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ABSTRACT

The use of polymers in bituminous materials has been gaining popularity over the last
decade. Despite their superiority in enhancing the performance of bituminous mixtures,
problems have been experienced due to limitations on the applicability of currently
available assessment techniques.

This thesis is concerned with the mechanical behaviour of polymer modified bitumens
and the performance of polymer modified bituminous mixtures. The first part of the
thesis presents different pavement distresses and the importance of using polymer
modified binders to improve the performance of bituminous mixtures. The second part
deals with identification of properties of polymer modified binders and their mixtures by
using dynamic mechanical analysis. The third part attempts to develop a novel technique
for assessing resistance to permanent deformation of HRA mixtures using a dissipated
energy method.

Some polymer modified binders are susceptible to storage instability. However, this
work has demonstrated that certain empirical tests are unsuitable for assessing the
temperature susceptibility and storage stability of polymer modified binders.
Viscoelastic behaviour of bituminous materials is better presented by dynamic
mechanical analysis. The dynamic mechanical analysis provides a basis for explaining
the unsuitability of some empirical tests on polymer modified binders.

Determination of dissipated energy during creep testing enables more comprehensive
and accurate assessment of the resistance to permanent deformation of Hot Rolled
Asphalt (HRA) mixtures. This study reveals that assessment of the resistance to
permanent deformation based upon permanent strain rate in the linear region is in good
agreement with the dissipated energy method. The end of the linear region, N;, can be
accurately determined by the dissipated energy method and provides a confidence that
analysis will always be conducted in the linear region. As expected, polymer modified
mixtures are superior to the unmodified ones in their resistance to permanent
deformation which confirm by the wheeltracking test, but was not evident from the
Marshall tests.
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GLOSSARY

Amorphous polymers are materials which have polymer chains which either cannot
crystallise due to chain irregularity (e.g. attactic chain) or have been cooled from the

melt so quickly as to inhibit crystallisation.

Complex (shear) compliance J* (for shear) Pa-1: the mathematical representation of a
(shear) compliance as the sum of a real and an imaginary part. The real part is
sometimes called storage compliance and the imaginary part loss compliance. It is

usually adopted for analysis at the same stress level.

Complex (shear) modulus G* (for shear) Pa: the mathematical representation of a
(shear) modulus as the sum of a real and an imaginary part. The real part is sometimes
called storage modulus and the imaginary part loss modulus. It is also called dynamic

modulus and is used for comparison of different materials at the same strain amplitude.

Deformation Characteristics [1, 2], see also Figure 1:

1. Elastic deformation is a condition where deformation is instantaneous upon
application but reversible on the removal of load. Elastic deformation in solids, such
as steel, can be determined either by static or dynamic tests.

2. Viscous deformation is a condition where deformation upon removal of load is not
reversible then a viscous or permanent deformation occurs as a function of loading
time.

3. Plastic deformation is one type of permanent deformation when the applied stress
exceeds the yield stress value of the material, resulting in the loss of structural
cohesiveness. Hence, the permanent deformation occurs as independent of loading
time. The yield stress is the value of stress measured at the yield point, at which the
an application of load (or strain) above this point causes the irrecoverable (plastic)
deformation.

4. Dilatancy is the tendency of a mix to change in volume as aggregate particles are

forced to slide past each other during shear deformation. This condition may be
found when the Poisson’s ratio exceeds 0.5.

XXIix
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Figure 1 Deformation characteristics

Delta (8) is the phase of angle, that is the difference phase between strain input and

stress response of the bitumen.

Dynamic mechanical test is a type of test which seeks to measure mechanical
properties, .e.g. complex shear modulus G*, under dynamic conditions, such as regular

vibration.

Isotherm curve is a curve on a graph representing the behaviour of a system at a
constant temperature. This will incorporate the use of a time-temperature superposition

technique.

Loss compliance J" is defined as the strain 90° out of phase with the stress divided by
stress in a sinusoidal shear deformation. When different materials are compared at the
same stress level, the viscous effect as a measure of energy dissipated per cycle of

sinusoidal deformation is associated with this loss compliance.



Loss modulus G" is defined as the stress 900 out of phase with the strain divided by
strain in a sinusoidal shear deformation. When different materials are compared at the
same strain level, the viscous effect as a measure of energy dissipated per cycle of

sinusoidal deformation is associated with this loss modulus.

