
A generic model for representing software development methods.

WONG, Alan C.Y.

Available from the Sheffield Hallam University Research Archive (SHURA) at:

http://shura.shu.ac.uk/20559/

A Sheffield Hallam University thesis

This thesis is protected by copyright which belongs to the author.    

The content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the author.    

When referring to this work, full bibliographic details including the author, title, awarding 
institution and date of the thesis must be given.

Please visit http://shura.shu.ac.uk/20559/ and http://shura.shu.ac.uk/information.html for 
further details about copyright and re-use permissions.

http://shura.shu.ac.uk/information.html


3

1 0 1  5 22  9 87  5

Fines are charged at 50p per hour

2 4 APR 2002
q - 1 2  p+A



ProQuest Number: 10701206

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10701206

Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



A Generic Model for Representing 
Software Development Methods

Alan C.Y. WONG

A thesis submitted in partial fulfilment of the requirements
Sheffield Hallam University 

for the degree of Doctor of Philosophy

May 1996



ABSTRACT

This thesis has adopted the premise that the use of a method offers a valuable contribution to 
the software development process. Many methods have not been adequately defined. This 
thesis is based on the hypothesis that it is possible to represent software development methods 
using a Generic Method Representation (GMR). This GMR includes the three basic 
components of the method, which are the product model, the process model and the heuristic 
model. The elements and interrelationships of these models are investigated. In addition to a 
graphical representation, a method specification language (MSL) is derived, to enhance the 
expressive and executable power of GMR. A three-stage knowledge acquisition model, 
known as IFV (inspection, fabrication and verification), is also introduced to elicit method 
semantics from the available acquisition media. Moreover, the key benefits of meta modelling, 
such as method comparison, fragment dissection, method evaluation and selection (or 
customisation) of a method, are highlighted. An application of GMR, that is the mapping to a 
practical metaCASE tool model, is also illustrated comprehensively to demonstrate the 
applicability of the approach.
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1. INTRODUCTION

A number of groups have conducted research into systems development. Some projects aim 
to develop new (requirement/analysis/design) methods of modelling, whereas others aim to 
develop new software tools. A common short-coming of these approaches is that they are 
usually specific to certain problem domains and/or work environments. They fail to unify the 
diversification amongst themselves. An interesting research challenge is to seek a generic 
model to represent these modelling techniques so that they can be chosen and/or fabricated 
into a customised tool to suit the requirement of various applications. This introductory 
chapter outlines and explains the significance of this approach. A few anticipated advantages 
are listed, together with the constraints and assumptions of this research project.

1.1 INTRODUCTION

To give an understanding of the ideas and thoughts behind the hypothesis, we will present the 
background of this work. This section introduces how the research originated, and is followed 
by a brief history of software engineering (hereinafter abbreviated as SE). It then discusses 
how complexity can be managed in SE.

1.1.1 BACKGROUND

The original aim of this research was to investigate and/or identify an appropriate in-house 
object-oriented design method for a medium size software company, in order to improve the 
efficiency and workability of its software development [Wong 93]. The main products of the 
company are expert systems and computer-based training packages which make extensive use 
of graphical user interfaces and message passing techniques. An object-oriented design 
method seems an ideal choice for such applications, so a large number of object-oriented 
methods (see chapter 2) are investigated for this purpose.

The direction of the research gradually shifted for the following reasons. At the beginning of 
the research the company had only limited experience of object-oriented design methods. 
There was a risk that the method investigation stage would discover an existing design method 
that suited the current requirements of the company, and no further research would be needed. 
However, the application domain may easily change in a few years time. A rigid method is not 
a satisfactory solution to the problem (described as panacea syndrome in section 1.2). A 
better approach is to employ an integrated system of methods, which allows various 
viewpoints on the same design, and/or allows techniques of different methods to contribute in
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different stages of a single system design. Moreover, the available models and techniques are 
themselves evolving and advancing day by day. The current technology may very soon be 
outdated. A system that allows new ‘ingredients’ to be mixed (or integrated) with the 
exisiting ones at any time, and can accommodate the rapidly changing environment of SE 
effectively, is required.

Nevertheless, this does not alter the primary objective of the research, but it tackles the 
problem in a broader (or more general) way. That is, instead of finding a single method 
suitable for the current requirement of the company, it presents a generic model to represent 
‘all’ methods such that the appropriate techniques can be selected and used.

1.1.2 HISTORY OF SOFTWARE ENGINEERING

The classic paradigms of SE, such as waterfall life cycle, prototyping and fourth generation 
techniques etc., are described in the various literature of the field, i.e. [Davis 83], [Pressman 
87] [Sommerville 89]. The software development process contains three generic phases as 
shown in figure 1.1, regardless of the SE paradigm chosen, the application area, the project 
size and its complexity. The definition phase focuses on what: what information is to be 
processed, what performance is desired, what design constraints exist etc. Thus the key 
requirements of the system are identified. The development phase focuses on how: how data 
structures and the software architecture are to be designed, how procedural details are to be 
performed etc. The implementation phase focuses on the development of the final software: 
coding, testing and general maintenance. The approach to each step in a phase varies from 
paradigm to paradigm, but well-defined methods can be adopted in different phases.

Definition
requirement

performance 
consM iB Development

architecture
analysis design Implementation

coding testing 
maintenance

Figure 1.1 A Generic View of Software Engineering

The main interest of this research is in the methods available for the development of generic 
views, since this lays the crucial discipline required in software planning and development. 
The subject is also a key strategic problem that occurred in the company.
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The history of SE1 as a whole can be considered as a software project itself performed in 
phases. The definition phase started in the late 1960s and continued for some years. There 
were no methods and standards or agreed ways in doing things. At the same time, a Babel of 
programming languages were developed. This was followed by the development phase, which 
covered most of the seventies. Researchers concentrated on methods for software analysis 
and design. These methods were mostly intended to suit a part of the software life cycle or 
were sometimes restricted to specific areas of application [Wynekoop 93]. Then the 
implementation phase began in the late 70s and is still ongoing. Massive numbers of software 
tools implemented the methods and promoted their practical use in industrial environments. 
Nowadays, many tools are commercially available as products.

One of the purposes in SE is to ‘model chaos (or real-world situations) into formality’. In 
other words, the objective of SE is to manage real-world complexity by software techniques 
and engineering disciplines. There is, however, another layer of complexity within SE.

1.1.3 MANAGING COMPLEXITY OF SOFTWARE ENGINEERING

The benefit of methods and tools is clarified in the literature [PACT 85] [Gillies 94]. Their 
richness of variety results in our requiring certain ‘meta’ techniques to help select, compare 
and evaluate them. The following list of generic method types may be exhausting, but it is not 
exhaustive: business analysis, systems analysis and design, application design, application 
development, systems integration, project planning and version control [Madsen 95]. 
Similarly the tools implemented with these methods also possess various generic types, such as 
transformation tools, interpreters, simulators and integrated programming support 
environments (IPSE) [Tontsch 90]. Even considering software development methods alone, 
there are distinctions to suit different needs: structured methods, real-time methods, object- 
oriented methods, etc. Hence the mapping of available methods (or tools) to the required 
analysis techniques of the problem domain is an important role in ‘modem SE’.

Method (or tool) integration promises to synthesise portable components into combined 
systems (see chapter three). This approach allows multiple viewpoints on a specific 
application, but it does not properly handle the analytical problem stated above. Instead it 
merely defers the decision back to the software developer. The embedded information (or 
semantics) gathered in the methods are not efficiently addressed.

Hence there are three areas of systems development needing research [Freeman 92]. The first 
one is the gathering of information about the problem domain. This is a generic activity

1 Although the original idea on software project of SE comes from [Tontsch 90] and [Madsen 95], some 
adjustments are made to suit the description of generic view of SE and managing complexity.
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that includes analysis of requirements or needs, preparation of reusable components, writing of 
specifications, design, testing, etc. The second general area is analysis of design decisions, 
which are methods of analysing a proposed system to determine characteristics of interest. 
They embody consistency of successive design decisions; system performance and resources 
needed to take the next step of development. The third area, naturally enough, is that of 
representations.

This research concentrates on the last area by pursuing a standard or generic model to 
represent software development methods. In order to stress the goals of this hypothesis, it is 
necessary to note three current syndromes in SE.

1.2 THE REAL PROBLEMS

This section describes problems faced by most software engineers in the industry, especially 
those who are working in medium to large sized software systems in a collaborating 
environment. The problems are illustrated as syndromes of software development.

To give a better picture of each syndrome, a real situation from the collaborative company 
(SAT) is demonstrated below. The project involved is known as IFA (intelligent financial 
advisor). IFA is a software system comprised of three separate components: a spreadsheet 
style data model, a human-computer interface (HCI) windowing system and an expert advisor. 
Each component is designed and developed by a dedicated software engineer. The prime 
technique employed by SAT is a programming model called MVC (model-view-controller), 
which is based on modelling the data, presentation and control aspects of a system. Since the 
main concern of this research is a method in the development phase, MVC is not considered 
appropriate for this purpose in the first place. It is just a technique to describe program 
models, although it is an ad-hoc approach learned by SAT.

1.2.1 PANACEA SYNDROME

There are two reasons why software engineers often find themselves using the wrong 
language, method or tool for a description. They are closely related but distinct [Jackson 92]:

• The first is that we are still immature enough to claim that each new medicine will 
cure all diseases. To a Prolog interpreter, everything in the world looks like a set 
of Horn clauses; to a systems analyst with a relational database management 
system, everything in the world looks like a relation in third-normal form.

• The second reason is that we have some highly developed tools and techniques for  
handling each o f our models in isolation, but few or none for combining 
descriptions made from different models. Therefore we take what seems to be the
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easy way out: we choose one modelling formalism, for which we have the skill or 
the tools, and we make all our descriptions in that model.

The outcome is to make the best of a bad job, and then to claim the chosen formalism is all 
that is needed. MVC is a good technique for identifying various aspects in the implementation 
phase. For instance, in the IFA project, the spreadsheet describes the data model, the HCI 
module shows the presentation view and the expert advisor forms the control mechanism. 
However, when the software engineer attempted to develop the expert advisor in isolation 
there was no sufficient technique to describe the internal structure of inferencing and he had to 
replace it with the conventional ‘hacking’ method.

For this syndrome, a multiple viewpoints approach is necessary to widen the descriptive power 
upon the specific problem domain. A proverb says that ‘no person can break a bunch of 
arrows in one go, but it can be done by a group of people each splitting a few arrows’.

1.2.2 LOOKING UNDER THE LAMPPOST SYNDROME

This is a thought pattern best illustrated by the following story [Gilb 88]:

... a drunk person is found searching for his lost wallet under a lamppost at a street 
comer. When asked where he lost the wallet, he says, “Oh, down the street there by 
the alley. But I'm looking for it up here because the light is so much better/ ”

The typical SE and management solutions are found primarily by looking under the lampposts, 
such as algorithms, formal specification or specific software acquisition methods. The lamps 
illuminating areas such as software maintainability, portability and user-friendliness have been 
relatively faint. This syndrome suffers in overemphasis on certain areas where the developer is 
strong and underestimating the grey or weak areas. It differs from the panacea syndrome by 
contrasting the shortcoming of personal and social awareness.

Most people suffer from the syndrome to some extent, but it can be a particular concern in 
software development models. Each member of a cooperative team has strong lamps that 
illuminate his own well-understood parts, however it is also important to use the fainter lamps 
to provide some illumination to the less-understood but equally critical parts of the system.

For example, the software engineer of the expert part in the IFA project can neither neglect 
the interface specification to the spreadsheet module, nor ignore the HCI requirement from 
which the advisory information is displayed. There must be an agreement to cover the shaded 
areas between the bright areas. Due to lack of common representation in the shaded areas, a 
substantial part of the advisor module had to be redone to allow the interaction.
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1.2.3 THREE BLIND MEN TOUCHING AN ELEPHANT SYNDROME

This syndrome is borrowed from a famous Chinese idiom with a similar meaning. The blind 
wise men came to three different opinions about the ‘reality’ they were dealing with after 
touching different parts of an elephant [Yourdon 89]:

• One blind man touched the sharp end of one of the elephant’s long tusks. “Aha”, 
he said, “what we have here is a bull I can feel its horns. ”

• The second blind man touched the bristly hide o f the elephant. “Without a
doubt”, he said, “this is a ... what? A porcupine? Yes, indeed - a porcupine!”

• The third blind man felt one of the elephant's thick legs and said, “this must be a
tree that we're dealing with. ”

Yourdon uses this story to illustrate what he called ‘balancing the models’ in his modem 
structured design (see section 2.2.3). This is essentially a direct mapping between different 
aspects of a system, so that they maintain a consistent interpretation of the reality. In a larger 
scope of integration we can consider the coherence between different models from various 
methods specifying a unique system. The syndrome may be observed as a number of 
developers viewing the reality from different perspectives. Thus, it also promotes the idea of 
multiple viewpoints on a system specification.

It is obvious that different initial viewpoints will lead to people employing different modelling 
formalisms to interpret the system. In the IFA project the software engineers viewed the 
common data repository differently. The HCI developer regarded it as a set of information to 
be displayed; the expert advisor regarded it as a formulated cell for calculating data elements 
for ratio analysis, whereas the spreadsheet developer regarded it as a storage item in the 
relational database. Since there was no common agreement on the formalism they 
communicated through a complex interface for data integration. The overhead was vast. In 
addition, this complexity - albeit induced complexity - will prevent any future system 
modifications.

To conclude, distinct problem domains and/or work environments demand different software 
development techniques. Since there is no single perfect method for system description, it is 
necessary to permit method integration amongst the techniques that are currently available, 
taking account of strengths and weaknesses of the techniques employed. The coherence 
across techniques is an additional and significant issue when developing a whole picture of the 
required system. The ultimate solution (common goal) is to formulate a generic representation 
of these software development methods which allows a full integration of techniques and 
manages the semantics simultaneously.

1.6



1.3 THE PROPOSED SOLUTION

The body of this thesis developes a generic model for representing software development 
methods. The model is named GMR, which stands for generic method representation. 
Various components and aspects of GMR are described in the succeeding chapters, however it 
is important to stress the hypothesis and the goals of the research at this point. The 
advantages, constraints and assumptions are also listed in the following subsections.

THE HYPOTHESIS

Meta modelling (that is generic representation of methods) enables methods to be used 
unambiguously, since they are defined by an abstract model. Moreover, it permits comparison 
between methods and the ability to assess the suitability of the semantics of a method to a 
problem domain.

THE GOALS

1. By investigating various methods and meta modelling systems, identify the components 
and techniques to represent software development methods.

2. For each component, determine the internal characteristics to provide a concise and 
precise representation of that component. The interrelationships between components 
must also be addressed in the representation.

3. The representation should comprise both textual and graphical forms. The former should 
be a specification language of the method, whereas the latter should capture different 
components by a finite set of diagrammatic notations.

4. Try out the representation in as many proficient methods as possible, so that it covers all 
modelling aspects.

5. Develop a knowledge acquisition model for sketching methods in the representation; 
certain appropriate verification techniques must also be investigated.

THE ADVANTAGES

1. Provide a generic standard for representing methods. Avoid specific tool modelling 
mechanisms but rather bridge the semantic gap with metaCASE tools.

2. Support the model with acquisition techniques of method knowledge.

3. Allow method integration in terms of semantic components, so that dissection of portable 
parts can be easily achieved. In addition, provide better channels for method comparison, 
selection and evaluation.
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THE CONSTRAINTS

1. GMR is constructed from the current modelling formalism available.

2. Although there are a number of metaCASE tools in the market, the only tool accessible for 
this research is the IPSYS ToolBuilder.

3. Due to the limitation of time (three working years), a full proof of items in Advantage 3 is 
impossible. However, an informal attempt is shown to an appropriate level.

THE ASSUMPTIONS

1. GMR only serves class-based software development methods (see chapter two for a 
detailed definition). Although it may be adapted in a larger scope of method taxonomy, 
we make no claim about GMR’s utility outside this scope.

2. There are hundreds of software development methods in the world. Since it is impossible 
to verify all methods within the time limitation, it is necessary to assume that if GMR 
works for a finite set of complex methods, it works for all methods.

3. As the fact of resource limitation in constraint 2, there is an assumption that if GMR maps 
into a competent metaCASE tool, it can map to other tools.

1.4 EPISTEMOLOGICAL HIERARCHY OF KNOWLEDGE

Before ending this introductory chapter it may interest the reader to look at the nature of 
GMR in a knowledge hierarchy. [Hirschheim 92] shows the nature of human knowledge and 
inquiry broken down into four fundamental sets of beliefs:

ontological (beliefs about the nature of the world around us); epistemological (beliefs 
about how knowledge is acquired); methodological (beliefs about the appropriate 
mechanisms for acquiring knowledge); and beliefs about human nature (i.e. whether 
humans respond in a deterministic or nondeterministic way).

Figure 1.2a depicts an epistemological hierarchy of a system modelling a world [Gaines 87]. 
The foundational role in knowledge acquisition is evident in the hierarchical representation of 
distinctions in the modelling system. The levels of hierarchy itself are the results of 
distinctions made so that no additional primitives are introduced (see [Klir 76] for the meaning 
of terminology). Note that the upper levels of modelling are totally dependent on the system 
of distinctions used to express experience through the source system.

Obviously GMR fulfills a role of the methodological belief, but it is also an epistemological 
belief as a meta model to acquire knowledge. Therefore a method knowledge hierarchy in 
software development can be viewed as different levels of system modelling. Figure 1.2b
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illustrates the direct mapping of Klir's modelling hierarchy to the software method modelling 
hierarchy. Each level presents the differences between those distinctions in the lower level, 
that is a higher abstraction of the respective semantic model. The formal representation of 
each model has an associated modelling (or specification) language. All languages of this 
software method modelling hierarchy are basically in textual form, though graphical 
representation is always possible and often useful. Moreover, each model should be capable 
of sketching both static and dynamic behaviours of the respective level.

Meta-Meta System
relations between relations below

Meta System
relations between relations below

Structure System
relations between models below

Generative System
models that generate data below

Data System
events in terms of distinctions below

Source System
distinctions made J

Meta-Meta Model
meta specification language

Meta Model
method specification language

Method Model
method language

Software Model
programming language

Application Model
technical language

V
Fundamental Model

native language J

Events Actions
World

a. Klir’s Knowledge System

Events Actions
World

b. Method Knowledge Model

Figure 1.2 Epistemological Knowledge Hierarchy

The fundamental model provides descriptive terms of the system's domain in the world. This is 
normally given in simple native language. The application model provides formal descriptions 
in these terms by a technical language appropriate to the expertise. The software model 
provides a regeneration of these descriptions in terms of executable statements by a 
programming language. The rational construction bridges the two models below (levels 1 and 
2) to the models above (levels 4 through 6). The method model provides a theoretical 
framework in assisting the development of software models. The language incorporated is 
called method language. The meta model provides a descriptive form of the method known as 
method specification language. The meta-meta model provides an attempt to further classify 
the description in meta model specification language.

Throughout, this research concentrates on the discussion of the world in the knowledge 
environment, as defined in [Popper 68], from level 4 to level 6 in the modelling hierarchy. The 
software model (level 3) is also discussed, since it provides a direct illustration of the method 
model and the meta model (see chapter four for details).
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1.5 ROAD MAP

Since the GMR has evolved from the investigation of current approaches and related 
technologies it is essential to give a brief report on the significant points of the literature 
reviewed in order to show the progression of observations and implications. In addition, apart 
from the main body of the GMR approach, there are a few associated areas that must be 
considered to fully explain the meta model. To convey these complex matters logically this 
thesis is structured as depicted in figure 1.3. The solid arrows denote the main route through 
the report, whereas the v-shaped arrows show the supporting materials. Rectangles represent 
chapters and circles denote appendice. There are altogether twelve chapters (1-12) and seven 
appendices (A-G) in this thesis.

abstract Method
Evaluation

GMR Meta Model
2 Software 

Development 
Methods

Introduction Heuristic
Model

Process
Model

Product
Model °  Method 

Representation

Meta 
Modelling 

Techniques  TFT---
1 Method
Knowledge
Acquisition

Mapping
Conclusion

MetaCASE

chapter
number Introduction 

\
Vchapter CD CD -

logical sequence 
supporting information

chapter heading

A. Glossary
B. IPSYS ToolBuilder
C. KADS Approach
D. Concept Diagrams
E. Task Diagrams
F. MSL Statements
G. Prolog Clauses

Figure 1.3 Road Map of This Thesis

The abstract of each chapter is as follows:

1. Introduction - This chapter identifies certain problems and complexities in software 
engineering, and proposes an evolutionary approach towards system development. Then it 
focuses the research on the goals and advantages of the approach. A road map of this 
thesis is given.

2. Software Development Methods - An investigation of software development methods is 
reported with a special emphasis on meta modelling and knowledge engineering. The 
description is divided into four categories: structured methods, object-oriented methods, 
main interests and other methods. This chapter also refines the scope of the research by 
defining different types of ‘software development methods’.
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3. Meta Modelling Techniques - The current meta modelling techniques are observed from 
three categories, namely method integration, meta modelling researches and metaCASE 
tools. The drawbacks of each approach are noted, and their significant points about 
method representation are gathered. Chapters two and three contribute to the basis of 
meta modelling in GMR.

4. GMR Meta Model - This chapter presents an overview of the GMR meta model. Detailed 
descriptions of individual components (i.e. product, process and heuristic models) are 
given in the three succeeding chapters. The semantic knowledge base for GMR is also 
considered, with examples.

5. Product Model - This chapter demonstrates a formal and rigorous representation of 
concepts in software development methods. This model consists of concepts, relationships 
and their properties, which can be denoted individually in a concept diagram. The 
activities involved in produce modelling are also illustrated.

6. Process Model - This chapter presents a generic process model, which is loosely defined in 
order to provide flexibility and freedom for developer creativity. The structure of a task 
and task functions are identified. Task sequence is introduced to document the process 
model in a tabular form, which can easily map to a task diagram.

7. Heuristic Model - This chapter discusses the two types of method heuristics. The textual 
structure and graphical presentation are also described.

8. Method Representation - Some representation topics are presented in further detail. A 
method specification language (MSL) is introduced as a formal declaration of GMR.

9. Method Evaluation - The anticipated advantages of GMR for fragment dissection, method 
comparison and selection of method (see later for the definitions) are ascertained in this 
chapter.

10.Method Knowledge Acquisition - Although there are some rudimentary difficulties in 
knowledge acquisition of methods, a variety of technqiues can help to enrich the quality of 
expertise transfer. The method acquisition media are introduced and an IFV model is 
shown to guide the knowledge elicitation.

11. Mapping to MetaCASE Tool - A  model is ineffectual unless it can be implemented into a 
tool, so it is important to show that GMR can be mapped into practical metaCASE tools. 
Although the GMR does not depend on any particular tool, IPSYS ToolBuilder is chosen 
for this illustration. Two case studies are given to demonstrate the mapping.

12. Conclusion - This chapter summarises the work done to prove the hypothesis of a generic 
model for representing methods. A number of speculative future works are also discussed 
in detail.
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Seven appendices are provided. They are mainly supportive information for this thesis, and 
are briefly described as follows:

A. Glossary - defines the main terminology used in this research;

B. IPSYS ToolBuilder - gives a detailed description of a general metaCASE tool that is
referred to throughout the thesis;

C. KADS Approach - outlines this knowledge-based engineering approach to advocate the 
modelling techniques and knowledge acquisition of methods;

D. Concepts Diagrams - depict the GMR product models of five selected methods, namely 
Booch OOD, Codarts/DA, HOOD, OMT and Ptech (see section 2.4 for details), to 
illustrate the discussion in chapter 5;

E. Task Diagrams - shows the GMR process model of OMT;

F. MSL Statements - presents a complete representation of a sample software development
method (i.e. OMT) by using the method specification language (MSL), which is developed 
by the GMR approach;

G. Prolog Clauses - shows the compiled Prolog form of the MSL statements illustrated in 
appendix F.

1.6 CONCLUSION

By describing the background experiences and problems faced in software engineering, this 
chapter focuses the research on the hypothesis. The ultimate goal is to model a generic 
representation of software development methods known as GMR. Certain constraints and 
essential assumptions are listed, with the advantages from the representation. The relation of 
GMR towards the epistemological and methodological beliefs are addressed. It also presents a 
road map of the thesis.
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2. INVESTIGATION OF SOFTWARE 
DEVELOPMENT METHODS

In this chapter, a large number of software development methods (SDMs) are reviewed with 
no bias on any particular programming paradigm. The investigation emphasises the prospects 
of meta modelling, where method components are resolved. Also, the significance of meta 
modelling in method comparison and tool integration is highlighted, together with extensive 
comments about each analysis and design methods.

2.1 INTRODUCTION

Nowadays most software methods are concerned with either structured or object-oriented 
paradigms. One must appreciate how the semantics of these analysis and design methods can 
be unified, thus allowing components from any stage in the development life cycle and from 
different environments and methods to be shared via a common meta model [Carmichael 94]. 
This meta model must be allowed to represent the semantics of various methods from different 
programming paradigms. [Masini 91] investigates three types of object-oriented languages; 
each of them has a different emphasis in software development viewpoints:

• Class based languages consider objects from a structural point of view. An object is a 
data type defining a model of the structure of its physical representatives and a set of 
operations applicable to this structure. Languages of this type, such as C++ [Stroustrup 
86], are mainly for system engineering with traditional software life cycle. A large number 
of methods are available for these languages, such as those described in [Graham 94].

• Frame based languages consider objects from a conceptual point of view. An object is a 
unit of knowledge representing the prototype of a concept. These languages are used to 
develop executable knowledge systems, for instance KRL, KL-ONE [Rich 91] and 
conceptual graphs [Sowa 84]. Since these applications have a very specific problem 
domain, there is no particular development method associated with them. However, the 
technology of KADS [Schreiber 93] [Tansley 93] is emerging, which provides some 
general techniques for developing knowledge-based systems from frame based languages.

• Actor based languages consider objects from an active point of view. An object is an 
autonomous and active entity reproduced by copying and it delegates work by sending 
messages to another actor [Tello 89]. This type of language is still under-developed and 
most examples are only used for research purposes, so no attempts of formalised method 
for these languages have been found.

2.1



Different problem domains and/or work environments demand different sets of development 
languages and techniques. Although there are various languages or tools to suit the specific 
needs, not all of them are accompanied by a proper development method. For instance, LPA 
Prolog has an extension to the Prolog++ language [Moss 94], which tries to amalgamate 
frame-based programming with object-orientation. The consequence is an extra set of 
techniques inserted to form a hyper-language so no rigorous method is encountered.

Hence, the meta model is only dedicated for software development paradigms with distinct 
methods, which have concise and precise notions of semantics and apparent design strategies 
or specifications. The model mainly concerns class based system development (though KADS 
is also discussed). Due to the limitation of time and resources, the suitability of other 
approaches is not considered within the scope of this research.

The review of software development methods is not just a literature survey of current available 
methods, but it shall also look into ways of comparing methods, of structuring concepts, of 
identifying tools and formalising design guidance etc. In addition, it shall stress the products 
and activities of methods in order to distinguish various component types as well as to 
represent them as semantics in an efficient and effective way. The following points summarise 
the particular interests of the investigation (not in any order of preference):

• meta modelling viewpoints, including components and techniques;

• method paradigms, such as structured paradigms or object-oriented paradigms

• development phase(s) in software life cycle, i.e. requirements, analysis and/or design;

• structural, dynamic and behavioural (i.e. object, state and function) aspects of the method;

• textual and graphical notations;

• costs and benefits, i.e. comparison and evaluation of the method;

• application domain of programming language or tool dependence;

• support with automated CASE tool(s);

• relationship or integration with other methods, such as CRC and Fusion method;

• other development features, such as real-time, concurrency and distributed.

This chapter gives a condensed description of eighteen structured and object-oriented methods 
with special focus on method representation. Five of them are chosen for detailed meta 
modelling experimentation, namely Booch OOD, Codarts/DA, HOOD, OMT and Ptech. The 
justifications of these selections are also provided. Therefore, the method descriptions are 
classified into four categories: structured methods, object-oriented methods, chosen methods 
and other methods. Some notable points are recalled in the summary of investigation, which is 
followed by a brief conclusion.
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2.2 STRUCTURED METHODS

From the 1960s to the late 70s, there was an urgent software crisis [Cox 87], due to the 
increasing requirements on software quality and quantity in vast problem domains. The 
computer industry has been revolutionised by a number of new philosophies and techniques 
[Yourdon 79]. One of the most popular of these techniques, structured programming, has led 
to order-of-magnitude improvements in the productivity, reliability and maintenance costs 
associated with computer systems. The methods embodied by these techniques have emerged 
and evolved, and some of them are still in use or affecting the present software (and/or 
method) development. This section looks at four historically prominent structured methods.

2.2.1 DEMARCO STRUCTURED ANALYSIS (DEMARCO SA)

DeMarco SA was perhaps the most influential of the early structured analysis method 
[DeMarco 79]. It promotes a structured description based on functional decomposition and 
process specification. The structured analysis tools include data flow diagram (DFD), data 
dictionary, data structured diagram (DSD), structured English and decision table (or tree). 
Individual components in a DFD are described further in the data dictionary, and a process in 
the DFD can be extended to a lower level DFD (such as figure 2.1a). This parent-child 
relationship effectively outlines a top-down refinement approach. In addition, each processes 
denoted in the bottom level DFD must be defined in the process specification by structured 
English, flow graphs or decision tables (such as figure 2.1b).
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Figure 2.1 DeMarco Structured Analysis

A data structured diagram (DSD) depicts the current environment in such a way that the user 
can understand and verify it. DeMarco SA emphasises the functional specification rather than 
the data declaration. The DSD (such as is illustrated in figure 2.1c) is not much different than 
a database file which is referenced by a key field. In addition, the dynamic aspect of processes 
are not denoted, DeMarco SA is only appropriate in a sequential processing application.
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2.2.2 JACKSON STRUCTURED DESIGN (JSD)

Jackson Structured Programming (JSP) is a program design method for sequential 
processes [Jackson 75]. It is therefore specific for sequential languages such as PL/I, Cobol, 
Fortran, Pascal or assembly languages. JSP program design describes input and output data 
streams and allocates them with proper operations in the program structure. Figure 2.2 shows 
the JSP notations of three basic components in structured diagrams and structured text:

B

A seq
B;
C;
D;

A end

A sel (cond-B) 
B;

A alt (cond-C)

A alt (cond-D) 
D;

A end

A itr while (cond-B) 
B;

A end

a sequence component a selection component an iterative component

Figure 2.2 JSP Structure Diagrams and Structure Text

Jackson Structured Design (JSD) [Jackson 83] has grown out of JSP. It is a method for 
specifying and implementing computer systems with a strong time dimension. Again the 
functional specification describes the decomposition, detailing and refinement of processes. 
Apart from DSD and structure text, JSD uses an entity structure diagram (ESD) which 
employs the JSP notations to express the classical constructs of structured programming 
(figure 2.2). In addition, the system specification diagram (SSD) is used for arranging 
processes and data streams; and the system implementation diagram (SID) for process 
dismembering1. The major differences with the DeMarco SA is that JSD provides six clear 
steps for software development as follow:

• entity action step - define real world area of interest by entities and actions;

• entity structure step - arrange actions by each entity in their orderings with time (by ESD);

• initial model step - describe connections with real world in terms of entities and action;

• function step - specify functions to produce the outputs of the system (by SSD);

• system timing step - consider process scheduling which affect the system function outputs;

• implementation step - consider software and hardware provided for running the system.

Each step has detailed criteria. The important distinction in JSD is not between analysis and 
programming, but between specification (the first five steps) and implementation (the last 
step). JSD also stresses that structured design is an iterative process, though the aim is to 
minimise the number of cycles. Therefore, JSD is not a top-down design.

1 System dismembering is a transformation in which the text or state-vector of a process, or a data stream, is 
broken into a number of parts for convenience and efficiency in execution.
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2.2.3 YOURDON MODERN STRUCTURED ANALYSIS (YOURDON)

Yourdon modern structured analysis (Yourdon) is another well-recognised method in software 
engineering. Aside from the traditionally structured tools, such as DFD, data dictionary and 
process specification, Yourdon borrows the entity-relationship diagram (ERD) [Chen 76] to 
describe the stored data layout of a system at a high level of abstraction (figure 2.3a). In 
addition, the time-dependent behaviour of a system is described in a state transition diagram 
(STD in figure 2.3b), which is a more effective way to describe event sequences in a complex 
entity than the entity structure diagram in JSD. Yourdon also handles real-time issues by 
introducing the control processes and control flows in DFD (figure 2.3c). One distinction of 
Yourdon is that it gives detailed techniques for balancing the models, that is for managing the 
various dependencies between different tools. For instance, each control process in DFD must 
be further specified in a STD. The control process in figure 2.3c is depicted as the STD in 
figure 2.3b where each state refers to the corresponding process in the DFD.
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a. entity-relationship diagram b. state-transition diagram c. data flow diagram 

Figure 2.3 Yourdon Modern Structured Analysis Tools

Although Yourdon does not explicitly denote the analysis steps, the development process can 
be worked out from the four analysis models in the order presented below. For each model, 
Yourdon presents both the classical approach and its approach. In this way, the method 
description has a bigger contrast with the general practice.

• essential model - what the system must do in order to satisfy the user’s requirement;

• environmental model - define the interfaces between the system and the environment;

• behavioural model - what internal behaviour is required to deal with external environment;

• user implementation model - describe automation boundary, human interface and formats.

Furthermore, Yourdon looks into the program evaluation review technique (PERT chart) and 
project management (Gantt chart). The potential automated tools, such as document control, 
software metrics etc. are also discussed. Yourdon is obviously a more comprehensive method 
than the two previously described methods, but some general software features, such as 
concurrency, information hiding, task structuring are not represented by the method.
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2.2.4 STRUCTURED SYSTEMS ANALYSIS & DESIGN METHOD

This method is normally abbreviated as SSADM [Downs 92], which is a method for 
developing computer-based information systems. It originated with the UK government’s 
Central Computer and Telecommunications Agency (CCTA), and is widely used in many 
development projects. The method consists of activities and products (figure 2.4a). The 
activities include ‘when’ and ‘how’ something should be done, whereas the products describe 
‘what’ is delivered. The activity structure of SSADM is presented as a five module hierarchy 
(figure 2.4b). Each module, as shown below, is broken down into stages, steps and tasks.

• feasibility study (FS) - includes non-SSADM work, such as financial cost/benefit analysis, 
social evaluation or writing a feasibility report;

• requirement analysis (RA) - has two stages: it describes the investigation o f current 
environment and establishes a range of business system options;

• requirement specification (RS) - reworks the descriptions of the current environment and 
business system option, produced in RA;

• logical system specification (LS) - has two stages: it determines and helps management to 
select the technical system options; and defines dialogues, updates and enquires in a non
procedural logical design;

• physical design (PD) - takes the LS and combines it with information about the target 
hardware, software and organisation setting.
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Figure 2.4 Introduction to SSADM 
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The individual stage and step descriptions can be found in [Downs 92]. However, it is 
interesting to note that SSADM defines each step in great detail by its input(s), output(s), 
tasks and techniques. The inputs and outputs provide the links to other steps, as well as 
giving the products associated with the step. SSADM comprises an extensive number of 
products for various tasks, such as DFD, logical data structure (LDS), entity life history 
(ELH), effect correspondence diagram (ECD), business system option (BSO), technical 
system option (TSO) etc. This is illustrated by the feasibility study step 010 below:

Input(s)
•  Project Initiation Document (from Project Procedures)
Tasks
10. Working from any docum ents which initiated the study, create an  outline description of 

the existing system  and record known requirem ents
20. Establish the scope of the Feasibility Study, and agree with the Project Board
30. Tune SSADM to m eet the needs of the feasibility study and agree with the Project Board
Techniques
• Data flow modelling
• Logical data  modelling
• Requirem ents definition
New or modified output(s)
• Context Diagram (to 020)
• Current Physical Level-1 DFD (to 020)
• Overview LDS (to 020)
• Requirem ents Catalogue (to 020)
• Agreed study method (to Project Procedures)

From the meta modelling viewpoint, these are significant pieces of information for describing 
the execution of products (concepts) in terms of tasks and techniques. The inputs and outputs 
are virtually the requirements and consequences of the step. Since SSADM is a structured 
method, the meta-structure of the method is also revealed in a top-down hierarchical form. 
That means it can only handle sequential processes so it does not promote iterative or parallel 
steps. This is considered as a drawback of the representation. As with other structured 
methods, SSADM does not stress data abstraction or information hiding. However, the latest 
version of SSADM (and JSD) has taken in some object-oriented (OO) features to solve this 
inadequacy and to accommodate the corresponding programming paradigm. SSADM is 
accompanied with automated tools such as LBMS SSADM and Automate-Plus, so it is not just 
a ‘paper-model’.

2.3 OBJECT-ORIENTED METHODS

The rise of object-orientation started in the late 70s with the emphasis on object-oriented 
programming (OOP) [Cox 87]. This was followed by the object-oriented design (OOD), and 
recently object-oriented analysis (OOA) has become the major area of interest. OOP was first 
thought as an AI feature [Luger 89] [Tello 89]. However, the promises of offering high 
reliability, productivity and maintainability through the implicit object techniques such as 
abstraction, encapsulation, inheritance and polymorphism [Meyer 88] has drawn the interest of
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a lot of software developers [Blair 91]. Object-oriented technology has entered the 
mainstream of industrial applications [Taylor 92] and research interests [Khoshafian 90]. In 
fact, ‘object-oriented’ has become an extremely overloaded term and very few commercial 
systems live up to the pure concept of object-orientation. Nevertheless, object-oriented 
methods have a major role in the technology. The main concern is not so much whether a 
method is object-oriented or not, but how it is object-oriented and in what way it delivers the 
associated benefits [Graham 91].

2.3.1 OBJECT-ORIENTED STRUCTURED DESIGN (OOSD)

Object-Oriented Structured Design (OOSD) is a method intermediate between analysis and 
design [Wasserman 90]. It is a notation for architectural design which combines structured 
methods with object-orientation, as promoted by [Ward 89] and [Champeaux 91]. OOSD is 
influenced by Yourdon’s structure charts, such as data flow, parameter passing and exception 
handling (figure 2.5a), but it also adopts object-oriented concepts such as encapsulation, 
instantiation and inheritance (figure 2.5b). In addition, concurrent or asynchronous processes 
are catered for by using monitors which are shown as parallelograms (figure 2.9c). These are 
important semantics for a requirements analysis as well as for a design method.

over t  f  <stack> t  f  under 
I tem ^u l < stack > |.r£  item
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class class
name name

instantiation f .

L b u f fe r /  buffering

inheritance

I generic 
L c lass

derived
class

buffer

buffer
data

a. exceptions in a stack object b. relationships

Figure 2.5 OOSD Notations

c. buffering monitor

OOSD also has a formal grammar, which is a program design language ideal for improving 
comprehensibility of the notations in non-graphical form. OOSD also introduces design rules 
to guide the software development. They are possible for producing an automated CASE tool 
which provides consistency checking and code generation. In addition, OOSD is not tied to 
any programming language and is one of the more advanced hybrid, low-level OOD notations. 
OOSD has a ready acceptance by analysts who are familiar with structured design and its 
suitability for real-time systems because of the monitor concepts. However, OOSD is only a 
set of design notations, which even lacks an effective semantic data modelling to describe real 
world objects. Although it discusses object behaviour and design rules, the method gives 
neither design steps nor detail guidance. OOSD is more suitable for architectural or logical 
design than for physical design.
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2.3.2 OBJECT-ORIENTED SYSTEMS ANALYSIS (OOSA)2

Shlaer/Mellor’s OOSA [Shlaer 91] is a method for identifying the significant entities in a real- 
world problem domain and for understanding and explaining how they interact with one 
another. The entity modelling is descended from the Ward/Mellor real-time notation [Ward 
85], hence OOSA users tend to be developer who migrated from the Ward/Mellor approach. 
The method is best described in three models, which OOSA refers to as three steps:

• information model - focus on abstracting the conceptual entities in the problem by objects, 
attributes and relationships - advanced entity-relationship diagram (figure 2.6a);

• state model - formalise lifecycles of objects and relationships from information model over 
time, in other words, express dynamic behaviour in state transition diagram (figure 2.6b);

• process model - depict actions in state model as a fundamental and reusable process by an 
enhanced form of the traditional DeMarco data flow diagram - action DFD (figure 2.6c).
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Figure 2.6 OOSA Models for a One-Minute Microwave Oven

The early version of OOSA [Shlaer 88] cannot really be regarded as object-oriented due to the 
absence of inheritance. Entity subtyping is only introduced in a later book [Shlaer 91]. OOSA 
considers object identities by sets of attributes and keys (the status and IDs in figure 2.6a), 
then applies normalisation rules to the objects. Thus objects are regarded as relational tables 
rather than abstract data types.

From the meta modelling viewpoint, OOSA lays stress on strong cohesion between models. 
The labels and IDs provide the reference links amongst the models. For instance, in the 
microwave oven example of figure 2.6, the tube ID in the information model is used in the data 
flows of the process model, whereas the actions PI and P2 in the state model refer to the 
processes P. 1 and P.2 in the process model. Furthermore OOSA is partially supported by the 
teamwork CASE tool and commonly used in real-time applications, though the method does 
not have a rich description on either design steps or heuristic guidance.

2 OOSA also supports object-oriented design by a language-independent notation known as OODLE, which 
includes class diagram, class structure chart, dependency diagram and inheritance diagram [Shlaer 91].
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2.3.3 OBJECT-ORIENTED ANALYSIS/DESIGN (OOA/OOD)

Coad/Yourdon’s object-oriented analysis (0 0 A) [Coad90] is also derived from the Yourdon 
entity-relationship model. It is a reasonably complete, practical method and supporting 
notation, suitable for commercial projects, though the distinguishing between class and object 
was not been made until the second edition [Coad 91a]. 0 0 A proceeds in five stages:

• subject - decompose the problem domain into manageable subjects and describe them by 
different levels of DFDs;

• object - define real world abstractions as objects by using data analysis, which create a 
stable framework for analysis and specification;

• structure - identify classification and composition hierarchical structures, then represent 
them as generalisation-specialisation and whole-part relationships respectively;

• attribute - define attributes of each object by conventional data analysis, the instance 
connection is modelled by mapping object responsibilities (similar to that of CRC);

• service - equip each object with services (known as ‘methods’) by considering the 
behaviours of the object, the message connections between objects are also identified.

wholegeneralisationclassclass-&-object

class-&-object gen-spec " f S artattributeattribute 1 
attribute2attribute 1 

attribute2 structure
serviceservicei

service2servicei
service2 specialisation2 specialisation 1

iver |Instance 
i connection class-&-object2class-&-object1 senderreceiver connection

1 subject

Figure 2.7 Coad/Yourdon OOA Notations

OOA introduces a less clumsy notation than Shlaer/Mellor’s OOSA (refer to figure 2.7). In 
addition, OOA documents each class-&-object in a specification template and individual 
service is further specified by an object state diagram and/or a service chart. Coad/Yourdon’s 
object-oriented design (OOD) adds four design components to OOA [Coad 91b]. These 
components allow design-specific issues to be included in the OOA diagrams:

• problem domain component - refine the products of OOA in the problem domain;

• human interaction component - design interaction, such as format of windows and reports;

• task management component - handle different types of tasks and their communications;

• data management component - provide infrastructure of storage and retrieval of object.
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The main critique of OOA/OOD is that it does not really handle dynamics and the connection 
of services can only display thread of execution one at a time [Graham 94]. Nevertheless, the 
OOATool produced by Object International supports the denotation of the method.

From the meta modelling viewpoint, OOA/OOD does not describe design steps explicitly,
although the strategies recorded at the end of the literature present the techniques of the nine
structured activities (five activities from the OOA and four activities from the OOD). Each
strategy defines the condition of the activity by the ‘when to' statement(s) and the action as
‘how to...' or ‘what to...' statement(s). This is demonstrated by the analysis strategy of
identifying subjects shown below. In fact, this information gives the significant guidance of
the method and must be denoted in the method representation.

ANALSIS STRATEGY - identifying subjects 
Subject. A subject is a  ...
How to select: Promote the nam e ...
How to refine: Refine subjects by using ...
How to construct: On the subject layer, draw each  subject a s  ...
When to add: Add subjects once an overall map ...

2.3.4 NIELSEN OBJECT-ORIENTED DESIGN (NIELSEN OOD)

Nielsen OOD introduced a design method for real-time systems [Nielsen 88] and then it was 
expanded to a distributed design method [Nielsen 91]. The object-oriented flavour was only 
inserted in a later literature [Nielsen 92]. Nielsen OOD focuses more on specifying process 
distribution and message passing than concurrency or task structuring.

Unlike other methods described so far, Nielsen OOD is very much an Ada based method, the 
major aim of process abstraction is to map process structure charts (as shown in figure 2.8a) 
into Ada Task graphs for further transformation into Ada packages. Although Nielsen OOD 
method includes data abstraction to take in object-orientation, the definition of an object (as 
demonstrated in figure 2.8b) is only an encapsulated data structure and no inheritance is 
encountered.
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The design heuristics of Nielsen OOD are plentiful and they receive different emphasis in 
different literature. Although the development steps are summarised with the according 
representations (diagram and/or design language), there is no proper structure to arrange this 
guidance back to the corresponding design steps as in Coad’s OOA/OOD. Later on in this 
chapter, another distributed real-time method, Codarts/DA, is described which uses a similar 
set of notations, but it associates design steps and heuristics in a more structured way.

2.3.5 OBJECT-ORIENTED SOFTWARE ENGINEERING (OOSE)

Object-oriented software engineering (OOSE) is a subset of Jacobson’s object-oriented 
method, Objectory, which is supported by his OrySE CASE tool. OOSE suggests dividing 
system development into three activities: analysis, construction and testing [Jacobson 92]. 
Each of these activities develop models: requirements and analysis models in analysis; design 
and implementation models in construction; and test model in testing. The OOSE underlying 
enterprise analogy is an architecture that is based solely upon the customised constructs 
below:

• tool - support all activities of the enterprise, i.e. architecture, method and process;

• method - make explicit procedures to be followed in applying architecture to projects;

• process - provide for scaling-up the method to a larger interacting activities and parties;

f r
Customer

a. use case model for a recycling machine b. mapping use cases to domain objects

Figure 2.9 Jacobson OOSE Notations

Many ideas of OOSE are similar to other 0 0  methods, except the concept of use case. Use 
cases are descriptions of how users interact with a system, such as the recycling machine use 
case model shown in figure 2.9a. The domain objects, such as interface object, entity object 
and control object, can also be shared amongst different use cases as depicted in figure 2.9b.

Nevertheless, a list of methods are described with OOSE in the literature [Jacobson 92], 
including OOSD, OOSA, OOA/OOD, Booch OOD, HOOD, OMT and CRC (the last four 
methods are described later in this chapter). The concepts of these methods are mapped to 
OOSE and the activities are compared. These method evaluations give a better picture of the 
method, though a generic representation of all methods should make the job much easier.
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2.4 CHOSEN METHODS

Since it is impossible to cover all software development methods in such detail within the 
limits of time, five methods are chosen deliberately for the study of meta modelling in depth. 
However, criteria can be used for selecting methods so that the outcomes are made generic to 
other methods. The criteria are as follows:

• The semantics must be encapsulated in a ‘distinct’ method, which provides a set of concise 
and precise presentable conceptual ideas (see section 2.1). Contrary, the techniques for 
developing actor-based systems are only given as strategies rather than conceptual models.

• The group of methods must not incline towards a particular programming paradigm or 
software development phase, so that the study is not biased toward certain sets of 
semantics. In our selections, they include structured method, object-based as well as 
object-oriented methods, and also cover both analysis and design development phases.

• The chosen methods should denote a wide range of software modelling techniques, so that 
they reflect a large spectrum of modelling features and method viewpoints.

The five selected methods are Booch OOD, Codarts/DA, HOOD, OMT and Ptech. Table 2.1 
shows the basic features of software development with these methods. A *•’ denotes the 
feature is fully supported by the method, a ‘ O ’ describes a partial support, whereas a ‘O’ 
means little support is given. If the cell is blank, there is no support from the method. These 
features are categorised into three groups in this order: development paradigms or phases, 
method viewpoints and meta model components3. Most of them are self explanatory.

Category Feature Booch OOD Codarts/DA HOOD OMT Ptech

Development
Paradigms

Object-Oriented • O o • •
Structured O

Analysis O • o • •
Design • • • o O

Method
Viewpoints

Object Model • o o • •
State Model • • • o

Function Model o o o • o
Real-Time o • •

Concurrency o • • • •
Distributed o • •

Meta
Model

Components

Product - Concepts • • • • •
Process - Activities o • o • o

Heuristic - Guidance o • o • o
Graphical Fragment • • • • •

Textual Fragment • • • o o

Table 2.1 Basic Supported Features of the Five Chosen SDMs

3 The components of a meta model are made clearer later in this thesis. At the moment, they can just be 
considered as a set of concepts, activities and guidance provided by the individual method.

2.13



The five chosen methods4 are described comprehensively in the following subsections. Each 
method is given a general overview (see the accompanying references for detailed descriptions 
of the method), followed by consideration of their significance from the meta modelling 
viewpoints. The discussion emphasises the justification for choosing individual methods.

2.4.1 BOOCH OBJECT-ORIENTED DESIGN (BOOCH OOD)

The basic concept of Booch OOD [Booch 86] is a prime source of object-oriented methods 
and Booch himself is one of the pioneers in the technology [Graham 91]. The Booch method 
is based on objects as the unit of modularity of system design and indicates their services by 
relationships and message handling. In the second version the method is revised, with 
emphasis on object-oriented analysis and extended notations for dynamics [Booch 94]. 
However, the Booch OOD discussed in this thesis is the earlier [Booch 91] version. The 
method is supported with an automated CASE tool - ROSE5, which allows code generation to 
programming languages such as Ada and C++.

OVERVIEW

Booch OOD suggests breaking down the complexity of the real world by abstraction, 
encapsulation and inheritance [Booch 91]. The logical view of a system is shown by the class 
and object structures, whereas the physical view is denoted in the module and process 
architecture (figure 2.10a). Each model has a corresponding diagram and template(s). In 
addition, the dynamic semantics are also described in the method. The overall software design 
process is comprised of four high level activities (figure 2.10b).

Dynamic sem antics^ . 
Static semantics

Logical view 

Physical view

Class structure 
Object structure

Module architecture 
Process architecture

31
Iff

identify the classes and objects at a  given level of abstraction 
identify the semantics of these classes and objects 
identify the relationships among these classes and objects 
implement these classes and objects

a. the models b. the process

Figure 2.10 Booch OOD Models and Process

[Booch 91] also suggests that any technique could be used in the OOA phase, but a form of 
layering is recommended, that is organising related classes into categories (figure 2.1 la). The 
class and object diagrams depict the logical static design with the well-known ‘cloud’ shape

4 These methods were chosen because they had immediate relevance to the collaborative company.

5 ROSE is a trademark for Rational, which is Booch's consulting company.
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icon to show the classes (dotted), class utilities (shaded) and objects (solid line). Booch 
OOD has a rich set of relationships: the use, instantiation, inheritance, metaclass and 
undefined class relationships are indicated by different kinds of arrows (figure 2.11b), whereas 
the object relationships are shown as inside systems and outside systems with visibility 
symbols and synchronisation symbols for the messages (figure 2.1 lc).
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Figure 2.11 Booch Class Diagram and Object Diagram Notations

The physical design gives detailed access or processes of the classes and objects. Booch OOD
distinguishes between classes with modules. Each module corresponds to a program segment
and it is denoted in a module diagram, whereas the process diagram shows the
communication relationships between physical devices and processors. The dynamics of a
system is the key issue in OOD and Booch addresses them by the state transition diagram and
the timing diagram. The former depicts the dynamics of classes, and the latter denotes the
instance level dynamics [Booch 91]. However, they may only be manageable for reasonably
small systems, and become impractical in most commerical systems. Furthermore, each class,
operation, object, message, module, process etc. is associated with a structured text template,
which documents the semantic details. For instance, the class template is shown below - the
operation declaration points to a list of operation templates.

Name: identifier
Documentation: text
Visibility: exported /  private /  imported
Cardinality: 0 /1  /  n
Hierarchy:

Superclasses: list of c lass nam es
M etaclass: c lass nam e

Generic param eters: list of param eters
Interface I Implementation (Public/Protected/Private):

Uses: list of c lass nam es
Fields: list of field declarations
Operations: list of operation declarations

Finite s ta te  machine: sta te  transition diagram
Concurrency: sequential / blocking /  active
S pace  complexity: text
Persistence: persistent / transitory
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SIGNIFICANCE

The Booch concept itself is extremely rich, since it covers both logical and physical design of a 
system, i.e. from specification model to implementation model. Although there is no direct 
description about real-time, concurrency and distributive features, they are partially supported 
by the class declaration and message synchronisation. The main weakness of Booch OOD is 
that the dynamics are tagged, the notation is not sufficient to describe how complex activities 
trigger state changes and critical object life-times in a large system [Graham 91]. Also, Booch 
tries to define the control structure of a system by the use relationships as achieved by HOOD 
(described next), but it leads to complex diagrammatic representation.

From a meta modelling viewpoint, Booch has comprehensive documentation of concepts, and 
also stresses the importance of relating graphical specification to structured text. However, 
the description of the design process is very brief and it is particularly important to underline 
this in method representation. Furthermore, Booch OOD is deliberately chosen to reinforce 
the comparison with OMT (section 2.4.3), which is another leading object-oriented method.

2.4.2 HIERARCHICAL OBJECT-ORIENTED DESIGN (HOOD)

Hierarchical OOD (HOOD) [Robinson 92] is an architectural design method, which is very 
much directed at Ada development and is developed for the European Space Agency. HOOD 
has resulted from merging experience on the Booch OOD and Abstract Machine.

OVERVIEW

HOOD enforces structuring of objects by three principles [HOOD 91]:

• abstraction, information hiding and encapsulating principles: An object is defined by its 
services and the internal structure is hidden to the user (see figure 2.12a). Each service is 
described in an operation control structure (OPCS), whereas the behaviour of the object is 
given in the object control structure (OBCS).

• hierarchy principles: There are two types of object hierarchies. In the parent-child 
hierarchy, a parent decomposes into child objects and its functionality is provided by the 
children through implemented-by links. In the seniority hierarchy, a senior object uses the 
operations of junior objects through used-by links (figure 2.12b).

• control structuring principles: Operations of objects are activated through control flows 
corresponding to the execution of logical processors on an underlying target machine. 
These flows may operate simultaneously in an object by synchronous or asynchronous or 
timeout requests in an active object (figure 2.12c). However, a passive object shall not 
use a constrained operation of an active object and it has no OBCS.
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Figure 2.12 HOOD Notations

Apart from the HOOD diagrams illustrated above, HOOD also supports a program definition
language like structured text, known as an object description skeleton (ODS). ODS provides
the transition from the formal but incomplete HOOD diagram to the Ada source code, and it
allows consistency and completeness checks. The basic set of sections in ODS is shown below
and it must be noted that the content is dependent upon the object type (see section 5.3.2.6).

O BJECT O bject_nam e IS Object_type 
[Class_formal param eters]
[PRAGMA TARGET_LANGUAGE language]

DESCRIPTION object_description_text
IMPLEMENTATION_OR_SYNCHRONISATION_CONSTRAINTS constraints_text 
PROVIDEDJNTERFACE provided_interface_definitions 
OBJECT_CONTROL_STRUCTURE obcs_synchronisation 
REQUIREDJNTERFACE required_interface_definitions 
DATAFLOWS dataflow_definitions 
EXCEPTION_FLOWS exception_flow_definitions 
INTERNALS intemal_definitions
OBJECT_CONTROL_STRUCTURE obcsjm plem entation  
OPERATION_CONTROL_STRUCTURES opcs_definitions 
END_OBJECT Object_nam e

SIGNIFICANCE

HOOD is the only method that models control explicitly, by using the ‘used-by’ relationships 
and OBCS. This is a very structured way of documenting the control thread in a design 
method. HOOD also introduces design rules to reinforce the modelling constraints. Unlike 
the Booch OOD, the hierarchical structure minimises object interdependencies and produces 
highly cohesive components with low coupling. However, HOOD’s graphical formalism is 
both incomplete and inconsistent, it does not express which operations are used by which 
object, and which data are encapsulated by objects. The notation depicts subprograms as 
objects and control structure is also shown as a subprogram which passes control to a task.

HOOD is only an object-based method, since it does not support polymorphism, inheritance 
and genericity, though they are important features to provide maintainability and reusability 
[Meyer 88]. Besides, HOOD is a tailor-made method for the Ada language, which means the 
method concepts have a direct influence in the implementation phase of software development.

2.17



Similar to Booch OOD, HOOD employs four basic design phases from problem definition to 
formalisation of solution. HOOD does not denote state model or function model as in most 
methods, although the HOOD diagram expresses certain operational dependences. Moreover, 
HOOD’s concept structure (in the ODS) is based on the object type, which is a speciality that 
must be expressed in method representation. The interrelationship between the two highly 
integrated products, HOOD diagram and object description skeleton is also the reason that 
HOOD is chosen to show the adaptability of meta modelling.

2.4.3 OBJECT MODELLING TECHNIQUE (OMT)

Object modelling technique (OMT) [Rumbaugh 91] from General Electric (GE) is another 
well-known OO method. Although most people refer to it as an OOA method, OMT actually 
embodies a software design phase by giving detailed design heuristics. The method is widely 
used in commercial projects and it becomes a standard method for research experiments, such 
as [Rossi 95] and [Plihon 95]. In addition, a number of CASE tools support the OMT 
notation. The popularity of OMT makes it a necessity to be included in this research.

OVERVIEW

The core of OMT is based on three different software viewpoints, which are expressed as 
distinct models and evolved throughout the system development. The three models are:

• Object Model (OM) describes the static structure of the objects in a system and their 
relationships by object diagrams. It consists of similar notations as Coad/Yourdon OOA 
with a data dictionary. Moreover, OM indicates attribute types and operation parameters 
of a class. Constraints may be inserted to classes and operations, whereas association is 
enriched by role names and qualifier (figure 2.13a). Some new concepts are also added, 
such as discriminator in generalisation, link attributes and ternary relationships.

• Dynamic Model (DM) describes the control aspects of a system by state diagrams. OMT 
advances Booch state transition diagram by introducing extensive features to both state 
and event. A state performs a durable ‘do’ activity which is surrounded by instantaneous 
entry and exit actions, whereas an event may occur with attributes and cause actions that 
may be guarded by conditions (figure 2.13b). In addition, an event may delegate action to 
other objects with associated attribute, and a transition without activity is also 
represented as an automatic transition.

• Functional Model (FM) describes the data value transformations within a system by data 
flow diagrams. This is borrowed from the structured methods, but FM enhances the 
notations by suggesting control flow between processes and by depicting duplication, 
composition and decomposition of data flows explicitly (figure 2.13c).
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Figure 2.13 OMT Model Notations

The method consists of building the models of an application domain and then adding 
implementation details to it during the design stages. The programming is a relatively minor 
and mechanical part of the development cycle. The four major stages are:

• analysis: build the three models from a problem statement (existing requirement 
specification) to show its important properties in a real-world situation;

• system design: organise the target system into subsystems based on both the analysis 
structure and the proposed architecture such as global resources and control structures;

• object design: add details to the design model in accordance with the strategy established 
during system design, such as the data structures and algorithms needed to implement;

• implementation: translate object design into a particular programming language, database, 
or hardware implementation.
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OMT suggests an iterative incremental approach of software development, each stage being 
structured into a number of recursive steps. Moreover, OMT is particularly rich in heuristics 
for concepts and activities. For example, the following criteria are given to help obtain the 
right classes in the object modelling. This is important information provided by the method 
and must be formally presented in the meta model.

• Redundant classes. If two c lasses  express the sam e information, ...
• Irrelevant classes. If a class has little or nothing ...
• Vague classes. A c lass should ...
• Attributes. N am es that primarily describe indivdual o b je c ts ...
• Operations. If a nam e describes an operation ...
• Roles. The nam e of a class should reflect its intrinsic nature ...
• Implementation Constructs. Constructs extraneous to the real world should be ...

The method also provides some heuristics for mapping OMT design into implementation, such 
as software systems in 0 0  languages, non-00 languages and relational databases. However, 
this is outside the scope of this research.

SIGNIFICANCE

Compared with other 0 0  methods, OMT has a relatively complicated and detailed notation 
with strong roots in traditional structured methods [Graham 94]. The method is relatively 
language-independent, though it is often associated with C++. Object relationships in OM are 
extremely rich and each concept is documented comprehensively in the data dictionary. DM is 
a useful tool to denote concurrency in three different ways: aggregation of state diagrams; 
aggregation of states and concurrent behaviour of a state. FM is normally used as a top level 
DFD or context diagrams in practice. The attributes and operations discovered in the DM and 
the FM are referred back to the OM.

OMT is a well structured method with clear definitions on the product and detail descriptions 
of each activity. These techniques are enhanced with extensive criteria. Although OMT does 
not describe real-time or distributed features, the good balance of various modelling aspects 
makes it an ideal illustration for method representation. Furthermore, the concise and precise 
definition of method semantics allows a perfect example in distinguishing various component 
types in the meta model.

2.4.4 PTECH

Ptech, from Associative Design Technology [Martin 92] [Martin 95], is a proprietary set of 
methods and tools covering both analysis and design. The method is based on the metaphor of 
process engineering as the production of systems by assembling reusable components. Hence 
Ptech is process-oriented rather than strictly object-oriented [Graham 94]. The method’s 
CASE tool can also generate code for object-oriented languages, such as C++.
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OVERVIEW

Ptech combines the process-driven view with the abstraction features of more data-centred, 
object-oriented design and some ideas from set theory and artificial intelligence. It describes 
the object structure and the object behaviour separately by object schemas and event schemas. 
The object flow diagram serves to provide an overview of the system.

• Object schema represents the structure knowledge as the static conceptual configurations 
that are applied to objects. This is by means of depicting object-relationship, 
generalisation hierarchy and compose-of structures in a single diagram. Thus an object 
schema shows the object type, association, classification and composition (figure 2.14a). 
In Ptech, the attribute type of an object defines its state. When the attribute value changes, 
the object shifts from one object type to another object type.

• Event schema describes how the structure applies to objects over time. It must be 
expressed in terms of object schema, because events change the state of given types of 
objects. An event schema includes state transitions, event types, trigger rules, control 
conditions and operations (figure 2.14b). Ptech identifies transitions by event types such 
as object classification, declassification, reclassification, creation, termination etc, from 
which the corresponding operations are determined. Each trigger rule is embedded with 
underlying object type(s) defined in object schema and represented as functions.

• Object flow diagram gives a high-level functional view of a process landscape [Martin 95]. 
It shows the key enterprise activities linked by the products that activities produce and 
exchange. The links are expressed as object flows, which basically denote the production 
or consumption of a product and show the precedence. In addition, each product may 
decompose to an object schema, whereas an activity may extend to an event schema.
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Association

Supertype

External
Object type 
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Figure 2.14 Ptech Notations
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In the method processing terms, Ptech consists of four main activities:

• Object structure analysis (OSA) involves building object schemas to define the kinds of 
objects and the way in which they associate.

• Object behaviour analysis (OBA) uses the event schema to model what happens to the 
objects over time. OSA and OBA are closely related; they are not done separately but 
develop together to form integrated models and designs.

• Object structure design (OSD) adds implementation dependent aspects to the results 
obtained in OSA, such as data structure and operation specification.

• Object behaviour design (OBD) adds the translated object design into a particular 
programming language, database, or hardware implementation.

SIGNIFICANCE

Ptech is the only object-oriented method that is based on set theory. Its emphasis is also heavy 
on software processes (event operations) modelling based on domain concepts (object types). 
An object is defined as a collection of states represented by attribute type, whereas an event 
causes the underlying object of a trigger to change state. Each relation in the object schema 
and the control condition in the event schema are described as textual functions, which are 
significant semantics that must also be described in the meta model. Although most object- 
oriented methods use state models to describe the internal dynamics of objects, Ptech event 
schemas are found to give a better view of global dynamics [Graham 94]. This is because an 
event schema combines both purposes of state transition diagram and data flow diagram. 
Ptech is also rich in design concepts, processes and heuristics. Although the close relationship 
between the two schemas requires a CASE tool for maintenance, it is another good illustration 
for showing how the dependency between concepts is handled efficiently in meta modelling.

2.4.5 CODARTS/DA

Codarts stands for Concurrent Design Approach for Real-Time Systems [Gomaa 93]. It is a 
development method that originated from Darts. Both Darts and Codarts have been greatly 
influenced by the DeMarco SA (section 2.2.1) and the Real-Time Structured Analysis (RTSA) 
[Ward 85]. Codarts provides two major extensions to Darts. Firstly, an alternative approach, 
Cobra, is used to address the limitations of RTSA. Cobra (Concurrent Object-Based Real- 
Time Analysis) emphasises the decomposition of a system into subsystems that provide a set 
of services to support objects and functions. Secondly, the design of distributed applications 
is supported, so the method is normally known as Codarts for Distributed Applications or 
Codarts/DA. It is a general purpose method that is not oriented towards a particular 
language, though Adarts from the same family is based on Ada development.
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OVERVIEW

Codarts/DA notations (figure 2.15) are fairly close to that of Nielsen OOD, but the emphasis 
is very different. The former emphasises a progressive transformation of real-time design with 
a set of structured criteria, whereas the latter is based on data and process abstractions. The 
seven design steps of Codarts/DA are shown below [Gomaa 93]:

1. Develop environmental and behavioural model o f system: Cobra is used for analysing and 
modelling the problem domain. It provides guidelines for developing the environmental 
model based on the system context diagram (figure 2.15a) and subsystem structuring 
criteria for system decomposition. Objects and functions within a subsystem are 
determined by the supported criteria and they finally interact with each other using event 
sequencing scenarios by a behavioural approach (figures 2.15b & 2.15c).

2. Structure the system into distributed subsystems: This is an optional step taken for 
distributed systems. Codarts provides criteria for structuring and configuring a distributed 
application into subsystems, which communicate by means of messages.

3. Structure the system (or subsystem) into concurrent tasks: Determine the concurrent tasks 
by applying the task structuring criteria, and resolving intertask communication and 
synchronisation interfaces. This is also applied to each subsystem of a distributed design.

4. Structure the system into information hiding modules: Determine the information hiding 
modules in the system by applying the module structuring criteria. A module aggregation 
hierarchy is created in which the information hiding modules are categorised.

5. Integrate the task and module views: The task view and module view are integrated to 
produce a software architecture, and shown by task architecture diagrams (figure 2.15d).

6. Define component interface specification: The component interface specifications are 
defined for tasks and modules. These specifications represent the externally visible view of 
each component.

7. Develop the software: This stage develops detailed design, coding and testing of the 
software with the identification of system subsets to be used for each increment.

The progressive development of Codarts/DA is illustrated by the asynchronous device I/O 
example shown in figure 2.16. The cruise control lever device reads inputs and sends them as 
cruise control requests to the control object (step 1: figure 2.16a). From a task structuring 
view (step 3: figure 2.16b), the object cruise control lever is structured as an asychronous 
monitor cruise control input task and the cruise control task receives the queued messages. 
From a module structuring view (step 4: figure 2.16c), the I/O device is structured as a cruise 
control lever DIM (device interface module). Finally, from the combined views (step 5: figure 
2.16d), the cruise control lever DIM is placed inside the monitor cruise control input task.
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SIGNIFICANCE

Codarts/DA is a structural design method that keeps concurrent objects and functions in mind. 
The method is not considered as an object-oriented method, since both abstraction and 
inheritance features are not encountered. Although it suggests ‘flattening’ the inheritance 
hierarchy manually, the information hiding modules are software modules rather than tangible 
objects. However, Codarts/DA is a real-time, concurrent, distributed method with well- 
structured techniques, these features are normally subsidiary or even omitted in object- 
oriented methods.

The most significant point of Codarts/DA is the comprehensive description on design process 
and heuristics. It is specially chosen to express the heuristic richness of the development 
method. Codarts/DA places a lot of emphasis on describing various structuring criteria, such 
as criteria for subsystem, object, function, task and module structuring. The task structuring 
criteria are extensively presented to guide the development of task architecture in a real-time 
distributed application. The detail design sequence is also well-documented with essential 
illustrations. Finally, it must be mentioned that the emphasis of this research is on the 
Codarts/DA design phase and not on the Cobra analytical phase.
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2.5 OTHER METHODS

The methods described so far are normally regarded as structured methods or object-oriented 
methods. The rapid development of these types of methods may be probably due to the 
requirements of the corresponding programming paradigms and applications. This next 
section looks at some methods that do not classify (or are difficult to classify) in groups.

2.5.1 CLASS, RESPONSIBILITY AND COLLABORATION (CRC)

CRC is a responsibility-driven design method [Wirfs-Brock 90], which is based on a set of 
class and subsystem cards. Each class is described with subtyping relationships as well as its 
responsibilities and collaborations to other classes in the problem domain (see the card below 
for a withdrawal transaction class of an ATM example). The hierarchy graph, venn diagram 
and collaborations graph are used to depict these relationships (see figure 2.17).

This method is particularly good at documenting and teaching object-oriented design. It is a
simplistic but very practical method. Although CRC has a bare set of notations and does not
cover all aspects of a software model, it is a quick and easy way to document a specification,
especially for requirements engineering. Even Booch OOD suggests employing CRC cards to
denote class relationships in the early analytical stage [Booch 91].

Class: Withdrawal Transaction (Concrete)
Superclasses: Transaction 
Subclasses: none 
Hierarchy Graphs: page 4 
Collaborations Graphs: page 8
Description: A request by a  bank custom er to withdraw funds from an account.
Contracts
8. Execute a  financial transaction

This contract is inherited from Transaction.
Private Responsibilities

Prompt for the amount u ses User Interface Subsystem  (4)
Withdraw funds: u ses  Account (1), User Interface Subsystem  (9)

Contract 8: Execute a  financial transaction 
Server: Transaction 
Client: ATM
Description: This contract supports executing financial transactions.
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2.5.2 ASTS DEVELOPMENT METHOD 3 (ADM3)

Firesmith’s ADM3 is an integrated object-oriented method [Firesmith 93], which originated 
from an Ada-oriented method known as ASTS. The ADM3 method covers a large spectrum 
of software development (from system requirement to analysis and then logical design). It 
borrows ideas from semantic networks and has an emphasis on real-time systems. The method 
denotes static architecture and dynamic behaviour by six incorporated models, where each 
model is associated with a set of diagrams, as shown in table 2.2. The six models are briefly 
described below:

• assembly model - a static view of the entire assembly in terms of terminators, 
subassemblies and the relationships among them;

• object model - a static view of the architecture of a subassembly by the existence, 
abstraction and visibility of its component objects and terminators;

• class model - a static view of inheritance architecture by the existence and abstraction of 
its component classes and the ‘has subclass’ and ‘has instance’ relationships;

• state model - a dynamic view of the objects and classes by their states, transitions, modifier 
operations and exceptions;

• control model - a dynamic view of subassembly, its major threads of control, objects and 
classes by their attributes, operations and control flows;

• timing model - a temporal view of the subassembly by the timing of messages passed 
within and between objects.

DIAGRAM
APPLICABILITY

AREA OF CONCERNS
STATIC ARCHITECTURE DYNAMIC BEHAVIOUR

S
c
o
p
E

ASSEMBLY assembly model context diagram 
assembly diagram

control model 
timing model

oo control flow diagram 
timing diagram

SUBASSEMBLY object model 
class model

general semantic net 
interaction diagram 

composition diagram 
classification diagram

control model 
timing model

oo control flow diagram 
timing diagram

AGGREGATION
HIERARCHY

object model composition diagram

INHERITANCE
HIERARCHY

class model classification diagram

THREAD OR 
SCENARIO

object model interaction diagram control model 
timing model

oo control flow diagram 
timing diagram

CLASS object model 
class model

general semantic net 
interaction diagram 

classification diagram

state model 
control model 
timing model

state transition diagram 
state operation table 

oo control flow diagram 
timing diagram

OBJECT object model 
class model

general semantic net 
interaction diagram 

classification diagram

state model 
control model 
timing model

state transition diagram 
state operation table 

oo control flow diagram 
timing diagram

Table 2.2 ADM3 Applicability of Models and the Associated Diagrams
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ADM3 allows the developer to specify the diagram notations by the ASTS diagramming
language (ADL), and it also introduces Object-Oriented Specification and Design Language
(OOSDL), to document the design with specification of individual assembly, class, object,
operation and state etc. (refer to Booch templates). The OOSDL format is rather like a C++
header file, for instance the specification of a SET_OF_TRAFFIC_SIGNALS object as below
[Firesmith 93]:

object SET_OF_TRAFFIC_SIGNALS 
parent subassembly INTERSECTION; 

specification
message CHANGE_PRIMARY raise LIGHT_FAILED, POWER_FAILED is synchronous; 
message FLASH_PRIMARY raise LIGHT_FAILED, POWER_FAILED is synchronous;

exception LIGHT_FAILED; 
exception POWER_FAILED; 

end;
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Figure 2.18 ADM3 Icons for Interaction Diagram

ADM3 has an overwhelming set of notations, such as the icons used for the interaction 
diagram shown in figure 2.18. Thus, it was decided not to use it for the detailed 
experimentation in this research. Moreover, ADM3 is considered as a complex ternary 
method reminiscent in some respects of both Booch OOD and OMT. In other words, the 
major semantics of ADM3 have been concealed by the two chosen methods. Since ADM3 is 
an integrated object-oriented method, it is described in this section rather than in section 2.3.

