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Abstract

The key aim of this Thesis is the development and implementation of a set of sim­
ulation techniques for LCs capable of tackling mesoscopic phenomena. In this, we 
concentrate only on mesh-free particle numerical techniques. Two broad approaches 
are used, namely bottom-up and top-down.

While adopting the bottom-up approach, we employ the DPD method as a foun­
dation for devising a novel LC simulation technique. In this, we associate a traceless 
symmetric order tensor, Q , with each DPD particle. We then further extend the 
DPD forces to directly incorporate the Q tensor description so as to recover a more 
complete representation of LC behaviour. The devised model is verified against a 
number of qualitative examples and applied to the simulation of colloidal particles 
immersed in a nematic LC. We also discuss advantages of the developed model for 
simulation of dynamic mesoscopic LC phenomena.

In the top-down approach, we utilise recently emergent numerical mesh-free 
methods. Specifically, we use the SPH method and its variants. The developed 
method includes hydrodynamics, variable order parameter and external electric and 
magnetic fields. The developed technique is validated against a number of analytical 
and numerical solutions.

Subsequently, we apply our top-down methods to the simulation of the complex 
3D post-aligned bistable nematic (PABN) device. This includes a smooth geometry 
representation in order to fully exploit the developed mesh-free numerical techniques. 
We study both the static and dynamic behaviours of the PABN device for a number 
of distinct post shapes.
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Chapter 1 

Introduction

Liquid crystals (LC) are fascinating materials which combine the usual properties 
of conventional fluids with an inherent orientational ordering. This leads to LCs 
exhibiting a range of anisotropic properties, which give them a marked technological 
significance. LCs have found applications in many areas of physical and biological 
science and engineering, such as in liquid crystal displays (LCDs), optoelectronic 
devices, sensors, commercial detergents (soap), biological self-assembly of micelles 
etc.

Some aspects of LC behaviour have been well-studied since they were first dis­
covered in 1890. In theoretical studies, computer modelling plays an important 
part in aiding understanding of many processes on atomistic and mesoscopic levels. 
It also certainly helps with explaining and predicting behaviour of LC devices on 
continuum length-scales. For example, the multi-billion pound LCD industry has 
motivated the development of LC solvers based on Ericksen-Leslie-Parodi contin­
uum theory. However, there are still some important gaps in our understanding 
of the physics behind LCs. This is due, in part, to the to complex interplay of 
distinct physical phenomena on different time- and length-scales in these systems, 
e.g. inter-molecule interactions, orientational order, continuum velocity field etc 
are all coupled. This makes it impossible to fully study LCs with only one chosen 
simulation technique.

Thus, nowadays the predominant issue in the computer modelling of materials 
and, particulary, of LCs, is the problem of bridging the length- and time-scales 
between the underlying molecular motions and the consequent application-scale be­
haviour. A wide range of techniques have been developed to address this amongst 
which may be included accelerated molecular dynamics (MD) methods, Brownian 
dynamics, dissipative particle dynamics (DPD), Lattice Boltzmann (LB), smoothed 
particle hydrodynamics (SPH) and a suite of methods which combine elements of

1



CHAPTER 1. INTRODUCTION 2

these approaches. While it is unlikely that a single unified framework will be emer­
gent from this multiplicity of developments, a common approach is to develop “over­
lap” methods which allow a particular coarse grained method to be paramaterised 
using a finer grained method. Given this broad context, the work presented in this 
Thesis can be viewed as an attem pt to identify and fill gaps in the current spectrum 
of LC modelling approaches.

1.1 Aims & Objectives

This Thesis mainly deals with the development of novel mesoscopic simulation tech­
niques for simulating LCs. This direction was primarily determined at the start of 
this project, when the following objectives were set:

• to determine which mesoscopic simulation techniques can be applied to simu­
lation of LCs, both from bottom-up and top-down points of view, in order to 
bridge the gaps between existing simulation methodologies.

• to consider bottom-up approach simulation techniques and to determine if a 
comprehensive link with the atomistic level can be established.

• to consider top-down simulation techniques and to investigate how thermal 
noise can be incorporated into the model, so as to properly recover the meso­
scopic behaviour.

• to determine how these models compare to conventional numerical techniques 
in terms of computational requirements.

• to investigate if the developed simulation techniques are computationally vi­
able and whether they can address LC phenomena which are non-achievable 
with the currently available simulation techniques.

1.2 Thesis Structure

The remainder of this Chapter is devoted to a brief introduction to LCs and LCDs. 
This is followed by a precis of the basics of mesh-free simulation methods.

In Chapter 2 we summarise the phenomenological continuum theory for the 
Landau-de Gennes order parameter. We then describe relevant LC properties using 
this theory and review the literature relating to the governing equations for both 
static and dynamic LC behaviours.
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In Chapter 3 we give an overview of mesoscopic simulations using mesh-free 
particle techniques. We place a particular emphasis on dissipative particle dynamics 
(DPD) and smoothed particle hydrodynamics (SPH), the relevant specifics of which 
are considered in more detail.

In Chapter 4 we describe a novel LC simulation technique based on a bottom- 
up DPD approach. We first show how this novel approach can be tuned to yield 
anisotropic static and dynamic behaviour of LCs. We then apply this method to the 
demanding scenario of 3-D simulation of dynamic behaviour of colloidal particles 
immersed in a nematic LC.

In Chapter 5 we follow a top-down approach, in which we apply the modified 
smoothed particle hydrodynamics (MSPH) mesh-free numerical technique to the 
simulation of LCs. We first describe our unsuccessful attempts to model LCs with 
a number of simpler techniques, such as with SPH, corrective smoothed particle 
method (CSPM) and some of their variants. Then, we provide results obtained 
using our MSPH approach for a number of test cases so as to address the validity 
of the newly developed solver.

In Chapter 6  we present a study performed using our mesh-free simulation ap­
proach to investigate the statics and dynamics of the post-aligned bistable nematic 
(PABN) device. Here, we briefly describe the PABN device, our model geometry 
representation and the approach we use to discretise it. We then provide results 
obtained on static configurations for a number of different post geometries. Finally, 
we provide some results on the PABN device switching behaviour.

In Chapter 7 we conclude with a summary of this Thesis and suggest some ideas 
for future work. A bibliography is included.

1.3 Liquid Crystals

In this section we give a short introduction to the physics of liquid crystals (LCs), 
provide a brief overview of the available LC simulation techniques and describe the 
most common application of LCs in liquid crystal displays (LCDs).

1.3.1 The Fundamentals of Liquid Crystals

The term liquid crystals denotes materials which exhibit intermediate stages of order 
between liquid and crystalline phases. They were first discovered at the end of 
nineteenth century and, in a certain sense, can be considered as a fourth state of 
matter. The term LC consists of two parts, namely liquid, which specifies that the
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m atter possesses some fluidity, and crystal, which indicates the presence of long- 
range order in the system. In the crystalline solid state, the order is both positional 
and orientational, i.e. molecules occupy specific positions and their molecular axes 
are pointed in a certain direction. In a liquid phase, in contrast, there is no long- 
range order and the matter is fully isotropic. Molecules in LC phases, however, 
have orientational order and either no or only partial positional order. In almost 
all cases, these phases are only formed when molecules are anisotropic in shape -  
usually they are rod-like or disk-like. Most LC materials are organic compounds, 
and the classical example is p-azoxyanisole (PAA) shown in Fig. 1.1. From a steric 
point of view, this molecule is a rigid rod of length ~  20 A and width 5 A [1].

O — CH,■N=N-

O

Figure 1.1: Formula of p-azoxyanisole.

LC phases are often called mesophases (from mesomorphic -  of intermediate 
form), and, from the same root, their constituent molecules are called mesogens. 
This is a well-established nomenclature nowadays.

LCs can be divided in two classes, namely thermotropic and lyotropic. Ther­
motropic LCs are formed by mesogens in a certain range of temperatures Tm < 
T  < Ti n , where Tm is the melting temperature of the crystalline phase and Tin  is 
the temperature of isotropic-nematic LC phase transition. The properties of ther­
motropic LCs are very dependant on temperature, and that is why they have thermo- 
in their name -  it indicates the importance of thermal effects. Lyotropic LCs phases, 
however, form in solution (lyo- refers to concentration), and the concentration gov­
erns most of their properties. Below only thermotropic LCs are considered.

The main types of mesogen, as mentioned above, are rod-like, or calamities and 
disk-like, or discotic. Thermotropic mesophases can be subdivided into three classes 
(phases) which are nematic, smectic and chiral nematic (cholesteric) according to 
their molecular order, see Fig. 1.2.

The nematic phase is the simplest LC phase. Here, the molecules have no long- 
range positional order, just as in any normal liquid. However, they do possess 
long-range orientational order, unlike an isotropic liquid. In the nematic phase, 
the molecular axes tend to point along a preferred direction, called the director. 
This is usually denoted by a unit vector n. The directions n and —n are usually 
equivalent and indistinguishable. We can define the degree of this alignment using
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the parameter 5, which is called the order parameter. Thus,

s  =  i (3cos27 — 1), (1.1)

where 7  is the angle which each long molecular axis makes with n, and the angular 
brackets denote a statistical average. For perfect alignment 5 = 1 ,  while for the 
random (isotropic) alignment 5  =  0. In thermotropic LCs 5  =  5(T), where T  is 
the system’s temperature. Usually, in real systems, 5  decreases as the temperature 
T  is raised, and 0 . 3 < 5 < 0 . 8 .  At the transition from the nematic to the isotropic 
phase at the temperature Tin, 5  discontinuously jumps to zero, indicating a first 
order phase transition.

Figure 1.2: Two-dimensional sketch of solid, nematic LC and isotropic liquid phases.

Smectic phases are usually formed by rod-like molecules arranged in layers, so 
that in this phase there is one or two dimensional positional as well as orientational 
order. There are many types of smectic phase, the most common being smectic A, 
where the director is perpendicular to the layers, and smectic C, where the director 
makes an angle other than 90° with layers. The chiral nematic phase is similar to the 
nematic phase but has an additional property -  the director has a spatial variation 
that leads to a helical structure. It should be noted that this relates to an average 
molecular orientation, but not to individual molecules. Both nematic and chiral 
nematic phases can also be formed by discotic molecules. Some substances may 
exhibit more than one mesophase as the temperature is varied in the Tm < T  < Tin  
region, e.g. with increasing temperature a substance may change from a smectic to 
a nematic, and then finally to an isotropic liquid above Ti n -

T < T m Tm < T < Tin T > Tin

Order
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1.3.2 Physical Properties of Liquid Crystals

The orientational ordering of a LC makes many of its properties anisotropic. This 
means that different physical parameters, such as the dielectric constant e, refractive 
index n, viscosity 77 etc. have different values when measured in the directions 
parallel (||) or perpendicular (J_) to the director. Below we consider some of the 
most important anisotropic properties of LCs, and so illustrate what makes them 
such attractive materials to use in displays [2 ].

Birefringence

Birefringence is the anisotropy of the refractive index. LCs usually have two principal 
refractive indices. In uniaxial nematic LCs, for example, these are measured along 
(t2||) and perpendicular (n±) to the director and, thus, optical anisotropy is defined 
as An =  7i|| — n±. It is dependant on the temperature, since temperature directly 
influences the order parameter which, in turn, characterises the degree of anisotropy. 
Typical values of birefringence in LCs are «  0.15.

D ielectric A nisotropy

Dielectric anisotropy Ae in LCs is defined as Ae =  e|| — e±, where e|| and e± are, 
respectively, the relative dielectric permittivity parallel and perpendicular to the 
director. LC molecules with positive dielectric anisotropy align themselves along the 
field lines of applied external electric fields. LC molecules with negative dielectric 
anisotropy, on the other hand, align their axes perpendicular to such externally 
applied fields. In both cases, these effects are the same no m atter what the sign of 
the applied fields is, positive or negative.

Dielectric anisotropy is a function of frequency. Usually, the dielectric constant 
C|| decreases with increased frequency [3] and e± varies little over large frequency 
ranges. Certain LCs exhibit both positive and negative dielectric anisotropies over 
a working frequency range. These are called dual frequency materials. Dielectric 
anisotropy is also a function of order parameter and, thus, temperature.

Elasticity

An unperturbed nematic LC sample always tries to align itself uniformly, so that the 
director has the same orientation everywhere. Different external influences, such as 
boundary conditions and various applied fields, can, however, distort the LC sample 
and create a spatial variation in the orientation of the LC director. There are three 
different principal distortions, which are splay, twist and bend. These are depicted in
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Fig. 1.3. A common assumption is that the order parameter is constant throughout 
the sample. There are corresponding elastic constants Ku associated with each type 
of distortion, which were first identified by Frank [4] in the context of his seminal 
continuum theory of LCs. These elastic constants are dependant on the temperature 
and on the order parameter.

splay K n

o o o o o o o o o

twist K22

9
bend K33

Figure 1.3: Sketch of splay, twist and bend elastic distortions.

Viscous Anisotropy

Viscosity is the measure of the fluid resistance to shear stress. It is an important 
parameter which should be taken into account when manufacturing devices involving 
any kind of LC switching. Experimentally, viscosity is commonly measured using a 
device which consists of two parallel plates, between which the studied material is 
placed. This is sketched in Fig. 1.4. The measured viscosity 77 then can be found as

n = (i-2 )
dz

where F  is the force needed to be applied to the upper plate in order to impose the 
LC velocity gradient ^  and A  is the plates area.

If the director field of the LC sample is fixed (by an applied field) to lie in one 
of the x, y  or z directions, then the force needed to move the upper plate in Fig. 1.4 
is different for each case. Thus, there are three different viscosities which are called 
Miesowicz viscosities. In general, there are five independent LC viscosities, which 
are all dependant on temperature. The magnitude of these viscosities is of the same 
order as that of water.
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Moving plate

->x

y
Fixed plate

Figure 1.4: Sketch of the device for measuring viscosities.

1.3.3 Computer Simulation of Liquid Crystals

Computer simulations help to establish a two-way link between theory and exper­
iment. Simulations are like virtual “experiments” which allow one to look inside 
m atter at the level which is beyond the reach of real experiments. This allows sys­
tem behaviour to be analysed more deeply and novel phases to be discovered, so 
broadening our understanding of the underlying processes and, potentially, opening 
up advances in both science and industrial applications. Depending on a problem’s 
time- and length-scales, totally different simulation techniques should be employed. 
We sketch this concept in Fig. 1.5, where we broadly classify all simulation tech­
niques into three distinct categories: microscopic, mesoscopic and continuum. Below 
we briefly consider each of these categories separately.

o
B
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Microscopic
level

Molecular dynamics 
Monte Carlo
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level

Lattice Boltzmann

Continuum
description

Conventional 
grid-based methods
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Figure 1.5: Broad categorisation of LC simulation techniques depending on their 
respective time- and length-scales.

LC M icroscopic Simulation Techniques

Microscopic simulation of LCs is a particularly challenging task. Firstly, mesogens 
usually consist of a number of atoms and have a reasonably complex structure. 
Consequently, realistic atomistic simulations are very expensive. Secondly, many
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LC phenomena occur on large length- and time-scales. For this reason, proper sim­
ulations of LCs were not achieved until the 1980s, at which point the computational 
power available become adequate to access these scales.

The two most popular simulation techniques at the microscopic level are molec­
ular dynamics (MD) and Monte Carlo (MC). Largely, these yield essentially equiv­
alent results, although MD allows one to simulate true non-equilibrium dynamic 
behaviour and MC can offer advantages in terms of better sampling of configura­
tional space in situations where conventional MD is inefficient. These simulation 
methods can be applied to a number of different models. Here by model we mean 
the level of theoretical description used to define a given system. Below we consider 
only those models which are applicable to the simulation of LCs.

The models used in microscopic simulations of LCs can be classified into four 
different classes [5]: realistic atom-atom potential models, hard nonspherical models, 
soft nonspherical models and lattice models. The first of these is the most realistic 
but is also the most expensive -  one needs to specify all atoms in every molecule and 
to use realistic atom-atom potentials. So in order to simulate only two molecules 
of PAA, depicted in Fig. 1 .1 , using a realistic model, at every time step 0(1O3) 
interactions have to be calculated. In the hard particle model, by contrast, every 
particle has an infinitely repulsive core and contains no attractive forces. This core 
retrains the basic shape of the molecule (i.e. rod-like or disk-like), but neglects all 
chemical detail. Its simplicity makes this an attractive class of model for use in 
MC simulations. However, in real systems there are both repulsions and attractions 
between molecules; soft particle models have been therefore developed including 
both of these components. Finally, lattice models are different from the methods just 
described. Here, LCs are represented using classical spin vectors located on the sites 
of a cubic lattice. These spins are allowed to rotate and to interact with neighbouring 
particles via a given potential. Effects such as flow and density variations are usually 
ignored in small models, however.

LC M esoscopic Simulation Techniques

Simulations of LCs in the mesoscopic regime are not yet achievable to the microscopic 
techniques just described, because they cannot access the higher orders of magnitude 
required for both the time- and length-scales. There are a number of mesoscopic 
simulation techniques available for simulations of fluids, such as dissipative particle 
dynamics (DPD) [6 , 7], the lattice Boltzmann (LB) method [8 ], smoothed particle 
hydrodynamics (SPH) [9, 10] and others. Of these, the LB method is the only meso­
scopic technique for which a concerted effort has been made to apply to simulations
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of LCs [1 1 , 12, 13]. In this, essentially a top-down approach has been adopted due to 
the high complexity of the task. This means that the developed LB techniques re­
cover macroscopic equations, rather than allow these equations to emerge from some 
underlying mesoscopic behaviour. A proper development of a bottom-up approach 
is still missing.

Whereas LC simulation techniques in each of these three categories identified 
above still have some challenges to overcome, the mesoscopic regime seems to be the 
mostly underdeveloped. This partly stems from the fact that mesoscopic simulation 
techniques are not yet mature in their own right. For example, proper parametrisa- 
tion of the DPD technique even for water simulations is not yet developed. A second 
reason arises due to the complexity of LC phenomena. The introduction of orien­
tational degrees of freedom and the coupling of these to translation motion make 
it extremely difficult to develop appropriate mesoscopic behaviours and to prove 
that they recover the target continuum equations, i.e. to establish a bottom-up 
connection.

LC Continuum  Sim ulation Techniques

For length-scales greater than 1 /im and time-scales above 1 ms, which is the main 
region where device operations are studied, continuum equations for nematic LCs 
can be solved numerically. In this, there are two main steps. The first step is to 
choose the appropriate partial differential equations (PDEs) to solve and the second 
step is to apply a suitable numerical technique for their solution.

For many LC systems, it is reasonable to assume that the LC order parameter 
is constant. If this is the case, then the Ericksen-Leslie-Parodi formalism [1] is a 
relevant set of governing equations. However, if variations in ordering are impor­
tant, such as in systems involving defects, then there are a number of alternative 
formalisms. In this context, the most commonly used sets of PDEs are those due 
to Qian and Sheng [14] and Beris and Edwards [15]. A recent paper by Sonnet [16] 
provides a framework against which different descriptions can be compared.

Once a target set of equations has been chosen, it can, in principle, then be 
solved using any conventional numerical technique. The most popular numerical 
techniques employed for this are the LB method, the finite-elements method (FEM) 
and the finite difference method (FDM). For example, a LB technique has been used 
to solve ELP equations [12], the meshless local Petrov-Galerkin method has been 
applied to solving the Q-tensor equations of nematostatics [17] and, more recently, 
a dynamic finite-element simulation has been applied to solve Landau-de Gennes 
theory of LCs with variable order parameter in 3D [18].
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1.3.4 Liquid Crystal Displays

The optical properties of LCs, along with their orientational behaviour, makes them 
very popular for use in display devices. A number of advantages, e.g. low power 
consumption, light weight, thin form factor, full colour etc. have contributed to make 
liquid crystal displays (LCDs) the dominant technology in several markets. LCD 
technology is also in its early stages of development to achieve electronic paper. In 
this section we briefly outline the essential techniques used in the manufacturing of 
LCDs [2].

A typical LC display consists of a thin layer (1 to 10 finl) of a LC sandwiched 
between two plates, usually made of a glass. Different treatments are applied to glass 
plates in order to impose a preferred LC alignment. The plates are also coated with 
transparent electrodes by depositing indium tin oxide (ITO) on these via evaporation 
or sputtering techniques.

Tw isted N em atic (TN ) Display

Many different types of display exist. We consider the twisted nematic (TN) dis­
play [19] as an illustrative example. This was devised in the early 1970s but still 
remains the most commonly produced type of LCD. The arrangement of a typical 
TN cell is depicted in Fig. 1.6. Glass plates are treated so as to impose uniform 
planar orientation of the LC but these are arranged such that there is a 90° orien­
tational twist between the opposite plates. This causes the polarisation of incident 
light to rotate by 90° when traversing the cell. As a result, if the cell is placed 
between crossed polarisers, light is still transmitted. When an external voltage is 
applied, however, all LC molecules align along it (assuming that the LC has a posi­
tive dielectric anisotropy, Ae > 0), as depicted in Fig. 1.6b. This state appears dark 
when the cell is located between cross-polarisers.

Display Addressing

Any LCD consists of hundreds of pixels, which need to be separately addressed. 
There are three main types of addressing used in real devices: direct addressing, 
passive addressing and active addressing.

The direct addressing approach is usually used in simple displays. In this, each 
pixel is directly connected to a controlling electronic device. A calculator display 
with seven pixels could be given as an example here. However, when the number of 
pixels grows this approach simply becomes very difficult and expensive to implement. 

The next simplest common approach is to use a passive matrix, or multiplex,



CHAPTER 1. INTRODUCTION 12

(b)(a)

Figure 1.6: Twisted nematic cell with (a) no applied voltage and (b) an applied 
voltage.

addressing, which is schematically depicted in Fig. 1.7. In this, matrix of transparent 
conducting rows and columns interconnects all LCD pixels. In the switching process, 
a voltage +Vr is applied sequentially to each row. Then, pixels in this row are 
switched in parallel by applying voltages ±.VC to the corresponding columns. The 
pixels are switched to “on” or “off” states depending on the total voltage applied, 
i.e. Vr ±  Vc. Thus, it is very important that pixels have some switching threshold 
value, otherwise the applied column voltages Vc would erroneously switch pixels in 
other rows. This approach is also limited by the fact that in an N  row display, 
over a given time frame t , each pixel receives its full voltage over the time period 
t f  =  t / N.  In this class of multiplexed addressing, M  x N  pixels can be addressed 
using M  + N  different lines.

1 2  3 4

M  columns

Figure 1.7: Sketch of the multiplex addressing in LCDs.

The major disadvantage of passive matrix technology is that as the number of 
rows, N , grows, the time t f  during which each pixel is addressed decreases. This 
reduces the difference between the “on” and “off” states and, as a result, decreases 
the display’s contrast ratio. This can be partially overcome by splitting the display 
into a number of separate regions, such that these regions are updated independently,
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or by using the active addressing approach considered below.
A thin film transistor (TFT) is put next to every pixel in the active addressing 

technology. TFTs maintain the state of pixels and update them only when cor­
responding rows are being accessed. The voltage across each pixel is maintained 
by storage capacitors which are located next to each TFT. Thus, the manufactur­
ing process needed for active addressing technology is much more complicated than 
that used to implement passive matrix technology, because an active transistor and 
a capacitor is required next to each pixel. Despite this, use of TFTs in commercial 
displays is widespread because they give high contrast ratios, fast switching times 
and high resolutions.

1.4 Bistability

Bistability is a property of a LC device by which the LC can reside in two or more 
distinct stable configurations under the same external conditions. Provided that 
these two stable LC configurations are optically distinct, e.g. form black and white 
in a bistable reflective display. There are two main benefits of bistability for display 
applications:

•  Reduced power consumption. Bistable displays consume energy only when 
switching process occurs between two states and, consequently, do not use any 
energy to hold a static image. Conventional monostable displays require a 
constant power for their operation, but they usually require less energy for 
switching between optically distinct states. Thus, if a display device does not 
needed to be updated frequently, then there is a significant advantage in terms 
of power consumption in employing the bistability. This aspect is especially 
pertinent to mobile held devices, such as electronic book readers.

• Unlimited multiplexing capabilities. Bistable pixels do not require a contin­
uously applied voltage over some threshold to retrain a static image. As a 
result, they can be used with cheaper passive matrix technologies which can 
potentially support an arbitrary number of rows. Thus, very high resolutions 
can be easily achieved, as compared to TN technology, where very complex 
active matrix addressing needs to be used.

A number of possible mechanisms to achieve bistability have been researched in 
recent years, exploiting both physical properties of LCs and/or non-trivial boundary 
conditions. One early work in this area [20] used evaporated SiO layers as boundary 
conditions which lead to bistability; a sign dependant applied voltage was used to



CHAPTER 1. INTRODUCTION 14

switch between states. Bistable twisted nematics [21] is another example, which has 
one state homogeneous and the other with a 360° twist; switching between these 
is achieved using voltages with different threshold values. Cholesteric LCD’s [2 2 ] 
have two stable states, which are a planar twisted state and a state with a focal 
conic texture; switching between these is achieved by electric field pulses of different 
lengths.

Below we consider two of the relatively recent developments in this area, namely 
the zenithal bistable device (ZBD) and post aligned bistable nematic (PABN). These 
both employ complex alignment surfaces to achieve their bistability.

1.4.1 Zenithal B istable D evice (ZBD)

The zenithal bistable device (ZBD) uses an asymmetric grating on one of the cell’s 
surfaces to obtain bistability [23]. A schematic illustration of the ZBD cell is depicted 
in Fig. 1.8. Here, both surfaces are treated so as to impose local homeotropic 
alignment. There are two stable states in the ZBD device, which are called the 
defect state (planar) and the continuous state (vertical). Depending on the pitch to 
groove ratio, the ZBD cell can be made to favour the planar state only, the vertical 
state only or both states bistably. The final case is the one used when producing 
devices.

(a) (b)

Figure 1.8: Sketch of ZBD stable configurations, (a) planar state (b) vertical state.

Switching between the two stable states of the ZBD is achieved using sign- 
dependant field pulses on LCs with positive dielectric anisotropy Ae  > 0. The 
switching mechanism involves a non-trivial creation and annihilation of defects near 
to the grated surface. Defect dynamics in this processes is governed mainly by the 
flexoelectric coefficients and the dielectric constant, as was recently shown by 2D 
simulations which used theory of LCs with variable order parameter [11].
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1.4.2 Post Aligned Bistable N em atic (PABN)

The post aligned bistable nematic (PABN) device [24] uses an array of 3-dimensional 
posts on one of the cell sides to achieve bistability. When posts are low, the system 
favors only planar configurations and when posts are high, only tilted states are 
stable. For some intermediate post heights, however, both states are stable.

Switching between the two stable states is achieved using sign-dependant pulses. 
In these, a LC with negative dielectric anisotropy is usually employed, Ae < 0. The 
driving mechanism behind the switching is not yet fully understood, although it 
is assumed that flexoelectricity is involved and that the switching process involves 
creation and annihilation of defects [18]. We describe our study of the PABN device 
operation in more detail in §6 .

1.5 Basics of Mesh-free M ethods

As their name suggests, the main idea behind mesh-free methods is that they do 
not rely on a grid. This is a big advantage over traditional grid-based methods since 
it fully eliminates the computational cost associated with mesh creation. In mesh- 
free methods, then, the spatial domain and its boundaries are represented by a set 
of scattered nodes without any specified intra-connectivity. As such, any confining 
geometry can be represented very accurately, even if the shape functions utilised 
within the mesh-free method are of low order.

Many types of mesh-free methods have been devised so far. The different classi­
fications of these are set out in the extensive reviews which have been published in a 
number of books [25, 26]. Depending on the details of their formulation procedures, 
mesh-free methods can be classified into three categories: those based on weak- 
forms, those based on collocation techniques (also called strong form) and mesh-free 
particle methods.

Strong-form methods are usually easy to implement, computationally efficient 
and have the advantage that the procedure they use for discretising PDEs is straight­
forward. In these, the numerical error is minimised on the simulation points them­
selves. The biggest issue preventing collocation methods from becoming more pop­
ular is their inability to handle derivative boundary conditions. Another issue with 
strong-form methods is that they have a tendency to be unstable, especially when 
the final solution contains high-frequency modes.

In weak-form mesh-free methods, the error of solution is minimised in a certain 
region around the point, rather than on point itself as in strong-form methods.
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This integral operation effectively smears out the numerical error, resulting in the 
discretised system being more accurate and stable. The only disadvantage of weak- 
form methods is their decreased computational efficiency, which arises due to the 
numerical integration procedure outlined above.

1.5.1 Mesh-free Particle M ethods

Mesh-free particle methods (MPMs) can be seen as a certain sub-set of mesh-free 
methods, in which a finite set of particles is used to represent the state of a sys­
tem [27]. These particles can represent some discrete physical objects (e.g., atoms) 
or they can represent parts of the continuum problem domain (e.g., when solving a 
PDE).

MPMs can be classified into three different categories based on length scales, 
which are atomistic, mesoscopic and macroscopic. Classical examples of atomistic 
MPMs are molecular dynamics and Monte Carlo methods, in which each particle 
typically represents an atom. Dissipative particle dynamics (DPD) [6 , 7], direct 
simulation Monte Carlo (DSMC) [28, 29] etc. can be seen as examples of mesoscopic 
MPMs. Macroscopic MPMs include smoothed particle hydrodynamics (SPH) [9, 10], 
Particle-in-Cell [30], Reproducing kernel particle methods (RKPM) [31] and others.

There is also a second classification of MPMs based on the mathematical model 
employed. This divides MPMs into deterministic and probabilistic classes. Many 
MPMs are probabilistic in its nature, such as DSMC, DPD etc. In deterministic 
techniques, on the other hand, once all initial conditions have been set, the particle’s 
position and properties at later simulation stages can be exactly predicted based on 
physical laws governing the system. Some MPMs can belong to both classes, such 
as SPH. SPH was originally presented as a probabilistic technique, but now it is 
widely used as a deterministic mesh-free particle method.

1.5.2 Consistency, Com pleteness and Reproducing Condi­
tions

The following three terms are often used in the study of the convergence of numerical 
methods: consistency, completeness and reproducing conditions. The consistency 
condition is used in finite-difference methods, whereas the reproducing condition 
(or completeness) is used in Galerkin methods for convergence proofs [32]. In this 
section we state the definitions of these three conditions and define the ways in 
which we use them to analyse the completeness of mesh-free particle methods.
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The consistency condition is used in the analysis of finite-difference approxima­
tions. It states that a scheme L^u = f  is consistent (accurate) with the differen­
tial equation Lu = f  to order p, where u is any sufficiently smooth function, if 
||Lu — Lhu\ \ = 0 (h p). In this definition, h is the distance between the nodes in the 
regular FDM grid. It is easy to see that the approximation error ||Lu — Lhu\\ goes 
to zero when p > 0  and h —» 0 .

The consistency condition is difficult to apply to mesh-free methods, where there 
are no predefined connections between the randomly distributed nodes and the node 
spacing h is not clearly defined. Thus, the reproducing condition (or completeness) 
is usually used in the analysis of mesh-free methods.

The reproducing condition (or, alternatively, completeness) states that an ap­
proximation uh{x) is complete to order p if polynomials up to order p can be repro­
duced exactly. This can be illustrated by considering uh(x) as being approximated 
by a sum of certain basis functions, i.e.

uh{x) = ^  ®i(x )uh  (!-3)
i

where &i(x) are basis functions and Ui are nodal values. If the values of ui  are set 
according to some polynomial of order p, then uh(x) should reproduce this polyno­
mial exactly. For example, if in one dimension, the nodal values are given by the 
polynomial

ui  =  a0 +  aixi  +  a2x j  +  . . .  +  apxp, (1.4)

then the reproducing condition of order p is met if

uh(x) = ^ 2  &i{x )ui = ao +  a\X +  a2X2 +  . . .  +  apxp. (1.5)
1

Consideration of an arbitrary choice of the coefficients, a*, then leads to the following 
set of conditions on the basis functions:

^ $ j ( a ; )  =  l, ^ 2 $i{x)x i = x , . . . ,  ^ 2 ^ J(x)xpI = xp. (1 .6 ) 
1 1  1

The set of basis functions {$/} also satisfies what is called the partition of unity 
(PU) of order p. For instance, the PU of order 0 satisfies $ 7 (2;) =  1 .

It is often also necessary for the derivatives of polynomials to be correctly repro­
duced. This is called the derivative requirement condition and can be found from 
eqs. (1.6) by straightforward differentiation of both sides. For example application
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of the first derivative yields:

=  0, ^ ® i , x ( x )x i = 1> •••> ^ 2 ^ i , x{x)xpi = p x p~1. (1.7)
i i  i

It can be reasonably argued that the terms completeness and reproducing con­
dition are closely related to consistency [32]. Indeed any differences between them 
are not relevant to the remainder of this Thesis so that these terms will be used 
interchangeably from this point to denote the reproducing condition defined above.



Chapter 2 

Landau-de Gennes Theory of 
Liquid Crystals

2.1 Introduction

2.1.1 The Nem atic Order Param eter

Quantitatively, the behaviour of LCs is best described using the concepts of the di­
rector and the associated order parameters [1]. In the nematic phase, the molecular 
axes of a LC tend to point along a preferred direction, called the director. The direc­
tor is denoted by a unit vector n  pointing along the average molecular orientation, 
as sketched in Fig. 2 .1 . The directions ft and —n  are usually equivalent and indistin­
guishable; that is why the vector n  is drawn with two arrows in Fig. 2 .1 . Generally, 
the director is a function of both space and time coordinates, i.e. ft = fi (x , t ) .

Figure 2.1: A schematic illustration of molecular axis around the average alignment 
direction.

The degree of LC alignment can be described quantitatively using the scalar S',

19
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which is called the order parameter. Formally, this order parameter is a second-rank 
quantity, but this detail is not pertinent to the remainder of this Thesis. In order to 
define the order parameter, we consider some sample of a LC, e.g. that depicted in 
Fig. 2.1. If 7  is the angle which a given molecule’s long axis makes with the director, 
then the degree of order can be quantified via the set of even Legendre polynomials 
of cos 7 , averaged over an appropriate volume. Odd Legendre polynomials average 
to zero in uniform bulk nematic due to the head-tail symmetry of the phase. The 
leading non-zero number of this set is, therefore, the second averaged Legendre 
polynomial. This is also called the microscopic order parameter:

S  =  (P 2(c o s 7 ) )  =  i ( 3 c o s 2 7 -  1), (2.1)

in which ( ...)  denotes the statistical average and, thus, this equation can be equiv­
alently rewritten in the continuum form such as

S  = ^  J  (3 cos2 7  — l) f{-i)dV, (2 .2 )

where /(q )  is the statistical distribution function of the molecular angle 7 . The 
function / ( 7 ) is even and periodic due to the head-tail symmetry of the phase, i.e. 
/ ( 7  +  Tf)  =  / ( 7 ) .

