was 

removed from the model, together with smoking status, which had the highest p 

value (p=0.0278) in the clinical regression model.

From these data (Table 3.13) the following pharmacogenetic algorithm was 

produced:

Warfarin dose = [1.9708 - (0.01145 x age) + (0.3119 x BSA)

(mg/day) - (0.3766 x amiodarone) + (0.1768 x target INR)

- (0.6863 x VKORC1 AA) - (0.2136 x VKORC1 GA)

- (0.1957 x CYP2C9 *1/*2) - (0.435 x CYP2C9 *1/*3)

- (0.3524 x CYP2C9 *21*2) - (0.8539 x CYP2C9 *2/*3)

- (0.6471 x CYP2C9 *3/*3) + (0.228 x CYP4F2 TT)]2

where: age (in years) and BSA (in m2)

amiodarone = 1 (present) or 0 (absent)

SNPs = 1 (present) or 0 (absent)

3.7 Correlation and simple regression analyses of the albumin and factor 
assay data from the group 3 subjects (n=20) versus the actual warfarin 

dose.
The pre-warfarin levels of albumin and factors II, VII and X showed no 

correlation with the warfarin dose (Table 3.14). However, there was an inverse 

correlation between the warfarin dose and factor IX (r=-0.6078, p=0.005). These 

data were confirmed using a simple regression analysis (Table 3.15), in which 

factor IX had an R2 value of 0.3694 (F ratio=10.545, p=0.004).

Factor IX was the only parameter accepted by a forward multiple regression 

model, giving an adjusted R2 of 0.3342 (co-efficient = -0.0139 p=0.005, F ratio = 

10.539 p = 0.004).
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Table 3.13 Forward multiple regression analysis of the actual 

warfarin dose versus the clinical, demographic and genetic 

data in the construction cohort (n=160).

Significant p value <0.05

Dependent Y Vwarfarin dose
Method Forward
Enter variable if P< 0.05
Remove variable if P> 0.1
Sample size 160
Coefficient of determination R2 0.6549
Readjusted 0.6268
Multiple correlation coefficient 0.8093
Residual standard deviation 0.3051
Regression Equation
Independent variables Coefficient Std. Error « P
(Constant) 1.9708
CYP2C9 *1/*2 -0.1957 0.06183 -3.165 0.0019
CYP2C9 *17*3 -0.4350 0.1077 -4.037 0.0001
CYP2C9 *21*2 -0.3524.... ...... ....... ...... 0.1429 -2.466 0.0148
CYP2C9 *21*3 -0.8539 0.1804 -4.732 <0.0001
CYP2C9 *3/*3 -a6471 0.3140 -2.061 0.0411
VKORC1 AG -0.2136 0.05467 -3.907 0.0001
VKORC1 AA -0.6863 0.07892 -8.696 <0.0001
CYP4F2 TT 0.2280 0.09833 2.318 0.0218
Age -0.01145 0.0020 -5.723 <0.0001
BSA 0.3119 0.09398 3.319 0.0011
Amiodarone -0.3766 0.07718 -4.880 <0.0001
Target INR 0.1768 0.07281 2.428 0.0164
F-Ratio 23.2500
Significance level P<0.001
Variables not included in the model
CT
Smoking status
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Table 3.14 Correlation of the actual warfarin dose versus  

albumin and coagulation factors in the group 3 subjects (n=20).

Significant p value <0.05

r P
Albumin -0.3408 0.142

F II 0.1330 0.576

F VII -0.0072 0.976

FIX -0.6078 0.005

FX -0.3802 0.098

Table 3.15 Simple regression analysis of the actual warfarin  

dose versus albumin and coagulation factors in the group 3 

subjects (n=20).

Significant p value <0.05

R2 F ratio P
Albumin 0.1161 2.365 0.141

F II 0.0177 0.324 0.576

F VII 0.0001 0.001 0.976

FIX 0.3694 10.545 0.004

FX 0.1445 3.041 0.098
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Chapter 4

Discussion

There is little doubt that the use of warfarin, both therapeutically and 

prophylactically, has made a major impact on the treatment of thromboembolic 

disease in the last sixty years or so and countless millions of lives have been 

saved worldwide during this time. However, the dosing of warfarin is unlike the 

majority of drug therapies available to clinicians, in so far as there is no linear 

titration between the dose and its pharmacological effect. In addition, the 

consequences of under or over estimating the dose in any given patient can 

have serious outcomes with regard to morbidity and mortality.

It is with these facts in mind that several groups have attempted to formalise a 

dosing schedule based on frequent, often daily INR testing (Fennerty et al, 

1984; Tait and Sefcick, 1997). These studies have been shown to reduce the 

time taken for the INR to become therapeutic at initiation, as well as reducing 

the number of adverse events when compared to the usual trial and error 

approach used by many anticoagulant centres. However, with the emergence of 

pharmacogenetics and the discovery of SNPs which have been shown to have 

a significant influence on the stable warfarin dose, other studies have attempted 

to create a dosing regimen from a mathematical algorithm, by combining 

different combinations of clinical, demographic and genetic factors (Zambon et 

al, 2011; Sconce et al, 2005; D’Andrea et al, 2005).

It was the aim of this study to create two new algorithms using as many 

variables as possible, all of which had previously been shown to have a 

significant effect on the stable warfarin dose. The first algorithm was composed 

of clinical and demographic data obtained from a cohort of stable 

anticoagulated patients, in order to show that it is possible to improve the 

accuracy of warfarin dosing at the beginning of the treatment. If successful in 

practice, this would lead to a reduction in the number of adverse events, as well 

as attaining the therapeutic INR range more quickly, in centres which do not 

have the facilities for DNA analysis.

The second algorithm consisted of the same clinical and demographic data, but 

also included genotype data on four SNPs which have been shown to have a



significant effect on the pharmacokinetics and pharmacodynamics of warfarin 

therapy (see section 1.6.1). By combining all these parameters, it was the 

intention to improve the predictability of warfarin dosing beyond that of 

previously published algorithms, since many of these used only a selection of 

demographic, clinical and genetic parameters.

4.1 The demographic and clinical data

From the total number of warfarin patients available for the study (n=808), not 

all were invited to take part. During the time of recruitment, many had 

completed their course of therapy and were therefore discharged from the 

outpatient clinic before they could be asked to participate. In addition, some 

patients refused (n=25), while others were unsuitable according to the Leeds 

(Central) Research Ethics Committee criteria, due to varying degrees of 

dementia.

Further limitations on the number of patients available for the study came from 

the fact that all subjects were required, at the time of recruitment, to have an 

INR within the therapeutic range for at least the previous eight weeks. 

Inevitably, some subjects did not fulfil this criterion during the course of the 

study. In addition, a decision was made during the design of the study to only 

include Caucasian subjects. This was primarily done due to the fact that there 

were statistically insufficient numbers of non-Caucasians available (see 1.7). In 

addition, it has been shown that some SNPs which have an effect on the stable 

warfarin dose are more prevalent in non-Caucasians (see 1.6.1.1) and it was 

not financially possible to include all of these in the study, even if the numbers 

of non-Caucasians had been higher. In trying to produce an algorithm without 

these SNPs but including non-Caucasians in the cohort would have meant 

skewing the final results and therefore decreasing the efficacy of the algorithm 

produced.

With this in mind, published algorithms were chosen for comparison with the 

one constructed in this study only if they were created either using Caucasian- 

only data or a racially heterogeneous group but which allowed for Caucasian 

subjects to be entered into the final algorithm without any detriment to its 

predictability.
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4.1.1 Demographic factors

In the final regression analysis, age was shown to be a significant factor in 

determining the stable warfarin dose (p>0.0001), confirming the findings of 

many other studies and which was included in all the chosen algorithms. 

However, although there was a significant correlation between the stable 

warfarin dose and gender (p=0.020) (see section 3.5), in the final multiple 

regression analysis it was removed by the Medcalc software. A possible 

explanation is that, as females generally tend to have a smaller body mass than 

males, the combination of height, weight, BMI and BSA into the model was 

sufficient to override the influence of gender. In addition, the correlation 

coefficients for height and BSA (Table 3.7a) were more highly significant 

(p<0.0001) than those for weight and BMI (p=0.0001 and p=0.007 respectively), 

suggesting that the latter were removed in the multiple regression. The eight 

published algorithms chosen for comparison with this study all use various 

combinations of gender and/or body mass, so it appears to suggest that, as 

stated in section 1.6.3, the relationship between the stable warfarin dose and 

gender is not a direct one but multifactorial and that some provision of either 

gender or body mass in an algorithm would be an overarching parameter for 

this particular aspect of warfarin dosing. Furthermore, to include a measure of 

body mass instead of gender in an algorithm would negate the problem of 

reducing the warfarin dose for large females or increasing it for small males.

4.1.2 Interacting drugs

The number of drugs which have an effect on an individual’s stable warfarin 

dose is extensive and it would not have been possible to investigate them all in 

this study. Those which were chosen are the most commonly encountered long 

term drugs used by patients attending the Huddersfield Royal Infirmary 

anticoagulant clinic and, although drugs such as antibiotics can also 

significantly affect warfarin in the short term and therefore require closer I NR 

monitoring at the time, amiodarone, simvastatin and aspirin may cause a 

permanent reduction in the warfarin dose (Holbrook et a/, 2005). In the chosen 

published algorithms, which included interacting drugs, three found amiodarone 

and statins to have a significant influence (Gage et al, 2004; Gage et a/, 2008; 

Voora et al, 2005) and one found amiodarone alone to have a significant
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influence (IWPC, 2009). Interestingly, the two studies by Gage et al (2004 & 

2008) also found prophylactic aspirin to have a significant effect, but the patient 

cohorts were much larger than this study (n=329, n=1015 respectively). In this 

study, 13.1% of patients in the construction cohort were taking aspirin (n=21), 

but this proved not to be significant in the simple regression analysis R2=0.001, 

p=0.769, see Table 3.9)

In this study, although simvastatin was the commonest drug among the 

construction cohort (33.8%), only amiodarone, taken by 11.9%, was found to 

have a statistically significant influence on the stable warfarin dose and was 

included in the final algorithm. This reinforces our current practice in which 

patients taking amiodarone are initiated on a lower warfarin dose than those 

who are not, or are monitored more frequently if starting amiodarone while 

already on warfarin.

4.1.3 Clinical parameters

Simple regression analysis for the clinical indications of warfarin therapy (Table 

3.9) showed a significant relationship between AF (p<0.001) and DVT (p<0.038) 

and the warfarin dose, but not for PE (p=0.430). However, in the construction of 

the algorithm, the clinical indications for OAT were removed. It is difficult to 

justify how the clinical condition can have any bearing on the final stable dose; a 

more obvious related parameter would be the target INR. Gage et al (2008) 

found that the presence of an active VTE (PE or DVT) increased the warfarin 

dose by 7% (p=0.013) and was significant enough to be included in the final 

algorithm. But the study also included patients with a range of target INRs, 

which could have been responsible for the findings. In the other algorithms, 

clinical details were either not noted (Voora et al, 2005; Zhu et al, 2007) or were 

found not to be significant (Sconce et al, 2005; Wadelius et al, 2009; Zambon et 

al, 2011; IWPC, 2009; Gage et al, 2004). It is worth noting however, that the 

Wadelius and Zambon studies only selected patients with a target INR of 2.5 

and not any other therapeutic ranges. It seems logical to assume, therefore, 

that the target INR, which is determined by the clinical indication for OAT (Table 

1.1) is more likely to have a direct influence on an individual’s warfarin dose 

requirement than the clinical condition, due to the fact that the higher the target
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INR is, the more warfarin would be needed to reach that level of 

anticoagulation.