2.5.3 THE FUSION METHOD (FUSION)

The Fusion method is another integrated OO method [Coleman 94], which claims to combine 
the best aspects of several methods. The principle influences on Fusion are depicted in figure 
2.19. The software development phases are described individually as follows:

The analysis phase is inspired by the OMT analysis models. Unlike other analysis methods, 
Fusion objects have neither interface nor dynamic behaviour in this phase, since it claims that 
object interfaces are likely to be invalidated by the later global decisions regarding the overall 
system and its behaviour. Fusion also does not use state diagrams during analysis, because 
they exhibit dynamics and the descriptions are cumbersome. The major influences are:
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Object model: the object model in OMT with relatively minor notational differences;

Operational model. OMT functional model with pre- and post- condition specifications 
from formal methods;

Life-cycle model, the regular expression of life cycles from JSD (section 2.2.2).

CRCOMT

object model 
and process

object interaction

Fusion
pre- and post

conditions visibility

Booch OODFormal Methods.

class Gun 
attribute constant clutch: Clutch 
attribute constant pump: Pump 
attribute trigger: TriggerStatus 
attribute status: GunStatus 
method depress_trigger() 
method release_trigger() 
method enable() 
method disable() 
method is_enabled(): Boolean 

endclass

Figure 2.19 Influences on the Fusion Method Figure 2.20 Class Description

The design phase is based on the CRC and Booch OOD methods, where a systematic design 
process is added. Fusion provides class descriptions by collating information from the object 
model and the following design models:

• Object interaction graphs: the communication information scattered across CRC cards;

• Visibility graphs: the visibility information between objects from Booch object diagrams;

• Class descriptions and inheritance graphs: a template notation to document the syntax of 
classes (as the example in figure 2.20) and graphs for recording inheritance.

In the implementation phase, Fusion claims that most applications can be directly resolved 
from the class descriptions. For instance, the class description of a Gun object shown in figure 
2.20 (above) can be easily mapped to a C++ header file. The developer can fill in the details of 
each operation with supports from various graphs in the design phase. Moreover, Fusion 
suggests recording extra class semantics by a language-independent notation, such as extended 
state machine with pre- and post- conditions.

Fusion aims to meet the needs of software development which are not met by any existing 
methods. It requires a strong commitment to being systematic and rigorous, but this may not 
fit the technical requirements of an object-oriented development [Coleman 94], One major 
drawback of Fusion is that the method needs to be modified for use on distributed, real-time 
object-oriented systems. Basically, Fusion picks the proficient tools provided from the 
influential methods, and mixes their semantics together by resolving the context dependence, 
that is how the semantics of the tools relate to one another. This advocates an important 
technique for meta modelling adopted in this research (see next chapter). Nevertheless, since 
there are no distinct features with respect to the five selected methods, Fusion is not included 
for detailed experimentation.

2.28



2.5.4 THE KADS METHOD

The methods described so far are mainly software development methods, although there are 
large sectors of development methods not addressed. This subsection addresses one of the 
growing areas for methodologies, that is the knowledge-based system analysis and design 
methods. The KADS and MIKE approaches shown in appendix C are the classic examples. 
KADS is described here since it is closely related to our method representation (chapter eight) 
and knowledge acquisition (chapter ten). This area of technology has gradually become an 
important ‘software’ development method6.

KADS [Schreiber 93] is a principled approach towards knowledge-based system (KBS) 
development. The approach can be characterised by two main principles that underlie the 
process of building KBSs: firstly the principle of multiple models; and secondly the principle of 
knowledge-level modelling as a way to describe problem-solving expertise in an 
implementation-independent way. The KADS development process is comprised of seven 
models, where the crucial activity of knowledge engineering is based on constructing the 
model o f expertise. The KADS approach also distinguishes four knowledge categories 
according to their epistemological distinctions. These different types of knowledge are known 
as the domain knowledge, the inference knowledge, the task knowledge and the strategic 
knowledge (refer to appendix C for more details).

In addition, KADS supports both the graphical representation and the textual representation of 
various layers of knowledge. The diagrammatic notations are depicted in their respective 
structures (see the figures in appendix C). These graphical representations are accompanied 
by textual representation, such as the domain description language (DDL) for specifying the 
domain knowledge. The DDL statements can be compiled into a set of Prolog predicates, 
which permits further experimentation or execution on the knowledge.

KADS is a complex method. Both products and activities are well-structured with many 
techniques and much guidance. KADS is still a developing method, so it has not been chosen 
for further method experimentation. However, it is still of interest to discuss the KADS 
approach itself as a ‘meta modelling method’. The following points are found to be significant 
from the meta modelling prospective:

• The KADS approach is intended for knowledge engineering in general, but the main focus 
of this research falls on the method knowledge modelling only. A few differences are 
encountered in this change of domain scope, such as the categorisation of knowledge and 
the knowledge acquisition process itself. These distinctions are elaborated briefly in the 
following points and details can be found in the description of the meta model later.

6 Ultimately, a knowledge-based system or an expert system is a piece of software so the corresponding 
development method can also be considered as a software development method.
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• The domain layer directly reflects the concept structure required in a meta model. 
Concepts, properties and relationships are important constructs in modelling products of a 
method. Apart from adjustment of terminology, such as a structure may refer to a 
fragment (a group of correlated concepts), the relationships between concepts are loosely 
defined. The properties of relationships, such as roles and cardinalities must also be 
defined specifically.

• The inference layer gives significant ideas about modelling activities. The knowledge 
source denotes operations in the process and the meta-classes describes the pre- and post
conditions of the operation. However, it is found that the process of a method should lie 
between the inference layer and task layer, which respectively define the functional and 
control viewpoints of knowledge engineering. Therefore there is a direct connection from 
concepts as products to tasks as processes. Furthermore, the task decomposition 
(hierarchical task structure) in the KADS approach is not flexible enough to denote the 
creativity of software engineering that include iterative, recursive development processes.

• The strategic layer concerns the problem analysis in method evaluation. This is not the 
emphasis of this research, but is discussed as speculated work in chapter twelve.

• The knowledge acquisition of KADS involves three main activities: eliciting the 
knowledge in a formal (usually verbal) form, interpreting the elicited data using some 
conceptual framework, and formalising the conceptualisations in such a way that the 
program can use the knowledge. The activities require the direct involvement of domain 
expert(s), such as in structured interviews. In method engineering, this is found to be 
impractical, since it is difficult to identify ‘method experts’ apart from the ‘method 
founders’ themselves. In addition, interviewing software developers seems to be an 
ineffective way of method knowledge transfer due to the inclination towards their problem 
domain and/or work environment. Chapter ten addresses this issue by introducing a 
different set of method acquisition media and elicitation techniques.

From the description above, KADS is a KBS ‘development method’ rather than a set of 
conceptual ideas or techniques (refer to section 2.1). It is comprised of extensive method 
concepts, design activities and heuristic guidance. KADS also supports comprehensive 
graphical and textual notations, with the potential of developing automated CASE tools to 
manage and manipulate the compiled Prolog clauses. Besides, some database management 
systems (DBMS) have also started to provide development methods: the InfoDesigner tool is 
available for supporting Microsoft Access database development [Perschke 93]. Nevertheless, 
the main concern of this research is on software development methods rather than methods in 
general. Most other development methods are either poorly documented or too immature to 
discuss systematically, so they are left as future works for a wider scope of method 
investigation. Hereafter the term ‘method’ refers to ‘software development method’.
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2.6 SUMMARY OF INVESTIGATION

From the investigation of software development methods, the following points are noted:

• All methods incline towards a certain aspect of software development, such as functional 
decomposition by levelled-DFDs (such as DeMarco SA, JSD) and abstract data types in 
most object-oriented methods (Booch OOD and OMT). Some methods focus upon 
message passing (OOA and OMT), some emphasise task structuring (Codarts/DA) and 
some process engineering (Ptech). There are even methods based upon a particular 
programming language (HOOD and Adarts for Ada development). In terms of modelling, 
some methods denote the structural view (CRC, OOA), some indicate the behavioural 
view (OMT, HOOD) and some only the functional view (JSD). No single method is 
perfect for all software purposes or even ideal for a particular application. Therefore, the 
best solution is to provide method integration and support multiple viewpoints on the 
problem domain. In addition, the advantages of a generic model for method evaluation 
and comparison are promoted (OOSE). These are the main aims of method engineering.

• Each method has its own set of terminology. A single term may differ in various methods 
and different terms may imply the same thing in a single method. For instance, object and 
object-oriented have multiple meanings across methods (Booch OOD, HOOD and Ptech), 
whereas operation, function, procedure, service, process, method may be used 
interchangeably in a method (Booch OOD). This problem also occurs in the meta level, 
for example heuristics may be referred to as criteria (Codarts/DA), guidance (OMT) or 
design rules (HOOD), whereas notation may be used to decribe a symbol (OMT), a 
method (OOSA) or a fragment (Fusion). This problem is addressed for the method level 
in chapter eight (method representation); and for meta level this thesis provides a glossary 
(appendix A) with definitions of the terms used.

• The presentation techniques in the methods provide significant points about meta 
modelling, for instance using DDL-like language in structuring concepts (KADS); using 
pre- and post- conditions in structuring tasks (SSADM); and using definitive clauses in 
structuring guidance (OOA). These techniques give important strategies in representing 
semantics of a method; they should be incorporated in the generic model.

• During the method description the three main components in the meta model, namely 
product, process and heuristic, can be induced. Product describes the method concepts or 
what the notions are; process describes the method tasks or when to apply the notions, 
whereas heuristic describes the method guidance or how to deal with the notions. Each 
method can be identified by these three components, although some methods are strong in 
one aspect and weak in the others. The three components combine together to form 
method semantics as a whole. The ideas of these components will become clearer as 
each of them are described separately, later in this thesis (chapters five to seven).
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• The investigation also helps to identify the scope of this research by defining ‘software 
development method’ (section 2.5.4) and the chosen methods (section 2.4). Moreover, it 
addresses the existence and importance of meta modelling (section 2.5.2 and 2.5.3). This 
point is discussed further in next chapter - investigation of method integration, meta 
modelling techniques and metaCASE tools.

2.7 CONCLUSION

This chapter investigated eighteen software development methods by classifying them into 
four categories: structured methods, object-oriented methods, chosen methods and other 
methods. The key notions of each method are described and comments are made from the 
meta modelling viewpoint. An overview and significant points are especially presented for five 
chosen methods. Some notable points are shown as a summary of the investigation. The 
chapter also identifies the focal point of this research.
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3. INVESTIGATION OF METHOD 
INTEGRATION, META 
MODELLING RESEARCH AND 
METACASE TOOLS

A number of meta modelling techniques are available in both academic research and industrial 
products. Since the emphasis and the requisite of the problem domain is different in each one, 
there are various shortcomings to each approach. However, some significant experience 
and/or representation requirements can be drawn from these attempts. This chapter 
investigates the meta modelling techniques based on three categories: method integration, 
meta modelling research and metaCASE tools.

3.1 INTRODUCTION

Meta knowledge of the software development method is not a new topic to either the 
commercial market or the research field [Wen-yin 92] [Wijers 92]. There are many 
contributions from organisations and institutes all over the world [Kronlof 93] [Carmichael 
94]. However, this emerging science should be considered as a combination of technologies 
from software engineering, design method, advanced CASE tool and artifical intelligence. 
Some authors even refer to it as method engineering [Harmsen 94] [Nilsen 92]. Most people 
agree that 'each CASE tool is designed with a model in mind\ A  metaCASE is a tool to 
construct a CASE tool, therefore it must be designed with a meta-model. By looking into the 
internal formalism of metaCASE tools available, it will help us to recognise the representation 
of design method semantics and the concepts of meta-modelling embedded in the system, 
which includes data modelling, method processes, design constraints etc.

This chapter investigates meta modelling techniques in three categories. Firstly, the two major 
data interchange standards in method integration are presented in section 3.2, namely CDIF 
and PCTE. Secondly, recent meta-modelling research is studied in order to capture their 
basis and modelling perspectives. Section 3.3 looks at three proficient approaches in the 
subject, namely ALF-MASP, SOCRATES Project and MethodBase. Lastly, three 
prevalent metaCASE tools, namely ObjectMaker, MetaEdit and IPSYS ToolBuilder are 
reviewed in section 3.4. The costs and benefits of these meta modelling techniques are drawn 
out to develop the requirements of a generic representation. The final model is aimed to be 
both method and tool independent. Some significant points in the investigation are presented 
in section 3.5, which is followed by the conclusion of this chapter.



3.2 METHOD INTEGRATION

There are two bases for method integration: the first depends on data interchange between 
portable components [Daley 93] [Schefstrom 93]; and the second relies on a common method 
representation [Potts 89] [Carmichael 94] (see section 3.3). This section concentrates on the 
first basis by reviewing two well known data interchange approaches, i.e. CDIF and PCTE.

3.2.1 CASE DATA INTERCHANGE FORMAT (CDIF)

The objective of the CDIF is to provide a set of standards that will enable CASE tools to 
interchange information in a standard format [Imber 91]. It adopts a common four-layer 
architecture for repositories and similar applications. Each layer in the framework is used to 
define the layer below it, as illustrated by the examples in figure 3.1a.

0:N
IsAttributeOf

RelationshipName
c:d

Cardinalities 
a: minimum source entity 
b: maximum source entity 
c: minimum destination entity 
d: maximum destination entity

a:b
q.n  H asSource

0:N
0:N

HasDestination
0:N | HasSubtype

Subtype 1 SubtypeN

SuperType

EntityName

MetaEntity

Attributable
MetaObject MetaAttribute

MetaObject

Binary
MetaRelationship

Meta-Meta-Model
Rules for Building CDIF Meta-Model 

_______ (e.g. CDIF Meta-Entity)_______

Meta-Model
CDIF Model for CASE 

(e.g. Entity, Process, Flow, DataStore)

Model
CDIF Models transferred between Tools 
 (e.g. Order System DFD)_______

Data
Instances o f objects in Tool Model 

(e.g. ORDER No. 12345)

CDIF

a. 4-layer framework b. graphical notation c. meta-meta model

Figure 3.1 CDIF Standards

The meta-meta model is composed of an entity-relationship-attribute (ERA) model, which is 
enhanced with subtyping and relationship cardinalities, as shown in figure 3.1b. Figure 3.1c 
summarises the meta-meta model by depicting the ERA components in the meta-model. A 
meta-model splits into two parts: the semantic model and the presentation model. The latter 
describes the presentation of information to the user, whereas the former denotes the 
underlying meaning of information in four subject areas:

• core - the aspects required for any objects transferred by CDIF standard;

• dataflow modelling - the semantics represented by data flow diagramming;

• entity-relationship modelling - the main forms of ERA modelling in information systems;

• data inventory - the definitions of attributes of any object and the underlying data type.

These formalisms determine the model that is transferred between tools, whereas the data 
layer describes the instances of objects in the model.
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SIGNIFICANCE

CDIF stresses data interchange through standard procedure calls, software bus or broadcast 
messages [Schefstrom 93]. It provides standards for exchange information and facilities to 
import/export between different language platforms. No actual data repository or interface 
services are supported by CDIF [Thompson 93].

From the specification of the meta model above, CDIF does not present any software process 
or heuristic guidance. It provides meta modelling of the object, but even that is very limited.

3.2.2 PORTABLE COMMON TOOL ENVIRONMENT (PCTE)

PCTE claims to support integration in four dimensions [ECMA 90] [Simon 93] as shown in 
figure 3.2a, which is based on the framework services amongst the dimensions as depicted in 
figure 3.2b. Different tools can be incorporated into this model to identify the various services 
to support the integration [Daley 94]. PCTE considers the platform and environment 
integrations as external constraints which are not directly managed by the standard.

Integration Description
Presentation appearance of the software environment to the user

Data data sharing and exchange amongst tools
Control enhancement of communication between various tools used 

to support a software process in terms of their invocation
Process description and enaction of software process models in 

terms of tools invocation

a. 4-dimensions

Figure 3.2 PCTE Standards

Presentation Integration,

Control
Integration

Tool Process
Integration

Data Integration 

Platform Integration

Environment Integration

b. integration framework

The advanced PCTE+ Object Management System (OMS) satisfies the requirements of tool 
integration by introducing the following ideas into the SE database [Oquendo 91]:

• concepts o f objects, attributes and links: a specific data model that is derived from the 
ERA data model and the object-oriented paradigm;

object - a uniquely identified entity that is characterised by a name, a set of supertypes, a 
set of attribute types, a kind of contents and a set of link types;

attribute - a specific property of an object or a link, that is characterised by a name, a 
value type, an initial value and a duplication property;

link - a directed binary relationship that is characterised by a name, a cardinality (one or 
many), a category (existence, composition, reference, designation or implication), a set of 
possible origin and destination object types, a set of attribute types (possibly empty) and 
an optional stability property, exclusiveness property and duplication property.
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• concepts o f composite entities and object’s contents: provide facilities for representing and 
manipulating data down to the level of fine granularity;

• concept versions o f composite entities: provide facilities for storing and accessing multiple 
versions of single and composite entities while retaining their version history;

• concept o f type specialisation: provide facilities for defining new types by extending 
existing (base) ones while maintaining the compatiability with these base types;

• concept o f schema definition sets (SDS) and working schemas (WS): provide facilities for 
defining database views for tools (SDS - a set of related type definitions which constitute a 
subset of the database schema, WS - the union of all type definitions in the SDSs);

In addition, PCTE+ also supports the requirements from the SE perspectives:

• mechanisms for concurrency and integrity control: by providing lock mechanisms for 
ensuring the consistency of concurrent data access operations, and the concept of activity 
which includes the one of transaction;

• mechanisms for discretionary access control: by means of the concept of security defined 
as the prevention of unauthorised disclosure, amendment or deletion of information;

• support for multiple programming languages: by defining the database concepts in a 
language-independent way and by specifying the interface of operations in different 
programming languages;

• support for distributed architecture and database: by providing a data model whose 
design takes into account the constraints of a distributed hardware architecture, and a 
transparent distribution of the database over the network of workstations and mainframes.

SIGNIFICANCE

PCTE emphasises the interchanging of portable components (or tools) as outcomes, so neither 
design process or heuristics are recorded in the OMS declaration. It also lacks a pictorial 
view of the SDS or the WS. However, PCTE is employed as an information exchange 
standard for some meta modelling tools, such as [Oquendo 93] and [Saeki 94a].

The major shortcoming of method integration by data interchange is that the approach only 
handles information transfer between tools (method components) but their internal semantics 
are not properly addressed. Although both CDIF and PCTE outline an elementary description 
of ‘product’ as object, there is no conceptual significance to the representation. Moreover, 
this description is mainly for exchange tool specification rather than a method definition. In 
this research, the focus is on the other extreme of method integration. That is, to establish a 
generic model for method representation and to integrate method concepts at a semantic level. 
The next section presents meta modelling research endeavours to support this approach.
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3.3 META MODELLING RESEARCHES

In the academic world, there are numerous research projects in the areas of software 
engineering [Finkelstein 92], conceptual modelling [Grosz 91] [Siau 92] and CASE tools 
[Gulla 91]. Some of these studies suggest a requisite for and the significance of meta 
modelling [Dewal 92], but only a few attempts to tackle the solution explicitly and most of 
these related projects are fairly recent works. This section discusses some leading meta
modelling research projects, and particularly focuses on their method representation aspects.

The three projects described are the ALF-MASP metaCASE Environment (from France), the 
SOCRATES Project (from Netherlands) and the MethodBase (from Japan). Although all 
three denote method product and process explicitly, the fundamental models are different.

3.3.1 ALF-MASP

The ALF metaCASE environment is developed in the framework of the ALF ESPRIT project. 
It claims that tool integration is a key issue in CASE environments for supporting the entire 
software development process [Oquendo 90]. PCTE (section 3.2.2) supports the data and 
presentation integrations and lacks mechanisms for the control and process integrations. The 
ALF project extends the PCTE functionality by:

• Control integration - providing means of intertool invocation, communication and
synchronisation;

• Process integration - introducing software process interpreters (described later) and 
software tools between them.

A major enhancement is called the event-reaction mechanism (ERM), which provides the 
functionalities to express and enforce the two integrations of the software tools on top of 
PCTE. ERM is represented by a 3-tuple as (E, R, C), where:

• E - an event type that describes situations which raise events of this type;

• R - a reaction type that describes reactions taken when events of type E are raised;

• C - a control specification for the triggering of reactions of type R.

ALF has a formalism for software process modelling, called the MASP (meta-Model for 
Assisted Software Processes). The ALF project claims that MASP provides the mechanisms 
for describing a generic process model that can be incrementally and repeatedly instantiated in 
order to produce project-specific software process models. The MASP description is 
enactable and can be used to provide a better understanding of software processes and assist 
the communication amongst developers. Figure 3.3 presents a complete MASP specification 
and the composed six models are described briefly afterwards [Oquendo 93].
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masp =
MASP specification 
description 
END MASP 

specification =
identifier HAS TYPE operator_type 
7  (domain_and_range;) 

description =
object_model_definition 
(expression_model_definition *;’) 
operator_model_definition 7  
(ordering_model_definition 
(rule_model_definition *;’) 
(characteristic_modeI_definition *;’) 

domain_and_range = '(’ [ parameter { 7  parameter} ] *)’ 
parameter = par_access p a r j is t7  par_type 
par_access = IN I OUT IINOUT I READ I READWRITE 
parjist = parameter_name {7 parameter_name} 
parjype = objectJype_name I

relationshipJype_name I attributejype_name

object_model_definition =
OBJECT MODEL IS 
list_of_schema_definition_sets 
END OBJECT MODEL 

list_of_schema_definition_sets = sds sds} 
sds = sds_name I sds_definition I sds_extension 
sds_definition =

NEW SDS sds_name IS typejist 
END sds_name 

sds_extension =
EXTEND SDS sds_name WITH typejist 7  
END sds_name 

typejist = type {*;’ type}
type = objectJype_definition I objectJype_extension I 

relationshipJype_extension I 
attributeJype_extension I typejmportation 

objectJype_definition = ot_name SUBTYPE OF 
objectJype_names [ WITH 
[ATTRIBUTE attributejype_djist 7]
[LINK relationshipJype_dJist 7]
END ot_name]

expression_model_definition =
EXPRESSION MODEL IS 
list_of_expressions 7  
END EXPRESSION MODEL 

list_of_expressions = expression {7 expression} 
expression = event_defintiion I

logical_exp_definition I expression_definition 
expression_definition = ex_name 7  

ON event_d {7 event_d}
EVALUATE logical_expression_d 

event_d = event_name I event_description 
event_defintion = event_name 7  EVENT 

event_description 
event_description = user_definited_event_situation I 

read_event_situation I update_event_situation I 
create_event_situation I delete_event_situation I 
move_event_situation I convert_event_situation I 
expression_event_situation I 
invoke_operator_event_situation I 
exit_operator_event_situation I time_event_situatioi

operator_model_definition =
OPERATOR MODEL IS 
list_of_operatorJypes 
END OPERATOR MODEL 

list_of_operatorJypes =
operatorJype {7 operatorjype} 
operatorjype = operatorJype_definiton I 
operatorjypejm portation  

operatorJype_definition =
op _nam e7  [domain_and_range] 
PRECONDITION 7  logical_expression_d  
POSTCONDITION 7 logical_expression_d  
KIND I INTERACTIVE I NON INTERACTIVE 

logical_expression_d =
log_exp_name I log_exp_description 

logical_exp_definition =
log_exp_nam elog_exp_descrip tion  

log_exp_description = ..."it is a logical expression  
built using the logical connectors AND, OR, 
NEGATION and IMPLICATION, where variables 
may be typed and universally on existentially 
quantified..."

ordering_model_defintion =
ORDERING MODEL IS 
list_of_ordering 7  
END ORDERING MODEL 

!ist_of_ordering = ordering { 7  ordering} 
ordering = [ or_name 7  ] path_expression  
connection = FOR ALL variable 7  object Jyp e_n am e  

[ IN (variable I constant) 7  objectJype_nam e ] 
path_expression =

[connection DO] operator_exp I 
[connection DO] br_path_exp I 
[connection DO] bi_path_exp 

br_path_exp =
'{’ path_expression '}’ I '(’ path_expression ')’ I 
'( path_expression '*)’ I '[’ path_expression *]’ I 
*[’ path_expression *]’ counter 

bi_path_exp =
path_expression ‘II’ path_expression I 
path_expression T path_expression I 
path_expression 7  path_expression

rule_model_definition =
RULE MODEL IS 
list_of_rules 
END RULE MODEL 

list_of_rules = rule { 7  rule} 
rule = [ru_name 7] IF expression_d

THEN operator_name '(’ [param eterjist]')’ 
expression_d = event_d I logical_expression_d I 

expression_name I expression_description 
param eterjist = par { par} 
par = variable I constant

characteristic_model_definition =
CHARACTERISTIC MODEL IS 
list_of_characteristic 7  
END CHARACTERISTIC MODEL 

list_of_characteristic characteristic ^ ’characteristic} 
characteristic = [ch_name ’:’] logical_expression_d I 
expression_name I expression_definition

Figure 3.3 MASP Specification
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• Object model - a set of object types definitions and imports which are structures in terms 
of PCTE+ OMS Schema Definition Sets (refer back to section 3.2.2);

• Operator model - a set of operator type declarations in terms of pre- and post- conditions
(backward and forward reasoning), domain and range (input and output parameters);

• Expression model - a set of logical conditions to describe particular states of software 
processes based on the first-order predicate calculus;

• Ordering model - a set of orderings to express restrictions on the execution of operators, 
such as sequential, alternative or concurrent between two specified operators;

• Rule model - a set of rules to define the possible automatic reactions to specific situations 
arising during the software process;

• Characteristic model - a set of characteristics to describe the constraints on the software 
processes states that should be enforced during their enaction.

When a MASP is instantiated, which gives an instantiated MASP (IMASP), enough
information is gathered to enact software processes. The enaction is an interpretation of the 
MASP using the IMASP as a knowledge base in a context local to an assisted software 
process (ASP). The overall approach for MASP is to interleave instantiation and enaction as 
depicted in figure 3.4a. This approach provides the possibility of considering the part of the 
development that has been executed before instantiating a further part [Oquendo 92].

Figure 3.4b sketches the architecture of the ALF metaCASE environment system, which 
provides the set of tools and services for generating a process-centred software environment. 
The main component is the MASP interpreter. This is a production system that monitors the 
software development and provides assistance whenever necessary. The MASP interpreter 
can be thought of as a process with dual tasks. Firstly, it performs the forward and backward 
reasoning upon the activity of other processes under its control. Secondly, it interprets many 
ASPs that are connected to the IMASP.

