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Abstract

Novel applications for calix[4]recorcinarene (C[4]RA) sensing membranes have been 

investigated. A comprehensive deposition study was carried out, encompassing casting, 

spin coating and Langmuir Blodgett (LB) deposition. The spin coating thickness d

depended on the angular velocity co, following the description of d  = C'C0 X with 

coefficients of x -  0.44 and -  0.48 for concentrations of 1 mg/ml and 2mg/ml 

respectively. The analysis of the LB deposited films established a thickness of 0.95 nm 

for a monolayer. Furthermore the C[4]RA, was successfully employed as a deposition 

matrix for a non surface active polymer, poly-ortho-methoxy aniline (POMA), which 

can otherwise not be deposited by LB. The composite film showed good homogeneity 

and based on thickness and UV measurements a structural model for it was developed, 

in which two polymer strands aligned themselves per C[4]RA layer, resulting in a 

monolayer thickness of 2 .1  - 2 . 2  nm.

The response of the C[4]RA and the composite membranes to a variety of organic and 

inorganic gaseous pollutants was investigated by Surface Plasmon Resonance studies, 

conductivity and capacitance measurements and UV spectroscopic studies.

The integration of cast films into the gate of a charge flow transistor, is the first 

application of pure calixarenes in a conduction based sensor. The turn on response of 

the transistor is modulated by a variety of organic vapours, at the saturation vapour 

pressure, showing selectivity between polar and non-polar solvents, i.e. chloroform, 

methanol, acetone and hexane, with no cross sensitivity to water vapour. The 

modulation lies within factors of 45 for CHCI3 and 13 for CH3OH. The conductivity 

increase is partially attributed to micro-condensation of the vapours inside the micro- 

porous membrane. A successful application of this implementation as an explosion 

guard sensor for acetone is demonstrated.

Gold electrodes with and without C[4]RA LB films have been characterised using 

impedance spectroscopy and cyclic voltammography. The modification of the gold 

electrodes by the C[4]RA film changes their constant phase element impedance, given

by -— '~Qy 5 60 being the angular velocity. The observed values were from Q =

0.725*1 O' 5 Farad and n = 0.87 to Q = 0.828*1 O' 6 Farad and n = 0.82. Organic analytes

like, chloroform and acetone in water can be successfully detected with these electrodes. 

It is shown by cyclic voltammetry, that the permeability of the C[4]RA LB films is 

modulated by the organic solvents.
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1 Introduction

The importance of chemical sensors is nowadays well recognised. In many cases 

sensors are now capable of completing measurements that were once been the domain 

of analytical chemistry. There are many advantages of the employment of sensors 

compared to analytical methods such as: portability, price of the instrumentation, speed 

of data acquisition and the handling by relatively unskilled operators. The large-scale 

employment of sensors enables an areawide mapping-out of analyte presence over time, 

a task that is prohibitively expensive with an analytical technique; even when probe 

sampling is employed.

The determination of the chemical composition of our environment, on the global scale 

and the microenvironment of our immediate surroundings, has provided the foundations 

for the description of complex interactions between our ever changing environment and 

us. Those are used to validate theories about the distribution of pollutants, cause and 

effect studies, degradation of compounds and toxicological studies.

Myriads of techniques and devices have been used to determine the chemical 

composition of samples. Comprehensive studies of chemical sensor concepts, their 

implementation and their fabrication can be found in the literature, in which three works 

are of outstanding scope and usefulness [I‘3l

This work focuses on the novel employment of calixresorcinarene macromolecules for 

sensing membranes. There has been an ever-accelerating development in calixarene/ 

resorcinarene research, with much attention devoted to chemical sensing. A measure for 

this is the number of publications and patents issued per year with these macro 

molecules as topics, Table 1.

Year Patents awarded in the USA Calixarene Publications

2 0 0 0 1 0 151

1999 4 140

1998 14 153

1997 4 115

1996 5 109

1995 4 8 8
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1994 2 62

1993 5 56

1992 3 39

1991 2 29

1990 3 7

1989 2 1 2

1988 1 5

1987 4 6

1986 2 2

1985 1 2

1984 3 1

Table 1 Overview of calixarene publications and patents (Source: Web of Science & US 

Patent Office)

One of the enormous potentials of these molecules is the ease with which their 

molecular structure can be changed by grafting different side chains onto their cyclic 

core structure or changing the dimensions of the core structure. With this more specific 

analyte interaction can be achieved. It is expected that calixarene based sensors will be 

playing a major role in the field of chemical sensors in the future, especially for organic 

target analytes.

The object of the research presented in this thesis, was the evaluation of novel 

applications for calixarene and resorcarenes in the field of chemical sensors. The focus 

was set on the proof of principle, together with an elucidation of the mechanism 

responsible for the sensor response. As the central element in this study a 

calix[4]resorcinaren with aliphatic sidechains of C7H15, (C[4]RA) was employed. Every 

application of thin film sensing membranes requires extensive knowledge about the 

deposition possibilities, therefore the different thin film formations were investigated in 

detail. In addition to the deposition of the pure C[4]RA, it was used to deposit a non

surface active polymer, poly-ortho-methoxy aniline, in a Langmuir Blodgett (LB) 

composite film. The composite membrane was extensively characterised regarding its 

structure, homogeneity and the response to organic/inorganic pollutants. The 

convenience of electrical sensors prompted the quest for a utilisation of the low 

conductive C[4]RA, in an electrical type sensor. The working concept of the charge



flow transistor (CFT) makes it an excellent transducer to be used with low conducting 

sensing membranes, therefore CFTs were fabricated and used in conjunction with the 

C[4]RA for the detection of organic solvent vapours. The detection of organic solvents 

was further extended into aqueous environments with C[4]RA LB coated electrodes. 

Extensive literature can be found, utilising calixarenes for the detection of metal ions in 

water, but only very few studies employing calixarene derivatives for the detection of 

organic species in water exist. The LB coated electrodes have been characterised and 

their sensing response was investigated with a two and three electrode system.

1.1 The structure of this thesis

The chapters are self contained, each conclusive in itself and only results spanning two 

chapters are referenced.

Chapter 1: It contains the present introduction giving an overview of the conducted 

research and outlines the structure of this thesis.

Chapter 2: The fundamentals of chemical sensors, thermodynamics and intermolecular 

forces are reviewed. The biological chemo-senses, smell and taste are explained and 

linked to the electronic equivalents, electronic nose and tongue. Applications and 

developments of these multi-sensor arrays are discussed and the pattern recognition 

routines, that emulate the action of the brain are described.

Chapter 3: It reviews calixarens and resorcinarenes, including their history, synthesis, 

conformational structures and complexing properties. Sensor and non sensor related 

applications of calixarenes/resorcinarene are reviewed, with the sensing membrane 

review structured according to analyte type and environment (gaseous or aquatic). 

Chapter 4: Various deposition techniques, casting, spin coating and LB are 

conceptually reviewed. The experimental details used for the deposition are specified. 

The results obtained for the various techniques with C[4]RA are presented and 

discussed. Films are characterised in terms of thickness, homogeneity and structure. 

Models are developed for the composite LB membrane (C[4]RA/POMA) and the film 

formation during spin coating.

Chapter 5: A variety of transduction/measuring techniques were used, UV-vis 

spectroscopy, Surface Plasmon Resonanace (SPR), DC conductivity, and capacitance to 

investigate the response of the C[4]RA and the composite membrane to organic vapours
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and/or electroactive gases. The results are presented and discussed in view of the 

membrane changes and comparative literature values.

Chapter 6: The production process of the charge flow transistor (CFT), together with 

that of the charge flow capacitor (CFC) is conceptually described. The focus lies on the 

mechanisms and the concepts of the production techniques used and the device details 

are presented. The results of the device characterisation prior to the application of the 

C[4]RA membrane are presented and discussed.

Chapter 7: An overview of transistor type chemo-sensors is given, with a detailed 

discussion of the working mechanism and applications of the CFT. Experimental details 

are explained, including the vapour generation and measuring set-up, and the results of 

the sensing response to a variety of statically generated vapours are presented and 

discussed. The modulation of the turn-on response of the CFT lies in the range of a 

factor of 46 for saturated vapours of chloroform and 13 for methanol. Furthermore an 

application of the CFT as a possible explosion guard sensor for acetone is demonstrated, 

with a modulation of the turn-on response by a factor of 1.36.

Chapter 8: The response of C[4]RA LB coated electrodes to a variety of organic 

analytes in water are analysed, in a two electrode continuous flow system with a LCR 

meter. The system is described; set-up and measuring chamber and the results are 

presented and discussed. It is shown that organic substances can be discerned based on 

their polarity (non-polar, polar).

Chapter 9: A detailed permeability study on the LB coated electrodes was carried out 

in a three electrode system with cyclic voltammography. The three electrode system is 

described together with the measuring technique and all its components (permeability 

marker, potentiostat and reference electrode). Further analysis of the modified electrode, 

within the same system, with impedance spectroscopy was employed to characterise the 

electrode and to discern any modifications induced during analyte addition.

Chapter 10: In it the obtained results are summarised, conclusions are drawn and 

suggestions for further work are given.

Appendix 1: Describes the in house synthesis of the poly-ortho-methoxy aniline. 

Appendix 2: Contains a description of the Surface Plasmon Resonance phenomena. 

This tool was extensively used during this thesis but was not a major topic in its own 

right. It is an accepted analytical tool but the measuring principle is complex and merits 

therefore an explanation to fully understand the presented results.
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Appendix 3: Gives a step by step description of the production process for the CFT, 

including all the production parameters and the used materials. This format allows for 

an easy reproduction and frees the Chapter 6  from distracting details.

1.2 Bibliography

[1] Sensors: A Comprehensive Survey Volume 1+2: Chemical and Biochemical Sensors, 

W. Goepel, J. Hesse, J.N. Zemel, VCH, 1992, ISBN: 3527267689 

Principles of Chemical Sensors, J. Janata, Plenum Publisher, 1989, ISBN:

0306431831

[3] Chemical Sensors, T.E. Edmonds, Blackie, 1987, ISBN: 04120160IX
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2 Chemical Sensors
The first chemical sensors, that have developed were the animal senses followed by the 

human senses. Recent attempts emulating these senses have resulted in the electronic 

equivalents, i.e. electronic noses and tongues. An overview of these senses and the 

transition to their electronic counterparts is illustrated here. For individual sensors a 

plethora of transduction principles and sensing membranes have been employed to 

analyse the chemical composition of samples. Not even a brief overview of all these can 

be given here. Underlying all variety of chemical sensors, are some fundamental 

principles, i.e. the sensing train, thermodynamics and intermolecular forces, which are 

briefly reviewed here.

2.1 The human nose

The ability to smell affects our brains and behaviours in many ways. It attracts us to 

fruits and flowers, adds to the recognition of tastes, warns us of fires and in association 

with hormone production plays a vital role in our sexual stimulation. The nose, our 

sensory organ for smelling, is shown in Figure 1.

Frontal sinus
Olfactory bulb sphenoidal sinus

Nasal bone

Cartilage
^ ^ N a s o p h a r y n x

■Phan
■tonsil' [ i m t  n i r ' i i i ? " ^ -

Nasal:
cavity

Up A  
muscle

Teeth
Tongue

Fig. 1 Cross-section of the human nose, after Microsoft Encarta 95 [1]
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When we inhale scent molecules are carried into the nasal cavity and impinge on the 

olfactory bulb, Figure 1. This is a mucus-lined patch of tissue at the top of the nasal 

cavity. Water-soluble molecules are captured in the mucus and transported to receptor 

cells, which identify the molecules and trigger an electric impulse along the nerve 

endings into the brain. It is the brain that analyses the complex pattern of incoming 

information and maps it out, generating an “image44 of a scent that can be recalled on 

repeated encounter. It is the later part of the smelling process that makes out the marvel 

of analysing complex odours, not the triggering of the receptor cells by individual 

molecules. On the basis of psychological tests it is believed that humans can detect 

between 4000 and 10000 odours 2̂\  In certain cases this number can lie higher, as for a 

professional perfumer. Since there are not that many different receptor cells in the nose, 

this high number must result from correlations that the brain makes for a complex 

pattern of cell responses. The nose is very good in determining the absence or presence 

of a certain scent, it can for example make out methyl mercapton in a concentration of 

less then lppb, but it is often saturated by concentrations of 50 times the odour 

threshold [2]. This makes it difficult for humans to differentiate intensities.

Every human has a different sensitivity to odours, but for some smells, as for methyl 

mercapton, there exists universally a high sensitivity. The smell resembles that of 

burning flesh and must have evolved in primordial times as a strong warning signal. 

Minute quantities are added to the household gas, to alert us in the case of a gas leak. 

The brain can also filter out certain odours, which is what happens when we become 

adapted to prevailing smells like the farmer to the typical farmyard smell. Smells can 

evoke strong emotions and memories as so vividly described in Proust’s “The 

remembrance of things past [31”. This is accounted for by the fact, that one of the 

memory-centres in the brain, the hippocampus, is closely connected to the sense of 

smell. The stimulating effects are also employed in aromatherapy treatment. In many 

cases the human nose is the ultimate arbiter in the processes of quality control, as in a 

perfumery, brewery, coffee roastery and in the selection of cooking ingredients. 

Standards are difficult to establish in odour measurements, the most frequently used 

method is to employ a panel of several people, who rate smells or notes of smell, on a 

scale of 1 - 6  (no perception - overpowering perception) resulting in a smell map [4]. 

Leonardo ^  has established the odour threshold for 53 commonly encountered 

odourants, a selection for some of the chemicals used are reproduced in Table 1.
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Odourant Perceptible odour threshold [ppm]

Acetic acid 1

Acetone 1 0 0

Ammonia 46.8

Aniline 1

Carbon disulphide 0 .2 1

Chloride 0.31

Formaldehyde 1

Hydrogen sulphide 0.00047

Methanol 1 0 0

Phenol 0.047

Trimethyl amine 0 . 0 0 0 2 1

Table 1 Average odour threshold in air perceptible by humans

2.2 Electronic noses

In recent years there has been increasing interest, research, development, and 

application of electronic noses . Fundamental to the electronic nose (EN) is the odour 

characterisation of samples. This deviates from the detailed analysis of the quantitative 

sample composition. For example the coffee aroma of one particular sample can be 

described by 1500 peaks in a gas chromatography/mass spectrometer analysis [6\  but it 

is impossible to map this information to the human odour impression describing the 

aroma in words like, nutty, full, sweet, etc. What is attempted with ENs is chemical 

imaging, by the detection of a large number of features with chemical sensors, forming 

a “hyperspace”, with a subsequent feature extraction leading to descriptive information. 

General attributes are established with ENs formulating the quality of a sample, not the 

exact composition. The application specific information is spanning medical 

applications, environmental monitoring, process control and quality control of 

foodstuff. The pattern recognition of the experimentally recorded and extracted features 

is of key importance, the methods employed for this are further described in 2.3. An EN 

consists therefore of a multi-sensor array with overlapping responses, (due to limited 

specificity) and an analysis performing, patterning recognition routine. There is no limit 

to the transduction principle employed in electronic noses, below is presented a 

selection of applications of ENs with details of the used sensor arrays.



• A 14-element conducting polymer sensor array was used for the discrimination of 

unspoiled milk and milk containing spoiling bacteria and yeastt7J.

• Different volatile organic compounds have been mapped using a calorimetric multi

sensor arrangement The heat generated by the sorption or desorption of the 

vapours in a receptor layer was converted into a voltage by silicon thermopile chips 

and these signals were used as input parameters for the multicomponent analysis.

• A 15-element multi-sensor array, based on differently doped tin oxide sensors, was 

employed for a study discriminating between grape juice and the different stages in 

the fermentation of white wine [9].

• A novel non-invasive method for the diagnosis of diabetes, based on breath 

sampling with a tin oxide sensor array, was developed by Ping [10l  There selectivity 

was tailored toward acetone, by mixing catalysts in the Sn powder during the sol gel 

production process.

• Eight surface acoustic wave sensors (SAW), coated with different polymers formed 

a multi-sensor array [11J, which was used to differentiate between organic reagents, 

different kinds of liquors and several perfume notes. The fact that three types of 

pattern recognition methods were used, principle component analysis, partial least 

squares and an artificial neural network, makes the study special in terms of scope 

and comparability.

• The gas emissions from the leather interior in cars were analysed with an EN, gas- 

chromatography-mass-spectrometry (GC-MS) and a human sensory panel, seeking 

for an on-line quality control112\  As a sensor array a combination of 10 metal oxide 

semiconductor field effect transistors and 5 metal oxide sensors was employed. The 

EN proved to match the verdict of the human panel whereas the GC-MS data did not 

allow a discrimination between bad and good samples. A possible reason for this is 

the presents of chiral volatiles, which are indistinguishable in GC-MS 

measurements.

Apart form the development of new electronic noses; there has been a proliferation of 

studies employing commercial ENs to new and interesting fields. Details on 

commercially available systems can be found in reference [13]. Trends that have emerged 

very recently are the use of module based systems (MOSES), that allow easy 

configuration of a base system with a variety of pattern recognition algorithm and 

interchangeable sensor arrays [ 141 or the combination of an EN with an electric tongue 

[15]. So was for example the meat quality from camelids in South America (Alpaca,



llama) investigated using the commercial EN Bloodhound BH114 [16l  And the aroma 

changes in the Royal Gala apples, were investigated at harvest and during short-term 

storage fI7l  Again the comparison between GC and EN analysis showed that the EN is 

not only more comfortable to handle but also more sensitive (about 40 times).

2.3 Multivariate analysis

Multivariate analysis methods are used equally for the electronic noses and tongues. 

They are dealing with two main issues; the search for a structure and correlation in the 

data or the generation of a model from calibration data, from which predictions based 

on the test data, can be made.

Principle component analysis (PCA) is used to explain variance in experimental data 

fl8l  A number of experiments are combined into a data matrix with n variables. PCA is 

then used to extract a number of latent variables m, by decomposing the data matrix. 

Two types of vectors are then specified, the loading vector, which describes the 

direction of the principle components in relation to the original variables and the score 

vector which describes the direction of the principle components in relation to the 

observation. Two types of plot can be generated from these vectors, a loading plot 

showing the influence of the original variables onto the system and a score plot 

combining information about the observations and experiments, allowing a grouping of 

observations to be used for the classification of the system. Since no prior knowledge of 

the variables is required, this concept has a wide applicability. The most difficult part is 

to assign a meaning to the components, which are extracted this way.

Another approach is the creation of models from a sufficiently large amount of 

calibration data and then to predict the sample composition based on this model. Two 

methods are most frequently used for this, the projections to latent structures (PLS) and 

artificial neural nets (ANN). During a PLS analysis, a linear model is build on a PCA of 

the data and on a PCA of the actual component values [19̂ (concentrations, 

composition). Subsequently a regression model is developed between the two principle 

components, starting of with a linear regression, which is then further refined.

ANNs possess a multilayer structure, an input layer which is fed by the number of input 

signals, a number of hidden layers performing the analysis and an output layer, 

presenting the results in terms of the component concentrations. Both the hidden and the 

output layer are made up from a number of signal processing nodes, each sprouting
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connections to other nodes. This structure is emulating the neural pathways in the 

human brain, with its myriads of interconnecting neurones. The processing nodes 

possess a variable connection strength, coupling weight, which is changing during a 

learning process. The learning process consists of the input of both experimental data 

and the actual composition of the sample. The coupling weights are adjusted during this 

process to minimise the sum of the square errors. ANNs are so highly adaptable and 

powerful, since their non-linear structure can model almost any mathematical transform. 

A very thorough introduction of ANNs, their design, application strength and their 

limits can be found in reference [20l

2.4 The human tongue

The human sense of taste developed to allow us to recognise poisonous and spoiled 

food. It relies on the round 10000 taste buds spread out on the tongue. These taste buds 

are binding-sites for the flavours and trigger electric impulses to the brain. The tongue is 

only able to distinguish between four different tastes, namely sweet, bitter, salty and 

sour. Each taste is most strongly made out with a different part of the tongue as shown 

in Figure 2.

sweet sour salty bitter

Fig.2 Receptive areas for the different taste sensations on the human tongue, after 

Microsoft Encarta 95

The sensitivity for the tastes varies widely, for bitterness it is 2ppm, sourness 6 ppm, 

saltiness 2500 ppm and sweetness 5000ppm

The huge variety of tastes that we can actually make out relies on the supplementary 

sense of smell. When this one is missing or impaired, as for example during a cold, we
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perceive food as less tasty or simply plain. The smell contributes about 80 % to the 

sense of taste. Temperature and texture strongly influence our taste. Cold chocolate may 

have very little taste, may taste fine when at room temperature and taste unpleasantly 

sweet when hot.

2.5 Electronic Tongues

Electronic tongues are the wet chemical counterparts to the electronic noses, attempting 

to emulate a tasting sensation in liquid samples. There is a distinction between a taste 

sensor and an electronic tongue (ET).

A taste sensor system is an array of sensors used to classify the different gustatory 

sensations, sweet, sour, salt and bitter. An electronic tongue is a more general system 

classifying quality of one or another kind in a variety of samples, food, drinks, water, 

process fluids, that do not relate to the human tongue. The multi-sensor arrays used for 

ET can be classified into three groups:

Potentiometric sensor arrays

All ETs based on the potentiometric sensing principle measure the charging of a 

membrane. This limits the range of detectable compounds to ions or other charged 

species. Tongues have been build from arrays of chalcogenide glass sensors, coupled 

with a pattern recognition routine, measuring the metal ion concentrations in river water 

with possible applications in environmental and process monitoring purposes [21, 22]. 

Lipid/polymer membranes on multi-channel electrodes have also been utilised for ETs 

[23\  They showed low sensitivity to non-electrolytes and weak-electrolytes, but the 

usage of Langmuir Blodgett membranes improved the sensitivity [24\

Voltammetric sensor arrays

Voltammetry measures the electrode current at a fixed potential, its sensitivity is higher 

then potentiometric methods, but the selectivity is poor since all components in the 

solution undergoing oxidation/reduction contribute to the signal.

A system consisting of six metal electrodes, (gold, iridium, platinum, palladium, 

rhenium and rhodium), driven by a series of voltage pulses was employed for the 

discrimination between fruit juice samples in reference [25]. The large amount of
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information contained in the generated voltammograms was extracted by multivariant 

calibration methods. In an explorative study, employing an electronic tongue [26], the 

filter efficiency and intactness of multiple filter stages in a water production process 

were characterised. A four-element voltammetric sensor array (gold, iridium, platinum, 

and rhodium) was used in conjunction with PCA. Water qualities could be correctly 

identified after each stage and this rating of water qualities was successfully used to rate 

the efficiency of the filters, identifying dysfunctional filters.

Optical sensor arrays

An electronic tongue based on light absorption was built based on a charge-coupled 

device with chemical indicators embedded in a resin bead. Via colour changes mixtures 

of Ca2+,Cu2+ and simple sugars were analysed [27l

The above is only a small selection of the applications of ET, with further research and 

development many more applications in the environmental and process monitoring will 

emerge.

2.5 Animal chemo-senses

When compared to the abilities of some animal senses our human senses appear rather 

crude. One of the most sensitive chemo-senses can be found in butterflies, which are 

able to recognise a single molecule of a sex hormone, pheromone, with their antenna 

[28l  This allows the attraction of a mate over a distance of several miles.

There exists a long history for the employment of animals as “chemical sensor” of 

which the canaries for the detection of explosive mixtures of methane in mines are most 

famous. But there are many more examples utilising the superior senses of animals as in 

the search for truffle with pigs or the tracing of humans with hounds. Even today the 

sniffer dogs used for the detection of illicit substances can only be replaced in certain 

cases and with substantial effort [29l

Several hybrid systems have been developed, that use insects who pick up molecules 

with their antenna and where electronic microelectrodes tap into the nervous system 

picking up the electric impulse directed to the brain[30].

A newly evolved trend is the use of bio-indicators, as for example the presencs or 

absence of fish as an indicator for the overall water pollution [31].
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2.6 Definition of a chemical sensor

Chemical sensors are devices, which convert a chemical state into an electric signal. The 

chemical state is determined by the concentration of atoms, molecules or ions in the 

solid, liquid or gaseous phase. Though it is generally accepted that a sensor must show 

a reversible action, for many biosensors employing enzyme reactions, the name sensor 

is also applied despite the irreversibility of the complexation. For other sensors 

employing irreversible reactions the term dosimeter is used.

There are many different types of chemical sensors; a classification can be undertaken 

by the properties that are affected by the interaction of the analyte with the sensor. 

Frequently used properties are conductivity, potential, capacity, heat, mass and 

refractive index. The principle sensing-train for a chemical sensor is shown in Figure 3. 

Its key components are sampling, preconcentration, filtering, analyte complexation in 

the sensing membrane, transduction of membrane changes, feature extraction of the 

transducer data and a recognition routine based on these features. Some of the elements 

are optional but the overall performance of the measurement increases with the number 

of elements and increasing sophistication of every element.

Of all the elements involved in the sensing-train, the sensing membrane, that forms the 

recognition sites and the transduction mechanism are the most performance determining 

ones.

Analytical techniques have been partially adopted for employment in portable devices, 

like for example the detection of carbon dioxide via infrared spectroscopy, these hybrids 

do not require a sensing membrane, but are not regarded as sensors in the conventional 

sense.

Traditionally information about the chemical composition of a sample has been 

provided by analytical chemistry. Today the analytical methods for the chemist 

comprise tools such as chromatography, mass spectroscopy, nuclear magnetic resonance 

spectroscopy and so on. These tools have still an unrivalled sensitivity and selectivity 

but have also many drawbacks attached to it. Those are mainly the cost of the 

equipment, stationary operation only, extensive sample preparation and long time lags 

for the analysis results.

The major driving forces responsible for the development of new sensors are:
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Increasingly stringent guidelines and legislations imposed by governments and other 

stipulating bodies that bring with it the necessity of measurements to prove 

compliance.

An increased desire in the understanding of our environment or micro-environment, 

as our living spaces [32], that requires measurements mapping out spatial 

distributions.

Replacement of probe taking and subsequent chemical analysis by in-line monitors 

in production plants.
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Fig.3 Sensing train with optional steps transferring information from the chemical 

domain into the physical

2.7 Thermodynamics of sensor analyte interaction

The decrease of the free energy (Gibb’s free energy) is the driving force in all sensing 

processes. For a thermodynamically reversible process a dynamic equilibrium is 

established between the analyte in the ambient and the analyte sorbed in the sensing
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membrane. There are two types of sorption, adsorption refers to sorption taking palace 

at the surface only and absorption includes the migration of analytes from the surface 

into the bulk of the structure. The dynamic nature of this process means that 

continuously molecules are exchanged between the ambient and the membrane.

This interaction between the membrane (M) and the analyte (A) can be expressed as in 

( i ) [331,

m + A t ^ ma (i)K

where the equilibrium constant K is defined by (2).

g  _ Equilibrium constant forward reaction _ k f  
Equilibrium constant reverse reaction kr

For low to moderate concentrations the activity of a species can be equated with its 

concentration [34], this allows the expression of the equilibrium constant as in (3),

K=Jhu_=h_ (3)
“u-aA K

with aMA being the activity of the sorbed analyte, aM the activity of the binding sites, aA 

the activity of the analyte in the ambient.

The sorption of species from the liquid or gaseous ambient is nearly always exothermic, 

since the motional energy of the molecules in the ambient is higher as compared to the 

energy of the bound species, therefore energy is given off. This means that the heat of 

adsorption AHa, enthalpy, is negative (4).

AHa <0 (4)

The entropy change, ASa, during the sorption of a species is negative, the entropy being 

a measure for the orderedness of a system, is increasing since bound molecules are in a 

more ordered state than freely moving about molecules in the ambient (5 ).

ASa<0 (5)
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The Gibb’s free energy, AGa, of the sorption process [35] is their difference, according to 
(6),

AGa=AHa-T A S a (6 )

with T being the absolute temperature.

From this, it can be seen that for the sorption to occur, AGa < 0, AHa must be sufficiently 

negative and T small enough so that the enthalpy term compensates for the entropy 

term.

2.8 Intermolecular forces between the analyte and the sensing 
membrane

For a change in the Gibb’s free energy upon sorption of the analyte in the sensing 

membrane, bonds of various nature must be formed between them. These bonds are 

based on the intermolecular forces between the participating molecules. The strength of 

these forces defines the reversibility of the reaction, with the energy for the bond 

breaking stemming from the thermal energy of the molecules. Frequently micro-heaters 

are therefore integrated into the sensor providing additional energy to improve the 

reversibility. All binding forces can be ultimately reduced to electrostatic forces 

between positive and negative charges as described by the Hellman-Feynman theorem
[36]_

Following is a description of how these electrostatic forces come about and interact 

between neutral molecules, with a quantitative description of the forces and interaction 

energies, presented in order of decreasing magnitude in Table 3. Neutral here means, 

neutral when the whole molecule is considered and that over an extended period of 

time. Knowledge about the interaction forces and their origin is vital in the 

understanding of the complexation process, where complexation sites in the membrane 

can be partially inferred from their electronic structure.

In most molecules the atoms are held together by the shared electron-pair-bond or 

covalent bond. This bond is so important and universally present in substances that the 

discoverer of its electronic structure, Lewis, called it simply “The chemical bond”. It 

consists of a pair of electrons shared between two atoms, occupying two stable orbitals, 

one of each atom. Here the electrostatic attraction between electrons and nuclei balances 

the mutual repulsion between nuclei-nuclei and electrons-electrons and is the source for



the bond energy. The bond energy can be viewed as the resonance energy for the 

electrons between positions about the nuclei. The bond can be very strong, as in the case 

of diamonds, where four covalent bonds per atom are responsible for its hardness. For 

all sensing applications, the strength of this bond makes it an irreversible process, which 

can be highly specific, but changes both the make-up of the analyte and that of the 

sensing membrane permanently. If covalent bonds are formed a chemical reaction takes 

place, this finds application in colourmetric measurements, like in test stripes.

When two different atoms bond together covalently, there will be an unequal 

distribution of positive and negative electric charge on the molecule. A measure for the 

power of an atom to attract electrons to itself is its electronegativity. Pauling who first 

quantified this concept, assigned a number from 4 to 0.7 to every atom, deriving these 

values from wave functions calculations [371. The unequal charge distribution in a 

covalent bond contributes with an additional ionic character to the strengthening of the 

bond via ionic resonance energy [38]. The ionic character can be viewed as two different 

poles on the molecule, one where the centre of the positive charge lies and one where 

the centre of the negative charge lies, thus creating an electric dipole. Water is a well- 

known example of a polar substance with one of the highest dipole moments, due to the 

large electronegative difference between hydrogen (2.1) and oxygen (3.5). For the 

intermolecular binding of molecules, which possess dipole moments, the attractive 

forces between opposite poles are inversely proportional to the third power of the 

distance between their centres, see Table 3. Molecules or parts of molecules where a 

large dipole moment exists are referred to as hydrophilic, because their character 

resembles that of water, in which they are highly soluble.

Even in symmetrical arranged molecules such as carbon dioxide, tetrachloromethane or 

oxygen there exists an electric dipole moment. In the case of oxygen the dipole comes 

from a mismatch of the centres of charge at any one time, since the electrons are 

changing their position within the orbitals, these are termed, instantaneous electric 

dipole moments. In the case of carbon dioxide, where the oxygen is attached to the right 

and left of the carbon molecule the dipole moments cancel each other out but only when 

the whole molecule is considered, there still exists one for each CO segment.

Even for single atomic gases, like helium there exist attractive forces between 

individual atoms, otherwise it would not liquefy. Though in the case of helium the 

forces are so small that it only liquefies under pressure at 3 K.
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The forces described above are short-range forces so that any interaction between them 

requires the molecules to be very close together. London developed an initial theoretical 

model of these forces in 1929. Generally the forces increase with the number of 

electrons and therefore molecular weight, which is reflected in a correlation of the 

boiling point and the molecular weight (MW), with the boiling point increasing together 

with the MW [39l

A further possibility for the creation of a temporary dipole is to induce one in a 

molecule by the presence of either an ion or a strong dipole attracting or repelling the 

electrons of the passive molecule.

Type of interaction Quantitative description Order of magnitude ( kcal mol'1)

Covalent bond 50-200

Hydrogen bond 1 - 1 0

Ion-ion E ~ ziZ2/Dr 1 0 - 1 0 0

London forces E ~ C ia 2/r6 1 - 1 0

Ion-induced dipole E ~zi2a 2/Dr4 0 .1 -1

Dipole-dipole E ~ pip2/Dr3kT 0 - 1

Hydrophobic bond CH3CH3 0.3

Table 3 Types of intra- and intermolecular interactions, with qualitative description by 

approximate interaction energies [33\  with D = dielectric constant, a  = polarizability p = 

dipole moment, r = distance and z = charge
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3 Calixarenes and Resorcinarenes

Calixarenes and resorcinarenes are reaction products from phenols/resorcinarenes and 

formaldehyde under alkaline conditions. The principle of the condensation reaction is 

shown in the Figures 1 and 2 for calixarenes and resorcinarenes respectively 2’ 3l

R

.Q
HCHO

O H / A

OH

R=alkyl, phenyl

R

OH

(cyclic)

Fig. 1 Condensation reaction for calixarenes

HO

R=alkyl, aryl

Fig. 2 Condensation reaction for resorcinarenes

HO OHRCHO

R
(cyclic)

The reaction conditions determine if the product is a complex mix of oligmeric 

molecules or the desired macrocyclic product. The resulting cyclic oligomers are named 

calix(n)arenes were n specifies the number of phenolic units. Gutsche introduced the 

name calixarene, based on the resemblance of the molecule to the Greek vase 

calixcrater. The striking similarity between their shapes can be seen in Figure 3.

