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A bs tr a c t

In light of reduced Higher Education funding, increased student contributions 

and competition between institutions, finding ways to understand student 

progression and improve the student experience are integral to the student, 

institution and state (York and Longden 2008).

This research uses Business Intelligence, specifically Data Warehousing and 

Data Mining, to build models that can be used to predict student behaviour. 

These models relate to final award classification, progression onto postgraduate 

studies at Sheffield Hallam University and employment type post undergraduate 

degree completion. This work builds upon the recommendations of Burley (2007) 

where the Department of Computing, at Sheffield Hallam University, was used 

to prove the applicability of such techniques.

It is fair to state that the field of student progression has been well documented 

over the years. Numerous authors (Tinto 1993, Yorke 1999, McGivney 2003) 

have all developed strategies and intervention techniques to help aid student 

progression. The evolving field of Educational Data Mining has focused, in the 

main, upon student interactions with web-based learning environments (Romero 

and Ventura 2006). Few studies have tackled the subject of using Business 

Intelligence as a method of understanding student progression (Dekker et al 

2009, Herzog 2006).

The data was collected from the universities information systems and through 

the process of Data Warehousing and Data Mining a number of predictive 

models were constructed. This resulted in the identification of some interesting 

rules and variables, such as course and ethnicity, which are also fundamental in 

the more traditional student progression literature, such as Yoke and Longden 

(2008).

Overall, this research has further proved the applicability of Data Mining in 

Higher Education. The major institutional findings that have been established 

are: added value students are more likely to take postgraduate studies at 

Sheffield Hallam University, and a student's ethnicity can influence progression 

onto postgraduate studies and obtaining a graduate job.____________________
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P r efac e

This thesis is submitted in partial fulfilment of the requirements of Sheffield 

Hallam University for the degree of Doctor of Philosophy and outlines the 

process followed and the results obtained from carrying out research into using 

Business Intelligence to predict student behaviour.

The first three chapters outline the area under investigation and previous 

research that has been conducted into understanding student progression in 

Higher Education, from both a traditional and Educational Data Mining 

perspective. Chapter 4 provides an overview of Business Intelligence, Data 

Warehousing and Data Mining. The approach that was followed when carrying 

out the research is discussed in Chapter 5. Chapters 6 and 7 explore the 

process of understanding and mining the student data. The findings of the 

research are then presented in Chapter 8 and recommendations for future 

research are made in Chapter 9. The whole process is then reviewed in the 

reflective summary in Chapter 10. Finally, Chapter 11 reiterates the main 

findings and recommendations of the research.

Part of this work has been presented in the following conference paper:

BURLEY, Keith M and WILSON, Richard S (2012), Understanding Student 
Progression for Data Mining Analysis, HEIR, Presented at the Fifth Annual 
Conference of the Higher Education Institutional Research Network for the 
United Kingdom and Ireland.

This sparked a healthy debate about the quality of data within Higher Education 

institutions.
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G lo s s a r y

Added Value
Or value-added relates to “Student achievement, which is inextricably 
connected to institutional success, must be measured by institutions on a 
‘value-added’ basis that takes into account students academic baseline when 
assessing their results.” (Spellings 2006, p04).

Adults with Higher Education Qualifications by Postcode (QAHE)
Is a measure, on a scale of 1 to 5, which forms part of the HEFCE work into 
POLAR2. It is used to rate the number of adults, in a region of the United 
Kingdom, who have obtained Higher Education qualifications (where 1 is low 
and 5 is high) (HEFCE 2012).

Business
Is concerned with any particular employment or occupation that is engaged in 
for gain, livelihood or a profession; can also refer to financial dealings such as 
the buying or selling of an item(s) (Richardson and Richardson 1992). 

Business Dimensional Lifecycle Diagram (BDLD)
“A methodology for planning, designing, implementing, and maintaining data 
warehouses [...].” (Kimball and Ross 2002, p393).

Business Intelligence (Bl)
“A generic term to describe leveraging the organization’s internal and external 
information assets for making better business decisions.” (Kimball and Ross 
2002, p393).

Categorical Variable Consolidation
Using a decision tree to group the levels of a categorical exploratory variable 
based on its associations with target variable to create a new model input. 
(Georges et al. 2010).

Categorical Variables
“A variable whose values are not numerical. Examples include gender (male, 
female), paint colour (red, white, blue), (Upton and Cook 2002). 

Classification
The process “[...] assigning a newly presented object to one of a set of 
predefined classes.” (Berry and Linoff 2011, p86).

Continuous Variables
“A variable whose set of possible values is a continuous interval of real 
numbers x, such that a < x > b, in which a can be —[infin] and b can be [infin].” 
(Upton and Cook 2002).

Cube
“Name for a dimensional structure on a multidimensional or online analytical 
processing [...] database platform, originally referring to the simple three- 
dimension case of product, market and time.” (Kimball and Ross 2002, p395). 

Data Cleansing
Is the act of detecting and removing/correcting data in a database that is 
deemed to be dirty (English 1999).

Data Mart 
In top-down Data Warehousing:

A Data Mart is “a collection of subject areas organized for decision support 
based on the needs of a given department”. In top-down Data Warehousing the 
Data Marts extract the data from the Enterprise Data Warehouse, they are 
dependent on the data stored within the Enterprise Data Warehouse (Inmon 
1999).
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In bottom-up Data Warehousing:
A Data Mart is “a flexible set of data, ideally based on the most atomic (granular) 
data possible to extract from an operational source, and presented in a 
symmetric (dimensional) model.” In bottom-up Data Warehousing the Data 
Marts are independent of the Data Warehouse, the Data Marts are consolidated 
to form the Data Warehouse (Kimball and Ross 2002, p396).

Data Mining (DM)
“[. J]s the automated analysis of large data sets to identify previously unknown 
patterns or trends of information in the data that may be used to make valid 
predictions. It uses standard statistical analysis and modelling techniques to 
discover patterns that typically would go undetected using ordinary statistical 
methods”. (Samli etal. 2002, p219)

Data Sparcity
A poorly designed multidimensional database (cube) can have a larger physical 
size then the information it retains, it is sparse. This results in a cube that is 
larger than necessary and can lead to problems with usability and performance 
(Kimball and Ross, 2002).

Data Warehouse
“The conglomeration of an organizations data warehouse staging and 
presentation areas, where operational data is specifically structured for query 
and analysis performance and ease-of use.” (Kimball and Ross 2002, p397). 

Data Warehousing (DW)
“[...] what you need to do in order to create a data warehouse, and what you do 
with it. It is the process of creating, populating, and then querying a data 
warehouse and can involve a number of discrete technologies [...].’’(Reed no 
date).

Educational Data Mining (EDM)
“Educational Data Mining is an emerging discipline, concerned with developing 
methods for exploring the unique types of data that come from educational 
settings, and using these methods to better understand students, and the 
settings which they learn in.” (Baker and Yacef no date, p02).

Enterprise Data Model
Defines all the data that is common to a business, from a high-level business 
view to a generic logical data design, including links to the physical data 
designs of individual applications (Singh 1998).

Enterprise Data Warehouse (EDW)
Is a centralised, normalised and atomic data store that is used to populate a 
number of dependent Data Marts. An Enterprise Data Warehouse is arranged 
around the enterprise subject areas found in the enterprise data model (Inmon 
2002).

Entity-Relationship (ER) Modelling
“[...l]s a way of graphically representing the logical relationships of entities (or 
objects) in order to create a database. The ER model was first proposed by 
Peter Pin-Shan Chen of Massachusetts Institute of Technology (MIT) in the 
1970s.” (Rouse 2005).

Epistemology
“[Wlhat is (or should be) regarded as acceptable knowledge in a discipline.” 
(Bryman 2012, p27)

Estimation
Whilst “[cjlassicfaction deals with discrete outcomes: yes or no; [...]. Estimation 
deals with continuously valued outcomes. Given some input data, estimation 
comes up with a value for some unknown continuous variable such as income, 
order size, or credit card balance.” (Berry and Linoff 2011, p86).

-VIII-



Ethnomethodology
“[l]s a family of related approaches concerned with describing and portraying 
how people construct their own definitions of social situations or, more broadly, 
with the social construction of knowledge.” (Schwandt 1997, p44).

Explanatory Variable(s)
Otherwise known as the predictor variable(s) or independent variable(s) and 
refers to the inputs or predictors of a model that is used to derive an equation or 
rules to predict an output variable - target variable (Two Crows no date)

Higher Education Funding Council for England (HEFCE)
“HEFCE distributes public money for higher education to universities and 
colleges in England, and ensures that this money is used to deliver the greatest 
benefit to students and the wider public.” (HEFCE 2012a)

Higher Education Statistics Agency (HESA)
“[...l]s the official agency for the collection, analysis and dissemination of 
quantitative information about higher education.” (HESA no datea)

Higher Education (HE)
“[... Is] a diverse range of courses and qualifications, such as first degrees, 
higher national diplomas and foundation degrees. Many courses take place in 
universities, but plenty are also taught at higher education colleges, specialist 
art institutions and agricultural colleges.” (UCAS no date).

Joint Academic Coding System (JACS)
"[...] is owned and maintained by the Universities and Colleges Admissions 
Service (UCAS) and the Higher Education Statistics Agency (HESA) and is 
used for subject coding of provision across higher education in the UK. [...] 
JACS is currently used to code the subjects of both higher education courses 
and the individual modules within them across the full range of higher education 
provision." (HESA no date)

Key Information Set (KIS)
“[...A]re comparable sets of information about full or part time undergraduate 
courses and are designed to meet the information needs of prospective 
students.” (HEFCE 2012b).

Layer
“Nodes in a [Neural Network] are usually grouped into layers, with each layer 
described as input, output or hidden. There are as many input nodes as there 
are input (independent) variables and as many output nodes as there are output 
(dependent) variables. Typically, there are one or two hidden layers.” (Two 
Crows no date).

Lift
“The most common way to compare the performance of classification models is 
to use a ratio called lift. [...] What lift actually measures is the change in 
concentration of a particular class when the model is used to select a group 
from the general population” (Berry and Linoff 2004, p81).

Node
“A decision point in a [... Neural Network] that combines input from other nodes 
and produces an output through application of an activation function.” (Two 
Crows no date).

Nominal Variable
A variable that has no numerical values, such as gender or marital status (Hand 
etal. 2001)

On-Line Analytical Processing (OLAP) System(s)
Is concerned with extracting the data in the Data Warehouse and presenting it 
to the users. A On-Line Analytical Processing System(s) can be thought of as 
the front-end to a Data Warehouse. Increasingly software vendors are using the 
term to refer to their front-end analytical software. (Kimball and Ross 2002).
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On-Line Transactional Processing (OLTP) System(s)
Is concerned with loading an organisations day-to-day transactional data into a 
relational database, in this sense an On-Line Transactional Processing 
System(s) can be thought of as a front-end to a relational database (Kimball 
and Ross 2002).

Ontology
Research ontology is concerned with investigating the nature or essence of 
social phenomena (Bryman 2012).

Operational Data Store (ODS)
“A physical set of tables sitting between the operational systems and the data 
warehouse [...]. The main reason for the ODS is to provide immediate reporting 
of operational results if neither the operational system nor the regular data 
warehouse can provide satisfactory access. Because an ODS is necessarily an 
extract of the operational data, it also may play a role of source for the data 
warehouse” (Kimball and Ross 2002, p408).

Optimisation
“The minimization or maximization of some function, usually subject to 
restrictions (which are often on the values of the variables over which the 
optimization takes place).” (Upton and Cook 2002).

Ordinal Variable
A variable that has values that have a natural order, such as months of the year 
or education status (Hand et al. 2001).

Organisation
“ [Is a group] of people who co-ordinate their activities in pursuit of a common 
purpose.” (Richardson and Richardson 1992, p03)

Oversampling
Is the increasing of the classification of a rare event, so that a higher proportion 
of the rare event exists in the population. (SAS 2013)

Participation of Young People in Higher Education by Postcode (QYPR)
Is a measure, on a scale of 1 to 5, which forms part of the HEFCE work into 
POLAR2. It is used to look at the number of young people who entered into 
Higher Education based on where they live in the UK (where 1 is low and 5 is 
high). (HEFCE 2012)

Phenomenology
“A philosophy that is concerned with the question of how individuals make 
sense of the world around them and how in particular the philosopher should 
bracket out preconceptions concerning his or her grasp of that world.” (Bryman 
2012, p714).

Participation of Local Areas (POLAR2)
Is a classification of areas in the United Kingdom used to analyse the 
participation of young people in Higher Education based on where they live. 
(HEFCE 2012)

Prediction
“[...l]s the same as classification or estimation, except that the records are 
classified according to some predicted future behaviour or estimated future 
value.” (Berry and Linoff 2004, p10).

Quality Assurance Agency (QAA)
Carryout out assessments of institutions and “offer advice, guidance and 
support to help UK universities, colleges and other institutions provide the best 
possible student experience of higher education.” (The Quality Assurance 
Agency for Higher Education 2012)



Regression
Is a data analysis technique that is used to build predictive models. Regression 
is used to determine the expected value of the target variable from the actual 
values of related explanatory variables that tend towards a straight line 
(Wetherill 1986).

Relational Model
Is a way of storing and processing data in a Data Warehouse, in this model the 
data is stored in the form of a Relational Database Management system, this 
model is therefore similar to a transactional system (Schwatz 1996).

Research Territory Map
A high level conceptual map of the area under investigation, which helps to 
identify links between related topics and provides a way to classify and sort the 
research material obtained (Dawson 2000).

Sheffield Hallam University (SHU)
Is "[o]ne of the UK's most progressive and innovative universities, Sheffield 
Hallam is a multicultural institution with a vibrant and diverse student population 
[...]" (Sheffield Hallam University no date). Located in Sheffield, South 
Yorkshire, SHU is a former polytechnic that was given university status by the 
government in 1992 - all of the establishments granted this status are today 
collectively known as 'post 1992' universities.

Star Schema
“The generic representation of a dimensional model in a relational database in 
which a fact table with a composite key is joined to a number of dimension 
tables, each with a single primary key.” (Kimball and Ross 2002, p414). 

Structured Query Language (SQL)
"First developed in the early 1970s at IBM by Raymond Boyce and Donald 
Chamberlin, SQL was commercially released by Relational Software Inc. (now 
known as Oracle Corporation) in 1979. [... SQL] is a standard computer 
language for relational database management and data manipulation. SQL is 
used to query, insert, update and modify data." (Janalta Interactive Inc. 2013). 

Symbolic Interactionism
“A theoretical perspective in sociology and social psychology that views social 
interaction as taking place in terms of the meanings actors attach to action and 
things.” (Bryman 2012, p716).

Target Variable
Otherwise referred to as the outcome variable, dependent variable or response 
variable, is determined through the rules or equations of a model from a number 
of explanatory variable(s) (Two Crows no date).

Topology
Topology is used in relation to Neural Networks and therefore is defined as the 
number of layers and nodes in each layer of a Neural Network (Two Crows no 
date).
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1 In t r o d u c tio n

“The importance of student success in higher education is incontestable, 
whether one’s standpoint is that of a student, a programme team, a department, 
an institution, or a higher education system” (Yorke and Longden 2008, p04)

This thesis seeks to introduce Business Intelligence (Bl) tools and techniques to 

the problem of student progression in Higher Education (HE). It will attempt to 

create a number of intelligent user profiles of Sheffield Hallam University (SHU) 

undergraduate students, to answer the following research question: How can 

Business Intelligence be used to predict student behaviour as an aid to 

improving student progression? The research also builds upon the 

recommendations of Burley (2006). It is perhaps important to state that this 

research was conducted in the climate of reduced HEFCE (Higher Education 

Funding Council for England) funding and the consequential increase in student 

fees. However, it pre-dates the withdrawal of HEFCE funding since the data is 

taken from 2006.

The word 'student progression' will be used throughout this document to refer to 

the maintenance of students on their original course and final completion. The 

word progression implies a more optimistic approach to tackling the problem. 

This is in sharp contrast to the word retention, which has a more managerial 

feel. Indeed, Yorke and Longden (2004) suggest that retention implies the 

measurement of efficiency and effectiveness of a system or institution. They go 

on to suggest that the rationale for retention and completion as an indicator of 

success is weak. It is perhaps important to define the word progression in the 

context of this study. Student progression is associated with much more than 

dealing with the academic issues. Indeed, it is about helping the student to 

overcome the issues associated with entering HE and dealing with the personal 

issues that they face as part of the process (Moxley et al. 2001).



The student experience is fundamental to improving student progression as it 

helps the student to overcome the personal issues that they face as part of the 

HE process. The importance of this is visible, at SHU, in the appointment of an 

Assistant Dean for Student Experience in the faculty of ACES (Art, Computing, 

Engineering and Sciences). The quality of the student experience is something 

that institutions in the UK (United Kingdom) have had a high reputation for 

delivering. However, a reduction in funding has led to unhappiness in the sector 

over worries of the decline in the student experience (Yorke and Longden 2008). 

Therefore, the term student experience will be associated throughout this 

research with quality and understanding how the institution has managed the 

expectations of its students.

Yorke and Longden (2008) suggest that student progression needs to be 

considered from three perspectives -  the state, the institution and the student. 

Therefore, where possible this research will consider the interests of these three 

stakeholders in relation to student progression in HE. Through carrying out a 

comparative analysis of HE systems (in England, Australia, South Africa and 

the United States of America), they found that widening participation, increasing 

access and student funding were common reoccurring themes across all 

countries. In addition to this, they also found that within each of the countries 

there were differing rates of student progression and success in different groups 

and different institutions in HE.

In 2007, the National Audit Office found that 21,504 first year full time degree 

students, who enrolled in 2004-05, failed to progress into their second year. 

Whilst this is a slight improvement to 1999-2000, this still represents a 

significant financial loss to all of the HE stakeholders, introduced above. Indeed, 

Yorke and Longden (2008) estimate that cost of non-progression is £110 million 

per annum. All stakeholders have an active part to play in improving student 

progression and there is an assumption that the student wishes to progress 

(Burley 2006). However, Peelo et al. (2002) suggests that failure to progress 

should be accepted as a normal part of the learning process and as a result 

students should not be protected from failure.



2 R e s e a r c h  A ims  a n d  O bje c tiv es

“General aims must then lead to a statement of specific aims, and these should 
be turned into operationalized aims; that is, a specified set of practical issues or 
hypotheses to be investigated.” (Oppenheim 1992, p07)

The intention of this chapter is to outline the research question, aim and 

objectives and provide a rationale as to the importance of the work.

2.1 R es ea r c h  Q u e s tio n  an d  A im

Burley (2006) carried out research into exploring the issues that affected the 

progression of computing students at SHU through the use of DM techniques. 

The main focus of the research was to test the value of DM in understanding 

student progression. The results of his research highlighted a number of 

recommendations, one of which was to extend the research to include all 

faculties at SHU. Therefore, the question that this research intends to answer is:

How can Business Intelligence be used to predict student behaviour as an aid 
to improving student progression?

With this in mind the aim of the research is to:

Explore, through the application of Bl tools, the issues that affect the 
progression of all undergraduate students at SHU. It is intended that a number 
of predictive models will also be constructed to predict student behaviour.

2.2  O b je c tiv e s  o f th e  R esea r c h

At this stage, it is important to breakdown the research aim into a number of 

manageable objectives and associated measures. These will be used to help 

plan and assess the success of the research. Further discussions around how 

these objectives will be achieved can be found in Chapter 5. The following six 

objectives were identified along with associated measures for success, as figure 

2.1 below shows.



No. Objective Measure

1.

Review, compare and contrast existing 
knowledge to develop a theoretical 
framework on which to base the rest of the 
study.

Completed literature review.

2.

Develop knowledge of the relevant SHU 
information systems and DM software to form 
an understanding of the underlying data 
structures and mining software.

Understanding of the student 
data and SAS® software 
through speaking to experts.

3.

Explore existing data sets, inductively, to 
build inferences and determine patterns in 
the data.

Reduced variables in the data 
set and the introduction of new 
variables through the iterative 
use of DM.

4. Apply suitable DM techniques to build a 
number of predictive models.

Final models built and 
assessed.

5.
Validate the findings of study by comparing 
the results of the quantitative analysis to the 
current body of knowledge.

Completed findings.

6.
Compile a list of recommendations for the 
future uses of DM in this area based on the 
findings of the study.

Completed list of 
recommendations.

Figure 2.1 - Research Objectives and Measures.

2.3  R es ea r c h  Ra tio n a le

There has been increased pressure placed upon institutions to widen 

participation and increase access to HE (Yorke and Longden 2008). It is 

perhaps important to point out that this landscape is now changing with the 

reduced number of university places post 2011. However, the widening 

participation agenda (defined in section 3.2.1) is pertinent to the time (2006) 

from which the data used in this research was taken. In the current economic 

climate the number of university places available, financing and employability 

are major concerns for the institution, student and government. Arguably, in 

providing a rationale for the research it is necessary to discuss the importance 

of the research, who will be interested in the work, how the research will inform 

institutional policies and the tools used for data collection and analysis.

2.3.1 The  Im portance  of the Research

This research is important for a number of reasons, the principle ones being 

educational and financial. Indeed, Yorke (1999, p01) attests that:

“Governments around the world are increasingly calling higher education to 
account for the money that is invested in institutions, as is evidence by the rise 
of national quality assurance systems during the 1990s and the interest shown 
in performance indicators of various kinds. [...] There is a general international 
perception that economies are best served by maximizing the level of education 
in the populace. ”
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Over the last ten to fifteen years, there have been a number of significant 

changes in the way that HE has been funded in England. Indeed, the burden of 

financing education has moved from the local education authorities to the 

student. Prior to the mid-1990s, HE was funded by local education authorities. 

However, during the mid-1990s student loans were introduced, which paved the 

way for the introduction of a student contribution to tuition fees in 1998. A 

further top-up fee was later introduced in 2006 but this was at the discretion of 

the individual institution. Today the top-up fee has now become mandatory 

across HE institutions, which has reduced the dependency on the local authority 

but increased the burden on the student - the average student debt is expected 

to rise to over £20,000 (Garner 2008). The student contribution is collected after 

the student graduates and is earning past a certain threshold. This has provided 

non-traditional students with access to a university education. However, if the 

student fails to obtain a graduate salary, through non-progression or poor 

employment opportunities, then they will find it harder to repay the debt.

2.3.2 Educational Im portance

It is well documented that there is a high risk of first year undergraduate 

students failing to progress, the reasons for this can be grouped into 

educational and behavioural issues (Yorke 1999).

One of the biggest educational issues is that the student is moving from a 

relatively protected environment of school or college, where they are 

encouraged, monitored and guided to complete their work, to the much more 

relaxed environment of academia (Burley 2006). Furthermore, some students 

will also be moving away from the protected environment of home to study. 

However, the number of students moving away to study appears to have 

decreased in recent years. Indeed, faced with increasing debts, it is believed 

that more students are electing to attend local universities and stay at home 

(Coughlan 2009). Moxley et al. (2001) suggest that the majority of problems 

affecting the student are outside the educational process.

“Most institutions recognise that undergraduate education is much more than 
formal instruction and encompasses opportunities to develop socially, culturally, 
physically, spiritually and ethically. "(Moxley et al. 2001, p58)



However, there are few mechanisms in place for identifying those students who 

fail to engage with the university. Indeed, such students are rarely detected until 

several weeks into the first semester, by this time the student has developed 

certain behavioural issues that are very difficult to change. From an educational 

perspective it would be beneficial to both the student and the institution if these 

students could be identified through predictive modelling. This could help the 

institution to facilitate the student’s progression into academia, through for 

example offering help in terms of bridging courses, group events and the like. 

This has the potential to improve both student progression and the student 

experience.

In 1997 the Labour government committed itself to increasing student 

participation to 50% by 2010 (Slack and Casey 2002). The number of applicants 

accepted, through UCAS (Universities and Colleges Admissions Service), in the 

UK rose from 332,000 in 2002-03 to 346,000 in 2006-07, this shows an 

increase in accepted places of 4.1%. During this time, there have been 

changes in the subjects that students have applied to study. Indeed, 

applications for subjects allied to medicine increased whilst there were large 

reductions in applications for computer science, mathematics and engineering 

courses. The government has also incentivised institutions to widen 

participation. This has resulted in an increase in the proportion of students 

entering HE from black and minority ethnic groups, disabled students, and 

students with non-traditional HE backgrounds (National Audit Office 2007).

However, as pointed out by Yorke (1999) the risk of increasing and widening 

participation is the potential decrease in student progression. In 2007, the 

National Audit Office undertook research into student retention in HE. They 

found that 8.4% of first year full time degree students, who enrolled in 2004-05, 

failed to progress into their second year (National Audit Office 2007, p05). 

Indeed, this study highlights that the “retention of full-time, first degree students 

has improved slightly since 1999-2000” (National Audit Office 2007, p05). 

Nationally this could be looked upon as a failure to educate the population to its 

full potential. At the institutional level this will affect progression rates, funding, 

future availability of places and ranking within published league tables. From the 

student perspective the issues are psychological and the incurring of debts.
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2.3.3 F inancial Importance

At this stage, it is perhaps prudent to discuss the assertion that, given the level 

of student contribution, some may argue that the student is a customer of an 

institution. However, students are not merely purchasing a degree, they are 

purchasing access to a product that they have to successfully interface with to 

achieve their aim -  the opportunity to participate. As a result the student will still 

incur debts from student loans and bank overdrafts, regardless of whether the 

student progresses to subsequent years of study or completion, which will need 

to be repaid. Arguably, students attaining a graduate level salary are much 

more likely to pay off these debts quicker as non-graduate earning potential is 

significantly lower -  on average graduates earn over £100,000 more than non

graduates over there lifetime (National Audit Office 2007).

Progression is also important for the institution as they only receive funding 

from the HEFCE and\or the student for the number of completed years. This 

has a detrimental effect upon university rankings and the amount of future 

funding received, as the HEFCE will reduce its funding for the proceeding years. 

The university budget will also be impacted upon as there is a large effort, in 

terms of cost, associated with marketing and recruitment of students (Yorke and 

Longden 2008).

It is perhaps important to clarify that at the time that the data, used in this 

research, was recorded the institution received around £5,000 per student per 

year from HEFCE. On top of this the institution also received £3,500 from the 

student. However if the student failed to progress or failed to engage with the 

course (fails to submit any work for any module) then the institution was fined 

the following year (HEFCE 2009). In 2011, the HEFCE withdraw funding for 

undergraduate courses and most institutions now charge £9,000 per student 

per annum.

In turn, poor progression rates also reflect badly upon the government as the 

rates are often published in the media. Yorke (1999, p02) highlights that:

“Non-completion and delayed completion rates can be constructed as 
inefficiencies in the use of public finances, and hence they become political 
issues. ”
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Indeed, Yorke and Longden (2008) estimate that non-completion costs the state 

around £110 million per annum.

2.3.4 Interested  Parties

The management of SHU will be interested in the results of this research. It is 

also expected that the models developed, as part of this research, will generate 

interest and debate, from institutions and subject matter experts, regarding the 

use of modelling to predict student behaviour. Vendors of Bl applications may 

also be interested in the results of this research, as HE is a relatively untapped 

market (Luan 2002). The models generated as part of the research could also 

be of use to university admissions and marketing staff, tutors and student 

support staff. Indeed, an understanding of student behaviour is fundamental in 

helping those who have direct contact with the students (Moxley et al. 2001).

2.3.5 Inform ing  Institutional P olicies

Given that the outcomes of this research will help to foster an improved 

understanding of student opinion and behaviour, admissions and marketing 

staff, tutors and student support staff may find the results interesting so that 

selection of students and intervention can be improved. This will also be useful 

to students as identifying that they may require intervention, may provide them 

with the skills to complete their degree and earn a graduate salary. Furthermore, 

every effort will be made to try to attract SHU staff into using the models.

Whilst the models will be built at SHU, it is expected that they could be of use to 

other post 1992 universities. The research will also add a further dimension to 

the HE knowledge domain and has the potential to cause a debate as to the 

future use of modelling of student behaviour.

The application of Bl tools and techniques in the field of HE is relatively new. 

There has been little research into the problem of student progression using Bl 

and few have tried to model student behaviour. Arguably, the results of this 

research will contribute to the body of knowledge that already exists through 

publications in journals. This research will add to the current knowledge, 

stimulating a healthy debate amongst the subject matter experts and at least be 

of use to students and institutional staff.
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2.4  S u m m a r y

This chapter provides an overview of the research question aim and objectives 

along with a rationale as to why the work is important. The research rationale is 

broken down into five key areas. These are the importance of the work from an 

educational and financial perspective, who will be interested in the research and 

how the research will inform institutional policies. The chapter highlights that an 

improved understanding of student progression could have a positive impact 

upon all of the stakeholders who have a vested interest in HE success.



3 P r e v io u s  R esea r c h

“Around 28,000 full-time and 87,000 part-time students who started a first-degree 
course in 2004-05 were no longer in higher education a year later. ” (Parliamentary 
2008).

The subject of student progression in HE is a high profile issue, this is reflected 

by the fact that there has been a significant amount of research carried out 

within this area (Yorke and Longden 2008). Since 2005, the subject of the 

application of Bl in HE has grown substantially. Indeed, the growth of interest in 

the area of Educational Data Mining (EDM) can be seen by the recent creation 

of the International Conference for EDM and the increased publications of 

journals and books in this area (Romero et al. 2011).

This review will initially focus upon the findings of Burley (2007) which will then 

be expanded to include, in the first instance, research carried out by Yorke 

(1999), Moxley et al. (2001), McGivney (2003), and Yorke and Longden (2008). 

This will then be extended to include literature from the evolving field of EDM 

and its application in the problem of student progression.

3.1 Da ta  M in in g  T e c h n iq u e s  in H ig h e r  E d u c a tio n  R es ea r c h

In this section the findings of Burley (2007), titled “Data Mining Techniques in

Higher Education Research - The Example of Student Retention”, will be 

reviewed. The section will provide a brief overview of the study, including any 

relevant recommendations, and highlight the main strengths and weaknesses of 

the work.

Burley's research seeks:

“[...] to explore interrelationships between factors that contribute to student 
attrition and hence establish the demographics of at risk students” (Burley 2007,
p01)

Burley’s research is concerned with establishing the issues associated with 

student progression to demonstrate the suitability of DM in the field of HE. This 

is a reasonably unique approach of looking at the problem as very few authors 

have tried to understand the problem in this way -  see section 3.3. In the main,
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his research focuses upon students belonging to the Department of Computing 

at SHU. Through an extensive review of the literature, Burley identifies three 

key themes (Casual Problems, Modelling and Intervention). These are drawn 

from the work of McGiveny (1996), Yorke (1999) and Moxley et al. (2001). 

These are then considered from both the institutional and individual (student) 

perspective.

DM is then introduced to the problem of student progression, with an extensive 

discussion around supervised and unsupervised DM techniques. The research 

takes a mixed methods approach to help understand the issues. Having gained 

an understanding of the problems, Burley carries out a number of exploratory 

face-to-face interviews to gain further insights into problems pertinent to SHU 

computing students. These insights are then used to develop an online 

questionnaire that is targeted, in the main, at students within the Department of 

Computing at SHU (15.5% of respondents were from other similar universities).

In his evaluation of the process, Burley notes that there were two problems with 

the design of his questionnaire. These related to pigeon holing students into 

predefined age groups and rating responses on a five point likert scale, all of 

which hindered the analysis process. Burley collects his data over a nine month 

period, which is then categorised as student demographics and response to 

attitude issue. Given the period of data collection, it is questionable whether 

there were enough responses (587) to provide a representative sample of the 

population as DM is more effective with larger data sets. According to Berry and 

Linoff (2011, p167)

“Data Mining is most useful when sheer volume of data obscures patterns that 
might be detectable in smaller databases [...] We generally start with tens of 
thousands if not millions of pre-classified records so that the model set contains 
many thousands of records. ”

However, the research remains a good example of how effective DM could be 

in understanding the problem as the result corresponded to previous findings, 

such as York (1999).
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After preparing the data, the results are then mined using a combination of both 

unsupervised (Clustering and Rule Association) and supervised (Decision Tree 

Analysis) DM techniques -  see section 4.3. These techniques identify five key 

problems that effect student progression. These are: Course, Stress, Distraction, 

Examinations and Leave. All of these problems are related and whilst the 

findings agree with previous research, the transferability of the results to other 

departments and universities is questionable. Indeed, McGivney (2003, p102) 

points out that “[t]he evidence indicates that the reasons for withdrawal vary 

according to student group, the nature of the institution, the support available 

and the subject studied.”

Through considering a number of key demographic features, Burley constructs 

two profiles that can be used to identify vulnerable and less vulnerable groups 

of students. These findings are then used to inform a focus group meeting, at 

SHU. From this thirteen recommendations are developed, which take into 

consideration such things as student service intervention and the quality of 

teaching received. In his reflective summary, Burley discusses some of the 

issues associated with his research, such as the sample size of the students 

interviewed. The research concludes with a number of recommendations for 

future research. The one that is pertinent to this study is:

The analysis of historical student data to build a DM model that can be used to 
predict student classifications.

It is this recommendation that the current research seeks to take forward.

3.2 L o catin g  th e  R esearch

“The field of student progression has been well documented over the years. ” 
(Burley 2007, p01).

Numerous studies have been conducted into understanding the problems within 

HE - the majority of which focuses upon the American HE system (Yorke 1999). 

Whilst there is a plethora of material in this domain, it is important to consider 

research that is pertinent to the current HE environment. Indeed,
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“[s]ince the beginning of the 1990s, changes in economic patterns have 
combined with changes in education policy and structure to create a new 
landscape for adult learners. ” (McGivney 2003, p03)

There have been a number of notable changes that have affected the current 

situation. These include:

• the introduction of student loans during the 1990s;
• students contributions to tuition fees (in 1998 and in 2006);
• attempts to increase and widen HE participation; and
• the recent HE funding reforms and the consequent reduction in student 

numbers.

Therefore, this review will, in the main, consider research taken from the mid- 

1990s onwards. As stated previously, Burley (2006) identifies three texts that 

are useful in understanding the subject area of student progression. These are:

1. Staying or Leaving the Course by Veronica McGivney (2003);

2. Keeping Students in Higher Education by David Moxley et al. (2001); and

3. Leaving Early by Mantz Yorke (1999).

Since Burley’s research, the following study was also identified:

4. Retention and Student Success in Higher Education by Mantz Yorke and 

Bernard Longden (2008).

In understanding the problem of student progression in HE, Yorke and Longden 

(2008) suggest that the problem should be considered from three perspectives, 

the student, the institution and the state. They point out that a student’s failure 

to progress will have an impact on all of these stakeholders, the most obvious 

being financial loss. “The institution may not receive its full public funding 

entitlement if the student does not complete a period of study [...]” (Yorke and 

Longden 2008, p10), which will vary depending on the course and its funding 

structure. They state that the pressures to improve progression in 

undergraduate HE courses became increasingly important during the mid- 

1990s. The estimated cost of non-progression to English institutions during 

1999, for full-time first degree student, was in the region of £74 million.
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Yorke and Longden (2008) provide some useful background information of four 

different HE systems - Australia, South Africa, the UK and the United States of 

America. From here they go on to dissect the HE systems of Australia, South 

Africa and the UK -  all of which prove to be useful in the proceeding sections. 

They then go on to discuss how best to interpret institutional data in relation to 

the numerous performance indicators. They introduce some of the key 

theoretical ideas that have been formed over the years and consider them from 

three perspectives: psychological, sociological and other. They argue that 

current theory isn’t extensive enough to understand the problems associated 

with student progression.

Through looking at the result of two large scale qualitative surveys, conducted 

into full-time and sandwich students, Yorke and Longden highlight some of the 

more important reasons behind why students fail to progress. They argue that 

quantitative results do not go far enough to understanding the problems and 

that a better understanding is gained through considering quantitative data in 

conjunction with qualitative results -  a mixed methods approach. It identifies 

four general categories as to how HE stakeholders can aid progression. These 

are: facilitating the student’s decision-making about courses; improving the 

student’s experience of the course and institution; helping students to cope with 

the demands of the course; and understanding that events impact on students’ 

lives outside the institution. Their research has a large qualitative element that 

is aimed at students who already withdrew. In their concluding chapter, Yorke 

and Longden look at ways in which institutions, students and the HE systems 

can improve student progression.

McGivney (2003) offers an institutional perspective to understanding the 

problems associated with student progression. She provides some background 

to the problem by explaining how the FE and HE landscapes have changed 

over the last ten to fifteen years, brought about “[...] by increasing flexibility in 

entry requirements, course structures, learning modes and assessment 

methods.” (McGivney 2003, p03). Her research was conducted with mature 

students, those aged twenty one and over, in further or HE during 1995. The 

findings are made up from mail surveys, previous research (such as Kember
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1995), consultations with institutional representatives, Access Validating 

Agencies and subject matter experts.

McGivney highlights that before the mid-1990s very little data was collected, 

regarding student progression and attrition patterns, due to data collection 

problems and reluctance on the institutions part to do so. She examines non

completion rates from an institutional perspective and notes that national figures 

provide inadequate measures. She highlights that comparisons between 

institutions are difficult due to differences in how institutions measure 

progression and collect data. She then goes on to examine the variables that 

affect completion rates and highlights the issues associated with measuring 

these. She suggests that results from such studies are only meaningful within 

the context of each individual institution or subject area. Indeed, McGivney 

suggests that progression will vary depending upon the institution, student 

cohort, subject area, type of course and the mode of learning.

According to McGivney, there are six ways in which students can exit from a 

course, these are:

1. Non-starter;
2. Informal withdrawal;
3. Transfer to other programmes;
4. Academic Failure;
5. Formal withdrawal; and
6. Non continuer.

She goes on to examine some of the more common variations and findings 

associated with progression. From these she concludes that both the institution 

and the individual have a responsibility for ensuring student progression. 

McGivney suggests that institutions can make improvements by improving the 

information that students receive. The research concludes with a look at the 

various support mechanisms available to students.

Moxley et al. (2001) adopt a qualitative approach to understanding the problems 

associated with student progression. They are strong advocates of the previous 

national drive to widen participation. Indeed, they attest that:

“higher education should not be closed to those individuals who wanted to 
improve themselves” (Moxley et al. 2001, plx).
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The authors recognise that there is no individual panacea to improving student 

progression, as retention methods should be individualised to each institution. 

They argue that student progression is the responsibility of both the institution 

and individual and they observe that student progression is about more than 

achieving academic standards -  the student experience.

From their findings Moxley et al. (2001) develop a ‘Pathway to Retention Model’, 

which provides a number of objectives and supportive practices to help to 

facilitate student progression within institutions, see below:

O bjectives

Objective 1: The institution perceives a need for retention

Objective 2: The institution establishes retention as an institutional aim

The institution expands involvement in retention and creates 
Objective 3: partnerships that support and contribute to the success of

students

Objective 4: The institution builds a retention capacity and establishes a
formal programme for keeping students in higher education

Objective 5: The institution keeps students enrolled and persisting towards
the fulfilment of their educational aspirations and aims

Support Practices

Support Practice 1: Emotional support and sustenance 

Support Practice 2: Informational Support

Support Practice 3: Instrumental Support

Support Practice 4: Material Support

Support Practice 5: Identity Support

These will be discussed in further detail in section 3.2.4. According to Moxley et 

al. (2001) student progression can be improved through what they call proactive 

retention. This is the art of informing and teaching students how to become 

students. They suggest that institutions can facilitate this through providing 

relevant student support systems and they highlight that academics and student 

support services are vital to achieving this.

Yorke (1999) uses both a mail and telephone survey to investigate the reasons 

behind student attrition -  mixed methods. The focus of his research is on 

students who had already failed to progress with their full time sandwich degree
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courses in 1994-95, at six institutions situated in the North West of England. 

Yorke identifies some potential areas of where bias could be introduced to his 

research and he attempts to reduce this through a telephone survey. Yorke 

suggests this type of research is important for political reasons, as governments 

are holding HE institutions to account for their expenditure. From his research 

Yorke (1999, p39) identifies six factors as to why students fail to progress, these 

are:

Six Factor Solution

Factor 1: Poor quality of the student experience

Factor 2: Inability to cope with the demands of the programme

Factor 3: Unhappiness with the social environment

Factor 4: Wrong choice of programme

Factor 5: Matters related to financial need

Factor 6: Dissatisfaction with aspects of institutional provision

Yorke also reviews a number of models that have been developed to help 

facilitate an understanding of the student progression problem -  see section 

3.2.4. Arguably, the most famous of which is Tintos (1993) model of departure. 

Yorke appears to be critical of this model citing that it is too general in its 

approach and that the HE in the UK is funded differently. Overall, Yorke 

appears to advocate the widening of participation but attests that this cannot be 

achieved without a risk to student progression.

3.2.1 W idening  Partic ipatio n

“[...] participation in higher education had widened considerably over the 
preceding two decades, but there was still under-representation of young 
people from poor backgrounds and from some specific ethnic minority groups. ” 
(Yorke and Longden 2008, p50).

Arguably, for the stability of the British Economy, it is imperative that Britain 

maintains a diverse and well educated workforce. Indeed, Martinez (1996) 

warns that Britain is falling behind many of its major competitors. These 

concerns were further reflected in the previous Labour Governments’ target of 

40% of adults in England to have received a university education by 2020 

(Geoghegan 2009).
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Widening participation is about much more than increasing the numbers of 

students entering HE (Kennedy 1997). Indeed, widening participation is 

ultimately concerned with allowing non-traditional students access to a HE 

qualification, particularly those from poorer backgrounds and ethnic minorities 

(Yorke and Longden 2008). Archer (2002) notes that these types of non- 

traditional students are being catered for by the post 1992 universities. SHU is 

one of the post 1992 universities, which has managed to increase participation 

whilst also improving student progression from 91.2% in 2001-02 to 92.3% in 

2004-05 (National Audit Office 2007). However, numerous studies warn that 

increasing access to HE cannot be achieved without the risk of non-completion 

(Yorke 1999, Peelo and Wareham 2002).

Indeed, numerous other studies have noted that the opening up of HE in this 

way, to non-traditional students, has the potential to increase inequalities as 

opposed to tackling them (Yorke 1999, Peelo and Wareham 2002). Archer 

(2002) points out for example that students from poor backgrounds are likely to 

take on increased work, during term time, to reduce the financial burden. These 

students are also more than likely to graduate from university with larger debts 

due to a lack financial support from parents (Callender 2001).

In addition to the financial considerations, the drive to widen participation has 

also resulted in an increase in the number of local students (Archer 2002). In 

2006-07 around 20% of students were local to the institution, this is an increase 

of around 12% since 1984 (Coughlan 2009). Slack and Casey (2002) warn that 

home students (who traditionally are catered for by the post 1992 universities) 

are likely to develop different relationships, to that of non-local students, with 

the institution and their colleagues. They go on to state that local students may 

have other pressures and commitments outside of university that inhibits them 

from taking part in the extra-curricular activities of a conventional student. This 

suggests that the potential lack of local student integration into the institutional 

society could increase the risks of non-student progression.

According to a report by the National Audit Office, the cost of widening 

participation to non-traditional students is on average around £900 per student, 

this was addressed in 1999-2000 with the introduction of a new funding scheme
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called the ‘widening participation element’ (National Audit Office 2007). In 2003- 

04 the Funding Council added a retention element to this, the reasons for this 

were “[...] to remove a disincentive to recruit students who may be more likely 

to leave early.” (National Audit Office 2007, p30). In 2006-07, the total 

expenditure allocated through this funding stream was £345 million. However, 

due to recent changes in the funding of HE, the widening participation 

programme has been discontinued and student bursaries are the responsibility 

of the institution (Crown 2011).