4.1.4 Coagulation factors and albumin levels (Group 3 patients)

Although some studies have investigated the possible effect of the genotypes of 

the vitamin K dependent coagulation factors II, VII, IX and X (see section 

1.6.1.5), there is no literature on whether the actual plasma levels, i.e. the 

phenotype of these factors, is a possible influencing parameter on the stable 

warfarin dose before OAT induction. Since these factors are affected once 

warfarin therapy has commenced, functional assays of factors II, VII, IX and X 

were performed on a cohort of patients before the initiation of warfarin, to 

assess whether a higher baseline level in any of the four factors could be 

reflected in an eventual higher stable warfarin dose and vice versa. Similarly, as 

approximately 99% of warfarin is albumin bound in vivo (Gage and Lesko, 

2008) and it is only the free drug which is pharmacologically active, samples 

were taken at warfarin initiation for albumin assay, in order to determine 

whether the baseline albumin level had any influence on the stable warfarin 

dose (Table 3.3). This was based on the hypothesis that low albumin levels may 

not be sufficient to bind 99% of the warfarin and therefore more unbound drug 

would be available to affect the coagulation factors, leading to a reduced 

warfarin dose requirement.

Unfortunately the cohort of patients was small (n=20), due partly to the fact that 

many of the patients were new to the clinic and, unlike the construction and 

validation cohorts, did not know the staff. This meant that, despite explaining 

the research project, many felt it would have been a long term commitment and 

therefore refused. Others did not want their DNA analysed, fearing that the data 

would be detrimental to them in the future. In addition, as the patients were not 

known to the clinic staff before attending for their first appointment, many had 

some form of dementia and were not capable of signing the consent form or of 

understanding the information sheet, which had been sent to them several days 

before their clinic visit. The numbers of new patients available for study were 

also significantly reduced due to the fact that all cases of DVT and PE had been 

commenced on warfarin as in-patients, before attending the clinic and, as such, 

the coagulation factor assays could not be performed. Therefore, the remaining
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patients available for study were mainly those diagnosed with AF. However, 

soon after the study began, the Cardiology Department implemented a new 

treatment pathway in which the Cardiology consultants commenced the AF 

patients on three days of warfarin, before referral to the Anticoagulant clinic on 

day 4 for INR monitoring. In all, these problems severely limited the number of 

subjects suitable for this part of the study.

Nevertheless, a small number of subjects (n=20) were assayed for albumin and 

the vitamin K dependent factors, to determine if there was any correlation with 

the eventual stable warfarin dose (Tables 3.14 and 3.15). From the five 

parameters studied, only FIX showed a significant correlation (r= -0.6078 p= 

0.005). Several studies have investigated the possibility of a relationship 

between the coagulation factors and the warfarin dose (Shikata et al, 2004; 

Caldwell et al, 2007; Aquilante et al, 2006), but these have involved sequencing 

SNPs coding for the proteins and it is unclear from the literature what effect any 

of the different alleles have on either their plasma levels (as measured by 

immunological assays) or on their activity (as measured by functional assays). 

Consequently, it is difficult to determine what relationship there may be between 

the various alleles and the warfarin dose. In the papers mentioned above, no 

relationship was shown, however, D’Andrea et al (2008) reported a mutation in 

the factor IX propeptide which caused a selective reduction in its activity during 

warfarin therapy and which occurred in <1.5% of the population studied.

The findings of this study for the factor IX correlation are anomalous. Firstly, the 

correlation is negative, so that a decrease in factor IX activity suggests an 

increase in the warfarin dose. Secondly, as factor IX is part of the intrinsic 

coagulation cascade (see Figure 1.1), it does not affect the prothrombin time 

and therefore the INR. More subjects would need to be studied in order to shed 

more light on this finding.

4.2 The clinical/demographic algorithm

Regression analysis, using the clinical and demographic data from the 

validation cohort (n=47), was performed using the clinical algorithm from this 

study (see section 3.5.1.5), together with three published clinical algorithms 

(Gage et al, 2008, IWPC, 2010 and Zambon et al,2011) and the results are 

shown in Table 4.1.
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Table 4.1 Comparison of the four clinical algorithms using data 

from the validation cohort (n=47)

NB R2 represents the amount of variation in the data which is explained by the 

regression; i.e. R2=0.50 means that 50% of the variation in warfarin dose is 

explained by the algorithm.

This study Gage et al 

(2008)

IWPC

(2010)

Zambon et al 

(2011)

R2 0.188 0.263 0.268 0.203

F ratio 10.413 16.084 16.469 11.138

P 0.002 <0.001 <0.001 0.001

Using the data from the validation cohort (n=47) for each of the algorithms, the 

one produced in this study gave the lowest predictability of the stable warfarin 

dose (R2=0.188). However, there is a wide variation between the results from 

the other three formulae and those stated in their individual papers. Gage et al 

(2008) had a 17% predictability (n=292), IWPC (2010) 26% (n=1009) and 

Zabon et al (2011) 31% (n=97). The overall results appear to confirm the 

difficulty in comparing the inter-algorithm validity due to the different parameters 

included in the formulae and the numbers of subjects in each validation cohort. 

Furthermore, whereas Gage et al (2008) calculated the predictability of the 

clinical algorithm using the whole of their validation cohort data, the Zabon et al 

(2011) cohort was divided into three groups, <3.6mg/day, >3.6<6.4mg/day and 

>6.4mg/day (low, medium and high doses respectively), based on 1.4mg/day 

below or above the standard daily loading dose of 5mg. The predictability for 

each group (16.8%, 56.8% and 9.6% respectively) was used to determine 

whether using the clinical algorithm would have under- or overdosed the 

patients when compared to the standard 5mg daily trial and error approach. 

Similar results were produced by the IWPC (2010) of 24%, 53% and 13% for 

low, medium and high stable doses (<3mg/day, >3<7mg/day and >7mg/day 

respectively. Both studies show that the predictability of their respective clinical



algorithms was highest in the intermediate dose group. In order to do the same, 

the validation cohort for this study was divided into three groups according to 

the interquartile ranges of the stable warfarin dose and the data is shown in 

Table 4.2.

Table 4.2 Predictability of the clinical algorithm in low, medium  

and high warfarin doses in the validation cohort (n=47).

25th quartile = 2.8mg/day

75th quartile = 5.0mg/day

<2.8mg/day

(n=12)

>2.7<5.0mg/day

(n=24)

>5.0mg/day 

(n=11)

R2 0.009 0.077 0.016

F Ratio 0.095 2.075 0.150

P 0.764 0.162 0.708

Although the results show no statistical significance, it is interesting to note that, 

as with Zambon et al (2011) and IWPC (2010), the clinical algorithm has a 

higher predictability in patients who require an intermediate warfarin dose but is 

less effective with the low and high dose groups. This could be explained, at 

least in part, due to the absence in the algorithms of warfarin sensitive or 

resistant SNPs, although a much larger cohort of patients would probably have 

increased the predictability to a level more comparable with the other studies.

4.3 DNA extraction problems

Blood samples were obtained from healthy laboratory staff (Group 1 subjects, 

n=12), for optimisation of the DNA extraction procedure and PCR analysis, in 

order not to use up samples from the warfarin patients. The first extraction 

method, using the QIAamp® DNA mini kit (section 2.6.2.1) produced low yields 

of DNA (mean=9.5 ng/pl, ±SD 1.71), which failed to show any allelic 

discrimination with a common SNP assay. Various modifications to the
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methodology were performed, including the precipitation of any haem 

contamination, but the DNA yields and PCR results did not improve. The results 

were unexplainable, even though the extraction method provided by the 

QIAamp® kit was followed implicitly.

Because a large amount of the healthy control samples had been used, a small 

number of group 1 samples (n=4) were selected for the Whatman® extraction 

method (Table 3.5). These produced a much higher DNA yield (mean=21.3 

ng/pl, ±SD 7.33) and all but one showed clear allelic discrimination (Figure 3.3); 

the negative result for sample 1 may have been due to a pipetting error. This 

method was then used for the DNA extraction on all the warfarin patient 

samples (groups 2 and 3 subjects). The final Whatman ® extraction procedure 

proved to be the cheapest and quickest method for isolating a substantial yield 

of DNA from the FTA® Elute cards.

4.4 Pharmacogenetic data; a comparison of the frequencies with the other 
published algorithm studies

The SNPs which have been shown beyond doubt to cause a significant 

reduction of the stable warfarin dose (Gage, 2006) are VKORC1 and CYP2C9 

(see sections 1.6.1.1-1.6.1.3). In addition, Caldwell et al, (2008) discovered that 

the CYP4F2 SNPs have the effect of increasing the warfarin requirement. The 

majority of these studies have simply investigated the relationship between the 

warfarin dose and the presence of the polymorphisms, but a few have used the 

data in order to design algorithms which, together with clinical and demographic 

data, have been able to improve the predictability of warfarin dosing beyond 

that of simple clinical algorithms (Gage et al, 2004; Sconce et al, 2005; Voora et 

al, 2005; Zhu et al, 2007; Gage et al, 2008; IWPC, 2009; Wadelius et al, 2009; 

Zambon et al, 2011). Although there have been more published algorithms, 

these ones were chosen for comparison with the formula produced in this study 

(section 3.6.2) as the ethnicity of the subjects in the data used had no effect on 

the final outcome.

4.4.1 Comparison of the VKORC1 and CYP2C9 SNP frequencies from this 

study with the chosen algorithms. The frequencies of the VKORC1 and 

CYP2C9 SNPs from this study and some of the chosen algorithm papers are 

shown in Table 4.3.
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The frequencies of some SNPs are not shown; Gage et al (2008) did not state 

the frequency of either gene, Gage et al (2004) and Voora et al (2005) did not 

analyse the VKORC1 gene and Gage et al (2004) and Zhu et al (2007) did not 

subdivide the frequencies of the individual CYP2C9 SNP combinations. Those 

studies which did state the individual SNP frequencies compare favourably to 

those from this study. With the exception of Zhu et al (2007), who only used a 

small cohort of patients (n=65), all the algorithms showed that the heterozygous 

GA allele for VKORC1 was more prevalent than either of the homozygous 

alleles GG and AA.

For the CYP2C9 alleles, all the studies demonstrated a decrease in the 

frequency from the wild type (*1/*1) through to the rare *3/*3 SNP, except Voora 

et al (2005) with a study consisting of 48 subjects.

4.4.2 Comparison of the CYP4F2 SNP frequencies from this study with the 

chosen algorithms

Since its discovery by Caldwell et al (2008), several studies have recently been 

published which have examined the effect of the CYP4F2 SNPs on warfarin 

dosing (Carlquist et al, 2010; Pautas et al, 2010; Wells et al, 2010; Kringen et 

al, 2011; Zambon et al, 2011). The frequencies of the three alleles (CC-wild 

type, CT and TT) from these papers and from this study are compared in Table 

4.4. All the studies, with the exception of Carlquist et al (2010), were conducted 

on Caucasian subjects and a comparison of the frequencies shows a distinct 

similarity for each allele, with CC having the highest occurrence and TT the 

lowest.

In summary, the frequencies for both the wild type and the variant alleles of 

VKORC1, CYP2C9 and CYP4F2 from this study are of comparable levels to 

those found in the chosen published algorithms.
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4.5 The pharmacogenetic algorithm

The chosen published pharmacogenetic algorithms and the one constructed in 

this study were used to calculate a predicted warfarin dose, using the relevant 

data from the validation patient cohort (n=47). Regression analysis was then 

performed on the resultant doses for each algorithm in order to compare the 

predicted and actual warfarin doses and the data is shown in Table 4.5.