The bowl like shape of the oligomer, in Figure 4 is shown a tetramer, makes an 

inclusion of guest molecules possible, and it is this property that is of fundamental 

interest for any sensing application.

Resorcinarenes form mostly tetramers [4̂ , though pentamers and hexamers have been 

reported [5’6l  In calixarene chemistry, which is based on phenol derivatives the size of 

the macrocycle can vary from 4 to 8  units t2]. Large amounts of the products can be 

made in a “one pot” reaction avoiding complex multi-step synthesis. The possibility of
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Fig. 3 Comparison between calixcrater and calixarene molecule

R R

OH 'HO

HQ. .OHHO. k.OH

Fig. 4 Bowl structure of calix(4)arene and calix(4)resorcinarene

easy modifications make them an interesting starting material in the design of different 

types of host molecules. Early phenol-formaldehyde chemistry in the 1870s ^  must 

have resulted in the formation of cyclic oligamers, but it was not until the 1920s that 

first structural predictions were made and not until the 1940s that their cyclic 

structure was understood.

Modem calixarene chemistry has only started in the 1970s with the work of Gutsche 

and co-workers. Excellent review articles about the history of calixarene chemistry can 

be found in the references [2,10, u \

3.1 Synthesis of Resorcinarenes

The reaction of resorcinol and formaldehyde with the catalytic aid of an acid, results in 

polymers or cyclic tetramers, depending on the reactivity of the aldehydes used [12]. The 

yield for this reaction is high whereas pentamers and hexamers are only produced with
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low yields. When compared with the corresponding calixarene synthesis the reaction is 

more versatile since a larger variety of aldehydes can be used as a starting material. A 

typical example of such a synthesis is given below.

A solution of resorcinol acetaldehyde and 37 % HC1 in ethanol, is heated to 80 °C and 

held at this temperature for 16 hours resulting in C-methyl resorc(4)arene as the 

condensation product[131.

Structural proof of the cyclic structure for resorcinol derived tetramers was first 

obtained in 1968 for octa-O-butyrate [14l  One of the difficulties in getting the structural 

proof was the necessity of suitable crystals in the x-ray crystallography analysis. It is 

now accepted that the intramolecular hydrogen bonds between neighbouring resorcinol 

units are the reason for the formation of a cyclic tetramer [l5\

3.2 Conformations

One of the most important features of calixarenes is their ability to recognise organic 

and inorganic molecules on the basis of their size and shape. For this purpose the 

conformational properties are relevant.

Calixarenes/resorcinarenes are not completely rigid structures like crystals. Instead their 

structure is flexible depending on the length and type of substitute attached, temperature 

and solvent used in their synthesis and their conformation. A great deal of work has 

been carried out, much with the help of molecular modelling t161, to add to the 

understanding of these conformations.

The three most likely and stable conformations for resorcinarenes are shown in Figure 

5.

Y

’Y

flattened cone

Fig.5 Possible cone formations for calix(4)resorcinarenes
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Other structures have been observed in solution and are possible but have so far been of 

only minor relevance. Further information regarding possible conformations can be 

found in reference [2\

3.3 Derivatives of Calixarenes and Resorcinarenes

Calixarenes and resorcinarenes are extremely versatile compounds. The chemical 

modification of the substitutions in the upper and lower rim, Figure 6 , allows the 

tailoring of the conformation and therefore determines the kind of interaction with 

possible guest molecules.

upper rim

lower rim

Fig. 6  Schematic diagram of a calix(4)arene bowl

Ever larger molecules based on calixarenes and resorcinarenes are appearing and their 

properties and the ability to be made to measure are far superior to that of other 

macrocyclic molecules such as crownethers or cyclodextrines [17l  

Calixarenes can be modified in mainly two ways, by the introduction of a residue at the 

phenolic hydroxy group and the substitution of groups in the p-position with respect to 

the phenolic hydroxy group.

A common way of modifying resorcinarenes is to substitute alkyl and aryl groups on the 

methylene bridges. Those substitutions determine the conformational properties and 

guest qualities [2J. In Figure 7 are shown a few of the possible modifications. The size of 

the molecule increases from 7a, for low n over 7b, with 7c being by far the largest. The 

bridging of neighbouring resorcinol units has lead to an extension of the cavity, linking 

up to three molecules together11
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(7)

B = 0 - X - 0

X -  (CH2 )n , SiR2

♦  4
(7a) (7b) (7c)

Fig.7 Example of possible resorcinarene modifications

3.4 Calixarenes and Resorcinarenes as Host Molecules

Molecular recognition that can be found in biological systems has evolved over millions 

of years. These extremely specific reactions, like the antibody antigen reaction, rely on 

the complexation of molecules that consist of thousands and sometimes millions of 

atoms. In contrast to this, supramolecular chemistry' combined with complexation 

chemistry is a rather young research field. Starting with Petersen’s discovery of 

crownethers there was and is a steady development in this field. The comprehensive 

program of host guest chemistry led by Cram, for which he received the Nobel Prize in 

1987 [19], was a landmark study in this field.

The suitability of the calixarenes/resorcinarenes, as starting blocks, in the design of 

guest molecules with their ease of fimctionalisation has been stated earlier.

In the very beginning of the complexation studies, almost all the attention focused on 

metal ions. Work regarding the complexation with neutral molecules is of much later 

origin, and has not attracted the same scale attention. Research concentrating on metal 

ion complexation focuses on three main targets. Firstly, the detection of metal ions in 

biological environments with the ultimate goal of an in situ, online sensor.

Secondly the extraction of metal and heavy metals out of solutions for the purpose of 

cleaning up effluents or the extraction of precious metals. So far reports for the 

extraction of actinides, lanthanides [20] and the extraction of caesium out of nuclear 

waste solutions have emerged
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The third target is the development of membranes with transport structures for ions, 

mimicking that of ion channels in cell walls [22].

Izatt discovered that transport properties for cations in calixarenes are strongly pH 

dependent, where neutral solutions were almost ineffective but strong basic solutions 

lead to a significant ion transport 2̂2\

An extensive study on the influence of the cavity size on the extraction of ions was 

performed by Me Kervey et al. [23\  By using p-tert-butylcalix(4,6,8)arene to extract 

various alkali ions from the aqueous phase they were able to generalise their findings in 

the following way.

Calix(4)arene shows the greatest selectivity for Na+, calix(6 )arene show less affinity for 

Na+ than for K+ with plateau selectivity for Cs+ and Rb+ and calix(8 )arene showed the 

least selectivity for the four ions. A universally poor response to Li+ ions characterised 

all of them. There is a good correlation between the cavity size and the ionic diameter of 

the ion included, with the selectivity at its highest where the closest match is found. 

Apart from the complexation inside the bowl, binding can occur on functional groups in 

the lower rim. Reports of this type of complexation were made in reference [24l  A 

combination of both has also been established for calix(5)arenes complexing with 

acetone, where one acetone molecule is held inside the cavity and another one 

externally to it. Lately several papers claimed complexation of various analytes between 

the aliphatic side chains and within the cavity In general it seems now to be 

established that the size of the calixarene, the substitutions in the para positions and the 

rigidity of the molecule all play a part in determining the complexation reaction.

For aromatic organic molecules the CH/a or the CHs/^r interaction between the 

aromatic ring of the guest molecule and alkyl group/methyl group are responsible for 

the occurring binding. This behaviour can also be predicted from theoretical 

calculations Factors influencing the formation and tenacity of inclusion complexes 

for neutral molecules were systematically studied for calix(4)arenes in reference [27].

Resorcinarenes seem to have a greater tendency to form complexes with organic 

molecules compared to calixarenes. Kenichi [21J et al. have carried out detailed studies 

on resorcinarenes with C11H23 alkyl chains, in these they found strong interactions for 

alcohol’s, sugars and carboxylic acids. This suggests that the dominant interaction is 

due to hydrogen bonds involving at least one OH group of the host and one of the guest. 

The second mechanism contributing to the binding is the CH/a interaction. Table 1
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gives some complexation properties for simple calixarenes, all of the type p-tert- 

butylcalix(n)arene but with varying repeating units of 4-8.

calix(4)arene calix(5)arene calix(6 )arene calix(7)aren calix(8 )aren

Analyte chloroform1281 isopropyl 

alcohol1311

chloroform1281 methanol[32] chloroform1281

Analyte benzene[29] acetone [29] methanolI28]

Analyte toluene[30]

Analyte xylene [28]

Analyte anisole [29]

Table 1 Complexing properties of p-tert-butylcalix(n)arene

One outstanding difference in the complexation, for different combinations, is the 

permanence of it. Whereas the octamer loses the chloroform in minutes at room 

temperature and atmospheric pressure, the tetramer and hexamer hold on to some of 

their guest so tightly that even heating in a vacuum does not remove them completely 

ps] Yhe close fitting of a benzene molecule inside the p-tert-butylcalix(4)arene was 

shown by x-ray crystallography [30]. Apart form the endo-calix complex that can be 

formed several types of exo-calix complexes have also been reported, a schematic exo- 

and endo- complexation is shown in Figure 8 . One such exo-calix complex is the 

l,l,3,3tetramethylbutyl-calix(4)arene in which toluene molecules are captured between 

rather then inside the calixarene molecules. Another complexation mode is found for p- 

tert-butylcalix(4)aren and anisole, here a single anisole molecule is shared between two, 

rim to rim aligned calixarene molecules [33l
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Fig. 8  Schematic of exo- and endo- complexation

3.5 Calixarenes and Resorcinarenes in Sensing Membranes

The ability of calixarenes/resorcinarenes to act as baskets is their most intriguing 

property. The discussion about synthesis and shaping has only been a prologue to the 

critical matter of their application in sensing membranes. Since this thesis focuses on 

novel applications of calixarene sensing membranes, some established sensing 

techniques are described in the following.
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The sensing applications, which use calixarenes/resorcinarenes, can be categorised into 

metal ion sensors in aqueous media and the detection of organic guest in air and 

aqueous media.

3.5.1 Sensors for Metal Ions

A variety of optical methods have been used to register the selective binding of metal 

ions, these are based on the principle of changing the absorption or fluorescence 

properties of the membrane upon complexation. This is only possible when a 

chromogenic or fluorescent group is involved in the reaction. The basis of such 

recognitions is that upon complexation the chemical environment of the molecule is 

significantly altered to change the UV-vis adsorption spectrum or the fluorescence 

spectrum. A variety of chromogenic and fluorescent groups have been used including 

azophenol [34J, pyrene [35] and hexamethyl [36l  Other indirect ways involve a mediator

[37] where lithium ions bind, in the presence of triethylamine in an equilibrium reaction 

and indicate the extent of the reaction through the appearance of a new band in the 

visible spectrum.

The operation of the majority of metal ion sensors is based on potentiometric or 

voltammetric-amperometric principles. These take advantage of the electrostatic forces 

that accompany the ions. Electrostatic forces are stronger and more easy to register than 

mass changes and this explains the dominance of this sort of measurements for the ion 

detection. Ion selective electrodes (ISE) have been developed for a variety of ions, like 

Na+ [38, 39\  K+ [40̂ , Cs+ ^  and uranyl+ 4̂2l  These ISE follow generally the Nemst 

equation [43], this describes the resulting voltage on an electrode in terms of the ion 

concentration in the solution. A five times stronger response, as predicted from the 

Nemst equation, was observed for a thermally evaporated calix(4)arene membrane on 

electrochemically produced porous silicon as a membrane support [44]. The changes 

upon Na+ complexation were measured via capacitance changes. The extremely high 

sensitivity was attributed to the rather three- than two-dimensional structure of the 

membrane support.

To improve upon the signal amplitude field effect transistors have been modified to give 

ion sensitive field effect transistors (ISFETs). A very attractive aspect of this is, that the 

production costs are reduced, by employing the batch processing techniques from the 

solid state device fabrication. An inherent problem that has so far hindered the full 

utilisation of the compact size of the transistor is the necessity for a reference electrode.
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Currently, no perfect microdimensional reference electrode has been found, though 

screen-printed ones from silver-silver chloride ink have shown promising potential. 

Two FETs, one modified, one blank, working in differential mode have been suggested 

to overcome this problem. Since 1997 three ISFETs employing a calixarene covering as 

a gate, have appeared in the literature. In all cases the calixarenes have been thermally 

evaporated and extensive studies were carried out to show that no decomposition took 

place during the evaporation.

In accordance with the results for the ISEs, calix(4)arene showed selectivity to sodium 

ions [45], calix(6 )arene to nickel ions [45], p-tert-butyl-calix[8 ]arene showed linear 

sensitivity to Ca2+ ions [46], p-tert-butyl calix(10)arenes for silver(I) ions [47] and p-tert- 

butyl calix(12)arenes for iron(III) ions [47].

Recently microsensors based on an electrolyte-insulator-semiconductor (EIS) structure 

have been reported [48l  Their working principle depends on electrochemical capacity 

measurements, not unlike that of the ISEs. The membranes were thermally evaporated 

onto a silicon substrate, with claims being made about an improved membrane lifetime 

and confirmation of the previously stated complexation predilections, as mentioned for 

ISEs and ISFETs was obtained.

The behaviour of p-tert-butylcalix(n)arenes monolayers on the air water surface were 

studied upon complexation with Na+, K+, CS+ and C60 molecules [49l  By measuring the 

pressure area isotherms of monolayers under different complexing conditions it was 

possible to determine the size of the empty molecules and that of the complexed 

molecules. The results showed a marked increase of the molecule area upon complexing 

and this indicates, that filling of the cavity changes the conformation and orientation of 

the molecules substantially.

3.5.2 Sensors for Organic Analytes

3.5.2.1 In aqueous media

So far very little attention has been given to the detection of organic analytes in aqueous 

solutions, using calixarenes. The only extensive reported study carried out, concentrated 

on quartz crystal microbalances (QCMs) as the transduction mechanism. In it Roessler 

et al. [50] compared a variety of polymers, operated below their glass transition 

temperature and calixarenes as coatings for the QCMs.

The calixarenes were spray-coated onto the QCMs and showed a high sensitivity, down 

to the ppm region, for aromatic analytes and chlorinated hydrocarbons with good
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recovery upon flushing. This study made clear the preferential dispersion properties of 

calixarenes over that of polymers. For a similar study [51] cast and LB membranes, on 

QCMs were used for the detection of organic amines in water. The reported sensitivities 

were higher for the more ordered LB films over that of the spun films.

The inclusion of ethanol into different calix(4)arenes from aqueous solutions was 

confirmed by NMR studies by Arena[52J.

3.5.2.2 In air

One of the most pressing issues in the field of environmental monitoring is the detection 

of solvent vapours and other organic compounds in real time, without the employment 

of cumbersome analytical tools. The concentration ranges of interest vary from a few 

ppm for the threshold limit value (TLV), to a few percent for the lower explosion limit. 

Many volatile organic compounds have now been classified as carcinogenic, teratogenic 

or are suspected carcinogens. One of the early studies on the complexation of organic 

molecules in thin films of calixresorcinarenes [53̂ showed that LB films of 

calixresorcinarenes could be employed for the detection of benzene vapours utilising 

QCMs and ellipsometry.

Dalcanale et al. [54,55] found in their studies two major trends between the molecular 

structure and the complexing behaviour. Long alkyl chains at the lower rim lead to an 

increase in the sensitivity by forming more disperse and porous layers and that specific 

CH-n  interactions improve the selectivity for analytes with polarised C-H bonds. These 

trends were independently confirmed by Dicker [56\  Gopel et al. [57] found on the basis 

of QCM measurements that the sensitivity increases with an increasing thickness but 

also the ageing effects.

Since its inceptions in 1982 the analytical tool of Surface Plasmon Resonance has 

become a valuable technique for the study of the complexation reactions in thin films. 

This analytical tool has so far not emerged in a way that can be described as a sensor, 

but early signs for this to happen in the near future can be seen in the granting of a 

patent for a mobile device [58] and Texas Instruments efforts [591 in developing a 

handheld set with disposable sensors heads. Unfortunately both devices still rely on an 

external PC for their data processing.

The first calixarene thin film study based on the SPR technique was carried out by 

Shirshov et al. it investigated the static and dynamic response of a

calix(4)resorcinolarene sensing membrane to toluene, natural gas and petrol vapours.
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The sensitivity was in the order toluene »  natural gas »  petrol vapours, studies in the 

same direction continued. The studies carried out have given valuable insights in the 

observed phenomena of film swelling and changes in the refractive index in the 

membrane. So far many models have been proposed for the factors influencing the 

selectivity and sensitivity. In a study on tetra- phosphorylated calix[4]-resorcinolarene 

LB films 1611 the selectivity of the SPR response to various hydrocarbons was attributed 

to the difference in the condensation temperatures of the analytes rather than to the 

molecular dimensions. Condensation of the vapours in the film, was proposed as a 

further mechanism, contributing strongly to the response This mechanism was further 

confirmed in reference [62\  which added QCMs measurements and SPR studies, 

expanding the model of condensation to higher vapour concentrations. A variety of tert- 

butylcalix[n]arene (n=4, 6  and 8 ) in a combined QCM and ellipsometer study were used 

in [63l  The changes in the optical film parameters were investigated for benzene, toluene 

and chloroform, concluding that at room temperature, recovery was incomplete and 

only heating of the film to 160 °C lead to a complete recovery.

Sabot [64] carried out an extensive complexation study based on the SPR analysis of 

spun films and their response to cyclic hydrocarbons using a variety of bridged 

resorcinarenes with straight and cyclic substitutions on the upper rim. In it the response 

to a standard concentration of 50 ppm of toluene, benzene and acrylontrile was 

investigated for each of the compounds. The study showed a direct correlation between 

the structural features of the membrane and the selectivity for an analyte, emphasising 

the importance of the cavity in the process of adsorption for the host guest interaction. 

So far the exact nature of the complexing reactions has been subject to an inconclusive 

discussion.

3.6 Non-chemical Sensor Orientated Applications for Calixarenes and 
Resorcinarenes

The use of calixarenes/resorcinarenes is not only restricted to the field of chemical 

sensors. Their remarkable properties have been employed for a variety of purposes. 

Given below are a few outstanding examples of their diverse usage in photolithography, 

medicine, temperature sensors and glues.

Photolithography: The main challenge in photolithography has been to generate ever- 

smaller feature sizes in the resist pattern that remain true after developing and etching.
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The US patent US5702620 was granted for a toner that develops electrostatic 

images, where the binding resin contains a colouring agent, a calixarene compound and 

a charge control agent. Here some of the phenolic OH groups of the calixarene are 

metallized with alkaline and alkaline earth metals.

Such an ultrahigh-resolution negative resist made possible the fabrication of an 

electrically variable shallow junction metal-oxide-silicon field-effect transistor with a 

gate length of just 32nm [66l

Medicine: Some phenolic compounds are well known to possess physiological 

properties, as for example the urusthiols with the long chain alkyl-substituted catechols, 

which are the active ingredients in poison ivy. A method for inhibiting the viral cell 

infection, that causes herpes, is to administer a therapeutically effective amount of 

calix(n)arene orally or topically [67l  For this the calix(n)arene were fimctionalised in the 

meta ring position with carboxylate, phosphate, sulfonate groups, esters and amides all 

of which are cleavable inside the human body.

Adhesives: The addition of small amounts of calixarenes (0.1%-1%) to cyanoacrylate 

adhesives has proven to reduce fixture and curing times by deactivating specific 

substrates such as wood [68]. Here simple alkoxy and alkyl substitutions in the para 

position of the ring suffice, with the calixarenes having 4, 6  or 8  repeating units.

Temperature sensor: Studies driven by the desire to develop more easily operated 

thermal detectors have employed alternated carboxyl/amide substituted calix(8 )arene 

LB films, exploiting their pyroelectric behaviour [69]. The temperature dependent 

electric polarisation of the membrane can be employed as a dielectric in a capacitor with 

short-circuited electrodes, connected to an ammeter. Whenever the temperature 

changes, an electric current can then be registered, indicating changes in their position 

and with these changes in the temperature. To produce the required non- 

centrosymmetric structure the carboxcyl substituted and the amide substituted 

calixarenes were alternately deposited. This resulted in a net dipole in the film based on 

the individual dipoles of the molecules. The influence of pendant chain structure 

changes, in pyroelectric applications were further studied in same detail in [70].
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4 Materials and film deposition

This chapter describes the material used throughout the studies, outlines different 

mechanisms of thin film formation and presents an analysis of the resulting film 

properties.

Thin films are of special interest, for sensor applications since most analyte interaction 

is restricted to the surface or a very limited region beneath the surface. Diffusion into 

the bulk of a macromolecular/polymeric membrane is often a complex process that can 

be described by either Fickian diffusion fl], with a linear diffusion coefficient, or for 

non-Fickian diffusion, with complex diffusion coefficients [2\  Thin films by virtue of 

their large surface to bulk ratio offer faster response times.

4.1 Calix[4]resorcinareneC7H15 
aniline

and Poly-ortho-methoxy

The compound that is central to all following studies is the calix[4]resorcinarene C7H 15. 

Its structural formula is given in Figure 1 and its ball and stick model is presented in 

Figure 2.

HO OH

HO'

OHHO

R = C7H15

Fig. 1 Chemical formula of the 

of the calix[4 ]resorcinareneC7Hi5

Fig.2 Ball and Stick model 

calix[4 ]resorcinareneC7Hi5
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The compound was synthesised in and obtained from the Academy of Science in Kiev. 

In addition to it, an in house synthesised polymer was used. A detailed description of 

the synthesis can be found in the Appendix 1. The chemical formula of the polymer, 

poly-ortho-methoxy aniline (POMA) is given below in Figure 3a, for the undoped 

(nonconducting) emeraldine base and Figure 3b, in its doped (conducting) form as an 

emeraldine salt.

n= degree o f  polymerization n

Fig. 3a Poly-ortho-methoxy aniline emeraldine base

n= degree o f  polymerization n

Fig. 3b Poly-ortho-methoxy aniline emeraldine salt

4.1.1 Electroactive conjugated polymers and deposition thereof

Exploitation of electroactive conjugated polymer LB films has attracted much interest in 

the field of chemical sensors [3‘5]. Unfortunately many polymers form either unstable 

monolayer ( M L ) o r  the layers are too rigid for a transfer onto substrates In order to 

deposit non-surface active conjugated polymers in the form of LB films, the mixed 

monolayer approach can be employed. In this the mixing of the polymer with a surface- 

active agent, provides a mean of rendering the film more flexible, by dispersing the 

polymer molecules into small domains, which ensures a good transfer of the film onto 

the substrate. The mixed monolayer film, is a matrix of amphiphilic molecules with the
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polymer molecules dispersed in it. The level of mixing that occurs depends on the ratios 

of the components and their structure. High quality LB films have been reported for 

very diverse amphiphilic matrix materials, like cadmium sterate 3-octadecanoyl 

pyrrole [8], tetra-tert-butyl phthalocyanine [9], stearic acid [6], vanadium-tetraphenyl 

porphyrine [10̂ and phosphorylated calixarenes [11l  Extensive studies on gas/vapour 

sensing membranes utilising aniline based polymers have been conducted in the 

literature [12,13]. Part of their attractiveness stems from the ease of their synthesis, the 

low cost of the materials, their high environmental stability and an extensive pool of 

background knowledge that already exists. In line with aniline based sensing 

membranes POMA was chosen, representing a non-surface active polymer for the 

incorporation in the C[4]RA matrix. The focus lies here on the matrix for the 

application in sensoric membranes, not on fundamental studies regarding the polymer 

per se. No obvious difficulty can be seen, when it comes to replacing the POMA for any 

other aniline based polymer, with differing sidegroups, like for example ethoxy groups. 

Main factors, influencing the polymer conductance are its molecular weight and the 

type of dopant used. Any cited molecular weight is only the average of all the molecular 

weight fractions contained in the whole sample, making any direct comparison between 

polymer samples, originating from different synthesis methods, difficult. Recent studies 

have shown, that the kind of solvent used influences the conductance of the polymer. 

For m-cresol as a solvent secondary doping for polyaniline was reported [14,15], leading 

to an increase in the electrical conductivity and an altered film morphology. FTIR 

spectroscopy has shown that the m-cresol is not incorporated into the polymer [16], but 

influences the polymer structure. The changes have been attributed to conformational 

changes of the polyaniline chains, from the compact to an expanded coil structure [17,18]. 

Since no m-cresol is retained, this implies a kind of memory effect[14].

These results prompted the use of m-cresol as a solvent, to allow a more homogeneous 

and better integration in the deposition matrix, despite its high hazard rating tl9l  

In comparison to polyaniline, rather few studies have been carried out on POMA itself 

and its thin films. Fundamental studies regarding the multitude of synthesis factors 

influencing the conductivity [20,21] as well as studies on the AC conduction mechanisms 

have been carried in out in references [22,231.
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4.2 Thin film deposition principles

Three different deposition methods have been employed to apply the sensing 

membranes onto the different transducers. The following is a theoretical description of 

these techniques.

4.2.1 Casting

One of the simplest methods to coat a substrate is to cast a solution of the dissolved 

material onto a substrate and let the solvent evaporate leaving a film of the material 

behind [24l  The process is schematically shown in Figure 4. Its advantage is that it is 

universally applicable and allows the formation of rather thick films, its drawback is the 

limited homogeneity of the resulting film. The thickness was calculated according to 

(1 ), assuming an equal coverage of the substrate.

thickness -  vo ûme ^ sso v̂e^  material) 
covered area

Since all solutions were prepared by dissolving a given weight of the material in the 

solvent, the volume was calculated according to (2 ).

T. . concentration (g / ml) . . . . ,
Volume  ---------------------------- volume of solution used (2)

density o f material

The powder density of the C[4]RA was measured by compressing the powder in a 

microsyringe, to determine the volume and comparing weights. The powder density was 

found to be 0.62 kg/dm . This value is in very good agreement with a theoretical 

calculation using the densities of n-heptane (0.684 kg/dm ), representing the side chains 

and benzene (0.8786 kg/dm ), making up the cage, as 0.78 g/ml and allowing for a 

partially empty cavity. By introducing a factor of 0.8 from geometrical considerations, 

the theoretical value takes on 0.624.kg/dm . This geometric factor can be estimated 

from molecular models.

This method produced films of varying homogeneity, when chloroform was employed 

as a solvent the high volatility of the chloroform lead to a rapid evaporation and an 

acceptable film structure. A texture was clearly visible but was uniform over the coated 

area. The films created by this method were about 250 nm thick. When m-cresol was
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used as a solvent for the POMA, the resulting films showed unacceptable structuring. 

The low volatility (0.1 mmHg vapour pressure) and the high surface tension of the m- 

cresol (28.47 mN/m) led to the formation of a skin which showed a clear concentration 

of the solute in the centre of the coated area.

Syringeneedle

Drop containing x % by volume 
of the material to be deposited, 
dissolved in the solvent

Drop spreading out immediately I
alter contact with the substrate V

Substrate

Fig. 4 Schematic of the casting method, evaporation in steps 0-5 illustrating the 

increasing solute concentration

4.2.2 Spin coating

Spin coating allows the preparation of thin films on a substrate with and without 

topography. The method offers experimental ease, rapidity of deposition, employment 

of low-tech equipment and wide applicability for many types of coating. During the 

spin coating process a solution is pipetted onto a stationary or rotating substrate, which 

is held in place by the application of a vacuum from the bottom side of the mounting 

chuck. During rotation the solution spreads out under the influence of the centrifugal 

forces and is further thinned by the evaporation of the solvent, to leave a solid film
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behind. Figure 5 gives a schematic of the spin coating process and Figure 6  compares 

the film forming mechanisms for a stationary and rotating substrate.

pipette

rotating

Fig. 5 Schematic of spin coating

evaporation

cohesion + surface tension‘

stationary substrate

rotating substrate

t s
cohesion +  si rface tension

evaporation

centrifugal forces stressing the material and driving it outward

Fig. 6  Film formation on a stationary and on a rotating substrate

Though all spin processes consist of essentially four stages,

• deposition of solution

• spin-up, to wet the substrate surface

• spin-off, to remove excess liquid

• evaporation of solvent
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there is a varying degree of overlap in these stages. Three types of solution dispension 

are widely used, the dispensing onto the rotating substrate with a single drop [25,26\  the 

dispension of a stream of solution onto a rotating substrate and the deposition onto 

the stationary substrate [28l  The latter two types seem to prevail with photoresist type 

material. Since the photoresist application is vital for the microelectronics industry, 

much attention has been focused on assessing the parameters governing the film 

formation and on the derivation of a model for it [29'32]. A detailed look into these, 

reveals that a multitude of mechanisms contribute to the process. All models are 

idealised and neglect various contributions, to keep the models manageable. This is a 

serious shortcoming, when it comes to applying these models to processes that deviate 

even slightly. All existing models describe the processes shown in Figure 7.

fluid convection

mass transfer

spin time / spin speed

Fig. 7 Schematic illustration of processes contributing to the film formation for spin

coating

4.2.2.1 Factors influencing the film properties of spun films

• Washo found that the shape of the substrate does not influence the resulting film, 

apart from edge effects [33l

• Variation of the film thickness d, over the disk radius r is expected to follow a 

d= r2/3 relationship [33], but experiments showed that a more asymptotic behaviour, 

beyond a critical distance, is obtained. Surface tension has been suggested to 

contribute to this smoothing out of the thickness profile.

• Analysis, employing a one dimensional model, showed that the film thickness is 

independent of the initial volume of solution dispensed, and further, that the rate of

45



film thinning by convective flow is proportional to the film thickness [34], this is a 

limiting factor for the maximum attainable thickness.

• Concentration of the solute, in the solvent increases the viscosity and thicker films 

are obtained [35’ 26\

• The solvent, depending on its volatility and viscosity changes the film thickness, a 

well documented phenomena, but with no unequivocal correlation [37l

• Spin speed determines the film thickness, though consent is established for the 

general correlation between higher spin speed and thinner films, the function that 

the film thickness follows, seems to be strongly material dependent. Generally the 

function is expressed in terms of co, the angular velocity as in (3),

d=C'G>x (3)

with varying values for x and c. Vukosik ^  reports a linear relation for 

phthalocyanine with x= - 1, Hassan [36J reports a value of x= -  0.687 for tetra- 

undecyl-tetra-p-nitrophenylazocalix[4]resorcinarene and Extrand 3̂7J reports for 

natural rubber and polystyrene films an x of - 0.5.

• The formation of a free surface skin, in regions where the solvent evaporation 

causes the viscosity to increase locally, like on the edges of the convection front, 

this is particular relevant for highly volatile solvents.

• Temperature variation is regarded as negligible [31l

It is believed that many of the proposed models are no longer applicable when the 

resulting film thickness is reduced to the nm scale. Many model parameters such as the 

viscosity, evaporation rate, friction, clustering of molecules and stress/strain behaviour 

are non-linear with respect to concentration. Their characteristic is fundamentally linked 

to intermolecular forces between the solvent and solute. For film thicknesses in the 

range of multiple molecule diameters, the spatial orientation of a non-symmetric 

determined correlations for specific compounds can be considered unique. Though 

general trends can be a useful aid in undertaking intelligent modifications to the 

spinning parameters application of one particular model may produce misleading 

results.
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4.2.3 Langmuir-Blodgett (LB) film deposition

Historically the foundations of thin films on the water surface, go back to antiquity 

where the oil film formation on water, was employed for fortune telling [38]. Scientific 

interests developed over Franklin with his famous teaspoon of oil experiment[39], over 

Rayleighs oil film thickness determination1401 and Pockels first trough f41l  

Studies were developed by Langmuir and Blodgett, starting with initial work on 

monolayers of amphiphilic molecules at the water-air interface in 1917 [42] and 

continued with the studies on the transformation of these layers onto solid substrates [43l  

Since then films produced this way have carried the name Langmuir Blodgett (LB). 

Further background information of the emergence of these monolayer studies can be 

found in reference [44].

The formation of a high quality LB film requires the formation of stable, insoluble 

layers at the air water surface. For this the material needs to be amphiphilic, possessing 

a hydrophobic and a hydrophilic part, Figure 8 a. The hydrophobic part, consists in 

many cases of hydrocarbon chains and the polar part of a COOH group. This allows the 

molecule to orientate itself, according to the affinity of its parts, on the water surface. 

Such films can be transferred onto a variety of substrates by dipping them through the 

interface into the subphase while maintaining an intact film. Repeated dipping allows a 

controlled build up of a multilayer structure, Figure 8 b. Of all thin film deposition 

methods, the LB technique provides the most control over the film thickness, and it is 

the only technique to provide control of the spatial arrangement of the molecules. The 

solute is dissolved in a water insoluble solvent, (e.g. chloroform) in concentrations of 

around 1 % by volume and the solution is spread out onto the water surface. After the 

solvent is evaporated, the material is randomly orientated on the water surface separated 

by distances too large for intermolecular forces to be effective. The surface area 

confining the material is then reduced, with the aid of movable barriers skimming the 

water surface, Figure 8 c. This reduces the distance between molecules so that 

intermolecular forces start to aid in the orientation of the molecules; this transition is 

often compared to that from a gas like state to that of a liquid state. Upon further 

compression the molecules interact so strongly with each other, that they take on the 

state of a two dimensional solid. A measure for the state of compression, is the surface 

pressure, which is defined as the surface pressure of the film minus the surface pressure 

of the uncovered subphase. Once the film has reached the state of a 2D solid, further 

compression increases its 2D density, but increasing the surface pressure beyond a
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critical compression ratio, brings about a collapse of the film by shearing action. The 

deposition takes place, at a state in which the 2D solid still posses enough flexibility for 

a transfer onto the substrate, the most frequently cited surface pressures lie between 2 0 - 

40 mN/m. Since the transfer of the film onto the substrate reduces the material under 

compression, the remaining surface needs to be constantly reduced to compensate for 

this. For the maintenance of a steady surface pressure a negative feedback loop between 

a surface pressure sensor and the computer controlled movable barriers is used. The 

computer also allows the programming of the substrate dipping sequence, with respect 

to the number of cycles and the dipping speed. The analysis of the surface pressure 

increase under reduction of the surface area allows the determination of the molecule 

area, AO, via extrapolation of the linear part of the pressure area (7t/A) isotherm to the x- 

axis, Figure8 c. This is one of the most vital experiments for any LB deposition, since it 

describes the packing density and provides information of the molecular arrangement. 