P r o c e s s n M ^ e l s l  dynamic instantiation 

instantiation

IMASPs
enaction

P rocess Enaction

ALF User Interface

MASPs and Instantiated MASPs

MASP Interpreters (Process Engine}

Tool Instantiation Envelope

CASE Tool or Service Tool

PCTE
Composite Objects & Versions 

Event-Trigger Mechanism
 ~~~r~--------

^Object Base^

a. instantiation and enaction b. ALF system architecture

Figure 3.4 ALF-MASP Approach
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SIGNIFICANCE

The ALF metaCASE system can be considered as a bond of tool integration and method 
engineering. It builds a generic software process model on top of the PCTE environment, so 
ALF is regarded as comprising ‘partial’ meta modelling techniques. Since ALF is a process- 
centred environment, it does not explicitly provide the modelling of products or a full method 
representation. It achieves the description of products by borrowing the PCTE+ OMS object 
base to act as a repository of models of processes or MASPs. The object model, organised 
through object-orientation, enhances the SDS with new mechanisms including structured and 
multi-valued attributes, triggers and semantic constraints.

Moreover, ALF presents a complete definition of the meta model software processes by the 
MASP specification. The six models (i.e. object, operator, expression, ordering, rule and 
characteristic models) are formally declared in a distinct structured language. Although the 
first two models only describe the structural-side1 briefly, the behavioural-side2 is documented 
comprehensively by the last three models. The expression model is just a means for declaring 
terms that are in the other models. The relaxed pre- and post- conditions in the operator 
model enable the description of the semantics of complex activities by MASPs, rather than 
treat them as the basis for backward and forward reasoning. This mechanism extends PCTE 
with high level functionalities for control and process integration of tools [Oquendo 90].

In addition, it may be advisable to simplify the overall approach by combining some models. 
For instance, the characteristic model definition is actually the IF-part of the rule model 
definition (without the THEN-part). Therefore, theoretically, the rule model is a superset of 
the characteristic model, and the characteristic model can be embedded. Furthermore, ALF- 
MASP may improve with a graphical representation of MASP interactions. The details of 
MASP dependence (in both rule model and characteristic model) are very difficult to observe, 
but a pictorial view of the MASPs can illustrate this unambiguously. The process sequencing 
(in the ordering model) can also be visualised in such diagrams.

The MASP is referred to as the ‘assisted’ software processes and the MASP interpreter is 
claimed to provide assistance and guidance to the software developer. It is stated that the 
interpreter is implemented using the ALF-Rete Expert System Generator with production rules 
to incorporate the event-reaction mechanism (if condition then action). The interpreter also 
provides data sharing between the procedural and the heuristic parts of an application 
[Oquendo 92]. However, no explicit discussion on the heuristic part is found in any available 
literature, and this sector of meta modelling is an add-on to the ALF system.

1 In the PCTE+ OMS terminology, this is known as presentation and data integrations. A full description of 
object and operation models may be available in the PCTE environment itself.

2 ALF names this the control model, it actually refers to the control and process integrations in PCTE+ OMS.
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3.3.2 SOCRATES PROJECT

The SOCRATES project is based on the early SERC knowledge representation researches, 
such as process modelling [Wijers 90] and conceptual task modelling (CTM) [Brinkkemper 
90]. The project is extended to specify task structure semantics through process algebra 
[Hofstede 93a] and to discuss expressiveness of conceptual data modelling [Hofstede 93b]. 
This section focuses on the representation of information modelling knowledge described in 
[Wijers 92].

SOCRATES claims that CASE tools should include knowledge of both the tasks within an 
information modelling process and the models resulting from the modelling process. Three 
levels of abstraction are suggested, namely the application, the method and the axiomatic 
levels, as depicted in figure 3.5a. The last (top) level is a set of axioms for composing the 
software method at lower levels, and that is where the main meta-modelling techniques lay. 
Two types of metaCASE users are distinguished: a meta-analyst defines a meta model 
representing relevant method knowledge and the analyst uses the metaCASE tool to support 
their modelling process [Hofstede 92]. This support is provided by automatically interpreting 
a meta-model from the meta-model base, as shown in figure 3.5b.

Axiomatic
Level

Method
Level

Application
Level

I' 'M m A
s'

process of 
meta-modelling- '

meta-model
1 ' i  k
x  \

process of modelling models

Meta
analyst User Interface Analyst

Meta-model
Editor Interpreter

Application 
^ Base ^

Meta-model 
v Base >

a. three level of abstraction b. a generic CASE shell architecture

Figure 3.5 SOCRATES Three Levels of Abstraction

Unlike ALF-MASP, SOCRATES envisions information modelling knowledge as 
encompassing a way of modelling (product3) and a way of working (process) [Wijers 90]. 
The respective knowledge is formally represented by concept structure and task structure. A  
concept structure is represented by a NIAM schema, where the main notions are shown in 
figure 3.6a. The structure identifies specialisation and association. Roles are defined in each 
association, and each role is given a specific number. An association can be transformed into 
a concept through objectification. Figure 3.6b illustrates the corresponding concept structure 
of the JSD entity structure step (refer to section 2.2.2). In addition, all the concept 
definitions, properties and verification rules of the model are documented as first order

3 Confusingly, SOCRATES refers to a meta modelling product as ‘model’ (see figure 3.5a).
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predicate logic. A concept structure is a 5-tuple C = (C ,A,R.S,Q), where C is a set of concepts, 
A is a set of associations and different relationships (association, specialisation and 
objectification) are formally represented as:

R: A x N/{0} -» C is the (partial) function denoting the concept playing the n-th role,
S c  C x C is the specialisation relation defining the subtyping network,
Q : A <-> C is the partial objectification function (a bijection).

One role property in JSD declares ‘each association has at least two roles’:
V ae A 3c-|eC  3c2gC  [role(a,1) = c-j a  role(a,2) = C2]

and a verification rule defines ‘each not-a-leaf is either an iteration, a selection or a sequence’:
Vn [not_a_leaf(n) =s> iteration(n) v  selection(n) v  sequence(n)]

structure(Role
( 5 3 )  V number)

diagramAssociation consists of

specifies.
ordering.

has a s  parts inactions
Is specified byIs

representedobjectification. Involved in

action
represents

Concept

null box I iteration 11 selection (sequence) ( root

is subtype of

a. main notions b. JSD entity structure

Figure 3.6 SOCRATES Concept Structure

Allied to the concept structure is the task structure where the main notions are depicted in 
figure 3.7a. A task is something that has to be performed in order to achieve a certain goal 
and it can be defined recursively in terms of subtasks. Therefore a task can be decomposed 
into a hierarchy of subtasks until a desired level of detail has been reached. Decisions indicate 
choices between subtasks and coordinate the sequence of tasks. Figure 3.7b shows the 
interrelationship between task and decision, whereas figure 3.7c illustrates the task structure 
of the five JSP specification steps. SOCRATES defines a Predicate/Transition net (PrT-net) 
to represent the dynamic interpretation of task structures. It is a Petri-net whose places 
correspond to predicates with variable extensions, and transitions represent classes of 
elementary changes of predicate extensions. Basic task procedures, task views, priori & 
posteriori verification rules, information places and decision rules are introduced to provide 
the links to the concept model (see [Verhoef 91] and [Wijers 92] for details).

Again, first order predicate logic is used to specify the task structure. A task structure is a 7- 
tuple T = (T, D, L, N, F, G, I), where T is a non-empty set of tasks, D is a set of decisions, L is a 
set of labels. The set TuD will be represented by O as the set of task object:
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N: O L is the function assigning labels to task objects,
F q O x O is the relation defining the triggers,
G: O <-» L-t is the partial function defining the decomposition with = {le L 13te
T[N(t)=l]},
I c  G is the partial function defining the initial items.

Task name
(Task, Decision)

Is name of
Task
object triggersLabe!

)— © — (has as. 
initial item decomposed into

Type of. 
object

Task name = Label is name of Task object is 
of Type of object T ask '

task A decomposition

taskB
initial task

taskC taskD

task E task F

decision

task G

entity action 
step

entity structure 
step

initial model 
step

function
step

system timing 
step

a. main notions b. task and decision c. JSD specification step

Figure 3.7 SOCRATES Task Structure

Each decision is formalised as a rule. A decision rule is comprised of conditions and
outcomes. A simple condition is an informal statement in natural language and the decision
defines various outcomes with different certainties. SOCRATES claims that certainty factors
(cf) constitute the heuristics. The syntax for the decision rule is as follows:

<rule> ::= If <conditions> Then <outcom es>
<conditions> ::= <simple_condition>

I '(' <conditions> 'or' <conditions> {'or1 <conditions>}')'
I '(' <conditions> 'and' <conditions> {'and' <conditions>}')'
I 'n o t ''(' <conditions> ')'

<outcom es> ::= <outcome> [with cf <cf>]
{ and <outcome> [with cf <cf>]}

SIGNIFICANCE

The main emphasis of SOCRATES is to compose a conceptual model of information 
modelling knowledge. Association is too unimpeded as a meta model construct, and roles are 
relaxed as labels or attributes in concept relationships. They can be defined more rigidly in a 
generic model to reduce unnecessary complexity. Also, SOCRATES does not define all key 
notions of a method as concepts. For instance, the meta concept structure (shown in figure 
3.6a) describes the ‘specialisation’ concept as an association and the ‘objectification’ concept 
is hidden in a role name. The overall task architecture is also comparatively complex and 
detailed in meta modelling, which makes the individual components of the task structure less
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reusable. The size of the data repository may increase dramatically according to the number 
of decisions. Hence, the task structure is a homogeneous representation of information 
modelling and it is designed without method integration or dissection in mind.

First order predicate logic is a very formal but efficient way to define a conceptual model, 
since the verification rules and consistency checks can be formulated easily (as illustrated 
earlier). The main drawback is that mathematical logic is less ‘readable’ and ‘executable’. It 
is useful, however, to adopt a hypertext dictionary or a help system for critical concepts or 
tasks to reduce the human-logic barrier. This becomes essential for methods which have the 
same terminology but different meanings (section 2.6). Also, it is advisable to choose a 
formalism that is readily available for execution. For instance, the DDL statements in the 
KADS approach (section 2.5.4) are transformable to Prolog clauses, which is a logic 
programming language.

It is also realised that the general heuristics appear in a form of both design rule and textual 
guidance rather than simply decision rules. This argument is also reflected by the rule model 
and characteristic model defined in the ALF-MASP (section 3.3.1). A meta model should 
support the common formalism. In addition, the main heuristic information lies in the context 
reasoning and not on the certainty factors. Most decisions are inevitably based on individual 
circumstances and may not be looked upon as straight deduction rules as in an expert system.

The semantics of the SOCRATES meta model is defined by formally relating the application 
level and the method level, by indicating how the contents of information place instances and 
the application model which is an instance of the concept structure, are changed by the 
execution of an instance. SOCRATES has a clear integration between the structures as the 
main notions are based upon the same formalism.

3.3.3 METHODBASE

MethodBase is a tool for developing specifications using multiple methods. The requirements 
of MethodBase are to document products and activities throughout the development and to 
support semantic relationships between design methods. Figure 3.8a shows the structural 
relationships among a meta model, formal representations of designs (object models), and 
actual specification processes. Thus MethodBase represents the semantic relationships in the 
meta model. The three basic characteristics of a MethodBase system are summarised as 
follows [Wen-yin 92]:

• guide and navigate the specification development according to the chosen design method;
• transform design method specification to another one at any development stage;
• choose suitable design methods appropriate for the problem domain and environment.
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MethodBase not only denotes method concepts in a product part, but also classifies six types 
of concepts (meta-concepts) under three categories as follows [Saeki 93a]:

• state and event capture behavioural properties of a problem domain;
• data and process describe what functions are being performed.
• object and association represent physical components and the interactions among them;

Meta Level
Model for Representations 
+ Relationships 

among representations
model

Object Level ^epresentatio
OOA 

•  1 representatio
S A  _ Formal Representations 

representation/ (Object models)

Instance Level JSD •  •  • OOA SA
process process process

Specification P rocesses 
(Products + Activities)

a. logical structure

hasQ  f Procedure ) precede 

input A  A  output

(IProductModel)
V  P a r t  S

b. product part of meta model c. procedural part of meta model

Figure 3.8 MethodBase Architecture

There are also six meta-relationships between these meta-concepts, as described below. 
Figure 3.8b shows the meta-concepts and their possible interrelationships. It is the product 
part of the meta model itself. (nextjto relationship is normally used in the procedural part that 
is discussed later)

• has_a represents the ownership among instances of concept;
• is_a represents the generalisation/specialisation structure of concepts;
• input/output defines the source or destination of a concept to the other concepts;
• defines denotes the equivalence relationship between the defined and defining concepts;
• nextjto describes the successor relationships among the ordered concepts.

MethodBase describes the process of a method in a so-called procedural part. The 
procedural part of the meta model consists of a procedure concept and the four types of 
relationships as depicted in figure 3.8c. A procedure could be directly applied to the concepts 
in the product part. The precede (or next Jo )  relationship presents the restrictions on the

■■■ > »( State Event )
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■ U
r
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sequence of procedures, whereas the has (or has_a) relationship allows decomposition of 
procedures into a lower level. The input and output relationships show the constituents of the 
procedure and their relationships to the product part as inputs and outputs respectively.
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Figure 3.9 MethodBase Description of OOA
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Illustrations of the product part and procedure part are given by the Coad’s OOA description 
(section 2.3.3). Figure 3.9a shows a product part of the OOA, whereas figure 3.9b depicts the 
decomposition of procedure define subjects into four subprocedures. In addition, a process 
specification language (PSL) is used to document the meta model in a textual form as follows:

METHOD OOA 
OBJECT 

HAS_A 
HAS_A 
IS_A 
INPUT

% Coad's object-oriented analysis 
O b jec t;
A ggregation: O b jec t;
Has : Service, Attribute, InstanceConnection ; 
In h e ritjro m : O b jec t;
R ece iv e : M e ssa g e ;

OUTPUT S e n d : M essage ;
OBJECT S u b je c t;

HAS_A Has : Object, Connection ; 
EVENT M essag e ;
PRO CESS S e rv ic e ;

INPUT in p u t: Data ;
OUTPUT o u tp u t: Data ;

STATE A ttribute;
DATA Data;
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DEFINES Defines Attribute 
ACTIVITY ldentify_objects;

IN PU T: O b jec t;
O U TPU T: O b jec ts ;
PRECEDE : ldentify_Objects, ldentify_Structures ;

ACTIVITY...
ENDMETHOD

The recent work of MethodBase involves formalising the representation by a formal language, 
Object-Z, which allows specifications of hierarchical structures and integration of method 
constraints etc. [Saeki 94b]. The meta model is extended by building a tool for cooperative 
specification processes [Saeki 93b]. Distributed individual tasks in a collaborative team is 
managed by two parts: various catalogued specifications and design methods stored in 
MethodBase; and a structured electronic mail system for communication among the members. 
The PCTE object base is used to hold various information together [Saeki 94a].

SIGNIFICANCE

MethodBase is the only meta modelling method that directly addresses the three types of 
relationships in multi-view specifications, which are: the whole-to-whole relationship of two 
products (or fragments) from different methods; the part-to-part relationship of two different 
constituents (or concepts) of two products and lastly part-to-whole refinement of a constituent 
of a product to another product. MethodBase claims to manage the hierarchical structures 
that are formed by these specifications, thus it fully supports the method integration.

The most outstanding point of MethodBase is that it employs the same graphical and textual 
representations for both product and procedure (or process) parts. This uniformity occurs 
throughout the meta model. However, it is found that MethodBase has no consistency in 
terms of notations, such as the distinctions between concept and product, and between activity 
and procedure. The graphical notations of meta-relationships in product and procedural parts 
(as shown in figure 3.8b and 3.8c) are inconsistent. The interchangeable arrow types between 
the two parts (in figure 3.9a and 3.9b) are also confusing.

In addition, the product part is incomplete, several substantial semantics are not encounted in 
the model, such as cardinality, directional aspect of relationships, parallelism and 
option/mandatory and part/whole features of concepts are not described at all. Thus, 
MethodBase is too immature to be stated as a conceptual representation of any software 
development method. Moreover, the idea of categorising concepts is good, but the 
classification according to their modelling viewpoints seems unessential to overall meta 
modelling. For instance, an attribute is defined under the state concept type (figure 3.9a), but 
as discussed in section 2.3.3, OOA does not actually describe dynamics. There are no direct 
links between the state type and the event type concepts (i.e. message). It may be better to 
classify by the nature of concepts (such as fragment and entity) so as to underline the multi
view specifications described above.
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The input/output relationships are an effective way to relate procedural conditions back to the 
product part, although the multiple appearance of a single concept in a procedural part seems 
clumsy (such as object and subject in figure 3.9b).

Moreover, the description of process heuristics is totally missed out in the meta model. This is 
considered as a significant drawback in most meta modelling techniques, since development 
guidance is one of the crucial sets of information provided by a method. Without heuristics, a 
meta model is simply a set of notation definitions. MethodBase also stresses the importance 
of textual specification. The expressiveness is improved from PSL statements to Object Z 
declarations, though the execution ability remains a difficulty in such a formal language.

3.4 METACASE TOOLS

The use of CASE tool has general acceptance in terms of software development [Spurr 92] 
[Stobart 91] [Wijers 90], The most appreciated aspects are the quality of diagrams, 
correctness and consistency with regard to applied methods and techniques. The major 
dissatisfactions lie within the poor interfaces with other software products and the limited 
possibilities to adapt a tool to our own standards. Work has been done in configuring the 
environment and the transparency of CASE tools [Gulla 91] [Brinkkemper 93]. However, the 
general solution towards integrated development methods falls within the remit of metaCASE 
technology [Brough 93] [Slooten 93] [Sorenson 88]. A metaCASE tool is dedicated to 
capture the modelling semantics of a particular method and to generate the desired CASE 
tool, from which the software is produced. This section presents three well-known tools for 
these purposes, namely ObjectMaker (from US), MetaEdit (from Finland) and IPSYS 
ToolBuilder (from UK). Their significance in meta modelling is emphasised in the description.

3.4.1 OBJECTMAKER

ObjectMaker [MarkV 93] is a product of MarkV in US. ObjectMaker supports the analysis
and design phases of the software development process. Its meta modelling is based on the
specification of notations in a method, which is basically a set of diagrams such as the Object
Class Diagram, the Service Chart and the State Transition Diagram in Coad/Yourdon OOA
(section 2.3.3). Each method is recorded in two main file types to describe its behaviour and
functionality, they are known as the menu file and the rule file. A menu file denotes all
possible operations in the method as menu (or menu bar) options. For instance, the icon menu
of the Object Class Diagram in OOA is shown below:

menu_of_icons ::= menu(
gray, disable, item(Nodes:„NULL,), 
separator,
item(Subject„ RECTANGLE(flags=>(thick,dash)), mth S),
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item(Class„ROUND_REC(flags=>thick), mth C), 
item (Class and Object,, IMPORT=oac.bde, mth 0 ), 
separator,
gray, disable, item(Arcs:„NULL,), 
separator,
item (Generalisation„ ARC(head=>circle_half), mth G), 
item(Yoke„ YOKE, mth Y),
item(Specialisation„ ARC(head=>arrow_none), mth L), 
separator,
item(W hole/Part„ ARC(head=>v_flush_out), mth P), 
item (lnstance Connection,, ARC(head=>arrow_none), mth I), 
item (M essage Connection„ARC(head=>arrow,flags=>thick), mth D), 
separator,
item(Bend„ BEND, mth B),

A rule file presents the constraints (MarkV refers to these as semantics) associated in the 
menu, such as the various class_and_object types in OOA are defined as follow:

Moreover, ObjectMaker includes a range of conventional and object-oriented methods, such 
as Adarts, DeMarco SA, Ward/Mellor, Yourdon, Booch OOD, OMT, OOA, Firesmith 
ADM3, CRC, Shlaer/Mellor OOSA etc. In addition, it provides code generation to Ada, 
C/C++ and COBOL sources. Data repository of the methods (diagrams) is also provided.

SIGNIFICANCE

Strictly speaking, ObjectMaker is not a metaCASE tool but a CASE tool which supports user 
customisation. Although MarkV claims that the supplement tool (MethodMaker) enables the 
user to configure a specific method, the capability is very limited and inflexible. For instance, 
there is neither definition of textual specification nor user-defined graphical presentation such 
as icons and bitmaps. The actual metaCASE mechanism remains in the kernel of 
ObjectMaker, which is inaccessible by the user. Thus, MarkV agrees to produce any 
demanded method upon request.

ObjectMaker is described in this subsection, since there are some distinct features between 
‘metaCASE tool’ and meta modelling. Firstly, the menu file describes all functionality in a 
notation, such as create a subdiagram or change persistence of an object. Ideally, they should 
be distinguished as behaviours of an individual concept. Secondly, the rule file defines the 
diagrammatic integrity in first order clauses, which is fairly close to that of SOCRATES 
(section 3.3.2). However, the rules are notational rather than semantical. Thirdly, the 
common data repository promotes the idea of multi-viewpoints in a problem domain, though 
there are no actual semantic relationships described between the notations.

);

get_oac_type1 () 
get_oac_type1 (‘error*) 
get_oac_type1 (round_rec,solid) 
get_oac_type1 (rectangle,*) 
get_oac_type1 (*)

= class_and_object(object); 
= class_and_object(object); 
= class_and_object(class); 
= class_and_object(object); 
= error;
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ObjectMaker is a closed system, the data repository is done internally in the CASE tool. All 
the methods are pre-defined and modelled with common services inside the tool kernel. Since 
there is no way to interface with the meta-model embedded in the tool, no further 
investigation can be carried out.

3.4.2 METAEDIT

MetaEdit is a CASE-shell, which claims to support configured methods by a generic tool 
environment [Smolander 91]. It is a user-definable tool that can even be used to model meta 
models. However, it is impossible to construct a suitable meta-model without some guidelines 
such as ‘meta-methods’ [Saeki 93a]. MetaEdit identifies two dimensions in method 
specification: type-instance and conceptual-representational as depicted in figure 3.10a. The 
first dimension distinguishes between the types in the meta model and their instances made up 
in the modelling target. The second dimension observes the difference between concepts and 
their representations.

OPRR concepts OPRR type 
representations

Concept instances Representation of 
instances

Meta level Representation
defintions

Target level Representations

object type symbol definition object instance symbol
property type data type property value data field

relationship type line type relationship instance connector
role type symbol definition role instance terminal

RepresentationalConceptual

Meta
level

Representation] 
-— definitions^/

Type

Target
levelInstance (Representation!

a. four domains of model information b. mappings between domains

Figure 3.10 MetaEdit Approach

MetaEdit is based on the Object-Property-Role-Relationship (OPRR) data model, that can be 
considered as an extended version of the entity-relationship-attribute (ERA) model 
[Smolander 92]. These four OPRR meta-types are mapped to their representations and how 
they are instantiated in figure 3.10b. In the following description, the single letters shown in 
brackets represent the respective instance sets in the conceptual structure (see later).

• Object (O) is a ‘thing’ existing on its own, which is basically an intrinsic method concept.

• Property (P) is the characteristic associated with other meta-types.

• Relationship (R) is an association between two or more objects;

• Role (X) is the name of the link between an object and its connection with a relationship.

Figure 3.11a depicts the meta-metamodel of MetaEdit represented in the ERA modelling 
technique (see [Smolander 91] for details), whereas figure 3.11b presents a partial OPRR 
model of Booch OOD’s class diagram (refer to section 2.4.1). Apart from the four sets of
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meta types, the meta model also describes two mappings: the mapping (r) defines the 
relationship types with the powerset of the roles and objects that it refers to; and the mapping 
(p) associates the property types with the other types (or non-property types). In addition, 
data type constraint, integrity constraint and connectivity constraint are also introduced to 
keep the valid instantiation of a meta-model.
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a. meta-metamodel in ERA b. Booch OOD Class Diagram

Figure 3.11 MetaEdit OPRR Modelling

MetaEdit provides a textual specification for OPRR, which is known as conceptual structure.
This data structure is based on sets and mappings defined earlier and it is required in the
implementation of an OPRR based CASE environment. The following conceptual structure
represents the class diagram technique shown in figure 3.1 lb.

O = { Class, ClassUtility}
P = { Name, Visibility, C ardinality}
R = { D escendant, Ancestor, User, U se d }
X = { Inherits, U s e s }
r = { <lnherits, « D e sc e n d a n t, {Class}>, <Ancestor, {C lass}»> ,

<U ses, « U s e r ,  {Class, ClassUtility}>, <Used, {Class, ClassUtility}»>} 
p = { <Class, {Name, Visibility, Cardinality}>, <ClassUtility, {Name, Visibility}>,

<D escendant, {}>, <Ancestor, {}>, <User, {Cardinality}>, <Used, {Cardinality}>, 
clnherits, {}>, <Uses, {} > }

SIGNIFICANCE

The developer of OPRR recognised two weak points of the model. Firstly, OPRR has only a 
flat structure and it provides no way to model naturally multi-dimensional structures or 
complex objects. This is because an OPRR model is an enhancement of traditional two- 
dimensional ERA models, as shown in figure 3.11a. The role is defined to put the emphasis 
on the association between object and relationship. This relatively simple structure in an 
OPRR model provides the benefit of ease of development of SQL-like query or even 
customised code generation. However, the cost is rigidity and unreusable modules. The 
solution to this is to employ object-oriented techniques, such as subtyping and composition, in 
the model. These will extend the meta model dimensionally.
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Secondly, MetaEdit does not contain any concepts for defining the connections of multiple 
connected methods. This will be a major obstacle in representing rich-notation methods, such 
as Booch OOD and OMT. In order to reduce this inflexibility, the meta model should allow 
every method concept to be represented by a meta concept. In other words, each method 
concept has a representation, and it can compose with other method concepts. The terminal 
concepts are the property type as in OPRR.

The other problem with meta modelling in OPRR is illustrated by the specification of a DFD in 
figure 3.12 [Smolander 91]. The three object types are Process, Store and External. In order 
to avoid data flows between Store and External, two types of flows are identified: FFP (flows 
from Process only) and Flows (flows from Store or External). The former can flow to any 
object types, whereas the latter can only flow to a process. This is considered as a crutch in 
conceptual modelling, since the integrity should be defined specifically as a constraint rather 
than inducing pseudo-concepts in the representation. The result is not only to appease the 
implementation requirement, but also to cause unnecessary complexity to the meta model.

Fronv 
part , partProcess

NameName.
Flow:StoreFFP

CodeCode

Fronv 
part ,Externalpart

.Nam* Code.

Figure 3.12 OPRR specification of DFD

The main textual specification of MetaEdit is the ‘set-based’ conceptual structure described
earlier. In addition, MetaEdit provides the FREE-object Definition in OPRR Metalanguage
and Query Language [Rossi 92], such as the FreeNode and ID options definitions shown
below. The ultimate aim of a metaCASE tool is to generate a user-defined tool with a
specified method, so these languages are much directed towards the need of implementing a
CASE tool rather than meta modelling. The modelling techniques underline certain important
ideas about the meta model, but the graphical and textual representations of the method are far
from being a generic model.

symbol "FreeNode"
{ shapes("Rectangle"); scale 0.4; 
labelsf'F ree type" at (10 60 190 140) ce n tred ;}} 

property type "ID options"
{ datatype listfNA","OPTIONAL", "MANDATORY’V'none"); 
num ber of values 1;}
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Like most metaCASE tools, MetaEdit puts less emphasis on modelling method heuristics such 
as a concept dictionary. The recent related work on MetaEdit has proposed a triangular 
shaped meta model, to bridge the gap between system product model and system process 
model [Marttiin 94]. An information systems development (ISD) level consists of IS models, 
development group and ISD process. They are specified by meta-datamodel, activity model 
and agent model respectively in the method engineering (ME) level. However, this does not 
eliminate the discontinuity between the concept and task structures but defers the burden to 
the meta-level of method engineering.

3.4.3 IPSYS TOOLBUILDER

IPSYS ToolBuilder is an integrated system that combines the efforts of six universities and 
three research projects in the UK [Alderson 91]. Different parts of the system communicate 
through a common data repository. The meta-model of ToolBuilder is mainly based on three 
models, which are entity model, frame model and shape model, (see appendix B)

The entity model is an extended entity relationship diagram and a set of entity type definitions 
of the described method. Each entity represents a method concept and it can have a number 
of attributes to describe the internal state of the concept. Four types of relationships are 
provided, namely subtyping, composition, reference and derived relationships. The first two 
are borrowed from object-orientation. A reference relationship can be considered as an 
association between concepts in different frames, whereas a derived relationship is a link that 
depends on all the above relationships, including the derived relationship itself.

The frame model describes all user-defined frames which appear in run-time. Each frame is 
based on an entity type in the entity model. There are three types of frames. A structured text 
frame is a textual specification which can be used as a concept template, a description or a 
catalogue; a diagram frame is a graphical specification to present the method model 
pictorially; and a root frame is basically a structured text frame that initialises the system when 
it starts. Each structured text frame has a number of subsections to define the structure of that 
frame, and the frames can communicate through sharing objects [IPSYS 92].

In addition, the shape model provides facilities to define the graphical presentation, and each 
individual notation is stored as a shape set or as a linkstyle set. Since ToolBuilder is fairly 
well known in both academia and industry, it is adopted to map our meta model to the 
metaCASE tool semantics. A detail description of the ToolBuilder is given in appendix B and 
the full comparison with our meta model is shown in chapter eleven.
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SIGNIFICANCE

ToolBuilder is a comprehensive integrated metaCASE tool. Despite the massive number of
structured text frames needed to declare a radical method, the basic meta model is definite and
explicit. The following points are noted:

• The entity model is a fairly simple and clear documentation of method concepts. Unlike 
ObjectMaker, each concept is associated with its own semantics directly, such as 
attributes, relationships and their related features. The shortcoming is that there is no 
straight distinction of a frame as a presentation of an entity or a tangible concept that must 
be denoted in the entity model. For instance, an object diagram can be referred to as a 
presentation or as a concept according to the denotation of the user. Some notions are 
debatable, such as persistence of an object can either be described as concept or attribute.

• ToolBuilder allows implementation ‘directives’ to be added in composition and/or 
reference relationships. These directives include set of, sequence o f owner o f source, 
target, name and reverse name etc. However, it may be advisable to describe individual 
conceptual aspects explicitly. The first two deal with cardinalities of source and target 
entities in a relationship, whereas the next three are used to denote the role of associated 
entities in composition relationship. The last two naming directives are used as references 
to the specific directional relationship. These directives are declared in this form because 
of the implementation requirement.

• It is relatively easy to formulate relationships in ToolBuilder, although some of them are 
mainly for navigational purposes rather than conceptual exposition. This is because 
ToolBuilder requires each navigation path in (frame/object/field) operation to be denoted 
by a single relationship between entities. Some reference relationships and the three types 
of derived relationships (path/aggregation/user-defined) are designed for this purpose. For 
a meta model, precise and concise representation is important. Unnecessary concepts and 
relationships, such as implementation constructs, should be eliminated or avoided.

• On the other hand, the navigation paths present an implicit model of the CASE tool 
processes, since the only accessible means of an entity is through one of the paths from the 
current entity.

• The precondition and trigger in each operation are defined as the guard condition and 
service supported to the underlying entity. These are essential modelling mechanisms in 
denoting processes, such the pre- and post- conditions described in a MASP specification 
(section 3.3.1).

• In ToolBuilder, each frame virtually represents a new state of the model with an entry 
action, which is basically displaying the frame and constructing a different set of 
operations available in the new frame. There is no explicit representation of method
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process in the meta model. This is, in fact, a great drawback of most metaCASE tools in 
term of method representation.

• Method heuristics are not formally described in ToolBuilder and many other CASE tools. 
This makes the tools a notational description rather than a complete documentation of the 
method. A good method should have a well-balanced description of concepts, processes 
and heuristics. Hence, a good meta model should have a comprehensive specification on 
these three aspects.

• The user-defined graphical presentation and adaptability of external environment (such as 
embedding C code) are the main advantageous features of ToolBuilder. The open method 
design is more favourable than the closed method design as in ObjectMaker (section 
3.4.1).

3.5 SUMMARY OF INVESTIGATION

From the investigation, the following points are noted:

• Data interchange standards support tool integration as well as method integration. Most 
of them provide a simple object model (rather than semantic model) for information 
exchange. The main emphasis is to specify transferable components between tools or 
methods, and semantics are not properly described.

• Current meta modelling research have inclinations towards certain modelling requirements 
or narrow domain perspectives. For instance, ALF-MASP focuses on software process 
integration, and concept modelling is omitted, whereas SOCRATES provides conceptual 
task modelling, but no common method representation. MethodBase is the closest 
attempt at a coherent meta model. However, MethodBase is not detailed and specific 
enough in both product and procedural parts to cover the complete semantics. Our meta 
model looks into these shortcomings.

• Each metaCASE tool has a conceivable meta model, since it affirms tool generation with 
the underlined method. Process declaration in metaCASE tools is implicit and heuristics 
presentation is not normally supported, though they can be asserted by various 
implementation means that are specific to the tool. However, this is the main obstacle of 
method representation in metaCASE. A tool seeks an amalgamation of conceptual model 
and implementation construct rather than a generic meta model. This problem is 
addressed further by illustrating the mapping of our model to ToolBuilder in chapter 11.

• Moreover, substantial meta modelling techniques are drawn from the investigation. These 
precious experiences enlighten the determination of our generic model, which include:

1. explicit process (MASP) specification given in ALF-MASP (section 3.3.1);
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2. task structuring and decision rules described in SOCRATES (section 3.3.2);

3. meta-concepts, relationships and their categorisations in MethodBase (section 3.3.3);

4. various constraints for meta-model validation illustrated in MetaEdit (section 3.4.2);

5. different relationship types and directives presented in ToolBuilder (section 3.4.3).

• Similar to software development methods (described in chapter two), meta modelling 
approaches also have a problem in the use of terminology. Different terms are employed 
to address the same (or similar) technique or semantic. For instance, ALF-MASP denotes 
product by model, whereas ObjectMaker refers to diagram as notation. Table 3.1 on the 
next page presents a cross reference of semantics amongst the approaches described in this 
chapter. The first column shows the terminology used in our generic model, which should 
be made clearer in the following chapters (four to seven). The glossary in appendix A also 
includes definitions of the common meta modelling terms applied in this thesis.

3.6 CONCLUSION

This investigation looks at various technologies available for meta modelling. Data 
interchange approaches for method integration (CDIF and PCTE) are too specific for 
standardising information exchange amongst portable tools and they do not express semantics 
properly. Most meta modelling research (ALF-MASP, SOCRATES and MethodBase) incline 
towards a certain modelling requirement, rather than seeking a generic representation of 
methods. In general, all metaCASE tools (ObjectMaker, MetaEdit and ToolBuilder) tend to 
embody implementation concepts in the method. Although these attempts are not satisfactory 
meta modelling formalisms, significant experience and techniques can be drawn from the 
investigation to enable derivation of our own generic meta modelling formalism.
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4. SEMANTIC KNOWLEDGE BASE

This chapter is concerned with the problems of capturing the semantics of methods and thus 
defining a generic knowledge base for such methods. The work has been based on the 
investigations mentioned in chapter two and three. The basic methodological components 
have been identified as defining a generic structure or meta-model. The inherent semantics are 
represented by Prolog clauses. The potential benefits of this work are the definition of a 
standard meta-model, the transferability between existing methods and the automation of the 
generation of CASE tool support for new and evolving ‘customised’ methods, better suited to 
the requirement of any application.

4.1 INTRODUCTION

The number of different methods with similar semantics but different notation is now 
overwhelming. The rapid growth of programming paradigms (i.e. structured and object- 
oriented), programming techniques, programming languages and CASE tools have greatly 
contributed to the development of new methods. More importantly, this increasing number of 
methods does not contribute to a solution of the problem. Yet the expectations from the users 
such as short development time, high maintainability and reliability, require a suitable but 
flexible method. Although there are attempts to combine hybrid methods to solve particular 
applications, there is no direct attempt to generalise the ideas into standards. To achieve this 
standardisation, one cannot just consider the notational method representation, but one must 
also document the semantic components of the method. The primary concern of this chapter 
is to demonstrate a systemic, engineered approach to the documentation of the semantic 
structure of a software development method. It should therefore be possible for a method to 
evolve, as the project expectations similarly evolve.

Developers may plagiarise semantic concepts from existing methods, but use notational 
representations more familiar to their project application. This is often warranted where 
modifications to the semantics of a method become necessary. Ideally, we require a toolbox 
of pre-fabricated semantic components, which can be really integrated with new semantic 
components.

Documenting software development methods into a standard form, such as generic method 
representation (GMR), can help to analyze and compare different methods. The repository 
for such representation is known as a semantic knowledge base (SKB). The results are not 
simply useful as a reference, but provide the meta model for software generation for any 
method. Ultimately, in the form of a knowledge base, a subset of the tasks in the engineered
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development of any methods can be automated. The knowledge base is stored in an 
executable specification, namely Prolog. This permits the inclusion of rules to check design 
completeness and system consistency, as well as help texts to guide the developer through the 
design steps. The knowledge base must allow incremental evolution, so that new semantics 
(concepts) and notations (representation) can be inserted in the future.

This chapter is organised as follows. Section 4.2 proposes an evolution approach to software 
development. The core of the chapter deals with the presentation of the semantic knowledge 
base. A single methodology model is shown in section 4.3 and section 4.4 defines the three 
layered model in meta modelling. Section 4.5 introduces the knowledge base representation 
with illustrations. Then the methodology prototyping is revisited in section 4.6. Conclusions 
are drawn in section 4.7.

4.2 EVOLUTION APPROACH

Within the field of software engineering there are a number of approaches to software 
development. These approaches differentiate and describe various phases in constructing 
software. One may argue that there is no straightforward boundary1 between software 
development phases, since they are overlapping processes rather than totally disjoint. Some 
methods even amalgamate two phases into one. Nevertheless, the software development 
process is always highly iterative. Although the formal definition of the phase boundary is 
vague, the ordering and containment of each phase are significant.

To illustrate the evolution approach towards a software development, the traditional and the 
prototyping approaches of software development are described in the next two subsections.

4.2.1 TRADITIONAL APPROACH

The traditional approach to develop software system is through a waterfall life cycle, as shown 
in figure 4.1a. Different phases of the cycle are the milestones of the development process, 
and each phase provides the necessary information for the forthcoming phases. For instance, 
the requirement phase produces a specification document which is passed onto the analysis 
phase for further investigation. The concept model developed in analysis phase is evolved in 
the design phase, where the result is ready for coding in the implementation phase. This 
cascading development process is ideal for simple and/or structural software development. 
However most systems are more complicated than a straight forward sequential process.

1 The phase boundary does not mean ‘when to start’ and/or ‘when to slop’ a software development phase 
only. It also intends to describe the domain of an individual phase.
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a. waterfall life cycle b. spiral model

Figure 4.1 Traditional Software Development Approach

The other conventional approach is known as the spiral model, which is an enhancement of the 
waterfall life cycle [Boehm 86]. Software development is considered as a stepwise iterative 
life cycle, that is each cycle goes through every development phase and produces part of the 
final product, as illustrated in figure 4.1b. The spiral stops when the complete system is 
formed. This technique aims to break down the software complexity by incremental 
construction of a system. The fundamental difficulty of this approach is the coherence 
requirement of different parts. The separation must be relatively distinct and the interface 
must be defined. In addition, each cycle should have a substantial progress towards the final 
product so that there will not be too many or too few iterations.

4.2.2 PROTOTYPING APPROACH

The prototyping approach depends on evolution of software. No assumption of perfect 
knowledge of the application is made before implementation in prototyping. Thus any 
changes in user requirements during development can be accommodated. The main difference 
between prototyping and the other approaches is that iteration or feedback can happen at any 
point in prototyping. There is also an implication that the prototype itself will serve as the 
formal statement of requirement. The two major prototyping strategies are throw-away and 
evolutionary. Throw-away prototypes (figure 4.2a) are those in which the prototype is 
redeveloped or translated into another form before the target system is delivered, whereas 
evolutionary prototypes (figure 4.2b) are prototypes that themselves become delivered target 
systems. Due to the reusability advantages of evolutionary prototyping, it is more popular in 
the commercial world.

Analysis

Implementation

Target system

Requirem ent

Design
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Figure 4.2 Prototyping Approach

The prototyping approach provides for the uncertainties of the real world and the best way to 
leverage reuse of existing software components in the development of new prototypes and 
applications. It also reduces long-term system expenses by narrowing the focus of 
maintenance effort to the component level. Therefore most object-oriented developers now 
appreciate that it is difficult to code good classes of objects without a thorough understanding 
of formal object-oriented design principles [Connell 95]. Object-oriented methods insist that 
object-oriented specifications will not be accurate unless a lot of iterative prototyping is done 
concurrently during requirements definition. This is primarily due to the fact that object- 
oriented programming is based on a model of the ‘natural’ world, rather than the totally 
artificial reality constructed by a traditional procedural language [Mullin 90].

4.2.3 METHOD ENGINEERING APPROACH

Many software development methods have been introduced in the last decade. Examples of 
these are object-oriented analysis and design methods, and business process reengineering 
methods [Rossi 95]. This rapid growth in number conforms with the software quality 
requirements and the increasing complexity of techniques involved. The classical ‘pencil and 
paper* approach is no longer a satisfactory solution. The support of CASE tools is an interim 
result of the crisis, since they provide facilities to develop ‘large-scale’ software as well as to 
maintain system consistency. However, a CASE tool is always embedded with a fixed set of 
concepts (or a single methodology), which is found to be inflexible. In addition, there is no 
support of multiple viewpoints in software development. Therefore, method integration and 
method engineering have become ad hoc research topics. Meta modelling techniques and 
metaCASE tools are emerging to fill the gap of insufficiency.
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With metaCASE technology, the capability of prototyping is also extended. It advocates an 
evolutionary approach to the software development cycle. The traditional waterfall life cycle 
and/or spiral model is elevated to include the method engineering phase, so that a tailor-made 
method can be produced for the required specification. The proposed three stages 
prototyping approach is summarised in figure 4.3. The three stages are known as 
requirement specification prototyping, methodology prototyping and software 
development prototyping. Since the new software development cycle is different from the 
approaches mentioned previously, it is referred to as the method engineering approach. The 
following subsections describe the different phases of this approach.

Requirem ent
Specification
Prototyping

Method
SKBs

MetaCASE
Tool
A\

Methodology
Prototyping

"TFT

CAS E Tool
A\

Software
Development

Prototyping

-K  G enerated  
~z Software

Figure 4.3 Three Stages Prototyping Approach

4.2.3.1 REQUIREMENT SPECIFICATION PROTOTYPING

The aim of requirement specification prototyping (RSP) is to provide sufficient knowledge 
about the problem domain and/or work environment for the next phase (i.e. methodology 
prototyping). The client forms a wish-list of the target system. The requirement engineer then 
models the requisite semantics according to the methods available in the semantic knowledge 
base2. This process is incremental and iterative. It cycles around the client, the requirement 
model and the engineer until the satisfactory result is obtained.

Moreover, RSP adopts the evolutionary approach of rapid prototyping. That is, various 
phases of the software development are used to supply different information for the 
methodology prototyping. For instance, the analysis phase needs more inquiring concepts, 
whereas the design phase requires more resolving concepts. Different tools may be used to 
obtain multiple viewpoints on the system. The prototype can be specified by any requirement 
engineering techniques or tools available.

2 A context free dictionary is provided in the system to lookup method concepts. These concepts must be 
stored in canonical form that is a common representation throughout the mcthdologies in the semantic 
knowledge base, (see later for details)
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4.2.3.2 METHODOLOGY PROTOTYPING

Methodology prototyping (MP) is the phase for method engineering. The objective of this 
phase is to manipulate the required semantics and to provide a suitable method or CASE tool 
for the software development prototyping. The canonical concepts specified by the 
requirement specification prototyping are fed into an expert server, in which the concepts are 
matched with method semantics in the knowledge base. The semantics will then map to the 
information required by a metaCASE tool for the production of an appropriate CASE tool. 
Such a system is known as an expert server, because:

• It acts as an intelligent expert, which has the capability to search, match and inference the 
input canonical concepts to the method concepts in the knowledge base. Forward 
chaining, backward chaining and backtracking mechanisms are provided. The search 
algorithm, such as depth-first, breadth-first or best-fit search should be available. 
Similarly, the matching mechanism that includes parameters, such as priorities, weight 
factors etc., allows the user to optionally select.

• It acts as a knowledge base server to manage and propagate method semantics in the 
semantic knowledge base (SKB). Since the number of concepts in a method is large and it 
increases with the number of software development methods in the SKB, the speed of 
retrieving information from the data repository is vital. An effective server ensures 
adequate performance in projecting, selecting and joining concepts.

Methodology prototyping is the most important of the three stages. It links the ‘specification 
stage’ to the ‘implementation stage’ by transforming semantics from requirements to software 
development. A method prototype is created to bridge the semantic gap between the two 
stages. From a metaCASE point of view, a method prototype is a CASE tool with the desired 
method underneath the system.

The main focus of this research is to investigate and to formulate a generic model for 
representing semantics in a software development method. This is a crucial part of the 
evolutionary approach, especially in the methodology prototyping phase. A canonical form is 
invented to integrate various methods in the SKB s. The ability to share information within or 
amongst method fragments depends greatly on the unified model in the common data 
repository.

Efforts are also made to reduce the number of notations to a minimum, whilst still 
representing the complete semantics and various aspects of a method. In other words, the 
representation must be as precise and concise as possible. Moveover, the representation must 
be designed with the aim of mapping the method semantics to metaCASE semantics, which is 
the output channel of methodology prototyping.
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4.2.2.3 SOFTWARE DEVELOPMENT PROTOTYPING

Software development prototyping (SDP) is a CASE tool based software development phase. 
As shown in figure 4.3, the SDP takes the CASE tool constructed by the methodology 
prototyping stage as input. It proceeds with normal CASE practice, that is to model a 
software system by the semantics provided by the underneath method. If the code generation 
facility is provided in the CASE tool, the target software is produced, otherwise the result is a 
paper model of the specified system.

The work environment depends on the CASE tool produced or in other words it relies on the 
tool generation ability of the metaCASE tool. Hence the final product varies from system to 
system and therefore the description is of no interest.

Our generic model captures both the conceptual base of a method as well as the practical base. 
That is, the model describes the structural and behavioural semantics of a system. The 
structural semantics show what the concepts are, whereas the behavioural semantics identify 
how the concepts are constructed. A capable metaCASE tool allows mapping of both types 
of semantics into the generated CASE tool. In addition the heuristic guidance of the software 
method is also an important component in the software development prototyping. Section 4.4 
provides a detailed discussion about these constituents of a single development method.I

4.3 THREE LAYERED MODEL

So far different models of meta modelling technology have been distinguished. This section 
presents a formal description of these three layers of models in method engineering. In order 
to reduce unnecessary confusion, hereinafter they are referred to as the meta model, the 
method model and the software model.

The software model is in the bottom layer and each layer higher up helps to model the layer 
below. For example, meta model is an approach to model a method, whereas the method 
model in turn is an approach to model a software.

A software model is a model that describes a real world situation, for instance an ATM 
stateTransitionDiagram denotes the possible states and events that happen in ATM 
transactions. A method model contains all concepts required to construct or demonstrate the 
software model. For instance, a model that describes the relationships between state, event 
and transition in a stateTransitionDiagram is a method model. Lastly, a model which 
describes the method constituents and their interrelationships is a meta model.

In other words, a software model is an instance of a method model, and a method model is an 
instance of a meta model. Hence, the three layered model forms an instance hierarchy. Table 
4.1 summarises these models with examples.
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Model Examples
Meta Model MethodBase 

product - product part 
process - procedure part

IPSYS ToolBuilder
product - entity diagram 
process - frame navigation

Method Model OMT
product - objectModel 
process - dynamicModel 

functionalModel

Ptech
product - objectSchema 
process - eventSchema

Software Model ATM objectDiagram 
ATM stateTransitionDiagram 
ATM dataFlowDiagram

objectSchema & eventSchema 
for a manufacturing 
application

Table 4.1 Examples of the Three Layered Models

As shown in the table, each model has two main constituents to describe the features in that 
particular layer. They are the product(s) and the process(es) of the corresponding model. A 
product describes the structural aspects of the system whereas a process describes the 
behavioural aspects of the system. It must be noted that a meta model can be either a pure 
model to represent a method or can be a metaCASE modelling approach, such as MethodBase 
and IPSYS ToolBuilder in the above meta model example.

In general, the action of constructing a software model using a method model is known as 
software engineering; similarly the action of creating a method model using a meta model is 
known as method engineering. Because of the complexity these models have to deal with, a 
software tool is normally required. The tool for software engineering is called a CASE tool, 
whereas the tool for method engineering is called a metaCASE tool. This is summarised in the 
figure 4.4.

Meta Model

Method Engineering

A
MetaCASE Tool

N/

Method Model

Software Engineering CASE Tool

Software Model

Figure 4.4 Three Levels of Software Development
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4.4 SINGLE METHODOLOGY MODEL

In meta modelling technology, the formal presentation of a method takes an important role. 
Many definitions of a method have been proposed (such as [Lyytinen 89] [Prakash 94] 
[Wynekoop 93]) and most of them converge to the idea that a method is based on a group of 
concepts and consists of a number of tasks which should be executed in a given order. For 
instance, [Seligmann 89] proposes a framework for information systems development methods 
which comprises the way of thinking (the philosophy), the way o f modelling (the models to be 
constructed), the way of organising (subdivided into the way of working, i.e. how to perform 
the development and the way of control i.e. how to manage the development) and the way of 
supporting (the description techniques and the corresponding tools).

In this section we are concerned with the formal description of a single methodology model. 
The result has emerged from the literature review on software development methods and 
meta-modelling techniques that were presented in the previous two chapters. Our proposal 
consists of a meta model which is, in fact, a generic method representation (GMR). The meta 
model identifies the constituents of a method and represents them in a semantic knowledge 
base (SKB). The single methodology model is summarised in figure 4.5.

Single Methodology

Heuristic Model 
Rules/Guidance

 7f\

Process
Model

7 \ <r Product 
Model 

— /Ts—

f  A

Notation

Graphical
Representation

Specification
Language

7

Figure 4.5 Semantic Knowledge Base

A method is composed of three constituents: the product model, the process model and the 
heuristic model. The product model describes what the concepts in the method are; the 
process model outlines when the tasks are applied, and the heuristic model documents how the 
developer can deal with these concepts and tasks. The product model supplies the concept 
information to the process model for task execution.
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The product model encapsulates the way of modelling, which allows the construction of 
system concepts in a structured and detailed manner. Each idea or technique in a method is 
denoted as a concept in the model. Therefore these concepts present the basic elements for 
the functionality of the overall system, i.e. the inputs and outputs of each software 
development process. In metaCASE terminology, the product model represents the data 
structure of the entire method. Hence, the product model captures the way that a developer 
models a system.

The process model describes the way of organising the development. It includes how to 
perform software development and how to manage system tasks. Each task denotes a step in 
the development process and it is carried out by an activity known as task function. This task 
function incorporates the concepts defined in the product model. The ultimate goal is to 
construct a systematic way to develop a software product. The process model consists of a 
group of tasks arranged in some predetermined order of execution. This sequence may not be 
absolutely linear, but it is usually incremental and iterative. Individual tasks could even be 
optional steps as described in the analogous method. The major aim of the process model is 
to obtain a way to organise software development.

Both the product and process models are given graphical and textual notations. The graphical 
notation leads to an easy understanding of the methodological products and processes. It 
enhances the comprehensibility of the method and presents clearly the inter-relationships of 
concepts and tasks. In addition, both models are supported by corresponding heuristic 
information to guide the developer in the software construction activities.

The method model is designed to capture formal and heuristics knowledge able to support the 
development activities. The heuristic information can be presented as rules or guidance texts. 
A heuristic rule gives the arguments and the choices to assist in selection, whereas a heuristic 
guidance provides the definition and description of individual concepts and tasks. The 
heuristic model may assist the user in various ways. It serves as preliminary information to 
introduce different techniques in the method. It provides the specific assistance that the 
developer required in the current activity. It can also give context-sensitive help when a 
mistake is discovered in the current step. Therefore, the heuristic model describes the way o f 
supporting.

All three constituents are documented by a formal description language known as method 
specification language (MSL). The semantic knowledge base is designed to support high 
flexibility and maintainability. Each separate component must achieve the requirement of high 
cohesion and low coupling so that they are autonomous entities to be shared amongst 
methods. The formal description is compiled to Prolog clauses to improve the ability of 
enquiry and ease of execution. The detailed structure of these three models will be shown in 
the next three subsequent chapters.
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4.5 KNOWLEDGE BASE REPRESENTATION

Different constituents of a method comprise different aspects of semantics. As shown in the 
previous section, constituents are closely related to each other to achieve the aim of software 
development assistance. The semantics arising in even a single method is large3 and the 
overall figure handled by a multiple methodologies system is enormous. Therefore the 
representation of the method semantics is a key issue in the knowledge base. To produce an 
effective method engineering or integration system the structure of semantics is significant. 
Hence the following points are considered in modelling the knowledge base:

• The representation must be kept as generic as possible so that it does not bias towards any 
specific method or development paradigm. It is important to keep the uniformity of the 
semantic model to permit standard ways of comparing and evaluating methods.

• Since the amount of semantics managed is massive, speed is a crucial factor when 
constructing a workable environment. An effective data retrieving (such as caching) and 
searching (such as indexing) mechanism may be implemented to increase the performance.

• Like any other meta models, both textual and graphical representation of the method 
semantics should conform to a small set of notations.

• To support the expert capability of the system, the knowledge base must be stored in an 
executable manner. Data manipulation, such as dynamic binding, can be carried out 
directly on the semantic knowledge. This also allows heuristic rules including checks for 
design completeness and system consistency.

• In addition, the common model allows incremental evolution of the knowledge base such 
that new semantics or notations can be inserted in the future.

• Due to the time and space constraints of the knowledge base, it is desirable to store the 
semantics efficiently. The representation must keep as small in size as possible.

• The knowledge base representation should also provide some simple ways to dissect 
reusable components of a method. These components allow semantic sharing for method 
integration. The technique must be explicit to the data structure rather than depend on 
propagating functions.

To support the above points we have chosen to store the knowledge base as horn clauses in 
Prolog. This permits rapid prototyping and an efficient data repository. LPA Prolog was 
identified as a suitable language for the purposes of this research. [Steel 94]

3 The number of crucial semantics in a single methodology is around the order of a few hundred Prolog 
clauses.
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4.6 METHODOLOGY PROTOTYPING

The components of a single methodology as described in section 4.4 are only the passive 
components of methodology prototyping. The whole system will require a program to drive 
the semantic knowledge. Such a system consists of four main parts as shown in figure 4.6: a 
method controller, a concept dictionary, a reference system and a context memory. The 
requirement specification prototyping examines the problem domain and environment, and 
generates a list of requisite concepts. These concepts are then given to the method 
prototyping, and they are matched against the concepts in the canonical concept dictionary. 
The method controller searches the semantic information in the multiple methodologies 
semantic knowledge base. Matching concepts or fragments may be used to construct an 
appropriate method for that particular application. Such method semantics are input to a 
competent metaCASE tool to form a suitable CASE tool.

M etaC A SE Tool

M ethodology
Prototyping

R eq u irem e n t v
Specification  > 
Prototyping

C ontext

Controller

Dictionary

R efe ren ce

Multiple M ethodologies

P roduct Model

P ro c e s s  Model

H euristic Model

Figure 4.6 Proposed Methodology Prototyping

The method controller is the driving program of the methodology prototyping. It 
communicates directly with various parts of the semantic knowledge base. The product model 
is used for matching purposes. The process model shows the capability of creating sharable 
fragments. The heuristic model provides guidance for the above two models. The context 
memory is the working memory. It should be closely related to the controller to store 
information such as instantiated values, backtracking tree and the newly composed semantic 
model. Moreover, the canonical concept dictionary and the system references are the internal 
data of the method controller. They give collected information about the semantic knowledge 
base. These components for methodology prototyping are discussed in the following 
subsections.
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4.6.1 METHOD CONTROLLER

The method controller is an executable program, with a structure dependent on the complexity 
of other parts of the system, such as the semantic knowledge base. The static information of 
methodology prototyping is stored separately in the concept dictionary, which is decribed in 
the next section. The internal structure of the controller is complex. It is impossible here to 
describe the full details of the controller, but we do list the basic features that it must contain.

Inference Engine - An intelligent guidance system that leads the user through the process 
model or even chooses method fragments according to the need of their chosen 
application domain. The engine indicates which step or rule that the system is considering 
and provides useful help prompts. Some heuristics in the semantic knowledge bases are 
deduced from work experience. A developer may refer to them as guidance, but the 
system will allow the developer to override the rules in certain circumstances.

Explanatory Program - The controller shall always be able to answer questions such as why 
it is doing this or how it has reached such a conclusion. This is a basic requirement for an 
expert system. During software development there are many heuristic decisions that the 
developer has to make. These are not just based on the problem/application domain 
requirements, but also upon the software requirements, such as time-space constraints, 
software libraries available and budgets etc. An explanatory program allows the developer 
to look at the heuristics underneath the system. These considerations also apply to the 
user defined sub-rulesets below.

User Defined Ruleset - The user must be allowed to create their own ruleset for their 
particular environment or application. This ruleset must integrate with the pre-defined 
system ruleset and adopt the same format. It may also require a consistency checking 
program to detect any contradictory or redundant rules.

Human Computer Interface - A complex system such as this must employ a user friendly 
interface. WIMP technology is used, which also provides menu selections, pop-up 
messages, hypertext helps. Hot keys, such as exit, help, info, forward, backward etc, must 
be supported at any point in the system.

Text and Graphical Editors - Since the design representation involves both text and 
graphical notations, the controller must provide facilities to edit text and graphics. A 
facility for cross checking these two representations and any attached context sensitive 
help must be provided. Therefore these must be closely related to the inference engine and 
any explanations which may be presented to the user.
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4.6.2 CANONICAL CONCEPT DICTIONARY

A canonical concept dictionary is a crucial component in methodology prototyping. It not 
only provides the canonical concepts for semantic matching, but also provides the concept 
description in the semantic knowledge base. The concept dictionary can be used to provide 
context-sensitive help information.

From a method engineer’s point of view, it is an index book for selecting concepts in software 
development methods. The dictionary a set of canonical representation of concepts,
which are linked to the corresponding semantics in the knowledge base. If a method fragment 
matches most of the requirement concepts it can be dissected from the method and used to 
develop the current application.

From a software developer’s point of view, he/she can either highlight the appropriate object 
on screen or get the description through the help button. Each key word or key phrase is 
given a token key, which is used to search through or to select from the dictionary database. 
The following Prolog clause shows the definition record of token key object, its contents 
include a description, an examples field, a seeAlso field and a sources field. The seeAlso field 
allows the user to look at other related records and the sources field points to the (physical) 
source of the original citation.

dict(object,[
desc('An object is a concept, abstraction, or thing with crisp boundaries and

m eaning for the problem at hand. Objects promote understanding of the real 
world a s  well a s  provide a practical basis for com puter implementation.'), 

exam ples([Joe Smith, Simplex company, process 7648 and the top window]), 
seeAlso([class, identity, objectClass, objectModel, objectDiagram, type]), 
sources([ref(rum baugh91)])

1).

One can imagine the desc and seeAlso fields to be analogous to the text and link fields in the 
heuristic knowledge base (see chapter seven). However, the concept dictionary is used to 
relate the terminology of a method, and no heuristic rules should be included.

Apart from providing the definition of the terminology of a single, exclusive method, the 
concept dictionary serves another significant purpose. That is to filter out any contradictions 
or similarities of terms between methods. This is an important issue in supporting the 
communication through tool fragments.

The canonical concept dictionary has a literary bias. It is not the central repository. This is 
provided by the knowledge base itself, of which the dictionary is a part. Perhaps the 
terminology is confusing but it has been chosen from the viewpoint of the method 
user/developer, rather than that of the software/database engineer.
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4.6.3 SYSTEM REFERENCES

The system also provides a facility to refer all information to texts, for example books or 
papers. The example below shows the reference record of [Gomaa 93]. It includes the fields: 
author, year, title and others. The others field provides sufficient information to locate the 
material. In this simple example, a crude index has been used. In the software tool system to 
be developed, a user defined custom index which can include bookmarks, as well as 
commercial library indexing standards (ISBN and ACM indexes) is supported.

reference(ref(gom aa93), [
author(['Gom aa H.']), 
year([1993]),
title(['Software Design M ethods for Concurrent and Real-Time System s']), 
others(['Addison-Wesley'])

3).

4.7 CONCLUSION

This chapter introduces an evolutionary approach to software engineering based on 
methodology prototyping. Various components for such prototyping approach are identified. 
The core discussion deals with the semantic knowledge base of the software methods. It is 
the crucial part of this software developement approach. The three constituents, namely the 
product model, the process model and the heuristic model, are introduced. The structures of 
the three models are discussed in the subsequent chapters.
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5. PRODUCT MODEL

Every year, software development methods (SDMs) are created by industrial developers or by 
academic researchers. Most of these methods borrow ideas or concepts from one or more 
well-proven methods. Some introduce new application (or domain) specific concepts. 
Although there is no single method that can be used for all situations, a meta framework can 
be used to develop methods to fit particular contexts.

This chapter proposes a common meta model to represent concepts in analysis or design 
methods. We consider a method to be a group of concepts interrelated by a finite set of 
primitive concept relationships. Both the concepts and the relationships have a list of concept 
properties to comprehend the meta modelling. This model is known as the product model as 
it represents the static, structural aspect of a method.

5.1 INTRODUCTION

We have looked at eighteen software development methods with regard to their method 
representations (see chapter two). Five well-defined SDMs are selectively chosen for detail in 
our method survey, they are OMT [Rumbaugh 91], Ptech [Martin 92], Codarts/D A [Gomaa 
93], Booch OOD [Booch 91] and HOOD [Robinson 92]. On the other hand, a number of 
meta modelling research and metaCASE tool techniques have been investigated (see chapter 
three). Their aims and emphasis do not satisfy a generic model. This research explores this 
generic representation of the SDM.

From the investigations, we have identified the three distinct levels of models in the software 
development method, namely the meta model, the method model and the software model (see 
chapter four). Each higher level helps to model the level below. We have also discovered the 
three main components of a SDM: the product model, the process model and the heuristic 
model. The structures of these models and the relationships between them have been studied 
in depth. This generic method representation (GMR) has been tested and rectified by applying 
it to these chosen methods.

This chapter focuses on the structural aspect of SDM, that is the product model. It is 
represented graphically by concept diagram and textually by method specification language 
(MSL as described in chapter eight). The next chapter describes the behavioural aspect in the 
process model and the heuristic model is covered in chapter seven. Moreover, the concept 
diagrams of the five chosen methods are attached as appendix D.

In the next section we define the aims and objectives of the product model. Section 5.3 
describes concept modelling, and presents different types of meta concepts, concept
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5. Product Model

relationship properties and meta relationships. Section 5.4 introduces some advanced concept 
modelling techniques to enhance as well as simplify the overall concept structure. Section 5.5 
and section 5.6 discusses the process model of the product model and the zoom hierarchy of 
the product model. Section 5.7 presents a product model of the concept diagram. The last 
section gives a brief conclusion of this chapter.

5.2 AIMS & OBJECTIVES

This chapter aims to propose a common meta product model of SDMs. The following 
objectives are taken as basic principles:

1. It must support the semantics required by various SDMs, such that it does not incline to 
any particular discipline of software engineering. In doing this it is necessary to separate 
issues of notation from issues of semantics, and to recognise semantic equivalencies 
between different method concepts.

2. Every logical and physical idea is a concept itself (including its relationships and 
properties) and the concepts are interrelated by primitive relationships, i.e. subtyping, 
composition, grouping, linking and referencing (see section 5.3.3 for details).

3. A minimal set of notations shall be used to depict the complete set of method concepts and 
concept relationships of a SDM. In other words, the representation must be concise as 
well as precise.

4. Both abstract and concrete concepts are permitted; a concrete concept may be 
instantiated, whereas an abstract one can never be instantiated.

5. The model should represent the hidden (implicit) concepts of a SDM. These implicit 
concepts are necessary to comprehend the internal relationship of the concept model.

6. The concept model may compile into a frame based structure that can eventually translate 
into Prolog predicates and be used as an executable knowledge base.

7. It allows the user to draw the model by free-hand, with no box shading or bold arrows, 
etc. If it is developed in a computer graphical package, the final model shall be composed 
into an A4 size printer paper.

As it is intended to produce an equivalent Prolog knowledge base from the model, a basic 
naming convention is used throughout this thesis1. The first letter of every word except the 
first is capitalised, and there are no spaces between words.

1 Since all concepts, relationships and properties arc formalised as atoms of a structure in Prolog, an atom 
must be a name starting with a lower-case letter, and containing only letters, digits and underscores.
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5. Product Model

5.3 CONCEPT MODELLING

The idea of the product model emanates from the IPSYS ToolBuilder data model, which is 
effectively an entity relationship model. It represents the notational concepts of SDMs as 
entities, and the relationships between the entities are mainly for navigational purposes. Apart 
from the subtyping and composition relationships, the associative relationships between 
concepts are not formally represented, though these relationships describe important semantics 
in SDMs. IPSYS ToolBuilder can avoid defining these semantics because their navigational 
meanings are of lesser importance, also they are probably harder to incorporate in 
ToolBuilder*s process model.

However, as our aim is to discover a generic model for representing SDMs, these significant 
hidden concepts must be identified and included in the product model. We also distinguish 
different types of method concepts according to their natural traits in the method model.

As mentioned earlier, the product model represents SDM in a diagrammatical form as well as 
textual form. The graphical representation yields a diagram called the concept diagram and 
the approach to formalise the model is known as concept modelling. Object-oriented 
techniques are incorporated with the model so that constituents of methods have higher 
cohesion and lower coupling. Each concept is encapsulated with its own properties and 
inherited features from their supertypes. The concept ownership is also investigated so as to 
minimise the coupling factor between fragments (see later). All these modelling techniques 
benefit reusability and fragment sharing. We shall first identify the concept types and the 
concept relationship properties, then discuss each concept relationship in detail. Other 
characteristics and features of the product model are described in later sections.

5.3.1 CONCEPT TYPES

MethodBase identifies different types of concepts according to the conceptual aspect, whereas 
our approach is based on the concept’s natural distinctions. Two categories of concept types 
are defined: meta-object concepts and meta-association concepts. A meta-object concept is 
an intrinsic method concept that is not used to relate concepts as meta-association does. A 
meta-object concept can be a simple entity concept, a property concept or a fragment concept. 
In contrast, a meta-association concept is a method concept used to interrelate meta-object 
concepts or even method concepts with the same type. It can be either a link concept or a 
group concept. Each meta-association concept can also have its own properties. Both meta
object and meta-association concepts are represented in a concept diagram, that is they are 
both denoted as a structure in the product model. A concept is shown as a round-angle box in 
the diagram. An abstract concept is shown as a box with an additional diagonal line at the top 
left hand comer. Each concept is labelled by its name, as shown in figures 5.1b and 5.1c.
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5. Product Model
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Figure 5.1 OMT: concepts in a stateDiagram

Figure 5.1a illustrates the meta-object concepts and meta-association concepts in a simple 
OMT state diagram. The stateDiagram has only two states (named Statel and State2), one 
transition (Transitionl) and one activity {Activity 1 in Statel). The following five subsections 
introduce the five concept types.

5.3.1.1 ENTITY CONCEPT

An entity concept is a basic concept. It is normally owned by a fragment concept (diagram or 
text). It can be described in a method, either explicitly or implicitly. For instance, in OMT, a 
stateDiagram owns a number of states. A state concept is only an abstraction of startState, 
interstate or stopState, therefore it is denoted as an abstract entity concept in figure 5.1b. An 
entity concept can relate to another entity concept by a link concept and to another meta
object type concept through a group concept. The stateDiagram concept is a special type of 
entity concept known as a fragment concept.

5.3.1.2 FRAGMENT CONCEPT

A fragment concept is a high level entity concept, which is either a diagram fragment, a text 
fragment or an aggregate of other concepts. Fragment concepts must be owned by other 
fragment concepts and itself may own a number of entity type concepts.

A diagram fragment is an explicit concept, normally known as a graphical tool fragment. 
For instance, the objectDiagram, the stateDiagram and the dataFlowDiagram are the 
diagram concepts of the OMT methodology. An abstract diagram fragment can also be 
subtyped to concrete diagram fragments; for instance in Codarts/D A, the 
systemContextDiagram concept is the subtype concept of the supertype fragment 
contextDiagram.
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5. Product Model

A text fragment is a structure text or pseudo code fragment, and is normally used for detail 
description purposes or code generation. For instance, a dataDictionary in OMT and an 
objectDescriptionSkeleton in HOOD are text fragments.

An aggregate concept is a concept that cannot be classified as either diagram or text 
fragment, rather it is an aggregate of a number of entity concepts. For instance, all SDMs 
have an ultimate aggregate called by the method name, such as objectModelingTechnique in 
OMT. This concept comprises a number of diagram fragments and text fragments. An 
aggregate concept is normally an implicit concept in the meta model.

5.3.1.3 PROPERTY CONCEPT

A property concept is an attribute of an entity concept or of a meta-association concept. In 
other words, a property concept must be owned by one of these concepts and itself does not 
own any concepts. For instance, in a stateDiagram, an activity concept is a property concept 
of state, whereas in an objectDiagram, role is a property concept of association and qualifier 
is a property concept of qualifiedAssociation. A  property concept is a terminal entity 
concept, which means it can neither own (composition relationship) or relate (grouping or 
linking) to other concepts. However, a property concept can be subtyped and can refer to 
other concepts. For instance, the association concept has attributes sourceMultiplicity and 
targetMultiplicity, which are subtypes of the abstract property concept multiplicity.

5.3.1.4 LINK CONCEPT

A link concept is an association concept. It relates two entity concept instances together, one 
as its source and the other as its target. The ownership of a link concept is shared amongst 
the source and target concepts, but they must eventually be owned by the same fragment 
concept. For example, transition is a link concept in stateDiagram as shown in figure 5.1c. 
The source part can be a startState or an interstate and the target part can be an interstate or 
a stopState. All these state instances belong to the same stateDiagram instance (figure 5.1 la).

5.3.1.5 GROUP CONCEPT

A group concept is another type of association concept. It is similar to the link concept 
except that it is not used to relate the source and the target concepts, but rather the host and 
the element concepts in a grouping relationship. Group concepts are implicit and they are 
method concepts that normally are without notation. For instance, nestedStateDiagram is a 
group concept with state as the host and stateDiagram as the element. Group concepts can 
also relate concepts in different fragment, see later for details.
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5. Product Model

5.3.2 CONCEPT RELATIONSHIP PROPERTIES

The SOCRATES project describes concept relationships by specialisation and association. 
Objectification is an extra feature when the association can be encapsulated as a concept itself. 
However, there are some useful primitive relationships that have a clear description and occur 
frequently in concept modelling. We define these relationships as subtyping, composition, 
grouping, linking and referencing. Before we look at them in detail, it is useful to identify the 
properties of a concept relationship.

Some meta modelling techniques suggest a rich description of concept relationships. For 
instance, the OPRR model in MetaEdit identifies property types and role types, whereas the 
concept structure in SOCRATES defines roles and role numbers in association. However, the 
other approaches simply ignore their existence, such as the product part in MethodBase. The 
main reason is the different approaches have different perspectives. MetaEdit is a metaCASE 
tool, and properties such as roles and cardinalities are important to construct a target tool; 
SOCRATES represents an information modelling knowledge to capture conceptual details. 
However, MethodBase needs to demonstrate meta modelling for method integration, whereas 
the detailed concept properties have less significance.

Nevertheless, in order to give a true and complete representation of SDMs the concept 
relationship properties are investigated. We look at seven properties, namely cardinality, 
optionality, directional, role, constraint rule, overlapping and completeness features.

5.3.2.1 CARDINALITY

There are two ways to describe cardinality of relationships. The first way is adopted by most 
entity relationship models, and is normally known as multiplicity (OOSA, OMT uses this term 
interchangeably with ‘cardinality’). In this method, there are only three types of cardinality : 
1-to-l, 1-to-many and many-to-many relationships. Sometimes (such as OOSA), conditions 
can be added onto the relationship. The second method is to include both minimum and 
maximum cardinalities on both sides (such as cardinality constraint in Ptech). It allows 
relationships such as 0-to-l, 0-to-many, l-to-2 etc.

In our model, we adopt the second method since it contains the optional and mandatory 
features (see next section). Hence, the cardinality of a concept relationship is a 4-tuple of 
(minimumSourceCardinality, maximumSourceCardinality, minimumTargetCardinality,
maximumTargetCardinality). For instance, the cardinalities of grouping relationship 
splittingControl are (0,1,1,1) on the host side and (0,l,2,n) on the element side, as shown in 
figure 5.2. In cardinality, n stands for a many (>1) relationship.
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Figure 5.2 OMT: splittingControl Grouping Cardinalities

53.2.2 OPTIONALITY

In our product model, optionality is given by the minimumCardinality of each side of a 
relationship. If the cardinality is zero, the required concept is optional; otherwise the concept 
is mandatory. In the grouping relationship shown in figure 5.2, splittingControl is an optional 
group concept, whereas transition is mandatory in both host and element sides.

5.3.2.3 DIRECTIONAL

All concept relationships in our model are described in binary form. For identification 
purposes we present concept types in a relationship as source and target concepts. A 
bidirectional relationship is a relationship that is recognised by both concepts, whereas a 
unidirectional relationship is only recognised by the source concept. Subtyping, composition, 
grouping and linking are all bidirectional relationships, but the referencing relationship can be 
either bidirectional or unidirectional depending on the nature of the concept relationship.

Figure 5.3 illustrates the bidirectional linking relationship between process and controlFlow, 
and the unidirectional referencing relationship from process to operation in OMT.

operation — -—  process ^  s >>> controlFlow

Figure 5.3 Bi- and Uni- Directional Relationships in process

5.3.2.4 ROLE

Some meta models, such as OPRR, allow user-defined role names. However, in a fixed 
simplified number of relationships, we choose to use a set of uniform roles. A role is a formal 
name given to a concept in a relationship. Each relationship connects two concepts, each 
concept is given a role for identification.

As mentioned in the previous section, all relationships are directional, so the role types can be 
known as sourceRole and targetRole. The uniform role names of relationships are shown in 
table 5.1.
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relationship subtyping composition grouping linking referencing

sourceRole superconcept whole group group link link from

targetRole subconcept component host element source target to

notation o t \

h

/ \

e

/ \ /

*

\ / \

r

/

Table 5.1 Uniform Roles for Concept Relationships

In addition, the corresponding notations are also illustrated. For instance, a subtyping 
relationship is depicted by drawing the subconcept inside the superconcept, whereas a 
composition relationship is shown by drawing a solid arrow from the whole to the component. 
The notations illustrated in the above table only denote the roles of different concept 
relationships, that is letter labels for different roles in the source end. The multiplicity (none, 
single, or multiple) of v-shape or solid arrows are used to represent different cardinalities of 
concepts, and these are not shown in the illustration. However, the notation demonstrates the 
most common cardinality in each corresponding concept relationship.

5.3.2.5 OVERLAPPING AND COMPLETENESS FEATURES

In some software product models, overlapping and completeness features of relationships are 
important. For instances, male and female are the disjoint and complete subtypes of human, 
whereas projectManager and programmer are overlapping and incomplete subtypes of 
employee. Some SDM product models identify these two features. The following figure 
illustrates the above examples in different SDMs.

male female
project

DC

human

manager programmer

II

employee

human

female

employee

project
m anager

programmer

disjoint/complete overlapping/incomplete complete partition incomplete partition 
a. ADM3 b. Ptech

Figure 5.4 Examples of Overlapping and Completeness Features

Figure 5.4a shows the relationships in Firesmith ADM3 (see section 2.5.2) subclassing 
notation. The features are denoted in the central triangular boxes: DC stands for
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disjoint/complete and 01 stands for overlapping/incomplete. Moreover, the Martin/Odell 
Ptech partition notation (see section 2.4.4) also depicts the completeness feature. In figure 
5.4b, the human subtyping shows a complete partition and the employee subtyping represents 
an incomplete partition. However, at meta level the distinction is not that significant, and 
most relationships are in the disjoint/complete category.

These features are not directly denoted in the concept diagram for the following three reasons. 
Firstly, a complete representation is required for our product model to documenting concept 