In a perfectly ordered fluid where all molecules are ideally aligned with the 
director, i.e. all angles 7  =  0  and the order parameter is equal to 1. In an isotropic 
fluid, conversely, all molecules are randomly oriented, so (cos2 7 ) =  1/3 and the 
order parameter is equal to 0. When all molecules lie in the plane perpendicular 
to the director, the order parameter S  = —1 / 2 . Although mathematically it is 
possible to have a negative S', in real systems the order parameter usually takes 
values 0 < S  < 1, with typical values for a nematic being around 0 .6 . This order 
parameter is usually sufficient to describe systems composed of molecules possessing 
cylindrical or rotational symmetry around their long axes.

2.1.2 The Biaxiality

Molecules, in practice, do not usually have axes of complete rotational symmetry. 
Systems composed of such molecules, thus, might not have an axis such that rotation 
around it will leave the system’s state unchanged. Sometimes, this can also be the 
case for systems composed of uniaxial molecules. Such systems are called biaxial 
In these, a uniaxial order parameter S  alone is not enough to describe the system. 
However, in such systems two perpendicular axes n  and rh  of translational symmetry
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can always be identified, with the third axis I being always perpendicular to these 
two, I = n  x rh. In these, each axis has a reflection symmetry, i.e. f t  —* —ft, 
rri —> —771 and I —>• —I.

A uniaxial arrangement of both uniaxial and biaxial molecules is easy to imag­
ine, as well as the biaxial arrangement of biaxial molecules. A biaxial arrangement 
of uniaxial molecules is more complicated, and this situation is pertinent to defects 
in nematic liquid crystals. The latter situation is illustrated in Fig. 2.2, where the 
ordering of molecules is different depending on the axis along which the system is 
viewed. The distinct feature of this configuration, when viewed from the “top” in 
the xy-plane, is that the projections of molecules are ordered. We call the associated 
order parameter S2 the biaxial order parameter, which is equal to |  (sin2 7  cos 2 7 ) . 
There is also a third order parameter, S3 (x,t) ,  which is related to S i (x , t )  and 
6 2 (0?, t). For example, in the uniaxial case one of these order parameters will nor­
mally be zero and two others will be equal to each other, e.g. Si = S 2 and S3 = 0 .

y
> x

A f t
x

I J W /

Figure 2 .2 : A schematic illustration of a biaxial arrangement of uniaxial molecules 
viewed along three different principle axes.

Thus, in order to fully describe a biaxial system, two directors, n ( x , t )  and 
77i(x ,  t), and two corresponding order parameters, S(x,  t ) =  f t  ( a s ,  t ) and Pb(&, t) =  
ft(cc,t), should be defined. The directors can be represented by three Euler angles, 
namely zenithal angle 6 , azimuthal angle <p and another zenithal angle 'ip for the 
second director. Using the assumption that all directors are of unit length, we can 
then represent them using Euler angles as

ft =  (cos 0  cos 4>, cos 6  sin </>, sin 6 ),

7Ti = (sin (p cos 'ip — cos (p sin 7p sin 9, — sin (p sin ip sin 9 — cos (p cos ip, sin ip cos 9). 

The complete description of a biaxial system can then be achieved by using five
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independent variables, which are

6 (x,t) ,  0(sM), Si(x , t ) ,  S2 (x ,t) .  (2.3)

However, there can be problems with theories based on Euler angles. For instance,
when the zenithal angle 9 = 7r /2 , then the azimuthal angle is undefined. Thus, 
extra care should be taken when solving differential equations based on this descrip­
tion.

2.1.3 The Tensor Order Param eter Q

In this subsection we describe an alternative approach for describing a nematic 
system, which removes problems associated with descriptions based on Euler angles. 
In this, instead of defining the five independent variables listed in eq. (2.3), a matrix 
Q is constructed which includes all of the information about the nematic state. This 
matrix is the second rank, traceless, symmetric tensor Q which can be written in 
terms of previously defined directors and order parameters as

S  P  \
Qa(3 ~2 (3hafi/3 ^a/?) H ŷ â /3 ^qT^!3j • (2-4)

In the uniaxial state, the biaxiality Pb is equal to zero and Q is simplified as

Qaf3 = (3fiafig ^a/3) • (^'^)

The eigenvalues of the matrix Q described by eq. (2.4) are S , —1(5 +  Pb ) and 
— |  (5 — Pb). In the isotropic state, all of these eigenvalues are equal to zero and 
Q = 0. Since Q is symmetric and traceless, it contains five independent variables 
fully describing the nematic system. But, unlike the Euler description, which is also 
described by five independent variables, it is free of the description problem noted 
in §2 .1 .2 .

While Q describes the level of microscopic ordering in LCs, there is also an 
intimate connection between Q and macroscopic quantities such as the dielectric and 
magnetic susceptibility, refractive index and conductivity. This provides a number 
of experimental ways of determining Q. Various techniques based on the above 
macroscopic quantities provide comparable results, with a maximum difference of 
10% [1].

For example, by considering the diagonalised macroscopic susceptibility tensor
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and by making it traceless we obtain:

-|(xn -  Xx)
Axcj3 3 (xil — Xx) (2 .6)

|(X|| -  Xx) /

Normalisation of the above equation with the maximum anisotropy A x maa: =  (x|| — 
Xl ) / S  gives the following form for Q :

The tensor order parameter regarded in this way does not contain any assumption 
on the microscopic structure of the LC under consideration. It also provides a 
straightforward connection between changes in microscopic ordering and variation 
of the associated macroscopic quantity.

2.1.4 The Nem atic-Isotropic Phase Transition

The nematic-isotropic phase transition in LCs is weakly first order. This type of 
transition is characterised by a discontinuous change in the order parameter at the 
critical temperature. Phenomenologically, we follow Landau [33] in describing this 
by using the Taylor expansion of the free energy density /  in powers of the tensor 
order parameter Q. This expansion is usually written near Q = 0  as [1]

where f iSO is the free energy density of the isotropic fluid. The coefficients A , B  
and C  are all temperature dependant, but usually the coefficients B  and C  are 
set to be independent of temperature, while the coefficient A  is chosen to depend 
on temperature as A = a (T  — T*), where a > 0 and T* is the temperature at 
which the isotropic state becomes unstable. All terms in equation (2.8) for the free 
energy density are invariant under rotations and reflections of coordinate axes, as 
they should be, since the symmetry of the phase needs to be preserved. Normally, 
eq. (2 .8 ) for free energy is truncated at the fourth-order terms, which provides 
a general description effectively representing the uniaxial phase [34]. In order to 
match notations, we rewrite the above Landau-de Gennes form of the free energy

.max (2.7)

fLdG ~  fiso +  - A Q apQpa +  ~B Q apQp7 Qia +  ~C  (QapQapT +  0 { Q 5)i (2-8)
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density in the form equivalent to that given in [14]:

f L d G { Q ) =  f i s o  T  ^ ^ F Q a p Q / 3 a  P f Q ocpQ P 'y Q j a  T  ' I fF Q a p Q /3 a Q f iu Q u f i '  (^*9)

Here, op, (dp and 7 p are the Landau-de Gennes coefficients. Thus, equation (2.9) is 
our main working equation for the free energy density of a thermotropic LC. It can 
be readily used to  predict the preferred phase of the material, i.e. isotropic, uniaxial 
or biaxial.

We now proceed to the analysis of eq. (2.9). For this, we insert the uniaxial 
order tensor definition given by eqs. (2.5) into eq. (2.9), which yields:

f u a i S ,  T) =  f iso +  a (T -  T*) 5 2 -  B S 3 +  C S \  (2.10)

where a(T — T*) = B  = ~ ~  and C =  By calculating the first order
derivative dfLdG(S,T)/dS, setting it to zero and solving the obtained equation with 
respect to 5, three stationary points are found:

5 =  0, (2.11)

s  = _L ( z b  +  y/9B2 — 32aC (T — T*)J , (2 .1 2 )

3B  -  — 32aC (T — T*) \ . (2.13)

Examination of the second order derivative d2fLdG(S,T)/dS2 leads to the following 
conclusions about these stationary points:

• 5  =  0, the LC is in the isotropic state. This phase is stable for T > Ti n  = 
T* +  metastable for T* < T  < Ti n  and unstable for T  <T*.

• 5  =  ( s B  +  y/QB2 — 32aC (T  — T*)^j, the LC is in the nematic state. It 

is stable for T  < T in , metastable for Tin < T  < T** = T* +  and not 
defined for T > T**.

• 5  =  g^ ( s B  — y /9B 2 — 32aC (T — T*)^, this state is metastable with a neg­
ative 5  value for T  < T*, unstable for Tin < T  < T** and not defined for 
T  > T**.

Based on the above analysis, the LC behaviour can be summarised as follows. 
For T  Ti n  the LC is in the isotropic state and for T  Tin  it is in the nematic 
phase. In between these states, close to the transition temperature T*, the behaviour 
is dependant on whether the LC is being heated or cooled. In the former case, the
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nematic phase becomes unstable at T** and in the latter case the isotropic state 
becomes unstable at T*. Fig. 2.3 shows the S  dependance of the free energy density 
for different temperature values, according to eq. (2 .1 0 ), where all troughs can be 
clearly seen.
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Figure 2.3: The dependance of the free energy density on the order parameter for 
various temperatures.

The order parameter given by eq. (2.12) is plotted in Fig. 2.4 as a function of 
temperature, where the discontinuity at T  — T** can be clearly seen. It should be

a
.3’3 0.2

- 6 - 4 - 2- 1 0 8 0

T  — Tim (K)

Figure 2.4: The dependance of equilibrium order parameter S  on the temperature 
for a set of Landau coefficients suitable for 5CB [14].

noted that the Taylor expansion of the free energy density (2.8) is valid only for 
small values of order parameter S. That is why all terms containing higher powers



CHAPTER 2. LANDAU-DE GENNES THEORY OF LIQUID CRYSTALS  26

of Q were neglected in this expansion. Thus, formally this theory should be applied 
only in situations where S  does not take large values. However, as it can be seen 
from Fig. 2.4, the theory provides reasonable values of order parameter deep in the 
nematic phase. Thus, in this thesis we apply this theory without any limitations, 
since we work only in the nematic phase (S  ~  0 .6 ).

A nematic LC prefers to remain in an undistorted state with Q remaining uniform 
throughout the sample. Various external influences, such as boundary conditions, 
may, though, produce spatial variations in ordering. But the LC returns to the 
undistorted state once these external influences have been removed. This tendency 
can be explained through a free energy density fo ,  also called the distortional or 
elastic energy density, associated with distortions which depends on the spatial 
derivatives of Q. Derivatives of Q are assumed to be weak, provided that the 
characteristic length scale associated with changes in Q is much longer than the 
molecular dimensions. A linear expansion yields the free energy density:

where / 0 is the energy of the undistorted LC, Laig7 controls distortions correspond­
ing to a chiral nematic phase and represents the nematic elasticity. The
elastic free energy density should be the same when described in different frames 
of reference, i.e. it should be invariant to arbitrary rotations or translations. This 
implies that not all of the combinations of Q derivatives are allowed and, in fact, 
the elastic free energy (2.14) can be reduced to:

where Pch denotes the helix pitch. Although there are seven third-order terms in 
Q, we keep only one in order to prevent having undefined constants [15], i.e. to 
remove the degeneracy in elastic constants when mapping them from Q tensor to 
experimental values Ka in the Frank energy approach. The elastic parameters Li

2.2 Static Theory of Liquid Crystals

2.2.1 Elasticity

I d  — Jd  (dQ) — fo  +  L a p j d ^ Q a p  +

(2.15)
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are related to the Prank elastic constants by the following identities [35]:

K n  = - f  (2 ii  + L 2 + L3 -  SoL t) , (2.16)

(2.17)

71̂ 33 —  —~  ( 2 L i  L 2 +  L z  4 - 2 S o L i ) , (2.18)

(2.19)

where So is the uniaxial order parameter at which the experimental measurements of 
the elastic constants were taken and is not necessary equal to the current equilibrium 
order parameter S  of the LC. The saddle-splay contribution K 2a is a divergence term 
and does not influence the bulk behaviour. However, if the anchoring is weak at 
the surface, this term may contribute to surface ordering and thus change the bulk 
ordering.

2.2.2 Electric and M agnetic Fields

LCs interact strongly with externally applied electric and magnetic fields. The 
response of LCs to magnetic fields is relatively simple and depends only on the 
anisotropy of the magnetic susceptibility. Electric fields, on the other hand, produce 
many physical effects in nematics in addition to that due to dielectric anisotropy [1]. 
Below we consider the influence of both fields separately.

M agnetic Fields

LCs are anisotropic diamagnetic media and their magnetic susceptibilities are differ­
ent along the directions parallel (x||) and perpendicular (x _l ) ^ e  LC director. In 
nematics, the difference Ax =  X || — X jl  is usually positive. If an external magnetic 
field H  is applied to a LC sample, then the magnetisation M  induced by H  can 
be written as:

where Xa/3 is expressed following eq. (2.7). The free energy density due to the applied 
magnetic field can then be derived from eq. (2 .2 0 ):

A x maxQapHp +  0 ^ 0X77 fiapHp,Ala fioXapHp (2 .20)

f M = -  I  M  - d H  = - i ^ A -  ^ 0X r r (2-21)
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In the above equation the second term is independent of the ordering. The first 
term, on the other hand, explicitly contains the Q tensor and it is minimised when 
the director is collinear with the applied magnetic field (for positive Ax)-

Electric Fields

In order to describe the effect of electric fields, we consider an ideal situation of a 
static electric field E  applied to a nematic LC. In this simple set-up, two different 
physical processes take place. The first is due to the dielectric anisotropy and it 
is very similar to the effect of the diamagnetic anisotropy described above. The 
second effect is more complicated and arises in deformed nematics where a sponta­
neous dielectric polarization appears. This is the so-called flexoelectric effect and 
we consider it in the next section.

The derivation for the dielectric anisotropy effect is very similar to that for the 
diamagnetic anisotropy. The dielectric anisotropy Ae =  e\\ — ej_, where e\\ and e± are 
the dielectric constant measured along and perpendicular to the nematic axis, can 
be positive or negative depending on the structure of the constituent molecules. If 
an electric field E  is applied to a nematic LC, then the electric displacement D  has 
the following form

Da = eoeapEp = - A e maxQaf3Ep +  -eo e^SapEp. (2.22)

The free energy density due to the electric field is then given by:

fE =  ~ J  D -  dE =  - | e 0A -  jU e77£ 2. (2.23)

For LCs with a positive anisotropy, i.e. with those having ey — ej_ >  0, the lowest 
energy state is when the director is parallel to the applied electric field and, thus, 
the molecules align along the field. In case of the negative anisotropy, ey — e± < 0, 
the lowest energy is achieved when the director is perpendicular to the electric field.

In real LC devices, however, the presence of an electric field produces a more 
complicated behaviour. For example, there are always conducting impurities present 
which aggregate into regions of charge when an electric field is applied. Also, the 
dielectric anisotropy of a LC is much greater than the diamagnetic anisotropy. Thus, 
for any distortion of the ordering in the sample, the Maxwell’s electrostatic equations
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(2.24)

need to be solved: ✓

Da = ^ a p E p ,
Ep = - dp4>,
V x E  =  0,

where 4> is the electric potential (voltage) and aj  is the free charge which is in this 
thesis assumed to be always equal to zero. Strictly speaking, Maxwell’s equations 
{daB a =  0, V x H  = 0) need also to be solved for magnetic fields for higher accuracy.

2.2.3 Flexoelectricity

In some liquid crystals a splay or bend distortion can create a spontaneous dielectric 
polarisation which is equivalent to a local electric field. An applied electric field, on 
the other hand, may induce distortions which will induce a corresponding polarisa­
tion. This effect is called flexoelectricity and it was first discovered by Meyer [36]. 
In order to quantify this, the most general form of polarisation Pq is constructed 
which is proportional to the first-order spatial derivatives of the director [1]:

Pe = enhed^h^ +  e33n7d7 n0 , (2.25)

where en  and e33 are flexoelectric coefficients with the dimensions of an electric 
potential. There are no flexoelectric terms arising from second order derivatives 
due to symmetry principles. Whereas eq. (2.25) includes only the derivatives of the 
director, a more general expression accounting for order parameter can be written 
as [37]:

Pe = CidjQoj  +  C2Qe1 dllQlil. (2.26)

In this, Ci and C2 are ‘weakly’ temperature dependent flexoelectric coefficients. 
Only one second order term in Q  (the C2 term) out of a possible three was in­
cluded in eq. (2.26) in order to remove ambiguity. This allows one to directly match 
experimental parameters without introducing unknown coefficients, similar to the 
expression for elasticity. Substitution of Q  from eq. (2.5) into eq. (2.26) yields:
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Matching this equation with that by Meyer (2.25) provides the following relations 
between flexoelectric coefficients:

f 35oCi , 3S02C ^  . ( Z S 0C, 3S$C2\
=  [ — + ^ r ) ' 633 =  [ ~ 2 ------------ 4 ~ )  • (2-28)

The free energy density due to the flexoelectric contribution has the following 
form:

ffiexo = —EoPe =  —C\Eq8 1 Qq1 — C2EoQo1 dltQ*1ll. (2.29)

There is an effect similar to flexoelectricity, which is called the order electric 
effect [38]. It happens when there is a spatial gradient in the ordering S  and there 
are no significant variations of the director. The polarisation in this case is found 
by again substituting Q from eq. (2.5) into eq. (2.26) with assumption that S  is a 
variable and ft is constant. This yields

„  ( SCi , 3C25 ^  a a a 0  , (  Cx , C2S \  a c
Pe — ( ~2 “ -̂4— ) nenn^nS +  I — — H— —  J deS. (2.30)

2.2.4 Boundary Conditions and Anchoring

When liquid crystal molecules are close to a solid boundary they experience an 
influence which is dependent on type of the boundary treatment. For example, a 
boundary treated by rubbing can impose a preferred direction of the director. In 
some cases, boundaries can also change the value of the order parameter. Thus, a 
full continuum description of LCs should include a free energy density term which 
will account for boundaries. This then should be minimised together with the bulk 
terms in order to find the LC preferred state.

Strong anchoring is the simplest type of LC boundary condition. In this, the 
boundary strictly imposes both the preferred orientation and the degree of ordering 
of the LC molecules. In the continuum limit this corresponds to a classical Dirichlet 
boundary condition and is imposed in simulations by fixing the Q tensor on the 
boundaries. In this, Q is determined by substituting the desired values of the order 
parameter S  and the director n  into eq. (2.5). Thus, for this type of anchoring the 
free energy density expression to be minimised contains no extra terms.

W eak anchoring also imposes preferred direction and ordering of a LC at a 
boundary. Unlike strong anchoring, however, it does so by including an extra term in 
the free energy density which penalises any deviations from the preferred orientation 
or ordering. One of the most widely used forms for this free energy density that
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involves Q tensor can be written as [39]:

f s  = Y  ( Q c f f - Q ^ f ,  (2.31)

where W  is the only anchoring coefficient and Q° is a preferred alignment tensor 
on the surface given by eq. (2.5). The magnitude of the anchoring coefficient W  
determines how strongly the preferred orientation is imposed. It is obvious that the 
strong anchoring corresponds to the limit when W  —► oo. In case of the uniaxial 
constant order limit, which can derived by substituting eq. (2.5) into eq. (2.31), the 
free energy density takes the following form:

f s  =  (1 -  = - J  (n«n°a? , (2.32)

where A  is the Rapini-Papoular anchoring coefficient [40] and W  =
P la n a r  d eg en era te  anchoring  is another important class of anchoring. In 

this, the director lies parallel to the surface. There is no single preferred direction 
at the surface, though, and the only condition is that the director should prefer to 
lie parallel to the surface. The most general surface free energy density in this case 
is given by [41]:

f s  =  ciV.Q.v  +  c2 (zaQ.i>')2 +  c3i/.Q 2 .i/, (2.33)

where the Cj are anchoring coefficients and v  is the vector of the surface normal. 
Here, the effective anchoring strength, as compared to Rapini-Papoular energy, can 
be shown to be W  = |5o(3ci +  (c3 — 2 c2)£o).

2.2.5 The Equilibrium States

In the previous sections of this chapter we have provided expressions for the free 
energy density of a LC that describe different aspects of nematic behaviour. The 
total free energy of a given state is then found by integrating the free energy density 
over the whole domain including bounding surfaces:

^Global =  F d o b a l i Q i d Q )  =  ^ B u lk  +  ^ S u r f a c e  =  /  /b<1V +  /  /sdS
Jn J r

=  [  (fidG +  I d +  }em  +  ffiexo) dV +  f  f s d S , (2.34)
Jn J r

where D is an open-bounded set with boundary T. In order to find the free energy 
density which minimises eq. (2.34), variational calculus needs to be applied. For that, 
we first construct an expression for variations in JF, 5J7, for all virtual variations of
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the alignment field:

8 IF = 5 f  f s  {Qap, djQap) dV + 5 f  f s  (Qap) dS 
J v  J s

- 1 w -> )dV+L  tS £ ,s q ^ -  (U5)

where we used the fact that the variation operator commutes, i.e. 8  (d7 Qap) =

d7 W a p ) -
The following identity can be derived from the divergence theorem:

[  da (fa/3 gp)  dV =  f  Qpdaf ap dV +  [  f apdagp dV =  [  va j apgp dS, (2.36) 
J v  J v  J v  J s

where v  is, again, an outward pointing unit normal vector from the surface. Appli­
cation of the above equation to eq. (2.35) yields:

S T - I X m - a i H s ) S Q - ’ d V + L  ( “' t m s + ©  ^
(2.37)

This minimisation should also account for the Q tensor being symmetric and trace­
less, which is achieved by introducing Lagrange multipliers XB and Xs . Thus, finally 
the following equilibrium conditions for LCs can be written:

dfB di a , dJ ^  ' + A % /? +  A % 9t =  0  (2.38)
dQap d{d7 Qaf3)

d f B , d f s  , , 5 r  ,+   1- A Sap +  X1 eap1 — 0 (2.39)
did^Qap) dQap

Solutions to eqs. (2.38) and (2.39) yield the equilibrium states of the LC system. 
In the case of strong anchoring eq. (2.39) can simply be ignored, since here the free 
energy density f s  = 0 as was previously discussed in §2.2.4. When, on the other 
hand, the boundary conditions are complicated and f s  is not equal to zero, both 
equations should be taken into account. The complexity of eqs. (2.38) and (2.39) 
makes them impossible to solve analytically for all but the simplest geometries. For 
this reason, numerical techniques are routinely applied. Very often more than one 
solution exists corresponding to the local minima in the free energy density. Thus, 
in order to find all solutions for real systems, different random starting conditions 
are often considered within the minimisation process.



CHAPTER 2. LANDAU-DE GENNES THEORY OF LIQUID CRYSTALS  33

2.2.6 Defects

In this section we consider common defects in LCs. These are characterised by 
distortions in the local director field entailing a significant decrease in the local 
order parameter and an increase in the biaxiality parameter. These are directly 
observed through optical microscopy, the nematic itself being named due to “thread 
like” defects [1]. The defects can be points, lines (sometimes called as disclinations) 
or walls, but usually walls are unstable, tending to break into a number of line 
defects [1]. The free energy of defects is higher than that of the uniform nematic, 
but their formation can lead to the total free energy of the system finding a global 
minimum.

Defects in real LC systems may occur, for example, due to applied electro­
magnetic fields or varying boundary conditions. When there are external influences 
acting on a LC, the minimum of the free energy density is achieved via one of two 
different mechanisms. In the first, the eigenvectors of the Q tensor change as a 
function of space and/or time coordinates. This simply corresponds to the director 
varying in space but the order parameter staying constant. For example, this is 
what happens in a cell which imposes different uniaxial orientations on its bound­
aries. The second mechanism is manifested via change of the eigenvalues of the 
Q tensor. In this case the orientation of the director remains fixed, but the order 
parameter is decreased and the biaxiality is increased. Sometimes there may be 
a combination of these two mechanisms, depending on the interplay between the 
elastic free energy and the Landau-de Gennes free energy /lczg-

In order to quantitatively describe defects, we consider a two-dimensional plane. 
We assume that the order parameter is constant and the director is described as 
ha = ha(x,y) = (cos#,sin#). Then, using a coordinate system with the origin at 
the defect core, we imagine a closed loop encircling the defect. Moving along this 
loop, the director h a rotates, and after a complete circle the director is required 
to return to its initial state. Thus, #(0 +  27r) =  #(</>) +  27Tm,  where 0 is a polar 
angle position along the circle and m  is an integer or half integer, called the defect 
strength [1].

A simple expression for the bulk elastic energy of a defect can be written as 
F  =  (A"/2) f  (d7 d7 0)2d V , where the one elastic constant approximation is assumed 
(Ku = K).  Minimisation of the free energy yields the far-field solution 6 {(j)) =  
m(j) +  #0, where #o is the director angle at the start of the enclosing circle. The 
director fields for different m  are shown in Fig. 2.5 for this solution.

The energy of defects is proportional to m2, and, thus, usually lower m  states 
are preferred over higher ones [2]. The creation and annihilation of defects happens



CHAPTER 2. LANDAU-DE GENNES THEORY OF LIQUID CRYSTALS  34

m =  1 .0  m =  —1 .0

w\ \ 1 I I / / /  / / / / I 1 \ \\\\w \ \ I / /// /// / I \ \ \\\
\ \ \ I / / / ^  s ' / / / I \ \ \
w  \ / / \ w

V - /  /  \  \  /
/ /  I \ \  \ w  W \ \  \ I / /

/ / / l l \\\w w\ \ \ l l / / /
/ / / / I I \ \ w w\  \ \ \ / / / /

m  — 0.5 m  =  —0.5

I  /  /  /  / / / " ^  \ \ \ \ \ w
I I /  /  / / / " "  W W W
I / / / / / / / —  W W W
I I / / —  \ \ \ \  W

I I / , ----------- I I I \ W'
1 \ W   I I I /  /  >■

\ \ W W ^   / / / / / / ■
\  \  \  W W ' —  I I I / / /
W W  \  \  I I / / / /
\ \ \ \ W \ w ^  I / / / / / /

Figure 2.5: Director fields for some topological defects of different strengths m.

between defects of opposite strengths.
It should be noted that half integer defects cannot be recovered in simulations 

using vector director theories [42], since the vector representation leads to miscalcu­
lation of derivatives due to head-tail symmetry. Thus, a Q tensor based description 
is necessary in order to properly recover phenomena involving defects.

2.3 Dynamic Theory of Liquid Crystals

In this section we consider the theoretical description of the dynamics of nematic 
LCs, which is usually called ‘nematodynamics’. The flow of nematics is much more 
complicated than that of isotropic fluids and it is very difficult to study experi­
mentally. This is due to a reciprocal coupling between translational motion and 
rotational degrees of freedom, i.e. flow of a LC affects the alignment and, at the 
same time, distortions of alignment affect the flow. From a theoretical point view 
this also presents a significant challenge, since it is necessary to describe both the
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alignment and flow simultaneously. The published literature surrounding the gov­
erning equations for nematodynamics is complex and there is, as yet, no unifying 
methodology for deriving the complete description of LCs.

The first phenomenological continuum theory for nematics was developed by 
Ericksen [43], Leslie [44] and Parodi [45]. This employs the director to describe 
molecular alignment. We further refer to this theory using the commonly used 
abbreviation ELP. It consists of equations which fully couple orientation and flow, 
using the assumptions that LC is uniaxial and that the order parameter is constant 
everywhere. The original derivations of ELP theory are based on conservation laws 
for energy, linear momentum and angular momentum.

Since the appearance of ELP theory, the governing equations for nematodynam­
ics based on the vector description have been developed in a number of different 
ways. De Gennes [1] presented ELP in the framework of irreversible thermody­
namics by de Groot [46]. Sonnet [47] applied a variational principle to such input 
parameters as the free energy density and dissipation in order to derive governing 
equations which, in the limit of the uniaxial constant order parameter, were shown 
to reduce to ELP equations. Forster [48] considered hydrodynamic Goldstone modes 
using Poisson brackets to derive the governing equations. Thus, it was shown that 
fundamentally different derivations can be cast in the ELP form and, eventually, 
this theory has been accepted by experimentalists as being a reliable one. Five in­
dependent viscosities, namely Leslie viscosities, were measured and verified. Also, 
calculations of the optical transmission through a LCD cell using the ELP model 
were proven to be very accurate [49].

While ELP theory is sufficient for describing many of the effects present in LCs, 
it unfortunately fails to provide a complete description of the LC phenomena. The 
major shortcoming of the ELP description centres on its inability to properly de­
scribe defects in LCs. The ELP model also does not include effects relating to order 
parameter and biaxiality. All of these limitations can be seen as been due to the 
vector description of ordering. A few extensions to the ELP model were suggested 
to alleviate some of these problems. For example, Ericksen [50] extended the ELP 
director theory to include a variable order parameter, but the resulting model is still 
uniaxial and lacks the correct director symmetry. Another different approach aims 
at restoring the director symmetry by employing the dyad h ahp [51]. This avoids 
effects like artificial derivatives when directors are almost antiparallel, but essen­
tially this technique is equivalent to using the Q tensor with constant eigenvalues. 
Whilst they are helpful in certain situations, these enhanced methods still fail to 
address a range of complex situations, e.g. half-integer defects, where variable order,
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biaxiality and the symmetry of the director need to be considered. All of these can, 
though, be fully recovered by using Q tensor theory.

The foundations of a LC representation using the Q tensor as a macroscopic 
variable were laid down by de Gennes [52] and Lubensky [53]. De Gennes also 
introduced the framework of irreversible thermodynamics needed to derive the ELP 
equations in the equivalent Q form [1 , 52].

Further progress in the development of a continuum theory based on Q ten­
sor theory was made by Hess [54] and Olmsted [55], who derived the constitutive 
equations for homogeneous alignments. These equations have subsequently been 
generalised by Hess and Pardowitz [56] to include spatial variation of alignment. 
These attempts, however, failed to yield the full anisotropy in viscosities predicted 
by ELP theory. Further model extensions by Hess [57, 58] produced the complete 
anisotropy of viscosities but failed to be consistent with ELP theory in other ways, 
e.g. the viscosity coefficients were not fully independent.

A completely different approach which has been adopted by Hess in the search 
for a full continuum model used the Fokker-Planck equation for the orientational 
distribution function as a starting point [59]. In this, closure approximations were 
used to obtain equations for the second rank order tensor [59, 60, 61]. The initial 
derivation described the dynamics of nematics in given external fixed flows, whereas 
later extensions of this model by Tsuji and Rey [62] included spatial variations of 
the alignment.

Lastly, a few promising methods were published more recently to describe the 
evolution of the alignment with variable ordering; these are often employed in sim­
ulations. Berris and Edwards [15] used Poisson brackets on a macroscopic scale, in­
cluding their own introduced dissipative bracket, to derive the governing equations. 
Qian and Sheng [14] presented equations for the evolution of both the velocity field 
and the alignment tensor. Most recently, Sonnet and Vigra [47] introduced an el­
egant framework based on the variational principle and on a Rayleigh dissipation 
function which allows one to directly derive and compare most of the previously 
described methods.

In this Thesis for all of our simulations we employ the constitutive equations due 
to Qian and Sheng [14]. This enables the simulation of thermotropic LCs using the 
Q tensor description while retaining five independent ELP viscosities.
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2.3.1 Dynam ic Equations

The central equations in the Qian-Sheng formalism, which describe the evolution of 
momentum and order for incompressible (daua = 0 ) nematodynamics, are

piig = da ( - P 8ag +  <7vag + adag + , (2.40)

and

JQotfi ^a/3 T ^ 8ap £a/37 A7, (2.41)

where the superposed dot ( ) denotes the material time derivative: dt + uada • Here, 
the local variables are p, the LC density, u , the fluid velocity, P , the pressure, and 
J , the moment of inertia. A and A7 are Lagrange multipliers chosen to ensure that 
Q  remains symmetric and traceless. Direct calculation of the trace and off-diagonal 
elements of eq. (2.41) shows that the Lagrange multipliers are given by A =  |  (h77) 
and A7 =  ha(3 - &d and h  are the distortion stress tensor and molecular field
defined by the free energy as

d _  --
d f B

Q/s 9 [ d M
dgQpv, (2.42)

k ‘*  &Qag +  ^  d p Q agY  { 2 '4 3 )

crv and h v, the viscous stress tensor and viscous molecular field, are given by

&aP @lQa.pQuvAnv  -(- /?4A ap +  P^Qa^A^p  T  PftQPfi^-fia

+  ̂  2 ^  ~  FlQan^fip +  IJlQpiiNncn (2.44)

and

Kxp = ~ 2  ̂ A ap — fJ>iNap. (2.45)

Here $ ,  p* are viscosities coefficients which can be directly mapped on to ELP vis­
cosities using the dependencies given in [14], while N ap = Qap — Eociiv^nQvp —
epuvUnQau- Aap =  \  {daup +  dpua) and Wap = \  (daup -  dpuQ) are the sym­
metric and anti-symmetric velocity gradient tensors with the vorticity being a;7 =

2^7 oipWoip-
<tem is the stress tensor arising from externally applied electromagnetic fields 

=  \  (HaBg + HgBa) -  ^ & 8ag +  1 (EaDg + EgDa) -  ^ p 8 ag, (2.46)
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where E  (H ) is the electric (magnetic) field strength, D  the electric displacement 
vector and B  the magnetic flux density.

Thus, equations (2.40)-(2.46) along with free energies given in §2.1 and in §2.2 
provide a complete Qian-Sheng dynamic description of LCs. These equations can 
be mapped into the EL equations of motion by inserting the uniaxial Q tensor given 
by eq. (2.5) into the governing equations. Then, the following dependencies between 
the viscosities in both descriptions can be identified:

9(3i Sq 3/Z2'So 9/i i Sq 3/i2*So 9/i i Sq
a,  = - j -  a?2 = —  —  a 3 =  - j -  +  - j -

P 5S 0 f e S o  3§o/?5 3 S o  / a  , p  \  f O  A 7 \a A =  (3a    —  a 5 =  —y ~ =  —  (ft +  A> -  fi2) I2-47)
SSope 3So (Q Q  ̂ 95o//i 3<SoM2

(*6 =  =  —  ( f t  +  A  +  M2 ) 71 =  — J —  72 =  —

Finally, we state the equations imposed on boundaries. As a rule, we impose 
non-slip boundary conditions on the velocity, which means that the fluid velocity 
at a boundary is zero. For infinitely strong anchoring, the Q tensor is specified 
according to eq. (2.5). For cases of weak anchoring, a surface evolution equation 
was suggested [63], which, extended to a Q tensor theory can be written as:

PsdtQap = hsaf3 -  Xs Sap -  £ap7 \S.  (2.48)

Here h%p = — q^ q — 1S a surface molecular field, Xs = | / i 77 and A7 =  

^Sap-yhap are the corresponding Lagrange multipliers, 0  is an outward pointing 
surface unit normal vector and fis is the surface viscosity defined through fis = 
fi l ls , where Is is a characteristic surface length typically in the range Is ~  1 0 0  — 
1 0 0 0  A [64]. The surface viscosity fis affects the time derivative in eq. (2.48) and, 
thus, can be seen as controlling the rate at which surface alignment relaxes to equi­
librium.