The formation of the LB layer is performed in a specially designed trough, consisting 

essentially of a Teflon clad subphase (water) reservoir, with moveable barriers which 

define the surface area, a dipping mechanism for the substrate and a surface pressure 

monitor (Wilhelmy plate). Further details on LB trough designs and concepts can be 

found in reference [45].

4.2.3.1 Factors influencing the film deposition

Apart form the dominating influence of the surface pressure at which the deposition 

takes place there are several more influencing factors:

• dipping speed

• substrate surface properties (hydrophilic, hydrophobic)

• pH of the subphase

• composition of the subphase

• cleanliness of all touching components

• compressions speed of the barriers

The susceptibility of the deposition to any kind of disturbance, from either mechanical 

vibrations, dust and cleanliness of trough and substrate sets a natural limit to the 

reproducibility of the films. Furthermore the complexity of the operating procedures 

and the special equipment required makes it a rather costly technique. It has remained
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so far on the fringe of industrial fabrication techniques, and its use is most frequently 

found in the R&D realm.

substrate

hydrophobic, 
hydrocarbon chain

hydrophilic, polar 
part

(a)

individual
molecule

1st mono layer 2 nd mono layer

OOOQQOOQOO

subphase

(b)

Surface
Pressure

solid
solidcznobbbbbbt

liquid

liquid

gas gas

MolecularAO(C)
Area

Fig. 8  a-c Illustration of the LB film deposition and the correlation between the different 

states of the spread molecules
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4.3 Deposition details and experimental results

Thin films of C[4]RA and a combination of C[4]RA and POMA have been deposited 

onto different substrates and a comprehensive analysis of the membranes was carried 

out with a variety of techniques. The technique SPR is explained in detail in the 

Appendix 2, we have adopted further techniques that are comprehensively explained in 

the references [46,47l

4.3.1 LB films

4.3.1.1 Deposition details for C[4]RA films

The C[4]RA was dissolved in chloroform to a concentration of 0.5 mg/ml and then 

sonicated for 60 seconds, before about 1 0 0  pi of it were spread dropwise onto the water 

surface (milliq water) of the trough. Enough time was allowed for the chloroform to 

evaporate before the next drop was spread. The POMA was dissolved to a concentration 

of 0.5 mg/ml in m-cresol and the solution was sonicated in a sealed vessel for 1 hour to 

produce a homogeneous solution. After allowing the latter to cool down to room 

temperature, mixtures were prepared from both solutions and again the solution was 

sonicated before it was spread on the water surface. The low volatility of the m-cresol 

made the evaporation time rather large, so to avoid excessive spreading time, drops 

were placed far apart and only 60 pi of solution was spread. The layers were trained by 

compressing and uncompressing the layer repeatedly until the pressure area isotherm 

stabilised. There was a very marked training effect on the composite layers, very much 

less so for the pure C[4]RA. Deposition was carried out at a surface pressure of 25 -30 

mNm and the dipping speed for the different substrates was adjusted to provide 

maximum transfer. Table 1 gives the used dipper speeds. Between the up and down 

stroke a wait cycle of at least 300 seconds was allowed, to facilitate a complete drying 

of the substrate.

C[4]RA/POMA mix C[4]RA

Glass/fused silica substrate 5 down, 5 up 1 0  down, 1 0  up

Gold coated glass slide 5 down, 5 up 10 down, 25 up

Silicon substrates 5 down, 20 up 5 down, 25 up

Table 1 Dipping speeds for substrates, all values in mm per minute
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The trough was cleaned prior to any usage, employing in-house standard procedures and 

the substrates were cleaned with a variety of steps to remove any organic contamination. 

Silicon substrates and fused silica glass slides were left overnight in a solution of 

sulfochromic acid, extensively rinsed with milliq water and dried under a stream of 

nitrogen. Gold coated slides were rinsed with chloroform, dried in nitrogen, rinsed with 

milliq water and again dried in nitrogen.

All substrates used for the LB deposition were then rendered hydrophobic by leaving 

them over night in a glass jar containing a saturated atmosphere of 

hexamethyldisilazane, (DMS).

The compression of the floating C[4]RA layer gave the following pressure-area (71/A ) 

isotherm, Figure9. From this the area of the molecule is found to be 1,53 nm2. This 

agrees well with the value found in the literature [48] of 1 .6 nm2

Deposition was carried out at a surface pressure of 25 mNm; the averaged transfer ratios 

achieved were in the region of unity, within a window of 90-110%, for both upstroke 

and downstroke, resulting in Y type LB layers. Y type specifies the alignment of the 

molecules building up the membrane with the heads orientated head to head and the 

tails, tail to tail.
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Fig. 9 Pressure area isotherm of C[4]RA
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4.3.1.2 Film thickness analysis of pure C[4]RA multilayer structures

The thickness of the resulting membranes was analysed by SPR measurements 

(individual SPR scans not shown), with step structures of 2&4, 6 &8 , 10&12 and 16 

layers on different Au slides, the thickness was found to increase slightly nonlinearly 

with the number of monolayers, Figure 10. Since the DMS is contributing to the 

thickness of the membrane its contribution is proportionally higher for the thinner films. 

Averaging the thickness results in a value of 0.95 nm for a single monolayer, agreeing 

well with previously published results [481 of 0.9 -1.1 per ML.
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Fig. 10 Thickness of C[4]RA LB step structures

4.3.1.3 Deposition details for C[4]RA/ POMA composite films

Mixed ML of POMA in the C[4]RA matrix have been prepared with different ratios of 

polymer suspended in it. Solutions in ratios of 1 : 0.5 to 1 : 5 by volume have been 

prepared, the ML showed varying effects upon multiple compressions (training). The 

training is responsible for a structural change in the ML, strands of the polymer align 

themselves with respect to others and the C[4]RA. This behaviour must be considered 

when it comes to depositing the MLs, only layers that have been trained to the point 

were stable rc/A isotherms are reached, deliver similar film structures. Figure 11 and 12
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show the training effects for ratios of 1:1 and 1:2 by weight respectively. In the absence 

of the exact MW of the polymer, the area per molecule is based on the C[4]RA 

molecule only. The training effects are more pronounced for the higher polymer ratios, 

but there is no linear correlation between the molecule area and the mixing ratios. This 

absence, suggests that the orientation and incorporation into the matrix is very complex. 

Competing alignment mechanisms between polymer strands, polymer C[4]RA 

interactions, folding actions of the strands and integration into the C[4]RA basket can 

all contribute to this complex interplay.

A comparison of the training effects, depending on the mixing ratio and the resulting 

molecular areas are shown in Figure 13. The molecular area calculated is based on the 

molecular weight of the C[4]RA only.
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Fig. 11 Training effect on ML 1:1 mixing ratio by weight C[4]RA/POMA
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4.3.1.4 Thin film analysis of the composite membranes

4.3.1.4.1 Thickness analysis

It was found experimentaly that with decreasing polymer ratios the conductivity of the 

membranes decrease (Chapter 5), therefore for further studies a mixing ratio of 1:1 by 

volume from 0.5mg/ml by weight solutions was chosen. Thickness measurements were 

performed in order to elucidate the structure of the membrane. The analysis of SPR and 

ellipsometry measurements, Figure 14 and 15, resulted in slightly different values for 

the thickness of a single composite monolayer of 2 .1  and 2 . 2  nm, respectively.

For the ellipsometry measurements the composite matrix was deposited on silicon 

substrates with a 100 nm silicon oxide on top. The measurements were performed with 

a nulling ellipsometer. Here the linear polarised light is elliptically polarised upon 

reflection of the surface, the phase shift A between the beams and the tangent of the 

magnitude ratio of the total reflection is determined by finding the minimum 

reflection conditions. From the obtained positions of the analyser and the polariser, used 

to establish the minimum reflectivity, (values in degrees) the values of and A have 

been calculated, according to (4).

A D 'T  J  IT / (1 ̂ 0  ~  A2) + AlA = Pl + P2 and y¥ = ------------ —----  (4)

An analytical determination of both the film thickness d and the refractive index from 

and A is not possible. Therefore the relationship for A and was plotted for a possible n 

of 1.3, 1.4 and 1.5, using a simulation-fitting-analysis computer program. Measured 

values were overlaid to these and where the best fit was obtained the thickness was 

calculated.
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Fig. 15 Ellipsometer thickness analysis of step structures of the composite membrane on 

silicon

Since the height for a single C[4]RA was determined as 0.95 nm and the height for 

aniline based polymer backbones is cited as 0.5 nm [49\  this suggests a matrix with two 

under/over-lying POMA strands per C[4]RA molecule. Therefore an arrangement as 

shown in Figure 16 is proposed. The POMA strands form a bilayer, based on the
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stronger delocalised ;r-;r interaction of the aromatic rings rather than an interwoven 

structure with the C[4]RA, which sits on top of the POMA. The attractive forces 

between the POMA are not strong enough to support more than two strands in each 

transferred layer.

Fig. 16 Proposed molecular arrangement in the composite membrane

It can not be said with certainty, that this is the actual arrangement that is taken up, a 

variety of arrangements are possible, only scanning atomic force microscopy or nuclear 

magnetic resonance studies are able to provide more conclusive results.

4.3.1.4.2 Homogeneity analysis

The homogeneity and thickness of the membrane was further evaluated with absorption 

spectroscopy. For a thickness beyond around 10 mixed ML SPR is no longer suitable, 

since the evanescent field is completely absorbed (Appendix 2). The colourless C[4]RA, 

required the use of fused silica as substrates to extend the spectral measurements into 

the UV region. Figure 17 shows a comparison of the absorption spectra of “pure” 

C[4]RA and the composite membrane. The C[4]RA has two strong absorption peaks in 

the ultraviolet at 200 and at 287nm, with the 200nm peak stemming from the 

n  - n  electron transition of the ring structure *-50̂ and does not show any absorbance 

beyond 350 nm. The peak at 190 nm increases linearly in height with the steps in the

57



number of ML. Since the light absorption is directly related to the thickness/ 

concentration of a sample via Beer’s law (5) [53\  this confirms a linear thickness 

increase.

A=S'b-c (5)

A = absorbance, c = concentration b = pathlength and s = the molar absorptivity

The incorporation of the POMA leads to an increase in the peak heights at 190 nm, 287 

nm and the emergence of a new peak at 605 nm. The increase at 200 nm is due to the 

increase of the aromatic structures whereas the peak at 605 nm is due to the polaronic 

band in the POMA.

The inset shows that the increase for all three peaks grows linearly with the increase in 

ML numbers. Since the interrogating beam of the spectrometer has a rather large 

diameter (0.36cm ), this further indicates a good spatial homogeneity.
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Figure 18 shows a comparison of the absorption spectra of the above mix with a mix of 

C[4]RA/POMA base (undoped) in the ratio of 1.3 : 1. The inset, magnifies the peak 

around 600 nm. The peak heights reveal that the higher ratio of the C[4]RA, contributes 

to an increased absorption at 200 and 287 nm whereas the peak height round 600 nm is 

slightly reduced and the peak is shifted to lower frequencies. The shift in this polaronic 

absorbance band is associated with the increase in the concentration of doping level, due 

to the HC1. This is in line with MacDiarmid findings 5̂1, 52\  who showed that for 

polyaniline, sorption bands shift to higher wavelength when the doping state changes 

from the emeraldine base to the emeraldine salt.
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Fig. 18 Comparison between doped and undoped composite membrane

For any composite membrane the homogeneity is absolutely vital. If the materials 

deposited together, segregate out even partially into islands, its properties become 

highly anisotropic and there exists only poor reproducibility in the film properties. 

Optical inspection of the films, with the unaided eye and a light microscope revealed no 

structure in the film, and it appeared perfectly smooth and homogeneous. Since the 

resolution of optical microscopes is limited to objects of around 500 nm, these
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investigations can only confirm homogeneity up to this limit. In order to investigate any 

underlying structure with smaller feature sizes, scanning electron microscopy (SEM) 

was employed. For the analysis, films were deposited onto gold coated glass substrates 

and these were cut and mounted on sample studs. The effects of organic vapours and 

electroactive gases on the film structure were investigated by long term exposure (6 

hours) on the membrane to saturated vapours of chloroform, representing organic 

vapours and ammonia representing electroactive gases.

The following two micrographs, Picture 1 and Picture 2, show two different unexposed 

films 24 hour after deposition. There are no large-scale structures or striations visible. 

On a scale of 30 nm some film texture becomes recognisable. The textures differ 

slightly from sample to sample but in general look identical. Since the calixarene is of 

much smaller size, it must be assumed, that what can be made out are entangled coils of 

the polymer. Since the texture is dominated by larger flat regions, a possible explanation 

for this is that the polymer backbone gets mostly ‘nicely5 incorporated into the 

calixarene matrix but that to some extent the polymer has not uncoiled into its stretched- 

out form and was incorporated in its coiled form.

Pic. 1 SEM of composite membrane as deposited
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Pic. 2 SEM Picture of a second composite membrane as deposited

The Pictures 3 and 4 show micrographs of exposed films. The extensive exposure, both 

concentration wise and timewise have lead to a restructuring of the film. The film with 

the chloroform exposure, Picture 3, shows a finer micro structure with a higher 

graininess, whereas the sample treated with the electroactive vapour, Picture 4, shows 

less microstructure.

In the case of the chloroform it is likely that the vapours have led to a swelling of the 

film, changing the elasticity of the calixarene matrix, and allowed a resettling in a 

modified arrangement when the solvent vapour was removed. This implies a partial 

uncoiling of the polymer chains. The energy that is required for any redistribution and 

movement of the molecules must stem form the thermal/kinetic energy of the 

molecules.

The ammonia vapour, should show less effect on the calixarene matrix, with respect to 

changes in its elastic properties, therefore the low graininess appearance must be due to 

changes in the polymer itself. When undergoing further doping the density of charged 

sites increases, due to protonation (Chapter 5), bringing with it stronger electrostatic 

repulsion, caused by the likewise charge interaction. Since the alkane chains, on the 

C[4]RA allow for a certain flexibility, this can contribute to a realigning of the polymer 

strands, in a more separated arrangement.
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Pic. 3. SEM of a composite membrane after a 6 h exposure to saturated vapours of 

chloroform

Acc.V Spot Magn Det WD Exp I------------------- 1 200 nm
10.0 kV 3.0 100000X BSE 10.0 1034 SHEFFIELD lll-V FACILITY

Pic. 4 SEM of a composite membrane after a 6 h exposure to saturated ammonia vapours
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4.3.2 Spun films

4.3.2.1 Deposition details of C[4]RA

Membranes were deposited onto glass slides and gold coated slides by spin coating, 

applying the solution to the rotating substrate, as described in reference [26l  This was 

consistent with the choice of chloroform as a solvent. The high volatility leads to the 

formation of fringes when the material is deposited onto the stationary substrate and 

then accelerated. One drop of solution was delivered by pipette onto the rotating 

substrate, at different speeds from a height of ca 1.5cm. Spinning was then continued 

for 30 seconds and the thickness and absorption measurements were performed without 

delay.

4.3.2.2 Film thickness analysis of the spun films

The transparency of the membranes does not allow any comment about the film 

structure. The results of these measurements are summarised in Figure 19, showing the 

thickness and absorption dependence on the spin-speed and solution concentration. 

Mathematically the relationship between the spin-speed, go, and the film thickness, d, is 

governed by (3),

d —C'G)X (3)

with c and x being material specific constants. Fitting the SPR scan data as described in 

the Appendix 2 resulted in the following thickness data. Subsequently the thickness data 

was fitted to (3), with Figure 19 also showing the theoretical fit. Table 2 gives the 

values obtained for the fit.

c X

Solution concentration 1 mg/ ml 1.16 -0.44

Solution concentration 2 mg/ ml 1.57 -0.48

Table 2 Values obtained for the fitting of the thickness data to (5)

There is a substantial discrepancy between the fitted data and the theoretically derived 

data. This can only be accounted for by assuming that the c and x values are not truly



constant or that the applied model is only a first order approximation. The obtained 

values for the exponent are rather close to those reported by Extrand but there a 

substantial discrepancy with [36\  where a better agreement with the theoretical -2/3 was 

obtained.
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Fig. 19 Thickness dependence of the spun films on spin speed and concentration and 

absorption peak height dependence of spin speed

According to the theory of hydrodynamics [54’ 551 the thickness of spun films is given in 

the form of (7),

rf=jJaL. (7)
Al2 p W

p is the density of the pure solvent, co is the angular velocity and <|) is the mass flux as a 

result of the evaporation.

It is believed that (7) does not strictly apply to films that are only three or four times the 

thickness of a molecule. It must be considered that the film thickness will have to show 

a more asymptotic approach to the single molecule diameter at higher speeds. There is
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no thickness possible below that of a single molecule, this is not accounted for by the 

models. Further the intramolecular forces between solute molecules, forming the 

friction forces for the convective flow of the solution are unique to a specific 

compound. In (7) p is governing the hydrodynamic flow, but for very thin films the 

density should contain an element reflecting both the density of the solute as well as the 

solvent.

It can therefore be said that the experimental results are unique for the C[4]RA, and the 

discrepancy with the model can be attributed to shortcomings in the model.

The absorbance does not follow exactly the SPR determined curve. Since the SPR 

measurements are only limited to a spot size of less then a 1mm across, whereas the 

UV-vis spectroscopy uses beams several times larger (0.36cm ), fringe effects, might 

distort the measurements, therefore giving more credibility to the SPR measurements. 

Spin coating, allows the generation of films in the region of films with about 10 ML 

thickness, thicker films are not attainable with this depositioning method.

4.3.3 Casting

Membranes from casting were prepared by dissolving 2mg/ml of the C[4]RA in 

chloroform and casting a volume of 4pl onto the substrates (CFT- gate region). After 

the evaporation of the chloroform a film with an area of ca. 0.4 cm2 had formed. Using 

the area and solution concentration the thickness was calculated to be ca. 250 nm.

4.3.4 Absorption spectra analysis of C[4]RA solution, spun and LB 
films

Analysis of the absorption spectra of C[4]RA, in solution, as LB film and spun film 

reveals that, there is no change in the position of the absorption peaks. Differences in 

the solution spectra and the spectra of spun films were shown in reference [36], a 

narrowing of the absorption peak stemming form a nitrophenyl group, whose 

absorbance centred around 450nm, was reported. No such changes could be observed 

for the C[4]RA. It is believed that the aromatic structures causing the absorption at 200 

nm are not deformed in contrast to the nitrophenyl groups in the chains. The nitrophenyl
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groups can show a differing interaction with neighbouring molecules in solution and in 

a film but hardly any interaction difference between the baskets can be expected.

Summary

In this chapter the theory of several thin film deposition methods have been 

summarised, and the film properties that are attained for the C[4]RA and a composite of 

C[4]RA/POMA have been analysed. The desired film thickness dictates the deposition 

method to use, thin films can be spun, LB films allow thin to medium thick films and 

truly thick films require casting. The information regarding the membrane properties is 

fundamental for the application in any type of sensor. Furthermore the suitability of 

C[4]RA as a matrix for the LB deposition of non surface active polymers, was 

demonstrated in detail, with poly-ortho-metoxy aniline as a representative of these 

polymers, covering a wide thickness range.
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5 The detection of gaseous organic and inorganic 
pollutants with C[4]RA based membranes

5.1 Introduction

In this chapter will be presented and discussed novel sensing applications for the 

C[4]RA and C[4]RA/POMA membranes, that are based on well established 

transduction mechanisms. Results from individual sections will be referred to for the 

discussion throughout. The inorganic pollutants consist of “electroactive gases“, like 

NH3, NO2 and HC1 whereas the organic pollutants are straight chain and aromatic 

hydrocarbons. The focus in this work has been on the elucidation of the involved 

mechanisms and the proof of principle, together with a possible application 

development, rather than the quest for lower detection thresholds.

5.2 Spectrophotometer study of the absorption of toluene in 
LB deposited C[4]RA films

UV-vis absorption spectroscopy allows the detection of organic vapours, that absorb in 

the wavelength range of 190-800 nm. Light energy is absorbed by the molecule to 

promote an electron transition from the highest occupied to the lowest unoccupied 

molecular orbital. This absorption of light is detected via the reduction in the 

transmitted light. C[4]RA itself is non absorbing in the visible range (400-700) nm, as 

are almost all common solvents. Therefore the spectra in the ultraviolet region were 

analysed. Of the common solvents toluene is of particular interest since:

• its absorption peak of 2 0 0  nm falls into the measurement spectra

• complexation with calixarene derivatives has been proven to be highly reversible

• different theories about the complexation sites exists, i.e. inside the basket or/and 

between molecules

• the amount of toluene that is incorporated into each host molecule is subject to 

discussion

• the same points apply to benzene, but toluene was preferred due to its lower toxicity
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5.2.1 Experimental details

A 16 ML thick C[4]RA membrane was deposited onto quartz slides, as described in 

Chapter 4. The slide was then inserted together with a reference slide into a UV-vis 

spectrometer, which was previously calibrated according to standard procedures. The 

absorption baseline was recorded and then an open jar filled with toluene was placed 

inside the tightly sealed measuring chamber of the spectrometer. An equilibration time 

of 1 0  minutes was allowed to fill the whole chamber with saturated toluene vapours, 

before the exposure absorption was recorded. For the smallness of the chamber 

(Volume ca. 5 1), the vapour concentrations can be assumed to be uniform inside the 

chamber. Both the reference and the measuring beam pass through an equal amount of 

toluene, therefore the solvent vapour does not offset the baseline.

5.2.2 Results and discussion

The absorption spectrum of the baseline and the spectrum after toluene sorption is 

shown in Figure 1.

Calculation of the number of sorbted toluene molecules'

Toluene and the C[4]RA have both their maximum absorption peak at 200nm, which 

corresponds to the i t- i t*  transition of aromatic structures [1]. The C[4]RA has four 

aromatic structures, in the basket, the absorption rate of one ring structure can therefore 

be calculated from the increase of the absorption with the increase in the number of 

MLs.

The absorption values for 16 ML; 0.43, 32 ML; 0.7 and 48 Ml; 1.0 have been 

established from the characterisation of the film deposition, Figure 17 in Chapter 4. 

There is a near linear absorption increase in the region between 16 and 48 ML (inset 

Figure 17 Chapter 4). Overall absorption increases nonlinearly, individual absorption 

values per monolayer for each sample yield 0.027 (16ML), 0.022 (32ML) and 0.21 

(48ML), therefore an averaging mechanism was adopted, with the baseline being 

defined by the 16 ML sample. Both 32 and 48 ML are equally weighted in this 

averaging, details for this are given in (1). For higher layer numbers deposition 

fluctuations seem to cancel out. Since the measurement is a relative one, the area 

cancels out in the calculation, giving an averaged absorption rate per ML of 0.0178 .
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Fig. 1 Absorption spectra of 16 ML of C[4]RA with and without toluene complexation
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The absorption increase at 200 nm, as taken from Figure 1, is 0.06. This allows the 

calculation of the increase in the number of ring structures (2 ), which equates with the 

number of toluene molecules absorbed.

6.0-1 O' 2 1 0 r .
-------------- —̂=13.5 ring structures (2 )

4.45 -10'3 5  V '
ring structure

An increase of 13.5 aromatic structures/toluene molecules in a 16 ML thick film, shows 

that within the error of the experiment, there exists a complexation ratio of ca. 1 :1  

toluene per C[4]RA molecule. This result further supports the theory, that for aromatic 

guest molecules complexation occurs only inside the basket and not between molecules 

[2\  Since the vapour exposure was conducted at the saturated vapour pressure (22 mbar), 

it can be assumed that no complexing between molecules takes place in LB films, 

excluding any micro-condensation of the solvent as was proposed for toluene in 

reference [3]. For spun films the molecular arrangement of the molecules can be 

expected to be different, therefore the above may not hold true and complexation might 

take place between molecules. The molecules in the LB films might be too closely 

packed for any complexation between adjacent molecules to take place or the n -  

n  interaction between the aromatic structures might provide the only mechanism 

leading to complexation. A comprehensive comparative study between LB and spun 

films has shown that spun films posses a higher absorption of organic vapours than 

LB films. The above further supports this, by showing the number of the complexing 

molecules to be nearly identical with the number of baskets.

Absorption spectroscopy can be employed in a very selective sensor based on a single 

wavelength interrogation at 200nm. The enormous benefit of this is, that only aromatic 

structures will show up at this wavelength. Other hydrocarbons might still complex 

inside the C[4]RA membrane, but the absorption spectra will not undergo changes at 

2 0 0  nm.
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5.3 DC conductivity modulation of the C[4]RA/POMA 
membrane upon analyte interaction

The low conductivity of the C[4]RA, (at least 1 order of magnitude lower then the 

undoped POMA, Chapter 7) makes measurements of the direct thin film conductivity 

impossible. Neither the powder conductivity (compressed pellet) nor the conductivity of 

any cast films could be determined within the GQ range. It can therefore be assumed 

that for the following measurements the conduction is dominated by the POMA in the 

composite membrane and not the C[4]RA. As a first step, work focused on electroactive 

gases, that provide a sort of doping, via protonation, for the polymer modulating the 

conductivity. The studies were then further extended to include organic solvent vapours, 

structural changes in the film contributing to the conductivity changes can be viewed as 

unique, due to the matrix structure of the membrane.

5.3.1 Response to electroactive gases

Interest in the detection of inorganic gasses, of oxidising and reducing nature, is based 

mainly on the fact that the emission of these gases occurs as a “by-product” in many 

industrial processes, like the burning of fossil fuels, smelting of ores, and bleaching of 

wood pulp.

5.3.1.1 Experimental details

The composite membrane was, as described in Chapter 4, deposited onto interdigitated 

electrodes (IDE) with 8  finger pairs of 3.125 mm overlap and a separation between 

fingers of 600pm, terminating with 1mm2 contact pads at one end. Due to the low 

conductivity the number of layers making up the membrane was chosen to be 16 layers. 

The contact was provided by “gluing” connecting wires with silver paste to the contact 

pads. The IDE were mounted in a 0.3 1 Teflon chamber and connected to a Keithly 614 

electrometer, using a voltage of 1 V for the conductivity measurments. A computer 

controlled the electrometer and simultaneously two mass flow controller providing a 

constant stream of 0.145 l/min of purging gas (N2) or analyte. The analyte was provided 

by pre-conditioned gas cylinders for NO2 (400ppm), NH3 (300ppm) and by bubbling N2 

through a solution of hydrochloric acid (38%) for HC1.
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5.3.1.2 Results and discussion

Though the HC1 bath doped form of the POMA was deposited, Appendix 1, the 

conductivity of the composite membrane, in the as deposited form, was as low as 1 • 1 0 '3 

S/cm for the 1:1 by weight mixing ratio when measured in static air. This value is low 

compared to the value of 0.1 S/cm published for pure POMA in reference [5\  Three 

things can account for this; firstly the synthesis methods only yields a polymer with an 

inherently lower conductivity, secondly part of the HC1 dopant leaches out of the 

polymer during the LB deposition where it is in contact with water and thirdly the 

dilution by the integration of the C[4]RA. For mixing ratios with a higher C[4]RA 

contribution a reduction in the conductivity was observed, Table 1. This conductivity 

decrease is dominated by dilution. Therefore for any subsequent studies the composite 

membrane with a 1 :1  mixing ratio was used.

Mixing ratio by weight [C[4]RA/POMA] Conductivity [S/cm]

1 :1 1 • 1 0 '3

2 :1 o o u>

5:1 0.3-1 O' 3

Table 1 Influence of the mixing ratio on the conductivity of the composite membrane

To increase the conductance, an in situ doping of the membrane was conducted with 

HC1 vapours. The increase in the conductivity during the doping can be seen in Figure 

2 .

The increase in the conductivity follows a first order exponential decay, according to 

(3),

/= /„  + 4 - e(-" r) (3)

with a time constant of 1045 seconds. It can be seen that the conductivity increase is 

reaching asymptotically a plateau value. Upon purging with nitrogen the conductivity 

decreases rapidly following again a first order exponential decay, as shown in Figure3.
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Fig. 3 Current decrease upon purging with nitrogen
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The fitted data for the exposure and recovery are summarised in Table 2. The time

Exposure Recovery

Io 8.05-10'8 0.83-10'8

Aj - 2.89-10'8 1 .0 1  - 1 0 '8

T 1045 179

Table 2 Values for (3) describing the exposure and recovery dynamic

constant for the recovery is with 179 seconds 5.9 times faster. The function does not 

describe a asymptotic approach to a plateau but continues to decrease though with a 

slow gradient. This behaviour highlights a very important point. The doping with HCI is 

highly reversible and this makes the conductivity of the membrane strongly history 

dependent. The as deposited membranes are quite stable, when stored in airtight 

containers, though they show a similar dedoping behaviour under a constant flow of 

nitrogen. A similar behaviour of diminishing conductivity was shown to exist for spun 

film of polyaniline [6], though in that case purging over periods of days stabilised the 

conductivity. This effect was explained with the removal of surface/bulk trapped water 

molecules, which may also partially account for the observed behaviour of the POMA. 

Integration of the POMA in the C[4]RA matrix is most likely responsible for the fast 

recovery during purging. A microporous structure as, proposed for the matrix in 

Chapter 4, allows a more unrestricted movement of air into the bulk of the film than in 

the more condensed pure polymer phase.

The conductivity increase upon exposure to HCI is explained by protonation, that is the 

addition of a proton to the imine nitrogen in the polymer backbone. This addition of the 

proton keeps the number of electrons constant. The increase of the conductivity has 

been explained for polyaniline, by assuming that the addition of a proton removes one 

of the imine nitrogen lone pair electrons, to form the N-H bond, with the remaining 

unpaired electron hopping between vacancies, left at these sites. This in effect increases 

the number of negative charge carriers Furthermore the protonation will change the 

geometry of the rings, changing the bond length and with it the wave function overlap • 

to yield a more conducting state. The whole transport mechanisms in aniline based 

polymers is a complex system, with the nature of the charge carriers and their dynamics 

still being debated.
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The strong difference in the time-constant in the response and recovery, by a factor of 

5.9, suggests that the desorption energy of HCI from the imine sites is much lower then 

the adsorption energy.

The response upon exposure of the same film (aged by 3 days) to a concentration of 400 

ppm NO2 is shown in Figure 4. The oxidising effect of NO2 again leads to an increase in 

the conductivity, it can be explained by assuming that NO2 contact with the n  -electron 

network of the POMA results in the transfer of an electron from the polymer to the NO2 

[6\  This charges the polymer positively, and creates charge carriers, increasing the 

conductivity. The process is analogous to the protonation by HCL. Again it can be seen 

that continual purging during the first 600 seconds leads to a decrease in the 

conductivity. Upon NO2 exposure these increase again with the notable difference, in 

comparison to HCI, that the rate of sorption and desorption are about identical. This is 

indicative of roughly equal sorption/desorption energies of NO2. The reproducibility is

400 ppm NO; 
—  0 ppm NO

9.0x1 O’10"

8.0x1 O'10"

5.0x1 O'10

0 500 1000 1500 2000 2500 3000

Time [sec]

Fig 4 Repeated exposure to the C[4]RA/POMA membrane to NO2

good with a slight accumulative effect, accounted for by slightly larger desorption 

times. The current carrying ability is increased 1.4 fold from 4.8-1 O' 10 to 6.3-1 O' 10 

ampere.
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In order to determine the lower detection threshold the concentration was reduced from 

40 to 10 ppm (± 2 ppm). For this the sample was redoped with HCI vapours as 

described before and then purged with nitrogen until a semi-stable state was reached. 

Figure 5 shows the induced conductivity changes. Again the effect of a slow but 

continuous dedoping is visible. Upon exposure to these low concentrations the 

conductivity increases with respect to the instantaneous baseline but overall the 

conductivity decreases. This can only be seen as dedoping of HCI dopant with the 

doping activity of the NO2 being too low at these concentrations to fully compensate it. 

Though a lower detection limit of 10 ppm can be defined, the long term drift of the 

baseline (>3h) makes a comparison of the conductivity modulation with respect to the 

baseline and concentration difficult. Whereas the 40 ppm concentration shows a 

stronger conductivity increase the concentrations of 30, 20 and 10 ppm show virtually 

identical modulations.

9.0x10'10n

8.0x10'10-

5.0x10‘10-

0 2000 4000 6000 8000 10000 12000

40 ppm NO2 

30 ppm N02 
20 ppm N 02 
10 ppm NO2 

0 ppm NO2

Time [sec]

Fig. 5 Response to concentrations of 40, 30,20 and 10 ppm of NO2

Conditioning the membrane again, with HCI vapours and subsequent purging with 

nitrogen it was repeatedly exposed to ammonia with the response shown in Figure 6 . 