3.2.2 Im proving  S tudent  P rogression

“In 2000 the UK government indicated that its commitment to expanding and 
widening participation in higher education should not be accompanied by lower 
levels of programme completion.” (Yorke and Longden 2008, p50)

It would be fair to say that the problem of student progression came to light 

during the mid-1990s. Indeed, during the 1990s there was considerable growth 

in the number of students entering full and part-time education, which placed 

significant pressure upon public finances to fund the extra places. Pressure was 

placed upon institutions to widen participation, particularly those from poorer 

backgrounds and minority groups, and to ensure that students already within 

the system progressed (Yorke and Longden 2008). The current economic 

climate could have a positive impact on student progression. Indeed, according 

to a 2009 BBC News article, it is estimated that the government will only fund 

an extra 10,000 new places. Arguably, as institutions tighten their admission 

processes, this will have a negative impact on the effort to increase student 

access to HE whilst potentially improving student progression (Geoghegan 

2009). However, the dynamics of HE are set to change again, post 2011, due 

to increase in fees and government control over student numbers (Crown 2011).

The number of targets (indicators) that an institution has to meet is a good 

indication of how important an issue student progression has become, as this 

provides a way for the state to measure its expenditure. According to Yorke and 

Longden (2008), there are many indicators for measuring the performance of 

HE institutions in the UK. During the mid-1990s, a number of student
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progression indicators were developed (along with measures for monitoring 

access) to measure institutional performances, these included:

• “Rates of non-completion following the first year of full-time undergraduate 
study;

• Projected completion rates for full-time undergraduates;
• Demographic data relating to participation (such as the proportion of entrants 

from ‘working class’ backgrounds, and of ‘mature’ entrants) and;
• Employment following graduation. ” (Yorke and Longden, 2008:64).

Further indicators include institutional league tables and rankings (published in 

both the Guardian and Times newspapers), and data published by the HEFCE. 

Yorke and Longden (2008) warn that indicators don’t provide a full enough 

picture to understand the problems of student progression. They suggest that a 

differentiation needs to be made between those who fail to progress for 

institutional reasons and those for personal reasons (outside the institutions 

control), Tinto (1975) refers to this as academic dismissal and voluntary 

withdrawal.

Through undertaking an extensive review of the literature in this area, a number 

of reoccurring themes were identified. Burley (2006) refers to these as Casual 

Problems, Modelling and Intervention. Arguably, these problems are 

stakeholder specific thus it is suggested that these reoccurring themes can be 

grouped into the following three categories:

a. Stakeholder Influences;

b. Theoretical Perspectives; and

c. Methods for Intervention.

The proceeding sections will consider each of these categories separately.

3.2.3 S takeholder  Influences  on P r ogression

“The negative aspects of withdrawal, however, represent a waste of resources 
and of opportunity for students and universities alike, and for the broader 
society."(Pitkethly and Prosser 2001, p186)

Student progression is influenced by three main stakeholders, the institution, 

the student and the state (Yorke and Longden 2008). Arguably, all of these
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stakeholders have a responsibility for student progression and the student 

experience. In their 2008 book, Yorke and Longden compiled a comprehensive 

list of suggestions as to how institutions, students and the state can help 

facilitate progression. They suggest that progression could be improved through 

focusing stakeholder efforts in four areas:

• Facilitating the students decision-making about courses;
• Improving the students experience of the course and institution;
• Helping students to cope with the demands of the course; and
• Understanding that events impact on students lives outside the institution.

Therefore, what follows is an in depth review of these areas in relation to each 

stakeholder.

3.2.3.1 T he Institution  D imension

“It is important to understand that universities and colleges do not simply react 
to student expectations. They shape them as we//.” (Ramsden no date, p03)

The institutional dimension is dominated by a number of reoccurring themes. 

Since the mid-1990's institutions have been placed under significant pressure to 

widen participation and improve student progression along with the student 

experience (McGivney 2003). This has resulted in: institutions having to make 

improvements in the way that they record and measure student progression, 

increases in financial pressures and the adopting of more flexible approaches to 

studying and part-time employment (Yorke 1999, Moxley et al. 2001, McGivney 

2003, Yorke and Longden 2008). With the advent of capped student numbers 

and increased tuition fees it is becoming questionable whether the goal of 

widening participation is still being pursued with as much importance. This 

section will mainly focus on the four areas introduced above, and given the 

quantitative nature of this research, consider potential difficulties that may be 

faced in measuring progression.

It is widely acknowledged that institutions need to provide more information to 

help students to select their programme of study to make a more informed 

choice (McGivney, 2003). Ramsden (no date, p12) states th a t"[...] students are 

often poorly informed about what they can expect. Martinez (2001) suggests
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that students who feel well informed, about their programme, are more likely to 

progress. He points out that the evidence indicates that students fail to progress 

due to:

"insufficient understanding [...] of the demands of their course (eg the balance 
of practical and classroom work, assessment requirements and the balance of 
different components of the course)" Martinez (2001, p04).

This is also highlighted by Yorke and Longden (2008) and McGivney (2003) 

who suggest that student expectations could be better managed by providing 

additional information on:

• "course content;
• methods of assessment;
• work placements;
• expected time-commitment;
• ancillary costs;
• success rates of past students; [...]
• employment; [... and]
• the quality of the student experience." (Yorke and Longden 2008, p134).

However, institutions are trying to address this with the introduction of Key 

Information Set (KIS) Statements (see glossary page viii) for every course as 

from 2013. In addition to this, students should also be able to:

• attend organised open days;
• access specific programme information;
• be given an opportunity to visit individual departments; and
• obtain answers to question such as "what can the course offer me?" and 

"Is this course right for me?".

Further to this, institutional literature tends to be compiled in a manner that can 

alienate students on the basis of their age, gender, disability and ethnicity 

(Yorke and Longden 2008). Furthermore, Institutions could improve student 

progression by thoroughly assessing the students suitability, to the institution, 

and making students aware of the practices and expectations of HE (Yorke and 

Longden 2008, Thomas 2002). It is also recognised that accepting students on 

programmes without the key entry qualifications, to complete the course, has a 

negative impact on progression rates (Yorke and Longden 2008, Moxley et al.

2001).

“[...] institutions are likely to maximise their students’ chances of success if they 
pay particular attention to the first year experience” (Yorke and Longden 2008, 
p136)
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It is fair to say that there has been quite a large burden placed upon the 

institution to improve the student experience (Thomas 2002). The literature, in 

this area, tends to focus on the institution engaging with students, at two levels 

General (social interactions) and Academic, before and after they have entered 

into HE.

“There is no one way to address readiness. In the United States, undergraduate 
courses are increasingly using the first two terms as periods in which to 
socialize students into a culture of post-secondary or higher education. "(Moxley 
etal. 2001, p114).

Yorke and Longden (2008), McGivney (2003), Thomas, (2002), Martinez (2001) 

and Ramsden (no date) all note the importance of providing opportunities to 

encourage social interactions between students and academics, and build good 

initial impressions. They suggest that institutions should minimise the number of 

unsystematic and bureaucratic arrangements and provide a welcoming and 

effective induction. The facilitation of exchanges between peers and tutors are 

believed to be vital in fostering the opinion that an institution is offering a good 

social experience (Thomas 2002, Ramsden no date). In addition to this, the 

centralisation of institutional support services are seen as being key to resolving 

student problems, in the most efficient and effective manner, and facilitating the 

student experience (Yorke and Longden 2008). It is widely recognised that 

students are more likely to progress if they feel like they belong at the institution 

(Tinto 1993). This can be aided by the institution:

• promoting a sense of community amongst the student population; and
• preparing information about the local area, where the university is 

situated (Yorke and Longden 2008).

Additionally, institutions should be prepared to help students to become familiar 

with their environment and promote a sense of academic and social wellbeing 

(Yorke and Longden 2008). This should be done whilst also supporting 

academic staff to develop their teaching expertise. This will ultimately enable 

the students to engage better with the HE process (Yorke and Thomas 2003, 

Ramsden no date).
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Research indicates that academic efforts and resources should be focused on 

improving the first year student experience, in that students are more likely to 

complete their degrees if they progress beyond the first year (Yorke and 

Longden 2008, McGivney 2003, Martinez 2001, Ramsden no date).

“[RJetention efforts that focus on performance need to identify students who 
struggle academically, assess their situations and develop individualized plans 
that advance their skills, competencies and proficiencies” (Moxley et al. 2001, 
P83).

Institutions need to support the student’s transition into HE by building a culture 

of support and learning, ensuring that teaching approaches and programme 

structures are conducive to student success and through making good use of 

formative assessments (Ertl and Wright 2008, McGivney 2003).

“Students felt disadvantaged by a lack of background knowledge because 
courses were sometimes pitched at a level which assumed some prior 
knowledge."(McGivney 2003, p125).

It is acknowledged that Institutions can improve progression by understanding 

the students pre-existing level of knowledge. Student's current level of 

knowledge should be assessed, before entry, so that suitable learning 

experiences and materials can be provided to help bring them up to speed 

(McGiveny 2003). Students can be brought up to speed through pre-entry 

workshops or as part of induction sessions at the start of the first semester. 

However, Ramsden (no date, p12) suggests that: “induction should be seen as 

a lengthy process rather than an event”. Expectations must therefore be clearly 

defined, from the start of the course, and exercises ought to be undertaken to 

assess that the students approach to HE is suitable. Institutions need to make 

study support and student mentors available to aid the student's transition into 

HE. The provision of formative feedback is recognised as being fundamental to 

helping the student's transition into HE. Indeed, academics should make 

constructive criticisms and help students to improve future assignments. Early 

academic failure needs to be seen as an opportunity to succeed further on in 

the process. Institutions should adopt, what Yorke and Longden (2008) term as, 

a 'not yet competent' perspective to failure, which encourages the student to 

understand gaps in their learning and take the appropriate actions to eventually 

become successful. Institutions need to be aware that there are many factors
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that influence non-progression, these can be individual or a combination of 

issues and include:

• problems grasping subject matter;
• misunderstanding of what was expected;
• problems with exam nerves;
• incorrect choice of course; and
• lifestyle unsuited to learning (Yorke and Longden 2008).

Institutions should promote early failure as an interim problem that can be 

worked on so that the student progresses.

Institutions need to work with students to help them deal with conflicting 

external pressures. An example of which is part-time working, previously 

institutions had a no tolerance policy to part-time working. However, institutions 

have accepted the students need to undertake part-time work and there are 

examples of where the institutions have employed students on a part-time basis 

(Yorke and Thomas 2003).

“It is not so long ago that term-time working by students was a breach of the 
rules. However it is now looked upon by many as a necessity in order to help 
fund study Burley 2006, p13)

There are also other events, in addition to part-time work, such as illness and 

criminal attacks that can have an adverse effect on progression. It is suggested 

that Institutions should make allowances for this and offer help and support and, 

if possible, resist from making the student restart the year. Yorke and Longden 

(2008) suggest that institutions should invite potential non-progressors to an exit 

interview as this might help them to understand that withdrawal is not the only 

option available to them.

“Institutions are now required to monitor retention rates and collect and record 
student data more carefully and in more detail than in the past. However, 
concerns about funding and reputation have made non-completion a sensitive 
issue and institutions are not always keen to publicise their rates.” (McGivney 
2003, p03).

It is recognised that the collecting of student data varies between institutions 

and there are problems when comparing such data on a national level. The 

main reasons for this are because of variation in data collection methods and in 

the definitions of, and way of calculating, non-progression. Indeed, some
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institutional data includes all types of non-progression including academic 

failure and transfers, others exclude transfers and forms of non-progression 

(McGivney 2003).

“Although the data published by HEFCE are undoubtedly of high quality, they 
do not fully illuminate the retention/completion picture. They do not differentiate 
between student departures that could (at least in part) be attributed to 
institutionally-related causes and those that arise from the students’ own life 
style choices or from extraneous events” (Yorke and Longden 2008, p71)

As a result there is a wide variety of data available, in terms of quality and 

quantity, and institutional methods and time-scales employed, in calculating 

non-completion rates after the first year of study, tend to vary from institution to 

institution. It has been noted that without any central direction, on the collection 

and recording of information, the accuracy of existing data will be questionable 

(McGivney 2003).

Further to this, Yorke and Longden (2008) highlight that quantitative research in 

HE appears to take two forms. The first looks at the analysis of datasets to 

identify correlations in student behaviour and the second form attempts to test 

theoretical models by combining results with demographic data. Finally it is 

perhaps important to point out that:

“It is obvious that not all types of withdrawal can be influenced by the university” 
(Pitkethly and Prosser 2001, p186).

3.2.3.2 T he Student D imension

“In all post-compulsory education sectors, some degree of student loss is 
inevitable. [...] The fundamental question is why some leave and others do not. ” 
(McGivney 2003, p85).

The majority of state commissioned reports place an emphasis on the 

Institutions responsibilities to improving student progression through improving 

the student experience (Parliamentary 2008). However, research studies 

suggest that the Institution shouldn’t be held solely responsible for poor 

progression rates. Therefore, this section will discuss how students can help 

improve progression in relation to the four areas introduced above.
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The importance of selecting the right programme of study is widely recognised 

as being one of the main influences on student progression (Yorke and 

Longden 2008, McGivney 2003, Martinez 2001). The literature suggests that 

students are less likely to progress when they make rushed and ill-informed 

decisions about their programme of study. It is noted that those students who 

take time to consider their reasons for entering HE and what they want to 

achieve in life are more likely to progress (Yorke and Longden 2004). However, 

the feasibility of this is questionable, given that the majority of students are 

selecting their programmes of study, whilst studying their A-levels or other level 

three programmes, with very little practical experiences (Davies and Elias 2002). 

Students can make a more informed decision if they spend some time 

researching, beyond what is provided by the Institutions their applying to, about 

their course and Institution (McGivney 2003). This includes speaking to careers 

advisors or friends, taking up paid or voluntary work, or taking sometime out to 

travel. The UK clearing is one example of where students are forced into 

making decisions with limited time to research their options (Richardson 2011). 

It is argued that students who are committed to their course are likely to cope 

better with the academic, social and financial pressures that they will face at 

some time during their studies (Yorke and Longden 2008).

Students have an important role to play in facilitating their own experience. 

Indeed, it is noted that a well-motivated student who is willing to work (not just 

transpose the work of others) and act on the feedback about their performance 

are more likely to progress (Yorke and Longden 2008). It is widely 

acknowledged that HE expects students to develop themselves to become 

autonomous learners and that the transition from level three study, where there 

is a high level of supervision, to that of HE can catch some students unawares 

(Yorke and Longden 2008). First year students are more likely to be caught 

unawares by assignment deadlines and instead of working constantly towards 

completing assignments they end up finishing them in a frantic rush. Students 

are expected to read deeper into their subjects, offer their own opinions 

(supported with appropriate literature) and manage their time so that they can 

plan their workload. One of the most prominent reoccurring themes in the 

literature, about the student experience, is the importance of students acting on
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the feedback received from the work they have submitted. In relation to this, 

Yorke and Longden (2008, p143) offer the following view:

"Some students - perhaps those more committed to performance goals than to 
learning goals - may merely note the grade (with or without satisfaction) and 
move on. The opportunity to maximize the learning potential is forfeited in such 
circumstances."

Indeed, this point is also raised by Ertl and Wright (2008, p202):

‘‘One common finding is that assessment can dictate to a considerable extent 
how students approach their learning, and that students focus on what is 
assessed. ”

Not all students have the skills to cope with the demands of HE and their 

programme and progress (Moxley et al. 2001). It is suggested that first year 

students need to be prepared for the possibility of obtaining low grades and be 

mature enough to use this as tool to stimulate their learning (Ertl and Wright 

2008). Not all students will have the right skills, at the start of their programme, 

to prepare assignments that meet the expectations of the institution and/or 

programme (Moxley et al. 2001). According to Yorke and Longden (2008), first 

year students need to develop their skills so that they are able to identify 

weaknesses in their work and take the necessary action, such as asking for 

help. Most HE institutions make some allowance for the student to develop, this 

is reflected by the fact that first year grades don't have a significant impact on 

the student’s final degree classification (Yorke and Longden, 2008).

The external influences effecting student progression are well documented, 

these relate to managing finances, living arrangements, personal attacks and 

inappropriate behaviour (Yorke and Longden, 2008). It is widely acknowledged 

that the managing of finances can be difficult for students, especially for those 

who are leaving home for the first time. Students living arrangements have also 

been shown to have a significant influence on progression; these problems 

arise from failing to get on with their house mates to burglaries. The effects of 

irresponsible exposure to alcohol and drugs are also well documented as 

having an adverse effect on academic work and ultimately progression (Burley, 

2006).
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3.2.3.3 T h e  S t a t e  D im e n s io n

“Governments around the world are increasingly calling higher education to 
account for the money that is invested in institutions [...]. The failure of 
undergraduate students to complete their studies is a cost to a government 
which funds higher education institutions [...]. A government’s concern to keep 
public spending as low as possible means that the overt aspect of its economic 
agenda is best served by minimizing non completion [...]. ” (Yorke 1999, p01)

It is the government's responsibility to ensure that there are adequate funding 

and quality systems that will help to foster engagement and partnership 

between students and institutions.

"Governments and agencies should be ready to introduce funding models and 
quality systems that will realise a vision of higher education as an engaged 
partnership between students and providers" (Ramsden no date)

It is worth noting that from 2011 the government’s priorities have changed from 

directly funding institutions to assessing quality, as measured by the Quality 

Assurance Agency (QAA) - see glossary page ix. The funding of universities is 

now through student fees which are set by the individual universities. The four 

areas introduced previously will be considered in relation to how the state can 

help improve the HE system to support progression.

Governments should help facilitate course selection by operating a more flexible 

post-qualification entry system as the inflexibility of the current systems works to 

the disadvantage of the student (Davies and Elias 2002). The majority of 

applicants who enter HE are accepted on the basis of predicted exam grades 

and conditional acceptances narrow down the students options, if they fail to 

meet the expected grades (Davies and Elias 2002). In addition to this, if 

applicants achieve a better or worse grade (in the subjects they have studied 

prior to entering HE) their choice of institution or programme may also change 

(Davies and Elias 2002). Indeed, applicants are more likely to make ill informed 

decisions when they are forced into making a rushed decision (Davies and Elias

2002).

“The student experience is currently high on the political and policy agenda” 
(Ertl and Wright 2008, p195).
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Governments should ensure procedures are in place that recognise and reward 

teaching (Ramsden no date.). In some non UK institutions teaching expertise 

are seen as vital to obtaining promotion within the institution. Government 

policies should not distract the institutions attention from the student experience. 

In that institutions should not be encouraged to seek other funding, for example 

research performance, at the expense of learning and teaching (Yorke and 

Longden 2008).

Governments can help students and institutions with programme demands by 

ensuring that there are guidelines on what institutions should deliver to ensure 

that the students have an experience that is of a reasonable quality and 

perceived as being value for money (Yorke and Longden 2008). However, 

these guidelines should merely be used to inform best practice as the institution 

is best placed, at the local level, to determine what qualifies as a quality 

experience (Pitkethly and Prosser 2001).

The perception of value for money will not be realised until the student gets the 

opportunity to reflect on the educational experience and the realisation of the 

economic rewards of obtaining the qualification (Yorke and Longden 2008). In 

addition to this, time-scales for collecting completion results may discriminate 

against institutions whose students come from less well-off backgrounds and 

take longer to complete their studies as they have to deal with external 

influences beyond their control (Yorke and Longden 2008, McGivney 2003). 

Finally as student contributions increase (and they exert more of a consumer 

like role as regards participation), the less significant the completion of 

progression statistics become at a national level (Yorke and Longden 2008).

Governments should minimise external influences by ensuring that funding 

systems for students are as straightforward as possible (Yorke and Longden

2008). The more complex the HE funding system is the less likely the students 

will be to take full advantage of the support that is available and may be less 

likely to progress (Yorke and Longden 2008). It is also important that the 

initiative designed to support certain student groups are supported by other 

initiatives. It is suggested that students from poorer backgrounds are at greater 

risk of unlinked initiatives (Yorke and Longden 2008).
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3.2 .4  D e v e l o p m e n t  o f  M o d els

“The theoretical literature on retention has drawn inspiration from a range of 
disciplines -  psychology [...], sociology [...] and organizational behaviour [ . . . ] -  
though in no case can it be convincingly argued that the theoretical formulations 
that have been produced are monodisciplinary in character.” (Yorke and 
Longden 2008, p76).

A number of models have been developed over the years that have attempted 

to model student progression, the most famous of which is Tinto (1975)’s model 

of departure. Since the conception of Tinto’s model authors have either made 

enhancements to his work or constructed completely new models. Yorke and 

Longden (2008) suggest that these models can be considered from three 

perspectives -  physiological, sociological and other. This section will therefore 

review a number of the more prominent progression models and will identify the 

main factors that affect progression.

“Tinto’s work, developed over a considerable time, has been very influential in 
studies of retention and attrition. ” (Yorke and Longden 2008, p76).

Arguably Tinto’s longitudinal model of institutional departure is one of the most 

prominent models of student progression (Yorke and Longden 2008). Tinto has 

developed his model from the mid-seventies to the early nineteen nineties. 

Central to Tinto’s approach is the transition from one culture to another. The 

development of his model draws inspiration initially from Durkheim’s (1951) 

theory of suicide and, later on, van Genneps (1908) study of rites of passage. 

The model itself considers progression from the student perspective but is 

relatively weak at addressing the external factors that influence student’s 

perceptions, reactions and commitments (Yorke 1999). Yorke (1999) also goes 

on to criticise the model for its lack of emphasis on the institutions contribution 

to non-progression.

-31-



PRE-ENTRY GOALS h  
ATTRIBUTES COM MITM ENTS Tl

INSTITUTIONAL
EXPERIENCES

Academic system 
, Formal ,

PERSON AL/ GOALS Sc 
NORMATIVE COM MITM ENTS T2 
INTEGRATION

OUTCOM E

Family
Background Sv

Academic
Performance

Skills Sc 

Abilities

Intentions 'X i
A 1 i i 1 i Faculty/Slaff

T i 1
' 1

Interactions

Goal & 
Institutional 
Commitments

_______ Formal

I Prior 
Schooling

/
. E x tra c u r r ic u la r  
* A c tiv itie s

Academic
Integration

1 .1
Social 

^ Integration

Intentions

1 Goal Sc 

| Institutional 
I Commitments!

Departure
Decision

Peer-Group
Interactions

Time (T)
■Jnfaimal _   I

Social system

External
Commitments

Figure 3.1 -  A longitudinal model of institutional departure (Tinto 1993, p114).

Tinto (1993) argues that student progression can be anticipated by the student’s 

level of academic and social integration. According to Tinto (1993), the key 

areas that influence progression, in relation to academic integration, include:

• assessment performance;
• personnel development;
• academic self-esteem (students perception of progress);
• enjoyment of studying the subjects;
• identification with academic norms and values; and
• the students identification of their role as a student.

The areas of social integration that Tinto identifies has being fundamental to 

student progression pertain to:

• number of friends;
• personal contact with academic staff; and
• enjoyment of their time at university.

Tinto (1993) points out that these factors develop over time, as integration and 

commitment interact, and he suggests that progression is dependent on the 

student’s commitment at the time of decision.

The Pathway to Retention model developed by Moxley et al. (2001) considers 

progression from the institutional perspective.
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Understanding 
retention as a 
psychosocial 
intervention

Formulating a 
student 

retention

Facilitating
student

retention

Addressing
student

situations

Building 
responsive 

student support 
systems

Fostering
student

development

Developing the 
retention 

programme along 
five dimensions

Students 
achieve 

their aims

Identifying, using 
and developing 
community and 

institutional assets

1Objective:
Establishing retention 
as an institutional aim.

Objective:
Expanding involvement in 
retention: creating 
partnerships.

Objective:
Building retention capacity; 
establishing a programme.

Objective:
Keeping students enrolled and persisting.

Perceived 
need for 
retention

Retention 
becomes an 
institutional 
priority

The institution 
has broad 
commitment to 
retention

The institution 
possesses a 
formal 
retention 
programme

Students
are

retained

Figure 3 .2 - Pathway to retention (Moxley et al. 2001, p20).

They argue that student progression can be facilitated, in h igher o r post

secondary education, by achieving five objectives and providing five support 

practices. These relate to:

Objectives

Objective 1: 

Objective 2:

Objective 3:

Objective 4:

Objective 5:

Support Practices

Support Practice 1: 

Support Practice 2: 

Support Practice 3: 

Support Practice 4: 

Support Practice 5:

The institution perceives a need for retention

The institution establishes retention as an institutional aim

The institution expands involvement in retention and creates 
partnerships that support and contribute to the success of 
students

The institution builds a retention capacity and establishes a 
formal programme for keeping students in higher education

The institution keeps students enrolled and persisting towards 
the fulfilment of their educational aspirations and aims

Emotional support and sustenance 

Informational Support 

Instrumental Support 

Material Support 

Identity Support

Moxley et al. (2001) point out that the ir model does not provide direction as to 

how the student experiences progression, or how the progression e ffo rt is 

organised fo r each individual student.
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“[...] we remain unconvinced that a single theoretical formulation -  a ‘grand 
theory’ -  can be constructed to include all of the possible influences that bear, 
via the student’s psychological state, on retention and success, whilst being 
practicable in terms of research and institutional practice.” (Yorke and Longden 
2008, p84).

Yorke and Longden (2008) provide a schematisation of the influences that 

affect student progression.

Adventitious
events

Psychology of the, 
indiv idua l (

Institutional
Context

Broader
Society'

Figure 3 . 3 - A schematization of the influences on students psychological state
(Yorke and Longden 2008, p85).

They suggest that this can be used to inform thinking about the problem of 

student progression. Central to this model is the student’s psychological state, 

when deciding whether to progress. They acknowledge that that the context of 

the institution and broader social environment exert an influence on the 

student’s decision, but they go on to point out that there are many influences 

(outside of the control of the institution) that will impact the student’s decision to 

progress. They argue that the chances of a student failing to progress are 

greater when the influences effect the students experience. Yorke and Longden

(2008), point out that there is no single panacea to understanding student 

progression and that there are a number of causes (individually or collectively) 

that may excrete an influence on a student’s decision to progress.

“[... RJetention and student success are influenced by a complex set of 
considerations which are primarily psychological and sociological, but which are 
in some cases influenced by matters that might be located under other 
disciplinary banners such as that of economics. ” (Yorke and Longden 2008, p77)
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3.2.5 M a in  In f l u e n c e s  o n  P r o g r e s s io n

“/W/e know that it [non-progression] is multi causal, that it is complex and highly 
context specific, but we also know that it is significantly caused by things which 
colleges and education centres can do something about.” (Martinez 1995, p23).

The main influences on student progression are well documented in the 

literature. Indeed, the research carried out by Martinez (1996), on progression 

in post-16 colleges, provides a good place to start. Through his research he 

identifies a number of broad issues that are thought to exert an influence on 

progression. These relate to:

Issues might include little or no career and/or

Motivation:

Social:

Time Pressures:

Financial:

Qualifications:

Any other 
difficulties:

or no
progression objectives, no real reason for choosing the 
institution, having to re-sit the course or transferring 
(after non-progression) to another institution.

Problems may occur due to a lack of friends on the 
same course and/or a lack of support from family. Other 
issues in this area could include an imbalance in the age 
or gender of people on the same course.

Difficulties in this area might relate to caring for sick 
relatives, being a single parent or having to work, in a 
part-time job, whilst also studying.

Here problems tend to relate to the loss of income 
support, delays in obtaining grants/loans, daily travel 
costs or examination fees.

When starting the course some students will only have 
obtained the minimum academic qualification and may 
lack studying experience.

These relate to unhappiness with certain aspects of the 
course, health problems, domestic circumstances, 
immaturity and travel difficulties.

Figure 3 .4 -  Issues that have a bearing on student progression (Martinez 1996, p16).

A 2007 National Audit Office survey into student progression issues highlighted 

that the most common reasons for non-progression were:

• “personal reasons;
• lack of integration;
• dissatisfaction with course/institution;
• lack of preparedness;
• wrong choice of course
• financial reasons; and
• to take up a more attractive opportunity. ” (National Audit Office 2007, p25).
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In addition to this, the report also goes on to state that “[...] some students fail 

their assessments, are excluded or take an intermediate qualification rather 

than proceed with their original course.” (National Audit Office 2007, p25).

In 2008, Yorke and Longden (2008b) carried out research for the HE Academy 

into the first year experience of HE in the UK. The research was carried out in 

two phases:

Phase 1: In 2006, a survey of first-year full-time undergraduate students
from contrasting institutions was carried out. This assessed the 
student’s perception of their experience of being a student.

Phase 2: In 2007, a follow up postal questionnaire of all those students who
failed to re-enrol on the second year of their course in their 
original institution was conducted.

The results of phase 2 of the research identified a number of reasons as to why

the students failed to progress. The most pertinent ones being:

• “Poor quality learning experience;
• Not coping with academic demand;
• Wrong choice of field of study;
• Unhappy with location and environment;
• Dissatisfied with institutional resourcing;
• Problems with finance and employment; and
• Problems with social integration. ” (Yorke and Longden, 2008b, p06)

From his 1995 survey, Martinez identifies five common factors that affect 

student progression. These relate to the students:

• justification for coming to college;
• source of information about the college;
• level of support received from the college;
• having problems with the programme; and
• personal and financial situation.

Similarly, Moore (1995) identifies a number of factors as to why students fail to 

progress and weights these in order of importance:

Course
unsuitable/dislike

41%

Personal reasons 17%

Academic problems 11%

Financial problems 11%

Accommodation 6%

Other 14%
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Moore (1995) identified that first term first year students were the ones who 

were most at risk of non-progression. It was determined that the main reasons 

for this were due to course related issues. However, student isolation and 

loneliness were also identified as being contributory factors. In response to this, 

Moore (1995, p23) attests that “students may find it easier to say they left for 

course related reasons than, for example, acknowledge personal problems.” He 

goes on to point out that over half of the students surveyed indicated that the 

reality of HE was different from their expectations.

3.3 E d u c a tio n a l  D a ta  M in ing  a n d  S t u d e n t  P r o g r es sio n

“Educational Data Mining is an emerging discipline, concerned with developing 
methods for exploring the unique types of data that come from educational 
settings, and using these methods to better understand students, and the 
settings which they learn in. ” (Baker and Yacef no date, p02).

This section will provide a brief overview of EDM (Educational Data Mining) 

before discussing EDM in relation to student progression. It will conclude by 

summing up the main point about EDM and student progression.

3.3.1 Educational Data M ining

It is fair to state that the majority of research undertaken in this domain has 

focused on student interaction with web-based learning environments (Romero 

and Ventura 2006, Baker and Yacef no date). However, a recent book by 

Romero et al. (2011) indicates that EDM can be divided into six main 

applications or tasks.

The first is using EDM  techniques to help adm in istrators and  academ ics  

in analysing course activ ities and course usage in form ation. The 

techniques used in this type of area are exploratory data analysis 

through statistical analysis, visualisations, reports and process mining.

The second relates to the m aintenance and im provem ent o f  courses. 

The objective is to determine the best way of improving certain aspects 

of courses, by helping administrators and academics to use information 

about student learning and usage. Association, clustering and 

classification analysis have been frequently used in this area.
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The third is in the generation o f recom m endations in term s o f which 

m ateria l would be m ost appropriate given the students current level o f 

knowledge. EDM techniques widely used in this area are clustering, 

association, sequencing and classification.

The fourth relates to predicting learn ing outcom es and student grades. 

Here the objective is to predict student classifications or other learning 

outcomes, such as non-progression, based on the data recorded by the 

institution. Clustering, classification and association are the most 

frequently used DM techniques.

The fifth relates to the m odelling o f students. There are numerous 

applications of user modelling in the HE domain, some of which relate to 

detecting student states and characteristics such as motivation, 

satisfaction, progress and problems. Commonly a student model is 

created from usage information. There have been numerous techniques 

applied in this area, of which the main ones are clustering, classification, 

association, statistical analysis, Bayes networks, psychometric models 

and reinforcement learning.

The sixth and final area relates to the structura l analysis o f  the domain. 

This is concerned with using the ability to predict student performance as 

a measure of quality of a domain structure model. The most frequent 

EDM techniques applied here are space searching algorithms, 

association rules and clustering methods.

Romero and Venture (2006, p137) point out that “Data Mining can be applied to 

data coming from two types of educational systems: traditional classroom and 

distance learning”. Romero and Venture (2006), go on to highlight the most 

prominent DM applications that have been used in web-based learning 

environments, these include:

• Statistics and visualisation;
• Web mining;
• Clustering , classification and outlier detection;
• Association rule mining and sequential pattern mining; and
• Text mining.
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However, a more recent study by Baker and Yacef (no date), comparing early 

EDM to EDM in 2008/09, suggests that relationship mining is becoming rare 

and that prediction modelling is increasing in popularity. Romero et al. (2011) 

indicate there are three avenues of EDM research, theses relate to:

• identifying which DM techniques are best suited to interrogating large HE 
data sets;

• determining the most appropriate questions to ask the data; and
• targeting EDM reports at the right HE stakeholders.

Previous research (Romero and Ventura 2006, Baker and Yacef no date, 

Dekker et al. 2009) indicates that little research has been undertaken in the 

area of EDM and student progression.

3.3.2 S tudent  P rogression  Focused  E ducational Data M ining

“There is almost a complete absence of literature concerning Data Mining 
applied to Higher Education” (Burley 2006, p122).

Indeed, whilst numerous authors have tackled the subject of student 

progression, very few have considered the use of Bl as a method of 

understanding the problem (Dekker et al. 2009, Herzog 2006). What follows is a 

review of those authors who have used Bl in understanding the problem of 

student progression.

Luan appears to be the leading expert in this field (Romero and Ventura 2006, 

Herzog 2006). Baker and Yacef (no date) also highlight that other key papers in 

this area include Superby et al. (2006), Romero et al. (2008) and Dekker et al.

(2009). Burley (2007) has already been discussed in section 3.1.

Luan (2001) and Luan (2002) investigates the potential applications of DM 

techniques in HE. Both these papers attempt to address the question:

“What are the transferable techniques in data mining that are readily applicable 
in higher education?” (Luan 2002, p04).
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Luan’s research is at a single college and is based on data taken in the autumn 

of 2000. This data is used to help illustrate the potential of both unsupervised 

(cluster analysis (Kohonen and K-means)) and supervised (Neural Networks) 

DM techniques, see section 4.3, to predict student persistence. The actual 

results appear to be of little significance as the data is used simply to 

demonstrate the applications of DM techniques. This research is then reworked 

and published in conjunction with SPSS® (Luan 2004). This work is similar to 

the research carried out by Burley (2007), using data taken from the 

Department of Computing at SHU and applies both supervised and 

unsupervised DM techniques to demonstrate the applicability of DM in HE.

In his research published with SPSS®, Luan (2004) introduces three, HE, case 

studies where such applications have proven useful and attempts to draw 

parallels between HE and the private sector. Luan substantiates his claim by 

showing the similarities between the business questions answered by DM in 

both the private sector and in HE. This is also evident in the research carried 

out by Burley (2007), who likens a HE institution to a supermarket where the 

students are shoppers and the student problems are the products purchased in 

the supermarket.

In a more recent study, Luan (2006) looked at predicting success rates of 

students across a number of courses at Cabrillo College. He assess data taken 

from a five year period and compares the success rates of students who 

received intervention (supervised tutoring) to those that didn’t. The results are 

then analysed against a number of demographics, such as gender, ethnic 

groups and age. The results showed that students that underwent intervention 

were 10% more likely to be successful than those that didn’t.

Superby et al. (2006) attempt to identify the factors that influence the 

achievements of first year university students, using DM techniques, at three 

dissimilar Belgian universities. Adapting the work of Parmentier (1994), they 

use a combination of questionnaire and assessment results to gather data 

about students:
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• demographics;
• attitudes towards studying;
• perceptions/experiences of the institution; and
• average marks received in January 2004.

The student’s average marks were then used to create three groups of students:

• low-risk of non-progression
• medium-risk of non-progression; and
• high-risk of non-progression.

Superby et al. (2006) attest that this information could then be used to identify 

those students who are in need of intervention during the first year of their 

degrees. Data was collected from 533 first year students from across all three 

universities during November of the 2003/04 academic year. This data was first 

used to attempt to identify the most correlated variables in predicting success 

and ultimately progression. This identified a number of factors associated with 

success, the main ones being course attendance and previous academic 

experience. Interestingly, gender, parental education level/occupation, number 

of brothers/sisters older/younger and whether or not they were already in HE 

were not identified as factors significantly correlated with success. Arguably, 

this is dependent on the type of institution and course studied (Dekker et al.

2009). Indeed, Dekker et al. (2009, p43) point out that “[a]ll studies show that 

academic success is dependent on many factors [...]”.

Superby et al. (2006) split their data 70/30 into training and validation 

respectively, they use SAS®, Enterprise Miner and R Software to compare the 

predictability of four DM techniques (Decision Trees, Random Forests, Neural 

Networks and Linear Discriminate Analysis) in predicting students at low, 

medium and high risk of non-progression. Through comparing the results of the 

four models they find that Linear Discriminate Analysis was better at classifying 

students into low, medium and high risk groups. However, the total rate of 

classification for this method is 57.35% which the authors themselves note is 

not remarkable. They highlight disparities between the students at the three 

universities from where the data was collected from as some justification for the 

poor classification percentage of their best model.
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Romero et al. (2008) compare a number of different DM techniques for 

predicting/classifying student’s final marks. The research uses 438 records 

taken from seven different e-learning courses at Cordoba University using 

Moodle -  this keeps detailed numerical logs of the activities performed by 

student in e-learning environments. From this student results are grouped into 

four categories (Excellent, Good, Pass and Fail), this results in an imbalanced 

data set as 59.81% of students failed and only 3.89% of students obtained 

excellent. In order to boost the minority variables they use random over- 

sampling and measure the quality of the induced classifier by the geometric 

mean. The original numerical data is also converted into categorical data, which 

results in three data sets:

• original numerical;
• categorical; and
• rebalanced.

A number of different DM techniques are then assessed against each data set. 

The results of which highlight that:

• Decision Trees, Rule Induction, Fuzzy Rule Learning and Neural 
Networks all perform well (more than 65% accuracy) with the numerical 
data;

• Decision Trees provided the best accuracy, more than 65%, with the 
categorical data; and

• Rule Induction and Fuzzy Rule Learning provided the best results, more 
than 60% accurate) with the rebalanced data.

Whilst the accuracy of these results are poor they do provide some indication as 

to the performance of different classification methods with different types of data.

Dekker et al. (2009) attempt to predict the non-progression of first year, 

Electrical Engineering, students at the Eindhoven University of Technology in 

the Netherlands. They obtain three data sets from the university, which they 

group into three categories:

• pre university data;
• university grades only; and
• number of attempts taken and grades achieved at each attempt.

Data is extracted for students who studied Electrical Engineering between 2000 

and 2009, through this process 648 records of first year students were obtained. 

Dekker et al then use WEKA to compare two decision tree algorithms (CART 

and C4.5), a Bayesian classifier, a logistic model, a rule-based learner and a
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Random Forest. In addition to this, they also used a OneR classifier to assess 

the predictive power of individual attributes. The results of their research 

indicate that the classifiers produce accuracy between 75% and 80%. In their 

concluding remarks Dekker et al. (2009) attest that the strongest predictors of 

success are the grades achieved in certain modules (mainly Linear Algebra) 

and that the most relevant information is collected by the university itself. In 

summing up Dekker et al. (2009, p49) point out that “[...] it is not easy to find an 

objective way of classifying students.”

A number of research papers refer to the research carried out by Herzog (2006), 

which focuses on comparing the prediction accuracy of Decision Trees (CART, 

CHAID and C5.0) and Neural Networks (simple topology, multi-topology and 

three hidden layer pruned) with that of multi-nominal logistic regression in 

predicting student progression and degree completion time. He points out that:

“[... HJigher education research provides little insight into which specific data- 
mining method to use when predicting key outcomes such as retention or 
degree completion” (Herzog 2006, p20)

Herzog (2006) gathers two types of data from Carnegie Doctoral Degree and 

Research University. He obtains 8,018 records of full time second year students, 

who started in the autumn semesters of 2000 through 2003, to predict student 

retention. In addition to this, he also collects 15,457 records of forth year 

undergraduate students from spring 1995 through to summer 2005 to predict 

time to degree completion. Herzog collects three types of data that relates to 

student:

• demographics
• academic, financial aid and residential situation; and
• parental income and transfers out of university.

Herzog (2006) draws upon previous studies and advocates that boosting

algorithms can help to improve prediction accuracy of models by up to 80%

when compared to standard algorithms of a neural network. Herzog (2006) uses 

SPSS® Clementine software and randomly splits his data 50-50 into training 

and validation. In doing so he determines that the results from the pruned

neural network indicated that credit hour related predictors, student age,

residency and stop-out time were the most influential on retention and degree
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completion times. Herzog (2006, p26) concludes that “On average the decision 

tree and neural network performed at least as good as the regression model.”

An example of where Bl applications have been used in HE to identify students 

at risk of non-progression is at the University of Alabama. In the light of 

increased competition and ever decreasing budgets, the University of Alabama 

in conjunction with SAS® developed a student progression model. This was 

used to help improve the selection of first year students, at enrolment, and the 

early identification of students that require intervention. The model, developed 

by Professor Michael Hardin, looks at enrolment records and ‘freshman’ 

surveys to identify the variables that affect student progression. He found that 

American College Test scores, high school grade point average, college majors 

and parent’s education level to be key in predicting non-progression. This has 

had a positive effect on the Universities progression rates and hence university 

rankings. Indeed, the university predicts that the success rate of those students 

identified as requiring intervention will increase from 50% to 83%, which will 

have a positive effect upon university finances (University Business 2004).

3.3.3 Main  P oints on EDM  and  P rogression

Since 2005, interest in the area of EDM has grown rapidly. The majority of 

research carried out in this domain has focused on the data collected from data 

gathered from computer systems on distance learning courses (Romero and 

Venture 2006). Applications of DM in HE are:

• Helping academics and administrators in analysing course information;
• Improving and maintaining courses;
• Generating recommendation as to the most appropriate course material;
• Predicting learning outcomes and student grades;
• Modelling students; and
• Analysing the structure of the domain (Romero et al. 2011).

Whilst numerous DM and statistical analysis techniques have been applied in 

these areas, the application of cluster analysis, classification analysis and 

association analysis seem to be more common. However, this is likely to 

change if research in prediction modelling is, as suggested by Baker and Yacef 

(no date), increasing in popularity in EDM.
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Whilst the general area of EDM has grown rapidly few studies have been 

undertaken into using DM to help improve student progression. A number of 

studies in this area (Luan 2001, Luan 2002, Burley 2007) have assessed the 

applicability of DM in HE and, in doing so, have likened HE to that of a business 

where student are shoppers. In addition to this, a number of studies have been 

carried out into trying to find the best DM technique to predict progression 

(Superby et al. 2006, Romero et al. 2008, Dekker et al. 2009).

It is evident, from all of the student progression literature reviewed in this 

chapter, that the research carried out into student progression is very focused in 

terms of specific institutions and/or specific courses. In such cases data is either 

collected via a questionnaire and/or extracted from university systems.

“[a]ll studies show that academic success is dependent on many factors 
/L.7*.(Dekker et al. 2009, p43).

In general the data gathered from such research tends to be less than a 1,000 

records with the exception of a few studies that take data from a number of 

years directly from the university. However, taking large amounts of data over a 

long time period could skew the results due to policy changes in the academic 

landscape. Data gathered from such studies tends to be:

• Student demographics;
• Attitude /behavioural related;
• Perceptions/experiences related; and
• Results/number of attempts.

Such data has then been used to create a predictor variable that highlights the 

student's likelihood of non-progression. For example, Superby et al. (2006) 

used student's average marks to create three groups (high, medium and low) 

that highlighted the student’s risk of non-progression.

“[... HJigher education research provides little insight into which specific data- 
mining method to use when predicting key outcomes such as retention or 
degree completion” (Herzog 2006, p20)

Indeed, researchers in this area have applied a number of unsupervised and 

supervised (see section 4.3) DM and statistical analysis tools to the problem of 

student progression, these include:
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• Classification
• Clustering;
• Neural Networks;
• Decision Trees;
• Rule Induction;
• Linear Discriminate Analysis.

“[...] it is not easy to find an objective way of classifying students. ” (Dekker et al.
2009, p49)

The results from such research vary, as the results are dependent on the type 

of student, course and institution. However, in general results from such studies 

indicated that: attendance; experience of academia; grades achieved; student’s 

age; living arrangements; and stop out time where fundamental to predicting 

non-progression. The majority of the factors effecting non-progression are also 

visible in the non EDM literature reviewed in section 3.2.