relationships, therefore no incomplete partition is allowed. Secondly, overlapping concepts 
are very rare in method modelling, and then they can be described by subtyping of multiple 
supertypes. Finally, if it is really necessary to describe these features, the particular 
relationships can be denoted as constraint rules in the concept heuristic model (see chapter 
seven for details). The next section briefly describes the constraint rule and method 
representation is discussed in chapter eight.

5.3.2.6 CONSTRAINT RULE

The relationship properties mentioned above should be able to document most conditions in a 
concept relationship. However, there are some special constraints which are very difficult to 
denote. We shall identify two examples to illustrate these description problems. The first one 
is a typical example in a dataFlowDiagram (also refer to figure 3.12) and the second one is a 
special complex pattern of objectDescriptionSkeleton in HOOD (see section 2.4.2).

In a dataFlowDiagram, as shown in figure 5.5, dataFlow is used to represent data passing 
amongst process, dataStore and actor (sometimes known as source or sink). However, the 
model should detect and avoid dataFlow connecting directly from dataStore to actor or vice 
versa. This is because dataflow only occurs through the data transformation in process, and 
by definition a static data transfer between dataStore and actor is not allowed. This can be 
considered as a meta relationship between the source and target links of a dataFlow. There is 
no easy way to document this constraint in the model.

dataFlowDiagram

actor

7F F
vvv v

7 \

process
"7o r

vv
dataFlow

dataStore
^ 7 0 T

\/vt s V V tvv

Figure 5.5 A Simple dataFlowDiagram Product Model
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We shall now look at a more complicated example. In HOOD, objectDescriptionSkeleton 
describes each object by an objectType, where objectType must be one of passive, active, 
environmentPassive, environment Active, classPassive, class Active, instanceOf, opControl or 
virtualNode (this list of concepts is in fact a complete composition partition of the concept 
objectType).

objectDescriptionSkeleton
A

object <■

providedlnterface
T

objectType

passive] [ environmentPassive] classPassive

active | environmentActive ] classActive 

[ opControlinstanceOf virtualNode

objectControlStructure

operationControlStructure

Figure 5.6 HOOD: objectType Subtyping

The objectType affects the layout of objectDescriptionSkeleton, since certain parts of the 
objectDescriptionSkeleton are optional. The following table shows the optional sections 
included according to objectType.

objectType description
passive no objectControlStructure
active contains objectControlStructure

environment providedlnterface only
class contains formalP ammeters

instanceOf refers to class and has parameters
opControl no providedlnterface, internals contain one operationControlStructure

virtualNode allocation to physical node always a parent so no operationControlStructure

Table 5.2 HOOD: objectDescriptionSkeleton layout based on objectType

There is no simple way to get round these representation difficulties, other than using a formal 
description of the internal constraints. In our product model we document them as concept 
rules in the heuristic model. The concept relationship or fragment is valid only if all of the 
rules attached with it are satisfied, i.e. a well-formed product model should necessarily meet 
the conditions (see section 5.5 for details). We place a letter ‘c’ at the top-right comer of the 
concept box to indicate that a constraint rule is bound to that concept. For instance, in figure 
5.5, dataflow is a constrained concept, whereas three conditioned concepts are shown in 
figure 5.6.
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5.3.3 CONCEPT RELATIONSHIPS

As with the product model at the method level, there is no uniformity in addressing meta level 
relationships. Each meta modelling technique has a different emphasis in its product model, 
such as a bias towards tool construction or towards a given formal method representation. 
The question is 'how specific or detailed should the relationship type be?’ There are basically 
three approaches in addressing concept relationships. The first one is to allow no specific 
relationship types: all relationships are associations with different roles. For instance, the 
OPRR model in MetaEdit allows this flexibility. The second approach is a semi-free view, 
that is to allow a few basic relationship types with other types denoted as associations. For 
instance, the SOCRATES concept structure only allows specialisation and association, 
whereas the IPSYS ToolBuilder data model addresses subtyping, composition and reference 
relationship as a general association link. The third approach is to generalise all possible 
relationships in a framework and allow no more associations. We choose to adopt this third 
approach as we believe there is only a simple concise set of relationships in meta modelling. 
Moreover, it forces a uniformity in the method model. We have generalised the relationships 
among the concepts into five types: subtyping, composition, grouping, linking and referencing. 
This approach is also consistent with the MethodBase’s meta relationships.

5.3.3.1 SUBTYPING

A concept is said to be a subconcept of another concept if it inherits the properties of that 
concept. The latter is then called a superconcept. Subtyping is a bidirectional relationship 
between a superconcept and a subconcept. An abstract concept is a superconcept that does 
not have any instance. For example, in O M T , the state concept is an abstract superconcept of 
startState, interstate and stopState whereas automaticTransition is a subconcept of transition. 
Subtyping is depicted by putting the subconcept box(es) inside the superconcept box, as 
shown in figure 5.7. It is intentional not to denote subtyping by an arrow. Firstly, it is the 
only relationship without cardinality; and secondly it gives a better ownership presentation of 
inherited features. A subtyping hierarchy can be induced from these interrelated subtyping 
relationships, since no cyclic subtyping is allowed. In concept modelling, subtyping is deduced 
from concept generalisation, but a specialised concept can override these features which are 
higher up in the hierarchy (see section 5.4.2).

P  state '

startS tate | in terstate ] [ s to p S ta te )

transition

automaticTransition

Figure 5.7 OMT: state and transition Subtyping
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A subconcept with multiple superconcepts is possible. However in our survey of SDMs, no 
examples were found. The main purposes of subtyping in the meta model is to generalise 
common features, and this should be kept as simple as possible. The source and target roles 
are known as superconcept and subconcept respectively according to their nature. Subtyping 
is always a one-to-one relationship in meta level, although there may be a number of instances 
in a subtype concept. The cardinality is not as significant as other relationships.

IPSYS ToolBuilder supports subtyping relationships. Moreover, it allows various data 
models to be stored as modules. An entity in one module can be a subtype of entity in another 
module, hence another layer of multiple inheritance is permissible (see appendix B.2.4.1). 
However, this relationship can only be shown in the structured text and not in the entity 
diagram. In our meta model, we do not encourage subtyping across concept diagrams, since it 
loses the semantic dependence. However, we provide different zoom displays which 
effectively give the same result and do not lose the dependence (see section 5.6 for details). 
MethodBase’s product part refers to subtyping as is_a relationship, but the fundamental 
generalisation/specialisation structure amongst concepts is still the same.

5.3.3.2 COMPOSITION

Composition is a bidirectional whole-component relationship. Sometimes it is known as a 
containment relationship. A concept contains another concept if the concept is a component 
of the other, or the concept exists within another concept. Composition is denoted by an 
arrow from source to target with the solid arrow head(s) at the target side. The source and 
target roles of composition relationship are known as whole and component respectively. 
This whole-component relationship of concepts forms another type of hierarchy in a concept 
model. For instance, in OMT, a stateDiagram must have one or more state, and each state 
may have an entry Action, an exitAction and a number of internal Actions as shown in figure 
5.8. Since all the composition relationships flow out from the abstract state concept, these 
features apply to all state subtypes, namely startState, interstate and stopState.

action

in terstatestartState stopState
exitAction

entryAction

stateDiagram
- -  j.

internalAction

state

Figure 5.8 OMT: state-action Compositions in stateDiagram
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As with subtyping, composition is always bidirectional. Therefore, a concept can navigate 
through other concepts to a root concept or vice versa. The root concept is an aggregate 
concept known as method, which comprises of a number of fragment concepts.

By definition, a component must belong to one and only one owner, but not necessarily the 
same concept type. In other words, the maximum source cardinality is always one, whereas 
minimum source cardinality can be either zero or one (depicted as question mark in the 
figure). The optional v-shape arrow head at the source side and the solid arrow head(s) at the 
target side, are used to depict the minimum and maximum target cardinalities respectively. 
The four possible combinations of composition cardinalities are shown in figure 5.9.

notation description cardinality example
A B

each A may have zero or one B (?,1,0,1) s ta te  activity
each  A may have zero or many B (?,1,0,n) state  internalAction

^ e a c h  A must have one B (?,1,1,1) scenario eventT race
< --------- ►► each  A must have one or more B (?,1,1 ,n) stateD iagram  sta te

Figure 5.9 Composition Cardinalities

In general, the minimum source and target cardinalities show the optionality of the 
corresponding concepts. For instance, the first example in figure 5.9 shows that each state 
must have zero or one activity, so activity is an optional composition for state. On the other 
hand, the third example shows that each scenario must have one eventTrace, hence this 
composition is manatory. MethodBase also denotes composition as a has_a relationship, 
though cardinality and optionality are not represented in its meta model.

5.3.3.3 LINKING

Subtyping and composition are basic relationships which form hierarchical structures. From 
this section onward, we identify three types of association in the product model. The first one 
is known as a linking relationship. Unlike subtyping and composition, a linking relationship is 
denoted by a link concept and normally it is physically shown in a fragment concept with a 
notation. A link relates two entity concepts, so it includes two parts: a source part connects a 
link to a source entity and a target part connects it to a target entity. Figure 5.10a shows the 
method model of a simple stateTransitionDiagram: transition is a link concept and both the 
source and target entities are state s. Figure 5.10b demonstrates a possible software model for 
this stateTransitionDiagram. Due to the natural characteristics of a link, the cardinality tuple 
for both source and target parts is in the form of (0,1,0,1) or (0,n,0,l), (0,1,1,1) or (0,n,l,l), 
depending on the number of links and whether the link has a choice of different types of 
concepts or not.
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In the simple stateTransitionDiagram example, each state may be involved in any number of 
transitions, whereas each transition must have exactly one source state and one target state 
since state is the only entity concept. Therefore, a linking relationship is depicted by a two v- 
shape arrow head on the link concept and one v-shape arrow head on the entity concept 
(many-to-1 relationship). The small letter ‘s’ or ‘t ’ on the link concept is used to denote the 
source or target part of a link respectively.

state
7v7\

s V V t

transition

a. method model

so] [S4]

[S2]
[S6J

S3]
[S5] keys:

0 state
-> transition

b. software model

Figure 5.10 A Simple stateTransitionDiagram Example

Now let us look at a more complex model - the OMT stateDiagram. A state must be one of 
the startState, interstate or stopState. A startState is only involved in the source part and a 
stopState only in the target part, whereas an interstate is involved in both parts as shown in 
figure 5.11a. Therefore, there are four possible paths for transition: startState to interstate 
(e.g. transition LI in figure 5.11b), interstate to interstate (transition L2), interstate to 
stopState (transition L3), and startState to stopState. The last path is abnormal, and it is 
forbidden by the constraint rule (see section 5.3.2.6 for details). Moreover, the link concept 
transition has a specialised type automaticTransition. An automaticTransition is a transition 
with no event (e.g. LI). This effectively doubles the number of possible paths. We defer the 
discussion to the exclusion section (see later for details).

state

startStat e  (in terStcite s topState ]
^— 7 

*

\ — /  

1 \

^----- 7 S-----------

**
transition

automaticTransition

a. method model: transition links

Start .
White s  

turn
checkmate

stalemate

stalemat
black 
moves

■ V
white
moves

Black's
turn checkmate

Black
w ins

Draw

White
wins

b. software model: chess game 

Figure 5.11 OMT: transition Links in stateDiagram
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IPSYS ToolBuilder defines linking as composition. When the component part of a 
composition is the link type, the relationship can refine to a source, a target or both. This 
complex definition is demanded because the IPSYS ToolBuilder kernel requires that all non
root concepts are owned by another concept. And since the source and target concepts are 
the nearest neighbouring concepts, ToolBuilder forces them to hold the ownership. However, 
we believe that a link should be recognised as an objectified concept between two entity 
concepts. The ownership of a link should be shared amongst them and eventually lead back to 
the same fragment. In fact, we have implemented a simple fragment to illustrate this 
confusion. ToolBuilder have agreed that there is a problem in the link declaration, and they 
hope to fix it in later versions.

This linking relationship is also seen in the MethodBase product part, though they name the 
source linking as input relationship and target linking as output relationship. Again, 
MethodBase has emphasised the method representation, and relationship properties such as 
cardinalities and roles are omitted.

5.3.3.4 GROUPING

The second type of association in our product model is known as grouping. Similar to linking, 
grouping is used to relate concepts by an objectificated concept. In this relationship, the 
concept is called a group. A grouping is always comprised of three components: a host 
concept, an element concept and the group concept itself. Figure 5.12 illustrates a grouping in 
OMT. The nestedStateDiagram is the group concept, state is the host concept and 
stateDiagram is the element concept. The small letters ‘h ’ and ‘e’ are placed at the group 
concept end to denote the host and element roles of concepts in the association respectively.

stateDiagram ^

nestedStateDiagram

state |^ -

Figure 5.12 OMT: nestedStateDiagram Grouping

Unlike composition and subtyping, all grouping relationships are optional. In other words, the 
host or element does not depend on the group. For instance, a dynamicModel comprises of a 
number of stateDiagrams and a stateDiagram comprises many state s. A state cannot stand 
alone without a stateDiagram. Nevertheless, nestedStateDiagram is a navigation concept that 
routes the host concept state to a lower level element concept stateDiagram, and either state 
or stateDiagram can occur in their own right. Grouping is normally an idea or a derived 
relationship between method concepts so, unlike linking, it does not have a physical notation.
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A grouping has also two parts: the host part connects the group to the host, whereas element 
part connect the group to the element. Since a group must have at least one host and one 
element, the cardinality tuple for both host and element parts is in the form (0,1,x,y). Figure 
5.13a shows the method model of OMT splittingControl and mergingControl in transition. A 
splittingControl must include of one and only one host transition (1-1) and at least two 
element transitions (2-many). The corresponding cardinality tuples are shown in the figure. 
Figure 5.13b illustrates the three components in a ATM dispenser software model.

h (0,1,1,1)
splittingControl

e (0,1,2,11) a transition
h (0,1,2,n)

K- e (0 ,1,1,1)
mergingControl

a. method model: splittingControl and mergingControl

elements

cash  taken
ready

card taken
host group

Setting up
do: eject card

Ready to reset
do: dispense cash

Emitting

b. software model: emtting activity 

Figure 5.13 OMT: splittingControl and mergingControl Grouping

Group concept can also relate concepts in different fragments. Figure 5.14 shows two 
decompositions in Ptech. Both product and activity are concepts in the objectFlowDiagram 
fragment. The productDecomposition grouping shows the detail of a product in an 
objectSchema fragment, whereas the activityDecomposition grouping gives the detail of 
activity in an eventSchema fragment. In these two examples, grouping is used for navigation 
paths, which provide a zooming effect from an entity concept to another type of fragment.

product ^ productDecomposition ^  objectSchem a

activity ^ activityDecomposition eventSchem a

Figure 5.14 Ptech: product and activity Decompositions

IPSYS ToolBuilder does not address grouping relationships. However, navigation of nested 
fragments or entity decompositions can be supported by a composition relationship. An object 
operation is defined in the host entity. Again, we find that this is confusing. MethodBase has 
also missed out this meta relationship.
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5.3.3.5 REFERENCING

A referencing relationship is used to relate similar concepts, but it appears under different 
aliases in different design aspects. This relational concept is important to link up concepts in 
different tool fragments of a methodology. Referencing is denoted by drawing a v-shaped 
arrow from the source concept to the target concept. The number of arrow heads depends on 
the cardinality and a letter ‘r ’ is placed in the middle of the arrow. Figure 5.15 illustrates the 
referencing between the three models in OMT. We concentrate on the objectModel and the 
functionModel. A process in a functionalModel refers to an operation in objectModel, data 
refers to attribute, whereas both actor and dataStore refer to an object. As in [Rambaugh 
91], functionalModel shows ‘what has to be done’ and the objectModel shows the ‘doers’.

functionalModel objectModel dynamicModel

object

activity
operation

action ]

actor
delegation

attribute

process

data

dataStore

eventAttribute

Figure 5.15 OMT: Referencing between Three Fragments

Fortunately all these relationships are uni-directional. However, bidirectional referencing 
relationship is also possible, for instance the referencing relationship between the function 
concept and the relationship concept is bidirectional, as shown in figure 5.16. In addition, an 
object is described in a dataDictionary, and the dataDictionary refers back to that specific 
object. This association is best represented as one-to-many referencing relationship.

function

object dataDictionary

Figure 5.16 OMT: Bidirectional Referencing Relationships

MethodBase supports a defines relationship, which is more or less the same as referencing. 
However, it is more appropriate in a unidirectional relationship which has lost the bidirectional 
referencing characteristic. IPSYS ToolBuilder provides reference relationship, but in fact it is 
used for connecting any related concepts for navigation purposes. Figure 5.17 summarises all 
the notations in our meta product model.
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/ f ) c
name name name

abstract concept 

subtyping
B1 B2

B1 B2

concrete concept constrained concept

concepts B1 & B2 are subtypes of abstract concept A 

concepts B1 & B2 are subtypes of concrete concept A

composition
--------------► B each  A may have zero or one B (?,'1,0,1)
------------ ►► each A may have zero or many B (?,1,0,n)
< ------------► each A m ust have one B (?,1,1.1)
< — ►► each A m ust have one or more B (?,1,1,n)
« — ► N/A
« — ►► N/A

J  B is optional 

J  B is m andatory

grouping

G h/e \
h/e

/
\ \

S  h/e
y /

y  h/e
s'SV.v;

^  h/e y

O  O  
(0 ,1,1,1) 
(0,1,1,n) 

(1,1.1,1)
mandatory group G must have 1 or more hosts/elem ents (1,1,1,n) 
N/A (1 ,n,1,1)
N/A (1,n,1,n)

^  optional group G must have 1 host/elem ent
optional group G must have 1 or more hosts/elem ents 

^  m andatory group G must have 1 host/elem ent

linking
^  ^  s/t/st 

s/t/st

<■ s/t/st

s/t/st
■>
■>

one link L may have one E source/target/either (0,1,0,1)
one/m ore link(s) L may have one E as  source & one target (0,n,0,1) 
one link L must have one E as  source/target/either (0,1,1,1)
one/m ore link(s) L must have one E a s  source & one target (0,n,1,1)

referencing
B each A may refer to one B

each  A may refer to one or more B 
each A must refer to one and only one B 
each A must refer to one or more B 

«  r »  each  A must refer to one or more B and vice verse
<■

O  O  
(0,1,1,1)
(0,1,1,n)

(1,1,1,1)
(1,1,1,n)
(1»n,1,n)

inclusion 
X ------

exclusion 
X -------

■B-H

- + >

QD

B1

B2

B2

X has one of each subtype of A (i.e. B1 and B2)

X has one A only (not B1 or B2)

Figure 5.17 Concept Diagram Notations
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5.4 ADVANCED CONCEPT MODELLING

Because of the number of concepts in a SDM, concept modelling is a very complicated and 
tedious job. The crystallisation of models into a common generic representation is also not a 
simple task. The new model must be concise and precise in its description. This section 
investigates a number of techniques that have been developed to solve various modelling 
problems or to reduce the complexity of the model. First of all, we shall investigate the 
possible relationships between entity concept and fragment concept.

5.4.1 AGGREGATION VS DECOMPOSITION VS REFERENCING

Software development vacillates between applications as well as within a single application. 
Each method allows a certain flexibility for the user to design within the ‘limited’ method 
concepts. In our meta model, there are three possible ways to denote the association between 
an entity and a fragment, namely aggregation, decomposition and referencing.

Aggregation is denoted as composition. There is an intrinsic asymmetry to the association: 
one concept is subordinate to the other. An aggregate (method fragment) consists of a 
number of constituents (method entities). For instance, a stateDiagram is an aggregation of 
its state, as shown in figure 5.18a.

Decomposition is depicted as grouping in our product model. A group is a concept, so a host 
concept (method fragment) may be expanded to an element concept (method entity). In figure 
5.18b, a state can be decomposed to a stateDiagram through the nestedStateDiagram 
concept. However, considering each state owns a stateDiagram, the relationship is shown by 
composition as illustrated by the shaded colour in figure 5.18a. A role or a label is required to 
denote the type of relationships (see figure 5.29c for the two types of decomposition between 
state and stateDiagram in OMT). Nevertheless, the concept is hidden in the label of the 
composition and it is not identified as a concept of the method. This is a significant drawback 
of this representation. This relationship shall be considered as an optional host-element 
association rather than a whole-part ownership.

stateDiagram

T
X sta te

stateDiagram  ^
A

objectDiagrarr

nestedStateD iagram )

state )^~

A
 ̂r dataDictionary
 ̂ f _ A

object —-

a. aggregation b. decomposition c. referencing

Figure 5.18 Aggregation vs Decomposition vs Referencing
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IPSYS ToolBuilder adopts the composition approach for nesting diagrams. This is partly for 
navigational purposes and partly because of concept ownership management in the entity 
model. The main objective of the IPSYS ToolBuilder developer is to construct a method 
CASE tool rather than to formalise a method documentation.

The last type of association is known as referencing, which may also be called ‘defined-by’ 
relationship. An intrinsic entity concept is further described by another fragment. This is 
particularly useful when a concept is shared amongst two fragments, and one is a complement 
of the other. For instance, figure 5.18c shows the objects in objectDiagram are defined in the 
dataDictionary.

These three associations are distinct in their usages. In summary, aggregation is a whole-part 
ownership, decomposition is a host-element association and referencing is a defined-by 
relationship.

5.4.2 COMPOSITION VS REFERENCING

In some cases the representations for composition and referencing have very close meaning. 
The decision will depend upon a judgment between restriction or flexibility. This can be 
illustrated by an example. Figure 5.19a shows that the dynamics of an object is defined by a 
stateDiagram, the composition is optional. On the other hand, figure 5.19b depicts the 
relationship by referencing and the stateDiagram is owned by some other fragment concept, 
say a method.

objectobject stateDiagramstateDiagram

a. composition b. referencing

Figure 5.19 Composition vs Referencing

Figure 5.19a describes a stateDiagram to be a constitutent of an object. Every stateDiagram 
must be applied to an object. There is a strong dependence in composition. On the other 
hand, figure 5.19b denotes that an object can be further described by a stateDiagram. The 
description is more flexible. Each object may refer to a stateDiagram, and the stateDiagram 
may describe a number of objects rather than just a single object. The dependence in 
referencing is weak.

Either method is permissible. The user has to decide on how specific they wish to be. In most 
cases, the referencing method is preferred as it provides flexibility in the design method.
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5.4.3 MERGING SOURCE AND TARGET LINKS

As mentioned earlier, many link concepts connect entity concepts of the same type. It is 
convenient to merge the source and target parts together and instead of labelling the parts ‘s’ 
and ‘t \  use the combined form ‘s t \  This reduces the complexity of the concept diagram. 
Figure 5.20 illustrates a situation where the source part and the target part between transition 
and interstate are merged.

y  state

startStat e inter!S ta te) s topState
\ ---------/

/  s , \

\ ---------/

*

\ -----------'

r  ------- “ —transition

automaticTransition
v J

Figure 5.20 Merged Link between interstate and transition

5.4.4 OVERRIDING

The default features of a superconcept can be overridden by its subconcepts. The overriding 
features can be shown diagramatically by reproducing the relationship at the subconcept level 
and denoting the changes explicitly. Figure 5.21 illustrates the instantiation concept 
overriding its superconcept relationship and only allowing instance to be the target concept of 
instantiation. This technique prevents unnecessary duplication of linking relationships and 
allows generalisation from the superconcept level. The simplest way of resolving 
specialisation is to reproduce the common features of subconcepts.

s7~ \7 -------- ;— — '
'  \  /relationship

(  instantiation)

Figure 5.21 OMT: instantiation Concept Overrides the Superconcept Relationship
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5.4.5 INCLUSION AND EXCLUSION

The relationships between terminal concepts can be easily described, but the relationships 
between concepts involving subtyping are more complicated, especially those with abstract 
superconcepts. Overriding is one possible technique to avoid complex representation of non- 
trival relationship. In this section, we introduce two more notations to reduce the complexity 
as well as to resolve possible diagrammatic confusions. Figure 5.22 illustrates four 
complications that may occur. There is a composition relationship between concept B and a 
superconcept A, where B is the owner.

case 1
A2 B owns A1 or A2

case 2

case 3

A2

A2

B owns A or A1 or A2

inclusion:
B owns one of each A1 and A2

case 4
exclusion:
B owns A but not A1 or A2

Figure 5.22 Four Cases of Possible Confusions

In case one, A is an abstract concept. B cannot directly own A, but it can own one of A’s 
subconcepts, that is either A1 or A2. If the cardinality is multiple, B can have any number of 
A1 or A2.

In case two, A is a concrete concept, so B can own one of A, A1 or A2. If it is a multiple 
cardinality, then B can have any number of A, A1 or A2.

In case three, the square box stands for inclusion. That is, B may own one of each A1 and 
A2. This technique eliminates all arrows from the whole concept to each subconcept 
components. If the cardinality is multiple, the effect will be the same as case one. The 
inclusion has no effect.

In case four, the bar is known as exclusion (or a cut), which stops inheritance going down to 
the subconcepts. In the example, B can own a superconcept A but neither subconcept A1 nor 
subconcept A2. If it is a multiple cardinality, the cut is still valid. That is B can have any 
numbers of A but not A1 or A2.
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Figure 5.23 gives an example for each inclusion and exclusion operation. In OMT, an 
association may contain one sourceRole and one targetRole, both of these are inherited from 
the role concept. In contrast, in Ptech an eventTypePartition contains a number of eventTypes 
but they cannot be clockEventTypes or externalEventTypes. A cut on the target illustrates this 
effectively.

y  role ^

a sso c ia tio n -----------&► sourceRole

targetRole 
V*......... ........V

a. Inclusion applied on association to role Composition

clockEventType

externalEventType

eventTypePartition
eventType

b. Exclusion applied on eventTypePartition to eventType Composition 

Figure 5.23 Examples of Inclusion and Exclusion

The cut technique also applies to all the relationships described in section 5.3.3 apart from 
subtyping. This is one of the reasons that subtyping is denoted as a subconcept box inside 
superconcept box. Figure 5.24a illustrates the cut operation in a Ptech grouping relationship. 
The objectTypeExpansion group associates objectType as the host and objectSchema as an 
element, but derivedObjectType and externalObjectType cannot be expanded.

objectSchem a

externalObjectType

derivedObjectType

objectTypeExpansion

objectType

a. Cut Operation in a Grouping Relationship

eventautomaticTransition

transition

b. Cut Operation applies on the Source Concept 

Figure 5.24 Examples of Cut Operations
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In addition, the cut operation can also be associated with the source part. For instance, a 
transition has an event, but an automaticTransition cannot have any event. A cut operation is 
applied on the source concept transition, as shown in figure 5.24b.

IPSYS ToolBuilder avoids confusion between case 2 and case 4 in figure 5.22 by making all 
superconcepts abstract. This is an alternative option. However, it requires the invention of 
some new concepts, and this means changing the semantics to meet the needs of the notation. 
Besides, it makes the concept diagram even more complicated. For example, in order to 
represent the cut operation illustrated in figure 5.24b, IPSYS ToolBuilder has to introduce a 
pseudo concept, say eventTransition, under the superconcept transition, and then to show the 
composition relationship directly from the eventTransition. Figure 5.25 shows the diagram in 
our concept modelling notation. The IPSYS ToolBuilder entity model produces a similar 
diagram except the diagonal line in the transition superconcept, since all ToolBuilder 
superconcepts are abstract concepts by default.

eventeventTransitionautomaticTransition

transition

Figure 5.25 IPSYS ToolBuilder Notation for Resolving Cut Operation 

5.5 PROCESS MODEL OF PRODUCT MODEL

We present a relatively simple product model of a real method fragment to show the 
representation power of this meta model. We have chosen the stateDiagram of OMT as our 
example because it is a common fragment amongst methods and it includes a lot of meta 
modelling notions.

The section also guides the reader through the process of concept modelling. The following 
seven steps are performed in constructing a product model:

• determine fragments in a method

• identify primary entities in each fragment

• identify relationships among primary entities

• determine properties of existing concepts

• develop complex groupings

• identify referencings between fragments or concepts

• define non-trival constraint rules
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Determining fragments in a method: Each method contains a number of diagram fragments 
and/or text fragments. For instance, HOOD has a diagram fragment called hoodDiagram 
and a text fragment called objectDescriptionSkeleton. These fragments combine together 
to constitute an aggregate concept of the method. In this example, we have concentrated 
on a diagram fragment, though a text fragment should have the same modelling steps.

Figure 5.26 shows the three diagram fragments in OMT analysis phrase, they are the 
objectModel, the dynamicModel and the functionalModel. Normally we can identify the 
cardinalities of these compositions straight away. In this case, all three models are 
optional.

functionalModelobjectModel dynamicModel

objectModellingTechnique

Figure 5.26 Step One: Fragment Concepts

Identifying primary entities in each fragment: Primary entities are distinct concepts in a 
tool fragment. In a diagram they appear as a node and are shown as a box in the diagram. 
An OMT stateDiagram has only one primary entity that is a state concept. However, 
state is an abstract concept with three subtypes, which are startState, interstate and 
stopState. Figure 5.7 shows the state concept as well as the transition concept, which is 
to be found in the next step.

Identifying relationships among primary entities: Diagram fragment links are used to 
represent relationships among all the primary entity concepts defined in the previous stage. 
These are normally shown as arrows or lines with different heads. An OMT stateDiagram 
has only one link, which is transition. Next in our method we have to identify the source 
and target parts of the link, and denote them as ‘s’ or ‘t ’ respectively. All possible paths 
from source concept to target concept must be determined and any complicated 
constraints are identified for future reference.

Section 5.3.3.3 gives a detailed discussion about these points and how to apply overriding, 
inclusion and exclusion as appropriate. Finally, if the source and target parts of a link 
happen to be the same concept, the ‘s’ and ‘f  denotation is combined by the merging 
technique as described in section 5.4.1. Figure 5.20 shows the optimised form of this 
linking relationship.
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Determining properties of existing concepts: After the entities and their relationships have 
been identified we can look into the secondary concepts, which are the properties of 
existing concepts. In diagram fragments, these are normally additional notations on nodes 
or links. They are represented as different types of arrow heads, labels etc.

eventl (attribsl) [cond ition l]/action l

event2 (attribs2)

Object Class

Statel
entry /  action2 
do: activityl 
event /  action4

exit /  action3

State2

Figure 5.27 OMT: Notation for state and transition Properties

Figure 5.27 illustrates properties on the state and transition concepts. A state has an 
activity, an entryAction, an exitAction and a number of internal Actions,, whereas a 
transition has an event, an eventAction, a number of event Attribute s and a 
guardCondition. All these compositions are optional and the actions are subtypes of the 
abstract concept action. A transition can have a guardCondition with an event, but 
eventAction and eventAttribute stay together with event. Therefore eventAction and 
eventAttribute are components of event rather than transition. Inclusion and exclusion 
operations are applied as appropriate. Figure 5.28 shows the properties of state and 
transition concepts.

activity ^

V  action
entryAction

exitActionj^-

internalAction

eventAction

star
I jJ *  V -----
4  event

state

startState | [ in terstate [ stopState

eventAttribute

VV

sV stVSV  ®*v

-A

&
transition

[automaticT ransition

► guardCondition

► delegation)

Figure 5.28 Step Four: Properties of Existing Concepts
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Determining complex groupings: In this stage we identify all the hidden concepts in the 
fragment. These concepts do not have a notation, but are represented as group concepts. 
They are mainly used for navigation or concept transformations, and are of two main 
types. The first type is where a notation is transformed at the same level, for instance a 
link to a different form of link. Section 5.3.3.4 describes the OMT splittingControl and 
mergingControl grouping. The splittingControl grouping allows the transformation of a 
single transition to multiple transitions, whereas the mergingControl grouping gives the 
transformation of multiple transitions to a single transition. Figure 5.12 and figure 
5.13 illustrate this grouping modelling technique. The second type is a transformation 
between different levels, for instance from an entity concept to a fragment concept. Figure 
5.29a and 5.29b show the two ways to extend a state to a stateDiagram. The 
corresponding product model for these transformations is given in figure 5.29c.

eventl ^

-----------------  —
Superstate

• —► Substate-1 —►[ Substate-2)

event3 event2

1 r

Superstate

• — ►{ Substate-1 ] Substate-3
, eventl

Substate-2 Substate-4j

event2
i

a. nestingStateDiagram

_______________e[------- stateDiagram
nestedStateD iagram

b. concurrentSubdiagram 

« -
A

7

h

V

[concurrentSubdiagram

V
state

s ta rtS ta te ) [ in te rs ta te ) [ stopState

c. Product Model of state - StateDiagram Groupings 

Figure 5.29 Step Five: Complex Grouping

Identifying referencings between fragments or concepts: In this stage we need to identify 
the referencing relationships discussed in section 5.3.3.5. Again, there are two types of 
referencing, one within a fragment and one between fragments. An OMT dynamicModel 
does not have referencing relationships within itself, but in its objectModel a discrimator 
refers to an attribute. Figure 5.15 illustrates the referencing relationships amongst the 
three tool fragments in OMT.
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Let us look at the referencing relationships between an objectModel and a dynamicModel. 
A delegation from transition in the dynamicModel refers to an object in objectModel; an 
eventAttribute refers to an attribute, both activity and action refer to an operation. Again 
advanced modelling techniques are applied to appropriate parts of the model. Combining 
all results of the previous stages we obtain the product model of dynamicModel as shown 
in figure 5.30.

objectModel

dynamicModel)
A

o b je c t^ -

nestedStateD iagram pa  c)a)on;ajram

operation activity } 4

attribute ̂

action
entryAction

[ exitAction)4

internalAction f  W

7 \

V

| concurrentSubdiagram

V
state

startState ] [ in terstate) [ stopState ]

eventAction 4 event

eventAttribute 1 4 4
s  \  /

■VV

s t V

■A

S i

splittingControl

transition
automaticTransition)

I
► guardCondition

« -
4*

mergingControl

delegation]

Figure 5.30 Final Step: a Complete Product Model of stateDiagram

Defining non-trival constraint rules: This stage defines any extra constraints between
concepts that cannot be represented in the concept diagram. We suggest that they should 
be formulated as rules by Method Specification Language. As shown in section 5.3.3.3, a 
constraint rule is required in the transition concept. That is used to avoid a transition 
flowing from the startState directly to the stopState. A  constrained concept is denoted by 
a letter ‘c’ at the top right corner of the concept box. These concept rules or constraint 
functions are stored in the rule fields of the corresponding heuristic record (see chapter 
seven for actual details). The textual representation of the concept rule is also shown later 
in chapter eight.
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5.6 ZOOM HIERARCHY

The complexity of a concept diagram depends primarily on three issues. Firstly, the number of 
meta concepts within a method can directly affect the complication of a model. Secondly, the 
cohesion factor of a fragment can alter the concept structure. A highly cohesive fragment 
produces a large number of meta relationships in a fragment. These relationships may cause 
many complex links between meta concepts. Finally, the complexity also depends on the 
coupling factor of a fragment. Contrary to cohesion, fragment coupling affects the number of 
meta relationships between fragments. If this factor is high, a large number of references 
occur, resulting in long and nested links in the diagram.

In order to reduce the complexity of the structure and to allow the developer to focus on 
individual features of the model we introduce a zoom facility. There are two zoom types and 
each of them forms a hierarchical structure on its own. They are known as zoom by detail and 
zoom by feature. The first one gives different details of the overall method, whereas the 
second one shows part of the method by individual feature.

5.6.1 ZOOM BY DETAIL

The three modes of this zoom dimension are known as overview mode, middle mode and 
detail mode. Each mode shows a method in a different level of detail. The overview mode 
gives a brief summary of a method by showing all fragment concepts. This is particularly 
useful when counting the number of fragments or viewing the interrelationship of individual 
fragments. The middle mode shows all fragments and all primary entity concepts, which may 
also include group concepts and link concepts. This mode is used if the secondary concepts or 
the complete concept model is not of interest. Finally the detail mode displays all meta 
concepts of the method.

c codarts/DA
IK :)

contextDiagram

A  A

systemContextDiagram

A  r
"t-e-

y v 7I\
taskArchitectureDiagram

V
V

dataFlow/ControlFlowDiagram

I -e-

A

stateT  ransitionDiagram

Figure 5.31 Codarts/DA: Overview Mode
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Figure 5.31 illustrates the overview zoom mode of Codarts/DA. Bubbles are placed on the 
relationships to denote an interim concept or a list of cascade relationships between fragments. 
For instance, in the example the bubble shown on the composition relationship between 
dataFlowControlFlowDiagram and stateTransitionDiagram is a controlTransformation 
(entity) concept, whereas the bubble on the referencing relationship between 
systemContextDiagram to contextDiagram is a contextDiagramDecomposition (group) 
concept. If there is a list of different relationship types between fragments, the interim 
relationship will be shown as a referencing relationship, with the cardinalities still shown on 
the relationship.

Moreover, inclusion and exclusion operations can still be applied to the overview mode. For 
instance, each design has a number of contextDiagrams but there is only one 
systemContextDiagram. However, systemContextDiagram is a subconcept of
contextDiagram, so a cut is placed on the the target side of the composition between 
codarts/DA (method concept) and contextDiagram.

5.6.2 ZOOM BY FEATURE

Similar to zoom by detail, this zoom dimension also has three modes: method mode, fragment 
mode and entity mode. These zooms are based on different types of feature in a method.

Method mode displays all the meta concepts and meta relationships of a method, which has 
the same effect as detail mode on the other zoom dimension.

Fragment mode displays the meta concepts and meta relationships of just a selected fragment 
of the method. This mode is useful when the developer concentrates on the details of a single 
fragment, rather than inter-fragment relationships. Figure 5.30 illustrates the dynamicModel 
fragment of OMT under this mode.

Lastly, the entity mode shows all meta concepts related to a selected concept, which can be a 
fragment concept, an entity concept or a group concept or a link concept. Figure 5.26 and 
figure 5.12 demonstrate a method fragment concept and a nestedStateDiagram group concept 
of OMT under this mode respectively.

5.7 PRODUCT MODEL OF CONCEPT DIAGRAM

Product models of SDMs can be represented graphically by concept diagrams, so the 
conceptDiagram fragment can be considered as a diagram fragment in a meta modelling 
method. This fragment in turn can be represented by the product model. Figure 5.32 shows 
the product model of the concept diagram by this modelling technique. The following points 
are noted:
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• The abstract Concept, the constrainedConcept and the sharedConcept (see chapter eight) 
are the subtypes of the concept supertype. An abstractConcept is a concept that does not 
have any instances; a constrainedConcept is bound with a constraintRule, whereas a 
sharedConcept must refer to a dissectionSet (see chapter eight).

• Each conceptDiagram can zoom into a number of smaller scale conceptDiagrams by using 
the zoomln concept, and a number of conceptDiagrams can zoom out to a larger scale 
conceptDiagram by the zoomOut concept (see section 5.6).

• The abstractConcept overrides the source part of a subtyping between concept and 
relationship, since the abstractConcept can only be a source concept of subtyping.

• Each relationship has one of each cardinality and role, but the direction concept only 
applies to the referencing relationship.

• The superconcept of inclusion and exclusion is not labelled. In fact, they are just 
notations to reduce complexity of a conceptDiagram.

• The relationship concept is a constrained concept because the source and target parts of 
relationship normally depend on its type. For instance, a dissectionSet can only be used to 
relate fragment concepts (see chapter eight).

• Finally, optionality does not actually show in the conceptDiagram, but it can be derived 
from the minimum cardinalities of a meta relationship.

concept constrainedConcept conceptDiagram

^abstractC oncept | sharedConcept A

y/ \
r constraintRule

zoomln] [zoomOut

^  relationship d issectionSet)

subtyping referencing [grouping) [linking) composition

i TsT

direction ■ e*
cardinality

maximumSourceCardinality

maximumTargetCardinality

minimumSourceCardinality

minimumTargetCardinality

V  role y  n

sourceRole exclusion

targetRole 
v  J inclusion

optionality

[optional

mandatory

Figure 5.32 Product Model of Concept Diagram
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5.8 CONCLUSION

In this chapter we presented a formal, structural and rigorous product model for SDMs. This 
meta model produces a unified documentation of method concepts. The model includes three 
main ingredients: meta concepts, meta relationships and relationship properties. The model is 
represented graphically by a concept diagram and textually by a method specification 
language. We have also illustrated the steps to be taken to form this diagram, and have 
explained a zooming technique to focus on the individual detail of a model. The product 
model is developed as part of this research project. We have tried out this product model in 
five SDMs, namely HOOD, OMT, Booch OOD, Ptech and Codarts/DA.
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6. PROCESS MODEL

This chapter complements the method concept discussion in the last chapter. It documents the 
dynamic aspects of meta modelling, by describing the tasks that need to be undertaken to 
create a product model, and in particular, when these tasks should be applied. The method 
concepts are structured to integrate with method tasks, the latter denoting the software 
development processes. Each task comprises a task function and context parameters of the 
function are represented by concept tokens. The overall model in method representation is 
known as a process model.

6.1 INTRODUCTION

A process model describes those aspects of a system concerned with the sequencing of 
operations, such as events that mark changes, sequences of tasks, states that define the 
context for tasks and the organisation of tasks and triggers. The model also describes those 
aspects of a system concerned with transformations of concepts, mappings, constraints and 
task dependencies. Therefore, in principle, the process model is a series of tasks (normally in 
a network structure) arranged in the order of creating instances of concepts in method level. 
Software development as a process is a ‘creative’ activity since it involves a lot of decision 
making and task modelling. The process is also highly incremental and iterative.

We have investigated a number of process modelling techniques. However, many techniques 
describe process models at a software level rather than at a method level. This chapter 
presents a generic model to represent the method processes. We also suggest the following 
points:

• The process structure of method model should be relatively simple and flexible.

• The processes of individual fragments in a method should be arranged in such a way that 
they can be dissected and shared amongst SDMs, which can even be customised methods.

• The heuristic system must take an important role in the system, since the guidance and 
rules should be embedded in each method development process.

• The concepts described in the product model must also play a vital part in process 
modelling.

• The other major issue is the ordering of processes. The design processes of a method 
should be arranged in a particular order, and the corresponding pre- and post- conditions 
of each process should be checked at each stage of development.
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The organisation of this chapter is as follows. The next section discusses different types of 
processes in meta modelling, section 6.3 describes a few basic issues of process models. 
Three preliminary approaches are introduced in section 6.4. Then we present the task 
functions, the task sequence and the task modelling in section 6.5, section 6.6 and section 6.7 
respectively. Section 6.8 shows the meta process model and section 6.9 looks at the meta 
meta model. The last section gives a summary of this chapter.

We have identified three types of process in our meta modelling approach. It is important to 
distinguish between them before starting the discussion on process modelling. The three types 
of process are the method process, the metaCASE process and the CASE tool process. 
Figure 6.1 illustrates these processes in three levels.

The generic process model that is described in this chapter is in the meta (top) level. It is a 
generic meta model, and aims to represent the processes in the method level.

In the method level there are two types of models, namely the method process and the 
metaCASE process. A method process describes the development process that are presented 
in a SDM, whereas a metaCASE process describes how to map the method process into a 
metaCASE tool. Therefore there is a relationship between these two processes. The method 
process must be converted and placed into the metaCASE tool. We denote the relationship 
between these two processes by the put association as shown in figure 6.1.

The bottom level is the software level, where a CASE tool is generated from a metaCASE 
tool. The CASE tool process depends on the method process, as well as the facilities of the 
metaCASE tool that provide a configurable process.

The details of these three types of process are discussed in the following subsections.

6.2 META MODELLING PROCESSES

GENERIC PRO CESS MODEL
generic

Meta Level
represent represent

METHOD PROCESS p Ut METACASE PRO CESS 
— physi cal Method Levellogical

configure

CASE TOOL PRO CESS 
specific

Software Level

Figure 6.1 Meta Modelling Processes
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6.2.1 METHOD PROCESS

A method process is the logical process described in a SDM to show the design sequence of 
the method. Certain literature refers to this as a ‘cookbook approach’, because in theory, a 
developer can follow the design steps to obtain the software products. However, a rigid 
approach to design usually leads to inflexibile and largely useless design products. Creativity 
and common senses are required in addition to the process (see section 6.3 for details). The 
process of a method is more of an incremental and iterative process, in which the products of 
design gently unfold over time.

Step Activity

1 identify the classes and objects at a given level of abstraction

2 identify the semantics of these classes and objects

3 identify the relationships among these classes and objects

4 implement these classes and objects

Table 6.1 Booch OOD: Method Process

For instance, the process of Booch OOD [Booch 91], as shown in table 6.1, is a four step 
design sequence. The first column in the table denotes the design step number and the second 
column gives the activity description. Booch OOD supports the incremental and iterative 
process of round-trip gestalt design. This is an incremental process: the identification of new 
classes and objects causes the developer to refine and improve upon the semantics of and 
relationships among existing classes and objects. It is also an iterative process: implementing 
classes and objects often leads us to the discovery of new classes and objects whose presence 
simplifies and generalises the design.

The Booch OOD has a very simple process model (it comprises only one level and four steps). 
However, showing the design sequence in tabular form can be a very useful tool in process 
modelling, especially if the conditions and operations of method processes are considered. 
The process model of a method is closely related to the product model of the method. For 
instance, in the Booch OOD example, class, object and relationship are method concepts 
defined in the product model. The method process is mainly called to determine these 
concepts. The later sections in this chapter will illustrate that the method concepts described 
in the product model can be used as input and output tokens to the method process.

As the aim of this research is to develop a generic model to represent a SDM, method process 
is the main modelling object amongst the three types of processes. Nevertheless, our generic 
model is powerful enough to represent the metaCASE process as well.
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6.2.2 METACASE PROCESS

We described the method process in the last section, that is a logical process model of a SDM. 
In this section, we discuss the process in a metaCASE tool, which is a physical process model 
of the method. A metaCASE process is highly dependent on the semantics of a metaCASE 
tool, such as the data model to represent method concepts and the functional model to 
describe the method processes. A metaCASE process is the channel to express method 
semantics to metaCASE semantics, and all these semantics comprise of both product and 
process models. Therefore, the metaCASE process can be easily clarified into two phases. 
The first phase involves mapping the logical semantics to the physical semantics and the 
second phase deals with placing the semantics into the tool.

The technique of mapping method semantics into the metaCASE tool is discussed in chapter 
eleven. We concentrate on the process of putting method semantics into the metaCASE tool 
in this section. This metaCASE process describes a sequence of steps that a developer can 
follow to gradually place the physical semantics into the chosen metaCASE tool. Although 
this metaCASE process is not a SDM process, we find our meta model also handles this 
process model efficiently.

determine
field

determine
object

specify 
data model

define 
diagram notation

define 
text subsection

specify 
frame model

Figure 6.2 IPSYS ToolBuilder: An Example of MetaCASE Process

Figure 6.2 illustrates an example of IPSYS ToolBuilder’s [IPSYS 92] metaCASE process. 
The round-comer boxes denote tasks and the v-shaped arrows represent the control flows in 
the process model. A developer starts the metaCASE process by specifying the data model of 
the method, and then develops the diagram and text frames of the required tool. The last step 
is to define the appropriate diagram notations and text subsections for each frame. The 
developer can carry on creating more frames. Apart from the incremental and iterative 
process already mentioned in the last section, this model also introduces the idea of cascade 
and parallel processes. This is a cascade process: the specification of a new frame requires the 
formation of shared objects and fields, which then require the definition of the diagram 
notations and text subsections. Each step refines and describes the details of the previous 
step(s). It is also a parallel process: the frame specification consists of a number of graphical 
and textual notations, which in theory can be defined concurrently.
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6.2.3 CASE TOOL PROCESS

After the method semantics are placed into the metaCASE tool, it is ready to generate a 
specific CASE tool of the method. Hence, the generated tool is embedded with the method 
concepts and method processes introduced to the metaCASE tool. In the software level, the 
CASE tool is specific to a particular method (or a number of methods if tool integration is 
provided) and the tool can be used to develop software of a certain domain. However, the 
metaCASE tool may provide some facilities that allow the process to be refined and/or 
configured. Therefore, the CASE tool process is first planned from the method process 
defined in early stage, and then the metaCASE tool may allow the developer to configure the 
generated process. These relationships are represented by the plan and configure associations 
in figure 6.1.
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Figure 6.3 Booch OOD: the Configurable Process

Let us look at an example of configuration by refinement. In figure 6.3, the top four tasks 
show the process of Booch OOD, which has been tabulated in table 6.1. This part of the 
figure shows the method process. Booch OOD does not precisely define the activities of each 
step. For instance, the second step aims to establish the meanings of the classes and objects 
identified from the first step. This technique involves writing a script for each object, which 
defines its life cycle from creation to destruction, including its characteristic behaviours. This 
description is incomplete and ambiguous. However, the developer can configure the process, 
so that it can be refined to document the semantics of each key abstraction in timingDiagram 
and stateTransitionDiagram. This mechanism can also be applied to the other tasks as shown 
in the figure.

The CASE tool configuration is a major topic on its own [Fisher88], and it is outside the 
boundary of this research. Therefore, CASE tool processes or configurable processes will not 
be discussed in the rest of this thesis.

Nevertheless, these diagrams are used to describe the process model of a method graphically. 
It is good enough to show the sequence of processes, but this does not denote the 
dependencies between the processes. In later sections, we will develop an enhancement of this 
diagram to address the problem. The enhanced diagram is known as a task diagram.
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6.3 BASIC ISSUES

Unlike the product model, the process model may be incomplete or ambiguous. We shall look 
at three basic issues of process modelling, which are creativity, explicitness and grainsize.

We have investigated the process model of a large number of SDMs. Some methods only 
provide a set of product notations and give no direct description about design sequence, which 
allows the developer to form their own tasks or process model. For instance, OOSD 
[Wasserman 90] is a method without a process model. Some other methods give minimal 
information on the process model. For example, Booch OOD is a fairly ‘concept-rich’ 
method, but its process model of the method is described in only ten pages.

The process model requires a lot of creativity as well as common sense. A method engineer 
has to construct tasks from the concepts in the product model. However, it is possible to refer 
to other methods which have similar fragments. For instance, Booch OOD does not have a 
precise description about the formation of stateTransitionDiagram. The process model of a 
similar fragment, say stateDiagram in OMT [Rumbaugh 91], can be borrowed for guidance. 
Also, common sense is a good approach. For instance, in order to form a dataDictionary, the 
objects of the system must first be identified. Therefore the task insert(object) must occur 
before the task specify(object,dataDictionary).

This brings us to the second issue of process modelling, that is explicitness. An explicit task 
is a task recorded directly in a SDM, whereas an implicit task is not mentioned but has an 
implication that it must be carried out. Since all concepts must be created by the tasks in the 
process model, there is an implication to determine each and every concept in the product 
model. For instance, nestedStateDiagram is a group concept in the dynamicModel fragment 
of OMT. However, there is no description about constructing a lower level stateDiagram in 
the process model. An implicit task must be inserted to identify this feature, which implies the 
formation of a lower level stateDiagram.

The last issue is about the process grainsize. Our process model supports decomposition, so 
there are different levels of abstraction about the process. If the description is brief or vague 
then it is known as a coarse grain process. For instance, the basic process model of Booch 
OOD shown in table 6.1 is a coarse grain model. On the other hand, if the description 
describes a very precise and self sufficient step then it is called a fine grain process. In our 
model, we specify tasks as far as the operational level. That is when the task cannot be 
decomposed any more, but an operation must be carried out. For instance, insert a new object 
to a list in insert(object) task or add a state icon to the stateDiagram in draw(state) task. It is 
important to note that the grainsize must be consistent throughout a method.
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6.4 THREE PRELIMINARY APPROACHES

When investigating meta modelling techniques, we found three preliminary approaches 
towards process modelling. These are the menu driven approach, the event sequence 
approach and the frame-based navigation approach. These approaches appear in both meta 
modelling research [Saeki 93] and in metaCASE tools [Smolander 91] [IPSYS 92].

6.4.1 MENU DRIVEN APPROACH

A menu driven approach can place emphasis on incremental change, by putting up a different 
set of options. It can be thought of as a basic (or simplistic) version of frame based navigation 
(described later). When an option is chosen from the menu, the required operation performs. 
A new set of options is created, which is actually a list of possible consequent steps. This 
menu driven approach is used in most database systems, because the number of steps are 
predefined and limited. This approach forms a hierarchical menu structure that defines the 
navigation possibilities to subsequent processes. Jumpers may be set to link a menu from one 
node of the hierarchy to another. Figure 6.4a illustrates a cascade menu system. If the first 
option of menu A is chosen, menu B will form, whereas if the last option is selected, menu C 
will form. Though the number of options varies in different menus, they are predefined for 
each individual menu. Nevertheless, this menu driven approach is not ideal for meta process 
modelling. It is too rigid and cannot accommodate the creative nature of the software 
development process. For instance, the number of options in a menu may vary according to 
the recent steps. A fixed size menu in each state is not a desirable solution.

I A

DERIVED RELATIONSHIP DEFINITION
METHOD : OMT
ENTITY MODEL : omt 
ENTITY TYPE : object 
RELATIONSHIP : states

a. cascade menu b. IPSYS hierarchical menu

Figure 6.4 Menu Driven Approach

IPSYS ToolBuilder supports this menu driven approach. Figure 6.4b shows an IPSYS four 
level menu structure, which are method, model, entity and relationship levels. Each item in a 
level links to a specific menu and the options of a menu are related to an individual item. For 
instance, selecting the value omt of the Entity Model item gives the options such as Show 
Entity Model Diagram and Show Entity Model Definition etc.
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6.4.2 EVENT SEQUENCE APPROACH

An event sequence approach is based on the formation of event lists. Each event in the list 
triggers a specific operation required by the method. A number of events are arranged in a 
sequential order and execute accordingly. The operation can be any software development 
based function.

The following diagram demonstrates an event sequence. Before the trigger, figure 6.5a, a list 
of events A l, A2... is on the sequence. When the event A1 is triggered, the corresponding 
operation is performed and then a list of new events, Bl, B2 and B3, is inserted to the 
remaining sequence. It must be noted that there are various ways to reform the sequence after 
an event execution. Figure 6.5b shows the two most common ways, which are insert to front 
and insert to end. Other ways are context limiting, specificity ordering, size ordering, data 
ordering, refractoriness etc. These techniques are similar to conflict resolution in an expert 
system.

B1 B2 B3

A2 A3 A4

a. before trigger

B1 B2 B3 A2 A3 A4

A2 A3 A4 B1 B2 B3

b. after trigger

Figure 6.5 Event Sequence Approach

A disadvantage of this approach is that the sequence may consist of highly coupled events, 
which is a group of interrelated events in the same method. They may make event 
management and fragment sharing more difficult.

This problem can be solved by introducing concept tokens to the process model. These 
tokens are based on the concepts in the product model. They appear as context parameters in 
task functions. An operation is a task function attached with a set of preconditions and 
postconditions, which monitor the control flow of the model. A precondition expresses a 
group of tokens that the system must possess in order to carry out the operation, whereas a 
postcondition expresses a group of tokens that the system will receive after the operation.

In addition, there is a need to deal with token refinement, that is to refine or redefine the 
meaning of tokens. For instance, state may mean different things in different methods. There 
are two ways to overcome this. One way is to generalise the commonality of the concept in a 
hierarchical form. The other way is to give them different labels; state(omt) and state(booch) 
for instance.
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6.4.3 FRAME BASED NAVIGATION APPROACH

A frame based navigation approach allows a control flow amongst text frames and diagram 
frames. The navigation options (or menu) are bound to individual items in the current frame, 
as shown in figure 6.6a. Preconditions and triggers can be attached to each state operation. 
This approach looks simple as long as the navigation path is formed. Since the control 
information is encapsulated in the objects, the branching can be made relevant to the nature of 
the object. Moreover, the number of options bound to the object is flexible and it will be less 
than a single combined menu as in the menu driven approach. However, the layout of this 
frame based navigation graph may be different in various frames.

□

a. frame navigation

STRUCTURED TEXT FRAME TYPE DEFINITION

METHOD 
FRAME TYPE

: OMT
: objectCatalogue

STRUCTURED TEXT FRAME TYPE (^bjectCatalogue^ 
[description] ^

APPLIES TO 
TYPE: (

OBJECT TYPES: 
j ectName^—

frame definition frame 

entity definition frame 
object definition frame

b. IPSYS frame 

Figure 6.6 Frame Based Navigation Approach

IPSYS ToolBuilder supports this frame based navigation approach. Figure 6.6b shows part of 
the structured text frame type definition objectCatalogue, and several items on the frame 
allow navigation to other frames. For instance, if the entity item UNIT is selected, the entity 
definition frame is shown, whereas if the object item objectName is chosen, the object 
definition frame is displayed.

IPSYS ToolBuilder allows this navigational effect to be inherited to the generated CASE tool. 
All frames, objects and fields can be bound with corresponding operations, that is frame 
operation, object operation etc. These operations may be accompanied by preconditions 
which guard the action or by triggers to force other executions. The operations appear as 
options in a menu, when the related items are chosen from the frame. Therefore they are used 
for navigational purposes, and that becomes the control structure of the system. The 
destination of the operation is always another frame in the system.

In order to achieve the above three approaches, a Ptech-like [Martin 92] event schema 
diagram is introduced to denote the process model. This is discussed in section 6.7 task 
modelling.
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6.5 TASK FUNCTIONS

As mentioned in chapter four, a process model is comprised of a number of tasks, which are
executed by task functions. The behaviour of a task function can be summarised in figure 6.7.

• A task function may be either an optional or a mandatory operation in a design sequence. 
For instance, in Codarts/DA method [Gomaa 93], if an application is non-distributive the 
perform(distributedSystem) task can be ignored (as shown in figure 6.7a).

• The tasks may also be mutually recursive, that is they loop round to trigger one another. 
For instance, in the Ptech method [Martin 92], the insert(event) task from an eventTrace 
may induce an object to be filled by the specify(object) task, which may, in turn, create 
more events. Figure 6.7b illustrates a two step cycle, but more complicated loops may 
occur in method processing.

• A special case of mutual recursion occurs when both tasks have the same function, that is 
a recursion applies on the same task. Such iteration is known as single recursion. For 
instance, in OMT, a state discovered by the insert(state) task may cause the identification 
of other aggregate states or substates (as shown in figure 6.7c).

specify
object

insert
event

insert
state

perform
distributedSystem

a. optional b. mutual recursive c. single recursive

Figure 6.7 Behaviour of Task Functions

To conclude, it is difficult to identify every single development path (or possibility) in the 
process model. In order to provide enough - but not too crude - assistance, the process model 
must be kept as simple as possible. Therefore, instead of constructing the navigational paths, 
we concentrate on describing the necessary requirement for the task and the expected 
outcomes of the task. These are the precondition and postcondition of a task function 
respectively. As most of these tasks aim to develop the concepts in the product model, these 
conditions are mainly composed of the method concepts. The parameter in a task function is 
known as contextParameter, which is a conceptToken to monitor control flow. The capability 
of conceptToken will be shown in following sections.

From our method investigation, we have identified nine types of task function. They are the 
perform, do, draw, insert, delete, modify, adjust, retype and specify functions. The first two 
are composite task functions and they take the task name as their parameter. On the other 
hand, the last seven functions always have concept(s) as their parameter(s), so they are also 
known as concept functions.
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In additon, the perform, do and draw functions are composite functions, which can either 
decompose or refine into other task functions. However, the other six task functions are 
mainly for operating method concepts. They are also called terminal task functions. These 
terminal functions are always associated with heuristics to carry out the activity. Each 
composite function must be eventually represented by these terminal functions.

We use OMT and Codarts/DA for the following illustrations, since they require most of these 
functions.

6.5.1 perform FUNCTION

The perform task function processes a predefined task sequence. This is the way to implode 
other tasks within the current sequence. The context will pass to the called sequence and 
return the result to the current sequence. The system will normally follow the heuristics as 
defined in the called sequence, although additional heuristics (usually constraints) can be 
attached to this sequence. This function is useful if part of the process has been declared 
separately or within another method. For instance, the Codarts/DA process model is pre- 
processed by the Cobra process model as its analysis phase. The task function perform(cobra) 
in Codarts/DA model will call up the Cobra sequence.

Furthermore, a perform function can always decompose into a number of task functions (see 
section 6.7.4 for details). Thus the associated heuristic normally gives the definition the task 
rather than provides guidance for the activity.

6.5.2 do FUNCTION

The do function processes a number of subfunctions. Unlike the perform function, only one of 
the subfunctions is carried out. The perform function is similar to a subroutine call and can 
represent graph structures, whereas do is a block of ‘case’ statements (such as those in C or 
Pascal programming language). The do function may refine to a list of alternative tasks (see 
section 6.7.5). It should be used whenever a design decision is made out of a number of 
choices, which include the option of not to take any choice at all. For instance, the 
do(verifyAssociation) task function in OMT can refine to the following tasks:

adjustAssociationBetweenEliminatedClass
deletelrrelevantAssociation
retypeAssociationToOperation
modifyTernaryAssociation
deleteRedundantAssociation
retypeRedundantAssociationToDerivedAssociation
modifyMisnamedAssociation
insertRoleName
retypeAssociationToQualifiedAssociation
insertMultiplicity
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6.5.3 draw FUNCTION

The draw function constructs a graphical presentation. It is a composite task function, 
because a diagram requires many design decisions which are defined by the insert functions. 
For instance, the draw(contextDiagram) function of Codarts/DA includes the determination of 
extemalEntity, subsystemTerminator, dataTransformation as well as dataFlow in the 
diagram. Therefore the draw function calls upon the appropriate task functions, such as 
insert(X), delete(X) or modify(X) concept functions to perform necessary operations on the 
element X  in a graphic editor (these functions are defined in the following subsections). The 
draw function launches a graphic editor with all appropriate icons pre-defined by the graphical 
representation of the product model. Context-sensitive help or guide-rules can be provided 
for this function.

6.5.4 insert FUNCTION

The insert task function provides design decision. It is the most common function in any 
design task. It may be used to obtain concrete domain entities, such as object, function and 
task, or to compose system definitions such as systemDecomposition, messageCommunication 
and eventSynchronisation. The insert function is usually supplied with a rule or a criterion in 
its heuristic field. In a manual system, it provides a list of items or decisions. Specific 
examples of insert functions within Codarts/DA are: task, informationHidingModule, object, 
function, systemDecomposition, sub systemDecomposition, messageCommunication and 
eventSynchronisation. An insert function takes the element being created as its context 
parameter, for instance insert(task).

6.5.5 delete FUNCTION

The delete task function inverts the result of the insert task function. It may be used to erase 
any obtained design entities as created or modified by other task functions. A delete function 
is normally associated with a design rule in its heuristic record (see chapter seven). If the 
design condition is satisfied, the delete function can be fired. Again, the delete function takes 
the element being deleted as its context parameter. In our do(verifyAssociation) example 
above, there are two entries (deletelrrelevantAssociation and deleteRedundantAssociation) of 
the delete(association) task function.

6.5.6 modify FUNCTION

This function allows the developer to revisit the pre-determined elements with a new stimulus. 
The modify function is to optimise an element, especially after there have been a number of 
related tasks performed since the element is created. Normally, heuristic guidance or rules are
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linked to the task. A modify task function takes the element being deleted as its context 
parameter. In the do(verifyAssociation) example, the two entries of the modify(association) 
task function are modifyTemaryAssociation and modifyMisnamedAssociation.

6.5.7 adjust FUNCTION

An adjust function is similar to a modify function, except that the element which causes the 
change is declared. In other words, this function is to check or verify the pre-determined 
elements against other types of recently identified elements. An adjust function takes two 
elements as context parameters and heuristic guidance must be provided for the task. For 
instance, in the adjustAssociationBetweenEliminatedClass task of our do(verifyAssociation) 
example, if one of the classes in the association has been eliminated then the association must 
be eliminated or restated in terms of other classes. The corresponding adjust task function is 
expressed as adjust(association,class), which reads ‘adjust association by class’.

Besides, in Codarts/DA, the task function adjust(task,informationHidingModule) allows the 
consolidation and integration of the relationships between elements of the two types.

6.5.8 retype FUNCTION

This function allows a pre-determined element to change to a different type. The element 
could have been created previously by the insert, specify or draw task function, so this 
function must launch a text window or a graphic window according to the nature or current 
state of the element. Again a retype function takes two elements as context parameters and 
the heuristic guidance must be provided for the task. The function retype(X,Y) stands for 
change the type of element from X  to Y. For instance, in the three retype tasks of the 
do(verifyAssociation) function example listed below, the first one is expressed as 
retype( association, operation).

retypeAssociationToOperation
retypeRedundantAssociationToDerivedAssociation
retypeAssociationToQualifiedAssociation

6.5.9 specifiy FUNCTION

The specify task function fills in a template, form, specification, document or explicit code. 
Both specify and draw are common task functions. The specify function handles textual 
descriptions and the draw function deals with graphical presentation. In a specify function, the 
developer is provided with a text editor. Heuristic rules may be used, to guide the input 
process, to enforce referential integrity, or to provide a batch check of the completeness and 
consistency at any appropriate check-point. A specify function may take either one or two
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parameter(s). In a single parameter function, the context is being specified such as 
specify(systemConfiguration) in Codarts/DA. In a two parameters function, the first concept 
is specified into the second one. For instance, specify(object,dataDictionary) in OMT means 
to specify the determined object in a dataDictionary.

6.6 TASK SEQUENCE

Having defined the task functions of the process model, we can then illustrate the approach 
with a real method example and a couple of scenarios concerning the model. Table 6.2 shows 
the task sequence of the OMT analysis phase. It is defined within OMT, but we restructure it 
into our process model format. Each row of the table represents a task, and each task is given 
a code number, which intends to show the task decomposition, as shown in the first column.

No Task Context Parameter Precondition Postcondition Heuristic
1 perform analysis requirement analysis heuristic for OMT-OOA

1.1 perform objectModel requirement objectModel heuristic for object modelling
1.2 perform dynamicModel requirement dynamicModel heuristic for dynamic modelling
1.3 perform functionalModel requirement functionalModel heuristic for functional modelling

1.1.1 insert object requirement object identifying object class, keeping right 
class (p 153-156)

1.1.2 specify object object dataDictionary describing each object class (p 156)
1.1.3 insert association object association identifying association, keeping right 

association (p 156-161)
1.1.4 insert attribute object attribute identifying attribute, keeping right 

attribute (p 162-163)
1.1.5 insert inheritance object inheritance refining with inheritance (p 163-165)
1.1.6 modify association association testing access path (p 166)
1.1.7 insert module object module grouping classes into modules (p 168- 

169)
1.2.1 insert scenario requirement scenario preparing a scenario, interface format 

(p 170-172)
1.2.2 insert event scenario event identifying event (p 173)
1.2.3 insert eventTrace event eventTrace identifying event trace (p 173)
1.2.4 draw stateDiagram eventTrace stateDiagram building a state diagram (p 173-179)
1.2.5 adjust event

object
stateDiagram

object
verifying consistency, match events 
between objects (p 179)

1.3.1 insert data requirement data
object

identifying input and output values 
(P 180)

1.3.2 draw dataFlowDiagram data
object

operation
dataFlowDiagram

building data flow diagram (p ISO- 
182)

1.3.3 specify operation operation describing function (p 182) 
from object model, event, state action 
and activity, function, shopping list, 
simplifying operation (p 183-185)

1.3.4 insert constraint object constraint identifying constraints between objects 
(p 183-184)

1.3.5 specify optimisation operation specifying optimisation criteria (p 183)

Table 6.2 OMT: Analysis Phase Sequence
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We demonstrate how to read the table, using task 1.2.2 as an illustration. A task function 
comprises the second and third columns. In the example the task function is insert and the 
context to be determined is event. The function is normally written as insert(event). 
However, there may be more than one parameter in a function, for example task 1.2.5 
adjust(event,object). The only requirement of task 1.2.2 is the scenario token, which is 
shown in the precondition column. A list of events is produced after the function execution, 
and this token is denoted in the postcondition column. There may be more than one token for 
these conditions, for instance task 1.3.2 draw(dataFlowDiagram) requires both data and 
object tokens and produces the operation and dataFlowDiagram tokens. Moreover, a task 
may have the precondition but no postcondition: for example task 1.3.3 specify(operation) 
does not produce any token. The last column shows heuristic information about the task. For 
task 1.2.2 this is identifying event given in page 173 from the reference book [Rumbaugh 91].

The code number shows the level of task decomposition. For example, task 1.2.2 is a third 
level decomposition. It is part of task 1.2 perform(dynamicModel) and which in turn is part 
of task 1 perform(analysis). This task decomposition technique is discussed in section 6.7.4.

Now we shall look at two scenarios of this OMT analysis phase sequence. The first scenario 
concerns the definition of object in objectModel and the second scenario concerns the state in 
the stateDiagram.

In the first scenario task 1.1.1, the insert(object) function, takes a basic requirement as input, 
and triggers a text editor known as objectCatalogue. The objects are determined and placed 
in the cataloge, then an object token is set as shown in the postcondition. Task 1.1.2 
specify(object) function checks the precondition, which is the object token. It then takes the 
objectCatalogue as input and opens up a dataDictionary. The key fields are filled by the 
objects in the objectCatalogue and the description of objects can be entered. A new token 
dataDictionary is formed. Tasks 1.1.3 to 1.1.7 continue to construct the objectModel.

In the second scenario, task 1.2.1 to task 1.2.3 form a list of events in an eventCatalogue. 
Task 1.2.4 draw(stateDiagram) checks the precondition, which is the event token. Then the 
function takes the eventCatalogue as input and launches a graphic editor to depict the 
stateDiagram. The editor should provide all icons required for the diagram as described in the 
product model. The draw function will initiate insert tasks to identify state, transition, 
guardCondition etc., and the stateDiagram token is formed. Then, in order to execute task 
1.2.5 adjust(event, object) function, the task 1.1.1 must be completed since one of the 
preconditions is the object token. In this task, the events in eventCatalogue are matched 
between objects in objectCatalogue so as to verify consistency of the stateDiagram. When a 
change is made on the eventCatalogue, the corresponding stateDiagram will show on the 
graphic window to allow possible modifications.
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6.7 TASK MODELLING

In most methods, stateTransitionDiagram (STD) and dataFlowDiagram (DFD) are the main 
tools for describing the dynamic and functional behaviour of a software system. However, for 
method process modelling we find that a combination of the features from both tools is 
required. The model must have the ability to depict state, event and trigger in an STD, which 
show the state-based dynamic features. It must also be able to depict operation (known as 
process in DFD), dataFlow and controlFlow in a DFD to denote data transformation aspects. 
Therefore we introduce a variation of the Ptech event schema (see section 2.4.4) to denote the 
meta level process model graphically.

Since the model is not actually an event schema, we shall refer to it as task diagram and the 
approach to develop such a diagram task modelling. The next two sections define the 
meaning of a task, a trigger and a concept flow in the process model. Then we shall describe, 
with illustrations, task diagrams, task decomposition, task refinement and parallel tasks.

6.7.1 A TASK

In our meta model, a task provides the means to rigorously describe assisted software process 
models. This task provides mechanisms that support the description of generic software 
process models which can be incrementally and repeatedly instantiated in order to produce 
particular software process models for specific applications. In a process model, a task is an 
autonomous process, and is defined as an operation with an optional guard condition. A 
condition describes the precondition and an operation formulates the postcondition. Each task 
is represented by a state in the process model and it may end with an event to trigger other 
tasks of the system. In Ptech terminology, the state before an event is called eventPrestate 
and after an event is known as event?oststate.

The notation of a process model is best represented by a Ptech-like event schema notation as 
shown in figure 6.8. Apart from the basic notions, conceptFlow is introduced to denote input 
and output flows of concepts to the task. In order to distinguish it from a trigger, a 
conceptFlow is depicted by a thin arrow, whereas a trigger is depicted by a thick arrow.

triggers operation
' event

condition -'-concep t flows

Figure 6.8 Process Model: Task
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We shall now demonstrate how the three preliminary approaches of process modelling 
mentioned in section 6.4 can be described by this task notation.

For the menu driven approach, a menu is an event state (prestate) and each option is an event 
that triggers an operation. Consequently it changes into another event state (poststate), which 
is in effect another menu.

For the event sequence approach, each event in the queue is a trigger to an operation. The 
priority mechanism can be handled by guard conditions. The repeated and optional features in 
the list can also be implemented through the triggers.

Finally, the frame-based navigation falls into this process model naturally. Similar to the 
menu driven approach, each frame is an event state, with predefined navigation paths scattered 
in the frame. Therefore each context node (for instance an entity type or an object type in 
BPSYS ToolBuilder) can be a trigger to another frame.

6.7.2 TASK TRIGGER AND CONCEPT FLOW

The aim of this section is twofold: firstly to explain the trigger rule in Ptech and the task 
trigger in the process model, and secondly to introduce the concept flow for the concept 
token.

Let us first review the trigger rule in the Ptech method. Just as an event triggers an operation, 
so a trigger is a cause-and-effect link. Specifically, the trigger takes the underlying object of 
an event and determines those object(s) required to invoke an operation. As illustrated in 
figure 6.9a, each triggerRule has three basic components: an eventType (the cause), an 
operation (the effect) and a. function. The function takes the causal event’s underlying object 
and maps it to those objects being passed as arguments to the operation it invokes. Figure 
6.9b shows the classic example of a vending machine: whether or not a sale can be completed 
depends on its control condition, which is the function defined in the rectangle box. The 
highlighted words in the function box denote the three underlying objects, each of these 
objects refers to one of the three incoming event types.

product
dispensed

complete
saletaken

coin
ejected

function
eventType successfully

completed

triggerRule

operation
number of product dispensed =1,
AND amount of ejected coins = amount of taken coins 
minus amount of product value for product dispensed

a. Basic Components b. Complete Sale Operation

Figure 6.9 Ptech: Trigger Rule
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A Ptech event schema diagram is a very powerful tool for specifying behaviour, which is 
important in software process modelling. A trigger is an event based mechanism that takes the 
underlying object of an event and invokes an operation. Although the underlying object (or 
attribute) is implicit in the diagram, this information is shown in the function instead. This 
function allows us to form specific and complicated control conditions, for instance the 
complete sale example shown in figure 6.9b.

However, the underlying objects found in a method process model are discrete concepts from 
those found in a product model. And since there is no complex guard condition in a method, 
the function of a trigger rule is inappropriate. Therefore, we show these objects explicitly as 
concept tokens and link them to tasks by concept flows. These tokens precisely denote the 
entry condition of a task and they are side-products of a task function. Hence the definition of 
a trigger is changed, the basic components of a trigger in the process model are shown in 
figure 6.10a. An event causes a trigger to invoke a task. However the operation will not be 
executed until all concept tokens in the condition are collected. This operation is actually one 
of the task functions described in section 6.5. With this new definition, a trigger is like a 
preceded-by relationship amongst tasks, whereas the concept flows from the input and output 
relationships between concept tokens and task functions.

condition 
event \

trigger 

^conceptTokerT )
conceptFlow

(^scenarkT) event

a. Basic Components b. insert(event) Task

Figure 6.10 Process Model: Task Trigger and Concept Flow

Besides their significance as mentioned above, the concept flows are also vital components in 
the process model. They depict the preconditions and postconditions of tasks in the diagram. 
A concept flow points to the condition box representing the corresponding concept token that 
invokes the task function. In other words, instances of the concept are inputs to the task. On 
the other hand, a concept flow running out of an operation box states that an instance of the 
concept has been created or modified and the related concept token is available.

Figure 6.10b denotes the task 1.2.2 insert(event) from the OMT analysis phase sequence 
shown in table 6.2. In the method process model, it is depicted by a series of these tasks 
arranged together and shown in a task diagram.
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6.7.3 TASK DIAGRAM

A task diagram describes the task sequence of a method. The diagram is a directed graph in 
which nodes represent tasks and arcs represent triggers (depicted as thick arrows) between 
tasks. Concepts and conceptFlows (depicted as thin arrows) are introduced to the task 
diagram. A conceptFlow is a dataFlow running in or out of a task. The corresponding data is 
a conceptToken, which refers to a concept in the product model. A conceptToken is 
represented by an oval shape with the concept name inside it.

Figure 6.11 shows the OMT dynamicModel task diagram. When a conceptFlow points to a 
condition box, the conceptToken is required to execute the foregoing task. For example, in 
the figure, scenario is required in both the insert(event) task and the insert(eventTrace) task. 
On the other hand, if a conceptFlow points to a conceptToken, the preceding task will produce 
an instance of the concept and the corresponding conceptToken. Again in the figure, the 
draw(stateDiagram) task builds an instance of stateDiagram.

event

draw
stateDiagrarr

adjust
event

insert
scenario

insert
event

insert
eventTrace

(^eventT racescenario stateDiagram

Figure 6.11 OMT: dynamicModel Task Diagram

It is possible to form a task diagram out of the task sequence as shown in table 6.2. The task 
function and contextParameter are depicted as a task box. The tokens in the precondition and 
postcondition columns are shown as conceptTokens with conceptFlows in and out of tasks. 
The code number illustrates task decomposition, which is discussed in the next section.

6.7.4 TASK DECOMPOSITION

The task diagram also supports decomposition of tasks. An operation can be decomposed 
into a lower level task diagram showing the detailed structure of the operation. This task 
decomposition will form a task hierarchy of the method. For example, figure 6.12 illustrates 
the decomposed task model of the draw(stateDiagram) task shown in figure 6.11. One must 
be careful about the feedback loops, a new stimulation is probably required for each iteration. 
In the following example, the feedback may be caused by discovering a new eventTrace.
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Figure 6.12 OMT: draw (stateDiagram) Task Diagram

The main objective of a task diagram is to show task sequence, which includes task conditions 
and event triggers. Concept tokens should be placed in the right level of abstraction in the 
task decomposition hierarchy. For instance, startState and stopState are outputs from 
draw(stateDiagram), but they only display in the decomposed level as shown in figure 6.12 
and not on the top level. That is because these elements are not of interest in the global view 
of the dynamicModel task diagram. In addition, task decomposition performs an AND- 
sequence of task functions. That is all the tasks in the lower level task diagram are carried 
out. This decomposition may happen only in the perform or the draw task function.

6.7.5 TASK REFINEMENT

Task refinement also classifies task diagram into different levels of abstraction. However it 
performs an OR-logic of task functions, that is only one of the lower level tasks is carried out. 
A task refinement is used for describing alternative design decisions are available. It is 
denoted by the do task function in higher level task diagram. For instance, figure 6.13 
illustrates part of the refined task diagram of the do(verifyAssociation) as discussed in section 
6.5.2 (a complete version is shown in figure E.3).

class
adjustAssociationBetweenEliminatedClass

operation)deletelrrelevantAssociation

retypeAssociationToOperation

modifyTernaryAssociation

insertMultiplicity

Figure 6.13 OMT: do(verifyAssociation) Task Diagram
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6.7.6 PARALLEL TASKS

So far, all tasks discussed above have concerned sequential software processes, that is only 
one task in execution at a time. In a sequential system, a process can be fired when all its 