Each individual paper containing the chosen algorithms states a different 

predictability with their own patient cohort than was found with the validation 

cohort from this study. However, the data shown in Table 4.5 compares all the 

algorithms with the same data set; all formulae show a high level of significance 

(p<0.001) with varying degrees of predictability (R2 0.309-0.553). The algorithm 

from this study produced the highest R2 value (0.553), indicating that 55.3% of 

the warfarin dose variability can be explained by using this formula. This 

suggests that, by including as many clinical, demographic and genetic 

parameters as can be shown to have a significant influence on the warfarin 

dose, the efficacy of the algorithm can be improved.

4.6 Limitations of the study

As with many projects of this type, increasing the number of participants would 

have been expected to consolidate the outcomes reported here. Despite the 

fact that the pharmacogenetic algorithm from this study showed the highest 

warfarin dose predictability among all the chosen algorithms, there still remains 

approximately 45% of the dose variability which is unaccounted for. By 

increasing the number of patients in both the construction and validation 

cohorts, more examples of the long term drugs which interact with warfarin (i.e. 

simvastatin, omeprazole and aspirin) may have shown a significant correlation.

An increase in both cohorts may also have led to an improvement in the 

predictability of the clinical algorithm, which would be more useful to the 

majority of district general hospitals, as these usually do not have the capability 

for PCR SNP analysis. Furthermore, a much larger number of group 3 pre

warfarin patients would be necessary to definitively prove whether or not the 

baseline levels of the vitamin K dependent clotting factors and albumin were an
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Influence on the eventual stable warfarin dose, thereby improving both 

algorithms. This would also have helped to determine if the correlation between 

the warfarin dose and the factor IX levels was an anomaly or a true relationship.

Only Caucasian subjects were chosen for this study as previously stated 

(section 2.2). A larger study, which included a statistically significant number of 

ethnic groups, would have been preferable. However, in order to include other 

races and therefore a wider genetic variation, it would have been necessary to 

include many more SNPs in the study.

This study did not include any measurement of either alcohol or vitamin K 

intake. Trying to evaluate these parameters by patient self-assessment is 

unreliable, subjective and has been shown to have no significant correlation 

with the stable warfarin dose (Aquilante et al, 2006). However, Kamali et al 

(2000b) assayed plasma vitamin K levels and did find a significant relationship; 

however, the cost of establishing a vitamin K assay in most hospitals would be 

prohibitive.

4.7 The future of warfarin

Since this study was started, two new anticoagulant drugs have become 

available which have the potential to replace warfarin for a large number of 

patients. Dabigatran etexilate (Pradaxa®, Boehringer Ingelheim) is an oral anti

thrombin drug and has been approved for the prevention of stroke in non- 

valvular AF patients (National Institute for Clinical Excellence Guidelines, March 

2012), with a dose of 110mg or 150mg twice daily. The second drug, 

Rivaroxaban (Xarelto®, Bayer) is an anti-Xa drug which is administered orally 

once daily and has been approved for the treatment and prevention of DVT and 

PE in patients requiring anticoagulation for less than twelve months (National 

Institute for Clinical Excellence Guidelines, July 2012).

Both drugs have several advantages and disadvantages when compared to 

warfarin. Firstly, neither Dabigatran nor Rivaroxaban require any laboratory 

monitoring, as there is no definitive assay at the present time which correlates 

with the dose in a similar way to the INR and warfarin therapy. This has 

significant advantages for the patients, who do not have to arrange their 

working or social lives around frequent blood tests. However, this also means
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that any severe suppression of the coagulation mechanism cannot be detected 

until the patient presents with some evidence of haemorrhage. Secondly, non- 

compliance is not uncommon among warfarin patients, especially in the elderly 

with memory problems, which is only required to be taken once daily; in the 

case of Dabigatran, which is administered twice daily, there may be an increase 

in non-compliant events.

At the present time, Dabigatran and Rivaroxaban are much more expensive, at 

approximately £2.52 per day (National Institute for Clinical Excellence 

Guidelines, March 2012), when compared to a 5mg/day warfarin dose which 

costs £0.03 (British National Formulary. December 2011). The cost differential 

should decrease in time with an increase in use of the new anticoagulants but, 

in the present economic climate, clinicians may be reticent to prescribe them in 

order to prevent a sharp increase in their drug budget spending.

Despite the pros and cons, Dabigatran and Rivaroxaban are the closest that the 

pharmaceutical industry has come to replacing warfarin in over fifty years and 

they offer a real alternative which may irrevocably alter the way patients are 

anticoagulated in the future.

4.8 Future study

Despite the advent of the new anticoagulant drugs, warfarin will most likely be 

the drug of choice for many clinicians for the foreseeable future. In this case, 

any protocol which has the potential to minimise the occurrence of adverse 

events and maximise the time in the therapeutic range for warfarin patients has 

to be beneficial for their safety and wellbeing. Therefore, the next step from this 

study should be an attempt to increase the predictability of both the clinical and 

pharmacogenetic algorithms, using a much larger cohort of subjects; this would 

also help in determining whether the baseline coagulation factors and albumin 

have any significant effect on the stable warfarin dose. Once the algorithms 

have been constructed, they should both be used in a randomised clinical trial, 

together with the present trial-and-error dosing approach, to determine which 

method produces the least number of adverse events as well as increasing the 

time spent in the therapeutic range and decreasing the time taken to reach it. 

Such a study would need to include as many representatives of ethnic groups 

as well as SNP variations as possible, especially the newly reported VKOR
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3730G>A SNP, which has been associated with an increase in the warfarin 

dose requirement (Carlquist et al, 2010; Cini et al, 2012).

4.9 Summary

For almost sixty years, warfarin has been the principle drug of choice for the 

long term prevention and treatment of VTE and it has been estimated that 

approximately 500,000 people are taking oral anticoagulant therapy in the UK 

alone (Baglin et al, 2006). Although many of the demographic and clinical 

factors which affect the pharmacological actions of warfarin have been known 

for many years, it is only recently that the area of pharmacogenetics has 

opened up a whole new field of anticoagulant study. As a consequence, our 

understanding of the mechanisms of warfarin action has improved and the 

subsequent development of pharmacogenetic algorithms has, for the first time, 

provided clinicians and scientists with a tool for increasing the safety of warfarin 

dosing. However, there is still an on-going debate as to the value of such 

algorithms, not only due to the emergence of new therapies which do not 

require laboratory monitoring or dose titration, but also because of the expense 

of PCR analysis and the time taken to obtain a result.

Nevertheless, these algorithms do provide a clearer guideline as to the stable 

warfarin dose for an individual patient than either the trial and error approach or 

the protocols devised by studies such as Fennerty et al (1984) and Tate and 

Sefcick (1997). With advances in technology, it is possible that the time taken to 

perform the SNP assays may be reduced to hours instead of days in the near 

future, but this idea must be tempered with the fact that the new oral 

anticoagulant therapies would completely negate the need for algorithms 

altogether if and when they become the drugs of choice. In the meantime, the 

number of people worldwide who are taking warfarin remains very large and 

any system which can be proven to increase the effectiveness and safety of its 

use can only be beneficial to those patients.

98



References

Abdollahi, M., Cushman, M. and Rosendaal, F.R. (2003). Obesity: risk of 
venous thrombosis and the interaction with coagulation factor levels and oral 
contraceptive use. Thrombosis and Haemostasis, 89, 493-498.

Al-Ghoul, M. and Valdes, R. (2008). Fundamentals of pharmacology and 
applications in pharmacogenetics. Clinics in Laboratory Medicine, 28, 485-497.

Ansell, J., Hirsh, J., Hylek, E., Jacobson, A., Crowther, M. and Palareti, G. 
(2008). Pharmacology and management of the vitamin K antagonists. Chest, 
133, 160-198.

Aquilante, C.L., Langaee, T.Y., Lopez, L.M., Yarandi, H.N., Tromberg, J.S., 
Mohuczy, D., Gaston, K.L., Waddell, C.D., Chirico, M.J. and Johnson, J.A. 
(2006). Influence of coagulation factor, vitamin K epoxide reductase complex 
subunit 1 and cytochrome P450 2C9 gene polymorphisms on warfarin dose 
requirements. Clinical Pharmacology and Therapeutics, 79, 291-302.

Baglin, T.P., Cousins, D., Keeling, D.M., Perry, D.M. and Watson, H.G. (2006). 
Recommendations from the British Committee for Standards in Haematology 
and National Patient Safety Agency. British Journal of Haematology, 136, 26- 
29.

Beinema, M., Brouwers, J.R.B.J., Schalekamp, T. and Wilffert, B. (2008). 
Pharmacogenetic differences between warfarin, acenocoumarol and 
phenprocoumon. Thrombosis and Haemostasis, 100, 1052-1057.

Bertina, R.M. (2004). Elevated clotting factor levels and venous thrombosis. 
Pathophysiology of Haemostasis and Thrombosis. 33, 399-400.

Beyth, R.J., Quinn, L. and Landefeld, C.S. (2000). A multi component 
intervention to prevent major bleeding complications in older patients receiving 
warfarin. A randomised control trial. Annals of Internal Medicine, 133, 687-695.

Bick, R.L. (2003). Cancer-associated thrombosis. New England Journal of 
Medicine. 349, 109-111.

British Committee for Standards in Haematology (BCSH) (1998). Guidelines on 
oral anticoagulation: third edition. British Journal of Haematology, 101, 374-387.

British Committee for Standards in Haematology (BCSH) (2006). Guidelines on 
oral anticoagulation (warfarin): third edition-2005 update. British Journal of 
Haematology, 132, 277-285.

British National Formulary December 2011
Brooks, E.G., Tretman, W., Wadsworth, M.P., Taatjes, D.J., Evans, M.F., 
Littleman, F.P., Callas, P.W., Esmon, C.T. and Bovill, E.G. (2009). Valves of the 
deep venous system; the overlooked risk factor. Blood, 114, 1276-1279.

99



Broze, G.J. and Miletich, J.P. (1984). Human protein Z. Journal of Clinical 
Investigation, 73, 933-938.
Caldwell, M.D., Berg, R.M., Zhang, K.Q., Glurich, I., Schmelzer, J.R., Yale, 
S.H., Vidaillet, H.J. and Burmester, J.K. (2007). Evaluation of genetic factors for 
warfarin dose prediction. Clinical Medicine and Research, 5, 8-16.

Caldwell, M.D., Awad, T., Johnson, J.A., Gage, B.F., Falkowski, M., Gardina, 
P., Hubbard, J., Turpaz, Y., Langaee, T.Y., Eby, C., King, C.R., Brower, A., 
Schmelzer, J.R., Glurich, I., Vidaillet, H.J., Yale, S.H., Zhang, K.Q., Berg, R.L. 
and Burmester, J.K. (2008). CYP4F2 genetic variant alters required warfarin 
dose. Blood, 111, 4106-4112.

Campbell, H.A. and Link, K.P. (1941). Studies on the hemorrhagic sweet clover 
disease IV. The isolation and crystallization of the hemorrhagic agent. Journal 
of Biological Chemistry, 132, 21-33.

Cannegeiter, S., Rosendaal, E., Wintzen, A., van der Meer, E., Vandenbroucke, 
J. and Briet, E. (1995). Optimal oral anticoagulant therapy in patients with 
mechanical heart valves. New England Journal of Medicine, 333, 11-17.

Carlquist, J.F., Home, B.D., Muhlestein, J.B., Lappe, D.L., Whiting, B.M., Kolek, 
M.J., Clarke, J.L., James, B.C. and Anderson, J.L. (2006). Genotypes of the 
cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase 
complex subunit 1 conjointly determine stable warfarin dose: a prospective 
study. Journal of Thrombosis and Thrombolysis, 22, 191-197.