3.4  S u m m a r y

This chapter provides an overview of the literature on student progression, EDM 

and EDM in relation to predicting student progression. The review of student 

progression highlights that progression is the responsibility of the student, 

institution and the state. Efforts to improve progression are the responsibility of 

all three and should focus on the decision making process, the student 

experience, coping with course demands, and dealing with external events. The 

area of EDM and student progression has tended to focus on assessing the 

applicability of DM in the context of HE and trying to find the best DM technique 

to predict progression. The findings from EDM research tend to agree with the 

recommendation made in the literature about student progression. In that, 

course attendance, previous experience of academia, grades achieved, 

student’s age, living arrangements and stop out time are all fundamental, in 

both the student progression and EDM literature, to improving non-progression.
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4 Da t a  W a r e h o u s in g  an d  Da t a  M in ing

This chapter discusses some of the Data Warehousing (DW) and DM concepts 

introduced previously and in subsequent chapters. It has been specifically 

created to present an overview of Bl, DW approaches and methodologies, Data 

Quality (DQ) issues and DM techniques and methodologies. The chapter 

concludes by outlining what is new in the context of DW and DM in HE.

4.1 Ba c k g r o u n d  to  B u sin e ss  In te llig e n c e

According to Kimball et al. (2008) Bl is all of the processes and systems used 

by an enterprise to gather, process, access and analyse data. Through a better 

understanding of its data an organisation can acquire a better understanding of 

itself. Kimball et al. (2008) go on to suggest that a Data Warehouse is the 

platform for all Bl within an organisation.

4 .2  Da ta  W a r e h o u s in g

A Data Warehouse is defined as “a collection of integrated, subject-oriented 

databases designed to support the DSS [(Decision-Support Systems)] function, 

where each unit of data is relevant to some moment in time. The data 

warehouse contains atomic data and lightly summarized data." (Inmon 2005, 

p495). A data mart is defined as “a departmentalized structure of data feeding 

from the data warehouse where data is de-normalized based on the 

department’s need for information.” (Inmon 2005, p494).

English (1999, p04) highlights that “Data warehousing projects fail for a number 

of reasons, which can be traced to a single cause: nonquality.” According to 

English this nonquality is a result of a number of issues associated with the 

quality of data - data defects. In relation to data quality Greenfield (2004) 

identifies an informal taxonomy of DW errors, Greenfield summaries data errors 

into four categories these are:

a. Incomplete errors.

b. Incorrect errors.

c. Incomprehensible errors.

d. Inconsistent errors.
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As this research will be creating a number of DM marts using the DW process, it 

is imperative to provide a definition of DW. Reed (no date) defines DW as:

“[...] what you need to do in order to create a data warehouse, and what you do 
with it. It is the process of creating, populating, and then querying a data 
warehouse and can involve a number of discrete technologies [...].’’(Reed no 
date).

Hence, DW can be thought of as the process of turning data into knowledge, a 

flow of information. Figure 4.1, below, shows this information flow from data 

through to knowledge Kimball and Ross (2002) refer to this as the four stages.

Responsibility:

Analytic Applications

Report:

QueryDelivery

Analyse

Meta Data 
Design and Administration

Information

i= >
J 3 -

Structure Business
Understanding

Knowledge

Figure 4.1 -  Schematic of Information Flow adapted from 

(Oracle no date, p09, Marco 2003, Kimball and Ross 2002).

A DM mart is a clean, merged and reduced copy of the transactional data taken 

from the OLTP (On-Line Transactional Processing) systems, see glossary page 

ix. This would be located in the information flow, in figure 4.1, between the 

OLTP systems and the Data Warehouse. Kimball and Ross (2002) refer to this 

as the Operational Data Store (ODS), see glossary page x.
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4.2.1 Top-D ow n  Data Wareho using

The top-down or Enterprise approach to DW was founded by William. H. Inmon 

in the early 1990s and the DW terminology that is used today was, in the main, 

defined during this time. Inmon is known as the father of DW and is a keen 

advocate of the Entity-Relationship (ER) modelling approach to DW. The top- 

down approach begins with the building of the data warehouse. This is achieved 

through extracting the transactional data from one or more OLTP systems and 

then integrating this data within a normalised enterprise data model in a 

relational database. The data within the Enterprise Data Warehouse (EDW) is 

then summarised, dimensionalised and distributed to one or more dependent 

data marts as cubes. Each data mart derives data directly from the EDW 

(Eckerson 2004). According to Inmon (1999) a data mart is “a collection of 

subject areas organized for decision support based on the needs of a given 

department”.

4.2.2 B ottom -Up  Data  Warehousing

The bottom-up approach was developed by the DW consultant Ralph Kimball. 

Kimball is a noted expert in the field DW and he argues that a DW should be 

developed through dimensional modelling as opposed to ER modelling (Kimball 

1997). The Kimball method is where individual data marts are constructed, 

which contain aggregated transactional data that has been modelled into star 

schemas for optimised usability and query performance. In this approach data is 

extracted from the OLTP systems, transformed and then loaded into data marts. 

The data warehouse therefore, consists of a number of consolidated 

independent data marts that have been built one on top of the other to allow 

users to query across them. Some argue that this approach negates the need 

for a data warehouse as it is seen as a development of end-to-end data marts 

(Eckerson 2004).

4.2.3 Data Warehousing  M ethodologies  

Thomann and Wells state that a methodology

“is a detailed set of steps or procedures to accomplish a defined goal. [...] The 
primary purpose of a methodology is to achieve a predictable result. A 
secondary goal of methodology is to provide a process that is repeatable, 
trainable and consistent.” (Thomann and Wells no date, p01).
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Thus a DW methodology is concerned with the stages of the DW process and 

what needs to be completed within those stages. There is no ‘one-size-fits-all’ 

methodology for implementing a Data Warehouse; numerous methodologies 

exist that are both formal and informal. The selection of a DW methodology is 

dependent on a number of factors, such as the needs of the individual 

organisation, process maturity and the like (Thomann and Wells no date). 

Indeed, the selected DW approach, discussed above, will ultimately determine 

the DW methodology to be used. Thomann and Wells have developed a 

method for selecting a methodology, this is summarised in figure 4.2.
i       — j

• Who is the vendor?
• Who is the author?
• Is it produced by a consulting organisation?
• Is it proprietary (software specific)?

!
Does the methodology include analysis, design and construction and or usage of the following:

Source

D ata

"The operational and external data needed to populate the data 
warehouse."

Extract

Co m po nents

"Automated procedures designed to remove (copy) required data from 
the source environment."

T ransform

Co m po nents

"Automated procedures designed to change the extracted data into 
forms that assume data warehouse."

Load

Co m po nents

"Automated procedures that place transformed data into the data 
warehouse."

D ata  W arehouse 
( o r  Data  M a r t)

"The storage containers of the transformed data available for use by 
the business."

Access

Com po nents

"The means for business people to access the data warehouse to meet 
their information needs."

M etadata "Data about warehouse contents and warehouse processing that is 
needed to use maintain, and administer the data warehouse."

Data  C leansing  
Co m po nents

"Automated procedures that detect repair data quality defects."

D ata  A r c h iv in g  

Com po nents

"Automated procedures and storage facilities for permanent retention 
of historical data."

Figure 4 .2 - Data Warehouse Methodologies Checklist 

(Thomann and Wells no date, p03).

The methodologies associated with the approaches highlighted in sections 4.2.1 

and 4.2.2 will be assessed against the criteria identified above in figure 4.2. 

Arguably, there is little value in assessing a federated methodology as the 

approach aims to integrate multiple heterogeneous data warehouses, data 

marts and packaged applications that already exist within an organisation. This 

is in contrast with the aim and objectives of this project (Eckerson 2004).
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Therefore, this sub-section will assess the most prominent methodologies 

associated with the approaches introduced above The National Cash Register 

Company (NCR) Data Warehousing Method, Kimball’s Business Dimensional 

Lifecycle Diagram (BDLD) and the SAS Rapid Data Warehousing Methodology 

(O’Donnell etal. 2002).

4.2.3.1 Th e  NCR Data Wareho using  M ethod

The NCR method (figure 4.3) is a top-down approach to developing a data 

warehouse. The developers of the method, NCR consultants (along with William 

H Inmon), are strong advocates of ER modelling and the Inmon approach to 

DW. Hence, the method advocates the developing/deploying of an entire data 

warehouse as opposed to building individual data marts. There are three main 

phases to the NCR method:

• Data Warehouse Planning;
• Data Warehouse Design Implementation;
• Data Warehouse Usage, Support and Enhancement.

The Data Warehouse Planning phase comprises of five activities, which 

account for 60% of the data warehouse development effort. These activities are 

concerned with the identification of users, data requirements, data sources, 

tools to access and load the data, hardware, software, the business problems 

that will be addressed and the criteria to measure the success of the data 

warehouse.

Business Data
(req.) Warehousing
Discovery Consulting

Knowledge DW Logical 
DB Review

Data Mining 
& Analytical 
Applications

Discovery
Model Dev.

C/S App. DW Physical 
DB ReviewDevelopmen Data

Warehouse 
Solution 
Integration

DW Logical 
Data 
Modelling

(Full Cycle)
Data
Warehousing 
Inform ation 
Discovery

Warehousing DW Physical 
DB Design

DW
TuningSolution

DW 
Architecture 
Design

Readiness

Enterprise
System
Support

DW Data 
Transform ation

DW Capacity 
Planning

Data Warehouse Management 
(Process and Operations)

DW
A udit

Data Warehousing Data Warehouse Data Warehouse
Planning Design and Im plem entation Usage, Support and Enhancement

Figure 4 .3 - The NCR Data Warehousing Method 

(O’Donnell et al 2002, p04).
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The Data Warehouse Design and Implementation phase consists of six 

activities, which examine potential risks associated with the project, such as 

change management. These activities are also concerned with the creation, 

construction and testing of a physical database design and the data extraction 

and load processes. The activities also focus on the design/development of 

applications to exploit the data and end-user training. The Data Warehouse 

Usage, Support and Enhancement phase consists of eight activities, which are 

concerned with maintenance and support of the data warehouse and reviewing 

aspects of the data warehouse, such as Return on Investment (ROI), the review 

activities provide information that may be useful in the next iteration. (O’Donnell 

et al. 2002, p03).

Figure 4.4 assesses the NCR Data Warehousing Method against the criteria 

cited earlier.
r         1

• Who is the vendor? NCR
• Who is the author? NCR consultants and William H Inmon
• Is it produced by a consulting organisation? NCR
• Is it proprietary (software specific)? NCR products (Teradata Warehouse)

i i
i i

Does the methodology include analysis, design and construction and or usage of the following:

Source

Data

Makes provisions for all three areas

Extract

Com po nents

Makes provisions for all three areas

T ransform

Co m po nents

Makes provisions for all three areas

Load

Co m po nents

Makes provisions for all three areas

D ata  W arehouse 
( or  D ata  Ma r t )

Makes provisions for all three areas

A ccess

Com po nents

Makes provisions for all three areas

M etadata Makes provisions for all three areas

Data  C leansing  

Com po nents

Makes provisions for all three areas

D ata  A r c h iv in g  
Com po nents

Makes provisions for all three areas

Figure 4 .4 -An Assessment of the NCR Data Warehousing Method 

(O Donne I I et al. 2002).
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4.2.3.2 B usiness D imensional L ifecycle  D iagram

The Kimball Method, figure 4.5, is a non-software specific method that was 

developed by the DW consultant Ralph Kimball. Kimball is an advocate of 

independent data marts, dimensional modelling and the use of bottom-up 

techniques in the development of a data warehouse. The Kimball Method has 

two initial activities, Planning & Growth and Business Requirements Definition. 

The outcomes of these stages feed directly into three different phases, which 

can be categorised as Architectural, Data Modelling and Analytic Application. 

The Architectural phase has two activities that are concerned with determining 

the physical architecture of the data warehouse and the selecting/installing of 

software and hardware (O’Donnell et al. 2002).

Architecture

Data Modelling

Analytic Application

Data Staging 
Design & 

Development

Physical
Design

Analytic
Application

Specification

Analytic
Application

Development

Product 
Selection & 
Installation

Maintenance
Growth

Dimensional
Modelling

Business
Requirements

Definition

Technical
Architecture

Design

Planning l 
Growth

Deployment

Project Management

Figure 4 .5 -  Business Dimensional Lifecycle Diagram 

(Kimball and Ross 2002, p332).

The Data Modelling phase has three activities that are concerned with the 

process of designing star schemas, indexes, aggregate tables and the data load 

process - staging area. The Analytic Application phase has two activities which 

focus on designing/constructing the application used to access the data 

warehouse - the OLAP (On-Line Analytical Processing) front-end. The Data 

Modelling phase is dependent on the completion of the Architectural phase and 

the Analytic Application phase is dependent on the completion of the Data 

Modelling phase. Once all stages have been completed the system is then 

Deployed. The Kimball method is an iterative process which loops back to the 

initial stages for Maintenance and Growth of the system (O’Donnell et al. 2002).
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Figure 4.6, below, assesses the BDLD in regards to the criteria cited previously.

• Who is the vendor? NONE
• Who is the author? Ralph Kimball
• Is it produced by a consulting organisation? Kimball Group
• Is it proprietary (software specific)? Non software specific

Does the methodology include analysis, design and construction and or usage of the following:

Source

Data

Makes provisions for all three areas

Extract

Com ponents

Makes provisions for all three areas

T ransform

Co m po nents

Makes provisions for all three areas

Load

Com po nents

Makes provisions for all three areas

D ata  W arehouse 
( or  D ata  M a rt )

Makes provisions for all three areas

Access

Com po nents

Makes provisions for all three areas

M etadata Makes provisions for all three areas

D ata  C leansing  
Co m ponents

Makes provisions for all three areas

Data  A r c h iv in g  
Co m ponents

Makes provisions for all three areas

Figure 4 .6 -An Assessment of the Business Dimensional Lifecycle Diagram

(O’Donnell et al. 2002).

4.2.3.3 SAS Rapid  Data  Warehousing  M etho do lo g y

The SAS® Rapid Data Warehousing methodology is intended to be a top-down 

approach, but can also be used in a bottom-up context. Indeed, the 

methodology is an iterative approach that can be used to develop incremental 

data marts where organisations are unprepared to invest immediately in a large 

scale EDW. SAS® point out that such an incremental approach helps to deliver 

higher business value, a quick ROI and minimises the risks associated with 

project failure. Therefore, the methodology will be discussed as an example of a 

hybrid approach (SAS Institute Inc 2001).
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Final TestDesignAssessment Requirements Construction Deploym ent

Review

On-going 
A dm inistration 

and Maintenance

Figure 4 .7 - SAS Rapid Data Warehousing Methodology 
(SAS Institute Inc 2001, p11).

The SAS® methodology breaks down the project into a set of builds, the build 

cycle consists of a number of phases called assessment, requirements, design, 

construction, final test and deployment. Unlike the majority of vendors SAS® 

provide the full end-to-end package with their Warehouse Administrator, 

Enterprise Guide software and their Intelligence Architecture Blueprint (SAS 

Institute Inc 2001). Figure 4.8, below, assesses the SAS® Rapid Data 

Warehousing methodology in regards to the criteria cited previously

• Who is the vendor? SAS
• Who is the author? SAS
• Is it produced by a consulting organisation? SAS
• Is it proprietary (software specific)? Intended to be SAS software specific

Does the methodology include analysis, design and construction and or usage of the following:

Source

D ata

Makes provisions for all three areas

Extract

Co m po nents

Makes provisions for all three areas

T ransform

Co m po nents

Makes provisions for all three areas

Load

Co m po nents

Makes provisions for all three areas

Data  W arehouse 
( or  D ata  M a r t)

Makes provisions for all three areas

Access

Co m po nents

Makes provisions for all three areas

M etadata Makes provisions for all three areas

Data Cleansing  

Co m po nents

Makes provisions for all three areas

Data A r c h iv in g  

Co m po nents

Makes provisions for all three areas

Figure 4 .8 -An Assessment of the SAS Rapid Data Warehousing Methodology

(SAS Institute Inc 2001).
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Having introduced the different Data Warehousing approaches, above, a 

decision will be made, in Chapter 5, as to which approach will be used to build 

the three DM marts.

4 .3  Da ta  M in in g

The common areas of DM are depicted in figure 4.9 below.

Statistics

Databases

Figure 4 .9 - Where Data Mining Fits In (Burley 2003)

DM is a small part of a process called Knowledge Discovery, which aids 

organisations in the discovery of patterns and relationships hidden within their 

data (Berry and Linoff 2011). Arguably it is important to understand the different 

DM techniques and methodologies that could be used within this research. 

What follows is a discussion of each of these in detail.

4.3.1 Data  M ining  Techniques

A DM technique is a statistical method that becomes a DM model when coded; 

there can be several different models for the same technique. For example the 

DM technique called Rule Association (see below) has at least two DM models 

associated with it, Generalised Rule Induction (GRI) and Apriori (Berson et al. 

1999). This sub-section will discuss supervised and unsupervised learning, and 

a number of the most prominent DM techniques, such as Clustering, Rule 

Induction, Decision Trees, Neural Networks, Market Basket Analysis and 

Genetic Algorithms.
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4.3.2 S upervised  V ’s Unsupervised  Learning

Before discussing the DM techniques in detail it is imperative to define the 

terms supervised and unsupervised learning. Berry and Linoff (2011) define the 

two as follows:

“[...] Directed data mining [(supervised learning)] focuses on one or more 
variables that are targets [(output variable)], and the historical data contains 
examples of all target values. In other words directed data mining does not look 
for just patterns in the data, but for patterns that explain the target values. [...] 
In undirected data mining [(unsupervised learning)], there are no special roles. 
The goal is to find overall patterns. After patterns have been detected, it is the 
responsibility of a person to interpret them and decide whether they are useful. ” 
(Berry and Linoff 2011, p81).

In supervised learning the output variable is specified before creation and in 

unsupervised learning the output is determined by the model. Furthermore, it is 

important to note that an unsupervised learning technique can be used as a 

precedent to a supervised learning technique when the explorer is unsure of 

what to look for within the data (Berson et al 1999).

4.3.2.1 Clustering

Clustering is the most common form of an unsupervised learning technique, it 

provides a high level view of what is happening within a database. Clustering 

works by consolidating data into high level views and grouping similar records 

together in a database on the basis of self-similarity. There are two main types 

of clustering techniques - hierarchical and non-hierarchical. There are 

numerous algorithms associated with clustering, one of which is Kohonen 

Networks, which determines clusters by using the ‘Nearest Neighbour’ 

technique. Clustering offers no explanation as to why data is grouped into a 

certain cluster, thus the results are generally interpreted by someone who has a 

knowledge and understanding of the business. Clustering is generally used as a 

precedent to other supervised learning techniques, such as Neural Networks 

(Berson et al. 1999).

4.3.2.2 R ule Induction

Rule Induction is an unsupervised learning technique, which identifies all 

possible patterns in a database. The technique gives an indication of how 

accurate and significant the patterns identified are and whether they are likely to
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occur again, it generates a number of relatively simple rules. These rules are 

ordered on the basis of how many times they apply and the percentage of times 

they are correct. One of the biggest issues with Rule Induction is that the 

number of rules generated can be overwhelming. Rule Induction has two DM 

models associated with it, GRI and Apriori, and it forms the basis of the 

supervised learning technique called Market Basket Analysis (Berson et al. 

1999).

4.3.2.3 D ecision  Tree  A nalysis

Decision Tree Analysis is a supervised learning technique that can be used to 

either explore data or make predictions based on the data. Decisions Trees can 

predict both categorical and continuous variables and can be applied to both 

numeric and non-numeric data. They require very little data cleansing and pre

processing and their models are easily understandable, as Decision Trees 

consider a null value as a possible value along with their own branches and 

their rules can be easily translated into English and/or SQL (Structured Query 

Language). Decision Tree Analysis can be very complicated and the accuracy 

of Decision Trees can also be misleading, as they can split data in 

unsympathetic ways. Furthermore, the binary algorithms that they use to split 

data only consider one predictor variable at a time and in a specific order, which 

limits the number of possible splitting rules to test. This makes the relationship 

between the predictor variable hard to detect (Berson et al. 1999, Two Crows 

Corporation 1999).

4.3.2.4 N eural Netw ork

A Neural Network is a supervised learning technique that can be applied to a 

variety of different models to identify patterns, make highly accurate predictions 

and learn. They can be built for classification, prediction or regression and can 

handle both categorical and continuous variables. A Neural Network is not 

100% accurate but is more successful with large amounts of variables and data, 

it requires plenty of data pre-processing and time to train, as all input and output 

values are numeric. Therefore, the results generated have to be translated by 

someone who has knowledge of the business. Furthermore, Neural Networks 

don’t give any justification as to why the solution is valid and are limited in ease 

of use and deployment. It is important to note that Neural Networks require
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constant updating of the training set as they may age and weaken as the 

business environment around them changes. A common type of Neural 

Network is the feed-forward back propagation network (Berson et al. 1999, 

Berry and Linoff 2011).

4.3.2.5 Mar k e t  Ba s k e t  A nalysis

Market Basket Analysis (Affinity Grouping/Rule Association) is a supervised 

learning technique that uses unsupervised learning techniques, such as Rule 

Induction, as its basis. The most common use of Market Basket Analysis is in 

the analysis of transactional data to help determine associations (rules). It is 

generally used when organisations are unsure of what to look for (for example 

patterns) within their data. Indeed, Market Basket Analysis is often used in retail 

to help retailers determine what products the customers are purchasing 

together (complementary products). Market Basket Analysis is one of the more 

popular DM techniques as association rules are generated along with the 

results, which show how tangible the relationship between the products and 

services are. It is important to be aware of the fact that the usefulness of these 

rules generated by the technique could be questionable. Indeed, the rules 

generated can be categorised as one of the following, useful, trivial and 

inexplicable (Berry and Linoff 2011).

4.3.2.6 Genetic  A lgorithms

Genetic Algorithms are used to determine a basic answer to a problem that is 

then continually reassessed to determine the optimal answer, in that the 

accuracy of the answer is increased. Genetic Algorithms or Evolutionary 

Algorithms are a supervised learning technique that can be applied to both 

classification and optimisation problems. Genetic Algorithms are one of the 

least used techniques as DM generally focuses on classification and prediction 

problems, not optimisation. A common application of Genetic Algorithms is in 

the training of Neural Networks (Berry and Linoff 2011).

Having introduced the different DM techniques above a decision will be made, 

in Chapter 7, as to which techniques will be used at different points within the 

research.
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4 .4  Da ta  M in in g  M e th o d o lo g ie s

A DM methodology is concerned with the stages of the DM process and what 

needs to be completed within those stages. There are numerous DM 

methodologies that have been developed by consultants and vendors to sell 

their services and products. Arguably, two of the most prominent DM 

methodologies are the SAS® SEMMA (Sample, Explore, Modify, Model and 

Assess) methodology and the CRISP-DM (CRoss-lndustry Standard Process 

for Data Mining) methodology, this sub-section will therefore discuss these two 

methodologies and in an attempt to select a suitable methodology will highlight 

their respective strengths and limitations.

4.4.1 SEMMA

The SEMMA methodology (figure 4.10) is an award winning DM methodology 

that was developed by SAS®. The methodology breaks down the process of 

DM into five primary phases (Sample, Explore, Modify, Model and Assess) 

(SAS no date).

SAMPLE

EXPLORE

MODIFY

MODEL

ASSESS

Clustering Factor 
Correspondence

Data
Transformation

Other Stat 
Models

Logistic
Models

Model
Assessment

Sampling 
Yes/No

Neural
Networks

Tree Based 
Models

Data
Visualization

Variable 
Selection / 
Creation

Figure 4.10 -  The SAS SEMMA Methodology (SAS no date).

The Sample phase is concerned with the identification of data inputs, samples 

and data partitions, Explore focuses on exploring the data through graphs and 

statistics to determine such things as key variables. The Modify phase is where 

the data is transformed and prepared for analysis. Once any modifications have 

been carried out then a predictive Model, such a Decision Tree is fitted. The 

results of the modelling are then finally compared in the Assessment phase and
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the final model is then determined (SAS no date). The major strengths of the 

SEMMA methodology are its robustness and usability. Indeed, the SEMMA 

methodology is a tried and tested method that has won industry awards. It 

provides a set of logical and useful steps to aid the DM process. The main 

drawbacks of this method are that it mainly focuses on the analysis and 

interpretation of data and is SAS® specific (SAS no date).

4.4.2 CRISP-DM

CRISP-DM was developed in 1996 by DaimlerChrysler, SPSS® and NCR to 

create a standard process model for a growing DM market. CRISP-DM is a 

hierarchical process that consists of a number of tasks that are broken down 

into four levels of abstraction (phases, generic tasks, specialised tasks and 

process instances), which are then distilled into further tasks. Further to this, 

CRISP-DM breaks down the DM process into six phases (Business 

Understanding, Data Understanding, Data Preparation, Modelling, Evaluation 

and Deployment), figure 4.11, with each phase focusing on different parts of the 

DM process (Chapman et al. 2000).

Business
Understanding Data

Understanding

Data
Preparation

ModellingDeployment

Evaluation

Figure 4.11 -  CRISP-DM (Chapman et al. 2000).

The fundamental strengths of the CRISP-DM methodology are that it is non

platform specific as it was developed in conjunction with a number of 

organisations. In addition to this, it provides a structure for a developer to follow.
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The method is limited by the fact that the process focuses heavily on the 

carrying out of tasks that have to be completed before any DM begins. The DM 

process is prolonged due to the amount of bureaucratic red tape (Chapman et 

al. 2000)

Having outlined the different DM methodologies above a decision will be made, 

in Chapter 5, as to which methodology will be used to guide the DM process.

4 .5  W h at  is N ew  in th is  R es ea r c h

Chapter 3 highlighted that the problem of student progression within HE is well 

documented and that the EDM research, in this area, has tended to focus upon 

assessing the applicability of DM and determining the best DM techniques. 

Therefore, this section will provide a brief overview as to how this research will 

use DW and DM to build a number of DM marts and create, using directed DM, 

a number of student profiles. This will conclude with a brief discussion around 

the appropriateness of applying quantitative methods to the problem of student 

progression in HE.

4.5.1 B uilding  Data M ining  Marts

McGivney (2003) suggest that there is a lack of central direction on the 

collection and recording of institutional information and that the accuracy of 

existing data is questionable, which in turn implies that the application of DW in 

HE is sparse. However, this research will use the DW process (outlined in 

section 4.2) to build a number of DM marts. It is anticipated that the data 

contained within the Student Information (SI) database is dirty and will require 

reducing and cleaning before it is analysed. This process will aid the DM stage 

as it will provide a more in-depth knowledge of the institution and its students. 

The DM marts developed here will be fundamental to the student profiling stage 

(see section 4.5.2 below) of the research, as they will provide a single source of 

transactional data for each of the models.

4.5.2 S tudent P rofiling

One of the major differences between this research and Burley (2007) is the 

creation of a number of undergraduate student profiles. It is envisaged that 

three profiles will be created to predict:
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• Award Classification
• Progression onto Postgraduate Studies at SHU
• Employment Type.

The award classification profile will generate a number of rules around students 

attaining a certain grade. The second profile, progression onto postgraduate 

studies at SHU, will create rules for undergraduate students who go onto take 

postgraduate at SHU. The third profile will generate rules around what type of 

job (such as graduate, non-graduate or unemployed) the student will obtain 

when they have completed their undergraduate course. It is perhaps important 

to point out that the predictive power, of the profiles developed, will reduce over 

time. Therefore, the models developed as part of this research will need to be 

revalidated from time to time. This is common practice in the finance and 

insurance sector where such models are used to predict customer behaviour.

This aspect of the research is markedly different to that of Burley’s. In that it is 

introducing Bl, through DW and DM, to the problem of behaviour (progression), 

which will allow for a number of predictions to be made.

4.5.3 Using  Quantitative  M ethods  to P red ic t  S tudent  B ehavio ur  

A number of subject matter experts in this area disagree with using quantitative 

methods to predict student behaviour. Indeed, Yorke and Longden (2008) argue 

that quantitative results do not go far enough to understanding the problems 

and that a better understanding can be achieved through considering both 

quantitative data in conjunction with qualitative results -  a mixed methods 

approach. This view is also implied by Moxley et al. (2001) who carry out 

qualitative research to help understand the problems associated with student 

progression. Furthermore, this is also echoed by McGiveny (2003), she argues 

that it is difficult to replicate results due to differences in how institutions 

measure progression and collect data, which is fundamental to the positivist 

stance associated with such quantitative methods. She goes on to state that 

results from such studies are only meaningful within the context of each 

individual institution or subject area. However, there is a place for quantitative 

methods and work carried out by Burley (2007), Luan (2006) and the University 

of Alabama (University Business 2004) have all demonstrated the value of such 

techniques within the student progression and HE domain.
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4.6  S u m m a r y

This chapter sets out to provide an overview of the key concepts associated 

with DW and DM. It discusses two of the most prominent DW approaches, top- 

down and bottom-up, before going on to introduce a number of methodologies 

for carrying out such projects. It then goes on to discuss DM techniques and 

methodologies that will be useful when mining the student data in Chapter 7. It 

is important to note that a decision will be made in subsequent chapters (5 

through to 7) as to which approach, methodology, and techniques will be 

applied during the DW and DM phases of this research. In this chapter, a 

number of DQ issues are also introduced which will be useful in Chapter 6. 

Further to this, the chapter outlines the differences between this and other 

research in this area, which centres upon the use of Bl tools and the 

quantitative nature of the research.
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5 R e s ea r c h  A p p r o ac h

The aim of this chapter is to discuss the research approach that is to be 

adopted during the project.

Research is:

“the process of arriving at dependable solutions to problems through the 
planned and systematic collection, analysis, and interpretation of data. It is a 
most important tool for advancing knowledge, for promoting progress, and for 
enabling man [sic] to relate more effectively to his environment, to accomplish 
his purpose, and to resolve his conflicts” (Cohen et al. 2000, p45).

This definition highlights that research is an integral part of developing solutions 

to a given problem. According to Bryman (2012) such research should be 

considered from three perspectives, figure 5.1.

R esearch N R esearch N R esearch

Str a te g y I------------^ D e s ig n I------------v> M e th o d

Figure 5.1 -  The Fundamentals of Social Research (Bryman 2012).

The objective of the research is to investigate large academic data sets to build 

predictive models o f student behaviour. The three perspectives of research, 

identified in figure 5.1, will be discussed in regards to achieving this objective.

5.1 R es ea r c h  S tr a te g y

Cohen et al. (2011) attest that research is not simply a technical exercise, it is 

concerned with understanding the external social world. Central to this definition 

are the opinions of Hitchcock and Hughes (1995) who identify four fundamental 

concepts of research, these are summarised in figure 5.2.

Give rise to

I s s u e s  o f  I n s t r u m e n t a t io n  a n d  d a t a  C o l l e c t io n

M e t h o d o l o g ic a l  C o n s id e r a t io n s

E p is t e m o l o g ic a l  A s s u m p t io n s

O n t o l o g ic a l  A s s u m p t io n s
Give rise to

Give rise to

Figure 5 .2 - The Notion of Hitchcock and Hughes in Cohen et al. (2011, p03).



This notion is simplified by Bryman (2012) who highlights that there are a 

variety of considerations that need to be taken into account. These 

considerations are in relation to:

a. the type of research (quantitative or qualitative);
b. the relationship between theory and research (deductive or inductive);
c. epistemology (positivism or interpretivism); and
d. ontology (objectivism or constructionism).

There are two types of research, quantitative research and qualitative research 

and there is no hard and fast distinction between the two. However, it is 

possible to make a general distinction between them (Cohen et al. 2011). 

Indeed, quantitative research is:

“Where one subscribes to the view which treats the social world like the natural 
world - as if it were a hard, external and objective reality - then scientific 
investigation will be directed at analysing the relationships and regularities 
between selected factors in that world. ” (Cohen et al. 2011, p06).

This definition suggests that there is a direct parallel between natural science 

and quantitative research, as quantitative research is predominately concerned 

with the measuring of facts. Furthermore, quantitative research is more 

commonly associated with the macro environment as the research population 

tends to be quite large and varied. Therefore, the emphasis in quantitative 

research tends to focus upon quantification in data collection and analysis 

(Byman 2012).

Conversely, in qualitative research:

“[...] one favours the alternative view of social reality which stresses the 
importance of the subjective experience of individuals in the creation of the 
social world [...] The principle concern is with an understanding of the way in 
which individuals create, modify and interpret the world in which they find 
themselves.” (Cohen etal. 2011, p06).

This would imply that social research is not an exact science and that human 

interactions and the external environment are fundamental. Qualitative research 

is usually focused on the micro environment as the research environment tends 

to be quite specific and usually places an emphasis on words (Byman 2012).
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The relationship between theory and research can be considered as either 

deductive or inductive. In general a deductive approach is where hypotheses 

are deduced from theories and then used to drive the data collection process. 

The type of research conducted in the deductive approach is usually 

quantitative and is normally associated with the macro environment. The 

inductive approach is in sharp contrast to the deductive approach, as the 

research findings are generally fed back into the theory after the research has 

been conducted. Qualitative research is typically associated with an inductive 

research approach and is usually focused on the micro environment (Bryman 

2012).

Given the aim and objectives of the research, Chapter 2 and having reviewed 

the literature in Chapter 3 it is envisaged that the research will be mainly 

quantitative. This is due to the fact that research focused on using statistical 

analysis and DM to determine patterns and trends in HE data sets, specifically 

SHU. It is envisaged that this will enable the identification of general patterns of 

student behaviour to be established, which could then be applied to future 

students. These patterns of behaviour relate to determining final award 

classification, progression onto postgraduate studies at SHU and employment 

type post undergraduate degree completion. Moreover, this type of research is 

better suited to the measuring of facts in a large and diverse population (the 

macro environment), such as a sample of students taken from across all SHU 

faculties.

Generally, the relationship between research and theory in quantitative 

research tends to be deductive. However, DM can be both inductive 

(unsupervised) or deductive (supervised) this is usually dependent upon which 

DM technique one wishes to apply. Arguably, a decision regarding which DM 

technique to use cannot be made until the data is better understood. Therefore 

a decision will be made in Chapter 7 as to which DM techniques will be applied 

to the data. Furthermore, it is envisaged that the results determined will be 

considered against the literature introduced in Chapter 3 -  see Chapter 9, as 

this will help to substantiate the findings. Therefore, it is possible that the 

research will have both inductive and deductive elements.
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Epistemology is concerned with “what is (or should be) regarded as acceptable 

knowledge in a discipline.” (Bryman 2012, p27). When undertaking research 

there are two main epistemological positions, positivism and interpretivism. 

Positivism is associated with the nineteenth-century French philosopher August 

Comte and is concerned with the application of a scientific model to study the 

social world (Cohen et al. 2011). The fundamental idea of positivism is:

“[...] that the social world exists externally, and that its properties should be 
measured through objective methods, rather than being inferred subjectively 
through sensation, reflection or intuition” (Easterby-Smith et al. 2012, p22).

The quantitative research type discussed earlier tends to be associated with 

positivism as it incorporates the practices and norms of the natural scientific 

model. In a positivist approach the transferability of the research is fundamental, 

as skills and knowledge acquired from one environment may be transferred to 

another (Bryman 2012). Interpretivism is in contrast to positivism. The key idea 

of interpretivism is that people and their intuitions are significantly different to 

that of natural sciences and any social world study should reflect this 

individuality (Cohen et al. 2011). Interpretivism is a confluence of a number of 

traditions mainly phenomenology, symbolic interactionism and 

ethnomethodology - these traditions are defined in the glossary (Cohen et al. 

2011). Qualitative research tends to be associated with interpretivism as it 

allows the social world to be emphasised and interpreted. In an interpretivist 

approach the research is specific to a single environment and the skills and 

knowledge acquired are likely to be non-transferable to other environments 

(Bryman 2012).

The comments of Gill and Johnson (2010) were taken into consideration in 

determining the epistemological position of the research. They state that the 

most effective approach for resolving “[...] a given research question depends 

on a large number of variables, not least the problem itself.” (Gill and Johnson 

2010, p06). The epistemological position of positivism was thought applicable 

as the research is trying to establish general patterns of student behaviour and 

build models that can be transferred to other academic years and external 

organisations (other institutions).
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Ontological assumptions are fundamental to the way in which research is 

carried out and the way research questions are formulated. Research ontology 

is concerned with investigating the nature or essence of social phenomena, 

there are two main positions, objectivism and constructionism (Bryman 2012).

Objectivism is the influencing of people through social phenomena that is 

beyond their reach or control; it is simply those forces that act on and inhibit 

people. The organisation is a good illustration of this as it has a number of 

predefined procedures, rules and regulations, which are stringently learned, 

applied and adhered to by its people. Objective research emphasises the formal 

properties of an organisation or the values and beliefs of members of a culture 

(Bryman 2012). Constructionism challenges objectivism by arguing that order in 

organisations is worked at and is not a pre-existing characteristic. In the case of 

the organisation procedures, rules and regulations are a lot more fluid as they 

are influenced, adapted and created by people to suit their needs as well as the 

organisations. In constructionist research emphasis is placed upon the 

involvement of people in the construction of reality (Bryman 2012).

Therefore, on the basis of the above discussion regarding ontology and the 

review of the literature in Chapter 3, the ontological position of objectivism was 

deemed to be more appropriate, as the review of the literature in section 3.2.3.1 

highlighted that the institution has an influence on its students in terms of its 

policies and procedures. Such policies and procedures are usually defined by 

the institution and/or external HE organisations (such as HEFCE). These 

policies and procedures are usually less fluid and are developed to be adhered 

to by university staff and students. Indeed, from the student’s perspective, such 

policies and procedures are usually set out and agreed at enrolment. 

Furthermore, this research places a large emphasis on generalising the 

behaviour of members of the student culture.

Finally, a research strategy can be roughly defined by the type of research, 

quantitative or qualitative. Therefore, on the basis of the discussions presented 

above, regarding the four considerations, a quantitative research strategy was 

thought to be the best approach in achieving the research objectives -  a more 

detailed description of the research sequence can be found in section 5.4.
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5.2 R esea r c h  D esig n

“Research designs are plans and procedures for research that span the 
decisions from broad assumptions to detailed methods of data collection and 
analysis. [...] The selection of the research design is [...] based on the nature of 
the research problem or issue being addressed, the researchers’ personal 
experiences, and the audiences of the study.” (Creswell 2009, p03).

Bryman (2012) suggests that there are three essential design criteria to 

selecting a suitable research design - these are reliability, replicability and 

validity. In an attempt to satisfy these criteria a Cross-Sectional design was 

identified as being the most appropriate research design. Indeed a Cross- 

Sectional design is concerned with the collection of data on more than one case 

at a single point in time (Cohen et al. 2011). It is envisaged that numerous 

exploratory variables will have to be examined for patterns and trends prior to 

the construction of the predictive models.

In keeping with the research design and to reduce the potential problems 

associated with reliability, it is envisaged that a large sample of data will be 

obtained from a cohort from across all SHU faculties at a single point in time. 

There are no reasons to suppose that this cohort would be different from any 

other similar time period. Furthermore, the process followed in obtaining data 

and building the DM mart and models from a snapshot of SHU data could easily 

be replicated for other years and HE institutions. It is thought that the validity of 

the research will be affirmed by comparing the results to previous findings 

introduced in Chapter 3.

5 .3  R es ea r c h  M eth o d

According to Bryman (2012)

“A research method is simply a technique for collecting data. It can involve a 
specific instrument such as a self-completion questionnaire or a structured 
interview schedule, or participation observation whereby the research listens to 
and watches others. ” (Bryman 2012, p46).

This definition implies that the research method is more qualitative in nature. 

Therefore, in terms of method associated with this research, this section will 

provide a descriptive framework as to how the research will be organised before
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going on to outline the chosen DW and DM approaches and methodologies that 

will be followed in Chapters 6 and 7 respectively.

5.3.1 Organising  the Research

Whilst a descriptive framework is more commonly associated with a Case Study 

research design, it is useful in this context as it will help to determine the flow of 

the research, figure 5.3.

REVIEW DF CURRENT LITERATURE G e n e ra l

OBTAIN DATA FROM THE STUDENT 
INFORMATION DATABASE S p e c if ic

SELECT AND CLEAN 

DATA S p e c if ic

CONSTRUCT 

AN D INTEGRATE S p e c if ic
DATA

UNDERSTAND s p e c if ic  
DATA

DEVELOP STUDENT G e n e ra l
PROFILES

G e n e ra l

ANALYSE RESULTS

COMPARE 8cUNDERSTAND FINDINGS
G e n e ra l

G e n e ra l

COMPILE RECOMMENDATIONS

Figure 5 .3 - Descriptive Framework for Organising the Research 

(developed by the author)

The research initiates with an extensive review of the literature, this will be 

carried out for two reasons. First to gain an understanding of the problems 

within the domain and secondly to understand the previous research that has 

already been conducted.

As this research is concerned with predicting student behaviour to build three 

student profiles (award classification, progression onto postgraduate studies at 

SHU and employment type), a number of meetings will be setup (see Appendix 

III) so that data can be obtained from the SI database.
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Prior to the construction and integration of the SI data into the three DM marts 

the data will be selected and cleaned using the ETL (Extract, Transform and 

Load) process associated with DW, outlined in section 4.2.

The data within each individual DM mart will then be explored for patterns and 

trends in relation to each target variable. It is hoped that this understanding will 

help to decide upon how best to modify the data before it is modelled.

Through following an iterative process suitable DM techniques will be applied 

and at the modelling stage, which will then later be assessed. This will then 

generate a number of rules that can be used to predict student award 

classification, progression onto postgraduate studies at SHU and employment 

type.

Having analysed the results and compiled the findings a number of 

recommendations will be made in Chapter 9.

5.3.2 B uilding  the Data  M ining  Marts

Given the definition of a DM mart in Chapter 4 and the fact that the research is 

concerned with building three DM marts, not an entire data warehouse, a 

bottom-up approach is believed to be more suitable.

In determining the most appropriate DW methodology (see section 4.2.3) to 

elect, the choice is somewhat narrowed down by selecting a bottom-up 

approach above. Indeed, this results in a choice between the BDLD and the 

SAS® Rapid Data Warehousing methodology. Ultimately, the Business 

Dimensional Lifecycle Diagram was favoured over the SAS® Rapid Data 

Warehousing methodology as the SAS® approach is intended to be a top-down 

approach that can be used in a bottom-up context. Finally, it is important to 

remember that the selection of a data warehousing methodology will not ensure 

the success of the project, as “methodologies [...] aren’t magic there more like 

recipes [and] just because you have the cookbook doesn’t mean you’ll be a 

great chef (Watternson 1998, p63).
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5.3.3 Undertaking  the Data M ining

A number of DM methodologies, including their advantages and limitations, 

have already been outlined in section 4.4. Ultimately, the choice of methodology 

is determined by the software used to carry out the DM. Therefore, as the 

research intends to use the SAS® Enterprise Miner the SAS® SEMMA 

methodology will be followed during the DM phase of the research.

5.4  R es ea r c h  S eq u e n c e

The research execution will be broken down into seven steps as suggested by 

Gill and Johnson (2010), figure 5.4, theses seven steps will therefore be 

discussed in relation to the research.

Collect I n fo r m a tio n

I d e n tify  Broad  A rea

D ecide  t h e  A pproach

Select T o pic  a nd  D evelop Focus

Presentatio n  of Fin d in g s

Form ulate  a Plan

A nalyse D ata

Figure 5 .4 - The Research Sequence (Gill and Johnson 2010, p09).

The broad area of Bl was selected as the area of investigation, as the author 

was keen to broaden his skills and knowledge within a new area.

In selecting the topic for the research a number of areas were considered. 

However, the problem of student progression was identified as an area where 

Bl tools and techniques hadn't been utilised to any great extent (Burley 2006).
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It was decided that for the manageability of the project that the research would 

be limited to SHU.