Chapter 3 

M esoscopic M esh-free Particle 
Techniques

In this chapter we review all of the existing mesoscopic mesh-free particle simulation 
techniques with a special emphasis on the methods we have implemented in the 
course of this programme of research. Sections §3.2 and §3.3 are directly relevant to 
the remainder of this Thesis, whereas sections §3.4 and §3.5 are included only for 
completeness.

3.1 Introduction

Mesh-free particle techniques have been broadly discussed in §1.5.1. In this chapter 
we concentrate on the subset of mesh-free particle methods which are appropriate for 
the simulation of mesoscopic phenomena. It should be noted that mesoscopic sim­
ulation techniques are a relatively undeveloped area, as compared with continuum 
simulation techniques and particle based methods such as molecular dynamics.

Mesoscopic simulation techniques can be derived using a number of different 
approaches. Bottom-up approaches consist of coarse-graining a molecular system, 
whereby a number of atoms are represented by a single particle and the fast chaotic 
motion of many atoms is integrated out and replaced by thermal noise. The dissi­
pative particle dynamics (DPD) approach introduced in 1992 by Hoogerbrugge and 
Koelman [6 , 7] can be seen as belonging to this class. Top-down approaches, in con­
trast, involve discretisation of the continuum equations describing the system and 
subsequent addition of the thermal noise. We put the smoothed particle hydrody­
namics (SPH) simulation technique [9, 10], devised in late 1970’s, into this category. 
Formally, SPH is not a mesoscopic simulation technique in the original formulation. 
It is not even a continuum numerical method, but rather, initially, a tool for study-

39
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ing astrophysical phenomena. Because SPH is essentially a tool for solving partial 
differential equations on a set of moving particles, though, it can be regarded as a 
mesh-free particle technique. The inclusion of thermal fluctuations into the original 
SPH by Espanol and Revenga [65] in 2003 resulted in a truly top-down mesoscopic 
technique which is called smoothed dissipative particle dynamics (SDPD).

Finally, there is a third route to deriving mesoscopic simulation techniques, which 
is based on the kinetic theory. The lattice Boltzmann (LB) method [8 ], direct simula­
tion Monte Carlo (DSMC) [28, 29] and stochastic rotational dynamics (SRD) [6 6 , 67] 
methods belong to this class. LB is a particle based mesoscopic simulation tech­
nique, but it requires a grid for its operation. Thus, it is not mesh-free and we are 
not considering it in this chapter.

In spite of the very different routes by which these groups of methods were 
derived, the end point models are very similar to each other. They all consist of 
a set of particles moving off-lattice and interacting with each other via pairwise 
additive interactions. Thermal (random) interactions are also present in each of 
these methods, except for the SRD technique, which has multi-particle interactions 
as its foundation.

3.2 Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) has become, over the last decade, a popular 
method for simulating dynamical and rheological properties of both simple and 
complex fluids. It is a stochastic simulation technique, which was initially devised 
by Hoogerbrugge and Koelman [6 , 7] to avoid the lattice artifacts of Lattice Gas 
Automata and to tackle hydrodynamic time and space scales beyond those available 
to molecular dynamics (MD). It was subsequently reformulated and slightly modified 
by Espanol [6 8 ] to ensure proper thermal equilibration.

DPD is an off-lattice mesoscopic simulation technique which involves a set of 
particles moving in continuous space and discrete time. Particles represent whole 
molecules or fluid regions, rather than single atoms, and atomistic details are not 
considered relevant to the processes addressed. The particles’ internal degrees of 
freedom are then integrated out and replaced by simplified pairwise dissipative and 
random forces, so as to locally conserve momentum and ensure correct hydrodynamic 
behaviour. The main advantage of this method is that it gives access to longer time 
and length scales compared to what is achievable by conventional MD simulations.
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3.2.1 D PD  Formalism

The basic DPD scheme is based on a set of N  particles that move in a continuum 
two or three-dimensional domain of volume V. As in MD simulations, the system 
is completely described by specifying the particles’ positions 77 and momenta qi = 
rriiVi, where i £ {1, . . . ,  N }  labels the particles.

Time evolution of the system is governed by Newton’s equations of motion

dri dvi 1
~rr — v ii - j r  = — Fh (3-1)at at rrii

where the total force Fi on particle i can be decomposed into the sum of three 
distinct components -  one conservative, one dissipative and one random

Fi = E  ( F% + F S + A )  • (3-2)

The first two of these forces are deterministic, whereas the third contribution is 
stochastic. The sum runs over all particles within a certain cutoff radius r c, and 
pairwise additivity is assumed for all force types. The forces are given by

F§ =  -V ^ y (3.3)

FP  = - jm w D(rij)(eij ■ t>y)ey (3.4)

Fij = amwR(rij)£,ijeij (3.5)

where 77 ,- = r* — 77 is the relative position, = |rZJ | is the distance, ê - =  r^/r^ 
is the unit vector joining particle centres and Vij = Vi — Vj is the relative particle 
velocity. is a member of a set of symmetric stochastic variables with zero mean 
and unit variance, obeying Gaussian statistics and uncorrelated for different pairs of 
particles and different times. The strengths of the dissipative and random forces are 
determined by the dissipation friction 7 and random impulse strength o respectively, 
and their interaction range is scaled by the dimensionless radial weighting functions 
uJD{rij) and u R(rij).

For spherical/circular particles, the conservative force is derived from the 
inter-particle potential fcj = (frfaj) that depends on the separation between two 
fluid particles. In DPD’s mesoscopic description, this is a weak force of relatively 
long range, which may be interpreted as having emerged from mean field theory. 
Its main effect is to cause the fluid particles to be reasonably evenly distributed in 
space. The original DPD formalism specifies that the conservative forces between 
particles should be softly repulsive, but it does not give their exact form. The most
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widely employed form used for this potential in the literature is

H n j) (3.6)

where is a constant defining the strength of the particle-particle interactions. 
The resulting conservative force

decreases linearly with the inter-particle distance. If only the conservative force is 
present in the system (i.e. a and 7  are both set to 0 ), then the algorithm reduces 
to conventional MD in which particles interact via this soft potential.

Dissipative and random forces are the dominant forces in DPD. The dissipative

system. It is linear in momentum and aims to damp the relative approaching velocity 
of two particles. Thus, the method accounts for velocity gradients, as is necessary 
in order to be consistent with hydrodynamics. The stochastic Brownian force Fij 
represents the thermal fluctuations (thermal noise) in the system. Unlike the viscous 
force, the random force is independent of the momentum and introduces energy flow 
from the underlying micro-level of description to DPD’s coarse-grained mesoscopic 
level. Both of these forces act along the line of particle centres, such that linear and 
angular momenta are conserved, but not energy.

The fluctuation-dissipation theorem derived by Espanol and Warren [6 8 ] imposes 
relations between the force weight functions, amplitudes and fcgT. Specifically,

where Lb denotes the Boltzmann constant.
The theorem does not specify the precise form of the weight functions, though, 

so one of them can be chosen arbitrarily. In their original work, Hoogerbrugge and

density, but this approach is no longer widely adopted. Instead, the usual choice is

F i j  — a i j {  1 r i j / r c ) e ij (3.7)

(or drag) force F D is responsible for viscous effects and takes energy out of the

= [ujR(rij)]2, a 1 =  2-yksT, (3.8)

Koelman [6 ] used the normalization n f  u(r)dr  = 1, where n = N / V  is the number

uP{r) = [uJR(r)]2 =
(1  -  r / r c)2, r < r c 

0 , r > rc.
(3.9)

such that there is no discontinuous jump at the cutoff distance.
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If the relations in (3.8) are satisfied, then both FD and F act together as a 
thermostat, which drives the simulated system into the proper equilibrium Gibbs- 
Boltzman distribution with temperature given only in terms of model parameters

(3.10)

The number of particles N  and volume V  used in a typical DP system are con­
stant, so the DPD model produces a well-defined ./VET1-ensemble with essentially 
two main virtues: a Galilean invariant thermostat and soft particles. The thermo­
stat conserves momentum locally, such that correct hydrodynamics is recovered on 
large time and length scales. It should be noted that the given thermostat might 
also be useful in conventional MD simulations where correct hydrodynamics is im­
portant [69]. The second important advantage is the use of soft particles: the soft 
repulsion forces allow for a much longer time step St in reduced units in DPD than is 
possible with MD. Groot and Warren [70] recommended using the value St = 0.04, 
whereas the typical value for MD is St = 0.002.

3.2.2 Equilibrium Properties

The first theoretical foundations to DPD were given by Espanol and Warren’s [68] 
formulation of the stochastic differential equations (SDE) and derivation of their 
equivalent Fokker-Planck equation (FPE), which corresponds to the original algo­
rithm. The equations of motion (3.1) are the Langevin equations, which can be 
written in the form of SDE as

dri =  Vidt,

dvi = — ^ 2  [Fij ~  l u D{rij)(eij • v ^ e i j ) ]  d t p  — ^  crwR(rij )eijdWij, 3̂' n ^

where dWij = dWji = f*+5t &jdr  are independent increments of the Wiener process. 
The Ito interpretation is assumed, such that dWijdWi>ji = (Su>Sjj/ +  Sij>Sji>)St, i.e. 
d W i j  is infinitesimal of order yfSt.

The equations of motion written in the form of eqs. (3.11) are suitable for im­
mediate use in simulation, whereas the FPE is more convenient to consider in a 
theoretical analysis. The FPE is the equation governing the time evolution of the 
probability distribution P(T; t ) = P ( r , q; t) of the positions r  = {^i}^ and momenta 
q =  t e r  of all particles in the system. It can be derived from the SDE using stan­
dard procedures [71] by considering the differential d f  of an arbitrary function /  to

a
k s T  =

2 7
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second order and substituting the SDE (3.11) into it. (d f /d t ) can then be obtained, 
from which the resulting FPE in phase space is extracted:

Here Cc  is the conventional Liouville operator of the Hamiltonian system and C&

dissipative and drag forces are not present, then this reduces to a Hamiltonian 
system in equilibrium, such that dtPeq = CcPeq — 0 with a Gibbs distribution as 
the equilibrium solution. Thus,

the original DPD forces are present, the equilibrium distribution will be achieved

the detailed balance (DB) condition given in eq. (3.8) holds. The DB condition 
also implies the existence of an H theorem for any DP system, i.e. that the Gibbs 
distribution is the unavoidable equilibrium distribution. It was shown by Marsh et 
al. [72] that in this case, the system’s free energy must also monotonically approach 
its equilibrium value.

The thermodynamic description of DPD historically started with the derivation 
of the equation of state by Groot and Warren [70]. In this, the pressure in the DP

dtP(r,  q-1) = (Co +  CD)P(r, q; t) (3.12)

where the evolution operators are defined as

(3.13)

(3.14)

is an operator which incorporates the dissipative and random contributions. If

(3.15)

where Z  is the partition function and H  is the unperturbed Hamiltonian. If all of

if and only if CoPeq =  0. It can be shown that this requirement is satisfied when
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system was measured using the virial theorem

p = nkBT  +  ^ 7  ( 5 1  (r * “  r j ) ' F*
\  j> i

= nkBT  + ^ l y i (ri - r j ) - F ^ I  (3-16)

2tt C
= nkBT  +  —  n2 / r f(r)g(r)r2dr,

5 Jo

where g(r) is the radial distribution function. The second of these expressions is the 
most convenient for direct measurement in simulations, and is valid provided that 
the constraint on the DB parametrization given in eq. (3.8) is met. By varying the 
density and measuring pressure, the following relation was obtained

p = nkBT  + aan2 (a = 0.101 ±  0.001), (3-17)

which is valid for densities n > 2. It should be noted that, as long as conservative
forces are relatively weak, this approximation is valid for any choice of the weight
functions such that u(rc) = 0 [73]. Thus, the dimensionless compressibility

K = A ?  ( 7T )  “  1 +  °-2 an/kBT  (3.18)kBl  \OTl J rp

can be used to adjust the system’s compressibility to that of any real system simply 
by change of the conservative interaction parameter a. For instance, Groot and 
Warren [70] found that the value a = lhkBT / n  yields a compressibility equivalent 
to that of water.

3.2.3 Hydrodynamics

The DPD simulation technique emerged originally as a method for modelling the 
rheological properties of complex fluids. Therefore there has been a substantial effort 
to recover rigorous hydrodynamic equations [72, 74] and obtain explicit transport 
coefficients in the terms of DP model parameters using kinetic theory [72, 75, 76].

In this section the kinetic theory derivations by Marsh, Backs and Ernst [72] are 
summarised, but it should be noted that there is another way to recover the hydrody­
namic equations and so obtain the transport coefficients. Espanol in Ref. [74] estab­
lished linearised Navier-Stokes equations using a Mori-Zwanzig projection operator 
technique and implicitly obtained transport coefficients in the form of Green-Kubo
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formulae.
The starting point in the derivation of the transport equations is to obtain the 

general rate of change equation. Let us consider the time evolution of an arbitrary 
macroscopic quantity A (r), which does not depend on time explicitly. Its average 
can be written

(A) = J  dTA(T)P(T,t ) .  (3.19)

Then, by substituting the FPE (3.12) into eq. (3.19) and performing integration 
over all space T

dt{A) = J  dTA(r)d tP(T;t)  = J  <il\4(r)[£c  +  CD\P{T-,t), (3.20)

the general rate of change equation for any macroscopic variable A (r) is obtained.
Next consider the conserved density fields, which are the mass density p(r ,t )  — 

m n ( r , t ) and the momentum density p(r , t)u(r*, t). Here n (r, t ) is the number density 
field and u (r , t) is the velocity field, defined through

n

nu

(V^ )  = ( ^ 2 5(V ~ r i ) ^  = j  dv f ( V>r it),

(T’t) = ( ^ 2 v A r  -  r i)^j = J d v f ( v , r , t ) v , (3.21)

where f ( v , r , t )  = f ( x U) is the single-particle distribution function. Application of 
eq. (3.20) to the conserved mass and momentum densities (3.21) yields appropriate 
balance equations

dtp = - V  • pu, 

dt(pu) = - V  • (puu +  II), (3.22)

which are the standard equations of continuity and momentum conservation. The
stress tensor II  in the local rest frame of the fluid is the sum of kinetic (K ), collisional
transfer (C ) and dissipative (D ) contributions

n  =  n K +  n c  +  n D. (3 .2 3 )

The first two contributions are present in any conservative system, whereas the last 
contribution to the momentum flux is due to the dissipative forces between particles. 
Random forces should not, however, contribute to the momentum flux, and this
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expectation is, indeed, born out in simulations: in equilibrium, the time average 
dissipative contribution is zero, and the equilibrium pressure II  =  peqI contains only 
kinetic and collisional contributions, where peq is the equilibrium pressure given by 
the virial theorem (3.16). Away from global equilibrium, however, the pressure does 
include extra terms due to the dissipative contribution, i.e. viscosities.

The next step in kinetic theory is to obtain the Fokker-Planck-Boltzmann equa­
tion (FPBE) which is an approximate kinetic equation for the single particle dis­
tribution function /(x ;£). It is derived by applying the general rate of change 
equation (3.20) to / (x ; t) .  Assuming the strong damping limit (large 7 ), all of 
the conservative forces are further neglected [72], and making the molecular chaos 
assumption for the two-particle distribution function, / ^ ( x ,  x', t) becomes

/ (2)(x ,x ',t)  «  / ( x , t ) / ( x ', t ) .  (3.24)

The nonlinear FPBE can be solved and analysed using the Chapman-Enskog method. 
According to this, there are two stages in the evolution of the single-particle distri­
bution function: a rapid kinetic stage and a slow hydrodynamic stage. In the DPD 
model, the characteristic kinetic time is estimated as to ~  1 / ( 77177!) [72]. The bal­
ance equations (3.22) correspond to this kinetic stage, whereas for the hydrodynamic 
stage a Navier-Stokes equation can be derived for the slowly varying macroscopic 
fields n (r, t) and u (r, t)

dt(pu) +  V • (puu) =  —kBT V n  +  V • (277D +  £V • u l). (3.25)

Here 77 and £ are the shear and bulk viscosities, to be discussed in the next section, 
and D is the second-rank traceless tensor Dap =  \  (VQ«/5 +  VpuQ — f ^ V  • u).

The energy density field e(r,t)  is a rapidly varying function of time and, in any 
DPD system, exhibits rapid relaxation to a local equilibrium state on the time scale 
to. Therefore, a proper macroscopic equation for e (r ,t)  does not exist and no DPD 
system can maintain a temperature gradient on the hydrodynamic time scale.

Transport Coefficients

The transport coefficients for DPD systems can be calculated using a number of 
techniques. Originally Hoogerbrugge and Koelman [6] estimated the kinematic vis­
cosity in the continuum limit approximation. Later their results were extended and 
clarified using the kinetic [72, 75, 77] and Mori [74, 76] theories.

Expressions for the explicit bulk and shear viscosities were obtained by Marsh,
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Backx and Ernst (MBE) [72] using kinetic theory in the assumption that conserva­
tive forces are absent. This gives

for any function / ,  Uq = 1/to =  7n M /3  is the characteristic relaxation rate and

v = y j k j j r /m  the average thermal velocity. Therefore to and tw may be seen as two 
intrinsic time scales of the DPD fluid.

Viscosity coefficients in MBE theory have two contributions, one kinetic and one

is caused by their momenta. On the other hand, the dissipative contribution results 
from the momentum transfer originating directly from the dissipative forces. In

whereas if tw < t0 the DPD fluid is in the kinetic regime and dominated by the 
kinematic viscosities.

Comparison with simulation results [6, 72] reveals that, at large wy and small 
timestep St, the viscosities are in very good agreement with theoretical predictions. 
This corresponds to the hydrodynamic regime, which was originally described by 
Hoogerbrugge and Koelman.

At small ny  and high temperature ksT,  the system is in the kinetic regime, 
where significant discrepancies between theory and simulation are reported [72, 78]. 
In particular, the dissipative viscosity is still in good agreement with the simula­
tion data, but the predicted kinetic contribution differs from that measured by as 
much as of a factor of three [75]. A few investigations have been made attempting 
to understand the origin of this discrepancy. Espanol and Serrano [79] considered 
correlation effects beyond the scope of MBE theory by looking at the velocity au­
tocorrelation function in the DPD model. From this, they identified two dynamical 
regimes characterised by dimensionless parameters and successfully tested their the­
ory in two dimensions. Evans [76] derived approximate viscosities based on the 
expanded basis set of the time evolution operators. Finally, a very plausible expla­
nation was given by Masters and Warren [75], who argued that kinetic transport 
coefficients are well described by the Boltzmann pair collision theory. In this case,

(3.26)

(3.27)

where d is the dimensionality of space, [/(r)] =  f  f ( r )d r  denotes the spatial average

tw = [A ,]/(M b») ~  r2/ v 2 is the average traversal time of an action sphere with

dissipative, arising from the relevant terms of the stress tensor given in eq. (3.23). 
The kinetic contribution arises due to the motion of the particles themselves, i.e. it

terms of the intrinsic time scales, if tw > to then dissipative terms are dominant,



CHAPTER 3. MESOSCOPIC MESH-FREE PARTICLE TECHNIQUES 49

the theory was in good agreement with the simulation data, and MBE theory was 
recovered in a Vlasov mean field approximation.

So, in general it is very important to understand which dynamic regime a given 
simulated system corresponds to. While the explicit transport coefficients given by 
eqs. (3.26, 3.27) can be very useful in evaluating system parameters and predicting 
system behaviour, they are only valid for certain dynamic regimes. Also, care must 
be taken when conservative forces are present, as they will introduce additional 
terms which are not present in the original derivations given in eqs. (3.26, 3.27).

The self-diffusion coefficient, D , of a DPD system [72, 76] contains only kinetic 
contributions and does not have dissipative terms

D  =  dkgT  
p i  M

The Schmidt number Sc =  v /D  is a dimensionless number approximating the 
ratio of the momentum diffusivity (kinematic viscosity v) and the mass transfer 
diffusion coefficient D. It is used to characterise fluid flows in which there are 
simultaneous momentum and mass diffusion convection processes. For the DPD 
fluid, it is estimated as

=  <3-29)

For the choices of parameters and weight functions (3.9) typically used in simula­
tions, the Schmidt number is of order of unity, that is at least three orders less than 
that of real fluids. This fact was first noted and quantified in simulations by Groot 
and Warren [70]. This is an intrinsic problem in DPD that causes flowing fluid par­
ticles to have a slow response to rapid changes in the surrounding boundaries. As a 
result, conventional DPD fails to simulate complex rheology of real fluids due to its 
slow dynamic response. This issue can be explained by the lack of shear dissipative 
forces, as the dissipation between two particles always disappears if V{j is normal to 
eij. This problem has been recently addressed by Fan et al. [80], who proposed a 
way to resolve the problem by modifying the weight functions and/or by increasing 
the cut-off radius r c. The latter method is the more efficient and allows realistic 
values of the Schmidt number of order (9(103) to be achieved with a reasonable 
increase in the computational cost. This improvement also leads to an increase in 
the shear viscosity 77.
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The Reynolds number for a DPD fluid can be estimated as

Intertia forces pvrc
(3.30)

Viscosous forces 77

where rc is chosen to be the fluid’s characteristic length. So, in typical non­
equilibrium DPD simulations, Reynolds numbers are of order ten, which strictly 
corresponds to the laminar flow regime.

Finally, the speed of sound in a DPD system has the following form

The fluid particle model (FPM) is a generalisation of DPD which was introduced by 
Espanol [77, 81] in order to capture certain aspects of fluid particle behaviour not 
present in the original model. Specifically, in the DPD model, two particles moving

viscosity and Schmidt number in typical DPD simulations.
FPM extends DPD by introducing non-central shear forces between particles. 

Then, further angular degrees of freedom are added to the particle descriptions in 
order to achieve conservation of angular momentum. Consequently, the resulting

modelling Newtonian fluids, especially for low density systems.

The FPM  Formalism

FPM is very similar in spirit to DPD, the only significant differences lying in the 
supplementary spin variable and extra forces between particles. This means that 
additional care is needed for the treatment of angular coordinates and their conjugate 
torques. Many arguments relating to DPD are also fully applicable to FPM, so in 
this section they are omitted and only key results are summarised.

The particle motion is again determined by Newton’s equations of motion

(3.31)

3.2.4 Fluid Particle M odel

in opposite directions with parallel velocities will not decelerate each other due to 
viscous effects. As noted above, this leads, for example, to small values for the shear

FPM model has a better founded physical basis than the original DPD approach for

dri dvi 1 „  duJi 1
(3.32)

where N* is the total torque acting on the fluid particle i , a;* is the angular ve­
locity and I  is the particle’s moment of inertia. It is assumed that particles are
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spherical/circular, so the moments of inertia are equal for all axes.
The force between any two particles consists of conservative, dissipative and 

random parts in much the same way as in DPD. For the sake of convenience, the

Here is the independent matrix of Wiener increments with the superscripts

performs exactly the same function as the equivalent term in DPD. Indeed, the 
form adopted for this potential usually coincides with that used in DPD.

The dissipative force contains two extra contributions as compared with DPD. 
There are non-central shear forces originating from both translational and rota­
tional particle motions. Their effect can be explained using two simple examples. 
When two particles are revolving while standing still, rotational dissipative forces 
are needed to damp the difference between their angular velocities and so give rise to 
translational motion. Further, when two particles are moving in opposite directions 
with antiparallel velocities, but along non-intersecting trajectories, viscous transla­
tional forces should decrease the particles’ relative velocity and so cause them to

These two additional dissipative forces require the introduction of two extra 
random forces in order for equilibration to be achieved. The random force in FPM

dissipative part is split here into translational (T) and rotational (R) components

p  _  f j * i f i • 'J -1 i 1 . 1 R  i p
J?ij — -t*ij +  - t i j  +  -t*ij +  -t*ij (3.33)

(3.34)

where

=  -v< %

Ffj =  - 7 m M ( r y ) • tty

(3.35)

(3.36)

(3.37)

F y  =  (Tm (A(ry)rfW g +  B (ry )^ tr [d W y ]I  +  C ( ry ) iW f j ) • e y (3.38)

A  and S  denoting its antisymmetrical and traceless symmetrical parts respectively. 
A(rij), B(rij) and C(rij) are dimensionless weight functions. Finally, the dimen- 
sionless matrix M (r^) is given by

(3.39)

where A(rij) and H (r^) are scalar functions discussed below.
The conservative force F c  is derived from the inter-particle potential 4>ij and

rotate.
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is specified by a matrix of independent Wiener elements, compared with only one 
random variable in DPD, so as to be consistent with the tensorial structure of 
the dissipative force. Wiener matrices are symmetric under particle interchange 
dWij = d W ji , so as to conserve momentum locally. The given choice of torques in 
eq. (3.34) also implies that the total angular momentum J  = J 2 ir i x Qi + I^ i  is 
conserved, i.e. J  = 0.

A fluctuation-dissipation theorem exists for the FPM model, but its form is more 
complicated than that derived for DPD. Thus,

The above relations do not specify the particular forms of the weight functions, so 
some of them can be chosen arbitrarily. Given that the rheological parameters of 
a fluid are fully dependent on the above weight functions, as discussed below, their

Thus, FPM by itself is very universal. Not only is the DPD model recovered when 
eq. (3.41) is met, but also conventional MD can be obtained by simply removing 
dissipative and stochastic forces.

Transport Coefficients

the same way as they are for DPD. As a result of introducing the spin variable, an 
additional rotational viscosity tjr is included in FPM, which can be significant in 
systems where rotational diffusion is important. The viscosities are given by

choice is mainly used for mapping the properties of a specific Newtonian fluid onto 
the model.

It should be also noted that the original DPD model is completely recovered by 
putting

A(r) =  0, B (t) =  w(r). (3.41)

The transport coefficients for FPM can be derived using kinetic theory [77] in much

(3.42)

(3.43)

2A 2
Vr = i m p  — , (3.44)
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where t]r is a rotational viscosity and the volume integrals are given by

A o =  A(r)dr A 2 = — I r2A(r)dr
Jo  “  Jo

Thus, the fluid’s predicted rheological properties are completely defined by parame-

the viscosities coincide with those predicted for the DPD model.

D iscussion

The FPM can be seen as an improvement on DPD which remedies some of its prob­
lems and has a better founded theoretical background. In spite of FPM ’s virtues, 
the DPD model is still the more widely used technique. There are a few reasons 
for this. Firstly, most of FPM ’s advances over the DPD model are only relevant for 
certain situations, e.g. in flows with complex boundaries, and even in some of those 
cases these issues can be still resolved using DPD, e.g. by increasing the cut-off 
radius r c. Secondly, the FPM is less computationally efficient and is more difficult 
to implement than DPD due to the added rotational degrees of freedom and the 
more complex forces. So, DPD continues to be the more likely to be chosen, largely 
due to its simplicity. Nevertheless, it is important to note that the FPM can still 
address applications which are beyond the DPD method.

Most of the success and popularity of the DPD method comes from the method’s 
simplicity and robustness. Further, the great similarity between DPD and molecu­
lar dynamic methods, in terms of their technical implementation, allows substantial 
reuse of the great legacy of available MD codes. Nevertheless, the method’s sim­
plicity comes at the expense of more fundamental issues. There are a number of 
important problems in DPD which need to be resolved in order for the technique to 
gain wider credibility. Whilst a number of authors have raised individual problems 
of DPD in separate publications, no comprehensive review of these currently exists. 
Thus, in this section we make an attem pt to outline the major problems with DPD.

(i) Equation of state. Making the standard choice of having conservative forces 
which depend linearly on the inter-particle distance, see eq. (3.7), imposes a fixed 
equation of state (EOS), given by eq. (3.17), which is quadratic in density. This 
fixed EOS is not able to describe non-ideal fluids or fluid-fluid phase transitions. To

ters controlling the inter-particle forces in the model. Again, if eq. (3.41) is satisfied,

3.2.5 D PD  Drawbacks
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counter this, an alternative approach for deriving conservative forces was proposed 
by Pagonabarragaa and Frenkel [73]. In this, conservative forces are calculated 
from the free-energy density that determines the thermodynamics of the system. 
Nevertheless, the debate is still open as to which form of DPD is preferable -  Groot- 
Warren [70] or Pagonabarragaa-Frenkel [73].

(ii) Upper limit on coarse graining. DPD is a mesoscopic simulation technique 
which is, inherently, a coarse-grained bottom-up approach. Thus, each particle in 
DPD can be considered as representing Nm molecules [70]. Keaveny et al. [82] 
have compared DPD and MD simulations of a simple fluid and particularly studied 
the effect of the value of the number Nm of molecules representing a DPD bead. 
Specifically, a Lennard-Jones fluid, simulated by MD, was compared with DPD, the 
parameters of the latter being varied so as to match the mass density, viscosity and 
compressibility of the L-J fluid. From this, it was found that good agreement could 
only be achieved for Nm < 5 for both static and hydrodynamic simulations. This 
low upper limit is a severe limiting factor for what purports to be a mesoscopic 
simulation technique.

(iii) Physical length and time scales. The interactions between DPD particles 
were postulated from symmetry principles which effectively ensure correct hydrody­
namic behaviour. While this, on its own, does not fix the length and time scales on 
which a DPD simulation operate, the presence of thermal fluctuations implies the 
mesoscopic regime [83]. This is actually addressed in a specific context in point (ii), 
but no general result has been determined.

(iv) Transport coefficients. There is no direct predictive link between a set of 
DPD simulation parameters and the transport coefficients which emerge from such 
a simulation. An approximation to kinetic theory is required to enable prediction 
of these coefficients. Rather, as was shown in §3.2.3, viscosities can be derived 
for limiting cases in which the role of conservative forces is negligible. This is a 
manifestation of the fundamental mismatch between the bottom-up DPD method 
and conventional continuum descriptions.

(v) Configurational temperature. One of the biggest practical advantages of 
the DPD method is its ability to operate with a long simulation time step, due 
to the soft inter-particle potentials employed. In the original studies, simulation 
stability with respect to increasing timestep was addressed by monitoring of the 
kinetic temperature. However, it has subsequently emerged that, at large time step, 
systems with stable kinetic temperature can develop configurational temperatures 
that differ significantly from the desired value [84, 46]. The configurational tem­
perature relates to conservative forces between particles and maintaining it at its
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correct value indicates that configurations are being sampled appropriately from 
the canonical distribution. This is especially important in cases where conservative 
forces dominate, such as polymers, amphiphile-based membranes etc. While use of 
modified or hybrid simulation methods can yield some improvements in this regard, 
the central issue is the choice of timestep.

3.3 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH) is the oldest mesh-free method, hav­
ing originally been introduced in the late 1970’s to simulate unbounded three- 
dimensional problems in astrophysics [9, 10]. It is a truly mesh-free Lagrangian 
technique, which has successfully been applied to a broad range of problems such as 
free surface flows [85], underwater explosions [86], problems of heat conduction [87], 
dynamic response with material strength [88] and many other fluid and mechani­
cal applications [89]. There is an excellent review [90] and a book [89] about the 
SPH method, in which more specific details can be found. In this section, therefore, 
we limit ourselves to a brief review of the basics of the SPH method and various 
enhancements which are directly relevant to the simulations presented later in this 
Thesis.

3.3.1 SPH  Formalism

SPH is a mesh-free method which uses integral interpolation to represent field vari­
ables. The basis of this technique can be illustrated by considering a smooth function 
/  over a domain of interest Q. This function can represent any physical quantity, 
e.g. temperature. SPH is based on an integral estimate ( /)  of the function /  at a 
point cc, which is defined as

( /(» ))  = J  f i x ^ W f a - x ' ^ f y d x ' .  (3.45)

Here, W ( x  — x ', h) is an interpolation kernel and h is a smoothing length which 
defines the domain over which the kernel acts. In the case W ( x  — x' ,  h) = S(x — x '), 
eq. (3.45) simplifies to the exact relation {f (x))  = f ( x )  and the interpolant repro­
duces /  exactly. Thus, the integral interpolant ( f (x) )  can be seen as a smoothed 
version of the original function / .  This is the origin of the term “smoothed” in the 
moniker SPH.

The interpolation kernel plays a very important role in terms of the accuracy and
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stability of the SPH method, since it determines both the interpolation error and the 
influence volume of the simulated particles. Various kernels have been considered 
in the published literature and a number of requirements on kernels have also been 
suggested. Prom these, the following essential requirements have been identified:

1. The Dirac delta function condition:

lim W ( x  — x' ,  h) = 5{x — x f). (3.46)

2. The normalisation condition:

J  W( X -  x ' ,  h) d x ’ =  1. (3.47)

3. The compact support condition, which states that the kernel function should 
vanish beyond a certain distance defined as the smoothing length, h, multiplied 
by a scale factor k. This can be written as:

W ( x  — x ' , h) =  0, \x — x r\ > kh. (3.48)

The domain within which the smoothing function is non-zero is called the
support domain of the point x.

4. The kernel function should be a symmetric, or even, function, i.e.

W ( x  -  a/, h ) =  W ( x '  -  x,  h). (3.49)

The fluid in an SPH simulation is represented as a set of discrete particles, each
with a small mass. If we rewrite the interpolation integral (3.45) as

[  f -7- - r W ( x  — x ', h)p(x') dx' ,  (3.50)
J  P \ x ' )

where p(x')  is the density of the fluid at the point x '  then we can identify p(x') dx '
with the mass of that fluid element. This continuous integral can, then, be approxi­
mated as a summation over neighbouring mass elements. This yields the discretised 
interpolant:

(/(* ))  = T f o ~ W (X -  X3’h) ’ (3-51)
i  *

where nrij and pj are, respectively, the mass and density of the j th  particle and 
f j  = f {xj ) .  This summation is taken to run over all of the particles which are in
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the support domain of the particle at x.  In practice, the kernel W  is chosen such 
that it decreases rapidly with distance and, as stated in requirement (3.48) on kernel 
functions, vanishes beyond a distance kh. k is typically equal to 2 or 3, depending 
on the kernel. This effectively reduces the summation over the whole domain to a 
summation over the finite support domain of a single point. The smoothing length 
h, on the other hand, needs to be made big enough to ensure that there are sufficient 
particles in each support domain to enable accurate interpolations to be made.

The simplest example of such a kernel estimate can be provided by estimating 
the particles’ density. Setting f j  = pj in eq. (3.51) yields:

p(x ) = E rrijW(x — Xj, h), (3.52)
j

which demonstrates how the masses of a set of discrete particles can be smoothed 
in order to yield an estimate of the density field.