The response to ammonia, with a conductivity increase is remarkable. Ammonia is a 

reducing gas, which should lead to a decrease in the conductivity contrasting the
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behaviour of NO2 and HCI. Instead of compensating the oxidising effect of the HCI, the 

NH3 works itself as a dopant. This can be accounted for by assuming that the NH3, 

partially dissociates into NH2' and H+, with the H+ ion subsequently protonating the 

polymer according to (4),

POMA + H ± POMA (4)

with the equilibrium shifting to the right on exposure and to the left on purging. The 

protonation is again producing positive charge carriers and increases the DC 

conductivity. Agbor et al. 161 observed a similar conductivity increase for the reducing 

gas H2S on polyaniline. The response to exposure and purging are again showing 

distinctly different time constants, with the doping being about four times faster then the

c
0
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o

300 ppm NH 

0 ppm NH

8.0x1 O*10-

7.0x10 ‘10

6.0x1 O'10 "

5.0x1 O'10 T T T

1000 2000 3000

Time [sec]
4000 5000 6000

Fig. 6  Repeated exposure of the C[4]RA/POMA membrane to NH3

dedoping. The current carrying ability is enhanced by a factor of 1.9 from 0.58 nA to

1.1 nA. The repeated exposure results in a decreased modulation of the conductance, 

with the baseline being rather stable, this implies a sort of memory effect. A possible
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explanation for this is structural changes in the membrane, reducing the available 

reaction/protonation sites, by either affecting the C[4]RA matrix or the POMA itself.

To investigate if this memory effect is a particular feature of the composite membrane, 

or is an inherent property of the polymer, a film of the polymer was cast from solution 

onto the IDEs, resulting in an inhomogeneous film, making only a qualitative 

investigation possible. The response is presented in Figure 7. The response differs 

markedly from that of the composite matrix. Firstly it must be noticed that the 

conductivity of the sample decreases upon NH3 exposure, as was expected from its 

reducing nature. This is the opposite behaviour to that of the composite membrane. The 

interaction of the pure POMA and the NH3 can be explained by deprotonation according 

to (5),

POMA+ +NH3 <---- > POMA + NH4+ (5)

2.2x1 O'7 "1 300 ppm NH 

“  0 ppm NH

13 1.0x10'7“

2.0x10
2000 4000 60000 8000 10000

Time [sec]

Fig. 7 NH3 exposure of a POMA cast film

with the direction of the reaction being determined by the presence of ammonia in the 

air. When no further NH3 is present in the air, the ammonia can decompose again into 

protons and ammonia, leading again to a protonation, and henceforth a conductivity 

increase. A similar mechanism was suggested to contribute to the conductivity



modulation on polyaniline in reference The difference in the behaviour of the 

composite and the pure POMA membrane suggests that there exist more then one type 

of reaction site or that a number of different reactions are possible. It is believed that the 

C[4]RA, either modifies the direction and equilibrium values of (4) and (5), or does act 

as a steric hindrance for the different protonating/deprotonating ions to the active sites. 

The faster sorption over desorption response remains identical to that of the composite 

film. No longer observable is the “memory effect”, with a reduced response on repeated 

exposures. Instead the 300 ppm of ammonia is only able to reduce the current carrying 

ability down to 40 nA. This can be seen as, an removal of all the available protons. With 

the recovery being slower, the initial current carrying ability is not restored after the 

flushing and therefore only the relative conductivity decreases upon multiple exposures 

is observed, not a reduction in the absolute value.

It can therefore be concluded that the memory effect observed and the conductivity 

increase upon ammonia exposure in the composite structure is a unique feature, 

stemming from the calixarene matrix in which the polymer is suspended.

5.3.2 Response to organic vapours

Since calixarenes have excellent complexing properties with organic vapours, the 

influence of these complexed vapours onto the conductivity of the membrane was 

investigated, using a variety of straight chain and aromatic hydrocarbons.

Experimental details

The same set-up as described above was used, with the vapours being generated by 

bubbling a nitrogen stream through a solvent filled gas washing bottle, allowing it to 

saturate with it and then passing it through the chamber. To increase the current height 

the membrane thickness was doubled to 32 layers, doped with HCI and purged in 

nitrogen until a semi-stable state was established.

5.3.2.I Results and discussions

The vapours investigated were branched hydrocarbons, iso-propanol, methanol, acetone, 

chloroform and hexane, an aromatic hydrocarbon toluene and water.
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Below are shown some typical modulations of the conductance upon solvent exposure, 

for acetone in Figure 8  and for iso-propanol in Figure 9.

saturated acetone vapours
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Fig. 8  Response of 32 ML of the composite membrane to saturated acetone vapours
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Fig. 9 Response to saturated vapours of iso-propanol
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The increase in the current carrying abilities for the different vapours is summarised in 

Figure 10.

relative conductance ch a n g es in %
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Fig. 10 Summary of conductivity increase upon vapour exposure

There are three possible processes contributing to the increase of the conductivity:

i) Protonation of the polymer according to (6 ).

P O M A  +  C x H x (0 ,C L ,O H )x  <------> P O M A + +  C x H x .i(0 ,C L ,O H )x ' (6 )

This requires a dissociation of the hydrocarbon, the most likely source where it can 

occur is the site of the counter-ions remaining from the initial protonation.

ii) Absorption of the solvent into the matrix changing the structural arrangement, i.e. the 

torsion of the polymer strands.

iii) Swelling of the polymer or matrix, bringing strands into closer contact, facilitating a 

better charge transport between strands and by filling voids enabling a stronger charge 

hopping.

An analysis can be grouped into three segments, based on the different characters of the 

response, no or small conductivity increase despite absorption, conductivity increase 

upon sorption and no absorption taking place.
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No absorption taking place

The strong hydrophobicity of the C[4]RA prevents any permeation of water vapour into 

the membrane, therefore there is no conductivity increase for water vapours. Water has 

in many cases been cited as a interfering analyte, for polymeric or catalytic gas 

sensors [10], the embedding of the polymer in the C[4]RA matrix eliminates this 

problem.

Sorption but no or very little response

Hexane, C6H 14, has a high vapour pressure (130mbar), it is itself hydrophobic, therefore 

the most likely complexing sites for it inside the membrane are the alkane chains along 

the upper brim of the C[4]RA. That hexane is sorbing into the membrane was 

independently found by means of an SPR analysis. The fact that there is no conductivity 

increase for hexane, can be explained by assuming that it is not dissociating according 

to (6 ), its low dipole moment providing no site where this could be initiated, and that it 

is not affecting the distances between polymer strands and alignments thereof. Though a 

swelling of the membrane is taking place, as shown by SPR, it must thus be assumed 

that the direction of the swelling is different, not leading to closer spaced polymer 

strands.

For chloroform (CHCI3), despite having a more polar character the complexation inside 

the membrane must again not affect the inter strand distances between polymer chains 

and neither the polymer structure. That the saturated vapours (159mbar) are absorbed 

into the membrane is again shown by SPR. There is a hydrogen atom in chloroform, 

that could provide, on splitting up, a protonation of the POMA, since this is not 

observed it can be assumed that CHCI3 complexes at sites where no dissociation by 

counter ions occurs.

Sorption occurring with a strong response

Toluene (C6H5CH3) is the bulkiest of the absorbed molecules, possessing only a 

saturated vapour pressure of 22 mbar. SPR data revealed that the membrane thickness 

changes only slightly, implying that only few molecules penetrate into the film, this 

contrasts with one of the highest conductivity increases observed. Complexation is 

occurring in the C[4]RA baskets for pure calixarene membranes, according to the 

proposed model, based on UV spectroscopy. The film swelling is too small to account 

via structural changes for the high response. Dissociation of the toluene, most likely one 

hydrogen atom from the CH3 group, may explain a protonation of the POMA. It
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remains unclear what causes the dissociation when the toluene is captured inside the 

basket, where it will be separated from any counter-ions. It is therefore believed that the 

complexing behaviour of toluene differs from that in the matrix and the pure POMA, 

with complexation in the composite membrane occurring, at least partially outside the 

baskets within the vicinity of counter-ions.

Acetone (CH3COCH3) produces the highest conductivity increase, it has a high electric 

dipole, its saturated vapour pressure is with 181 mbar also the highest of the 

investigated analytes. This is reflected by a strong absorption, leading to a strong 

swelling, as shown by SPR. The most likely mechanism behind the exceptionally high 

conductivity increase is therefore a combination of protonation and structural changes. 

The high dipole moment, facilitates a strong shift of the equilibrium in (6 ) to the right, 

providing hydrogen ions, and the strong swelling brings polymer strands close together. 

Iso-propanol (CH3CH2CH2OH) and methanol (CH3OH) show a very similar response. 

With iso-propanol, being bulkier then methanol, and the saturated vapour pressures 

being much higher for methanol (96 mbar) then for iso-propanol (15 mbar), it can be 

expected that the amount of methanol penetrating is higher. This was in essence 

confirmed, by SPR, with a stronger membrane swelling for methanol. Since the 

response was found to be roughly similar this means that propanol is shifting the 

equilibrium in (6 ) more to the right than is methanol. This compensates for lesser 

structural changes. Structural changes have been shown to occur in substituted 

polyaniline derivatives upon alcohol vapour exposures. So it was shown that the 

resistance of compressed pellets changes on exposure to alcohol vapours, with different 

directions (increase/decrease) for low and high molecular weight alcohols. Whereas 

methanol and propanol brought a conductivity increase, as observed here, higher 

alcohols like heptanol decreased the conductivity. It was suggested that the polar 

molecules can interact with the nitrogen atoms of the polyaniline leading to an 

expansion of the compacted polymer chains into a more linear form. Further 

confirmation for structural changes were reported by Svetlicic et al. [12] detailing 

changes in the crystallinity of polyaniline thin films upon exposure to ethanol vapours.

For all saturated solvent vapours it must be noticed that the sorption and desorption 

times are faster then those observed for the electroactive gases, NH2, HC1, and NH3. 

This can be partially accounted for, by the far higher concentrations.
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5.4 Sensing with the composite membrane using a charge 
flow capacitor

Since the low currents that are measured with interdigitated electrodes (10 nA -  0.1 

nA), provide a challenge in terms of shielding and require sensitive instrumentation
19 • •(lowest range 10' A), an application of the membrane onto charge flow capacitors 

(CFC) was investigated as an alternative, in order to provide a more practicable method 

with an inherently better signal to noise ratio. The current carrying ability of the 

membrane for the IDE measurements can be increased several fold by multiplying the 

number of layers, but this can achieve only changes within the same order of 

magnitude. A CFC in contrasts provides two major advantages;

i) the area of a capacitor can be easily adjusted till the generated signal is large enough,

ii) there exist a variety of low cost capacitance readout chips like that developed in 

reference [131 to which the CFT can be interfaced providing a standard output signal. The 

readout chips have come of age, being a spin-off from cantilever applications, and 

provide excellent resolutions (0.4-10' 18 F) and dynamic ranges up to (10' 8 F). It can be 

expected that these will be in the future a frequently used interface for chemical sensors.

5.4.1 Experimental details

CFC were fabricated as described in Chapter 6  and Appendix 3, coated according to 

Chapter 4, with a conditioning performed as described for the DC IDE measurements. 

The measurements were performed with an HP 4284 LCR meter interfaced to a 

computer, controlled by a program written by the author. The small signal measuring 

amplitude was 20 mV, with no bias voltage applied. The CFC was mounted in a 

chamber, the vapours were generated by injecting the liquid analyte with a syringe and 

allowing it to evaporate.

5.4.2 Results and discussions

In order to evaluate the most suitable frequency at which to operate the capacitor, the 

capacitance was measured over the frequency range of 20 Hz -1 MHz, first for the 

uncoated device then for the coated, and then for the latter with exposure to NH3 and 

HC1 vapours. The relation between the capacitance and the frequency is shown in 

Figure 11. It can be seen that the highest capacitance changes can be found at the lower
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end of the spectrum, at 20 Hz. At the upper frequency range the values converge to that 

of the uncoated device. The application of the coating increases the capacitance, with 

both ammonia and hydrochloric acid increasing the capacitance further.

,—  after HCI exposure repeated 

—  after HCI exposure

 after NH3 exposure

— composite membrane as deposited
2 .5 0 * 1  O'5

“  2 .00* 10' £<DO
C03O(O
S ' 1 .5 0 * 1 0 '£

+ -+ _ ^

*—* ■ • •.. +--+-+-+_  -•—
.........

~ ------ r  r

Baseline o f  the uncoated device
1 .00 * 10 ' £

5 .0 0 * 1 0'£

10 100 1000 10000010000

Frequency [Hz]

Fig. 11 C-f characteristic of the CFC with different coating states

The shown C-f behaviour of the device can be explained in terms of the equivalent 

circuit, Figure 12.

O

Ri

o
Fig. 12 Simplified equivalent circuit diagram of the coated CFC

Ci is the capacitance of the metal frame covered area, C2 is the collective capacitance of 

the material between the metal mesh, with R\ being the AC impedance of the membrane 

over which C2 is charged.

There exists a maximum capacitance Cm = Ci + C2 when the AC conductivity is infinity 

and the capacitance C2 is fully charged. Since the AC conductivity is never infinity, the
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only way C2 gets close to the maximum, is at low frequencies where the time constant 

t for charging C2 increases ( z = 1/f).

The impedance Z can be expressed as (7),

with Z ,= ----- J—  (8 )
C0’CX

and Z2 = r i ------(9)
CO * (^2

The impedance Z can then be separated into its resistance and reactance, which are 

expressed by R and C.

= c >'c 2 ' r < ( jo )
^•c^-c^-^+cq+Cj)2

c (c,+c2)-at2-c,2-c,-j;/
a? -C,2 -C22 -R? +<o-(Cl +C2)2

(11)

The upper and lower limits for R and C can be found by viewing (10) and (11) for the 

frequency extremes, co = 0  and co=oo.

R • C' 2 1
For co -> 0 lim o f R=  — -— lim of  C - ----------

(C1+ C2)2 c 1+ c 2

and for co ■> o o , lim o f R - 0 lim of C = —  .

The limit consideration is confirmed by the highest C values for the 20 Hz frequency 

and the converging of all C values at 1 MHz to the value of the uncoated capacitor.
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The above results confirm, that the composite membrane shows a conductivity increase 

for both HCI and NH3 vapours. For further measurements the frequency was set to the 

lower limit of 20 Hz and the capacitance was measured over time. This is the 

operational mode that equates to a CFC interfaced to a capacitance readout chip.

A typical capacitance change as a response to acetone and toluene exposure is shown in 

Figure 13. Representing the electroactive gases the exposure of a new membrane to HCI 

and ammonia vapours is shown in Figure 14. All recorded signals posses a rather high 

noise, at 20 Hz (lower range of LCR meter) this can be attributed to some crosstalk 

from the 50 Hz noise found on the mains supply. A further source for noise, in 

particular for NH3 and HCI is the method used for the vapour generation. The injection 

of the liquid can lead to an inhomogeneous increase in the concentration and dissociated 

ions can lead to localised conductance changes in the membrane.

The percentile capacitance changes are summarised in Figure 15, in terms of the 

capacitance basevalue before the injection of the analyte.

There is general qualitative agreement between the DC-IDE response and the capacitor 

measurements. The variation in the response height can be attributed to i) the different 

form of vapour generation, ii) the 20 Hz voltage is not equivalent to the DC voltage, iii) 

the capacitance of C2, Figure 12, can itself change upon exposure to the analyte. The 

mechanisms or the induced changes in the membrane are identical to that as explained 

for the DC measurements. The time constants for the sorption and desorption are greatly 

changed, so is for example the absorption of HCI and ammonia nearly instantaneously, 

an effect that is due to the higher concentrations. The recovery for the HCI exposure is 

erratic, the temporary doping during the desorption process can only be understood 

from desorbed HCI, not being removed but sorbing again into the membrane.
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Fig. 15 Induced capacitance changes of the CFC upon exposure to saturated analyte 

vapours

5.5 Surface Plasmon Resonance studies upon exposure to 
electroactive gases and organic solvent vapours

SPR studies were carried out in order to investigate that the analyte sorption into the 

membrane does occur and to relate it to changes in its physical structure, i.e the 

refractive index and the thickness of the film.

5.5.1 Experimental details

The membrane, consisting of 4 ML of the composite structure, were deposited on gold 

coated slides, the deposition details are given in Chapter 4. The slides were then 

mounted via an index matching fluid onto the SPR prism and a gas chamber, with ca. 

0.5 cm volume, was attached to it. The vapours were injected into the chamber with a 

1 0  cm syringe, which was filled from the saturated headspace of a solvent bottle, and 

then sealed. For the recovery, the chamber was purged with four syringe volumes of air. 

The measurement scans were conducted immediately after the filling of the chambers. 

The results were then fitted to the Fresnel equations, to extract the changes in the
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refractive index and the film thickness, as described in the Appendix 2. Since every 

gold coated slide, showed variation in the gold parameters and also variations in the 

refractive index and thickness of the membranes were found, results are expressed as 

produced changes to the “basevalues” of the individual film. The samples were only 

exposed to one solvent, so that no possible accumulative effects distort the results.

5.5.2 Results and discussion

The refractive index n, of a substance is the ratio of the velocity of light in vacuum to 

that of the velocity inside the substance. The interaction between the light and the 

substance that causes n to differ from unity is the polarisation of the atoms or molecules 

by the electric vector of the light. The electric field shifts the electrons from their 

equilibrium position to induce an electric dipole with the dipole-moment// = # • £ .  The 

relationship between the index of refraction and the molecular polarisation a  is 

described by the Lorenz-Lorentz equation (12)[14],

3  n2- \  Ma  = -------------=---------- (1 2 )
4-7T-N n + 2  d

with M being the molecular weight, d the density and N being Avogadro’s number.

When the film absorbs molecules with a different refractive index and undergoes 

simultaneously a change in thickness, the refractive index can increase or decrease 

depending on a combination of factors. To clarify this, let us assume a low refractive 

index material sorbing into the film, without causing any swelling, there can now be a 

stronger interaction between the electric vector of the light and the increased number of 

electrons, with every atom being polarisable, increasing therefore the refractive index. If 

the film is swelling at the same time the amount of interaction between the light and the 

polarisable molecules per given volume is increased only, if the swelling is smaller 

compared to the increased amount of polarisable atoms present. Interaction between the 

sorbent and adsorbent which influences the polarisability of both, is for simplicity’s 

sake neglected. For species with a higher refractive index than the film, every sorption 

is increasing n, apart from the case where the volume increases to such an extent that 

this offsets the increasing amount of polarisable matter. Since for swelling to occur the
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sorbing species must diminish intermolecular forces between molecules making up the 

membrane, as by shielding van der Waals forces, this is a most unlikely behaviour. 

Resorcinarenes and aniline based polymers possess a rather high refractive index, for 

organic materials, with the literature values of [xjarenes in the range of 1.46 [15]- 1.56 

[16] and polyaniline in the range of 1.5 [17l  These high values are explained [15] with the 

large number of delocalised electrons, whose displacement enables a high polarisability. 

It was found that the composite has a refractive index of around 1.68. This is 

exceptionally high for an organic material, it is believed that the protonated polymer 

with its mobile charge carriers and the counter-ions are responsible for this together 

with the delocalised electrons in the four aromatic structures in the C[4]RA. The 

literature value in [16] is a value strongly depending on the protonation state and 

synthesis of the film. In addition to this, the additional methoxy group in the POMA, 

compared to that in the polyaniline, adds two terms to the electrical polariasability, 

C = 1.03 A3, and 3 times H= 0.4 A3, as taken from reference [18].

5.5.2.1 Exposure to organic vapours

The chloroform induced changes in the reflectivity curve are shown in Figure 16, which 

shows only the baseline, the maximum sorption and recovery. The noticeable change 

occurs around the reflection minimum, Figure 17 magnifies this region, and shows 

further the absorption over time in intervals of 180 seconds. From these it can be seen 

that the absorption of the analyte into the membrane has a time constant of about 540 

seconds. It can further be observed that the recovery is incomplete, which must be 

attributed to permanent structural changes. This is in accordance with the SEM 

investigation, in which a graininess change was observed in the surface morphology of 

the membrane upon long term exposure to chloroform, Chapter 4. The calculated 

changes in the refractive index ( An = 0.089/5.34% change of the initial value) and the 

thickness ( Ad = +1.05nm/12.8% of the initial value) are summarised in Table 3, which 

also provides further sorbent properties.
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To relate the analyte sorption in the composite membrane to that in the pure C[4]RA 

membrane, 8  ML of C[4]RA were deposited, which according to the film 

characterisation, have a film thickness of 7.6 nm compared to that of the composite film 

of 8.4 nm. The SPR exposure series is shown in Figure 18.

The thickness changes are with Ad = 0.75nm/9.16 % less pronounced compared to that 

of the composite membrane, but the diffusion process is faster, no further absorbance 

could be observed after 180 seconds. It is unclear what feature in the POMA is in 

particular responsible for this increased sensitivity. If the POMA increases the steric 

hindrance and with it the diffusion time it would not be expected that it can provide 

simultaneously additional complexing sites.

The conductivity was modulated most strongly by the solvents acetone and toluene. 

Below in the Figures 19 and 20 are presented the strongly differing modulations of the 

reflectivity curves for both solvents.

The absorption of acetone allows the film to swell quite considerably, Ad = 

0.43nm/5.31% and the refractive index changes by An = 0.037/2.23%. Recovery is 

taking place, though it is not complete, this contrasts with the electrical DC conductivity 

measurements, where total recovery was observed. It is believed that the purging with 

air was insufficient to allow a complete recovery. In contrast to the strong structural 

changes induced by acetone, toluene brings about much less pronounced changes. The 

change in the refractive index is An = 0.014/0.85% and the thickness changes are small 

as well with Ad = 0.18nm/2.2%. Toluene with its aromatic structure (C6H5CH3) is a 

much larger molecule compared to acetone (C H 3 C O C H 3 ). The proposed structure of the 

composite membrane with two POMA strands per C[4]RA layer, exerts a strong steric 

hinderance for the diffusion of the toluene into the membrane. Permeation is not 

completely hindered, as both conductance and SPR study show. The strong increase in 

the current carrying ability must therefore be attributed to protonation rather then 

structural changes

The general quality of the fit is exemplified in Figure 21 (for the chloroform exposure) 

with all the detailed parameters given below. The red line being the fit to the data points 

presented by the green line.
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Fig 19 Changes on the SPR reflectivity curves upon acetone sorption
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Fig. 20 Membrane exposure to toluene
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Fig 21. Screen capture of the fitting program, exemplifying the quality of the fit, for the 

parameters used as follows: gold layer; n=0.332, K=3.457, d=56.48 nm, membrane 

parameters; n= 1.720, K=0.138, d= 9.298 nm, error function: 3.1*10-2
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In Table 3 are summarised the refractive index and thickness changes of the individual 

membranes that are induced upon the solvent vapour sorption/desorption. Table 4 lists 

the MW together with the refractive index of the solvents and their saturated vapour 

pressure.

Solvent Ad [nm] Ad [% of 

initial value]

An An [% of 

initial value]

averaged 

recovery of 

n and d in %

Acetone 0.43 5.31 0.037 2.23 >90

Chloroform/ 

C[4]RA only

0.75 9.16 0.061 4.22 >95

Chloroform 1.05 1 2 .8 0.089 5.34 >95

Hexane 0 . 1 0 1.28 -0.084 -0.50 1 0 0

Iso-propanol 0.189 2 .1 1 0.014 0.85 >90

Methanol 0.31 3.76 0.027 1.60 >90

Toluene 0.18 2 . 2 0 0.014 0.85 1 0 0

Table 3 Summary of the relative membrane change upon saturated vapour exposure

Solvent Molecular Weight Refractive Index Saturated Vapour Pressure /mbar

Acetone 58.08 1.359 181

Chloroform 119.38 1.446 159

Hexane 86.18 1.375 130

Iso-propanol 60.10 1.3836 15

Methanol 32.04 1.329 96

Toluene 92.14 1.497 2 2

Table 4 Solvent properties

The substantial changes of up to 5.31% that are induced in the refractive index, for 

acetone and the high swelling of the film in the case of chloroform by over 1 2  % are 

easily detectable. Whereas Nabok et al. ^  observed an increases in the refractive index 

in calixarene films for saturated toluene vapours by An = 0.035/7.6% and thickness 

changes of Ad = 1.2nm/14%, the observed changes for the composite membrane are 

nearly 1 order of magnitude smaller. It was proposed by the authors that micro-
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condensation of toluene vapours occurs, this can not be confirmed, neither in pure 

C[4]RA, see UV spectroscopy, nor for the composite matrix. In contrast to this the 

results for hexane are more in agreement with the previously documented decrease in 

the refractive index and increase in thickness. Acetone, methanol, iso-propanol and 

chloroform, all show similar behaviour, the refractive index is increasing together with a 

swelling of the film. In reference an increase of n with a concurrent decrease in 

thickness was observed for sputtered arene films upon chloroform exposure. This is not 

in line with the above, the different deposition method could be responsible for this 

discrepancy, implying a shrinking of the sputtered film contrasting a swelling for the 

LB films. There is no unequivocal connection between the physical properties of the 

solvent and the induced membrane changes but the interaction can be summarised in the 

following points.

• The nonpolar hexane, upon absorption decreases the refractive index of the 

membrane.

• For non aromatic polar solvents, the ratio between the increased interaction of light 

with the matter due to absorption of species and the dilution of matter via swelling is 

larger than 1 , leading to an increase of the effective refractive index.

• The difference in the behaviour can be attributed to distinctly different complexation 

sites, i.e. hexane along the alkane chains in the C[4]RA, and the polar molecules 

around/ inside the baskets or around the imine group of the POMA.

• It is believed that the complexation with vapours also changes the polarisabilty of 

the molecules making up the membrane, and as was implied by the conductivity 

changes, creates charge carriers via protonation which also effects the refractive 

index.

5.5.2.2 Exposure to NH3 vapours

Electroactive gases, like NH3 possess smaller molecular dimensions than organic 

solvent vapours it can therefore be expected that upon sorption effects like swelling are 

much reduced. The DC measurements showed that NH3 exposure changes the 

conductance in opposite direction, when the POMA is embedded into the C[4]RA 

matrix compared to the pure POMA. It was shown, in Chapter 4, that the structure of 

the composite membrane changes upon long term exposure to saturated NH3 vapours.
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This is confirmed in Figure 22 where the influence of the saturated vapours of NH3 on 

the composite membrane is shown.

baseline
exposure to NH3 vapours 
recovery

-4—>o
0  

-4—>

•4— <osz

0 .0 -

44 46 48 50

Angle of incidence /°

Fig. 22 NH3 exposure of the composite membrane

It is believed that the interaction is twofold, that the ammonia changes the electric 

properties of the POMA and that interaction of the NH3 and the C[4]RA takes place. In 

reference [19] it was shown via mass spectroscopic measurements, that there is a 

cation- ;r binding between calixarenes and ammonia. The magnitude of the response to 

concentrated vapours of NH3 is small compared to that observable for monolayers of 

polyaniline [17], where the exposure to only 600 ppm of NO2 brought changes in the

position of the reflection minima of 0.3 ° compared to that observed here of only 0.03°.

The direction of the shift is the same, again suggesting the protonating action of the 

reducing NH3 for the composite membrane. Furthermore some solid phase 

transformations were demonstrated in reference [20], between tert-butyl-calixarenes and 

chlorine. This can be confirmed by the above SPR based study. The different membrane 

property changes are presented in Table 5.
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Analyte Ad [nm] A d [% of 

initial value]

An An [% of 

initial value]

averaged recovery of n 

and d in %

n h 3 0.30 3.66 0.294 1.75 >90

Table 5 Membrane changes induced by ammonia vapours 

Summary

It was found that no micro-condensation of toluene in LB films of pure C[4]RA and the 

composite membrane takes place; findings support the theory that aromatic molecules 

complex inside the basket.

Conductivity measurements, determined the conductivity of the as deposited composite 

membrane to be of the order 0.1 mS/cm for 1:1 by weight ratio. This conductivity is 

very much history dependent, and continuous purging with nitrogen reduces the 

conductivity by about two orders of magnitude. The conductivity is modulated by 

oxidising and reducing gases as well as by solvent vapours. The composite membrane 

shows a markedly different behaviour to that of the pure POMA with respect to NH3 

exposure, the observed conductivity changes are reversed in direction. This is attributed 

to structural changes and alterations of the available protonating sites. The solvent 

induced conductivity changes are a result of protonation, after dissociation of the 

solvent, and structural changes the film. The response heights lie in the range of 1500 % 

for saturated acetone vapours and by 450 % for ammonia, this is lower when compared 

to observations for polyaniline.

The application of the composite membrane to a charge flow capacitor, showed a more 

practicable approach, with the capacitance in the nanofarad range being more 

conveniently measured, in comparison to the nanoamperes of the interdigitated 

electrodes.

Surface Plasmon Resonance studies revealed that different analytes permeate into the 

membrane and that the membrane swells, in some cases, for example acetone by up to 

5.31 %. The possible applications lie rather in the higher than lower concentration 

ranges.
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6 Silicon Device Processing

This chapter describes the techniques used for the fabrication of the CFT and the CFC 

and gives details of the device dimensions. In the Appendix 3, the specific process 

parameters are presented in a format of a recipe, allowing the straightforward 

reproduction of the process. This splitting avoids the distraction from the principles 

presented here by too many fabrication details, which are specific to the used 

equipment and material. More detailed information regarding silicon device 

processing can be found in the literature [1'6l

6.1 The planar process

Since the birth of the solid state industry in 1947, with the invention of the contact 

transistor by Bardeen, Schokley and Brattain [7], the production processes have been 

constantly undergoing changes. The introduction of the integrated circuit by Kilby 

in 1959 has led to the development of the planar process in 1960 by Noyce The 

planar process allows the build up of individual layers, plane by plane and makes 

interconnections between individual elements in one plane possible. Modifications in 

the planar process, allowing the production of elements above each other with lateral 

and vertical connections, made the growing complexity of the modem circuit layouts 

possible. The desire for shrinking feature sizes has always brought with it the 

introduction of new techniques that allowed more control over the process together 

with lower tolerance margins. The processes used in this work, are still a cornerstone 

in the semiconductor fabrication, but in some cases they have been superseded by 

more complex and precise techniques, as for example the substitution of diffusion 

doping by ion implantation and the thermal oxide growth by chemical vapour 

deposition.

6.2 Production process of the CFT

The following production process is schematically illustrated in a separate series of 

sketches, Figure 1. In it, a profile of the wafer is shown focusing on the core steps and 

omitting repeating steps. The numbering throughout the text refers to the individual
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pictures. A segment of the mask design is also presented, showing an overlay of the 

masks used for one transistor.

6.2.1 Mask generation

The fabrication process started with the design of the photolithographic masks. The 

required five masks were designed with the aid of the CAD package AutoCAD 10. 

The graphic files were then converted into a format that can be used on an 

Electromask pattern generator (PG). The conversion consisted of a fracturing of the 

image into an array of rectangles, with a minimum feature size of 10 by 10 pm. The 

masks were then produced by loading photosensitive, emulsion coated glass planes 

into the PG and exposing the defined rectangles to the UV radiation. The rectangles 

and squares are defined by a pair of knife-edges set at right angles to each other. The 

image can then be projected onto the plate and by flushing a number of these, a 

complex image can be build up. The masks were then developed with the aid of a 

developer, in a similar fashion to that of a normal black and white photographic film 

and then washed and fixed. Afterwards the masks were thoroughly cleaned and 

inspected for errors and opacity.

Two types of mask were produced in this way, clear-field and dark-field masks, for 

use in conjunction with positive and negative resist, respectively. Emulsion masks 

were used for the production process since they are, by a factor of ten, more 

economical than the more robust chromium masks. Their greatest drawback is that 

their mechanical durability is not as high as that of chromium ones and therefore no 

rigorous scouring cleaning is possible. This limits their reuseage to about 10 times 

before accumulated debris from the contact print process leads to irreparable scratches 

and smudged edges.

6.2.2 Wafers

The silicon wafers for the transistor productions were from the lightly doped n-type, 

having a resistivity of 1-10 Qcm. Wafers with a precisely defined resistivity would 

have improved upon the reproducibility of the device characteristic, but would have 

raised the cost substantially.
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The wafers were used as received from the manufacture. Tests have shown that 

further cleaning is not necessary, providing the wafers are opened within a clean 

environment i.e. class 100 cleanroom. The native oxide that is present on all silicon 

surfaces was accepted since it does not interfere with the following steps.

6.2.3 Patterning for the p wells

A dopant impervious layer of silicon dioxide was grown by thermal oxidation on top 

of this virgin wafer (1). This was performed, using the technique of wet oxidation, 

which has the advantage over dry oxidation to allow a higher growth rate, though this 

results in a less homogenous and slightly porous oxide. Nitrogen is bubbled through 

pure water and the resultant saturated vapour is passed down the process tube. The 

high temperature lets the water dissociate into hydrogen and oxygen, the oxygen 

combines with the silicon to form the silicon dioxide, growing from the silicon-silicon 

dioxide interface. The growth time for a certain oxide thickness is taken from the 

calibration charts according to the Deal & Grove model [10l  The resulting thickness of 

the oxide is checked with the aid of colour charts, which correlates the corresponding 

thicknesses to the different colour shades of Si0 2 .

For the creation of the strongly doped p+ wells, windows must be defined in the SiC>2 

to allow diffusion of the dopant, boron, into the silicon substrate. The selective 

removal of the SiC>2 is performed by first patterning it photolithographically and then 

selectively etching it. A light sensitive photoresist is spun onto the wafer (2), which is 

then softbacked, to drive off any remaining solvent and to start the adhesion process 

between the resist and the substrate. The wafer is then exposed through a mask (mask 

1) to UV light (3). During this step a negative resist is used and the parts of the resist 

that are exposed to UV light are transformed from a monomer into a polymer by 

cross-linking the monomer units (4). This treatment renders these areas insoluble in 

the developer.