Carlquist, J.F., Horne, B.D., Mower, C., Park, J., Huntinghouse, J., McKinney, 
J.T., Muhlestein, J.B. and Anderson, J.L. (2010). An evaluation of nine genetic 
variants related to metabolism and mechanism of action of warfarin as applied 
to stable dose prediction. Journal of Thrombosis and Thrombolysis, 30, 358- 
364.

Cini, M., Legnani, C., Cosmi, B., Guazzaloca, G., Valdre, L., Frascaro, M. and 
Palareti, G. (2012). A new warfarin dosing algorithm including VKORC1 3730 
G>A polymorphism; comparison with results obtained by other published 
algorithms. European Journal of Clinical Pharmacology, 68, 1167-1174.

Closse, C., Seigneur, M., Renard, M., Pruvost, A., Dumain, P., Belloc, F. and 
Boisseau, M.R. (1997). Influence of hypoxia and hypoxia-reoxygenation on 
endothelial P-selectin expression. Thrombosis Research, 85, 159-164.

Copeland, C.E. and Six, C.K. (2009). A tale of two anticoagulants: warfarin and 
heparin. Journal of Surgical Education, 66, 176-181.

Crowther, M.A., Ginsberg, J.B., Kearon, C., Harrison, L., Johnson, J., 
Massicotte, P. and Hirsh, J. (1999). A randomized trial comparing 5-mg and 10- 
mg warfarin loading doses. Archives of Internal Medicine, 159, 46-48.

100



Dahlback, B., Carlsson, M. and Svensson, P.J. (1993). Familial thrombophilia 
due to a previously unrecognized mechanism characterized by poor 
anticoagulant response to activated protein C: prediction of a cofactor to 
activated protein C. Proceedings of the National Academy of Sciences of the 
USA, 90, 1004-1008.

Dahlback, B. (2000). Blood coagulation. Lancet, 355, 1627-1632.

D’Andrea, G., D’Ambrosio, R.L., Di Perna, P., Chetta, M., Santacroce, R., 
Brancaccio, V., Grandone, E. and Margaglione, M. (2005). A polymorphism in 
the VKORC1 gene is associated with an inter-individual variability in the dose- 
anticoagulant effect of warfarin. Blood, 105, 645-649.

D’Andrea, G., D’Ambrosio, R. and Margaglione, M. (2008). Oral anticoagulants: 
Pharmacogenetics. Relationship between genetic and non-genetic factors. 
Blood Reviews, 22, 127-140.

Dvorak, H.F., Quay, S.C. and Orenstein, N.S. (1981). Tumour shedding and 
coagulation. Science, 212, 923-924.

Elias, D.J and Topol, E.J. (2008). A big step forward for individualized medicine: 
enlightened dosing of warfarin. European Journal of Human Genetics, 16, 532- 
534.

Esmon, C.T. (1989). The roles of protein C and thrombomodulin in the 
regulation of blood coagulation. Journal of Biological Chemistry, 264, 4743- 
4746.

Esmon, C.T. (2009). Basic mechanisms and pathogenesis of venous 
thrombosis. Blood Reviews, 23, 225-229.

Fennerty, A., Dolben, J., Thomas, P., Backhouse, G., Bentley, G., Campbell, I. 
and Routledge, P. (1984). Flexible induction dosing regimen for warfarin and 
prediction of maintenance dose. British Medical Journal, 288, 1268-1270.

French, B., Joo, J., Geller, N.L., Kimmel, S.E., Rosenberg, Y., Anderson, J.L., 
Gage, B.F., Johnson, J.A. and Ellenberg, J.H. (2010). Statistical design of 
personalized medicine interventions: The Clarification of Optimal
Anticoagulation through Genetic (COAG) trial. Trials, 11, 108.

Gage, B.F. and Eby, C.S. (2003). Pharmacogenetics and anticoagulant therapy. 
Journal of Thrombosis and Thrombolysis, 16, 73-78.

Gage, B. F., Eby, C., Milligan, P.E., Banet, G.A., Duncan, J.R. and McLeod, 
H.L. (2004). Use of pharmacogenetics and clinical factors to predict the 
maintenance dose of warfarin. Thrombosis & Haemostasis, 91, 87-94.

Gage, B.F. and Milligan, P.E. (2005). Pharmacology and pharmacogenetics of 
warfarin and other coumarins when used with supplements. Thrombosis 
Research, 117, 55-59.

101



Gage, B.F. (2006). Pharmacogenetics-based coumarin therapy. American 
Society of Hematology Education Program, 467-473.

Gage, B.F. and Lesko, L.J. (2008). Pharmacogenetics of warfarin: regulatory, 
scientific and clinical issues. Journal of Thrombosis & Thrombolysis, 25, 45-51.

Garcia, D., Regan, S., Crowther, M., Hughes, R.A. and Hylek, E.M. (2005). 
Warfarin maintenance dosing patterns in clinical practice. Chest, 127, 2049- 
2056.

Gardiner, S.J. and Begg, E.J. (2006). Pharmacogenetics, drug-metabolizing 
enzymes and clinical practice. Pharmacological Reviews, 58, 521-590.

Geisen, C., Watzka, M., Sittinger, K., Steffens, M., Daugela, L., Seifried, E., 
Muller, C.R., Wienker, T.F. and Oldenburg, J. (2005). VKORC1 haplotypes and 
their impact on the inter-individual and inter-ethnical variability of oral 
anticoagulation. Thrombosis & Haemostasis, 94, 773-779.

Glurich, I., Burmester, J.K. and Caldwell, M. (2010). Understanding the 
pharmacogenetic approach to warfarin dosing. Heart Failure Review, 15, 239- 
248.

Greaves, M. (2005). Pharmacogenetics in the management of coumarin 
anticoagulant therapy: The way forward or an expensive diversion? PloS 
Medicine, 2, 342.

Gurwitz, J. H., Avorn, J., Ross-Degnan, D., Choodnovskiy, I. and Ansell, J. 
(1992). Aging and the anticoagulant response to warfarin therapy. Annals of 
Internal Medicine, 116, 901-904.

Hall, R. & Malia, R.G. (1991). Medical Laboratory Haematology, 2nd Ed., 
Butterworth-Heinemann.

Hamer, J.D., Malone, P.C. and Silver, I.A. (1981). The P02 in venous valve 
pockets; its possible bearing on thrombogenesis. British Journal of Surgery, 68, 
166-170.

Hickmott, H., Wynne, H. and Kamali, F. (2003). The effect of simvastatin co
medication on warfarin anticoagulation response and dose requirements. 
Thrombosis & Haemostasis, 89, 949-50.

Hoffbrand, A.V. and Pettit, J.E. (1993). Essential Haematology, 3rd Ed., 
Blackwell Science.

Holbrook, A.M., Pereira, J.A., Labiris, R., McDonald, H., Douketis, J.D., 
Crowther, M. and Wells, P.S. (2005). Systematic overview of warfarin and its 
drug and food interactions. Archive of Internal Medicine, 165, 1095-1106.

Holmes, R.W. and Love, J. (1952). Suicide attempt with warfarin, a 
bishydroxycoumarin-like rodenticide. Journal of the American Medical 
Association, 148, 935-937.

102



International Warfarin Pharmacogenetics Consortium (IWPC) (2009). 
Estimation of the warfarin dose with clinical and pharmacogenetic data. New 
England Journal of Medicine, 360, 753-764.

Janes, S., Challis, R. and Fisher, F. (2004). Safe introduction of warfarin for 
thrombotic prophylaxis in atrial fibrillation requiring only a weekly INR. Clinical 
and Laboratory Haematology, 26, 43-47.

Jonas, D.E. and McLeod, H.L. (2009). Genetic and clinical factors relating to 
warfarin dosing. Trends in Pharmacological Sciences, 30, 375-386.

Kamali, F., Edwards, C., Butler, T.J. and Wynne, H.A. (2000a). The contribution 
of plasma (R)- & (S)-warfarin and vitamin K concentrations to intra-individual 
variability in anticoagulation. Thrombosis & Haemostasis, 83, 349-350.

Kamali, F., Edwards, C., Butler, T.J. and Wynne, H.A. (2000b). The influence of 
(R)- and (S)-warfarin, vitamin K and vitamin K epoxide upon warfarin 
anticoagulation. Thrombosis & Haemostasis, 84, 39-42.

Kamali, F., Edwards, C., Wood, P., Wynne, H.A. and Kesteven, P. (2001). 
Temporal variations in plasma vitamin K and lipid concentrations and clotting 
factor activity in humans. American Journal of Hematology, 68, 159-163.

Kamali, F., Khan, T.I., King, B.P., Frearson, R., Kesteven, P., Wood, P., Daly, 
A.K. and Wynne, H. (2004). Contribution of age, body size and CYP2C9 
genotype to anticoagulant response to warfarin. Clinical Pharmacology and 
Therapeutics, 75, 204-212.

Kovacs, M.J., Rodgers, M., Anderson, D.R., Morrow, B., Kells, G., Kovacs, J., 
Boyle, E. and Wells, P.S. (2003). Comparison of 10-mg and 5-mg warfarin 
initiation normograms together with low molecular weight heparin for outpatient 
treatment of acute venous thromboembolism. Annals of Internal Medicine, 138, 
714-719.

Kringen, MK., Haug, K.B.F., Grimholt, R.M., Stormo, C., Narum, S., Opdal, 
M.S., Fosen, J.T., Piehler, A.P., Johansen, P.W., Seljeflot, I., Berg, J.P. and 
Brors, O. (2011). Genetic variation of VKORC1 and CYP4F2 genes related to 
warfarin maintenance dose in patients with myocardial infarction. Journal of 
Biomedicine and Biotechnology, Volume 2011, Article ID 739751, 1-5.

Kroegel, C. and Reissig, A. (2003). Principle mechanisms underlying venous 
thromboembolism: epidemiology, risk factors, pathophysiology and
pathogenesis. Respiration, 70, 7-30.

Krynetsky, E. and McDonnell, P. (2007). Building individualized medicine: 
prevention of adverse reactions to warfarin therapy. Journal of Pharmacology & 
Experimental Therapeutics, 322, 427-434.

Lai, S., Jada, S.R., Xiang, X., Lim, W.T., Lee, E.J.D and Chowbay, B. (2006). 
Pharmacogenetics of target genes across the warfarin pharmacological 
pathway. Clinical Pharmacokinetics, 45, 1189-1200.

103



Li, T., Chang, C.Y., Jin, D.Y., Lin, P.J., Khvorova, A. and Stafford, D.W. (2004). 
Identification of the gene for vitamin K epoxide reductase. Nature, 427, 541- 
544.

Lindh, J. (2009). Major determinants of outcome and dosing in warfarin 
treatment. Doctoral thesis from the Dept of Laboratory Medicine, Division of 
Clinical Pharmacology, Karolinska Institutet, Stockholm, Sweden. ISBN 978-91- 
7409-352-0.

Link, K.P. (1943). The anticoagulant from spoiled sweet clover hay. Harvey 
Lectures, 34, 153-216.

Link, K.P. (1959). The discovery of Dicoumarol and its sequels. Circulation, 19, 
97-107.

Linkins, L.A., Choi, P.T. and Douketis, J.D. (2003). Clinical impact of bleeding in 
patients taking oral anticoagulant therapy for venous thromboembolism: a meta 
analysis. Annals of Internal Medicine, 139, 893-900.