required conceptTokens are ready and all preceding tasks have completed. However, some 
SDMs emphasise certain tasks can be processed at the same time. These tasks are known as 
parallel tasks. There are two main reasons for this concurrency:

• The parallel tasks (or even sequences of task) have totally separate semantics, that is no 
direct or indirect connection between the tasks. This is common in the tasks for loosely- 
coupled method fragments. These fragments have only weak relationships (i.e. 
referencing) between them but other strong associations (i.e. such as grouping or shared 
concepts in dissection sets) are not allowed. For example the three tool fragments in 
OMT are loosely-coupled. The three respective tasks for performing objectModelling, 
dynamicModelling and functionalModelling can then be executed concurrently.

• In contrast, the tasks that are highly-coupled may require concurrency so that they can 
complement one another to accomplish the interrelated design considerations. Figure 6.14 
illustrates an example of this situation. The three related tasks are concerned about 
identifying elements which are class, association and attribute in the system. The 
common requirement of these tasks is the problemStatement token, however for each 
element identified it is used to determine more other elements. These highly integrated 
tasks are physically processed in parallel.

(^prob^m Statem enT)

perform
identifyClass ^ a s s o c ia t io n }

perform
identifyAssociation

/ 8
perform v  ^ /a ttrib u te )identifyAttribute

Figure 6.14 OMT: Parallel Tasks in Identifying Elements

This set of parallel task are best denoted by lining them up as in the figure 6.14. In order to 
distinguish from the task refinement (described in the previous subsection), we place an arc 
amongst the triggers as shown in point A and point B. Therefore these arcs denote the task 
synchronisation. Point A represents a splitting of control and point B describes a merging of 
control. These ideas are borrowed from the control modelling technique by transition of 
stateDiagram in OMT (see figure 5.13a).

6.21



6.8 META PROCESS MODEL

In this section we demonstrate a task sequence to constitute a process model, in other words 
the process model of process modelling. We show that it is very useful to structure a process 
model as a task sequence, which we present in a tabular form as shown in table 6.2. The 
following description uses perform(dynamicModel) as an example to show the order of task 
modelling. This illustration includes tasks 1.2.1 to 1.2.5 of the OMT analysis phase sequence. 
There are five main steps in process modelling:

• identifying tasks with the associated operations
• determining event triggers amongst the tasks
• identifying concept tokens required in current abstraction
• determining inflows and outflows of concept tokens
• identifying tasks requiring decomposition and repeating the previous four steps

Identifying tasks with the associated operations: In those methods that provide design 
steps or sequences, the top level tasks are normally carefully defined. Most tasks can be 
formulated into the first six task functions (or operations) given in section 6.5. Then for each 
operation appropriate context parameters are associated, these conceptTokens can be 
interchanged with the concepts in product model. Table 6.3 demonstrates how to identify 
tasks and operations in OMT’s dynamicModel:

No Task Context Parameter Original Description
1.2.1 insert scenario prepare scenarios of typical interaction sequences
1.2.2 insert event identify events between objects
1.2.3 insert eventTrace prepare an event trace for each scenario
1.2.4 draw stateDiagram build a state diagram
1.2.5 refine event, object match events between objects to verify consistency

Determining event triggers amongst the tasks: Each task in a sequence is an iterative 
process. In this step event triggers amongst tasks are identified. These triggers may appear in 
different forms, such as cascade tasks, parallel tasks or recursive tasks. Guard conditions are 
not implemented at this stage, so the triggers present just the order of task execution. In our 
dynamicModel example the task sequence is in a linear form as shown in figure 6.15.

Table 6.3 Step 1: OMT dynamicModel Tasks and Operations

draw
stateDiagrarr

determ ine
scenario

determ ine
event

determine
eventTrace

refine
event

Figure 6.15 Step 2: OMT dynamicModel Task Sequence
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Identifying concept tokens required in current abstraction: In this step the precondition 
and postcondition of each task is considered. The concepts required for the task are shown as 
precondition tokens. The concepts formed after the task are shown as postcondition tokens. 
These tokens relate the tasks in the sequence. It is important to keep these tokens as concise 
as possible so that the tasks can remain in the same level of abstraction. Table 6.4 illustrates 
the concept tokens of OMT dynamicModel. Notice that the context parameters are not 
necessarily equivalent to the tokens in either the task precondition or the postcondition. 
However, if the function is insert, draw or specify, the consequence of the function is most 
likely to be the context parameters described, as shown in task 1.21 to task 1.2.4.

No Task Context Parameter Precondition Postcondition
1.2.1 insert scenario requirement scenario
1.2.2 insert event scenario event
1.2.3 insert eventTrace scenario, event eventTrace
1.2.4 draw stateDiagram event stateDiagram
1.2.5 refine event, object stateDiagram, object -

Table 6.4 Step 3: OMT dynamicModel Concept Tokens

Determining inflows and outflows of concept tokens: After identifying the concept tokens, 
determining the input/output concept flows is simply a matter of mapping from the 
precondition and postcondition columns of the task sequence table to the task diagram. An 
input concept flows to a condition box shows the precondition, whereas an output flows from 
an operation box depicts the postcondition. Figure 6.11 shows the complete top level task 
diagram of OMT dynamicModel.

Identifying tasks requiring decomposition and repeating the previous four steps: Task 
decomposition (section 6.7.4) is an important notion in process modelling. A decomposed 
task diagram gives a low level of abstraction about the task, so the detail concept tokens of 
the task are displayed. Figure 6.12 illustrates the decomposed draw(stateDiagram) task.

6.9 META META MODEL

It would prove useful to show the meta model of both the product model and the process 
model, which is the meta meta model. The product model discussed in the previous chapter 
can be described graphically by concept diagram. However, the process model discussed in 
this chapter can be tabulated in the task sequence as well as depicted in the task diagram. In 
order to reduce unnecessary confusion, table 6.5 shows a map for this meta meta model. It 
reads as ‘the concept diagram of product model is shown in figure 5.32\ which is the shaded 
area in the table. This figure is shown in chapter five and others are displayed in this section.
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Meta Model Product Model Process Model
Concept Diagram Figute 5.32 Figure 6.17
Task Sequence Table 6.6 Table 6.7
Task Diagram Figure 6.16 Figure 6.18

Table 6.5 A Map for Meta Meta Model

The formation of a product model is demonstrated in section 5.5. It is a seven step task 
sequence. Table 6.6 shows that the tasks in the product model are fairly independent. Apart 
from the incremental sequence, the only requirement is the concept token. The task diagram 
of the product model is shown in figure 6.16. It is worth noting that the precondition to start 
the product modelling is the knowledge acquisition of method engineering, which is discussed 
in chapter ten.

Task Context Parameter Precondition Postcondition
insert fragment - concept
insert entity concept subtyping, composition
insert linking concept subtyping, linking
insert property concept subtyping, composition
insert grouping concept grouping
insert referencing concept referencing

specify constraintRule concept constraintRule

Table 6.6 Task Sequence of Product Model

subtyping
(Referencing^) (^constraintRule^groupinglinking

determine
fragment

specify
constraintRule

determine
entity

determine
linking

determine
property

determine
referencing

determine
grouping

concept

Figure 6.16 Task Diagram of Product Model

Figure 6.17 shows the concept diagram of a process model. The following points are made
about this product model:

• Each task has an operation, which is one of the nine task functions. These functions are 
denoted as subtypes of the taskFunction.

• There are two constrainedConcepts in the process model. The contextParameter is 
constrained since it depends on the type of task function, whereas conceptFlow is a 
dataflow from task to conceptToken or vice versa.

• The event that follows an operation defines the eventPrestate and eventPoststate of a task.
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• A trigger is a link connecting an event to a taskFunction. If the taskFunction is 
conditional, the event will trigger the condition instead.

• The taskDiagram and conceptDiagram are the two main fragments of the meta model. 
The taskDiagram relates to the conceptDiagram through the conceptToken, which itself 
refers to a concept in a conceptDiagram.

taskDiagram
7 \

taskDecomposition

I
T
event 

7TC

task

1 concept

conceptToken ^

eventS tate
eventPrestate

eventPoststate

7\
A  A

V s t  \ l / s t
V  V

contextParam eter c

conceptFlow I
s V  V t  v

t

taskFunction[perform] do draw [specify]

insert ] delete) modify) [adjust retype

trigger « condition <4

Figure 6.17 Concept Diagram of Process Model

Task Context Parameter Precondition Postcondition
insert task - task, operation, condition
insert trigger task, condition trigger, event
insert conceptToken task, condition conceptToken
insert conceptFlow task, conceptToken conceptFlow
insert taskDecomposition task taskDecomposition

Table 6.7 Task Sequence of Process Model

taskDecompositionconceptTokentrigger conceptFlow

insert
task

insert
conceptFlow

insert
trigger

insert
conceptToken

insert
taskDecomposition

eventoperation

Figure 6.18 Task Diagram of Process Model
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Section 6.8 demonstrates the formation of a process model, which can be described by a five 
step task sequence as shown in table 6.7. Figure 6.18 depicts the process model in a task 
diagram.

6.10 CONCLUSION

This chapter presented a generic process model of SDMs. Unlike the product model, the 
process model is loosely defined in order to provide flexibility and freedom for developer 
creativity. This is needed because most SDMs have only a coarse grain description on method 
processes, and some of them are described implicitly. The structure of a task and different 
types of task functions are identified. Task sequence is also introduced to document the 
process model in a tabular form, which maps easily to a task diagram. This diagram is based 
on the Ptech event schema notion, with extensions to model conceptToken and conceptFlow.

We have tried out this process model with five methods. The result is encouraging, since the 
generic representation has sufficient capability to capture method processes as well as 
allowing the customisation of fine grain processes.

Chapter five and this chapter describe the structural and behavioural aspects of method models 
in graphical form. The textual form is presented by a unique method specification language. 
In the next chapter, we look at the heuristic model that accompanies the product and the 
process models.
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7. HEURISTIC MODEL

Chapter five and six introduce the two main models in GMR. However, the method model is 
imcomplete unless it is accompanied with the heuristic information embedded in the method. 
This chapter is concerned with a pragmatic approach to incorporate method heuristics in our 
meta model.

7.1 INTRODUCTION

Heuristics can be considered as experience that is obtained by domain expertise. Some 
heuristics give a detailed description of the method concepts. This may be the definition of a 
particular semantic or guidance to use the information. Other heuristics outline the processes 
of software development. They may provide assistance of the task involved or design 
decisions needed to be considered. Since these semantics are closely related to the concepts 
and techniques, they should be documented as part of the SDM.

Both ALF-MASP and SOCRATES address the existence of method heuristics (see chapter 
three for details), but they treat heuristics lightly in their meta model representation. Besides, 
most metaCASE tools, such as ToolBuilder, simply assume the semantics are well-known to 
the tool user (see chapter eleven). There is no specific denotation of heuristics.

[Clancey 85] presents a heuristic classification model for characterising different kinds of 
problems. The emphasis is on problem-solving reasoning and particularly in psychology rather 
than software development. However, the idea is notable in considering different types of 
heuristics in SDM. [Causse 93] defines a heuristic level of description for heuristic control 
knowledge which is based on the control roles central to the approaches of KADS. The 
KADS views of domain level and reasoning level correspond to our product model and 
process model respectively. Although heuristics have a close relationship with the two levels 
(models), we believe that it should not be treated as an interface between them in meta 
modelling. GMR describes a heuristic as a pragmatic structure which can be attached to other 
semantics of the method. It provides guidance and defines the usage of the associated 
semantic. This structure has been tested and evolved from the five chosen methods (see 
appendices F and G).

This chapter is organised as follows. Section 7.2 defines the structure of method heuristics 
and classifies it as concept heuristic or task heuristic. The three fields of a heuristic record: 
text, rule and link, are described in sections 7.3, 7.4 and 7.5 respectively. Section 7.6 
illustrates the mapping of the heuristic model to the other two models and section 7.7 gives a 
conclusion.
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7.2 METHOD HEURISTIC

The method heuristic is one of the important structures of a single method, because it is the 
kernel of any semantic system. The heuristic system is the semantic assistant embedded in 
both the product model and the process model. It can be a definition of a diagram or of a 
notation. Alternatively it could be a design guidance or a design rule of a software 
development process. Therefore they are not prescriptive.

There are two types of heuristic: rules and criteria (guidance text). However, to enhance the
method heuristic, we introduce links to enhance the cross referencing mechanism of heuristic
records in the semantic knowledge base. Since a method heuristic must refer to a semantic of
the product model or the process model, each heuristic record is addressed by the name of the
semantic in their respective model. In addition, each record contains three fields which are the
text, the rule and the link. Figure 8.10 (in next chapter) presents a full BNF grammar of the
heuristic specification language, here is the simplified definition of a heuristic record:

heuristic HeuristicName; 
text HeuristicDescription; 
rule Conditions [=> Action] ; 
link ListOfHeuristicNames;

These fields are explained in more detail in the subsequent sections. Essentially, any heuristic 
whose action is determined by pre-conditions and is definitive in its logic may be automated in 
a production rule system. Such heuristics are described by the rule subfield. Where it is 
possible, this is the most desirable subfield to use, since such decisions can then be made 
(optionally) transparent to the user. This hides the complexity, shortening development time 
and can reduce errors by permitting automation. Any heuristic which is ambiguous, open to 
interpretation, context dependent or optional has to be described by the text subfield. The link 
subfield is rather special and empirical experience has shown it to be necessary, in 
documenting the heuristics of a method.

Before any further description, it is essential to identify different types of method heuristics. 
From the nature of method heuristics, we classify them into two categories: concept heuristic 
and task heuristic. They are defined in the following two subsections and further descriptions 
are given in the discussions in sections 7.3 to 7.5.

7.2.1 CONCEPT HEURISTIC

Chapter two states that different concepts may be used to describe various semantics in 
software development. It is important to give a clear specification of each concept that has a 
definitive meaning apart from the concept name itself. Therefore the description of a concept 
with necessary examples are significant heuristics of the method. This information is stored in 
the text field of a heuristic record, which is known as a concept heuristic.
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The rule field of a concept heuristic is usually empty. If the concept is constrained (section 
5.3.2.6), then the field is used to record the constraint rules for consistency checking. This 
rule is triggered whenever any concept functions associated with that concept instance are 
fired. This rule is generally a conditional rule without action; or otherwise the action of the 
rule is that the concept instance itself does not exist. For instance, the following heuristic 
record of the dataFlow concept in OMT, the rule restricts any dataFlow instance not to 
connect between an actor instance and a dataStore instance directly, (see section 7.4) 

heuristic dataFlow;
text 'Data flow is the connection betw een the output of one object or p rocess and the 

input to a n o th e r .'; 
rule not( source(actor) and targe t(dataS to re)) or 

not( source(dataStore) and target(actor)) ;  
link actor, dataFlowDecomposition, dataFlowDiagram, dataStore, p rocess ;

In a concept heuristic, the link field contains a list of concepts that are concerned with the
heuristic. This link is usually denoted by a relationship of the concept in the product model.
However, other non-directly associated concepts may also occur. They provide the cross
referencing mechanism in defining the meaning and/or constraint of the original concept.

7.2.2 TASK HEURISTIC

A  task describes a  software development process based on the concepts recorded in the 
product model. The process model shows what are the interrelationships between tasks and 
defines the structure of an individual task. Each task is comprehended by a task heuristic that 
provides a detail specification of how can the task be used. The following heuristic record 
illustrates the task1 taskCohesionCriteria in Codarts/DA: 

heuristic taskC ohesionC riteria;
text 'Task cohesion criteria address whether and how transformations should be grouped 

into concurrent tasks.',
'There are  four types of task  cohesions: temporal cohesion, sequential cohesion, 
control cohesion and functional co h es io n .'; 

rule 'Two transformations are constrained so that they cannot execute concurrently and 
hence must execute sequentially' => do(taskC ohesion); 

link tem poralCohesion, sequentialCohesion, controlCohesion, functionalCohesion ;

The text field supports the task with a textual description, which can be a general guidance or
criterion for the execution of the task. Besides, it acts as an English specification of the rule
field. It can be displayed as help information to assist the software developer with the task.

The rule field of a task heuristic denotes a design decision as a production rule. The 
antecedent of a rule comprises the AND-OR statements of a design situation, whereas the 
consequence may trigger a task function.

1 It must be clear about the difference of tasks in the method model (by GMR) and the software model (say by 
OMT). A method task is a software development process, but a software task describes an application 
process.
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The link field includes a list of semantics that relate to the specific task. This semantic could 
be a concept, a task or another heuristic. A link to a concept is normally presented as the 
input or output concept flow in the process model, whereas a link to a task is denoted by the 
task trigger, decomposition and refinement in the task diagram (see chapter six). However, 
the main aim of this link field is to record the highly coupled task heuristics together. These 
heuristics have to be considered simultaneously. It is because firstly they may accompany one 
another’s design decision, and secondly they may even contradict each other. This is 
illustrated by the taskStructuringCriteria of Codarts/DA method2 in section 7.5.

7.3 HEURISTIC TEXT

A heuristic text is a criterion that is a software development idea. It is recorded as a list of 
strings in the text field. Most heuristics include this field to describe their rules and links. A 
criterion can be a definition, an explanation or a guideline.

For a concept heuristic, the criterion is usually presented as a definition appearing in the 
glossary or main text of the literature. In the illustration of the concept dataFlow in section
7.2.1, the description of dataFlow in OMT is given.

For a task heuristic, more complicated information may be recorded. Using the Codarts/DA 
example from section 7.2.2, the first text clause in the taskCohesionCriteria defines what it is. 
The second text clause explains that the taskCohesionCriteria can be further categorised into 
four different types, which are temporalCohesion, sequentialCohesion, controlCohesion and 
functionalCohesion. These criteria are connected by explicit links listed in the link field (see 
section 7.5).

In the functionalCohesion task heuristic shown below, the second text clause (the bolded text) 
serves as a general guideline to apply the heuristic rule (see section 7.4). This information is 
important in assisting user to select an appropriate criterion in the according task, 

heuristic functionalC ohesion;
text 'Function cohesion occurs when there are one or more functions that are  closely 

related and only one function may be executed at any one tim e .',
'F unction  co h e s io n  is th e  w eak es t form  of ta s k  co h e s io n , it sh o u ld  b e  u s e d
prim arily w hen  it s u p p o r ts  th e  o th e r fo rm s of c o h e s io n . '; 

rule 'The data traffic between two functions is high and having them  a s  sep a ra te  tasks
could increase the system  overhead.' 
or
'A group of functions all operate on the sam e data  structure or the sam e I/O tasks.' 
or
'The transform ations are related both temporally and functionally.'
=> m odify(task);

link taskCohesion, temporalCohesion, sequentialCohesion, controlCohesion ;

2 Both OMT and Codarts/DA are heuristic ‘rich’ methods.
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The use of a SDM requires decisions about the application domain to be made. If these 
decisions are triggered by heuristic rules they can be automated. Other decisions rely upon 
user discretion and require input from the user. During system automation or user 
determination, heuristic text can be used as help text. It is attached to the process model and 
the product model, so that context-sensitive messages can be presented to the user.

Whether one is building a new method, customising an existing method or simply using a 
method, the heuristic model being described in this chapter is equally applicable. The help 
window allows the user to search through the knowledge base and to examine the heuristic 
text of related items via the heuristic links.

7.4 HEURISTIC RULE

A heuristic rule is like a production rule in an expert system. A rule contains two parts, an 
antecedent and a consequence. When the antecedent is fulfilled, the consequence is triggered. 
For instance, an entity must have at least one relationship with other entity in the system, 
otherwise it must be outside the system.

The standard form of a rule is if Condition then Action or Antecedent => Consequence or in 
the prolog predicate form Deduction Pattern. We adopt the second form (as shown in the 
taskCohesionCriteria example) since it is considered to be more adaptable as a data field in 
our heuristic specification language. Both antecedent and consequence accept textual form or 
functional representation. They are separated by the reserved symbol ‘=>\

It is proposed to introduce three logic keywords into the heuristic rules, namely: not, and, or. 
The not keyword can be used for logic inversion, and it must be placed before a clause. The 
last two keywords are conjunction keys, and examples of use are shown in the 
functionalCohesion above in section 7.3. These keywords are placed between antecedents. 
The precedence of these keywords follows the order as listed above. This work is intended to 
be exploratory.

There are fundamentally three levels of heuristic rules.

• The lowest level regards coercions or limitations, for instance multiplication or referential 
integrity in the OMT. They may be obvious rules to the human designer but still need to 
be recorded. The user should be warned or even have entries rejected if the input 
invalidates these rules. In addition, these rules may appear in the form of antecedent only. 
Therefore they are known as constraints or conditions, and they must hold valid at all 
times. An example of this is the constraint rule of dataFlow concept shown in section
7.2.1.
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• The functionalCohesion rule is considered as the middle level. These rules help the user 
to make design decisions or to select a suitable system configuration. There are usually 
many such rules in most SDM. The enforcement of these rules is not as ‘strong’ as the 
lowest level ones, but the user is required to follow the guidance. The choices made will 
be logged, so that potential problems can be traced through an audit trail.

• The highest level rules deal with design strategy. For instance: IF the application regards 
real-time processing and has a lot o f Computation blocks THEN use a task architecture 
diagram in Codarts/DA. These level of rules are strategtic knowledge in KADS, which is 
considered as outside the scope of this research (also see section 12.3).

7.5 HEURISTIC LINK

The main usage of any heuristic link is to cross reference between different heuristics and this 
helps to navigate through the network of heuristics. An example of an OMT heuristic 
network3 is shown in figure 7.1. The notations used in the figure are explained within the 
dotted box. All heuristics are under a concept heuristic, known as objectModellingTechnique. 
The diagram also illustrates that a method heuristic network is mainly divided into two sub
networks: one for the concept heuristics and the other for the task heuristics. These two sub
networks are linked together by the concept flows as represented in the task diagrams.

objectModellingT echnique

objectModelling

Concept
Heuristic

Task
Heuristic

notations:

O  heuristic

snam e; heuristic with name

composition link 

reference link

Figure 7.1 OMT: Heuristic Network

We classify the two types of heuristic link: composition link and reference link. The former 
can only appear in one side of the network, whereas the latter also provides links between the 
sub-networks. Although the heuristic specification language treats them as reference pointers 
only, it is useful to differentiate between the two types for semantic clarity.

3 Each heuristic must have a name, but the heuristics in the figure are depicted as circles in order to reduce 
complication.
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7.5.1 COMPOSITION LINK

A composition link is used to connect a criterion to its branches, especially in the definition of 
relevant issues. For instance in Codarts/DA, the objectStructuringCriteria introduces five 
different object concepts: an externalDevicel/OObject, a userRoleObject, a controlObjecU a 
dataAbstractionObject and an algorithmObject as shown in figure 7.2. Each of these objects 
has their own criteria, which are also combined as part of the objectStructuringCriteria. The 
denotation of composition link simply encloses the branch-heuristics4 as the example shown in

taskCohesionCriteria and the tasklnversionCriteria in Codarts/DA. As mentioned in section
7.7.2, the taskCohesionCriteria comprises four branches of cohesion criteria. The 
tasklnversionCriteria also consists of three types of inversion criteria of concurrent tasks. 
Therefore the relationships can be denoted by the composition links as in the following 
diagram.

figure 7.2.

Figure 7.2 Codarts/DA: objectStructuringCriteria Composition Link

Figure 7.3 depicts another illustration of composition links amongst task heuristics: the

taskCohesionCriteria^

( je mporalCohesjop)

<3unctionalCohesjop>

CgontrolCohesioq^

<|equentiaiCohesjorj>

/T ask lnversionC riteria  

f  <Tjm poralTasklnversjo5^ \

<@ ultiplelnstanceTasklnversjo5>

<^eguentialTasklnversjo^>

Figure 7.3 Codarts/DA: taskCohesionCriteria and tasklnversionCriteria

4 In order to avoid confusion with the subtyping and the composition denotations in the product model, we 
use the stem-branch relationships to represent the hierarchical structure, instead of parent-child or whole- 
part relationships.



7.5.2 REFERENCE LINK

A reference link connects all other associations between heuristics, apart from the composition 
links. For instance, each of the three conditions in tho functionalCohesion (shown in section 
7.3) is related with the other three taskCohesionCriteria: the temporalCohesion, the 
sequentialCohesion and the controlCohesion. Therefore they are interconnected by the 
reference links as shown in figure 7.4 below. A reference link is depicted by a v-shaped arrow 
pointing towards the receiving heuristic symbol. In most cases, a reference link is a bi
directional relationship so the link has arrows at both ends.

CjunctionalCohesjp5> < ------------->C tem poralC ohesion>

C o n tro lC o h esio n ^ seq u en tia lC o h esio n ^

Figure 7.4 Codarts/DA: Reference Link of functionalCohesion

In addition, a referencing link may also relate contradicting heuristics. For instance, the 
temporalCohesion and the functionalCohesion repudiate the temporalTasklnversion in the 
tasklnversionCriteria, as shown in the heuristic record below. The according reference links 
must be provided in making an appropriate design decision. Figure 7.5 depicts these links.

heuristic tem poralTasklnversion;
text "temporal task  inversion is similar to the weak forms of temporal cohesion, two or 

more periodic, periodic I/O and/or periodic temporally cohesive task s  a re  com bined 
into one ta s k " ;

rule "temporal transformations that are functionally related into a task" 
and
"the tasking overhead is considered too high"
=> m odify(task);

link taskCohesionCriteria, temporalCohesionCriteria, functionalCohesionCriteria ;

taskCohesionCriteria

CjemporalCohesio

CjJnctionalCohesio

CgpntrolC ohesioS>

CfequentialCohesio

tasklnversionCriteria 

mporalTasklnversjpp^

<£n® plelnstanceTasklnversiori>

equentialTasklnversipb>

Figure 7.5 Codarts/DA: taskStructuringCriteria Reference Link
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7.6 MAPPING TO THE TWO MODELS

The heuristic model is one of the three models in GMR. This section demonstrates the 
mapping of the heuristic model to the other two models, which are the product and the 
process models. We first look at the mapping of method heuristics and then the mapping of 
heuristic links.

For the concept heuristic, each concept in a product model has exactly one heuristic, such as 
the OMT action concepts shown in figure 7.6. The mappings are depicted by thick solid 
arrows. The association is maintained by sharing the same semantic token, which is the 
concept name in the product model and the heuristic name in the heuristic model.

action entryAction [exitAction eventAction internalAction

Product Model 
Heuristic Model t t L tI  1  ^ A c t i o n) (e ventActjor) ^ n ternalActjon)

|  (en try  Action)^— ^  /F  tk

action

Figure 7.6 OMT: Mapping Heuristics to Concepts in Product Model

However, for the task heuristic, each task is attached with the appropriate heuristic (by name) 
and that heuristic may extend to link to other task heuristics. For instance the insert(task) 
function and the insert(informationHidingModule) function are accompanied with the 
taskStructuringCriteria and moduleStructuringCriteria respectively. On the other hand, the 
heuristic can refer back to its corresponding task by the consequence part of the heuristic rule 
field. In the temporalTasklnversion criteria (shown in the previous section), the heuristic 
relates to the task function modify(task).

d insert
task > insert

informationHidingModule

Process Model t
>

tHeuristic Model

taskStructuringCriteria

intemalTaskStructuringCriteria
^ ^ T a s k StructuringCriteria^

TaskCohesionCriteria ^  Ta^PriorityCriteria^) 

TasklnversionCriteria^

CToduleStructuringCriteria^

Figure 7.7 Codarts/DA: Mapping Heuristics to Tasks in Process Model
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The mapping of links in the other two models to heuristic links can be summerised in table 7.1. 
However, the reference link may be used to connect semantics that do not have a direct 
relationship in their respective model. For example, figure 7.6 illustrates that the entryAction 
heuristic refers to the exitAction heuristic in order to give a better definition of the two 
actions. Therefore the reverse mapping, that is from the two models back to the heuristic 
model, may not be valid.

Heuristic Model Product Model Process Model
composition link concept subtyping 

concept composition
task decomposition 

task refinement
reference link concept linking 

concept grouping 
concept referencing

concept flow

Table 7.1 Mapping Heuristic Links to Product and Process Models

It is deliberate policy to allow dual representation in the heuristic model with respect to the 
other models. Since for some heuristic-rich methods, such as Codarts/DA, it is easier to show 
the relationships between heuristics in a single model than to refer to separate models. 
Furthermore, if we reinforce the extra associations of heuristics in other models, for instance 
the entryAction and exitAction link mentioned above, the product model has some additional 
non-conceptual information presented.

7.7 CONCLUSION

This chapter illustrates how to model heuristics in SDMs by identifying the three fields in a 
heuristic record. These fields are heuristic text, rule and link. This chapter classifies heuristic 
into two types, which are concept heuristic and task heuristic. The mapping of such a 
heuristic model to the other two models in GMR is also demonstrated.
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8. METHOD REPRESENTATION

Similar to a software model, a method model describes the structural and behavioural aspects 
of a SDM. The encapsulated information about the SDM is known as method representation. 
This representation is based upon a generic meta model to document the product, the process 
and the heuristic of the SDM comprehensively. In this chapter the method representation of 
GMR is presented. Some extra modelling considerations are also discussed.

8.1 INTRODUCTION

In meta modelling, the semantics of a method should be represented as concepts or 
techniques. The ideas of individual fragment, entity and property should be denoted so that 
they can be used to define the specific task operations and dependence of software 
development processes in the method. The heuristic guidance and rules should also be 
included in order to provide substantive assistance for the method engineer. All these 
semantics should be specified to capture the characteristics of the method. In other words, the 
method representation is a concise and precise documentation of the SDM. Hence the generic 
model needs to handle various presentation techniques found in method models.

Chapter three shows various attempts to represent SDMs from different viewpoints, but none 
of them is satisfactory. There is in the literature no established way of deriving such a model 
based on capturing method techniques rather than specific methods. In this research we 
propose such a model and try it out on five SDMs to demonstrate the expressiveness of 
method representation. These methods are Booch OOD, Codarts/DA, HOOD, OMT and 
Ptech (see chapter two for the overviews and justification). They cover a large spectrum of 
software modelling techniques and emphasise various aspects of systems development.

The concept diagrams of these five methods and the task diagrams of OMT are attached in 
this thesis as appendices D and E respectively. The detailed description of individual 
representations of these methods is less significant and they will not be given in this thesis. 
However, in this chapter the pragmatic model of GMR is discussed. A common specification 
language is used for the three models of GMR that is known as Method Specification 
Language (MSL). The complete BNF grammar of MSL is also given.

The organisation of the chapter is as follows. The next section gives an overview of method 
representation by GMR. Section 8.3 describes some additional considerations in this method 
representation. The grammar of the three method components in GMR is presented in section 
8.4. Section 8.5 shows Prolog clause formats corresponding to the MSL grammar, and the 
last section gives a conclusion.
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8.2 OVERVIEW OF GMR REPRESENTATION

In our generic representation, the semantic information of a single method comprises three 
parts. The product model describes the method concepts (chapter five); the process model 
describes the method tasks (chapter six); and the heuristic model gives the method guidance 
and rules (chapter seven). These components represent the method both graphically and 
textually. The grammar of each model is documented by a uniform method specification 
language (MSL), which can then translate to Prolog predicates for execution.

concept diagram product specification

heuristic
specification

<=>

productModelSpecification » 
PRODUCT.MODEL IS 
listOIConceptDefinitlons 
llstOfConceptRules 
END PRODUCT.MODEL

heuristicSpecification » 
HEURISTIC IS 
listOfHeuristics 
END HEURISTIC

processModelSpecification « 
PROCESS.MODEL IS 
listOIProcesses 
END PROCESS.MODEL

task  diagram

<=>

process specification

method(omt, concept(ob(ect)...).
method(oml, concept).

method(omt, process)...). •).

rrvethod(omt, heuristic)...).

sem antic 
knowledge base

Figure 8.1 GMR Method Development

Figure 8.1 illustrates the method development by GMR. After knowledge acquisition of a 
SDM (see chapter ten) the method product and the method process are identified and depicted 
by concept diagrams and task diagrams respectively. Each of these diagrams is then converted 
into the corresponding specification as shown by the hollow arrows in the figure. The method 
guidance and rules are also documented as the heuristic specification. These processes of 
information are linked directly to the related concepts or tasks. Finally, all these specifications 
are compiled into Prolog predicates.

The descriptions of individual constituents are given in the previous three chapters. In this 
section, we present the enhancement of the meta models and discuss the significance of such 
method representation. The next subsections introduce the meta modelling techniques based 
on dissection sets which are followed by shared concepts between fragments. The 
representation of various peculiar method relationships, such as derived relationship, multiple 
inheritance and delegation are discussed. Then a further description on the text fragment is 
given. Finally, a complete structured grammar of the MSL is presented in the last section.
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8.3 ADDITIONAL CONSIDERATIONS

This section introduces some extra representation considerations that have not been discussed 
in the previous chapters. They include dissection set, shared concept, other concept 
relationships and text fragment.

8.3.1 DISSECTION SET

In chapter five, the product model introduced five method concept relationships to define 
different types of association between method concepts. These relationships can be 
considered as primitive (or meta) relationships in the concept diagram, and they should be 
differentiated from the method relationships. For instance, aggregation, generalisation are 
method relationships between objects in OMT. However, they are shown as method concepts 
in the meta level, and the relationship between these concepts and object concept is described 
by the linking meta relationship. All these relationships are denoted as a link between entity 
concepts or between an entity concept and a fragment concept.

In a SDM, a concept diagram may contain a number of fragments to describe various aspects 
of a system. Normally subtyping and referencing are the common concept relationships 
between method fragments. For examples, in Codarts/DA the systemContextDiagram is a 
subtype of contextDiagram; and in Booch OOD each stateTransitionDiagram refers to a 
stateTransitionTemplate. In this section we introduce another relationship which only 
happens between fragment concepts. This relationship is to deal with the common concepts 
across fragments. Since it is very important in fragment dissection and it copes with one or 
more method concepts between two fragments, the association is known as a dissection set.

taskArchitectureDiagram , dataFlowControlFlowDiagram 1 contextDiagram

\ / s t S tV

task

operation

dataStore

term inator

dataT ransformation'

informationHidingModule

dataFlow

Figure 8.2 Codarts/DA: dataFlow and dataTransformation Concepts

Figure 8.2 illustrates the overlapping concepts of different fragments in Codarts/DA [Gomaa 
93]. The dataFlow is a link concept to relate entity concepts in each of the three diagram
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fragments. For a taskArchitectureDiagram, a dataFlow connects a task and an 
informationHidingModule or it links up a task to an operation1 of an 
informationHidingModule. For a dataFlowControlFlowDiagram, a dataFlow relates a 
dataTransformation and a dataStore. However, a dataTransformation can also connect with 
a terminator2 by a dataFlow in a contextDiagram. Due to these complex conditions in the 
dataFlow concept3, a set of constraint rules is required to present these relationships and this 
is denoted by the label ‘c’ in the dataFlow box (refer to section 5.3.2.6). The dotted lines 
show the division between fragments. The line between the dataFlowControlFlowDiagram 
and taskArchitectureDiagram cuts through the dataFlow, which means that the dataFlow is a 
concept applied to both fragments. The dissection set is {dataFlow}. The line separating 
contextDiagram and dataFlowControlFlowDiagram cuts through the dataFlow and the 
dataTransformation concepts, which means both of them can be shown in these two 
fragments. Hence, the dissection set is {dataFlow,dataTransformation}.

(dataFtow.dataT ransformation}
contextDiagram

stateT  ransitionDiagram

taskArchitectureDiagramdataFlowControlFlowDiagram

Figure 8.3 Codarts/DA: Dissection Sets

A dissection set is denoted by a line joining the two related fragment concepts with the label 
‘ds’ on it. Figure 8.3 demonstrates the four dissection sets as they appear in Codarts/DA. In 
addition the figure shows the two possibilities of common concepts in a dissection set.

• Firstly, it simply represents the concepts that literally appear in both fragments, and the 
instances of the concept which have no interrelationships at all. In the Codarts/DA 
example, dataFlows which appear in different diagrams are separate tangible links.

• Secondly, it shows a continuation of concept modelling between fragments. Again in the 
example, a dataTransformation in the contextDiagram is further described in the 
dataFlowControlFlowDiagram and the decomposed diagram of itself.

1 In this case, the da taF low  presents that the task  invokes an opera tion  of the in form ation H idingM odu le. 
Therefore the opera tion  can only be a target concept in this linking relationship.

2 This is a very special case of linking relationship. Since each term in a tor  can only have one link to the 
dataT ransform ation , this linking relationship is denoted as either a source part or a target part of a 
dataF low .

3 Since all links can have alternative source and target parts, they are shown as optional linking relationships.
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8.3.2 SHARED CONCEPT

A shared concept can be considered as a by-product element of the dissection set. A concept 
is ‘shared’ if it is a common concept between fragments and each instance of the concept is a 
component of the fragments. Therefore shared concepts are the strongest links between 
fragments. For instance, in figure 8.2, each dataTransformation in a contextDiagram must 
also be denoted by or decomposed into a dataFlowControlFlowDiagram, therefore 
dataTransformation is a shared concept. On the other hand, dataFlow is a tangible concept 
that happens to relate entity concepts in various fragments, which means dataFlow is 
semantically disconnected between the fragments; hence it is not regarded as a shared concept. 
This notion is depicted by the label ‘s’ in the concept box. If the shared concept is also 
constrained, the two labels can be combined as ‘sc’.

This sharing feature between fragments can also propagate along the method relationships of a 
shared concept. In a hoodDiagram an object can have more than one constrainedOperation 
and each of these operations may have a constrainedByLabel. On the other hand, in the 
objectDescriptionSkeleton the objectControlStructure section describes the detail of each 
constrainedOperation including constrainedByLabel. Therefore even though object and 
objectControlStructure do not have a direct relationship with constrainedByLabel, it is still a 
shared concept between the two fragments. In figure 8.4, the dotted line shows part of the 
dissection between the two fragments. The dissection on the constrainedOperation concept 
propagates through the composition relationship to the constrainedByLabel concept.

objectDescriptionSkeleton . hoodDiagram

[ objectC ontro lS tructure^-

hser = highlySynchronousExecutionRequest 
Iser = looselySynchronousExecutionRequest 
ase r = asynchronousExecutionRequest 
toer = timedOutExecutionRequest

Figure 8.4 HOOD: constrainedOperation Shared Concept

If the tool fragments of a SDM are closely related, the shared concept becomes a very useful 
technique to avoid repeated concept descriptions to individual fragments. These highly 
coupled fragments occur when a method has different viewpoints or emphasis on the same set 
of concepts. A typical example is the HOOD method. A HOOD system is represented by the 
graphical fragment called hoodDiagram and each object is further documented by the textual 
fragment known as objectSkeletonDescription. Since all the concepts of an object shown on

constrainedByLabel

operation sc

H  { constrainedOperation] 44-------->1 object ]
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the hoodDiagram are also described in corresponding sections of the 
objectSkeletonDescription, most of these concepts are denoted as shared concepts. Section 
8.3.4 gives a detailed discussion of this example.

objectModel objectModel

object

relation

function

attributeType dataDictionary objectDiagram

a. common referencing b. defined-by referencing

objectDescriptionSkeleton j hoodDiagram

object

operation

operationControlStructure

c. shared concept 

Figure 8.5 Common Concepts between Fragments

With the definition of shared concept, various combinations of fragment coupling by common 
concepts can be identified. Figure 8.5 summarises the three types of common concepts 
between fragments.

The first type is a fragment coupling based on referencing relationships to a common concept. 
In other words, two concepts individually refer to a third concept which is not part of the 
structure of the first two concepts. This is the most loosely coupled type. Normally the 
common concept comes from another fragment or simply a multi-valued entity concept of the 
method. For instance, in Ptech, both attributeType and relation refer to a. function, as shown 
in figure 8.5a. The function is a multi-valued concept, which can be stored as clauses in a 
database. The dotted-line is the dissection line of the concepts.

Figure 8.5b illustrates a different type of coupling. The dataDictionary further defines the 
objects, which is part of the structure of an objectDiagram. Therefore the referencing 
relationship only acts as a pointer to the structure of objectModel. There is a large difference 
of dependence to the fragments, hence the dissection line is on the referencing relationship.

However the strongest type of coupling is denoted by shared concept. The common concept 
is part of the structures of concepts from different fragments. The degree of dependence is 
similar in both fragments. Figure 8.5c shows that both object in hoodDiagram and 
operationControlStructure in objectDescriptionSkeleton shared the same instances of 
operation, so the dissection line falls on the shared concept itself.
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8.3.3 OTHER RELATIONSHIPS

In chapter five we identified the five method concept relationships, which are subtyping, 
composition, linking, grouping and referencing. The first two are common in software 
methods, whereas the last three can be considered as specific associations in meta modelling. 
We must be careful to note that they are meta relationships for modelling method concepts 
and not the software concepts in the method level. Therefore we look at the method 
modelling perspective rather than the software modelling perspective. Moreover, the meta 
product model is intended to represent the method concept. If the software concept is not 
presented by a method, i.e. no formal definition of approach, this meta model cannot be 
applied. We illustrate these points by the following relationships: derived relationship, 
multiple inheritance and delegation.

8.3.3.1 DERIVED RELATIONSHIP

Derived relationships are very common in software modelling. In OOSA, it is denoted by a 
correlation table or an association object. By definition,, this relationship occurs when a 
software concept is based on other software concepts. Some methods elaborate this to 
derived attribute, derived class and derived association. The classic example of derived 
attribute is the attribute age of the object person derived from the currentDate minus the 
birthDate. OMT identifies these derived elements and shows them by adding a diagonal bar 
as shown in figure 8.6. Sometimes derived association is known as objectification. For 
instance, the relationship between husband and wife is objectified to an object called 
marriage. However, all these objects or derived relationships are software concepts rather 
than method concepts.

husband wife<>a. derived attribute b. derived class Man

Class-2 Marriage

W om an

Class-1

Class Name/attribute
C lass Name

c. derived association d. marriage derived association

Figure 8.6 OMT: Derived Relationship

Therefore general derived relationships only apply to the software level and not to the method 
level. The definition of a derived relationship may be presented as a method concept but not 
as a meta concept relationship. In the next subsection we illustrate a special type of derived 
relationship in the method level, which is multiple inheritance.
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8.33.2 MULTIPLE INHERITANCE

Multiple inheritance is a method concept which can also be considered as a derived 
relationship in the method level. In the object-oriented paradigm, when an object inherits 
features from more than one object, the relationship between the object and other objects is 
known as multiple inheritance.

There are two viewpoints for looking at multiple inheritance. The following figures depict 
these viewpoints graphically by entity relationship diagrams. The ovals represent the entities 
and the rectangles represent the relationships, where ‘MI’ stands for multiplelnheritance and 
T  stands for inheritance (or singlelnheritance). In the first viewpoint, multiple inheritance is 
described as a single method concept which relates a number of superobjects to a subobject, as 
shown in figure 8.7a. In the second viewpoint, the relationship is considered as an aggregate 
of single inheritances having the same subobject, as depicted in figure 8.7b. Therefore 
multiple inheritance is defined by a group of concepts, which includes the subobject and the 
single inheritance relationships.

object-2object-1

object-3

a. single concept

(^object-T^) (^object-2^)

Ml

ob

; C^object-3^ )  

b. group concept 

Figure 8.7 Multiple Inheritance

A
ect

multiplelnheritance

inheritance t e r

c. meta model

Our meta model adopts the second viewpoint. The reasons are threefold. Firstly, single 
inheritances break down the relationship into binary concept relationships and this concept 
relationship is very important in the method model. Secondly, multiple inheritance is normally 
depicted by multiple ‘single inheritance’ notations, which can be upward arrows, down 
arrows, surrounding boxes etc. Therefore, multiple inheritance is an implicit concept without 
notation. Thirdly, the definition of multiplelnheritance concept is initiated from a subtype 
object concept combined with a number of inheritance relationships.

Thus the multiplelnheritance concept is described as a group concept with object as host and 
inheritance as element. This grouping relationship is shown in figure 8.7c. Since there is only 
one object instance, the cardinality is (0,1,1,1) in the host part. In the element part, at least 
two of inheritance instances are required in the group, so the cardinality is noted as (0,l,2,n).



8.3.3.3 DELEGATION

Some software languages introduce a delegation mechanism into an object. Delegation is an 
implementation mechanism in which an object, responding to an operation on itself, forwards 
the operation to another object. In object-oriented languages it is a mechanism by which 
methods may be attached directly to instances and where the method resolution is performed 
by searching a chain of instance pointers rather than by searching a class hierarchy. The 
objects involved in delegation are normally known as actors [Tello 89].

The factorial algorithm is good for illustrating this because the delegation between actors that 
can accomplish a recursive factorial is simple. When a call is made to the generic factorial 
actor with a number n, a factorial(n) actor is formed. The actor will then compute the value 
by instantiating another actor of itself to solve factorial(n-l). The process keeps recursing 
until an actor calls itself to find the factorial of 1, which is defined to be 1 by a test condition. 
This chain reaction of delegation is depicted in figure 8.8.

factorial(l)

factorial(n-l) factorial(2)

factorial(n)

Figure 8.8 Actor Delegation

Delegation is a common implementation mechanism in actor based languages. This concept is 
a well defined relationship between actors but it is only considered as a technique. No formal 
SDM has found for these actor based languages. Since delegation is a ‘floating’ concept, it is 
considered as outside the scope of this research4 (see also chapter two).

8.3.4 TEXT FRAGMENT

In most of the discussion so far, diagram fragments have been used for illustration. However 
some SDMs also provide text fragments as method tools to describe software models. The 
objectDescriptionSkeleton in HOOD and all the templates in Booch OOD are examples of text 
fragments. A diagram fragment is good for describing various meta modelling techniques and 
ideas. In general, a text fragment is used as a comprehensive documentation of the pictorial 
concepts and usually it provides an extension to the graphical presentation. Therefore all the 
techniques in diagram fragments can also be applied to text fragments, and normally a text 
fragment has a very strong relationship with the underlying diagram fragment.

4 However, it is strongly suspected that d elega tion  can be simply be expressed as a relationship in GMR.
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Let us consider the two fragments in HOOD (see section 2.4.2): the graphical representation 
is called a hoodDiagram and the textual representation is known as an 
objectDescriptionSkeleton as illustrated in figure 8.9. A hoodDiagram is used to describe a 
network of HOOD objects or a parent object with all its descendants, whereas an 
objectDescriptionSkeleton is used to document various parts concerning an object. Hence, 
the objectDescriptionSkeleton has a one-to-one referencing relationship to the object. From 
the Figure 8.9, various concepts from the hoodDiagram are comprehensively documented in 
different sections of the corresponding objectDescriptionSkeleton. Since most of the basic 
concepts defined by the method are shown in the diagram fragment, the text fragment adds on 
details of individual concepts. Therefore the relationships between the concepts in different 
fragments are recorded by the ‘defined-by’ referencing relationship. For instances, 
requiredlnterface defines required objects and formal? arameters\ providedlnterface declares 
operations and operationSets provided by the object, whereas each 
operationControlStructure refers to one operation etc. Nevertheless, the internal structure of 
each fragment is still based on the concept modelling technique discussed in chapter five. 
Appendix D.l shows a complete concept diagram of the HOOD method.

objectDescriptionSkeleton <r
hoodDiagram

[ requiredlnterface )-

[ providedlnterface

[ operationControlStructure }4  

[ objectControlStructure ]^~

[ exception ]__

[ exception Flows )4  

[ data Flows ) 4

objectType5
i

formaiParameter 44
f operatlonSet sf44-

operation

{ contrainedOperation

44

exception Flow 2S 
k.k.1 _ s|44—WW dataFlow < ---------

4 H  d a tas )4 4[ internals)

[ parameter modeOfFlow}4

object )

A A

st

Figure 8.9 HOOD: Relationships Between Graphical and Textual Fragments

Moreover, the task modelling technique of diagram fragments can still be applied to text 
fragments. Each subtask may be used to specify the details of each section in the text 
fragment. The general information is outlined by a preceding task, which is the formation of 
the corresponding graphical representation of the model. Hence this concept specification can 
be considered as a refinement stage from the predetermined concept definition. Furthermore, 
each of these tasks and concepts can be accompanied by design heuristics.
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8.4 METHOD SPECIFICATION LANGUAGE

In the discussion of various components of a method (those are in chapter four to seven), we 
use the graphical representation to depict the notions and the relationships of method 
semantics. It is because diagrammatic form is easier to illustrate the modelling techniques of 
GMR. This section gives a complete definition of the textual representation. However, it 
must be clear that the textual form is a complement to the graphical form. This textual form 
of the GMR method model is by means of a specification language known as Method 
Specification Language (MSL). It is capable of denoting semantics in the product model, the 
process model as well as the heuristic model.

We follow the BNF grammar rules as described in [Schreiber 93] and the basic set of 
construct interpretations are shown in table 8.1. In addition, comment lines are preceeded by 
the symbol *%%’.

Construct Interpretation
::= * + []<>!. symbols that are part of the BNF formalism

X ::= Y the syntax of X is defined by Y
[X] zero or one occurrence of X
X* zero or more occurrences of X
x+ one or more occurrences of X

XI Y one of X or Y (exclusive-or)
<x> grouping construct for specifying scope of operators

svmbol predefined terminal symbol of the language
symbol user-defined terminal symbol of the language
symbol non-terminal symbol of the language

Table 8.1 BNF Grammar Rule

A SDM is defined as a composite of three distinct models, which are the product model, the 
process model and the heuristic model. Each model is further specified in different sections as 
shown in figure 8.105.

The meta model has been tried out on the five chosen methods listed earlier. These method 
representations are used in the method evaluation that are discussed in the next chapter. A 
complete listing of OMT product, process and heuristic specifications in MSL is attached as 
appendix F of this thesis. These MSL statements are input to LPA Prolog and then intended 
to be converted into SKB format (the Semantic Knowledge Base described in chapter four). 
In addition, the OMT MSL statements are converted to Prolog clauses and they are shown in 
appendix G.

5 The definition of concept rules follows the standard declaration of Prolog Clauses. Due to the complexity it 
is not shown in the figure. Detailed examples of conecpt rules can be found in appendix G.
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methodDefinition ::=
m eth o d  methodName

productModelDefinition 
processModelDefinition 
heuristicModelDefinition 

endM ethod  .

%% DEFINITION OF PRODUCT MODEL

productModelDefinition
productM odel

listOfConceptElements 
en d P ro d u c tM o d e l.

listOfConceptElem ents ::= < conceptElementDefinition >+ . 
conceptElementDefinition ::=

conceptDefinition I referencingDefinition I dissectionSetDefinition .

conceptDefinition ::=
c o n c e p t conceptName [a b s tra c t] ;

[subtypeO f subtypeCategory <* conceptName>* J  
[groupingDefinition I linkingDefinition]
[listOfCompositionDefinitions].

subtypeCategory ::= m eth o d  I fragm en t I d iagram  I tex t I g ro u p  I link I conceptName.

groupingDefinition ::=
h o s t conceptN am e cardinalitySet;  
m em ber conceptN am e cardinalitySet; .

linkingDefinition ::=
<so u rc e  conceptN am e <* conceptNam e> cardinalitySet ;>+
<ta ro e t conceptN am e <* conceptNam e> cardinalitySet ;>+ .

listOfCompositionDefinitions ::= <compositionDefinition ;>+ . 
compositionDefinition ::=

p ro p e rty  conceptName cardinalitySet.

referencingDefinition ::=
re fe ren ce  conceptN am e conceptNam e cardinalitySet;  .

dissectionSetDefinition ::=
d is se c tio n S e t fragm entNam e fragem entN am e ;

[ dissectionConceptDefinition <* dissectionConceptDefinition >* ] ; .

dissectionConceptDefinition ::= [shared] conceptN am e .

cardinalitySet
[inclusionSymbol I exclusionSymbol]
[ minSrcCar* m axSrcCar* minTarCar* m axTarCar ] .

inclusionSymbol ::= #. 
exclusionSymbol ::= 1.

m inSrcCar ::= 0 11 I 2 I n . 
minTarCar 0 11 I 2 I n . 
m axSrcCar ::= 1 I 2 I n . 
m axTarCar 1 I 2 I n .
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%% DEFINITION OF PRO CESS MODEL

processModelDefinition
p ro cessM o d el

listOfTaskDefinitions 
e n d P ro c e s s M o d e l.

UstOfTaskDefinitons ::= < taskDefinition >*. 
taskDefinition ::=

ta sk  taskName operationDefinition ;
rp recond  listOfSemanticTokens jj 
[p o s tco n d  listOfSemanticTokens jJ 
[taskCompositionDefinition I taskRefinementDefinition].

operationDefinition ::=
o p era tio n  <taskFunctionDefinition I conceptFunctionDefinition> .

taskFunctionDefinition :=
<perform  I d o > { taskName } .

conceptFunctionDefinition :=
« draw  I in se rt I de le te  I m odify> { conceptName )> I 
« a d j u s t  I re ty p e I sp ec ify > { conceptName, conceptName }> .

taskCompositionDefinition ::=
c o m p o se  [parallel] listOfTasks ;  .

taskRefinementDefinition ::= 
refine listOfTasks i .

listOfTasks ::= [ taskName <x taskName>* ] . 
sem anticToken ::= conceptName I taskName. 
listOfSemanticTokens ::= sem anticToken <* sem anticToken> .

%% DEFINITION OF HEURISTIC MODEL

heuristicModelDefinition ::= 
heuristicM odel

listOfHeuristics 
en d H eu ris ticM o d e l.

listOfHeuristics ::= < heuristicDefiniton >*. 
heuristicDefinition

h eu ris tic  heuristicName ;  
tex t heuristicTextDefinition ;
[ ru le heuristicRuleDefinition :  ]
[ link heuristicLinkDefinition ;  ] .

heuristicTextDefinition ::= IheuristicDescriptiorf.
heuristicRuleDefinition ::= ruleCondition <or ruleCondition>* => ruleAction . 
heuristicLinkDefinition ::= heuristicName <* heuristicN am e>*.

ruleCondition ::= IconditionStatement <and  '_conditionStatemenf>*. 
ruleAction ::= taskFunctionDefinition I conceptFunctionDefinition. 
heuristicName ::= sem anticT oken .

Figure 8.10 BNF Definition of MSL
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8.5 PROLOG CLAUSE FORMAT

T his sec tion  p resen ts  a  co m p le te  se t o f  P ro lo g  clauses co rresp o n d in g  to  th e  M S L  g ram m ar 

described  in th e  p rev io u s section . T h e  fo rm ats o f  clauses in each  m odel a re  sh o w n  w ith  

re sp ec t to  th e ir  O M T  sta tem en ts.

In  th e  p r o d u c t  m o d e l, th ere  are  six  types o f  clauses:

concept(ConceptN am e, ListOfSuperConceptNames, C o n cre te ). 
property(ConceptName, PropertyName, CardinalityList). 
source(LinkName, ListOfSourceConcepts, CardinalityList). 
target(LinkName, ListOfTargetConcepts, CardinalityList). 
reference(ConceptN am e1, ConceptNam e2, CardinalityList). 
dissection(Fragm entN am e1, Fragm entNam e2, ListO fConceptN am es).

T h e  ex am p les  o f  O M T  M S L  sta tem en ts are:

concept dataFlow D iagram ; 
subtypeOf d iag ram ; 
property actor [1,1,0 ,n ]; 
property dataStore [1,1,0 ,n ]; 
property process [1,1,1 ,n j ; 

concept dataF low ;
subtypeOf link ;
source actor, dataStore, process [0 ,n ,0 ,1]; 
target actor, dataStore, process [0 ,n ,0 ,1]; 
property data  [1,1,1 ,n ] ; 

reference actor object [0,1,1,1];

an d  th e  co n v erted  P ro lo g  c lauses are as fo llow :

concept(dataFlowDiagram, [diagram], co n c re te ). 
property(dataFlowDiagram, actor, [1,1,0 ,n ]). 
propertyjdataFlowDiagram, dataStore, [1,1,0 ,n ]). 
property(dataFlowDiagram, process, [1,1,1 ,n ]).

concept(dataFlow, [link], co n c re te ). 
property(dataFlow, data, [1,1,1 ,n ]). 
source(dataFlow, [actor, dataStore, process], [0 ,n,0,1]). 
target(dataFlow, [actor, dataStore, process], [0,n,0,1 ]). 
reference(actor, object, [0,1,1,1]).

T h ere  are  a  few  p o in ts  to  n o te  ab o u t the  p ro d u c t m odel:

• T h e  g ro u p  co n cep t and  the link co n cep t share the  com m on  source and  target c lauses

p resen ta tio n  (the  h o st being  the  so u rce  and the  e lem ent being  the ta rg e t). T h e  co n c ep t

type  is d istingu ished  by  the superconcept field  o f  the concept definition.

concept concurrentSubdiagram ;
subtypeOf g ro u p ; => concept(concurrentSubdiagram , [group], concrete)
host s tate  [0,1,1,1]; source(concurrentSubdiagram , [state], [0,1,1,1]).
elem ent stateDiagram  [0,1,1 ,n ] ; target(concurrentSubdiagram , [statediagram], [0,1,1 ,n ]) .

• T h e  sta tem en t w ith  inclusion sym bol is expanded  to  rep resen t all possib le  o u tco m es. F o r  

in stan ce  th e  role p roperty  in association concep t is co n v erted  in to  tw o  clauses:

concept asso c ia tio n ;
=> property(association, sourceRole, [1,1,0,1]). 

property role # [1,1,0,1]; property(association, targetRole, [1,1,0,1]).
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• The statement with exclusion symbol is converted to a constraint rule:
concept transition ;

=> %% in the heuristic rule field of event
property e v e n t! [0,1,0,1]; not( owner(autom aticTransition)) .

• The statement with overriding is represented by all possible combinations. For instance,
the target clauses of instantiation overrides the orginal relationship clause:

concept instantiation ; concept(instantiation, [relationship], c o n c re te ) .
subtypeOf relationship ; =» source(relationship, [object], [0,n,1,1 ]) .
target instance [0 ,n ,1 ,1]; target(instantiation, [instance], [0,n,1,1 ]) .

In the process model, there are four types of clauses:
task(TaskN am e, TaskFunction, Precondition, Postcondition). 
com pose(TaskN am e, ListOfTaskN am e). 
refine(TaskName, ListO fTaskN am e). 
parallel(ListOfTaskNam e).

The examples of OMT MSL statements are:
task  objectModelling perform(objectM odelling); 

precond [problem Statem ent]; 
postcond [objectM odel];
com pose [identifyClass, identifyAssociation, identifyAttribute, organiselnheritance, 

testA ccessPath, verifyObjectModel, groupClasslntoM odule];

and the converted Prolog clauses are as follows:
task(objectModelling, perform(objectModelling), [problemStatement], [objectM odel]). 
compose(objectM odelling, [identifyClass, identifyAssociation, identifyAttribute,

organiselnheritance, testA ccessPath, verifyObjectModel, groupC lasslntoM odule]).

• The heuristic name may be different from the task name of the same clause.

In the heuristic model, there are only two types of clauses:
heuristic(HeuristicName, HeuristicText, HeuristicLink). 
rule(HeuristicName, ConditionStatement, A ctionS tatem ent).

The examples of OMT MSL statements are:
heuristic delete lrrelevantC lass;
text 'If a  c lass has little or nothing to do with the problem, it should be e lim inated .';
rule 'A c lass has little or nothing to do with the problem' => d e le te (c la ss);
link class, o b jec t;

and the converted Prolog clauses are as follows:
heuristic(deletelrrelevantClass,

'If a  c lass has little or nothing to do with the problem, it should be eliminated.',
[class, ob ject]). 

rule(deletelrrelevantClass,
'A class has little or nothing to do with the problem', d e le te (c lass)).

• It must be noted that other heuristic links may be added to the resultant list of heuristic 
links by the language compiler.

• At the moment, both the condition and action field of a heuristic rule accept either a 
textual statement or a task function.
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8.6 CONCLUSION

To conclude, the chapter discusses some additional modelling considerations to enhance the 
method representation. GMR formulates a common representation for all semantics, including 
concept, task and heuristic. Both the MSL grammar and the Prolog clause format of GMR 
are presented with illustrations.
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9. METHOD EVALUATION

In the last chapter, five chosen methods were used to demonstrate the generic model. That 
exercise provided an opportunity to evaluate various significant aspects of our meta modelling 
technique. This chapter discusses the method evaluation with special focus on method 
comparison, fragment dissection and selection of methods.

9.1 INTRODUCTION

There is in the literature no established way of deriving a model based on capturing method 
techniques rather than specific methods. In this research we propose such a model and try it 
out on five SDMs to demonstrate the expressiveness of method representation. Some 
significant remarks are made about the meta model in this chapter.

The GMR is not just a generic model for method representation, it gives a better channel to 
compare the strengths and weaknesses of SDMs. The model formulates a common notion of 
method product and method process, which results in ease of dissecting tool fragment. This 
gives the possibility of multi-view specifications or method integration. The techniques of 
method representation, comparison and fragment dissection are described in this chapter. In 
addition, selection of method is not only based on method capabilities but most importantly on 
the experience of the user and external considerations.

The next section presents details of the technique for fragment dissection. Section 9.3 shows 
the advantage of comparing software methods by this meta modelling technique. Section 9.4 
gives a discussion about selecting suitable methods.

9.2 FRAGMENT DISSECTION

Having defined a uniform method representation, a single non-redundant semantic knowledge 
base can be produced. It is the sole repository of all development information. Thus a CASE 
tool can be constructed to permit multiple alternative perspectives on development approaches 
or to enable alternative focuses [Short 91]. The principle is known as method integration. It 
is a collection of techniques and tools that enable different system development perspectives to 
be used in a consistent manner. There are three main advantages of method integration:

• It enables multiple views on a problem space. Software systems can be developed with a 
consistent approach even if they contain components that use different technologies. An 
example is that of the object structure in a lift control system which may be viewed in an
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OOA diagram, whereas the process structure may be best viewed through the dataflow 
diagram in structural analysis.

• It allows various methods to be used at different life cycle stages. This is important where 
a customer demands a certain software development approach. For instance, a 
requirement language is requested in an aircraft project during analysis, but HOOD and 
Ada must be used for design and implementation.

• It provides method evolution in software development. Newer approaches are often 
restrained due to the difficulty of changing culture of software developers or the transition 
from one development technology to another. For example, the benefits of object 
orientation could be introduced gradually to a team of trained analysts to produce 
knowledge based systems that work on extracts from operational database systems.

Two key points need to be achieved to support method integration. Firstly, a common meta 
model for an integrated CASE tool that can support multiple perspectives must be defined. 
This is, of course, one of the major objectives of the generic SDM representation in this 
research, and such a model has been described in chapter five to seven. Secondly, the method 
concepts or components necessary to allow multiple perspectives must be identified and 
dissected out as a discrete tool from the SDM. In meta modelling, such components are the 
constituents of methods that provide the integration and they are normally known as a tool 
fragment or as a method fragment.

Our meta model is designed with special care, to enable fragment dissection, that is to help us 
‘cut out’ tool fragments from a method. Each fragment comprises of two components; the 
product to describe method concepts and the process to develop method tasks. Hence it is 
important to dissect the fragment products as well as the fragment processes. The different 
techniques in product dissection and process dissection are presented in the following two 
subsections.

9.2.1 PRODUCT DISSECTION

A method is described in terms of a number of tool fragments. Though these fragments may 
have different optionality or multiplicity in that method, they can be dissected as discrete 
constituents to support multiple viewpoints across methods in a particular application. Such 
tool fragments are normally interrelated by shared concepts or by intermediate relationships. 
These items must be determined to fully dissect a fragment out of the method context. Figure
9.1 depicts the possible relationships between fragments. The diagram shows a method with 
two fragments, namely fragment A and fragment B. For simplicity, the details within each 
fragment are not shown, however inside the fragment A box, the five possible relationships 
among concepts are given.
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The three notations between the two fragments depict the relationships between method 
fragments. They are the dissection set, referencing relationship and grouping relationship, 
which are known as the ‘cuts’ between the fragments.

group \

method

C o )  sublyplng 
 ►  composition

^ l i n k i n g

grouping

  — referencing

fragm ent A fragm ent B

Figure 9.1 Method Product Dissection

The first type is described by a dissection set as introduced in section 8.3.1. It is an important 
tool to dissect fragments based on the common concepts. These concepts can be either a link 
concept or an entity concept, as demonstrated by the Codarts/DA concepts dataFlow and 
dataTransformation respectively in figure 8.2. The other usual concept in a dissection set is 
the property concept; that is a concept that has owners from different fragments of a method. 
For instance, in HOOD a modeOfFlow can be a property of a dataFlow in a hoodDigram 
fragment or a parameter in an objectSkeletonDescription fragment as shown in figure 8.9. 
Hence modeOfFlow is an element in the dissection set between the two fragments. This type 
of dissection relationship also handles the shared concepts. A shared concept is a method 
concept described with different levels of detail or viewpoints in different fragments, and 
therefore it can be considered as a special type of concept in a dissection set. The 
dataTransformation concept in Codarts/DA mentioned above is a typical illustration, see 
section 9.3.2 for details.

There are two ways to dissect fragments by referencing relationships. In the first case, it 
relates concepts with equivalent semantic meaning of fragments in the same method. For 
example, in OMT an activity of a state in dynamicModel must refer to an operation of an 
object in objectModel. This ‘refer-to’ relationship links up entity concepts in different 
fragments. The other case describes the relationship between two concepts, where one 
concept is further defined by another concept. For instance, an object concept in objectModel 
is described by another fragment called dataDictionary. This ‘defined-by’ relationship 
associates an entity concept with another fragment concept. These referencing relationships 
form the second type of cuts in product dissection.
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Figure 9.2 shows the OMT product dissections. OMT has three tool fragments, which are 
shown as dotted rectangles in the diagram. All the dissection cuts are uni-directional 
references running towards the entity concepts in objectModel. Hence it is clearly seen that 
the dynamicModel and functionalModel describe certain viewpoints of the system and the 
objectModel is proved to be the most important fragment among the three.

[ objectModel ]

operation

attribute <rir
[ object ]̂ ~

A A

method

[ dynamicModel ) 

_[ activity)

~{ action )

functionalModel ]

-[ process ) 

dataStore)

1 actorl

( eventAttribute ] 

delegation)

Figure 9.2 OMT: Product Fragment Dissection

The last type of product dissection is denoted by grouping relationships. In dissection, a 
group concept is normally a decomposition concept or an extension concept of an entity 
concept. In other words, the host concept is an entity described in one fragment and the 
element concept is the expanded fragment concept. This product dissection is illustrated by 
the Ptech method as shown in figure 9.3. In the figure, productDecomposition group concept 
identifies the cut between objectSchema and the owner of the product concept which is 
objectFlowDiagram, whereas the activityDecomposition group concept determines the cut 
between eventSchema and the owner of the activity concept which is again the 
objectFlowDiagram fragment.

method
;
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[ objectSchema)^----- e , objectFlowDiagram ) \ e | eventSchema )

objectType________
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X
Io ect ^

product activity '

externaiObject) 
v  J

activity
Decomposition

-> { operation ]

Figure 9.3 Ptech: Product Fragment Dissection
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The figure also demonstrates dissection cuts amongst the tool fragments as referencing 
relationships. Each activity in objectFlowDiagram refers to an operation in eventSchema, and 
a product denotes an objectType in objectSchema, whereas an externalObject can only relate 
to an extemalObjectType. In conclude to this product dissection layout, objectFlowDiagram 
provides an overview of the system.

The three main points in determining fragment cuts are:

• For any dissection set, a number of concepts are common among the fragments.

• For any referencing relationship, the two related concepts must be in different fragments.

• For any grouping relationship, the host concept is an entity concept and the element
concept is a different fragment concept.

The following points are noted to explain why the other relationships cannot form a cut:

• For any subtyping relationship, both the superconcept and subconcept semantically and 
notationally belong to the same tool fragment. However, if the subtyping relationship 
belongs to fragment concepts (for instance systemContextDiagram is a subtype of 
contextDiagram in Codarts/DA), the situation is more complicated. The complete 
fragment dissection requires the handling of inherited features from the superconcepts.

• By definition, when a concept owns another concept both of them are in the same tool 
fragment. Thus composition is an intra-fragment relationship. Nevertheless there is one 
exception, that is the method aggregate fragment. It comprises of a number of fragment 
concepts, so the composition relationships between method concept and any fragment 
concepts are definite cuts in product dissection.

• For any linking relationship, the link concept is used to associate the source and target
entity concepts in the same fragment, so the link concept is also semantically owned by the 
fragment concept. Hence linking is also an intra-fragment relationship and cannot 
represent a cut for fragment dissection.

9.2.2 PROCESS DISSECTION

The last subsection shows that the fragment product can be dissected easily by determining a 
small set of concept relationships between fragments. However the fragment process must 
also be dissected to enhance the formation of tool fragments cut out by the product dissection. 
Unlike the fragment product, the fragment process can be scattered through the method 
process. And since the tasks in the method process may interrelate to one another, the 
process dissection is more difficult than product dissection. The dissection also has to 
consider the input and output information that may occur within the tasks, such that the 
relationships between fragment processes are identified.
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Nevertheless there are some methods that have very clear cuts in a fragment process. The 
three diagrams in figure 9.4 illustrate the three method process models where the fragment 
dissections are relatively simplistic. It means that the process of each fragment is presented as 
individual tasks. These method processes are HOOD, OMT and Ptech respectively. For the 
benefit of explanation, the diagrams only show the top level tasks and all concept flows among 
these tasks are omitted. It is because the only dependence is the concept tokens produced by 
the preceding task.

H

draw V  > A 
hoodDiagram V " V

specify L, 
objectDescriptionSkeleton j

a. HOOD process model

perform
objectModel

perform
objectDesign

perform
systemDesign

perform
dynamicModel

perform
functionalModel

b. OMT Process Model

<
 perform L  J\ perform W

objectStructureAnalysIs S 'A QbjectStructureDesign

perform perform
objectBehaviourAnalysis j  * QbjectBehaviourDesign p

c. Ptech Process Model

Figure 9.4 Simple Process Dissection

HOOD has only two fragments. It is more of an incremental, iterative process. The two main 
tasks are draw(hoodDiagram) and specify(objectDescriptionSkeleton) as shown in figure 
9.4a. The former task consists of identifing objects, operations and relationships among 
them, this information is shown by drawing the hoodDiagram. The latter task takes the 
hoodDiagram and maps down to the slots in the objectDescriptionSkeleton. Then the 
developer has to specify the further details of the object, such as data types, pseudo-codes etc. 
These two steps recur continually until all the objects are specified.
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OMT has very clearly defined each fragment process. The three analytical models can be 
determined in parallel regardless of the order. It then proceeds with the systemDesign and 
finally follows with the objectDesign as depicted in figure 9.4b. Each of these fragments can 
be dissected out. For instance, the dynamicModel is independent of the other models, though 
there are a few reference links to the objectModel. These uni-directional links are also present 
in the fragment product as referencing relationships. These links are not used as requirements 
for other fragment processes, but a mapping process is needed to connect the related software 
concepts after both models have been declared.

Ptech describes information engineering as two sides of a pyramid, one side concerned with 
the data in the business area and the other side concerned with the functions in the model1. 
Ptech applies objectStructureAnalysis and objectBehaviourAnalysis at various levels of the 
pyramid, whereas the objectStructureDesign and objectBehaviourDesign come at a later 
stage. Thus the method can be denoted as a two stage process as shown in figure 9.4c. The 
objectSchema fragment and the eventSchema fragment are determined by the 
objectStructureAnalysis and the objectBehaviourAnalysis respectively.

Some fragment processes are difficult to dissect from the original development method, such 
as when a process spreads over a number of tasks or a task comprises the construction of a 
few fragments. Before introducing the new dissection technique, let us recall the aim and 
definition of a method fragment.

To support method integration, a method fragment must be an autonomous tool or technique 
comprised of its own concept structure, task structure and heuristic information. Both 
product and process models of the fragment must be self governing or unconstrained, 
although they may have a limited interface to the external development environment.

In a fragment product this interface is formed by a set of concept relationships, whereas in a 
fragment process this interface composes of two lists of concept tokens. One list denotes the 
required concept tokens for the process and the other list describes the concept tokens 
produced by the process.

For example, the Codarts/DA process model comprises of seven steps as shown in figure 9.52. 
The perform(cobra) task identifies objects, functions and determines graphical fragments such 
as systemContextDiagram and some contextDiagrams, controlFlowDataFlowDiagrams and 
stateTransitionDiagrams. The succeeding task perform(distributedSystem) deals with 
systemDecomposition, subsystemDecomposition and systemConfiguration. It also identifies a 
list of subsystems.

1 Ptech uses the term ‘methods’. We change it to ‘functions’ in order to avoid unnecessary confusion.

2 To simplify the task diagram for illustration, a number of concept tokens have been deliberately missed out.
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Figure 9.5 Codarts/DA: Process Model

After that, the five following steps concentrate on task structuring and information hiding 
module structuring. All these steps contribute to the formation of taskArchitectureDiagram. 
Therefore these tasks can be composed into a pseudo-task draw(taskArchitectureDiagram), 
as shown by the dotted lines in the figure. The effect is known as task composition (the 
reverse of task decomposition described in section 6.7.4). The task composed is called a 
composite task. Although the draw function is used for the composite task in this example, 
the perform function is also common in task composition. The subsequent step is to 
determine the precondition and postcondition of the task, i.e. the concept token inflows and 
outflows. The basic guidelines to identify these concept tokens are recorded as follows:

• The precondition comprises concept tokens that are required by each internal task minus 
those tokens produced by themselves.

• The postcondition consists of concept tokens that are produced by each internal tasks 
minus the precondition of the composite task.

In the example, the required tokens form the list {function, object, subsystem, task, ihm}. 
Since both task and ihm tokens are produced by internal tasks, the overall precondition of the 
task is the list {function, object, subsystem}. Thus the tokens produced from the composite 
task are {task, ihm, taskArchitectureDiagram}.

Task composition is a technique which may not truly represent the method process, but it is 
definitely important in process dissection. Figure 9.6 shows an example of Booch OOD. All 
four design steps described by Booch can be composed into two pseudo tasks 
draw(classDiagram) and draw(objectDiagram). As mentioned in chapter six, a coarse grain 
method process should allow user defined tasks, such as the draw(stateTransitionDiagram) 
task and the draw(timingDiagram) task which can be developed out of insert(semantic) task. 
In this case, the two new tasks can be treated as subtasks of the composite tasks, and the 
corresponding task information should be omitted in fragment dissection.
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Figure 9.6 Booch OOD: Process Model

The third constituent of a tool fragment is the heuristic guidance, which is documented by the 
heuristic specification. Since each concept or task predicate has a reference pointer to the 
corresponding heuristic clause, they can be stored together as a module. Thus no formal 
dissection is required for the method heuristic.

9.3 METHOD COMPARISON

One of the main advantages of our generic method representation is to provide a formal 
channel to compare methods. The uniformity enforced by the meta model, the products and 
processes of SDMs, is ideal for method comparison. A method engineer can use the result of 
comparison to choose a method or a tool fragment to suit their particular problem domain and 
environment. Thus, method comparison also can support the integration of methods.

Some method comparisons are made on the basis of adaptability towards a specific 
application. For instance, the evaluation of object-oriented analysis and design methods in 
[Cribbs 92] aims to quantify the strength and weaknesses of eight OOA/D methods that best 
meet the needs of Alcatel Network System’s development organisations. This evaluation is 
beneficial to the organisation as well as to the developers who work in a similar problem 
domain or environment. Nevertheless, this technique biases towards a region of software 
applications or certain requirements in the system. The result is far from satisfactory.

In contrast, some method comparisons are based on a set of predetermined concepts or 
techniques. These are normally found in the literature introducing a method. For instance 
[Gomaa 93] introduces Codarts/DA and the method is compared with five other SDMs. In 
order to show the excellence of the method, a ‘tailor-made’ example is formulated, i.e. the 
Cruise Control and Monitoring System, with all distinct concepts in Codarts/DA. Therefore 
the described method stands out from the other SDMs. This style of ‘method comparison’ is, 
of course, ideal for illustrating some new technologies. In practice, some concepts in the 
compared SDMs are hidden by the comparison, so it is not a ‘true’ comparison.

In the following subsections, two types of ‘true’ method comparisons are introduced. They 
are known as numerical comparison and fragment comparison. These techniques are
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direct outcomes of the uniformity of GMR. We also show the results of comparing the five 
chosen methods based on these techniques.

9.3.1 NUMERICAL COMPARISON

This comparison is self explanatory. Numerical comparison is based on the number of 
fragments, products, processes and heuristics, to compare the strength and weaknesses 
between methods or fragments in a method or modelling aspects within a method. For 
method product, the comparison uses the number of concepts and relationships. For method 
process, the comparison uses the number of tasks, triggers and concept flows. Numerical 
comparison provides general information of a method which can be used as a guide when 
choosing a suitable method in a specific application or a tool fragment in method integration. 
In addition, it compares the process models and heuristics amongst SDMs. Most method 
comparisons or method evaluations fail to do this.

There are various ways to obtain numerical comparisons, the following list suggests some 
meaningful choices:

• Number of fragments / concepts /  tasks / heuristics in a method gives general 
information about the method. This information provides the influence of a method such 
as its significant perspective in describing a particular method product or introducing a 
particular method process.

• Number of concepts /  tasks / heuristics per fragment or in a specific fragment gives 
the weight of the fragment from a focal point of view. If a particular fragment of the 
method consists of numerous concepts or heuristics, the emphasis of the method may lay 
on that fragment. For instance, the main focus of Codarts/DA is to construct the 
taskArchitectureDiagram. This information can be also given in percentage form, i.e. the 
percentage of concepts in a method which uses to describe a particular fragment.

• Number of concepts /  tasks / heuristics in data model /  function model /  state model 
illustrates the strength of describing such a model by the method. It allows one to show 
whether the method has an inclination towards any of the three basic modelling techniques 
in software development. Again, this information can be recorded by percentage to 
compare various models.

• Number of relationships per concept in a fragment or number of triggers per task in 
a fragment shows how strong the entities in a fragment are related. This is also known as 
fragment cohesion. It provides the information about the complexity of the respective 
concept or task in a fragment.
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• Number of relationships between fragments in a method product describes how 
strongly the fragments in a method are related. This is known as the fragment coupling, it 
shows the ease of fragment dissection.

• Number of top level tasks gives a brief overview of the high level breakdown in the 
process model of a method.

• Decomposition factor of process model gives the total number of composite tasks (i.e. 
perform and do functions) in the method. This factor shows the weighting of the complex 
components in the method (on the other hand it reflects the number of terminal tasks). 
This information can be recorded by percentage of tasks in the method.

• Number of heuristics in method product / method process shows the overall weighting 
of the components, which can be used to compare methods. This can also be denoted as a 
percentage to compare between the method product and the method process.

Booch OOD Codarts/DA HOOD OMT Ptech
number of fragments 6 4 2 3 3
number of concepts 120 78 52 81 69

data model 77.0 (64%) - - 45.0 (55%) 28.5 (42%)
function model 32.0 (27%) 8.5 (19%) - 11.0(14%) 27.5 (40%)

state model 11.0 (9%) 9.0 (20%) - 25.0 (31%) 27.5 (40%)
fragment cohesion 1.36 1.30 1.51 1.28 1.47
function cohesion 1.10 1.35 - 1.91 1.58

state cohesion 1.48 1.11 - 1.60 1.33
fragment coupling 5.33 2.75 6.00 2.67 1.67

number of tasks 11 36 13 71 27
top level tasks 4 14 4 4 4

composite tasks 11 (100%) 7 (22%) 5 (38%) 19 (27%) 11 (41%)
number of heuristics 131 123 65 126 96

number per fragment 21.8 30.75 32.5 42.0 32.0
% in product model 91.6% 63.4% 80.0% 50.0% 71.9%
% in process model 8.4% 36.6% 20.0% 50.0% 28.1%

Table 9.1 Numerical Comparison of the Five Chosen Methods

Table 9.1 illustrates a number of general numerical comparisons on the five chosen SDMs.
The following remarks and evaluations are drawn from the comparisons:

a. Booch OOD has six fragments {class diagram, object diagram, state transition diagram, 
timing diagram, module diagram and process diagram). Codarts/DA has four fragments 
{context diagram, data flow/control flow diagram, state transition diagram and task 
architecture diagram). HOOD has two fragments {HOOD diagram and object 
description skeleton). OMT has three fragments {object model, state model and 
functional model). Ptech has three fragments {object flow diagram, object schema and 
event schema).
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b. The number of concepts per fragment averages around 18 to 28 and the number of 
concepts in a method mainly depends on the number of fragments.

c. Codarts/DA does not directly denote a data model, but it does specify concurrent objects 
as information hiding modules. These are addressed in the task architecture diagram.

d. HOOD combines all aspects of software modelling in a HOOD diagram and the object 
description skeleton is a textual extension to automate Ada code. Therefore there is no 
differentiation of various viewpoints in HOOD.

e. In Ptech, an object flow diagram gives an overview of the system, an object schema 
describes the structural aspect and an event schema describes the behavioural aspect. The 
event schema can be considered as a combination of a function model and a state model.

f. Booch OOD puts nearly two-thirds of concepts in data modelling (class and object 
diagrams). OMT also emphasises the data model and the percentage for the state model is 
relatively high. Ptech has well balanced structural and behavioural models.

g. The product fragment cohesion is in average between 1.10 to 1.90 relationships per 