The UV-light exposure is performed in a mask aligner, which brings the mask in 

direct contact with the wafer and irradiates the mask. A mask aligner is needed to 

position the mask correctly over the wafer, to aid the positioning alignment marks are 

used on the masks. The three dimensional positioning of the wafer with respect to the 

mask is performed under a low magnification stereo microscope with micrometer type 

screws acting on a positioning table.
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The photoresist then requires developing, for this a tank method was employed as 

opposed to a spraying technique. It is a three-stage process involving different 

immersions.

The photoresist that is left undeveloped, and henceforth remains on the wafer (5), is 

hardbacked to remove any remaining solvent and to finalise the adhesion process. The 

uncovered silicon dioxide is etched away in a bath of hydrochloric acid (6 ) stabilised 

with an ammonium buffer. To avoid any underetching of the pattern, the etching has 

to be precisely timed. For this purpose a test wafer onto which the same oxide was 

grown, is etched together with the device wafer as a reference. The easily observable 

transition in the wetting properties, form the hydrophilic SiC>2 to the hydrophobic Si 

indicates the completeness of the oxide etch on the both wafers. After this the wafer 

was washed again in a bath of deionised water, until the water in the recirculating 

system indicated a value of 25pS/cm, which is the in-house pass for cleaning wafers. 

This procedure ensures that all residual HF acid has been removed. The hardbacked 

photoresist presents an extremely robust coating that is inert to most solvents and 

acids, which needs to be removed before the fabrication can continue. The resist can 

be removed either with a hazardous chemical process or with a plasma in a plasma 

asher (PA). In the PA a radiofrequency coil, produces very reactive oxygen plasma, 

that is elementary oxygen, this oxidises the resist into gaseous components, which are 

then exhausted.

During the removal of the photoresist, the reactive oxygen combines with the silicon 

and a thin layer of SiC>2 growth again (7). This required removal, it is removed in a 

short contact etch in a weak HF solution (8 ).

6.2.4 Boron doping

So far only the windows through which the dopants are introduced are fabricated. The 

following doping procedure must invert the n-type silicon, that has a surplus of 

electrons in its lattice due to the inclusion of phosphorus atoms, to a p-type slicon, 

with a deficit of electrons in its lattice. This is achieved by introducing an excess of 

boron atoms; first to compensate for the phosphorus atoms electron surplus and then 

to render the whole exposed crystal structure electron deficient.

There are two types of process that allow the introduction of foreign atoms into a 

crystal, ion implantation and diffusion. During ion implantation, atoms that form the
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dopant are ionised and accelerated in a strong electric field. The stream of highly 

energetic particles is then directed onto the substrate and the ions are driven into it by 

virtue of their kinetic energy. This method provides excellent control over the 

implantation but is unfortunately very costly.

For the device fabrication in this work diffusion implantation was used as a means of 

introducing the dopant atoms. The wafers together with boron trioxide wafers are 

loaded into a diffusion oven and heated up in a stream of nitrogen. The high 

temperature of about 1 0 0 0  degrees leads to a migration of the boron trioxide to the 

surface of the wafer and a subsequent sublimation into the nitrogen stream. The 

nitrogen stream then carries them onto the silicon wafers on which surface they are 

deposited, forming a glassy oxide layer on top of it. From there the boron migrates 

into the top layer of the silicon (9). The diffusion process is described by the gas 

diffusion equations and these are used to calculate the junction depth and 

concentration [1l\

After completion of the diffusion process the wafers are slowly removed from the 

oven to avoid warping due to temperature stresses.

Now a combination of Si0 2  and borontrioxide glaze is covering the whole wafer, they 

are removed with a HF etch (10).

After the dopant atoms are introduced in the crystal lattice an annealing process is 

required to ensure an equal distribution in the lattice and the “healing out” of some 

introduced defects. This process brings with it a lateral and perpendicular spreading 

out of the diffusion zone. It is combined with the growth of the thick field oxide (11). 

The field oxide is about 1 pm thick, which is about ten times thicker than the gate 

oxide. It provides an insulating layer and due to its thickness prohibits the formation 

of an inversion layer underneath the metal contacts. The oxide is grown with a wet 

oxidation process since marginal inhomogeneities in it can be tolerated and it is much 

quicker process as compared to dry oxidation.

6.2.5 Pattering of the gate oxide region

The next process defines the gate region on the wafer, for this a window is etched in 

the field oxide and subsequently the gate oxide is grown inside this window. 

Patterning of the field oxide is done via the mask 2, including the same steps for
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spinning on the photoresist, softbake, exposure, hardbake (1 2 ), etch (13) and cleaning 

as described previously.

6.2.6 Growth of the gate oxide

The quality of the gate oxide is important, with respect to the homogeneity of its 

dielectric properties and complete coverage, for the performance of the transistor. 

Since the electric field that exists between the substrate and the electrode on top of the 

gate oxide needs to penetrate the oxide, bringing about the formation of the 

conducting channel between source and drain, a thin oxide layer is required in the 

order of 100 nm. Any contamination seriously alters the dielectric properties of the 

oxide, forming the starting point for defects in the oxide layer i.e. pinholes. It was 

found that pinholes in the gate oxide formed a major source of defect. The dimensions 

of the gate oxide is 0.4 pm2, since the likelihood of encountering a pinhole grows with 

the area it was found that many devices were short-circuited by metal bridges between 

the gate metalisation and the substrate.

To fulfil the high quality demands of the gate oxide, it was grown in a dry oxidation 

process (14). The wafers were loaded into the oxidation furnace and the oxide was 

grown in a stream of nitrogen and oxygen, at a rate of about 60 nm per hour, with a 

simultaneous growth on top of the field oxide.

Being of such vital importance for the performance of the transistor the thickness was 

verified with ellipsometer measurements to be 1 2 0  nm.

6.2.7 Pattering of the source drain contact

In a further step the p-type wells are made accessible by etching contact windows 

through the field oxide above them (16). This requires patterning with the mask 3 

(15). The steps for the patterning process are the same as for the patterning with 

masks 1 and 2 .

6.2.8 Metalisation

After cleaning the wafers, they are ready for the metalisation. Two types of contact 

are needed, the back contact on n-type silicon, and the contacts for the source, drain
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and gate (17). Different metals were used for the contacts, since the back contact is 

not exposed to any analyte, it is only bonded to the holder, for it chemical stability is 

not an issue. The requirement that both contacts need to fulfil is that they are not 

forming a Schottky contact with the substrate. Aluminium was chosen for the back 

contact and because of its chemical inertness, gold for the source, drain and gate 

contacts. Since gold does not adhere well to silicon oxide, a seed-layer of chromium, 

of roughly 3 nm, is needed to provide an adhesive support for the gold.

The metal is deposited in a thermal evaporator, at a high vacuum of about 10' 6 bar. 

The metal is loaded in a boat or coil and an electric current is passed through the 

filament, to heat it up to the evaporation temperature of the metal. In the case of the 

chromium-gold metalisation rotateable filaments must be used since maintenance of 

the vacuum between the evaporation steps is crucial, to avoid the formation of an 

oxide on the chromium, interfering with the adhesion of the gold. The evaporation 

rate and the final thickness of the metal layer are monitored with a quartz crystal 

microbalance positioned next to the wafers.

6.2.9 Patterning of the metalisation

The gold top layer needed to be patterned to form the metal contacts for the three 

terminals of the transistor, this is done with the mask 4 (18). A positive photoresist is 

used for this patterning process. The resist is again spun on, softbacked, exposed to 

UV light trough mask 4 and developed in a two stage process. First the gold is 

removed with an in-house prepared gold etch and then the chromium is removed with 

a commercial chromium etch (19). The etch completeness is verified under an optical 

microscope. This etch process was employed instead of the otherwise frequently 

described “lift-off process”, due to its simplicity. Tests on wafers with a gate oxide on 

top have shown, that the two etchants do not attack the silicon oxide, even over an 

immersion period of an hour. The remainder of the photoresist is then removed by 

washing with a solvent. For the backcontact, the native oxide, that grows on all silicon 

surfaces, was removed by wiping it repeatedly with a cotton bud soaked in HF, until 

the surface transition from hydrophilic to hydrophobic is complete. The wafer is then, 

without washing immediately loaded into the vacuum evaporator and the aluminium 

deposited.
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The metaliasation of the wafer is completed with a further heat treatment in an oven at 

a moderate temperature under a nitrogen atmosphere. This treatment allows the metal 

to diffuse into the substrate improving the ohmic contact and the adhesion.

6.2.10 Patterning of the passivation

To avoid the need for a patterning of the sensing membrane, a passivation layer, 

eliminating the possibility of short-circuiting the three contacts was introduced. The 

contact to the drain and source were then made by “piercing” through the passivation. 

Negative resist was spun on exposed through mask 5 and developed (20). Hardbaking 

of the resist rendered it solvent resistant and ensures good adhesion, completing the 

production process.
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6.3 Mask layout for a CFT

Below are presented the masks as used, with a magnified set of masks for the 50 pm 

gate gap device. The masks can be identified according to the colour coding, 

mask 1= yellow, mask 2 = pink, mask 3= green, mask4 =blue, mask 5 is a negative 

the blue mask over the gate (not shown).
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w

a .
>

< 3

□

□
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T

Fig. 2 Top view of the photolithograpy masks with a magnified individual set
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The exact physical device specification is given in Table 1.

Substrate Resistivity (n-type) 1 - 1 0  Qcm

Channel Length 2 0 0 pm

Channel Width 180pm

P-type Doping (Surface) 4* 1020 Atoms/cm' 3

Field Oxide Thickness lOOOnm

Gate Oxide Thickness 1 2 0  nm

Metal frame Thickness 150 nm

Width Of Gate Hole 0,50 pm

Table 1 Device specifications

6.4 Standard device characterisation

With the aid of a semiconductor analyser a standard characterisation of the devices 

was carried out, to select the working devices from the faulty ones. This step was 

required since the large area of the gate area, with 0.04mm and the large size of the 

contact pads with ca. 4mm , led to a high proportion of the devices suffering from 

short circuits, through pinholes in the silicon dioxide.

Barker showed that a CFT with a 25 pm air gap in the gate electrode switches 

completely on after only 6  minutes [12J, even in an atmosphere of water free nitrogen. 

This implies that the gate charge creeps over the silicon; no such effects could be 

observed for the 50 pm devices, indicating that no continuous charge layer is formed 

when a threshold length for the gate opening is exceeded. This threshold must 

therefore lie between 25 and 50 pm. In order to create a temporary, electrically 

conducting layer in the gate opening, the wafer surface was saturated with water 

vapour, by blowing on it. The water vapour film is easily recognised and remains in 

place for ca. 12 seconds. Any lasting contamination from salts present in the breath 

are avoided by rinsing the wafer in milliq water and drying in a stream of nitrogen. 

The response of these “gated “ transistors is similar to a reference device with a metal 

gate. A typical behaviour of a device tested in such a way is shown in the Figures 3 

and 4.
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Fig. 4 Transfer characteristic of the “gated” device for different gate voltages

The devices showed a large spread in the observed threshold voltage and current 

carrying capability. This can in part be attributed to the varying sheet resistive of the 

used wafers and to a larger extend to the varying quality of the gate oxide. The
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threshold voltage Vt of a conventional p-channel MOSFET for a zero bulk source 

polarisation is calculated according to reference 1131 by (1 ).

V ,= < S > C B ~  (1)
ox ox

®G/J being the work function difference between the gate and the bulk material, Qox 

represents the positive charges at the silicon oxide interface, Cox is the capacitance of 

the silicon oxide, 2  Of is the surface potential at the source side of the channel under 

strong inversion, which is the distance of the Fermi level in the middle and in the bulk 

of the energy bandgap of the semiconductor material, Qd is the charge in the 

inversion layer

The first two terms in (1 ) describe the flatband voltage V f b . Whereas the work 

function of the bulk is depending on the doping concentration, which can be 

calculated using textbook equations fl4], the work function of the water layer forming 

the gate material or the C[4]RA is not known which leaves the term undetermined. In 

production processing techniques attempts are made to minimise the charges inside 

the oxide forming Qox; this aim was not completely realised in this production. The 

absence of these parameters makes a comparison between the experimental and the 

theoretical threshold voltage impossible. The threshold is high when compared with 

textbook values in the region of around -3 V for conventional FET devices [15]. This is 

attributed to large terms for Qox and ®GB. The observed large spread in the threshold 

voltage prompted the use of a Vt = -  12.5 V, ensuring a maximum transconductance 

for all transistors.

Picture 1 shows a 14-fold magnification of a device mounted and wire bonded onto a 

header.
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Pic. 1 Header mounted and bonded CFT

6.5 The Charge Flow Capacitor

For the production of the CFC the same processes were employed, as described 

earlier. The fabrication order is a different one, the limitation to a single mask for the 

patterning of the structure is the main difference. The silicon substrate employed was 

from the lightly doped n-type variety, with a gate oxide thickness of lOOnm, grown by 

dry oxidation. The A1 back contact was identical to the one used for the CFT. The 

meshed front pattern, was for reasons of chemical stability again fabricated from gold 

with a chromium seedlayer providing adhesive support. The Cr and Au were 

thermally evaporated in one process and photolithographic patterning was carried out 

with a clear field mask and positive resist. After developing and fixation of the resist 

the double metal layer was etched in the two stage process as described earlier and 

then the remaining resist was removed. A schematic cross-section and top-view of the 

CFC, with the unpatterned sensing membrane in place, is show in Figure 5. The wafer 

was finally diced to yield individual devices; a patterning of the membrane was not 

required since fringe effects make only a negligible contribution to the capacitance. 

An area of 25 mm forms the capacitor, with a mesh size of 100 pm by 100 pm. The
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membrane extending beyond the frame can be calculated by allowing for a 1 0 0  jam 

extension of the area beyond the outer frame along its 2 0 mm circumference this 

makes only a contribution of 2mm , or 8 % of the capacitor’s area. It can further be 

assumed that this extension is universally present in a similar manner for all devices.

Sensing membrane

Au/Cr 

S i0 2 

Si

A1 back contact

______________ Mesh size 100jam
________ _____ by 100 pm

T -

Fig. 5 Cross section and top-view of the CFC with the sensing membrane in place
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7 Organic solvent vapour detection with a 
charge flow transistor

7.1 Introduction

Sensors that are probing electric properties such as permeability and conductance have a 

major advantage over optical ones. They can be easily interfaced with a plethora of 

existing signal conditioning systems and offer therefore the possibility of designing 

embedded systems.

Among the most basic measurements that can be performed in a chemical sensor are 

transconductance measurements on chemoresistor type sensors. The changing resistance 

of a material under investigation is determined by ohmic measurements involving a 

voltage source and an ammeter. The lower current range for electrometers/ammeters is 

currently extending down to the picoampere level. This sets a natural limit to the 

resistivity of the chemoresistor type material that can be utilised in this way. 

Furthermore the signal to noise ratio is very poor for measurements conducted at the 

bottom end of this range and require elaborate measurement conditions, involving 

heavy electromagnetic shielding. Materials with a low conductivity require therefore a 

different approach.

The transistor provides with its built in signal amplification, a device that is very 

versatile and allows the utilisation of highly ohmic materials as chemically sensitive 

membranes. Its amplifying properties also greatly enhance the signal to noise ratio.

Calixarenes possess due to their organic nature a very low DC conductivity. So far no 

type of gas/vapour sensor probing the electrical properties of calixarene has been 

reported in the literature. AC conductivity studies on very thin calixarene membranes 

sandwiched between metal electrodes have been conducted by Chaabane [1]. The 

electronic transport mechanism inside the membrane has been explained in terms of 

Mott hopping [1l  Unfortunately the sandwich structure employed with an impervious 

top electrode prohibits any vapour sensing application.
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7.2 Gas sensitive transistors

Gas and vapour sensing requires the material to be exposed to the atmosphere, therefore 

only field effect type transistors and not bipolar ones can be used. An in depth analysis 

of conventional MOSFET technology can be found in many studies [2, 3’ 4], and is 

therefore not repeated here.

Gas sensitive transistors have been designed in a variety of ways, which can be grouped 

into four categories depending on the mechanism that is utilised to register the presence 

of the analyte. The following brief overview illustrates the main working principles of 

ChemFETs. It is by far not complete, but all existing developments are based on 

modifications of the described principles, tailored to specific applications using novel 

materials.

7.2.1 Field effect transistors without gate electrode

In 1970 Johannessen introduced the Open Gate Field Effect Transistor (OGFET), 

which is a conventional field effect transistor (FET) without a gate electrode. The 

adsorption of polarised vapours on the insulator surface, like water and methanol, 

modulate the drain current.

A variant of the OGFET is the Adsorption Field Effect Transistor (ADFET) [61, which 

possesses an extremely thin gate insulator (< 5nm). The adsorption of any kind of gas 

with a permanent dipole moment like, H 2 O , N H 3 , HC1, C O , N O , N O 2  and SO2 modulate 

via their stray fields, the drain current.

In both devices the mechanism used for the signal generation is the modulation of the 

source drain channel by the electric field of the adsorbed species. Non selectivity and 

diffusion of the analyte into the substrate or the gate insulator seriously compromise the 

stability of such devices.

7.2.2 Field effect transistors employing work function changes in the 
gate metal

Lundstrom pioneered the Palladium Gate Field Effect Transistor (Pd-FET) in 1975 

In it the gate electrode is fabricated from Pd, which has the characteristic property of 

absorbing large amounts of hydrogen and allowing easy diffusion of it into its bulk.
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During the process of adsorption, hydrogen molecules at the surface dissociate into 

atomic hydrogen and diffuse into the Pd gate. A dipole layer is formed at the Pd/Si0 2  

interface which changes the work function of the gate electrode, this in turn modulates 

the drain current. Replacing the Pd with Pt in a similar structure leads to a higher 

sensitivity for ammonia [8]. Though the modification of the gate metal, including 

changes in the morphology allows a partial tailoring towards different target analytes, 

this type of device requires hydrogen to be part of the target molecule, since only it can 

migrate through the metal.

The introduction of a thin, perforated gate as in [10], allows the detection of other 

hydrogen-free gases like CO. Here the perforation allows contact between the gas and 

the gate insulator metal boundary where again a dielectric layer is formed, modulating 

the work function of the metal.

Though all hydrogen containing gases interfere with the measurement of the target 

analyte, compromising the selectivity, Pd-MOSFETS have proven to be very reliable in 

the detection of hydrogen leaks over periods of more then 1 0  years.

One interesting modification of the Pd-FET is its use as a biosensor, where the Pd gate 

is covered by a gas permeable membrane with an immobilised enzyme on top of it. 

Hydrogen gas evolving as a consequence of a biochemical reaction of the target analyte 

with the enzyme, diffuses through the membrane and then into the gate, changing its 

workfunction. This principle was successfully employed for the detection of urea down 

to concentrations of 1 0  pmol/1, using urease as the enzyme [12].

7.2.3 Field effect transistors employing dielectric constant changes or 
conductivity changes in a sensing membrane

In the Oxide-Semiconductor-Field Effect Transistor (OSFET), an organic thin film, 

whose charge carrier density changes upon exposure to electroactive gases, replaces the 

metal gate. These transistors work mostly in the depletion mode and changes in the 

threshold voltage are used to register the presence of gases. A variety of compounds 

have been utilised for the gate, with most of the attention focusing on phthalocyanine 

derivatives [13, 14] and porphyrin [15] with NO2, CI2 and SO2/SO3 as target analytes. 

Sensitivities are usually in the ppm region but detection thresholds in the ppb range 

have also been reported I6l
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Siemens introduced a gas sensor, where the gate insulator is formed by a layered system 

of SiC>2 , Si3N4 and an organic gas sensitive membrane [16]. The gate consists of an 

extremely thin layer of gold, which is highly perforated and allows the permeation of 

gaseous species. The absorption of gas into the organic layer modifies its dielectric 

constant and modulates henceforth the drain current by changing the penetration of the 

electric field emanating from the gate electrode. Solvent vapours in higher 

concentrations almost invariably lead to a swelling of the organic layer, therefore the 

gate is stretched as a result and the adhesion of the metal can deteriorate with continued 

exposure cycles.

Senturia developed the principle of the Charge Flow Transistor (CFT) in 1977 [I7]. The 

CFT consists in essence of a charge-flow capacitor [CFC] within the gate electrode of 

an enhancement MOSFET. The CFC consists of a metal frame filled with a low 

conductivity material. Upon application of a gate voltage, the charge present on the 

metal frame is transferred onto the filling material and when enough charge is 

transferred, an inversion channel is formed in the substrate underneath the gate insulator 

connecting the source and drain. The time required for the charge to spread out and the 

channel to form is directly dependent on the charge transport properties of the filling 

material. The time required for the channel formation is usually referred to as the 

turn-on response. Initial studies were focused on the determination of the curing 

behaviour of resins [18] and the detection of water vapours [19l  Barker then pioneered the 

development of the CFT for gas sensing applications, by using polyaniline for the 

reversible detection of NO2 and NO2 + SO2 [2 0 ,211 and later octa-substituted metal free 

phthalocyanine for the detection of NOx 2̂2\  Throughout these studies the cross 

sensitivity of polyanailine to water vapour was noticed and this effect was exploited in a 

moisture sensor[23], now of course suffering from a cross sensitivity to NO2 . 

Modifications of the gate structure lead to the Interdigitated Gate Electrode Field Effect 

Transistor (IGEFET). Here the gate electrode consists of two comb like structures, 

separated from the source-drain region, with the sensing membrane connecting the two 

combs [24]. Charge is transferred between the two combs and is lead to the “normal gate” 

connecting source and drain. This separation allows the placement of a heating element 

underneath the combs, which enhances desorption without affecting the transistor 

characteristic. The complexity of this arrangement in comparison to a gap in the gate 

does not lend itself to prototyping.
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7.3 Experimental details

The production process of the CFT is covered in detail in Chapter 6 , in which are also 

presented the exact physical and electrical dimensions of the device. The coating of the 

device with the membranes, is described in Chapter 4.

Extensive characterisation of the CFT concept was conducted in previous work [25l  The 

MOSFET itself is a standard electronic element described in most semiconductor text 

books, therefore here is presented only the material that is relevant for its specific 

application as a vapour sensor.

7.3.1 Vapour exposure

The exposure experiments were conducted, by mounting the devices under a bell-jar 

and the vapour was generated in two ways, static and dynamic. For the static vapour 

generation, the analyte was injected with a syringe into the bell-jar, allowed to 

evaporate freely and the measurements were taken in equally spaced time intervals 

throughout. The first measurement taken prior to the injection, provided the baseline. 

For the dynamic exposure measurements, the baseline was recorded in air and then a 

constant stream of vapour in nitrogen was used to purge the chamber. The purging was 

continued, until 4 times the volume of the chamber had flown through, reaching 

equilibrium, after which the recovery was recorded by removing the bell-jar.

The bell-jar volume of 2.4 litre and the used flow rate of 100 ml/min resulted in a 

purging time of 1.5 hours. A vapour generator was used to provide this constant vapour 

stream of know concentration. In it a vessel containing the solvent (diffusion tube) is 

heated in a chamber through which a stream of nitrogen flows. The vapour 

concentration was calculated according to (1 ).

ppm = 2 2 .4 - diffus’on rate [mg/ min] 1 q 6

MW  • flow rate [ml / min]

With 22.4 being the volume, in ml, of one mmole of gas, the diffusion rate is the rate at 

which the diffusion tube loses weight, MW is the molecular weight of the compound
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and the flow rate is the total flow controlled by the flowmeters and 106, is a factor to 

convert the concentration to the ppm level.

The diffusion rate is calculated by the weight loss of the diffusion tube over time with 

the vapour generator running at constant flow and temperature. The latter requires long 

equilibration times and several configurations of the diffusion vessel have been tested. 

The vessel finally used had a volume of 70ml, with a neck-opening diameter of 13mm, 

and a neck length of 21 mm. Table 1 shows the calibration data used for the 

calculations. Dilution of the vapour stream with nitrogen allowed a final adjustment of 

the concentration.

Time net weight

to 55.3 g

t o +  532 min 41.8 g

t o +  1040 min 27.9 g

to + 1750 min 0.79 g

Table 1 Vapour generator calibration with acetone at a temperature of 50 °C

A schematic cross section of the device, with the sensing membrane in place, is shown 

in Figure 2.
metal frame that builds the gate

passivation
drain

calixarene membranemetal con tac ts \ silicon oxide

n-type silicon

Fig. 2 Cross section of the turned on CFT with the C[4]RA membrane filling the gate
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7.3.2 Measuring circuit

A schematic diagram of the circuit used to register the turn-on response is presented in 

Figure 3. The storage oscilloscope used, could have been replaced with a very fast 

computer controlled ammeter with an external trigger, and the square wave generator 

could have been replaced by a computer controlled voltage source. This would have 

allowed a plotting of data points for comparison instead of relying on the screencapture 

of the oscilloscope. The attractiveness of the used set-up is its simplicity, there is no 

need for computer controlled components and no programming is required.

S quare  W ave
G enerator Source Drain V oltage

5V

_+12.5  V
Gas Chamber

-12.5 V

R2

Storage oscilloscope

channel 1

channel 2

Fig. 3 Schematic of the measuring circuit used

7.3.3 Explanation of the oscilloscope screen capture

In order to explain the following screencaptures, in Figure 4 an annotated screencapture 

is shown. Following screencaptures show only the top left quadrant.
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current is 
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division •

Gate voltage -12.5 !

Chi 200mV Cl+2 5.00 V M 500ms Chi I  
HjE 5.00 V

o v 26 Aug 1999 
16:55:52

Fig. 4 Annotated oscilloscope screencapture

7.4 Exposure results and discussions

7.4.1 OGFET behaviour

To clarify the contributions of the exposure response, it was first established that the 

CFT does not work as an AGFET, by creating an inversion layer upon sorption of the 

analyte without the application of any gate voltage. No measurable increase in the drain 

current could be observed upon exposure to saturated vapours of hexane, acetone, 

chloroform, methanol and water, without any gate voltage applied.

7.4.2 Description of the turn-on response modulation upon exposure 
to saturated vapours of chloroform

A typical data series, showing the modulation of the turn-on response upon the static 

exposure to saturated chloroform vapours is presented in the Figures 5a to 5g. The T
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marks the trigger point when the gate voltage changes form + 12.5 to -  12.5 volt at 

channel 2 , and the drain current is measured via the voltage drop across a resistor with 

the channel 1, Figure 3. The time intervals between triggers are marked in terms of time 

passed from the baseline measurement to. For the sake of comparison the time scale is 

kept constant over the whole series, at 1 0  seconds per division.

t= t0

Fig. 5a Baseline, on the very right, the onset of the turn-on is visible

t = to +150 sec t = to+180 sec

Fig. 5b Injection of chloroform at t=60 sec, onset of evaporation and therefore 

absorption in the membrane, the deadtime before the threshold voltage is exceeded, is 

reduced and the shallow slope in I corresponds to Vg <Vt.
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t = to + 330 sect = to + 300 sec

Fig. 5c The turn-on time is further reduced, with an onset of saturation at the end of the 

30-second measuring interval

t = to + 450 sec t = to + 480 sec

Fig. 5d Further decrease of the turn-on delay

tty*

t = to +600 sec t = to +630 sec

Fig. 5e Further decrease in the turn-on time, with true saturation reached after 20 

seconds
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t = to + 780 sect = to + 750 sec

Fig 5f Saturation is complete after 6  seconds

t = to + 900 sec t = to + 930 sec

Fig. 5 g Recovery after removing the bell-jar at t = to + 800

The above series covers the whole concentration spectrum, from zero up to the 

saturation vapour pressure of 159 mbar. Recovery was only 100 % complete after 40 

minutes.

For sake of comparison, a modulation factor was introduced to compare CFTs with 

different baselines. This eliminates the influence of the coating quality, with respect to 

the contact resistance between the gate and the membrane, membrane morphology and 

thickness. The modulation factor is defined as in (2).

. . .  „ delay time of the baseline t.modulation factor = ---------------------------------= — (2 )
delay time on exposure te
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With the delay time defined as, the time that is marked by the intercept from the 

extrapolation of the linear part of the current increase to the time axis (as marked in 

Figures 10a to lOe). For the above chloroform exposure this results in a modulation 

factor of,

modulation factor = —=■ ^ sec = 4 5 , 5 .
te 0 . 6 6  sec

7.4.3 Process of charge transfer onto the sensing membrane

For an inversion layer to form underneath the gate, charge must be transferred onto the 

sensing membrane. This process is shown schematically in Figure 6 , with the 

corresponding steps shown in the turn-on response, Figure 7.

1

Vg

2

Vg

3

Vg

4

Vg

Fig. 6  Charge transfer form the gate electrode onto the sensing membrane in steps 1 to 4
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Region 1 is the dead time 
between application o f Vgand 
the flow o f charge across the gap

Region 2 is the weak inversion 
where Ids increases 
exponentially,

Region 3 is the linear region 
were an linear increase o f Vg for 
Vg > Vt leads to an linear 
increase o f Ids

Region 4 shows the saturation

Fig. 7 Changing charge distribution of the CFC in the gate of the CFT over time, after 

the application of the gate voltage and corresponding Ids over time

7.4.4 Further saturated vapour exposures to common solvents

The response to different saturated vapours was determined in identical ways. Since the 

baseline for every transistor differed, the response to the vapours in air was normalised 

to the turn-on modulation factor. Figure 8  shows this normalised response in terms of 

the decrease of the turn-on response by the modulation factor.

Modulation of the turn-on time upon exposure to saturated vapours

4 5 -  -

4 0 -

3 0 -

M o d u la tio n  f a c to r  2 5 -

20 -

15-

Acetone
Chloroform

Hexane
MethanolS o lv e n t Water

Acetone Chloroform Hexane Methanol W ater

15 45.6 0.3 13 0

Fig. 8  Normalised decrease in the tum-on time of the CFT for saturated solvent vapours
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7.5 Contributions to the charge transport across the 
membrane

The charge transport modulation across the membrane is dependent on a variety of 

factors, which are analysed below.

7.5.1 Saturated vapour pressures of the solvents

The saturated vapour pressures of the solvents as taken from reference [26] at 20 °C are 

given in Table 2, together with their molecular weight. The saturated vapour pressure 

defines the number of molecules in the sample space.

Solvent: Saturated vapour pressure in mbar: Molecular weight

Acetone 181 59

Chloroform 159 115

Hexane 130 8 6

Methanol 96 32

Water 27 18

Table 2 Saturated vapour pressures of solvents at 20 °C and molecular weight

7.5.2 Electronic conduction in the C[4]RA membrane

In disordered systems with delocalised electronic states the electronic conduction does 

not follow the diffusion process, but can be described by a process of variable range 

hopping. The theory describing this hopping process was developed by Mott and Davis 

[27,281. According to this theory electrons are apparently intelligent, they hop from one 

initial site A to another site B with the energy hop being as low as possible. For the 

C[4]RA the four aromatic structures per molecule form the delocalised electronic states. 

The hopping behaviour can be modulated by three process taking place on absorption:

• The swelling of the film changes the distances between hopping sites, since the film 

is highly unordered and swelling does not take place in one well defined plane, 

distance changes between sites are rather random.

• Filling of “voids” between adjacent hopping sites with polar molecules provides a 

bridging function for the hopping electrons.
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• The conduction activation energy for the hopping is modulated by altering the state 

of the delocalised n  electrons due to van der Waals bond formation with the analyte.

It is therefore believed that the charge transport across the C[4]RA membrane, must 

progress along the basket and/or hydrophilic part of the molecule at the brim of the 

basket. The alkane chains can be regarded as nearly perfect insulators. Upon the 

complexation with polar vapours the electron distribution in the molecule is modified, 

based on the formation of weak intermolecular bonds. The polar molecules can polarise 

parts of the C[4]RA due to induced dipole interactions as described in detail in reference 

*29\  Table 3 ^  gives the polarity of the solvents used, characterised by the dipole 

moment, which is defined as: The distance between centres of charge in the molecule 

multiplied by the magnitude of charge.

Solvent Dipole moment [Debey]

Acetone 2.69

Chloroform 1.15

Hexane 0.08

Methanol 2.87

Water 1.87

Table 3 Dipole moments of the solvents

7.5.3 Micro-condensation of vapours in the C[4]RA membrane

Nabok et al. [31], showed that nonporous calixarene LB films allow the micro

condensation of organic solvents below the saturation vapour pressure. QCM 

measurements showed a strong nonlinearty in the absorbed mass on increase of the 

solvent vapour pressure, indicating the onset of condensation as early as 0 .1  times the 

saturated vapour pressure for hexane. Condensation in small pores occurs at a lower 

partial pressure, as compared to the partial pressure required for condensation on a flat 

surface. A concave surface provides more sites at which the condensing liquid can 

interact. This relationship is described for hemispherical menisci by the Kelvin equation 

(3) m .



po = the partial pressure at which capillary condensation occurs, a  is the surface 

tension, Vm is the molar volume, R is the gas constant, T is the absolute temperature, rc 

is the radius of the hemispherical meniscus

Though the equation is valid only for hemispherical menisci, the basket shaped C[4]RA 

can at a first approximation be treated as two oppositely stacked hemispheres, Figure 9.

0.95 nm

A=1.53 nm2

Fig. 9 Simplified model of the C[4]RA molecule based on two hemispheres

From the height as determined experimentally of 0.95 nm and the area of the molecule 

at 1.53 nm2, the model can be described by two hemispheres with an radius of ca. 0.7 

nm for the hemisphere formed by the alkane chains and a radius of 0.3 nm for the 

hemisphere made up by the ring structures. Other models are possible like a cylindrical 

treatment of the capillaries as in 131], particular when intermolecular spaces are 

considered. A further complication introduced, is the swelling of the membrane 

changing rc by filling of pores. There are also other adsorption models according to 

Dubinin/Radushkevich [33J, which again are based on the theory of micropore filling in 

combination with the Polanyi adsorption potential concept [34l

In Table 4 are presented the data used for the calculation of the pressure at which micro

condensation at room temperature can occur, and the results of these calculations with a 

separate treatment of the two hemispheres.