A research plan was formulated through developing a framework for organising 

the research, see figure 5.3.

Data for quantitative analysis will be gathered through the application of DW 

and DM techniques on the SI database. Further, information regarding the 

collection of data can be found in the research design and method sections.

The results of the research will then be used to construct a number of user 

profiles to predict student behaviour and to compile a number of 

recommendations regarding student progression.

5.5 R es ea r c h  Eth ic s

Cohen et al. (2011) attest that:

“Ethical issues may stem from the kinds of problems investigated by social 
scientists and the methods they use to obtain valid and reliable data. This 
means that each stage in the research sequence raises ethical issues” (Cohen 
et al. 2011, p76).

Indeed, a major ethical concern of this research is student and institutional 

confidentially. As a result any demographic data, which could help to identify 

actual students will be removed. Additionally, the ethical issues identified by 

Miles and Huberman (1994) will also be taken into consideration and are shown 

in figure 5.5.

W o r t h in e s s  o f  t h e  p r o j e c t P r iv a c y , c o n f id e n t ia l it y  a n d  A n o n y m it y

C o m p e t e n c e  b o u n d a r ie s I n t e r v e n t io n  a n d  a d v o c a c y

I n f o r m e d  c o n s e n t R e s e a r c h  in t e g r it y  a n d  q u a l it y

B e n e f it s , c o s t s  a n d  r e c ip r o c it y O w n e r s h ip  o f  d a t a  a n d  c o n c l u s io n s

H a r m  a n d  r is k U s e  a n d  m is u s e  o f  r e s u l t s

H o n e s t y  a n d  t r u s t

Figure 5 .5 - Ethical Issues in Research (Miles and Huberman 1994, p290-295).
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Each of the issues identified in figure 5.5 will be considered in relation to the 

research.

Worthiness o f the Project - the primary objective of the research is to add to the 

knowledge in the domain of student progression in HE, through using Bl tools 

and techniques. Student progression has continued to improve at SHU, student 

progression increased by 1.1% from 91.2 in 2001-02 to 92.3% in 2004-05 

(National Audit Office 2007). Therefore, it is believed that this research will add 

value to the institution as it will help them to understand and continue to 

improve their student progression and marketing. This will allow the institution to 

develop more flexible approaches to improving student progression and 

reducing the financial pressures associated with students failing to progress. 

Academically, it is expected that the research will contribute to the current 

literature and allow for further research to be conducted using Bl tools and 

techniques. Indeed, this has been the primary motivation for doing this research.

Competence Boundaries -  The author has experience of carrying out both 

qualitative and quantitative research. This was gained whilst studying for a 

Degree and a Master’s Degree and through working in the NHS (National 

Health Service) as a statistician and whilst working as a researcher at SHU.

Informed Consent -  All parties involved will be made aware of what the 

research requires from them, any concerns raised over confidentiality will be 

addressed.

Benefits, Costs and Reciprocity -  It is envisaged that the research could be 

beneficial to a number of stakeholders. SHU has the potential to gain from the 

results of this research. Indeed, the minimum the institution will gain is an 

insight into student progression. The students could also benefit from the 

research as the institution may implement some of the recommendations made 

(see chapter 9), which could potentially improve their progression rates. In 

addition to this, the research will also benefit new researchers as it will 

demonstrate how Bl can provide a better understanding of student progression. 

Amongst receiving a Doctorate, the author will also benefit through expanding 

his knowledge into new areas. There is a considerable amount of investment
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being made by the author in terms of time and cost. In order to better manage 

the cost aspect funding for the research was received from SAS®. However, the 

direction of the research was not influenced by SAS®.

Harm and Risk -  There is a risk to the institution involved as the findings could 

reflect badly upon them, as they will eventually be published in journals.

Honesty and Trust -  It is important that the trust placed in the author, by the 

institutions is maintained.

Privacy, Confidentiality and Anonymity -  It is possible that the students could be 

identified from their data records. Therefore, it is important that all data records 

are made anonymous and that only the author can identify the individuals, if any 

further follow up work is required. Again consideration needs to be made about 

the institutions and how the findings will be reflected.

Intervention and Advocacy -  Any confidential information gained will be treated 

appropriately, such as the removal of student names et cetera.

Research Integrity and Quality -  A conscientious attempt will be made to 

ensure that the research is conducted thoughtfully, correctly and carefully. The 

integrity and quality of the research will be reinforced through a comparison to 

the literature on student progression and EDM.

Ownership o f the Data and Conclusions -  The data belongs to SHU and the 

project and findings belong to the author. However, as sponsorship was 

achieved then SAS® will also have a vested interest in the publication of 

journals from the research.

Use and Misuse o f Results -  It is important that the effect upon the institution, 

students and SAS® are considered before publishing the research. This may 

result certain aspects of the research been made anonymous.
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5.6  S u m m a r y

This chapter sets out to discuss the research approach that will be followed 

during the research phase of the project. The research approach is considered 

from three perspectives (research strategy, research design and research 

method), which resulted in a quantitative approach and a cross-sectional 

research design being adopted. In keeping with the research strategy and 

design, the research methods were outlined in relation to the DW and DM 

processes. These methods included a bottom-up approach, the use of the 

BDLD for organising the DW and the SAS® SEMMA methodology for carrying 

out the DW. The DM techniques that will be applied during the later stages of 

the research were not determined in this chapter, as these will be selected 

whilst carrying out the modelling of the data in Chapter 7. The chapter 

concludes with a discussion on research ethics, which focuses mainly upon 

issues of student and institutional confidentiality.
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6 B u ild in g  a n d  U n d e r s ta n d in g  th e  Da t a  S et

This chapter will discuss the building of three DM marts that will be used at the 

modelling stage to predict student award classification, progression onto 

postgraduate studies at SHU and employment type. The process followed, 

Kimball et al. (1998) BDLD (introduced in section 4.2.3.2), in building the DM 

marts will be discussed. In preparation for the DM stage (Chapter 7) the chapter 

will also present an understanding of the data retained within each DM mart. 

The chapter will conclude with a discussion around the number of observations 

and the event rates.

6.1 B u ild in g  th e  Da t a  M in in g  Ma r ts

This section will discuss the following areas, in the BDLD, that are pertinent to 

the development of the three DM marts:

a) Project Planning and Management;
b) Business Requirements Definition; and
c) Data Modelling.

Other areas will not be discussed as these are associated with the development 

and deployment of a data warehouse.

6.1.1 P r o ject  Planning  and  Man ag em en t

Kimball et al. (1998) point out that the most important part of this phase is to 

have a completed project plan, which plans the project from conception to birth. 

Arguably, the planning for this project will be small in comparison to the 

development of an entire data warehouse, as this project is only concerned with 

the development of three DM marts, which are reduced (only retaining the 

required data) and clean copies of the transactional data. Figure 6.1 gives 

details of the project plan for the development of the three DM marts, this has 

been adapted from Kimball et al. (1998, p75).
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O ritjn a l C urrent
Orrgfna/ est. est. E ffo rt to
est. complete complete finish (in

P ro ject Task R esources effort S tart Date data date Status days) D ep end Late Flag
1 PROJECT PLANNING

Develop Development Plan Richard Wilson 1 01/05/2012 01/05/2012 / 1 N/A
1.1 D ata Understanding
1.1.1 Meet with the business Richard Wilson N/A 15/12/2009 02/02/2010 / 2 N/A
1.1.2 Complete initial literature review Richard Wilson N/A 01/06/2009 31/03/2012 ✓ 1034 N/A
1.1.3 Complete notes from meetings with the business Richard Wilson N/A 03/02/2010 03/02/2010 / 0.5 1.1.1
1.1.4 Determine what data is needed Richard Wilson N/A 04/08/2010 14/08/2010 / 10 1 .1 .1 ,1 .1 .3 4 1 .1 .2 *
1.1.5 Request data from SHU Richard Wilson N/A 03/32/2010 03/02/2010 / 0 1.1.1 & 1.1.4

1.2 Obtain Data
1.2.1 Aquire data from the SHU Sldatabase Richard Wilson N/A 03/02/2010 01/03/2010 / 26 1 .1 .1 ,1 .1.4&  1.1.5

1.3 Data Normalisation
1.3.1 Plan data normailisation Richard Wilson N/A 01/03/2010 02/03/2010 / 1 12.1
1.3.2 Determine suitable software and data cleaning methods Richard Wilson N/A 01/33/2010 02/03/2010 / 1 12.1
1.3.3 Clean SI data Richard Wilson N/A 01/33/2010 08/03/2010 / 7 1 2 .1 ,1 .3 .1 ,1 .3 2
1.3.4 Build a relational database of SI data Richard Wilson N/A 08/33/2010 08/04/2010 / 31 12.1,1.3.1-1.3.3

1.4 Data Warehousing
1.4.1 Determine suitable software Richard Wilson N/A 08/05/2010 09/05/2010 ✓ 1 1.3.4
1.4.2 Determine suitable data warehousing methodology Richard Wilson N/A 08/05/2010 09/05/2010 / 1 1.3.4
1.4.3 Build three data mining marts from SI relational database Richard Wilson N/A 09/05/2010 10/06/2010 ✓ 32 1 .3 .4 ,1 .4 .1 4 1 .4 2

1.5 Data Mining
1.5.1 Select suitable data mining software Richard Wilson N/A 08/05/2010 09/05/2010 / 1 N/A
1.5.2 Select suitable data mining methodology Richard Wilson N/A 08/35/2010 09/05/2010 / 1 1.5.1
1.5.3 Explore Sldata Richard Wilson 213 01/04/2012 31/10/2012 1 .4 .3 ,1 .5 .1 ,1 .52
1.5.4 Select suitable data mining techniques Richard Wilson 213 01/04/2012 31/10/2012 1.1.2*. 1 .5 .1 ,1 .5 2 4 1 .5 .3
1.5.5 Build predictive models using SI data Richard Wilson 150 01/11/2012 31/33/2013 1 .4 .3 ,1.5.1-1.5.4

* Only the initial search about student progression and Educational Data Minings needs to be completed at this stage

Figure 6.1 -  Project Planning and Management.

6.1.2 B usiness Requirem ents  Definitio n

The primary business of SHU is the education of its students. This research is 

concerned with understanding the educational process in terms of improving 

student progression. A large amount of work has already been completed into 

understanding the business and the issues around the progression of students 

at the university. This work includes the literature review and meetings with 

university staff members (Appendix III). In addition to this, the author also has a 

good understanding of the organisation and the HE environment from his 

experiences both as a student and as a member of staff.

6.1.3 Data M odelling

This section discusses the Data Modelling phase of the BDLD with regards to 

the development of the three DM marts. It is important to note that this section 

will only discuss the areas that are pertinent to building DM marts. Therefore, 

the Dimensional Modelling and Physical Design will be omitted from this section, 

as this is concerned with designing specific data marts for DW in relation to 

developing dimensions and fact tables to answer specific business questions. 

This section will outline the process followed in obtaining the data from the 

Student Information Services (SIS) department at SHU, discuss the 

transformation of the student data including the creation of the DM marts and it 

will conclude with an initial assessment of the data.
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6.1.3.1 Ba c k g r o u n d  o f  the  Da ta

The section outlines the process followed in requesting the data from the SIS 

department at SHU, The data is recorded by the university at student enrolment 

and after the student completes their course, which is input into the SI Database. 

The SI database holds all the student enrolment, course and employment data.

After consultation with the Information Analysts at SHU a request was made to 

the SIS department to obtain a large sample of data. Three datasets were 

requested for full-time undergraduate students, with a level 6 SCE (Student 

Course Enrolment) records, in 2006-07 and one data set relating to SHU 

postgraduate students for the academic years 2007/08, 2008/09 and 2009/10. 

The undergraduate datasets reflected the student's demographics, academic 

assessments and entry qualifications. Based on the meeting with the 

information department at SHU the following data items were requested:

Student ID number Degree classification (class / rank)

Students faculty Course name

SCE enrolment status SCE result code

Entry qualification type SCE end date

UCAS / tariff point total Ethnic group

Age on entry to SHU Gender

Home postcode Fee status

Disability status (all categories) Last institution / school attended

Reason for withdrawal (RFT on SCE) Local authority

Learning contract (Yes/No) Full final award title (SHU qualification 
obtained and award title)

Nationality Final award date

Sponsor name (for funding) Final mark *

Socio-economic group (post ’02) Level 6 average mark+

SOC code

* Final mark = mark which has determined students degree classification (SAl/VS screen). 
+ Level 6 average mark = mean mark of all modules undertaken at Level 6

Figure 6 .2 - Dataset 1 (all registered full-time undergraduate level 6 students 06/07).

student id number students course name

module name students programme name

faculty which owns module programme area which owns module

module credit rating students overall module mark

module assessment pattern * students overall module resu lt+

* module assessment pattern = i.e. is the module following Model A (requiring only an 
overall pass at 40%), or Model B (requiring 40% passes in each component)?
+ needs to indicate whether the module is pass, refer, defer, compensated pass etc.

Figure 6 .3 - Dataset 2 (all level 6 module taking records for all registered 
full-time undergraduate level 6 students, 2006/07).
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student id number qualification result (e.g. “Pass”)

entry qualification category qualification tariff points awarded

qualification name (e.g. “A level”) date qualification awarded (“Examination date”)

qualification title (e.g. “Maths”) school / institution last attended

qualification grade (e.g. “B”) students UCAS / tariff point total

Figure 6 .4 - Dataset 3 (all entry qualifications for all registered full-time 
undergraduate level 6 students, 2006/07).

The following data items were then requested for the postgraduate data sets.

student id number students faculty

academic year (e.g. 2007/08) * students SCE enrolment status (for each year 
registered) *

students course name

* Some students may appear in more than one row, if they are registered in more 
than one academic year.

Figure 6 .5 - Dataset 4 (all registered postgraduate 
students, 2007/08, 2008/09, 2009/10).

Through the meetings with SHU information department it transpired that the 

university was keen to include Undergraduate Destination of Leavers (DOL) as 

part of the research. After some careful consideration it was agreed to include 

DOL as part of the beyond undergraduate studies element of the project. This 

helped to provide an additional dimension to the research whilst also adding 

further value to the project for SHU.

The following data items, figure 6.6, were provided by SIS for the DOL table for 

undergraduate students that graduated between 2006 and 2008.
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STU CO 
DE

QualObt EMPNAM B14_CAREER12 C21 PROFSO 
CT

COYEAR QualObt_bin B08_NHSORG B14_CAREER6 C22 INSTPRO
V

CRS NA 
ME

FacultyAII MAKEDO B14CAREER8 C 23S E C IN T1

Gender Origin SIC rc B14 CAREER9 C23 SECINT2
Age Department LOCEMP B14 CAREER10 C23 SECINT3
A g e b in A01_EMPCIR B10_LOCEMP_

r
JOBRES C23_SECINT4

Age_coll A02 MODSTUD 
Y

B11_EMPSIZE B16_PREVEMP C23_SECINT5

Disability
full

DESTINATION B12_QUALREQ B16c_PREVEMP C23_SECINT6

Disability_
coll

AH E S A C A T B13_EMPIMP B17_PREVCAT1 C23_SECINT7

Disability_
bin

JOBTITLE B14_CAREER7 B17_PREVCAT2 C23_SECINT9

Ethnicity
full

DUTIES B14_CAREER1 B17_PREVCAT3 C24 FUNDST 
DY

Ethnicity_
coll

B04_GradJob B14_CAREER3 B17_PREVCAT4

Ethnicity_
bin

B04_SocHE B14_CAREER4 B17_PREVCAT5

SI_Level B04_Occupation B14_CAREER5 B17_PREVCAT6

Mode B05_Contract B14 CAREER1 
1

C18NATSTUDY

ModeC SALARY B14 CAREER2 C19TYPEQUAL

Figure 6 .6 - Dataset 5 (Destination of Leavers 2006 -  2008).

The data was extracted by the SI department, using a number of SQL queries, 

into a number of CSV files. A copy of these files was made and placed into a 

folder called raw data. This was done so that the data could be manipulated 

without contaminating the original source data. Should any problems occur in 

the cleansing process then it would be possible to start again with the original 

source data. Three areas were then setup in Microsoft Access called raw, 

staging and final. The raw data was where a copy of the SI data was stored, in 

Access, the staging area was where the data was processed before it was 

loaded into the DM tables, which was located in the final area.

6.1.3.2 Data S taging and  Develo pm ent

This sub-section outlines the process followed in developing the three DM marts, 

from the raw data descriptions introduced above, and provides some initial 

analysis into that data. This sub-section breaks down the data staging and 

development into five areas: selecting and cleaning the data; constructing and

-82-



integrating the data; formatting the data; understanding the data; and data items 

and group.

6.1.3.2.1 Selec t  and  Clean  Data

This section outlines the process followed in exporting, transforming and 

cleaning the data. A description of the types of data quality errors, identified 

during this process, can be found in section 4.2. The request for data returned 

five comma separated files that needed to be transformed into a suitable format 

for DM. The first part of the process involved removing repeated values in the 

data through normalisation. A diagram of the database was created to plan the 

development, figure 6.7.
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SOCCOOE 
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AWARD P
ENROLAENT STATUS P
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PK
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tbi:Studer1_Modules

PKFK1 FAC P
PKFK1 SOCCOOE
PKFK1 LEAP
PK/K1 LAST WST P
PKFK1 NATIONALITY ID
PILFK1 AWARD P
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PK.FK2.I4.I2 MODULE ID

13 STUDENTMODID
MODULEMARK
MODULERESULT
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PK.I1 FACULTYPG P

FACULTY

tbi Module

PK.I2 MODULE ID
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MODULENAME 
FAC ID 
CREDIT
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Figure 6.7 -  Database Tables.

Data items were selected based upon the research conducted so far and the 

requirement to predict award classification, progression onto postgraduate 

studies at SHU and employment type. Having planned the development of the 

database, the data was then imported into Microsoft Access. A number of areas 

(raw, staging, final) were then setup within the database and the imported data 

was assigned to the raw area, figure 6.8.
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Raw

DLHE2006 07to2007 03

,Z 1 tbl:PG_>0703

.Z J tbl:UG_06 07

tbl:UG_EnteryQual_0o 07

tbl:UG.Mod_06 07

Figure 6 .8 - Raw Data Tables.

The development process focused upon the transformation, including the 

cleaning, of the data. This initially centred upon the raw Undergraduate 2006/07 

data and involved the creation of eleven tables, these were:

• Disability:
• Award;
• Entry_Qualification;
• Ethnicity:
• Lastjnstitution;
• Local_Education_Authority;
• Nationality:
• Socioeconomic_Group;
• Enrolment_Status;
• Students; and
• Entry_Details.

The Disability table was created by updating any blank data values, in the 

Disability field, to ‘not known’. A table was then created by grouping the data 

values in the disability column and adding a DisabilityJD field. The identifier (ID) 

field was created using the auto number function in Microsoft Access, which 

later became the primary ID for the table. Figure 6.9 below shows the disability 

table that was created through this process.

D IS A B IL ITY JD  " DISABILITY -

fe 1 BUND/PART SIGT

p  2 DEAF

fe 3 INFOREFUSED

p  4 MENTAL HEALTH

5 MULTIPLE DISAB 

fe 6 NO DISABILITY

fe 7 NOT KNOWN

p 8 OTHER DISAB.

B  9 PERS CAR SUPP

BB 10 SPEC LEARN DIF

ffi 11 UNSEEN DISAB.

____________________ 12 WHEELCHAIR

Figure 6 .9 - Disability Table.
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The Award table was created using the Award Class field and replacing any 

blank values in this field with ‘unknown’. Again the data items were grouped and 

an auto number was created as a unique ID for the table. The same process 

was then followed in the creation of the Entry_Qualifications, Ethnicity, 

Lastjnstitution, Local_Education_Authority, Nationality and

Socio_Economic_Group tables.

The Enrolment_Status table was formed by checking for data quality errors, in 

the Enrolment_Status field, and then grouping the values. This resulted in one 

Enrolment_Status value per row. An ID field was then added along with 

additional information. This additional information, figure 6.10, was obtained 

from SIS and it helped to understand the student's current status.

i  ’  EVRDIMENT STATUS D * ENROLMENT J§tATU$ Status D e fin itio n : . • • •

i  : a n C anceled Enrol ec bu t w d in  firs t 3 w ee*s |no t c jrre n t) NO J
I * 2 COM Com pleted R egistered o r  course and com ple ted at appropr a te  tim e Yes

3 CXi COM EXCHANGE IN Com ple tec (a fte r transfenng m from  another course) Yes

4  CXIt COM TOU/XIS C om ple tec (vras t im e o u t or ex terna l resit) Yes

I 5 D STUDENT DECEASD Studen t Deceased No

I 6  -:n r S w elled C urrent reg is te red student Y»5

. 7 :NR-TW TEMP WO FROM ENR Registered o r  t f e  course bu t tem porarily  w ithd ra w  i Yes

8  £RP E NR REPEAT Enrol ec  • lepea ting  en tire  year Y?5

9  tRP-TW TEMPWDFRMERP Te mporary w ithd raw al f r o n  ERP Y»S

io  m ENR TRANSFER IN Enrol ec * fransferred fro m  another ccurse Y»S

U  ETt-TW TEMP WDFRMETI Tem perary w ithd ra w al from  EH Yes

12 SVi ENR VERSXFERIN Enro liec -  tran s te ne d to  ne w  (/ersion Yes

13 EV>TW TEMP WOFRMEV T e m po ra r/w ithd ra w s ! fro n E t/ l Yes

14 :XN ENREXTENNOfEE E n ro le c  extens ion  - r o  fee Yes

15 tXO ENREXOLT N-SOC Enrol ec - exchange o j t  I non-Socrates) Yes

16 EXT ENREXTEN Enrol ec extens ion  - fe e p a y irg Yes

17 MTU Mot tu rned up Neve* reg istered on th e  course (re trospective • re s t students only) NO

18 TOU Time ou t Te mp w ithd raw n, and m issed an e rro lm e n t p o in t (no t registered) NO

19 TRE TRANS: EP. OUT END VEAR Transferred ou t o f course (at end o f academ ieyear) Yes

20 TRO

21 TV:

TRANSFER OUT

VERSTPANS OUT ENO YEAR

Transferred ou t o f course be fo re  end o f academ i: year 

Transf ou t o f o ld  vers ion  (a* end o f academe yes-)

Yes

Yes

22 WDR WITHDRAWN CRS R eg is teredbu t W /D from  cou'se (a n y tim e  o f year) Yes

23 WXfl WOP. - TOJ/XRS W R hdraw r - was tim e ou t or externa l resit No

24 XtN Enrolled Exchange in Enrol ec - tra n s fe rre d fro m a n o th e n n s tr.u to n -------- ,

Figure 6.10- Enrolment Status Table.

The student table was created using a number of staging tables, these tables 

were used to separate the student data into clean and dirty data. This allowed 

the dirty student data to be cleaned by fixing any data quality errors and 

removing any duplicate records. This process involved grouping the values in 

the Student_Code field and counting the number of times a repeated 

S tudentCode appeared. A table of ID’s with their respective counts was then 

created. Any repeated student codes were moved into a Dirty_Student_Records 

table and the remaining values were retained in a Ciean_Student_Records 

table. The dirty data items were then resolved by assessing each row manually. 

Whilst this process was time consuming, it was speeded up by understanding 

the enrolment status codes of each individual student (figure 6.10), which
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enabled the last record for each student to be identified. The two clean tables 

were then merged to create a Student_Staging table. The unique IDs from the 

other tables were then added to a Students table. This allowed the table to be 

linked to the other tables that were created previously, figure 6.11.

H C O U R S t . lD

i  tTnutornjD

Figure 6.11 -  Creating the Student Table.

A number of extra fields were then added to the table to create the final 

Students table, figure 6.12.

F ie ld  N a m e D a ta T y p e

STUDENT_CODE T e x t

EN RO lM ENT_STATUS_ID N u m b e r

DISABILITYJD N u m b e r

N A T IO N A IIT Y J D N u m b e r

SOC_CODE Text

A W A R D J D N u m b e r

ETHNICITY ID N u m b e r

LAST IN S T J D N u m b e r

LE A JD N u m b e r

CO URSEJD N u m b e r

ENROLMENT_AC_YEAR T e x t

GENDER Text

AGE_ON_ENTRY N u m b e r

HPCODE Text

LEARNING_CONTRACT Tex t

AW ARD_DATE Text

AW ARD_MARK N u m b e r

T em p Text

Figure 6.12- Final Students Table.

-86-



Having previously resolved the data quality issues the Student_Code was then 

selected as the primary key.

The next stage involved creating an Entry_Details table using the raw 

Undergraduate Entry Qualifications 2006/07 data. The Student_Code, 

Entry_QualificationJD, Tariff_Points and Year_Obtained fields were then 

grouped to produce a single row of data per entry. The Entry_Qualification ID 

was added to the table from the Entry_Qualifications table to enable the two 

tables to be linked, figure 6.13.

STUDEUT.CODE
EMTRV.QUAt
IASTJN ST
Q U A IM A M E
Q U A l TITLE
QUALGRADE
Q U A tR E S U tT
TAR1FFPOINTS
y e a r o b t a in e d

TARIFF., POINTS

ENTRY_QUAL_ID 
ENTRY. Q U A i

FuelcJ:
Table:
To ta l:
So rt:

SffeOw:
Criteria:

or.

STUDEflT_CODE ^  ENTRY_QUAl_lD 
ravv:U G _E r*t*ryQ ua l_0  tb l  E n tr /Q u a l 
G ro u p  By G ro u p  By

TARJFFJPOIMTS VEAROBTAJNED
ra w : UG.E n t  e ryQ  ual_0 raw : U G _ E n te r/Q u a l_ 0  
G ro u p  By G ro u p  By

Figure 6.13- Creating the Enrolment Status Table.

A composite key was then created on the Student_Code and Year_Obtained, 

as it was acceptable to expect repeat student codes within the table for different 

years.

The raw Undergraduate Modules 2006/07 data was then used to create tables 

for Course, Faculty, Module and Student_Modules. The Faculty table was built 

by grouping the data in the Fac_Name. Again an ID (FacJD) was added to the 

table along with an abbreviated faculty name. A Course table was then created 

in the same way and Fac_Name was also added to the table. This allowed the 

FacJD field to be added to the Course table, which generated a relationship of 

many courses to one faculty. A Module table was then created following a
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similar method. A Student_Module_Staging table was then created by using the 

Module table to incorporate the MoudleJD field into the Student_Module table. 

A unique data item was then created by concatenating the Student_Code and 

ModuleJD fields together. This field was then sorted in ascending order and a 

count of the concatenated value was made. Rows were removed, into a 

Dirty_Student_Modules table (figure 6.14), where the count of the value was 

greater than or equal to two. The remaining data values were exported into a 

Clean Student Modules table.

1 tbl:DirtyStudentModsStg5(2)

F ie ld  N a m e D ata  T yp e

ST U D E N TM O D ID T e x t

I STUDENTID T ex t

j M O D U L E J D T ex t

M O D ULEM A RK N u m b e r

MODULERESULT T ex t

R esult T e x t

R esu lt status T e x t

C o m m e n ts T e x t

T em p N u m b e r

C o u n tO fS T U D E N T M O D ID N u m b e r

Figure 6.14- Dirty Student Modules.

The Dirty_Student_Modules were then manually updated so that there was one 

Student_Code to one ModuleJD. The majority of repeats in the table were due 

to students failing their course and subsequently passing it when they repeated 

the exam or coursework. Figure 6.15, below, is an example of the dirty data 

found within the raw Undergraduate Modules 2006/07 data.

tbliDiityStudertModiStjSta

STJDENTMC * STUDENT D MODULEJD MODULEMA - V00JIERE' Resuh * Result statu- Ccrrments • Temp • CcuntOfSTL •

©
260 0FS ?(failire-of Fail 1 2

260 OF Fai ure Fail 1 2

I ©
554 0 R: Referred Far Fail (following ref; 1 1554 40 P Pass Pass i

©
567 36 R= Referred Fail Fail (following ref; 1 2

5t 40 DP DeferrecPass Pass (Pass, followir 1 2

Figure 6.15- Example Dirty Data.

The example above shows that student two failed module 654 and 

subsequently passed with an overall mark of 40.
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The StudentModules table was formed by merging the cleaned

Dirty_Student_Modules with the Clean_Student_Modules data. A composite

key was then created using the Student Code and ModuleJD fields. Links 

were then established between the Students and Course tables, and between 

the Course and Faculty tables. The Student_Code in the Students table was 

then used to generate a link to the Student_Modules, which was later linked to 

the Modules table.

The raw Postgraduate 2007 to 2010 data was then used to create five 

Postgraduate tables. These tables were Postgraduate_Academic_Year,

Postgraduate_Course, Postgraduate_Enrolment_Status and

Postgraduate_Studies. All tables were created in the same way as previous 

tables but using the postgraduate data. The Postgraduate_Studies table was 

built using the Student_Code and the ID fields from each of the Postgraduate 

tables. A composite key was then created using StudentJD,

Academic_YearJD, Postgraduate_CourseJD and Enrolment_StatusJD. The 

data, in the Postgraduate_Studies table, was then reduced by identifying which 

undergraduate students had gone on to study at Postgraduate level, figure 6.16.

5l:Students

STUDENT.CODE

ENROIMENT.STATUS.ID

D1S4BUITYJD
NAUONAUTY.ID

SOC.CODE
AWARD.ID
ETHNICITYJD
LASTJt.STJD

LEAJD

COURSE J D
ENROLMENT. AC. YEAR

GENDER
AGE.ON.EHTR/

HPCODE
LEARNING.CONTR4CT 
AWAQH rUT*

V  STUDENTJD 

) i  ACADEMICYEAR.iD 

CCURSEPG.IC 

1  EfIROlMEMTSTATUS.E 

Temp

Figure 6.16- Reducing the Postgraduate Data Set.

Figure 6.16, above, shows the Postgraduate Studies table linked to the 

Students table using Student Code. The remaining data items, within the 

Postgraduate_Studies table, were then linked to the other Postgraduate tables 

created previously.
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The final table, Undergraduate_Employment, was built from the DOL 2006 to 

2008 data. Based on the meetings with the SIS department, the following fields 

were selected, figure 6.17, to create the table

' : i tbl:UG_Employment

i Field Nam e Data Type

STU CODE Text

I A01 EMPCIR Text
A02_MODSTUDY Text

DESTINATION Text

Figure 6.17- Data Items for Undergraduate Employment Table.

Repeated records were removed from the data set by grouping on all data fields 

within the table. This resulted in one record per student in the table and reduced 

the chances of repeated values skewing the final DM models. The students in 

the Undergraduate_Employment table were further reduced by identifying the 

students that appeared in both the UndergraduateEmployment and Students 

table.

The final data tables were then copied into another database as this kept the 

transformation process separate from the process of building the data marts. 

Figure 6.18 shows the final normalised database structure that was created 

following the processes detailed above.

Figure 6.18- Normalised Database Structure.
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The normalised database was then exported into another Microsoft Access 

Database where queries were created to build three different DM marts.

6.1.3.2.2 Co nstruct  and  Integrate  Data

This outlines the processes followed in constructing and integrating the data 

into a single DM mart, which will be used to predict student award classification, 

progression onto postgraduate studies at SHU and employment type. The DM 

mart was created using the select and clean data process as outlined above.

1. Undergraduate Award Classificaiton

The data required to predict award classification was added by selecting fields 

from the student table that were thought to be useful in predicting whether the 

student would receive an honours degree. All students were included in the 

data set regardless of whether they received an honours classification. Figure 

6.19 shows the tables used to create the award classification DM mart.

t  m,OtM.CODE

E2

i  COURSE.ID

Figure 6.19 -Undergraduate Mart Tables.

The following sixteen fields, figure 6.20, were selected from these tables and 

aliases were created.
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Field
No.

Field Name Alias Criteria

1 STUDENT CODE StudentNumber
2 ENROLMENT AC YEAR EnrolmentYr
3 ENTRY QUAL EntryQualification
4 DISABILITY Disability
5 NATIONALITY Nationality
6 ETHNICITY Ethnicity
7 SOCIOECOGROUP SocioEconomicGP
8 GENDER Gender
9 HPCODE HomePostcode
10 LEA LEA
11 AGE ON ENTRY EntryAge
12 TARIFF POINTS EntryPoints
13 COURSE Course
14 AWARD DATE Award Date
15 AWARD CLASS AwardClassification
16 AWARD MARK Award Mark

Figure 6.20 -  Award Classification Mart Fields.

This generated four thousand and twenty three records for the award 

classification DM mart.

2. Postgraduate Studies

The postgraduate studies data was selected by adding the postgraduate studies 

table and the postgraduate academic year table to the undergraduate DM mart 

tables in figure 6.19. Figure 6.21 shows the postgraduate DM mart tables, here 

the undergraduate tables are linked to the postgraduate tables where the same 

student number appears in both tables.

f  SiUKNT.IO 
l iCAttW CYW UD  

? COURStPG.S 

: EEJROIMSWSTATUE.EOi  STUDEMT.CODE 
EWOIM0J1.SEAEUS.IO 
OEAEiim.lD

EW01MENT.AC.1EAR

tbt.EA

i  COURSE.ID
i  IEAJD

fACIO

Figure 6.21 -Postgraduate Mart Tables.
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The following fourteen fields, figure 6.22, were selected from these tables and 

aliases were created. Given that the research is interested in determining 

whether a student had progressed onto postgraduate studies at SHU. The 

criteria for postgraduate academic year was set to identify the last year that the 

student was enrolled on a postgraduate course. The reason for this was that 

some students were enrolled over two academic years and this created a 

repeat record.

Field
No.

Field Name Alias Criteria

1 STUDENT ID StudentNumber
2 ACADEMICYEAR PGEnrolmentYr Max
3 AWARD DATE UG Award Date
4 AWARD CLASS UGCIassification
5 ENTRY QUAL UGEntryQualification
6 TARIFF POINTS UGEntryPoints
7 COURSE UGCourse
8 DISABILITY Disability
9 NATIONALITY Nationality
10 ETHNICITY Ethnicity
11 SOCIOECOGROUP SocioEconomicGP
12 GENDER Gender
13 HPCODE HomePostcode
14 LEA LEA

Figure 6.22 -  Postgraduate Studies Mart Fields.

This generated three hundred and twenty two rows of data for the progression 

onto postgraduate studies at SHU mart.

3. Employment Type

The final DM mart created through this process was the employment mart, this 

used a combination of the undergraduate mart tables, in figure 6.19, with the 

addition of the undergraduate employment table. In figure 6.23, below, the 

students and employment tables are linked using the student number. The 

tables were joined so that all undergraduate students would be included in the 

employment mart. If there was no employment record available for a student the 

destination field was updated to not recorded.
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i  iTUDEHT.CODE 
£HSOlU£'<T_$UTUS_D

ENPOiUEW AC.YE&R

i  SCC.CODE
IEAMNG.COWWCT 
AWARD. CATl 
AWARD. WAR*;

Figure 6.23 -Employment Mart Tables.

Seventeen fields, figure 6.24, were included in the employment mart and 

aliases for the field names were created.

Field
No.

Field Name Alias Criteria

1 STUDENT CODE StudentNumber
2 ENROLMENT AC YEAR EnrolmentYr
3 ENTRY QUAL EntryQualification
4 DISABILITY Disability
5 NATIONALITY Nationality
6 ETHNICITY Ethnicity
7 SOCIOECOGROUP SocioEconomicGP
8 GENDER Gender
9 HPCODE HomePostcode
10 LEA LEA
11 AGE ON ENTRY EntryAge
12 TARIFF POINTS EntryPoints
13 COURSE Course
14 AWARD DATE AwardDate
15 AWARD CLASS AwardClassification
16 AWARD MARK Award Mark
17 DESTINATION PostUGDestination

Figure 6.24 -Employment Mart Field.

A total of four thousand and twenty three records were generated.

Two additional fields were later added based on the HEFCE work around 

POLAR2 (Participation of Local Areas), which looks at the participation of young 

people in HE based on their location (postcode) (QYPR) and the number of 

adults with HE qualifications who live in a certain area (postcode) (QAHE).
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These measures rate participation and adult qualifications on a scale of 1 to 5, 

where 1 is lowest participation/number of qualifications and 5 relates to high 

participation/number of qualifications (HEFCE 2012).

Through carrying out the initial understanding of the data, in the data 

understanding section (below), and given the student demographics data was 

the same, in each data mart. It was decided that all three DM marts could be 

merged into a single table with the correct fields added for award classification, 

progression onto postgraduate studies at SHU and employment type. 

Furthermore, additional variables were also added as potential replacements for 

the Course variable. Therefore, JACS Subject and Faculty (see Appendix I for a 

list of faculty departments) were added to the single table view for further 

analysis.

6.1.3.2.3 Forma t Da ta

Having built the required DM mart the final part of the data preparation was to 

convert the data into a suitable format that could be accepted by SAS® 

Enterprise Miner. The acceptable format of SAS® is a single CSV file with a tab, 

comma or space delimiter. Comma delimiters were chosen as it was the default 

for Microsoft Access. Furthermore, the DM mart was built specifically to be used 

in SAS® as the original source of the data was a relational database, which had 

to be changed to a single flat for DM, hence the creation of the DM mart.

6.1.3.2.4 Understand  Data

This section was added by the author as it is important to understand the data 

before the DM models are built. It is important to note that certain variables, 

such as date and student number, were omitted from this section as these will 

be rejected at the start of the DM process.

-95-



1. Initial Data Set
The student dataset has 26 variables and 4023 observations

Table Properties

Property

Table Name IT,STUDENTDATA_NEW

Description

Member Type

Data Set Type

Engine

Number of Variables

Number of Observations

Figure 6.25 - Initial Data Set Table Properties.

The data set holds all three target variables Award Class. PGStudies and 

PostUGDestination.

Name Pole | Level
StudeMNum ber ID interval No
EmolrnentYr IrtfttJI U nary NO
AW CiassC ode Input O rd ina l No
AwardClass Input O rd ina l No
AwardDate Input Nom inal No
Course Input Nom inal No
EntryQualifications Input Nom inal No
Ethnicity Input Nom inal No
Faculty Input Nom inal No
Hom ePostcode Input Nom inal No
JACS Subject Input Nom inal No
LEA Input Nom inal No
Nationality Input Nom inal No
PostUGDestination Input Nom inal No
PostUG DestinationCode Input Nom inal No
QAHE Input Nom inal No
QYPR Input Nom inal No
SocioEconornicGP Inpul Nom inal No
AwardMark Input Interval No
EntryAge Input Interval No
EntryPoints Input Interval No
Aw ClassDUM M Y Input Binary No
Disability Input Rinary No
Gender Input Binary No
PGStudies Input Binary No
PostUGDDUM MY Input Binary No

No
NO
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

Figure 6.26 - Initial Variables and Roles.

The StudentNumber is a unique identification number that is used to identify the 

students. This has been assigned the role of ID as it is not pertinent to the DM 

analysis. The majority of the other variables (with the role of input) will be 

assessed through the data understanding and SEMMA process, as to their 

suitability for predicting the target variable. These variables include:

• EnrolmentYr - is a unary variable and it contains the value 2006/07;

• AwardClass - is the actual award the student received;

• Award Date - is the date that the student received the award;

• Course - is the course the student was on in the final year of their degree;

• EntryQualifications - the initial type of qualification that the student 

entered onto their course with;
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• Ethnicity - the students common culture/ancestry and physical 

appearance;

• Faculty - the department which the students course belongs to;

• HomePostcode - relates to the students home postcode;

• JACS Subject - is a group of courses, this provides a much higher level 

of information than course but more detail than faculty;

• LEA - location based variable that relates to the students home Local 

Education Authority;

• Nationality - relates to those students who share a common 

characteristic based on certain criteria, such as language, ethnic identity 

and/or culture et cetera;

• PostUGDestination - is the target variable that indicates what type of 

employment the student went onto after their undergraduate studies;

• QAHE - a location variable that pertains to adults with HE qualifications 

by postcode;

• QYPR - a location based variable that relates to participation of young 

people in HE by postcode;

• SocioEconomicGP - used to determine the students background based 

on their parents social economic group;

• AwardMark - the final mark received by the student which is used to 

determine the award classification;

• EntryAge - the students age when they entered onto their course;

• EntrvPoints - the UCAS points that the student entered onto their course 

with;

• Disability - relates to whether the student has a disability;

• Gender - used to determine whether the student is male or female;

• PGStudies - is the target variable that indicates whether the student went 

onto postgraduate studies;

Four extra variables have been created (to explore ways of automatically 

grouping values), two for AwardClass - AwardClassCode and AWCIassDummy 

and two for PostUGDestination -  PostUGDDUMMY and 

PostUGDestinationCode.
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• AWCIassCode is a code that relates to the different award classes, which 

could be used at the modelling stage. These codes are 1=1st, 2=2:1, 

3=2:2, 4=3rd and 5=unknown.

• The AWCIassDUMMY variable was created so that Interactive

Binning/Grouping could be carried out, as SAS® will be used to help aid

the decision process in determining the most appropriate groups for the

different variables. The SAS® Interactive Binning/Grouping node

requires a binary target variable. Hence a AWCIassDUMMY variable was

created with the following values:

o <=2:1 (relates to those students who obtained a 1st or a 2:1); 
o >2:1 (pertains to those student who received a 2:2 or a 3rd) 
o Missing values are dealt with automatically by the node, as 

observations are assigned to a separate branch.
• PostUGDDUMMY variable was created so that Interactive

Binning/Grouping could be carried out, as SAS® will be used to help aid

the decision process in determining the most appropriate groups for the

different variables. The SAS® Interactive Binning/Grouping node

requires a binary target variable. Hence a PostUGDDUMMY variable

was created with the following values:

o Employed = (relates to students obtaining a Graduate or a 
Non-Graduate job); 

o Unemployed (pertains to Other, Study, Unemployed) 
o Missing values are dealt with automatically by the node, as 

observations are assigned to a separate branch (these include 
the unknow and not recorded values).

• PostUGDestinationCode is a code that relates to the different

employment types, which could be used at the modelling stage. These 

codes are 1=Graduate Job, 2=Non-Graduate Job, 3=Other, 4=Study, 

5=Unemployed, 6=Not Recorded.

The role and levels of these variables are

Role Level No. of variables
ID Interval 1
Input Nominal 14
Input Binary 5
Input Interval 3
Input Unary 1
Input Ordinal 2
Total No. Variables 26

Figure 6.27 - Initial Roles, Levels and Counts.
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2. Undergraduate Award Classificaiton
Using AwardClass as the target variable (rejecting the other two target variables 

(PGStudies and PostUGDestination) the list below shows the variables to be 

assessed.
Name Role | Level j Report “ Order Drop Lower Limit Upper Limit

S tu d en tN u m be r ID In te rv a l NO N o
D isa b ility Input B in a ry N o N o
G en d er Inp u t B in a ry No N o
A w ardM ark Inp u t In te rv a l N o N o
EntryAge Inp u t In te rv a l N o N o
EntryP o in ts Inp u t In te rv a l N o No
C o urse Inp u t N o m in a l No N o
E ntryQ ualifica tions Inp u t N o m in a l N o N o ■ • !
Ethnicity Inp u t N o m in a l No N o

i

Faculty Input N o m in a l N o N o
JA C S _S ub jec t Inpirt N o m in a l N o N o
LEA Input N o m in a l N o N o
N ationa lity Input N o m in a l NO N o
Q AH E Input N o m in a l N o N o
QYPR Inp u t N o m in a l N o N o
S oc ioE conom icG P Input N o m in a l N o N o
P G S tud ies R e je c te d B in a ry N o N o ----------- Z---
A W C Ia ssC o de R e je c te d O rd in a l N o N o
AW CIassDUM M Y R e je c te d N o m in a l N o N o ■
A w ardD ate R e je c te d N o m in a l N o NO

--------
H o m e P o s tcod e R e je c te d N o m in a l N o N o
P ostUG DD UM M Y R e je c te d N o m in a l N o N o
P ostU G D e stin a tio n R e je c te d N o m in a l N o N o
P os tU G D e s tin a tio nC od e R e je c te d N o m in a l N o N o
E nro lm en tY r R e je c te d U n a ry N o N o
A w a rd C la s s ta r g e t O rd in a l N o N o

Figure 6.28 - Undergraduate Award Classification Variables and Roles.