Loftus, C.M. (1996). Neurosurgical aspects of pregnancy. Neurosurgical Topics, 
number 494. Published by American Association of Neurological Surgeons.

Lopez, J.A., Kearon, C. and Lee, A.Y.Y. (2004). Deep venous thrombosis. In 
Haematology-American Society of Haematology Education Program Book, 
Washington D.C., American Society of Hematology, 439-456.

Lopez, J.A. and Chen, J. (2009). Pathophysiology of venous thrombosis. 
Thrombosis Research, 123, 530-534.

Lowe, G.D.O., Rumley, A., Woodward, M., Morrison, C.E., Philippou, H., Lane, 
D.A. and Tunstall-Pedoe, H. (1997). Epidemiology of coagulation factors, 
inhibitors and activation markers: the third Glasgow MONICA survey. I. 
Illustrative reference ranges by age, sex and hormone use. British Journal of 
Haematology, 97, 775-784.

Lubitz, S.A., Scott, S.A., Rothlauf, E.B., Agarwal, A., Peter, I., Doheny, D., Van 
Der Zee, S., Jaremko, M., Yoo, C., Desnick, J and Halperin, J.L. (2010). 
Comparative performance of gene-based warfarin dosing algorithms in a 
multiethnic population. Journal of Thrombosis and Haemostasis, 8, 1018-1026.

Margaglione, M., Colaizzo, D., DAndrea, G., Brancaccio, V., Ciampa, A., 
Grandone, E. and Di Minno, G. (2000). Genetic modulation of oral 
anticoagulation with warfarin. Thrombosis & Haemostasis, 84, 775-778.

McDonald, M.G., Reider, M.J., Nakano, M., Hsia, C.K. and Rettie, A.E. (2009). 
CYP4F2 is a vitamin Ki oxidase: an explanation for altered warfarin dose in 
carriers of the V433M variant. Molecular Pharmacology, 75, 1337-1346.

Mosteller, R.D. (1987). Simplified calculation of body surface area. New 
England Journal of Medicine, 317, 1098.

104



Myers, D.D., Hawley, A.E., Farris, D.M., Wrobleski, S.K., Thanaporn, P., 
Schaub, R.G., Wagner, D.D., Kumar, A. and Wakefield, T.W. (2003). P-selectin 
and leukocyte microparticles are associated with venous thrombogenesis. 
Journal of Vascular Surgery, 38, 1075-1089.

Myers, D.D., Rectenwald, J.E., Bedard, P.W., Kaila, N., Shaw, G.D., Schaub, 
R.G., Farris, D.M., Hawley, A.E., Wrobleski, S.K. and Henke, P.K. (2005). 
Decreased venous thrombosis with an oral inhibitor of P-selectin. Journal of 
Vascular Surgery, 42, 329-326.

National Institute for Health and Clinical Excellence, NICE (March 2012). 
Dabigatran etexilate for the prevention of stroke and systemic embolism in atrial 
fibrillation. NICE technology appraisal guidance 249.

National Institute for Health and Clinical Excellence, NICE (July 2012). 
Rivaroxaban for the treatment of deep vein thrombosis and prevention of 
recurrent deep vein thrombosis and pulmonary embolism. NICE technology 
appraisal guidance 261.

Niemela, O., Parkkila, S. and Pasanen, M. (1999). Induction of cytochrome 
P450 enzymes and generation of protein-aldehyde adducts are associated with 
sex-dependent sensitivity to alcohol-induced liver disease in micropigs. 
Hepatology, 30, 1011-1017.

Norris, L.A. (2003). Blood coagulation. Best Practice & Research Clinical 
Obstetrics & Gynaecology, 17, 369-383.

Oates, A., Jackson, P.R., Austin, C.A. and Channer, K.S. (1998). New regimen 
for starting warfarin therapy in outpatients. British Journal of Pharmacology, 46, 
157-161.

Oden, A. and Fahlen, M. (2002). Oral anticoagulation and risk of death: a 
medical record linkage study. British Medical Journal, 325, 1073-1075.

Palareti, G., Leali, N., Coccheri, S., Poggi, M., Manotti, C., D’Angelo, A., Pengo, 
V., Erba, N., Moia, M., Ciavarella, N., Devota, G., Berrettini, M. and Musolesi, S. 
(1996). Bleeding complications of oral anticoagulant treatment: An inception- 
cohort, prospective collaboration study (ISCOAT). The Lancet, 348, 423-428.

Pautas, E., Moreau, C., Gouin-Thibault, I., Golmard, J.L., Mahe, I., Lengendre, 
C. Taillandier-Heriche, E., Durand-Gasselin, B., Houllier, A.M., Verrier, P., 
Beaune, P., Loriot, M.A. and Siguret, V. (2010). Genetic factors (VKORC1, 
CYP2C9, EPHX1 and CYP4F2) are predictor variables for warfarin response in 
very elderly, frail inpatients. Clinical Pharmacology and Therapeutics, 87, 
Number 1, 57-64.

Pollock, B.E., 1955. Clinical experience with warfarin (coumadin) sodium, a new 
anticoagulant. Journal of the American Medical Association, 159, 1094-1097.

105



Poort, S.R., Rosendaal, F.R., Reitsma, P.FI. and Bertina, R.M. (1996). A 
common genetic variation in the 3’-untranslated region of the prothrombin gene 
is associated with elevated plasma prothrombin levels and an increase in 
venous thrombosis. Blood, 88, 3698-3703.

Reardon, M., Burns, B., Brewer, B. and O’Sullivan, J.P. (1995). Deaths 
associated with warfarin in elderly patients. British Journal of Clinical Practice, 
49, 322-323.

Reider, M.J., Reiner, A.P., Gage, B.F., Nickerson, D.A., Eby, C.S., McLeod,
H.L., Blough, D.K., Thummel, K.E., Veenstra, D.L. and Rettie, A.E. (2005). 
Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. 
New England Journal of Medicine, 352, 2285-2293.

Reider, M.J., Reiner, A.P. and Rettie, A.E. (2007). y-glutamyl carboxylase 
(GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. 
Thrombosis and Haemostasis, 5, 2227-2234.

Rettie, A.E., Korzekwa, K.R., Kunze, K.L., Lawrence, R.F., Eddy, A.C. and 
Aoyama, T. (1992). Flydroxylation of warfarin by human cDNA-expressed 
cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug 
interactions. Chemical Research in Toxicology, 5, 54-59.

Reynolds, K. K., Valdes, R., Hartung, B.R. and Linder, M.W. (2007). 
Individualizing warfarin therapy. Personalized Medicine, 4, 11-31.

Roderick, L.M. (1931). A problem in the coagulation of blood: “sweet clover 
disease of cattle”; North Dakota Agricultural Experimental Station. American 
Journal of Physiology, 96, 413-425.

Sagrieya, FI., Berube, C., Wen, A., Ramakrishnan, R., Mir, A., Flamilton, A. and 
Altman, R.B. (2010). Extending and evaluating a warfarin dose algorithm that 
includes CYP4F2 and pooled variants of CYP2C9. Pharmacogenetics and 
Genomics, 20, 407-413.

Schardein, J.L. and Macina, O.T. (2007). Fluman developmental toxicants: 
aspects of toxicology and chemistry. Published by Taylor and Francis Group, 
266-272.

Schofield, F.W. (1924). Damaged sweet clover: the cause of a new disease in 
cattle simulating haemorrhic septicemia and blackleg. Journal of the American 
Veterinary Medical Association, 64, 553-575.

Sconce, E. A., Khan, T. I., Wynne, FI.A., Avery, P., Monkhouse, L., King, B.P., 
Wood, P., Kesteven, P., Daly, A.K. and Kamali, F. (2005). The impact of 
CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon 
warfarin dose requirements: Proposal for a new dosing regimen. Blood, 106, 
2329-2333.

Sconce, E.A., Daly, A.K., Khan, T.I., Wynne, FI.A. and Kamali, F. (2006). APOE 
genotype makes a small contribution to warfarin dose requirements. 
Pharmacogenetics and Genomics, 16, 609-611.

106



Scordo, M.G., Pengo, V., Spina, E., Dahl, M.L., Gusella, M. and Padrini, R. 
(2002). Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin 
maintenance dose and metabolic clearance. Clinical Pharmacology and 
Therapeutics, 72, 702-710.

Sevitt, S. (1974). The structure and growth of valve-pocket thrombi in femoral 
veins. Journal of Clinical Pathology, 27, 517-528.

Shaw, P.B., Donovan, J.L., Tran, M.T., Lemon, S.C., Burgwinkle, P. and Gore, 
J. (2010). Accuracy assessment of pharmacogenetically predictive warfarin 
dosing algorithms in patients of an academic medical center anticoagulation 
clinic. Journal of Thrombosis and Thrombolysis, 30, 220-225.

Shikata, E., Leiri, I., Ishiguro, S., Aono, H., Inoue, K., Koide, T., Ohgi, S. and 
Otsubo, K. (2004). Association of pharmacokinetic (CYP2C9) and 
pharmacodynamic (factors II, VII, IX and X; proteins S and C; and y-glutamyl 
carboxylase) gene variants with warfarin sensitivity. Blood, 103, 2630-2635.

Silverstein, R.I., Bauer, K.A., Cushman, M. Esmon, C.T., Ershler, W.B. and 
Tracy, R.P. (2007). Venous thrombosis in the elderly: more questions than 
answers. Blood, 110, 3097-3101.

Tait, R.C. and Sefcick, A. (1997). A warfarin induction regimen for out-patient 
anticoagulation in patients with atrial fibrillation. British Journal of Haematology, 
101,450-454.

Virchov, R. (1856). Phlogose und thrombose in Gesamelte Abhandlungen zur 
Wissenschaftliegen. Medizin, Frankfurt, Germany, 492-505.

Voora, D., Eby, C., Linder, M.W., Milligan, P.E., Bukaveckas, B.L., McLeod,
H.L., Maloney, W., Clohisy, J., Burnett, R.S., Grosso, L., Gatchel, S.K. and 
Gage, B.F. (2005). Prospective dosing of warfarin based on cytochrome P-450 
2C9 genotype. Thrombosis and Haemostasis, 93, 700-705.

Wadelius, M., Chen, L.Y., Downes, K., Ghori, J., Hunt, S., Eriksson, N., 
Wallerman, O., Melhus, H., Wadelius, C., Bentley, D. and Deloukas, P. (2005). 
Common VKORC1 and GGCX polymorphisms associated with warfarin dose. 
Pharmacogenomics Journal, 5, 262-270.

Wadelius, M., Chen, L.Y., Lindh, J.D., Eriksson, N., Ghori, M.J.R., Bumpstead, 
S., Holm, L., McGinnis, R., Rane, A. and Deloukas, P. (2009). The largest 
prospective warfarin-treated cohort supports genetic forecasting. Blood, 113, 
784-792.

Wells, P.S., Majeed, H., Kassem, S., Langlois, N., Gin, B., Clermont, J. and 
Taljaard, M. (2010). A regression model to predict warfarin dose from clinical 
variables and polymorphisms in CYP2C9, CYP4F2 and VKORC1: derivation in 
a sample with predominantly a history of venous thromboembolism. Thrombosis 
Research, 125, 259-264.

107



Whatman FTA® Elute Cards product information,
http://www.whatman.com/FTANucleicAcidCollectionStorageandPurification.asp
x#SupportDocumentation

WHO BMI calculator at http://apps.who.int/bmi/index.jsp?introPage=intro_3.html

WHO Expert Committee on Biological Standardisation (1983). Report 33. WHO 
Technical Report Series, 687, 81-105.