It was shown in f31], based on QCM measurements, that the mass gained during the 

absorption of vapours with respect to the relative vapour pressure (p/p saturation) is not 

varying over more then 50 % over a range of 4 orders of magnitude, for the solvents 

hexane, chloroform, benzene and toluene. The molecular weight for these compounds 

(Table 2) differs by not more then a factor of 0.5 (benzene MW = 78, chloroform MW =
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115). It was therefore proposed that at high concentrations the condensation of vapours 

is rather independent of the presence of specific absorption sites.

Solvent Surface
Tension

[dyne/cm]

Molar
Volume

[cm3/mol]

Micro
condensation 
rc = 0.3 nm

[Pr/Ps]

Micro
condensation 
r c= 0.7 nm

[Pr/Ps]
Acetone 23.32 73.52 9.57*10‘2 3.66-10' 1

Chloroform 27.16 80.16 5.08*1 O' 2 2.79-10' 1

Hexane 17.91 130.69 4.06* 10*2 2.54-10' 1

Methanol 22.55 40.49 2 .8 6 * 1 0 ‘2 5.35-10' 1

Water 72.8 18.02 1 .6 6 -1 0 '1 7.69-10 '1

Table 4 Calculated micro-condensation pressure ratios

7.5.4 Conductivity of the solvent in the liquid phase

To ascertain the relative conductivity of the solvents, as used, measurements were 

performed on interdigitated electrodes, covered with a drop of the solvent, to completely 

cover the fingers. The measurements were carried out with an electrometer at a DC 

voltage of 10 V, measuring the current between adjacent fingers of the IDEs, the stray 

current through the meniscus above the fingers can be neglected, due to the high 

resistivity of the material. The measuring voltage was chosen to be 10 V, in line with 

the gate voltage of - 12.5V. It is believed, from a test conducted at a lower voltage 

(1.5 V), that at this high voltage level, dissociation of the solvent molecules contributes 

to the increases of the conductivity of the liquid phase. The results for the 10V 

measurements are presented in Table 5.

Solvent Current

Acetone 2.3pA

Chloroform 1.5 nA

Methanol 2.2 pA

Hexane 23 pA

Water > 2 mA

Table 5 Current through solvent covered IDEs at a DC voltage of 10 V
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7.5.5 Analysis of the charge transfer process

There is no direct correlation between the modulation of the turn-on response and a 

single criterion like, the vapour pressure, conductivity of the solvent or the polarity of 

the solvent. It is believed that the reduction of the turn-on time is dominated by the 

charge transfer through the condensed phase of the solvent inside the membrane, ionic 

conduction, with a secondary contribution stemming from an enhancement of the 

electron hopping.

The conductivity of the solvent in the condensed phase must not be directly reflected by 

the conductivity of the solvent in the liquid phase. There are several factors that can 

account for a difference:

• Separation of molecules, in the truly liquid phase intermolecular distances are 

smaller as in the condensed phase, with C[4]RA molecules dispersed in-between.

• Solvation of ions, which stem from the dissociation, influence their propagation 

speed.

• The mobility of molecules in the two phases takes on a different form.

Water vapour

The zero response to water can be explained with the fact that the hydrophobic alkane 

chains prohibit any water vapour permeation into the sensing membrane, therefore 

making any conduction modulation impossible.

Hexane vapours

The poor response to hexane can be well understood, when the complexation of the 

hexane is assumed to be primarily along the alkane chains. The hydrophobic- 

hydrophobic binding would therefore not affect the charge transfer properties along the 

cage structure. The deduction of the turn-on response by a factor of 0.3, can be 

attributed to the swelling of the membrane decreasing the contact resistance between the 

membrane and the gate or the conduction across the condensed phase. With hexane 

having the lowest solution conductivity this contribution can be expected to be very 

small.
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Acetone and methanol vapours

Acetone and methanol provide similar turn-on response modulations. Both their solvent 

conductivity as well as their dipole moments are very similar, they differ by only 5% 

and 7 % respectively. The higher response to acetone seems to be stemming from its 

slightly larger contribution of the condensed phase. Furthermore the calculated micro

condensation vapour pressure is lower for acetone than for methanol. Both solvents 

possess a highly polar character. They can change the electron distribution alongside the 

basket, possibly via the formation of bonds between delocalised n  -electrons in the 

aromatic rings and the solvents or induced dipole dipole bonds with the hydrogen atoms 

terminating the baskets at the lower rim. This is strongly affecting the conduction 

activation energy required for charge hopping.

Chloroform vapours

The high reduction in the turn-on time upon chloroform absorption is at the moment 

difficult to interpret. Its solvent conductivity is lower then that of acetone and methanol, 

so is its dipole moment. There are two possible explanations that can account for this. 

Firstly the complexation of the chloroform is taking place in a different position at the 

basket, exerting a stronger influence on its ^-electrons particular to the spatial 

arrangement that they take up. Secondly the conductivity of the condensed solvent is 

disproportionately higher then that of the liquid phase. Dissociation of the solvents 

results in ions, the strong electrostatic forces between the ion and the solvent molecule 

bind a shell of molecules around the ion. This process of solvation increases the 

effective radius and slows the charges down. In the condensed phase this effect might 

be less marked than in the liquid phase. Acetone, methanol and chloroform might have 

very different solvation effects. Acetone and methanol with their higher dipole moment 

might show stronger solvation, resulting in a larger radius and therefore slower 

movement. This would mask the effective ion mobility and therefore the conductivity. 

At the moment no definitive explanation can be provided for the very strong response to 

chloroform.
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7.6 Exposure to dynamic acetone vapours

The detection of saturated solvent vapours is proof that low conductive C[4]RA 

membranes can be utilised in a conduction based sensor. It can have its application in 

closed storage facilities, where the detection of one or more leaks in the containers can 

be provided. However there is a much wider interest in sensors that can detect lower 

solvent concentration, as for example around the concentration level equivalent to that 

of the lower explosion limit (LEL). Therefore attention was focused on this, with the 

choice of the target analyte acetone being conclusive with the facts that it is:

• the 44th highest volume produced in the US (1991) of all chemicals [35]

• its LEL is 10.9% of that of the saturation vapour pressure [26J (this falls into the 

region were microcondenstaion according to (3) is predicted)

• frequently used as a common solvent

The vapour concentration of the LEL was generated as described above and the same 

measuring circuit was employed as previously. The baseline was again recorded in air 

and the exposure was recorded in intervals of 24 minutes throughout the purging 

process of the chamber. Figures 10a to lOe show the modulation of the tum-on response 

throughout the measurement, with the arrow marking the tum-on time, and 1 0 a 

providing the baseline.
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Form the above measurements the modulation factor can be calculated as,

t IV sec
modulation factor = —= --------- =1.36.

te 12.5 sec

This is less than the percentile fraction of the saturated vapour pressure response of 1.5, 

which could be interpolated from a linear response. It must therefore be assumed that 

the modulation is a non-linear function of the solvent concentration, with a stronger 

modulation at higher concentrations.

Based on the calculation carried out in 7.4.3, it can be stated that the condensation starts 

at the lower hemisphere of the C[4]RA because this is the only part where at a vapour 

pressure ratio of pr/p0 =0.1  condensation is predicted. For the upper hemisphere a 

required pr/p0 ratio of 0.36 is predicted for acetone. The swelling of the membrane after 

the onset of the evaporation can contribute to the reduction of intermolecular spaces 

thus generating further voids and structures for the micro-condensation.

The above proves successfully, that calixresorcinarene membranes can be employed in 

an electronic explosion guard type sensor.

7.7 Turn-on response of the CFT with a cast poly-ortho- 
methoxy aniline membrane

To put the conductivity of the calixarene into perspective, the CFT was cast coated with 

the undoped POMA, the difficulty of this coating procedure, required the coating of 

several devices from which the one with the most acceptable coating was selected for 

the measurement. The thickness was calculated to be 200nm, with a tolerance of at least 

20% due to the high inhomogeneity of the film. The tum-on response of the CFT in air 

was determined to be 1 second, see Figure 11.

It can therefore be inferred that the conductivity of the C[4]RA is lower in comparison 

to that of the undoped POMA, by more then one order of magnitude. After doping the 

POMA, in situ, with saturated HC1 vapours of for 1 hour, this tum-on response 

decreased to such extent that no tum-on delay could be any longer observed. The device 

tum-on behaviour equalled that of a reference device having a complete metal gate.
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Summary

The novel application of calixarene membranes in a conduction type sensor was 

demonstrated. The CFT in combination with calixarene membranes can be used for the 

detection of organic solvent vapours in the concentration range of the lower explosion 

limit. Usage as a threshold monitor in storage spaces, degreasing stations and 

processing plants are possible applications. The presented application offers several 

advantages over existing concepts:

• the immunity to water vapours, due to the hydrophobic nature of the membrane

• no observed poisoning of the membrane as commonly observed for doped SnC>2 

(catalytic poisoning)

• no accumulative effects are observed, as are responsible for the baseline drift in 

QCMs

• no porous metal layer is needed on top of the membrane, whose adhesion is subject 

to degradation

The reproducible coating of the CFC with membranes of ca. 250 nm thickness remains 

a challenge. LB deposition is a possible way for providing better control of the 

thickness and leading to a more reproducible membrane gate contact. The major 

drawback of this is that the application of hundreds of layers becomes a very lengthy
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procedure, depending on the deposition conditions, Chapter 4, this can take up to 18 

hours plus additional spreading time.
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8 The detection of organic solvents in water with 
C[4]RA coated electrodes

8.1 Introduction

Whereas already a variety of applications for calixarene derivatives were found and 

developed for sensing gaseous analytes, see Chapter 3, only very few studies have dealt 

so far with the detection of organic species in aqueous environments. Organic pollutants 

form a major source of contamination in water [1,2\  There are several sources for these 

organics; the effluents of various production plants of the chemical industry, oil 

refineries and oil drilling stations. A further, at times catastrophic source is the 

accidental spillage in and around the transport and storage chain of these materials. The 

latter can take on tremendous dimensions, as happened in 1998 when large areas of 

central Europe were flooded around the Danube and Rhein. Heating oil storage tanks 

were damaged resulting in their contents being dispersed throughout the whole 

waterlogged area. Existing sensors of organic pollutants in water are mostly based on 

optical or mass sensitive methods. A variety of fibre optic sensors based on different 

principles as reflectometric interference spectrometry evanescent fiberoptic 

measurements or a combination of solid-phase micro-extraction with infrared 

attenuated total reflection spectroscopic methods have been developed. This complex 

optical system is now available as a prototype device. Further techniques that have been 

employed are mass sensitive techniques, that are dependent on the precise determination 

of changes in the resonant frequency of quartz crystal microbalances coated with a 

variety of materials like polymers and calixarenes. Recently the use of bio-tests [8] 

employed the reaction mechanisms of algae and bacteria to pollution. The QCM 

systems showed some promising potential, whereas the bio-test requires further research 

and development before it can become a quantitative broad spectrum analytical tool.

In many cases the accumulative effect of the contamination is of interest rather then its 

exact analytical composition, as for example in the analysis of the flow and diffusion 

directions of heating oil in the 1998 flooding. For this a broad spectrum sensors is 

required.

Nabok et al. have shown that the capacitance of a Ta2 0 s semiconductor electrode coated 

with LB films of calix[4]resorcinarene in an aqueous solutions, can be controlled by the
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presence of small amounts of aniline However, this effect was not studied in detail 

and results were only obtained for aniline with no other solvents investigated. It is well 

known that amphiphilic calixarene derivatives are extremely hydrophobic and that their 

hydrophobicity can be controlled by the presence of small additives of organic solvents 

to aqueous solutions 1̂0].

According to an account from Dr. A. Nabok[11] this was demonstrated by Professor C.J. 

Sterling in a most ingenious way. A cotton wool ball was coated with amphiphilic 

calixarene and dropped into a water bath, where it floated on the water surface. Upon 

the addition of an organic solvent to the water, the cotton ball sank into the water.

This principle forms the basis of using calixarene thin films for the detection of organic 

species in water, with an extension of the analyte range as studied in ^  and the 

development of a model for the analyte membrane interaction.

A more detailed investigation regarding the membrane permeability changes, is carried 

out in Chapter 9 with the aid of an electrochemical method i.e. cyclic voltammetry. It 

must be stated that the experimental conditions for these investigations differ from the 

ones adopted here, to suit the different technique. Among the most influential changes 

are, the usage of a potentiostat controlled three electrode system, a different electrolyte 

composition containing a permeability marker, an extended frequency range and a static 

electrolyte compared to a flowing electrolyte adopted here.

8.2 Experimental details

8.2.1 C[4]RA modified electrodes

The electrodes used were fabricated, by thermally evaporating a seed layer of 3 nm of 

chromium, followed by a 70 nm thick layer of gold under vacuum onto standard 

microscope glass-slides (BDH) and coating them with 12 ML of Langmuir Blodgett 

C[4]RA films. The evaporation rate was about 0.2 nm second' 1 for the chromium and 

lnm second' 1 for gold, the vacuum, which was maintained during the hole evaporation 

cycle was between 10' 5 and 10*4 mbar. The metals were of standard semiconductor 

technology purity. The details for the membrane deposition are given in Chapter 4. 

Twelve monolayers were chosen, after initial test were conducted with thinner (2 ML) 

and thicker membranes (20 ML), where the thinner membranes provided a too 

pronounced permeability and the thicker membranes showed too little response. All the 

electrodes were used only once, to avoid cross contamination and to allow any
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structural changes in the membrane to occur without respect to the history of possible 

previous changes. All electrodes have a unique structure, with respect to the number of 

pinholes, molecular arrangement and other defects, despite identical deposition 

conditions. This required the normalising of the values to the relative basevalue for 

every electrode. In the case of irreversible changes occurring in the process of an 

exposure series, values were normalised to the base value directly before the analyte 

exposure.

8.2.2 Experimental set-up

Figure 1 shows the experimental set-up that was used. The flow chamber was designed 

by the author and fabricated in house. All pipes and the body of the chamber were made 

from PTFE to avoid any cross contamination between analytes. The electrodes were 

mounted beneath the chamber head, as indicated in Figure 1, which was sealed via a 

rubber O-ring. A spring mechanism applied the required sealing pressure. Care was 

taken when the spring pressure was adjusted so as not to damage the film. The counter 

electrode above the C[4]RA coated one, was made of gold wire (1mm diameter) coiled 

up in the shape of a “snails house” resulting in an electrode surface of ca. 1,2 cm2. The 

effective area of the C[4]RA electrode was 0.45 cm . Both electrodes were separated by 

about 2.8 cm. Through the chamber a continuous flow of 0.45 1/min of electrolyte was 

maintained, which was adjusted by the position of manual outlet valves. The recordings 

were taken with a HP 4284 LCR meter, which was interfaced to a PC and controlled by 

a program written by the author. The operating mode was set for a parallel circuit 

measurement, with no biasing voltage applied and the measuring signal amplitude was 

set to 20mV peak to peak, with the automatic integration interval being set to long. The 

latter function smoothes the recorded signal. For the exposure scans the measuring 

frequency was chosen to be 60 Hz. This was in line with the observed frequency 

dispersion of the system, revealing the most pronounced difference between the coated 

and uncoated electrode at the lower end of the measuring spectrum of 20 Hz -  1 MHz. 

Recordings were simultaneously the conductance and capacitance of the working 

electrode (C[4]RA coated or uncoated), electrolyte, counter electrode system over time. 

The times when the electrolyte composition was changed, was manually recorded.

148



water reservoirs

HP 4284 A LCR Meter

o o o o o

IBM PC for datalogging

conductance

inlet pipe

segment o f  the flow  
chamber

direction of flow

outlet pipe

calixarene membrane
o-ring

Fig. 1 Experimental set-up and flow chamber

Before every measurement a standard volume of 1 litre of pure electrolyte was flushed 

through the system to allow for any initial film structure changes, occurring at the first 

transition from the dry to the wet environment to settle and also for any sodium ion 

membrane interaction to equilibrate.

8.2.3 Electrolyte composition and preparation

The electrolyte was prepared by dissolving lg/1 NaCl in Millipore water (resistance > 

18MQ) resulting in a concentration of 0.017 mol. Only freshly prepared electrolyte, not

149



older than 180 minutes, was used and it was kept in a sealed bottle for this period to 

avoid any contamination through airbom particles. Different organic analytes were 

mixed into this mother solution, Table 1 gives some of the analytes properties.

Group Analyte Formula Solubility in w ater in 
% (by w eight)

Density: MW:

A Methyl alcohol C H 3O H miscible with water 0.7924 . 32.04
A Acetone C H 3 C O C H 3 miscible with water 0.792 58.08
A Ethanol (ethyl alcohol, 

grain alcohol)
C 2 H 5 O H miscible with water 0.816 46.07

A Phenol c 6h 5o h soluble in water 1.07 94.11
B Aniline c 6h 5n h 2 3.38 1.0235 93.13
B 4methyl2pentanone ( C H 3) 2C H C H 2C O C H 3 1.7 0.8042 100.16
B Chloroform C H C I3 0.8 1.485 119.4
C Trichloroethylene C H C I :C C I 2 0.11 1.456 131.34
C Benzene c 6h 6 0.178 0.879 78.12
C 1-Hexane C H 3 C H 2 C H 2 C H 2 C H 2 C H 3 0.0053 0.6734 84.16
C Tetrachloroethylene C I2C :C C I 2 0.026 1.625 165.82

Table 1 Selected properties of the analytes investigated

Some of the analytes, those with limited solubility, required a rigorous stirring 

procedure to produce a homogeneous solution. The solvents were added to the solution, 

stirred for periods of up to 5 minutes and then sonicated up to 15 minutes in an 

ultrasonic bath. The solution was then allowed to cool down to room temperature and 

was inspected with respect to the formation of micelles. Light was shone through the 

solution, and the mixing procedure was repeated when any light scattering was 

observed. This test is based on the Tyndall theory 1121 that particles/micelles with a size 

of the wavelength of light scatter light. This sets the lower observable particle size to 

about 350 nm. The electrolyte composition was prepared by mixing the analyte by 

weight or volume, these concentration values were then converted to the ppm 

concentration format. All analytes used for the electrolyte preparation were of the analar 

grade quality.
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8.3 Results and discussions

8.3.1 Characterisation of the electrode electrolyte electrode system

The system of the working electrode, electrolyte, counter electrode (WEC) was 

characterised with respect to the frequency dispersion and the difference that the coating 

of the C[4]RA LB film has on the working electrode. The conductance and capacitance 

changes over frequency, for both the coated and uncoated working electrode are shown 

in the Figure 2 and 3 respectively.
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•Fig. 2 Conductance changes over frequency for the WEC system with a coated and 

uncoated working electrode
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Fig. 3 Capacitance changes over frequency for the WEC system with the coated and 

uncoated working electrode

The WEC system can be described by the detailed equivalent circuit shown in Figure 4, 

in the case of the uncoated working electrode C3 and R3 become zero.
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Calixarene membrane

Fig. 4 Detailed equivalent circuit of the coated working electrode electrolyte counter 

electrode system

152



The overall impedance of the circuit can be written in the form of (1).

z  = y — ^ —  + r e (i)
m1 + ja)R,C,

The real and imaginary parts can then be separated in the forms of (2) and (3) 

respectively.

R e(Z ) + {2)

H Z )  - (3)

For a parallel circuit measurement, the conductance G and capacitance C can be given 

in the form (4),

G = — -—  and C = ——— (4)
Re(Z) Im (Z)

with (5) defining Re for the limit of co -» 0.

Re(Z) = R] + R2 + R3+ Re (7)

On the other hand, (6 ) gives the limit for co -» oo.

1 1 1 1 (6 )c c c c^  total 2 ^ 3

Equations (5) and (6 ) establish the validity of the equivalent circuit. The observed non

linear frequency dependencies of G and C are apparent from Equations (2) and (3). 

Because of the inclusion of RE, equation (4) implies that G is higher for the uncoated 

electrode than the coated electrode. A similar inference can be made about the 

behaviour of the capacitance.
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The proposed detailed equivalent circuit above can be simplified by assuming that not 

all impedance elements have a significant influence on the impedance spectra. The 

impedance spectra in the form of Z and ® over f  was calculated from the above (Fig. 2 

and 3) and is shown in Figure 5.

<|> uncoated 
z coated

4 coated 
z uncoated

a

N 4 0 0

-o o  o o n T ! )  6 4 l> t  0 J 0 v 'v 'O

F / H z

Fig. 5 Bode diagram of the system with coated and uncoated working electrode

For example, the charge transfer resistors Ri and R3 are expected be nearly infinitely 

large since there are no redox-active species present in the solution, and the double 

layers of the working and reference electrodes cannot be resolved. Hence, the equivalent 

circuit can be simplified to the one shown in Figure 6 .

CPE Re

Fig. 6  Simplified equivalent circuit for the WEC system

The resistor represents the resistance of the electrolyte solution between working and 

counter electrode. The Constant Phase Element (CPE) represents both electrodes. More 

detailed information about the constant phase element can be found in Chapter 9.
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Table 2 shows the results of the mathematical fit. The fairly

Impedance uncoated electrode calixarene coated
element electrode

Resistance Re in kQ 3.31 3.37
CPE defined as: Y0 in nF 84.4 9.26

* _ 1
*'t™ ( 2  n j Y J

a 0.708 0.778

Table 2 Values derived for the CPE for the different systems under constant flow of 

electrolyte

large electrolyte resistance dominates the high frequency behaviour, while the 

capacitive behaviour of the electrode surface and the calixarene film dominates the 

impedance spectrum at low frequencies. The calixarene film lowers the capacitance of 

the electrode, i.e. the films appear to be mostly insulating since the nanoporous 

calixarene matrix restricts the mobility of solvated ions. The proposed simplified model 

is only an approximation, and does not allow the correlation of the observed 

conductance changes to any parameter in the CPE, therefore for further discussions the 

detailed model is considered.

8.3.2 Modulation of the working electrode conductance upon analyte 
interaction

In order to investigate the response of the working electrode to the analyte, the 

electrolyte composition was changed with intermittent cycles of “pure” electrolyte 

between exposures. A constant flow had to be maintained throughout, to avoid any 

distortion of the results by air bubbles. Some typical exposure responses are presented 

in the Figures 7 to 10.

The exposure to trichloroethylene, shown in Figure 7, exemplifies the response of the 

electrode to non or very weakly polar substances. Interaction with the membrane brings 

about a decrease in the conductance. Sorption and desorption are fast with the sorption 

being the slightly faster process.
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Fig. 7 Electrode response to 100 ppm (0.05%) of trichloroethylene

The group of analytes that have a polar to weakly polar character and whose solubility 

therefore lies over that of the non polar ones but is still limited to the range of 0 . 8  % for 

chloroform and 3.7 % for phenol is represented in the Figures 8  and 9. Phenol is the 

only analyte that is a solid (powder) at room temperature and it was included in the 

analysis since its highly toxic nature, makes its detection of particular interest in the 

monitoring of water qualities. The conductance is increasing with the analyte 

interaction, the recovery upon flushing is slower then the sorption, most pronounced for 

the 0.4g/100ml concentration.

As in the case of the phenol interaction the exposure to chloroform increases the 

conductivity, the response shows a markedly different time constant for the exposure 

and recovery. The interaction with chloroform highlights one important aspect of the 

electrode with respect to its stability. When the solubility limit is exceeded, a dramatic 

increase in the conductivity occurs, most probably due to an irreversible damage in the 

film. Vesicles of the solvent, which can form at concentration higher than the 

solubility limit, may dissolve the film partially and this may contribute to the observed 

increase in conductivity. The strength of the reaction thus depends on the quality of the 

analyte as a solvent for calixarene. In the case of chloroform this reaction is very strong, 

even for solutions just exceeding the solubility limit.
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Fig. 9 Chloroform exposure within and above the solubility limit
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The third group of analytes consists of organics which have unlimited solubility in 

water, they are polar and the response to them is exemplified by the response to grain 

alcohol in Figure 10.

on Off
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o
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Fig. 10 Exposure series to different concentrations of ethanol

Similar to the behaviour of chloroform and phenol the conductance increases upon 

analyte membrane interaction. As already observed for higher chloroform 

concentrations, permanent membrane changes occur for concentrations over 1 0  %. 

Since ethanol is a solvent for calixarenes, again partial film removal can be proposed as 

the responsible mechanism. For concentrations as high as 50 %, it must be said that the 

electrolyte composition is substantially changed with respect to the sodium ion 

concentration. This reduces the observed response.

To ensure that the observed responses can be correctly attributed to changes in the 

coated working electrode and not to changes in the electrolyte resistance or changes at 

the counter electrode, exposure series were carried out with an uncoated gold working 

electrode. Figure 11 exemplifies the analyte induced response, showing that there is no 

specific reaction to the analyte and therefore the changes observed are attributed to the 

C[4]RA LB film covering the electrode.
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Fig. 11 Response of the CWE system with an uncoated working electrode upon 

exposure to trichloroethylene

There is some fluctuation in the conductance value, which was also observed for a gold 

slide with pure electrolyte, Figure 12. The variations observed can be attributed to the 

dynamic of the constant flow system and further some drift in the baseline.
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Fig. 12 Fluctuations of the conductance over time of a gold slide in pure electrolyte

Further experiments were carried out (individual plots not shown) the results of which 

are summarised in Table 3.Though generally the observations follow a the trend of
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continuos increase or decrease in conductance, there are some fluctuations of unknown 

origin in the observed data for chloroform and trichloroethylene.

Analyte Concentration Changes in Relative changes in
(ppm) conductance (S) conductance (%)

Methanol 2 2 negligible 0

1346 3.00*10' 7 1.16
4497 5.00* 10' 7 1 .8 6

13768 7.50*10'7 2 . 8 6

Phenol 1 negligible 0

1028 4.00*1 O' 7 0.98
2067 2.00*1 O' 7 1.92
4176 1.05*1 O' 6 5.15

Acetone 1 negligible 0

246 8 .0 0 *1 0 '8 0.3
1979 7.4*1 O' 7 3.41
4499 1.42*1 O' 6 6.51

Ethanol 1 negligible 0

959 5.00*1 O' 8 0.16
3220 3.10*10' 7 1.59
9860 7.40*1 O' 7 3.7

35424 4.66*1 O' 6 19.48
318819 2.09*1 O' 5 51.18

Chloroform 1 negligible 0

56 1.24*1 O' 6 4.43
224 3.37* 1 O' 6 11.57
674 2.50*1 O' 6 8.47
1351 3.00*10' 6 10.4
3409 5.98E*10'6 2 0

Benzene 51 -2 .0 0 *1 0 " -0.0172
203 -1.60*1 O' 7 -0.63

Hexane 7 1 .2 0 *1 0 " 0.4
143 -4.60*1 O’7 -1.65
865 -6 .0 0 * 1  O' 6 -22.7

T etrachloroethylene 7 6.50*10’6 7.86
4methyl2pentanone 29 6 .0 0 *1 0 " 2.05

145 1.20*1 O' 6 2.72
Aniline 40 3.50*10'° 9.58

79 s .o o n o -6 13.45
Trichloroethylene 1 0 0 -6 .0 0 *1 0 " -1.83

2 0 0 -3.30*10'6 -9.82
400 -1.50*10'6 -5.41

Table 3 Summary of various analyte induced changes on the C[4]RA LB coated 

working electrode

In Figure 13 a selection of some modulations of the relative conductance changes are 

plotted over the investigated concentration range. These plots are highlighting the
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discrimination between polar and nonpolar analytes by positive or negative conductance 

changes.
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Fig. 13 Analyte responses in terms of relative conductance changes, plotted for selected 

compounds from Table 3

8.3.3 Discussion of the analyte C[4]RA membrane interaction

As indicated in Table 1, the analytes under investigation can be classified into three 

separate groups depending on their solubility in water and polarity. The first group A, 

comprises analytes which are infinitely miscible with water and are strongly polar. The 

conductivity of the membrane is increased upon analyte interaction. The next group B 

comprises aniline, chloroform and 4methyl2pentanone which are soluble in water by a 

factor of between 0.8 and 3.1 % by volume, these molecules still posses a polar 

character. Similar to group A, the presence of these compounds increases the electrical 

conductivity. However, when the solubility limit is exceeded, a permanent increase in 

the conductivity occurs. This is most probably due to an irreversible damage of the 

membrane coverage on the gold electrode. Vesicles of the solvent, which form at this 

concentration, may dissolve the film partially contributing to the observed increase in 

conductivity. The strength of the reaction thus depends on the quality of the analyte as a 

solvent for the calixresorcinarene. The analytes with very low water solubility, for 

example benzene, hexane and trichloroethylene, belong to the third group C. These
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compounds are either non polar or very weakly polar. As highlighted in Figure 11, their 

induced response is opposite to that displayed by the polar molecules, thus decreasing 

the conductivity.

Mechanisms contributing to the membrane changes

With the absences of any redox active species in the electrolyte and the measuring 

voltage below the oxidising or reducing potential of the membrane, the measured 

increase in the conductance can not be simply attributed to the increase in the charge 

transfer through the electrolyte. There are several mechanisms contributing to the 

increased conductance:

• The permeability of the membrane changes, this lets the coated electrode behave 

more like the uncoated one (This point is investigated in detail in Chapter 9). In 

terms of the detailed equivalent circuit this influences the values C2 ,C3, R2 and R3 .

• The accumulation of the species in the membrane changes its dielectric constant, 

changing C 3 and R 3 .

• Organic species on the top of electrode compete with the conventional double layer 

formed by the sodium cations, modifying C2 and R2 .

• A modulation of the ^electrons network in the C[4]RA basket can change its 

conductance, which is represented by R3

It is believed that the permeability changes are dominating the observed effects. It is 

therefore proposed that the difference in the direction of the conductivity changes are 

stemming from the changes in the hydrophobicity of the membrane. Upon complexing 

with polar molecules the permeability is increased whereas the complexation with non 

polar molecules increases the hydrophobicity. That organic species complex in 

calixarene membranes in aquatic environments, was unequivocally shown with the aid 

of nuclear magnetic resonance studies in reference [13].

Summary

A sensing system consisting of gold coated microscope slides covered with Langmuir 

Blodgett C[4]RA films, was characterised and a detailed and simplified equivalent 

circuit model was derived. The working electrode allowed the discrimination between 

polar and non polar species in water, covering a concentration range up to the solubility



limit, at which point the membrane is etched away. The relation between the analyte 

concentration and the observed conductivity increase/decrease is non-linear for the 

analysed species. The system offers the possibility to be integrated into a dipstick like, 

one shot sensor as a broad spectrum sensor determining the overall content of organic 

solvents in water. Of particular interest is that the system response to phenol and 

hexane, with the latter being a major component in fuels.
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9 Detailed permeability studies on the LB 
C[4]RA membrane

The results of the previous chapter strongly suggested that the permeability of the LB 

membrane is modulated by the presence of organic analytes. In this chapter, these 

permeability modulations are investigated in detail, mainly with the aid of an 

electroactive permeability marker, employing cyclic voltammetry, impedance 

spectroscopy and SPR. The permeability of the membrane is correlated to the oxidising 

and/or reducing current that is flowing when the permeability marker undergoes 

oxidation and/or reduction.

Permeability control of membranes can be found in a most sophisticated way in 

biomembranes, controlling the molecular exchange on a cellular level. These most 

intriguing systems have been comprehensively studied for artificial [1‘5̂ and biological 

systems [6'9l  As far as the artificial systems are concerned, channel mimetic sensing 

membranes of orientated layers of valinomycin and anionic phospholipid [1’ 2\  

macrocyclic polyamine f3] and cycylodextrine were investigated. Similarly biological 

membranes of polypeptides [10, 111 and DNA [12’ 13] were investigated. Monolayers of 

substituted calixarene esters, at the air water interface and on carbon electrodes, have 

shown to possess the quality of changing their permeability on complexation with alkali 

metal ions [14]. This study revealed that depending on the nature of the permeability 

marker, cationic, anionic or neutral varying effects can be obtained.

9.1 Cyclic voltammetry

Voltammetry is an amperometric electrochemical analyse technique, that is widely 

applied for the detection of analytes in solution which undergo electrolysis t15, l6\  Cyclic 

voltammetry is very similar to linear sweep voltammetry, the major difference is that 

the voltage is swept in a cyclic mode between two values. The following describes the 

very basics of this technique, using the frequently cited example of the redox reaction of
o  t o  j

the Fe /Fe ion pair. The potential of the working electrode is swept over time between 

V i and V2 as shown in Figure 1.
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Voltage

Time

Fig.l Cyclic voltage sweep of the working electrode

This results in the corresponding voltammogram, Figure 2, which shows the current 

over the electrode potential.

Current

0.2 -0.1 -0.2

Voltage

Fig. 2 Cyclic voltammogram of the Fe3+/Fe2+ ion pair[16]

The forward sweep from 0.2 V to -  0.2 V (Vi to V2) oxidises the Fe2+ species in the 

solution according to (1 ).

Fe2+-e~< ^F e3+ (1 )
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This transfer of charge, corresponds to the current peak ip°, on reversing the voltage
I ^  I

back to 0.2 V, the Fe is reduced back to Fe according to (2).

Fe3+ + e'<=>Fe2+ (2)

The reduction current corresponds to the trough ipa. The electron transfer takes place at 

the electrode and its dynamic depends on the scan rate and the concentration of the 

species undergoing electrolysis. Increasing the concentration and the scan rate increases 

the current flow. A membrane covering the electrode with a modulated permeability for 

the marker leads in turn to a modulated current.