SPH approximates the strong form of PDEs and, thus, its ability to approximate 
derivatives is of high importance. The calculation of derivatives is based on the 
interpolation rules given above. In order to estimate the spatial derivative d f ( x ) / dx,  
it should simply be substituted for f ( x )  in eq. (3.45). Integrating this by parts and, 
subsequently, applying the divergence theorem then yields

( ) = Isf(-x '^w x̂  ~ x ' ' h') n d S ~ j a f ^ dw{xdx ' X' ,h) d x '- (3-53)

Here, the first term on the right hand side is the so-called residual boundary integral. 
When the particle’s support domain is fully located inside the problem domain Q, the 
residual boundary integral is equal to zero. If, on the other hand, the support domain 
is truncated by a boundary, the residual boundary integral needs to be accounted for. 
In the conventional SPH approach, however, this term is simply dropped such that 
boundary conditions need to be considered separately, as discussed below. Setting 
the residual boundary integral to zero and discretising the continuum equation in 
the same manner, as in eq. (3.51), yields the following approximation of the spatial 
derivative:

/  a f ( x ) \  f  m i  d w (x i ~  x i <h ) / o 5 4 n
\  d x  / ,  Pj d x :, ■ 1 • 1

Thus, the process of approximating derivatives in the SPH method, leads to the 
differentiation operator being passed from the field variable itself to the known 
kernel function. One consequence of this is that the form of the derivative given in 
eq. (3.54) does not necessarily vanish if f { x ) is constant. This can be remedied by
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employing the following relation:

d x  V d x  dx
df_ = l  _  d $ (3.55)

where is any differentiable function. Eq. (3.55) can be rewritten in the SPH 
formalism as follows:

where Wij denotes W (xi  — Xj, h). Employing this form of the derivative approxi-

Ultimately, it is the choice of the function that generates all of the different 
versions of the derivatives given in the literature. For instance, setting $  to 1 gives

the differential operator is very important when the SPH is applied to discretise 
PDEs describing physical phenomena. This will be demonstrated in §3.3.2 using 
the example of the continuity equation.

Second order derivatives can be estimated by differentiating the SPH interpolant 
twice. Thus, the straightforward application of this procedure to the field variable 
function f ( x )  yields:

(3.56)

mation does ensure that it vanishes when the function f ( x )  is constant.

(3.57)

and the choice <3> =  p leads to

(3.58)

It turns out that this choice of mathematically equivalent SPH discretisations of

(3.59)

However, this form is very susceptible to particle disorder. A different, improved 
version of second-order derivative approximation is obtained by considering a Taylor 
expansion of the function /  and making use of the isotropic nature of the weight
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function W\j , which leads to the following identity [65, 91]:

/  d2f ( x )  \  f \ ( K Ax i Ax i  ™ \ l d w a ro fin\
\ a ^ / i ~  \  ~  m ~  ]r ~ d T '  {3-60)

where r = \xi — X j |.

3.3.2 SPH  Conservation Law Equations

SPH is a numerical technique which solves an initial value problem defined by the 
conservation laws of continuum mechanics combined with the constitutive relations 
of the given material. In this section, we consider SPH discretisations of two basic 
conservation laws which are present in practically every system, namely the conti­
nuity equation and the linear momentum equation.

The continuity equation is the fundamental equation of fluid dynamics which 
states the conservation of mass and is conventionally written in the following form

^  =  -p V  ■ V,  (3.61)

where v  is the velocity field. This equation can be discretised using either of the 
SPH discretisations given by eqs. (3.57, 3.58), which, respectively, yield the two 
following discretised SPH forms:

( g ) , > • § .

Both of these approximations vanish when the velocity field is constant. It should 
be noted, though, that eq. (3.63) does not explicitly involve the density, whereas 
eq. (3.62) clearly does. Although these equations are both mathematically correct, 
it was shown in [92] that the expression with explicit p is more accurate in modelling 
systems involving two or more fluids with density ratios greater than 2 . This can be 
demonstrated using the example of two different fluids in close contact. Ideally, the 
estimate of V • v  should be the same for all density ratios of these fluids. However, 
in practice eq. (3.63) will provide an inaccurate result for different densities, since 
the summation will involve particles with changed masses. Eq. (3.62), on the other 
hand, will provide consistent results since the ratio rrij/pj will remain constant. 

The linear momentum equation states the conservation of momentum and is
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conventionally written in the form

S K v -ct’ ^

where cr is the Cauchy stress tensor. The latter is made up of two parts, namely 
the isotropic pressure P  and the extra-stress tensor t ,  such that

a i j  =  _ P S i j  +  1A jm (3 6 5 )

We have written the linear momentum equation (3.64) in the general form. For 
a conventional Newtonian fluid with bulk viscosity £ and shear viscosity 77, this can 
be rewritten in a more traditional form:

Du
Dt

=  - V P  +  1]V2V + (c +  | )  V V  ■ V. (3.66)

There are at least three different SPH discretisations of eq. (3.64). The most 
commonly used of these is the form obtained by noting that

-  = v ( - ) + ^ V p .  (3.67)
P \ p j  P2

Application of the SPH interpolation rules to the above equation yields, for the a-th  
component of the velocity field u, the following approximation rule:

Since dWij/dxj = —d W ij /d x j , the force between two particles i and j  is then equal 
and opposite and acts along the line joining the particle centres. This, in effect, 
exactly conserves linear and angular momentum, so making the discretisation (3.68) 
a better alternative to other discretisations which do not posses these properties.

3.3.3 SPH  Artificial Viscosity

Artificial viscosity was initially introduced into SPH to avoid spurious oscillations in 
simulations of shock waves [93]. Since then, the majority of SPH simulations have 
employed this same approach in order to stabilise the numerical scheme. These 
spurious oscillations in velocity and pressure fields can occur in SPH due either to 
discontinuities in the velocity field or to algorithmic pathology in the approximations 
made to the governing PDEs. Similar numerical instabilities are present in the
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finite difference method and finite elements method, and many remedies have been 
introduced to deal with such problems in the context of these methods. In the finite 
difference method, for instance, an artificial viscosity is often added to the discrete 
momentum equation in order to damp out numerical errors. Similar to FDM, SPH 
also approximates the strong form of PDEs and, thus, the inclusion of an artificial 
viscosity to suppress instabilities is the most straightforward choice. Many forms 
have been suggested for this artificial viscosity [9, 93], but the most popular is that 
of Monaghan and Gingold [93] which is obtained by including an extra term in the 
parenthesis of eq. (3.68) to give the alternative form

fTa>3 (Ta(3
- V  +  ^5 - +  n  i jS^ .  (3.69)
Pi Pj

Here, the artificial viscous stress n^- is given as

—acijfiij + /?/4 
,   , Va • Xu < 0 .

n y =  { Pij 3 3 (3.70)
0 , Vi j  • X{ j  ^  0

where
_  hv jj ■ x (j . .

ai?, +0.01ft2’ 1 j
V

-dj =  ^  Pij =  ^  (3-72)

Vfj — Vi Vj, X{j — X{ Xj. (3.73)

In eq. (3.70), a  and (3 are constants which are usually of order of unity. The term 
associated with a  includes shear and bulk viscosities [90], and the second term, 
associated with /?, is similar to the von Neumann-Richtmeyer viscosity. It is very 
important for resolving shocks, where it prevents unphysical particle penetration in 
high Mach number collisions by introducing an artificial pressure proportional to 
pv2. The O.Olh2 term in the denominator of eq. (3.71) keeps the viscosity bounded 
when particles approach each other. This artificial viscosity is Galilean invariant. 
Another advantage of eq. (3.70) is that it guarantees the conservation of angular 
momentum.

Despite the fact that this artificial viscosity can be used to model many effects 
related to true viscosity, it has been shown that it provides inaccurate velocity 
profiles [94]. Nevertheless, both a  and (3 terms have been shown to be important in 
simulations of viscoelastic free surface flows [95].
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3.3.4 Com pleteness of the SPH

Having so far introduced the SPH approach mostly as a particle-based technique, 
we now proceed in this section with the consistency (or completeness) analysis of 
SPH, the basic definitions of which were introduced in §1.5.2.

There are two sources of the accuracy loss in the original SPH method. These 
come first from the original interpolation given by eq. (3.45) and then from the 
subsequent particle discretisation of this equation (3.51). Thus, in this section we 
initially consider kernel consistency before going on to analyse particle consistency.

Kernel Consistency

In order for equation (3.45) to be consistent to order p, it needs to represent polyno­
mials up to this order exactly. It can be shown that the normalisation property (3.47) 
on kernel functions immediately guarantees that constants (Oth order polynomials) 
will be interpolated exactly:

f ( x )  =  J  cW (x  — x ', h ) dx '  = c J  W ( x  — x' ,  h) d x '  =  c. (3.74)

For a linear function f (x )  =  Cq + C\X the following condition should hold:

f { x )  = J ( c 0 + c ix )W (x  — x ' ,h )  d x ' = Co + cix.  (3.75)

This equation can be rewritten by first simplifying it, using eq. (3.74), and then 
subtracting it from eq. (3.47) with both sides multiplied by x.  This yields:

/ (x — x' )W(x — x ' , h) d x ' = 0. (3.76)

This relation is always true since the weight function W  is symmetric, as specified 
by eq. (3.49). Thus, the normalisation and symmetry conditions on weight functions 
guarantee 1st order consistency.

The following general requirement on weight functions, relating to their ability 
to represent polynomials of order p, can be obtained by considering the Taylor 
expansion of the function f (x)  [96, 97]:

/ (x  — x')pW (x  — x', h) dx' = 0. (3.77)

In simulations of physical phenomena using SPH, the weight function is required 
always to be positive, to prevent negative unphysical values from being adopted by
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certain field variables, e.g. density. Given this, however, it is apparent that the SPH 
interpolant can not represent 2nd order polynomials exactly, since the expression 
inside the integral (3.77) can never be negative. Thus, SPH can only achieve 1st 
order consistency in interior regions. Since the integral (3.77) is not supposed to be 
truncated by boundaries, it follows that, if no special treatment is introduced, SPH 
does not have even Oth order consistency near to boundaries.

Particle Consistency

In the previous subsection, it was shown that the continuum kernel approximation 
in SPH has Oth and 1st order consistencies for interior regions. The SPH particle 
discretisation of continuum equations further reduces this accuracy, such that the 
discretised equations may not even attain this order of consistency. The discrepancy 
in accuracy between a continuum equation and its discretised counterpart is called 
the particle inconsistency problem [96, 97, 98].

The SPH discretisations of the continuum consistency equations (3.74, 3.76) for 
uniform particle distribution in the interior region can be written as follows:

N

w (x  -  x v  h)— c = c, (3.78)
j=i Pi

and
N

^ 2 ( x  — x j ) W ( x  — x j , h ) ^ i - = 0. (3.79)
j=i pj

These equations will not always hold for random particle distributions, examples 
of which can easily be generated. One of the simplest such examples is that of a 
particle on the boundary of a one-dimensional system. If we again consider the 
constant function f ( x )  = c, then for this particle the right hand side of eq. (3.78) 
becomes equal to c/2. For interior particles it is also very easy to demonstrate that 
consistency conditions do not hold in cases of non-uniformly distributed points.

Another important parameter which affects the accuracy of the method is the 
smoothing length h. For example, in a one dimensional case with uniform particle 
spacing and with a cubic spline kernel chosen as the smoothing function, SPH has 
zeroth order consistency for the interior particles if h is equal to the interparticle
separation. If h is taken to have a different value, though, eq. (3.78) is not always
satisfied and, consequently, the accuracy of results is affected.

Thus, the original SPH method does not even have zeroth order consistency 
in particle approximations. This is the direct cause of the low accuracy of the
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original method, especially when it comes to either boundary particles, irregularly 
distributed nodes or particles with variable smoothing lengths.

3.3.5 SPH  Drawbacks and Improvements

Despite the many virtues of SPH, such as its simple concept, robustness, mesh- 
free nature, ability to simulate large deformations, etc., it suffers from a number of 
inherent technical drawbacks. These have stimulated the development of a number 
of improvements on the original SPH method. The three main drawbacks are:

•  the difficulty in enforcing essential boundary conditions [94, 88];

•  the tensile instability [99, 100, 101, 102, 103];

•  the lack of interpolation consistency [104, 105, 106].

It should be noted, though, that both boundary deficiency and tensile instability 
problems can be seen as arising directly from the particle inconsistency problem. 
Solutions to these two problems, which are discussed below, have been introduced 
at the particle-model level. However, some of these modifications have then gone on 
to be criticised as being arbitrary and shown to worsen some problems while solving 
others. On the other hand, corrections aimed directly at the particle inconsistency 
problem have the capacity to naturally remove the tensile instability problem and, 
in some cases, the particle deficiency (e.g., boundary condition) problem. In the 
remainder of this section we consider these issues in more detail along with the 
available solutions.

Boundary Conditions

Boundary condition implementation is always a nontrivial task in mesh-free methods 
and there is no universal approach for imposing the same. Since most mesh-free 
techniques have non-local interpolations as their foundation, the consequent lack 
of particles near to boundaries usually leads to accuracy deterioration in adjacent 
regions. The summation integrals for particles near to or at the boundary include 
only particles located inside the domain and this one-sided contribution causes the 
integral (3.45) to be truncated by the boundary. This is especially pronounced in 
the original SPH method, which does not even achieve zeroth-order consistency at 
boundaries.

A straightforward approach for correctly imposing boundary conditions would be 
to introduce a correction based on the residual boundary integral (3.53) estimation.
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This idea has been considered by Campbell [107], but no numerical results have 
been presented. A subsequent test of this idea did not produce any satisfactory 
results [95].

The usual practice in imposing essential boundary conditions in SPH is to use 
virtual or ghost particles [89, 94, 88, 108]. There are two types of these particles. The 
virtual particles of the first type represent solid boundaries and are normally kept 
fixed in space. These are called the “boundary particles” . It has been suggested that 
an extra repulsive force similar to the Lennard-Jones interatomic potential could be 
used in the interaction between these particles and the bulk particles, to prevent 
the latter from penetrating the solid walls [85]. However, it was found by Morris et 
al. [94] that if boundary particles contribute to the usual expressions for velocity, 
pressure and gradient, then there is no need to impose this extra repulsive force. 
This is due to the fact that, when a bulk particle approaches a boundary particle, 
the densities of both particle types increase. This leads to an increase in the particle 
pressure and, so, generates a sufficient repulsion.

The virtual particles of the second type are located outside the solid bound­
ary, spanning space to a depth of at least the kernel’s support length 2h from the 
boundary. Such particles are called the “image particle”. Unlike boundary particles, 
these particles have fixed densities. In order to impose no-slip boundary condition, 
these image particles also have velocity values set individually for each bulk parti­
cle they interact with. These required velocities are found by interpolation, on the 
assumption that the net velocity on the boundary is zero.

Tensile Instability

Tensile instability is a numerical pathology in the SPH method which can arise 
in simulations involving any type of elasticity. It was first discovered by Philips 
and Monaghan [109] and subsequently was extensively studied by a number of au­
thors [99, 110, 111, 112, 102]. Prom these studies it was found that, in regions 
under a tensile stress (stretched regions), a small perturbation in particles’ positions 
can cause exponential growth in their velocities, leading, eventually, to the particles 
clumping together and exhibiting oscillatory motion. This instability is particulary 
likely in materials with equation of state which can give rise to negative pressures, 
but it has been also been observed in materials for which the pressure is always 
positive, e.g. gases.

Apparently, any mechanism which impedes the inclination of particles to ap­
proach one another is able to alleviate the problem. A number of such remedies have 
been suggested, the most successful of which are the artificial stress method [110, 111]
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and the velocity averaging method (XSPH) [112]. Some of the other methods that 
have been mooted suffer from being a little bit more complicated to implement, e.g. 
the inclusion of additional stress points [102].

Here, we briefly describe the XSPH approach, which centres on modifying the 
equation relating the coordinates to the velocities dxi /d t  = Vi by replacing the 
velocity Vi with the particle averaged velocity at the point Xf.

where (f is a parameter which ranges from 0 to 1. This alternative averaging proce­
dure decreases the relative velocities of approaching particles, while conserving both 
linear and angular momenta.

Particle Inconsistency

Probably the most important numerical shortcoming of the SPH method is the 
particle inconsistency problem, which arises from the particle approximation process 
and leads to a low approximation accuracy. This problem was analysed in §3.3.4, 
where the completeness of the original SPH method was considered and it was shown 
that the SPH technique does not even have zeroth order consistency. This inaccuracy 
has motivated the development of a number of improvements to the original SPH 
approach. As was pointed out previously, negative values of weight functions can 
lead to unphysical negative values for the field variables, e.g. density. Thus, we only 
consider approaches which are restricted to positive weight functions, since we are 
interested in applying the SPH to the simulation of the hydrodynamics of LCs.

In order to alleviate the particle inconsistency problem, Randles and Liber- 
sky [88] introduced the following normalised expression for the density:

and a normalisation for the divergence of the stress tensor a:

(3.80)

(3.82)

where Vj = — , and : denotes the tensor product. In these, the accuracy

of approximations is improved by explicitly including the particle inconsistency itself
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in the final equations.
Two of the more recently introduced corrections, namely corrective smoothed 

particle hydrodynamics and modified smoothed particle hydrodynamics, are consid­
ered in more detail in the following sections.

3.3.6 Corrective Sm oothed Particle M ethod

In an attempt to overcome the particle consistency problem, Chen et el. [113] de­
veloped an improvement to the SPH based on a Taylor series expansion. This lead 
to what was called the corrective smoothed particle method (CSPM). In order to 
demonstrate the idea of this method, we consider a general Taylor expansion of an
arbitrary, smooth function /  near a fixed point Xi in 1-dimensional space. Prom
this, we obtain, for fi = f(xi):

f ( x )  ~ +  fi,x(x -  x ^  +  (X ^  f itXX + . . . .  (3.83)

Multiplying both sides of eq. (3.83) by the weight function Wi and integrating over 
the whole domain yields:

J  f ( x )W i(x) dx  = / ,  J  Wi(x) As +  }i,x J  (x — Xi)Wi(x) da;

+  / ( . -  Xi)2Wi(x) da; + ----  (3.84)

If terms containing derivatives of the function f ( x )  in the above equation are ne­
glected, then the following corrective kernel expression for the value of the function 
f ( x )  at particle Xi is obtained:

,  _  J  f ( x W i( x )  dx ro oc,
U f W i ( x ) d x  * ( j

Due to the symmetry condition on conventional weight functions, the second 
term on the RHS of eq. (3.84) would naturally average to zero for interior particles. 
However, this is not the case for particles near to or at the boundary, so the neglect 
of this term in CSPM leads to worse kernel consistency at boundaries. Specifically, 
the CSPM kernel approximation (3.85) is of first order consistency for interior par­
ticles and of zeroth order consistency for particles at the boundaries. It should 
also be noted that eq. (3.85) is equivalent to the original SPH kernel approximation 
for interior particles due to the normalisation property on weight functions. The
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corresponding particle approximation is written as

(3.86)

This particle approximation is of zeroth order consistency for both interior and
boundary particles due to the particle inconsistency problem.

The CSPM correction for derivatives is obtained by substituting the weight func­
tion Wi with its derivative W^x in eq. (3.85). Neglecting terms containing derivatives

The consistency of particle approximation of derivatives is then of zeroth order con­
sistency for both interior and boundary particles for random particle distributions, 
similar to CSPM approximations of functions.

3.3.7 Modified Sm oothed Particle Hydrodynamics

Recently, modified smoothed particle hydrodynamics (MSPH) has been introduced 
as a further enhancement over the CSPM. This method was developed simultane­
ously and independently by Zhang and Batra [114] and by Liu and Liu [97], whose 
works should be consulted for further details.

Similarly to the derivation of the CSPM method, we again consider a general 
Taylor expansion of an arbitrary, smooth function /  near a fixed point Xi in d- 
dimensional space. From this, we obtain, for /* =  f (xi):

function (or weight function) Wi = W{xi  — x , h) and with its first-order derivatives, 
and then integrating over the problem space yields

of second order and higher then gives the following particle approximation for first
order derivatives:

(3.87)

/ ( x )  ~  f i  +  / i ,a (x Q -  X?) +  . . . (3.88)

where a  ranges from 1 to d. Multiplying both sides of eq. (3.88) with a smoothing

Widx  +  / i)(

These integrals can be calculated at an arbitrary set of points i using the standard 
SPH particle discretisation process. In contrast to both the original SPH and the
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CSPM method, the more holistic MSPH approach simultaneously retains all of the 
terms in eqs. (3.89). This both improves the accuracy of the method and gives a 
rigorous approach for the implementation of boundaries. This improvement comes, 
though, at the cost of some extra computational effort, since the values of the 
function /  and its derivatives now need to be evaluated at each point from the set 
of linear equations

BF =  T. (3.90)

For the three-dimensional case, the matrices B, F and T  are

N v,— ,, nrr) . i v

B w  =  £ * ( / ) 0 ( . 7 ) - i  (3-91)
i=i pi >=1

F  =  { f i ,  f itX, f i ,y, f i , z} T , I ,  J  =  1,2,3,4

*(1 ) = Wtj, $(2 ) = WijiX, $(3 ) = Wtj,y, m  = WijtZ 
0 (1 ) =  1, ©(2) =  Xj — Xi, ©(3) =  yj — yi, Q{A) = Z j - Z i .

The system of simultaneous linear equations (3.90) has a solution at each inter­
polation point, provided that the matrix B is not ill-conditioned. The method’s 
accuracy can be further improved by retaining higher-order derivatives in the Tay­
lor expansion eqn. (3.88). This, though, again introduces additional computational 
effort, since the number of linear equations in (3.90) increases accordingly. Also, 
the stability of the scheme decreases with increase in the number of linear equations 
included, since the condition number of the matrix B increases greatly in this case. 
Thus, there is a trade-off between accuracy and stability.

From the consistency point of view, the accuracy of the MSPH method is in­
creased as compared with both the SPH and CSPM approaches. If k derivatives are 
retained in the Taylor expansion given by eq. (3.88), then the MSPH approach has 
(k — l) th  order consistency for both interior and boundary regions. Particle disorder 
does not influence the consistency of this scheme and, thus, the particle consistency 
is equal to the continuum kernel consistency. The kernel consistency of first- and 
second-order derivatives is of (k — 2)th and (k — 3)th orders, respectively.

The MSPH approach is very similar in its derivation to the CSPM method. 
However, the main difference between the two methods is that the values of field 
variables and their derivatives are calculated sequentially in the CSPM method, as 
compared to simultaneous estimation in the MSPH. On the other hand, the higher 
accuracy of the MSPH method is achieved at the expense of increased computational 
requirements.
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3.4 Smoothed Dissipative Particle Dynamics

In the last two sections, we have described two mesoscopic mesh-free particle tech­
niques, namely DPD and SPH. In both of these approaches, a fluid is represented by 
a set of particles which are usually seen as lump fluids. Moreover, in both approaches 
forces are pairwise additive and scaled by weight functions which decrease with in­
crease in the distance between the particles, see e.g. eqs. (3.2-3.5) and eq. (3.51). 
However, both DPD and SPH have a number of drawbacks. In this section we 
describe a technique which combines the best ideas from both DPD and SPH and 
which, at the same time, is free from some of their inherent problems. This simula­
tion technique, derived by Espanol and Revenga [65], is called smoothed dissipative 
particle dynamics (SDPD). In particular, it represents a Navier-Stokes solver based 
on the SPH discretisation with includes thermal fluctuations similar to those present 
in DPD.

The problems peculiar to DPD were discussed in detail in §3.2.5. Employing the 
SPH discretisation of the Navier-Stokes equation completely removes the following 
three significant problems: (i) the physical scale simulated by DPD is undefined,
(ii) the transport coefficients cannot be specified directly and (iii) the conservative 
forces do not allow for an arbitrary equation of state. The SPH method, on the 
other hand, greatly benefits from the inclusion of thermal fluctuations, since it 
then becomes a truly mesoscopic technique. SPH is also extended in SDPD to 
explicitly acknowledge the second law of thermodynamics. This makes it physically 
self-consistent due to close connection between the fluctuation-dissipation theorem 
and the correct description of hydrodynamic fluctuations in the fluid.

There are two main steps in the derivation of the SDPD model. The first involves 
introduction of an entropy field variable into the system’s description. This then 
allows for the physically correct introduction of thermal fluctuations into the model 
during the second step (see below).

The conservation laws present in the standard SPH description, namely the con­
tinuity equation and the linear momentum equation, along with their discretisations 
are given in §3.3.2. An extra equation of hydrodynamics, describing the entropy [46], 
is given as:

Ds
T p —  = <fi + KV2T, (3.93)

where s = s ( r , t ) is the entropy per unit mass field, T  is the temperature field and 
k is the thermal conductivity. The viscous heating field (f) represents the transfer 
of energy dissipated by viscous forces into the internal energy of the fluid. This is
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given as
4> = 2r]Vv : V r  -f C(V • v )2, (3.94)

where V r  denotes the traceless symmetric part of the velocity gradient tensor. 
Equation (3.93) for the rate of change of the entropy is then discretised using the 
standard SPH approximation rules, with second order derivatives being discretised 
using eq. (3.60).

Next, thermal fluctuations are added into the system. For this, the target equa­
tions are first rewritten in terms of the GENERIC framework [115, 116], which then 
allows for a simple and systematic introduction of thermal noise. This framework 
incorporates the physics behind the first and second laws of thermodynamics and 
can be applied to any closed system to describe non-equilibrium processes. Here, 
we do not describe this framework in detail, but rather state the final form of the 
stochastic differential equations describing the resulting system. They are

dr* =  vidt (3.95)

mdVi  =  ( j j [  + ^ )  ^ r d t -  Z ^ 1 -  di j )a i jv Ud t

-  ^ ( 1  -  dij) +  bij'j eijeij • Vijdt +  m d v i:
j

7MS .1  £  (l -  + ( f  + 6„)

/ \2l 2/bg r TiTn (10  \
( e «  ■ Vij)  J d i  -  —  2 ^  T . +  T . ( +  K  J  dt  ( 3 .9 7 )

j ^ i  1 3 \  /

_  2k£  -  2k ^  £  t  +  r 4dSi.
^  PiPj axi Ci ^  pipj axi

Here, C* denotes the heat capacity at constant volume of particle i and the following 
notations have been introduced:

(3.96)

j

x

2k  d W u  _  T iT j
U'i'i — x ___ _c  - =W') — (3.99)

^  piPj d x  ’ {Ti+Tj)2 [Ci ' Cj_

We now consider these equations in more detail. Equation (3.95), describing varia­
tion of particle positions, is the same as that in the original SPH. Strictly speaking, 
an extra noise term is not necessary here, since thermal fluctuations from the veloc­
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ity v  will automatically propagate here. Equation (3.96) for the velocity does now, 
though, contain three extra terms. The fluctuations themselves are represented by 
the term containing which is a combination of independent increments of the 
Wiener process dWij.  Two other extra terms, containing coefficients a#, bij and 
dij, follow from the GENERIC framework and represent the irreversible part of the 
dynamics. Equation (3.97), for the entropy S  is extended in a similar way to the 
equation of motion.

Thus, the SDPD method is derived by introducing thermal fluctuations into the 
original SPH description by using the GENERIC framework. It should be noted 
that the same approach can be used to introduce thermal fluctuations into any 
other particle continuum simulation technique which fulfills two of the laws of ther­
modynamics. This represents a proper top-down approach to devising mesoscopic 
simulation models.

3.5 Other Mesoscopic Mesh-free Particle Tech­
niques

3.5.1 Direct Simulation M onte Carlo

The Direct Simulation Monte Carlo (DSMC) method is a particle-based technique 
for solving the Boltzmann equation by using Monte Carlo simulation. It was first 
proposed by Bird [28, 29] in the context of simulation of rarefied gas flows, but later 
it also became popular in simulations of fluids where molecular effects are important.

The fluid in a DSMC simulation is represented by particles, each of which rep­
resent a large number of real molecules. The central assumption in DSMC is that 
molecular motions can be decoupled from the molecular interactions (operator split­
ting), with the simulation time step A t  being less than the mean collision time. In 
the DSMC method, molecular motions are modelled deterministically and molecular 
interactions are modelled probabilistically.

Thus, during each time step, particles are first realistically moved in physical 
space and time according to their equations of motions. This allows modelling of 
unsteady phenomena. To calculate the movement of a particle, usually a standard 
numerical integration technique is used, which can formally be written as

r i ( t  + At) = r i ( t )  +  V i( t )At .  (3.100)

The given boundary conditions are applied when translating particles. During this
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step, interactions with other particles are not considered.
Next, collisions of particles are modelled. Exact places and times of these colli­

sions are not calculated, but instead a stochastic algorithm is used. The probabilis­
tic nature of this step is what distinguishes the DSMC technique from deterministic 
methods, such as molecular dynamics. During the collision step, the domain is first 
divided into grid of equal cubic cells of volume V  = , where d is the dimensionality
of the system and lc is the side length of a cell. The cell side length lc is chosen to be 
smaller than, but of the same order as, the mean free path. Only particles residing 
within the same cell are chosen to collide, to ensure that only particles which are 
located close to each other interact. Not all pairs of particles in the same cell collide, 
as this would be a time consuming process. Instead, a random number M c of pairs 
inside each cell is drawn, with M c given by the following formula

NC(NC — l)avmaxA t  . „
Mc =  cV J — . (3.101)

z v c

In the above equation, N c is the total number of particles within the cell, a is the
scattering cross-section (e.g., in two dimensions for spherical particles with radius r
a = 4r) and vmax is the maximum relative velocity of two particles. The maximum 
relative velocity vmax is found from time to time in the simulation by identifying the 
maximum particle velocity and setting vmax to be twice of this value. This greatly 
saves the computational time.

Having identified colliding pairs of particles inside each cell, the acceptance- 
rejection method is then applied to each of them. A collision between particles i 
and j  is then performed if

I Vi — v A ,
' 3-  < Z ,  (3.102)

^ma_
where Z  is a uniformly distributed random number in the interval [0,1]. Thus, the 
probability of the collision between two particles effectively depends on their relative 
velocity.

Finally, the collisions between chosen pairs of particles are performed. Post- 
collisional velocities need to be found in a consistent way, since collisions take place 
regardless of the particle positions in the cell. Assuming molecular chaos, in the hard 
sphere case an impact parameter b is chosen randomly from a uniform distribution. 
The post-collisional velocities are then calculated as if the particles had collided with 
the impact parameter b. This algorithm can be generalised to soft sphere potentials, 
and rotational degrees of freedom can be also introduced [117].

The DSMC method is based on the assumptions which were mentioned above.
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These lead to a set of constraints on the technique, which are: (i) the cell size 
should be comparable with the mean-free path, (ii) the simulation time step should 
be smaller than the mean time between collisions, (iii) the system should be in a 
collisional regime, (iv) the number of particles per cell should remain roughly fixed 
in order to preserve the collisional statistics.

3.5.2 Stochastic Rotational Dynamics

In 1999, Malevanets and Kapral [66, 67, 118] developed a mesoscopic particle based 
simulation technique which is named either multi-particle collision dynamics (MPC) 
or stochastic rotational dynamics (SRD) [67]. The SRD technique is essentially an 
enhanced version of the DSMC technique described in the previous section, with 
pairwise collisions replaced by multi-particle collisions in order to improve the com­
putational efficiency. In this section, we give a brief description of the principle 
formalism of the SRD method.

An SRD simulation involves of a set of N  particles whose velocities and coordi­
nates vary continuously, i.e. the particles move off-lattice. As in the DSMC method, 
there are two successive operations during each time step in an SRD simulation, 
which are called streaming and collision.

During the streaming step, particles are simultaneously propagated according to 
their velocities, with their coordinates updated as

r i ( t  +  A t )  =  r i ( t )  +  Vi( t )At ,  (3.103)

where A t  is the simulation time step.
The collision step then involves simultaneous transfer of momentum between 

all particles in each cell. This is the main difference between SRD and the DSMC 
techniques, because in the DSMC method the momentum is transferred only between 
certain pairs of particles. In SRD, at each collision step the domain is initially
divided into a grid of cubic cells with equal side lengths. Each cell may contain any
number of particles, but the total number of particles N  is always constant. The 
centre of mass velocity V is then calculated for each cell as an average of the particle 
velocities belonging to that cell. After that, the particle velocities in each cell are 
rotated by an angle a  around a random axis, relative to V, to yield post-collision 
velocities. This can be written as the following mathematical transformation of 
velocities:

Vi(t +  At) = V(t)  +  w(vi(t) -  V(t)),  (3.104)
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where is a rotation matrix. The rotation matrix u; is the same for all particles in 
a given cell, but it varies for different cells.

The collision step by itself is not physical, but it is constructed so as to conserve 
locally mass, momentum and energy. Thus, in the continuum limit, Navier-Stokes 
and the hydrodynamic equation for heat transfer are recovered. In their original 
article, Malevanets and Kapral also showed that the velocity distribution of particles 
in equilibrium is Maxwellian [66].

Ihle and Kroll [67] subsequently noted that the original SRD method suffers 
from a lack of Galilean invariance if the grid is chosen to be the same for each time 
step. This is due to the fact that if particles do not travel significant distances, as 
compared with the cell size, then the set of particles with which they collide changes 
only slowly. This leads to a non-physical dependance of transport coefficients on 
the fluid velocity, which is especially pronounced at low temperatures. This issue is 
resolved by randomly shifting the position of the grid during each collision step.



Chapter 4 

Im plem entation of Bottom -up  
Approaches

In this chapter we present results obtained within our development of novel meso­
scopic mesh-free techniques for simulation of LCs based on dissipative particle dy­
namics (DPD) and fluid particle model (FPM) approaches. We initially describe 
practical implementation aspects of the original DPD/FPM  techniques and provide 
some results validating the codes developed. We then introduce extensions to these 
techniques and mathematically prove that these are physically correct. Next, we 
attem pt to validate the proposed extensions by reporting simulation results for a 
number of LC systems.

4.1 Practiced Aspects in D P D /F P M  Implementa­
tion

In this section we describe the particulars of our DPD/FPM  implementation. The 
DPD method has many similarities with the traditional MD technique. This is 
a big advantage, since most of the well-proven procedures of MD can be reused 
in DPD. Both methods are particle based, in that particles move off-lattice in a 
continuum domain but with discrete time steps. The main difference between these 
two approaches is that the forces in DPD depend on particle velocities and include 
stochastic terms. This requires utilisation of non-standard integrators.

From an implementation point of view, the FPM is very similar to DPD, apart 
from one additional issue; rotational degrees of freedom in the FPM require special 
attention, since forces/torques in the FPM depend on the particles’ angular veloc­
ities. Unfortunately, articles describing FPM implementation tend not to specify

76
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either the representation used for the treatment of angular coordinates and veloc­
ities, or the integration algorithm utilised. We use quaternion parameters for the 
description of particle orientations and modify the integration algorithm by Martys 
and Mountain [119] for angular coordinates and velocities.

The remainder of this section is organised as follows. First, we discuss the basic 
particularities of DPD/FPM  implementation, such as reduced units and periodic 
boundary conditions. We then pay special attention to the choice of integrator. 
Then, the handling of rotational degrees of freedom and angular velocities is sum­
marised. Next, we describe the implementation of a Verlet neighbour list which we 
employ in order to speed-up the calculations. The section concludes with a descrip­
tion of the methods used to measure physical quantities in the simulated systems.