The role and levels of these variables are:

Role Level No. of variables
ID Interval 1
Input Nominal 10
Input Binary 2
Input Interval 3
Rejected Binary 1
Rejected Nominal 6
Rejected Ordinal 1
Rejected Unary 1
Target Ordinal 1
Total No. Variables 26

Figure 6.29 - Undergraduate Award Classification Roles, Levels and Counts.

Rejected variables include:

• PGStudies - the target variable for another model;
• AWCIassCode - relates to the different award classes;
• AWCIassDummv - used to determine potential groups;
• Award Date - the date that the student received the award, this has no 

significance to the AwardClass received by the student;
• PostUGDUMMY - used to determine potential groups for another model;
• PostUGDestination - the target variable for another model;
• PostUGDestinationCode - relates to the different postgraduate 

desinations for another model;
• EnrolmentYr - a unary variable;
• HomePostcode - there are other location based variables in the dataset 

such as QYPR, QAHE and LEA.
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An initial assessment of the histograms indicates that the data is mainly nominal 

(see glossary page ix), below.

Li EntjyQusiificitia

1 2(1 > 2(2)

Id EntryPoirto

d J L
10 140 270 400 530 600

Li SocioEconomicGP

OnOi i .
Li Ethnicity Li Faculty

i LL
0.000 25.155 50510 75.465 DS SBS ACES Wi 37147 3K34463 79231779

Li Nationality

2 3 4 5

Li JACSJubject Li EntryAge

h .Hi IE
17.0 27 6 382 48 8 55 4 700 2 3 4 5

Figure 6.30 - Undergraduate Award Classification Initial Flistograms.

The above graphs also highlight that:

• Award Date, JACS Subject, EntryQualifications, LEA, Course, Ethnicity 
and Nationality have too many overall levels;

• EntryAge is positively skewed and there are two potential outliers (17 & 
70);

• AwardMark is negatively skewed;
• SocioEconmicGP, LEA, QYPR and QAHE are all location based 

variables; and
• Some variables contain missing values, which will have to be resolved. 

Each variable will now be examined individually.

A w a r d  C l a s s if ic a tio n

The graphs below show AwardClass, AWCIassCode and AWCIassDUMMY 

against Frequency.
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Figure 6.31 - Award Classification Flistograms.
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Please note that the top bar chart presents the data in reverse order, in that the 

award classifications decrease when moving from left (1st) to right (3rd). Of the 

4023 students 3873 obtained an honours degree (1st, 2:1, 2:2 or 3rd) this 

suggests that 96% obtained an honours degree and 150 of the results are 

unknown. The AwardClass and AwardClassCode graphs show that in general 

more students obtain a 2:1 and that a first is less common. It is also important to 

note that the missing values have been coded as unknown. The 

AWCIassDUMMY variable contains more students who obtained a grade 

greater than or equal to a 2:1, this is due mainly to the large number of students 

obtaining a 2:1.

A w a r d  M a r k

The AwardMark is plotted against the Frequency below.

Frequency agairvsl AwardM ark

>y
Z
x>
Zu
v
L.

C/

iV
AwardMark

Figure 6.32 - Award Mark Histogram.

This bar chart reflects the award classification graphs above as it shows that the 

majority of students received an AwardMark between 58 and 67. There are also 

some missing values that would need to be resolved. This variable will be 

rejected at the modelling stage as it is used to calculate the AwardClassification 

target variable.
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Entry Age
A bar chart of EntryAge against Frequency and AwardClass against EntryAge is

plotted below.

30C0

>£B
3
crv

1000

0
17 0 22 3 276 520 382 435 45.8 54 1 594 « ?  700

EntryAge

EniryAge against AwardCiassification

80

va
>

«i-;

An initial assessment of EntryAge shows that the student's entry age varies 

from 17 to 70. The majority of students entered university between the age of 

17 and 22 and very few students entered onto a degree after the age of 27. 

Assessing EntryAge against award classification suggests that the average 

entry age of students who obtain a 3rd is 20. Furthermore those students who 

were awarded a 1st and a 2:1 tended to be younger than those who obtain a 2:2 

or a 3rd. Looking at EntryAge against EntryQualificiations, below, it can be

32i
AwardClass

Lttnswn

Figure 6.33 - EntryAge Histograms.

Frequency against EntryAge
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inferred that younger students are recruited from A-Level/GNVQ3 and 

ONC/OND.
ErtfvAS# EnfrvOjHrV**-*

I ?

\  \  \  % \  \  \\

E-ttYĈgMcttcrf

E 'U y A g - a j i J 's i - 3 e n 3 « i

v
Gender

**.'• 565 WEB- ' HW
F tc u ty

Figure 6.34 - EntryAge Box Plots.
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When considering EntryAge against Gender, on average more males entered 

their degrees at the age of twenty whereas more females entered at an average 

age of less than twenty. Moreover, students who entered the Faculty of ACES, 

on average, tended to be older than those on Health and Wellbeing courses. 

Further investigation was carried out into two potential entry age outliers, 17 

and 70, this determined that there were in fact two students who entered onto a 

full-time degree course at the ages of 17 and 70.

Na t io n a lit y

The Nationality of the students is plotted in both a bar chart and mosiac below.

Ftequency against Nationality

JKl \

>u
t
3Ui)
£
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Nationality
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— r p

2 Cl)-

1-

>the r

N a t io n a l i t y

Figure 6.35 - Nationality Bar Chart and Mosiac Plot.
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These suggest that there are too many categories to the Nationality variable. 

The majority of the students are from the UK. The mosaic plot above indicates 

that UK students tend to achieve better grades as the majority of UK students 

achieve either a 2:1 or a 2:2. Non UK students tended to obtain more 2:2 and 

3rd class classifications.

Eth n ic ity

The Ethnicity of the students is plotted in both a bar chart and mosiac below.

F riq jtre , »sar*:E im :ir>

EthniziTf

WHITE BRITISH Other

Ethn ic i ty

Figure 6.36 - Ethnicity Bar Chart and Mosiac Plot.
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Again Ethnicity appears to have too many overall categories, due to the large 

number of different ethnic groups. The mosaic plot indicates that White British 

students tend to achieve a better classification than the others.

E n tr y  Q u a lif ic a t io n s

Students EntryQualifications are plotted against Frequency and AwardClass 
below.

Fttpjincy ipanrt EnliyOJJll!:9:crt*

<L 0,

ErbyOjjIfk-slurs

111

_ ■■ t 1 §1

E n t r y Q u a 1 i f  i c a t  i n n s

Figure 6.37 -  Entry Qualifications Bar Chart and Mosiac Plot.

Arguably, there are too many different EntryQualifications and there is a large 

proportion of A-Level/GNVQ 3, which provides some justification for the large 

proportion of students entering their undergraduate degrees between the ages 

of 17 and 22. The mosiac plot suggests that students who enter their degrees
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with A-Level/GNVQ 3 qualifications tended to achieve a better award 

classification than those who entered with other qualifications. These students 

obtained more 1st and 2:1 classifications whereas those students who entered 

their degrees with other qualifications tended to achieved more 3rd class 

honours then those with A-Level/GNVQ 3 qualifications.

E n tr y  P o in ts

Students EntrvPoints are plotted against Frequency and AwardClass below.
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Figure 6.38 -  Entry Points Bar Chart and Box Plot.

AwardClass
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This highlights that the majority of students entered their degrees with between 

205 and 270 entry points - potential outliers include 10-75 and 530-660. In 

addition to this, there is an association between student entry points and award 

classification. It is perhaps prudent to note that going forward the EntryPoints 

groupings will change due to the introduction of the A* A-Level and any models 

built may have to be changed to reflect this. As stated above, there is also a 

relationship between EntryPoints and EntryQualifications variable. However, the 

box plot above indicates that there is a relationship between the number of 

entry points and final award classification.

C o u r se

The Course variable is plotted against Frequency below.

Frequency against Course

150 -

lUhjfliJf
Course

Figure 6.39 -  Course Bar Chart.

There are too many categories to the Course variable and its inclusion in the 

modelling stage is questionable. Therefore, a method for grouping this variable 

or the inclusion of other variables (such as Faculty or JACS Subject) should be 

considered instead of the Course variable.

Fa c u lty

The graphs below are used to assess the Faculty variable against Frequency, 

EntryPoints and AwardMark.
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Figure 6.40 -  Faculty Bar Chart and Box Plots.
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The Faculty variable has four levels ACES, DS (Development and Society), HW 

(Health and Wellbeing) and SBS (Organisation and Management). Looking at 

EntryPoints and AwardMark against Faculty graphs, it is apparent that the 

average entry points in ACES tends to be lower which is refelected in the 

average AwardMark. Although, the students in the ACES faculty have also 

achieved higher individual award marks than students in any other faculty. The 

mosiac plot of Faculty against AwardClassification, below, confirms that ACES 

students tend to get more 1st and 3rd class classifications than any other faculty 

and that DS has the largest proportion of students and they tend too achieve 

more 2:1 and 2:2 classifications.

Other-

3-

( 2 )

II Iff?1-

DS KK

F a c u 1 t y

  ---------------
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F a c u lty

Figure 6.41 -  Faculty Mosiac Plots.
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In terms of SocioEconomicGP SBS tends to have more students from a 

technical and managerial socioeconmic group and DS and HW also have the 

highest proportion of students from a professional socioeconmic group. The 

inclusion of this variable at the modelling stage is questionable as there are 

probably too few levels in that any models built using this variable could be to 

general.

JACS -  Subject
The graphs, below, show JACS Subject against Frequency, Gender and 

AwardClass.
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Figure 6.42 -  JACS Subject Bar Charts.

The JACS Subject variable is a half-way house between Course and Faculty. 

However, there still appears to be a large number of overall levels. The graphs 

show that some of the JACS subjects are mainly taken by males and others 

females. In addition to this, they also highlight that students in some JACS 

subjects appear to achieve a better overall award classification then students in 

others

2 {!>■
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Figure 6.43 -  JACS Subject Mosiac Plot.
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Indeed, the mosaic plot, above, of AwardClassification against JACS Subject 

singles out the business studies subject which shows that students in this group 

are more likely to achieve a 2:1 and a 3rd than in any other subject. It also 

shows that, in relation to other subjects, students taking business studies are 

less likely to achieve a 1st classification.

S o c io e c o n o m ic  G r o u p in g s

AwardClass is plotted against QYPR, QAHE and SocioEconomicGP, below.
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Figure 6.44 -  Socioecominic Groupings Mosiac Plots.

Participation of Young People in HE by Postcode (QYPR) - the mosiac plot of 

AwardClassification against QYPR indicates that more students were from 

areas where QYPR was rated has a 5 (high), this group had the largest 

proportion of 2:1 classifications. Those student with a QYPR of 2 (low-medium) 

have more students who obtain a 1st classification, this is likely to be due to the 

non-traditional type of students catered for by SHU.

Adults with HE Qualifications by Postcode (QAHE) - the mosiac plot of 

AwardClassification against QAHE suggests that students from areas where 

QAHE was 1 (low) had more students obtaining a 2:2 and where QAHE was 2 

(low-medium) there were more 1st and 3rd classifcations. The largest group 

appears to be where QAHE is 4 (medium-high).

Socioeconmic Group of parents - the mosaic plot of AwardClassification against 

SocioEconmicGP highlights that more students are from the managerial and 

technical group. Students in this group tend to achieve a classified degree, from 

across the entire degree classification spectrum, than any other group. Students 

from the skilled groups tend to obtain more 2:1 and 2:2 awards.

The inclusion of all three variables (QYPR, QAHE. SocioEconmicGP) should be 

assessed at the DM stage.
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G e n d er

Gender is plotted against AwardClasss, EntrvQualifications and 

SocioEconomicGP, below.

 ;-
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Figure 6.45 -  Gender Mosiac Plots.
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These graphs show that there are more females than males in the dataset. 

They also show that males tend to achieve more 1st, 2:2 and 3rd class 

classifications and females achieve more 2:1 classifications. The second 

mosaic plot indicates that more females enter their degrees with A-Level/GNVQ 

3 qualifications then males. The final mosaic plot suggests that there are more 

females from the socioeconomic group of managerial and technical than males 

and there are more males from the socioeconmic group skilled non-manual than 

females.

c
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The above box plot shows that the average EntrvPoints for females is higher 

than males.

EnwyPoints acamsl Gender

G ender

Figure 6.46- Gender Box Plot.
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D is a b il ity

Disability is plotted against AwardClass, Gender and Faculty, below.
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Figure 6.47 -  Disability Mosiac Plots.
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The disability graphs, above, show that there are significantly more non

disabled students in the dataset and that disabled students tend to obtain more 

1st and 3rd class classifications. There are slightly more disabled males in the 

data set than disabled females and the faculty of ACES tends to have more 

disabled students. The inclusion of Disability in the final model is questionable, 

given the small amount of disabled students in the dataset.

LEA
LEA is plotted against Frequency and AwardClass, below.
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Figure 6.48 -  LEA Bar Chart and Mosiac Plot.
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LEA as too many categories and there are other location based variables 

(QYPR, QAHE and SocioEconomicGP. Therefore, this variable won't be 

discussed any further in the proceeding sections.

3. Postgraduate Studies

Using PGStudies as the target variable (rejecting the other two target variables 

(AwardClass and PostUGDestination) the list below shows the variables to be 

assessed.
Name Role Level Report Order | Drop Lower Limit Upper Lrrr.it

S tuden tN um ber ID Interval No
_

No
A w ardC lass Input Ordinal No No
C ourse Input Nominal No No
E ntryQualific a tions Input Nominal No No
Ethnicity Input Nominal No No •
Faculty Input Nominal No No •
JA CS_Subject Input Nominal No No - .
LEA Input Nominal No No -
N ationa lity Input Nominal No No
OAHE Input Nominal No No
QYPR Input Nominal No No !
S ocioE conom icG P Input Nom inal No No
AwardM ark Input Interval No No
E ntryAge Input Interval No No
EritryPoints Input Interval No No
D isab ility Input Binary No No
G ender Input Binary No No
E nrolm entYr Rejected Unary No No
A w ardD ate Rejected Nominal No No : — I—
H om eP ostcode Rejected Nominal No No .
P ostU G D estination Rejected Nominal No No
A W C IassC ode Rejected Ordinal No No
P ostU G D estina tionC ode Rejected Interval No No
A w C lass DUMMY Rejected Binary No No
PostUG DDUM M Y R ejecteii Binary No No
P G Studies Target Binary No No

Figure 6.49 -  Postgraduate Studies Variables and Roles. 

The role and levels of these variables are:

Role Level No. of variables
ID Interval 1
Input Nominal 10
Input Ordinal 1
Input Binary 2
Input Interval 3
Rejected Binary 2
Rejected Nomina! 4
Rejected Ordinal 1
Rejected Unary 1
Target Nominal 1
Total No. Variables 26

Figure 6.50 -  Postgraduate Studies Roles, Levels and Counts.
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Rejected variables include:
• AWCIassCode - relates to the different award classes for another model;
• AWCIassDummy - used to determine potential groups for another model;
• Award Date - the date that the student received the award this has no 

significance to the AwardClass received by the student;
• PostUGDUMMY - used to determine potential groups for another model;
• PostUGDestination - the target variable for another model;
• PostUGDestinationCode - relates to the different postgraduate 

destinations for another model;
• EnrolmentYr - a unary variable;
• HomePostcode - there are other location based variables in the dataset.

The PGStudies variable is given the role of target for the data understanding 

and modelling stage, as this is a binary target variable there is no need to 

create any dummy variables.

The distribution of the data, shown below, is exactly the same as previously 

discussed. Therefore this section will look at the individual variables in relation 

to the PGStudies target variable.
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Figure 6.51 -  Postgraduate Studies Initial Histograms.

As highlighted in the honours award classificaiton section above there are a 

number of variables that have too many overall levels. These will be addressed 

through assessing the variables/values using variable selection, categorical 

input consolidation and interactive binning/grouping in the building the models 

section.
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Po s tg r a d u a te  S tu d ie s

The frequency of the PGStudies variable is plotted below.

Fiequency against RGStiaJies

PGStudies

Figure 6.52 -  Postgraduate Studies Bar Chart.

Of the 4023 students who completed their degrees in 2006/07 322 went onto 

postgraduate studies in 2007/08, 2008/09 2009/10 - at the point when the data 

was sampled from the SI system. Due to the large number of students who 

didn't go on to undertake a postgraduate degree during this time the data will 

have to be oversampled, so that the 'Yes' value is not overshadowed by the 

large amount of 'No' values - as a result prior probabilities will have to be built 

before the data is oversampled.

A w a r d  C la s s if ic a t io n  a n d  A w a r d  M a r k

Below is a plot of the student's award classifications and award marks.

NO

P G S t u d i e s
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AivardMarfc against PGSluGns

PGStufcts

Figure 6.53 -  Award Classification and Mark Mosiac Plot and Bar Chart.

Award Classification - the mosaic plot of PGStudies against AwardClassification 

shows that the most common AwardClassification obtained by students who go 

on to take a postgraduate degree is a 2:1. In addition to this, the above graph 

highlights that more students who obtained a 1st in there undergraduate degree 

are more likely to go on to undertake postgraduate studies. The inclusion of this 

variable in the modelling stage is questionable as Award Mark is used to 

calculate the AwardClassification.

Award Mark - the box plot of Award Mark against PGStudies shows that the 

average Award Mark of students who go on to undertake postgraduate studies is 

higher than those who don't. The Award Mark variable will be included at the 

modelling stage in favour of AwardClassification as it is used to calculate the 

classification.
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E n tr y  A ge

The box plot, below, shows student entry age against whether or not students

went on to take PGStudies at SHU.

t*
cr<>
cU -

The above box plot of EntrvAqe against PGStudies shows that the average age 

of those students who entered their original undergraduate degree and went 

onto postgraduate studies was less than those who didn't go on to take a 

postgraduate qualification.

Na t io n a lit y  a n d  Et h n ic ity

The frequency of Nationality and Ethnicity are plotted below.
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Figure 6.54 -  Entry Age Box Plot.
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Figure 6.55 -  Nationality and Ethnicity Bar Charts.

Nationality - again there are too many categories to the Nationality variable. The 

majority of the students who went on to study a postgraduate degree were from 

the UK.

Ethnicity - again Ethnicity appears to have too many categories, due to the large 

number of different ethnic groups. The graph indicates that more White British 

students tend to go on to take postgraduate studies.

E n tr y  Q u a lif ic a t io n s  a n d  E n tr y  P o in ts

Progression onto PGstudies at SHU is plotted against the students 

EntrvQualifications and EntrvPoints below.

Ei*:u*'cy agansl ErnySm rHtfufrs an: ^SStuciss

Frequency again*! Etriniclty and PCStJdles
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Figure 6.56 -  Entry Qualifications and Points Bar Chart, Mosiac Plot and Box Plot.

Entry Qualifications - there are too many different EntrvQualifications and the 

largest proportion of students who went on to take postgraduate studies entered 

university with A-Level/GNVQ 3.

Entry Points - The box plot above shows that students who go on to study a 

postgraduate degree tend to enter their undergraduate degrees with higher 

average EntrvPoints than those who don't go on to take a postgraduate degree. 

As before it is perhaps prudent to note that going forward the EntrvPoints 

groupings will change due to the introduction of the A* A-Level and any models 

built may have to be changed to reflect this. As stated above, there is also a
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relationship between EntrvPoints and EntrvQualifications variable. However, the 

box plot above suggests that there is a relationship between the number of 

entry points and those students who go on to take postgraduate studies at SHU.

C o u rse , F a c u lty  and JACS S u b je c t
This section considers Course, Faculty and JACS Subject in relation to the 

target variable of PGStudies.

JACS_Subject
[ I  n: ■ iv^

PGStudies
Frequency against JACS and PGStudles

Figure 6.57- Faculty and JACS Subject Mosiac Plot and Bar Chart.

Course - Any graph of this variable would make it difficult to determine the 

different categories of students going onto postgraduate studies.
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Faculty - a larger proportion of undergraduates go on to study a postgraduate 

degree in the faculty of Development and Society. However, inclusion of this 

variable at the modelling stage is questionable as there are probably too few 

levels for the modelling stage in that any models built using this variable would 

be to general.

JACS Subject - The JACS Subject group variable provides a little more detail 

than the Faculty variable and a little less detail than Course. Whilst it's difficult to 

interpret the above graph due to the number of levels. It does show that some 

JACS Subject groups have a large proportion of undergraduates who go on to 

study a postgraduate degree and that some of the JACS Subject groups have 

no students who go on to study at postgraduate level.

S o c io e c o n o m ic  G r o u p in g s

QYPR, QAHE and SocioEconomicGP are plotted against PGStudies, below.
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Figure 6.58 -  Socioeconomic Groupings Mosiac Plots.

Participation of Young People in HE by Postcode (QYPR) - The graph above 

suggests that more students go on to study a postgraudate degree from areas 

where QYPR was rated has a 1 (low).

Adults with HE Qualifications by Postcode (QAHE) - Again the QAHE graph 

also suggests that there’s a higher proportion of students who go on to study at 

postgrauate level from areas where QAHE is 1 (low).

Socioeconmic Group of parents - The mosaic plot of PGStudies against 

SocioEconmicGP highlights that more students from the managerial and 

technical group tended to go on to study a postgraduate degree. The group of 

students least likely to go on to study a postgraduate degree at SHU are from 

the professional SocioEconmicGP.

As stated above, all three of these variables are trying to measure the level of 

social deprivation in the student’s background. Therefore, only one of these 

variables, SocioEconmicGP or QYPR and QAHE. should make it into the final 

model. The inclusion of all three variables (QYPR, QAHE, Socioeconmic Group) 

should be assessed at the DM stage.
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G en d er  a n d  D is a b il ity

The graphs, below, show Gender and Disability plotted against PGStudies.
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Figure 6.59 -  Gender and Disability Mosiac Plots.

Gender - more females go on to study a postgraduate degree than males.

Disability - the mosaic plot above indicates that very few disabled students go 

on to take a postgraduate degree at SHU. The inclusion of Disability in the final 

model is questionable, given the small amount of disabled students in the 

dataset.
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3. Student Employment Type

Using PostUGDestination as the target variable (rejecting the other two target 

variables (PGStudies and AwardClass) the list below shows the variables to be 

assessed.

P o s tU G D e s tin a tio n NoTarget Nom inal No

D isa b ility
G ender
A w ardM ark
EnlryAge
EntryP o in ts
A w a rdC lass
C o urse
E ntryQ ualifica tions
E thn ic ity
Faculty
JA C S _S ub)ect

Input 
Input 
Input 
Input 
Input 
Input 
Input 
input 
Input 
Input 
Input 
Input

N a tion a lity  Input
QAHE Input
QYPR Input
S oc ioE con o m icG P  Input

R eject erl 
R ejected  
R ejected  
R ejected  
Flejected  
R ejected  

P o s tU G D e s tin a tio n C o d e  R ejecte il
H o m e P o s tcod e

N om inal
B inary
B inary
B inary

Nom inal

N om inal

Interval
Interval

Nom inal

Nom inal

No
No

No
No
No
No
No

No
No
No

Ml)
No
No
No
No
No
No
No
No
No

No
No
No
No
No

No
No
No
No

No

No

Rejected  U nary No

D ro p U p p e r Lim it

Figure 6.60 -  Student Employment Type Variables and Roles.

The role and levels of the variables are:

Role Level No. of variables
ID Interval 1
Input Nominal 10
Input Ordinal 1
Input Binary 2
Input Interval 3
Rejected Binary 3
Rejected Nominal 3
Rejected Ordinal 1
Rejected Unary 1
Target Nominal 1
Total No. Variables 26

Figure 6.61 -  Student Employment Type Roles, Levels and Counts.

Rejected variables include:

• PGStudies - the target variable for another model;
• AWCIassCode - relates to the different award classes for another model;
• AWCIassDummv - used to determine potential groups for another model;
• Award Date - the date that the student received the award this has no 

significance to the AwardClass received by the student;
• PostUGDUMMY - used to determine potential groups;
• PostUGDestinationCode - relates to the different postgraduate 

destinations;
• EnrolmentYr - a unary variable;
• HomePostcode - there are other location based variables in the dataset.

-131-



The PGStudies variable is given the role of target for the data understanding. 

However, PostUGDUMMY and PostUGDestinationCode may be used when 

assessing the variables/values, using variable selection, categorical input 

consolidation and interactive binning/grouping, in building the models section 

below.

The distribution of the data, below, is exactly the same as PGStudies and 

AwardClass distributions discussed previously.
Ll HomePostcode

n  r L

Ll PortUGDejtinationCode

£
Ll Gender 
2000

Ll PostUGDDUMMY

Employed IfttemplOYOd

__ _ _ _  50°olq=iLvJLJr-i □
SBC ACES H.V DS

Figure 6.62 -  Student Employment Type Initial Histograms.

Therefore, this section will consider the individual variables in relation to the 

PostUGDestination target variable.

Po s t  U n d e r g r a d u a te  D es tin a tio n

The frequency of PostUGDestination, PostUGDUMMY and

PostUGDestinationCode are plotted below respectively.

p'upuency njn rsi Pc-srjcOserjli*'
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Figure 6.63 -  Post Undergraduate Destination Bar Charts.

Of the 4023 students the university captured employment information about 

1794 students, the type of information recorded by SHU is:

• Not Recorded
• Graduate Job
• Non-Graduate Job
• Study - not just further studies at SHU
• Other
• Unemployed
• Unknown

The PostUGDestination and PostUGDestinationCode graphs show that the 

majority of values are either not recorded or unknown. However, of the recorded 

values, SHU students appear to obtain more graduate jobs than any other

F-eeuencji FttsmGCtXTWr
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category (non-graduate jobs, study, other, and unemployed). Ignoring the not 

recorded and unknown values, the PostUGDDUMMY variable contains more 

employed students than unemployed students.

A w a r d  C l a s s if ic a t io n  a n d  M a r k

The students AwardClass and Award Mark are plotted against 

PostUGDestination below.
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Figure 6.64 -  Award Classification and Mark Mosaic Plot and Box Plot.

Award Classification - The mosaic plot of AwardClass against 

PostUGDestination shows that students who achieved a 1st classification are 

more likely to obtain a graduate job. This group also has the largest number of
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students who go on to take further studies. In addition to this, the largest 

number of students ending up in non-graduate jobs or unemployed seems to be 

those students who obtained either a 2:2 or a 3rd classification. Interestingly, the 

number of students who don't respond to the DOL survey seems to increase as 

the students AwardClassification is reduced.

Award Mark - The box plot of Award Mark against PostUGDestination indicates 

that the average mark of students obtaining a graduate job or going onto further 

study tend to be higher than those students who were unemployed, went on to 

work in non-graduate jobs or go on to do some other activity after their 

undergraduate degree. Interestingly, the lowest average award mark relates to 

those students who ended up working in non-graduate jobs.

As AwardClassification and Award Mark are measures of the student's success 

and Award Mark is used to calculate the AwardClassification. Award Mark will be 

used in favour of AwardClassification.

E n tr y  A ge

The box plot, below, shows student entry ages against PostUGDestination.

EtitryAge against PoslUGD«Dnation

u -

PostUGDestinatic-n

Figure 6.65 -  Entry Age Box Plot.

The above graph shows that the average age of all students, at undergraduate 

entry, across all of the PostUGDestination values is below 20, with the 

exception of those students who end up unemployed. This appears to suggest
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that older students who enter full-time undergraduate degrees find it harder to 

get a job after graduation.

Na tio n a lity  a n d  Eth n ic ity

The students Nationality and Ethnicity are plotted against Frequency below.
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Nationality - as before the majority of students are from the UK and the largest 

proportion of these students, when ignoring the not recorded value, obtained a 

graduate job.

Ethnicity - again the largest proportion of students are White British and, of the 

recorded values, the majority of these students went on to obtain a graduate job.

______________—  i— ii— i  _

Ethnicity
[□not recorded □  Graduate Job □ I lon-giaduate joMU Study mother □  Unemployed □  Unknown |

Figure 6.66 -  Nationality and Ethnicity Bar Charts.

Frequency against Nationality and PostUGDestination

:
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The inclusion of Nationality and Ethnicity at the modelling stage will need to be 

assessed at the modelling stage. This is mainly due to the large number of UK 

and White British students in these variables.

E n tr y  Q u a lif ic a t io n s  a n d  E n tr y  P o in ts

The students EntrvQualifications and EntrvPoints are plotted against the 

PostUGDestination variable below.
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Figure 6.67 -  Entry Qualifications and Points Bar Chart and Box Plot.

Entry Qualifications - as noted previously the majority of students enter 

university with A-Level/GNVQ3 qualifications and it is this group that secure the 

larger proportion of graduate jobs.
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Entry Points - The box plot above shows that students who went on to take 

further study had the highest average undergraduate EntrvPoints when they 

enrolled onto their original degree course. Conversely, students that ended up 

unemployed had the lowest average undergraduate EntrvPoints when enrolling 

onto their original degree course.

Again, EntrvQualifications should be rejected in favour of EntrvPoints as this is 

a more comparable measure, going forward, of the students level 3 entry 

qualifications.

C o u rs e , F a c u lty  and JACS S u b je c t

This section considers Course, Faculty and JACS Subject in relation to the 

target variable of PostUGDestination.

Ncri—graduate job-
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Figure 6.68 -  Faculty and JACS Subject Mosaic Plot and Bar Chart.
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Course - Any graph of this variable would make it difficult to determine the 

different levels of students post undergraduate destinations.

Faculty - The mosaic plot of PostUGDestination against Faculty indicates that 

the faculty of Health and Wellbeing has more students who go on to obtain a 

graduate job. This faculty also has the largest proportion of students who went 

on to take further studies. The plot also indicates that the largest number of 

students who ended up unemployed were members of the faculty of Sheffield 

Business School and that the Faculty of Development and Society had less 

students responding to the DOL survey.

JACS Subject - Whilst it's difficult to determine the individual JACS subject 

groups, from the above graph, due to the number of categories. It does however 

show that some of the JACS Subjects have a larger proportion of the graduate 

job, unemployed, study and non-graduate job values than others. It is also 

perhaps worth pointing out that some of the subjects also had a 100% non

response.

S o c io e c o n o m ic  G r o u p in g s

QYPR, QAHE and SocioEconomicGP are plotted against PostUGDestination, 
below.
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Figure 6.69 -  Socioeconomic Groupings Mosaic Plots.

QYPR - the mosaic plot of PostUGDestination against QYPR shows that 

students from areas where QYPR is medium to high (4) are more likely to end 

up in a graduate job. QYPR 3 has more students who go on to further studies 

and QYPR 2 and 3 have more students who end up unemployed. Furthermore, 

it appears that students from areas where QYPR is high (5) tend to respond 

better to the DOL survey.

QAHE - the central mosaic plot indicates that more students from QAHE 2 and 

4 tend to obtain a graduate job. More students from QAHE 2 (low to medium) 

tend to go on to further studies. Additionally, more students end up unemployed 

from areas where QAHE is medium (3).
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Socioeconomic Group of parents - the mosaic plot of PostUGDestination 

against SocioEconomicGP highlights that students from managerial and 

technical, and professional groups tend to obtain more graduate jobs. More 

students from the skilled group tended to go on to undertake further studies. 

Moreover, there were more unemployed students in the professional group.

The inclusion of all three variables (QYPR, QAHE, SocioeconmicGP) should be 

assessed at the modelling stage.

G en d e r  a n d  D is a b il ity

The graphs, below, show Gender and Disability plotted against 

PostUGDestination.
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Figure 6.70 -  Gender and Disability Mosaic Plots.
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Gender - the mosaic plot above highlights that slightly more males end up 

getting graduate jobs than females, more males then females also end up 

unemployed. Males also seem to respond a little better to the DOL survey than 

females.

Disability - fewer disabled students end up working in a graduate job and less 

disabled students tend to respond to the DOL survey. The inclusion of Disability 

in the final model is questionable, given the small amount of disabled students 

in the dataset.

6.1.3.2.5 N umber  of Observations  and  E vent  Rates

In conclusion, the data understanding process outlined above identified that of 

the 4023 records:

• 3873 obtained an honours degree (96% event rate);
• 322 went onto postgraduate studies at SHU (8% event rate); and
• 1794 employment types were recorded (45% event rate).

It is difficult to assess the amount of data (observations and event rates) 

required to produce effective models. Berry and Linoff (2004) point out that DM 

is more effective with larger data sets, which usually contain more than 30,000 

records. However, according to the research carried out by John and Langley 

(1996) and Oates and Jensen (1998), the sample size has little impact on the 

accuracy of the model provided that the sample size is greater than 300. They 

found that the accuracy of a sample size between 300 and 2180 was 2% as 

measured by the DM confidence factor.

Arguably some type of oversampling might have to be carried out when building 

the progression onto postgraduate studies model, due to the 8% event rate.
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6.2 S u m m a r y

This chapter details the process of creating three DM marts, using the BDLD 

introduced previously, which will be used in the following chapter. The data 

within each DM mart is explored and some discussion is presented around 

potential patterns and trends in the data. Through this process a number of 

additional variables, JACS Subject and Faculty were added to the DM marts. 

Additionally, as the demographics data was the same in each DM mart, a 

decision was made to condense the three DM marts into one single table (DM 

mart). The chapter concludes with a brief discussion around sample sizes and 

event rates, which highlights that some form of oversampling may be required 

(due to an 8% event rate) when carrying out the modelling of student 

progression onto postgraduate studies.
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7 Da t a  M in ing

"Knowing how to exploit data effectively can help you to use available 
technologies to reveal the hidden patterns and trends contained therein." 
(Westphal and Claxton 1998, p xxi)

This chapter will discuss the development of three predictive models using the 

SAS® SEMMA, outlined in section 4.4.1.

7.1 Mining th e  D a ta

The models have been developed through numerous iterations, however, this 

section provides an overview of construction of the final award classification, 

progression onto postgraduate studies at SHU and employment DM models. It 

outlines the process followed in building all three models, using the SAS® 

SEMMA (Sample, Explore, Modify, Model, Assess) methodology, and each 

section will conclude with a brief overview of the final model.

7.1.1 B uilding  the A ward  Classificatio n  M odel (ACM)
This section details the process followed in building the award classification DM 

model using SAS® SEMMA.

7.1.1.1 ACM Sam ple

As stated previously the final DM mart contains 4023 observations of these 96% 

obtained an honours degree classification. The percentage of students 

obtaining a 1st classification was 7.43%, 42.65% obtained a 2:1, 38.70% 

achieved a 2:2 and 7.48% were awarded a 3rd classification. The remaining 

3.73% failed to achieve an honours classification. Ultimately, it was decided not 

to sample the data set as the award classification percentages seemed 

representative of the population. In that a 2:1 and 2:2 classifications are more 

common than a 1st or a 3rd. A 80:20 data partition was also setup so that the 

data could be divided into training and validation respectively, an 80:20 split 

was favoured as this produced the better model. However, this resulted in a 

much smaller data set for validating the model. The variables within the data set 

were reduced through the authors own knowledge of the data/HE and by using 

a decision tree for variable selection. This resulted in the following inputs being 

selected for modelling:
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Variable Importance

Obs NAME LABEL NRULES NSURROGATES IMPORTANCE VIMP0RTANCE RATIO

1 Course 21 4 1.00000 1.00000 1.00000
2 EntryPoints 11 3 0.65265 0.85540 1.31066
3 EntryAge 2 13 0.45578 0.47683 1.04617

SocioEconomicGP 8 1 0.34597 0.28926 0.83606
> 5 QAHE 6 3 0.29314 0.53953 1.84055
* 6 QYPR 5 5 0.26136 0.60431 2.31216

7 Ethnicity 3 0 0.24798 0.50707 2.04478
8 Gender 1 2 0.21852 0.18082 0.82750
9 Nationality 0 1 0.20254 0.45300 2.23662
10 Disability 0 1 0.12517 0.25708 2.05379

Figure 7.1 -  Variable Importance Table.

It is perhaps important to note that (1) are all measures of social deprivation, 

therefore if all of these appear in the final model then either SocioEconomicGP 

or QAHE and QYPR will have to be removed in favour of one of them, see 

6.1.3.2.4.

7.1.1.2 A CM Explo re

The data has already been thoroughly explored through the data understanding 

process outlined in Chapter 6, through this a number of graphs were produced 

and outliers were identified.

7.1.1.3 ACM M odify

This section will focus on using categorical variable consolidation (see glossary 

page vii) for categorical values, interactive binning/grouping (for interval values) 

and the authors own knowledge of the data/HE to determine suitable groups of 

values in relation to the target variable.

E n t r y P o i n t s

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G

R E S U L T S

Variable Group Values Groip Evert Court Non-Evert Group Evert Group Evert Rate Non-Evert Gini Go Ord
Court Rate Non-Evert Rrte Coetloert

Rate

EntryPoints Missing 1 157 218 41.87 58.13 7.791563 11.73305 26.67256
EntryPoints EntryPoints* 200 2 280 482 36.75 63.25 13.89578 25.94187 26 67256
EntryPoints 200*=  EntryPoints* 260 3 384 466 45.18 54.82 19.05707 25.08073 26 67256
EntryPoints 260*=  EntryPoints* 320 4 486 361 57.38 42.62 24.11911 19.42949 2667256
EntryPoints 320*=  EntryPoints 5 708 331 68.14 31.86 35.13648 17.81485 26.67256

D i s c u s s i o n
The interactive binning/grouping node suggests that the entry points can 
be grouped into 5 groups._________________________________________

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split
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E n t r y A g e

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G

R E S U L T S

Variable Group Values Grottp Event Court Non-Evert
Court

Grot*! Evert 
Rote

Group
Non-Event
Rate

Evert Rote Non-Event
Rote

Grt i 
Coettaert

EntryAge Missing 1 D 0 0 .0 0 0 00 0 0 11 43891

EntryAge EntryAge< 18 2 1 0 100.00 0.00 0.049628 0 11.43891
EntryAge 18«= EntryAae< 19 3 855 598 58.84 41.16 42.43176 32.18515 11 43891

EntryAge 19<= EntryAge< 21 4 716 742 49.11 50.89 35 5335 39 93541 11 43891

EntryAge 21 «= EntryAge 5 443 518 46.10 53.90 21 98511 27 87944 11 43891

D i s c u s s i o n

Initially, it was thought that two groups could be created to capture those 
students who entered their degree at an age that was less than or equal 
to 22 and those that entered after the age of 22. However, the interactive 
binning/grouping node suggests that four entry age groups could be 
created.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

C o u r s e

V a r i a b l e

C O N S O L I D A T I O N

i r  Course 13 OKE Of: PA H3W KIJTOPT B3C KDR 3P0FT TECHNOLOGY
bsc hob a c c m r jo ju L  u o a m  ssc hm  n m s m m  to nK ig tcxn o  
la  mon m  hhia ji reso w  ha koh language? » m i ssnzn un o
PA HCS HRSOC STUDIES (CHI11*23 BA HOB LANGUAGES WITH HAFJXTIK: 
BSC HOB BUSINESS PROPERTY RAJUJ& BSC 909 CONSTRUCTION KAKASttttKT 
bsc hob 3PAjrrmr surv ty iiig  

THE*
not*

165
0.6*
1,2*

22.4*
?4.5*

2.2*

©

MODE

Zt2|
2(1)

111
9.9*
1.6*
12.6*
*4.9*
10.6*

©

i f  course is  ose o r: ba kcb s c a r r r  ajc c n w f  
ssr ariK PUBLIC I2ALTK IHRXTIC*

THEN

2 (2 )
2(1)

20
0.0*
0. 0*
85.0*
15.0*
0 .0*

©

BA H!« M O I f lR  AST GRAfHIC t& S  BtXO 80V ELECTRONIC EXSIIEERTN*.
BSC H0K C0WVTO STTJC IE3 BA CWKWLOCY AC- HI ST0FT
BSC BOB tMQ MS * 2M9VATXW BSC fO I SPORT XAJIA&KYT
BSC HOB DESIGN AS*.- TECUNUC? UI B3C BOB HVIMSflttWAl HAXAStffl*7
BSC HUMAN BIOLOCT BA HOK HSASfCIAl SERVICES BK 1109 !TSSA3J B203CS£KCt5
BA BOH BJMKISU

n-zs
KRE

2 (2)
2 (1)

181625
5.4*

11.6*
40.1*
12.6*

©

IF  Cwucff* IS  OWE o n  BSC HOW BUSINESS AJU- TECHWOMKST
ISA MOB JinSftWATlOSAL ST XtA MW COmtUNX CATION STUDIO
BSC M K  PSYCHOLOGY DSC HOW rOQD MARKETING PIANAGEJEEIf 
BSC mil LE23UPE EVENT MSKT W AftT BSC KOH DIAGNOSTIC RADXOGRAfJf 
83tT HGM DUIUDXNG SURVEYING BSC 110M TGUFJ3H AND KOHPITALtTY 
BSC HOH LAW AND PSYCHOLOGY

BODE • 13

®

IT Course 13 OHS Of: ESC DCS BUSINESS ROMlLtKO AND It
EA HfiW BUSINESS AW KAPUTT KG BSC KOH HOSJ1T BUS IOKKT WITH CU 
BOBO H0K KOU9XCA1 AM* AITOS0TI BSC MOW JtOIP BUS HUT WITH COKT A 
PA HOW I M E n K  BES8 HOH MECHANICAL AIR- CO0VIZ*
U 8  HOH? 8ATIRUB tU  DROIT PRANC 

THEN

1 : ll.O *

IF  Course IS ONE O f! »A HOW EARLY CHILDHOOD STUDIES
BSC HOH SPORT SC1&BX H11H COACH BSC KO« FKYSIOTHRRAPY 
GA MOK 1 - 7 EDUCATION WITH 0T3 BSC KflW BUSINESS CCHMWICATTON 
BA HON USE*2A STUDIES BA HOW LAW AWT BUSINESS,
BA M>K BUSINESS AM! ACCOUNTING BSC «u« HOSPITALITY BUS KOHT 
L-A HON PLANNING MU TRANSPORT L-A HOB APPLIED SOCIAL STUDIES 
BSC HUM SPORT EytJISKFjrf OEYKLOfU AJ VAWCKD MfMK WVPSlNG STUDIES 
BA MOM PLANNING STUDIES

THEN

©

I f  Course 13 OWE OP: BSC HOW JRHPITIOH HEALTH AIT. LIP I  LB (HOW) 
l!:?C MOW SPORT AKI- E>3tf.C23£ SC1EII ESC HOW LEISURE EVEJftfS RAKAGE8E 
BA HON SOCIAL YORK STUDIES BA HON ENGLISH AIR- KISTOPT 
BA HOW EKC.LISH STUDIES BA KGS FI IK  STUDIES 
BA HON riLM  AKI- MEDIA PRODUCTION BSC HOW COimnTKO 
BSC HOW TOURISM a HOSPITALITY 6U 

THEW
HOLE

2(2)
2 ( 1)

498
2.8* 
S. 4* 

48 .2 * 
42 .4 * 
1. 2*

IF  Course IS OWE OfJ esc hoe FOOD A3D KUITvITIOH
BSC HOW PROPERTY DEVELOPMFET BSC KOX SCIENCE WITH EDUCATION A 
BA HON BVSIKESS STUDIES 

THEW
NODE 25

146

30.8*
56.8*
4 .8 *

D i s c u s s i o n

Eight groups were identified through categorical variable consolidation, 
these groups will be renamed as follows:
(1)CourseGP1 (2) CourseGP2
(3) CourseGP3 (4) CourseGP4
(5) CourseGP5 (6) CourseGP6
(7) CourseGP7_________________(8) CourseGP8__________________

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y

Yes - A Decision Tree will be used to collapse the variable into a new 
variable called CourseGP. The Decision Tree produces a new variable 
called _Node_ this will be renamed, using a Transform Variable node, 
to CourseGP and the eight individual values will be replaced with the 
values above using a replacement node.____________________________
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N a t i o n a l i t y

V a r i a b l e

C O N S O L I D A T I O N

[IF Nati onf 
IRELAND 

THEN 
NODE 
N
UNKNOWN
3
2(2)
2(1)
1

IF Nation! 
THEN

NODE
N
UNKNOWN
3
2(2)
2(1)
1

IF Nation? 
THEN 

NODE 
N
UNKNOWN
3
2(2)
2(1)
1

llity IS OWE OF: UNITED KINGDOM HONG KONG INDIA NIGERIA ZIMBABWE

3 Cl)3118 ^
3. 3%
7 . 0%

38 . 6*
43 . 4%
7. 6%

ility EQUALS CHINA (PEOPLES REPUBLIC)

~  ©
12 . 4%
23 . 6%
46 . 1%
16 . 9%
1 . 1%

ility EQUALS FRANCE (INCLUDES CORSICA)

1 0  ( Z )4 0 .0 % \z y  
1 0 .0 %
1 0 .0 %
40 . 0%
O. 0%

D i s c u s s i o n
Categorical variable consolidation identified three different groups. These 
will be renamed as follows: (1) UK & Others; (2) China; (3) France.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y

Yes - the variables will be grouped using a decision tree and it will be 
renamed to NationalitvGP, the three values will then be renamed as 
above.