concept. This does not give much information. However the product fragment coupling, 
which is the number of relationships between fragments, shows that Booch OOD (5.33) 
and HOOD (6.00) are highly coupled-fragment methods. Fragment dissection seems 
uneasy with these two methods.

h. Both Booch OOD gives very brief process model descriptions, as all the tasks denoted are 
composite tasks (i.e. 100% in the decomposition factor). In other words, there is no 
terminal task function explicitly defined by this method.

i. Codarts/DA and OMT give a general outlines of each task in software development. A 
fair amount of refining steps are described as terminal task functions in the method.

j. Ptech only provides a very detailed process of the object behaviour analysis (23 tasks out 
of the overall 27 tasks), however there are no instructions for the object structural 
analysis or object structural design or object behaviour design at all.

k. Booch OOD, Codarts/DA and OMT are heuristic ‘rich’ methods as they have over 100 
heuristics described. Moreover, Booch OOD concentrates on defining its 120 concepts 
rather than giving guidance on the tasks. HOOD is particalurly weak in term of illustrating 
the method heuristics.

1. Both Codarts/DA and OMT give a well-balanced heuristics on the product and process 
models. However, the other three methods seem to describe what are the method 
concepts rather than to show how to model these concepts by method tasks. The extreme 
case in the numerical comparison is the Booch OOD which has over 90% of method 
heuristics concerning the concepts in the product model.
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9.3.2 FRAGMENT COMPARISON

Most method engineers find it more useful to compare how the actual concepts in various 
methods describe a similar viewpoint of a software system. Since the meta model requires all 
method concepts to be denoted in the concept diagrams, it is very easy to compare methods 
by viewing their perspectives of certain aspects. This aspect could be a data model, a function 
model or a state model. These are normally described as tool fragments. Hence this type of 
comparison is known as fragment comparison. Fragment comparison is a useful tool in 
method integration because it allows the designer to choose the most suitable fragment 
amongst the methods available. The table shown can be used as a checklist in the selection.

Table 9.2 demonstrates the fragment comparison based on various state model fragments in 
different SDMs. A *•’ mark in the grid denotes that the corresponding concept is included in 
that method, and the letter next to the mark refers to the notes presented below.

a. Software dynamics are modelled by various tool fragments in different SDMs. Booch 
OOD and Codarts/DA uses state transition diagram, OMT uses a state diagram in the 
dynamic model, Ptech uses an event schema. HOOD describes control in an object 
control structure, but this is not classified as a state model so is not shown in the table.

b. Ptech is the only method that describes an event type, which includes classification events, 
coalesce events, creation events, declassification events, decoalesce events, 
reclassification events, termination events and tuple-substitution events.

c. Different methods denote process in different ways: Booch OOD by action (same as 
operation, method or message, which is further described in the class diagram), 
Codarts/DA by event to trigger transformation (input event or output event, which is 
described in the task architecture diagram), OMT by action or activity (action includes 
entry action, exit action, and event actions, which are all refered to as operation in object 
model) and finally Ptech by operation (or known as activity in object flow diagram).

d. A control condition in Ptech has a similar effect as condition in Codarts/DA and guard 
condition in OMT. However, Ptech decribes it graphically whereas Codarts/DA and 
OMT decribe it in textual form.

e. A trigger rule in Ptech has the similar effect as transition in Booch OOD, Codarts/DA and 
OMT, but trigger rule is a more powerful tool. It takes the underlying object(s) of an 
event and determines those object{s) required to invoke an operation.

f. Booch OOD, Codarts/DA and OMT all describe state. However Booch OOD and OMT 
differiate start state, inter state and stop state. Ptech describes state as event prestate and 
event poststate.

g. An internal action in OMT is similar to an internal operation in Codarts/DA.
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Concept Booch OOD Codarts/DA OMT Ptech
action •c •c
activity •c

classification event •b
clock event type •
coalesce event •b

condition •d •d
control condition •d
creation event •b

declassification event •b
decoalesce event •b

delegation •
dynamic model •a
entry action •c

event • • • •
event action •c

event attribute •
event generalisation •

event partition •
event poststate •f
event prestate •f
event schema •a
event state •f

event subtyping •
event trace •
event type •
exit action •c

external operation •
input event •
inter state •f •f

internal action •g
internal operation •g
merging control •

nesting event schema •
nesting state diagram •

operation •c
operation subtyping •

output event •
reclassification event •b

scenario •
splitting control •

start state •f •f
state •f •f •f

state aggregation •
state generalisation •

state transition diagram •a •a
stop state •f •f

termination event •b
transition •e •e •e
trigger rule •e

tuple substitution event •b

Table 9.2 Fragment Comparison based on State Modelling
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9.4 SELECTION OF METHOD

Designing effective software specifications is important for developing high quality software 
since specification and design phases are the early steps in the software development process. 
To support the software development many excellent SDMs, such as structural analysis & 
design methods and object-oriented analysis & design methods, have been developed. A good 
method should present a product model and a process model concisely and precisely. 
Although most methods have a detailed description of the product model, they give minimal 
information about the process model.

There are two problematic situations which can occur in both models. These are the hidden 
detail and the missing information. The ‘hidden detail problem’ happens mostly in method 
products. For instance the OOSA method described in [Shlaer 88] introduces the state model 
and the process model3 of the software system but gives no formal description about these 
two models. The notational concept can only be discovered implicitly from the given 
examples. Some methods have summary pages to present all concepts introduced by the 
method, which does reduce the possibility of hidden detail. The ‘missing information problem’ 
occurs in many method processes. Booch OOD only describes four top level design steps, 
and many tasks are mentioned vaguely in the method, whereas the OOSD method introduced 
in [Wasserman 90] is a method with no process model at all. The solution is to allow 
developers to customise their own concepts and tasks in the ‘unfinished’ method. Creativity 
and common sense are required. The integrated CASE tool must also provide facilities to 
handle this information correctly.

On the other hand, some SDMs demand that every individual detail is described and that all 
supporting fragments must be relatively complete. This approach is required for consistency 
checking or software automation. For example, HOOD is a design method that assists 
software modelling by developing hoodDiagrams. The description of each object is enhanced 
by the objectDescriptionSkeleton, which is used for Ada code generation.

In general, among the five methods investigated, OMT and HOOD seem to be well structured 
methods: the method product, method process and heuristics are all well-defined.

However, to choose a suitable method for an application in a restrained problem domain 
and/or environment does not only depend on the capabilities of the method. Other issues have 
to be taken into consideration. Some of these are listed as follows:

• The most dominant point in choosing a method is the resource’s availability. This 
resource may include human-based resources, software-based resources and hardware-

3 In OOSA, state model is depicted by state transition diagram and process model is shown as dataflow 
diagram. Hence the process model mentioned here refers to the software process of a system, and not the 
method process in meta modelling.
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based resources. The experience of the development team is a vital factor in choosing a 
method, since the initial overhead of adopting a new method is often large. The 
availability of programming languages or access to CASE tools and environments are also 
important points to consider.

• The next point is the ease of use and the ease of learning a method. In order to use a 
capable software method efficiently, sufficient education or training must be provided. 
Learning by working is also a possible way of adopting new technology, but this adds to 
the cost of the development process. Sometimes the price of a CASE tool is more 
significant than the suitability of the underneath method.

• Often, the golden rule is ‘simple is the best’. A simple method may not have 
comprehensive concepts for general development purposes, but it may be suitable to serve 
the need of certain projects. A complicated method may provide more features to denote 
software development, but usually there is a higher cost to pay.

• Finally, the suitability of a method depends on the amount (or percentage) of concepts, 
tasks and heuristics matching the requirement of the system. If there is no complete 
match, a best-fit algorithm may have to evaluate the suitability of various methods 
available. The weight of each element is given to show the priority in selecting methods 
and a scoring mechanism has to be invented. In this case, GMR can be utilised.

9.5 CONCLUSION

This chapter describes the threefold benefits of GMR. Firstly, it provides a generic model to 
document SDMs formally and systematically. In view of developing an automated SDM 
system, the representation is designed in an executable form for future extension. Secondly, 
GMR is also developed with method integration in mind. This allows method fragments to be 
shared, since dissection of these fragments can be easily worked out using this model. Finally, 
due to the uniformity of representation, GMR provides a better channel to compare methods 
or to choose appropriate fragments based on concepts.
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10. KNOWLEDGE ACQUISITION OF 
METHOD MODELS

The development of knowledge based systems is difficult and time consuming. The 
acquisition of the knowledge necessary to present a certain method’s semantics is considered 
to be one of the main bottlenecks in knowledge engineering. This chapter clarifies some of 
these difficulties. It then demonstrates how method knowledge can be extracted from a 
distinct set of acquisition media. The techniques include inspecting, fabricating and verifying 
(IFV) method models. An illustration of knowledge elicitation of OMT is presented.

10.1 INTRODUCTION

Two major modelling methods have developed in knowledge acquisition research: the 
Personal Construct Psychology (PCP) method [Kelly 55] [Shaw 93] and the KADS1 method 
[Schreiber 93] [Tansley 93]. The PCP approach focuses on the derivation of the formal 
modelling framework for knowledge engineering and the translation of this framework into a 
formal knowledge base. The KADS approach focuses on the formal modelling framework 
and its translation into a computational knowledge base. KADS is intrinsically a modelling 
approach with a series of seven models: the organisational model, the application model, the 
task model2, the model of cooperation, the model of expertise, the conceptual model and the 
design model [Schreiber 93]. The four knowledge levels are the domain level, the inference 
level, the task level and the strategic level (see appendix C for a brief description of KADS).

This chapter does not intend to give a complete description of the process of knowledge 
engineering. Instead, our major interest is in the modelling of expertise in the domain level of 
knowledge. The aim of this research is to investigate a generic representation for software 
development methods, although the ultimate goal of meta modelling may lead to the 
implementation of tools to manipulate the semantic knowledge base.

1 KADS is an abbreviation that has lost its original interpretation. In [Schreiber 93], it stands for K n ow ledge  
A n alysis  a n d  D ocum en ta tion  System , whereas in [Tansley 93], it means K B S A n a lysis  a n d  D esig n  S upport. 
The former emphasises the principled approach to model expertise and the latter stresses the various steps of 
knowledge-based systems analysis and design. Nevertheless, the common intention of KADS is a set of 
techniques to assist the knowledge engineering aspect of system development.

2 The task model in KADS (or MIKE) must not be confused with the task diagram in our process model 
(chapter six). The task model carries out a decomposition of basic problem-solving tasks in KBS, whereas 
our task diagram depicts the development steps of a software method into the task structure.
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This chapter concentrates on the knowledge acquisition required to develop, the method 
models. The next section introduces the problems and techniques in knowledge acquisition 
and expertise transfer. Section 10.3 discusses the three main types of acquisition media in 
method knowledge acquiring. A detailed practical guide of method knowledge elicitation is 
given in section 10.4. Section 10.5 sketches the outline of elicitation in method models with 
illustrations based on OMT. Finally section 10.6 gives a brief summary of the chapter.

10.2 METHOD KNOWLEDGE ACQUISITION

The human activity is not easily accessible to awareness. A study on expertise-transfer 
processes among scientists reported that some knowledge may not be accessible through the 
expert: he/she may not be able to express it, but also he/she may not be aware of its 
significance to his activities [Gaines 87]. This can also occur when acquiring an expert’s 
knowledge about a software development method (hereinafter known as ‘method 
knowledge’). The method knowledge being sought is expertise about denoting system 
products and processes. The expertise acquired is more formally described than with many 
other domains. For instance, many software methods adopt structured-text or diagramatical 
representations in their formalisation. Knowledge acquisition at this level of abstraction is 
relatively simple, however, the implicit expertise or critical presumptions involved in software 
modelling are more difficult to capture.

10.2.1 KNOWLEDGE ACQUISITION PROBLEMS

The main problems in accessing method knowledge are:

• Some software techniques only become apparent under certain conditions. Much 
modelling experience cannot be expressed easily in speech or literature, but the method 
knowledge may only be acquired when the situation occurs. For instance, the 
softwareArchitectureDiagram fragment concept in Codarts/DA is a slight variation of the 
taskArchitectureDiagram fragment concept, and it is only illustrated in the Robot 
Controller System case study at the very end of the book [Gomaa 93, page 352].

• Sometimes the method knowledge is incomplete or incorrect. There can be implicit 
situational dependencies that make explicit expertise inadequate for performance. This 
point was discussed in chapters four, five and six. On the other hand, experts may make 
explicit statements which do not correspond to their actual behaviour, and these lead to 
incorrect performance. For example, the startState of a stateTransitionDiagram shown in 
[Booch 91, page 272] has a number of incoming transitions, which validates the original 
definition of a startState concept.
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• Many concepts have presumptions to support the technique, and the expert may not be 
able to transmit the expertise because he/she is unable to evaluate them. This presumption 
also appears implicitly to the knowledge engineer. In some situations, the overall process 
of expertise acquisition is made considerably harder than it ought to be. For instance, the 
process model of stateTransitionDiagram is not clearly defined in Booch OOD: there is an 
implicit presumption of an eventTrace concept in this particular scenario.

• An apprentice may not be able to convert his/her comprehension of a method into a model. 
Likewise, the method knowledge may not be applicable even when expressed in natural 
language.

10.2.2 KNOWLEDGE ACQUISITION TECHNIQUES

In the development of knowledge engineering methods and rapid prototyping techniques the
emphasis has been on knowledge acquisition and hence on the transmission of expertise. A
rich variety of techniques are available for method knowledge transfer:

• Expertise may be transmitted through examples. An expert may be able to transmit a skill 
by showing his own performance without necessarily understanding the basis of his 
expertise. The expert may not even be aware of the skill required. Through examples, the 
implicit expertise can be shown clearly to the apprentice. Alternatively, knowledge may be 
acquired by analogical reasoning. The transfer of models and skills from one situation to 
another is an important source of knowledge. Most literature about software development 
methods illustrate their techniques by a number of case studies. For instance, [Booch 91] 
offers a set of five complete design examples encompassing a diverse selection of problem 
domains. Each example is illustrated by a different object-based or object-oriented 
language.

• A trainer may be able to induce expertise by indicating correct and incorrect behaviour 
without necessarily understanding the skills in detail or himself being expert in its 
performance. In method knowledge engineering, expertise may also be acquired by 
comparing the semantics adopted by different methods. The distinctions indicate the 
significance of the semantics in the method. For instance, stateGeneralisation is an 
important concept in OMT that does not appear in similar fragments of other methods.

• Expertise may also be acquired by the application of general laws and principles to new 
situations: the use of physical laws and systemic principles to generate specific expertise is 
the basis of scientific and engineering expertise. This is particularly useful in method 
knowledge acquisition, since all methods are bound to some design rules or principles.
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10.3 KNOWLEDGE ACQUISITION MEDIA

Many researchers claim that knowledge acquisition involves at least three activities. Firstly, 
knowledge elicitation obtains an informal model of the knowledge from the domain expert.

domain experts. Secondly, knowledge interpretation transforms the elicited data using some 
conceptual frameworks, such that the model is more applicable for analytical and prototyping 
purposes. And lastly, knowledge formalisation is the stage to conceptualise the model in a 
form that the program can use the knowledge [Gaines 93] [Neubert 93].

The prevalent argument of expertise-transfer shows that a linear incremental knowledge 
engineering approach is not a competent approach. As depicted in figure 10.1a, the domain 
expert has no direct engagement in the knowledge modelling processes. The general approach 
should be based on a mutual agreement, that is the domain expert should be involved in the 
construction of a basic domain model with the knowledge engineer, who will further interpret 
the agreed model into an informal conceptual model of the application. From this model an 
executable operational model can be obtained. Figure 10.1b illustrates the revised approach.

This is normally carried out by the knowledge engineer interviewing one or more problem

Domain Expert Knowledge Engineer Conceptual Model

elicition

interviews

Operational Model

interpretation formalisation

male(john). 
personGohn). 
person(andrew). 
person(amy). 
parentGohn, andrew). 
parent(amy, andrew). 
father(A.B)parent(A,B),

male(A).

a. Simple Linear Model

Domain Expert Knowledge Engineer

elicition

model Conceptual Model

interpretation formalisation

Operational Model

maleGohn). 
personGohn). 
person(andrew). 
person(amy). 
parentGohn, andrew). 
parent(amy, andrew). 
father(A.B) :• parent(A,B),

Basic Common Model male(A).

b. Mutual Agreement on the Knowledge Domain

Figure 10.1 General Approach for Knowledge Acquisition
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The situation in method modelling is very different. Ideally, the knowledge engineer 
communicates directly with the domain experts, for example with the method developer(s) or 
experienced users of one or more specific methods. This way, the implicit knowledge may be 
identified and the critical presumptions can be clarified. Unfortunately, this is not always the 
case in method engineering since it is a very difficult task to identify ‘experience’ method 
users, and even harder to obtain an interview with a particular method developer. Therefore 
the method knowledge engineer has to rely on other communication media, such as written or 
machine-readable materials publicly available. There are, in general, three relevant types of 
knowledge acquisition media for method knowledge:

• Literature, such as Journals and books, is the major source of a method description. 
Most well-known software development methods have at least one publication either in 
paper form or compiled into a book. This material gives a comprehensive documentation 
of the method model. It transforms the abstract software development ideas, such as 
modelling concepts and experiences, into a more understandable and applicable form when 
expressed in written language. A book may discuss various methods (such as [Graham 
94]), and a method may be described in a number of books (such as OOA in [Coad 90] & 
[Coad 91]). Different versions of a method may also be described in newer editions of a 
book. For instance, the Booch method in [Booch 94] is very different from the Booch 
OOD in [Booch 91].

• CASE Tools. Good case tools for a specific method or a group of methods form the 
second type of knowledge acquisition media. The better developed methods usually have 
one or more CASE tool(s), for instance Booch OOD, OMT, OOA, Objectory, Ptech etc. 
These CASE tools demonstrate the software development techniques that accompany the 
method. Thus, the knowledge engineer can have direct experience of the method by using 
the tool. However, the choice of tool is important - some CASE tools introduce 
deviations to the original method. For example, the OOATool dedicated for Coad OOA is 
a proficient tool, since Peter Coad is one of the consultants in Object International where 
the tool was developed. Nevertheless, this is normally the most expensive acquisition 
media among the three types, and it may not be feasible to buy a tool just for the sake of 
eliciting knowledge of a particular method.

• The last type of knowledge acquisition media is a Training Course or a Tutorial as 
provided by academic institutes or commerical industries. There are courses for teaching 
software developers so that they are familiar with certain SDMs. For instance, the 
Rational company, where the ROSE tool for Booch OOD was developed, organises 
seminars for their CASE tool. This type of knowledge acquisition medium can be 
considered as a secondary expertise consultation.
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Figure 10.2 Specific Approach for Method Knowledge Acquisition

Figure 10.2 depicts a specific approach for method knowledge acquisition. We refer to these 
media as method acquisition media, because they embody a different set of knowledge 
acquisition tools and techniques. The following two subsections present the pros and cons of 
using these method acquisition media in obtaining method knowledge.

10.3.1 ADVANTAGES OF METHOD ACQUISITION MEDIA

The major problem in knowledge acquisition is eliciting expertise through interviewing domain 
experts. An expert may not be able to transmit the knowledge explicitly because he/she is 
unable to express it verbally in natural language. However, their knowledge might be 
accessible through written means. Pictures, diagrams and tables may be used to illustrate 
complex concepts. Also, the table of contents, index, glossary, summary or even references 
available in the method acquisition medium may provide useful searching directories.

For the last two types of acquisition media described in the previous section (the CASE tools 
and the training courses), method knowledge may also be acquired by trial and error learning. 
This is the basic inductive knowledge acquisition process that is always in operation although 
heavily overlaid by the social transfer processes.

10.3.2 DISADVANTAGES OF METHOD ACQUISITION MEDIA

Method acquisition by literature has its drawbacks. It does not have the advantage of being 
led by an expert tutor. Another problem is the lack of interaction with the outside world. It 
can also be difficult to gain any practical experience of using the method knowledge, though 
an intelligence computer-based training (CBT) toolkit may compensate for this deficiency of 
interactivity. Furthermore, good documentation is required in these method acquisition media, 
as they are treated as ‘secondary’ experts in the knowledge domain. The documents need to 
be well written. Ideally, a ‘primary’ expert still needs to be available to solve any queries or to 
clarify any implicit presumptions that cannot be answered by the knowledge acquisition media.
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10.4 ELICITATION OF METHOD KNOWLEDGE

Elicitation of a method in software development is one of the most crucial activities in method 
knowledge acquisition. Expertise transfer cannot be simply considered (or modelled) as an 
engineering task or as a technical discipline, since it depends upon communication skills and 
techniques. Communications may be verbal as well as visual. However some practical 
guidance or experience is available when extracting significant information from the 
knowledge domain. There are three basic questions to be answered in knowledge eliciation:

A. What is the information (knowledge) of interest to be elicited?

B. Where is the knowledge mentioned stored?

C. How can it be extracted from this storage?

We discussed knowledge acquisition media (question B) in section 10.3. Identification of 
essential information from a specific knowledge domain is a vital process in elicitation. In our 
case, the method model may include information such as modelling concepts, design steps, 
instruction in tasks, business rules etc. It also depends on the level of abstraction being 
described or required in the final intended system. Therefore, the description cannot really be 
separated from the discussion on extracting knowledge, that is to procure information from a 
massive amount of materials (or in computational terminology - raw data). Both question A 
and question C are considered at the same time in this section.

conceptual 
v model ^

method
fabrication

v  v /v method 
^  inspection

method
verification

formalised 
^  model .

Figure 10.3 Top Level Process Model of Method Elicitation

Our approach towards the elicitation of method knowledge can be summarised by a three 
stage process model as depicted in figure 10.3. The stages are method inspection, method 
fabrication and method verification. Method inspection conceptualises the method’s 
semantics from one or more knowledge acquisition media into a conceptual model, which can 
then be denoted in graphical or textual form. Method fabrication transforms the model into 
a practical (or executable) form so that it can be used by an applicable tool. The result is a 
formalised model known as a semantic knowledge base. Method verification checks the 
validity of the individual items in the semantic knowledge base. It also validates the entire

10.7



formalised model as a whole. Detectable mistakes can be identified and/or rectified by 
verification rules introduced from the meta model. This three stage model is abbreviated as 
the IFV model.

As with the phases of the software development life cycle, these method elicitation stages do 
not have clear boundaries. They are disjoint in terms of process and overlapping in terms of 
time. In other words, different stages have distinct tasks in knowledge elicitation but the 
respective tasks may occur simultaneously. For example, method fabrication may happen as 
long as a conceptual model is formed from method inspection, even through it is incomplete 
or erroneous. The amended formalised model may check through existing method verification 
rules if they are available. These three method elicitation stages are described separately in the 
following subsections.

10.4.1 METHOD KNOWLEDGE INSPECTION

Method inspection is the analytical stage of knowledge elicitation. The objective is to 
conceptualise the method’s semantics from the accessible knowledge acquisition media. Since 
literature is the major source in method knowledge elicitation and the availability of the other 
two media depend on their application, the following discussion focuses on literature as the 
basic medium for knowledge acquisition. However, similar techniques can be applied to other 
materials available for inspection.

The product generated from this stage is known as the conceptual model3, it comprises a set 
of diagrams and structured texts. The diagrams incorporate concept diagrams and task 
diagrams which denote the product model and process model of the method respectively. The 
structured text gives the preliminary form of the method specification statements. This 
conceptual model is passed onto the method fabrication stage to produce the formalised 
model. Method inspection incorporates three sequential and incremental substages. They are 
known as cursory reading, chronic reading and conclusive reading as shown in figure 10.4.

chronic k  ^ aJ conclusive |  ^
reading Y ----- |:—reading >

Figure 10.4 Method Knowledge Inspection

3 Conceptual model should not be confused with concept diagram in the product model. The former describes 
the overall modelling principles and the strategic ideas of a method, whereas the latter captures the notions 
of the method used to present a software system only. In other words, a concept diagram is one of the basic 
elements in a conceptual model.
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10.4.1.1 CURSORY READING

In this substage the knowledge engineer scans the literature (a book or a journal) to obtain an 
overview of the method. The crucial method semantics are normally presented in various 
distinct parts of the literature. These distinct parts include the introduction, table of contents 
(chapter headings and subheadings), glossary and index etc. From a method knowledge 
engineering point of view, the basic modelling approaches and/or some major strategic ideas 
should be identifiable in a cursory reading of these sections.

The introduction section normally gives information about the foundation of the approach or 
the problem domain denoted by the method. For instance, by reading the identified sections, 
one can easily find out that HOOD is an object-based method, whereas Ptech is a set-based 
object-oriented approach. Therefore the knowledge elicitation can be done around the main 
focus of the respective methods or in a coherent manner.

The table of contents usually gives a logical sequence to interpret the method, although some 
literature places the materials in an inappropriate order. Sometimes the literature provides a 
map (in introduction) for the reader to extract particular information of the method or to 
ignore materials that the reader might already know. For instance, in [Gomaa 93], three 
methods are described, namely Codarts, Adarts and Codarts/DA. Since Codarts/DA is more 
general than Adarts and it is superset of Codarts, it is chosen for investigation. Furthermore, a 
list of design methods is introduced before the presentation of the proposed methods. The 
inspection of these methods, including Adarts, is optional, so the corresponding chapters or 
sections that are noted in the table of contents can be skipped. In addition, the structure of the 
chapters and sections provides the differentiation and emphasis of the method. For example, 
from the layouts of the chapter headings (and subheading), it can be readily identified that 
Booch OOD comprises six main diagrams (class, object, module, process, state transition and 
timing diagrams) and four steps (identify classes & objects, semantics, relationships and then 
implement classes & objects).

Most literature provides a glossary to summarise the key ideas introduced by the method in 
alphabetical order. It is normally presented at the back of the literature and usually there is a 
description given to each key idea. A glossary is an important source in eliciting method 
semantics, since the description field gives a formal definition to each key semantic. For 
example in HOOD4, dataFlow is defined as 'a flow o f data in parameters o f operations 
between used and using objects'. A data (semantic) dictionary can be built up from this 
information. The descriptions can also provide information towards the heuristic model based

4 In order to improve readability, hereinafter in this section, the names of software development methods also 
denote the respective literature that described the methods. For instance, Booch OOD is from the literature 
[Booch 91], Codarts/DA is from [Gomaa 93], HOOD is from [Robinson 92], OMT is from [Rumbaugh 93] 
and Ptech is from [Martin 92].
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on key semantics of the method. However, there may also be some abbreviated names or non
method based ideas. For instance, in the glossary of Codarts/DA, AAD (the first item) is only 
an abbreviation of adaArchitectureDiagram so is not a concept; nor is Abstract Data Type 
(the second item), which is a general idea in object-orientation rather than specific to the 
method. In addition, the glossary may not contain all key method semantics or it may combine 
a few concepts into one terminology. For example, in the glossary of OMT, aggregation is 
described as a general concept of a part-whole relationship, though OMT identifies 
aggregation of states and aggregation within a state (concurrentSubdiagram and 
nestedStateDiagram concepts in dynamicModel). Thus the glossary is only a brief summary 
of key ideas rather than a complete listing. Nevertheless, it should cover most of the 
important semantics of the method and acts as a checklist for the final conceptual model (see 
the conclusive reading subsection).

Similar to the glossary, the index section presents most of the key ideas of a method. Some 
significant semantics can be deduced from the entries in the section. In addition, it provides a 
referential link from the entry to the main body of the literature. For example, in OMT, the 
index entry of action has a list of sub-entries as shown below (the numbers give where the 
corresponding entries can be found in the main text and the bold number shows the location of 
the concept definition):

action 92-93,131-132
entry and exit 101-102 
internal 102 
notation for 93 
on a  sta te  101 
on a  transition 93

With the help of references to the main text, the above example can be read as ‘an action is a 
notational concept o f three different types, namely entry action, exit action or internal 
action; it can appear either on a state or on a transition’. Therefore, the index is a powerful 
tool to associate various ideas on top of relating them to the main text. The above example 
demonstrates the association of entity concepts in subtyping relationship as well as the 
ownership of action concept itself. Again, the index section is only a guide to identify method 
semantics, it is unlikely that the section provides a complete set of key semantics in the 
method.

In the discussion so far the method elicitation techniques are based on the product model. The 
semantics of process model can also be identified in the cursory reading of such as in the 
introduction, table of contents and sometimes even in glossary. However, the distinction is 
not as clear as the semantics of product model. For instance, the subheadings in Booch OOD 
chapter six, The Process, show that there are four main tasks in the process model and each of 
them has corresponding activities and products. However, the heuristic knowledge is 
normally not obtainable in cursory reading.
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10.4.1.2 CHRONIC READING

In this substage, the knowledge engineer inspects the main text in depth until all key semantics 
are extracted from the literature. This may include reading the main body of the literature 
sufficient times to gain a clear understanding of all illustrations given in examples, diagrams, 
tables and possibly the bulletin points. By the end of chronic reading, a preliminary conceptual 
model should be sketched for further inspection in conclusive reading. Knowledge acquisition 
from textual information is fairly similar to that of verbal communication with domain expert 
[Wielinga 93]. However, the elicitation based on literature has a few distinct characteristics:

Obviously, the main text provides the details of semantic knowledge that are crucial to the 
method. Some of them are implicit or hidden information, it is impossible to extract them 
other than by a chronic reading of the text itself. For knowledge elicitation of software 
methods, special care must be taken to maintain the right level of semantic abstraction. Task 
decomposition in process modelling is a good illustration. In the horizontal dimension all 
tasks of a composition should have the same level of abstraction. In the vertical dimension the 
levels of decomposition should provide the key tasks presented by the method. Furthermore, 
some non-diagrammatic information can only be described in main text. This includes the 
heuristic guidelines, design rules and concept constraints. In Codarts/DA, a large proportion 
of the text is focused on the description of structuring criteria about subsystem, object, 
function, task and information hiding module. On the other hand, a HOOD diagram has a 
number of design rules associated with its concepts. For example, rule (U-2) is that: ‘passive 
objects shall not use each other in a cycle'. These textual materials cannot be shown 
diagrammatically as product or process models, but they should be represented in our heuristic 
model.

The other important knowledge elicitation tool is illustration. Most illustrations of method 
models given in the literature, are designed to demonstrate specific semantics so are given as 
enhancements to the description in the main text. There are various ways to illustrate ideas 
such as examples, diagrams, tables, charts, etc. For example, in the KADS approach, a road 
map (like a Gantt chart project plan) is used to show the activities of the method against time. 
It is easy to indicate dependence or complex relations by graphical representation. An 
illustration not only makes the expertise more readable and understandable but also gives a 
concrete presentation of abstract ideas - the concept of a stateTransitionDiagram is not 
understandable until there is a tangible example of it. Sometimes ideas do not appear in the 
main text, but are found in illustrations.

Bulletin points are normally used to show a number of important ideas about the semantics, 
they are rather like different sections in a chapter. For instance, OMT uses bulletin points to 
present the criteria for discarding redundant and irrelevant classes. Bulletin points may also be 
used to describe a number of tasks in a logical order. For example, the process model of
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HOOD is given by four bulletin points with the heading as shown below. Each of these 
bulletin points is allocated to a subsection of the chapter.

• Phase 1. Problem definition. ...
• Phase 2. Development of a solution strategy. ...

• Phase 3. Formalisation of the strategy. ...

• Phase 4. Formalisation o f the solution. ...

A case study (occasionally known as an application) is another important source of 
knowledge inspection in chronic reading. Nowadays most software development methods 
have at least one case study at the end of the literature. A case study describes a complete or 
a large part of the software development life cycle, rationally proving the methods to be 
applicable to a real world situation. Therefore a case study can also be considered as an 
extensive illustration of the method. Sometimes case studies are used to show the adaptability 
of the method to various software or hardware platforms. For instance, Booch OOD includes 
five applications in the last part of the literature. In doing so it is demonstrated that the 
modelling technique can be applied to the according five programming languages (Smalltalk, 
Object Pascal, C++, CLOS - Common Lisp Object System and Ada).

10.4.1.3 CONCLUSIVE READING

Conclusive reading is the last but not the least stage in method inspection. A relatively 
complete conceptual model of the method may have been gained by chronic reading, but 
human construction and/or predilection may cause the method model to be erroneous. The 
aim of this stage is to rectify any detectable faults that may be induced by the knowledge 
engineer in previous stages. This is done by studying various conclusive parts of the literature 
conscientiously. The implicit semantics in the main text are also validated in this stage.

In most literature there is a summary section (page, chart, table, etc.) either placed on the 
inner covers (such as Booch OOD and OMT) or in a chapter (such as Codarts/DA and Ptech) 
of the literature. The summary section gives a concise presentation of the method’s semantics. 
Most of these semantics are notational concepts, but they may also depict other semantics 
implicitly. For instance, the inner covers of Booch OOD clearly summarise the semantics of 
six diagram fragments in the product model as well as four main tasks in the process model. 
All these semantics should have been captured in the conceptual model, so the summary 
section can be used to check and to finalise the main features of the method model. There is 
also another way to utilise the summary section. That is, to employ it in cursory reading, to 
construct a preliminary model which forms the basis in developing the entire conceptual 
model. However, using the summary section for validation only, may reduce unnecessary bias 
induced in the early stage of knowledge elicitation. On the other hand, the glossary section is
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reviewed to check all key semantics are presented correctly in the conceptual model. Fine 
adjustment may mean refering back to the main text (through the index) to rectify the 
mistaken structure.

Furthermore, by considering the method semantics as a whole in conclusive reading, a more 
coherent model is obtained. For instance, unification of common concepts in product model is 
combined together. The values of concurrency (,sequential, blocking, active) in classDiagram 
and objectDiagram of Booch OOD can be combined to share same properties.

10.4.2 METHOD KNOWLEDGE FABRICATION

During knowledge inspection, method semantics are elicited and captured in a conceptual 
model comprising a preliminary form of concept diagram, task diagram and heuristic model. 
These items are then transformed into a structured text format defined by the method 
specification language (MSL). The textual form of the method model is known as a 
formalised model. The MSL statements can be modified, rectified and finally compiled into 
Prolog clauses for further use. All the activities described above contribute to the 
construction of a knowledge base for method semantics, or in other words, fabricating method 
knowledge. As noted earlier, a knowledge based system or CASE tool can also be derived 
from this semantic knowledge base. The following process model summarises this:

draw L  specify k  develop L,
conceptualModel f  ^  formalisedModel f q  prologClause f

Figure 10.5 Method Knowledge Fabrication

The knowledge representation of method models was discussed in chapter eight. This section 
only concentrates on describing the significance of each stage of knowledge fabrication.

A conceptual model presents method ideas straight from knowledge acquisition media. The 
main interest in conceptualisation is to capture abstract ideas into concrete models such that 
they are descriptive as well as manageable. A conceptual model denotes method knowledge in 
a more readable and editable manner. Since knowledge inspection is a long and error-prone 
task, ‘ease of change* is important in method modelling.

Likewise, a formalised model enables the presention and modification of the method models 
captured. It also shows method semantics that cannot be denoted by the conceptual model. 
For instance, a complete description of heuristics can only be shown in a formal presentation. 
A formalised model also permits error checking and detection (section 10.4.3 discusses five 
types of verification) so that a rectified method model can be conceived. In addition, a 
knowledge engineer may modify a formalised model and then reverse engineer back to the 
conceptual model.
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An executable form of method semantics is useful in constructing tools or systems operating 
on the knowledge base. For this reason Prolog is an ideal language in our application, though 
certain knowledge engineering tools (such as KEE) may also suit the job. A better 
performance and/or a smaller storage size is usually the consequences of a compiled form, 
however this is of only minor concern in this research.

10.4.3 METHOD KNOWLEDGE VERIFICATION

After knowledge fabrication, the method model may contain a number of errata. They may 
have been introduced during method inspection, such as missing implicit semantics or 
generating contrary ideas. Mistakes might also have been introduced in the fabrication stage, 
such as typing errors or inconsistent information.

The knowledge specified must be verified so that it presents a true representation of the 
method. Simple rules can be formalised or even embedded in the MSL compiler to identify 
detectable mistakes. Meaningful error messages are shown to enable the knowledge engineer 
to rectify discovered faults. This process in knowledge elicitation is known as method 
knowledge verification.

It must be clear that this verification can only rectify the errata introduced by the knowledge 
engineer. It cannot validate the method semantics as presented in the acquisition media. In 
other words, knowledge verification helps to obtain or maintain the legitimate semantics 
shown in the source. It is almost impossible to validate if a method model is a true and 
complete representation of the intended method. Furthermore, a lot of human understanding 
is done on exposition of knowledge, and most misinterpretation can never be remedied unless 
the originator is involved in the validation process.

Five techniques are identified for method knowledge verification. They are correctness, 
completeness, contradiction, consistency and contrast. Figure 10.6 illustrates that these 
checks can be executed simultaneously and there is no dependence on one another. They are 
discussed separately in the following subsections.

correctness

completeness

contradiction

consistency

contrast

Figure 10.6 Method Knowledge Verification
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10.4.3.1 CORRECTNESS

The word ‘correctness’ may have many different interpretations (it can even stand for a 
combination of all the following techniques). In method verification, it is interpreted as an 
agreement with the definition of the meta model, that is to check that the method model does 
not violate the meta-knowledge of the generic model. There are constraints on each meta
concept in a method representation. These constraints can be formulated as rules in the MSL 
compiler, so all these mistakes can be rectified by the knowledge engineer. Two basic forms 
of correctness are described below:

• Self identity. All concepts must have their own declaration (or entry) in the method 
model, so that every semantic is registered in the knowledge base. This rule detects 
spelling errors and duplications of semantic entries. It is done by maintaining a symbol 
table of all identifiers (names of semantics) and checking the validity of the semantic name 
in the MSL statements during compilation.

• Min-max cardinality pair. A cardinality pair denotes the minimum and maximum
cardinalities of a relationship. Most concept relationships have two cardinality pairs, one
for the source part and the other for the target part (see chapter five). By definition, the 
maximum cardinality must be larger than the minimum cardinality. This error can be 
indicated by examining each cardinality pair.

10.4.3.2 COMPLETENESS

Similar to correctness, completeness deals with the verification of the method model against 
the meta-knowledge of the generic model. However it considers the constraints between two 
concepts rather than the definition of a single concept. These constraints can also be included 
in MSL compilation checking. The incomplete semantics of a method model are indicated. 
Three common forms of completeness are shown as below:

• Link completeness. Each link concept must have exactly one source part and one target
part (one-to-one in cardinality pair). If any of those parts has more than one choice, the
cardinality pair of each potential concept must be defined as zero-to-one.

• Fragment completeness. A fragment without any entity is a void concept. Therefore the 
MSL compiler should detect that each fragment concept must have at least one 
composition relationship to a valid entity concept.

• Subtyping and overriding. A subtyping relationship inherits properties of the supertype to 
the subtype. An overriding feature rewrites (or overrules) this characteristic. In the case 
of multiple inheritance, overriding must be used to indicate the overlapped properties.
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10.4.3.3 CONTRADICTION

Unlike correctness and completeness, contradiction involves two or more semantics. The 
usual situation is the relationship between two semantics affecting a third semantic. It also 
handles problems of cycles amongst semantics. This verification can also be implemented as 
constrained rules to detect faults during MSL compilation. These semantic faults are indicated 
to the knowledge engineer. Two types of contradiction are shown as below:

• Ownership problem. There are two types of hierarchies in the concept diagram: subtyping 
and composition. The diagrammatic denotation has virtually avoided cyclic problems in 
subtyping relationships, as recursive subtyping is logically invalid in meta modelling. 
However, these problems may happen in composition relationships. By definition, a cyclic 
ownership is possible in some cases, but a warning message may be generated to notify the 
knowledge engineer.

• Referential integrity. The referencing relationship is an important technique to denote the 
dissection points between fragments in a method. However, the reference direction must 
be compatible and any unnecessary recursive loop should be avoided.

10.4.3.4 CONSISTENCY

Most methods have a main theme to their semantics. This theme gives a coherent picture of 
the method and it must be highlighted in the method model accordingly. Therefore the 
verification of consistency is sometimes known as coherency. For instance, Ptech is based on 
the theme of relating object and event. An objectType comprises a number of event 
operations, and an eventType takes the underlying object in a trigger to invoke an operation. 
This consistency must be coherent in the product model as well as the process model of the 
method. For example, Codarts/DA is based on the modelling of informationHidingModule 
and task. A systemContextDiagram is constructed to identify the dataTransformations in a 
more detailed dataFlowControlFlowDiagram, from which the controlTransformations are 
used to develop stateTransitionDiagrams. Finally, all these semantics contribute to define 
various tasks and informationHidingModules in the taskArchitectureDiagram. Consistency is 
a useful tool to check that the theme of a method is logically presented in the knowledge base. 
However it is impossible to describe this formally as constraint(s).

10.4.3.5 CONTRAST

Contrast is the opposite of consistency. Instead of looking at the coherency of a method’s 
semantics, it compares its semantics with the corresponding semantics in other methods. 
Hence the key semantics of the original method emerge in the contrast. For example, Ptech
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models concurrency by event synchronisation of states, whereas Codarts/DA models it by a 
concurrent task. For a second example, the semantics described by stateTransitionDiagram in 
OMT are different from those of similar fragments in other methods. These semantics include 
concepts such as stateGeneralisation and concurrentSubdiagram. OMT also distinguishes 
the difference of action and activity. Therefore, all these distinctions must be emphasised in 
the method model. Contrast is a technique to divert the knowledge engineer from taking a 
single-minded modelling viewpoint and instead to look at the bigger scope of method family. 
It is normally used to check whether the formalised model presents the distinct semantics of 
other methods or not. Again this is very difficult to model as an executable rule.

10.5 METHOD MODEL ELICITATION

The last section described the elicitation of semantic knowledge of method models with an 
inclination towards ‘how they can be found from literature’. This section focuses on the 
method elicitation of the three constitutes in a meta model, which are the product model, the 
process model and the heuristic model. OMT is chosen for this illustration, since it covers 
most of the elicitation techniques. A complete listing of OMT MSL statements is given in 
appendix F for validation.

10.5.1 PRODUCT MODEL ELICITATION

Most of the method concepts can be identified in the cursory reading stage of inspection - the 
glossary usually lists all the main concepts. Product model elicitation should include as 
candidates all concepts except the implementation constructs (such as null, overloading, self, 
weak typing) and general ideas (such as invariant, method, object-oriented, programming-in- 
the-large). Looking into the main text, the candidate concepts are collated with their 
definition, and the meta relationships and properties are identified. It is important to unify the 
terminology because a concept may be called differently in various places in the literature. 
The general rule is to choose the shortest meaningful name and to keep the main concepts 
only. For instance, the concepts:

• actor means actor object;

• operationPropagation is a more specific name than propagation;

• constraint actually denotes two different concepts: associationConstraint, classConstraint

Some concepts are hidden in section headings (such as entryAction, exitAction, 
intemalAction) or illustrations (such as concurrentSubdiagram and dataFlowDecomposition). 
They must be extracted and defined explicitly in the heuristic model to avoid ambiguity. For 
instance, the following MSL statements denote the concurrentSubdiagram concept and the 
corresponding concept heuristic.



concept(concurrentSubdiagram , [group], co n c re te ). 
source(concurrentSubdiagram , [state], [0,1,1,1]). 
target(concurrentSubdiagram , [stateDiagram], [0,1,1 ,n ]).

heuristic(concurrentSubdiagram, [state, stateDiagram],
'Concurrency within the state  of a  single object arises when the object can be partitioned into 
su b se ts  of attributes or links, each of which has its own subd iagram .').

Referencing relationships and dissection sets are more global meta relationships in method
modelling, they only come out in the conclusive parts. For instance, in the end of each chapter
of [Rumbaugh 91] describing the analytical models is presented the relations between
fragments with the subsection headings:

5.7 Relation of Object and Dynamic Models
6.6 Relation of Functional to Object and Dynamic Models

The knowledge engineer has to model segments of the concept diagram and gradually place 
them together. A simple data dictionary is maintained, which eventually becomes the heuristic 
model. When doing this, the engineer should always be asking the questions, 4Does the model 
have enough concepts to describe the software semantics in this example?' and ‘Are the 
concepts truly reflective o f the emphasis in the method?\ The emphasis should be on the 
overall product model rather than on refining the individual details of concepts and 
relationships. The glossary and index should be checked again for any omissions or errata. 
The method model must also be verified with the semantics described in case studies and 
summary pages. The entire process is a continual iteration; different parts of a model are 
often at different stages of completion. If a deficiency is found, the engineer must go back to 
an earlier stage and correct it. Some refinements can only come after the process model 
elicitation.

10.5.2 PROCESS MODEL ELICITATION

Unlike the product model, the process model is usually ill-defined or full of presumptions.
The elicitation is mainly based on the sequential description of the software development
steps. Even the glossary does not give much information. This is true even for top level tasks
(such as analysis, systemDesign, objectDesign in OMT). The main text shows a list of tasks
in linear order, but special care must be taken over recursive loops and repeated patterns. For
instance, the bulletin points5 of object modelling:

•1 identify objects and c lasses
•2  prepare a  data dictionary
•3 identify associations between objects
•4  identify attributes of objects and links
•5 organise and simplfy object c lasses using inheritance

5 For the sake of clarity, the bulletins are shown together with numbers in this illustration.
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•6  verify that a c cess  paths exist for likely queries 
•7  iterate and refine the model
•8  group c lasses  into modules

The second point ‘prepare a data dictionary’ is in fact applied to classes, associations,
attributes and operations. Therefore the actual sequence of tasks should be 1 2 3 2 4 2 ... etc.
The seventh point ‘iterate and refine the model’ is really a loop-back to any of the previous
stages rather than a call back to the first step every time. Moreover, the first point in the
above example is accompanied by heuristics mentioned in the two following sections
‘identifying object classes’ and ‘keeping the right classes’. With the ‘prepare a data
dictionary’ step, there are three steps to complete the composite task identify Class. The pre-
and post- conditions of the task are identified from the heuristic statement as shown below:

task  identifyClass perform (identifyClass); 
precond [problem Statem ent]; 
postcond [c la ss];
com pose [insertClass, verifyClass, specifyC lass]; 

heuristic identifyC lass;
text 'Identifying relevant c lasses  from the application domain. Objects include physical

entities a s  well a s  concepts; avoid com puter implementation co n stru c ts .') .
link class, o b jec t;

The insertClass and specifyClass tasks are terminal, whereas the verifyClass task is refined 
based on the heuristic given in ‘keeping the right classes’ section. If there is no terminal task, 
it may not be wrong but keep it as a composite task with description in the heuristic model. 
The developer has to customise this with their own action. Furthermore, not all concepts in 
the product model are described in the process model because they may not be in the same 
level of abstraction or they may be embedded in the construction of other (composite) 
concepts. Always prepare the task sequence tables and the task diagrams. The summary 
section does not normally help in elicitation, so the model is verified by cross-checking the 
pre- and post- conditions required and acquired by the tasks in different abstraction levels.

10.5.3 HEURISTIC MODEL ELICITATION

Ideally, each method semantic has a heuristic clause to explain its meaning. Most concept 
descriptions can be found in a glossary, but the implicit concepts, such as group concepts, can 
be extracted from the corresponding section in the main text. Avoid lengthy reports on the 
concept, because the developer can always refer to the source of reference. The heuristics of 
product model should only give the brief definitions of individual concepts, that is a summary 
of the description in the literature as demonstrated in section 10.5.1 and 10.5.2.

Heuristics of a process model contain rules and guidance of modelling decisions. Although 
the tasks may be found in various parts of the literature, they are mainly denoted in the main 
text. High level tasks, such as a composite task, only acquire a brief descripion of its
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functionality as shown earlier. Denote all decision making heuristics shown, even though they 
may be contradictary. Not all tasks demand a heuristic, but most terminal tasks require a 
clause for making decisions. Therefore a rule in extracting a process heuristic is to look for 
the IF...THEN... (or similar) statements. For instance, all the points in the ‘keeping the right 
classes* section are presented in such a format, as illustrated below: 

heuristic(deleteRedundantClass, [class, object],
'If two c la sse s  express the sam e information, the most descriptive one should be kept.'). 

heuristic(deletelrrelevantClass, [class, object],
'If a  c lass has little or nothing to do with the problem, it should be elim inated.').

10.6 CONCLUSION

This chapter has presented the knowledge acquisition techniques for method models. The 
discussion focused on extracting domain knowledge (as in KADS). There are some 
fundamental difficulties in method acquisition but a variety of techniques can help to enrich the 
quality of expertise transfer. Method knowledge engineering employs a distinct set of 
knowledge acquisition media, because suitable experts are difficult to find and their availability 
is low. The importance of these specific media is investigated. Some guidelines for 
knowledge elicitation are also given as practical assistance to the knowledge engineer in 
capturing method semantics. These techniques include inspecting, fabricating and verifying 
method models. Various illustrations are given, based on the knowledge acquisition of the 
OMT method model.
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11. MAPPING METHOD SEMANTICS 
TO METACASE TOOLS

A method model is a specification which is only a ‘theoretical design’ until it can be 
implemented into an ‘executable tool’. Therefore it is important to show that the method 
semantics of our meta model (i.e. product model, process model and heuristic model) can be 
mapped into metaCASE tools. There is an incremental equilibrium between ‘design’ and 
‘tool’ in method engineering. Our meta model is a generic representation. It does not depend 
on any particular metaCASE tool, though the IPSYS ToolBuilder has been chosen for this 
illustration. Two case studies are used to demonstrate the techniques required. Firstly, in a 
simple method, Scratch1 provides an example of a total mapping. Secondly, Booch91 
illustrates a partial case study in matching meta components to those in the chosen metaCASE 
tool.

11.1 INTRODUCTION

As a generic representation of software development methods, the meta model is neither tool 
nor method dependent. This uniformity is a great advance on the present technology for 
method engineering. Some of the current approaches are only accomplished by human 
drudgery or by individual understanding without any genuine structured techniques or models. 
There are various possible applications of meta modelling techniques:

• The meta model conceptualises complex method semantics, permiting a smoother and 
more accurate transition to the metaCASE tool model.

• The standardised model allows a set of method metrics to be asserted so that a formulated 
mechanism can be employed in method comparison, (see section 9.3)

• It supports multiple perspectives in a specific problem domain, since method integration is 
more effective amongst unified method models. Fragment dissection divides a method 
into useful components that can then be reconstructed into a customised method.

This chapter elaborates on the first point listed, that of developing a meta model to 
conceptualise complex method semantics. This is an essential requirement of meta modelling 
and a formal proof of the meta model applicability. Figure 11.1 depicts the two ways of 
transforming method semantics into a metaCASE tool model. The dotted arrows depict the

1 Scratch method is a design method described in IPSYS ToolBuilder 1.3 tutorial [IPSYS 91].
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normal way of CASE tool development: a metaCASE user inserts his/her understanding of a 
method directly from method acquisition media (MAM) into the metaCASE tool. The 
alternative way is shown by the thick arrows: this approach employs meta modelling 
techniques in the transformation. Method semantics in MAM are formalised into a method 
model by IFV and then mapped into the metaCASE tool model. The IFV techniques are 
presented in chapter ten and this chapter discusses the mapping techniques. The thin arrows 
in figure 11.1 denote the flows common to both approaches. It is important to emphasise that 
a software engineer uses the method embedded in the generated CASE tool to produce the 
final applicational software. In order to distinguish the method models described in different 
domains, the corresponding models of generic metaCASE tool domain, specific metaCASE 
tool (i.e. ToolBuilder) domain, metaCASE tool user domain and meta modelling domain are 
referred as generic tool model, ToolBuilder model, user model and our model respectively.
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Figure 11.1 Two Ways of Modelling Method in MetaCASE Technology

The chapter is structured as follows. The next section discusses the importance of metaCASE 
technology in method engineering. It then introduces two case studies. The first case study 
given in section 11.3 demonstrates the techniques embodied in mapping the method model 
semantics to the metaCASE tool. Section 11.4 presents the outcomes derived from matching 
method models formalised with and without meta model in the second case study. The results 
are drawn to a conclusion in section 11.5.
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11.2 SIGNIFICANCE OF METACASE TECHNOLOGY

This section looks at the significance of metaCASE technology in the aspect of method 
engineering. It begins by illustrating an incremental equilibrium in method engineering, and 
finishes by introducing two case studies to clarify the relation between our model and the 
metaCASE model.

11.2.1 INCREMENTAL EQUILIBRIUM IN METHOD ENGINEERING

Philosophers debate about the process of modelling a hierarchy (refer back to figure 1.2). 
Goodman proposed that it involves a dynamic equilibrium between data and inference rules as 
shown in figure 11.2: *a rule is amended if it yields an inference we are unwilling to accept; 
an inference is rejected if it violates a rule we are unwilling to amend’ [Goodman 73]. This 
is termed as reflective equilibrium in inductive inference.

Modelling Process 

Rule y* Inference)

Reject if rule 
unamendable

Figure 11.2 Reflective Equilibrium in Inductive Inference

This theory contrasts with the present method engineering realm in a pragmatic fashion as 
depicted in figure 11.3: *a design evolves if we implement a tool with better models; a tool 
develops if we specify a design with better technqiues'. The existing design models restrict 
the development of tool implementation, whereas the current techniques in a tool restrain the 
evolution of design specification. This is termed incremental equilibrium in method 
engineering since it advocates a persistent progression. Thus the equilibrium emphasises 
technology gained under continuous improvement of available designs and tools. Meta 
modelling embodies a set of techniques to guide the development of method models.

Modelling Process

Evolve if better 
models In tool

Develop If better 
techniques to design

Figure 11.3 Incremental Equilibrium in Method Engineering
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Hence it is desirable to denote the method model as a metaCASE tool model. To conclude, 
the mapping of method semantics to a metaCASE tool is not just a back-end application for 
meta modelling, but also a necessary front-end process to improve software development 
methods.

11.2.2 METHOD ENGINEERING IN METACASE

To satisfy the incremental equilibrium in method engineering, the semantic gap between design 
techniques and tool models2 must be reduced. Figure 11.4 suggests that this gap arose during 
the modelling of a method into a metaCASE tool. The gap is normally induced by an 
unstructured approach to meta modelling within the tool or by an unsuitable knowledge 
elicitation technique from the method acquisition media. The first problem is tool-dependent 
and so is outside the scope of this research. However, chapter ten describes an IFV model to 
handle the second problem and this chapter extends it with the mapping of our method model 
to the tool model.

mapIFV model

has has

semantic gap

method
model

tool
model

design
technique

metaCASE
tool

method
acquisition

media

Figure 11.4 Semantic Gap in Method Engineering

11.2.3 TWO CASE STUDIES

Two case studies are introduced to reveal the techniques of mapping method semantics. The 
first case study demonstrates that there is appropriate technology to map method semantics to 
the metaCASE tool. A simple method known as Scratch is employed for this illustration. The 
second case study affirms that the existing work is at the right level of abstraction for present 
technology; that is, the current meta modelling design techniques agree with the available 
metaCASE tool method. A tool generated from a more intricate method, Booch913, is used 
to outline this matching.

2 Tool models mean the method semantic models embodied in a metaCASE tool in order to generate a CASE 
tool. This is not intended to be a process model to map method semantics to the CASE tool.

3 This method is referred as Booch91 since it is a slightly modified version of the original Booch OOD 
published in 1991 [Booch 91] (see section 11.4 for details).
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Figure 11.5 depicts the work flows of these two case studies. The first work flow is shown by 
dotted arrows. The meta model conceptualises the Scratch method into our formalised model 
by using the IFV model described in chapter ten, and then the formalised model is mapped to 
the semantic model within a metaCASE tool from which the Scratch CASE tool is generated. 
The second work flow is denoted by dashed arrows. A metaCASE user models the Booch91 
method in the tool and the tool-based semantic model (tool model) is matched against our 
formalised model represented by our meta model using the IFV model again.
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Figure 11.5 Work-Flows of The Two Case Studies

The two respective CASE tools are generated and executed as specified. The aims are 
summarised as:

• to demonstrate that method semantics can be mapped into a metaCASE tool

• to illustrate that meta modelling is method (and size) independent

• to indicate the discrepancy of method modelling with and without a meta-model

• to show the compromise of logical method design to practical metaCASE tool

The research should ideally consider a number of metaCASE tools. However, due to the 
limitation of time and the availability of competent tools, the experiment is only exercised on 
IPSYS ToolBuilder. This tool is known to be widely exploited for both academic and 
commercial purposes. The method semantics are captured by a mixture of entity models and 
frames model, which effectively sketch the data model and navigation model in the tool. The 
embedded programming language is known as EASEL, (refer to appendix B for more details)

Nevertheless, most descriptions and comments in both case studies given in this chapter are 
made in general to all metaCASE tools. ToolBuilder is used as a typical metaCASE tool to 
illustrate the mapping techniques and matching outcomes.
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11.3 CASE STUDY A - SCRATCH METHOD

Scratch is a simple software development method. It may be considered as a method segment 
that can be applied to any competent method, such as OMT or Booch OOD. Scratch is an 
object-oriented method consisting of:

• Object Relationship Diagram - to capture information models;

• State Transition Diagram - to capture dynamic behaviour;

• Object Catalogue - giving a summary of objects in the database;

• Event Catalogue - giving a summary of events in the databases;

Because of the simplicity of Scratch it is an ideal vehicle to demonstrate the mapping 
techniques to the metaCASE tool. The formalised method model is captured in the Method 
Specification Language and then is placed into ToolBuilder for experimentation. The 
generated tool verifies the accuracy of the semantic mapping. The following subsections 
examine and discuss this with respect to the three constitutes of our method model.

11.3.1 PRODUCT MODEL MAPPING

This subsection demonstrates how the product model techniques are practised in the data 
model of the target tool. From the list in the previous section, Scratch has two diagram 
fragments and two text fragments. An objectRelationshipDiagram denotes relationships 
between objects in the problem domain, whereas a stateTransitionDiagram describes the 
behaviour of an individual object in terms of states and transitions. The objectCatalogue and 
the eventCatalogue provides a checklist of the corresponding concepts. Figure 11.6 denotes 
the overall products of Scratch in a concept diagram.

scratch

eventC atalogue

stateT  ransitionDiagramobjectRelationshipDiagram

event
state

objectCatalogue object startState stopStatein terstate

StN'01 V /
relationship transition

Figure 11.6 Concept Diagram for Scratch
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The following points are noted about the concept diagram:

• Scratch is based on the modelling of objects, and its behaviour is denoted by a 
corresponding stateTransitionDiagram. Therefore a referencing relationship is used to 
depict this association. In addition, due to referential integrity, a software model must 
have at least one of each diagram fragment, and so one of each catalogue.

• In order to reduce the complexity of object-based relationships, such as inheritance, 
association, aggregation etc, Scratch denotes a simple concrete meta-relationship. The 
detail relationship properties, such as roles and cardinalities, are also omitted.

• Most methods have a very vague definition of different types of state concepts. In the 
Scratch example, it simply enforces one startState and one stopState in each diagram so as 
to demonstrate a specific semantic handling in the metaCASE tool (see figure 11.8).

• The transition concept is a multiple source-types and target-types link. No transition may 
connect a startState directly to a stopState. This is described by the following two product 
contraint rules:

not(source(startState) and targe t(stopS tate)).

• An event is depicted as a label on one or more transitions, in the stateTransitionDiagram 
and is fully described in the eventCatalogue. This loosely coupled relationship between 
event and transition is denoted by a one-to-many referencing relationship.

• The actual system has various structured text detail frames to enable documentary text to 
be entered (such as object, relationship, state, transition and event definition frames). 
Since these frames have no direct semantic effects in the software modelling, they are not 
shown on the concept diagram.

11.3.1.1 BASIC PRODUCT MAPPING

ToolBuilder captures the data model by means of an entity diagram. Individual entity details 
are described by the entity type structured text definitions. Each entity is, in fact, a concept 
denoted by the method and dependencies between concepts are shown by the three primitive 
relationships: subtyping, composition and reference relationships (see appendix B and section 
3.4.3). Some high level entities are denoted as frames, which are described as fragment 
concepts in the method model. Textual and graphical fragments are mapped as structured text 
and diagram frames respectively. The attributes associated with each entity are presented as 
fields in the diagram frame or objects in the structured text frame. Table 11.1 illustrates the 
mapping of the product model to the ToolBuilder entity model. It classifies three categories 
of mapping elements: concept, relationship and property.
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Category Product Model in GMR ToolBuilder Entity Model
concept fragment concept frame

entity concept entity (node)
link concept entity (link)

property concept attribute (or field or obiect)
group concept role in composition

relationship subtyping (supertype can instantiate) subtyping (supertype is abstract)
composition composition

linking composition
grouping (in same fragment) composition
grouping (different fragment) reference

referencing reference
dissection set -

- derived (path, aggregation, user-defined)
property cardinality single / set / sequence

role (fixed) role (user-defined)
directional forward & reverse links

shared concept shared object type
constraint rule EASEL code (i.e. precondition)

Table 11.1 Mapping Product Model to ToolBuilder Semantics

11.3.1.2 MAPPING METHOD SPECIFIC SEMANTICS

This subsection uses the Scratch method to illustrate the mapping of our product model to the 
ToolBuilder entity model and refers to the information in table 11.1. Figure 11.7 depicts the 
complete entity model diagram of the Scratch method; some segments of entity type 
definitions are shown to emphasise particular points.

• ToolBuilder distinguishes entities as nodes or links, which are in fact the entity concepts 
or the link concepts in the product model respectively. Group concepts are not directly 
shown in the entity model, but they are hidden as roles in the substituted composition or 
reference relationships (see later).

• Subtyping in the product model has a similar effect as that in ToolBuilder, except the 
latter allows concept instances from terminal entities only. In other words, every 
supertype is an abstract concept and all terminal entities are concrete concepts. The 
STATE concept in the Scratch method is an abstract concept which is accented in capital 
letters.

• Apart from subtyping, most relationships in ToolBuilder have user defined role names 
(forward and/or reverse name). These role names have no semantic meaning, but they are 
used to address navigation flows. For instance, the unit reverse role of the composition 
relationship between UNIT and object indicates the flow from object back to UNIT.
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Figure 11.7 ToolBuilder Entity Model Diagram for Scratch

All ToolBuilder concept relationships can be defined as bi-directional, this is shown by a 
reverse role name and the arrow head(s) on the target side. If the target cardinality has the 
value inone\ no reverse link is available. Hence, the cardinalities in the product model 
describe the logical dependence (zero-one, zero-many etc.) of concept relationships, rather 
than the physical entries {single / set / sequence) of links. Table 11.2 shows the mapping 
of cardinality constraints between the concept relationships and the ToolBuilder links.

Concept Relationships ToolBuilder Links
source target source target

- - - none
zero-one zero-one single single
one-one one-one single single

zero-many zero-many set/ sequence set / sequence
one-many one-many set / sequence set / sequence

many-many many-many set/ sequence set / sequence

Table 11.2 Mapping Cardinality Constraints

• Mapping composition relationships is straightforward, apart from the compositions of
link concepts (described next). Some extra syntax is employed by ToolBuilder to indicate
the role, sequence and ownership features, such as the definition in UNIT concept:

COMPOSITION RELATIONSHIPS
events : Seq Of event INVERSE unit
o b je c ts : Owner Of Seq Of object INVERSE unit
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• ToolBuilder denotes the link concept but a linking relationship is not directly
distinguished. The relationship is mapped into a composition relationship, although this is
not a satisfactory solution (see section 3.4.3). The declarations of the source and target
parts are denoted by the Out and In directives respectively. This is demonstrated by the
relationship link in the object entity definition shown below:

COMPOSITION RELATIONSHIPS
re lsO u t: Out S eq  Of relationship INVERSE sourceObj
relsln : In S eq  Of relationship INVERSE targetObj

• Reference relationships in ToolBuilder are used to associate entities for navgational
purposes. They have a similar effect as the referencing relationship in the product model.
Referencing relates a concept to another concept that further specified itself (see section
5.3.3.5). The declaration is similar to that of composition. For instance, the reference
relationship in the Scratch method depicts a transition associated with an event label from
the eventCatalogue.

REFERENCE RELATIONSHIPS 
triggeredB y: event INVERSE Seq Of triggers

• There is no grouping relationship in the Scratch method - the relationship between
object and stateTransitionDiagram has a one-to-one referencing dependence. If state
decomposition is allowed, a group concept will form between host state and the element 
diagram. ToolBuilder hides this group concept and replaces the relationship by a 
composition relationship from the host state to the diagram.

• There are no dissection sets or shared concepts shown in the illustration. A dissection
set is useful in method integration or fragment dissection, but this semantic does not
normally register in the formalisation of a CASE tool. However, we must be able to deal 
with shared concepts where a concept with identical semantic meaning is presented in 
different fragments. ToolBuilder handles these concepts by shared object types.

• Some product constraints cannot be denoted in the concept diagram, but instead are 
declared as rules in MSL. These constraints normally lead to special encoding by the tool 
language, such as EASEL in ToolBuilder. Individual constraints can be recorded in either 
the precondition slot of the add object operation or the on creation slot of the entity type 
definition (see later). However, one might have to modify the entity model to captivate 
the effect of a contraint. For instance, the only formal way to denote the startState-to- 
stopState constraint in an entity model diagram is to introduce two ‘virtual concepts’ 
distinguishing the source of the transition as depicted in figure 11.8. Of course these 
concepts have no real semantic meaning but they are inserted for the sake of denotation. 
The current Scratch tool manages the creation of startState and stopState in the formation 
of the stateTransitionDiagram, which effectively handles the constraint by EASEL code.
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Figure 11.8 ToolBuilder Entity Model of the startState to stopState Constraint

11.3.1.3 EXTRA SEMANTICS

Before conveying our product model to the metaCASE tool model, extra semantics must be 
employed to complete the conceptual model in defining the final executable tool. These 
semantics may be tool specific, user specific or may be extended features for the purposes of 
process modelling, so they are not provided directly by the method models themselves. The 
following points illustrate some of these extensions of the Scratch method in ToolBuilder.

• ToolBuilder provides three prefined entity models, from which new entities can obtain 
the built-in operations in the metaCASE tool (see appendix B). The following three entity 
type definition segments (UNIT, STATE and transition) show the inheritance mechanism 
for the DIAGRAMJUNIT, the NODE and the LINK entities respectively.

ENTITY TYPE UNIT -  A DIAGRAMMATIC FRAME 
IS A ROOT TYPE 

AND IS A predefined . ENTITY 
AND IS A diagram  . DIAGRAM_UNIT 
AND IS A diagram . DE_FRAME

ENTITY TYPE STATE
IS A ROOT TYPE 

AND IS A predefined . ENTITY 
AND IS A diagram  . NODE 
AND IS A scratch . NAMED 
AND IS A scratch . ACTIVE

ENTITY TYPE transition 
IS A ROOT TYPE 

AND IS A predefined . ENTITY 
AND IS A diagram . LINK 
AND IS A scratch . NAMED 
AND IS A scratch . ACTIVE

The tool entity model only gives a partial declaration of fragments. For instance the 
stateTransitionDiagram concept is the only fragment denoted. It is shown in order to 
stress the one-to-one dependence with the object concept and to provide a directional path 
from a structural object to its behavioural state-transitions.
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• As mentioned in section 3.4.3, the process model of ToolBuilder is based on a navigation 
model of frames (fragment concepts) and their interior entities (entity concepts). The 
composition and reference relationships are the main relationships for this process routing 
purpose (see section 11.3.2.3). ToolBuilder also provides derived relationships to 
declare extra paths that are not described directly by the product model or ToolBuilder 
entity model. With this technique, the user can build up navigation routes specific to the 
required tool environment. The Scratch method illustrates two types of derived 
relationship. The first type is based on the aggregation of other entity relationships. For 
instance, the transitionOut derived relationship of transition is an aggregate of the 
transOut composition relationships from the startState and the interstate as shown below 
(refer to figure 11.7 for the relationships):

DEFINITION
transitionO ut: S eq  of transition INVERSE fromState

DERIVED A S :
AGGREGATION

COMPONENTS:
GIVEN: startS tate 
S E L E C T : transO ut 
GIVING: transition 

AND 
GIVEN: in terstate 
S E L E C T : transO ut 
GIVING: transition

The second type uses a cascading path of other relationships. For instance, the unit
derived relationship of transition sets up a path to the host UNIT entity; through the
fromState relationship of transition (the inverse relationship shown above) and the unit
derived relationships of STATE. The definition is given as below:

DEFINITION 
u n it: UNIT INVERSE NONE

DERIVED A S :
PATH

COMPONENTS:
GIVEN: transition 
S E L E C T : fromState 
GIVING: STATE 

THEN
GIVEN: STATE 
S E L E C T : unit 
GIVING: UNIT

• ToolBuilder handles referential integrity (as in a database) by means of propagation from 
one entity to another entity through a relationship. A propagation slot accepts EASEL 
statements which modify contents of other entities by checking that its content is deleted, 
changed etc. In Scratch the change of an event name propagates to the label of 
corresponding transition through the triggers reference relationship.
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PROPAGATIONS
WHEN nam e IS CHANGED 

foreach transition in transitions := ($[1])."triggers" do 
DE_update_labels(transition); 

endfor;

• A common example for a user specific extension is the control of naming. For instance, 
the Scratch method restricts all entity names to be a non-empty alphanumeric string. The 
attribute type name in the NAMED entity is defined with the validation code shown below. 
All named entities in the entity model must inherit from this entity. This control may affect 
the validated by, updated by and show by slots of the attribute type definition.

VALIDATED BY 
src := $[1]; 
attr := $[2]; 
nam e := $[3];
if m atches(nam e, "A[a-zA-Z][a-zA-Z0-9J*$") then 

return [TRUE; name]; 
else

AI_acknowledgement_prompt (
"Name must be non-empty alphanum eric string.", "OK"); 

return [FALSE; UNDEFINED]; 
endif;

• Following the previous point, non-semantical attributes can be placed in the entity type 
definition. For instance, every object, relationship, state, event and transition entity in the 
Scratch method must have a name and a description text. Moreover, the state and 
transition entities must have a further section for textual explanation about the actions 
involved. The NAMED and ACTIVE abstract superconcepts in the entity model (see 
figure 11.7) are introduced for these reasons.

• Sometimes it is useful to reinforce concept dependence in the final tool. Apart from 
checking the right concept type or relationship cardinality etc., a predefined structure can 
be carried out in various stages of execution. For instance, each object in the Scratch 
method has a stateTransitionDiagram to depict its behaviour, so it may suggest creating 
the associated stateTransitionDiagram in each formation of object:

ON CREATION
TBD_release(TBD_create_entity($[1], "stateTransitionDiagram", "behaviour"));

and in turn each stateTransitionDiagram must have at least one startState and one 
stopState. This mechanism provides integrity validation as in a database management 
system.

ON CREATION 
start :=TBD_create_entity($[1], "startState", "start"); 
stop := TBD_create_entity($[1], "stopState", "stop");
DE_set_position(start, [256; 32]);
DE_set_position(stop, [256; 640]);
TBD_release(start);
TBD_release(stop);
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11.3.2 PROCESS MODEL MAPPING

Most metaCASE tools do not represent the method process explicitly. However a task 
structure can be resolved from the creation and navigation operations of frames and objects 
which are based on the entities in the entity model. This structure illustrates the precedence of 
operations to be carried out in software modelling. Mapping the process model to the 
metaCASE tool model is done largely by transforming the terminal task functions into these 
two types of operations in the tool. Various conditions described in each task must be obeyed 
in the mapping, although the method engineer can form a customised method in the final tool.

11.3.2.1 BASIC PROCESS MAPPING

Table 11.3 shows the mapping of process model components to the semantics of a specific 
metaCASE tool - ToolBuilder implicitly employs a navigation model to describe task structure 
(see section 3.4.3). The following points are noted from the table:

• Being a CASE tool, only executable tasks are recorded into the tool semantics. Task 
functions are mapped to the primitive operations such as add, delete and change etc. in the 
frame or object menu. The task preconditions and postconditions may be implemented as 
EASEL statements in the precondition and trigger slots of the operation respectively.

• The task dependencies are shown by creation and navigation links of concepts described in 
the product model. In ToolBuilder’s terminology, the paths of menu operations are based 
on the entity relationships that are applied to the object (or frame) operations.

• Most metaCASE tools do not cope with task decomposition or task refinement directly. 
This is mainly because there are logical dependencies between tasks, and tools are only 
interested in physical executables. In ToolBuilder, the functions in a composite task 
should be captured in a single frame, so a navigation to a frame may signify a composition 
of tasks. In addition, a task refinement embodies the executable task functions in a single 
concept, and these functions must be denoted as options in a sole frame or object menu.

Category Process Model in Method ToolBuilder Navigation Model
task task add primary/subordinate, operation

task function add, delete, change operations etc.
task precondition operation precondition
task postcondition operation trigger

dependency concept token & link entity relationship
task trigger creation/navigation links

task decomposition (navigation to a new frame)
task refinement (menu options)

Table 11.3 Mapping Process Model to ToolBuilder Semantics
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11.3.2.2 FIVE STEPS MAPPING APPROACH

This section describes the detail of techniques for mapping process model based meta models 
to the metaCASE tool semantic model. The description is presented by a five step mapping 
approach. Although the ToolBuilder and the Scratch method are used to illustrate the 
techniques, the same techniques can be applied to other metaCASE tools or methods. The 
Scratch method has a relatively simple process model. The top level tasks include sketching 
the objectRelationshipDiagram and then the stateTransitionDiagram of each critical object. 
The detail specifications in objectCatalogue and eventCatalogue depend on the availability of 
object and event accordingly. Figure 11.9 summarises the method process of Scratch in a task 
diagram.

specify L v
objectCatalogue f  '

— ( o b j e c T )

relationship

draw
objectRelationshipDiagram y

state} (transition.

draw
stateT  ransitionDiagram y

event

\ /MS specify w___v
eventCatalogue * 7>

Figure 11.9 Task Diagram for Scratch Method

STEP 1 - IDENTIFYING WHERE EACH CONCEPT INSTANCE ORIGINATES

Each insert function in the task sequence is mapped into a ‘creation’ operation. The concept 
relationships from the product model give the dependence between concepts, whereas the 
precedence of tasks in the process model provides the order of execution. These are 
important guides when determining where each concept instance originates. There may be 
more than one way to create an entity, but each entity must have at least one creation path. 
The mapping is simplistic, but each path must comply with the preconditions and 
postconditions of the task and the composition relationships in the entity model. For instance, 
an object comprises a set of relationships and the postcondition of the insertRelationship task 
is to form the relationship concept token.

task(insertRelationship, insert(relationship), [object], [relationship]).

heuristic(insertRelationship, [object, relationship],
'Identify relationships between objects. Any dependency between two or more objects is a  
relationship; a  reference from one object to another is also a  relationship.').
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Figure 11.10 Creation Paths of Scratch Method Entities

Figure 11.10 shows the creation paths for the Scratch method entities. A rectangle denotes a 
frame (a fragment concept), whereas an oval depicts an object (an entity concept). The 
following points demonstrate the mapping of concealed creation paths based on the associated 
entity dependence:

• From the ToolBuilder entity model diagram shown in figure 11.7, the creation of a 
stateTransitionDiagram depends on the existence of a corresponding object. Therefore 
the diagram should be formed from its host object and not from the ROOT.

• In view of the fact that an empty catalogue is possible (say at the very beginning of 
development), the two catalogues should be preceded by the two diagrammatic fragments 
accordingly as depicted in figure 11.10. For instance, the formation of objectCatalogue is 
preceded by that of objectRelationshipDiagram rather than straight from the object 
concept.

• Scratch defines an event as a label of transition, therefore a transition entity is a logical 
place to create an event instance.

STEP 2 - DENOTING CONCEPT CREATIONS IN THE TOOL

This step is very much tool dependent. ToolBuilder provides three ways to insert method 
concepts. The first way is by the on creation slot in an entity type definition; this technique 
enables a sequence of object constructions. The second way is through the propagations of 
attributes or relationships. These two ways perform implicit creations inside the tool with 
specific EASEL codes (as shown earlier).

However, the most common way to insert a new entity is through the add primary object 
operation in a frame menu or the add subordinate object operation in an object menu. 
Unlike the first two ways, these operations require user explicit control. ToolBuilder also 
allows precondition and trigger to be inserted for these operations. Precondition detects the 
validity of the operation by checking the related attribute and/or relationship values, whereas 
trigger performs a responsive action to the creation. For instance, a Boolean attribute
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haveStartState is placed in the stateTransitionDiagram object type definition and it is
initialised to FALSE until a startState is added. A precondition and a trigger is placed in the
add object operation of startState as follow:

ADD OBJECT: startS tate 
[description]

PRECONDITION:
!(value_of_attribute($[1]l"haveStartState"))

TRIGGER:
TBD_attribute_update($[1],"haveStartState","TRUE");

STEP 3 - IDENTIFYING ADDITIONAL NAVIGATION PATHS

Additional paths are inserted to denote the recursive tasks in software development. Most 
method processes convey an incremental iterative approach. A hierarchical creation path in 