4.1.1 Reduced U nits

Most computer simulations use reduced units instead of real physical quantities to 
represent system properties. Apart from the obvious convenience of working with 
values of order unity, this approach introduces some important technical advantages. 
Firstly, in real units (SI) some numerical values involved are either much less or much 
greater than unity. In standard floating-point operations, such as multiplication or 
division, this significantly increases the risk of numerical errors arising. Secondly, 
through the law of corresponding states, many different system descriptions can 
be shown to be identical in reduced units, which allows one to avoid performing 
redundant simulations. Thirdly, for instance, by setting particle masses to unity, 
one can achieve simulations in which forces are numerically equal to accelerations 
and momenta equal to velocities; consequently, savings can be made in running time.

The most straightforward way to specify reduced units is to assign a value of 
unity to certain key parameters that appear in the model description. Then, all 
other quantities are expressed in terms of these assigned variables. In the DPD 
model, the cut-off radius rc is usually used as the unit of distance, as this is the 
natural unit of length in the system, and the temperature, via ksT,  usually plays 
the role of the unit of energy. The particle’s mass is the unit of mass and, naturally, 
is set to unity. Given this specific choice of units, the representation of all other units 
directly follows, e. g. rc( m /k T )1/2 for time, (1 /r \ )  for number density, ( /^ T /ra )1/2 
for velocity etc. The full table of unit conversions can be found in Appendix B 
of [120].
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4.1.2 Periodic Boundary Conditions /  Minimum Image Con­
vention

In most computer simulations, the number of particles, N,  in a system is of order 
0(1O2) — (9(105) due to the limitations of computing resources, both storage and 
computational. For instance, the computational expense of a DPD simulation scales 
with the number of particles as 0 ( N 2), if no additional measures are taken.

Figure 4.1: Two-dimensional schematic representation of periodic boundary condi­
tions

The aim of most DPD simulations is to inform the macroscopic properties of 
a given sample. Consequently, it is necessary to account for boundary conditions 
in simulations. When the number of particles is small, a significant fraction of 
them are located near the boundary of the simulation box. To deal with this issue, 
periodic boundary conditions are routinely employed along with the minimum image 
convention.

In this, the simulated volume, V , is treated as the primitive cell of an infinite 
periodic lattice of identical cells. A sketch of the two-dimensional case is depicted 
in Fig. 4.1. Every particle in the cell now has the potential to interact with all other 
particles in this infinite system, apart from self-images. In practice, though, it is 
not necessary to keep information about all of the particles in the system. When a 
particle leaves the central simulation box, an equivalent image then re-enters from 
the opposite side as a consequence of the periodic boundary conditions. In this 
way, attention is switched from one image to another whenever a particle crosses a 
boundary. In the force calculation loop, while going through all pairs of particles,
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the minimum image convention is used to define all images within a given particle’s 
interaction range rc. Provided that 2rc is less than the box length L, then, as shown 
in Fig. 4.1, for instance, particle C  interacts with at most only one of the images of 
particle A.

Periodic boundary conditions is a widely used and effective method, but unfor­
tunately it suffers a few drawbacks. One consequence of the introduced periodicity 
is the suppression of fluctuations with wavelengths A > L. Therefore, if long wave­
lengths are important in the simulation, then one should take explicit account of 
finite system size effects.

4.1.3 Integrators

The velocity-Verlet based integration scheme for DPD, introduced by Groot and 
Warren [70] (DPD-VV), is a popular variant of the standard MD velocity-Verlet 
algorithm [120]. As mentioned above, the forces in DPD depend on the particle ve­
locities. This issue is tackled in DPD-VV by using intermediate predicted velocities 
v°:

Ti{t +  At) = r t (t) +  A tVi(t) +  l /2 (A t )2Fi(t), (4.1)

Vi(t +  At) = Vi(t) +  \AtFi( t) ,  (4.2)

Fi(t +  At) = Fi(r(t  +  At), v°(t  +  At)),  (4.3)

Vi(t +  At) = vi(t) +  1/2A t{Fi(t) +  Fi(t +  At)). (4.4)

Here A is a phenomenological tuning parameter, which introduces higher-order cor­
rections into the integration procedure. The value A =  0.5 corresponds to the 
original MD velocity-Verlet algorithm, whereas Groot and Warren [70] found that 
A =  0.65 gives the best temperature control in DPD simulations. Generally, A 
depends on the model parameters and has to be determined empirically for every 
specific case. In order for the DPD-VV method to be stable, the time step should be 
sufficiently small. Marsh and Yeomans [121] derived critical temperatures, densities 
and model parameters that yield a region where simulations are stable. Due to its 
simplicity and efficiency, the DPD-VV algorithm is a very popular choice in many 
DPD simulations. It is used very often, as well, as a basic technique against which 
to evaluate other integrators [122, 123, 124].

The velocity-Verlet scheme is basically a method for solving the Hamiltonian 
equations for deterministic dynamical systems. However, the DPD method is actu­
ally described by a SDE and has a stochastic underlying basis. Recently, alternative
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integrators have been proposed, based on proper stochastic expansions [125, 126, 
127]. Here we summarize Shardlow’s splitting method [125], the first of these al­
ternative methods. The key idea in this integrator is to factorise the integration 
process, so that conservative forces can be integrated using conventional integra­
tors. Then, dissipative and random forces are solved separately as SDEs. Two 
approaches were employed for the integration of the Langevin equations, namely 
the Trotter expansion [128] (integrator Si) and a second order splitting using the 
Strang expansion (integrator S2). Both integrators (SI and S2) give better temper­
ature control than DPD-VV, allowing for a larger time step, and help to avoid some 
of the artifacts present in the DPD-VV integrator [124]. Integrator S2 is slightly 
better in characteristics than integrator SI, however, it is more computationally 
expensive, so integrator Si has been identified as the optimal choice [125].

Lowe [129] proposed an alternative approach to DPD which involves combining it 
with Andersen’s thermostat. The resulting integration algorithm can be summarised 
as follows. Firstly, using the velocity-Verlet algorithm, particles’ positions and veloc­
ities are advanced to time step t + A t .  The next stage involves system thermalisation. 
All pairs of particles are considered, where < r c, with probability TA t .  Here rc 
specifies the interaction range and is similar to the DPD cut-off radius. Then, their 
component of relative velocity along the line connecting their particle centres is 
drawn from a distribution f i jy/2kBT/m , where is a Gaussian-distributed ran­
dom variable with unit variance. The main parameter in Lowe’s method is T, which 
is set such that 0 <  T A t  < 1. If TA t  is close to unity, then all particle velocities are 
thermalised at each time step. However, if T A t  «  0, then the system is only weakly 
coupled to the thermostat. It should be pointed that the main difference between 
Lowe’s method and conventional DPD is that, in Lowe’s thermostat, dissipative and 
random forces are not explicitly calculated. Thus, Lowe’s approach is not, in fact, a 
realisation of the DPD equations, but rather an independent modified thermostat.

A few comparative studies of the efficiency of DPD integrators were performed 
recently [124, 127]. Prom these, it was concluded that Shardlow’s integrator SI 
performs best. Lowe’s method was also shown to yield excellent results, in some 
tests even better that those of integrator SI, even though it is not a proper solution 
of the DPD equations.

4.1.4 Quaternions

In the FPM, fluid particles possess rotational degrees of freedom and angular veloc­
ities, and the forces/torques in the model depend on angular velocities in much the
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same way as forces in DPD depend on translational velocities. We use quaternion 
parameters [130] for the representation of particles’ orientations. Since there is no 
developed integrator yet for angular degrees of freedom for DPD-like algorithms, we 
have modified the integration algorithm by Martys and Mountain [119] for quater­
nions in much the same way as the velocity-Verlet algorithm was modified in the 
DPD-VV integrator derivation.

A quaternion Q is a set of four scalar quantities

Q =  (00,91,02,03), (4.5)

which satisfy the constraint

9o2 +  «? +  <72 +  <?f =  l- (4-6)

The four quaternions are not mutually independent, but give an orthogonal repre­
sentation of space which makes the equations of motion singularity-free, as com­
pared with conventional Euler angle representation that is described in detail by 
Goldstein [131].

In the quaternion representation, the rotation matrix, which allows transforma­
tion between space-fixed and body-fixed coordinates, becomes

A  =
^00 +  01 -  02 -  03 2 (0102 +  0003 ) 2 ( ^ 3  -  4o02) ^

2(0102 -  0003) 00 -  01 +  02 -  03 2 (0203 +  0001)

V 2(4143 +  4042) 2(4243 — 0O0 i)  0o2 - 0? -  022 +  03V
(4.7)

Quaternions are connected with principal (in body-fixed coordinates) angular 
velocities through the following relation

Q =

^00 01 02 03 ^ (0)
01 1 01 00 -0 3  02 , ,6 X̂
02 “  2 02 03 00 -0 1 <4

w \0 3  - 0 2  01 00 /

(4.8)

which can be written in a shorter form Q =  \ M apWp where M  and W  are the 
matrices on the right hand side of eq. (4.8). We are now required to derive the 
second-order time derivative of Q. For this, let us consider Euler’s equations of 
motion for a rigid body that is fixed and is subject to torques N  in the principal
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frame

u,bx =  Nx/ i x + w by z ( i y - i z) / i x,

Uy = N y /Iy +  lObzWx(Iz -  Ix) / I y , (4.9)

u,b =  N z/ I z + u bwb(Ix - I y ) / I z .

Now, if a matrix T  consists of the right-hand side of eq. (4.9) with T4 — 0, then, 
after some algebra, the following relation is obtained

Q =  — Q/3(QlQa)> (4-10)

Taking into the account the fact that FPM particles are spherical with equal 
moments of inertia, the algorithm by Martys and Mountain [119] can be modified 
to give

Q (t +  At) = Q (t) +  AtQ{t)  +  l / 2 (At)2Q(t) +  1/2(A t)2F L(t), (4.11)

L>°(t -f- At)  = u>(t) +  l / 2 A tN //, (4.12)

N (t +  At) = N (v°(t +  At),  u>°(t +  At)),  (4.13)

u)(t +  At)  =  u)(t) +  l/2A t(N (t) -f- N (t +  At)).  (4.14)

Here a;0 is the predicted angular velocity at time step (t +  At),  analogous to the 
predicted velocity v° in the DPD-VV algorithm. The only significant difference 
between this modified algorithm and the DPD-VV integrator given in eqs. (4.1-4.4) 
is that the force F L(t) =  —2AQ maintains the constraints Q • Q =  1 and Q • Q =  0. 
This force can be seen as being derived from the Lagrangian multiplier method. The 
condition (4.6) leads to an explicit expression for the coefficient A:

(At)2A = 1 -  Sl(At)2/2 -  -  Sl( A t f  -  s2( A t f  -  (s3 -  s \ ) ( A t y / i ,  (4.15)

where s\ = Q • Q, S2 =  Q • Q and S3 =  Q • Q.

4.1.5 Verlet Neighbour List

In simulations, during the force calculation loop, every pair of particles has to be ex­
amined in order to determine whether or not they are within the interaction range 
r c. This is computationally expensive, as the problem scales with the number of 
particles as 0 ( N 2), even though most particle pairs will not satisfy this condition, 
especially in large or low-density systems. The Verlet neighbour list is a technique
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which partially resolves this problem and, so, allows significant speed-up of calcula­
tions.

During a simulation, a list of new neighbour particles with distance between 
them Tij < rv is created and maintained. Here rv is an adjustable parameter, which 
is called the Verlet radius, such that rv > rc. Now, in the force calculation loop, 
only pairs on this neighbour list are considered, so cutting out many unnecessary 
calculations. Obviously, the neighbour list needs to be updated from time to time. 
This is done by keeping track of particles’ maximum displacements, and recalculating 
the neighbour list whenever one of the particles accumulates a total displacement 
which exceeds \ ( r v — r c).

The Verlet radius rv should ideally be tailored for every specific case. If it is too 
small, then the neighbour list recalculation will be required too frequently. If it is 
too big, however, the frequency of the neighbour list recalculation will be lower, but 
the list itself will be long and, so, slow the force calculation cycle. For our DPD 
simulations, we found the value rv = 1.7rc to be appropriate.

4.1.6 Calculation of Observables

In a DPD simulation, information about particle positions, velocities and angular 
velocities (in the FPM technique) is available at every time step, so one has access 
to a full microscopic picture of the system evolution. However, in practice, we are 
often interested only in macroscopic quantities, and much of the microscopic detail 
is redundant. In this section, we describe how typical macroscopic observables and 
fluid structural properties are calculated by simulation.

The system’s potential energy is calculated as a sum of all particle-particle pair­
wise potentials:

N - l  N  

i= 1 j > i

where ^  is the potential used in DPD simulations, as given in eq. (3.6). The total 
kinetic energy is given by the sum of translational and rotational (for the FPM) 
kinetic energies of individual particles:

N  ̂ *  ?mv.
~2

2 = 1  2 = 1
Ekin = E ^ r  + E ^ r -  (4-17)

The the total system energy is then given as

E to t  =  E k in  +  E p o t. (4 -18)
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The DPD model does not conserve energy, so this value is a fluctuating quantity in 
simulations.

The instantaneous kinetic temperature T  of a system can be calculated by ap­
plying the equipartition theorem. This states that if the Hamiltonian of a system 
contains some position or velocity coordinate to quadratic order, the respective de­
gree of freedom will contribute k sT /2  to the mean kinetic energy. Thus, temperature 
is estimated from

71
Ekin — (4-19)

where n  =  3(N  — 1) for the DPD model and n = 6(N — 1) for the FPM. DPD/FPM  
simulations are conducted in NVT-ensembles, so temperature is constant during the 
simulations. Consequently, the average kinetic energy should remain fixed as well.

Due to the large time steps used in DPD simulations, configurations can be 
generated which are not canonical [84]. It is therefore advisable to monitor the 
configurational temperature Tc to assess the degree of equilibrium achieved [132]. 
This can be determined using the hypervirial relation [133]:

k*Te ~  ’ (4'20)

where V* is the gradient and V? is the Laplacian.
The total pressure in simulated systems is calculated by the means of the virial 

theorem discussed above, using eq. (3.16). The off-diagonal elements of the pressure 
tensor can also be calculated utilising the virial theorem, by considering products 
of different cartesian components of the forces and the corresponding inter-particle 
vectors.

In addition to the average properties discussed above, structural properties of 
fluids can be extracted from simulations. The radial distribution function is a very 
important characteristic, which allows comparison of simulation results with exper­
imental data. It is calculated by compiling histograms. The volume around every 
particle is divided into thin concentric shells and then the number of particles in 
each shell is divided by the shell volume to give the local density distribution. Then 
the result is normalised by the total number of particles and the average density, so 
as to give the radial distribution function. This procedure is usually performed for 
a number of configurations.
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4.2 D P D /F P M  Testing and Verification

In this section we describe the simulations undertaken to test and validate our 
newly developed parallel DPD/FPM  codes for isotropic fluids. In these, we tested 
both equilibrium and non-equilibrium situations against well-proven results so as 
to make a comprehensive code validation. Initially we used the paper by Groot 
and Warren [70] for the primary testing, since their results have been verified in 
a number of subsequent papers. We thereafter follow them in using the following 
parameter set: conservative force parameter a = 25, random force strength a = 3 
and temperature fcgT =  1. The modified VV integrator with parameter A =  0.65 
was chosen and implemented as the most studied. In all simulations presented in 
this section we employed 1000 particles.

In every DPD simulation, the first observable to assess is the kinetic temperature, 
since the method produces AFT-ensembles. A series of simulations were performed 
to measure the dependance of temperature on the time step. The results, given 
in Fig. 4.2, are in a good agreement with those provided by Shardlow [125]. The
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Figure 4.2: Kinetic temperature dependance on timestep A t  in the DPD model.

temperature increases with increase in the timestep, due to the shortcomings of the 
integrator. In all subsequent simulations we have used a timestep of A t  = 0.02, 
since it only gives a 0.4% error in the temperature control.

The DPD method conserves total translational momentum. This quantity is a 
good checkpoint, since it is an easy observable to monitor and it will readily reveal 
any errors in the integration algorithm. We monitor the system’s centre of mass 
velocity at every time step. The test run of 50000 steps given in Fig. 4.3 shows that 
this velocity has the order of the round-up error, which is completely acceptable.
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The total error has a tendency to increase, so that, during long simulation runs, 
particle velocities are rescaled every 25000 steps.
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Figure 4.3: Centre of mass velocity.

The radial distribution function is the next important test point, since it provides 
information about the structural properties of the fluid. First, we measure the radial 
distribution function in the system without conservative forces as a function of time 
step, since in this case the relation (3.24) holds and the radial distribution function 
should be equal to unity for all r. The results are given in Fig. 4.4. Artifacts are 
present at low values of the inter-particle distance and these increase with time step. 
This shows one of the other drawbacks of the modified VV integrator. This problem 
is one of the other reasons why we have set the time step to be A t  = 0.02 in our 
simulations, since the lower time step partially eliminates structural artifacts.

We have also measured the radial distribution function in the presence of con­
servative forces. This is shown in Fig. 4.5 and agrees well with the equivalent result 
from Groot and Warren [70]. The pressure was recalculated using the last expres­
sion from eqs. (3.16) and compared with the measured quantity. Both agreed with 
accuracy 0.8%, which is negligible in practice.

We have repeated the experiment of Groot and Warren [70] on determination of 
the equation of state. The resulting plot of excess pressure against density is given 
in Fig. 4.6 along with the equation of state (3.17). The correspondence is very good.

The last test point we considered for equilibrium simulations is the configura­
tional temperature. A plot of the configurational temperature against time step is 
given in Fig. 4.7. This shows that the configurational temperature control is very 
poor in the DPD-VV algorithm as compared with the kinetic temperature. This is
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Figure 4.4: Radial distribution functions for the DPD model without conservative 
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Figure 4.5: Pair correlation function for the DPD model with conservative forces.

caused by the fact that the time step is too large for the conservative force, but the 
thermostat forces algorithm produces the correct kinetic temperature.

We tested the developed FPM code in the same way as we just described for 
the DPD model. Both variants (and also all other extensions) differed only in their 
force calculation routines. Thus, some of the above tests are already applicable to 
the FPM, e.g. the centre of mass velocity. The FPM model possesses orientational 
degrees of freedom, so they should be tested in additional to the previous observables. 
We do this by measuring the orientational kinetic temperature. The dependencies 
of the configurational, kinetic rotational and translational temperatures on the time 
step are given in Fig. 4.8. As can be seen from this figure, the configurational 
temperature increases most markedly with the time step. As noted above, this is
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Figure 4.6: Excess pressure obtained from DPD simulations. Points denote simula­
tion data, solid line denotes equation of state.

a general problem for all DPD based methods, since the time step is too big for 
the conservative forces. The kinetic rotational temperature also increases with the 
time step. But, surprisingly, the kinetic translational temperature decreases at the 
same time. This may have been caused by the choice of weight functions and needs 
to be explored further. Unfortunately, there are no equivalent published numerical 
results for the FPM model, so we do not have data against which to compare. This 
implementation was tested further by setting some of the weight functions to zero, 
so as to recover the original DPD model.

The tests discussed above were used only to assess the models in equilibrium. 
We have also tested non-equilibrium cases. To test for consistency, we first compare 
values of the shear viscosity obtained using two different methods: Lees-Edwards 
boundary conditions and periodic Poiseuille flow. The estimated viscosity is then 
used to check the velocity profile in Poiseuille flow generated using an external force 
and boundaries with frozen particles. Additionally, temperature and density profiles 
are measured across the channel, which is useful in some cases, e.g. when there are 
density fluctuations near to walls made up of frozen particles.

The initial testing was done by reproducing the results of Backer et al. [134]. 
Periodic Poiseuille flow was used to measure the viscosity of a system of DPD par­
ticles. The system parameters were: k s T  =  0.5, n = 6.0, a = 4.5 and the external 
force was gz = 0.055. The shear viscosity was thus estimated to be rj = 2.1 ±  0.02, 
whereas the value in Ref. [134] is rj = 2.09 ±  0.02. Thus, the results agree within 
statistical error.

Next, we tested all three non-equilibrium techniques by measuring the shear



CHAPTER 4. IMPLEMENTATION OF BOTTOM-UP APPROACHES  89 

1.06 

1.05 

1.04

<uSh
+3cS
CDa

^  1.03s o
"-+Ja3t-l3b0ca s ot>

0.02 0.03 0.04

timestep, A t

0.05 0.06

Figure 4.7: Configurational temperature as the function of the time step At in DPD. 

1.08

0>M3-tj 
S—lcuCU
S0>

1.06

1.04

1.02

1.00

0.98

T r o t  " i

T tr a n s l  ®
T c o n f  •

1 ;
-

•

! | •

• ............... |--------- -.... -  - ; ---------------

• ■ ■

-1 "  -.............  "
0  G

O
: i O

. . , . . 1
0

0.01 0.02 0.03 0.04

timestep, A t

0.05

Figure 4.8: Configurational, kinetic translational and kinetic rotational tempera­
tures as the function of the time step At in FPM model.

viscosity of the same system. In this case, the conservative forces were present, since 
they played a significant role in the Poiseuille flow that was generated using boundary 
conditions by Pivkin [135]. We have chosen the following system parameters for this 
test: temperature =  1.0, timestep At =  0.01, number density n = 4.0, random 
force strength a = 3.0 and conservative force repulsion a = 25. The timestep was set 
rather small so as to avoid possible artefacts in these non-equilibrium simulations. 
The viscosity calculated using the periodic Poiseuille method was 77 =  1.07 ±  0.004, 
where the external force was gz =  0.055 in reduced units. The resultant temperature 
and density profiles across the channel are given in Fig. 4.9. Both profiles are uniform 
across the channel and their average values correspond well to the input values. The
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velocity profile obtained from the same runs is given in Fig. 4.10. Following this, 
equivalent viscosity calculations were performed using the shear flow generated by 
Lees-Edwards boundary conditions. Here, the shear rate was set at T =  0.05. The 
estimated shear viscosity in this case was 77 =  1.074 ±  0.004. Thus, two essentially 
different techniques have produced the same result.

Finally, we generated a Poiseuille flow by applying an external force gz = 0.055 to 
the system with added boundaries. The resultant velocity profile is given in Fig. 4.11. 
The analytical Navier-Stokes solution with viscosity rj = 1.03 ±  0.02 was fitted to 
the data, and is also depicted in the figure. This represents a significant discrepancy 
with the two previous results. The corresponding temperature and density profiles 
are given in Fig. 4.12. These indicate substantial density fluctuations near the 
walls, which is a general problem in DPD simulations of systems in which walls 
are represented by frozen particles. The temperature drops in value near the walls, 
which is another undesirable effect. It should be also noted that the configurational 
temperature in this case was estimated as T ^ f  = 1.086±0.002, which is a significant 
deviation from the input value in spite of the very small time step used.
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Figure 4.9: The temperature and density profiles in the periodic Poiseuille flow.

4.3 Extending D PD  for the Simulation of Liquid 
Crystals

In this section we introduce anisotropic interaction terms into the DPD simulation 
technique. We concentrate on a derivation that is applicable only to LCs. Since 
mesogens are anisotropic, this requires introduction of an additional mesoscopic
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Figure 4.11: The velocity profile in the Poiseuille flow system along with fitted 
theoretical solution.

variable to the description of the fluid particles. First, we propose to associate a 
symmetric traceless tensor Q  with each fluid particle, which will carry informa­
tion about the orientations of the molecules comprising the fluid particle. This is 
discussed in more detail in the next subsection. Following this, we incorporate de- 
pendance on the particles’ Q  tensors into the conservative forces, and prove, for a 
general case, that any arbitrary dependance of the specified form will still lead to 
the proper equilibrium distribution in simulations. Finally, we introduce anisotropic 
terms into the thermostat forces in order to recover the correct hydrodynamic be­
haviour of LCs.
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Figure 4.13: Schematic two-dimensional representation of LC bead in DPD.

4.3.1 Incorporation of a Q-tensor into D PD  Formalism

DPD particles are usually considered as droplets or beads of fluid. Following this 
convention, and applying it to LCs, we now consider the use of DPD beads to 
represent droplets of (locally) ordered fluids, see Fig. 4.13 (in this figure, rod-like 
mesogens are depicted, but they could equally well be disk-like). The physical 
dimensions of such fluid particles can be determined, for instance, from pairwise 
radial distribution functions (positional and/or orientational), making a bottom-up 
link between microscopic and mesoscopic levels in the spirit of DPD. These fluid 
droplets are still considered as being spherical in shape, in spite of the fact that 
their constituent molecules are anisotropic. This can be justified on the grounds that 
even in the isotropic phase there are significant short-range orientational correlations 
between mesogenic molecules.

In the mesoscopic DPD description, one is normally interested only in some 
averaged values and less concerned about the detailed underlying molecular picture.
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In LC beads accordingly, we do not need to know the orientation of each molecule, 
but we still need a means for describing average molecular orientation and order 
in every bead. The Q  tensor is a very appropriate quantity for this task. Let us 
assume that there are N  molecules in each fluid particle, and that every molecule has 
orientation described by u  vector. Now let us define the ordering matrix averaged 
over the fluid particle as

N

N
( 2 1

u i,x 3

2 1
Ui,y 3

'U/i,x'U/i,z

E 'U‘i,x'U'i,y Ui^yUi^z
i= 1

Ui^yUi^z
2 1 

^  -  l )

(4.21)

After the diagonalisation of Q, the director frame can readily be identified, i.e. we 
obtain the order parameter S  as the largest eigenvalue and its conjugated vector gives 
the director n. The two other eigenvalues can be used to determine any biaxiallity 
present.

4.3.2 Extending Conservative Forces

Here we make an extension to the conventional DPD conservative forces. We assume 
that the value of the order parameter of every fluid particle is constant, i.e. 5  =  1. 
We then define =  n* • n where n* is the orientation of the director of the zth 
particle. Then we extend the potential energy Uq from the original DPD model as

Ui = U0 -  XP2U0 = U0( 1 -  0.5A(3c2 -  1)), (4.22)

where A is some constant in the range [0,1] and P2 =  P2(cos&) = ^(3Cy — 1). This 
form of the potential is chosen by analogy with the Maier-Saupe mean field potential. 
This gives an average potential energy UM of a single molecule in the surroundings 
of the rest of molecules [2]

t /M =  - T 5 g c o s 2^ - i ) ,  (4.23)

where (f) is the angle between the long axis of the molecule and the director, V  is 
the volume of the sample and A is a constant independent of temperature.

The revised conservative force needed to implement this extended scheme can 
be derived from

dUi(r, c)
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The torque exerted on the particle i by particle j  is given by

dUi(r,c)
dc

(4.25)

and the torque exerted on the particle j  by particle i is given as

N ji =  —Tlj x dUi(r, c) 
 « n (4.26)

One can immediately check that, in this extension, local angular momentum 
conservation holds, since

4.3.3 Fokker-Planck Equation and Equilibrium State

The Fokker-Planck equation governs the time evolution of the probability distri­
bution function p(r, v, (p, u; t) of all positions, velocites, orientations and angular 
velocities of all the particles. The equation of motion for our model in the form of 
proper stochastic differential equations (SDE) becomes (compare with eq. 3.11):

dWij = dWji are independent increments of the Wiener process. Ito interpretation 
is assumed, which is dWijdWyj' = (SufSjji +  Sij>Sji>)dt, i.e. dW^  is infinitesimal of 
order y/dt.

Now, following the standard procedures outlined in §3.2.2, let us derive the 
Fokker-Planck equation that corresponds to the above SDE’s.

Consider the differential of the arbitrary function / ,  keeping all terms of up to

Ny + Njj +  Vij x Fij — 0. (4.27)

dri  =  Vidt

(4.28)

The notations used in the above equations are exactly the same as these in §3.2.2.
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order dt:

(4.29)
1 j  j  & f+  5 £ 5 > * j : _ .

i j  1 3

Now substitute the above SDE’s into the differential d/, obtain (df /dt) and 
extract the Fokker-Planck equation:

with conservative forces. The steady state solution of eq. (4.30), dtp = 0, gives the 
equilibrium distribution peq. A canonical ensemble:

will be the solution if the dependencies from the original DPD hold (3.8), since for 
this distribution Lf-p = 0. This means that all equilibrium properties of the original 
DPD are the same as the properties of the extended model. This, certainly, implies 
that both the H-theorem and the equipartition theorem hold in this case.

Furthermore, the above derivations can be extended to the general case. Let 
us consider an arbitrary potential between two fluid particles of the form U = 
U(r, rii  • r ,  rij  •  r ,  n* •  rij)  = U (r, a, b, c), i.e. a function of the centre-centre separation 
r and all possible scalar products of the unit vectors r ,  h i  and h j .  Note that the 
relative orientation of two linear molecules is completely specified by the set (a, 6, c).

dtp(r, v,<p,u>;t)= [L° + LT + L n] p(r, v,ip,u;t) (4.30)

where the operators are given by

-L . . .  M W  % U I V i
I * J

The operator Lc  is the Liouville operator of a Hamiltonian system interacting
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Then we can calculate the conservative force between particles i and j  using the 
chain rule. Thus,

„ c „  rT dU „ dU * d U .
V -  d r Tii d a n i d b n i ' ( ^

From this it can be seen that the total momentum is conserved, since F(j = —Fy. 
Explicitly, the torque exerted on the particle % by particle j  is given by

(9 U  dU \  /An4S
N y =  - m  x I — r y +  ~Q̂njJ , (4.34)

and the torque exerted on the particle j  by particle i

N j i  =  - r t j  x ( ^ r t j  +  ~ ^ n i \ ■ (4-35)

One can immediately check that the conservation of local angular momentum holds
as well

Njj +  Njj +  r^j x Ffj = 0. (4.36)

The Fokker-Planck equation is equivalent to equations (4.30-4.31). In this case, 
again, it could be checked that Lfjpeq = 0  by substituting the torques, given by 
equations (4.34-4.35), into the operator LR, where peq is given by eq. (4.32). This 
leads to a very important conclusion -  the conservative force can be arbitrarily 
adjusted, in terms of its dependance on the particles’ local directors, and the system 
will still achieve a proper thermodynamic equilibrium. Thus, ultimately the full 
elasticity can be recovered for LCs through use of more sophisticated inter-particle 
interactions than the basic Maier-Saupe-like from eq. (4.22) considered here.

4.3.4 Extending the Therm ostat Forces

In the previous subsection we have considered an extension to the DPD conservative 
forces based on the particles’ Q  tensors. This extension was aimed at recovering 
the isotropic-nematic transition and elasticity of LCs. In this subsection we con­
sider an extension of the DPD thermostat forces with a view of achieving correct 
hydrodynamic behaviour for a LC fluid.

Transport coefficients in DPD/FPM  are not direct input parameters, but, rather, 
are emergent from a system’s behaviour. Analytical expressions for transport co­
efficients, e.g. those are given by eqs. (3.26-3.29), involve a number of different 
parameters. Thus, in order to introduce Q-tensor dependance into transport coeffi­
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cients, we need to make one of these parameters Q-dependant, i.e. make it variable. 
There are only two possible parameters suitable for this: the spatial average of the 
dissipative weight function wD(r) and the dissipation strength parameter 7 . Other 
parameters appearing in the expression for the transport coefficients, such as the 
dimensionality of the system d , obviously can not be made variable.

In the spirit of the conservative forces extension, we choose, then, to include the 
Q-tensor dependance into weight functions of the DPD thermostat. By modifying 
the random weight function wR(r) and then setting the dissipative weight function 
wD(r) according to eq. (3.8), we ensure that the fluctuation-dissipation theorem 
is fulfilled. This allows varying transport coefficients while still properly sampling 
Maxwell-Boltzmann distribution in particles velocities.

In what follows we concentrate on two important transport coefficients, namely 
the viscosity and the diffusion coefficients. Qualitatively, for a calamatic LC (i.e. 
comprising rod-like molecules), the effective viscosity measured parallel to the di­
rector is lower than that measured perpendicular to the director. Conversely, the 
diffusion coefficient measured parallel to the director is greater than that measured 
perpendicular to the director [136]. Thus, in order to replicate this qualitative pic­
ture, the dissipative weight function dependencies of the viscosity and the diffusion 
coefficients should have opposing proportionalities. The diffusion coefficient is al­
ways inversely proportional to the dissipative weight function, see eq. (3.28). Thus, 
the above condition is only possible when the DPD fluid is in the dissipative regime, 
i.e. it is characterised by a high value of friction coefficient 7  and a small temper­
ature ksT .  In this case, the first term in the DPD viscosity given by eq. (3.27) is 
dominant.

We propose, therefore, the following extension to the random DPD force:

wi(r )  = wR(r)(l — 0.5A*(3c2 — 1 )), (4.37)

where wR(r) is the original weight function given by eq. (3.9) and Xt is a param­
eter in the range [0,1). If Xt = 0, then this reverses back to the original DPD 
function. As Xt increases in magnitude, conversely, the proposed weight function 
becomes increasingly influenced by LC’s anisotropy. The functional form for the 
new thermostat weight functions in eq. (4.37) is chosen simply for consistency with 
the way we extended conservative forces, as can be seen by comparing eq. (4.37) 
with eq. (4.22).
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4.4 Simulation Results

In this section, we present simulation results obtained using the proposed model. 
DPD is inherently a qualitative model and, thus, we concentrate on examples which 
can be used to validate the model by showing it to be capable of representing the 
essential physics of LCs.

4.4.1 Recovering the Isotropic-Nem atic Phase Transition

In this subsection we test the ability of the proposed model to recover the isotropic- 
nematic transition. For this, a series of compression runs were conducted with 
different values of the A parameter from eq. (4.22). A plot of the resulting order 
parameter versus number density behaviour is depicted in Fig. 4.14. The existence 
of an isotropic-nematic phase transition is clearly demonstrated in the figure. The A 
parameter affects the threshold of isotropic-nematic phase transition, but does not 
significantly change the character of the transition.

ShO
Q)a o.6
f-l<3a
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Figure 4.14: Dependance of the order parameter on number density for six different 
values of A in the range [0.3:0.9].

4.4.2 Diffusion Coefficients

In this subsection we test the ability of the proposed model to reproduce hydrody­
namic behaviour in a qualitatively correct manner. Here, we set A =  0.8.

Firstly, agreement with the equipartition theorem was tested. It was found 
that the rotational kinetic temperature agreed exactly with the translational kinetic 
temperature.
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Next, we measured the diffusion coefficients parallel and perpendicular to the 
director. For this, we fixed the orientation of the director with a very weak external 
electric field to lie along one of the box axes. There are two standard approaches 
for measuring diffusion coefficients in particle-based simulations, one based on the 
Einstein expression and an alternative route based on the Green-Kubo relation. 
We have implemented both of these approaches, and, having verified that the two 
produce equivalent results, have employed the latter. The relevant Green-Kubo 
expression is based on the integrated velocity autocorrelation function and is given

^  N

D  =  W J o  d t  4̂'38^

This can then be resolved into components parallel and perpendicular to the fixed 
director, by estimating the integral (4.38) for the x , y  and z  directions separately. 
The measured diffusion coefficient, D, as a function of number density, p, is plotted in 
Fig. 4.15. The diffusion coefficient measured perpendicular to the director decreases 
as the density increases. This is a typical dependance of the diffusion coefficient on 
increasing density. On the other hand, the diffusion coefficient measured parallel to 
the director increases with the density. This counter-intuitive behaviour is peculiar 
to LCs and has been previously observed in molecular dynamic simulations [136]. 
The order parameter variation of the LC corresponding to these densities is also 
plotted with the diffusion coefficients in Fig. 4.15. As expected, there is a direct 
correspondence between the order parameter variation and the measured diffusion 
coefficients. This is especially marked for the increasing diffusion coefficient parallel 
to the director. This is directly attributable to the enhanced orientational order in 
the system, which promotes diffusion parallel to the director.