Woodhams, B., Girardot, O., Blanco, M.J., Colesse, G. and Gourmelin, Y. 
(2001). Stability of coagulation proteins in frozen plasma. Blood Coagulation 
and Fibrinolysis, 12, 229-236.

Wynne, H., Cope, L., Kelly, P., Whittingham, T., Edwards, C. and Kamali, F. 
(1995). The influence of age, liver size and enantiomer concentrations on 
warfarin requirements. British Journal of Clinical Pharmacology, 40, 203-207.

Yin, T. and Miyata, T. (2007). Warfarin dose and the pharmacogenomics of 
CYP2C9 and VKORC1-rationale and perspectives. Thrombosis Research, 120, 
1- 10.

Zambon, C.F., Pengo, V., Padrini, R., Basso, D., Schiavon, S., Fogar, R., Nisi, 
A., Frigo, A.C., Moz, S., Pelloso, M. and Plebani, M. (2011). VKORC1, CYP2C9 
and CYP4F2 genetic-based algorithm for warfarin dosing: an Italian 
retrospective study. Pharmacogenomics, 12, 15-25.

Zhu, Y., Shennan, M., Reynolds, K.K., Johnson, N.A., Herrnberger, M.R., 
Valdes, R. and Linder, M.W. (2007). Estimation of warfarin maintenance dose 
based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clinical Chemistry, 
53,199-1205.

108

http://www.whatman.com/FTANucleicAcidCollectionStorageandPurification.asp
http://apps.who.int/bmi/index.jsp?introPage=intro_3.html


Appendix I Ethical approval

Leeds (Central) Research Ethics Committee
Room 23 
Floor CD

Block 40 King Edward Home 
Leeds General Infirmary 

LS1 3 EX

Telephone: 0113 3923772 
Facsimile: 0113 3922863

17 September 2009

Mr John Barraclough
Specialist Biomedical Scientist
Calderdale & Huddersfield NHS Foundation Trust
Dept, of Haematology,
The Royal Infirmary, Acre St.,
Lindley, Huddersfield.
HD33EA

Dear Mr Barraclough

Study Title: Pharmacogenetic, clinical and demographic factors in
the management of warfarin therapy.

REC reference number: 09/H1313/54
Protocol number: 1.0

Thank you for your letter of 11 September 2009, responding to the Committee’s 
request for further information on the above research and submitting revised 
documentation.

The further information has been considered on behalf of the Committee by the Vice- 
Chair.

Confirmation of ethical opinion

On behalf of the Committee, I am pleased to confirm a favourable ethical opinion for 
the above research on the basis described in the application form, protocol and 
supporting documentation as revised, subject to the conditions specified below.

Ethical review of research sites

The favourable opinion applies to all NHS sites taking part in the study, subject to 
management permission being obtained from the NHS/HSC R&D office prior to the 
start of the study (see “Conditions of the favourable opinion” below).

Conditions of the favourable opinion

The favourable opinion is subject to the following conditions being met prior to the start 
of the study.

Management permission or approval must be obtained from each host organisation 
prior to the start of the study at the site concerned.
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For NHS research sites only, management permission for research (“R&D approval”) should be 
obtained from the relevant care organisation(s) in accordance with NHS research governance 
arrangements. Guidance on applying for NHS permission for research is available in the 
Integrated Research Application System or at http://www.rdforum.nhs.uk. Where the only 
involvement o f the NHS organisation is as a Participant Identification Centre, management 
permission fo r research is not required but the R&D office should be notified o f the study. 
Guidance should be sought from the R&D office where necessary.

Sponsors are not required to notify the Committee o f approvals from host organisations.

It is the responsibility of the sponsor to ensure that all the conditions are 
complied with before the start of the study or its initiation at a particular site (as 
applicable).

Approved documents

The final list of documents reviewed and approved by the Committee is as follows:

Document Version Date
Evidence of insurance or indemnity 01 August 2009
Approval letter from University 09 July 2009
Supervisor CV
Statistician Comments 27 April 2009
Peer Review 12 February 2009
Letter from Sponsor 17 August 2009
Protocol 1.0 22 July 2009
Investigator CV

REC application 17 July 2009
Participant Information Sheet: Staff 1.2 31 July 2009
Participant Information Sheet: Patient 1.2 05 September 2009
Participant Information Sheet: Patient 2.2 05 September 2009
Participant Consent Form: Staff 1.2 05 September 2009
Participant Consent Form: Patient 1.2 05 September 2009
Response to Request for Further Information 11 September 2009
Participant Consent Form: Patient 2.2 05 September 2009

Statement of compliance

The Committee is constituted in accordance with the Governance Arrangements for 
Research Ethics Committees (July 2001) and complies fully with the Standard 
Operating Procedures for Research Ethics Committees in the UK.

After ethical review

Now that you have completed the application process please visit the National 
Research Ethics Service website > After Review

You are invited to give your view of the service that you have received from the 
National Research Ethics Service and the application procedure. If you wish to make 
your views known please use the feedback form available on the website.

The attached document “After ethical review -  guidance for researchers” gives detailed 
guidance on reporting requirements for studies with a favourable opinion, including:
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• Notifying substantial amendments
• Adding new sites and investigators
• Progress and safety reports
• Notifying the end of the study

The NRES website also provides guidance on these topics, which is updated in the 
light of changes in reporting requirements or procedures.

We would also like to inform you that we consult regularly with stakeholders to improve 
our service. If you would like to join our Reference Group please email 
referenceqroup@nres.npsa.nhs.uk.

09/H1313/54_________________ Please quote this number on all correspondence

Yours sincerely

Dr Margaret L Faull 
Chair

Email: rachelt.bell@leedsth.nhs.uk

Enclosures: “After ethical review -  guidance for researchers”
Copy to: Mr Brian Littlejohn

R&D office for Calderdale and Huddersfield NHS Foundation Trust
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Appendix II R&D authorisation

Calderdale and Huddersfield
NHS Trust

Please reply to: Research & Development Department
3rd floor, Learning Centre 

Huddersfield Royal Infirmary 
Llndley 

Huddersfield 
West Yorkshire 

HD33EA

Telephone: 01484 347007

Fax: 01484 347215

Email: r&d@cht.nhs.uk

Mr John Barraclough
Specialist Biomedical Scientist
Dept Haematology
Huddersfield Royal Infirmary
Llndley
Huddersfield
HD33EA

17th September 2009

Dear Mr Barraclough

ID: 775 Pharmacogenetlc, clinical and demographic factors In the management of
warfarin therapy.

The Research and Development department has considered the following documents in support of 
your application for approval to undertake the study on the premises of Calderdale and 
Huddersfield NHS Foundation Trust:

D o c u m e n t , V e rs io n -  f d a te d
Proposal Document 15033443 14/05/2008
Signed SSI - 2313/51358/6/72/25102/146763
SIqned R&D application - 2313/50434/14/418
Ethic provisional approval 09 /H 1313/54 02/09/2009
Protocol 1 22 /07/2009
Consent form-patient 1.1 22/07/2009
PIS - patient 2.1 22/07/09
NRES submission 09/H 1313/54
PIS - patient 1.1 22/07/09
PIS -  staff 1.1 22 /07/09
Consent form-oatlent 2.1 22/07/2009
Consent form-staff 1.1 22/07/2009
Evidence of Insurance/Indemnity 01/08/2008
NRES final Approval 0 9 /H 1 3 1 3 /5 4 17/09/2009
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Your study now has R&D approval on the understanding and provision that you will adhere to the 
following conditions:

That the research should:

• Comply with the requirements of The Research Governance Framework for Health and Social Care (2nd DH 
2005);

• Comply with regulatory requirements and legislation relating to: Clinical Trials, Data Protection, Health 
• and Safety, Trust Caldicott Guidelines, and the use of Human Tissue for research purposes;

• Be conducted in accordance with: ICH Good Clinical Practice and/or the MRC guidelines for good clinical 
practice (as appropriate);

• Not commence until it has received written approval from a UKECA recognised Research Ethics 
Committee (REC) and that any REC imposed conditions of that approval are implemented;

You must also:

• Request written approval for any change to the approved protocol/study documents that you or the 
Chief Investigator wish to implement;

• Ensure that all study personnel, not employed by Calderdale and Huddersfield NHS Foundation Trust, hold 
either an honorary contract with the Trust or a letter of access issued by the Trust, before they have 
access to any facilities, patients, staff, their data, tissue or organs;

• Complete the Research Governance interim and final reports as requested;
• Submit monthly recruitment and screening data to R&D (if applicable).
• Comply with our audit and monitoring procedures as required.

This approval letter constitutes a favourable Site Specific Assessment (SSA) for this site.

Please be aware that the R&D department has a database containing study related information, and personal 
information about individual investigators e.g. name address, contact details etc. This information will be 
managed according to the principles established in The Data Protection Act

yours sincerely

Dr David Birkenhead
Director of Research and Development
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Appendix III Group 1 subject information sheet

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept 
Huddersfield Royal Infirmary 
Lindley,
Huddersfield HD3 3EA 
Tel 01484 347258 
Fax 01484 342843

Staff Volunteer Information Sheet Version Staff 1.2

Pharmacogenetie, clinical and demographic factors in the 
management of warfarin therapy

You are being invited to take part in a research study as part o f  a 
Professional Doctorate degree. Before you decide, it is important fo r  you to 
understand why the research is being done and what it will involve. Please 
take time to read the following information carefully and discuss it with 
your colleagues i f  you wish. Please ask i f  there is anything that is not clear 
or i f  you would like more information.

What is the purpose of the study?
As you may be aware, finding the optimum dose of warfarin for a given 
patient, in order to maintain the INR in the therapeutic range, is not 
straightforward; there are many variables which influence oral 
anticoagulant dosing, including age, body size, gender etc. In recent years, 
three single nucleotide polymorphisms (SNPs) have been identified in two 
genes that are involved in the action and metabolism of warfarin. These 
SNPs, if present, significantly increase the response to warfarin and so 
these patients require a lower dose than the majority of the population in 
order to reach a therapeutic level. As a consequence several researchers 
have developed mathematical formulae, or algorithms, which take into 
account many of the variables associated with warfarin dosing, including 
these SNPs, thereby allowing clinicians to predict an individual’s optimum 
dose before commencing treatment.

05/09/09 version Staff 1.2
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The aim of this study is to collect data on many of the known variables 
from existing, warfarin patients and to develop a new algorithm, which will 
give a higher prediction rate than the existing ones. Part of the research will 
be to test patients for the three SNPs using polymerase chain reaction 
(PCR).
However, in order to ensure that the PCR technique works correctly, I 
would like to perform a pilot study using a small number of staff before 
collecting samples on patients.

What will it involve if I agree?
I f  you agree to take part you will be asked to sign a consent form and one 
or two drops of blood will be taken from a fingerprick for PCR analysis.

What will happen to the blood sample?
The fingerprick sample will be spotted onto a card, which w ill release the 
DNA from the leucocytes and maintain it in a stable condition prior to 
analysis. Once the PCR technique has been verified, all remaining samples 
w ill be destroyed according to normal laboratory procedures. Your blood 
w ill not be tested for any other genes, such as those associated with other 
diseases.

When will the pilot study take place?
It is hoped that sample collection will begin early in 2010.

Will my results be kept confidential?
Yes. A ll samples and the information obtained from them w ill be identified 
by a random number only and will not be traceable back to the participant.

What will happen to the results of the pilot study?
As stated above, your individual results w ill not be passed directly on to 
you or anyone else. The collective results w ill only be used to verify the 
PCR technique. These data will be included in the final thesis and any 
scientific publications that arise from it. No names will be used and it will 
not be possible to identify you from any publication of the results.