9.1.1 Potentiostat controlled three electrode system

All measurements employing ammperometric techniques, require the use of a 

potentiostat controlled three electrode system. The function and workings of a 

potentiostat in a three electrode system are not immediately obvious. The following 

explanation highlights the principle of operation and shows why its use is required. 

Detailed technical aspects and an advanced theoretical treatment regarding potentiostats 

can be found in reference [17].

For a two electrode system with no DC current flowing, the applied voltage E is split, 

equally or unequally, between the two electric double layers forming on top of the 

electrodes. There exists no voltage across the bulk of the solution. The potential 

gradients for such a system are shown in Figure 3 a. Appropriate design measures in the 

construction of the counter electrode, like a large area to minimise the current density 

and selecting a material that establishes a fixed half cell potential with the electrolyte, 

like colomel with chloride ions in the electrolyte, makes it possible to keep the potential 

d> c constant.

If the potential at the working electrode is exceeding the one required for the oxidisation 

or reduction of the electroactive species, the resultant current flowing across the 

solution, is giving rise to a voltage drop across the solution resistance. This voltage drop 

<|)S across the solution causes the potential (j)w to be reduced since (|>c and E remain 

constant. The potential gradients for this case are given by Figure 3b. In its extreme case 

(|)w changes so much, that the oxidation or reduction stops, which reduces the voltage 

drop across the solution to zero and <|)w starts then to oscillate. This process is shown

166



schematically in Figure 4. To maintain a constant potential (j)w, E has to be increased to 

Ec, as shown in Figure 3 c. Since any variation in E is also changing the voltage drop 

across the solution, controlling (|)w is very indirect and leaves a rather large unknown 

potential (j>s in the feedback loop.

In a two electrode system the counter electrode fulfils thus two functions, it completes 

the circuit allowing a charge transfer across the cell and it is supposed to keep a constant 

interfacial potential.

Bulk Solution

H H = H H
Rs

Fig. 3a, 3b, 3c Electrode potentials in a two electrode system with and without DC 

current flowing

O  co

Tim e

Fig. 4 Schematic representation of the variation in <|)w over time in an uncontrolled two 

electrode system

GND
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A potentiostat with its three electrode system splits these two functions between the 

counter and reference electrode. A schematic of a primitive three electrode system is 

given in Figure 5, which also represents the electrode arrangement used.

Feedback 
controlling E

Reference electrode

Cell

Potential
monitor

Counter Working
electrode electrode

Fig. 5 Electrode arrangement and schematic of a primitive potentiostat

The reference electrode is used as a potentiometric probe to measure (|)w with respect to 

its own potential (J)r. The potential <|)r is established by the half cell potential of the 

electrode according to the chemical equilibrium reaction taking place at it. Any current 

drawn from the reference electrode would alter 4>r, therefore a zero current measurement 

must be used. This is nowadays virtually achieved with the aid of extremely high input 

resistance operational amplifiers. Figure 6 a shows the potential gradients in a three 

electrode system, with no DC current flowing and in 6 b when there is a flow of direct 

current across the electrolyte.

Since the position of the reference electrode is much closer to the working electrode 

than the counter electrode, the voltage drop across the solution, given by I • Rs2 is also 

smaller than the drop across the whole of the solution, given by I*(Rsl + Rs2). By 

constantly comparing the potential of (|)r+I • Rs2+0w with a reference and adjusting the
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voltage E applied to the cell, <|)w is kept constant independent of <j>c and with a much 

reduced influence of any voltage drop across the solution.

Counter
Eectrode

Reference Working
Electrode Eectrode

Counter
Eectrode

Reference Working
Eectrode Eectrode

GNDo  r

<&c

Bulk Solution

® r

owl

Bulk Solution

Fig. 6 a, 6 b Electrode potentials for a potentiostat controlled three electrode system

9.1.2 Experimental details

The neutral electroactive hydroquinone (HQ) was used as the permeability marker to 

avoid complications with electrostatic repulsion. The redox reaction of the 

hydroquinone is pH dependent, therefore a buffer is required to keep the pH of the 

electrolyte constant. The buffer consisted of a phosphoric acid NaH2 P O 4  and its 

conjugated base Na2H P O 4 , the equilibrium reaction of interest stabilising the pH is 

given by (3).

H2P 0 4* <=>HP04~ + H + (3)

The concentrations of the acid and its conjugated base determine the pH value, with a 

pH of 6.4 a slightly acidic character of the electrolyte was chosen. The background 

electrolyte concentration was 0.1 M NaCl.

In Figure 7 is shown the principle of the redox reaction for the hydroquinone.
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Fig. 7 Redox reaction of hydroquinone

For the third electrode needed by the potentiostat, a silver-silver chloride (Ag | AgCl) 

reference electrode was used. The equilibrium reaction that establishes the potential of 

the Ag | AgCl is given by (4),

AgCl(s) + e- Ag(s) + Cl- (4)

the chloride ion stems from the electrolyte. The potential that the electrode in solution 

assumes, is dependent on the concentration of the C l '. It is quantitatively related to the 

standard potential for a 1 mol concentration (Eo) of chloride ions, by the Nerst equation 

(5). N denotes the number of electrons transferred in the reaction and E0 is 0.222V for 

AgCl.

* s. 0.05916 ,E =Eo------------log Cl
n (5)

The used 0.1 M concentration establishes according to (5) a half cell potential E of - 

0.013V, with respect to the hydrogen electrode, a standard against all others half cell 

potentials are measured.

The measurements were performed using an Autolab potentiostat PG STAT 10 

connected and controlled by a computer running the software package General Purpose 

Electrochemical Systems (GPES) 4.7. The Ag | AgCl electrode was fabricated by 

preanodising a 0.25 mm diameter silver wire in a saturated NaCl solution at 3 V for 1 

minute. For the electrolyte 5.844 g/1 NaCl was dissolved in Millipore water giving a 0.1
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M solution. To this was added the buffer consisting of 0.00528 M Na2HP0 4  (7.5 g/1) and 

0.01 M NaH2P0 4  (2.02 g/1), buffering the electrolyte to pH 6.4, as confirmed by a pH 

electrode measurement. This formed the mother solution to which the permeability 

marker hydroquinone was added to give a concentration of lOmM (1.1 g/1). The solution 

was vigorously mixed and when analyte was added to it, the solution was sonicated 

until a micelle free solution was obtained.

The potential scan rate for the cyclic voltammograms was set to 50 mV/s, each scan was 

started from 0 V and underwent 2 complete scans of which the last one was recorded 

and evaluated. The cyclic voltammograms (CVs) were analysed on the basis of the 

redox current peak heights, with respect to a baseline. This baseline was drawn, to 

follow the most linear part of the background scan without any analyte present. All the 

voltages cited and plotted are with respect to the potential of the Ag | AgCl electrode. A 

volume of 2 0 0  ml of electrolyte solution was flushed through the chamber and a settling 

time of ten minutes was allowed before each measurement was undertaken under static 

flow conditions. The used LB calixresorcinarene coated electrodes were prepared as 

described in Chapter 8 .

9.1.3 Results and discussion

A cyclic voltammogram of an uncoated gold electrode in the buffered solution, 

containing no marker, results in a nearly linear increase of the current with respect to the 

voltage, Figure 8 . This current is the result of the charging of the electrode. The 

electrode forms one part of a parallel plate capacitor, the opposite plate consisting of the 

charged species, Na+ or CF ions, migrating to it under the influence of the applied field. 

This is commonly termed the electric double layer. The slight hysteresis for the up and 

down sweep, is based on a certain affinity of the ions for the Au electrode, and a 

competing action of charged species for the same place when the polarity of the 

electrode changes. The magnitude of the current at 6  • 10' 7 A so small that for any further 

considerations its contribution to the CV is neglected.
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Fig. 8  CV of a gold electrode in buffered NaCl electrolyte

The CV of the calixarene coated electrode in the buffered solution, without the marker, 

shows a markedly different form, Figure 9. Whereas the voltage forward sweep to the 

first vortex potential has a shallow slope, indicating a capacitive current, its magnitude 

is about 10 times higher, then that for the uncoated electrode. For the reverse sweep 

there is a rather steep increase in the current, at voltages below -  0.15 V, it is believed 

that this is due to some reducing action on the membrane. When the voltage sweep 

window is reduced to -  0.15 to + 0.6 V (as shown in the inset of Figure 9) the current 

follows the voltage sweep with a near linear current increase, indicating again 

capacitive behaviour, and perfect stability.

Figure 10 shows the CV of the hydroquinone on an uncoated gold electrode. The 

current flow due to the oxidation of the hydroquinone peaks at + 0.22 V and the current 

flowing for the reduction peaks at -  0.1 IV. For a diffusion controlled reversible 

reaction, redox peaks would be expected to show a 59/n mV separation according to (6 ) 

[181, with n being the number of electrons that are transferred during the redox process. 

The found separation of 0.33 V is larger than expected.
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Fig. 9 CV of C[4]RA coated membrane in buffered electrolyte, for two different voltage 

ranges, with the inset showing the CV over the linear voltage range

59mV
AE = E ap-EcP = (6)

n

Gold electrode surfaces are known to frequently only permit quasi-reversible oxidation 

and reduction kinetics for many redox couples, that might otherwise exhibit reversible 

behaviour as for example on platinum *l9\

Figure 11 shows three CVs for three different electrolyte compositions for the same 

membrane. The baseline recorded with the marker in the electrolyte, shows that there is 

a considerable background permeability of the membrane. This is attributed to:

i) pin holes and voids in the membrane

ii) a certain permeability of the marker through intermolecular spaces of the 

C[4]RA

iii) possible intramolecular penetration of the hydroquinone of the C[4]RA

The size of the HQ is, with ca. 0.65 nm diameter, similar to that of the electroactive 

species methylviologen2 + for which this type of inclusion/ intramolecular permeability 

was advocated for calix[6 ]arenes This rather high background permeability, was a
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determining criteria for the usage of a membrane with 1 2  monolayers over thinner and 

therefore more permeable membranes.

2.0x10'-

0.0 J

-2 .0x10-

-4.0x10'4-

-8 .0x10-

-0.4 -0.2 0.0 0.2 0.4 0.6

V o ltage  [V]

Fig. 10 CV of hydroquinone on an uncoated gold electrode
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o.o -3
o

-2 .0 x1 0

-0 .6 -0.4 -0 .2 0 .0 0 . 2 0 . 60.4

V o lta g e  [V]

Fig. 11 CVs of C[4]RA coated electrodes, showing an increase in permeability under 

CHCI3 addition
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The oxidation peak of the hydroquinone appears at + 0.2 V vs. Ag | AgCl, 

corresponding well with the oxidation peak on the uncoated electrode, the reduction 

peak is shifted to -  0.33V vs. Ag |AgCl. A possible reason for this shift is an increased 

irreversibility of the hydroquinone redox-reaction and/or an alteration of the charge 

transfer characteristic. The latter alteration can be substantial depending on the position 

of the hydroquinone with respect to the electrode surface. The Intersecting State theory 

[21J or Marcus theory [22] for charge transfer mechanisms shows that molecular or ionic 

coupling, and therefore electron transfer rates decrease exponentially with distance (7).

F /= F 0 2 exp(-w  (7)

Vo represents the maximum electric coupling, R is the distance and p is the 

exponential electron tunnelling coefficient

The distance of the HQ from the electrode in turn depends on the position of it in the 

membrane. It can take up several positions, like suspension in the basket, partial 

attachment to membrane molecules and free contact with the electrode. Since no 

separate peaks are discernible, no further differentiation is possible and the shift must be 

lumped up under a modified charge transfer characteristic.

An analysis of the peak heights with respect to the drawn baseline for the oxidation and 

reduction peaks results in an average relative increase of the current and therefore the 

permeability of 900 % for 3.75 mM CHCI3 and 1500 % for 6.75 mM CHCI3 .

Upon flushing with electrolyte, without the marker, recovery was substantial but 

imperfect. A likely reason for this is the strong difference in the solubility of the 

hydroquinone and the benzoquinone. The former has a solubility of 70g/l and the latter 

is essentially insoluble.

Figure 12 shows the induced permeability changes for a different membrane, upon the 

addition of 13mM of acetone to the electrolyte. The oxidation peak is again found at + 

0.22V vs. Ag | AgCl and the reduction peak is shifted to -  0.27 V vs. Ag | AgCl. As in 

the case for chloroform the permeability is increased under analyte addition. An 

analysis of the peak heights with respect to the drawn baseline gives a current and 

therefore a permeability increase of 260 % for the addition of 13 mM of acetone.

The inset in Figure 12 shows the induced permeability changes for the same analyte 

concentration on a different electrode. The resulting current increase is 80 percent. This 

is a substantially different value for a principally identical case. Deriving the baseline
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for the most linear part, introduces an uncertainty for the determination of the peak 

heights. But this rather poor reproducibility can be mainly attributed to the nature of the 

LB films. Two LB films are never exactly the same with respect to their structure and 

the amount of pinholes present. Since these factors determine the background 

permeability this varies with it. A given background permeability can only be 

modulated to a certain degree, and this causes deviation for results obtained from 

different electrodes.

The reaction to acetone is considerably smaller then that for chloroform, clearly 

indicating a stronger complexation with stronger structural modulation in the case of the 

latter. The recovery upon flushing, is as in the case of chloroform, substantial but 

imperfect.

0 m M  a c e to n e  
13 m M  a c e to n e

1 .0 x1 0

o .o  -

.0x10

6.0x10

-2.0x10

-8.0x10

-0.2 0.2 0.6

0 . 0-0 .4  -0 .2 0 . 2 0 .4 0 . 6 0 . 8 1 . 0 1 . 2

V o lta g e  [V]

Fig. 12 CVs of a C[4]RA coated electrode, showing an increase in permeability upon 

C3H6O addition, the inset shows the same reaction for a different sample

When the voltage window is reduced to the range of -  0.1 V to + 0.6 V, in which the 

oxidation of the HQ takes place, the peak heights can be compared without any relative 

peak shift. Figure 13 shows the CVs for a membrane with and without acetone in the 

electrolyte. Evaluation of the peak heights gives an increase of 33 % for 6.5 mM, 80 % 

for 13mM and 125 % for 19.5 mM of acetone.
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Fig. 13 Cyclic voltammogram for a C[4]RA coated electrode, showing the increase in 

the oxidation peak height under acetone addition

The above results have show that the relative permeability of the LB C[4]RA membrane 

is controlled by the presence of organic analytes like chloroform and acetone. These 

permeability changes are attributed to changes in the conformational structure of the 

film. Any complexation with the organic analyte is changing the intermolecular voids, 

altering the arrangement of the aliphatic side chains and generally changes the 

hydrophobicity of the film. The aliphatic C7H15 side chains are strongly hydrophobic, 

due to their nonpolar character. An estimate of the polarity can be taken from the 

permittivity s (dielectric constant) of a substance. For 1 heptene, CvHh, s  is 2.092, 

chloroform has an s of 4.8 and acetone has an s of 6.18, all values taken from reference

[23]. A complexation with acetone and chloroform can therefore alter the overall 

hydrophobicity of the membrane. Since the experimental results contradict the trend for 

the polarity of the molecule, which is higher for acetone than it is for chloroform, this 

effect is only part of the overall contribution.

The results obtained, broaden the spectrum of analytes that show a permeability control 

on macrocyclic membranes by adding organic analytes to them. Previously only the
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permeability changes of membranes upon complexation with alkali metal cations was 

shown with anionic and neutral markers, like Fe(CN)64* and hydroquinone in reference
[14]

9.2 Impedance Spectroscopy

The electrodes were further analysed with the aid of impedance spectroscopy in the 

range of 0.1 - 105 Hz.

Impedance spectroscopy (IS) provides a non-invasive means of characterising the 

electrical properties of many systems. The systems can be a solid multilayer structure, a 

solid electrolyte or even an electrolyte solid electrolyte structure. IS has initially been 

applied to membrane studies of living cells, showing that these possess a low 

permeability for ions [24], and providing an estimate of their thickness [25]. Low 

frequency IS, probing bilayers achieved spacial resolutions in the order of 0.1 nm [26,27l  

It has further been an instrument in studying the various transport mechanisms of 

proteins across biological membranes p8]. Apart from biological membranes, IS is 

extensively used in corrosion studies, where organic coatings (membranes) protect a 

metal body [29’ 30]. Models have been developed for the quality characterisation and 

intactness of these protective coatings I31*32*33!. Impedance measurements are carried out 

by applying a small AC voltage of frequency © across the system under investigation 

and measuring simultaneously the amplitude of the current across the system and the 

phase shift between the voltage and current. For IS the frequency © of the signal is 

varied across several orders of magnitude. In a multilayer system it is possible with this 

to discern the contributing elements, each of which has its characteristic frequency 

response. This is only an outline of IS, as applied to membrane studies, a detailed 

theoretical treatment and much more details can be found in the references [34’35,36l

9.2.1 Experimental details

The measurements were performed, using the afore described Autolab potentiostat PG 

STAT 10, in connection with the Frequency Response Analyser FRA2. The whole set

up was controlled by a computer running the software FRA 4.7. The electrode 

configuration and the electrolyte preparation was identical to the one used for the CV
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measurements. Each spectrum was recorded after the system was allowed to equilibrate 

for 10 minutes. The spectra were fitted to equivalent circuits, employing algorithms 

described in the references [37,38].

9.2.2 Results and discussion

For comparative reasons, the impedance spectra of the Au and the C[4]RA coated 

electrode were recorded in the buffered electrolyte, without the marker added. The 

spectra are shown in Figure 15. A mathematical fit of the experimental data, employing 

the equivalent circuit shown in Figure 14, was carried out. The theoretical response as 

derived from the equivalent circuit is also presented in Figure 15.

Rs CPE

Fig. 14 Equivalent circuit used to represent the working electrode electrolyte system, 

without marker in the electrolyte

At high frequencies, the impedance is nearly frequency independent, while at low 

frequencies, an increase of the impedance is observed. The system impedance shows 

increasing dispersion for frequencies below 100 Hz, increases at the lower end of the 

spectrum. The solution resistance Rs determines the high-frequency behaviour, while 

the capacitive behaviour of the membrane dominates at the lower frequencies. A 

constant phase element (CPE) was chosen to represent the capacitive structure formed 

by the double layer and the calixarene membrane, the impedance of a constant phase 

element is given by (8 ). With f  being the frequency, Q the admittance at co= 1 rad/s , 

and n an expression for the degree of resemblance to a capacitor. A vaule for n of 1 

results in a similar behaviour to a capacitor, with a somewhat lower phase angle then 90
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Fig. 15 Bode plot of the spectra of the coated and uncoated Au electrode, with fitted 

equivalent circuit values

A CPE was chosen, instead of a capacitive structure, since it better represents real world 

structures. Fundamentally its origin can be traced to the complex double layer structure, 

forming in/on the electrode. Various theories have been advanced describing the double 

layer, in terms of ions directly located on the electrode surface, 

Stem layer, the diffused layer adjacent to it, Gouy-Chapman layer and ions in the bulk 

of the solution [36], Figure 16. A layered structure of even higher order has been 

suggested in reference [39\  Complicating things further is the electrode roughness. If a 

fractal surface is assumed, the fractal dimension (D) of the surface is between 2 and 3. 

This means that the surface fills between 2 dimensions (perfectly flat) and 3 

dimensions, (branching every which way through space resembling a porous cube). It 

was shown by Mulder [40\  that for such electrodes the interfacial impedance is modified 

by an exponent, n=l/(D-l). For a smooth fractal dimension (d=2) n is therefore 1, and 

for a highly three-dimensional surface (D=3) n is 0.5.

Additionally, inhomogeneous reaction rates and varying thickness or composition of the 

coating have been cited as contributions to the CPE [41l
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Stem layer Gouy-Chapman layer Bulk of the solution

Fig. 16 Approximated model of an electric double layer

Values of Qcaiix= 0.8208 x 10"6 F and ncaiix = 0.820 were obtained for the CPE in case of 

the coated electrode and Qau= 0.7258 x 1 0 '5 F and nAU = 0.875 in case of the uncoated 

electrode, with a constant electrolyte resistance. This shows a substantial change in the 

three-dimensional character of the electrode surface upon coating with the C[4]RA. 

Whereas two identically prepared gold slides result in more or less identical spectra, the 

C[4]RA coated electrodes show some deviation. Similar behaviour was observed for the 

CVs of different electrodes. Figure 17 shows the spectra of two identically prepared 

electrodes. The fitted equivalent circuit result in a Qcaiixi = 0.82 x 10' 6 F and ncanxi= 0.82 

Qcaiix2 = 0.49 x 1 0 '6 F and ncanX2 = 0.81, with the solution resistance of 138 Q being 

constant

To illustrate the influence of the hydroquinone on the coated and uncoated electrode 

both impedance spectra are presented for comparison in Figure 18. The working 

electrode is biased to + 0.22V, to facilitate the oxidation of the marker. The charge 

transfer during this process can be represented by a resistance (charge transfer 

resistance), parallel to the capacitive dominated element of the membrane. The charge 

transfer resistance, is a direct measure of the accessibility and kinetic behaviour of the 

marker with the electrode. The charge transfer resistance decreases the impedance by 

more than two orders of magnitude and changes the phase shift to a less capacitive 

character.

For the C[4]RA coated electrode the introduction of the charge transfer resistance has a 

less pronounced effect on both the reduction in Z and the changes in the phaseshift. The
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Fig. 17 Comparison of impedance spectra for two “identical44 C[4]RA coated electrodes
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Fig. 18 Au electrode in buffered electrolyte and in buffered electrolyte with marker
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amount of material undergoing oxidation is greatly reduced with the membrane in 

place. Figure 19, compares the Bodeplot for the different electrolyte compositions with 

and without marker.
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Fig. 19 C[4]RA coated electrode in different electrolytes

The modulation of the charge transfer resistance, is a measure of the permeability 

modulation. To quantify this, the spectra had to be fitted to an equivalent circuit. 

Corrosion studies dealing with failed coatings have established the following model, 

Figure 20. The capacitance of the intact coating is represented by Cc, Rpo is the pore 

resistance of the ion conducting path that develops in the coating, Rct is the charge 

transfer resistance, Cdi is the double layer capacitance and Rs is the solution resistance. 

This type of model has been successfully applied in many studies for the calculation of 

the coating degradation 142’43]. Since the degradation of a protective coating is in essence 

a change in the permeability of the coating, it was assumed that this model could be 

applied to the C[4]RA electrode. Alternative to this model there exists a simpler model, 

Figure 21, with a charge transfer resistance parallel to a constant phase element.
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Fig. 20 Equivalent circuit for a failed coating as use in corrosion studies

R e t

Fig. 21 Equivalent circuit for permeated electrode

Both models were used for the fitting, but the more complex model did not result in an 

order of magnitude superior fitting result, as judged from the error function. It was 

observed that results strongly depended on the initial input parameters. Therefore it was 

decided to apply Occam’s razor, and use the simpler model. Figure 22 shows the 

chloroform induced impedance changes of a membrane. The fitted impedance, as 

derived from the model is also shown in the Bodeplot. Changes in the spectra occur for 

both the phase shift and the impedance, fitting the spectra to the equivalent circuit in 

Figure 21 yields values for the components as given in Table 1.
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Concentration of 

analyte [mM]

F-solution

[Q]

Q[F] n F-charge transfer

[kQ]

0 145 0.3829-10'6 0.7936 14.49

3.75 145 0.3103-10'6 0.7945 11.57

7.5 145 0.2852-1 O' 6 0.7954 6 . 8 6

Table 1 Fitted component values for the circuit elements according to Figure 21

The solution resistance is constant, and the charge transfer resistance describing the 

faradaic current caused by the oxidation of the marker decreases by a factor 1.25 for 

3.75 mM and a factor of 2.1 for 7.5 mM of chloroform. This confirms the increased 

permeability of the membrane due to the calixresorcinarene analyte interaction. 

However, the observed change in the charge transfer resistance was not as large as was 

expected from the results of the cyclic voltammetry measurements. This may be 

attributed to the increased irreversibility of the hydroquinone oxidation/reduction 

reaction as discussed. The value of Q for the constant phase element decreased from 

0.383 x 10' 6 F to 0.285 x 10' 6 F, whereas n is nearly identical in all cases. This also 

confirms a change in the structure of the calixarene membrane due to interaction with 

the analyte. The value of 0.79 for n can be regarded as reasonable for the given system 

with a substantial three-dimensional surface and a high degree of inhomogeneities.

The impedance measurements show that the membrane changes are largest for the lower 

frequencies, but they also show that the model used to represent the system, shows its 

largest discrepancy with the data in this range.

In Figure 23 the same spectra are shown, plus the fitted data for the 7.5 mM chloroform 

concentration, but this time resolved into real and imaginary parts. It can be seen that 

both parts are affected by the analyte.
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Fig. 22 Changes in the membrane impedance under addition of CHCI3
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Fig. 23 Changes in the real and imaginary part of the impedance under addition of 

CHCI3
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The type of electroactive marker used for the permeability studies has a very strong 

effect on the impedance spectra of the electrodes. Ferrocyanide Fe(CN)63' undergoing, 

oxidation when the working electrode is biased to +0.17 V, gives an impedance 

spectrum like that in Figure 24. This differs greatly from those obtained for HQ, the
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Fig. 24 Bodeplot of impedance changes upon CHCI3 addition, with ferrocyanide 

permeability marker

impedance disperses over nearly the entire frequency spectrum, though nonlinear, and 

the phase shift for the lower frequency range is much higher. The addition of 7.5 mM of 

CHCI3 produces a large phaseshift and reduces the impedance below 100Hz. The 

phaseshift though lower in amplitude, sets in at higher frequencies, it falls and begins to 

rise again at 50 Hz. These strong nonlinearities make it impossible to fit the spectra to 

an equivalent circuit. The general behaviour, that the charge transfer resistance is 

reduced, due to a higher permeability is confirmed, with the observed changes being
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larger than those obtained with HQ. The strongly nonlinear behaviour can have its 

origin in:

i) the strong electrostatic forces between the multiply negatively charged marker,

impeding diffusion or migratory processes

ii) accumulation of the marker in the membrane

iii) solvation effects of the analyte with the marker

It is believed that especially the latter is responsible for an increase in the impedance at 

higher frequencies.
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Fig. 25 Z’,Z” over f  representation of the membrane impedance with ferrocyanide as 

marker

It is interesting to note, that when the IS is split into its real and imaginary parts Figure 

25, that the highest sensitivity is no longer found at the lower end of the spectrum but is 

located at 2000 Hz for the real part and at 30kHz for the imaginary part. The resistance 

is modulated by a factor of 5 and the reactance is modulated by a factor of 6 .
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9.3 SPR analysis of the membrane permeability

SPR was used, first in a static scan over time and then with a dynamic scan to 

investigate the membrane permeability.

For the static test, the photo-detector voltage is recorded over time, at a fixed angle of 

incidence, 70°. Any change in the thickness of the membrane, that could result from 

disintegration, peeling off or infiltration of the pure electrolyte would change the photo

detector response. Figure 26 shows that the film is stable, adheres well to the substrate 

and does not undergo changes when exposed to the buffered electrolyte. The drop in the 

detector voltage on injection of the electrolyte, corresponds to the change in the 

refractive index from 1 for air to 1.33-for water. After the injection is complete, the 

detector voltage is within the experimental accuracy a flat line.

A series of dynamic scans compared the response of the uncoated electrode and the 

C[4]RA coated one, upon the addition of 7.5 mM of chloroform, Figure 27. The scans 

for the uncoated electrode reveal no changes, whereas the coated one produces a 

pronounced curve shift. Analysis of the gold slide, determined the following substrate 

parameters Table 2.

refractive index 0.37208

extinction coefficient 3.39908

thickness 44.6350

error function 0.74

Table 2 Parameters as determined for the uncoated gold slide

These values were fixed for any subsequent analysis, then the electrode with the 

membrane was analysed, in pure electrolyte immersion, resulting in the parameters for 

the non permeated film, Table 3.

Since the absorption of the analyte, in combination with a permeation of the water, 

changes the refractive index and the thickness of the film, only a solution window, 

Figure 28, in which the exact solution for the Fresnel equations lie can be found.
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refractive index 1.47

extinction coefficient 0

thickness 16.34

error function 1.03

Table 3 Parameters for the C[4]RA membrane in exposure

possible n

possible thickness d

Fig. 28 Window of possible solutions all giving the same quality of fit

Since the refractive index represents the propagation speed of light in the medium, and 

therefore describes the interaction of light and matter, the interaction must increase with 

the absorption of guest molecules inside the membrane. Applying the permeability data 

gathered from the CV studies, the refractive index was estimated to be a superposition 

of n of the C[4]RA and n of water, with a value of 1.483. The calculation implemented, 

added the difference between the refractive index of water and vacuum multiplied by 

the permeability increase, to the refractive index of the C[4]RA according to (9).

n C[4]RA + permeability • (n H2O -n  vacuum) = n of the permeated membrane (9)

By then fitting the exposure results, and fixing n to 1.483, a thickness value for the 

permeated membrane of 17.85 nm was found, indicating a swelling by 1.5 nm, or 9.25 

% of its original value.
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Summary

In this chapter, it was shown that the permeability of the LB C[4]RA membrane is 

modulated by the presence of organic analytes in solution. Electrical measurements with 

a permeability marker, CV and IS, as well as optical studies (SPR) without marker 

confirmed this. These studies also pointed out that the variations in the membrane 

properties from membrane to membrane are subject to fluctuations. This constitutes a 

serious obstacle for the comparison of data derived from different membranes. Since 

imperfections in the LB coating method and limited purity of the compound used, are 

responsible for this, these issues can to be addressed. Selectivity of the membrane is a 

further point that can be improved upon. Most promising for this is the modification of 

the calix[4]resorcinarene used, by grafting on different substituting side groups 

providing specific interaction sites and allowing specific structural changes. Chemical 

sensing based on membrane permeability changes is still in its infancy, though it is a 

promising emulation of the remarkable signal amplification function of ion channel 

proteins.
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10 Summary, conclusions and suggestions for 
further work

A comprehensive literature review on calixarene/calixresorcinarene aspects was carried 

out. This included synthesis, conformations and applications, with the focal point being 

the employment of arenes in the field of chemical sensors and chemical analysis.

Central point for all utilisation of arenes for sensing applications is the formation of a 

sensing membrane. Therefore a detailed study regarding the different thin film 

formation techniques was undertaken. The C[4]RA was deposited in the form of 

Langmuir Blodgett films onto a variety of different substrates, including glass slides, 

silicon substrates and gold coated slides/electrodes. The properties of these membranes 

were analysed with respect to the film thickness and homogeneity. The thickness of one 

monolayer of C[4]RA was found to be 0.95 nm.

Alternative deposition methods evaluated were spin coating and casting. For the spin 

coated films a dependence of the film thickness on the spin speed and the concentration 

was found. In an first approximation the formation process can be described by a 

d = c- G7 X law with coefficients for x of -  0.44 and -  0.48 and c of 1.16 and 1.57 for 

solution concentrations of 1 mg/ml and 2 mg/ml in chloroform, respectively. It is 

highlighted that the model is only an approximation, since it is believed that the model 

has limited validity for films that are only several times thicker than the individual 

molecular diameter. Membranes with a thickness of 250 nm were prepared by casting. 

A detailed study on the employment of C[4]RA as a deposition matrix for a non surface 

active polymer in the form of LB films was conducted. Influences of the mixing 

concentrations and training effects on the deposition were analysed. It was shown that a 

repeated compression cycle is required and changes the molecular arrangement of the 

composite membrane. The homogeneity of the membrane was investigated with, 

spectroscopic and SEM studies. It was found that the homogeneity is good, with 

structural changes occurring after long term exposures to saturated vapours of 

chloroform and ammonia. Thickness analysis, by SPR and ellipsometry, gave a value of 

2.1-2.2 nm for the individual ML. Based on this a structural model of the membrane is 

proposed with two strands of the polymer over/under each C[4]RA layer.

UV spectroscopy was employed for a determination of the number of toluene molecules 

complexing inside a LB membrane. Good agreement for a 1:1 ratio between the number
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of molecules complexing in the membrane and the number of baskets in the membrane 

was found. Interrogation of the absorbance peak at 200 nm, can form the principle of a 

very selective sensor since only aromatic compounds modulate it.

Conductivity measurements of the composite membrane carried out on interdigitated 

electrodes showed that the conductivity of the as deposited film is in the order of 1 • 1 0 ' 

S/cm for a 1:1 by weight mixing ratio. Continuous purging with nitrogen showed that 

the conductivity decreases over time. A highly reversible interaction between HC1 

vapours and the polymer lead to a protonation of the latter resulting in a conductivity 

increase. Different time constants were observed for most analyte interaction between 

sorption and desorption, variations by a factors of up to 5.9 in the case for HC1 were 

found. A similar conductivity increase was observed for the oxidising NO2 and the 

reducing NH3. The NH3 exposure showed that there is “memory effect” with a 

diminishing response on repeated exposures. The remarkable conductivity increase on 

exposure to ammonia is a feature of the composite membrane only. Cast films of 

POMA show the expected conductivity decrease. This difference is explained in terms 

of modifications in the available protonation sites, structural changes and a shift in the 

equilibrium reaction between NH3 and NH2' + H+.

Analyte interaction between solvent vapours, results again in a conductivity increase, 

with the response height being in decreasing order of acetone, toluene, methanol, iso

propanol, chloroform and hexane. A mechanism is proposed for the conductance 

increase, based on a protonation reaction according to the reaction equilibrium,

POMA + Cx H x (0 ,C L ,0 H )x  <---- > POMA+ + Cx H x .i ( 0 ,C L ,0 H ) x

and additional structural changes. The application of the composite membrane to a 

charge flow capacitor, demonstrated a more practical utilisation of the membrane with 

this transducer. The capacitance changes are more easily measurable compared to the 

picoampere currents for the coated IDEs.