4.4.3 Simulation of Colloidal Particles Immersed in LCs

In this section, we present results obtained when we use our proposed mesoscopic 
model to simulate colloidal particles immersed in LCs. Colloidal particles can be 
represented using two different approaches in DPD simulations. In the first of those, 
each colloidal particle is represented as a group of dissipative particles [6 , 7, 137]. 
The second approach involves employing a special potential between the colloidal 
particles and the dissipative particles [138], such that each colloidal particle is rep­
resented by only one particle in the simulations. In our simulations we adopt the 
latter approach, since it is much more efficient and it allows flexibility in the choice 
of potential between the different types of particles.
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Figure 4.15: Diffusion coefficients measured parallel (||) and perpendicular (_!_) to 
the director as a function of number density p. Corresponding order parameter 
values S  are also shown.

We treat each colloidal particle as a spherical particle with radius greater than 
radius of the DPD fluid particles. In order to simulate the interactions between the 
colloidal and fluid particles, we employ the interaction mechanism proposed by Satoh 
and Chantrell [138]. In this, each colloidal particle is regarded as a hard sphere, so 
that fluid particle velocities are reflected on contact with it. We employ a simple 
potential to achieve this, namely the Lennard-Jones (LJ) potential. However, if the 
LJ potential is based on the centres of two particles, this can lead to a significant 
overlap between colloidal and fluid particles [138]. Thus, an inscribed sphere inside 
each colloidal particle is considered, with the same diameter as fluid particles and 
located on the line connecting the centres of the fluid and colloidal particles. This 
is illustrated in Fig. 4.16. The LJ potential is then effectively applied between each 
fluid particle F  and its correspondingly inscribed virtual particle V. We assume 
that colloidal particles do not possess any rotational motion and set their angular 
velocities to zero.

The equations of motion of the colloidal particles are integrated after the total 
forces acting on them have been calculated. This is achieved in a similar manner 
to that used for the dissipative particles. The masses of the colloidal particles are 
set depending on the simulated system. Also, the timestep in simulations involving 
such colloidal particles needs to be less than that used in generic DPD simulations 
due to the relatively steep LJ potential employed.

Finally, we needed to develop a route for imposing boundary conditions for Q. 
In our simulations, we impose homeotropic boundary conditions on the surfaces of
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Figure 4.16: Scheme of interaction between colloidal (C) and fluid particles (F), 
mediated by a virtual particle V.

colloidal particles. For that, we use the same potential as for the fluid-fluid particle 
interactions, as compared to LJ potential employed for the translational motion. In 
order to achieve this, we assume that each inscribed virtual particle V  has a director 
which coincides with the line connecting the centres of V  and F. Then, the torque 
acting on the fluid particles is found from eq. (4.22). Consequently, the strength of 
the homeotropic anchoring can be changed by varying the parameter A appearing 
in eq. (4.22).

A typical configuration taken from an equilibrated system of a single colloidal 
particle immersed in a FPM nematic LC is shown in Fig. 4.17. Here we use A =  1 
for the LC-colloid interaction so as to impose strong anchoring. In this figure, a 
cross-section snapshot of the 3D simulated system is shown. This shows that the 
homeotropic anchoring of the colloidal particle is very pronounced. There is also a 
Saturn ring defect surrounding the particle. In all our simulations we were only able 
to achieve defects of this type. Various attempts at obtaining point satellite defects, 
such as varying the diameter of the colloidal particle or decreasing the anchoring 
coefficient, did not succeed; the Saturn ring defect formed in all of the simulations 
considered.

4.5 Discussion

In this chapter we have proposed a novel model for LC simulations based on DPD 
(FPM) models. This model properly captures the essential physics of LCs, as has 
been demonstrated in a number of examples. It achieves this through effectively 
integrating out most of the underlying molecular behaviour. Through this it can 
be used to easily achieve simulations of complex LC phenomena on meso time- and 
length-scales thanks to it being computationally very fast.

As compared to other simulation techniques, this model’s niche is the ability 
to quickly simulate dynamic behaviour of systems such as inclusions in LCs. For
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Figure 4.17: Cross-section of a system with a colloidal particle immersed in a LC. 
The Saturn ring defect lies in a plane perpendicular to this image and is manifested 
here as just two 1 / 2  point defects.

example, a simulation of three colloidal particles immersed in a 3D nematic LC 
takes around half an hour to complete on a single processor. A snapshot from such 
a simulation is shown in Fig. 4.18. Similar coarse-grained MD simulation of only one 
fixed colloidal particle took several months to complete [139]. There are mesoscopic 
LB models for LC simulations, e.g. [11, 12, 13]. W ith the help of these, it has proved 
possible to consider simulations of different inclusions in LC, but this has required 
a great deal of computational work, not to mention coding time, for detecting the 
boundaries of these inclusions and taking them into account. If we consider different 
continuum grid-based techniques, such as FDM and FEM, then these suffer from 
similar problems to the LB method, i.e. remeshing, in which a significant part of 
computational time is spent on dealing with moving interfaces.

The proposed model, obviously, is not ideal. There are some problems associated 
with it, which directly stem from the underlying DPD model. The major issue 
is the inability to properly connect this mesoscopic model with either molecular 
or continuum descriptions. For example, it is not clear how to map the elastic 
constant appearing in eq. (4.22), which is described by only one A parameter, with 
its continuum counterpart. Nevertheless, this model’s initial goal was to produce a 
qualitative picture and, thus, this is what one should keep in mind when planning to 
use it. Notwithstanding this limitation, the system depicted in Fig. 4.18 represents,
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Figure 4.18: Cross-section of a system with colloidal three particles immersed in LC. 

to our knowledge, the first 3D dynamic simulation of a LC colloid system.

4.6 Conclusions and Future Work

In this chapter, we have presented a novel mesoscopic simulation technique for LC 
modelling, which is based on DPD/FPM  simulation techniques. We have qualita­
tively demonstrated that it recovers qualitatively correct LC behaviour, both from 
the ordering point of view (isotropic-nematic transition) and from its hydrodynamic 
behaviour. Quantitatively it was proven that both the H-theorem and the equiparti- 
tion theorem hold for the proposed model. We have also demonstrated how colloidal 
particles immersed in LCs can readily be simulated using this approach.

Obviously, more work is still needed in this direction. For example, the model 
could be extended to include more elastic constants. Also, by appropriate modifica­
tion of the weight functions, five independent Leslie viscosities could be recovered. 
More research is also needed on the colloidal particle systems in order to gain a 
greater understanding of the capabilities of the proposed model.



Chapter 5 

Im plem entation of Top-down 
Approaches

The aim of this chapter is to derive a mesoscopic mesh-free particle technique for LC 
nematodynamics, in the context of the Qian-Sheng description, using a top-down 
approach. We initially present our attempts to apply Smoothed Particle Hydrody­
namics (SPH) and its variants to the simulation of LCs and show that none of these 
prove able to produce a numerically stable simulation technique. We then present a 
generalisation of the Modified Smooth Particle Hydrodynamics (MSPH) simulation 
technique which is capable of simulating static and dynamic liquid crystalline be­
haviour. We subsequently validate this technique by reporting the results it yields 
for a number of numerical test-cases and comparing these results with available 
analytical solutions.

5.1 Revising the Governing Equations

In mesh-free particle methods, material particles can be either fixed in an Eulerian 
frame or move in a Lagrangian frame. We are considering flow of LCs and thus we 
need a description of particles in the Lagrangian frame. The original Qian and Sheng 
formulation [14] for the flow of a nematic LC whose orientational order is described 
by a Q  tensor are given in §2 . Here, we first alter these governing equations in order 
to make them suitable for mesh-free simulations and then present the explicit form 
of the equations used in our simulations. Our derivations are similar to those used 
for Lattice-Boltzmann simulations of nematodynamics [11].

We use the common assumption that the angular velocity relaxes quickly and, 
thus, set the moment of inertia equal to zero J  =  0. With this in view, we substitute

104
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eq. (2.45) into eq. (2.41) to yield

h% -  ~  ~  AB(W  -  =  0. (5.1)

Substitution of the explicit form of the co-rotational derivative N ap = Q ap ~  
£anvu nQvp ~  ZpuvWuQau into eq. (5.1) and subsequent simplification gives the order 
evolution equation in the following form:

/S   ^af3 X $a{3 ^aPjX^ ^2- -̂aP /troA
OaP o ^-aeX^eQxp ^PeX^eQaX' W*^)/i i Hi Hi 4^1

This is well suited for mesh-free simulations and is the main equation used to im­
plement order evolution.

Next, we consider the main LC momentum evolution (2.40), which we restate 
here for the sake of self-consistency:

PU(3 = da {—Pfia/3 +  °ap +  <?ip +  • (5*3)

We first eliminate the time derivatives in the viscous stress tensor &° by making the 
co-rotational derivative N ap the subject of the formula (5.1) and further substituting 
it into the eq. (2.44):

&a(3 =  @1 QapQuvA^v +  (5^Aap +  PsQap-^-pP T  PqQ ppA^a
I ^ 2 ^ a 0    M2 A B 6a0   f l 2 £ g f 3 i X y    » f t  / t

"r  2/xi 2/xi 2/ii Am A '

+Qap£pP~/XB +  fi2Qâ A^0 +  Qp^hBa — Qp^e^cxjXB — .

The explicit form of the distortion stress tensor erd can be found by substituting 
the bulk free energy (2.9) into eq. (2.42) to give:

&a(3 IjidaQexdpQe\  L2di,Qei/dpQea L$dpQ ̂ yd^Q^a L/iQa^dnQ^dpQeX
SnapQfixdpQpX +  ^SnapQfieQexdpQpX  
p C iE ^ d p Q  na +  C2EfJLQ tlldpQ 7a.

(5.5)
Next, we identify the form of the Lagrange multipliers XB and XB by studying 

eq. (5.1) and taking the trace of hB̂ \

h L  = - K a + 3XB. (5.6)

Substituting the explicit form of the viscous molecular field given by eq. (2.45) into
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the above equation, and using the fact that Q a p  is symmetric and traceless yields:

AB =  | ( C  -  ? A U -  (5.7)

The term A aa is zero for incompressible fluids but it is kept here because we are 
treating the fluid as slightly compressible; this provides a mechanism for correcting 
any errors, should they arise.

Analysing the off-diagonal elements of in eq. (5.1) gives the following result 
for the Lagrange multipliers:

A7 =  —£a(3~thai3- (5-8)

Lastly, we state the explicit form of the molecular field given in eq. (2.43) for 
phenomenological free energies given in §2.1.4:

h a p  &fQocI3  4“ '^ P fQ o . 'yQ 'yP  ^ ^ fF Q a f iQ 'Y T Q r 'y  

+ L i d ~ f d ^ Q a p  4- L 2 d OLd 1 Q 1p  -1- L ^ d ^ d p Q o ^

( p ' Q n v & a f }  4~ &i/QaP^nQfiv 4“ ^(iQaf3^vQiiv 9aQryTdpQ^T)̂
4-^pr1 (epXadxQrf ~  £<xv1duQlP) ~  ^ - L i Q aP +  (5.9)

ctl ch  ch

4" p 4 ( Q +  Q £ (j,XaQ p e ^ x Q  ef3 £ f iX a Q  e f i ^ x Q  /j,e)

4-|e0A e ^ E a E p  4- §/i0A XT xHaHp 

~C\dpEa +  C2 (EadvQPv — E^dpQuo, — QuadpEn) •

We thus have identified the core target equations for our simulations and ex­
pressed them in the Lagrangian frame. The target order evolution equation is 
eq. (5.2) and the target momentum equation is eq. (5.3). These have both been 
derived using the form of free energy given in §2.1.4 under the assumption that the 
moment of inertia is negligible.

5.2 Description of the Algorithm

In this section, we describe the key common points of simulation algorithms based on 
the SPH method and its variants. The specifics of individual methods, e.g. MSPH, 
will be given in the corresponding subsections.

In order to solve the set of Qian-Sheng equations given in §5.1 we choose to 
associate a traceless, symmetric, order tensor, Q a p , with each fluid particle. Mi­
croscopically, these order tensors convey information about the state of the average 
orientational ordering of the molecules which are assumed to be represented by each 
fluid particle. Mathematically, the Q  tensor is just one more field variable describing
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the system.
The resulting simulation algorithm centres, then, on solving the set of Qian- 

Sheng eqs. (5.2)-(5.3) on a set of randomly distributed points in 1-, 2 -, or 3- 
dimensions using the SPH method. Firstly, particles are uniformly located on a 
problem’s domain and are given initial values of velocity, density and Q. Then, 
equations (5.2) and (5.3) are considered for each particle, with their right-hand 
sides replaced by the appropriate kernel estimates.

Thus, the algorithm can be summarised as follows. Firstly, we estimate the 
velocity gradients, and thus find AQilg, Na^.  After that, calculating all Q  derivatives 
up to second order, we estimate all stress tensors on the right hand side of eq. (5.3) 
and the molecular field hap on the right hand side of eq. (5.2). Finally, we calculate 
the right-hand side of eq. (5.3) by estimating the first order derivatives. When 
the right-hand sides of equations (5.2) and (5.3) are fully estimated, the values of 
the field variables are propogated using a predictor-corrector integrator discussed in 
§5.3.2. The differences between the variants of SPH centre on the ways in which the 
derivatives are calculated.

By its nature, SPH is an adaptive and Lagrangian mesh-free method in which 
particles are free to move. In some problems, however, the particles can be held 
fixed in space. This feature is relevant to the simulation of LCs in situations where 
Q  evolution (governed via eq. (5.2)) needs to be considered but the velocity field 
(governed via eq. (2.40)) can be neglected. In such cases, we set all velocities to 
zero and keep the simulated particles fixed in space. This approach significantly 
reduces the computational effort required, since it avoids the extra loop associated 
with the estimation of the derivatives in eq. (2.40). In circumstances such as this, 
SPH is employed as a purely mesh-free strong form numerical technique in which 
the positivity of the weight function is not exploited.

The original SPH approach uses pressure gradients to drive particles. Thus, it is 
necessary to use the quasi-incompressible equation of state for incompressible fluids, 
since fluid pressure is an explicit function of local fluid density, and use of the actual 
equation of state necessitates adoption of a very small time step. While LCs are 
incompressible, in our simulations they are treated as slightly compressible via the 
artificial equation of state. For this, we use the equation of state due to Morris et. 
al. [94]

P  = <?p, (5.10)

where c is the speed of sound.
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5.3 Major Practical Implementation Aspects

5.3.1 Boundary Conditions

Boundary conditions are usually a source of numerical instability in SPH simulations 
and, thus, an extra care should be taken when implementing these. The usual 
practice for imposing boundary conditions is to use techniques based on virtual 
particles, as was discussed in §3.3.5, and this is the approach we adopt in our SPH 
simulations.

We employ two different types of boundary particles. Particles of the first type, 
or “boundary particles” , represent rigid boundaries. Unlike the interior particles, 
these boundary particles are always held fixed in space, even if they have non-zero 
prescribed velocities. They contribute in the normal way to the interactions of the 
interior particles. These are given by SPH summations, calculated from parameters 
including velocity, pressure, stress tensor and Q-tensor. We do not evolve densities 
of boundary particles, unlike Morris et al. [94], since the non-evolving approach was 
shown to improve free surface flows of viscoelastic fluids near boundaries [95]. In 
our simulations, boundary particles also exert a penalty force when interior particles 
closely approach boundary particles. This is implemented in order to prevent interior 
particles from penetrating the boundary and so leaving the computational domain. 
This penalty force is similar to the Lennard-Jones interatomic potential [8 8 ]. We 
retain the penalty force in spite of the fact that it was shown to be unnecessary to 
keep it for Newtonian fluids [94]. The reason for this is that the complex nature 
of the stress tensor in Qian-Sheng description may lead to configurations where 
the isotropic pressure due to the artificial equation of state will be offset by terms 
containing Q  derivatives and, thus, an extra repulsion will be required to keep 
interior particles away from boundaries.

Particles of the second type are called “image particles” and their purpose is to 
alleviate the particle deficiency problem near the boundaries. These particles are 
located outside of the rigid boundaries such that they fill the domain in a range 
comparable with the support domain kh  of the kernel function. These particles, 
like boundary particles of the first type, have fixed positions and densities. Initially 
all of the particles, including boundary and image particles, are usually distributed 
uniformly across the domain so as to avoid significant overlaps at the start of the 
simulation.

We now consider implementation of simple Dirichlet boundary conditions in a 
manner similar to Takeda et al. [108] and Morris et al. [94]. This idea is illustrated 
in Fig. 5.1 using the imposition of no-slip boundary conditions as an example. The
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velocities of boundary particles are set to desired values, i.e. to zeros in this example. 
Then the velocities of the image particles are found by extrapolating the velocities 
of bulk particles across the boundary. To achieve this, first a normal distance is 
found from an interior particle A  to the rigid boundary, along with a normal distance 
cIb from an image particle B  to the same boundary. The velocity of the image 
particle is then Vb =  — {ds/djCjVA- Since, in practice, bulk particles can closely

v B

Figure 5.1: An example of setting the velocity of a boundary particle in order to 
implement no-slip boundary conditions in the original SPH method.

approach the boundary, the maximum value of image particle velocities should be 
restricted. Consequently, the final formula for the relative velocity of particles A  
and B  is vab = (3v a , where

Good numerical results are achieved if /3max is set to 1.5 [94]. If the boundary itself is 
in motion, then va  should be replaced by the fluid velocity relative to this boundary. 
We use the same approach in order to impose boundary conditions for Q  tensors 
and estimate stress tensors cr while calculating forces acting on particles.

5.3.2 Time Integration Scheme

For consistency, we use second order Predictor-Corrector (P-C) methods to inte­
grate both the equations of motion and the Q-tensor evolution. P-C integration 
methods are simple, well-established and easy to code. Also, the right hand sides of 
equations (5.2) and (5.3) are very expensive to calculate and thus it is simply not 
feasible to employ various other integration methods, e.g. Runge-Kutta methods, 
for this task.

The final accuracy of solution in second order methods increases as 0 (d t2), where 
dt is the time step used in the simulations. Thus, if the time step is reduced by a 
factor of 2, the accuracy is increased by a factor of 4.

/? =  min ( ft
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We use the P-C algorithm for second order PDEs [140] to evolve the system with 
time, i.e. to integrate the equations for coordinates and velocity. If we denote the 
right hand side of eq. (5.3) by Fv, then the integration algorithm can be represented 
as following:

1: Predictor step:
2 : xp(t +  dt) = x(t) +  v(t)dt +  ^j-a(t)
3: vp(t +  dt) = v(t) +  a(t)dt
4: Calculate Fv(t +  dt) based on predicted values of vp(t +  dt) and xp(t +  dt).
5: Corrector step:
6 : x c(t +  dt) = x(t) +  v{t)dt +  a(t +  dt) +  2a(t))/3.0
7: vc(t +  dt) = v(t) 4- dt(a(t) +  a(t +  dt))/2.0 

Here the superscripts p and c refer to the predicted and corrected values, corre­
spondingly. a(t) denotes particle acceleration at time t and is given by Fv(t)/m.

We adopt a simple two step predictor-corrector (P-C) Heun method to integrate 
the resulting linear ordinary differential equations for Q evolution to second order 
accuracy. This approach uses Euler’s method as a predictor and the trapezoidal 
rule as a corrector. If Fq is the right-hand side of eq. (5.2), then the scheme can be 
represented algorithmically as follows:

1: Predictor step:
2: Qp(t +  dt) = Q(t) + dtFq(t)
3: Calculate Fq(t +  dt) based on predicted values of Qp{t +  dt) and xp(t +  dt).
4: Corrector step:
5: Qc(t +  dt) = Q(t) +  dt[Fq(t) +  Fq(t +  dt)]/2.0 

The above algorithms are single time step schemes, which means that only the 
information from the current time step is needed in order to calculate the solution 
at the next time step. Thus, a variable time step can easily be adopted. If higher ac­
curacy is needed, multistep methods can be used, i.e. the information from previous 
time steps can be used.

5.3.3 Sm oothing Length

The smoothing length h directly affects the accuracy and the efficiency of the SPH 
algorithm. If h is too small, then there are insufficient particles in the support 
domain to calculate the field variables’ derivatives and, thus, the simulation breaks 
down. If, on the other hand, h is too big, then the support domain will contain too 
many particles with a consequence that all of the local properties will be smoothed 
out. This, in turn, will also affect the accuracy adversely.
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If particles are initially distributed evenly inside the domain in a well-ordered 
fashion, e.g. on a lattice, we then employ a smoothing length h which is 1 .1  — 1.5 
times larger than the initial inter-particle separation. This also applies to situations 
in which we distribute points using the Monte-Carlo technique, here again we set the 
smoothing length to be 1.1 — 1.5 times greater than the average distance between 
points for the given particle. In both of these situations, the initial number of 
points in the support domain is monitored so that the smoothing length can be 
tuned, within the given limits, to provide the best accuracy.

Finally, when particles i and j  have different smoothing lengths hi and h j , their 
interaction is symmetrised by using a mean smoothing length hij = (hi + h j ) /2 .

5.3.4 Sm oothing Kernel

The choice of the smoothing kernel function in the SPH method is of the utmost 
importance, since the integral representation of function approximations is at the 
heart of this method. A number of different smoothing functions have been tried 
and described in the literature, and a number of requirements have been discussed. 
Here, we use the B-spline weight function due to Monaghan and Lattanzio [141] in 
our simulations

!l ~ R 2 + ±R3 0 < R < 1  
|(2  - R f  1 < R  < 2  (5.12)

0 R >  2

where R  is the distance between two particles normalised by h and a d is a normalisa­
tion factor which is equal to 1 /h, 15/(77r/z2) and 3/(2tth3) in 1-, 2- and 3-dimensions, 
respectively. The support domain is equal to 2 h when using this kernel function. 

The first derivative of the B-spline can easily be obtained

( \ { - 2 R + \ R 2) 0 < R <  1 
W'{R) = a d x \  - J L (2  - R f  1 < R  < 2 (5.13)

[ 0 R >  2

As can be seen from the analysis of this first derivative, it has its maximum at
R  = 2/3 and then decreases with decrease in the inter-particle distance. This is
clearly unphysical and has sometimes lead to instability [99]. Nevertheless, to date 
this has been the most widely used kernel function in the SPH literature and was 
shown to give good results in the MSPH simulations of Ref. [142].
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5.3.5 Reduced U nits

In computer simulations of physical phenomena, values of physical quantities very 
often take values which differ by many orders of magnitude. This clearly presents 
a problem for computer simulations where numbers are represented with a fixed 
precision. To avoid these problems, so-called reduced units are used. In these, 
dimensional values of physical quantities are scaled into reduced units. This is 
especially relevant in computer simulations of LCs, where, for example, the values 
of the elastic constants are of order 10-12  whereas those of the Landau coefficients 
are of order 1 05.

In our simulations, we introduce a characteristic length Z0, a characteristic time to 
and a characteristic mass rrio. Typical values used are lo = 10- 7  m, to =  10- 7  s and 
rho =  10" 20 kg. When using this set of parameters, all other numerical quantities 
lie within a numerical range suitable for stable and reliable computer calculations, 
namely 1 0 - 2  — 1 03.

Having introduced these characteristic quantities, we then scale all other physical
quantities according to their dimensions. For instance, values of elastic constants are 

t2
scaled to — which transforms their order of magnitude from 10-1 2  to 1. When 

rh0lo
outputting the observables, though, the values are scaled back to their original 
dimensional units.

5.4 Implementation Details For Individual M eth­
ods

5.4.1 Sm oothed Particle Hydrodynamics

A review of the original SPH methodology was given in §3.3. Major implementation 
aspects which we adopted were described both in §5.2 and in §5.3. In this section, 
then, we describe a few remaining practical details which directly relate to our 
implementation of the original SPH approach.

The Q  tensor evolution is described by eq. (5.2), which involves second order 
derivatives of Q. There are at least two different ways of estimating second order 
derivatives, which were presented in §3.3.1. As an obvious choice, we employ the 
form which is given by eq. (3.60) due to its improved accuracy.

We have also coded the possibility of including the XSPH averaging procedure, 
which was described in §3.3.5, into our SPH simulations. XSPH was shown to 
overcome the tensile instability problem which is very likely to arise in simulations
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involving any sort of elasticity. We judged that this might be relevant for simulations 
of LCs, in which the stress tensor is given by the complex equation (5.4). The value 
of this expression is strongly dependant on the state of ordering, especially in regions 
with high Q  gradients, and, thus, might trigger undesirable system behaviour. The 
XSPH approach, on the other hand, is very straightforward to implement and has 
been shown to produce smooth velocity fields [143].

5.4.2 M odified Sm oothed Particle Hydrodynamics

We now describe details of the algorithm we have developed to simulate LC be­
haviour using the MSPH technique. All general implementation issues peculiar to 
the original SPH technique also hold for the MSPH method. The only major dif­
ference is the way in which derivatives are calculated, and thus this is the point we 
describe in detail in this section.

The way that derivatives are calculated in the MSPH method was described in 
§3.3.7. In brief, the system of linear equations (3.90) needs to be solved in accord 
with the matrix entries given by eqs. (3.91)-(3.92). In the MSPH approach, like in 
the original SPH, higher order derivatives can be calculated in two different ways. 
Firstly, the derivatives can be calculated directly by retaining all terms up to the 
required order in the Taylor expansion of the field function (3.88). This approach is 
computationally expensive, since the number of equations in (3.90) increases rapidly 
with both the number of expansion terms and the problem’s dimensionality. An 
alternative approach is to calculate higher order derivatives directly as first-order 
derivatives of the lower order derivatives. This nested approximation retains the 
same order of accuracy as the full solution and is, therefore, our preferred approach 
in the calculations presented here.

We use the nested approach to calculate the derivatives involved, and retain all of 
the derivatives in the Taylor expansion up to the second order. We have found that 
retaining third order derivatives does not significantly improve the model’s accuracy, 
whereas it does add an appreciable computational overhead.

In the MSPH formulation, there is no need to use an artificial viscosity since 
proper viscosity terms appear in eq. (5.3). It is also pertinent that there are no 
large velocities in typical LC simulations. Although we implemented an artificial 
viscosity, in case we needed it to stabilise the numerical scheme, we found that there 
was no need to include it in any of the simulations presented here.

As was discussed in §5.2, in some LC problems, the velocity field is not considered 
and thus the SPH method is employed purely as a mesh-free method. The same
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is true for the MSPH method. In such a circumstance, the computational effort 
involved in MSPH is greatly decreased, since the matrix B in eq. (3.90) needs to be 
estimated only once. The method’s accuracy can be further improved by appropriate 
tuning of the smoothing length h and by achieving a uniform distribution of the 
particle positions [97]. It has been shown that, in such circumstances, the method’s 
accuracy can exceed that of FEM approaches [142].

We treat boundary conditions in MSPH in the same way as we do in SPH, i.e. 
by employing virtual particles. However, we only use particles of the first type 
(boundary particles) to represent rigid boundaries, and do not need to use image 
particles to fill in the region outside of the boundary. This is due to the fact that the 
situation with boundaries is greatly improved in the MSPH method, as compared to 
SPH, where the consistency condition at and near to a boundary depends on both 
the number of higher order derivatives retained in eq. (3.88) and the placement of 
the boundary particles. Thus, in order to impose Dirichlet boundary conditions, we 
just need to set the desired values of the field variables at the boundary particles. 
For instance, in the case of infinitely strong orientational anchoring, the required 
Q-tensor is achieved by setting Qap =  const at the boundary particles.

In the case of weak anchoring, however, the Q-tensor at the boundary particles 
is left free to evolve in accordance with eq. (2.48). Since eq. (2.48) is based on 
first order derivatives, the accuracy of its solution at the boundary is the same 
as that achieved in the bulk when using the MSPH. This consistency makes the 
implementation of weak anchoring boundary conditions reasonably straightforward.

5.5 Electric Field Solvers

In §2.2.2 we noted that LCs interact with applied electric or magnetic fields and, 
thus, it is often necessary to solve Maxwell’s equations of electromagnetism when 
considering LC device behaviour. In LCs, the diamagnetism is small and thus we 
treat applied magnetic fields as constant. The dielectric parameters, on the other 
hand, are much larger and, thus, when an external voltage is applied, the dielectric 
contribution must be treated appropriately for accurate results to be achieved.

Maxwell’s equations, with electro-hydrodynamic ion convection being deliber­
ately ignored, are written in the following form:

daDa — a f

Da =  tO^apEp +  Pa 

Ep = —dpcf)

(5.14)

(5.15)

(5.16)
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By subsequently substituting eq. (5.16) into eq. (5.15) and then further into 
eq. (5.14), and setting the free charge to zero 0 7  =  0 we get:

- d a (e0eaPdp<j>) +  daPa = 0. (5.17)

Substitution of the dielectric tensor given by eq. (2.7) into the above equation with 
subsequent rearrangement gives the final equation to be solved for the potential (ft:

(l/x/p = f-2 e0A e™xQapda (dfjil>)-2e0A f" ‘axda(Qag)dp(<p)-€0dri((f)dfj(e^,)
-2 e oQQ0 W ) d a( A e r x)+3dQPQ] .

(5.18)
Here a pure, single-component LC has been assumed and, thus, dte±_ = dte\\ = 
da6± =  <9ae|| =  0. The above equation for <ft is a Poisson equation which reduces to 
the Laplace equation in the isotropic fluid limit.

As we are working with an off-lattice numerical method, eq. (5.18) needs to be 
solved at a randomly distributed set of points. This effectively limits the scope 
of the available numerical methods for the SPH technique. We have initially used 
a standard successive over relaxation (SOR) scheme for solving this equation. In 
developing our methodology, we subsequently adopted the mesh-free collocation 
technique which is more efficient and accurate. Both of these schemes are described 
further below.

SO R  schem e. In order to solve eq. (5.18), we employ the SPH approach to 
calculate all of the derivatives appearing in this equation using the values of the 
potential (ft determined at the previous time step. We then solve eq. (5.18) numeri­
cally using a SOR method at each time-step, when the Q-tensors are known for each 
particle. Thus, the scheme can be summarised as

(fA+1 = (ft9 - u k ,  (5.19)

where (ft9+l denotes the successive approximation to the current value of the po­
tential (ft9, A is the calculated difference between the right and left hand sides of 
eq. (5.18) and a; is a convergence constant. Usually, only a few iterations are needed 
at each time-step in order to achieve the required accuracy. An external electric 
field is applied by imposing boundary conditions of the form (ft = const. This poten­
tial is then solved at each time step, which significantly reduces the computational 
efficiency.

M LSR K  collocation techn ique. Using the mesh-free shape functions which 
are discussed in Appendix A, we can approximate functions and their derivatives
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using eqs. (A.8-A.14). Thus, for any non-boundary internal node Xi with n nodes 
in its support domain, eq. (5.18) is discretised by simple collocations at x f

( d ^ T -  —  [ -  2e0A C axQa0dad ^ T -  2eaA ^ d aQa^ r
\ 3 * P  (5.20)

- e 0^ ( e 77) ^ $ T -  2e0QapdaAe™axdp$T] )<£ =  —'a Q,
/ Coe77

where 0  is a vector that collects unknown potentials at nodes located in the support 
domain of X{ and 3? is the vector of shape functions:

<t>T =  ■■■,<!>*} (5.21)

$ T =  (5.22)

Equation (5.20) can be equivalently written in the matrix form:

Ki(j> = pi, (5.23)

where K i  is the nodal matrix of node Xi with dimensions 1 x n, and represents 
the expression in brackets of eq. (5.20). The value of pi is simply the right-hand 
side of eq. (5.20), i.e. pi = • When there is no flexoelectricity involved in the
simulated system, pi is just set to zero.

Next, we consider the treatment of boundary conditions in the collocation tech­
nique. An external voltage is usually applied by setting a specified value of the 
potential (f) at boundary nodes. Thus, eq. (A.9) for a boundary node X b  should read 
as

$ T<t> = 4>b, (5.24)

where is the voltage applied at the boundary. It can be easily seen that, for 
boundary nodes, the nodal matrix K b  then consists of only shape functions, i.e. 
K b = $ .

Finally, by assembling eqs. (5.23) and (5.24) for all nodes, we obtain the following 
system of linear equations:

K n x n &nxi  =  P n x i , (5.25)

where the rows of the global matrix K n xn  consist of nodal vectors K ,  the global 
vector P nxi  consists of both pi for internal nodes and values of applied voltage fa 
for boundary particles, and (pNxi is the vector of unknown potentials at the nodes. 
By solving this system of linear equations, the value of the potential at each node
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can be found. The global matrix K ^ xn  is sparse and is very large for a big number 
of nodes N  in the system. We use the numerical library PETSc [144] to effectively 
store and solve this system. This numerical library routine also provides a means of 
solving this system in parallel, which fits very well with our developed codes.

5.6 SPH Simulation A ttem pts

No simulation attempts of LCs using the SPH method have been previously reported. 
In this section, we present the ultimately fruitless attempts we have made to apply 
the SPH technique to the simulation of the Qian-Sheng equations outlined in §5.1.

The focus of these efforts are a set of simulations aimed at modelling Couette 
flow between two flat plates which impose infinite homeotropic anchoring. In the 
nematic phase, this shear flow has an aligning effect because the director aligns itself 
so as to minimise its torque. In these systems, elasticity can usually be ignored in 
the centre of the channel if the shear is strong and the channel has a large width; 
consequently the effects of the boundaries on Q  can be neglected. Olmested [55] 
has shown that, in this limit, this flow is biaxial and the director angle is given by

cos(2 0 ) =  —— (35 +  PB), (5.26)

where 9 is the angle which the director makes with the flow. This angle depends 
only on the viscosity ratio and is independent of the elastic constants.

We therefore consider a system which is initially at rest with Q  tensor set to 
be uniform across the cell. The cell width is L = 1.2 gm. At time t = 0, the 
upper plate starts to move at constant velocity Vq = 0 .0 1 2  m /s parallel to the x- 
axis. Thus, the first part of the simulation solely tests the SPH as a solver for the 
Newtonian fluid, since the Q  tensor is uniform and no gradients are present. The 
time scales for velocity and Q  evolution are of different orders of magnitude, and, 
thus, the velocity field is able to fully equilibrate before Q  develops any changes. 
We have not experienced any numerical problems in this part of the modelling; SPH 
simulations of this early stage proved robust and stable, as would be expected from 
the published literature. Typical examples of the time-dependant velocity profiles 
achieved during this rearrangement are shown in Fig. 5.2; the LC velocity gradually 
develops a linear profile with time. We compare these profiles with the available 
analytical solution by Morris [94], which is based on series solutions and is given by:
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where v is the shear viscosity of the Newtonian fluid. Here, we substitute v with the 
LC apparent viscosity which is equal to one of the Miesowicz viscosities, because Q  is 
uniform. Here, the simulation results are in close agreement with the corresponding 
theoretical solutions.