Thank you for your time
John Barraclough MPhil. CSci. FIBMS Tel ext.7258

05/09/09 version Staff 1.2
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Appendix IV Group 2 subject information sheet

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept 
Dept, of Haematology,
Huddersfield Royal Infirmary,
Lindley, Huddersfield, HD3 3EA.
Tel 01484 347258 
Fax 01484 342843

Patient Information Sheet Version Patient 1.2 

Pharmacogenetic, clinical and demographic factors in the management 
of warfarin therapy

You are being invited to take part in a study, which is part o f  a 
Professional Doctorate degree. Before you decide it is important fo r  you to 
understand why the research is being done and what it will involve. Please 
take time to read the following information carefully and discuss it with 
friends, relatives and your GP i f  you wish. Ask us i f  there is anything that is 
not clear or i f  you would like more information. Take time to decide 
whether or not you wish to take part.

What is the purpose of the study?
As you may be aware, finding the correct dose of warfarin for a patient is 
not straightforward. There are many factors which influence this, including 
age, body size, gender and genetics etc.
The aim of this study will be to collect data from existing warfarin patients 
in order to develop a better way of finding out the correct warfarin dose in 
new patients much more quickly than at present.

Why have I been chosen?
You have been chosen because you have been taking warfarin long enough 
for your dose to be relatively stable.

What will it involve if  I agree to take part in the study?
If you agree to take part you will be asked to donate an extra drop or two of 
blood from the fingerprick site, after enough has been taken for your 
routine test. You will not have to attend a separate appointment to donate 
this blood and you will not have to have more than the usual single 
fingerprick. If you do agree to take part, this blood sample will be taken the 
next time you are seen in clinic.

05/09/09 version Patient 1.2
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In addition, we will ask one of the nurses to measure your height and 
weight, while you are waiting for your usual blood result. We will also ask 
you to bring an up-to-date list of all your other medications, as these may 
have an effect on your warfarin treatment.

Do I have to take part?
It is up to you to decide whether or not to take part. I f  you decide to take 
part, you w ill be given this information sheet to keep and be asked to sign a 
consent form. By signing the consent form you are saying that you are 
happy to take part in the study and that you understand what has been 
explained to you.

What will happen to my blood?
Your blood will be processed in the laboratory at a later date. Your genetic 
material, or DNA, will be analysed to see if  you possess one of the genes 
responsible for making people more sensitive to warfarin than others. Your 
blood will not be tested for any other genes, such as those associated with 
other diseases. Once the test has been done, any sample left over will be 
destroyed using normal laboratory procedures.

What are the possible disadvantages and risks of taking part?
There will be no risks or disadvantages. Apart from measuring your weight 
and height and taking a drop or two more of blood from the fingerprick, the 
clinic visit w ill be exactly the same as usual.

What are the possible benefits of taking part?
There are no direct benefits to you from taking part in this study at this 
stage. However, it is hoped that, once the study has been completed, we 
will be able to dose patients who are starting warfarin therapy much more 
accurately.

When will the study be completed?
The study should be completed late in 2010.

Will my taking part in this study be kept confidential?
Yes. A ll information we obtain from you w ill be kept on a computer 
database, using only your hospital number as identification. No names, 
addresses or dates of birth will be used. When the study has been 
completed, the database will be destroyed.

What will happen to the results of this study?
Your individual results will not be directly passed on to you. The 
collective results from all the patients who are included in the study may be 
presented in a scientific publication to aid other doctors and scientists
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managing patients on warfarin. No patient names w ill be used and it will 
not be possible to identify you from any publication of the results of the 
study.

Will I be paid for taking part?
We regret you w ill not be paid for taking part.

Who has reviewed this study?
This study has been reviewed and approved by the Leeds Central Research 
Ethics Committee and the Sheffield Hallam University Ethics Committee.

What if something goes wrong?
I f  you are harmed by taking part in this research project, there are no 
special compensation arrangements. I f  you are harmed due to someone’s 
negligence, then you may have grounds for legal action but you may have 
to pay for it. Regardless of this, if  you wish to complain about any aspect of 
the way you have been approached or treated during the course of this 
study, the normal National Health Service complaints mechanism may be 
available to you.

Contact for further information
Further information about this study can be obtained by contacting Mr. 
John Barraclough, Anticoagulation Department, Huddersfield Royal 
Infirmary, Acre, St., Lindley, Huddersfield, HD3 3EA, telephone number 
01484 347258.

What if I wish to complain about the way in which the study has been 
conducted?
I f  you have any cause to complain about any aspect of the way in which 
you have been approached or treated during the course of the study, the 
normal National Health Service complaints mechanisms are available to 
you and are not compromised in any way because you have taken part in a 
research study.

I f  you have any complaints or concerns please contact the project co
ordinator: Mr. John Barraclough, telephone number 01484 347258.

Thank you very much for reading through this information sheet and please 
remember to bring an up-to-date list of all your current medications.
John Barraclough MPhil. CSci. FIBMS

05/09/09 version Patient 1.2
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Appendix V Group 3 subject information sheet

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept 
Dept, of Haematology,
Huddersfield Royal Infirmary,
Lindley,
Huddersfield, HD3 3EA.
Tel 01484 347258 
Fax 01484 342843

Patient Information Sheet Version Patient 2.2 

Pharmacogenetic, clinical and demographic factors in the 
management of warfarin therapy

You are being invited to take part in a study, which is part o f  a 
Professional Doctorate degree. Before you decide it is important fo r you to 
understand why the research is being done and what it will involve. Please 
take time to read the following information carefully and discuss it with 
friends, relatives and your GP i f  you wish. Ask us i f  there is anything that is 
not clear or i f  you would like more information. Take time to decide 
whether or not you wish to take part.

What is the purpose of the study?
As you may be aware, finding the correct dose of warfarin for a patient is 
not straightforward. There are many factors which influence this, including 
age, body size, gender and genetics etc.
The aim of this study will be to collect data from new patients in order to 
develop a better way of finding out the correct warfarin dose in new 
patients much more quickly than at present.

Why have I been chosen?
You have been chosen because you are about to start warfarin treatment 
and therefore your clotting mechanism has not yet been affected.

What will it involve if  I agree to take part in the study?
If you agree to take part you will be asked to donate an extra drop or two of 
blood from the fingerprick site, after enough has been taken for your 
routine test. You will not have to attend a separate appointment to donate 
this blood and you will not have to have more than the usual single 
fingerprick. If you do agree to take part, this blood sample will be taken the 
first time you are seen in clinic.
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Patients new to warfarin are normally asked to have a blood sample taken 
from their arm, in order to check their general health. We need to ask your 
permission to use some of the blood left over for this research project. You 
will not be asked to have any more blood tests than is usual. In addition, we 
will ask one of the nurses to measure your height and weight, while you are 
waiting for your usual blood result. We will also ask you to bring an up-to- 
date list of all your other medications, as these may have an effect on your 
warfarin treatment.

Do I have to take part?
It is up to you to decide whether or not to take part. I f  you decide to take 
part you will be given this information sheet to keep and be asked to sign a 
consent form. By signing the consent form you are saying that you are 
happy to take part in the study and that you understand what has been 
explained to you.

What will happen to my blood?
Your blood w ill be processed in the laboratory at a later date. Your genetic 
material, or DNA, will be analysed to see if  you possess one of the genes 
responsible for making people more sensitive to warfarin than others. Your 
blood will not be tested for any other genes, such as those associated with 
other diseases. Once the test has been done, any sample left over w ill be 
destroyed using normal laboratory procedures.

What are the possible disadvantages and risks of taking part?
There w ill be no risks or disadvantages. Apart from measuring your weight 
and height and taking a drop or two more of blood from the fingerprick, the 
clinic visit w ill be exactly the same as for all patients.

What are the possible benefits of taking part?
There are no direct benefits to you from taking part in this study at this 
stage. However, it is hoped that, once the study has been completed, we 
will be able to dose patients who are starting warfarin therapy much more 
accurately.

When will the study be completed?
The study should be completed early in 2011.

Will my taking part in this study be kept confidential?
Yes. A ll information we obtain from you will be kept on a computer 
database, using only your hospital number as identification. No names, 
addresses or dates of birth will be used. When the study has been 
completed, the database will be destroyed.
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What will happen to the results of this study?
Your individual results will not be directly passed on to you. The 
collective results from all the patients who are included in the study may be 
presented in a scientific publication to aid other doctors and scientists 
managing patients on warfarin. No patient names will be used and it will 
not be possible to identify you from any publication of the results of the 
study.

Will I be paid for taking part?
We regret you will not be paid for taking part.

Who has reviewed this study?
This study has been reviewed and approved by the Leeds Central Research 
Ethics Committee and Sheffield Hallam University Ethics Committee.

What if something goes wrong?
I f  you are harmed by taking part in this research project, there are no 
special compensation arrangements. I f  you are harmed due to someone’s 
negligence, then you may have grounds for legal action but you may have 
to pay for it. Regardless of this, if  you wish to complain about any aspect of 
the way you have been approached or treated during the course of this 
study, the normal National Health Service complaints mechanism may be 
available to you.

Contact for further information
Further information about this study can be obtained by contacting Mr. 
John Barraclough, Anticoagulation Department, Huddersfield Royal 
Infirmary, Acre, St., Lindley, Huddersfield, HD3 3EA, telephone number 
01484 347258.

What if I wish to complain about the way in which the study has been 
conducted?
I f  you have any cause to complain about any aspect of the way in which 
you have been approached or treated during the course of the study, the 
normal National Health Service complaints mechanisms are available to 
you and are not compromised in any way because you have taken part in a 
research study.
I f  you have any complaints or concerns please contact the project co
ordinator: Mr. John Barraclough, telephone number 01484 347258.

Thank you very much for reading through this information sheet.
Thank you for your time
John Barraclough MPhil. CSci. FIBMS Tel Hudds. 347258

05/09/09 version Patient 2.2
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Appendix VI Group 1 subject consent form

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept.,
Dept, of Haematology,
Huddersfield Royal Infirmary,
Lindley, Huddersfield,

HD3 3EA.
Tel 01484 347258 
Fax 01484 342843

Study Number: 09/H1313/54

Staff Identification Number for this project:

CONSENT FORM

Title of Project: Pharmacogenetic, clinical and demographic factors in the management of warfarin
therapy.

Name of Researcher: Mr. John Barraclough

1. I confirm that I have read and understand the information sheet dated 
22/07/09 (version Staff. 1.2) for the above study. I have had the opportunity 
to consider the information, ask questions and have had these answered 
satisfactorily.

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason, without my medical 
care or legal rights being affected.

3. I understand that relevant sections of my medical notes and data 
collected during the study may be looked at by individuals from 
Calderdale & Huddersfield NHS Foundation Trust, where it is relevant to 
my taking part in this research. I give permission for these individuals to 
have access to my records.

4. I agree to take part in the above study.

Name of Staff Member Date Signature

Name of Person Date Signature
Taking consent

Copies: 1 for staff member, 1 for researcher site file.

05/09/09 version Staff 1.2
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Appendix VII Group 2 subject consent form

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept.,
Dept, of Haematology 
Huddersfield Royal Infirmary,
Lindley, Huddersfield, HD3 3EA.
Tel 01484 347258 
Fax 01484 342843

Study Number: 09/H1313/54

Patient Identification Number for this project:

CONSENT FORM

Title of Project: Pharmacogenetic, clinical and demographic factors in the management of warfarin
therapy.

Name of Researcher: Mr. John Barraclough

1. I confirm that I have read and understand the information sheet dated —
05/09/09 (version Patient 1.2) for the above study. I have had the opportunity
to consider the information, ask questions and have had these answered 
satisfactorily.