E t h n i c i t y

V a r i a b l e

C O N S O L I D A T I O N

~JlF Ethnicity IS ONE OF: UHITE BRITISH OTHER MIXED OTHER WHITE WHITE IRISH
UH AND ASIAN WHITE SCOTTISH WHITE WELSH WH AND BL CARIB 

THEN
NODE 3
N 2753
UNKNOWN 3.1%
3 6.0%
2(2) 37. 7%
2(1) 44. 8%
1 8. 4%

IF Ethnicity IS ONE
THEN

NODE 5
N 119
UNKNOWN 13. 4%
3 16. 8%
2(2) 32. 8%
2(1) 31. 9%
1 5. 0%

IF Ethnicity IS ONE
THEN

NODE 8
N 162
UNKNOWN 6. 2%
3 10. 5%
2(2) 46. 3%
2(1) 37. 0%
1 0 .0 %

IF EtJnnicity IS 01

INFO REFUSED NOT KNOWN BLACK AFRICAN

©

BANGLADESHI INDIAN OTHER

©

CHINESE BLACK CARIBBEAN ASIAN OTHER PAKISTANI
THEN

NODE 9
N 183
UNKNOWN 4. 4%
3 21. 3%
2(2) 50. 8%
2(1) 23. 0%
1 O. 5%

©

D i s c u s s i o n

The results of the variable consolidation identified 4 groups, which will be 
renamed as follows: (1) White & Mixed; (2) Unknown & Black African; (3) 
Indian, Bangladeshi & Other (4) Asian, Black Caribbean & Pakistani._____

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y
Yes - the variables will be grouped using a decision tree and it will be 
renamed to EthnicitvGP, the four values will then be renamed as above.
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So cio EconomicGP

V a r ia b l e

CONSOLIDATION

[IF SocioEconomicGP IS OWE OF: N/A UNSKILLED (V)
THEN

NODE 2
N 668
UNKNOWN 6. 7%
3 XX. 2%
2(2) 41 . 3*
2(1) 35. 5%
X 5. 2*

IE SocioEconomicGP
MANAGERIAL AND TE

THEN
NODE G
N 1903
UNKNOWN 2. 5 *
3 6.5^
2(2) 37. 4%
2 (X) 45. 2*
X e.

IE SocioEconomicGP
THEN

NODE 7
N 646
UNKNOWN 4. 2%
3 6. 5*
2(2) 40. X*
2 ( X ) 42. 6%
X 6.7%

©
OKs SKILLED - NON MANUAL 
(II) PARTLY SKILLED (IV)

©

D is c u s s io n

Variable consolidation found three groups these will be renamed as 
follows:
(1) Unknown/Unskilled; (2) Skilled(NM&P) & MT; (3) Skilled(M) & Prof

In c l u s io n  in

FINAL MODEL
Yes

M o d if y
Yes - the variables will be grouped using a decision tree and it will be 
renamed to SocioGP. the four values will then be renamed as above.
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Ultimately, this resulted in the compilation of the following table below.

Variable Rejected Original
Values

New Grouped Values Missing
Values

Replacement
Missing
Value

A w a r d C l a s s NO YES N /A YES U N K N O W N

E n t r y A g e NO YES n / a NO M I S S I N G

C o u r s e G P NO NO

( 1 )  C 0U R S E G P 1

( 2 ) C 0 U R S E G P 2

( 3 ) c o u r s e g p 3

( 4 ) C 0 U R S E G P 4

( 5 ) c o u r s e g p 5

( 6 )  C 0 U R S E G P 6

( 7 ) C O U R S E G P 7

( 8 )  C O U R S E G P 8

YES M I S S I N G

D i s a b il it y NO YES N /A NO N /A

G e n d e r NO YES N /A NO N /A

E n t r y P o in t s NO YES N /A YES M I S S I N G

N a t i o n a l i t y G P NO NO

( 1 )  UK &  O THERS

( 2 )  C H IN A

( 3 )  FRANCE

NO N /A

E t h n i c i t y G P NO NO

( 1 )  W H ITE  &  M IXED

( 2 )  U N KNO W N  &  BLK  

A f

( 3 )  IND, B A N G L A &  

O THER

( 4 )  AS IAN , BLK C AR  &  

PAK

NO N /A

SocioGP NO NO

( 1 )  U N K N O W N / 

U N SKILLED

( 2 ) s k i l l e d ( n m ,p ) &

MT

(3 )S K IL L E D (M )& P R O F

NO N /A

QYPR NO YES n / a YES 0

QAHE NO YES N /A YES 0

E n t r y

Q u a l i f i c a t i o n s
YES N /A N /A N /A N /A

F a c u l t y YES n / a N /A N /A N /A

JACS_
S u b j e c t

YES N /A N /A N /A N /A

A w a r d M a r k YES N /A N /A N /A N /A

H o m e

P o s t c o d e

YES N /A N /A N /A N /A

LEA YES N /A N /A N /A N /A

Figure 7.2- Final Data Values Used for Modelling Award Classification.

The table above, figure 7.2, is split into two areas. The green area reflects those 

variables that were identified through the data understanding and sampling 

process as being significant in predicting award classification. The red area 

relates to those variables that will not be included at the modelling stage. The 

table also highlights replacement values for grouping the data and dealing with 

missing values, which will be rectified in SAS® Enterprise Miner.
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7.1.1.4 ACM Model

The modifications discussed previously were implemented and the new 

grouped values were replaced as per figure 7.2. Given that the target variable is 

defined, a number of supervised DM techniques (see sub-section 4.3.2) were 

applied. The selection of DM techniques, applied at the modelling stage, were 

based on the experiences of previous EDM studies (Superby et al. (2006), 

Romero et al. (2008), Dekker et al. (2009)). Therefore, three decision tree 

models (Entropy, Gini and ChiSquare) and three logistic regression models 

(using backwards, forwards and stepwise selection methods) were built. Figure 

7.3, below shows the process up to and including the supervised DM 

techniques.

CofUose Coura

Cosaoco

C orpse So:*o

stawsnesnt

4 EJitropyTreB

T<r*&

\ -Jrf. 3-3>A“'lw

| .J/> Sraaw a

For war

Figure 7.3 - SAS Process Flow.

7.1.1.5 ACM Assess

The modelling of the data went through numerous adjustments to determine the 

best model, which involved removing variables, changing sample sizes and 

model settings. Arguably, including details of all these different tests would 

undoubtedly affect the readability of this section. Therefore, this section 

presents the assessment of the best model. A control point and a model 

comparison node were then added to assess each model, see below.
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tn t r o p - v  T re -e

C  h iS q  u .1 r c  T  r e t

V*» Bns-c Is v« j  r d

;< * r * tro l P u i  !•* D  ■-.__ M w J ' t i  I
O  o m  pd r  i v o n

S i t ;  pwv iv t;

Selected
Model

Model Description Target
Variable

Train:
Misclassification
Rate

Valid:
Misclassification
Rate

Y Entropy Tree Aw ardC lass 0 .5 001 55 0 .4 975 19
ChiSquare Tree Aw ardC lass 0 .4 926 95 0 .5 074 44
Gini Tree Aw ardC lass 0 .4 790 18 0 .5 161 29
Stepwise Aw ardC lass 0 .4 992 23 0 .5 210 92
Forward Aw ardC lass 0 .4 992 23 0 .5 2 1 0 9 2
Backward Aw ardC lass 0 .5 001 55 0 .5 384 62

Figure 7 .4 - Model Comparison Node.

Whilst the model comparison node generates numerous results (above), the 

important results are the train and valid misclassification rates as these are 

measures of the amount of prediction error in the model. The model comparison 

node suggests that the Entropy Tree produces the best model. However, the 

assessment of misclassification rate (train and valid) indicates that this model 

would not be a good predictor of award classification as the model incorrectly 

predicted about 50% of the values in the training data and 49% of the validation 

data. However, high levels of inaccuracy are common in such research studies 

that have tried to predict student behaviour (Superby et al. 2006, Romero et al. 

2008, Herzog 2006).
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Figure 7 .5 - Model Assessment.
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The %captured response chart (top), shows that the top 20% of responses 

captures over 40% of the award classifications for the validation data set and 

over 50% for the train data set. Whilst these translate into reasonably high lift 

(see glossary page ix) rates, there is a large amount of variation between the 

train and validation lift rates. The leaf index bar chart (middle) shows the 

amount of training and validation data in each leaf of the final model. Ideally the 

model should produce an equal sum of training and validation in each leaf. 

Consequently, it is easy to see why the misclassification rates are so high in the 

misclassification chart (bottom). This could be improved by increasing the 

amount of training and validation data but a larger data set wasn't available. 

Henceforth, the quality of the model can be judged by looking at the variables 

selected by the tree (below) in conjunction with previous research carried out 

into student retention and EDM.

[3  Variable Im Dortance

Variable
Name

Label Number of
Splitting
Rules

Importance Validation
Importance

Ratio of 
Validation to 
Training 
Importance

CourseGP Node 4 1 0.566064 0.566064
EntryPoints 2 0.647093 1 1.545372
EthnicityGP Node 2 0.338866 0.568708 1.67827
EntryAge 1 0.336532 0.25194 0.748637
QYPR 2 0.253613 0.26563 1.047385
QAHE 1 0.135575 0.078173 0.576602
Disability 0 0 0
Gender 0 0 0
NationalityGPNode 0 0 0
SocioGP Node 0 0 0

Figure 7 .6 - Variable Importance Table.

The variables selected by the model (above), to predict award classification, are 

sensible. Indeed, some of the variables such as course, previous academic 

experience and entry age have all been identified as key variables in previous 

EDM studies (Superby et al. 2006, Dekker et al. 2009, Herzog 2006). The 

identification of additional variables (EthnicitvGP. QYPR and QAHE) is hardly 

surprising, as “studies show that academic success is dependent on many 

factors [...]” (Dekker et al. 2009, p43).

7.1.1.6 Th e  F inal ACM

Figure 7.7, below, provides an overview of the final Entropy tree model.
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Figure 7.7 - Final Entropy Model.
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Due to problems with the renaming of the label node, in SAS® Enterprise Miner, 

this section will provide a brief overview of the final tree, the individual rules of 

each leaf will then be discussed below. The tree starts by splitting CourseGP 

into two groups, moving down the right side of the tree (1), the CourseGP 

variable is split again into two groups. This is then split by EntrvPoints and then 

CourseGP. One of the CourseGP strands are then split by QYPR, into two, 

these are then further split by EthnicitvGP and CourseGP. Moving down the left 

side of the tree (2) the CourseGP variable is the then split by EntrvPoints. This 

is split again by EthnicitvGP then EntryAge and QYPR then QAHE. The tree 

outlined above produces the following rules:

[IF 205 <= EnCEyPoints
AUD No de IS OWE OF:
THEW

NODE : 5
W : 934
UWKWOTJW : 2.8%
3 : 7.5%
2(2) : 37.6%
2(1) : 38.8%
1 : 13.4%

IF Node IS OWE OF:
THEW

WODE : 7
W : 604
UWKWOTJW : 2.8%
3 : 1.2%
2(2) : 25.5%
2(1) : 62.3%
1 : 8 .3 %

IF

I S  1 5  

©

13 7 2

©

5 8Wo de IS OWE OF:
AWT EntryPoints < 205
AWT Wode IS OWE OF: 18 15
THEW

WOTE
W
UWKWOTJW
3
2 ( 2 )
2 ( 1 )
1

9
207 

11 . 6% 
2 6 . 6% 
45 . 4% 
13.5% 
2.9%

©

IF 295 <= EntryPoints
AWT Node IS OWE OF: 24 25 14
THEW

WOTE
W
UWKWOTJW
3
2 ( 2 )
2 ( 1 )
1

13
389

0 . 0%
1 . 3% 

36.5% 
59 . 4%

2 .  8%

WOTE
W
UWKWOTJW
3
2 ( 2 )
2 ( 1 )
1

16 
382 

6 . 5 % 
13.9% 
SO . O% 
24. 9% 
4. 7%

IF Node EQUALS 2 4
AND EntryPoints < 295
THEW

WOTE
W
UWKWOTJW
3
2 ( 2 )
2 ( 1 )
1

24 
295 

4. 7% 
8 . 5% 

51 . 9% 
34. 2% 
O . 7%

®

IF EntryAge -c 2 3
AWT Wode EQUALS 3
AND EntryPoints < 205
AWT Wode IS OWE OF: 18 15
THEW ©

©
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IF QYPR IS OWE OF: 4 3
AMD 23 <= EntryAge 
AMD Wode EQUALS 3 
AMD EntryPoints < 205 
AND Wode IS OWE OF: 18 15

IF QAHE EQUALS 1
AWD QYPR IS OWE OF: 5 1 2
AWD 23 <= EntryAge
AWD Wode EQUALS 3
AWD EntryPoints < 205

18 15LEW © AWD Wode IS OWE OF:
WODE 35 THEW
W 53 WODE 69UWKWOTJW 5 . 7% W 243 1. 9% UWKWOWW 16. 7%2(2) 20 . 8% 3 8. 3%2(1) 50 . 9% 2(2) 45 . 8%1 20 . 8% 2(1) 29 . 2%

1 0 . 0%IF QAHE IS OWE OF: 5 2
AWD QYPR IS OWE OF: 5 1
AWD 23 < = EntryAge
AWD Wode EQUALS 3
AWD EntryPoints < 205
AWD Wode IS OWE OF: 18 15
THEW

IF Wode IS OWE OF: 3 9
AWD QYPR IS OWE OF: 4 3
AWD Wode IS OWE OF: 25 14
AWD EntryPoints < 295 
THEW

WODE 68 WODE 100
W 45 W 102
UWKWOTJW 11. 1% UWKWOTJW 1. 0%
3 15 . 6% 3 3. 9%
2(2) 24. 4% 2(2) 52 . 0%
2(1) 31. 1% 2(1) 37. 3%
1 17 . 8% 1 5. 9%

IF Node EQUALS 14 
AND QYPR IS ONE OF: 5 1 2 
AND EntryPoints < 295 
THEN ©
NODE
N
UNKNOWN
3
2 ( 2 )

2 ( 1 )

1

103
117

0 . 0 %

3.4%
48.7%
47.0%
0.9%

THEN
NODE 101
N 10
UNKNOWN 0. 0%
3 40. 0%
2(2) 30. 0%
2(1) 30. 0%
1 oo

IF Node EQUALS 25
AND QYPR IS ONE OF
AND EntryPoints <
THEN

NODE 102
N 55
UNKNOWN 0. 0%
3 7. 3%
2(2) 27. 3%
2(1) 63. 6%
1 vV''COH

©

IF Node EQUALS 5 
AMD QYPR IS ONE OF: 4 3
AND Node IS ONE OF: 25 14
AND EntryPoints < 295 ©

: 5
295

1 2

©

Figure 7.8 - Final Rules.

In order to aid in the understanding of these rules, the course groupings have 

been repeated below from the modify section.

-156-



C oU Eie IS OKI o r: BA HOH HISTORY B3C KOK 5PDFT TECHNOLOGY 
W3C HOH ©CCUHTICMAl THE PAP Y U C  H (:X KANAGEKEKT- COfOfUHrCATIO 
i a hoh t m M S '  ami ir.mAM usoeR ha hok ur&ujuses w ith  sintPMATio
EA HOH NURSING STUDIES (CHXIBRCff BA MOM L AH CO AGE 2 fflTH HAFXETISD

a ■■
BSC KOK 01'ANT IT T  SO yvrTING TMflN

THEB NODE J 13
NODE : 

« 1

2

IB S ©
H S
URKMQVR =

3 2 6

1*5%

U N H N W  : 0 , 4 * 3 I 0*9%

i l . » 2 ( 2 )  s lei 4

2(21 : 22 .4 V 2 ( 1 )  ; 55 .2 %

2 (1 )  ; n .  s * i  s 11*0%

Coxai * c  IS  O K I OF: B3C HON BU SINESS AKI* TECHNOLOGY 
b a  n o w  lK T tR K A T to k a l  h v s ik e s s  y r  t A  M IN  CWHHUNI CATION  STU D IfcS 
BSC HCK PSYCHOLOGY BSC HON FOOD KA PKTTIN G  K A N A n r itrK  
BSC MOM LE ISU R E EVEJfT NCHT U ART BSC HON D IAG NO STIC  RADIOC.RAIHY 
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These rules can be interpreted as follows:

Rule (1)
If EntrvPoints is areater than 205 and CourseGP is CourseGP4 or 
CourseGP3 then students are more likely to achieve a 2:1 or a 2:2. 
Also 13.4% of students in this group obtain a 1st.

Rule (2) If CourseGP is one of CourseGP5. CourseGP2 or CourseGPI 
then students are more likely to obtain a 2:1.

Rule (3)

If EthnicitvGP is Unknown & Black African or Indian. Banaladeshi 
& Other or Asian. Black Caribbean & Pakistani and EntrvPoints is 
less than 205 and CourseGP is CourseGP3 or CourseGP4 then 
students are more likely to obtain a 2:2.

Rule (4)
If EntrvPoints is areater than or equal to 295 and CourseGP is one 
of CourseGP6, CourseGP7 or CourseGP8 then the award 
classification is more like to be 2:1.

Rule (5)
If EntrvAae is less than 23 and EthnicitvGP is White & Mixed and 
EntrvPoints is less than 205 and CourseGP is one of CourseGP4 
or CourseGP3 then students are more likely to obtain a 2:2.

Rule (6) If CourseGP is CourseGP7 and EntrvPoints are less than 295 then 
a 2:2 is more likely.

Rule (7)

If QYPR is Medium-Hiqh or Medium and EntrvAqe is areater than 
or eaual to 23 and EthnicitvGP is White & Mixed and EntrvPoints is 
qreater than 205 and CourseGP is one of CourseGP3 or 
CourseGP4 then students are more likely to obtain a 2:1. This 
group also has the highest number of students obtaining a 1st 
(20.8%).
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Rule (8)

If QAHE is one of Hiqh, Medium-Hiqh or Low-Medium and QYPR 
is Hiqh, Low-Medium or Low and EntrvAqe is qreater than or equal 
to 23 and EthnicitvGP is White & Mixed and EntrvPoints in less 
than 205 and CourseGP is one of CourseGP3 or CourseGP4.
Then students are more likely to obtain a 2:1. In addition to this 
17.8% of students, in this group, obtain a 1st.

Rule (9)

If QAHE is Low and QYPR is Hiqh. Low. or Low-Medium and 
EntrvAqe is qreater than or equal to 23 and EthnicitvGP is White & 
Mixed and EntrvPoints is less than 205 and CourseGP is 
CourseGP3 or CourseGP4 then the likely award classification is a 
2:2.

Rule (10)

If EthnicitvGP is White & Mixed or Asian. Black Caribbean & 
Pakistani and QYPR is one of Medium-Hioh or Medium and 
CourseGP is CourseGP6 or CourseGP8 and EntrvPoints are less 
than 295. Then students are more likely to achieve a 2:2.

Rule (11)
If CourseGP is CourseGP6 and QYPR is one of Hiqh, Low. or 
Low-Medium and EntrvPoints are less than 295. Then students are 
almost equally likely to obtain a 2:1 (47%) or a 2:2 (48.7%).

Rule (12)

If EthnicitvGP is Unknown & Black African and QYPR is Medium- 
Hioh or Medium and CourseGP is CourseGP6 or CourseGP8 and 
EntrvPoints are less than 295. The students are more likelv to 
obtain a 3rd

Rule (13)
If CourseGP is CourseGP8 and QYPR is Hiqh, Low. or Low- 
Medium and EntrvPoints is less than 295 than students are more 
likely to obtain a 2:1.

The rules above suggest that non-white ethnic groups are less likely to achieve 

a high award classification. Therefore, it is possible that there might be a 

dependency between student’s ethnicity and award mark. Overall, these rules 

are sensible when compared to exploration of the data (outlined above). Indeed, 

assessing rule 7 as an example (as this has the largest number of 1st 

classifications), in relation to the data exploration, it is apparent from the graphs 

(represented below) that QYPR 3 and 4 have the second highest number of 1st 

classifications, however, these groups have the largest number of students. The 

EntryAge graph indicates that the majority of students obtaining a 1st are around 

20 .

31 4 5 O

QYPR
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EntryAge aoaitist AwardCJassification

Figure 7 .9 -  Assessing Rule 7 Plots.

The EntrvPoints box plot below also confirms that the majority of students 

obtaining a 1st entered onto their undergraduate degree with around 300 points 

and the majority of white students are also in EthnicitvGP 3, including White 

British.

EntryPoints against A^ardClassrtlcaclon
_

0
!

AwardClass
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Ethn ic i ty

Figure 7.10- Assessment other Rule 1 Plots.

Therefore, the final model provides a good representation of the underlying data.

7.1.2 B uilding  the P o stgraduate  S tudies M odel (PSM)

This section details the process followed in building the postgraduate studies

DM model using SAS® SEMMA.

7.1.2.1 PSM  Sam ple

Of the 4023 students in the data set 322 students went on to study a 

postgraduate degree at SHU, which is an 8% event rate. Therefore, prior 

probabilities were created and oversampling was carried out on the data as this 

created a data set where there were 193 "Yes" and 128 "No" events - a total of 

321 students.

N u m e ric  Fo m a t t e d  F re q u e n c y
V a c ia b le  V a lu e  V a lu e  C o u n t P e r c e n t

P G S tu d ie s  . WO 3-701 9 1 .9 9 6 0
P G S tu d ie s  . Y es  32 2 S . 0 0 40

D a ta = S A l« L E

Va.K i  a l  1 e
Hume r  i c  

V a lu e
Fo r m a t te  cl 

V a lu e
F ie  q u e n c y  

C o u n t P e r c e n t

P OS t u d i  i 
P OS t u d i  i

WO
Y es

12 3 
193

3 9 . 8 7 5 4  
6 0 . 1 2  46

Figure 7.11 -  Oversampling the Rare Event.
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A 80:20 data partition was also setup so that the data could be divided into 

training and validation respectively. Again the variables within the data set were 

reduced through the authors own knowledge of the data/HE and by using a 

decision tree for variable selection. This resulted in the following inputs being 

selected for modelling:

Variable Importance

Obs NAME LABEL NRULES NSURROGATES IMPORTANCE VIMP0RTANCE RATIO

1 Course 2 0 1.00000 1.00000 1.00000
2 EntryAge 0 3 0.82943 0.86713 1.04544
3 EntryPoints 3 0 0.62479 0.43847 0.70178
4

►
SocioEconomicGP 1 1 0.57843 0.00000 0.00000

► 5 QAHE 1 1 0.51674 0.00000 0.00000
6 AwardMark 2 1 0.51523 0.18517 0.35939

4 7 QYPR 1 1 0.50353 0.00000 0.00000
8 Nationality 1 0 0.45763 0.40660 0.88848

Figure 7.12- Variable Importance Table.

As previously discussed (1) refers to measures of social deprivation and one of 

the variables either SocioEconomicGP or QAHE and QYPR will have to be 

removed in favour of the other.

7.1.2.2 PSM Explo re

The data has already been thoroughly explored through the data understanding 

process outlined in Chapter 6, through this a number of graphs were produced, 

outliers were identified.

7.1.2.3 PSM M odify

This section will focus on using categorical variable consolidation (see glossary 

page vii) for categorical values, interactive binning/grouping (for interval values) 

and the authors own knowledge of the data/HE to determine suitable groups of 

values in relation to the target variable.

-161-



E n t r y P o i n t s

I n t e r a c t i v e

b i n n i n g /

Variable Group Values Group Event Court Non-Event Group Event Group Evert Rate Non-Event Giro Giro
Court Rate Non-Evert Rate Coetfctert Ordering A 

Rate

G R O U P I N G
EntryPoints Missing 1 74 337 18 00 82 00 22 98137 9.105647 22 75808 3 
EntryPoints EntryPoints* 200 2 45 765 5.56 94 44 13.97516 20.67009 22.75808 3

R E S U L T S
EntryPoints 260*= EntryPoints* 320 4 58 814 6 65 93 35 18 01242 21.99406 22.75808 3 
EntryPoints 320*= EntryPoints 5 97 958 9 10 90 81 30 12422 25.8849 22.75808 3

D i s c u s s i o n Aqain the same five qroups were identified bv SAS® for EntryPoints.
I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

E n t r y A g e

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G

Variable Group Values Group Evert Court Non-Evert Group Evert Gra*> Event Rate Non-Evert Girt Girt
Court Rate Non-Evert Rate Coefficient Ordering A 

Rate
EntryAge Missing 1 0 0 0.00 0.00 0 0 6.553122 13 
EntryAge EntryAge* 18 2 0 1 0.00 100.00 0 0.02702 6.553122 13 
EntryAge 18*= EntryAge* 19 3 119 1363 8.03 91 97 36 95652 36 82788 6 553122 13

R E S U L T S
EntryAge 19*= EntryAge* 21 4 107 1408 7.06 92.94 33 22981 38.04377 6.553122 13 
EntryAge 21 <= EntryAge 5 96 929 9 37 90.63 29 81366 25.10132 6 553122 13

D i s c u s s i o n

The EntrvAoe orouoinos identified bv the SAS® Interactive 
Binning/Grouping node is the same as the groups identified when the 
target variable was AWCIassDUMMY.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

A w a r d M A r k

I n t e r a c t i v e

b i n n i n g /

Variable Group Values Group Evert Court Non-Event Group Evert Group Evert Rate Non-Evert Gini Gini
Court Rate Non-Event Rate Coefficient '>dering A 

Rate

G R O U P I N G

R E S U L T S

AwardMark AwardMark* 55.33 2 60 899 6.26 93.74 18.63354 24.29073 13.82378 8 
AwardMark 55.33*= AwardMark* 60 33 3 77 901 7.87 92.13 23.91304 24.34477 13.82378 8 
AwardMark 60.33*= AwardMark* 64 85 4 88 880 9 09 90 91 27 32919 23.77736 13,82378 8 
AwardMark 64.85*= AwardMark 5 97 872 10.01 89.99 30.12422 23.5612 13.82378 8

D i s c u s s i o n SAS® suqqests that AwardMark could be orouped into 5 oroups
I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

N a t i o n a l i t y

V a r i a b l e

C O N S O L I D A T I O N

I F  N a t i o n a l i t y  E Q U A L S  C H I N A  ( P E O P L E S  R E P U B L I C )  
T H E N

N O D E  s 2
* r  = 1  (Y)
Y E S  s 1 0 0 - 0 %
N O  = 0 . 0 %

I E  N o . t d - o n o . J . i t = . Y  E Q U A L S  U N I T E D  K I N G D O M  
T H E N

N O D E  S 3  / C \
N  s 2 5 4  
Y E S  s 7  _ 7 %
N O  = 9 2 - 3 %

D i s c u s s i o n
The consolidation of the Nationality variable determined the following two 
groups: (1) China; (2) UK.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y
Yes - the variables will be grouped using a decision tree and it will be 
renamed to NationalitvGP, the two values will then be renamed as above.
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C o u r s e

V a r i a b l e

C O N S O L I D A T I O N

Course IS ONE OF: BA HON BUSINESS AND FINANCE (TOP 
BA HON 5 - 1 1  EDUCATION WITH QTS BA HON 3 - 7  EDUCATION WITH QTS 
BSC HON PSYCHOLOGY BA HON PLANNING AND TRANSPORT 
BSC HON DESIGN AND TECHNOLOGY HI BA HON PLANNING STUDIES 

THEN
NODE : 3
N : 2© (1 )
YES : 33.3% N - /
NO : 66.7%

IF Course IS ONE OF: BSC HON BIOMEDICAL SCIENCES LLB (HONS)
BA HON BUSINESS STUDIES BA HON HISTORY BA HON EARLY CHILDHOOD STUDIES 

THEN
NODE : 4 | C \
N : 47 \Zs
YES : 2.3%
NO : 97.7%

IF C ourse IS ONE OF: BA HON EDUCATION STUDIES
BSC HON ARCHITECTURAL TECHNOLOGY BSC HON COMPUTING (NETWORKS)

THEN
NODE : 5 ^
N : 180
YES : 5.6% \ZS  
NO : 94.4%

D i s c u s s i o n
Through variable consolidation three groups were identified these will be 
renamed to: (1) CourseGPI; (2) CourseGP2; (3) CourseGP3.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y

Yes -  A Decision Tree will be used to collapse the variable into a new 
variable called CourseGP. The Decision Tree Droduces a new variable 
called _Node_ this will be renamed, using a Transform Variable node, to 
CourseGP and the three individual values will be reolaced with the values 
above using a replacement node.

S o c i o E c o n o m i c G P

V a r i a b l e

C O N S O L I D A T I O N

\LF SocioEconomicGP EQUALS UNSKILLED (V)
THEN
NODE : 2 ^
N : 14 M j  
YES : 1.9% ^
NO : 98.1%

IF SocioEconomicGP IS ONE OF: N/A SKILLED -  MANUAL (HIM) 
MANAGERIAL AND TECHNICAL (II) SKILLED - NON MANUAL (IIIN) 
PROFESSIONAL (I) PARTLY SKILLED (IV)

THEN
NODE : 3 JO)
N : 241 
YES : 8.4%
NO : 91.6%

D i s c u s s i o n
The consolidation process identified two value groups these will be 
renamed as follows: (1) Unskilled; (2) Skilled(M,NM,P),Unknown & MTP.

I n c l u s i o n  i n  

f i n a l  m o d e l
Yes

M o d i f y
Yes - the variables will be grouped using a decision tree and it will be 
renamed to SocioGP, the two values will then be renamed as above.
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Ultimately, this resulted in the compilation of the following table below.

Variable Rejected Original
Values

New Grouped 
Values

Missing
Values

Replacement
Missing
Value

P G S t u d i e s NO YES N /A NO N /A

C o u r s e G P NO NO

( 1 )  C O UR SEG P1

(2 )  C O U R S E G P 2

( 3 ) C O U R S E G P 3

YES M I S S I N G

E n t r y A g e NO YES N /A YES M I S S I N G

E n t r y P o i n t s NO YES n / a YES M I S S I N G

S o c i o G P NO NO

( 1 )  U N SKILLED

( 2 )  S K ILLE D (M ,N M ,P ), 

U N KN O W N  &  MTP

NO N /A

QAHE NO YES N /A YES 0

A w a r d M a r k NO YES n / a YES M I S S I N G

QYPR NO YES n / a YES 0

N a t i o n a l i t y G P NO NO
( 1 )  C H IN A

( 2 )  UK
YES M I S S I N G

G e n d e r YES N /A N /A N /A N /A

E t h n i c i t y YES n / a N /A N /A N /A

A w a r d C l a s s YES N /A N /A N /A N /A

E n t r y

Q u a l i f i c a t i o n s
YES N /A N /A N /A N /A

F a c u l t y YES N /A N /A N /A N /A

J A C S  S u b j e c t YES N /A N /A N /A N /A

D i s a b i l i t y YES N /A n / a N /A N /A

H o m e P o s t c o d e YES N /A n / a n / a N /A

L E A YES n / a N /A n / a N /A

Figure 7.13 - Final Data Values Used for Modelling Postgraduate Studies.

The table above, figure 7.13, is split into two areas. The green area reflects 

those variables that were identified through data understanding and sampling 

process as being significant in predicting postgraduate studies, the red area 

relates to those variables that will not be included at the modelling stage. The 

table also highlights replacement values for grouping the data and dealing with 

missing values, which will be rectified in SAS® Enterprise Miner.

7.1.2.4 PSM M odel

The modifications outlined above were implemented and the new grouped 

values were replaced as per figure 7.13. Given that the target variable is 

defined a number of supervised DM techniques (see sub-section 4.3.2) were 

applied. The selection of DM techniques, applied at the modelling stage, were 

based on the experiences of previous EDM studies (Superby et al. 2006, 

Romero et al. 2008, Dekker et al. 2009). Therefore three decision tree models 

(Entropy, Gini and ChiSquare) and three logistic regression models (using
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backwards, forwards and stepwise selection methods) were built. Figure 7.14, 

below shows the process up to and including the supervised DM techniques.

-1_ Variable

Q  j

a oj

Collapse

I!5'-

Back wan

6 c “

^ T ^ ^ n t r o p y  T n  

j .y t  Sletiw&e

( )fc>ck>GP

^^ChiS<fUdre Tree 

ĵ f̂orward

Figure 7.14 - SAS Process Flow.

7.1.2.5 PSM A ssess

The modelling of the data went through numerous adjustments to determine the 

best model, which involved removing variables, changing sample sizes and 

model settings. Arguably, including details of all these different tests would 

undoubtedly affect the readability of this section. Therefore, this section 

presents the assessment of the best model. A control point and a model 

comparison node were then added to assess each model, see below.
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Selected
Model

Model Description Target
Variable

I

Train:
Misclassification
Rate

Valid:
Misclassification
Rate

Y Entropy Tree PGStudies 0.388235 0.5
Gini Tree PGStudies 0.431373 0.515152
Stepwise PGStudies 0.6 0.606061
Forward PGStudies 0.6 0.606061
Backward PGStudies 0.596078 0.606061
ChiSquare Tree PGStudies 0.6 0.606061

Figure 7.15- Model Comparison Node.

Whilst the model comparison node generates numerous results (above), the 

important results are the train and valid misclassification rates as these are 

measures of the amount of prediction error in the model. The model comparison 

node suggests that the Entropy Tree produces the best model. An initial 

assessment of the misclassification rate (train and valid) highlights a large 

difference between the two misclassification rates (approximately 38% and 

50%), this is due in part to the small amount of overall data (322 observations) 

and the 80:20 split of the data. Ultimately it is questionable whether this model 

would be a good predictor of postgraduate studies. Although, as noted 

previously, high levels of inaccuracy are common in such research studies that 

have tried to predict student behaviour (Superby et al. 2006, Romero et al. 2008, 

Herzog 2006).
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1 2  6  8  5
Leaf Index

|D Training Percent YES D Validation Peicsnt YES |

0 .3 -

0 10 20 3 0

Number of Leaves
  Train: Miscl3ssitic3tion Rata Valid: Misclassrficatton Rate |

Figure 7 .1 6 - Model Assessment.

The %captured response chart (top), shows that the top 20% of responses 

captures over 50% of the progression onto postgraduate studies data for the 

validation data set and over 55% for the train data set. Again whilst these 

translate into reasonably high lift (see glossary page ix) rates, there is a large 

amount of variation between the train and validation lift rates. The leaf index bar 

chart (middle) shows the amount of training and validation data in each leaf of 

the final model. Unlike the previous model the leaf index chart highlights that all 

leafs have some training and validation data but, the proportion of this is 

significantly different in some of the leafs. The differences in the 

misclassification rates can be seen in the misclassification chart (bottom), this 

also highlights that a tree with five leafs is the optimal solution. Arguably, this 

could be improved by increasing the amount of training and validation data but

-167-



a larger data set wasn't available. Henceforth, the quality of the model can be 

judged by looking at the variables selected by the tree (below) in conjunction 

with previous research carried out into student retention and EDM.

H ] Variable Im portance

Variable Name Label Number of
Splitting
Rules

Importance Validation
Importance

Ratio of 
Validation to 
Training 
Importance

CourseGP Node 1 1 1 1
AwardMark 1 0.264181 0 0
QYPR 1 0.216645 0 0
EntryPoints 1 0.18113 0 0
EntryAge 0 0 0
Disability 0 0 0
Gender 0 0 0
NationalityGP Node 0 0 0
QAHE 0 0 0
SocioGP Node 0 0 0

Figure 7.17 -  Variable Importance Table.

The variables selected by the Entropy tree also seem reasonable given the 

target variable of postgraduate studies. Indeed, the student's previous 

academic experience (in terms of entry points), the undergraduate course 

studied and the final award mark are plausible given the target, these variables 

are also pertinent in other EDM studies (Dekker et al. 2009, p43, Superby et al. 

2006). The inclusion of QYPR in the final model also seems practical as this is a 

measure of young people's participation in HE by postcode.

7.1.2.6 The  F inal PSM

Figure 7.18, below, provides an overview of the final Entropy tree model.

-168-



Figure 7.18 - Final Entropy Tree.
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The tree initiates by splitting the CourseGP node into two groups. Following the 

left side of the tree (2), the data is then split by QYPR then AwardMark and 

EntryPoints. Again these variables are sensible given the target variable 

(progression onto postgraduate studies), this tree produces the following rules.

IF Node IS OWE OF: 5 4
THEN

NODE
W
YES
WO

2
227 

4. 9% 
95.1%

IF QYPR IS OWE OF: 
AND Node EQUALS 3 
THEN

WODE
W
YES
WO

7 
I I  

56.6% 
43 . 4%

©

IF AuardHarlc < 5 5.65
AWD QYPR IS OWE OF: 2 
AWD Node EQUALS 3 
THEW 

WODE 
W
YES 
WO

IF 290 <= EntryPoints 
AIID 55.65 <= AwardMark: 
AMD QYPR IS ONE OF: 2
AMD Node EQUALS 3 
THEN

NODE
N
YES
NO

25
8

16. 2% 
83. 8% ®

IF EntryPoints < 290 
AND 55.65 <= AwardMark 
AND QYPR IS ONE OF: 2 4 
AND Node EQUALS 3
THEN

12
7 ®

NODE
N

: 24 
: 1

5 % YES : 100.0%
5% NO : 0.0%

Figure 7.19 - Final Rules.

Again to aid in the understanding of these rules, the course groupings have 

been repeated below from the modify section.

(rF Course IS ONE OF: BA HON BUSINESS AND FINANCE (TOP
BA HON 5 - 1 1  EDUCATION UITH QTS BA HON 3 - 7  EDUCATION WITH QTS 
BSC HON PSYCHOLOGY BA HON PLANNING AND TRANSPORT 
BSC HON DESIGN AND TECHNOLOGY WI BA HON PLANNING STUDIES 

THEN Q
NODE
N
YES
NO

3
28

33.3%
66.7%

IF Course IS ONE OF: BSC HON BIOMEDICAL SCIENCES LLB (HONS)
BA HON BUSINESS STUDIES BA HON HISTORY BA HON EARLY CHILDHOOD STUDIES

THEN
NODE 4
N 47
YES 2.3%
NO 97.7%

IF Course IS ONE
BSC HON ARCHITECr

THEN
NODE 5
N 180
YES 5.6%
NO 94.4%

©
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These rules can be interpreted as follows:

Rule (1) If CourseGP is either CourseGP2 or CourseGP3 then students or 
unlikely to progress onto postgraduate studies.

Rule (2) If QYPR is Medium, Low or High and CourseGP is CourseGPI 
then students are more likely to go onto postgraduate studies.

Rule (3)
If AwardMark is less than 55.65 and QYPR is one of Low-Medium 
or Medium-Hiah and CourseGP is CourseGPI then students are 
less likely to go onto postgraduate studies.

Rule (4)

If EntrvPoints are qreater than or eaual to 290 and AwardMark is 
areater than 55.65 and QYPR is Low-Medium or Medium-Hiah and 
CourseGP is CourseGPI then student are less likelv to oroaress 
onto postgraduate studies.

Rule (5)

If EntrvPoints are less than or equal to 290 and AwardMark is 
qreater than 55.65 and QYPR is Low-Medium or Medium-Hiah and 
CourseGP is CourseGPI then student are more likelv to Droaress 
onto postgraduate studies.

These rules are sensible given the exploration of the data, carried out

previously. However, the models ability to successfully predict progression onto 

postgraduate studies is questionable due to the small amount of data used to

build the model. An assessment of the exploration graphs (below), for rule 5, 

confirms this doubt.

Emr>P:l-ls .irarisr PC&udes

i

i

i*
XI

P&Stiriies
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AwardMark aganst PG51uOh»$

PGStud*«

Q
Y
P
R

NO Y es

PGStudies

Figure 7.20 -  Assessing Rule 5 Plots.

Indeed, the first box plot of EntrvPoint against PGstudies indicates that the 

majority of students who go on to take postgraduate studies enter their 

undergraduate degree with around 300 points, the final model suggest less than 

or equal to 290. The middle box plot of AwardMark also shows that majority of 

students, progressing onto postgraduate studies obtain an average award mark 

of above 60, the final model suggests greater than 55.65. The mosaic plot of 

QYPR also highlights that more students in QYPR 3 progressed onto 

postgraduate studies. The discrepancies between the graphs and the final rules 

are due to the oversampling of the data and help to explain the large variation 

between the train (38%) and valid (50%) misclassification rates.
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7.1.3 B uilding  the Em plo ym en t  M odel (EM)
This section details the process followed in building the employment DM model 

using SAS® SEMMA.

7.1.3.1 EM Sam ple

The employment DM mart contains 1749 recorded employment types, the 

remaining are not recorded/unknown, which is a 45% event rate. The recorded 

values breakdown as follows: 23.14% of student obtained a graduate job, 

12.01% non-graduate jobs, 2.66% other, 3.55% study, 3.23% unemployed and 

55.41% not recorded/unknown. The not recorded/unknown values were left in 

the data set as this highlighted some interesting relationships between certain 

variables such as ethnicity. A 70:30 data partition (provided the best results) 

was setup so that the data could be divided into training and validation 

respectively. Again the variables within the data set were reduced through the 

authors own knowledge of the data/HE and by using a decision tree for variable 

selection. This resulted in the following inputs being selected for modelling:

Variable Importance

Obs NAME LABEL NRULES NSURROGATES IMPORTANCE VIMP0RTANCE RATIO

1 Course 10 0 1.00000 1.00000 1.00000
2 Ethnicity 1 2 0.43095 0.38786 0.90000
3 AwardMark 6 0 0.33490 0.42061 1.25591
4 QAHE 0 1 0.08253 0.08708 1.05520
5 EntryAge 1 2 0.06946 0.07330 1.05532
6 Gender 0 1 0.04856 0.00000 0.00000
7 QYPR 1 0 0.04297 0.00000 0.00000
8 EntryPoints 0 1 0.03335 0.06630 1.98788

Figure 7.21 -  Variable Importance Table.

7.1.3.2 EM Explo r e

The data has already been thoroughly explored through the data understanding 

process outlined in Chapter 6, through this a number of graphs were produced, 

outliers were identified.