0.012
simulation data 
series solution
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Figure 5.2: Time-dependant velocity profiles for Couette flow between two flat 
plates, obtained from SPH simulation and from analytical calculation [94].

As this system develops further, the director profile realigns itself so as to min­
imise the torque. The dependence of the angle between the director profile and 
the direction of flow as a function of time is shown in Fig. 5.3. This shows that 
the interfacial region grows markedly as the central region realigns with the flow. 
However, during this stage of the simulation we observed significant numerical in­
stabilities which were manifested as spurious oscillations in both the velocity and 
pressure fields. These oscillations eventually led to diverging velocity values which 
ultimately caused most of these simulations to abort. An example of the velocity 
profile of one such simulation is given in Fig. 5.4, where a snapshot is given from 
the early stage of a breaking simulation. In all failed simulations, the numerical 
pathologies originated in regions located near to the boundaries, as can be seen in 
Fig 5.4. Fig. 5.3 represents a rare example of a successful run which produced a 
result set consistent with the analytical solution eq. (5.27) and did not fail.

Here, it should be noted that, in these test cases, gradients of Q  gradually in­
creased with simulation time, as can be clearly seen from Fig. 5.3. Further, the 
highest gradients in Q  always developed near to the boundaries. Thus, with time, 
the simulations became increasingly prone to instabilities, especially next to bound­
aries, since the requirement on the order of approximation (consistency) for SPH 
only increases with time. In addition, SPH is of lower consistency order near to
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Figure 5.3: Time-dependant Q  tensor profiles for the Couette flow between two flat 
plates.

boundaries than it is in bulk (as was discussed in §3.3.4). That is why all of the 
simulation failures originated in regions adjacent to the boundaries.

In attempting to tackle these numerical instabilities, we took the following steps. 
First of all, since the instabilities occured in velocities, we introduced particle-based 
improvements such as an artificial viscosity and velocity averaging (XSPH). These 
improvements directly influence the velocities, and are easy to implement and some­
times these techniques have been found to resolve instability problems [90, 143]. 
Unfortunately, however, they did not work for our particular case. While slightly 
improving the situation, in that instabilities occurred later in the simulation than 
they did with the original SPH, these remedies still failed to completely stabilise 
the scheme. The main reason for this is that none of these improvements directly 
target the core reason of the failure, i.e. the lack of consistency of the SPH method. 
Also, while the aforementioned improvements alleviated the consistency problem of 
the momentum equation (5.3), they did not have any effect on the order evolution 
equation (5.2). Consequently, the instabilities persisted.

As a second step, we imposed initial arrangements in which all particles were 
arranged on a uniform grid. In this case, the consistency of the SPH method in­
creased, as would be expected, see §3.3.4. This had a direct effect on both the 
momentum and order evolution equations. By tweaking the smoothing length h as 
a function of initial particle spacing A x  we then tried to achieve numerically stable 
simulations, but again this was unsuccessful. In all of the above cases we tested a 
number of different kernel functions, namely quintic, cubic spline and Gaussian, but 
all of these produced equally unstable simulations. Thus, although these measures

It =  6 • 1 0~ 6 s

It = 4 - 10~5 s

i t  =  1 • 10 - 4

• simulation data it =  oo
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Figure 5.4: An example of unsuccessful simulation using the SPH technique.

improved the consistency of the SPH approximation, the order of the consistency 
increase was not sufficient to make it possible to model the target equations (5.2) 
and (5.3).

Having failed with particle-based improvements, we started to implement and 
test methods targeted at the improvement of the consistency of the original SPH 
method. The first obvious choice for this was the CSPM technique, outlined in 
§3.3.6, since this improves the consistency of the SPH near to or at the boundaries. 
The use of this technique did not, however, yield an LC simulator fit for purpose. 
This line of work was therefore abandoned in favour of the more complex MSPH 
approach described in §3.3.7. This did finally prove sufficiently stable for simula­
tions of the Qian-Sheng equations of nematodynamics to be achievable. This is 
demonstrated in more detail in the following sections.

To conclude this section, we stress that the numerical instabilities observed here 
originate from algorithmic pathologies in the approximations used for parabolic or 
hyperbolic systems. In our case, these proved to derive from the rather complex 
nature of the driving equations. Thus, the consistency of the original SPH method is 
fundamentally inadequate for simulation of the Qian-Sheng equations. Also, the low 
accuracy of the SPH method near to or at system boundaries makes it impossible to 
impose anything more complex than Dirichlet boundary conditions. This too would 
be a big drawback for any mesoscopic simulation method of LC behaviour.
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5.7 M SPH Testing and Verification

In this section we present results of numerical simulations which test the accuracy of 
the MSPH technique and assess its applicability to the modelling of electro-optical 
devices. Due to the relatively complex nature of the partial differential equations 
describing LC phenomena, we limit ourselves initially to quasi 1-dimensional exam­
ples which can be compared either exactly with analytical solutions or partially with 
previous simulations.

We test our solver step-by-step, initially starting only with Landau-de Gennes 
terms and gradually introducing elastic constants, flow and electromagnetic fields. 
First, in §5.7.1 we model the LC phase transition using only Landau-de Gennes 
theory and compare it with analytical results. Then, in §5.7.2 we demonstrate 
application of the method to the simulation of the classic Freedericksz transition 
scenario in order to assess both electric field and Q-solvers, while neglecting flow. 
Next, in §5.7.3 we further test the MSPH solver by considering a situation which 
involves isolated LC flow in the transverse flow effect. Finally, in §5.7.4 we simulate 
the behaviour of a dual-frequency chiral hybrid aligned nematic LC cell, in order to 
validate the full implementation of the MSPH solver.

5.7.1 Equilibrium Phase Behaviour

The nematic-isotropic phase transition was considered in §2.1.4 using the Landau- 
de Gennes description. In this section we test the ability of our solver to properly 
reproduce LC phase behaviour. For this, we consider an unrestricted LC sample 
with material parameters suitable for 5CB [14], in which a =  65000 J m _3 K_1, 
B  = 530000 J m-3, C = 980000 J m-3. Periodic boundary conditions are assumed 
in each direction. We vary the temperature T  in the system and measure the order 
parameter, the analytical value of which is given by eq. (2.12). The results are 
plotted in Fig. 5.5. When there is no applied electric field, heating the LC leads to 
an analytically predicted behaviour of the order parameter. The dependance in this 
case is the same as that plotted in Fig. 2.4, with the error being the round-off error 
and not exceeding 0.001%. The cooling process of the LC sample, starting from 
the isotropic phase with S  = 0 , clearly exhibits a jump at the lower limit of super­
cooling. Below this temperature the behaviour of the order parameter is identical 
to that in the previously described heating regime. We also plot the dependance of 
the order parameter on temperature when an external electric field is applied. The 
application of large electric field (20* 1 0 6 V /m  with Aea =  10.3) makes the transition 
continuous.
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Figure 5.5: The dependance of the order parameter on the temperature, both with 
an applied electric field and without.

5.7.2 Freedericksz Transition

We consider the splay geometry variant of the well known Freedericksz transition 
behaviour. In this, we switch off the velocity field and consider only the evolution 
of the Q-tensor and electric field as the applied voltage is varied. In order to main­
tain consistency with analytical treatments, we assume infinite anchoring boundary 
conditions on both plates, with the director fixed parallel to the plates.

In the splay geometry, the critical Freedericksz voltage Vc is given by

is the splay elastic constant.
For an applied voltage V  > Vc the maximum distortion angle 6m of the director in 

the centre of the cell can be found numerically from the following equation [145, 146]

(5.28)

where d is the distance between plates, Ae is the LC’s dielectric anisotropy and K n

V" 2 (1  +  7  sin2 0m) I 
Vc ~  v

p  G(6>m,K, 7 , A) 
o ( 1 + 7  sin2 0m sin2 A) 2

(5.29)

where 7  =  Ae/e±, k =  (7^33 — K n ) / K n  and

G{6m  ̂/c, 7 , A)
(1 +  tx sin2 0m sin2 A) (1 +  7  sin2 6m sin2 A) 

1 — sin2 6m sin2 A
(5.30)
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The resulting equilibrium director profile can then be determined from

z = ------------------------ , ( p  — sin - —— , (5.31)
So G ( 9 m , 7 i  -^)2 d \  \ s m e m )

where z =  z /d  is the reduced distance. In the above equation 0 < z < the 
solution for |  <  z <  1 being obtained from the symmetry condition 0 (z) = 6 ( 1  — ~z). 
Equations (5.29,5.31) were derived using an assumption of fixed order parameter. 
Despite this, we use them here to compare with our results since, in our simulations 
of this system, the maximal change in order parameter we have observed is 0 .0 0 2 .

As in the previous section, we use the following values of the Landau-de Gennes 
coefficients: a =  65000 J m~3 K-1, B  = 530000 J m-3, and C = 980000 J m-3, 
with elastic constant values (K u  = 17, K 22 =  13, A33 =  30) x 10-12 N, we 
have simulated the Freedericksz effect for a cell of width d = 1 fj,m at temperature 
T  = Tin  — 4(TIN — T*). In order to achieve a marked response to the applied 
field, we have set the dielectric anisotropy to be relatively large Ae =  10.3, with 
e\\ = 12.87 and e± = 2.57. For this choice of parameters, the critical Freedericksz 
voltage is 1.36 V.

The evolution of the director profile for a uniformly-spaced 100 point simula­
tion of this system on application of a 3V potential to an initially uniform LC 
cell is shown in Fig. 5.6. These profiles represent snapshots taken from a run per­
formed with a time-step of 10- 7  s. The corresponding equilibrium director profile, 
determined from eq. (5.31), is also shown, and is in excellent agreement with the 
long-time simulation profile. The Q-solver element of this simulation was computa­
tionally very efficient, and the bulk of the run-time was taken up by the relatively 
rudimentary E-field solver used here.

In order to assess the effect of the number and distribution of the interpolation 
points on the accuracy of this simulation, we have performed a number of equivalent 
runs and found that small discrepancies can arise when regions with high director 
gradients have low point density. We quantify this effect in Table 5.1 which shows 
the percentage overshoot in the central director angle obtained for different choices 
of point distribution. This error is reduced below 0.5% for 100 uniformly spaced 
points or 70 non-uniformly spaced points. Here, a simple arithmetic progression 
was used to concentrate the non-uniform point distribution in the regions with high 
director gradient, but it would be straightforward to implement a scheme which 
iteratively distributed points to according to their local Q  gradients.

Finally, in this section, we note that time-dependant profiles of the electric po­
tential are routinely determined in our method. We illustrate this behaviour in
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Figure 5.6: Time evolution of the angle which director makes with rr-axis across the 
cell. Analytical curve in equilibrium is found from eq. (5.31).

Number 
of points

Uniform distribution, 
percentage error

Non-uniform distribution, 
percentage error

30 3.4 1.1

50 1.4 0.7
70 0 .8 0.5

1 0 0 0.5 0.3

Table 5.1: Table of the percentage error in the simulated director angle in the 
cell centre depending on the number of interpolation points and their distribution 
(uniform and non-uniform). An analytical value of 65.66° is found from eqn. (5.29).

Fig. 5.7. Initially, when Q is uniform across the cell, the electric field is neces­
sarily constant, leading to a linear potential profile. As Q(z) develops splay-bend 
distortions, however, the field becomes concentrated in those regions with highest 
dielectric constant, leading to marked nonlinearities in the electric potential V(z).  
There is no analytical formula for the electric potential across the Freedericksz cell.

5.7.3 Transverse Flow Effect

In this numerical example, we study the combined effect of both external applied 
magnetic field and LC flow. We consider the flow of a LC whose director is fixed 
by a strong magnetic field parallel to the bounding plates. This setup is shown 
schematically in Fig. 5.8.

An external pressure is applied to the LC along the ^-direction. The strong 
magnetic field H  is applied, in the plane of the bounding plates and makes an angle
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Figure 5.7: Time evolution of the electric potential across the Freedericksz cell.

magnetic field
z
A ^  ►

pressure
gradient flow

pressure gradient

Figure 5.8: A schematic illustration of the transverse flow effect.

0o > 0 with the direction of the external pressure gradient. It is assumed that the 
magnetic field is sufficiently strong for Q  gradients to be neglected. Thus, the LC’s 
velocity develops a ^/-component due to the director orientation, and the velocity 
adopts some angle 4/ > 0 with the rr-axis. The analytical expression for this angle 
is [145]:

tan w =  > 3  +  a 6W oC o^ 0 

a 4 +  (0:3 +  a 6) sin£ 0 O

We have set-up a three-dimensional geometry to simulate this example. Periodic 
boundary conditions were applied in the x  and y directions. No-slip boundary 
conditions were assumed at the bounding plates in the z-direction, i.e. the LC 
velocity was set to zero at z =  0  and z = d, where d is the channel width.

Initially, all components of the LC velocity were set to zero. During the simu­
lation, the applied external pressure in the rr-direction creates a velocity field dis­
tribution. After a sufficiently long equilibration time has passed, the LC velocity 
field converges to some steady value, and we can calculate the angle 4/ which the 
LC velocity makes with the ^-direction.
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</>o angle, degrees Analytical T angle Simulated angle % error
10 04.294 04.289 0.1
20 08.345 08.337 0.1
30 11.883 11.870 0.1
40 14.568 14.552 0.1
50 15.966 15.946 0.1
60 15.533 15.512 0.1
70 12.711 12.692 0.2
80 07.283 07.271 0.2

Table 5.2: Table of theoretical (equation 5.32) and simulated angles at the transverse 
flow effect.

The simulation results along with the analytical values are provided in Table 5.2. 
The relative error of the simulation results do not exceed 0.2%, as compared with the 
analytical solution given by eq. (5.32). The simulation was conducted in a channel 
of width 2  fim and with the LC viscosity coefficients (aq =  —2 1 .2 , 0:2 =  —153, 0:3 =  
—0.773, 0:4 =  109.5, a 5 =  107.1, = —46.673) x 10- 3  kg m _1 s-1 . The LC density
was p = 1 .0 1  x 1 0 3 kg m-3.

5.7.4 Fast Switching Dual-Frequency Chiral H A N  Cell

Having validated different order-tensor aspects of our MSPH approach in previous 
subsections, we now assess the full model by turning on the flow effects. To illustrate 
this, we consider the switching of a dual-frequency chiral hybrid aligned nematic 
(CHAN) LC cell (CHAN) [147, 148]. In such a device, a chiral LC with a frequency- 
dependant dielectric permittivity is used, so as to achieve fast switching times. The 
principles underlying the operation of this device are that both of its switching 
behaviours are field driven, whereas the relaxation of a simple Freedercksz cell is 
a passive process whose speed is dictated by material properties such as elastic 
constants and viscosity coefficients. The two states of the CHAN device are a zero 
field chiral HAN arrangement and a high-frequency-field-induced twisted nematic 
arrangement. Both states are accessed from the same intermediate vertically aligned 
state, induced by a low frequency field pulse.

This CHAN system was chosen as a test for our full MSPH LC simulator because, 
as we demonstrate below, its behaviour is strongly dependant on the velocity field. 
It therefore gives us an opportunity to assess the ability of the MSPH approach to 
properly recover the physical nature of the partial differential equations describing 
LC flow (i.e. eqn. (2.40)). Note that the partial differential equations governing 
the LC description used for this system also necessarily contain terms introducing
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chirality. A further reason for considering the CHAN set-up is that it has recently 
been the subject of a combined experimental and theoretical study by Sambles and 
Jewell [147, 148]. Here, therefore, we are able to adopt the same cell and material 
parameters as were used in refs [147, 148] and make a direct comparison with their 
results. Thus, the cell width is set at 4.94/im, with homeotropic anchoring on 
one surface and planar anchoring on the other. The elastic constants used are 
(K n  = 16.7, K 22 = 10, A 33 =  20.9) x 10_12N and the pitch is Pch =  13.0/im. The 
viscosity coefficients are (aq =  —10, a 2 =  —300, a 3 =  25, a 4 =  170, a 5 =  190, a§ =  
—85) x 10- 3  kg m_1 s- 1  and the density is p = 1.01 x 103 kg m -3. The dielectric 
anisotropies are Ae = 2.6 at low frequency and Ae =  —2.3 at high frequency. 
The modelling work presented in refs [147, 148] was based on the Leslie-Eriksen- 
Parodi director-based description of nematodynamics, and achieved by iteratively 
time-stepping through the velocity and orientation profile variations.

Initially, we have obtained the CHAN cell’s equilibrium configuration by setting 
the LC alignment to be uniform except at the boundaries, which were fixed at 
homeotropic and planar, and letting the Q tensor evolve in the absence of an applied 
field. In the course of time, the order tensor arrangement then relaxed to the 
equilibrium configuration. To allow meaningful comparison of our data with those 
of [147], we have used our particle Q tensors to construct director tilt and azimuthal 
angle profiles; for the equilibrium configuration, these are plotted in Figs. 5.9 (a,b) 
with the time label t = 0 . Slight non-linearities are apparent here, reflecting the 
difference in the splay and bend elastic constants.

Following [147], we then applied a low-frequency 7 V pulse to the system for 
2 0  ms immediately followed by a high frequency pulse with the same voltage for 
80 ms. The twist and tilt profiles obtained during these two time windows are 
shown in Figs. 5.9. Like ref [147], we have held all z-components of the velocity at 
zero in our 1-dimensional modelling of this device. In contrast to [147], however, 
we have embedded dielectric permittivities within our model and simply imposed 
constant applied voltages. Due to both this and the Q-tensor nature of our model, 
while we expect the qualitative behaviour observed here to be equivalent to that 
seen by Sambles and Jewell, small quantitative discrepancies can be anticipated.

When the low-frequency voltage was applied to this CHAN system, the director 
tilt profile (Fig. 5.9a) switched monotonically from approximately linear to tanh- 
like, the action of the applied field being to promote homeotropic alignment in the 
upper half of the cell. The accompanying changes in the associated twist profiles 
(Fig. 5.9b) have little physical significance since they predominate in the growing 
homeotropic region in which twist is relatively meaningless. When we ran an equiv-
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Figure 5.9: Time evolution of the director twist and tilt angle profiles when the low- 
frequency voltage is applied (a,b) and when the high-frequency voltage is applied
(e,d).

alent simulation with all velocities set to zero, no differences were apparent in the 
initial and final profiles, but the intermediate profiles showed slower convergence in 
the homeotropic region.

When the frequency of the applied voltage was changed, at t  = 20 ms, a back­
flow effect was produced which significantly influenced the director profiles. This 
is particularly apparent from Fig. 5.9 (d) which shows a large jump in the twist 
profile immediately after the frequency shift. Physically, this corresponds to the 
director tilting backwards, leading to an instantaneous 180 degree step in the twist 
values observed at high z. This led to a region with high twist gradient forming 
in the central region of the cell, which itself promoted formation of a maximum in 
the associated tilt profile. Subsequently, these high twist gradient and high tilt fea­
tures dilated and the cell relaxed into what was, predominantly, a twisted nematic 
arrangement. To illustrate the backflow behaviour responsible for these director 
profile rearrangements, we plot, in Fig. 5.10, a series of profiles of the rr-component 
of the velocity during application of the high frequency applied field. By comparing 
these with Fig. 5.9 (c), it can be seen that the peaks in the director tilt profiles cor­
respond to the maxima in this velocity field. Furthermore, by conducting equivalent 
simulations with the velocity field switched off, we have found that no twist jumps 
or tilt maxima are observed when backflow is suppressed. This is entirely consistent
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Figure 5.10: Time evolution of the x -velocity across the CHAN cell as a function of 
reduced distance ~z.

with the findings of Sambles and Jewell.

5.8 Conclusions

In this chapter we have presented our attempts to apply the SPH method along with 
its different improvements to the simulation of LCs. We have shown that the order of 
the consistency of the original SPH method is insufficient for it to simulate the Qian 
Sheng equations of nematodynamics. Further, various improvements of SPH, such as 
introduction of an artificial viscosity, are not sufficient to overcome this fundamental 
failing. Ultimately, after many attempts, we have found that the MSPH technique 
is capable of simulation of Qian-Sheng equations describing the LC behaviour. This 
has been validated against a number of test cases in which it was shown to be in good 
agreement with previous analytical and numerical results. The set-ups considered 
here have been restricted to quasi-one dimensional behaviour involving little order 
parameter variations. To assess the full capabilities of the MSPH methodology 
developed here, therefore, requires consideration of more complex scenarios.



Chapter 6 

M odelling of the PA BN  D evice

6.1 O verview  o f P A B N  O peration

In this section we consider current status of research of the PABN device. We first 
briefly review the developments in experimental investigations and then we consider 
the advancements in theoretical studies.

6.1 .1  E xp erim en ta l S tu d ies

The PABN device consists of a LC cell with one surface flat and the opposite one 
populated with an array of microscopic posts, as depicted in the micrograph Fig. 6.1. 
The PABN cell shares many features with conventional LCD cells, the key differ­
ence being the substrate decorated by microscopic posts. The upper substrate has 
homeotropic boundary conditions, i.e. it fixes the director to be strictly perpendic­
ular to the surface plane. The boundary conditions on the lower substrate are of a 
tangent type, which restricts the director locally to be in the plane of the surface.

Figure 6.1: The PABN device [24, 149].

130
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It has been experimentally observed that a LC confined between such a pat­
terned substrate and a fixed homeotropic substrate exhibits two long-lasting field-off 
states [24]. When viewed between crossed polarisers, these states are found to give 
an optical contrast -  one state is bright and another one is dark. These configu­
rations correspond to minima in the LC’s free energy and are separated by a free 
energy barrier, i.e. they are bistable.

Initially, optical modelling [150] suggested that the dark state corresponds to the 
LC director tilting around the post, while the bright state corresponds to the LC 
director laying planar around the post, as depicted in Fig. 6.2. The former state is 
further referred to as tilted (T) state and the latter state is referred to as planar 
(V) state. In Fig. 6.2, only the LC which is adjacent to the post surface is shown. 
If there were no posts, the director profile would bend linearly from bottom to top. 
This is what is observed experimentally when post heights are small, i.e. only the 
planar state is achieved. Increasing post heights leads to two stable states. In these, 
the tilted state has the LC director at the patterned surface tilting more strongly 
than is the case with the linear profile, while in the planar state this surface-region 
tilt is greatly reduced. For large post heights only the tilted state is observed. Thus, 
bistability is only observed for post heights in a certain range [24].

(a)

• ■r ^

1,0 * - C *n ***** **

Figure 6.2: Schematic illustration of LC alignment close to post surface for (a) 
planar and for (b) tilted states [150].

The switching between these bistable states is achieved via the application of 
monopolar square electric field pulses, the sign of which dictates the final state. 
Bidirectional switching is only possible with negative dielectric LC materials. A 
positive pulse is needed in order to achieve T  -  V  switching, while a negative pulse 
is needed to switch from V  to T  state. The dependance on field sign suggests 
that the primary mechanism driving at least one of the switching processes may 
be flexoelectricity, but this has yet to be fully demonstrated. There is also some 
asymmetry, in that a lower voltage is needed to switch from T  to V  than is the case 
for switching in the opposite direction [150].
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In the original experimental studies of this class of system, cuboidal posts were 
used [24]. In these systems, the degeneracy between symmetry-related alignment 
directions was removed by tilting the post in a preferred direction, leaning angles 
as small as 5° proving sufficient. More recent work [151], however, has considered 
reducing the symmetry of the cross section of the post, thus eliminating the need 
for post-tilting. This was found to help to achieve finer alignment control and open 
up the possibility of having multidomains in a single pixel.

6.1.2 Theoretical and Simulation Studies

Previous theoretical attempts to understand the operation of the PABN device are 
limited to a small number of articles, most of which only consider static director 
configurations of the PABN cell.

Newton and Spiller [152] have shown that appropriate control of the shapes of the 
surface features of the PABN device plays a crucial role in establishing its bistability, 
the periodicity of these features being of lesser importance. This conclusion was 
obtained by considering how a LC aligns around posts.

More recent theoretical studies of stable static states have been conducted using 
a three-dimensional finite-element implementation of Oseen-Frank theory [24, 149, 
150]. In these simulations, the post shape was approximated by a rectangular bar, 
with the director’s orientation being fixed on its edges. In [24] and [150] it was 
suggested that the planar state is characterised by a pair of 1/2 defect lines along 
the leading and trailing edges in the director field, whereas in more recent publi­
cation [149] it was suggested that the planar state V  is free of such defects. Four 
distinct locally stable director topologies were also identified in [149] by explicitly 
constructing the trial configurations and then minimising their free energies.

The most recent publication by Willman et al. [18] deals with the switching 
behaviour between two energy minimum states. In this, a dynamic finite-element 
implementation of Landau-de Gennes theory was used, which allows for variable 
order parameter. The post geometry in this case was represented in 3D by a rectan­
gular post with rounded corners and edges. From this, it was found that switching 
of the PABN device is a two step process. During the first step, the director field 
adopts a defect configuration due to the negative anisotropy of the LC. During 
the second step, the director field develops either a continuous or a discontinuous 
configuration at the post edges depending on the sign of the applied field, due to 
flexoelectricity.
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6.2 Post Geom etry Representation

In this section we describe the model which we have used to represent the post shape 
and the approach we have used to discretise it.

6.2.1 Geom etry M odel

All previous efforts at PABN device modelling have employed a rectangular geometry 
for post representation. This is largely due to the constraints of the standard mesh 
generators used: namely, they require a geometry made of simple primitives as 
their input. By comparison, the MSPH technique described in §5 is a mesh-free 
technique and so does not require a mesh for its operation. As such, it is able to 
accommodate the use of smooth functions in the post model description. We have 
exploited this advantage by using smooth functions to match the post geometry as 
closely as possible to the real one. In particular, we have been able to avoid the 
imposition of unrealistically sharp substrate features.

We impose periodic boundary conditions in the x  and y  directions. We then 
describe the height h of a single post as a function of the x  and y coordinates,
h = h(x , y). For this, we use a hyperbolic tangent function as a basic building block
for all of our post models. All geometries are given on the interval [—0.5 : 0.5] in 
x  and y dimensions and are given unit height. Thus, they can easily be scaled to 
represent any desired dimensions.

The simplest example of a post-like geometry is the circularly shaped feature 
depicted in Fig. 6.3. This surface is described by the following equation:

h(x,y) = ^  ^tanh ^0.1 — 15 ^ \ / x 2 +  y2 — 0 .2 5 ^  +  1  ̂ . (6.1)

Effectively, the only variable in the above equation is the reduced distance r = 
t J x 1 +  y2 from the axes origin (0,0).

More sophisticated, alternative post shapes involve x  and y  coordinates as sepa­
rate terms in the surface equations. For example, a smooth rectangle-like post can 
be described by the following equation:

f ( x , y )  =  tanh(?r ( s j x - p i )  -  tanh(7r(s2̂  +  P2))) x
tanh (7r (siy -  pi) -  tanh (it (s2y  +  p2))) •

Here the pi control the post’s width and length and the s* determine the smoothness 
of the structure. An example of a such surface is given in Fig. 6.4. The surface shape 
can be modified in any way by modifying the parameters appearing in eq. (6.2), e.g.



CHAPTER 6. MODELLING OF THE PABN DEVICE  134

in order to introduce asymmetry.

Figure 6.3: An example of the analytical circular post shape given by eq. (6.1).

Figure 6.4: An example of the analytical rectangular post shape given by eq. (6.2), 
with pi = 0.825, P2 = 1.375, si =  4pi and s2 =  4p2.

Many such post shapes can be generated by appropriate variation of the param­
eters pi and Si in eq. (6.2). The biggest advantage of such a representation is the 
absence of any unrealistically sharp corners. Avoiding such artefacts reduces the 
likelihood of unphysical defects developing in the system. Another advantage comes 
from the fact that we can both closely represent the geometry and, at the same time, 
precisely know the normal at each point on the surface. This has a consequence that 
the numerical calculation of planar anchoring is more accurate than that achieved, 
e.g., with traditional grid-based methods.
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6.2.2 Geom etry Discretisation

Having described the way we construct post surfaces, we now proceed to a descrip­
tion of the discretisation process. Very often, standard mesh generators are used 
to set the nodes’ distribution in meshless methods. Thus, in this section we briefly 
consider distribution of nodes in domains of interest for mesh-based methods and 
out attempts to use these. Then, we describe the technique we have employed for 
initial node distribution and its implementation.

In mesh-based methods, such as finite elements and finite volume methods, the 
mesh generation is an important process which controls the convergence and the 
accuracy of results. Domains in these methods are discretised into smaller elements 
by using nodes which are connected in a predefined matter. Triangulation is the 
most adaptable way of creating meshes. An example of a standard Delaunay trian­
gulation, which is very widely used in FEM, is given in Fig. 6.5.

Figure 6.5: An example of Delaunay triangulation for a random 2D area.

In mesh-free methods, the domain and its boundaries are represented by a set 
of scattered nodes without any connectivity between them. Points which represent 
boundaries are usually kept fixed in space. As such, any geometry can be represented 
very accurately, even if the shape functions in the mesh-free method are of low order. 
An example of such a discretisation is given on the right side of Fig 6.6. The nodes’ 
distribution and their density directly controls the accuracy of the final solution. 
Thus, a reliable and robust technique for achieving uniform node placement is highly 
desirable. The possibility of fine tuning nodal densities in different domain regions 
is also advantageous, as this can save computational resources while increasing the 
solution’s accuracy.

Unfortunately, node generation methodology for mesh-free methods is a rela­
tively unexplored area and, usually, standard mesh generator algorithms for mesh- 
based methods are used for the distribution of nodes [89]. Mesh generation has 
been an active area of research and there are plenty of tools/libraries available for 
inputting a geometry into a computer model and further meshing it. Transformation 
of such a mesh into a set of nodes can then be achieved in a number of ways. The
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simplest of these is to discard all connections between nodes in the mesh. Another 
possibility is to use the barycenters of the elements as the nodes; this leads to a more 
uniform node distribution but does not represent boundaries exactly. Using both of 
these methods sometimes can, though, give an optimal solution. An example of the 
application of the latter technique is depicted in Fig. 6.6.

Figure 6.6: An example of the transformation of a mesh into a set of nodes.

In our work on simulating PABN systems, we initially used standard mesh gen­
erators to discretise the post geometries. While this approach yielded satisfactory 
results for simple geometries, it proved inflexible and inefficient for complex 3-D 
surfaces. The central issue in this proved to be that, before discretising any given 
complex geometry, one needs first to digitally represent it in order to use it as an 
input to a mesh generator. Thus, mesh generators need some sort of “coarse mesh” 
which they can then use to divide a given geometry into elements. For complex 
cases, we found that this double discretisation had a tendency to yield undesirable 
results. For example, consider the analytical post structure depicted in Fig. 6.4. 
After inputting this geometry into the Gmsh generator [153] and meshing it, we 
obtained the result depicted in Fig. 6.7. This shows only the vertices of the ele­
ments, the connections between them having been removed. Here, some points are 
arranged in lines on the surface due to the initial domain representation. This type 
of arrangement, though, should be avoided in mesh-free methods, as was first found 
by Nayroles et al. [154], because it will not guarantee stability in the construction 
of mesh-free functions. Additionally, it is also very difficult to represent periodic 
boundary conditions using this type of approach. The need to alleviate these major 
problems therefore motivated us to look for alternative ways for achieving geometry 
discretisations.

To this end, we applied a standard Monte Carlo simulation approach -  Grand 
Canonical Monte Carlo (GCMC) [120] -  to uniformly distribute nodes in a given 
space. This approach was first suggested by Zhang and Smirnov [155] as a solution 
to this problem. In this method, the chemical potential fi of a system is fixed 
(we set n = 0 for our systems) and the number of particles A  is a fluctuating 
quantity. It should be emphasised that the GCMC approach is employed only for 
nodes distribution in this Thesis. Thus, we select values of the governing physical
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Figure 6.7: An example of an unsatisfactory geometry discretisation achieved using 
the Delaunay triangulation approach of the Gmsh generator [153].

parameters so as to achieve a fast convergence of the method, rather than to ensure 
the proper representation of any physical phenomena.

The node points determined in the GCMC method are treated as particles in­
teracting through with some prescribed repulsive pair-wise potential. After running 
a GCMC simulation for a sufficient time, the particles naturally redistribute them­
selves so as to achieve a uniform but disordered distribution in a given domain. 
Further, a distribution of particles with a specified average distance between them 
can be achieved by adding an attractive tail to the prescribed inter-particle potential. 
In the GCMC method, node distributions can readily be generated for any number 
of dimensions, because the potential between any two particles can be made to de­
pend purely on the distance between those particles, i.e. on the Euclidian norm. 
From our point of view, this represents an efficient, controllable and effective route 
by which to generate node distributions. It is also fully consistent with the spirit of 
mesh-free methods. It can, therefore, also be seen as a pragmatic physical solution 
to a mathematical problem.

In our implementation, we use the standard 12-6 Lennard-Jones pair-wise po­
tential to generate the inter-particle interaction:

(6.3)
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The a parameter controls the optimal distance between nodes at which energy is 
minimal, which equals approximately 1.122cr, e is an energy scale parameter, but its 
precise value has little effect in this particular situation and so it is just set to 1/4.

The procedure of generating a nodal distribution using the GCMC method con­
sists of attempting a series of random moves to explore the configurational space of 
the system of nodes. When generating the boundary nodes for, e.g. a PABN post, 
the GCMC particles are constrained to the space defined by the alignment surface 
expression, e.g. eq. (6.2). The rules for accepting or rejecting changes to the nodal 
arrangement are then based, in part, on the corresponding potential energy function

(p = ' E T ! ^ ri^ -  (6-4)
i j> i

We use three types of trial moves to explore the system:

1. Insertion of particles. A particle is inserted into the system at a random 
position. The potential energy change of the system, A<p, is calculated and 
the insertion is accepted or rejected based on the following criterion:

zV
accept i f  —— - e-/5Â  > R  (6.5)

r  N  + 1  v '
zVr e je c t  i f  — e ~PAtP < r  (g q \

N  + l ~  v '

2. Removal of particles. A particle is chosen at random and the energy change of 
the system, A (p, is calculated on the assumption that the particle was removed. 
The move is accepted or rejected based on the following criterion:

accept i f  e ~PA(P > R (6.7)

r e je c t  i f  e ~PA(P < R (6 .8 )

3. Displacement of particles. A particle is chosen at random and is given a 
random displacement within certain limits. Then, the energy change of the 
system, A</?, is calculated, and the move is accepted or rejected based on the 
following criterion:

accept i f  e ~PAv  > R (5 .9 )

re je c t  i f  e ~PAiP < R (6.10)

In the above equations, R  is a uniform random number in the (0,1) interval generated
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during each trial move, N  is the total number of nodes in the system before the 
trial move, V  is the volume of the system, (3 = where is the Boltzmann
constant and T  is the temperature of the system, z  =  e ^ /A 3, where n is the system’s 
chemical potential which we set to zero and A is the thermal de Broglie wavelength.