metaCASE is insufficient, so the navigation network is enhanced with extra routes and cycles. 
These tasks should cover all possible terminal functions in the process model, such as delete, 
modify, adjust, retype etc.; apart from the insert functions that have been dealt with in the first 
step. Consider the Prolog clause of task deleteVagueObject shown below. An object may be 
found to be vague in its stateTransitionDiagram because no interstate can be defined. Hence, 
the corresponding object in the objectRelationshipDiagram must be deleted. A path is placed 
between the two diagramatic fragments as shown in figure 11.114. All navigation paths are 
denoted by thin arrow lines because they are semantically different from the creation paths. 

task(deleteVagueObject, delete(object), [object, interstate], []).

heuristic(deleteVagueObject, [object, interstate],
'An object should be specific. An object without internal s ta tes  may have ill-defined 
boundaries or be too broad in s c o p e .') .

objectDetaii r — object)- X j^ t io n s h ig )

objectCatalogue

ROOT ------ f*
L i

objectRelationshipDiagram
/ \

<------------ stateT  ransitionDiagram

\ /
eventCatalogue

transition

event

Figure 11.11 ToolBuilder Navigation Model for Scratch

4 As mentioned earlier, a number of text fragments are used to describe various entities in Scratch, such as 
o b jec tD e ta ii for o b je c t, s ta teD e ta il for sta te  etc. These fragments have no vital semantic meaning so they 
are not depicted in the figure. The o b jec tD e ta ii is only shown for a later illustration.
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Some paths are method independent but user-customisations. For instance, the initialisation of 
ROOT in ToolBuilder puts up a text window and a diagram window. The developer may find 
it convenient to place the objectCatalogue along side with the objectRelationshipDiagram in 
the beginning, so a navigation path is built from ROOT to objectCatalogue. In addition, each 
referencing relationship portrays a loose but significant association between concepts, so a 
navigation path is normally required. For example, the navigation path between object and 
objectCatalogue is composed through the objectDetaii frame as shown in figure 11.11.

STEP 4 - CHECKING AGAINST SEMANTIC DEPENDENCIES

Before inserting navigation operations into the tool, it is important to check the semantic
dependencies of individual tasks. If a path has disregarded the preconditions or triggers5 of
the task, the developer has to remove it and replace with other alternative routes that comply
with the process model. From the task diagram in figure 11.9, an obvious example in Scratch
is the object and stateTransitionDiagram dependence. Since each stateTransitionDiagram is
specific to a particular object, the only navigation path to a stateTransitionDiagram is through
its host object as shown in figure 11.11.

task(drawStateTransitionDiagram, draw(stateTransitionDiagram), [object], []). 
heuristic(drawStateTransitionDiagram, [object, stateTransitionDiagram],
'P repare a  s ta te  transition diagram for each  object with nontrivial dynamic behaviour, 
showing events the object receives and s e n d s . ') .

STEP 5 - DENOTING NAVIGATION PATHS IN THE TOOL

Similar to step 2, the denotation of navigation paths is also tool dependent, but there must be
a way to represent navigations in the system. ToolBuilder allows the paths to be inserted as
navigational operations in the frame type definition, the object type definition and the field
type definition. The following code segment shows the declaration of a navigation path in the
operation slot of an object type definition. It defines the path from the host object through
the behaviour reverse composition relationship to the according stateTransitionDiagram (see
figure 11.7), where the developer is allowed to view as well as to edit the diagram.

OPERATION: Show S tate Transition Diagram 
[description]

HELP TEXT
To se e  the object behaviour a s  a  state transition diagram.

FRAME MODE: View/Edit
NAVIGATE TO FRAME: stateTransitionDiagram
ALONG PATH: behaviour
DESTINATION MODE: As-Transaction

5 The preconditions and triggers discussed in step 4 refer to the task context requirement and task preceding 
dependence in the process model respectively (see chapter six for details). They must not be confused with 
the ToolBuilder operation slots in frame/object type definition described in step 2.
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11.3.2.3 MAPPING CONCEPT DEPENDENCE TO PROCESS ROUTES

The previous subsections demonstrate that the task triggers in the process model are captured 
as creation paths or navigation paths (process routes) in the metaCASE tool. The various 
functions and conditions can also be mapped to tool semantics. Moreover, there is a pattern 
of mapping the concept dependence in the product model to the entity dependence in the 
metaCASE tool, and then to the process routes in metaCASE tool. Table 11.4 shows these 
mappings, and the following points are noted:

• The subtyping relationships are only used to inherit common features between concepts in 
ToolBuilder. They do not convey to any process routes.

• As shown in section 11.3.1, the composition, linking and grouping relationships in a single 
fragment are all presented as composition relationships in ToolBuilder. Each of these 
relationships contributes to a sole creation path.

• The grouping relationships between concepts in different fragments and the referencing 
relationships describe the significant dependencies in the product model; a sole navigation 
path must be mapped to illustrate these specific process routes.

• ToolBuilder uses derived relationships to enhance the navigation model with extra routes. 
They cannot be denoted as creation paths but as navigation paths. These paths are used to 
fulfil the specific requirements of ToolBuilder or to define user-specific routes. A simple 
example is the navigation from a stateTransitionDiagram to the host 
objectRelationshipDiagram in the Scratch method. Since a single relationship is required 
in the along path slot of the frame operation as shown below, a path derived relationship 
unit must be set up.

OPERATION: Show Object Relationship Diagram 
[description]

HELP TEXT 
[help]

FRAME MODE: Edit-Only 
NAVIGATE TO FRAME: ORD 
ALONG PATH: unit 
DESTINATION MODE: As-Transaction

Concept Dependence in 
Product Model

Entity Dependence in 
ToolBuilder

Process Routes in 
ToolBuilder

subtyping subtyping -

composition composition creation path
linking composition creation path

grouping (in same fragment) composition creation path
grouping (different fragments) reference navigation path

referencing reference navigation path
- derived navigation path

Table 11.4 Mapping Method Semantic Dependence to Tool Process Routes



11.3.3 HEURISTIC MODEL MAPPING

This section discusses the mapping of heuristic clauses into the metaCASE tool, a few of these 
clauses have been shown in earlier sections. Ideally, a CASE tool provides a hypertext-based 
system to display heuristics and allows one to associate closely related semantics. There are 
three aims for heuristics: firstly, give general information of the method; secondly, present 
context-sensitive guidance of a particular semantic when it occurs; thirdly, provide an error or 
a warning message if a mistake is detected. Like most metaCASE tools, ToolBuilder does not 
support such a hypertext system. Although the complex heuristic links cannot be modelled, 
there are a few ways to show heuristic guidance6 inside the tool. The discussion divides into 
three parts: the concept heuristics, the task heuristics, then the general and error messages.

CONCEPT HEURISTICS

ToolBuilder allows descriptions to be placed in most structured text frames and slots of the
method declaration. However, these descriptions are only used as a reminder for method
engineer and they will never appear on the generated tool. The ideal location for concept
heuristic is the help text slot of the corresponding frame type definition or object type
definition, since ToolBuilder denotes method concept as a frame or an object. The help
information is invoked by a choice on the frame primary menu or object subordinate menu
accordingly. The following concept heuristic of the stateTransitionDiagram frame in Scratch
can be shown as help text:

HELP TEXT 
STATE TRANSITION DIAGRAM 

This diagram describes the system  behaviour in term s of a  diagram showing system  s ta te s  
and the transitions that are triggered when events occur. The initial and final s ta te s  of the 
system  are shown with distinguished symbols. The actions associated  with s ta te s  and 
transitions are detailed in separa te  structured text frame.
Related concepts: state, transition, event, event catalogue.7

TASK HEURISTICS

When a method help window appears, it includes the help in the concept as well as the help in
the navigation operations of the concept. Basic information can be placed in this slot as the
example Show Object Catalogue operation in stateTransitionDiagram demonstrates below:

OPERATION: Show Object Catalogue 
[description]

HELP TEXT
To show the catalogue of objects in structured text.

6 There is no way to form heuristic links in ToolBuilder, but it is possible to present related heuristic 
semantics and refer them back to the corresponding locations in the system.

7 The re la ted  co n cep t statement at the end is for reference only, they do not have an actual interactive linking 
mechanism as described in the heuristic model in the generated CASE tool.
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Task heuristics should be shown either passively or at the request of the developer. For
instance, no one would like to look at the heuristics of the verifyObject task in a pop-up
window every time an object is created. There are two other ways to manage task heuristics.
Firstly, a help operation may be placed in the respective concept, so that the information
becomes an option in the object menu. For instance, the verifyObject task heuristics may be
displayed in an acknowledgement prompt window as declared below:

OPERATION: Help on verifying object 
TRIGGER

AI_acknowledgement_prompt ("Delete vague object:\n 
An object should be specific. An object without internal s ta tes  may have ill-defined 
boundaries or be too broad in scope.\n\n 
Delete implementation construct:\n
C onstructs extraneous to the real world should be eliminated from the object relationship 
diagram.", UNDEFINED);

Secondly, the EASEL output function presents information in a static message window (see 
appendix B) along side with the text and diagram windows in ToolBuilder. The on creation 
slot of the entity type definition may show the same heuristics but in a passive manner:

ON CREATION
output ("HELP ON VERIFYING OBJECT\n\nDelete vague objectAn ...", INFORMATION);

GENERAL INFORMATION AND ERROR MESSAGES

General information may not appear at any time but at the beginning of each new design
launched. Therefore, the appropriate location to place the message is the on creation slot of
the UNIT entity definition. For instance, the general information of the Scratch method may
be shown by the acknowledgement prompt function in UNIT entity definition as below:

ON CREATION 
AI_acknowledgement_prompt (

"This is a  CASE tool for the Scratch methodAn
Scratch is a  simple object-oriented method, which consists ofAn

- Object Relationship Diagram : to capture information models;\n
- S ta te  Transition Diagram : to capture dynamic behaviour;\n
- Object C atalogue : giving sum m ary of objects in database;\n
- Event C atalogue : giving sum m ary of events in databases.", UNDEFINED);

In addition, error messages should necessitate an interactive response to draw the attention to
human mistakes or the concept constraints required by the method model. For instance, a
macro definition checkTransitionValidity may be employed to verify a transition by checking
the existence of its fromStart and toStop relationships (refer to figure 11.7):

define checkTransitionValidity 
if (DME_rel_defined($[1 ], "fromStart")) & (DME_rel_defined($[1], "toStop")) 

AI_acknowledgement_prompt ("Cannot link start state to stop state!", UNDEFINED); 
return FALSE; 

endif;
return TRUE; 

enddef;

1 1 .2 1



Heuristic Model in Method ToolBuilder Help / Information
concept heuristic help in frame/object definition

task heuristic help in operation or EASEL code
heuristic name frame name or part of operation name
heuristic link -

- general information & error messages

Table 11.5 Mapping Heuristic Model to ToolBuilder Semantics

To conclude, the mapping of the heuristic model to ToolBuilder Semantics can be summarised 
as table 11.5. Since the general information and error messages are specific to each user 
requirement and also tool dependent, they are not normally included in the heuristic model.

11.3.4 MORE POINTS ON MAPPING SEMANTICS

Apart from the semantic mapping discussed in the above, there are additional points to make 
on meta modelling and the ToolBuilder metaCASE tool.

• Scratch does not clearly define its internal task structure, including task composition and 
refinement techniques. However, it is possible to imitate similar tasks from other methods, 
for instance the identify Object task described here follows the identifyClass task in OMT:

identil
objec

insert
object— X) specify

objectDetaii
verify
object

Figure 11.12 Scratch: identify Object Task

• ToolBuilder also supports textual and graphical design of semantic notations, which are 
the representations of different entities. For instance, the font and the size of an event 
label; the link style of a transition and the shape set of a state (see appendix B for the 
description about shape model and graphics primitives). Nevertheless, these definitions 
are only the presentation of concepts, they are not important in method modelling.

• ToolBuilder allows a customised format for a text fragment, such as objectCatalogue in 
Scratch. This structure text is declared by a simple grammar in local subsection and 
shared subsection, for instance, the following subsection defines the layout of an object 
name. Again, these declarations are for presentation and they have no semantic interest.

Subsection objectName Applies To object
Is Concrete 

[description]
nam e Label "<name>" [ 1 , 20 ] ;

End
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11.4 CASE STUDY B - BOOCH91 METHOD

In the practical world, most developers may work round a purist method semantic by 
customising their own ‘running version’ of the tool model. The main emphasis of this 
matching exercise is to indicate the discrepancy in method modelling with and without a meta 
model, and the compromise in logical design to practical tool.

Booch OOD is a well known design method as discussed in chapter two, the corresponding 
concept diagram and task diagram are shown in appendix D and figure 9.6 respectively. The 
method embedded in the generated Booch91 tool in this matching experiment is a cut down 
version of the original Booch OOD. It comprises only the classDiagram, objectDiagram, 
stateTransitionDiagram and their corresponding structured text templates. This tool is 
intended to be an executable product and it has an extension to code definition, which makes a 
bigger contrast with the previous case study. Again, the following discussion is made in view 
of the product, process and heuristic model matching.

11.4.1 PRODUCT MODEL MATCHING

The discrepancy between the method model and the metaCASE tool model is easily illustrated 
by comparing our product model with the metaCASE tool model. In ToolBuilder, the tool 
model is described by an entity model schema. Figure 11.13 shows the entity model diagram 
of Booch91 developed by a method engineer. The following points are noted in the matching:

• Product modelling depends upon associating concepts by meaningful primitive
relationships, but a metaCASE tool is more concerned about objects displayed in frames 
or navigating entities in the system development process. Hence, composition and 
referencing are the two most crucial relationships described. The former is for a creation 
path and the latter is for an additional navigation path. Other concept relationships are 
either hidden or replaced by them. In this experiment, the Booch91 tool semantic happens 
to be described by a purely composition relationship in the entity model diagram.

• IPSYS advises ToolBuilder users to group all possible links and nodes as subtypes of a 
single entity, so that their dependence can be modelled correctly. The classic example is 
shown in the startState to stopState concept constraint of the Scratch method. This 
requirement is also encountered in the Booch91 entity model. For instance, classNode is
introduced to embody the classCategory, classUtility and various types of classes;
objectLink comprises of outsideSystem and insideSystem links. These abstract concepts 
are introduced so as to share common features of the subtype nodes or links only. Thus 
they do not appear in our product model.

• In the declaration of the tool model, some concepts are renamed to suit the new context 
environment such as stateLink is actually referred to transition in stateTransitionDiagram.
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• The timingDiagram in Booch is a useful fragment to depict the relative order of messages 
invoked in each object. However, many developers are only interested in the operation 
dependence between objects which may also directly map into the final code. In addition, 
the interrelationship of messages with time scale references are more difficult to model in 
ToolBuilder, since it is an entity-relationship (node-link) based modelling tool. Hence, the 
timingDiagram is not included in the Booch91 tool due to this technological limitation.

• Some metaCASE tools also manage code generation. Implementation constructs may be 
inserted as semantics to associate with concepts already in the model, such that the final 
tool can act more efficiently. Booch91 declares the hardware platform, software driver 
and application in the objectDiagram. In addition, the corresponding methods and 
variables are declared in the classCompartment of the host class. The following class 
method operation in the classCompartment object creates a method marker on the code, 
which triggers a C macro with embedded EASEL statements.

OPERATION: class method 
[description]

HELP TEXT 
[help]

SELECTION MODE: Single-only 
FRAME MODE: View/Edit 
TRIGGER:

create_class_m ethod_marker($[1]);
NAVIGATE TO FRAME: [*frame_type*]

• Some relationships can be simplified by exclusion, inclusion or overriding, such as the 
massive compositions from classDiagram to different types of classNode and from the 
classCloud to different types of classLink in the product model. However, ToolBuilder 
requires specific role names on each relationship to declare a particular navigation path.

• Most concept constraints are hidden in the product model, but are formally programmed 
into various parts of the metaCASE tool. For instance, they are declared by on creation, 
precondition or propagations slots in ToolBuilder. Similarly, the shared concepts are 
denoted as shared object types in the frame model and not indicated as an entity type.

To conclude, this product model matching illustrates three main reasons for the semantic 
discrepancy between the two different models. Firstly, a method is a logical model that may 
not perfectly fit into the physical pattern of a metaCASE tool, so some fine adjustments of the 
method model are necessary. Secondly, some method semantics may be inappropriate to the 
developers in their particular work environment and/or problem domain. Hence a true 
representation of the original method is not really required. Thirdly, additional concepts may 
be induced into the method such that the tool can perform more effectively for its job. 
Moreover, human interpretation is another major factor in semantic mismatch; two developers 
analysing a method will always come up with slightly different models. Since this implicit 
effect is disputable (see section 10.4.3), it is ignored in the above discussion.
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11.4.2 PROCESS MODEL MATCHING

Booch OOD has only a brief description of the method process model, but the concept 
dependence in the product model governs the task precedence in software development. Such 
constraints are raised as preconditions and triggers in task functions, which must be denoted in 
the corresponding tool operations. Section 11.3.2 presents a general approach to map method 
tasks to the metaCASE tool by addressing the essential creation and navigation paths. In this 
experiment, the emphasis falls on matching functionality and matching dependence. Before 
discussion, it is necessary to depict the navigation model of Booch91 as in figure 11.14. A 
few points are noted about the model:

• The aim of this navigation model is to illustrate the main routes in the tool, hence some 
details are missed out to reduce the diagrammatic complexity, such as the subtype-entities.

• The navigation model has a very close relationship with the entity model, since the 
creation paths (thick arrows) are obliged to follow certain composition relationships. 
Indeed, ToolBuilder does not address tangible frames (such as designCatalogue) and 
fields (such as designName) in its entity model, but they are referred by their base entities. 
This is because ToolBuilder only presents the essential concepts in the entity model, but 
the navigation model must show each required visible appearance of each entity. For 
instance, the designName field is a presentation of the design entity.

• The current version of the Booch91 tool defines platform, application and driver entities 
as components of object. It is believed that they should go under the design instead.

methodvariable
classLink

compartmenl
classTemplate

classNode,classDiagram 
 /F ------- stateDependencies

v   Z lH I
stateTransitionDiagram

_________^kL
designCatalogue designNameROOT

 ^ ____
objectDiagram

eventstate stateLink

object

objectLink _ 
hside) (outside) messageTemplate

visualSymbol, messai

Figure 11.14 Booch91 Navigation Model in ToolBuilder
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• The bi-directional creation link between objectDiagram and object indicates that a group 
concept (i.e. objectDecomposition) is required in the product model. This is because a 
recursive creation path is not a trivial relationship and it normally describes a different 
level of concept presentation, such as the different level of objectDiagram in this case. 
There must be a concept incorporated to complete the chain or loop.

MATCHING FUNCTIONALITY

A process model describes tasks by their functions and interconnections (e.g. pre- and post
conditions). All task functions are noted and matched with the ToolBuilder navigation model. 
A simple classification system is observed in the matching exercise, this will help to understand 
the different levels of functionality offered by the generated tool. ToolBuilder distinguishes 
concept as a frame or an object8. In order to reduce confusion with the ‘object’ concept in the 
Booch91 method model, the following discussion refers to the ToolBuilder frame and object 
as fragment and concept respectively9. The three classifications are recorded as below:

• If a task demands a transformation on another fragment, a path must be provided from the 
current concept or fragment to the target fragment. These task functions are usually 
represented by the composite tasks such as perform, do and draw. If the context included 
does not occur, it must follow a creation path otherwise a navigation path must be 
provided. For instance, the drawClassDiagram task signifies a request to launch the 
classDiagram frame, so the invoked concept {design) must have a path to that fragment.

• If a terminal task calls for a concept construction such as the insert and specify task 
functions, a creation path is obviously required. The insertClass task demands a creation 
path from the current fragment (<classDiagram) to the class concept, whereas the 
specifyClass task demands another path from class to classTemplate.

• If a task asks for modification of a concept within the same fragment, it does not normally 
require a path or it can reuse the creation path described in the previous point. These 
functions, such as refine, delete and adjust etc., have no direct navigation means, but the 
guidance acquired by the functions are usually presented as task heuristics. Moreover, 
ToolBuilder checks the validity of existing frames and transverses if necessary. For 
example, when an object is deleted and the corresponding objectTemplate is on display, 
the text window may traverse to the root structured text frame designCatalogue.

8 Only the presentable form of a concept is considered in the navigation model, so this is referred to as an 
o b jec t.

9 Strictly speaking, ToolBuilder introduces a third concept type known as field. A field is a terminal concept 
in a tool fragment. Since the semantic dependence of field has the same effect as object, it is considered as 
object in this discussion. On the whole, a frame, an object and a field refer to a fragment concept, an entity 
concept and a property concept defined in our product model respectively (see chapter five).
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Table 11.6 summarises the classifications in matching functionality. The target type (second 
column) is normally denoted as a context parameter in the respective task function.

Function Type Target Type Path Type
perform, do, draw another fragment creation, navigation

specify another fragment creation
insert concept in current fragment

refine, delete, adjust etc. concept in current fragment -

Table 11.6 Matching Functionality

MATCHING DEPENDENCE

This subsection discusses the task dependence, which will dictate the pre- and post- conditions 
in the task functions. For instance, the Booch91 method always refers to classes and objects 
together in the discussion of a design process. Thus, the drawClassDiagram and 
drawObjectDiagram tasks have no dependence and they can be performed concurrently. In 
other words, there is no constraint to bind their order of execution. Moreover, the insertClass 
task function describes the insertion of a class in a classDiagram, the dependence is denoted 
in the corresponding MSL statement as:

task  insertClass insert(c lass);
precond [classD iagram ]; 
postcond [c la ss];

In the following matching exercise, the dependence is described according to the fragment and 
concept types. The four categories of dependence are identified as follows, and they are 
summarised in table 11.7.

• Fragment-to-concept dependence - a typical parent and child dependence where a
concept is found inside a fragment. This relation always implies a composition amongst 
the two semantics and a creation path in the tool navigation model. For instance, a 
classNode can only be inserted into a classDiagram. The dependence is denoted by the 
composition relationship between them.

• Concept-to-fragment dependence - an unusual dependence that reflects the
decomposition of a host concept to another fragment. It is normally represented by a
group concept or a referencing relationship. The denotation depends on the nature of the 
dependence. For instance, the stateTransitionDiagram is employed to document the 
dynamic behaviour of the associated class. Therefore it has a clear dependence from the 
host class to the respective stateTransitionDiagram. This type of dependence is also 
applied to the navigation path between a concept with its comprehensive template, such as 
the class concept and its classTemplate fragment.
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• Concept-to-concept dependence - the general connection between two concepts which 
signifies a creation path if both concepts are in the same fragment. For instance, each 
class comprises properties such as cardinality, concurrency and persistence etc. The 
dependence is denoted by the composition relationships from the host class to the 
property concepts. The linking relationships can also be used to depict this type of 
dependence, such as the stateLink amongst the state. Moreover, if the concepts are from 
different fragments, the path is shown as a referencing relationship in the product model. 
There is no such example encountered in the Booch91 method.

• Fragment-to-fragment dependence - there are two possibilities for this type of 
dependence: firstly, a referencing relationship between two closely related fragments; 
secondly, an association between graphical and textual fragments for mutual clarification. 
For instance, the dependence between stateTransitionDiagram and state Dependencies, 
illustrates a cross referencing relationship between the diagram and structured text 
fragments respectively.

Dependence Product Model Relationship
fragment-to-concept composition
concept-to-fragment grouping, referencing
concept-to-concept composition, linking, referencing

fragment-to-fragment referencing

Table 11.7 Matching Dependence

It must be stressed again that the navigation model is a tool-based process model, which is not 
actually present in the original method. In other words, a navigation model is a special 
mechanism to describe tool operations that reflect the task functionalities and dependence. 
The model is meant to be generic, although some slight adjustments may be required from one 
tool to another tool. Section 11.3.2 demonstrates a stepwise approach to map method tasks 
to navigation paths and this section, reinforces the approach by matching the inner parts of a 
task to a metaCASE tool model.

11.4.3 HEURISTIC MODEL MATCHING

There is no heuristic model in the current version of the Booch91 tool. However, the concept 
heuristics may be displayed actively in the help window and the task heuristics may be shown 
passively in the message window (see section 11.3.3 for details).

Nevertheless, this indicates the mistreatment of heuristic information by the method engineer, 
which makes the CASE tool a notational presentation software package rather than a package 
inhabited with the full knowledge of the source method model.
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11.5 CONCLUSION

MetaCASE technology is very important in method engineering, since it applies meta 
modelling techniques as well as advocating an improvement of the system development 
method. The three components in a method model, namely the product model, the process 
model and heuristic model, are mapped into the semantics of the available metaCASE tool, 
IPSYS ToolBuilder. The resulting metaCASE tool model is assumed to be portable to other 
metaCASE tools. Proof of this assumption is a subject for further work.
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12. CONCLUSION

This thesis has presented a generic model (GMR) for representing software development 
methods. The GMR promotes the hypothesis that meta modelling is a strategic and 
advantageous activity. To conclude this investigation and experimental work, the goals and 
assumptions are recapped.

12.1 INTRODUCTION

Previous researchers have found that, in general, there are two approaches to unify software 
development methods; standardising their common interface and enforcing a meta model 
formalism.

The former is commonly known as method integration, such as CDIF and PCTE. They 
provide levels of integration to transfer or to share portable components amongst methods. 
They stress information exchange rather than modelling method semantics. The approach is 
adequate for passing data or process between methods, but the outcome is far from 
satisfactory. These standards are surpasses in competing with software platforms, such as 
OLE and DDE in Microsoft Windows [Boyce 92].

The latter approach includes both meta modelling research and metaCASE modelling. Most 
research projects in this field specialise on a particular aspect of meta modelling formalism, for 
instance assisted software processing in ALF-MASP or conceptual task modelling in 
SOCRATES. The method representation is neither precise nor concise. Method heuristics 
might be given little or no consideration. Most metaCASE tools do, however, provide an 
entity-relationship model to describe the concept relationships of methods and tool operations 
to denote the task functions. Much of the semantics get hidden in the CASE tool language, or 
sometimes even ignored. In addition, being a CASE tool, the meta model is biased to allow 
implementation of constructs or ease of coding.

Through our GMR, method semantics can be extracted from an expert and formalised into an 
executable form stored in a semantic knowledge base. The meta model, including the 
products, the processes and the heuristics, is shown to be advantageous in method 
comparison, fragment dissection and in the selection of methods. The potential benefits of 
this work are transferability between existing methods and the automation of the generation of 
a CASE tool to support new and evolving ‘customised’ methods better suited to the 
requirements of specific applications. It could also form the core part of a future method of an 
evolutionary prototyping approach to software engineering.
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The conclusion is given in two main parts: firstly, the achievements of GMR to date are 
shown; secondly, the discussion of possible future work where GMR could be utilised in 
strategic software development.

12.2 CURRENT ACHIEVEMENT

This thesis has discussed the GMR in detail. The three basic components of a method, 
including their internal components and interrelationships, are supported with both textual 
presentation (i.e. MSL) and graphical denotation (i.e. diagrams). The model is compiled into 
Prolog clauses, making extensive experimentation possible. The following points emphasise 
the current achievements of meta modelling using GMR formalism:

• The GMR model is a uniform representation of software development methods. It 
supports a standard repository of semantic information about methods that is termed a 
‘semantic knowledge base*. We validate the model with five common but complex 
methods. These methods are carefully chosen so as to illustrate a wide spectrum of 
modelling techniques. And yet, there are some similarities across the methods to illustrate 
the method comparison. The GMR is also shown to be a practical representation for 
mapping the logical meta model into a physical metaCASE tool. A proficient tool (i.e. 
ToolBuilder) and two methods with different levels of complexity are chosen to 
demonstrate the skills and techniques required.

• One of the major achievements in GMR is fragment dissection. Most meta modelling 
approaches give no guidance for the dissection of portable fragments but GMR explicitly 
depicts the ‘cuts’ of methods. In the product model, the concepts of grouping and 
referencing relationships denote the separation of fragments. In the process model, task 
function types and decomposition indicate a similar distinction. Not only are the links 
between fragments highlighted by these features, but their shared concepts are also 
expressly denoted in GMR.

• Due to the uniformity of GMR, two types of method comparison are available. Firstly, the 
numerical comparison is based on the statistical information from MSL, and it measures 
the emphasis and complexity of methods. Secondly, the fragment comparison evaluates 
the techniques or modelling features captured in the associated method fragments. This is 
particularly useful when selecting appropriate fragments for a problem requirement. The 
internal measuring and matching mechanism has yet to be explored.

• The generic representation forms a backbone for method evaluation, which anticipates the 
selection or customisation of methods. An evolutionary approach is foreseen for future 
work, supported by general hints and guidance as revealed from the GMR viewpoint.
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• A knowledge acquisition model is invented for eliciting method semantics. It is named 
‘IFV’ to signify its three-stages: inspection from acquisition media; fabrication of a 
conceptual form and verification of the resultant model. IFV is found to be an effective 
approach during the acquisition phase of the five chosen methods.

On the other hand, three fundamental questions have to be considered:

• Is GMR a ‘perfect’ model for representing methods? At the very beginning, this research 
claimed that there is no single perfect method that suits all problem domains and/or work 
environments. If the statement is true and GMR is a modelling technique at the meta level, 
then it cannot be an absolute model for representing all methods. However, the answer to 
the question must be negative. There are many methods in the world. Even at the method 
level, there are different types of methods to satisfy various needs of application. This 
research focuses on class-based methods, since these are widely used in the software 
industry - including our collaborating establishment. We make no claims for other areas in 
the method spectrum, although KADS (a frame-based method) seems to be amenable to 
GMR formalism.

• Can GMR be extended or evolved in the future as technology advances? The invention of 
the GMR is based on three factors: our prior experience, an investigation and 
experimentation. Firstly, our previous experience of class-based modelling gives us a 
prima-facial reason to suspect that this is a suitable formalism for method specification. 
Secondly, the investigation of available software development methods and meta 
modelling techniques gave us precious strategic information to formulate the generic 
representation. Lastly, the GMR is evolved from a continuous ‘trial and error’ approach 
through experimentation with five chosen methods. Technology will not stay static. The 
above three points show that GMR is designed with up-to-date and relevant modelling 
techniques and should be well placed to be extended as the technology advances.

• Is there any formal proof of GMR? The verification stage of the IFV model introduced 
five techniques (the 5 ‘C’s) to validate each method representation. However, a full proof 
[Norcliffe 91] of these models is impossible because of the creative and open-ended nature 
of software development. At the meta modelling level, proofs are even more difficult. 
Firstly, it is impossible to have an exhaustive experiment covering all software 
development methods. Secondly, minor adjustments (new versions) may gradually evolve 
in each method as the technology advances, or more modelling formalisms may emerge. 
The proof will never be complete. And finally, most methods have hidden semantics and 
missing concepts, partially due to the nature of development and partially to allow the 
designer some freedom to adopt other techniques. The method description especially is 
normally incomplete. Hence our aim was to obtain a generic and workable representation 
for the available modelling techniques. We have demonstrated that it functions within the
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scope of our chosen area, i.e. the classed-based methods. Our findings, are that the GMR 
is strong in important areas of meta modelling, in particular in method comparison, 
fragment dissection, and the selection of methods.

12.3 FUTURE WORK

A number of further research tasks can be identified. Many new projects could be based on an 
extended practical application of the method representation. The work of the current project 
could also be continued, with tasks such as:

• Due to the limitation of time, only five methods have been chosen for detailed experiment. 
It would be possible to ratify GMR further by looking at more methods.

• The main scope of this research lies on class-based software development methods. Other 
parts of the method spectrum could also be considered to expand the boundary.

• If more metaCASE tools or meta modelling systems become available, it would be 
worthwhile to extend the investigation to these formalisms.

• The mechanisms used to demonstrate various techniques for method comparison and 
fragment dissection are fairly primitive. It would be possible to extend the 
experimentation with better and more sophisticated algorithms, so that the performance 
and consistency of outcomes are better.

However, the two major areas for research are ‘gathering of information about the problem 
domain* and ‘analysis of design decisions’ as mentioned in chapter one. The GMR can be 
used as the basis for their representation. For instance, objectOriented is an analytical concept 
for design and it comprises four basic elements as shown in the first order predicate below: 

objectOriented(abstraction,encapsulation>inheritance>polymorphism).

Elements of the predicate can be decomposed into concepts presented in GMR, such as the 
encapsulation concept which itself embraces three other concepts: 

encapsulation(class,attribute,operation).

Factorisation of these predicates is also possible, for example the objectOriented predicate can
be rewritten as objectBased with an extra inheritance semantic:

objectBased(abstraction,encapsulation,polymorphism). 
objectOriented(objectBased,inheritance).

Hence the complex problem information and analytical data lead to method semantics. Some 
expert system features can be adopted in the processing, for instance, weighting factors and 
uncertainty, can be introduced to each element of concern. This numerical information can be 
useful for matching algorithms in the evaluation and selection of methods. Although it is still
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far too early to describe how to carry out the problem analysis, GMR provides a potential 
direction as the back-end representation of possible semantics. More stimulating ideas are 
required to fill this uninhabited area within software development.

12.4 CONCLUSION

Meta modelling is an advantageous activity, as it enables methods to be used unambiguously. 
GMR supports this by providing a uniform representation of software development methods. 
The benefits include method comparison, fragment dissection, selection and customisation of 
methods. Apart from extending the exercise illustrated in this thesis with more methods and 
available metaCASE tools, there is potential for future work which will include the ‘gathering 
of information about the problem domain’ and the ‘analysis of design decisions’.
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APPENDIX A: GLOSSARY

abstract concept - a concept that has no formal notation; this concept shall be inherited by 
other concept(s) and denoted in a method model.

aggregate fragment - a concept that cannot be classified as either diagram or text fragment, 
but it is an aggregate of a number of entity concepts.

CASE tool process - a specific process of a method in a generated CASE tool which has been 
configured by the developer.

chronic reading - the second step of method inspection; detailed understanding of method 
knowledge acquired.

completeness - a verification of a method model against meta-knowledge that checks the 
constraints between two concepts rather than the definition of a single concept.

composition relationship - a bidirectional whole-component relationship, sometimes it is 
known as containment relationship; a concept contains another concept, if the concept is a 
component of the other, or a concept exists within another concept.

concept - a fundamental idea that can be applied to the development of a software system.

concept diagram - a graphical representation yielded from concept modelling.

concept heuristic - the heuristic information of a concept.

concept relationship - an association between two concepts; in product modelling, concept 
relationship may be subtyping, composition, referencing, linking or grouping.

concept token - a type of semantic token based on concept.

conceptual model - an outcome generated from method inspection, it comprises of a set of 
diagrams and structured texts.

conclusive reading - the third step of method inspection; overall understanding of method 
description.

concrete concept - a concept that is constructed primarily by inheriting from other concept(s) 
and rarely adds its own concept.

consistency - a coherency check of semantics within a method (opposite to that of contrast).

constrained concept - a concept with a constraint (or constrained) rule.

constraint rule - a formal condition (or rule) in a method.
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context parameter - a signature of a task function to specify the parameter(s) as semantic 
token(s).

contradiction - a method verification which involves two or more semantics, such as the 
relationship between two semantics affecting a third semantic.

contrast - a comparison check of semantics with corresponding semantics in other methods 
(opposite to that of consistency).

correctness - an agreement with the definition of meta model, that is to check the method 
model does not violate the meta-knowledge of the generic model.

cursory reading - the first step of method inspection; introductory understanding of method 
description.

diagram fragment - an explicit concept, normally known as a graphical tool fragment.

dissection set - a set of concepts that appear in both fragments of a method; these concepts 
must be distinguished in tool dissection.

entity concept - a basic concept used to describe an idea (or notion) in a method.

entity relationship model - a data model based on entity and relationship; for instance the 
entity model in ToolBuilder.

formalised model - a textual form of method model resulting in method fabrication; it enables 
us to present and modify the method models captured.

fragment - an autonomous tool or technique comprised of its own concept structure, task 
structure and heuristic information. Both product and process models of the fragment 
must be self governing or unconstrained, although they may have a limited interface to the 
external development environment.

fragment concept - a high level entity concept, which can be a diagram fragment, a text 
fragment or an aggregate of other concepts.

Generic Method Representation (GMR) - a generic representation of a software 
development method; it is comprised of three basic models, namely product model, 
process model and heuristic model.

generic representation - a representation that is general to the domain of interest.

group concept - an association concept which relates the host and the element concepts in a 
grouping relationship.

grouping relationship - an association between a group concept to its host concept or 
element concept, which is distinguished by a ‘h’ or ‘e’ label in concept diagram 
respectively.

A.2



heuristic - a guidance or a criterion on a method semantic (such as concept or task).

heuristic link - a cross reference between heuristics.

heuristic model - a model to describe the semantic assistant embedded in both product model 
and process model.

heuristic rule - a formalised rule for representing heuristic.

heuristic text - a descriptive body of a heuristic; it may also be known as heuristic guidance.

IFV model - a model for method knowledge acquisition; IFV stands for the three phases 
approach: inspection, fabrication and verification

KADS - a structured knowledge engineering approach towards knowledge base systems 
development.

knowledge acquisition - an expertise acquisition concerning the knowledge of interest.

knowledge elicitation - one of the crucial activities in method knowledge acquisition, which 
involves direct or indirect communication with the domain expertise;

link concept - an association concept which relates two entity concept instances together, one 
as its source and the other as its target.

linking relationship - an association between a link concept to its source entity concept or 
target entity concept, which is distinguished by a ‘s’ or ‘t’ label in concept diagram 
respectively.

meta model - a model to represent method knowledge by a set of formally defined techniques.

meta modelling technique - a suitable and formally defined technique for the representation 
of method knowledge.

metaCASE process - a physical process model of a method, which is embedded in a 
metaCASE tool; it is highly dependent on the semantics of the tool, such as the data model 
to represent concepts and the functional model to describe task.

metaCASE tool - a CASE tool to develop other CASE tools.

method - a set of semantics and techniques for development; in this thesis it refers to software 
development method.

method acquisition media - a special set of media for acquiring method knowledge.

method engineering - a systematic engineering approach towards method modelling.

method fabrication - the construction of a method model.

method inspection - the examination of method knowledge.

method integration - method semantics sharing based on information exchange.
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method knowledge engineering - a systematic knowledge engineering approach towards 
method modelling development.

method model - a model used to represent a specific method.

method notation - textual or graphical representation of a method semantic.

method process - a logical process in a method to show the design sequence.

method semantic - a method concept, task or heuristic.

method verification - the justification or checking of a method model.

methodology - a study of methods.

model - an abstract description of a system.

modelling - the system function description in ‘logical’ terms rather than ‘physical’ terms; 
describing what the sytsem does, without giving detail of how it does it.

navigation model - a functional model based on navigation; for instance the frame model in 
ToolBuilder.

parallel tasks - the software development tasks that can be processed at the same time.

process model - a representation of the dynamic, behavioural aspect of a method.

product model - a representation of the static, structural aspect of a method.

prolog clause - an executable form of method semantics from the formalised model.

property concept - an attribute of an entity concept; it must be owned by an entity concept 
and itself does not own any concepts.

referencing relationship - an association to relate similar concepts, which appears as an alias 
in a different design aspect.

semantic knowledge base (SKB) - a knowledge base to store method semantics.

semantic link - an association to represent the semantic token as a task precondition or as a 
task postcondition.

semantic token - a concept token or a task token to describe the semantic relationship 
between tasks.

shared concept - an element of a dissection set; it is a common concept between fragments 
and each instance of the concept is a component of the fragments.

software development method (SDM)- a method used for developing software, which may 
depend on the problem domain, the work environment or the programming language.
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subtyping relationship - a bidirectional relationship between a superconcept and a 
subconcept; a subconcept inherits the properties from a superconcept.

task - a mechanism that supports the description of generic software process models which 
can be incrementally and repeatedly instantiated in order to produce particular software 
process models to specific methods or applications.

task composition - a formation of tasks in a sequential order; the reverse is known as an ‘and’ 
task decomposition.

task diagram - a graphical representation yielded from task modelling.

task function - an optional or a mandatory operation in a task sequence.

task heuristic - the heuristic information of a task.

task postcondition - the consequence of a task function in terms of semantic tokens.

task precondition - the guard condition of a task function in terms of semantic tokens.

task refinement - a decomposition of task into a number of potential decisions; it is also 
known as an ‘or* task decomposition.

task sequence - a logical sequence of tasks in a specific method.

task token - a type of semantic token based on task.

task trigger - an event based mechanism that takes the underlying concept of an event and 
invokes a task function.

text fragment - a structured text or pseudo code fragment, which is normally for detailed 
description purposes or code generation.

tool integration - method semantics sharing based on data exchange between CASE tools.

ToolBuilder - a metaCASE tool which aims to generate a method based CASE tool.
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APPENDIX B. IPSYS TOOLBUILDER

Further to the discussion of the ToolBuilder metaCASE tool in section 3.4.3 and the two 
semantic mapping case studies in chapter eleven, this appendix presents a more detailed 
description of IPSYS ToolBuilder. This is supplementary material for those who are not 
familiar with ToolBuilder, and a reference for other readers. Further information can be 
found in [IPSYS 92].

B.l TOOLSET ARCHITECTURE

ToolBuilder is a metaCASE tool for building CASE tools. It is a fully integrated CASE tool 
that supports any specific software or system development lifecycle. It incorporates both the 
textual and the graphical presentation of data. In addition it supports multi-user and multi-site 
operation. Figure B.l depicts the ToolBuilder integrated windowing system as containing 
three static frames and sometimes a context-sensitive pop-up window defined by the user.

• Structured text frame - manipulates all textual information

• Graphical frame - manipulates all graphical notations

• Messages frame - displays all messages output by the tool

METHS • M e s s a q e s ^ ^ ^ H  

Information - No Selection to adjust

■ ■ M E T H S  - Diagram E d ito r^ ^ l  

|Print| | Redraw] |Save| | Exit] 
|Snapshot|| Scale I |Add Primaryl

METHS - Structure E d ito r^ H

iPrintl 1 Redrawl Isavel 1 Exitl /Transport

1C car ) C sh,p J
Project Transport

driven
_ driving

Description 
Transport information system 

System Variants:
Manual system (Current System)

C  driver J
(p a s se n g e y

^ H A c k n o w le d g e ^ ^ H  
Cannot insert link herel

(u r\j

Figure B.l ToolBuilder Windowing System

• Acknowledge window - shows user defined interactive messages (see the above figure)

• Help window - shows a collection of help information defined in a frame

ToolBuilder allows programming code to be inserted in various slots of the structured text 
frames. The language used is EASEL, and the invocation of these slots is referred to as code 
triggers. Figure B.2 summarises the overall toolset architecture into three models.
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Figure B.2 ToolBuilder: Three Basic Models

• Entity model - an ER schema to describe the data model of the generated tool;

• Frame model - a set of frames to navigate both structured text and graphical information;

• Shape model - a group of shape definitions for diagram objects in the graphical frames.

These models are described in the following three sections. Elements in the models have a 
literal name, and optional descriptions can be inserted in various places. In the following 
description, all slots in the type definition portions are ‘optional’ unless otherwise stated as 
‘mandatory*.

B.2 ENTITY MODEL

Data modelling in ToolBuilder is based on an entity model schema. Data is organised into 
entities and different kinds of data have different properties known as attributes. A schema is 
a plan for representing relationships between entities and the associated attributes. The 
diagram depicting the schema is called an entity diagram. The next subsection introduces the 
three default entity models predefined by ToolBuilder, and then describes the basic elements 
in the entity model: attribute type, entity type and relationships.

B.2.1 DEFAULT ENTITY MODELS

ToolBuilder provides three default entity models - predefined, diagram and document. These 
entity models grant the necessary inference mechanism to declare other entity models, so they 
must be inherited by all CASE tools and must not be deleted.
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• PREDEFINED entity model - defines the predefined entity types, relationships and 
attributes known to the databases. The predefined attribute types are Integer, Stringy 
Boolean and Date, whereas the predefined entity type is entity itself.

• DIAGRAM entity model - controls the graphic presentation. It provides the internal 
definitions of DIAGRAM_UNIT, DEJFRAME (editable diagram frame), NODE and LINK 
entities, which are inherited by any entity model having a graphical presentation.

• DOCUMENT entity model - provides attributes used by the publisher tool and it is 
inherited by entities which are to be the root of a document.

B.2.2 ATTRIBUTE TYPE

Apart from the four primitive PREDEFINED attribute types mentioned in the previous 
subsection, ToolBuilder allows user defined attribute values. Any extra attribute types are 
declared in an attribute type definition structured text frame, which has the following slots:

• based on - based on a previous defined attribute and allows adjustment (mandatory);

• shown by - code trigger to show how attribute is displayed in a text frame;

• shown in edit box by - code trigger to show how attribute is displayed in an edit box;

• validated by - code trigger to validate the entered value;

• updated by - code trigger when database is updated.

B.2.3 ENTITY TYPE

There are two types of entities: an abstract entity binds concrete entities with common 
attributes, whereas a concrete entity represents a definitive data object. The entity type 
definition structured text frame has the following slots:

• base type - (IS A) single inheritance within the entity model (mandatory);

• inherited types - (AND IS A) multiple inheritance across different entity models;

• attributes - properties of the entity type;

• composition relationships - strong associations to form basic building blocks;

• reference relationships - weak associations to relate created entities;

• derived relationships - relationships built on top of other relationships;

• subtypes - other entity types that share common features;

• propagations - user defined code trigger upon change, such as modify or delete;
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• on creation - initialisation code trigger of the entity.

B.2.4 RELATIONSHIPS

ToolBuilder supports four types of primitive relationships: subtyping, composition, reference 
and derived relationships. Segments of relationship declarations are shown with the diagrams.

B.2.4.1 SUBTYPING RELATIONSHIP

ToolBuilder provides single inheritance (IS A) between entities within the same entity model. 
Since a supertype entity cannot be instantiated, the relationship is better known as subtyping. 
All features of the supertype entity, such as attributes, relationships and code triggers are 
inherited to the subtype entities. Each leaf entity must have a base type. If the entity does not 
inherit from other entity types, then the base type is a default ROOT TYPE. Figure B.3 
illustrates the two types of inheritance - IS A relationship (subtyping) within the entity model 
and AND IS A multiple inheritance across different entity models.

entity model - human

person

entity model - transport

transport
car ship

driven
driving

driver

seatln

passenger

ENTITY TYPE car 
IS A transport

ENTITY TYPE driver 
IS A ROOT TYPE 

AND IS A human. person

keys:

0 X IS AY 

XAND ISAYED— > 0
ED— 0  X COMPOSE OFY

COMPOSITION RELATIONSHIPS 
driving: driver INVERSE driven 
seatln: Seq of passenger INVERSE NONE

Figure B.3 ToolBuilder: Entity Types and Inheritance

B.2.4.2 COMPOSITION RELATIONSHIP

Composition links entities to form basic building blocks, which form part-whole hierarchies 
in the entity model. When an entity is deleted, all part-entities are also removed. However, an 
entity can exist without any part-entities. Composition is denoted by a solid head arrow 
pointing from the whole-entity to its part-entity. ToolBuilder supports single-valued (single 
solid arrow head) and many-valued (double solid arrow head) compositions. In addition, the 
relationship can have a reverse link (v-shape arrow head on the target side) from the part- 
entity back to the whole-entity. For instance, in figure B.3, a car has one driver but many 
passengers, and the driver can refer back to the car by the driven reverse link.

B.4



B.2.4.3 REFERENCE RELATIONSHIP

A reference relationship provides a ‘weak-link’ between existing entities in the database, 
because both entities remain even when the relationship is deleted. A reference relationship is 
depicted as a v-shaped arrow in the entity diagram. Similar to the composition relationship, a 
reference relationship supports single- or many-value links and reverse links, which are shown 
by the toY, toZ and toF relationships respectively in figure B.4.

toY

toZ toF

UNIT.

REFERENCE RELATIONSHIPS 
toY: Y INVERSE NONE

REFERENCE RELATIONSHIPS 
toZ: Z INVERSE Seq of toF

Figure B.4 ToolBuilder: Reference Relationships

B.2.4.4 DERIVED RELATIONSHIP

Derived relationships allow extra-navigation through the database. A derived relationship is 
not stored explicitly, but is based on composition and reference links, or other derived 
relationships. Derived relationships are usually not depicted in the entity diagram, but they are 
shown as dotted arrows in figure B.5 for clarity. The three types of derived relationships are 
path, aggregation and user defined. These are described below.

PATH - DERIVED RELATIONSHIP

A path is like a relational join. It is based on cascading component relationships. For 
instance, in figure B.5, the toZ derived relationship of entity X is ‘path-by’ the toY and toZ 
composition relationships of entities X  and Y respectively. This type of derived relationship 
may also be defined to be followed recursively. A single-valued path composes of only single
valued components, whereas a many-valued path is a set (no duplication) or a sequence 
(sequenced with possible duplication) of single-valued and multi-valued components.

AGGREGATION - DERIVED RELATIONSHIP

This relationship is formed by composing together component relationships side by side 
and evaluates each applicable component relationship at the entity. It may also be a deferred 
aggregate of subtype entities. For instance, entities B1 and J32 are subtypes of entity B, and
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the hostA derived relationship of the supertype entity B is derived from the hostA reverse 
composition links of the subtypes as shown in figure B.5. Both single-valued and many
valued aggregations are provided, and they are updatable if all components are updatable.

DEFINITION 
toZ: Z INVERSE hostX

DERIVED AS:
PATH 

COMPONENTS:
GIVEN: X 
SELECT: toY 
GIVING: Y 

THEN 
GIVEN: Y 
SELECT: toZ 
GIVING: Z

aggregation

hostAhostA hostA

, r ' cOfColour(colour)

DEFINITION 
hostA: Seq of A INVERSE NONE

DERIVED AS:
AGGREGATION

COMPONENTS:
GIVEN: B1 
SELECT: hostA 
GIVING: A 

AND 
GIVEN: B2 
SELECT: hostA 
GIVING: A

parameterised

Figure B.5 ToolBuilder: Derived Relationships

USER DEFINED - DERIVED RELATIONSHIP

This relationship allows EASEL code to be inserted whenever the relationship is selected. For 
a single-valued relationship the user provides TBD_read_rel function, whereas for multiple
valued relationship the user provides TBD_read_rel, TBD_next and TBD_release functions.

ToolBuilder also supports parameterised derived relationships in all three types, but EASEL 
statements must be placed in the relationship definitions. For instance, different entities C may 
be distinguished by the host entity B2 through the colour of the entities, a parameterised 
function cOfColour(colour) can be used in this derived relationship as shown in figure B.5. In 
addition, the reverse link of a derived relationship is permissible if all components in the 
relationship are bi-directional. Table B.l summarises the variations of derived relationships.

Type Cardinality Options How to evaluate
path single-valued may be parameterised 

may be recursive
single-valued result o f traversing 
single-valued relationships end to end

path many-valued may be parameterised 
may be set-valued 
may be recursive

many-valued result of all traversals 
through single and many valued 
relationships end to end

aggregation single-valued may be parameterised 
may be deferred

selection of a single valued result from 
a number of single valued relationships

aggregation many-valued may be parameterised 
may be set-valued 
may be deferred

aggregation of all results o f a number 
of single or many valued relationships

user-defined single-valued may be parameterised by executing the READ statements

user-defined many-valued may be parameterised 
may be set-valued

by executing the READ, NEXT and 
RELEASE statements

Table B.l ToolBuilder: Summary of Derived Relationships
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B.3 FRAME MODEL

As shown in figure B.2, there are three types of frames in the frame model. These are root 
frames, structured text frames and diagram frames.

B.3.2 ROOT FRAME

A root frame is needed for initialisation. The operations in the root frame are the actions 
invoked by the generated tool when it enters a transaction from the database selection 
window. These operations are executed in the context of an entity which is the root of the 
entire database and known as the transaction root. This entity is of the type UNIT. Thus, the 
root frame defines navigation to the initial structured text frame as well as diagram frames.

B.3.3 STRUCTURED TEXT FRAMES

Structured text frames present the textual information about the tool in a structured text 
window. Every structured text frame has a definition, which includes the following slots:

• applies to - particular entity in database (mandatory);

• help text - information about the frame which appears with those in the frame operations;

• object types - apply to different items in the text frame;

• shared objects - same as object types but can be shared amongst structured text frames;

• operations - local actions in the frame menu;

• local subsection - define appearance of the frame through other subsections (mandatory).

There are two main purposes of frame operations: firstly, navigation to other structured text 
frame or diagram frame; secondly, adding a structured object in the frame. Each object type 
(including shared object) defined in a structured text frame is declared by a structured text 
object type definition which has the following slots:

• editable/non-editable - (mandatory);

• applies to - particular entity in database (mandatory);

• help text - information about the object which appears with those in the object operations;

• operations - local actions in the object menu;

Structured text objects are terminal entities in a structured text frame, so the second purpose 
of frame operations mentioned above is not applicable to object operations. However, the 
object operations can be used to define code triggers and preconditions (see later) by 
EASEL to modify the attributes or relationships of the entity that applied to the structured 
text object.



The appearance of a structured text frame is defined through a local subsection which may use 
other subsections. A subsection is a contiguous area of structured text, and common features 
amongst structured text frames can be stored as a shared subsection. There are two types of 
subsections. An abstract subsection only applies to an abstract entity and is used to define 
how different subtypes are to be represented in different ways, whereas a concrete subsection 
applies to any entity and its structure is defined in terms of:

• fields - print a database attribute that applies to the entity in current subsection;

• text literals - print a literal string;

• subsection calls - invoke another subsection that applies to the same entity as the current
subsection;

• decompositions - get information from a different entity in a single-valued relationship, 
results in change of context by navigation;

• repeating subsections - similar to decomposition but applies in a many-valued 
relationship of an entity type;

• attribute dependent selection - determine one or more choices based on the value of an 
attribute;

Fields, text literals and subsection calls can be conditional on relationship states or EASEL 
preconditions. Figure B.6 illustrates the structure of two concrete subsections.

(Unit)
systems

system
* name
* description

Subsection systemCatalogue Applies To Ut 
Is Concrete 

<description>

SYSTEM CATALOGUED"; 
For Each systems Option "system" 

See systemName Separated By "\n 
End

Subsection systemName Applies To system 
Is Concrete 

<description>

name Label "<system name>" [1.30] ;■ 
description Label "<description>" [1,40]; 

End

base entity 
subsection name

text literal

decomposition through 
the "systems" relationship

a field display with format

Figure B.6 ToolBuilder: Examples of Subsections

B.3.4 DIAGRAM FRAMES

Unlike structured text frames, diagram frames give the graphical information about the tool in 
a graphical window. The diagram frame definition is as follows:

• applies to - the base entity with "AND IS A diagram . DE_FRAME";

• help text - show information about the diagram frame in context of the current operations 
in use;

B.8



• object types - links to entity model for graphical model;

• operations - diagram operation, add primary and frame navigation (see later).

Each diagram object shown in the diagram frame must be further specified. ToolBuilder 
defines a diagram object as a node or a link. The diagram object definition is as follows:

• applies to - the base entity with ‘AND IS A diagram . NODE (or LINK)’

• presentation - either a shape set or a formatted text;

• fields - handle attributes applied to the base entity;

• operations - add subordinate object/field, object operation and navigation (see later);

• built-in operation specification - such as selectable, move, delete, add waypoint, etc.

In addition, each diagram field of a diagram object type applies to an attribute of the base 
entity. Similar to diagram frame, both diagram object type and diagram field allow help text 
to be displayed with operation information. The field definition is as follows:

• attribute - the base attribute;

• help text - show information about the field, display with those in operations;

• presentation - either a symbolic (only for Boolean attribute) or a formatted text;

• operations - field operation or frame navigation;

• built-in operation specification - suitable operations similar to diagram object type.

There are four types of menu operation. Firstly, add primary inserts a diagram object into 
the frame. Secondly, add subordinate inserts a diagram object or field as a subordinate of 
another diagram object. Thirdly, the object (or frame, or field) operation performs a user 
operation on the currently selected diagram object. And lastly, frame navigation performs a 
navigation between associated diagram or structured text frames. The first two are simply an 
option in the menu, the last two share the same structured text definition as follows:

• help text - operation help information;

• selection mode - single/multiple objects selected;

• mode - view only, edit only or view and edit;

• precondition - EASEL routine evaluated with menu is constructed;

• trigger - EASEL code invoked when menu option is selected;

• destination frame type - name of new frame to be loaded;

• navigation path - path through database to data for new frame;

• destination mode - view, as transaction, edit, as partition (for multi-user).
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B.4 SHAPE MODEL

ToolBuilder allows the user to define the presentation of individual diagram objects. This is 
supported by the shape model as shown in figure B.2. Each graphical object is outlined by a 
number of graphics primitives provided by the tool. Individual lines and shapes can be further 
specified by the predefined styles as shown in figure B.7.

Point •

Line

Box 1 1
Rounded_box ( )
Ellipse O
Diamond O
Triangle

Quadrant a

\  /

>
V

styles: normal, bold, dotted, dashed 
dotted bold, dashed bold, filled

styles: line-only, bold-lines, filled □ □ ■

Figure B.7 ToolBuilder: Graphics Primitives

Diagram node objects are denoted by shape sets, whereas diagram link objects are denoted by 
linkstyles. Figure B.8 depicts some of the possible shape sets and linkstyles composed by 
these graphics primitives. They are related to the respective diagram objects or fields in the 
corresponding presentation slots. Predefined shapes and links are associated with a list of 
built-in operations that are appropriate to the graphic type. For instance, the stretch 
operation applies only to node objects and only link objects have waypoints.

□  (3 ®
shape sets linkstyles

Figure B.8 ToolBuilder: Possible Shape Sets and LinkStyles

»
- a

B.4 SHAPE MODEL

To conclude, ToolBuilder is an integrated metaCASE tool that comprises an entity model, a 
frame model and a shape model. These models effectively describe the data model, the 
navigation model and the presentation of graphics required to generate the intended CASE 
tool. Figure B.9 depicts the interrelationships of the structured text frames in ToolBuilder.
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APPENDIX C. THE KADS AND MIKE 
METHODOLOGIES

The KADS methodology is a major structured knowledge engineering approach towards 
knowledge base systems (KBSs) development. The methodology is described in some detail 
since it is heavily related to the work in this thesis, such as in the areas of meta modelling, 
method engineering (chapter three and four) and method knowledge acquisition (chapter ten). 
Generally speaking, KADS caters for a wider scope of knowledge domain (i.e. any domain), 
whereas our approach specifically serves the requisite of method engineering (or to be more 
precise ‘method knowledge engineering’).

The MIKE approach [Neubert 93] is an extended version of the KADS methodology. It 
stresses the use of a hyper model for expertise modelling. Some techniques of its knowledge 
acquisition are also valuable in method engineering. The following two sections give an 
overview of these two methodologies. The basic principles of each individual approach are 
outlined in view of the modelling process. Details of method modelling are given in the 
relevant chapters in the main text of this thesis.

C.1 THE KADS METHODOLOGY

The KADS methodology has been the major structured knowledge engineering approach of 
knowledge base systems. There are various materials based on KADS, however [Schreiber 
93] is the most popular literature in the area. It has been described as ‘the systematic step-by- 
step model for large scale systems development efforts’.

C.1.1 GLOBAL VIEW

KADS is intrinsically a modelling approach with seven types of model. Each model 
emphasises certain aspects of the system to be built and abstracts from others and each 
provides a decomposition of knowledge engineering tasks as shown in figure C.la.

• An organisational model provides an analysis of the socio-organisational environment in 
which the KBS will have to function.

• An application model defines the problems the system should solve in the organisation 
and what the function of the system will be in this organisation.

• A task model specifies how the function of the system, as specified in the application 
model, is achieved through a number of tasks that the system will perform.
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• The model of cooperation contains a specification of the functionality of those sub-tasks 
in the task model that require a cooperative effort between the agents to whom the 
subtasks have been distributed.

• Building a model of expertise is a central activity in the process of KBS construction (as 
highlighted in figure C.la). It distinguishes the KBS development from the conventional 
system development. Its goal is to specify the problem solving expertise required to 
perform the problem-solving tasks assigned to the system.

• Together, the model of expertise and the model of cooperation provide a specification of 
the behaviour of the artefact to be built. The model that results from merging these two 
models is similar to what is called a conceptual model in database development.

• The description of the computational and representational techniques that the artefact 
should use to realise the specified behaviour is not part of the concept model. These 
techniques are specified as separate design decisions in a design model.

model of 
cooperation

model
expert!

application
model

design
model

task
model

conceptual
model

organisational
model

system

knowledge
category

inference

strategic

domain

task
applies

controls

uses

organization knowledge  
types

strategies plans
meta-rules

inference
structure

domain
theory

tasks control terms 
sub-tasks 
task structures

meta-class 
domain view
concept
property
relations

functional -data 
functional 
control - f̂unctional

knowledge source functional
functional -data 
functional -data
data 
data 
data

control
control

perspective

a. models of knowledge engineering task b. synopsis of the KADS four-layer model

Figure C.l KADS Architecture Overview

The next subsection focuses on the model of expertise, although ideas of the models in the 
circumference (shown as shaded boxes in the figure) are also covered. The framework for 
modelling expertise in KADS are described as knowledge categories: domain knowledge, 
inference knowledge, task knowledge and strategic knowledge (as depicted in figure C.lb). 
These generic model components support top-down knowledge acquisition (see subsection 
C.l.3) with the notion of reusability. Individual knowledge types and perspectives in each 
layer are described in the corresponding knowledge categories below.
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C.1.2 MODEL OF EXPERTISE

KADS describes the resulting model of expertise in a knowledge-level style that is 
independent of any particular implementation. Each layer of the framework is outlined with 
examples in the domain of troubleshooting audio equipment.

DOMAIN KNOWLEDGE

The domain knowledge embodies the conceptualisation of a domain for a particular 
application in the form of domain theory. It is based on the epistemological data primitives, 
which are concepts, properties, two types of relations and structures described below:

• concept: the central objects in a domain knowledge and it is identified through its name 
(e.g. amplifier, speaker system and tape deck)\

•  property/value : defined through their name and a description of the values that the 
properties can take (e.g. amplifier has a property power with possible values on/off);

•  relation between concepts : the most common relations are the sub-class relation and the 
part-of relation; several variants of these two relations exist, each with its own semantics 
(e.g. amplifier is-a component);

• relation between property expressions : the relations between property expressions, 
which are the statements about the values of properties of concepts (e.g. amplifier:power- 
button = pressed CAUSES amplifier:power = on)\

• structure : a complex object that consists of a number of objects/concepts and relations, 
(e.g. an audio system consists of several components and relations between these 
components as a whole).

KADS also introduces a set of domain description notations to depict the domain knowledge 
as shown in figure C.2. A simple deductive capability would enable a system to handle all 
solvable problems, but the domain knowledge is considered to be relatively neutral task. This 
separation of domain knowledge embodying the theory of the domain from its use in a 
problem-solving process allows the flexible use and reusability of the knowledge.

object 
' type of 1 
■ instance 1

first
argument cardinality

role role second
cardinality argumentrelation-name

sub-type-of
relation structure

set of
£*prcss|ons— obj-ect relation tuples < relation-nameset element

type

object

structure
object

sub
type

super
type

set
object

structure
part

attribute
value-set

object

Figure C.2 KADS Graphical Representation of a Domain Description
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INFERENCE KNOWLEDGE

The second layer is inference knowledge. An inference specified is assumed to be primitive in 
the sense that it is fully defined through its name, an input/output specification and a reference 
to the domain knowledge that it uses. This is illustrated by figure C.3a and the corresponding 
formal specification of the decompose inference is given below (the arrow shows the mapping 
from inference knowledge onto domain knowledge).

• knowledge source1 : the entity that carries out an action in a primitive inference step (e.g. 
the decompose function is a knowledge source);

• meta-class2 : the data element that a knowledge source operates on and/or produces, 
domain objects can be linked to more than one meta-class (e.g. the system model refers to 
the audio system whereas the hypothesis refers to the amplifier in the domain knowledge);

• domain view : a specification of how particular parts of the domain theory can be used as 
a ‘body of knowledge’ (e.g. the decomposition knowledge in the example).

system
modelcomplaint' keys: selectinput/output • 

dependency .knowledge 
. source >meta-class

decompose,

input
meta-class

output
meta-classknowledge source

observable hypothesis ►( specify
system
model ■►(decompose, hypothesis

select
decomposition

knowledge
findingdomain view' compare normI [nference knowledge

' H a r v i o /#*» L 'M A n /Z a /V a a

^  audio system
audio system SUB-COMPONENT-OF 

amplifier
amplifier difference

a. primitive decomposition inference b. diagnosing faults in an audio system

Figure C.3 KADS Inference Structure

knowledge-source decom pose 
input-meta-class:

system -m odel - » com ponent 
output-m eta-class:

hypothesis - » com ponent 
domain-view:

decomposition(system-model, hypothesis) -> sub-com ponent-of(com ponent,com ponent)

1 This term denotes a process that generates an elementary piece of information rather than the corresponding 
meaning in blackboard architectures.

2 It should not be confused with the meaning of m eta-c lass  in object-oriented systems.
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Figure C.3b presents an inference structure for the audio domain. The inferences specify a 
top-down systematic approach that detect sub-models of the audio system which behave 
inconsistently. KADS also defines the typology of inferences through epistemological 
categories rather than data-structures. Knowledege sources are categoried as operation types 
with according argument types as tabulated in table C.l. Moreover, the inference structure 
only defines the vocabulary and dependencies for control, which are specified as task 
knowledge.

Operation type Knowledge source Arguments
Generate
concept/instance

instantiate concept - » instance
classify instance -»  concept
generalise set o f instances —> concept
abstract concept —> concept
specify concept —» concept
select set -»  concept

Change concept assign-value attribute —> attribute-value
compute structure -»  attribute-value

Differentiating
values/structures

compare value + value —» value
match structure + structure -»  structure

Structure
manipulation

assemble set of instances —» structure
decompose structure —> set of instances
transform structure —» structure

Table C.l KADS Typology of Knowledge Sources

TASK KNOWLEDGE

The third category of knowledge contains knowledge about how elementary inferences can be 
combined to achieve a certain goal. The prime knowledge type in this category is the task. 
Tasks can achieve a particular goal and many goals may share the same task. A task 
represents fixed strategies for achieving problem-solving goals, therefore the task knowledge 
mainly describes the functional side of the knowledge framework. KADS uses the following 
constructs to describe task knowledge:

• task : a composite problem-solving action that can be decomposed into sub-tasks for
problem solving (e.g. systematic-diagnosis and sub-tasks: test-hypotheses, generate- 
hypotheses)\

• control terms : convenient labels for mapping sets of meta-class elements defined in
inference knowledge (e.g. the differential is a set of all active hypotheses);

• task structure : a decomposition into sub-tasks and a specification of the control
dependencies between sub-tasks.
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The decomposition can involve three types of sub-tasks (figure C.4a) : primitive problem
solving tasks (inferences in inference layer), composite problem-solving tasks (a task in task 
layer) and transfer tasks (tasks that require interaction with an external agent). In addition, 
there are four types of transfer tasks. These depend on the flow of ingredient and who takes 
the initiative (figure C.4b). The dependencies between sub-tasks are described in structured 
English, such as the task systematic-diagnosis specification for the audio domain below:

task systematic-diagnosis
goal: find the sm allest com ponent with inconsistent behaviour, if one. 
input: complaint
output: inconsistent-sub-system : sub-part of the system  with inconsistent behaviour
control-terms: differential: se t of currently active hypotheses
task-structure:

systematic-diagnosis(complaint -> inconsistent-sub-system ) = 
se/ec/(complaint - » system-model) 
generate-hypotheses(system -m odel differential)
REPEAT

test-hypotheses(differential - » inconsistent-sub-system) 
generate-hypotheses(inconsistent-sub-system  - » differential)

UNTIL differential = 0

systematic C 
diagnosis

Receive Obtain

selectp< 
system model

T - transfer task

generate C 
hypotheses

test''
hypotheses

decompose 
system model

specifyp selectp obtainT comparep 
norm observable findings difference

a. task tree of systematic diagnosis

t a s k ' System User
•

System
•

User

-*► Flow of Ingredient Provide Present

1 Partition 
betw een agen ts

System User
•

System
•

User

• Initiative marker

b. four types of transfer tasks

Figure C.4 KADS Task Structure

STRATEGIC KNOWLEDGE

The fourth category of knowledge is the strategic knowledge which determines which goals 
are relevant to solve a particular problem. The task knowledge determines how each goal is 
achieved, whereas strategic knowledge concerns the dynamic planning of task execution (i.e. 
the control aspect of knowledge). However, most systems developed with KADS use only 
fixed task decompositions and have little or no strategic knowledge. The study of the nature 
of strategic knowledge remains mainly a research topic.
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C.1.3 KNOWLEDGE REPRESENTATION

The above illustrations of the knowledge framework demonstrate how expertise can be 
denoted by graphics and/or structured text. The diagrammatic representations of domain 
knowledge inference knowledge and task knowledge are shown in figures C.2, C.3 and C.4 
respectively. KADS also supports textual representation by the domain description language 
(DDL). The BNF grammer rules of concept definition in the domain knowledge is given as 
follows:

concept-def ::= c o n c e p t concept-namei
fsub-type-of: concept-name <A concept-name>*$
[properties].

properties ::= p ro p e rtie s : [property-def <* property-def>*]. 
property-def ::= property-namei value-set-def;

[cardinality-def]
[differentiation-defj].

value-set-def ::= n u m b er I in te rae r I natu ra l I s trin g  I b o o lean  I u n iv ersa l I 
nu m b er-ran g e (/7L//77ber. numbed I in teae r-ra n ae (/hteaer. integer I 
{string-value <* string-value> * }. 

cardinality-def ::= card inality : [min nat] [max < nat I infin ite>]:. 
differentiation-def ::= differentiation of property-nameiconcept-name).

The DDL statements allows direct translation onto a set of Prolog predicates, which permits
further experimentation on or execution of the domain knowledge. This is illustrated by the
patient-data concept shown below. The technique is an effective way of organising and
representing method concepts in the knowledge based system itself. In fact, a similar type of
grammer and predicate structure is adopted to store our generic method representation (refer
back to chapter eight).

% T ran sla te  from  DDL s ta te m e n ts : 
concept patient-data; 
concept qualitative-data; 

sub-type-of: patient-data; 
properties:

fever: {absent, present}; 
blood-pressure: {normal, elevated}; 
hypertension: {absent, present};

% To P ro log  C lau ses :
concept(patient_data, D). 
concept(qualitative_data, [patient_data]).

property(qualitative_data, fever, [present, absent]). 
property(qualitative_data, blood-pressure, [normal, elevated]). 
property(qualitative_data, hypertension, [present, absent]).

C.1.4 K N O W L E D G E  A S Q U IS IT IO N  PROCESS

The description of the various models and knowledge types can be seen as the product of 
KBS construction. With respect to the process of KBS construction, KADS provides a
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description of phases, activities and techniques for knowledge engineering. A phase 
represents a stage of the engineering process, and it is related to a number of activities that are 
usually carried out in the phase. An activity applies one or more techniques. For instance, the 
data collection activity can be carried out with the structured interview technique.

KADS distinguishes two phases in building the model of expertise: knowledge identification 
and knowledge modelling. The knowledge identification is a preparation phase before the 
actual construction of the model of expertise can begin, whereas the knowledge modelling 
phase builds the model. The relevant activities and techniques for each phase are tabulated in 
tables C.2 and C.3 respectively.

Products Activities Techniques
expertise data data collection structured interviews
task model task analysis rational task analysis 

work-flow analysis
task feature analysis work-flow analysis 

protocol segmentation
lexicon lexicon construction lexical analysis 

techniques
glossary glossary construction protocol segmentation 

frame editing
draft domain theory concept identification 

relation identification
repertory grid 
card sort

Table C.2 KADS Knowledge Identification

Products Activities Techniques
expertise data data collection think-aloud protocols
strategy - -

task interpretation model selection decision tree
inference interpretation model selection decision tree

model assembly generic sub-task substitution
domain model assembly generic sub-task substitution

building domain structures tree diagramming 
laddering

domain schema definition frame editing
data modelling techniques
segment grouping

model o f expertise 
(above four components)

model validation functional prototyping 
protocol analysis

model differentiation protocol analysis 
generic sub-task substitution 
sub-task expansion

bottom-up model construction goal regression
forward scenario simulation
participant observation

Table C.3 KADS Knowledge Modelling
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The detail of activities and technqiues are not described in this section, they can be found in 
the various literature [Taylor 89] [Tansley 93]. Most of them require a close working 
relationship with the domain expert, such as the work-flow analysis technique in knowledge 
identification, and the model validation activity in knowledge modelling. However, this is 
found to be impractical in method knowledge engineering (refer to chapter ten).

C.2 THE MIKE APPROACH

MIKE (Model-based and Incremental Knowledge Engineering) is a knowledge engineering 
approach based on principles from software engineering and the KADS methodology 
[Neubert 93]. It defines a framework for eliciting, interpreting and implementing knowledge 
in order to build a KBS. MIKE is a typical variation of KADS and some of the techniques 
have been adopted into our IFV model of method acquisition (see chapter ten).

C.2.1 GLOBAL VIEW

The central goal of the MIKE approach is the development of a detailed process model as a 
means to support the knowledge engineering process. The development process is done in a 
cyclic, incremental manner where new observations may lead to refinement, modification or 
completion of the already built-up representations. Various assumptions are made on the basis 
of principles known from software engineering and from the KADS methodology. The four 
global phases are knowledge acquisition, design, implementation and evaluation. They are 
repeated according to the different tasks of the application domain. Knowledge acquisition is 
the main focus of this discussion.

C.2.2 KNOWLEDGE ACQUISITION

Figure C.3 depicts the hierarchical process model of MIKE. The three phases of knowledge 
acquisition involved are: task analysis, model construction and model evaluation.

• The task analysis identifies the overall functionality of the system. Top level system tasks 
are decomposed into subtasks.

• The model contruction phase includes the development and interrelation of different 
models reflecting the desired functionality at different levels of formalisation.

• In the model evaluation the specification is evaluated by testing the operational 
specification using test cases.
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Knowledge Acquisition

Model ConstructionTask Analysis

Elicition

Model Evaluation

Interpretation Formalisation / 
Operationalisation

Model Connection

rough elicitation protocol context developm ent model selection
detailed elicitation interpretation context developm ent model modification

context connection model combination
domain layer construction

Figure C.5 MIKE Hierarchical Process Model

The MIKE approach also presents a network of knowledge elements by a hyper model, 
which handles the informal knowledge with the ability to structure their description. The 
knowledge elements are represented as nodes (protocol node, activity node and concept 
node), which are interrelated by links (date link, refinement link, ordering link, dataflow link, 
description link, is_a link and protocol link). These nodes and links can be combined into so- 
called contexts, thus establishing a special view on specific semantics in the hyper model:

• A protocol context contains all knowledge protocols in order to completely describe the
results of knowledge elicitation.

• An activity context includes all activity nodes and all refinement links between two activity 
nodes. It enables the hierarchy of activity nodes and their subactivity nodes to be viewed.

• An ordering context includes activity nodes which are related by ordering links.

• A concept context encompasses all concept nodes defined in the hyper model.

• A structure context is another view on one hierarchy level of activity nodes.

• A description context establishes a view on the description links together with their 
source-nodes and destination-nodes.

• An interpretation context includes all contexts (except protocol context) and provides a 
complete view of the semiformal representation of the expertise.

MIKE provides a direct mapping of this hyper model to KADS through the model connection 
(see later). Each of these contexts is related to a different notion in the model o f expertise as 
depicted in figure C.4. For instance, each concept in the domain layer refers to a concept 
node in the concept context; a knowledge source in the inference layer is denoted as an 
activity node in the ordering context, which in turn represents the task layer in KADS.
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Hyper Model
Structure Context

Concept Context

ontext

Protocol Context

Domain layer

Model of Expertise

Ij -tJ U—J_______It R k P  Inference layer

While... Task layer

Model Connection
(Formalisation Links)
Context Connection

(Protocol Links)

Figure C.6 MIKE: Examples of Context and Model Connections

The following points describe briefly the four model construction subphases, in which the
different intermediate models are developed in an integrated environment:

• Elicitation means interviewing and observing the expert. MIKE proposes a top-down 
knowledge elicitation by using adequate, informally described problem solving methods 
(PSMs).

• The knowledge protocols resulting from elicitation must be analysed during the 
interpretation step. The result of this phase is a semiformal hyper model that describes 
the main steps of the problem-solving process of the concepts and interactions in the 
application domain.

• In the knowledge formalisation step, the informal expertise in the hyper model is 
formalised. The formal specification is also operational, thus it can be evaluated by 
prototyping.

• The relationships between the hyper model and the formal model of expertise are 
established by a model connection. This gives a mapping between formal and informal 
elements describing the same aspects by using different representation formalisms that are 
part of the documentation of the model of expertise.

For a more detailed description of MIKE, refer to the paper [Neubert 93].
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APPENDIX E: OMT TASK DIAGRAMS

. c perform k  
OMT r

A perform L A perform L >A perform L ^  A specify L >v[ analysis f  " V| systemDeslgn T  ^  M QbjectDesign f  v | Implementation f  "

perform
dynamlcModelling

perform
functionalModelling

perform
objectModelling

modify W perform I  aJ insert L ^
obiectMoideir verifyObjectModel r  M module f  '

perform 
identifyClass

perform perform
IdentifyAssociation organizelnhentance

perform 
identifyAttribute