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason, without my medical 
care or legal rights being affected.

3. I understand that relevant sections of my medical notes and data 
collected during the study may be looked at by individuals from 
Calderdale & Huddersfield NHS Foundation Trust, where it is relevant to 
my taking part in this research. I give permission for these individuals to 
have access to my records.

4. I agree to take part in the above study.

Name of Patient Date Signature

Name of Person Date Signature
Taking consent

Copies: 1 for patient, 1 for researcher site file, 1 (original) to be kept in medical notes

05/09/09 version Patient 1.2
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Appendix VIII Group 3 subject consent form

Calderdale and Huddersfield
NHS Foundation Trust

Anticoagulant Dept.,
Dept, of Haematology,
Huddersfield Royal Infirmary,
Lindley, Huddersfield,
HD3 3EA.

Tel 01484 347258 
Fax 01484

342843

Study Number: 09/H1313/54

Patient Identification Number for this project:

CONSENT FORM

Title of Project: Pharmacogenetic, clinical and demographic factors in the management of warfarin
therapy.

Name of Researcher: Mr. John Barraclough

1. I confirm that I have read and understand the information sheet dated --------------
05/09/09 (version Patient 2.2) for the above study. I have had the opportunity 

to consider the information, ask questions and have had these answered 
satisfactorily.

2. I understand that my participation is voluntary and that I am free to 
withdraw at any time, without giving any reason, without my medical 
care or legal rights being affected.

3. I understand that relevant sections of my medical notes and data 
collected during the study may be looked at by individuals from 
Calderdale & Huddersfield NHS Foundation Trust, where it is relevant to 
my taking part in this research. I give permission for these individuals to 
have access to my records.

4. I agree to take part in the above study.

Name of Patient Date Signature

Name of Person 
Taking consent

Date Signature

Copies: 1 for patient, 1 for researcher site file, 1 (original) to be kept in medical notes

05/09/09 version Patient 2.2
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Appendix IX Fennerty et al (1984) dosing schedule

Day

1

2 (16hrs post 1st dose)

3 (16hrs post 2 nd dose)

4 (16hrs post 3rd dose)

INR

<1.4 

< 1.8 

« 1.8 

> 1.8 

r <2.0 

2.0-2.1

2 .2- 2.3

2.4-2.5

2.6-2.7 

/  2 .8-2.9

3.0-3.1

3.2-3.3

3.4

3.5

3.6-4.0 

 ̂ >4.0

r  < 1.4

1.4

1.5

1 .6 - 1.7 

1.8 

1.9

2 .0-2.1 

< 2 .2-2.3

2.4-2.6

2.7-3.0

3.1-3.5 

3.6-4.0

4.1-4.5 

V>4.5

Warfarin 

Dose (mg)

10.0

10.0

1.0

0.5

10.0

5.0

4.5

4.0

3.5

3.0

2.5

2.0
1.5

1.0 

0.5 

Nil

Predicted dose 

> 8.0 

8.0

7.5

7.0

6.5

6.0
5.5

5.0

4.5

4.0

3.5

3.0

Miss 1 day then 2mg 

Miss 2 days then 1mg
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Appendix X Tait and Sefcick (1997) dosing schedule 

Dav 5 INR Dose for davs 5-8 Dav 8 INR Dose from dav 8

<1.7 5mg

<1.7 

1.8-2.4 

2.5-3.0 

>3.0

6mg

5mg

4mg

3ma for 4 days

<1.7 5mg

1.8-2.4 4mg

1.8-2.2 4mg 2.5-3.0 3.5mg

3.1-3.5 3mg for 4 days

>3.5 2.5ma for 4 days

<1.7 4mg

1.8-2.4 3.5mg

2.3-2.7 3mg 2.5-3.0 3mg

3.1-3.5 2.5mg for 4 days

>3.5 2mq for 4 davs

<1.7 3mg

1.8-2.4 2.5mg

2.8-3.2 2mg 2.5-3.0 2mg

3.1-3.5 1.5mg for 4 days

>3.5 1ma for 4 days

<1.7 2mg

1.8-2.4 1.5mg

3.3-3.7 1mg 2.5-3.0 1mg

3.1-3.5 0.5mg for 4 days

>3.5 omit for 4 davs

<2.0 1.5mg for 4 days
>3.7 Omg 2.0-2.9 1mg for 4 days

3.0-3.5 0.5mg for 4 days

All patients with a baseline INR .4 were given 5mg/day for 4 days
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Appendix XI Chosen published algorithms 

Zambon etal, 2011:

Dose (mg/week) = [7.39764 - (0.02734 x age) + (1.06287 x BSA)

- (1.04468 XVKORC1 AG) - (2.12117 x VKORC1 AA)

- (0.78983 x CYP2C9*1/*2) - (1.17138 x CYP2C9*1/*3)

- (1.81292 x CYP2C9*2/*2 or *2/*3 or *3/*3)

- (0.46723 x CYP4F2 CT) - (0.71528 x CYP4F2 CC)]2

where: age (in years) and BSA (in m2)

Gage etal, 2004:

Dose (mg/day) = exp[0.385 - (0.0083 x age) + (0.498 x BSA)

- (0.208 x CYP2C9*2) - (0.350 x CYP2C9*3)

- (0.341 x amiodarone) + (0.378 x target INR)

- (0.126 x simvastatin) - (0.113 x race)

- (0.075 x female)]

where: exp = exponential function

age (in years) and BSA (in m2)

CYP2C9 = 0 (absent), 1 (heterozygous) or 2 (homozygous) 

amiodarone/simvastatin = 1 (present) or 0 (absent) 

race = 1 (Caucasian) or 2 (other) 

female = 1, male = 0

Gage etal, 2008:

Dose (mg/day) = exp[0.9751- (0.3238 x VKORC1 AA) + (0.4317 x BSA)

- (0.4008 x CYP2C9*3) - (0.00745 x age)

- (0.2066 x CYP2C9*2) + (0.2029 x target INR)

- (0.2538 x amiodarone) + (0.0922 x smokes)

- (0.0901 x Afro American) + (0.0664 x DVT/PE)]

where: exp = exponential function

age (in years) and BSA (in m2)

Afro American = 1 other = 0

amiodarone = 1 (present) or 0 (absent)
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smokes = 1 for a smoker or 0 for a non-smoker 

DVT/PE = 1 (if initial diagnosis was DVT or PE), others = 0

IWPC, 2009:

Dose (mg/week) = [5.6044 - (0.2614 x age) + (0.0087 x height)

+ (0.0128 x weight) - (0.8677 x VKORC1 GA)

- (1.6974 x VKORC1 AA) - (0.5211 x CYP2C9*1/*2)

- (0.9357 x CYP2C9*1*3) - (1.0616 x CYP2C9*2*2)

- (1.9206 x CYP2C9*2*3) - (2.3312 x CYP2C9*3*3)

- (0.1092 x Asian) - (0.2760x Black) - (0.1032 x mixed race)

+ (1.1816 x CYP enzyme inducer drugs)

- (0.5503 x amiodarone)]2

where: age (in decades), weight (in kilos) and height (in centimetres)

Asian, Black or mixed race = 1, others = 0

CYP enzyme inducers = phenytoin, carbamazepine or rifampicin

amiodarone = 1 (present) or 0 (absent)

Sconce etal, 2005:
VDose (mg/day) = [0.628 - (0.0135 x age) - (0.240 x CYP2C9*2)

- (0.370xCYP2C9*3) - (0.241 x VKORC1)

+ (0.0162 x Height)]

where: age (in years)

CYP2C9 *2 and *3 = 0, 1 or 2 for the number of alleles present 

VKORC1 = 1 (for GG), 2 (for GA) and 3 (for AA)

Height = centimetres

Voora etal, 2005:
Dose (mg/week) = exp [0.385 - (0.0083 x age) + (0.498 x BSA)

- (0.208 x CYP2C9*2) - (0.350 x CYP2C9*3)

- (0.341x amiodarone) + (0.378 x target INR)

- (0.125 x statin) - (0.0113 x race) - (0.075 x female)]

where: exp = exponential function

age (in years) and BSA (in m2)

CYP2C9 *2 and *3 = 0, 1 or 2 for the number of alleles present
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amiodarone/simvastatin/fluvastatin = 1 (present) or 0 (absent) 

race = 1 (Caucasian) or 0 (other) 

female = 1, male = 0

Wadelius etal, 2009:
Dose (mg/week) = [9.46832 - (0.90112 x VKORC1 GA)

- (2.01863 x VKORC1 AA) - (0.50836 x CYP2C9*1/*2)

- (0.97546 x CYP2C9*1/*3) - (1.10204 x CYP2C9*2/*2)

- (1.74761 x CYP2C9*2/*3) - (3.40061 x CYP2C9*3/*3)

- (0.03686x age) - (0.27698 x female)

- (0.06992 x potentiating drugs)]2 

where: age (in years)

female = 1, male = 0

potentiating drugs = the number of drugs taken which can increase

the INR

Zhu etal, 2007:
In dose (mg/day) = [1.35 - (0.008 x age) + (0.116 x gender) + (0.004 x weight)

- (0.376 x VKORC1 AA) + (0.271 x VKORC1 GG)

- (0.307 x CYP2C9*2) - (0.318 x CYP2C9”3)] 

where: In = log of dose

age (in years) and weight (in pounds)

gender = 0 for female and 1 for male

CYP2C9 = input 0, 1 or 2 for the number of *2 and *3 alleles

VKORC1 AA = input 0 for GG, 0 for GA and 1 for AA

VKORC1 GG = input 1 for GG, 0 for GA and 0 for AA

Gage etal, 2008 (clinical algorithm):
Dose (mg/day) = exp [0.613 + (0.425 x BSA) - (0.0075 x age)

+ (0.156 x Afro American) + (0.216 x target INR)

- (0.257 x amiodarone) + (0.108 x smokes)

+ (0.0784 x DVT/PE)] 

where: exp = exponential function

age (in years) and BSA (in m2)

Afro American = 1 other = 0
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amiodarone = 1 (present) or 0 (absent)

smokes = 1 for a smoker or 0 for a non-smoker

DVT/PE = 1 (if initial diagnosis was DVT or PE), others = 0

IWPC, 2009 (clinical algorithm):

Dose (mg/week) = [4.0376 - (0.2546 x age) + (0.0118 x height)

+ (0.0134 x weight) - (0.6752 x Asian)

+ (0.4060 x Afro American) + (0.0443 x mixed race)

+ (1.2799 x enzyme inducer drugs) - (0.5695 x amiodarone)]2

where: age (in decades), weight (in kilos) and height (in centimetres)

Asian, Afro American or mixed race = 1, others = 0

CYP enzyme inducers = phenytoin, carbamazepine or rifampicin

amiodarone = 1 (present) or 0 (absent)

Zambon etal, 2011 (clinical algorithm):
Dose (mg/week) = [2.9241 - (0.01943 x age) + (1.94651 x BSA)]2

where: age (in years) and BSA (in m2)
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Appendix XII Example of a VK0RC1 dot plot

VKORC1 allelic plot
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Appendix XIII Example of a CYP2C9 *2 dot plot

CYP2C9 *2 allelic plot
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Appendix XIV Example of a CYP2C9 *3 dot plot

CYP2C9 *3 allelic plot

1.8

1.3

0 .>-o

0.8

0.3

f

8
*

Negative control

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

CYP *3
Legend

i Homozygous 1.' 1 •  Homozygous *3 /*3

i Heterozygous ' 1 ■ -2 xUndetermined
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Appendix XV Example of a CYP4F2 dot plot

CYP4F2 allelic plot
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