SPR studies were further used to further elucidate and quantify structural membrane 

changes and correlate these changes to the observed conductance changes. It was shown 

that there is a substantial difference in the film swelling for different analytes. The 

observed thickness changes were in decreasing order from chloroform over acetone, 

methanol, iso-propanol and toluene to hexane.

Analytes are grouped together based on the interaction taking place and interaction 

mechanisms are proposed.
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The first utilisation of pure arenes for conduction type sensors was demonstrated with 

the aid of a charge flow transistor. The CFT was fabricated, with a gate opening of 

50nm. A ca. 250 nm thick C[4]RA membrane was deposited by casting onto the gate 

and the modulation of the turn-on response upon exposure to organic solvent vapours 

was analysed. The turn-on modulation was normalised to the base value of the 

unexposed membrane and expressed in a modulation factor. The modulation of this 

factor on exposure to saturated solvent vapours was found to be 45.6 for chloroform, 15 

for acetone, 13 for methanol and 0.3 for hexane. The devices showed no cross 

sensitivity to water vapours. A model for the mechanisms responsible for the 

modulation of the membrane conductance was developed. Ionic conductivity and a 

modulation of the electronic conductivity contribute to it. For cast films 

microcondensation of solvent vapours inside the membrane can lead to a “liquid” phase 

in which molecules dissociate at the high gate potential and contribute to an ionic 

conduction. The electrical conduction, which can be described by the hopping of 

delocalised electrons is modulated by changes in the activation energy and structural 

changes upon analyte complexation. It was further demonstrated that the CFT can be 

utilised as a explosion guard, for acetone, with a modulation of the turn-on response by 

a factor of 1.36 for the concentration of the lower explosion limit.

The detection of organic analytes in water within a system of working electrode, 

electrolyte, counter electrode was demonstrated. The working electrode consisted of 

microscope slides, coated with gold on top of which 12 ML of C[4]RA were deposited 

by the LB method. A detailed and simplified model for the electrode system was 

proposed. The system allowed the discrimination between polar and non polar organic 

species in water on the basis of the observed conductivity changes. Polar compounds, 

like ethanol, chloroform and acetone lead to an increased conductivity whereas non 

polar compounds like hexane and trichloroethylene lead to conductivity decrease. The 

response to a variety of analytes and concentration was studied, with the observed 

conductivity changes being non linearly dependent on the concentrations. Mechanisms 

for the analyte induced membrane changes are proposed and related to changes in the 

developed model. Contributing factors to those changes are permeability changes, 

changes in the dielectric constant, modification of the double layer build up and the 

modification of sodium ion absorbance into the membrane.
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The system provides a very practical method for carrying out a broad spectrum analysis 

of the organic solvent content in water, with a possible application in the detection of 

fuel and solvents in water after spillage.

The mechanism of the changing permeability of the LB C[4]RA membranes was in 

detail studied with the aid of a permeability marker, in a potentiostat controlled system 

using cyclic voltammetry and impedance spectroscopy. Membrane stability without any 

redox action was observed in the range of -  0.15 to + 0.8 V. Analysis of the peak 

heights for the oxidising and reducing currents in the cyclic voltammograms showed 

that the permeability of the membrane increases under the addition of polar analytes like 

acetone and chloroform. In the case of 6.75 mM of chloroform the permeability 

increases by about 1500 %, for 13mM of acetone by up to 260 %. A model for the 

working electrode was proposed with the permeability marker in the electrolyte. A 

modulation of the charge transfer resistance in this model by a factor of up to 2 .1  for 

6.76 mM of CHCL3 was observed. Concurrent with the changes in the charge transfer 

resistance, the parameters for the constant phase representing the working electrode 

changed from Q = 0.3829 10' 6 F for the unexposed membrane to Q = 0.2852 10' 6 F for 

the exposed membrane, with a constant n. The value for n was described in terms of the 

fractal nature of the electrode surface. Permeability increase was independently shown, 

on the basis of surface plasmon resonance experiments, which further show the 

membrane stability. Analyte detection on the basis of permeability changes could find 

implementation as a novel sensing mechanism in electronic tongues.

Suggestions for further work

The thin film deposition deserves further attention with respect to the reproducibility, 

the developments of alternatives and the effects of the different depositions methods on 

the analyte interaction.

Efforts to improve the reproducibility of the LB deposition, could be directed toward an 

additional purification process of the C[4]RA. Chromatographic methods could be 

employed, to remove any traces of byproducts and residue of the starting material. 

Alternative deposition methods for ultra thin films could be self assembly, but this 

requires a chemical modification of the calixresorcinarene. For thicker membranes, as 

required for the charge flow transistor, sublimation in vacuum at elevated temperatures 

could provide an alternative. This technique may be able to provide smaller tolerance
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margins. But verification of the non-destructive nature of the evaporation process, 

especially with respect to damage or loss of the aliphatic side chains is required.

Of all the transduction mechanisms investigated, the most interesting one with respect 

to the influence of the film structure, are the modified electrodes for the detection of 

organic solvents in water. Here in particular can the presence or absence of pin holes 

and a modified stacking structure make a substantial difference. With the aid of a self 

assembled monolayer of calixarene, a simultaneously extremely thin but surface 

covering film could be utilised, with the possibility for an increased sensitivity. 

Modifying the used calixresorcinarene with respect to the number of repeating aromatic 

structures and/or the substituting side chains can tailor the sensitivity toward a desired 

target analyte. One important, relatively easy to implement step, would be the doubling 

or tripling of the aliphatic sidechains length.

A further material related substitution could be made on the site of the polymer. 

Comparison between literature values for similar or differently synthesised materials 

showed that there are polymers with a higher inherent conductivity and stability.

A modification of the dimensions of the CFT with respect to the opening in the gate, 

could make it possible to extend the range of detectable analytes, by increasing the turn

on time and henceforth the sensitivity. Also with the proof of principle accomplished, 

the prototype design could be changed to a more complex structure, including an 

interdigitated gate structure.

One additional novel sensing application for calixarene films deserves to be pointed out 

here: The sensing of the surface potential on calixarene membranes with the aid of a 

Kelvin probe vibrating capacitor. Surface potential changes upon sorption of some 

ketones have shown that the target molecules complex in an ordered way. This is 

registered by an increase in the surface potential. Experiments carried’ out with spun 

films of calix[4]resorcinarene C15H33 have shown discriminating responses between 

polar and non polar target analytes in the concentration range of 10000 ppm. This novel 

mode of recognition deserves further investigation.
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Appendix 1

Synthesis and doping procedure of poly-ortho-methoxy 
aniline

Synthesis:

A 0.1 molar orthomethoxyaniline solution in aqueous hydrochloric acid, 1 mol, was 

cooled down to around 0°C in an ice bath. To this a solution of 0.15 mol ammonium 

peoxodisulphate (NH4 2S2O8) in aqueous hydrochloric acid, 1 mol, was dropwise added 

over a period of 1.5 hours. During this process the solution was continuously stirred 

with a magnetic stirrer, after an additional reaction time of three hours the solution was 

brought back to room temperature and allowed to react for a further 24 hours. The 

resulting polymer salt was isolated from the reaction mixture by filtration. The powder 

was then washed with 1 molar strong hydrochloric acid. The resulting hydrochloric salt 

was subsequently neutralised with ammonium hydroxide (N H 4 O H ), 1 mol, to produce 

the polymer base. The base was washed first with N H 4 O H , then water and finally with 

diethyl ether. After the final rinse the powder was dried out for 12 hours to remove any 

remaining solvent in an air oven at around 60 °C.

Doping:

The polymer was doped by leaving the polymer base for 12 hours in aqueous 

hydrochloric acid, 1 mol, under continuos stirring. After that it was filtered and dried in 

an air oven at 60 °C for 12 hours. This resulted in poly-ortho-methoxy-aniline 

hydrochloric salt.
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Appendix 2

Description of the Surface Plasmon Resonance principle and 
measuring set-up

Surface Plasmon Theory

The following is a basic description of the SPR theory and the workings of the SPR set

up as used throughout this thesis. No attempt is being made to give a complete and 

exhaustive account of the research conducted with SPR or upon it. The description is 

intended as an aid, to understand the presented results, based on the fact, that this rather 

novel analytical tool is generally not yet as well known as other analytical methods.

Historically the first observation of SPR can be dated back to 1902, when Wood 

described anomalous diffraction upon diffraction gratings. With a growing 

understanding of quantum mechanics the ground was laid for the first purposeful studies 

on SPR at the end of the 1960 by Otto and Kretschmann [3l  The first practicable 

application of measurements based on SPR, was the determination of optical parameters 

of thin metal films [3J.

A surface plasmon (SP) is a charge density oscillation that can exist at the interface of 

two media, with dielectric constants of opposite signs. For metal conductors the real 

part of the dielectric constant is sm < 0 and for dielectrics Sd > 0, therefore SPs are 

normally found at metal-air interfaces or metal-dielectric interfaces as shown in Figure

1.

metal e;

air / dielectric e.

Fig. 1 SPR at a metal-dielectric/air interface
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Most suitable for the excitation of SPR, are metals with a high negative value of the real 

part of the dielectric constant, like silver, gold and aluminium. Though silver gives a 

better a response, gold is chemically more stable and therefore it is the preferred 

material for chemical sensing applications.

The charge density wave is accompanied by an electromagnetic wave. Its field strength 

is at the maximum at the interface and decays evanescently into both media. This 

surface plasmon wave is a TM polarised wave, with its magnetic vector perpendicular to 

its direction of propagation. As with all electromagnetic waves the surface plasmon 

wave has a momentum, given by the wave vector Ksp (1).

(1)

£m =  e m real +  i£m imaginaiy, Sd =dielectric constant of dielectric, c = light speed, co = surface 

plasmon frequency

SPs can be excited by monochromatic light and by electrons [4l  The following 

discussion of the excitation conditions is restricted to those for light, since this method 

was used.

For the excitation by light the momentum of the exciting light must match that of SPs 

wave momentum. For a beam of light falling in at the angle 0, the component of the 

wave vector parallel to the interface, Kp must be equal to Ksp, (2).

Kp = K sin0 = Ksp (2)

For light travelling in a dielectric the wave vector is given by (3).

c

The necessity for matching wave momenta for the resonance conditions means that SPs 

cannot be achieved by direct illumination of metal surfaces, since the momentum for 

light coming out of the same medium, at which interface it is to excite SPR can never be 

enough. In order to increase the wavevector component of the exciting light it should be 

made incident onto the metal-dielectric interface through a higher index medium, such



as glass. At a given angle of incidence a matching condition between the SP momentum 

and the horizontal component of the incident beam can be achieved. The geometry of 

the wave vectors where no excitation takes place is given in Figure 2.

metal

air/dielectric

Fig. 2 Wave momenta are not matching therefore no SP excitation occurs

There are two different set-ups that allow a matching of the two wave momenta. These 

are the Otto configuration [2], involving an air gap between a prism and a metal layer, 

and the Kretschmann configuration. Only the latter was used in this study since it is a 

practically more convenient one. Figure 3 shows the Kretschmann arrangement for 

coupling light into SPs.

For this arrangement a metal film is deposited onto the face of a glass prism and the 

SPR is excited at the boundary between the metal and the air/dielectric, whereas the 

light beam is reflected at the glass metal interface. It is the wave, which originates at the 

glass metal interface that fulfils the coupling conditions at the metal dielectric interface. 

The prism is needed to raise the momentum of the light wave vector high enough and to 

set up the right angle on incidence for the light beam as shown in Figure 4.

glass *:0

metal £

air / dielectric &2

Fig. 3 SPR coupling with Kretschmann arrangement
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Light beam

glass prisms0 
(medium 0)

metal ̂  
(medium 1) V V V V ]

SPs

air/dielectric s. 
(medium 2) evanescent wave

Fig. 4 Prism set-up for the Kretschmann configuration

This evanescent field has a decay length of a few tens of nanometer and therefore 

coupling SPs is only possible for thin metal films. In most cases the required metal film 

thickness for optimal coupling is about 40 nm for silver and 48 nm for gold.

If the angle of incidence is changed over a 90 degree range the wave momentum Kp 

takes on values from 0 to Ko. Under one particular angle, Kp will match that of Ksp and 

coupling is achieved.

This coupling of light energy from incident beam into the SPR leads to a loss in the 

light energy that is reflected from the glass metal interface. Therefore the arrangement is 

called the Attenuated Total Reflection (ATR) configuration. Figure 5 shows the 

difference in the reflectivity of a uncoated prism (b), for which beyond 42 degrees total 

internal reflection occurs and the same prism with a metal layer on top (a), where at 44 

degrees 95 % of the incident light energy is coupled into the SPs and therefore a dip in 

the reflected light intensity occurs.

Under the coupling of energies, from the light into the SPs, the electromagnetic field 

accompanying the SPs extends into the air/dielectric with an exponential decay from the 

interface with the typical penetration depth given for different metals and wavelength in 

Table 1 15].

This shallow penetration depth makes the SPR extremely sensitive to changes in the 

dielectric properties of the material in this area. The whole energy (up to 95 %) that is 

analysed with this analytical tool is modulated within the penetration depth of the field, 

it is this fact that makes SPR so well suited for the analysis of thin films.
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0C (critical angle)

0.8

0.6

0.4
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Angle o f incidence (degree)

Fig. 5 Reflectivity curve of an uncoated glass prism (b) and coated prism (a)

Silver Silver Gold Gold

Light wavelength (nm) 630 850 630 850

Penetration depth into 

dielectric (nm)

219 443 162 400

Concentration of field 

energy in dielectric (%)

90 95 85 94

Table 1 Description of the electromagnetic field extension of SPs

Changes in the bulk dielectric, beyond the penetration depth, do not affect the coupling 

at all.

Influences of the various parameters on the SP reflectivity 
curve

The Fresnel equations given later, allow a quantitative description of the reflectivity 

curves for a scan over the angle of incidence. This section is provided to aid the 

visualisation of the rather complex mathematical correlation. Step by step the influence 

of the various parameters on the reflectivity curve, like the wavelength, changes in the 

media’s refractive index, its thickness, its extinction coefficient and the thickness of the
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metal film are presented in a graphical way. Only one parameter changes at one time, 

however two simultaneous parameter changes, like that of refractive index and 

thickness changes, as encountered when films swell under the sorption of analyte, can 

be viewed as a superposition of the two changes.

Kretschmann carried out studies on the influence of the changes in the wavelength of 

the light and the variations of the thickness of a silver layer. The SPR measured curves 

for different metal films are shown in Figure 6 .

It can be seen that for a silver film thickness of 49 nm the reflectivity becomes less than 

0.03%, which for this configuration is the optimum. This is contrasted by a minimum of 

0.75 for films of 89 nm thickness, with minimum coupling. The broadening of the curve 

for very thin films of 20 and 37 nm thickness must be attributed to adsorption within the 

metal film. Together with the measurements for different wavelength of light, as shown 

in Figure 7, Kretschmann was able to determine the complex dielectric constants srAg 

and SjAg of silver

£
> 0.5-

Angle o f incidence (degree)

Fig.6  Influence of thickness changes in the metal layer on the reflectivity
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Angle o f incidence (degree)

Fig. 7 Changes in the reflectivity curve depending on wavelength changes of the light

In Figure 7, it can be observed that with increasing wavelength the dip in the reflectivity 

becomes sharper and changes its position to smaller angles, whereas the absolute value 

of the minimum in reflectance stays, within the experimental error, the same.

The influence of different thin films deposited on top of the metal film are shown in 

Figure 8 , for non-absorbing material. Figure 9 shows the same effect but for an 

absorbing material.

1.0

0.8

0.6

0.4

20 nm film 
10 nm film 
bare gold0.2

0L
40 42 44 46 48 50

Angle o f incidence (degree)

Fig. 8 Calculated results showing the different resonance conditions for a system of a 48
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nm gold layer, with organic layers (n = 1.45) of 100 nm and 200 nm on top of the gold 

layer.

The above curves are calculated form the Fresnel equations, but similar results have 

been published by Pockrand for a layered system of silver and nonabsorbing LiF 

layers of different thickness values.

In the same study the influence of carbon layers, which are strongly absorbing in the 

whole of the visible spectrum, was analysed. The results are shown in Figure 9.

Both systems experience the shift of the resonance minima to higher angles for 

increasing thickness, whereas the depth of the resonance is only affected for absorbing 

material, that is material having an extinction coefficient > 0  at the exciting wave 

length.

uo1051.000.95

0.8

0.6

>
o<D
<D

U9

43/ A39 4238 \A'

Angle o f incidence (degrees)

Fig. 9 Measured reflectivity curves for a 49 nm Ag film for light of 647nm wavelength 

and different carbon film thickness

The SPR experimental set-up

A schematic diagram of the experimental SPR set-up is shown in Figure 10. As a light 

source, a He-Ne laser with a wavelength of 632 nm is used. Since each laser beam has a 

near Gausian distribution of its intensity the fringe part of the beam, is cut out by a
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SPR beam
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Polariser
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processor

Fig. 10 Schematic of the SPR measurement set-up

narrow aperture. To reduce its intensity, the laser light is first passed through a neutral 

density filter and then through a p-polariser, which reduces the intensity and allows only 

the p- polarised portion of the light through. It then passes through a rotating chopper, 

controlled and co-ordinated with the rest of the set-up via a Scitec Instruments control 

unit and the PC. A lens focuses the beam through a second narrow aperture onto the 

face of the prism. Between the lens and the prism a glass plane works as a beam splitter, 

splitting the beam into a reference path and a measuring path. The reference signal is 

picked up by a photodetector and forms one part of the signal for the differential input 

of the lock-in amplifier, Stanford Research Systems Model SR830DSP. After being 

reflected from the prism the signal is picked up by a second photodetector and forms the 

other input for the lock-in amplifier. The computer controls the 0-20 turntable via a Me 

Lean Stepping Motor Controller 3090 to allow for a scan of the angle of incident over 

30 to 82 degrees, with an angular resolution of 0.05 degree. A 0-20 turntable is needed 

to keep the measuring photodetector aligned with the reflected beam from the prism, 

when the angle of incidence changes. During a measurement the differential output of 

the optical lock-in amplifier is recorded for every step. The function of the optical lock- 

in amplifier is twofold. It eliminates the noise caused by ambient light falling onto the 

photodetectors. This is achieved by subtracting the signal of the light falling onto the 

detector when the chopper blocks the path of the laser from the intensity when the light
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is passing between the teeth of the chopper. This makes the experiments merely more 

convenient since if  the measurements were conducted in complete darkness the chopper 

and the lock-in amplifier would not be necessary. The second function of providing a 

chopped signal to the photodetector is more vital. An AC signal can be generated from 

this and this enables a lower noise amplification.

Vibrational influences are minimised by mounting the whole set-up on an optical bench. 

Prior to any measurements the set-up requires calibration. This makes sure that the 

alignment of the light beam is correct and eliminates any offset in the angle 

measurements. Furthermore it defines the intensity for the total internal reflection of the 

prism, used to normalise the measurements.

For any gas or liquid exposure measurements a chamber needs to be attached to the 

prism. This is done by pressing a PTFE chamber, sealing with an O-ring onto the face 

of the prism via a simple screwing mechanism. This is shown schematically in Figure

11.

LASER beam

prism

Gold s p r

gas or solution 
in contact with 

thin film

Flow-cell

Screw pressing 

Fig. 11 Flow cell attached to measuring prism

10



Major application areas of SPR studies

Measurement of physical quantities

Measurements of displacement ^  and angular position 181 have been reported making 

use of the extreme sensitivity to changes in the angle of incidence. Others include a 

temperature sensor based upon the thermooptic effect in hydrogenated amorphous 

silicon 191 or the determination of thin film properties for dielectric layers 1101 and metals 

[3].

Chemical Sensing

In its simplest form measurements of the refractive index using SPR can be used to 

determine the concentration of analytes, as for example during the monitoring of 

distillation processes But the majority of applications rely on variations in a thin 

film on top of the metal, due to, adsorption, absorption and chemical reaction with the 

analyte. A variety of polymer based studies have been conducted, using polyetlen glycol 

film [12], polyfluroalkylsiloxane [13], polydimethylsiloxane [14] and Teflon for the 

detection of different hydrocarbons, aromatic hydrocarbons and chlorinated 

hydrocarbons. Another major branch of studies dealt with phthalocyanine derivatives, 

toluene has been detected with copper-nickel phthalocyanine [151 and NO2 with copper 

phthalocyanine [16] and cobalt phthalocyanine [17].

A few reports have appeared where the sensing action does not rely on a sensing 

membrane on top of the metal, but where the reaction under investigation effects the 

metal layer directly. One deals with the detection of molecular hydrogen by sorption of 

the hydrogen into a palladium film I18l  NO2 was detected similarly by chemisorption 

onto an uncoated gold layer[I9].

An interesting combination of anodic stripping voltammetry and SPR has lead to the 

detection of Cu and Pb ions in aqueous solution.
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Biosensing

A great field in modem biology is the study of complex formations between 

biomolecules. These can be of the antigen/antiboby, drug/protein, hormone/receptor or 

even bacteria/vims type. The high molecular weight of most of the involved molecules 

makes measurements of the film thickness and the refractive index changes very 

successful. One of the major challenges in those studies is the immobilisation of the 

sensing layer onto the metal of the substrate without changing the complexation 

properties. The reactions are highly specific and a slight distortion in the shape of the 

molecules upon immobilisation in a matrix can substantially change the complexing 

properties, by making complexing sites unavailable. The last 8 years have seen an 

explosion in literature dealing with SPR in bioanalytical applications, nearly 800 papers 

have appeared in this time. The first application of SPR to biosensing was demonstrated 

in 1983 [21]. Early works were mainly focussing on antigen-antibody reactions like the 

streptavidin-biotin reaction. In 1994 the first survey on an real-time interaction analysis 

appeared [22], this opened up the possibilities of determining the kinetic and 

thermodynamic constants of biomolecular interactions.

An emerging field is the examination of protein-protein and protein-DNA interactions 

2̂3\  these allow even the detection of conformational changes in an immobilised protein. 

A novel principle, for a biosensor was presented by Sabot[24] were not the complexation 

of a biological species is registered but the removal of a polymer by degradation due to 

an enzyme reaction.

For a more complete overview of biosensors using SPR the reader is referred to the 

excellent database maintained by BIAcore [25l

Moving from an analytical tool to a sensor

So far only very few commercial products using SPR have entered the market. The first 

was developed by the Swedish company BIAcore, in 1990, which offers today a variety 

of instruments for biological systems [25]. A further step towards the realisation of a 

portable sensor is the development of the Tl-SPR-1 experimenters kit from Texas 

Instruments [26]. This device is already portable and uses one shot samples but the 

analysis of the experimental data still relies on a PC operated program. The number of 

commercially available laboratory systems is steadily increasing [27, 28] and it can be
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expected that developments of these, will eventually move towards integrated systems 

bordering on sensor like devices.

Future trends

It can be expected that the lower detection limit will be improved beyond the current 

mark of ca. lpg/mm2 surface coverage, allowing the detection of low concentrations of 

low molecular weight analytes. A further area, which is just emerging, is that of the 

multi-channel SPR detection. This will be of great aid for high throughput screening 

systems, as used for the testing of pharmaceuticals and in advanced recognition systems 

to filter out non specific background effects, in complex samples.

Fresnel equations

Fresnel developed the theory governing the reflection and refraction of light in a
thstratified system at the beginning of the 18 century. The stratified systems are not 

restricted to transparent media but also include strongly absorbing materials, like 

metals. The equations derived by Fresnel are widely applied in the calculation of optical 

properties of bi- or multilayer systems.

The reflectivity of a system depends on several optical parameters like: refractive index, 

number of strata, dimensions of strata, wavelength of the light, angle of incidence of the 

light and the polarisation of the light with respect to the normal of the angle of 

incidence. The polarisation of the light can be expressed from a combination of two 

equations, one for light polarised parallel to the plane of incidence (p-polarised) and one 

for light polarised perpendicular to the plane of incidence (s-polarised). The simplest 

system that is described by the Fresnel equations for the reflectivity is a two layer 

system, where the incident light traverses one layer and is partially reflected at the 

border between layer one and two, back into layer one. This is shown schematically for 

a p-polarised light beam (p- polarised light is necessary for SPR and the equations only 

apply for this) in Figure 13.
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no = refractive index of medium one, ni = refractive index of medium two, 0  = angle of

incidence, Ir = Intensity of reflected beam, Ii = Intensity of incident beam

Fig 13. Partial reflection of light in a two layer system

The reflectivity of the light when the plane of polarisation is parallel to the plane of

incidence in terms of Ir and Ij is described by (4).

£/ = Uj2 ,X = wavelength of the light, Sj = dielectric constant of medium i (this value is

kj = extinction coefficient, all subscripts 0  or 1 are referring to the respective media

The actual SPR experiments are based on a four layer system as schematically shown in 

Figure 14.

(4)

wavelength dependent and for absorbing media it is complex), n\ = refractive index of 

media i

with K defined by (5).

(5)
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prism

n ^ d -i metal (gold)

n2 , d2 thin film

n3 cell (air, water)

Fig. 14 Reflection condition in the SPR experiment

The gold is not in direct contact with the prism, but is on top of a glass side brought into 

contact with the prism by an index matching fluid, this can be reduced to a single layer, 

assuming no scattering and reflection at the border. For the above given system the 

reflectivity is a function of 0, no, ni, di, n2, d2, n3 and X.

Since ni and n2 are normally complex the overall reflectivity is defined as follows, 

based on the results of the two layer system.
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The definitions of the indexes are identical to that given for the two layer system.

The experimental data recorded with the set-up was fitted to the above equations to 

extract the unknown parameters. For this a minimum least square fit procedure was 

employed. The program, that has been described in previous works *29\  allows the 

determination of 5 variables, but it was practice to determine only 1 or at maximum two 

parameters in one fitting procedure. The following parameters, Table 2, were used as 

the starting values for the fitting procedure.

Material Refractive index Extinction coefficient

Glass 1.515 0

Gold 0 .2 3.25

Air 1 0

Table 2 Starting values used during the fitting procedure
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Appendix 3

Production parameters and material details for the Charge 
Flow Transistor and Charge Flow Capacitor

Substrate: 3 inch (100) n-type silicon wafer, with a substrate resistivity of 1-10 Q cm

Growth of the doping masking oxide: The wafers are loaded in a preheated oxidation 

furnace at 1000 °C for their wet oxidation. A saturated water vapour/nitrogen stream 

flows through the furnace chamber for 4 hours, this grows a 1 pm silicon dioxide. The 

wafers are then unloaded from the 1 m long oxidation tube by withdrawing them at a 

rate of 10 cm every 20 seconds. Subsequently they are cooled down to room 

temperature.

Spin coating of negative photoresist: The wafer is mounted on a vacuum chuck and 

the photoresist (HNR 120) is pipetted onto the stationary wafer. It is then accelerated to 

1000 rpm to allow an even spreading out and then to 5000 rpm at which speed it is kept 

for 25 seconds. The softbake is carried out on a hotplate at 85 degrees for 45 seconds. 

This process yields a resist thickness of 1 pm.

Patterning of the negative resist: The exposure for the photolithography of the resist is 

done in a Carl Suss MJB3 mask aligner through mask 1. The exposure time is set to 

three seconds. The resist is then developed by bathing it in 100 % developer HNRD 120 

for 45 seconds, immersion in 50 % developer/ 50 % n-butyl acetate for 10 seconds and 

finally rinsing with n-butyl acetate for 1 0  seconds and drying in a stream of nitrogen. 

The image is fixed on the wafer by hardbaking it for 60 seconds on a hotplate at 135 °C.

Silicon dioxide etch: The exposed silicon dioxide is etched in a commercial etch 

consisting of hydrofluoric acid with an ammonium fluoride buffer and water in a ratio 

of 7:1. The etch rate at this concentration is 100 nm/min, requiring an etchtime of 10 

minutes. During the etch process the wafers are continuously agitated. After etch 

completion the wafers are spray rinsed with deionised water.

Removal of developed negative resist: The resist is removed in a barrel asher at an 

etch rate of about 25 nm/min, resulting in an ashing time of 45 minutes.



Contact etch: The thin silicon dioxide that grows under the energetic oxygen 

bombardment in the barrel asher, is removed in a contact edge with a solution of 

hydrofluoric acid in water in a concentration of 1:10. This etch only skims the surface 

of the oxide and at an etch rate of 10  nm/min the contact etch is completed in 2  minutes.

P-type diffusion doping: The silicon wafers are loaded, with boron-trioxide wafers 

between them, in a boat and introduced into the diffusion furnace. The oven is heated to 

1050 degrees and under a stream of nitrogen the boron-trioxide migrates out of the 

boron wafer and is deposited onto the silicon wafer. From there it diffuses into the 

silicon according to the gas diffusion equations. The time for a p-type doping resulting 

in a surface concentration of 4* 10 atoms is 50 minutes.

Removal of the doping masking oxide and the boron glaze: The Si02 and the boron 

glaze covering the whole wafer are removed by a 10-min etch in HF.

Growing the field oxide: The field oxide is again grown in a wet oxidation process. 

The growth rate is 200 nm/hour in a saturated water vapour/nitrogen atmosphere. The 

temperature is 1000 °C and the growth time is 5 hours. Simultaneously the heat 

treatment has an annealing effect on the introduced dopants subsequently the wafers are 

removed from the oven as described earlier.

Spin coating of negative photoresist: As described above.

Opening up the window for the gate oxide: The patterning of the wafer with mask 2 

is identical to the patterning with mask 1. The same is true for the development and the 

silicon dioxide etch but this time with an increased etch time of 12 minutes. The 

remaining resist is again removed in the barrel asher and the accompanying thin oxide is 

removed by a further contact etch.

Growth of the gate oxide: The high quality gate oxide is grown with a process of dry 

oxidation, in a stream of pure oxygen at a temperature of 1000 degrees Celsius. The 

growth rate is 60 nm/hour and the resulting oxide thickness is 1 2 0  nm.

Verifying the gate oxide thickness via ellipsometric measurements: The oxide 

thickness is checked on a reference wafer on which the same oxide was grown.
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Spin coating of negative resist: As described above.

Patterning for the contact holes leading to the p-type silicon wells: Mask 3 is used to 

transfer the pattern for the contact holes onto the wafer following the procedures 

described above.

Etching contact holes into the field oxide: The pattern on the resist is developed, fixed 

and after completion of the HF etch the remaining resist is again removed in the barrel 

asher.

Metaliasation: The native oxide on the back of the wafer is removed by wiping it with 

cotton buds soaked in 40% HF, until the hydrophilic-hydrophobic surface transition 

occurs. The wafers are then loaded directly into an Edwards vacuum evaporator which 

is then pumped down to a pressure of 1 0 ' mbar. 1 0 0  nm of aluminium are then 

evaporated onto the back of the wafer at a rate of 3nm/second.

The evaporater is then opened and the wafer turned over and again pumped down. A 

seed layer of 3 nm of chromium is evaporated at a rate of 0.2 nm/second and without 

breaking the vacuum 100 nm of gold are evaporated onto the chromium at a rate of 3 

nm/second.

Patterning the metaliasation: The source, drain and gate need to be patterned, this is 

done with mask 4, using a positive photoresist. The positive resist (HIPR 6512) is 

pipetted onto the stationary wafer, accelerated to 1 0 0 0  rpm to spread out and then 

further accelerated to 6000 rpm for 25 seconds. It is then softbaked at 90 degrees for 60 

seconds. After exposure to the UV light through mask 4, it is developed with a two- 

stage puddle method. The wafer is completely covered with developer (HPRD402), by 

pouring it on, developed for 45 seconds and then washed with water. The following 

hardback at 1 2 0  degrees for 60 seconds fixes the pattern.

Metal etch: For the gold etch the wafer is mounted on a pedestal and the etch, 

consisting of 3% potassium iodide in 5% aqueous iodine, is poured over the wafer to 

form a puddle completely covering the wafer surface. After 60 seconds the etch is 

removed by pouring water over it. After drying the wafer in a stream of nitrogen the 

quality of the etch is inspected under an optical microscope. Then the chromium layer is 

etched with a commercial chromium etch, (Microposit Chrome Etch 18) by agitating the
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wafer in a bath of it for 25 seconds. Completeness of the etch is again verified under the 

microscope. Finally the photoresist is removed by agitating the wafer in an acetone tank 

for 60 seconds and then rinsed with clean water and dried in nitrogen.

Heat treatment: To provide good ohmic contacts the wafer undergoes a heat treatment 

in an oven at 450 degrees for 30 minutes in a nitrogen atmosphere, this allows the metal 

to fuse and migrate into the substrate.

Passivation of the source, drain and gate: For the passivation, negative resist is spun 

on, patterned with mask 5, developed and hardbaked. The hardbaked resist now forms 

the passivation layer. This step completes the CFT production.

Several inspections during the process have been omitted in this description since they 

are depending on the experience of the user with the fabrication steps, and are therefore 

very individual parameters.

For the CFC, the production parameters for the individual steps are identical with 

that of the CFT, but only the following steps are needed.

Growing of the gate oxide: Dry oxidation of the silicon wafer to grow 120 nm of SiC>2.

Metaliasation: Gold and chromium deposition on the front, and aluminium deposition 

for the back contact.

Patterning of the front metaliasation: Spinning on positive resist, using mask 6, with 

subsequent developing and fixing.

Metal etch: Gold and chromium is selectively etched.

Removal of remaining photoresist: Rinsing with acetone.

Heat treatment: Enhancing adhesion.
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