7.1.3.3 EM M odify

This section will focus on using categorical variable consolidation (see glossary 

page vii) for categorical values, interactive binning/grouping (for interval values) 

and the authors own knowledge of the data/HE to determine suitable groups of 

values in relation to the target variable.
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En t r yPo in ts

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G

R E S U L T S

Variable Group Values Group Event Court Non-Event Group Event Group EventRale Non-Event Gini Gin
Cotri Rale Ncn-Evert 

Rale
Rale Coefficient Ordering A

EntryPoints
EntryPoints
EntryPoints
EntryPoints
EntryPoints

Missing
EntryPoints* 200 
200== EntryPoints* 260 
260*= EntryPoints* 320 
320«= EntryPoints

10.74
16.67
15.72
12.92
17.16

84 28 
87 08 
82 84

21 24542 
23.44322 
19 78022 
2967033

8 744247
19.0664 

22.55095 
23 93162 
25.70677

EntryQuallfitatlo... Missing

8.543155
8.543155
8.543155 
8 543155 
8 543155 
8 230319

D i s c u s s i o n
As before the same five groups were identified by SAS® for 
EntrvPoints.__________________________________________

I n c l u s i o n  i n  

f i n a l  m o d e l
Yes

M o d i f y No -  Data Mining model will determine the best split

A w a r d M a r k

Variable Grot** Values Coup Event Court Non-Evert
Court

Group Evert Group 
Rate Non-Evert 

Rate

Evert Rate Non-Evert
Rale

Gn Go
Coeftaert Ordering A

AwardMark Missing 1 3 7 30.00 70.00 1.098901 0.460224 5.915474 9
AwardMark AwardMark' 55.33 2 63 313 16.76 83.24 23.07692 20 57857 5.915474 9
AwardMark 55 33*= AwardMark* 60.33 3 58 368 13.62 86.38 21.24542 24 19461 5 915474 9
AwardMark 60.33*= AwardMark* 64.85 4 70 361 16.24 83.76 25.64103 23 73439 5.915474 9
AwardMark 64.85*= AwardMark 5 79 472 14.34 85.66 28.93773 31.03222 5 915474 9

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G

R E S U L T S

D i s c u s s i o n SAS® suggests that AwardMark could be grouped into 5 groups
I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

E n t r y A g e

I n t e r a c t i v e

b i n n i n g /

G R O U P I N G
R E S U L T S

Variable C-roip Values Group Evert Court Non-Evert 
Court

Group Evert Group 
Rale Non-Event 

Rale

Evert Rate Non-Evert
Rale

Gini Girt 
Coefficient Ordering A

EntryAge Missing 1 0 0 0.00 000 0 0 3 764152 11
EntryAge EntryAge* 18 2 0 0 0.00 0.00 0 0 3 764152 11
EntryAge 18*= EntryAge* 19 3 103 616 14.33 8567 37.72894 40.49967 3.764152 11
EntryAge 19<= EntryAge* 21 4 95 530 15.20 84 80 34 79853 34 8455 3 764152 11
EntryAge 21 *= EntryAge 5 75 375 16.67 83.33 27.47253 24.65483 3764152 11

D i s c u s s i o n

The EntryAge groupings identified by the SAS® Interactive 
Binning/Grouping node is the same as the groups identified when the 
target variable was AWCIassDUMMY and PGStudies.

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y No -  Data Mining model will determine the best split

E t h n i c i t y

V a r i a b l e

C O N S O L I D A T I O N

fEF EtMnlClty IS ONE OF: CHINESE BLACK CARIBBEAN INFO REFUSED ASIAN OTHER
PAKISTANI NOT KNOWN INDIAN OTHER WHITE WHITE IRISH WH AND BL CARIB 

THEN 
NODE

301 
71. 1%
4. 7%

NOT RECO
UNEMPLOY
NON-GRAD
OTHER
GRADUATE
STUDY
UNKNOWN

9. 2% 
1 .  0% 
9 . 7% 
3. 9% 
O. 3%

IF Ethnicity IS ONE OF: WHITE BRITISH BANGLADESHI OTHER MIXED
BLACK AFRICAN OTHER WH AND ASIAN WHITE WELSH WHITE SCOTTISH 

THEN
NODE : 3
N : 2430
NOT RECO: 52.8%
UNEMPLOY: 3.0%
NON-GRAD: 12.4%
OTHER : 2.9%
GRADUATE: 25.3%
STUDY : 3.5%
UNKNOWN : 0.2%

©

D i s c u s s i o n
The results of the variable consolidation identified two groups, which 
will be renamed as follows: (1)Mixed Group; (2) Mainly White;________

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y Yes - the variables will be grouped using a decision tree and it will be 
renamed to EthnicitvGP, the four values will then be renamed as 
above.
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C o u r s e

V a r i a b l e

C O N S O L I D A T I O N

IF  Course IS  ONE OF: BSC HOW BUSINESS INFORMATION TEC 
(rr Course IS HOT MISSISG BA HOW BUSINESS AND FINANCE BSC HOW TOURISM & HOSPITALITY BU 
THEN BSC HON LEISURE EVENT HGHT W ART BA HON BANKING 

NODE : 2 THEN 
H : 777 NODE : 12 
HOT RECO: 100.0% N 156
OHEHPLOY: 0.0% V - X  NOT RECO: 53.8% V ^ /
H0H-GPAD: 0.0% UNEHPLOY: 5.1%
OTHER : 0.0% NON-GRAD: 10.3%
GRADUATE: 0.0% OTHER : 1.9%
STUDY : 0.0% GRADUATE: 24.4%
UHKHOVB : 0.0% STUDY : 4.5%

UNKNOWN : 0.0%
i r  Course IS ONE OF: BSC HOH PSYCHOLOGY BA HQH NURSING SIUDIES (CHILDREN

BSC HOH SPORT EQUIPMENT DEVELOPH BA HON PSYCHOLOGY AHD SOCIOLOGY IF  Course IS ONE OF: BENG HON MECHANICAL ENGINEERING 
BSC HON PUBLIC HEALTH HUTRITIOD BSC HON HUMAN BIOSCIENCES BSC HON FOOD AND NUTRITION BSC HON BIOMEDICAL SCIENCES 
BSC HON FORENSIC AND ANALYTICAL LLB HONS HAITRISE EN DROIT FRANC BSC HON COMPUTER s. NETWORK ENG BA HON ACCOUNTING AND FINANCIAL 

THEN THEN 
HODE : 5 NODE : 13 
N : 182 N : 129 
HOT RECO: 100.0% NOT RECO: 34.1%
UNEHPLOY: 0.0% ✓ '-'V  UNEMPLOY: 0.0% ✓ " V  
NON-GRAD: 0.0% f  2  )  NON-GRAD: 6.2% \ 6 )
OTHER : 0.0% OTHER : 6.2%
GRADUATE: 0.0% GRADUATE: 48.8%
STUDY : 0.0% STUDY : 4.7%
UNKNOTO : 0.0% UNKNOWN : 0.0%

IF  Course IS ONE OF: BSC HON APPLIED COMPUTING j j r  course IS OHE OF: BSC HON ARCHITECTURE AND ENVIRON
BA HON MULTIMEDIA AND COHMUNICAT BSC HON INFORMATION TECHNOLOGY N BSC HON SCIENCE WITH EDUCATION A BSC HON COMPUTING (NEB INFO SYST 
BA HON EDUCATION STUDIES BA HON PRODUCT DESIGN BA HON 5 - 1 1  EDUCATION WITH QTS BSC HON ARCHITECTURAL TECHNOLOGY 
BA HON FURNITURE DESIGN AND RELA BSC HON SPORT DEVELOPMENT WITH C BA HOH 3 - 7  EDUCATION WITH QTS BSC HON RADIOTHERAPY AND ONCOLOG 
BA HON FINE ART BSC HON SPORT AND EXERCISE SCIEN BSC HON DIAGNOSTIC RADIOGRAPHY BSC HON DESIGN AND TECHNOLOGY HI 
BA HON INTERNATIONAL BUSINESS ST BSC HON PHYSICAL EDUCATION AND Y BA HOB PLANNING STUDIES BSC HON HOSP BUS HGT NITH CONF A 
BA HON SOCIAL AND CULTURAL STUD I  BSC HON HOSPITALITY BUSINESS HAN BENG HON MECHANICAL AND COMPUTER 
BA HON METALWORK AND JEWELLERY BA HON CRIMINOLOGY AND HISTORY THEN 
BA HON CRIMINOLOGY AND PSYCHOLOG BSC HON PHARMACEUTICAL SCIENCES ’• 6 
BA HON SOCIAL WORK STUDIES BSC HON ENG DIS & INNOVATION N : 197
BSC HON INFORMATION TECHNOLOGY ( BA HON CRIMINOLOGY «, SOCIOLOGY H0T B£C0: 23*9% / y \
BSC HON TOURISM MANAGEMENT BA HON LAW AND CRIMINOLOGY UNEHPLOY: 1.5% V l x  
BA HON BUSINESS STUDIES BSC HON ENVIRONMENTAL CONSERVATI NON-GRAD: 4.1%
BA HON FILM AND LITERATURE BA HON CRIMINOLOGY 071,115 :
BSC HON AUTOMOTIVE TECHNOLOGY BSC HON COMPUTING (BUSINESS INFO GRADUATE: 69.0%
BA HON PLANNING AND TRANSPORT BSC HON SPORT SCIENCE W m  COACH 571,1,7 ! 1*0%

UNKNOWN : 0.0%BSC HON HOSPITALITY BUS HGHT WIT BA HOB BUSINESS AND HUMAN FESOUR 
BA HON LANGUAGES WITH IWIERNATIO BSC HUMAN BIOLOGY „  „

IF  Course IS ONE OF: BSC HON PROPERTY STUDIES 
BA HOH GEOGRAPHY [HUHAH, BA HOH EHGUSH AHD HISTORY ^  ^  ^  ^  M  pAmGISG WAPHIC CES
BA HOH APPLIED SOCIAL STUDIES BSC BOH UH AHD PSYCHOLOGY BA HOH ACCOUHTIHG BSC HOH IHE0RHAT10H EHGIHEERIHG 
BSC HOH EXERCISE SCIEHCE BSC HOH HOSPIT BOS HHGKT UJTH CU 0SC w n tJ S <. Bsc H0S m -m z m n n u  HAHAGEHEHT 
BA HON FINANCIAL SERVICES BA HON MARKETING B3C H0JJ BU3IHE33 PROPERTY MANAGE BSC HOB CONSTRUCTION MANAGEMENT 

THEN THEN
BODE : 14 H0£)E . g 

® • 979 N : 125 
NOT RECO: 29.3% ( 3 /  NOT RECO: 58.4%
UNEHPLOY: 5.4% UNEMPLOY: 8.8%
NON-GRAD: 26.5% NON-GRAD: 4.0%
OTHER : 4.9% OTHER : 0.8%
GRADUATE: 25.3% GRADUATE: 28.0%
STUDY ; 8.1% STUDY : 0.0%
UNKNOWN : 0.5% UNKNOWN i  0.0%

IF  Course IS  ONE OF: BSC HON BUSINESS MODELLING AND M
BSC HON PROPERTY DEVELOPMENT BSC HON LEISURE EVENTS MANAGEMEN 
BA HON BUSINESS AMD MARKETING BSC HON PHYSIOTHERAPY 
BSC HON SPORT MANAGEMENT BSC HON COMPUTING (SOFTWARE ENGI 
BSC HON FOOD MARKETING MANAGEMEN BSC HON OCCUPATIONAL THERAPY 
BA HON BUSINESS AND ACCOUHTIHG BSC HOH TOURISM AND HOSPITALITY 
BENG HON MECHANICAL AND AUTOHOTI 

THEN
NODE : 15
N 266 / T \
NOT RECO: 22.6% V i /
UNEHPLOY: 5.6%
NON-GRAD: 15.4%
OTHER : 4.9%
GRADUATE: 49.2%
STUDY : 1.9%
UNKNOWN : 0.4%

D i s c u s s i o n

Eight groups were identified through categorical variable 
consolidation, these groups will be renamed as follows:
(1) CourseGPI (2) CourseGP2 (3) CourseGP3 (4) CourseGP4 
(5) CourseGP5 (6) CourseGP6 (7) CourseGP7 (8) CourseGP8

I n c l u s i o n  i n

F I N A L  M O D E L
Yes

M o d i f y

Yes - A Decision Tree will be used to collapse the variable into a new 
variable called CourseGP. The Decision Tree oroduces a new variable 
called _Node_ this will be renamed, using a Transform Variable node, 
to CourseGP and the eiaht individual values will be reDlaced with the 
values above using a replacement node.
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Ultimately, this resulted in the compilation of the following table below.

Variable Rejected Original
Values

New Grouped 
Values

Missing
Values

Replacement 
Missing Value

P o s t U G

D e s t i n a t i o n
NO YES N /A NO n / a

C o u r s e G P NO NO

( 1 )  C O U R S E G P I

(2 )  C O U R S E G P 2

( 3 ) C O U R S E G P 3

( 4 )  C O U R S E G P 4

( 5 )  C O U R S E G P 5

( 6 )  C O U R S E G P 6

( 7 )  C O U R S E G P 7

( 8 )  C O U R S E G P 8

YES M I S S I N G

E t h n i c i t y G P NO NO
( 1 )  M IXED G RO UP

( 2 )  M AIN LY W H ITE
N /A N /A

A w a r d M a r k NO YES N /A YES M I S S I N G

QAHE NO YES N /A YES 0

E n t r y A g e NO YES N /A NO M I S S I N G

G e n d e r NO YES N /A N /A N /A

QYPR N O YES N /A YES 0

E n t r y P o i n t s NO NO N /A YES M I S S I N G

JACS S u b j e c t YES N /A N /A N /A N /A

S o c i o

E c o n o m i c G P
YES N /A N /A N /A N /A

N a t i o n a l i t y YES n / a N /A N /A N /A

A w a r d C l a s s YES n / a n / a N /A N /A

E n t r y

Q u a l i f i c a t i o n s
YES N /A N /A N /A N /A

F a c u l t y YES N /A N /A N /A N /A

C o u r s e YES N /A N /A N /A N /A

D i s a b i l i t y YES N /A N /A N /A N /A

H o m e

P o s t c o d e

YES n / a N /A N /A N /A

LEA YES n / a n / a N /A N /A

Figure 7.22 - Final Data Values Used for Modelling Employment Type.

The table above, figure 7.22, is split into two areas. The green area reflects 

those variables that were identified through data understanding and sampling 

process as being significant in predicting award classification, the red area 

relates to those variables that will not be included at the modelling stage. The 

table also highlights replacement values for grouping the data and dealing with 

missing values, which will be rectified in SAS® Enterprise Miner.

7.1.3.4 EM  M odel

The modifications outlined above were implemented and the new grouped 

values were replaced as per figure 7.22. Given that the target variable is 

defined, a number of supervised DM techniques (see sub-section 4.3.2) were 

applied. The selection of DM techniques, applied at the modelling stage, were 

based on the experiences of previous EDM studies (Superby et al. 2006,
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Romero et al. 2008, Dekker et al. 2009). Therefore three decision tree models 

(Entropy, Gini and ChiSquare) and three logistic regression models (using 

backwards, forwards and stepwise selection methods) were built. Figure 7.23, 

below shows the process up to and including the supervised DM techniques.
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Figure 7.23 -SAS Process Flow.

7.1.3.5 EM  A ssess

The modelling of the data went through numerous adjustments to determine the 

best model, which involved removing variables, changing sample sizes and 

model settings. Arguably, including details of all these different tests would 

undoubtedly affect the readability of this section. Therefore, this section 

presents the assessment of the best model. A control point and a model 

comparison node were then added to assess each model, see below.
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Selected 
Model ▼

Model Description Target Variable Train:
Misclassifica 
tion Rate

Valid:
Misclassifica 
tion Rate

Y Backward PostUGDestination 0.345784 0.34901
Stepwise PostUGDestination 0.344717 0.349835
Entropy Tree PostUGDestination 0.349698 0.356436
ChiSquare Tree PostUGDestination 0.352188 0.362211
Forward PostUGDestination 0.340448 0.365512
Gini Tree PostUGDestination 0.367841 0.384488

Figure 7.24 -  Model Comparison Node.

The results of the modelling (above), indicates that the backward elimination 

model produces the best model. However, the differences in misclassification 

rates between the regression models and the Entropy Tree are small. In 

addition to this, backward elimination is well known for not creating the best 

model as removed variables aren't reconsidered. Therefore, the stepwise 

elimination would produce a better model as this uses a combination of both 

backward and forward elimination so that removed variables are reconsidered 

(Berry and Linoff 2011). However, upon comparison of the variables identified 

through both stepwise elimination and entropy tree (below), there is very little 

difference between the two models, as noted by Herzog (2006).

D  Variable Importance

Variable
Name

Label Number of
Splitting
Rules

Importance Validation
Importance

Y:.... j
Ratio of 
Validation to 
Training 
Importance

CourseGP Node 4 1 1 1
AwardMark 4 0 .311309 0 .343064 1 .102005
EthnicityGP Node 1 0.188761 0 .117789 0 .624009
EntryAge 2 0 .103172 0 .021738 0 .210697
EntryPoints 0 0 0
QAHE 0 0 0
Gender 0 0 0
QYPR 0 0 0
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Effect DF
Uald 

Chi-Square Pr > ChiSq

AwardHark 6 76.1287 <.0001
CourseGP 42 199.9061 <.0001
EntryAge 6 26.2150 0.0002
EthnicityGP 6 32.5766 <.0001

Figure 7.25- Variable Importance Tables.

Therefore, due to the similarities between the two models, it was decided to 

adopt the entropy tree model as the results are much easier to understand and 

interpret.

Selected 
Model ▼

Model Description Target Variable Train:
Misclassifica 
tion Rate

Valid:
Misclassifica 
tion Rate

EntropyTree PostUGDestination 0.349698 0.356436
Figure 7.26 -  Entropy Tree Misclassification Rates.

Assessing the misclassification rates, of the entropy tree (above), suggests that 

this model would be a good predictor of student employment. Indeed, the 

misclassification rates are relatively small (34% and 35%) and the difference 

between the two misclassification rates is also small.
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Figure 1.27 -  Model Assessment.
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The %captured response chart (top), shows that the top 20% of responses 

captures over 35% of the student employment type data for the validation and 

train data sets. These translate into reasonably high lift (see glossary page ix) 

rates (approximately 1.75) and there is very little difference between the train 

and validate lift rates. With the exception of one leaf, the leaf index bar chart 

(middle) shows a reasonably balanced amount of training and validation data in 

each leaf of the final model. The close proximity of the misclassification rates 

can be seen in the misclassification chart (bottom), this also confirms that a tree 

with 1 1  leafs is the optimal solution. Furthermore, the variables selected by the 

tree discussed early are also sensible when considered in relation to the 

student retention and EDM literature reviewed in Chapter 3.

7.1.3.6 Th e  F inal EM

Figure 7.28, below, provides an overview of the final Entropy tree model.
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Figure 7.28 - Final Entropy Tree.
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Firstly the tree splits CourseGP then, following the left side of the tree, splits 

CourseGP again into two groups. Moving down the right hand side (3) the tree 

then splits on AwardMark followed by EntryAge and finally further refines 

EntryAge. Moving down the left hand side (4) the tree splits out CourseGP 

again, the left hand side (5) is then split by AwardMark the right hand side (6 ) 

splits EthnicityGP followed by CourseGP and then AwardMark. This creates the 

following rules, below.

2 5 
©

[if Mode IS OWE OF: 
THEN

WODE : 3
W : 959
WOT RECO: 100.0%
UNEHPLOY: 0.0%
NON-GRAD: 0.0%
OTHER : 0.0%
GRADUATE: 0.0%
STUDY : 0.0%
UNKNOWN : 0.0%

IF AwardHark IS HISSING 
AND Node EQUALS 14 
THEN

NODE
N
NOT RECO
UNEHPLOY
NON-GRAD
OTHER
GRADUATE
STUDY
UNKNOWN

9 
31 

93. 5% 
0 . 0% 
3. 2% 
0 . 0% 
0 . 0% 
3. 2% 
0 . 0%

©

IF 59.96 <= AuardMark 
AND Node IS ONE OF: 8 12
THEN

NODE : 11
N : 113
NOT RECO: 37.2%
UNEHPLOY: 5.3%
NON-GRAD: 8.8%
OTHER : 0.0%
GRADUATE: 43. 4%
STUDY : 5.3%
UNKNOWN : 0.0%

IF Node EQUALS 2 
AND Node IS ONE OF: 15 13 6 
THEN

NODE : 13
N : 60
NOT RECO: 61.7%
UNEHPLOY: 5.0%
NON-GRAD: 3.3%
OTHER : 3.3%
GRADUATE: 21.7%
STUDY : 5.0%
UNKNOWN : 0.0%

©

IF 60.98 <= A w a r d M a r k  
AND Node EQUALS 14 
T H E N ©

IF 43 <= EntryAge 
AND AwardMark < 60.98 
AND NodLe EQUALS 14

NODE 15 THEN
N 413 NODE 27
NOT RECO 25 . 2% N 7
UNEMPLOY 
NON-GRAD 
OTHER 
GRADUATE

4. 4% 
22 . 3% 
3 . 4% 

32 . 9%

NOT RECO 
UNEMPLOY 
NON-GRAD 
OTHER 
GRADUATE

14. 3% 
42 . 9% 
O . 0% 
o. o% 
o. o%STUDY 11. 9% STUDY 42 . 9%UNKNOWN o . o% UNKNOWN o. o%

©

IF Node EQUALS 15
AND Node EQUALS 3 
T H E N ©

IF AwardMark < 48.5
AND Node IS ONE OF: 13 6
AND Node EQUALS 3

NODE 22 THEN
N 251 NODE 40
NOT RECO 19 .9% N 11
UNEMPLOY 5. 2% NOT RECO 81 . 8%
NON-GRAD 16 . UNEMPLOY 

NON-GRAD
o. o%3% 9 . 1%OTHER 5. 2% OTHER o. o%GRADUATE 51. 4% GRADUATE 0 . o%STUDY 1. 6 % STUDY 9 . 1%UNKNOWN O. 4% UNKNOWN o. o%

©
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IF 48 . S <C= AwardMaEk.
AND Mode IS OWE OK: 13
AWD Wo de EQUALS 3
THEN ©WODE = 41

W : 2 70
WOT RECO: 2 0 . d%
UWEMPLOY: 0.7%
WOW— GRAD: d„ 8%
OTHER : 2.6%
GRADUATE: 
STUDY :

69.6%
1.9% IF 19 <= EntryAge

UWKWODW : 0.0% AWD AwardMark < 60
AND Node EQUALS 14

IF EntirYAge < 19 THENAWD At.tsli: cLManJc. < 60 . 98
AWD Wo de EQUALS Id NODE : 47
THEM N  : 342

WODE : 46 NOT RECO: 32. 7%W : 186
WOT RECO: 22 . 0% UNEMPLOY: 6. 7%
UWEMPLOY: d. 8% NON-GRAD: 30. 4%
WOW— GRAD: 33.3% OTHER : 6. 1%
OTHER : 7.0% G RA D U A T E : 20 . 8%GRADUATE: 22.0%
STUDY : 8 . 1% STUDY : 3. 2%
UWKWOWW : 2.7% U NKNOWN : 0. 0%

<  4 3

©

Figure 7.29 - Final Rules.

As before in order to help understand these rules, the course groupings have 

been repeated below from the modify section.

|IF Course IS HOT HISSING IF Course IS ONE OF: BSC HON BUSINESS INFORMATION TEC
TEEN

2 G) BA HON BUSINESS AND FINANCE BSC HON TOURISM 4 HOSPITALITY BU
BODE BSC HON LEISURE EVENT MGMT U ART BA HON BANKING
B 777 THEN ©12BOT RECO 100.0% NODE
UNEHPLOY 0.0% N 1S6
BOB-GRAD 0.0% NOT RECO 53.8%
OTHER 0.0% UNEMPLOY 5.1%
GRADUATE 0.0% NON-GRAD 10.3%
STUDY 0.0% OTHER 1.9%
u n k hown 0.0% GRADUATE

STUDY
24.4%
4.5%

IF Course IS OHE OF: BSC HOH PSYCHOLOGY BA HOB BURSEHG STUDIES (CHILDPEH UNKNOWN 0.0%
BSC HOB SPORT EQDIPHEHT DEVELOP!! BA HOB PSYCHOLOGY A D  SOCIOLOGY IF Course IS ONE OF: BENG HON MECHANICAL ENGINEERINGBSC HOB PUBLIC HEALTH BUTk ITIOB BSC HOH HUMAN BIOSCIEHCES BSC HON FOOD AND NUTRITION BSC HON BIOMEDICAL SCIENCESBSC HOB FOREHSIC A D  ANALYTICAL LLE HOBS HAITRISZ EH DROIT Fk ANC BSC HON COMPUTER 4 NETWORK ENG BA HON ACCOUNTING AND FINANCIALTHEN

HODE THEN
NODE 13 ®B 182 N 129HOT RECO 100.0% NOT RECO 34.1%

UNEHPLOY 0.0% UNEMPLOY 0.0%
HOH-GRAD 0.0% NON-GRAD 6.2%
OTHER 0.0% OTHER 6.2%
GRADUATE 0.0% GRADUATE 48.8%
STUDY 0.0% STUDY 4.7%
UNKNOWN 0.0% UNKNOWN 0.0%
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IF  Course IS  OHE OF: BSC HON APPLIED COMPUTING

BA HON MULTIMEDIA AND COMMUNICAT BSC HON INFORMATION TECHNOLOGY N 

BA HON EDUCATION STUDIES BA HON PRODUCT DESIGN 

BA HON FURNITURE DESIGN AND RELA BSC HON SPORT DEVELOPMENT WITH C 

BA HON FINE ART BSC HON SPORT AND EXERCISE SCIEN 

BA HON INTERNATIONAL BUSINESS ST BSC HON PHYSICAL EDUCATION AND Y 

BA HON SOCIAL AND CULTURAL STUDI BSC HON HOSPITALITY BUSINESS MAN 

BA HON METALWORK AND JEWELLERY BA HON CRIMINOLOGY AND HISTORY 

BA HON CRIMINOLOGY AND PSYCHOLOG BSC HON PHARMACEUTICAL SCIENCES 

BA HON SOCIAL WORK STUDIES BSC HON ENG DES 4 INNOVATION 

BSC HON INFORMATION TECHNOLOGY ( BA HON CRIMINOLOGY s SOCIOLOGY 

BSC HON TOURISM MANAGEMENT BA HON LAW AND CRIMINOLOGY 

BA HON BUSINESS STUDIES BSC HON ENVIRONMENTAL CONSERVATI 

BA HON FILM AND LITERATURE BA HON CRIMINOLOGY 

BSC HON AUTOMOTIVE TECHNOLOGY BSC HON COMPUTING [BUSINESS INFO 

BA HON PLANNING AND TRANSPORT BSC HON SPORT SCIENCE WITH COACH 

BSC HON HOSPITALITY BUS MGMT WIT BA HON BUSINESS AND HUMAN RESOUR 

BA HON LANGUAGES WITH INTERNATIO BSC HUMAN BIOLOGY 

BA HON GEOGRAPHY (HUMAN) BA HON ENGLISH AND HISTORY 

BA HON APPLIED SOCIAL STUDIES BSC HON LAW AND PSYCHOLOGY 

BSC HON EXERCISE SCIENCE BSC HON HOSPIT BUS HNGMT WITH CU 

BA HON FINANCIAL SERVICES BA HON MARKETING 

THEN _

IF  Course IS ONE OF: BSC HON ARCHITECTURE AND ENVIRON

BSC HON SCIENCE WITH EDUCATION A BSC HON COHPUTING (WEB INFO SYST 

BA HON 5 -  11 EDUCATION WITH QTS BSC HON ARCHITECTURAL TECHNOLOGY 

BA HON 3 -  7 EDUCATION WITH QTS BSC HON RADIOTHERAPY AND ONCOLOG 

BSC HON DIAGNOSTIC RADIOGRAPHY BSC HON DESIGN AND TECHNOLOGY WI 

BA HON PLANNING STUDIES BSC HON HOSP BUS HGT WITH COHF A 

BENG HON MECHANICAL AND COMPUTER

NODE 6

N 197

NOT RECO 23.9%

UNEHPLOY 1.5%

NON-GRAD 4.1%

OTHER 0.5%

GRADUATE 69.0%

STUDY 1.0%

UNKNOWN 0.0%

©

IF  Course IS ONE OF: BSC HON PROPERTY STUDIES

BSC HON MATHEMATICS WITH EDUC AN BA HON PACKAGING AND GRAPHIC DES 

BA HON ACCOUHTIHG BSC HON INFORMATION ENGINEERING 

BSC HON BUILDING SURVEYING BSC HON ENVIRONMENTAL MANAGEMENT 

BSC HON BUSINESS PROPERTY MANAGE BSC HON CONSTRUCTION MANAGEMENT

NODE 14 ( 3)  HODE 8
N 979 N 125
NOT RECO 29.3% NOT RECO 58.4%
UNEMPLOY 5.4% UNEHPLOY 8.8%
NON-GRAD 26.5% NON-GRAD 4.0%

OTHER 4.9% OTHER 0.8%

GRADUATE 25.3% GRADUATE 28.0%

STUDY 8.1% STUDY 0.0%

UNKNOWN 0.5% UNKNOWN 0.0%

©

IF Course IS ONE OF: BSC HON BUSINESS MODELLING AND M
BSC HON PROPERTY DEVELOPMENT BSC HON LEISURE EVENTS MANAGEMEN 
BA  H O N  BUSINESS AND MARKETING BSC HON PHYSIOTHERAPY 
BSC HON SPORT MANAGEMENT BSC HON COMPUTING (SOFTWARE ENGI 
BSC HON FOOD MARKETING MANAGEMEN BSC HON OCCUPATIONAL THERAPY 
BA  HON BUSINESS AND ACCOUNTING BSC HON TOURISM AND HOSPITALITY 
BENG HON MECHANICAL AND AUTOMOTI 

THEN
NODE IS
N 266
NOT RECO 22.6%
UNEMPLOY 5.6%
NON-GRAD 15.4%
OTHER 4.9%
GRADUATE 49.2%
STUDY 1.9%
UNKNOWN 0.4%

©

These rules can be interpreted as follows:

Rule (1) If CourseGP is CourseGPI or CourseGP2 then student 
employment type is not recorded.

Rule (2) If AwardMark is missina and if CourseGP is CourseGP3 then 
student employment type is likely to be not recorded.

Rule (3)
If AwardMark is areater than or eaual to 59.96 and CourseGP is 
CourseGP8 or CourseGP5 then the student is 43.3% likely to 
obtain a graduate job.

Rule (4)
If EthnicitvGP is Mixed Grouo and CourseGP is one of CourseGP4. 
CourseGP6 or CourseGP7 then the likely student employment type 
is not recorded.

Rule (5) If AwardMark is qreater than or eaual to 60.68 and CourseGP is 
CourseGP3 the student is more likely to obtain a graduate job.

Rule (6) If CourseGP is CourseGP4 and EthnicitvGP is Mainlv White then 
student employment type is more likely to be a graduate job.

Rule (7)
If EntrvAae is qreater than or equal to 43 and AwardMark is less 
than 60.98 and CourseGP is CourseGP3 then students are more 
likely to end up unemployed (42.9%) or studying (42.9%).
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Rule (8)
If AwardMark is less than 48.5 and CourseGP is one of CourseGP6 
or CourseGP7 and EthnicitvGP is Mainlv White. Then the 
employment type is likely to be not recorded.

Rule (9)

If AwardMark is qreater than or equal to 48.5 and CourseGP is one 
of CourseGP6 or CourseGP7 EthnicitvGP is Mainlv White. Then it 
is highly likely (69.6%) that the student will end up in a graduate 
role.

Rule
(10)

If EntrvAqe is less than 19 and AwardMark is less than 60.98 and 
CourseGP is CourseGP3 then it is likelv that the student will end up 
in a non-graduate job.

Rule
(11)

If EntrvAqe is qreater than or equal to 19 and AwardMark is less 
than 60.98 and CourseGP is CourseGP3 then it is likelv that the 
student employment type will be not recorded (32.7%) or non
graduate job (30.4%).

The rules above suggest that the non-white ethnic groups are less likely to 

obtain a graduate job. This further highlights the possibility of a dependency 

between ethnicity and award mark, which ultimately impacts upon employment 

type. Arguably, of all of the three models developed the student employment 

type model has provided the best train and misclassification rates, 34% and 

35% respectively. The variables and values selected by the final model are 

sensible given the exploration of the data, carried out previously. The author is 

confident that this model will prove to be a good predictor of student 

employment type, which is confirmed through an assessment of the exploration 

graphs in relation to rule 9.
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Figure 7.30 -  Assessing Rule 9 Plots.

The box plot above confirms that the majority of students who obtain graduate 

jobs on average are awarded a mark that is greater than 60%. The bar chart, 

below, also suggests that more White British students obtain graduate level jobs 

than any other ethnic group.

7.2 Summary

In this chapter, the process of transforming structured data into knowledge and 

ultimately intelligence, as outlined in the Knowledge Pyramid in figure 4.1, is 

illustrated using SAS® SEMMA. The resulting models can be used to predict 

student award classification, progression onto postgraduate studies at SHU, 

and employment type. Whilst the predictive accuracy of some of the models 

developed is questionable, it is thought that the predictive accuracy would be 

much improved with a larger data set. Overall, the results of the modelling 

process are appropriate in the context of each individual target variable. Further 

to this, the misclassification rates are also representative of similar studies that 

have tried to predict student behaviour (Herzog 2006, Superby et al. 2006).
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8 F in d in g s

Having now built the three models (award classification, progression onto 

postgraduate studies and student employment type) this chapter will discuss the 

main finding from each and where applicable relate it to the exploration of the 

data and the literature.

8.1 A w a r d  C la s s if ic a tio n

Through the modelling of the data, outlined in Chapter 7, thirteen rules were 

identified (see section 7.1.1.6 ) these rules show that there are six key variables 

for predicting student award classification. These variables, in order of 

importance are:

• Course
• Entry Points
• Ethnicity
• Undergraduate Entry Age
• QYPR
• QAHE.

These variables are sensible predictors of award classification when they’re 

considered in relation to the research that has been conducted previously and 

the exploration of the data carried out in section 6.1.3.2.4.

Indeed, it is noted that the students are more likely to progress when they make 

informed decisions about their course (Yorke and Longden 2008, Moxley et at. 

2001). Superby et al. (2006) and Dekker et al. (2009) also identified course has 

been a key variable in predicting student behaviour. Unfortunately, the 

importance of the course variable, in predicting award classification, was not 

recognised at the data exploration stage due to the large number of levels 

associated with this variable.

The student's previous academic ability, which in this case is reflected in their 

entry points, is also identified as being fundamental to student progression 

(Yorke and Longden 2008, Moxley et al. 2001). The EDM literature also 

suggests that the previous academic experience is vital in predicting student 

behaviour. The relationship between entry points and award classification was
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identified at the data exploration stage and it suggested that students entering 

with higher entry points achieve a better award classification. Therefore, the 

inclusion of this variable in some of the final rules was anticipated.

The identification of ethnicity as a predictor of award classification is relatively 

unique in terms of the EDM literature. However, the inclusion of this variable in 

some of the rules is not surprising as the 1997 Labour Government identified 

that there was a need to widen and increase participation of students from 

certain ethnic groups. The data exploration and DM process confirmed that 

certain ethnic groups are indeed underrepresented and those groups tended to 

achieve a lower award classification.

The relationship between the students maturity and how it can effect 

progression are well documented (Yorke and Longden 2008). Herzog (2006) 

also identifies that students age is an important variable in predicting student 

behaviour. The rules containing undergraduate entry age reflect the patterns 

identified at the data exploration stage. In that students who entered their 

degree at a younger age tended to achieve more 1 st and 2 : 1  classifications 

whereas students obtaining 2:2 and 3rd class honours tended to be older. 

Interestingly, this contradicts some of the progression literature where the 

students age is considered to have an effect on progression. Nonetheless this 

still indicates that age is important in trying to predict student behaviour.

Arguably, the incentives around the widening and increasing participation 

agenda suggests that there are some links to social deprivation and the 

students award classification. Therefore, it is sensible to include Young Peoples 

Participation in HE by Postcode (QYPR) and Adults with Higher Education 

Qualifications by Postcode (QAHE) in the final model. However, some of the 

initial exploration of these variables identified a number of anomalies such as 

students from where QYPR was high tended to achieve a 2:1 whereas students 

from areas where QYPR was low-medium tend to obtain more 1st 

classifications, a similar pattern was also identified for QAHE. This trend is 

believed to be valid due to the fact that, as stated in 3.2.1, non-traditional 

students are being catered for by the post 1992 universities (Archer 2002). In 

addition to this, the National Audit Office (2007) report, shows that SHU
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managed to increase participation whilst also improving student progression 

from 91.2% in 2001-02 to 92.3% in 2004-05.

Furthermore, through the process of mining the data, a number of key rules 

came to light in relation to student award classification. It is perhaps important 

to point out that the grouping, such as the students ethnicity, were automatically 

grouped by the SAS® software. The final rules were:

• Students are more likely to obtain a 2:1 on a business, management or 
marketing related course;

• Young (age on entry <23) white students who enter with less than 205 
entry points onto certain health, property, design, biology, sports or 
engineering related courses are more likely to achieve a lower award 
classification;

• White students who enrol, with less than 205 entry points, onto food, 
health, business, sports, property, social care, education or film related 
courses tend to achieve a better award classification than non-white 
students;

• Students who enrol, with 300 or more entry points, onto food, health, 
business, sports, property, social care, education or film related courses 
tend to achieve a higher award classification;

• Students are less likely to achieve a high classification when studying 
certain health, sports, social work, English, film, computing or tourism 
related courses when entering with less than 300 entry points;

• Older (age on entry >=23) white students entering certain food, health, 
business, sports, property, social care, education or film related courses 
with high entry points are likely to achieve a high award classification;

• Older (age on entry >=23) white students with lower entry points, who 
study food, health, business, sports, property, social care, education or 
film related courses, tend to achieve better award classifications from 
areas where adult participation in HE is higher;

• Black African students with less than 300 entry points are more likely to 
achieve lower classifications on certain sports, education, business, 
management, health or property related courses than other students; and

• Students on food and nutrition, property development, science with 
education, business or media studies related courses are more likely to 
achieve a higher award classification.

8.2 Po s tg r a d u a te  S t u d ie s

The modelling of progression onto postgraduate studies identified 5 rules (see 

section 7.1.2.6 ), these rules indicate that there are four variables that are 

fundamental to predicting progression onto postgraduate studies. These are:

• Undergraduate Course
• Undergraduate Award Mark
• QYPR
• Undergraduate Entry Points.
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Given the findings of the literature review and the exploration of the data these 

variables are sensible predictors of the target.

Indeed, as previously discussed, the importance of the course variable in 

predicting student behaviour is well documented in the EDM literature and the 

student progression literature also places a large emphasis on the course 

(Yorke and Longden, 2008, Moxley et al. 2001, Superby et al. 2006, Dekker et 

al. 2009). The inclusion of course isn't surprising as the analysis of the JACS 

subjects (course groups) identified that some of the JACS subjects had more 

students who progressed onto postgraduate students than others (see section 

6.1.3.2.4).

The inclusion of the undergraduate award mark variable is also relevant in that 

the data exploration highlighted that the undergraduate award mark of those 

students who go on to study a postgraduate degree at SHU is higher than those 

that don't, this is particularly true of those students who obtain a 1 st or a 2 : 1  

classification. However, this trend may be due to entry requirements for 

postgraduate courses. Additionally, in unrelated studies, Dekker et al. (2009) 

and Superby et al. (2006) have identified past achievements (in terms of grades) 

has been a key predictor of student behaviour.

The presence of Young People in HE by Postcode (QYPR) variable in the final 

model is reasonable. As previously pointed out this variable poses some 

interesting questions regarding the type of students SHU caters for. Indeed, 

contrary to the authors own perceptions, it was identified at the data exploration 

stage that more students from areas where QYPR is low tended to go on to 

take postgraduate studies at SHU, this could be due to the fact that support, in 

terms of funding, is more widely available to students from those areas and/or 

‘added value’ (see glossary page vii). Furthermore, this trend is reaffirmed by 

the fact that students from areas where QYPR is low-medium tended to achieve 

a higher award classification.

Again, the inclusion of undergraduate entry points in this model is sensible, as 

previous academic ability/experience have been identified as being essential to 

understanding student behaviour. From the author's perspective, undergraduate
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entry points and undergraduate entry qualifications are the only measure that is 

available in the SI data to determine the student's previous academic 

experience. A relationship between those students who go on to study a 

postgraduate degree and undergraduate entry points was identified at the data 

exploration stage. This suggested that students with higher entry points tended 

to take further postgraduate studies at SHU.

Additionally, through the process of mining the data, a number of key rules 

came to light in relation to student progression onto postgraduate studies at 

SHU. These rules were:

• Certain undergraduate courses have higher employability rates (such as 
law, education and computing (specialist)) and are therefore less likely to 
take postgraduate studies, at SHU, soon after completing a degree;

• Students are more likely to take postgraduate studies, at SHU, after 
studying undergraduate courses such as those associated with business, 
planning or psychology;

• Students who take business, finance, education QTS, design and 
technology or planning related undergraduate courses and achieve a low 
award mark are less likely to take postgraduate studies at SHU; and

• Students who achieve an award mark greater than 55 but entered HE 
with less than 300 entry points are more likely to take postgraduate 
studies (at SHU) when they have studied business, finance, education 
QTS, design and technology or planning related undergraduate courses.

8.3 S t u d e n t  E m p lo y m e n t  T y p e

The DM process determined eleven rules for predicting student employment 

type, see section 7.1.3.6 . These rules are composed of four variables that are 

key to predicting the target. The variables include:

• Course
• Award Mark
• Ethnicity
• Undergraduate Entry Age.

Arguably, in the light of the literature review and data exploration these 

variables are practical.

Again, as with the previous two models the course variable is the most pertinent 

variable in predicting student employment type, the importance of this variable 

in both the student progression and EDM literature has been noted previously. 

Due to the large number of course values within this variable no trends were
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identified. However, the exploration of JACS subject did identify certain course 

groups that have large number of students who are unemployed, don't respond 

to the DOL survey, obtain a graduate job and the like. This raised some 

interesting questions at the data exploration stage as to why some SHU 

courses had a 100% nonresponse rate to the DOL survey.

The inclusion of award mark in the student employment type model is sensible 

as the final award classification, determined by the award mark, is a key 

requisite to obtaining a graduate job. Indeed, the data exploration identified that 

students who achieved a 1 st classification are more likely to obtain a graduate 

job or take further studies. This supports the inclusion of award mark in the 

model built to predict progression onto postgraduate studies at SHU. Further 

general patterns found in the data, reflected in the final model include students 

obtaining a 2:2 or a 3rd tended to end up in non-graduate jobs or unemployed 

and student response rates to the DOL survey tends to decrease as the award 

mark reduces. In addition to this, previous EDM studies have indicated the 

importance of award mark in predicting student behaviour (Dekker et al. 2009, 

Superby et al 2006).

The inclusion of the Ethnicity variable in the final model is interesting, as 

previously pointed out there has been some indication, through the widening 

and increasing participation agenda, of the importance of this variable. The data 

exploration identified that the majority of students who obtained a graduate job 

were white and students obtaining graduate jobs from other ethnic groups were 

in the minority. It is possible that further investigation into this trend could 

identify some interesting barriers to obtaining a graduate job, such as English 

verbal and written skills.

In addition to this, the inclusion of undergraduate entry age in the final model is 

valid as maturity related problems are documented in the student progression 

literature and it is also noted as being a key variable in predicting student 

behaviour (Yorke and Longden 2008, Herzog 2006). The relationship between 

the students maturity and how it can effect progression are well documented 

(Yorke and Longden 2008). Herzog (2006) also identifies student's age as 

being an important variable in predicting student behaviour. The exploration of

-193-



undergraduate entry age against student employment type indicated that older 

students were likely to find it harder to obtain a job after completing their 

undergraduate degrees. Indeed, this is reflected in rule 7 in section 7.1.3.6 .