Provided that T  is kept sufficiently high to ensure liquid-like behaviour from the 
node points, this GCMC approach readily generates configurations in which nearest 
neighbour separations are ~  l.lcr0 but there is no long-ranged position order. In 
practice these simulations are run until N  has reached a steady state; following this, 
nodal configurations are taken. Finally, we note that whilst our use of this approach 
was motivated by the desire to reliably generate node locations for complex system 
boundaries, it can equally well be utilized to produce the positions of bulk sites for 
a mesh-free simulation.

6.2.3 Im plem entation Details

In this subsection we give a brief description of the implementation details of the 
GCMC method. In this, all technical details are virtually the same as those used in 
standard molecular dynamic (MD) and Monte Carlo (MC) simulations and, thus, 
here we only briefly provide relevant specifics.

In itia l configuration . We start with an initially empty domain, points being 
sequently added, removed and moved as per a conventional GCMC simulation. The 
original article [155] suggests making an initial guess to the particles’ distribution. 
However, we found that this was unnecessary. Indeed, the extra few minutes of 
GCMC simulation required by this were far easier to perform than any other methods 
for preparing an initial guess for the complex geometries involved here.

B oundaries. The complex boundary walls were discretised first. Following 
this, the bulk was discretised with the boundary particles kept fixed. In this way, 
the boundary particles participated in the calculation of the bulk system’s total 
potential, but were not liable to GCMC trial moves. Periodic boundary conditions 
were implemented in the usual way, as in standard MC or MD simulations.

N ode spacing. Variable node resolution can be achieved in this GCMC ap­
proach by imposing spatial dependance on the particle interaction parameter cr. If 
two particles i and j  have different cr parameters, then the resultant parameter cr̂ -, 
appearing in their potential calculation, is given by the standard mixing rules as 

<?ij =  foi +  aj ) / 2 -
S im ulation  p a ram e te rs . The parameters appearing in eqns. (6.5-6.10) do not 

carry the same meaning as they do in simulations of physical systems. Here, one is
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only interested in the fast convergence of the method. Thus, parameters should be 
adjusted simply to achieve associated acceptance and rejection criteria that lead to 
the effective distribution of points. We found that values of (3 = 35, z = 105 and 
V  = 1 gave good convergence rates.

Speeding up the algorithm . During each step of the GCMC method, a 
change in the total potential energy, given by eq. (6.4), needs to be calculated. 
Determining this by calculating eq. (6.4) for all pairs of particles in the system is an 
expensive process, which takes 0 ( N 2) calculation time, where N  is the total number 
of particles in the system. The Lennard-Jones is not a long-ranged interaction, 
though, and, thus, the algorithm can be significantly improved. Approaches for 
achieving such efficiencies are routinely employed in particle-based MD and MC 
simulations. Here, we use the linked cell method [156]. In this, the simulation 
domain is divided into cells with sizes which are equal to or slightly larger than 
the cut-off radius r c, which we set to rc = 2.5amax. Here, amax is the maximum 
coarsening distance set in the domain. Then, each particle in the given cell interacts 
only with particles in the same cell or with particles in neighbouring cells. Since the 
number of neighbouring cells and their sizes are independent of the system’s size, 
the final algorithm scales linearly with the number of points considered.

6.3 Static Configurations

In this section we present the results we have obtained for energy minimum con­
figurations of a LC confined in a PABN cell geometry. In all presented simu­
lations, we have used the following LC parameters. The elastic constants were 
set to (K n  =  13.7, K 22 = 7.3, K 33 =  22.1, K 2a =  3) pN and, except where 
stated otherwise, the following set of Landau thermotropic coefficients was used: 
Op =  65000 J m - 3 K-1, =  533000 J m “ 3 and 7 ^ =  975000 J m -3. In order to
impose the planar degenerate anchoring on the post surface, we use the free energy 
term given by eq. (2.33). In this, we set C\ =  —80 • 10~ 5 J /m 2 and c2 = c3 =  0. This 
chosen value of C\ was found to be strong enough to maintain planar alignment but 
not so strong that the surface nodes showed marked biaxiality.

All of our simulations were initiated in one of a set of trial configurations from 
which the system was allowed to relax into a local free energy minimum. The initial 
trial configurations used were constructed in a similar way to those described in [149]. 
This effectively set the initial orientational topology of each simulation. Explicitly, 
each particle Q tensor was set such that the principal direction of the order tensor 
followed a specified vector field n  = {nx , ny,n z} whose non-normalised components
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are given below.
In all trial configurations, the x  and y components of the vector n  were given by

n,. =

nv =

. (  7Tx\smUJj
sin

ny

H - z
H

H - z
H

(6 .11)

where H  is the cell height and Lp the post’s cross-sectional dimension. For particles 
above the top of post (height h), the z-component of n  was also the same for all 
trial configurations and given by

z — h 
H - h '

(6 .12)

Four different configurations were considered for the ^-component of the vector 
n  for particles below the top of the post. These were given by

z(h — z ) /h 2,

z(h — z) 1 +  cos +  c°s ^ ~

z(h — z) cos \ / h 2i 

z{h -  z) COS ( ^  J  COS ( ^  / h 2,

T,

/ h 2, Pi, 

Pa, 

Ps-

where the labels T  and P  denote tilted and planar states. These four arrangements 
correspond to the distinct arrangements identified from the finite element simula­
tions presented in [149].

The simulations we have performed using these 4 different initial configurations 
have equilibrated to only two stable configurations -  T  and Pi. In comparison, the 
finite element simulations presented in [149] found distinct energy minima for all 
four configurations. All of the simulations that we have initiated with P3 and P4 

initial configurations have converted into either the Pi state or the tilted state T, 
which we have found to be the state with the lowest elastic free energy. These in­
terconversion simulations have all involved the depinning of highly distorted regions 
from the post faces and, ultimately, changes in the orientational topology. In con­
trast, the continued stability of the Pi arrangement suggests it as the most plausible 
arrangement for the experimentally observed planar state. Below we describe the 
observed states Pi and T  in more detail.
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6.3.1 Tilted State T

First, we consider the tilted state, T . Experimentally, PABN cells cooled from the 
isotropic LC phase always adopt this state [24]. Our simulations are consistent with 
this observation since we find that this state is adopted from a wide range of starting 
configurations and topologies. We show a slice through the tilted state order field 
obtained from our simulations in Fig. 6.8. This is a periodic cross-section taken along 
the post diagonal. Between the posts, this configuration shows a relatively rapid 
orientational rearrangement from planar to near-vertical, but little elastic distortion 
above the post. The other significant distortions associated with the tilted state are

Figure 6.8: Periodic cross-section of the tilted state T  along the post diagonal.

topological in nature. As shown in Fig. 6.9, which shows the order field around a 
single post from a slightly oblique viewing angle, the state contains three defects -  
two at the base of the leading edge and a third at the top of the trailing corner. 
The defects at the base are half integer defects. It should be noted that, in previous 
simulation studies, only one full integer defect was identified at the base of the post. 
In our simulations, defects are not pinned to any sharp features and, thus, they are 
more able to adopt the configuration with the lowest free energy. We suggest, then, 
that two half integer defects are observed here since the free energy of a defect is 
proportional to square of its strength, as was discussed in §2.2.6 and, consequently, 
sum of squares of two halves is less than the square of one.

6.3.2 Planar State V \

The planar state V\ has a higher elastic free energy than the tilted state T  described 
in the previous section. Initially, all of our attempts to find this state by precon-
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Figure 6.9: Near-top-down view of the equilibrated tilted state in the vicinity of a 
single post, showing defects at the base of the leading corner and the top of the 
trailing corner.

structing a director field very close to that of V\ failed to stabilise; the director field 
first adopted the V\  state, but slowly reoriented itself into the tilted state T.

A series of simulation snapshots demonstrating this V y -T  rearrangement are 
shown in Fig. 6.10, where the post diagonal cross-section is depicted. In this sim­
ulation, no electric field was applied and the transition was driven solely by elastic 
and Landau free energy contributions. Initially, as is depicted in Fig. 6.10.2, two 
defects form in the upper middle of the trailing edge. Then, these separate and 
move towards the top and the bottom corners, accordingly, where they eventually 
stop. This is accompanied by bulk director reorienting towards the tilted state.

We can draw a few conclusions from the nature of this rearrangement. First, 
large values of the elastic constants destabilise the planar state. This is inferred 
from the fact that, as mentioned before, this process is driven only by elasticity. 
Decreasing the elastic constants would therefore be expected to decrease the torque 
exerted on the surface and, so, stabilise the planar state. A second observation is 
that increasing the Landau-de Gennes free energy of the defect line on the post 
surface, given by eq. (2.9), will enhance the stability of the planar state, since this 
has the effect of raising the free energy barrier between the two stable states. This
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Figure 6.10: Series of snapshots depicting Vi -  T  transition driven solely by elas­
ticity.

can be achieved by increasing values of the thermotropic coefficients Op, ftp and 7 f -
At the beginning, we used the following values of Landau coefficients in our mod­

elling: op =  650 Jm _3 K_1, — 5330 J m - 3  and 'yp — 9750 J m -3. These values
were chosen to insure a greater stability of simulations. In the light of the above 
findings, we have modified the simulation parameters in an attem pt to stabilise the 
V\  state. Specifically, we have used the following elastic constant set (K n  = 13.7, 
K 22 = 7.3, A 33 =  22.1, K 24 = 3) pN and the following set of Landau thermotropic 
coefficients: ap  =  65000 J m - 3 K "1, ftp =  533000 J m - 3  and 7 p =  975000 J m -3. 
Using these parameters, simulations initiated with the planar V\  starting config­
uration adopted a stable planar V\  arrangement. However, the other two planar 
configurations, namely V 2 and P 3 , were still found to be unstable in our simulations 
with the above parameters.

In the planar V\  configuration, the order field cross-section across the post di­
agonal took the form depicted in Fig. 6.11. Here, the LC director adopts an asym­
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metrical U-shaped profile between the posts. This asymmetry derives from the 
differences in the configurations adopted at the leading and trailing faces. This 
finding is in qualitative agreement with the topological and configurational results 
provided in [149]. In this state, we observe a small degree of biaxiality adjacent to 
the post’s leading and trailing edges, the value of which does not exceed 0.05. This 
biaxiality has been predicted in earlier works [24] but was not found in the finite 
element simulation of [149].

/ / y" .  / / /

Figure 6.11: Periodic cross-section of the planar state Pi across posts’ diagonals.

6.4 Studying Effects of the Post Topography

In this section we consider the effect of different post topographies on the stable 
static configurations of the PABN device.

6.4.1 Circular Posts

In order to determine whether the post’s sharp features have any effect on the 
bistability of the PABN device, we consider the behaviour of a circularly shaped 
post given by eq. (6.1). By preconstructing starting configurations as described in 
§6.3, we observed two stable states, which are T  and V\. Two other planar states, 
namely V 2 and P 3 , were found to be unstable in our simulations. Specifically, a 
preconstructed V 2 configuration always converged to the planar V\ state, whereas 
a preconstructed P 3 configuration always converged to the tilted state T . The two 
stable states are depicted in Fig. 6.12. From these it can be seen that the stable 
configurations for both of these states are very similar to those determined using the 
rectangle-like posts described in the previous section. In the tilted state, there are
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two half-defects at the bottom of the post. The top defect, however, resides exactly 
at the top of the structure, unlike in the rectangular posts where it develops at the 
high-curvature corner. The orientational character of the bulk LC for both states is 
very similar to that described in the previous subsection.

Figure 6.12: Equilibrium configurations obtained using circular posts: tilted (left) 
and planar (right) states.

Note that, despite the high symmetry of the circular post, this class of system 
can still readily select the required azimuthal alignment directions -  these are set 
by the diagonals of the regular array of posts.

These results indicate, therefore, that the primary cause of bistability in the 
PABN device is the periodic arrangement of the post-like features on the substrate. 
Details of the shapes of these features are not crucial to the bistability but can be 
used to break the degeneracy of the two diagonal directions and modify details of 
the switching characteristics.

6.4.2 Effect of the Post Sm oothness

In this subsection we study the effect of the post smoothness on the difference 
between the two minimal states. In device engineering, it is very important to have 
highly distinct states since this leads directly to improved contrast ratio. In practice, 
there is some scope in the manufacturing process to modify the post’s smoothness 
to some extent. Thus, here we consider whether it is likely that this will have a 
significant effect on the difference between two stable states.

In order to represent posts with different smoothness, we vary the s* parameters 
appearing in eq. (6.2). Here, we employ the following pi values: pi =  0.605 and 
p2 = 1.155. We set the s* parameters as si =  2.2(s — 1) and s2 — 2.2s, where 5
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ranges from 2.1 to 2.9 in our simulations. Higher values of this s parameter lead 
to posts with sharper features. Three posts with different values of the smoothness 
parameter are depicted in Fig. 6.13.

Figure 6.13: Posts with different values of the smoothness parameter s (2.1, 2.5 and 
2.9, respectively, going from left to right).

To assess the effect of post smoothness, we have first calculated the difference 
in free energies between the planar and tilted states. These results are plotted in 
Fig. 6.14 as a function of the smoothness parameter s. Here, the low energy tilted 
state was taken as the baseline, relative to which the percentage increase in free 
energy of the planar state was calculated. As can be seen from Fig. 6.14, the post 
smoothness has a modest effect on the relative difference between these free energies, 
the range of variation being only 3.5%.
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Figure 6.14: Relative difference in free energies between the two minimal states of 
the PABN device for square posts with varying smoothness s.

Next, we calculate the average profile of the angle which the LC director makes 
with the z-axis for both stable states and then find the difference between these. 
These results are plotted in Fig. 6.15 for a number of different values of the smooth­
ness parameter s. It can be seen that difference is larger for posts with higher 
smoothness. When the post features become sharper, the difference in the director
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tilt angle profiles reduces. Unsurprisingly, the largest variance is achieved near the 
post top, though even here the range for different posts only of order a few degrees. 
In the bulk, there is no significant distinction between the director profiles achieved 
using posts with different smoothness values.
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Figure 6.15: Difference in director tilt angle profiles of the two minimal states of the 
PABN device for posts with different smoothness values s (post occupies the first 
1 iim of the height range).

Thus, based on the analysis of free energies and average director tilt angle profiles, 
it can be concluded that post’s smoothness has no significant effect on the distinction 
between the PABN device’s two stable states. Any differences, if there are any, will 
be barely noticeable in a practical setup.

6.4.3 Effect of the Post Height

In this section we study the effect of the post height on the difference between two 
minimal states of the PABN device. For this, we study different configurations 
obtained using the rectangle-like post depicted in Fig. 6.2.

We first calculate the free energies of the two states. These are plotted in 
Fig. 6.16, for both planar V\  and tilted T  states.

In the tilted state T , there are three defects present, one at the top and the 
other two the bottom of the post. The planar state Vi,  on the other hand, has a 
defect line running along the trailing edge. Thus, as the post becomes taller, the 
free energy of the tilted state stays approximately constant, since there are still only 
three defects present in the system. The free energy of the planar state, on the 
other hand, increases with the post’s height, since the defect line length increases
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proportionately. This effect is clearly depicted in Fig. 6.16, where our calculations 
show that the free energy of the tilted state stays approximately fixed and the free 
energy of the planar state increases linearly with the post height.
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Figure 6.16: Free energies of different states depending on a post height.

The free energies of both states are equal when the post height is 0.8 ftm. For 
systems with posts below this height, the free energy of the planar state is lower than 
that of the tilted state. This contradicts the previous FEM simulation findings [149], 
in which free energy of the planar state was always found to be larger than that of 
the tilted state. This difference is due to the way the geometries were constructed 
in [149], where simple rectangular posts with sharp vertices were employed.

We have observed that the planar state becomes unstable and rearranges into 
the tilted state when the post height exceeds 1.7 fim. This is fully consistent with 
experimental observations, in which the bistability was found only for a certain range 
of post heights [149].

Next, for a single post height, we consider the average tilt angle which the LC 
director makes with the .z-axis. Tilt angle profiles for both stable states are plotted 
in Fig. 6.17, for a PABN system with the post height equal to 1.1 fim. There is a 
distinct difference between two states in the area of the post, whereas in the bulk this 
difference becomes less pronounced due to elasticity. In each of these states, there 
is a dip of the tilt angle which coincides to the coordinate which is just above the 
post height. This happens because in both states the LC configuration takes local 
planar character in this region due to its interaction with the post’s top boundary 
condition.
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Figure 6.17: Average tilt angle of the LC director as a function of the z coordinate 
in the PABN cell, post height is 1.1 /jlm.

6.5 Switching Behaviour

In this section we describe our study of the switching dynamics of the PABN device. 
In our simulations, we use an identical basic setup similar to that described in §6.2.1. 
To this we have added an extra layer of an isotropic dielectric placed below and 
inside the post, the thickness of which is 0.5 jim. We set the dielectric permittivity 
of this isotropic dielectric to be e =  5.0. It was added in order to represent the 
bottom transparent electrode of the PABN device. We have not represented the 
top electrode in our simulations, since doing so would introduce an unnecessary 
computational effort without making any practical difference, given the uniform 
field and director arrangements in this region.

We apply an external field by fixing the potential on the ground electrode and 
on the upper homeotropic layer of the LC. The bottom electrode is set to have the 
zero potential and the upper plate potential is set to be equal to ±20 V, depending 
on the switching direction. During each time step, we solve Maxwell’s equations of 
electromagnetism with the method described in §5.5, in order to obtain a distribution 
of the electric field inside the PABN cell. We apply the external potential difference 
for 3 ms time period and, after having removed it, we allow the LC to relax into an 
equilibrium configuration. The LC has negative dielectric anisotropy, which we set to 
Ae =  —4.85. Also, the LC has values of elastic constants and Landau thermotropic 
coefficients equal to those given in §6.3.

In all simulations of the PABN device switching, we use the equilibrated static 
configurations described in §6.3 as initial starting conditions for the LC director

•  • • ••  •
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distribution.

6.5.1 T  — V  Transition

In order to simulate this transition, we took an equilibrated T  configuration system 
and set the potential of the upper plate to +20 V. Fig. 6.18 shows a series of 
snapshots of the director field on the cross-section of the post’s diagonal during the 
subsequent T  -  V  transition, and Fig. 6.19 shows snapshots of the LC director on 
the PABN post itself. The corresponding snapshots in Figs. 6.18 and 6.19 are taken 
at the same moments in time.

These snapshots show that, following application of the electric field, the bulk 
LC quickly reorients itself into a planar arrangement due to the negative dielectric 
anisotropy of the simulated LC. The director field of the PABN post itself, on 
the other hand, changes only insignificantly on this time-scale, as can be seen in 
Fig. 6.19.2. This is due to the LC surface viscosity, which makes this region respond 
more slowly to external influences. If the applied electric field is removed at this 
point, then the director field reverts to the tilted state T. This is consistent with 
experimental observations.

Figure 6.18: Series of snapshots depicting switching between tilted and planar states. 
Post’s cross-section is shown. In these, =  0 ms, =  0.9 ms, ts = 1.4 ms, £4 =  
1.5 ms, £5 =  2.5 ms, t§ = 3.0 ms
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Alternatively, continued application of the applied electric field reorients the LC 
on the post’s surface into the planar configuration, as can be seen in Figs. 6.19(3-6). 
This then affects the adjacent bulk LC, which correspondingly transforms from an 
inflection-like configuration in-between the posts into a (J-like one. Fig. 6.19 depicts 
the PABN post from such an angle that post’s edge, which has the defect line in 
the planar state, is clearly visible. Initially, when the LC on the post just starts to 
adopt the planar configuration, the LC on the edge still maintains the ‘tilted state’ 
arrangement. Later, though, the adjacent faces become increasingly planar aligned, 
and the defect line develops along this edge.

Figure 6.19: Series of snapshots depicting switching between tilted and planar states. 
Post’s surface is shown. In these, t\ = Oms, t 2 = 0.9 ms, =  1.4 ms, =  1.5 ms, 

=  2.5 ms, t§ = 3.0 ms

When the electric field is completely removed, the LC in these simulations relaxes 
into the planar state. It should be noted that the optical switching between these 
states is very fast, since once the electric field has been applied the bulk LC almost 
immediately adopts the planar state. The later stages of this switching, i.e. the 
reorientation of the LC on the post and equilibration of the bulk LC into the planar 
state, do not lead to significant optical change.

It should finally be noted that we observed the planar V\ state as the final 
outcome of this switching. This further supports our finding that this equilibrium 
state is the one which is observed experimentally in the planar configuration.



CHAPTER 6. MODELLING OF THE PABN DEVICE 153

6.5.2 V  — T  Transition

In this section we describe our attempts to simulate the V  -  T  transition. For 
this, we have employed the same simulation setup as that described in the previous 
section. Naturally, we employ an equilibrated V\ state as the starting configuration 
in these simulations. The voltage applied to the top plate in this switching direction 
was set to —20 V, as compared with the positive applied field used for the switching 
in the opposite direction.

We additionally introduce flexoelectric terms into the continuum description of 
the LCs, because these were demonstrated to play an important role in the reverse 
switching process [18]. For this, we employ the flexoelectric free energy density term 
given by eq. (2.29). We assume that the bend and the splay flexoelectric terms are 
equal and we choose eu  =  e33 =  3So/(2e), with e =  10“ 12cm-1. These values were 
shown to successfully promote the reverse switching in FEM modelling of the PABN 
device [18].

However, in all of our attempts to achieve V  - T  switching, the system has equi­
librated back into the planar state V\ after the removal of the electric field. We have 
observed the following effects during our attempts to achieve this switching process. 
First, the bulk LC adopts the planar configuration. This is entirely consistent with 
what we observe in the early stages of the forward switching process, and gives the 
configuration depicted in Fig. 6 .2 0 .2 . This result is expected, since the simulated 
LC has negative dielectric anisotropy. Next, the LC on the post surface starts to 
adopt an arrangement consistent with the planar configuration. In this, defect lines 
on both leading and trailing edges form, similar to the forward switching process. 
Following this, the director on the leading edge starts to slowly reorient itself so as 
to point upwards, i.e. into an arrangement more consistent with the tilted state. 
This behaviour is expected due to the flexoelectric terms present. However, this 
reorientation is very slow and we have observed that over the 3  ms time period the 
surface director does not get close to achieving the fully upward arrangement. This 
is very apparent from the 3 ms configuration shown in Fig. 6.20.3. Consequently, 
when the external electric field is removed, the system relaxes back into the planar 
state.

6.6 Conclusions

In this chapter we have described a study of the characteristics and operation of the 
PABN device which we have performed using our newly developed MSPH solver.
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/ / ' }  Y '  / '  
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Figure 6.20: Series of snapshots depicting our simulation attem pt of switching be­
tween planar and tilted states. Top row: Post’s cross-section is shown. Bottom row: 
Post’s surface is shown. In these, t\ — 0 ms, t2 = 0.9 ms, t3 = 3.0 ms

First, we have presented a novel smooth geometry model for representing the post 
in a PABN device. This can be used to represent an arbitrary smooth post geometry 
without any sharp features. We have then described the attempts we have made 
to discretise complex smooth geometries. Of these, the GCMC simulation approach 
has proven to be the most effective technique for domain discretisation.

Next, we have studied the static stable configurations of the LC in the PABN 
device. In this, we have identified two distinct stable configurations, which are planar 
and tilted. In contrast with previous simulation results [149], we have identified only 
one stable planar configuration, the V\ state. Next, we have demonstrated that 
bistability in PABN devices arises due to the arrangement rather than the shape 
of the posts by considering the effect of using circular-like post. This is concluded 
because, in this setup, the two stable states identified, were very similar to those 
obtained using rectangle-like post geometries. We have then studied the effect of 
post smoothness on the difference between the two states. It was found that the post 
smoothness plays a minimal role in this. Then, we have undertaken a quantitative 
study of the effect of the post height on the stable states by comparing their free 
energies and corresponding director tilt profiles.
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Finally, we have studied the switching process in the PABN device. In this, we 
have been able to achieve the forward T  -  V  switching direction, in which the system 
always equilibrated into the Vi state after the external field was removed. The core 
of this switching was found to be in the reorientation of the LC on the post surface. 
The reverse switching direction (V  -  T), on the other hand, was not achieved, even 
after the introduction of flexoelectricity. Further exploration of parameter space is 
needed in respect of this.

Recalling the conclusion drawn at the end of Chapter 5, it is now appropriate to 
comment on the performance of the MSPH simulation method in the context of this 
complex device. Here, this technique has proven capable of effectively simulating 
LC behaviour in 3D systems with complex geometries, including the representation 
of LC defects. The mesh-free character of this technique allows for easy distribu­
tion of nodes in a problem domain, including the variable resolution of nodes in 
specified regions. These represent practical and computational advantages over ri­
val methods. Another potential advantage, which we have not explored here, is 
that thermal fluctuations can potentially be incorporated using the SDPD approach 
of Espanol [65]. However, the MSPH method is a relatively young technique and, 
thus, it also has some disadvantages as compared to conventional numerical tech­
niques, such as FEM and FDM. From these, the increased computational demand 
and lower stability can be identified. The former disadvantage is pertinent to all 
mesh-free methods, whereas the latter one arises due to the strong-form character 
of the MSPH method. Taking these strengths and weaknesses in the round, there­
fore, we conclude that MSPH offers a viable alternative to FEM and FDM methods, 
particulary in simulations involving moving interfaces or defects.



Chapter 7 

Conclusions and Further Work

In this Thesis we have described our implementation of a set of simulation techniques 
for LCs capable of tackling mesoscopic phenomena. We have employed mesh-free 
particle techniques derived from both bottom-up and top-down approaches. When 
following the bottom-up approach, we have generalised the DPD/FPM  simulation 
technique, which ultimately allowed us to recover the qualitative behaviour of LCs. 
When following the top-down route, we have used the SPH technique and its vari­
ants, which allowed us to rigorously solve the full set of Qian-Sheng equations. This 
methodology was consequently applied to simulations of the PABN device operation.

In this chapter we summarise the conclusions drawn from all previous chapters 
and we also suggest possible directions for further research.

7.1 Conclusions and Discussions

In Chapter 4 we described aspects of our work dedicated to following a bottom- 
up approach. In this, we initially implemented the DPD simulation technique and 
one of its extensions -  the FPM method, which additionally includes rotational 
degrees of freedom. Then, we incorporated a Q-tensor description into the particles 
and extended the inter-particle forces so as to take Q-tensors into account. We 
then demonstrated that the resultant algorithm qualitatively recovers the physics of 
LCs, including the isotropic-nematic phase transition and proper hydrodynamical 
behaviour (diffusion coefficient). Subsequently, we demonstrated how the proposed 
technique can be applied to a challenging task -  simulation of colloidal particles 
immersed in a nematic LC.

Chapter 5 is devoted to a description of our efforts in following top-down ap­
proach. Specifically, we have used the SPH simulation techniques and its variants 
to solve a full set of Qian-Sheng equations. In this, we have first rewritten the Qian-

156



CHAPTER 7. CONCLUSIONS AND FURTHER W ORK 157

Sheng equations in the Lagrangian frame of reference so that they became suitable 
for mesh-free simulations. We have then described our attempts to simulate the 
governing equations with the original SPH technique, the CSPM method and with 
both of these techniques along with some of their improvements. These attempts 
have proved fruitless. We then have finally advanced with the MSPH simulation 
technique. We have also described the way we have solved for externally applied 
electromagnetic fields. We have provided a number of test cases, both analytical 
and numerical, in order to thoroughly test the developed mesh-free numerical LC 
solver. In these, we have tested all the aspects of the numerical solver, ranging from 
the Landau free energy to fully coupled velocity fields with all elastic constants and 
with externally applied fields.

Chapter 6  has addressed our study of the PABN device operation. First, a 
new smooth geometry representation has been presented. Then, we have described 
the implementation of a discretisation technique exploiting the GCMC simulation 
approach. Next, we have studied the static configurations of the PABN device. 
Specifically, we have been able to identify two stable states, tilted and planar. For 
the planar state, though, we have found only one stable configuration, namely Vi, 
whereas the previous works have identified three distinct planar configurations [149]. 
This has been explained by the smooth geometry used, which avoids sharp surface 
features. We have demonstrated that bistability in the PABN device arises for 
topological reasons by simulating circular-like post in a PABN device geometry. 
We have then studied the effect of post smoothness on the difference between the 
two stable states. From this, we have concluded that post smoothness has a very 
little effect in this matter. We have also studied the effect of post height on static 
configurations and have compared free energies between two states. Finally, we have 
studied the switching process between two states. Tilted-planar direction switching 
has been easily achieved, with the system moving into the V\ stable state. This is 
consistent with the fact that V\ is the more easily observable state in practice. We 
have not been able to achieve planar-tilted switching -  this issue requires further 
consideration.

The work presented in this Thesis has largely been directed by the objectives 
which were set at the beginning of this project and which are listed in §1.1. Thus, as 
a result of this work the following broader conclusions can be drawn. When trying 
to bridge the gap between atomistic and mesoscopic time- and length-scales, the 
most promising technique is the DPD method. This allows one to readily simulate 
mesoscopic phenomena which are not achievable by any other simulation techniques, 
in terms of both simplicity and simulation time required. The disadvantages of
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this technique are linked directly to its advantages, with the lack of quantitative 
rigour being the most serious. When following top-down approaches, mesh-free 
particle techniques have been found to offer a promising route. When applied to the 
solution of continuum problems, these numerical techniques are already capable of 
producing solutions for problems involving complex geometries in 3D. This has been 
demonstrated using simulations of the PABN device. However, it should be noted 
that these techniques are not yet as well developed as competitor methods such as 
FEM and FDM. Generally, they are less effective in terms of computational cost, 
but they gain for being able to use a range of node resolutions in a single simulation.

7.2 Further Work

The work presented in this Thesis has increased our understanding of mesoscopic 
simulation techniques and of their capabilities in relation to the simulation of ne­
matic LCs. From there, the following three separate directions for further research 
can be identified:

•  Bottom-up approach. We applied DPD/FPM  modelling techniques to LC sim­
ulation and showed that this is a very viable and promising direction. Thus, 
it would be interesting to further extend our description so as to additionally 
include three elastic constants and anisotropic viscosities. The high efficiency 
of this approach suggests that it might be appropriate for more in-depth in­
vestigation of the dynamical behaviour of colloidal particles in LCs, including 
forces between these arising due to the LC medium and their self-assembly. 
This is an area which has been inaccessible to simulations.

• Top-down approach. We have found out that the SPH simulation technique 
is not capable of simulating complex governing equations due to its low con­
sistency. On the other hand, positive smooth functions are required for mesh- 
free LC modelling so that the node points represent physically valid particles. 
Thus, a first step in this direction might be to use a mixed scheme for solving 
the governing LCs equations. This might involve using the SPH technique 
for solving the velocity field equation, along with other more stable mesh-free 
technique used for solving Q-tensor equations. The second step in this would 
be to introduce thermal noise into the velocity field, so as to achieve a proper 
mesoscopic description.

• Simulation of the PABN device operation. We have just started to study 
the PABN device operation using the MSPH method. The straightforward
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further work in this direction would be to study the flexoelectricity effects in 
the PABN switching process between two stable states. If this can be achieved, 
and the reverse switching process simulated, then our technique will be directly 
applicable to device design issues relevant to the PABN and related devices.



A ppendix A  

M oving Least Squares Shape 
Functions

In this work we employ a framework of collocation mesh-free methods in which 
the moving least-square reproducing kernel (MLSRK) method [98, 157] is used to 
construct shape functions for the numerical solution of Maxwell’s equations of elec­
tromagnetism. The basic idea of the collocation approach is to seek the solution of a 
partial differential equation on a set of independent points in space by constructing 
an interpolation function constructed using the values at those points.

According to the MLSRK [157] method, the approximation of a smooth field 
variable f{ x )  (e.g., the Q-tensor) at some point in space x  can be given as

f h( x ,x )  = ^ p i  ai{x,p) = P T a (XiP)i (A-1)

where p is a dilatation parameter, p T(x) = {pi(x), P2 (x), . . . ,  pm(x)}  is a vector of 
complete basis functions of order m  and aT(x , p) =  {a i(x , p), a2(x , p) , . . . ,  am(;c, p)} 
is a vector of unknown coefficients that depends on x . For example, for 3-D problems

p T(x) =  {1, x, ?/, z } for m  = 4. (A.2)

These basis functions should not necessarily be polynomials, but could, alternatively, 
include functions which are anticipated to be present in the final solution.

The unknown coefficient vector a T ( x , p) is determined by minimising the weighted 
squared difference with a window function W (x  — cc,p), i.e.

J{a) =  Y ^ W ( x - X i , p )  p T a ( x ) ~  f i (A.3)
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where fa is the value of function /  at the point i and n  is the number of nodes in the 
support domain of x. We use the B-spline function discussed in §5.3.4 as a window 
function in our simulations. The minimisation of eq. (A.3), d J /d a  = 0, leads to the 
following set of linear equations

M (x )a (x )  = B (x ) .  (A.4)

Here, M (x )  is called the moment matrix and is defined as

=  ^ 2 w ( x - X i , p ) p  p X' ^ jp T ( ^  p X t ĵ • (A.5)

The matrix B (x )  in eq. (A.4) is a m  x n matrix and it has the following form:

B (x )  = [WlPu W2P2 , WnPn], (A.6 )

where = W (x  — Xi, p) and Pi = p  •
We solve eq. (A.4) for a(x)  using the LU-factorisation method, the final solution 

of which can be written in the following form

a(x)  =  M - 1(cc).B(£c). (A.7)

In this, the condition number of the matrix M  can be used to control the quality 
of nodal distribution.

Having found optimal values for the coefficients a, we then directly find the 
vector of the MLSRK shape functions:

<I?T(a:) =  p T a (x)  =  p T ( M _1(®)jB(®)) . (A.8 )

These shape functions ultimately lead to the following form of function interpolation:

f h(w) =  T  (A-9)
3= 1

where Fs = { /1, / 2, . . . ,  / n} is the vector which collects the function values of all 
points in the support domain.

Next, we obtain the partial derivatives of the shape functions following the route
described in [158]. For this, we introduce a 7  matrix which is found from the
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following equation:
7 r  =  p TM ~ x. (A. 10)

The partial derivatives of 7  are then obtained by solving the following equations:

AT7 ,* =  P,i ~  7  (A .ll)

and

= P,ij -  • (A.1 2 )

In these, comma denotes a partial derivative with respect to the indicated cartesian 
coordinate.

Finally, partial derivatives of the MLSRK shape functions are found from the 
following expressions:

=  +  (A. 13)

and

=  7TtjB  + 7 J  B j  + 7 +  7 TB, y • (A.14)
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