Figure E.l OMT: Top Level Task Diagram and objectModelling Decomposition

delete
implementationConstruct

delete
IrrelevantClass

insert
class

specify
classToDataDictionary

delete
redundantClass

delete
vagueClass

associationretype
classToAssociation

retype
classToAttribute

operation
classToOperation

class^
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APPENDIX F: OMT MSL STATEMENTS

%% OMT.MSL
%% Method Specification of Object Modelling Technique [Rumbaugh 91]
%% 8.3.96

m ethod omt

productModel
%%  The corresponding concept diagram can be found in diagram D.4 of Appendix D. 

concept objectM odellingTechnique; 
subtypeOf m e th o d ; 
property objectModel [1,1,0,1]; 
property dynamicModel [1,1,0,1]; 
property functionalModel [1,1,0,1]; 

concept objectM odel;
subtypeOf frag m en t; 
property module [1,1,1 ,n ]; 
property objectDiagram [1,1,1 ,n ]; 
property dataDictionary [1,1,1 ,n ] ; 

concept objectD iagram ;
subtypeOf d iag ram ; 
property object [1,1,1 ,n ] ; 

concept dataD ictionary;
subtypeOf te x t ; 

concept m o d u le ;
property shee t [1,1,1 ,n ] ; 

concept s h e e t ; 
concept s ig n a tu re ; 
concept c lassC onstra in t; 
concept o p era tio n ;

property signature [1,1,0,1 ] ;  
concept abstractO peration ;

subtypeOf opera tio n ; 
concept classO peration ;

subtypeOf o p era tio n ; 
concept derivedO peration;

subtypeOf o p era tio n ; 
concept a ttribu te ; 
concept derivedA ttribute;

subtypeOf a ttribu te ; 
concept classA ttribute;

subtypeOf a ttribu te ; 
concept object a b s tra c t;

property attribute [1,1,0 ,n ] ; 
concept in s tan ce ;

subtypeOf o b jec t; 
concept c la s s ;

subtypeOf o b jec t; 
property classConstraint [1,1,0,1]; 

concept ab strac tC lass;
subtypeOf c la s s ; 

concept derivedC lass;
subtypeOf c la s s ; 

concept m e taC la ss ;
subtypeOf c la s s ;
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concept relationship a b s tra c t; 
subtypeOf link ; 
source object [0fnf1,1 ] ;  
target object [0 ,n ,1 ,1]; 

concept instantiation;
subtypeOf relationship; 
target instance [0 ,n ,1 ,1 j; 

concept generalisation ;
subtypeOf relationship; 
property discriminator [1,1,0,1]; 

concept overlappingG eneralisation;
subtypeOf generalisation ; 

concept discrim inator; 
concept asso c ia tio n ;

subtypeOf relationship; 
property associationConstraint [1,1,0,1]; 
property linkAttribute [1,1,0,1]; 
property linkObject [1,1,0,1 j ; 
property ordering [1,1,0,1]; 
property role # [1,1,0,1]; 
property multiplicity# [1,1,0,1]; 
property operationPropagation [1,1,0,1]; 

concept derivedA ssociation;
subtypeOf a sso c ia tio n ; 

concept qualifiedA ssociation; 
subtypeOf a sso c ia tio n ; 
property qualifier [1,1,0,1]; 

concept role a b s tra c t; 
concept so u rceR o le ;

subtypeOf ro le ; 
concept ta rg e tR o le ;

subtypeOf ro le ; 
concept linkO bject; 
concept linkAttribute; 
concept associationC onstrain t; 
concept multiplicity a b s tra c t; 
concept sourceMultiplicity;

subtypeOf multiplicity; 
concept targetMultiplicity;

subtypeOf multiplicity; 
concept aggregation a b s tra c t; 

subtypeOf relationship; 
property sourceMultiplicity [1,1,0,1]; 
property targetMultiplicity [1,1,0,1 ] ;  
property operationPropagation [1,1,0,1]; 

concept fixedA ggregation;
subtypeOf agg reg atio n ; 

concept variableA ggregation;
subtypeOf agg regation ; 

concept resursiveA ggregation;
subtypeOf agg reg atio n ; 

concept o rdering ; 
concept qualifier; 
concept operationPropagation; 
reference discriminator attribute [0,1,1,1]; 
reference linkObject object [0,1,1,1]; 
reference linkAttribute attribute [0,1,1,1]; 
reference objectDiagram shee t [1,1,1,1];

concept dynam icM odel;
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subtypeOf frag m en t; 
property scenario ;
property stateDiagram  [1,1,1 ,n ] ; 

concept s ta teD iag ram ;
subtypeOf d iag ram ; 
property startS tate [1,1,0,1]; 
property in terstate [1,1,1 ,n ]; 
property stopState [1,1,0,1]; 

concept s tate  abstract;
property activity [1,1,0,1]; 
property entryAction [1,1,0,1]; 
property exitAction [1,1,0,1]; 
property internalAction [1,1,0 ,n ] ; 

concept s ta r tS ta te ;
subtypeOf s t a t e ; 

concept in te rs ta te ;
subtypeOf s t a t e ; 

concept s to p S ta te ;
subtypeOf s t a te ; 

concept action a b s tra c t; 
concept entryA ction;

subtypeOf a c tio n ; 
concept exitAction;

subtypeOf a c tio n ; 
concept internalAction;

subtypeOf a c tio n ; 
concept eventA ction;

subtypeOf ac tio n ; 
concept activ ity ; 
concept autom aticTransition;

subtypeOf transition ; 
concept guardCondition; 
concept deleg a tio n ; 
concept eventA ttribute; 
concept e v e n t ;

property eventAttribute [1,1,0 ,n ]; 
concept ev en tT race ; 
concept sc e n a rio ;

property eventTrace [1,1,1,1]; 
concept eventG eneralisa tion ; 

subtypeOf link; 
source event [0 ,n ,1 ,1]; 
target event [0 ,n ,1 ,1]; 

concept transition ;
subtypeOf link ;
source startState, in terstate [0 ,n ,0 ,1]; 
target in terstate, stopState [0 ,n ,0 ,1]; 
property delegation I [0,1,0,1]; 
property event I [0,1,0,1]; 
property guardCondition I [0,1,0,1]; 

concept concurrentSubdiagram ; 
subtypeOf g ro u p ; 
host state  [0,1,1,1]; 
elem ent stateD iagram  [0,1,1 ,n ]; 

concept m ergingControl; 
subtypeOf g ro u p ; 
host transition [0,1,1 ,n ] ; 
elem ent transition [0,1,1,1]; 

concept nestedS tateD iagram ; 
subtypeOf g ro u p ;
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host sta te  [0,1,1,1]; 
elem ent stateD iagram  [0,1,1,1]; 

concept splittingControl; 
subtypeOf g ro u p ; 
host transition [0,1,1,1]; 
elem ent transition [0,1,1 ,n ] ; 

reference activity operation [0,1,1,1]; 
reference action operation [0,1,1,1]; 
reference delegation object [0,1,1,1]; 
reference eventAttribute attribute [0,1,1,1]; 
reference eventTrace event [1,1,1 ,n ] ; 
reference dataDictionary association [1,1,1 ,n ]; 
reference dataDictionary attribute [1,1,1 ,n ] ; 
reference dataDictionary object [1,1,1 ,n ]; 
reference dataDictionary operation [1,1,1 ,n ];

concept functionalM odel;
subtypeOf frag m en t; 
property dataFlowDiagram [1,1,1 ,n ] ; 

concept dataFlow D iagram ; 
subtypeOf d iag ram ; 
property actor [1,1,0 ,n ]; 
property dataStore [1,1,0 ,n ]; 
property process [1,1,1 ,n ] ; 

concept a c to r ; 
concept d a t a ; 
concept d a ta S to re ; 
concept p ro c e s s ; 
concept dataFlow Com position; 

subtypeOf g ro u p ; 
host dataFlow [0,1,2 ,n ]; 
elem ent dataFlow [0,1,1,1]; 

concept dataFlowD ecom position; 
subtypeOf g ro u p ; 
host dataFlow [0,1,1,1 ] ;  
elem ent dataFlow [0 ,1 ,2 ,n]; 

concept nestedD ataFlow D iagram ; 
subtypeOf g ro u p ; 
host process [0,1,1,1]; 
elem ent dataFlowDiagram [0,1,1,1]; 

concept controlFlow ; 
subtypeOf link ; 
source process [0 ,n,1,1]; 
target process [0 ,n ,1 ,1]; 

concept dataF low ;
subtypeOf link ;
source actor, dataStore, process [0 ,n ,0 ,1]; 
target actor, dataStore, process [0 ,n ,0 ,1]; 
property data  [1,1,1 ,n ]; 

reference actor object [0,1,1,1]; 
reference data attribute [0,1,1,1]; 
reference dataS tore object [0,1,1,1]; 
reference process operation [0,1,1 ,n ] ;

endProductM odel

processM odel
%% The corresponding task  diagram s can be found in Appendix E.

task  objectModellingTechnique perform(objectM odellingTechnique); 
precond [problem Statem ent];
postcond [analysis, system Design, objectDesign, im plem entation];
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com pose [analysis, system Design, objectDesign, im plem entation]; 
task  analysis perform (analysis);

precond [problem Statem ent]; 
postcond [analysis];
com pose parallel [objectModelling, dynamicModelling, functionalM odelling]; 

task  system Design perform (system D esign); 
precond [analysis]; 
postcond [system D esign]; 
com pose [...]; 

task  objectDesign perform (objectD esign); 
precond [system D esign]; 
postcond [objectDesign]; 
com pose [...];

task  implementation specify(objectDesign, im plem entation); 
precond [objectDesign]; 
postcond [im plem entation];

task  objectModelling perform(objectM odelling); 
precond [problem Statem ent]; 
postcond [objectM odel];
com pose [identifyElement, organiselnheritance, testA ccessPath, 

verifyObjectModel, groupClasslntoM odule]; 
task  dynamicModelling perform(dynamicM odelling); 

precond [problem Statem ent]; 
postcond [dynamicM odel]; 
com pose [...]; 

task  functionalModelling perform(functionalModelling); 
precond [problem Statem ent]; 
postcond [functionalModel]; 
com pose [...];

task  identifyElement perform (identifyElem ent); 
precond [problem Statem ent]; 
postcond [objectM odel];
com pose parallel [identifyClass, identifyAssociation, identifyAttribute]; 

task  identifyClass perform (identifyClass); 
precond [problem Statem ent]; 
postcond [class, instance, ob ject]; 
com pose [insertClass, verifyClass, specifyC lass]; 

task  identifyAssociation perform(identifyAssociation); 
precond [problemStatement, c la s s ] ; 
postcond [association];
com pose [insertAssociation, verify Association, specifyA ssociation]; 

task  identifyAttribute perform(identifyAttribute); 
precond [problemStatement, c la s s ] ; 
postcond [attribute];
com pose [insertAttribute, insertDerivedAttribute, insertLinkAttribute, 

verifyAttribute, specifyAttribute];

task  organiselnheritance perform (organiselnheritance); 
precond [problemStatement, c la s s ] ; 
postcond [generalisation];
com pose [insertGeneralisation, adjustAssociationBylnheritance, 

adjustAttributeBylnheritance]; 
task  testA ccessPath  modify(objectModel); 

precond [objectM odel]; 
postcond Q ;

task  verifyObjectModel perform(verifyObjectM odel); 
precond [objectM odel]; 
postcond [];
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com pose parallel [checkClass, checkAssociation, checkAttribute]; 
task  groupClasslntoM odule insert(m odule); 

precond [objectM odel]; 
postcond [module, s h e e t] ;

task  insertC lass Insert(class);
precond [problem Statem ent]; 
postcond [c la ss]; 

task  verifyClass do(verifyC lass);
precond [problemStatement, c la s s ] ; 
postcond D ;
refine [deleteRedundantC lass, deletelrrelevantClass, deleteV agueC lass,

retypeClassToAttribute, retypeClassToOperation, retypeClassToAssociation, 
deletelm plem entationC onstruct]; 

task  specifyClass specify(class, dataD ictionary); 
precond [problemStatement, c la s s ] ; 
postcond [dataDictionary];

task  deleteR edundantC lass d e le te (c lass); 
precond [c la ss]; 
postcond D ; 

task  deletelrrelevantC lass d e le te (c lass); 
precond [c la ss]; 
postcond Q ; 

task  deleteV agueC lass de le te (c lass); 
precond [c la ss]; 
postcond Q ;

task  retypeClassToAttribute retype(class, a ttribu te); 
precond [c la ss]; 
postcond [attribute]; 

task  retypeClassToOperation retype(class, operation); 
precond [c la ss]; 
postcond [operation]; 

task  retypeClassToAssociation retype(class, assoc ia tion ); 
precond [c la ss]; 
postcond [association]; 

task  deletelm plem entationConstruct d e le te (c lass); 
precond [c la ss]; 
postcond U ;

task  insertAssociation, insert(association); 
precond [problemStatement, c la s s ] ; 
postcond [association]; 

task  verifyAssociation do(verifyAssociation); 
precond [association]; 
postcond Q ;
refine [adjustAssociationBetweenEliminatedClass, deletelrrelevantAssociation, 

retypeAssociationToOperation, modifyTernaryAssociation, 
deleteRedundantAssociation, 
retypeRedundantAssociationToDerivedAssociation, 
modifyMisnamedAssociation, insertRoleName, 
retypeAssociationToQualifiedAssociation, insertMultiplicity]; 

task  specifyAssociation specify(association, dataD ictionary); 
precond [association]; 
postcond [dataDictionary];

task  adjustAssociationBetweenEliminatedClass adjust(association, c la s s ) ; 
precond [association, c la s s ] ; 
postcond Q ;

task  deletelrrelevantAssociation delete(associa tion);
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precond [association]; 
postcond \ \ ;

task  retypeAssociationToOperation retype(association, operation); 
precond [association]; 
postcond [operation]; 

task  modifyTernaryAssociation modify (association); 
precond [association]; 
postcond □ ;

task  deleteRedundantAssociation delete(associa tion); 
precond [association]; 
postcond Q ;

task  retypeAssociationToDerivedAssociation retype(association, derivedA ssociation); 
precond [association]; 
postcond [derivedAssociation]; 

task  modifyMisnamedAssociation m odify(association); 
precond [association]; 
postcond □ ; 

task  insertRoleName insert(ro le); 
precond [association]; 
postcond [role];

task  retypeAssociationToQualifiedAssociation retype(association, qualifiedA ssociation); 
precond [association]; 
postcond [qualifiedAssociation]; 

task  insertMuitiplicity insert(multiplicity); 
precond [association]; 
postcond [multiplicity];

task  insertAttribute insert(attribute);
precond [problemStatement, c la s s ] ; 
postcond [attribute]; 

task  insertDerivedAttribute insert(derivedAttribute); 
precond [problemStatement, c la s s ] ; 
postcond [derivedAttribute]; 

task  insertLinkAttribute insert(linkAttribute); 
precond [problemStatement, c la s s ] ; 
postcond [linkAttribute]; 

task  verifyAttribute do(verifyAttribute); 
precond [attribute]; 
postcond D ;
refine [retypeAttributeToObject, retypeAttributeToQualifier,

retypeAttributeToOperation, deleteAttributeAsldentifier, 
retypeAttributeToLinkAttribute, deleteAttributeAslnternalValue, 
deleteAttributeAsFineDetail, adjustC lassFrom A ttribute]; 

task  specifyAssociation specify(attribute, dataD ictionary); 
precond [attribute]; 
postcond [dataDictionary];

task  retypeAttributeToObject retype(attribute, o b jec t); 
precond [attribute]; 
postcond [object]; 

task  retypeAttributeToQualifier retype(attribute, qualifier); 
precond [attribute]; 
postcond [qualifier]; 

task  retypeAttributeToOperation retype(attribute, opera tion ); 
precond [attribute]; 
postcond [operation]; 

task  deleteAttributeAsldentifier delete(attribute); 
precond [attribute]; 
postcond n ;

task  retypeAttributeToLinkAttribute retype(attribute, linkAttribute);



precond [attribute]; 
postcond [linkAttribute]; 

task  deleteAttributeAslnternalValue delete(attribute); 
precond [attribute]; 
postcond 0 ;

task  deleteAttributeAsFineDetail delete(attribute); 
precond [attribute]; 
postcond □ ;

task  adjustClassFromAttribute adjust(class, attribu te); 
precond [attribute]; 
postcond [c la ss];

task  insertGeneralisation perform (insertG eneralisation); 
precond [problem Statem ent]; 
postcond [generalisation];
com pose parallel [inheritanceFromGeneralisation, inheritanceFrom Specialisation, 

insertM ultiplelnheritance]; 
task  adjustAssociationBylnheritance adjust(association, generalisation); 

precond [association, generalisation]; 
postcond □ ;

task  adjustAttributeBylnheritance adjust(attribute, generalisation); 
precond [attribute, generalisation]; 
postcond D ;

task  inheritanceFromGeneralisation insert(generalisation); 
precond [problem Statem ent]; 
postcond [generalisation]; 

task  inheritanceFromSpecialisation insert(generalisation); 
precond [problem Statem ent]; 
postcond [generalisation]; 

task  insertMultiplelnheritance insert(generalisation); 
precond [problem Statem ent]; 
postcond [generalisation];

task  checkC lass do(checkC lass);
precond [class, objectM odel]; 
postcond [];
refine [addClasslnAsymmetryAssociation, splitClasslnDisparateAttribute, 

splitClasslnGeneralisationDifficulty, addM issingTargetClass, 
addG eneralisedClass, retypeAssociationToClass, 
delete llnnecessaryC lass]; 

task  checkAssociation do(checkAssociation); 
precond [association, objectM odel]; 
postcond Q ;
refine [addAssociationlnMissingPath, removeRedundantAssociation, 

adjustAssociationlnHierarchy]; 
task  checkAttribute do(checkAttribute); 

precond [attribute, objectM odel]; 
postcond Q ;
refine [retypeAttributeToQualifiedAssociation];

task  addClasslnAsymmetryAssociation adjust(class, a ssoc ia tion ); 
precond [class, assoc ia tion]; 
postcond □ ;

task  splitClasslnDisparateAttribute adjust(class, a ttribu te); 
precond [attribute, c la s s ] ; 
postcond [];

task  splitClasslnGeneralisationDifficulty adjust(class, generalisation); 
precond [class, generalisation]; 
postcond □ ;



task  addM issingTargetClass adjust(class, operation); 
precond [class, operation]; 
postcond n ;

task  addG eneralisedC lass adjust(class, generalisation); 
precond [class, generalisation]; 
postcond [];

task  retype AssociationToClass retype (association, c la s s ) ; 
precond [association, c la s s ] ; 
postcond [c la ss]; 

task  deleteU nnecessaryC lass d e le te (c lass); 
precond [c la ss]; 
postcond [];

task  addAssociationlnM issingPath insert(association); 
precond [association]; 
postcond D ;

task  removeRedundantAssociation delete(associa tion); 
precond [association]; 
postcond Q ;

task  adjustAssociationlnHierarchy ad]ust(association, generalisation); 
precond [association, generalisation]; 
postcond Q ;

task  retypeAttributeToQualifiedAssociation retype(attribute, qualifiedA ssociation); 
precond [attribute]; 
postcond [qualifiedAssociation];

%% The task  definitions of Dynamic Model, Functional Model in Analysis P hase ,
%% and those in the System  Design & Object Design P h ases  have been skipped here.

endProcessM odel

heuristicModel
% CONCEPT HEURISTICS 
heuristic ab s trac tC la ss ;
text 'Abstract c lass is a  class that cannot have direct instances but w hose d escendan ts 

can have in tsan ce s .'; 
link abstractOperation, class, generalisation ;
heuristic abstractO peration ;
text 'Abstract operation is an operation defined but not implemented by an abstract

class. The operation must be implemented by all concrete descenden t c la s s e s . '; 
link abstractC lass, class, generalisation ;
heuristic a c tio n ;
text 'An action is an instantaneous operation. Actions are  associa ted  with events and  are

usually formal in n a tu re .'; 
link action, activity, entryAction, exitAction, internalAction, operation ;
heuristic activ ity ;
text 'An activity is an operation that takes time to com plete. Activities a re  asso c ia ted  with

sta tes  and represent real-world accom plishm ents.'; 
link action, o p era tio n ;
heuristic a c to r ;
text 'Actor object is an active object that drives the data flow graph by producing or

consum ing v a lu e s . '; 
link dataFlowDiagram, o b jec t;
heuristic ag g reg atio n ;
text 'Aggregation is a  special form of association, betw een a  whole and its parts, in which

the whole is com posed of the p a r ts . '; 
link fixedAggregation, resursiveAggregation, variableAggregation ;
heuristic a sso c ia tio n ;
text 'Association is a  relationship am ong instances of two or more c la sse s  describing a
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group of links with common structure and common sem an tic s . '; 
link associationConstraint, derivedAssociation, linkAttribute, multiplicity,

qualifiedAssociation, qualifier, ro le ; 
heuristic associationC onstrain t;
text 'Association constraint is a  functional relationship of association; a  sta tem ent about

som e condition or relationship that must be maintained a s  t ru e . '; 
link association, linkAttribute, multiplicity, qualifier;
heuristic a ttrib u te ;
text 'An attribute is a  nam ed property of a  c lass describing a  data value held by each

object of the c la s s . '; 
link class, o b jec t;
heuristic autom aticTransition;
text 'Automatic transition is an  unlabelled transition that automatically fires when the

activity associa ted  with the source state  is com ple ted .'; 
link event, guardcondition, transition ;
heuristic c l a s s ;
text 'A class is a  description of a  group of objects with similar properties, com m on

behaviour, common relationships and common sem an tic s .'; 
link abstractC lass, classConstraint, m etaC lass, o b jec t;
heuristic classA ttribute;
text 'C lass attribute is an  attribute w hose value is common to a  class of objects rather

than a  value peculiar to each  in s tan ce .'; 
link attribute, c la s s ;
heuristic c lassC onstra in t;
text 'C lass constraint is a  functional relationship of class; a  statem ent about som e

condition or relationship that must be maintained a s  t ru e . '; 
link c la s s ;
heuristic classO peration ;
text 'C lass operation is an operation on a  class, rather than on instances of the class. An

instance creation operation is a  common ex am p le .'; 
link class, o peration ;
heuristic concurrentSubdiagram ;
text 'Concurrency within the state  of a  single object arises when the object can  be

partitioned into subse ts  of attributes or links, each  of which has its own su b d iag ram .'; 
link state, sta teD iagram ;
heuristic controlFlow ;
text 'Control flow is a  boolean value that affects w hether a  process is e x e c u te d . ';
link p ro c e s s ;
heuristic dataD ictionary;
text 'A data  dictionary is a  textual description of each  class, its associations, attributes 

and opera tions.'; 
link association, attribute, class, operation ;
heuristic dataF low ;
text 'Data flow is the connection betw een the output of one object or p rocess and  the

input to an o th e r .'; 
rule not( source(actor) and targe t(dataS to re)) or

not( source(dataStore) and target(actor)) ;  
link actor, dataFlowDecomposition, dataFlowDiagram, dataStore, p rocess ;
heuristic dataFlow Decom position;
text 'Data flow decomposition split an aggregate data on a  data  flow into its

co m p o n en ts .'; 
link dataFlow, dataFlowCom position;
heuristic dataFlow D iagram ;
text 'A data  flow diagram is a  graphical representation of the functional model, showing

dependencies between values and the computation of output values from input 
values without regard for when or if the functions are e x e c u te d .'; 

link dataFlow, functionalModel, nestedDataFlowDiagram, process ;
heuristic d a ta S to re ;
text 'A data store is a  passive object that sto res data  for later a c c e s s . ';
link dataFlowDiagram, p ro c e s s ;
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heuristic delegation
text 'Delegation is an implementation m echanism  in which an object, responding to an

operation on itself, forwards the operation to another o b jec t.'; 
rule not( owner(autom aticTransition)) ;
link object, transition ;
heuristic derivedA ssociation;
text 'Derived association is an  association that is defined in term s of other a sso c ia tio n s .';
link asso c ia tio n ;
heuristic derivedAttribute;
text 'Derived attribute is an  attribute that is com puted from other a ttrib u tes .';
link attribute ;
heuristic discrim inator;
text 'A discriminator is an  attribute of enum eration type that indicates which property of a

class is being abstracted by a  particular generalisation .'; 
link generalisation ;
heuristic dynamicModel;
text 'A dynamic model describes the aspec ts  of a  system  concerned with control,

including time, sequencing of operations and interaction of o b je c ts . '; 
link scenario, stateTransitionD iagram ;
heuristic entryA ction;
text 'Entry action permits action to be associated  with a  state, to indicate all the

transitions entering the s ta te . '; 
link action, exitAction;
heuristic e v e n t;
text 'An event is something that happens instantaneously at a  point in tim e .';
rule not( owner(autom aticTransition)) .
link dynamicModel, eventGeneralisation, eventTrace, scenario, s ta te , transition ;
heuristic eventG eneralisa tion ;
text 'Events can be organised into a  generalisation hierarchy with inheritance of event

a ttribu tes.'; 
link e v e n t ;
heuristic ev en tT race ;
text 'An event trace is a  diagram that show s the sen d er and receiver of events and the

sequence of e v e n ts . '; 
link event, sc e n a rio ;
heuristic exitAction;
text 'Exit action permits action to be associa ted  with a  state, to indicate all the transitions

exiting the s ta te . '; 
link action, entryA ction;
heuristic fixedA ggregation;
text 'Fixed aggregation has an  aggregate with a  predefined num ber and types of

co m p o n en ts .';
link aggregation, recursiveAggregation, variableAggregation ;
heuristic functionalM odel;
text 'A functional model describes the aspec ts  of a  system  that transform values using

functions, mappings, constraints and functional d ep en d en c ie s .'; 
link dataFlow D iagram ;
heuristic generalisation ;
text 'Generalisation is the relationship between a  class and one or more refined or

specialised versions of i t . '; 
link discrim inator;
heuristic guardCondition;
text 'Guard condition is a  boolean expression that m ust be true in order for a  transition to

o cc u r.'; 
link transition ;
heuristic in s tan ce ;
text 'An instance is an object described by a  c la s s . ';
link class, instantiation;
heuristic instantiation;
text 'Instantiation is the process of creating instances from c la s s e s . ';
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link class, instance, o b jec t;
heuristic linkAttribute;
text 'A link attribute is a  nam ed data value held by each  link in an a sso c ia tio n .';
link association, a ttribu te ;
heuristic m ergingControl;
text 'Concurrent subdiagram s in a  composite state are automatically term inated when

the m erge transition fires. This is known a s  merging of con tro l.';
link concurrentSubdiagram , splittingControl, transition ;
heuristic m e taC la ss ;
text 'A m etaclass is a  c lass describing other c la s s e s . ';
link c la s s ;
heuristic m o d u le ;
text 'Module is a  coherent subset of a  system  containing a  tightly bound group of c la sse s

and their relationship.'; 
link objectModel, s h e e t ;
heuristic multiplicity;
text 'Multiplicity is the num ber of instances of one class that may relate to  a  single

instance of an associated  c la s s . '; 
link aggregation, asso c ia tio n ;
heuristic nestedD ataFlow D iagram ;
text 'A process can be expanded into a  lower-level data flow d iag ram .';
link DataFlowDiagram, p ro c e s s ;
heuristic nestedS tateD iagram ;
text 'S tates and events can both be expanded into nested  state  diagram s to show  greater

d e ta il. '; 
link state, sta teD iagram ;
heuristic o b je c t;
text 'An object is a  concept, abstraction or thing with crisp boundaries and  m eanings for

the problem at hand. It is an instance of a c la s s . '; 
link class, instance,objectDiagram;
heuristic objectD iagram ;
text 'An object diagram is a  graphical representation of the object model showing

relationships, attributes and opera tions.'; 
link object, objectModel, s h e e t ;
heuristic objectM odel;
text 'An object model describes the structure of the objects in a  system  including their

identity, relationships to other objects, attributes and o p era tio n s.'; 
link module, objectD iagram ;
heuristic objectM odellingTechnique;
text 'Object Modelling Technique is an object-oriented developm ent m ethodology that

u ses  object, dynamic and functional models throughout the developm ent life cycle. 
Abbreviated a s  O M T.'; 

link dynamicModel, functionalModel, objectM odel;
heuristic o p era tio n ;
text 'An operation is a  function or transformation that may be applied to objects in a

c la s s . ';
link action, activity, object, signature ;
heuristic operationPropagation;
text 'Operation propagation is the automatic application of an operation to selec ted

objects in a  network when the operation is applied to som e starting object in the 
netw ork.'; 

link aggregation, asso c ia tio n ;
heuristic p ro c e s s ;
text 'P rocess is something that transform s data v a lu e s . ';
link controlFlow, dataFlow, dataFlowDiagram ;
heuristic qualifiedAssociation;
text 'A qualified association is an association that relates two c lasses  and  a  qualifier; a

binary association in which the first part is a  com posite comprising a  c lass  and 
qualifier, and the second part is a  c la s s . '; 

link association, qualifier;
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heuristic qualifier;
text 'A qualifier is an attribute of an object that distinguishes am ong the se t of objects at 

the "many" end of an  asso c ia tio n .'; 
link qualifiedA ssociation;
heuristic recursiveA ggregation;
text 'Recursive aggregation has an aggregate that contains, directly or indirectly, an

instance of the sam e kind of ag g re g a te . '; 
link aggregation, fixedAggregation, variableAggregation ;
heuristic ro le ;
text 'A role is a  direction across an  association, which is particularly useful in dealing with 

association betw een objects of the sam e c la s s . '; 
link association, o b jec t;
heuristic sc e n a rio ;
text 'A scenario is a  sequence of events that occur during one particular execution of a  

sy s te m .'; 
link dynamicModel, ev en tT race ;
heuristic s h e e t ;
text 'A sh ee t is the mechanism  for breaking large object models into a  series of p a g e s . ';
link module, objectD iagram ;
heuristic s ig n a tu re ;
text 'A signature is the num ber and types of its argum ents and the type of its re su lt. ';
link o p era tio n ;
heuristic splittingControl;
text 'A transition on an event can split into concurrent parts, one to each  concurrent

subdiagram . This is known as  splitting of contro l.'; 
link concurrentSubdiagram , mergingControl, transition ;
heuristic s t a t e ;
text 'A state  is the values of the attributes and links of an object at a  particular tim e .';
link action, activity, event, nestedStateD iagram , stateDiagram , transition ;
heuristic sta teD iag ram ;
text 'A sta te  diagram is a  directed graph in which nodes represent system  s ta te s  and  arcs

represent transitions between s ta te s . '; 
link concurrentSubdiagram , dynamicModel, nestedStateD iagram  ;
heuristic transition ;
text 'A transition is a  change of state  caused  by an e v e n t. ';
rule not( source(startState) and targe t(stopS tate)) ;
link automaticTransition, delegation, event, guardCondition, mergingControl,

splittingControl, s t a t e ; 
heuristic variableA ggregation;
text 'Variable aggregation h as an aggregate with a  finite num ber of levels but a  varying

num ber of p a r ts . '; 
link aggregation, fixedAggregation, recursiveAggregation ;

%% TASK HEURISTICS 
heuristic an a ly s is ;
text 'Analysis is a  stage in the developm ent cycle in which a  real-world problem is

exam ined to understand its requirem ents without planning the im plem entation .'; 
rule => perform (analysis);
link implementation, objectDesign, system Design ;
heuristic im plem entation;
text 'A stage  in the developm ent cycle in which a  design is realised in an  executable

form, such a s  a  programming language or h a rd w are .'; 
rule => specify(im plem entation);
link analysis, objectDesign, system Design ;
heuristic ob jectD esign;
text 'An object design is a  stage of the developm ent cycle during which the

implementation of each class, association, attribute and operation is d e te rm in ed .'; 
rule => perform (objectD esign);
link analysis, implementation, system Design ;
heuristic system D esign ;

F.13



text 'System  design is the first stage of design, during which high-level decisions are
m ade about the overall structure of the system , its architecture and  the strategies 
used to implement the sy s te m .'; 

rule => perform (system D esign);
link analysis, implementation, objectDesign ;

heuristic identifyC lass;
text 'Identifying relevant c lasses  from the application domain. O bjects include physical

entities a s  well a s  concepts; avoid com puter implementation co n stru c ts .'; 
rule => perform (identifyClass);
link class, o b jec t;
heuristic in se rtC lass;
text 'Listing candidate c lasses  found in the written description of the problem. C lasses

often correspond to nouns. Don't worry much about inheritance or high-level c lasses; 
first get specific c lasses  right so  that you don't subconsciously suppress detail in an 
attem pt to fit a  preconceived s tru c tu re .'; 

rule 'listing candidate c lasses  found in the written description of the problem'
=> in sert(c lass); 

link class, o b je c t;
heuristic deleteR edundan tC lass;
text 'If two c lasses  express the sam e information, the most descriptive one should be

k e p t. ';
rule 'two c lasses  express the sam e information’ => d e le te (c lass);
link class, o b jec t;
heuristic delete lrrelevantC lass;
text 'If a  c lass has little or nothing to do with the problem, it should be e lim inated .';
rule 'a  c lass h as little or nothing to do with the problem' => d e le te (c la ss);
link class, o b jec t;
heuristic dele teV agueC lass;
text 'A c lass should be specific. Som e tentative c lasses  may have ill-defined boundaries

or be too broad in s c o p e . '; 
rule 'a  c lass has ill-defined boundaries or be too broad in scope ' => d e le te (c la ss );
link class, o b jec t;
heuristic retypeClassToAttribute;
text 'N am es that primarily describe individual objects should be restated  a s  a ttrib u te s .';
rule 'nam es that primarily describe individual objects' => retype(class,attribu te);
link class, object;
heuristic retypeC lassT oO peration;
text 'If a  nam e describes an operation that is applied to objects and not m anipulated in its

own right, then it is not a  c la s s . '; 
rule 'a  nam e describes an operation that is applied to objects'

=> retype(class, operation); 
link class, o b jec t;
heuristic retypeClassToA ssociation;
text 'The nam e of a  c lass should reflect its intrinsic nature and not a  role that it plays in

an assoc ia tion .';
rule 'nam e of a  class should reflect its intrinsic nature and not a  role'

=> retype(class,association); 
link class, o b jec t;
heuristic deletelm plem entationC onstruct;
text 'Constructs extraneous to the real world should be eliminated from the analysis

model.';
rule 'constructs extraneous to the real world' => d e le te (c lass);
link class, o b jec t;
heuristic spec ifyC lass;
text 'Isolated words have too many interpretations, so prepare a data  dictionary for all

c lasses  and o b jec ts .'; 
rule => specify(class,dataDictionary);
link class, dataD ictionary;
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heuristic identifyAssociation;
text 'Identify associations betw een classes. Any dependency betw een two or more

c lasse s  is an association; a  reference from one class to another is an a sso c ia tio n .'; 
rule => perform(identifyAssociation); 
link association, c la s s ;
heuristic insertA ssociation;
text 'Extract all the candidates from the problem statem ent, refine and  distinguish 

betw een association and aggregation in a  later s ta g e . '; 
rule 'extract all associations from the problem statem ent' => insert(association);
link association, c la s s ;
heuristic adjustAssociationBetweenElim inatedClass;
text 'If one of the c lasses  in the association has been eliminated then association m ust be

eliminated or restated in term s of other c la s s e s . '; 
rule 'one of the c lasses  in the association has been eliminated'

=> adjust(association, c la s s ) ; 
link association, c l a s s ;
heuristic deletelrrelevantA ssociation;
text 'Eliminate any associations that are outside the problem domain or deal with

implementation co n stru c ts .'; 
rule 'any associations that are outside the problem domain or deal with implementation

constructs' => delete(associa tion); 
link association, c l a s s ;
heuristic retypeAssociationToOperation;
text 'An association should describe a  structural property of the application domain, not a

transient e v e n t. ';
rule 'an association that describes a transient event' => retype (association, o p era tio n );
link association, class, operation ;
heuristic m odifyTernaryAssociation;
text 'Most associations between three or more c lasses  can be decom posed into binary

associations or phrased a s  qualified asso c ia tio n s .'; 
rule 'associations between three or more c lasses  that may be decom posed into binary

associations' => modify(association); 
link association, c l a s s ;
heuristic deleteR edundantA ssociation;
text 'Omit associations that can be defined in term s of other associations b ecau se  they

are redundan t.';
rule 'associations that can be defined in term s of other associations'

=> delete(association); 
link association, class, keepRedundantAssociation ;
heuristic retypeRedundantAssociationToDerivedAssociation;
text 'Retype redundant association to derived association if it is useful in the real world

and in d e s ig n .';
rule 'a  redundant association that is useful in the real world and in design'

=> retype(association,derivedAssociation); 
link association, class, deleteRedundantAssociation ;
heuristic m odifyM isnam edAssociation;
text 'N am es are important to understanding and should be chosen with great care. Don't

say  how or why a  situation cam e about, say  what it i s . ' ; 
rule 'renam e association to say  what it is' => modify(association);
link association, c la s s ;
heuristic insertR oleN am e;
text 'Add role nam es where appropriate. The role nam e describes the role that a  c lass in

the association plays from the point of view of the other c la s s . '; 
rule 'add role nam es where appropriate' => insert(ro le);
link association, class, role ;
heuristic retypeAssociationToQualifiedAssociation;
text 'Most nam es are not globally unique, a  qualifier distinguishes objects on the "many"

side of an asso c ia tio n .'; 
rule 'add qualifier to distinguish objects on the "many" side of an association'

=> retype(association,qualifiedAssociation);
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link association, class, qualifiedAssociation, qualifier; 
heuristic insertMultiplicity;
text 'Specify multiplicity, but don't put too much effort into getting it right, a s  multiplicity

often changes during an a ly s is .'; 
rule 'specify multiplicity of associations' => insert(multiplicity);
link association, multiplicity;
heuristic specifyA ssociation;
text 'Isolated words have too many interpretations, so  prepare a  data dictionary for all

a sso c ia tio n s .'; 
rule => specify(association,dataD ictionary);
link association, dataD ictionary;

heuristic identifyAttribute;
text 'Identify attributes, which are properties of individual o b jec ts . ';
rule 'identify the properties of individual objects' => perform(identifyAttribute);
link attribute, c l a s s ;
heuristic insertA ttribute;
text 'Insert attributes that directly related to a  particular application, but do not carry

discovery of attributes to e x c e s s . '; 
rule 'insert attributes that directly related to a  particular application' => insert(attribute);
link attribute, c l a s s ;
heuristic insertDerivedAttribute;
text 'Derived attributes should be omitted or clearly labelled. They should not be

expressed  a s  operations, although they may eventually be im plemented a s  s u c h . '; 
rule 'insert derived attribute but not expressed  a s  operation' => insert(derivedAttribute);
link attribute, c lass, derivedAttribute ;
heuristic insertLinkAttribute;
text 'Idenify link attributes, which are properties of the link betw een two objects, rather

than being properties of individual o b jec ts .'; 
rule 'idenify attributes that are properties of the link between two objects'

=> insert(linkAttribute); 
link attribute, class, linkAttribute ;
heuristic retypeAttributeToObject;
text 'If the independent existence of an entity is important, rather than just its value, then

it is an  object. If an attribute appears to be unique, you may have m issed the object 
c lass that is being qualified.'; 

rule 'an attribute appears to be an unique object' => retype (attribute,object);
link attribute, o b je c t;
heuristic retypeAttributeToQualifier;
text 'If the value of an attribute depends on a  particular context, then consider restating

the attribute a s  a  qualifier.'; 
rule 'value of an attribute depends on a  particular context’ => retype(attribute,qualifier);
link attribute, qualifier;
heuristic retypeAttributeToAssociation ;
text 'If an  attribute select am ong objects in a  set, the attribute qualifies an  asso c ia tio n .';
rule 'an attribute select am ong objects in a  set' => retype(attribute,association);
link attribute, a sso c ia tio n ;
heuristic deleteAttributeAsldentifier;
text 'An identifier is for unambiguously referencing an object in O O -languages, do not list

implementation object identifiers in object m o d e l.'; 
rule 'an implementation object identifiers in object model' => delete(attribute);
link a ttrib u te ;
heuristic retypeAttributeToLinkAttribute;
text 'If a  property depends on the p resence of a  link, then the property is an  attribute of

the link and not of a  related o b jec t.'; 
rule 'a  property depends on the p resence of a  link' => retype(attribute,linkAttribute);
link attribute, linkAttribute;
heuristic deleteAttributeAslnternalValue;
text 'If an  attribute describes the internal state  of an object that is invisible outside the

object, then eliminate it from the an a ly s is .';
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rule 'an attribute describes the internal sta te  of an object' => delete(attribute);
link a ttrib u te ;
heuristic deleteAttributeAsFineDetail;
text 'Omit minor attributes which are unlikely to affect most o p era tio n s.';
rule 'minor attributes which are unlikely to affect most operations' => delete(attribute);
link a ttrib u te ;
heuristic adjustC lassFrom A ttribute;
text 'An attribute that seem s completely different from and unrelated to all other attributes

may indicate a  c lass that should be split into two distinct c la s s e s . '; 
rule 'attribute that seem s completely different from and unrelated to all other attributes in

the class' => adjust(class, attribute); 
link attribute, c l a s s ;
heuristic specifyAttribute;
text 'Isolated words have too many interpretations, so  prepare a  data dictionary for all

attributes.'
rule 'prepare a  data dictionary for all attributes' => specify(attribute,dataD ictionary);
link attribute, dataD ictionary;

heuristic o rgan iselnheritance;
text 'Organise c lasses  by using inheritance to share common structure. Inheritance can

be added in two directions: by generlising common aspects  of existing c la sse s  into a  
superclass or by existing c lasses into specialised su b c la s se s .'; 

rule => do(organiselnheritance);
link generalisation ;
heuristic inheritanceFrom G eneralisation;
text 'Generalisation: search  for c lasses  with similar attributes, association or operation;

define a  superclass to share common fe a tu re s . '; 
rule 'c lasses with similar attributes, association or operation' => insert(generalisation);
link generalisation ;
heuristic inheritanceFrom Specialisation;
text 'Specialisation: look for noun ph rases com posed of various adjectives on the c lass

nam e. Enum erated su b cases  in the application domain are the m ost frequent source 
of specia lisa tion .';

rule 'enum erated su b cases  in the application domain' => insert(generalisation);
link generalisation ;
heuristic insertM ultiplelnheritance;
text 'Multiple inheritance may be used to increase sharing, but only if n e c e s s a ry . ';
rule 'sharing from multiple c lasses ' => insert(generalisation);
link generalisation ;
heuristic adjustAssociationBylnheritance;
text 'Associations must be assigned to specific c lasses  in the class hierarchy. Each one

should be assigned to the most general c lass for which it is ap p ro p ria te .'; 
rule 'associations that are not assigned to specific c lasses  in the class hierarchy'

=> adjust(association,generalisation); 
link association, class, generalisation ;
heuristic adjustAttributeBylnheritance;
text 'Attributes must be assigned to specific c lasses  in the c lass hierarchy. Each one

should be assigned  to the most general c lass for which it is ap p ro p ria te .'; 
rule 'attributes that are  not assigned to specific c lasses  in the class hierarchy'

=> adjust(attribute,generalisation); 
link attribute, class, generalisation ;

heuristic test A ccess Path ;
text 'Trace access  paths through the object model diagram to se e  if they yield sensible

results. W here a  unique value expected, there is a  path yielding a  unique result, 
especially for multiplicity "many". If som ething that seem s simple in the real world 
appears complex in the model, you may have m issed so m eth in g .'; 

rule => modify(objectM odel);
link association, attribute, class, generalisation ;
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heuristic verifyObjectM odel;
text T h e  entire software developm ent process is one of continual iteration; different parts 

of a  model are often at different s tag es  of completion. If a  deficiency is found, go 
back to an  earlier stage  if necessary  to correct it. Som e refinem ents can only com e 
after the dynamic and functional m odels are  co m p le ted .'; 

rule => perform(verifyObjectM odel);
link checkAssociation, checkAttribute, checkClass, objectM odel;
heuristic ch eck C lass ;
text T here  are  signs of missing objects and signs of unnecssary c la s s e s ';
rule => do(checkC lass);
link association, attribute, class, operation, verifyObjectM odel;
heuristic checkA ssociation;
text 'There are  signs of missing associations, signs of unnecessary  associations and

signs of incorrect placem ent of asso c ia tio n s '; 
rule => do(checkA ssociation);
link association, attribute, class, generalisation, operation, verifyObjectM odel;
heuristic checkA ttribute;
text 'There are signs of incorrect placem ent of a ttrib u tes ';
rule => do(checkAttribute);
link association, attribute, class, operation, verifyObjectM odel;

heuristic addClasslnA sym m etryAssociation;
text 'If there are  asym m etries in associations and generalisations, add new c la sse s  by

analogy.'
rule 'asym m etries in associations and generalisations' => in sert(c lass);
link association, class, generalisation ;
heuristic splitClasslnDisparateAttribute;
text 'If there is disparate attributes and operations on a  class, split a  c lass so  that each

part is co h e ren t.';
rule 'disparate attributes and operations on a  class' => adjust(class,attribute);
link attribute, class, operation ;
heuristic splitClasslnGeneralisationDifficulty;
text 'If there is difficulty in generalising cleanly, one c lass may be playing two roles. Split

it up and one part may then fit in c lean ly .'; 
rule 'difficulty in generalising cleanly and one c lass plays two roles'

=> adjust(class,generalisation); 
link class, generalisation ;
heuristic addM issingTargetC lass;
text 'If an operation has no good target class, add the missing target c la s s . ';
rule 'an operation has no good target class' => in sert(c lass);
link class, opera tio n ;
heuristic addG enera lisedC lass;
text 'If there are  duplicate associations with the sam e nam e and purpose, generalise to

create the missing superclass that unities th e m .'; 
rule 'duplicate associations with the sam e nam e and purpose' => in sert(c lass);
link association, class, generalisation ;
heuristic retypeAssociationToC lass;
text 'If a  role substantially sh ap es  the sem antics of a  class, it may be a  sep a ra te  class,

this often m eans converting an association into a  c la s s . '; 
rule 'a  role substantially sh ap es  the sem antics of a  class' => re type(associa tion ,class);
link association, c l a s s ;
heuristic d e le te lln n ecessary C lass;
text 'An unnecessary  class lacks of attributes, operations and associations. Why is it

n e e d e d ? " ;
rule 'a  c lass lacks of attributes, operations and associations' => d e le te (c la ss);
link association, attribute, class, operation ;
heuristic addA ssociationlnM issingPath;
text 'If there are missing access  paths for operations, add new associations so  that

queries can be an sw ered .'; 
rule 'missing access  paths for operations' => insert(association);
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link association, o p era tio n ;
heuristic rem oveR edundantA ssociation;
text 'If there is redundant information in associations, remove associations that do not 

add new information or mark them  a s  derived. If no operations use a  path, the 
information may not be needed. This test must wait until operations are  sp ec ified .'; 

rule 'redundant information in associations' => delete(associa tion);
link association, c l a s s ;
heuristic adjustAssociationlnHierarchy;
text 'If role nam es are too broad or too narrow for their c lasses, move the association up

or down in the class h ierarchy .'; 
rule 'role nam es are too broad or too narrow for their c lasses '

=> ad just(associa tion ,class); 
link association, class, generalisation ;
heuristic retypeAttributeToQualifiedAssociation;
text 'If it is need to ac cess  an object by one of its attribute values, consider a  qualified

assoc ia tion .';
rule 'need to a c cess  an  object by one of its attribute values'

=> retype(attribute,qualifiedAssociation); 
link class, qualifiedA ssociation;

heuristic groupClasslntoM odule;
text 'The last step  of object modelling is to group c lasses  into sh ee ts  and m odules. 

Diagrams may be divided into sh ee ts  of uniform size for convenience in 
drawing, printing and viewing. A module is a  set of c lasses  that cap tu res som e 
logical subset of the entire model. Each association should generally be shown 
on a  single sheet, but som e c lasses must be shown more than once to connect 
different shee ts. Look for cut points among the classes: a  class that is the sole 
connection between two otherwise disconnected parts of the object network. A 
star-pattern is frequently useful for organising nodules: a  single core module 
contains the top-level structure of high-level c lasses . R euse a  module from a  
previous design if possible, but avoid forcing a  f it.'; 

rule 'group c lasses  into sh ee ts  and modules' => insert(m odule);
link class, module, s h e e t ;

endHeuristicModel

endM ethod .
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APPENDIX G: OMT PROLOG CLAUSES

%% OMT.PL
%% Compiled Prolog C lauses of Object Modelling Technique [Rumbaugh 91]

%% PRODUCT MODEL CLAUSES 
concept(objectM odellingTechnique, [fragment], co n c re te ) . 
property(objectModellingTechnique, objectModel, [1,1,0,1]). 
property(objectModellingTechnique, dynamicModel, [1,1,0,1]). 
property(objectModellingTechnique, functionalModel, [1,1,0,1]).

%% OBJECT MODEL DEFINITION 
concept(objectM odel, [fragment], co n c re te ) . 
concept(objectDiagram , [diagram], co n c re te ) . 
conceptjdataDictionary, [text], co n c re te ) . 
conceptjm odule, Q, co n c re te ) . 
concept(sheet, Q, co n c re te ). 
concept(signature, Q, co n c re te ). 
conceptjclassConstraint, [], co n c re te ). 
conceptjoperation, Q, co n c re te ) . 
concept(abstractOperation, [operation], co n c re te ). 
concept(classO peration, [operation], co n c re te ). 
concept(derivedOperation, [operation], co n c re te ) . 
concept(attribute, D, co n c re te ) . 
concept(classAttribute, [attribute], co n c re te ). 
concept(derivedAttribute, [attribute], co n c re te ) . 
concept(object, □, ab s tra c t) . 
conceptjinstance, [object], co n c re te ) . 
concept(class, [object], co n c re te ). 
concept(abstractC lass, [class], co n c re te ). 
concept(derivedClass, [class], co n c re te ). 
concept(m etaC lass, [class], co n c re te ). 
concept(relationship, [link], a b s tra c t) . 
concept(instantiation, [relationship], co n c re te ). 
concept(generalisation, [relationship], co n c re te ). 
concept(association, [relationship], co n c re te ). 
conceptjaggregation, [relationship], a b s tra c t) . 
conceptjoverlappingGeneralisation, [generalisation], co n c re te ) . 
conceptjdiscrimator, □, co n c re te ) . 
concept(derivedAssociation, [association], co n c re te ). 
concept(qualifiedAssociation, [association], co n c re te ). 
concept(role, Q, ab s tra c t) . 
concept(sourceRole, [role], co n c re te ). 
conceptjtargetRole, [role], co n c re te ). 
concept(linkObject, Q, co n c re te ) . 
concept(linkAttribute, □, co n c re te ) . 
concept(associationConstraint, [], co n c re te ). 
concept(multiplicity, [], a b s tra c t) . 
concept(sourceMultiplicity, [multiplicity], a b s tra c t) . 
concept(targetMultiplicity, [multiplicity], a b s tra c t) . 
concept(fixedAggregation, [aggregation], co n c re te ) . 
concept(variableAggregation, [aggregation], co n c re te ). 
concept(resursiveAggregation, [aggregation], co n c re te ). 
concept(ordering, Q, co n c re te ) . 
concept(qualifier, [], co n c re te ) . 
concept(operationPropagation, Q, co n c re te ).
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property(objectModel, module, [1,1,1,3]). 
property(objectModel, objectDiagram, [1,1,1,3]). 
property(objectModel, dataDictionary, [1,1,1,3]). 
property(objectDiagram, object, [1,1,1,3]). 
propertyjmodule, sheet, [1,1,1,3]). 
propertyjoperation, signature, [1,1,0,1]). 
property(object, attribute, [1,1,0,3]). 
property(class, classConstraint, [1,1,0,1]). 
property(association, associationConstraint, [1,1,0,1]) 
propertyjassociation, linkAttribute, [1,1,0,1]). 
property (association, linkObject, [1,1,0,1]). 
property(association, ordering, [1,1,0,1]). 
property(association, sourceRole, [1,1,0,1]). 
property(association, targetRole, [1,1,0,1]). 
property(association, sourceMultiplicity, [1,1,0,1]). 
property(association, targetMultiplicity, [1,1,0,1]). 
property(association, operationPropagation, [1,1,0,1]) 
property(qualifiedAssociation, qualifier, [1,1,0,1]). 
property(aggregation, sourceMultiplicity, [1,1,0,1]). 
propertyjaggregation, targetMultiplicity, [1,1,0,1]). 
property(aggregation, operationPropagation, [1,1,0,1]) 
source(relationship, [object], [0,3,1,1]). 
target(relationship, [object], [0,3,1,1]). 
target(instantiation, [instance], [0,3,1,1]). 
reference(discrimator, attribute, [0,1,1,1]). 
reference(linkAttribute, attribute, [0,1,1,1]). 
reference(linkObject, object, [0,1,1,1]). 
reference(objectDiagram, sheet, [1,1,1,1]). 
reference(dataDictionary, association, [1,1,1,3]). 
referencejdataDictionary, attribute, [1,1,1,3]). 
reference(dataDictionary, object, [1,1,1,3]). 
reference(dataDictionary, operation, [1,1,1,3]).

%% DYNAMIC MODEL DEFINITION 
concept(dynamicM odel, [fragment], co n c re te ) . 
concept(stateD iagram , [diagram], co n c re te ). 
concept(state, □, ab s tra c t) . 
concept(startState, [state], co n c re te ). 
conceptjinterState, [state], co n c re te ). 
concept(stopState, [state], co n c re te ). 
concept(action, D, ab s tra c t) . 
concept(entryAction, [action], co n c re te ). 
concept(exitAction, [action], co n c re te ) . 
concept(internalAction, [action], co n c re te ) . 
concept(eventAction, [action], co n c re te ). 
conceptjactivity, [], co n c re te ) . 
concept(automaticTransition, [transition], co n c re te ). 
concept(guardCondition, Q, co n c re te ). 
concept(delegation, [], co n c re te ). 
concept(eventAttribute, □, co n c re te ) . 
concept(event, □, co n c re te ) . 
concept(eventTrace, [], co n c re te ). 
concept(scenario, [], co n c re te ). 
concept(eventGeneralisation, [link], co n c re te ). 
concept(transition, [link], co n c re te ) . 
concept(concurrentSubdiagram , [group], co n c re te ). 
concept(mergingControl, [group], co n c re te ). 
concept(nestedStateD iagram , [group], co n c re te ). 
conceptjsplittingControl, [group], co n c re te ). 
property(dynamicModel, scenario, [1,1,1,3]).



property(dynamicModel, stateDiagram , [1,1,1,3]). 
property(stateDiagram, stateS tate , [1,1,0,1]). 
propertyjstateDiagram, interstate, [1,1,1,3]). 
property(stateDiagram, stopState, [1,1,0,1]). 
property(state, activity, [1,1,0,1]). 
propertyjstate, entryAction, [1,1,0,1]). 
property (state, exitAction, [1,1,0,1]). 
property(state, internalAction, [1,1,0,3]). 
propertyjevent, eventAttribute, [1,1,0,3]). 
propertyjscenario, eventTrace, [1,1,1,1]). 
propertyjtransition, delegation, [1,1,0,1]). 
property(transition, event, [1,1,0,1]). 
property(transition, guardCondition, [1,1,0,1]). 
source(eventG eneralisation, [event], [0,3,1,1]). 
target(eventG eneralisation, [event], [0,3,1,1]). 
source(transition, [startState, interstate], [0,3,0,1]). 
target(transition, [interstate, stopState], [0,3,0,1]). 
source(concurrentSubdiagram , [state], [0,1,1,1]). 
target(concurrentSubdiagram , [stateDiagram], [0,1,1,3]). 
source(mergingControl, [transition], [0,1,1,3]). 
target(mergingControl, [transition], [0,1,1,1]). 
source(nestedStateD iagram , [state], [0,1,1,1]). 
target(nestedStateD iagram , [stateDiagram], [0,1,1,1]). 
source(splittingControl, [transition], [0,1,1,1]). 
target(splittingControl, [transition], [0,1,1,3]). 
reference(activity, operation, [0,1,1,1]). 
reference(action, operation, [0,1,1,1]). 
reference(delegation, operation, [0,1,1,1]). 
referencejeventAttribute, attribute, [0,1,1,1]). 
reference(eventTrace, event, [1,1,1,3]).

%% FUNCTIONAL MODEL DEFINITION 
concept(functionalModel, [fragment], co n c re te ). 
concept(dataFlowDiagram, [diagram], co n c re te ). 
concept(actor, [], co n c re te ) . 
concept(dataStore, Q, co n c re te ). 
concept(process, D, co n c re te ). 
conceptjdata, Q, co n c re te ) . 
concept(dataFlowComposition, [group], co n c re te ). 
concept(dataFlowDecomposition, [group], co n c re te ). 
concept(nestedDataFlowDiagram, [group], co n c re te ). 
conceptjcontrolFlow, [link], co n c re te ). 
concept(dataFlow, [link], co n c re te ) . 
property(functionalModel, dataFlowDiagram, [1,1,1,3]). 
propertyjdataFlowDiagram, actor, [1,1,0,3]). 
propertyjdataFlowDiagram, dataStore, [1,1,0,3]). 
property(dataFlowDiagram, process, [1,1,1,3]). 
property(dataFlow, data, [1,1,1,3]). 
source(controlFlow, [process], [0,3,1,1]). 
target(controlFlow, [process], [0,3,1,1]). 
source(dataFlow, [actor, dataStore, process], [0,3,0,1]). 
target(dataFlow, [actor, dataStore, process], [0,3,0,1]). 
source(dataFlowComposition, [dataFlow], [0,1,2,3]). 
target(dataFlowComposition, [dataFlow], [0,1,1,1]). 
source(dataFlowDecomposition, [dataFlow], [0,1,1,1]). 
target(dataFlowDecomposition, [dataFlow], [0,1,2,3]). 
source(nestedDataFlowDiagram , [process], [0,1,1,1]). 
target(nestedDataFlowDiagram , [dataFlowDiagram], [0,1,1,1]). 
reference(actor, object, [0,1,1,1]). 
referencejdata, attribute, [0,1,1,1]).



reference(dataStore, object, [0,1,1,1]). 
reference(process, operation, [0,1,1,3]).

%% PRODUCT MODEL RULES
tran s itio n (T )so u rce (T , S1, _), startS tate(S I), target(T, S2, _), not s to p S ta te (S 2 ). 
au tom aticT ransition(A )property(A , D, _), not delegation(D ). 
autom aticT ransition(A )property(A , E, _), not ev en t(E ). 
d a taF lo w (D )so u rce (D , A, _), actor(A), target(D, DS, _), not dataS to re(D S ). 
d a taF lo w (D )so u rce (D , DS, _), dataStore(DS), target(D, A, _), not actor(A ).

%% PRO CESS MODEL
%%  task(TaskN am e, FunctionNam e(ContextParam eters), Preconditions, Postconditions).
%% com pose(TaskNam e, S ub taskN am es).
%% refine(TaskName, S ub task N am es).

task(objectM odellingTechnique, perform(objectModellingTechnique), [problemStatement], [analysis, 
system Design, objectDesign, im plem entation]).

task(analysis, perform(analysis), [problemStatement], [analysis]). 
task(system D esign, perform(systemDesign), [analysis], [system D esign]). 
task(objectDesign, perform(objectDesign), [systemDesign], [objectDesign]). 
task(implementation, specify(objectDesign, implementation), [objectDesign], [im plem entation]). 
compose(objectM odellingTechnique, [analysis, system Design, objectDesign, im plem entation]).

task(objectModelling, perform(objectModelling), [problemStatement], [objectM odel]). 
task(dynamicModelling, perform(dynamicModelling), [problemStatement], [dynamicM odel]). 
taskjfunctionalModelling, perform(functionalModelling), [problemStatement], [functionalM odel]). 
com pose(analysis, [objectModelling, dynamicModelling, functionalModelling]). 
com posejsystem D esign, []). 
com posejobjectD esign, Q).

task(identifyClass, perform(identifyClass), [problemStatement], [class, instance, o b ject]). 
taskjidentifyAssociation, perform(identifyAssociation), [problemStatem ent, class], [association]). 
task(identifyAttribute, perform(identifyAttribute), [problemStatem ent, class], [a ttribute]). 
task(organiselnheritance, perform(organiselnheritance), [problemStatement, class], [generalisation]). 
taskjtestA ccessPath , modify(objectModel), [objectModel], []). 
task(verifyObjectModel, perform(verifyObjectModel), [objectModel], []). 
task(groupClasslntoM odule, insert(module), [objectModel], [module, s h e e t] ) . 
compose(objectM odelling, [identifyClass, identifyAssociation, identifyAttribute, organiselnheritance, 
testA ccessPath , verifyObjectModel, groupClasslntoModule]). 
compose(dynamicM odelling, D ). 
compose(functionalModelling, □ ).

task(insertC lass, insert(class), [problemStatement], [c lass]). 
task(verifyClass, do(verifyClass), [problemStatement, class], []).
task(specifyClass, specify(class, dataDictionary), [problemStatement, class], [dataDictionary]). 
compose(identifyClass, [insertClass, verifyClass, specifyC lass]).

task(deleteR edundantC lass, delete(class), [class], []). 
task(deletelrrelevantC lass, delete(class), [class], []). 
task(deleteV agueC lass, delete(class), [class], []). 
task(retypeClassToAttribute, retype(class, attribute), [class], [attribute]). 
task(retypeClassToOperation, retype(class, operation), [class], [operation]). 
task(retypeClassToAssociation, retype(class, association), [class], [association]). 
task(deletelmplementationConstruct, delete(class), [class], []). 
refine(verifyClass, [deleteRedundantC lass, deletelrrelevantClass, deleteV agueC lass, 
retypeClassToAttribute, retypeClassToOperation, retypeClassToAssociation, 
deletelm plem entationC onstruct]).

task(insertAssociation, insert(association), [problemStatement, class], [association]).



task(verifyAssociation, do(verifyAssociation), [association], []).
task(specifyAssociation, specify(association, dataDictionary), [association], [dataDictionary]). 
compose(identifyAssociation, [insertAssociation, verifyAssociation, specifyA ssociation]).

task(adjustAssociationBetweenEliminatedClass, adjust(association, class), [association,class], □). 
taskjdeletelrrelevantAssociation, delete(association), [association], []). 
task(retypeAssociationToOperation, retype(association, operation), [association], [operation]). 
task(modifyTernaryAssociation, modify(association), [association], []). 
task(deleteRedundantA ssociation, delete(association), [association], []).
task(retypeAssociationToDerivedAssociation, retype(association, derivedAssociation), [association], 
[derivedAssociation]).
task(modifyM isnamedAssociation, modify(association), [association], []). 
task(insertRoleNam e, insert(role), [association], [role]).
task(retypeAssociationToQualifiedAssociation, retype(association, qualifiedAssociation),
[association], [qualifiedAssociation]).
task(insertMultiplicity, insert(multiplicity), [association], [multiplicity]).
refine(verifyAssociation, [adjustAssociationBetweenEliminatedClass, deletelrrelevantAssociation, 
retypeAssociationToOperation, modifyTernaryAssociation, deleteRedundantAssociation, 
retypeAssociationToDerivedAssociation, modifyMisnamedAssociation, insertRoleName, 
retypeAssociationToQualifiedAssociation, insertMultiplicity]).

task(insertAttribute, insert(attribute), [problemStatement, class], [attribute]). 
task(insertDerivedAttribute, insert(derivedAttribute), [problemStatem ent, class], [derivedAttribute]). 
task(insertLinkAttribute, insert(linkAttribute), [problemStatement, class], [linkAttribute]). 
task(verifyAttribute, do(verifyAttribute), [attribute], []).
task(specifyAssociation, specify(attribute, dataDictionary), [attribute], [dataDictionary]). 
composefldentifyAttribute, [insertAttribute, insertDerivedAttribute, insertLinkAttribute, verify Attribute, 
specifyAttribute]).

task(retypeAttributeToObject, retype(attribute, object), [attribute], [object]). 
taskjretypeAttributeToQualifier, retype(attribute, qualifier), [attribute], [qualifier]). 
task(retypeAttributeToOperation, retype(attribute, operation), [attribute], [operation]). 
taskjdeleteAttributeAsldentifier, delete(attribute), [attribute], []).
taskjretypeAttributeToLinkAttribute, retype(attribute, linkAttribute), [attribute], [linkAttribute]). 
task(deleteAttributeAslnternalValue, delete(attribute), [attribute], []). 
task(deleteAttributeAsFineDetail, delete(attribute), [attribute], []). 
task(adjustClassFromAttribute, adjust(class, attribute), [attribute], [c lass]). 
refine(verifyAttribute, [retypeAttributeToObject, retypeAttributeToQualifier, 
retypeAttributeToOperation, deleteAttributeAsldentifier, retypeAttributeToLinkAttribute, 
deleteAttributeAslnternalValue, deleteAttributeAsFineDetail, adjustClassFrom A ttribute]).

task(insertG eneralisation, perform(insertGeneralisation), [problemStatement], [generalisation]). 
task(adjustAssociationBylnheritance, adjust(association, generalisation), [association, generalisation],
D).
task(adjustAttributeBylnheritance, adjust(attribute, generalisation), [attribute, generalisation], []). 
com pose(organiselnheritance, [insertGeneralisation, adjustAssociationBylnheritance, 
adjustAttributeBylnheritance]).

task(inheritanceFrom Generalisation, insert(generalisation), [problemStatement], [generalisation]). 
taskjinheritanceFrom Specialisation, insert(generalisation), [problemStatement], [generalisation]). 
task(insertM ultiplelnheritance, insert(generalisation), [problemStatement], [generalisation]). 
com pose(insertGeneralisation, [inheritanceFromGeneralisation, inheritanceFrom Specialisation, 
insertM ultiplelnheritance]).

task(checkC lass, do(checkClass), [class, objectModel], []). 
taskjcheckAssociation, do(checkAssociation), [association, objectModel], []). 
taskjcheckAttribute, do(checkAttribute), [attribute, objectModel], []). 
compose(verifyObjectModel, [checkClass, checkAssociation, checkAttribute]).

task(addClasslnAsymmetryAssociation, adjust(class, association), [class, association], []).
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task(splitClasslnDisparateAttribute, adjust(class, attribute), [attribute, class], []) ■ 
taskjsplitClasslnGeneralisationDifficulty, adjust(class, generalisation), [class, generalisation], []). 
task(addM issingTargetClass, adjust(class, operation), [class, operation], []). 
taskjaddG eneralisedC lass, adjust(class, generalisation), [class, generalisation], []). 
taskjretypeAssociationToClass, retype (association, class), [association, class], [c lass]). 
taskjdeleteU nnecessaryC lass, delete(class), [class], []).
refine(checkClass, [addClasslnAsymmetryAssociation, splitClasslnDisparateAttribute, 
splitClasslnGeneralisationDifficulty, addM issingTargetClass, addG eneralisedC lass, 
retypeAssociationToClass, dele te llnnecessaryC lass]).

task(addAssociationlnM issingPath, insert(association), [association], □). 
task(rem oveRedundantAssociation, delete(association), [association], []). 
task(adjustAssociationlnHierarchy, adjust(association, generalisation), [association, generalisation],
D).
refine(checkAssoication, [addAssociationlnMissingPath, removeRedundantAssociation, 
adjustAssociationlnHierarchyJ).

task(retypeAttributeToQualifiedAssociation, retype(attribute, qualifiedAssociation), [attribute], 
[qualifiedAssociation]).
refine(checkAttribute, [retypeAttributeToQualifiedAssociation]).

%% HEURISTIC MODEL 

%% CONCEPT HEURISTICS
heuristic(abstractClass, [abstractOperation, class, generalisation],
'Abstract c lass is a  c lass that cannot have direct instances but w hose descendan ts can have 
in tsan ces.') .

heuristic(abstractOperation, [abstractClass, class, generalisation],
'Abstract operation is an operation defined but not implemented by an abstract c lass. The operation 
must be implemented by all concrete descendent c la s s e s . ') .

heuristic(action, [action, activity, entryAction, exitAction, internalAction, operation],
'An action is an instantaneous operation. Actions are associa ted  with events and  are  usually formal in 
n a tu re .') .

heuristic(activity, [action, operation],
'An activity is an  operation that takes time to complete. Activities are associa ted  with s ta te s  and 
represent real-world accom plishm ents.').

heuristic(actor, [dataFlowDiagram, object],
'Actor object is an  active object that drives the data flow graph by producing or consum ing v a lu e s . ') .

heuristic(aggregation, [fixedAggregation, resursiveAggregation, variableAggregation],
'Aggregation is a  special form of association, between a  whole and its parts, in which the whole is 
com posed of the p a r ts . ') .

heuristic(association, [associationConstraint, derivedAssociation, linkAttribute, multiplicity, 
qualifiedAssociation, qualifier, role],
'Association is a  relationship am ong instances of two or more c lasses  describing a  group of links with 
common structure and common sem an tics .') .

heuristic(associationConstraint, [association, linkAttribute, multiplicity, qualifier],
'Association constraint is a  functional relationship of association; a  statem ent about som e condition or 
relationship that must be maintained as  tru e . ') .

heuristic(attribute, [class, object],
'An attribute is a  nam ed property of a  c lass describing a  data value held by each  object of the class.')
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heuristic(automaticTransition, [event, guardcondition, transition],
'Automatic transition is an  unlabelled transition that automatically fires when the activity associa ted  
with the source state  is com pleted .').

heuristic(class, [abstractClass, classConstraint, m etaC lass, object],
'A c lass is a  description of a  group of objects with similar properties, common behaviour, com m on 
relationships and common sem an tics .') .

heuristic(classAttribute, [attribute, class],
'C lass attribute is an attribute w hose value is common to a  class of objects rather than a  value 
peculiar to each  in stan ce .') .

heuristic(classConstraint, [class],
'C lass constraint is a  functional relationship of class; a  statem ent about som e condition or 
relationship that m ust be maintained a s  tru e . ') .

heuristic(classOperation, [class, operation],
'C lass operation is an operation on a  class, rather than on instances of the class. An instance creation 
operation is a  com m on ex am p le .') .

heuristic(concurrentSubdiagram, [state, stateDiagram],
'Concurrency within the sta te  of a  single object arises when the object can be partitioned into su b se ts  
of attributes or links, each  of which has its own subd iagram .').

heuristic(controlFlow, [process],
'Control flow is a  boolean value that affects whether a  process is ex ecu ted .') . 

heuristic(dataDictionary, [association, attribute, class, operation],
'A data  dictionary is a  textual description of each  class, its associations, attributes and o p era tio n s.') .

heuristic(dataFlow, [actor, dataFlowDecomposition, dataFlowDiagram, dataStore, process],
'Data flow is the connection betw een the output of one object or p rocess and the input to an o th e r .') .

heuristic(dataFlowDecomposition, [dataFlow, dataFlowComposition],
'Data flow decomposition split an aggregate data on a  data flow into its com p o n en ts .') .

heuristic(dataFlowDiagram, [dataFlow, functionalModel, nestedDataFlowDiagram, process],
'A data  flow diagram is a  graphical representation of the functional model, showing dependencies 
between values and the computation of output values from input values without regard for when or if 
the functions are ex ecu ted .') .

heuristic(dataStore, [dataFlowDiagram, process],
'A data store is a  passive object that stores data for later a c c e s s . ') .

heuristic(delegation, [object, transition],
'Delegation is an  implementation m echanism  in which an  object, responding to an operation on itself, 
forwards the operation to another ob ject.').

heuristic(derivedAssociation, [association],
'Derived association is an association that is defined in term s of other asso c ia tio n s.') . 

heuristic(derivedAttribute, [attribute],
'Derived attribute is an  attribute that is com puted from other a ttribu tes.') . 

heuristic(discriminator, [generalisation],
'A discriminator is an attribute of enumeration type that indicates which property of a  c lass is being 
abstracted  by a  particular generalisation.').

heuristic(dynamicModel, [scenario, stateTransitionDiagram],
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'A dynamic model describes the aspects  of a  system  concerned with control, including time, 
sequencing of operations and interaction of o b jec ts .') .

heuristic(entryAction, [action, exitAction],
'Entry action permits action to be associated  with a  state, to indicate all the transitions entering the 
s ta te . ') .

heuristic(event, [dynamicModel, eventG eneralisation, eventTrace, scenario, state, transition],
'An event is som ething that happens instantaneously at a  point in tim e .').

heuristic(eventGeneralisation, [event],
'Events can be organised into a  generalisation hierarchy with inheritance of event a ttrib u tes .') . 

heuristic(eventTrace, [event, scenario],
'An event trace is a  diagram that shows the sender and receiver of events and the seq u en ce  of 
e v e n ts . ') .

heuristic(exitAction, [action, entryAction],
'Exit action permits action to be associated  with a  state, to indicate all the transitions exiting the 
s ta te . ') .

heuristic(fixedAggregation, [aggregation, recursiveAggregation, variableAggregation],
'Fixed aggregation has an aggregate with a  predefined num ber and types of co m p o n en ts .') .

heuristic(functionalModel, [dataFlowDiagram],
'A functional model describes the aspects  of a  system  that transform values using functions, 
m appings, constraints and functional d ep en d en c ies .') .

heuristic(generalisation, [discrimator],
'Generalisation is the relationship betw een a  class and one or more refined or specialised versions of 
it.') .

heuristic(guardCondition, [transition],
'Guard condition is a  boolean expression that must be true in order for a  transition to o cc u r.') .

heuristic(instance, [class, instantiation],
'An instance is an  object described by a  c la s s . ') .

heuristic(instantiation, [class, instance, object],
'Instantiation is the process of creating instances from c la s s e s . ') .

heuristic(linkAttribute, [association, attribute],
'A link attribute is a  nam ed data value held by each link in an asso c ia tio n .') .

heuristic(mergingControl, [concurrentSubdiagram, splittingControl, transition],
'Concurrent subdiagram s in a  com posite state are automatically term inated when the m erge 
transition fires. This is known as  merging of control.').

heuristic(metaClass, [class],
'A m etaclass is a  c lass describing other c la s se s . ') .

heuristic(module, [objectModel, sheet],
'Module is a  coherent subset of a  system  containing a  tightly bound group of c la sse s  and  their 
relationship.').

heuristic(multiplicity, [aggregation, association],
'Multiplicity is the num ber of instances of one class that may relate to a  single instance of an 
associated  c la s s . ') .

heuristic(nestedDataFlowDiagram, [DataFlowDiagram, process],
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'A process can  be expanded into a  lower-level data flow diagram .1) . 

heuristic(nestedStateSiagram , [state, stateDiagram],
'S tates and events can both be expanded into nested  state diagram s to show greater d e ta il.') . 

heuristic(object, [class, instance,objectDiagram],
'An object is a  concept, abstraction or thing with crisp boundaries and m eanings for the problem at 
hand. It is an  instance of a  c lass .1) .

heuristic(objectDiagram, [object, objectModel, sheet],
'An object diagram  is a  graphical representation of the object model showing relationships, attributes 
and o pera tions.') .

heuristic(objectModel, [module, objectDiagram],
'An object model describes the structure of the objects in a  system  including their identity, 
relationships to other objects, attributes and operations.').

heuristic(objectModellingTechnique, [dynamicModel, functionalModel, objectModel],
'Object Modelling Technique is an  object-oriented developm ent methodology that u ses  object, 
dynamic and  functional m odels throughout the developm ent life cycle. Abbreviated O M T.').

heuristic(operation, [action, activity, object, signature],
'An operation is a  function or transformation that may be applied to objects in a  c la s s . ') . 

heuristic(operationPropagation, [aggregation, association],
'Operation propagation is the automatic application of an operation to selected  objects in a  network 
when the operation is applied to som e starting object in the network.’) .

heuristic(process, [controlFlow, dataFlow, dataFlowDiagram],
'P rocess is som ething that transform s data  v a lu e s .') .

heuristic(qualifiedAssociation, [association, qualifier],
'A qualified association is an association that relates two c lasses  and a  qualifier; a  binary association 
in which the first part is a  com posite comprising a  class and qualifier, and the second  part is a  class.')

heuristic(qualifier, [qualifiedAssociation],
'A qualifier is an  attribute of an object that distinguishes am ong the se t of objects at the "many" end 
of an asso c ia tio n .').

heuristic(recursiveAggregation, [aggregation, fixedAggregation, variableAggregation],
'Recursive aggregation h as  an aggregate that contains, directly or indirectly, an  instance of the sam e 
kind of ag g reg a te .') .

heuristic(role, [association, object],
'A role is a  direction across an association, which is particularly useful in dealing with association 
between objects of the sam e c la s s . ') .

heuristic(scenario, [dynamicModel, eventTrace],
'A scenario is a  sequence of events that occur during one particular execution of a  sy s te m .') . 

heuristic(sheet, [module, objectDiagram],
'A sh ee t is the m echanism  for breaking large object m odels into a  series of p a g e s . ') . 

heuristic(signature, [operation],
'A signature is the num ber and types of its argum ents and the type of its re su lt.') .

heuristic(splittingControl, [concurrentSubdiagram, mergingControl, transition],
'A transition on an event can split into concurrent parts, one to each concurrent subdiagram . This is 
known a s  splitting of contro l.').
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heuristic(state, [action, activity, event, nestedStateD iagram , stateDiagram , transition],
'A state  is the values of the attributes and links of an object at a  particular tim e .') .

heuristic(stateDiagram, [concurrentSubdiagram, dynamicModel, nestedStateD iagram ],
'A sta te  diagram is a  directed graph in which nodes represent system  sta tes and arcs represent 
transitions between s ta te s . ') .

heuristic(transition, [automaticTransition, delegation, event, guardCondition, mergingControl, 
splittingControl, state],
'A transition is a  change of sta te  caused  by an ev e n t.') .

heuristic(variableAggregation, [aggregation, fixedAggregation, recursiveAggregation],
'Variable aggregation has an  aggregate with a  finite num ber of levels but a  varying num ber of parts.')

%% TASK HEURISTICS

heuristic(analysis, [implementation, objectDesign, systemDesign],
'Analysis is a  s tage  in the developm ent cycle in which a  real-world problem is exam ined to 
understand its requirem ents without planning the im plem entation.').

heuristic(implementation, [analysis, objectDesign, systemDesign],
'A stag e  in the developm ent cycle in which a  design is realised in an executable form, such a s  a  
programming language or hardw are .').

heuristic(objectDesign, [analysis, implementation, systemDesign],
'An object design is a  s tage  of the developm ent cycle during which the implementation of each  class, 
association, attribute and operation is determ ined .').

heuristic(systemDesign, [analysis, implementation, objectDesign],
'System  design is the first stage of design, during which high-level decisions are  m ade about the 
overall structure of the system , its architecture and the strategies used  to implement the sy s te m .') .

heuristic(identifyClass, [class, object],
'Identifying relevant c la sse s  from the application domain. Objects include physical entities a s  well a s  
concepts; avoid com puter implementation construc ts .') . 
heuristic(insertClass, [class, object],
'Listing candidate c lasses  found in the written description of the problem. C lasses often correspond to 
nouns. Don't worry much about inheritance or high-level classes; first get specific c la sse s  right so  that 
you don't subconsciously suppress detail in an attem pt to fit a  preconceived s tru c tu re .') . 
heuristic(deleteRedundantClass, [class, object],
'If two c la sse s  express the sam e information, the most descriptive one should be k ep t. ') . 
heuristic(deletelrrelevantClass, [class, object],
'If a  c lass has little or nothing to do with the problem, it should be elim inated.'). 
heuristic(deleteVagueClass, [class, object],
'A class should be specific. Som e tentative c lasses  may have ill-defined boundaries or be too broad 
in s c o p e .') .
heuristic(retypeClassToAttribute, [class, object],
'N am es that primarily describe individual objects should be restated a s  a ttribu tes.'). 
heuristic(retypeClassToOperation, [class, object],
'If a  nam e describes an  operation that is applied to objects and not manipulated in its own right, then 
it is not a  c la s s . ') .
heuristic(retypeClassToAssociation, [class, object],
'The nam e of a  c lass should reflect its intrinsic nature and not a  role that it plays in an  asso c ia tio n .') . 
heuristic(deletelmplementationConstruct, [class, object],
'Constructs extraneous to the real world should be eliminated from the analysis m od el.') . 
heuristic(specifyClass, [class, dataDictionary],
'Isolated words have too many interpretations, so prepare a  data dictionary for all c la sse s  and 
o b jec ts .') .
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heuristic(identifyAssociation, [association, class],
'Identify associations between classes. Any dependency between two or more c lasse s  is an 
association; a  reference from one class to another is an assoc ia tion .'). 
heuristic(insertAssociation, [association, class],
'Extract all the candidates from the problem statem ent, refine and distinguish betw een association 
and aggregation in a  later s ta g e . ') .
heuristic(adjustAssociationBetweenEliminatedClass, [association, class],
'If one of the c la sse s  in the association h as  been eliminated then association m ust be eliminated or 
restated  in term s of other c la s s e s . ') . 
heuristic(deletelrrelevantAssociation, [association, class],
'Eliminate any associations that are outside the problem domain or deal with implementation 
construc ts .').
heuristic(retypeAssociationToOperation, [association, class, operation],
'An association should describe a  structural property of the application domain, not a  transient 
ev e n t. ') .
heuristic(modifyTernaryAssociation, [association, class],
'Most associations betw een three or more c lasses can be decom posed into binary associations or 
phrased a s  qualified assoc ia tions.').
heuristic(deleteRedundantAssociation, [association, class, keepRedundantAssociation],
'Omit associations that can be defined in term s of other associations because  they are redundan t.'). 
heuristic(keepRedundantAssociation, [association, class, deleteRedundantAssociation],
'The existence of an association can be derived from two or more primitive associa tions and  the 
multiplicity cannot. Retype the extra association if the additional multiplicity constraint is im portant.'). 
heuristic(retypeAssociationToDerivedAssociation, [association, class, derivedAssociation],
'Retype redundant association to derived association if it is useful in the real world and in d e s ig n .') . 
heuristic(modifyMisnamedAssociation, [association, class],
'N am es are important to understanding and should be chosen with great care. Don't say  how or why a  
situation cam e about, say  what it is . ') . 
heuristic(insertRoleName, [association, class, role],
'Add role nam es w here appropriate. The role nam e describes the role that a  c lass in the association 
plays from the point of view of the other c la s s . ') .
heuristic(retypeAssociationToQualifiedAssociation, [association, class, qualifiedAssociation, 
qualifier],
'Most nam es are  not globally unique, a  qualifier distinguishes objects on the "many" side of an  
assoc ia tion .').
heuristic(insertMultiplicity, [association, multiplicity],
'Specify multiplicity, but don't put too much effort into getting it right, a s  multiplicity often ch an g es 
during an a ly sis .') .
heuristic(specifyAssociation, [association, dataDictionary],
'Isolated words have too many interpretations, so prepare a  data dictionary for all a sso c ia tio n s .') .

heuristic(identifyAttribute, [attribute, class],
'Identify attributes, which are properties of individual o b jec ts .') . 
heuristic(insertAttribute, [attribute, class],
'Insert attributes that directly related to a  particular application, but do not carry discovery of attributes 
to e x c e s s . ') .
heuristic(insertDerivedAttribute, [attribute, class, derivedAttribute],
'Derived attributes should be omitted or clearly labelled. They should not be exp ressed  a s  operations, 
although they may eventually be implemented a s  su c h . ') . 
heuristic(insertLinkAttribute, [attribute, class, linkAttribute],
'Idenify link attributes, which are properties of the link betw een two objects, rather than being 
properties of individual o b jec ts .') . 
heuristic(retypeAttributeToObject, [attribute, object],
'If the independent existence of an  entity is important, rather than just its value, then it is an  object. If 
an attribute ap p ears  to be unique, you may have m issed the object c lass that is being qualified .'). 
heuristic(retypeAttributeToQualifier, [attribute, qualifier],
'If the value of an attribute depends on a  particular context, then consider restating the attribute a s  a  
qualifier.').
heuristic(retypeAttributeToAssociation, [attribute, association],
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'If an attribute select am ong objects in a  set, the attribute qualifies an asso c ia tio n .') . 
heuristic(deleteAttributeAsldentifier, [attribute],
'An identifier is for unambiguously referencing an object in O O -languages, do not list implementation 
object identifiers in object m odel.').
heuristic(retypeAttributeToLinkAttribute, [attribute, linkAttribute],
'If a  property depends on the p resence of a  link, then the property is an attribute of the link and not of 
a  related o b jec t.') .
heuristic(deleteAttributeAslnternalValue, [attribute],
'If an  attribute describes the internal s tate  of an object that is invisible outside the object, then 
eliminate it from the an a ly s is .') . 
heuristic(deleteAttributeAsFineDetail, [attribute],
'Omit minor attributes which are unlikely to affect most o pera tions.') . 
heuristic(adjustClassFromAttribute, [attribute, class],
'An attribute that seem s completely different from and unrelated to all other attributes may indicate a  
c lass that should be split into two distinct c la s s e s . ') . 
heuristic(specifyAttribute, [attribute, dataDictionary],
'Isolated words have too many interpretations, so prepare a  data dictionary for all a ttribu tes.'). 

heuristic(organiselnheritance, [generalisation],
'Organise c la sse s  by using inheritance to share common structure. Inheritance can be added  in two 
directions: by generalising common aspec ts  of existing c lasses  into a  superclass or by existing 
c lasses  into specialised su b c la sse s .'). 
heuristic(inheritanceFromGeneralisation, [generalisation],
'Generalisation: search  for c lasses  with similar attributes, association or operation; define a  
superclass to share common fea tu res .') . 
heuristic(inheritanceFromSpecialisation, [generalisation],
'Specialisation: look for noun p h rases com posed of various adjectives on the class nam e.
Enum erated su b cases  in the application domain are the most frequent source of specia lisa tion .'). 
heuristic(insertMultiplelnheritance, [generalisation],
'Multiple inheritance may be used  to increase sharing, but only if n e c e ssa ry .') . 
heuristic(adjustAssociationBylnheritance, [association, class, generalisation],
'Associations must be assigned to specific c lasses in the class hierarchy. Each one should be 
assigned  to the m ost general c lass for which it is appropriate .'). 
heuristic(adjustAttributeBylnheritance, [attribute, class, generalisation],
'Attributes must be assigned to specific c lasses in the class hierarchy. Each one should be assigned  
to the m ost general c lass for which it is appropriate .').

heuristic(testA ccessPath, [association, attribute, class, generalisation],
'Trace ac cess  paths through the object model diagram to se e  if they yield sensible results. W here a  
unique value expected, there is a  path yielding a  unique result, especially for multiplicity "many". If 
som ething that seem s simple in the real world appears complex in the model, you may have m issed 
som eth ing .').

heuristic(verifyObjectModel, [objectModel],
'The entire software developm ent process is one of continual iteration; different parts of a  model are  
often at different s tag es  of completion. If a  deficiency is found, go back to an earlier s tag e  if 
necessary  to correct it. Som e refinements can only com e after the dynamic and  functional m odels 
are  com pleted .').

heuristic(addClasslnAsymmetryAssociation, [association, class, generalisation],
'If there are asym m etries in associations and generalisations, add new c lasses  by an a lo g y .'). 
heuristic(splitClasslnDisparateAttribute, [attribute, class, operation],
'If there are  disparate attributes and operations on a  class, split a  c lass so that each  part is coherent.') 

heuristic(splitClasslnGeneralisationDifficulty, [class, generalisation],
'If there is difficulty in generalising cleanly, one class may be playing two roles. Split it up and  one 
part may then fit in c lean ly .'). 
heuristic(addM issingTargetClass, [class, operation],
'If an  operation has no good target class, add the missing target c la s s . ') . 
heuristic(addGeneralisedClass, [association, class, generalisation],
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'If there a re  duplicate associations with the sam e nam e and purpose, generalise to create  the missing 
superclass that unites th em .') . 
heuristic(retypeAssociationToClass, [association, class],
'If a  role substantially sh ap es  the sem antics of a  class, it may be a  separate  class, this often m eans 
converting an  association into a  c la s s . ') .
heuristic(deleteU nnecessaryClass, [association, attribute, class, operation],
'An unnecessary  c lass lacks of attributes, operations and associations. Why is it n e e d e d ? ') . 
heuristic(addAssociationlnM issingPath, [association, operation],
'If there are  missing ac cess  paths for operations, add new associations so  that queries can be 
an sw ered .') .
heuristic(removeRedundantAssociation, [association, class],
'If there are  redundant information in associations, remove associations that do not add new 
information or mark them  a s  derived. If no operations use a  path, the information may not be 
needed. This test must wait until operations are specified .'). 
heuristic(adjustAssociationlnHierarchy, [association, class, generalisation],
'If role nam es are too broad or too narrow for their c lasses, move the association up or down in the 
c lass h ierarchy .').
heuristic(retypeAttributeToQualifiedAssociation, [class, qualifiedAssociation],
'If it is need  to a c ce ss  an object by one of its attribute values, consider a  qualified asso c ia tio n .') .

heuristic(groupClasslntoM odule, [class, module, sheet],
'The last step  of object modelling is to group c lasses  into sh ee ts  and modules. Diagrams may be 
divided into sh ee ts  of uniform size for convenience in drawing, printing and viewing. A module is a  
se t of c lasse s  that captures som e logical subset of the entire model. Each association should 
generally be shown on a  single sheet, but som e c lasses must be shown more than once to connect 
different shee ts . Look for cut points am ong the classes: a  c lass that is the sole connection betw een 
two otherwise disconnected parts of the object network. A star-pattern is frequently useful for 
organising nodules: a  single core module contains the top-level structure of high-level c lasses . R euse 
a  module from a  previous design if possible, but avoid forcing a  fit.').

%% HEURISTIC RULES

rule(insertClass, 'listing candidate c lasses  found in the written description of the problem', 
insert(c lass)).

rule(deleteRedundantClass, 'two c lasses express the sam e information', d e le te (c lass)). 
rulejdeletelrrelevantClass, 'a c lass has little or nothing to do with the problem', d e le te (c la ss )). 
rule(deleteVagueClass, 'a  c lass h as ill-defined boundaries or be too broad in scope', d e le te (c la ss)). 
rule(retypeClassToAttribute, 'nam es that primarily describe individual objects', 

retype(class,attribute)). 
rule(retypeClassToOperation, 'a nam e describes an operation that is applied to objects', 

retype(class, operation)). 
rule(retypeClassToAssociation, 'nam e of a  class should reflect its intrinsic nature and not a  role', 

retype (class,associa tion)). 
rule(deletelmplementationConstruct, 'constructs extraneous to the real world', d e le te (c la ss )). 
rule(insertAssociation, 'extract all associations from the problem statem ent1, insert(association)). 
rule(adjustAssociationBetweenEliminatedClass,

'one of the c lasses  in the association has been eliminated', adjust(association, c la s s ) ). 
rule(deletelrrelevantAssociation, 'any associations that are outside the problem domain or deal with 

implementation constructs’, delete(association) ; 
rule(retypeAssociationToOperation, 'an association that describes a  transient event', 

retype(association, operation); 
rule(modifyTernaryAssociation, 'associations between three or more c lasses  that may be 

decom posed into binary associations', m odify(association)). 
rule(deleteRedundantAssociation, 'associations that can be defined in term s of other associations', 

delete(associa tion)).
rule(retypeRedundantAssociationToDerivedAssociation, 'a redundant association that is useful in the 

real world and in design', retype(association,derivedA ssociation)). 
rule(modifyMisnamedAssociation, 'renam e association to say  what it is', m odify(association)). 
rulejinsertRoleName, 'add role nam es where appropriate', insert(role)).
rule(retypeAssociationToQualifiedAssociation, 'add qualifier to distinguish objects on the "many" side
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of an  association', retype(association,qualifiedAssociation)). 
rule(insertMultiplicity, 'specify multiplicity of associations', insert(multiplicity)). 
rule(insertAttribute, 'insert attributes that directly related to a  particular application', insert(attribute)). 
rule(insertDerivedAttribute, 'insert derived attribute but not expressed  a s  operation', 

insert(derivedAttribute)). 
rule(insertLinkAttribute, 'idenify attributes that are properties of the link between two objects', 

insert(linkAttribute)).
rule(retypeAttributeToObject, 'an attribute appears to be an unique object', re type(attribute,object)). 
rule(retypeAttributeToQualifier, 'value of an attribute depends on a  particular context' 

retype(attribute,qualifier)). 
rule(retypeAttributeToAssociation, 'an attribute select am ong objects in a  set' 

retype(attribute,association)). 
rule(deleteAttributeAsldentifier, 'an implementation object identifiers in object model' 

delete(attribute)).
rule(retypeAttributeToLinkAttribute, 'a property depends on the p resence of a  link', 

retype(attribute,linkAttribute)). 
rule(deleteAttributeAslnternalValue, 'an attribute describes the internal state  of an  object' 

delete(attribute)).
rule(deleteAttributeAsFineDetail, 'minor attributes which are unlikely to affect m ost operations', 

delete(attribute)).
rule(adjustClassFromAttribute, 'attribute that seem s completely different from and  unrelated to all 

other attributes in the class', adjust(class, a ttribute)). 
rule(inheritanceFromGeneralisation, 'c lasses with similar attributes, association or operation' 

insert(generalisation)). 
rule(inheritanceFromSpecialisation, 'enum erated su b cases  in the application domain', 

insert(generalisation)). 
rule(insertMultiplelnheritance, 'sharing from multiple c lasses ', insert(generalisation)). 
rule(adjustAssociationBylnheritance, 'associations that are not assigned to specific c la sse s  in the 

c lass hierarchy' => adjust(association,generalisation)). 
rule(adjustAttributeBylnheritance, 'attributes that are not assigned to specific c la sse s  in the c lass 

hierarchy' => adjust(attribute,generalisation)). 
rule(addClasslnAsymmetryAssociation, 'asymm etries in associations and generalisations', 

insert(c lass)).
rule(splitClasslnDisparateAttribute, 'disparate attributes and operations on a  class' 

adjust(class,attribute)).
rule(splitClasslnGeneralisationDifficulty, 'difficulty in generalising cleanly and one c lass plays two 

roles' => adjust(class,generalisation)). 
rule(addM issingTargetClass, 'an operation has no good target class', in sert(c lass)). 
rule(addGeneralisedClass, 'duplicate associations with the sam e nam e and purpose', in sert(c lass)). 
rule(retypeAssociationToClass, 'a role substantially sh ap es  the sem antics of a  class ' 

retype(association,class)). 
rule(deleteU nnecessaryClass, 'a c lass lacks of attributes, operations and associations' d e le te (c la ss)). 
rule(addAssociationlnM issingPath, 'missing access  paths for operations', insert(association)). 
rule(removeRedundantAssociation, 'redundant information in associations', dele te (associa tion )). 
rule(adjustAssociationlnHierarchy, 'role nam es are too broad or too narrow for their c lasses ' 

ad just(association,class)). 
rule(retypeAttributeToQualifiedAssociation, 'need to access  an object by one of its attribute values' 

retype(attribute.qualifiedAssociation)). 
rule(groupClasslntoModule, 'group c lasses into shee ts  and m odules' => insert(m odule)).
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