Further to this, through the process of mining the data, a number of key rules 

came to light in relation to student employment type. Again it is important to 

state that the groupings, such as the students ethnicity, were automatically 

created by the SAS® software. These rules were:

• There is either a problem with recording DOL data or students who study 
certain undergraduate courses and achieve low award marks tend not to 
respond to the DOL survey;

• Students are more likely to obtain a graduate job when they obtain a 
higher award mark in certain business, management, property, design, 
finance, sports, humanities, computing, art, social, criminology or 
education related courses;

• White students are more likely to obtain a graduate job when studying 
management, finance or business related courses;

• White students on engineering, food, computing (specialist), science, 
education, health, planning or design and technology related courses are 
more likely to end up in graduate roles even when achieving a lower 
award mark;

• Older (age on undergraduate entry >=43) students who achieve a lower 
award mark (<2 :1 ), on computing, education, design, sports, art, 
business, criminology, social, management, planning, English or 
humanities related courses are less likely to end up in employment; and

• Younger (age on undergraduate entry <19) students who achieve a 
lower award mark on certain computing (general), education, design, 
sports, art, business, criminology, social, management, planning, English 
or humanities related courses are less likely to get a graduate job.
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8 .4  S u m m a r y

This chapter sets out the main findings from the data modelling stage for each 

of the predictive models developed. It presents some discussion around the key 

variables for all of the models. The modelling process identified that course, 

award mark, undergraduate entry age, entry points, ethnicity, QAHE and QYPR 

were key in predicting student behaviour. These variables thus offer sensible, 

predictors of the three target variables, as the literature on student progression 

and EDM also highlights the importance of such variables in predicting student 

behaviour (Yorke and Longden 2008, Herzog 2006, Dekker et al. 2009, 

Superby et al. 2006). Overall, the final models developed through the DM stage 

of this research are valid within the context of SHU. Indeed, the difficulties 

associated with classifying students in an objective way are well documented, 

as student behaviour is dependent on many factors which are likely to change 

from institution to institution (Dekker et al. 2009).
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9 R e c o m m e n d a tio n s

In realising objective 6 , this chapter will present the main findings from the 

research as a number of recommendations. These recommendations will be 

useful for the HE stakeholders (SHU, students and the state) introduced in 

Chapter 3, vendors of DM software and future researches interested in the 

subject area. The recommendations will be complied around data capture, use 

of DM, required skill levels to carry out such projects, further work involving DM, 

mining other available data and potential new studies involving DM.

9.1 Da ta  C a ptu r e

Through the DW process it transpired that there were a number of issues with 

the SI data. These issues related to incorrect and incomplete data being 

included in the subset of data obtained from SHU. There appears to be a lack of 

validation in the front end software that has affected the quality of the data. 

Therefore, it is recommended that SHU make some investment in training staff 

about the importance of complete and correct data. Furthermore, difficulties 

were also identified with the Entry Qualification type variable in that it wasn't 

possible to separate students entering their degrees with A-Level/GNVQ3 

qualifications. Therefore, the Award Mark was favoured over the Entry 

Qualification type variable. Although, there seems to be a lack of transparency 

regarding how Entry Qualifications are translated into Award Marks. 

Consequently, it is recommended that SHU split the A-Level/GNVQ3 

qualification into two distinct values, as it will improve the ability of any future 

DM models. However, this recommendation has been superseded as GNVQ no 

longer exists.

It is also important to note that further models could be built if the data was 

available, but SHU doesn’t record anything about progression. Finally, SHU 

should try to improve responses to the DOL survey, as this would improve the 

predictive power of any future models developed whilst also providing a greater 

understanding of student opinions. Indeed, it was identified that some SHU 

courses had a 100% non-response rate to the DOL survey and as student
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award classifications decreased so did the likelihood of the student responding. 

In summary the main recommendations from this sub-section are:

1. Improve the quality and completeness of the SI data;
2. Improve staff awareness regarding the importance of good quality data;
3. Separate dual values within variables and stop using the duplicate;
4. Improve transparency regarding how student entry point are calculated; 

and
5. Investigate poor student response rates to DOL survey.

9.2 Use o f  Data M ining

The review of the EDM literature showed that there were numerous potential 

uses for DM within HE, which was highlighted by the previous studies reviewed 

as part of the EDM review in section 3.3. The results of the EDM review 

emphasised problems, regarding high levels of misclassification, with such 

studies that use DM in HE to predict student behaviour. However, DM will prove 

useful in the future as institutions become better at collecting and understanding 

their data. Indeed, SHU are in the process of developing their own data 

warehouse for reporting. This potentially will provide researchers and SHU the 

opportunity to access a huge repository of clean, verified and merged SI data. 

This level of data would help to validate some of the patterns identified as part 

of this study. The DM techniques used here were selected based on the results 

of previous studies and whilst, in some cases, the decision tree didn't produce 

the best model. The future use of decision trees, in this context, will provide 

models that are easier to interpret and thus apply within institutions.

9.3 Required Skills Level

Arguably, the ability of the researcher to carry out the investigation will affect the 

overall outcome of any research project. Indeed, the complexity of DM and 

statistical techniques require a certain level of understanding which, if lacking, 

will inevitably increase the time to complete such studies in the future and 

potentially affect the quality of any outcomes. In conjunction with this, 

understanding national and local HE policies, student progression issues and 

how institutions record and store their data will also prove vital to the future 

success of any studies in this area.
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9.4 F u r th e r  W o rk  In vo lv in g  D a ta  Mining a t  SHU
Further work involving DM in HE to predict student behaviour at SHU will be 

considered, from three perspectives, in this section. These can be grouped into 

the following categories: the further exploration of the data collected (both from 

SI and an online survey); capturing additional data from SHU; and considering 

current changes to the HE landscape.

9.4.1 F urther  Explo ratio n  of  the Collected  Data

The further exploration of data falls into two categories, the further exploration 

of the SI data and the exploration of the data collected through an online survey, 

each will be discussed separately.

A number of intriguing relationships were identified at the data exploration stage 

and through the mining of the data. It is these links that inform the following 

recommendations:

1 . examine the link between ethnicity (mainly black) and the small number 
of these students who take postgraduate studies at SHU;

2 . investigate the association between ethnicity (mainly black) and the small 
number of these students who obtain a graduate role;

3. carry out a similar study but include DLHE data so that this can be 
compared with other institutions;

4. investigate the significance of the benefits of added value (see glossary 
page vii) and widening participation;

5. examine the association between high demand skills that are in low 
supply and obtaining a graduate role;

6 . investigate the association between low demand skills that are in high 
supply and students progressing onto postgraduate studies at SHU; and

7. obtain further insights into the association between older students and 
unemploymentMow levels of employment.

The SI data could also be further explored, through the application of 

unsupervised DM techniques (such as clustering and market basket analysis), 

to determine patterns and trends in the data that haven't been explored as part 

of this directed DM study. Additionally, this research focuses on one method of 

data analysis, which was of special interest to the author as it is relatively new 

to HE. However, now that the data has been constructed in the DM mart it 

would be useful to create cubes (see glossary page vii) and report from them.
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Further to this, the data collected as part of an online survey could be analysed, 

using both directed and undirected DM techniques, for patterns and trends in 

the data set. The results from this could then be compared to the results of 

Burleys (2007) study. This would then help determine if the problems identified 

by Burley are local to the Department of Computing at SFIU or if they are 

transferable across all faculties at the university.

9.4.2 Capturing  A dditional Data  fro m  SHU

Arguably, the models developed as a result of this study were based on a 

snapshot of the SI data. Therefore it would be interesting to gather further level 

6 , postgraduate studies and DOL data from other years, about 30,000 records, 

to determine if the patterns and trends identified as part of this study are 

reflective across other final years and student groups. Flowever, the author is 

aware of the problems with obtaining and cleaning 4023 student records. In the 

future, these problems should be greatly reduced with the advent of the new 

SHU data warehouse.

9.4.3 Considering  C urrent  Changes  to the H E Land scape

Since starting this study in 2009, there have been some significant changes in 

the HE landscape, the main ones being the reduction in the number of 

university places and the emphasis on student led HE degree funding. The 

reduction in student numbers has already had an impact on the calibre of 

students recruited by SHU. Indeed, the cap placed on entry requirement has led 

to SHU being able to recruit a much higher calibre of student in 2012. It is 

anticipated that this could produce some interesting DM models for comparison 

to the models built as part of this study. However, the effects of the cap on 

student numbers and the increase in tuition fees in predicting undergraduate 

student award classification, progression onto postgraduate studies at SHU and 

student employment type will not be modelled until 2015/2016 (depending on 

students mode of study). This problem is further compounded when modelling 

progression onto postgraduate studies at SHU. Indeed, this would have to be 

modelled even later, as the students would have had to complete their 

undergraduate degrees.
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9.5 D a ta  Mining o th e r  A v a ila b le  HE D a ta

There are also further applications of DM in HE outside of SHU. Indeed, this 

sub-section considers these from four perspectives, the extension of the study 

to other post and pre 1992 universities, the mining of the National Student 

Assessment data and exploration of the data submitted by post and pre 1992 

universities to HESA.

9.5.1 E x te n d in g  th e  S tu d y  t o  o th e r  P o s t  1992 U n ive rs itie s

It would be interesting to determine whether the patterns and trends found as 

part of this study were repeated at another post-1992 university, such as 

Nottingham Trent, Huddersfield or Leeds Metropolitan University. Arguably, 

given the high levels of competition between universities to attract students, it 

could be potentially very difficult to convince a competitor of SHU to relinquish 

its student data.

9.5.2 E x tend ing  th e  S tu d y  to  P re  1992 U n iv e rs it ie s

Again it would be interesting to find out if the patterns and trends found whilst 

undertaking this study would be repeatable at a pre-1992 university such as 

Sheffield University. However, as pointed above there could be difficulties in 

obtaining such data from a competitor of SHU.

9.5.3 N a tio n a l S tu d e n t A ssessm en t D a ta

Whilst there are benefits to creating a questionnaire that is tailored to the 

research being carried out. There are numerous difficulties associated with 

gathering student opinions from a large number of universities, such as location, 

poor response rates and data confidentiality. However, the National Student 

Assessment is conducted nationwide and could provide a rich source of data for 

mining. Whilst using such data would affect the direction of the research it could 

potentially provide a researcher with access to a large repository of student 

opinions.
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9.5.4 HESA D ata

There are national requirements on universities to submit data to HESA, such 

submissions include non-progressions and student award classifications. 

Therefore, as noted above, whilst the subject of any research would have to be 

tailored to fit the available data, this could provide a rich source of data for 

future studies.

9.6  Po s s ib le  N ew  St u d ie s  In v o lv in g  D a ta  M in ing

There are also some other interesting studies, involving DM, that could be 

conducted outside of the HE domain. Indeed, such studies involve the mining of 

Further Education (FE) data and the data retained by UCAS. Each of these will 

be discussed separately below. Arguably, both 9.6.1 and 9.6.2 are a departure 

from the remit of this study. However, as the review of the literature and the 

exploration of the data highlighted, understanding such data could prove 

invaluable in determining the successful progression of students in HE.

9.6.1 D a ta  M in ing F u r th e r  E d u c a tio n  D a ta

The importance of students selecting the right university and course, at A-Level, 

has been highlighted in Chapter 3 as being vital to their progression at 

university (Yorke and Longden, 2008). However, the difficulties associated with 

making decisions about universities and courses, at such an early age and 

without the actual grades, have been identified in recent media reports (see 

Chapter 3). Therefore, it is believed that DM could help FE to predict job types, 

universities, university courses and A-Level results.

9.6.2 UCAS Data
In addition to mining data at the individual FE institution, there is also a vast 

wealth of data collected by UCAS, such data includes student demographics, 

students level 3 results, students choices of university and course, and there 

entry points. Again there are issues of data confidentiality as competition to 

attract students to universities will inevitably increase in the near future.
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9.7 Summary

In realising objective 6  -  compile recommendations, this chapter sets out a 

number of recommendations based on the author's experience of carrying out 

this research project. These fall into the following five categories:

• Data Capture
• Use of DM
• Required Skill Level
• Further work involving DM at SHU
• Mining other available HE data.

From these thirteen recommendations were compiled, which will be recapped 

below. These can be grouped into SHU specific recommendations and 

recommendations for future studies. Hence the first set of recommendations, 

below, are for the institution to consider proceeding which are set of 

recommendations for future research in the area.

The SHU specific recommendations are to:

• improve the quality and completeness of the current data that they retain;
• increase staff awareness regarding the importance of good quality data;
• separate, where possible, dual values within variables and stop using the 

duplicate;
• improve transparency regarding the calculation of student entry points; 

and
• Investigate poor student response rates to DOL survey.

Future researchers wishing to further understand student behaviour in HE may

wish to carry out the following.

Recommendations for future researches:

• further exploration of the SI data collected as part of this study;
• exploration of the data collected as part of an online survey;
• explore a larger data set of student records from SHU to validate the

patterns identified as part of this research;
• mine data from another post-1992 university to validate the patterns 

identified in this research;
• mine data from a pre-1992 university to see if the patterns identified in 

this research are similar;
• mine data collected by HESA and from the National Student Assessment 

survey;
• explore how current changes to HE will affect future predictive models; 

and
• consider how data collected by FE institutions and UCSA could be used

to predict student behaviour in HE.

-202-



Overall, it seems that SHU are already trying to improve the quality of their data 

with the introduction of a data warehouse and the review of the EDM literature 

has highlighted the potential benefits that DM could bring in helping to 

understand student behaviour in HE.
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10 R e fle c t iv e  S u m m a r y

This chapter will attempt to evaluate the successes and areas of difficulty 

encountered whilst carrying out the research. This chapter will discuss where 

things could have been done differently, highlight potential missed opportunities 

and examine some areas of the research that never came to fruition. The above 

criteria will be used to examine the focus of the research along with the review 

of the literature, the uniqueness of the research, the research approach adopted, 

the building and understanding of the data set, mining the data, and the findings.

Throughout the process, every possible effort has been made to ensure that the 

direction of the research remained on course. However, whilst this may not 

have been possible at all times, the research did stay focused on its primary 

objectives set out in Chapter 2. The research question, aim and objectives were 

as follows:

Research Q uestion

How can Business Intelligence be used to predict student behaviour as an aid 
to improving student progression?

Research A im

Explore, through the application of Bl tools, the issues that affect the 
progression of all undergraduate students at SHU. It is intended that a number 
of predictive models will also be constructed to predict student behaviour.

Research Objectives

No. Objective Measure

1.
Review, compare and contrast existing 
knowledge to develop a theoretical 
framework on which to base the rest of the 
study.

Completed literature review.

2.
Develop knowledge of the relevant SHU 
information systems and DM software to 
form an understanding of the underlying 
data structures and mining software.

Understanding of the 
student data and SAS® 
software through speaking 
to experts.

3.
Explore existing data sets, inductively, to 
build inferences and determine patterns in 
the data.

Reduced variables in the 
data set and the introduction 
of new variables through the 
iterative use of DM.

4. Apply suitable DM techniques to build a 
number of predictive models.

Final models built and 
assessed.

5.
Validate the findings of study by comparing 
the results of the quantitative analysis to the 
current body of knowledge.

Completed findings.

6.
Compile a list of recommendations for the 
future uses of DM in this area based on the 
findings of the study.

Completed list of 
recommendations.
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10.1 Focus of  th e  R es ea r c h

Firstly, there have been some significant changes in the FIE landscape, brought 

about by a change of government, since starting this project in 2009. These 

relate to a reduction in student numbers and an increased emphasis placed on 

student led funding. As a result the models built as part of this study are likely to 

need revising in the future. Flowever, building models that take into 

consideration the current situation wouldn't be possible for at least three to four 

years, post FIE changes, as this will not be reflected in the universities data until 

the new students have graduated. In addition to this, since AAB and ABB 

students are outside the universities number cap, in 2012/13, it is likely that this 

has the potential for the post 1992 universities to attempt to recruit higher 

calibre students, which could have a positive outcome on final classifications 

and ultimately university rankings. Indeed, the initial exploration of the data 

(section 6.1.3.2.4) indicated that students with higher entry points tended to 

achieve better award classifications. This would have a positive effect on 

progression and university finances, as the loss of fees due to non-progression 

could reduce as more student's progress.

Furthermore, the change in the FIE landscape will have a negative impact on 

the number of students, from non-traditional backgrounds, as there is likely to 

be less emphasis on the increasing and widening participation agenda going 

forwards. This is likely to change the nature of courses run by FE colleges who 

are now allowed to award degrees. Plus the large increases in student fees will 

increase the amount of student debt. Flowever, student loans have been 

increased to meet the new tuition fees, which will put new students in much 

greater debt when they eventually leave university. This problem is further 

compounded by the current economic climate and a lack of jobs for young 

people (Coughlan 2012). The reduction in the number of university places may 

also lead to some students selecting there university in a hurry, which as 

discussed in section 3.2.3 could have a negative impact on student progression.

Although interviews and an online survey were conducted during the course of 

the research, it was decided that these were no longer relevant in the context of 

this study. As upon reflection there was no obvious connection to the DM 

exercise and these were also two large studies in their own right. Therefore,
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efforts were refocused so that more time could be spent on building the 

predictive models. It is anticipated that the results of the interviews and online 

survey will be used to form part of a follow up paper after the PhD has been 

completed.

10.2 P r ev io u s  R esea r ch

The literature review helped to give a wider appreciation of student progression 

and EDM. The process was found to be fairly monotonous due to the large 

amount of material and the changing HE landscape, due mainly to the changes 

in student numbers and funding. This resulted in the review being one of the 

most time consuming to complete. A contributing factor to this was the vast 

amount of literature in the area. For this reason, it was decided to focus the 

student progression part of the review on literature taken from the mid-1990s 

onwards, this was mainly due to the changes taking place around student 

numbers, funding and student debt. It is possible that a conceptual model, such 

as a research territory map (see glossary page xi), that identifies relationships 

between topics may have helped to improve the management of the review 

(Dawson 2000). Even though the author has had past experience of writing 

such reviews, nothing could have prepared him for the amount of rework 

required in keeping the review up-to-date prior to handing in this thesis.

Arguably, there are areas of the literature review that could be improved. These 

relate to the inclusion of the section about the increasing and widening of 

student participation. Whilst this policy has been relaxed, it was decided to 

include this in section 3.2.1 as this was the policy at the time (2006) from when 

the data was drawn for the DM analysis. Furthermore, it could be argued that 

the NAO data used is quite old, taken from 2007 survey. However, this was the 

most update NAO survey at the time the thesis was completed. Indeed, a new 

NAO survey was completed close to the finalisation of this document. However, 

this was published too late to make the final version of this thesis.

With regards to the review on EDM and student progression in HE, the review 

found that the literature in this area was sparse. It could also be argued that the 

review of student progression and EDM should have also considered literature 

from FE as well as HE. Whilst some of the FE literature would have been

-206-



relevant there are a number of differences between the two. In the main, these 

relate to the age of the students and the fact that they are, in the main, still at 

home living with family/carers and student fees are significantly less.

A further criticism is the length of the review which will undoubtedly affect its 

readability. Furthermore, it is fair to state that the review and the whole project 

places a large emphasis on material cited from Yorke and Longden. Whilst the 

author fully acknowledges this he would argue that it is only logical for the 

review and the project to have a considerable emphasis on these authors, as 

they are probably the biggest subject matter experts in the UK. Finally, the 

accuracy of some of the material used may be questionable as a large 

percentage of the material was gathered from trusted Internet and on-line 

journals, due in part to the changing nature of HE and the rapid growth of EDM. 

However, the comments of Dawson (2000) were taken into consideration and 

the review does reference some material that was sourced was from recognised 

authors, such as Yorke and Longden, Luan and the like.

10.3 U n iq u e n e s s  o f  th e  R e s ea r c h

Having worked in a data analysis background for a number of years the author 

was keen to apply his knowledge and skills to the HE domain. He was also 

keen to develop new skills and apply previous knowledge gained whilst 

undertaking an MSc in Business Intelligence and SAS® training.

Whilst the area of EDM has enjoyed rapid growth since 2008/09, it is fair to 

state that there is almost a complete lack of literature that considers EDM and 

student progression in HE. This made it very difficult to put the research into 

context. However, previous research by Burley (2007), Luan (2001), Luan 

(2002), Luan (2004) and Luan (2006) have highlighted the applicability of DM in 

the HE context. Overall the DM process (including the data understanding 

phase) has helped to gain new insight into SHUs student data and ultimately 

the use of DM as a tool to predict student behaviour in the future, which further 

demonstrates the value of DM within HE.
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10.4  R e s ea r c h  A pp r o a c h

This chapter had to be significantly reworked when it was decided to drop the 

acquisition of new data through interviews and questionnaires, see section 10.1 

paragraph 3. However, the research approach was one of the most fulfilling and 

yet challenging chapters of the project. It involved a large amount of new 

learning and the theory discussed was found to be quite complex. On the whole 

the research approach adopted (Chapter 5) was found to be satisfactory in the 

gathering the data, building the DM marts and constructing the final predictive 

models and findings.

Indeed, the strong quantitative aspects of this research dictated the research 

strategy in terms of: the type of research, epistemology and ontology. Due to 

the inductive nature of the DM techniques applied and the relating of the results 

to previous literature the boundaries between theory and research are 

somewhat blurred. However, as pointed out by Bryman (2012, p614) “research 

methods are much more free floating than is sometimes supposed” and the 

distinctions made between the two approaches in section 5.1 are not as 

deterministic. Given the quantitative nature of the research, the cross sectional 

research design was found to be most appropriate. Obtaining a sample size of 

greater than 4,000 records helped to improve the reliability of the research as 

there was no reason to suppose that this cohort of students would be different 

from any other similar time period.

Furthermore, whilst the rules developed might not be transferrable to other time 

periods or institutions, the research is repeatable as the process followed is well 

documented. Indeed, all things being equal, anyone wishing to repeat this 

process would be able to use the descriptive framework and research sequence, 

outlined in Chapter 5, in conjunction with the further detail in Chapters 6 and 7. 

However, it is important to state that the results may be different as this is 

dependent on the techniques applied and skills of the individual carrying out the 

DM analysis. Moreover, the validity of results the results is substantiated by the 

fact that the variables and rules determined by the final models are visible in 

both the traditional student progression and the EDM literature. This research 

has also further highlighted the applicability of DM in the HE domain. Finally, the
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chosen DW approach (BDLD) and DM methodology, SAS® SEMMA, was 

successfully implemented in the context of this research.

10.5 B uild ing  and U n d ers tan d in g  th e  D a ta  S e t

This stage of the research proved to be the most interesting and one of the 

most time consuming parts of the project. The creating of the three separate 

DM marts wasted a little time. Indeed it was identified, through the data 

understanding process, that this could have been done in a single table and that 

this would be more manageable. Additionally, Faculty and JACS subject had to 

be added to the data set after the ETL process as it was determined that 

Course variable had too many overall values. However, time was wasted 

through adding these extra variables as categorical variable consolidation (see 

glossary page vii), using decision trees, highlighted that the Course variable 

was indeed a better predictor of the target variable. Ultimately, this was due to 

the author's inexperience at carrying out DW and DM projects. As well as 

adding an extra dimension to the research, it is hoped that the addition of the 

DOL to the study will have added extra value for SHU.

Furthermore, it is important to remember that the data obtained from the SI 

database is a snapshot at a point in time. As a result there are still some blank 

values in the award classification (target) variable, this means that it wasn't 

possible to determine if the blanks (unknown) in the award classification 

variable are fails or if SHU hasn't recorded them yet. However, this was one of 

the reasons why the data was taken from a point in time where changes in HE 

were relatively stable and which afforded the best opportunity to obtain a more 

complete data set, the 2006 academic year. In addition to this, the postgraduate 

studies data set is limited in that it only considers students from 2007-2009 

other students could have gone onto postgraduate studies at SHU after the 

snapshot was taken. However, the cut off had to happen somewhere and this 

was the latest data at the time of this study.

The inclusion of the location based POLAR2 (see glossary page x) data was 

useful as it confirmed that SHU does indeed cater more for the non-traditional 

type of students. In addition to this, POLAR2 data was also used as a predictor 

variable in the final models for two out of the three target variables. Further to
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this, the Entry Qualifications variable may have been considered at the 

modelling stage. However, it wasn't possible to split the GNVQ3/A-level 

qualification value. Ultimately, Entry Points was a better variable to use as other 

Entry Qualifications can be translated into comparable Entry Points. However, it 

would be help if SHU could make the process of mapping Entry Qualifications to 

Entry Points more transparent.

10.6 Da ta  M in in g

Having created a single table that would be utilised by all models, SAS® and 

the authors knowledge of HE was used to group certain values and reduce the 

number of variables. This proved a useful aid in determining how best to go 

about reducing and grouping the data set. In order to use some of the variable 

selection techniques, with SAS®, a number of dummy variables had to be 

created, which wasn't fully anticipated at the DW stage. Again this proved to be 

a pointless exercise as, in the end, categorical variable consolidation (see 

glossary page vii) and the decision trees were able to handle these groupings 

without any manual intervention.

Furthermore, it wasn't possible to rename the ‘Node’ variable, which was 

automatically created by SAS® when carrying out categorical variable 

consolidation (see glossary page vii), to something more meaningful. Therefore, 

the final decision trees had to be explained in greater detail, which undoubtedly 

increased the final word count for this chapter. Arguably, given that all models 

will use the same single data set, the data understanding section is a bit 

repetitive and it is difficult to determine the groups within each bar. However, 

the graphs presented in conjunction with the text in this document provide 

enough information for the reader to get a feel for the data. Indeed, the graphs 

have identified some interesting and valid information that could be classified as 

new knowledge.

After completing the data understanding stage of the DM, questions were raised 

regarding the number of events. The progression onto postgraduate studies at 

SHU modelling is a good example of this where prior probabilities and 

oversampling had to be applied to increase the 'Yes' event. This undoubtedly 

added an extra layer of complexity to the DM process. Ultimately, the final
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models produced from this are not very good predictors due to the sample size 

of 321 records (193 "Yes" and 128 "No" events).

10.7 F in d in g s

The findings of the research are somewhat narrowed down by the fact that this 

investigation is using directed DM. Indeed, much more could have been found 

in the data if undirected DM had been applied to the data set. However, this 

wasn’t possible as the research focused on predicting student behaviour in 

three defined areas:

1. award classification;
2. progression onto postgraduate studies at SHU; and
3. employment type.

Overall, the findings that have come out of this research are more than 

satisfactory. In that there is conformity with other research studies, the models 

developed are sensible and the issues with poor misclassification rates appear 

to be common in this type of research. Furthermore, the rules developed as part 

of this research are useful as they can be easily applied manually or coded to 

provide some type of instant benefit to SHU when trying to understand student 

behaviour. However, it is important to note that these models will have to be 

revalidated as the HE landscape changes.

It is however important to note that the findings are limited by the quality and 

amount of data received from SHU. Whilst a great deal of work was made to 

improving the quality of this data, it was impossible to invent data where data 

didn’t exist, was missing or incomplete. In addition to this, due to SAS® 

grouping the course variable, through categorical variable consolidation (see 

glossary page vii), it was difficult to interpret the original rules. However, the 

original groupings were reiterated when discussing the final models in sub 

sections 7.1.1.6, 7.1.2.6 and 7.1.3.6.

Even though Course groupings were difficult to interpret the DM highlighted that 

some Courses were more difficult to achieve a high award classification than 

others, all other things being equal such as Entry Points, Entry Age et cetera. 

Additionally, many of the findings highlighted things that one might expect 

intuitively, for instance students on Courses with high employment prospects
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are less likely to go onto postgraduate studies at SHU. However, this further 

validates the applicability of DM in the HE context.

10.8  S u m m a r y

This chapter set out to evaluate the success and difficulties faced whilst 

carrying out this research. It initiates by reiterating the research objectives set 

out in Chapter 2, these are then used to direct the assessment of this work in 

six key areas: previous research; uniqueness of the research; the research 

approach; building and understanding the data set; data mining; and the 

findings. The predictive models developed as part of this research study are 

more than satisfactory, but it is disappointing to note that these will have to be 

revalidated as the HE landscape changes. Indeed, the current changes brought 

about by the reforming of HE will have undoubtedly limited the longevity of any 

models developed as part of this research. Overall, the findings, from the DM 

and ultimately the research, further validate the applicability of DM in the HE 

context.
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11 C o n c lu s io n s

This research has used Bl tools and techniques to predict student behaviour in 

three areas student award classification, progression onto postgraduate studies 

at SHU and employment type. An extensive review of the literature highlighted 

that the traditional literature around student progression has been well 

documented and that literature in the area of student progression and EDM was 

sparse. Data was obtained from SHU's SI database and a single DM mart was 

developed using DW processes. SAS® Enterprise Miner was later used to build 

three predictive models. This resulted in a number of interesting rules that could 

be linked to both the traditional and EDM student progression literature.

Having provided a brief overview of this research, above, this final Chapter will 

summarise the main findings and recommendations that were identified through 

carrying out this research.

11.1 S u m m a r y  of  S t u d e n t  A w a r d  C la s s if ic a t io n  R e s u lts

The mining of the SI data identified a number of key variables that could be

used to predict student award classification at SHU. These variables included: 

Course; Entry Points; Ethnicity; Undergraduate Entry Age; QYPR; and QAHE. 

Upon comparison to the literature discussed in Chapter 3, which are sensible 

predictors of the respective target variables. Indeed, these variables can be 

identified in traditional and EDM student progression research carried out by 

Moxley et al. (2001), Archer (2002), Superby et al. (2006), Herzog (2006) Yorke 

and Longden (2008), Dekker (2009) and in some of the policies implemented by 

the 1997 Labour Government, such as widening and increasing participation.

Constructing the models to predict award classification identified a number of 

rules which will be fundamental in helping both students and SHU to improve 

award classifications.
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These included:

• Students are more likely to obtain a 2:1 on a business, management or 
marketing related course;

• Young (age on entry <23) white students who enter with less than 205 
entry points onto certain health, property, design, biology, sports or 
engineering related courses are more likely to achieve a lower award 
classification;

• White students who enrol, with less than 205 entry points, onto food, 
health, business, sports, property, social care, education or film related 
courses tend to achieve a better award classification than non-white 
students;

• Students who enrol, with 300 or more entry points, onto food, health, 
business, sports, property, social care, education or film related courses 
tend to achieve a higher award classification;

• Students are less likely to achieve a high classification when studying 
certain health, sports, social work, English, film, computing or tourism 
related courses when entering with less than 300 entry points;

• Older (age on entry >=23) white students entering certain food, health, 
business, sports, property, social care, education or film related courses 
with high entry points are likely to achieve a high award classification;

• Older (age on entry >=23) white students with lower entry points, who 
study food, health, business, sports, property, social care, education or 
film related courses, tend to achieve better award classifications from 
areas where adult participation in HE is higher;

• Black African students with less than 300 entry points are more likely to 
achieve lower classifications on certain sports, education, business, 
management, health or property related courses than other students; and

• Students on food and nutrition, property development, science with 
education, business or media studies related courses are more likely to 
achieve a higher award classification.

11.2 S u m m a r y  of  P r o g r e s s io n  o n to  P o s tg r a d u a te  S tu d ie s  a t  SH U  R es u lts

The results from mining this data identified that there were four key variables to

predicting student progression onto postgraduate studies. These variables 

included: Undergraduate Course; Undergraduate Award Mark; QYPR; and 

Undergraduate Entry Points. Again as before these variables are sensible 

predictors when considering them in relation to the HE polices at the time, 

particularly widening and increasing participation, and the literature discussed in 

Chapter 3.

Through the process of building this model a number of interesting rules were 

identified. These could be used by the university to help to foster a better 

understanding of students who take Postgraduate studies at SHU and to focus 

marketing resources.
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These rules were:

• Certain undergraduate courses have higher employability rates (such as 
law, education and computing (specialist)) and are therefore less likely to 
take postgraduate studies, at SHU, soon after completing a degree;

• Students are more likely to take postgraduate studies, at SHU, after 
studying undergraduate courses such as those associated with business, 
planning or psychology;

• Students who take business, finance, education QTS, design and 
technology or planning related undergraduate courses and achieve a low 
award mark are less likely to take postgraduate studies at SHU; and

• Students who achieve an award mark greater than 55 but entered HE 
with less than 300 entry points are more likely to take postgraduate 
studies (at SHU) when they have studied business, finance, education 
QTS, design and technology or planning related undergraduate courses.

11.3 Summary o f  S tu d e n t Em ploym ent Type R e s u lts

The student employment type model built through carrying out the DM in 

Chapter 7 determined that four variables were key to predicting undergraduate 

student employment type. These variables were Course; Undergraduate Award 

Mark; Ethnicity; and Undergraduate Entry Age. In terms of the literature 

discussed in Chapter 3, the inclusion of these variables in the final model are 

sensible as these were identified in the literature and HE polices, such authors 

include Herzog (2006) and Yorke and Longden (2008).

Building the student employment type model highlighted a number of rules 

which will be useful to both students and SHU.

These are outlined below:

• There is either a problem with recording DOL data or students who study 
certain undergraduate courses and achieve low award marks tend not to 
respond to the DOL survey;

• Students are more likely to obtain a graduate job when they obtain a 
higher award mark in certain business, management, property, design, 
finance, sports, humanities, computing, art, social, criminology or 
education related courses;

• White students are more likely to obtain a graduate job when studying 
management, finance or business related courses;

• White students on engineering, food, computing (specialist), science, 
education, health, planning or design and technology related courses are 
more likely to end up in graduate roles even when achieving a lower 
award mark;

• Older (age on undergraduate entry >=43) students who achieve a lower 
award mark (<2:1), on computing, education, design, sports, art,
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business, criminology, social, management, planning, English or 
humanities related courses are less likely to end up in employment; and 

• Younger (age on undergraduate entry <19) students who achieve a 
lower award mark on certain computing (general), education, design, 
sports, art, business, criminology, social, management, planning, English 
or humanities related courses are less likely to get a graduate job.

11.4 Summary o f  Recom m endations

Through carrying out this research a number of recommendations were made in

Chapter 9. These recommendations are summarised below.

11.4.1 Da ta  Ca p t u r e

It transpired through the building of the DM mart that there were a number of 

issues with the SI data. These issues related to incorrect and incomplete data 

being retained by SHU. Therefore, it was recommended that SHU should 

improve the quality and completeness of the SI data by improving staff 

awareness regarding the importance of good quality data. It was also identified 

that dual value variables should be separated and that transparency regarding 

how student entry points are calculated should be improved. Furthermore, SHU 

should also investigate the large number of none responses to the DOL survey.

11.4.2  F u r th e r  Ex p lo r a t io n  o f  th e  C o lle c te d  Data

The recommendations fall into two categories, the further exploration of the SI 

data and the exploration of the data collected through an online survey.

1. Apply unsupervised DM techniques (such as clustering and market 

basket analysis), to determine patterns and trends in the DM mart 

developed in this study.

2. From the rules, outlined above, recommendations were made to:

a. examine the link between ethnicity (mainly black) and the small 
number of these students who take postgraduate studies at SHU;

b. investigate the association between ethnicity (mainly black) and 
the small number of these students who obtain a graduate role;

c. carry out a similar study but include DLHE data so that this can be 
compared with other institutions;

d. investigate the significance of the benefits of added value (see 
glossary page vii) and widening participation;

e. examine the association between high demand skills that are in 
low supply and obtaining a graduate role;

f. investigate the association between low demand skills that are in 
high supply and students progressing onto postgraduate studies 
at SHU; and
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g. obtain further insights into the association between older students 
and unemploymentMow levels of employment.

3. Investigate the data collected from SI using unsupervised DM techniques.

4. Use the DM mart to create data cubes and report from them.

5. Investigate the data collected as part of an online survey using both 

directed and undirected DM techniques.

11.4.3 C a p tu r in g  A d d it io n a l D a ta  f r o m  SHU

Repeat the study with a much larger amount of SHU level 6, postgraduate and 

DOL data (30,000 records) taken from other years, to determine if the patterns 

and trends are repeatable across other final years and student groups.

11.4.4 C o n s id e r in g  C u r r e n t  Ch a n g e s  to th e  H E  La n d s c a p e

Given the changes to the current HE landscape that has come about, due to 

austerity measures, in 2012. It would be interesting to repeat this study to 

determine what effect the cap on student numbers and increases in tuition fees 

has had on the models developed in this research.

11.4.5 E x te n d in g  th e  S tu d y  t o  o th e r  P o s t  1992 U n iv e rs it ie s

It would be interesting to determine whether the patterns and trends found as 

part of this study were repeated at another post 1992 university, such as 

Nottingham Trent, Huddersfield or Leeds Metropolitan University.

11.4.6  Ex t e n d in g  the  S tu d y  to P r e  1992 Un iv e r s it ie s

Again it would be interesting to determine if there are any similarities, in the 

patterns and trends found as part of this study, between the post and pre 1992 

universities, such as Sheffield University.

11.4 .7  M in in g  Na t io n w id e  H E  Data

Potentially there are two rich external sources of HE data that could be mined, 

using both undirected and directed DM techniques, to determine student 

behaviour. Such sources include:

1. The National Student Survey; and

2. Data collected by HESA.
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11.4.8  P o s s ib le  N e w  S tu dies  In v o lv in g  Da ta  M in in g

There are also some other interesting studies, involving DM, that could be 

conducted outside of the HE domain. These include:

1. The exploration of FE data to help student select the right university and 

course whilst studying A-Levels.

2. The exploration of UCAS data to help determine university and course 

selection and potentially the type of student who are likely to enter 

clearing.

11.5 Po s t S c r ipt

Considering the recommendations formed from this study, there is still much 

research to be done in this area. The evolution of HE, in terms of its strong 

political association’s and attendant policy revisions, will undoubtedly result in 

changes to future DM models. However, this study has laid the foundations for 

future research in this area.

The investigation has found associations between the variables identified 

through DM and research conducted by contemporary authors, such as Yorke 

and Longden (2008). It has also developed a number of rules that could be 

used to help institutions, students and future researchers to understand student 

behaviour.

Indeed, this research has further proved the applicability of DM in HE. The 

lessons learnt through the data cleansing and modelling process, outlined in 

this thesis, will be useful to other HE institutions who are interested in using Bl 

to predict student behaviour. Furthermore, the DM results have raised some 

interesting questions that other institutions may wish to investigate. These 

include the significance of 'added value' and 'widening participation', and the 

small number of students from ethnic minorities who undertake postgraduate 

studies and obtain a graduate role.

Overall, a number of new insights have been identified that will prove valuable 

to both students and SHU, and will also add to the knowledge domain in this 

area. However, it must be emphasised that this study focuses on a specific 

subset of data from one university and it would be unwise to assume that the 

findings are fully transferable to other academic years and institutions.
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A p p e n d ix  I -  Fa c u lt y  D e p a r tm e n ts

ACES
Art & Design 
Computing
Engineering & Mathematics 
Media Arts and Communication

D&S
Humanities
Teacher Education
Education, Childhood and Inclusion
Architecture & Planning
Built Environment
Law & Criminology
Psychology, Sociology & Politics

HWB
Biosciences
Allied Health Professionals
Social Work
Sport
Nursing & Midwifery 

SBS
Leisure & Food Management 
Management
Accounting, Finance & Operation Systems



A p p e n d ix  II -  JACS G r o u p e d  S u b je c t  L ist

Missing
BUSINESS STUDIES 
SOFTWARE ENGINEERING 
SPORTS SCIENCE 
LAW BY AREA 
PSYCHOLOGY
COMPUTATIONAL SCIENCE FOUNDATION
SOCIAL POLICY
OTHERS IN EDUCATION
ENGLISH STUDIES
ACCOUNTING
PHYSIOTHERAPY
BIOLOGY
TOURISM TRANSPORT AND TRAVEL 
ACADEMIC STUDIES IN NURSERY EDUCATION 
CINEMATICS AND PHOTOGRAPHY NOT E 
DESIGN STUDIES 
HISTORY BY PERIOD 
FINE ART
OTHERS IN MASS COMMUNICATIONS AN 
INTERNATIONAL BUSINESS STUDIES 
EVENT MANAGEMENT 
ARCHITECTURE 
MEDIA STUDIES
CINEMATICS AND PHOTOGRAPHY 
FOOD AND BEVERAGE TECHNOLOGY 
URBAN STUDIES 
CHEMISTRY
GENERAL ENGINEERING
OTHERS IN TECHNOLOGY
HUMAN AND SOCIAL GEOGRAPHY
BUILDING SURVEYING
INDUSTRIAL/PRODUCT DESIGN
MATHEMATICS
APPLIED SOCIOLOGY
SOCIOLOGY
LAW BY TOPIC
SOCIAL WORK
TELECOMMUNICATIONS ENGINEERING 
ACADEMIC STUDIES IN EDUCATION 
ADULT NURSING 
NUTRITION
OTHERS IN SOCIAL STUDIES
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PRODUCTION AND MANUFACTURING ENG 
RADIOGRAPHY DIAGNOSTIC 
OCCUPATIONAL THERAPY 
MECHANICAL ENGINEERING 
MULTIMEDIA DESIGN 
AUTOMOTIVE ENGINEERING
APPLIED STATISTICS, BANKING, COMMUNICATIONS 
ENGINEERING, COMMUNITY NURSING, COMPUTER-AIDED 
ENGINEERING, CONSTRUCTION MANAGEMENT, ELECTRONIC AND 
ELECTRICAL ENGINE, ELECTRONIC ENGINEERING,



A p p e n d ix  III -  M ee tin g  N o tes

This Appendix provides further information about two meetings that took place 

between the author and the Information Department, at Sheffield Hallam 

University, to obtain data from the Student Information Services database. In 

order to protect the identities of the individuals involved in this meeting they are 

referred to as Person A and Person B.

Date

15/12/2009

Attendees

Person A 
Author

Notes

Purpose introductions and outline the research and find out what data is 
available and how it is currently used.

• Many fields available within the SIS database;
o The SIS is a type of SQL relational database; 
o Data is extracted by the University Systems Group;
o Speak to service manager for MIPI (Ext 2641) about

getting data;
o Currently you can access data on recent cohorts, social 

class, ethnicity , disability, postcodes (term time and 
home address), previous education (A-levels, GCSEs 
etc.), previous school (FE college, 6th form etc.) and 
school name;

o Also contains a SIS status flag (enrolled, withdrawn, 
transferred etc.) 

o Date of withdrawal in year 
o Potential withdrawal academic failure

• It is possible to link the SIS database to other systems to produce 
a fuller data set, these include:

o Data from UCAS -  the data from the application process 
is stored and successful students are migrated over into 
the SIS database (this could be used to access data on 
social class, previous grades etc.); 

o Student Internal Survey (gathering opinions of the 
students -  this is around the student experience) 

o Destination of leavers -  careers database
• Student code is the key in linking all the different databases
• HEFCE POLAR -  mapped the country down to electoral ward 

(quartiles) -  SNAC files
• Might be worth looking at full programmes of study as it's not clear 

what happens to some of the students
• Data is very dirty
• Person A mentioned that it might be worth noting that assessment 

methods are different across different subject areas, which may 
cause problems when predicting award classification.

• Person A is currently writing a paper for the management of the 
university which details the fields from the SIS database that she 
believes to be an important indicator for retention -  she has 
agreed to share this with me.

• Person B works for Person A and knows a lot about the database
• Arrange a further meeting with Person A and Person B after the 

New Year.
• It also seems that there is currently no Data Warehouse in place 

and that no Data Mining is been carried out. The majority of the 
analysis is statistical in terms of averages etc. However, they are 
planning to carry out some text mining on some qualitative data 
that they have recently received from the student internal survey.



Date Attendees Notes

02/02/2010 Person A 
Person B 
Author

I will need to seek approval for the online questionnaire as there is a whole 
process to sending out a questionnaire at SHU.

Need to obtain approval from ACES ethical committee for my research.

It is possible to determine what the students went on to do from the Destination 
of Leavers data, there is about 5 years’ worth of data here.

There is approximately 4 years’ worth of assessment data, which includes:
• overall classification
• measures of performance
• module marks

Person A suggested that I might wish to look at student employability as the 
university are interested in this

There are four different ways to calculate a students awards.
Data items discussed

• Gender
• Disability
• Ethnicity
•  Age
• Local Education Authority
• Home postcode
• Nationality
• Fee status
• Socio Economic Group
• Tariff Points -  entry points
• Entry qualifications -  highest education obtained before entering 

university A-levels etc.
• Age on entry
• Type of Study-UG, PG
• Course
• Faculty
• University Entry Date
• SCE -  Start Date (academic enrolment date)
• SCJ -  Start Date (student registration on the course)
• SOC -  Parents standard occupation code

Person A suggested:
• HEFCE carried out some work looking at the levels of attainment on 

entry qualifications and age.
• MS -  postgraduate student perceptions of the university

Person B will provide me with data for full time L6 undergraduates from 
2006/07 including demographics, modules, entry qualifications, DOL and 
postgraduates ID’s and course name from 2007 onwards.