Loss tangent (tan §) is a measure of the viscoelastic characteristics of the materials.

This parameter (tan d) is dimensionless [3] and independent of temperature [4].

Relaxation time: the time taken for the shear stress of a fluid that obeys the Maxwell
model to reduce to 1/e of its original equilibrium value on the cessation of steady shear

flow.

Retardation time: the time taken for the strain in a material that obeys the Kelvin

model to reduce to 1/e of its original equilibrium value after the removal of the stress.

Storage compliance J' is defined as the strain in phase with the stress divided by stress
in a sinusoidal shear deformation. This storage compliance is associated with elastic
effects and is a measure of the energy stored and recovered per cycle when different

materials are compared at the same stress level.

Storage modulus G' is defined as the stress in phase with the strain divided by strain in
a sinusoidal shear deformation. This storage modulus is associated with elastic effects
and is a measure of the energy stored and recovered per cycle when different materials

are compared at the same strain level.

Volumetric properties is variables in the composition of mixture which expressed as
percentages of the total volume of the compacted specimen. and has influence to the
performance of the mixture:

1. Air voids (Vy) is the total volume of air between coated aggregate particles of the
compacted mixture, expressed as percentages of the total volume of the compacted
specimen.

2. Voids in mixture aggregate (VMA) is the volume occupied by the air voids and the
amount of binder not absorbed into the pores of the aggregate, expressed as
percentages of the total volume of the compacted specimen.

xxxi



3. Voids filled with binder (VFB) is the percentage of the VMA filled with binder.
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1. Introduction

1.1 Definitions

Bitumen has been defined as “A viscous liquid, or a solid, consisting essentially of
hydrocarbons and their derivatives, which is soluble in trichloroethylene and is
substantially non-volatile and soften gradually when heated. It is black or brown in
colour and possesses waterproofing and adhesive properties. It is obtained by refinery
processes from petroleum, and is also found as a natural deposit or as a component of
naturally occurring asphalt, in which it is associated with mineral matter” [1]. The
American term for bitumen is “asphalt” *[2], or, it is called “asphalt cement (AC)” when
the bitumen is refined to meet specifications for paving, industrial, and special purposes

[3]. In the rest of this thesis, the word “bitumen” is used instead of the other terms.

The word “polymer” is originally from Greek words polus which means many, and
meros which means part [4]. It has been described as long chain molecules built up by

multiple repetitions of group atoms known as repeat units or parts [5].

Comprehensive discussion on the properties and performance of bitumens and polymer

modified bituminous binders are presented in Chapter Three.

* In the UK practice, asphalt is a type of bituminous mixture e.g. a rolled asphalt. See next section.
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1.2 Bitumen Usage

The first known usage of bitumen was as a waterproofing agent. The ancient civilisation
in the Indus Valley (north-western India) used bitumen in the construction of large
public baths or tanks back to the year of 3000 BC. The Egyptians (2600 BC) used the
naturally occurring bitumens as a mortar binder for building and paving blocks,
mummifications, and numerous waterproofing applications [6]. The use of bitumen has

been extended to a huge variety ofapplications such as: industrial, civil engineering, and

agriculture [7].

Bitumen plays an essential role in the construction and reinforcement ofroad pavements
where it has been predominantly used as the binder. There are about 2.2 million miles of
paved roads in the United Stated (US) of which 94% are surfaced with bituminous

materials [8] whereas in the United Kingdom (UK) this figure is about 90% [9].

A bituminous mixture is normally made up from combinations of aggregates, filler, and
bituminous binder} as illustrated in Figure 1.1. The quantity ofthe bituminous binder in
the mixture should be sufficient enough to coat the aggregates and filler, and also to
provide good workability during mixing, laying, and compaction of bituminous
mixtures, with exception that some particular types of bituminous mixture may require

higher binder contents to meet specification criteria for design and performance.

b The term “bituminous binder” used in the rest of this thesis will have meaning as both unmodified and polymer

modified bituminous binders whereas the word “bitumen” will solely mean an unmodified bituminous binder.
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Air v
T T -1 VMA
Bituminous
binder Vo

Aggregate Va

100%

Figure 1.1 Constituency of a bituminous mixture as its volumetric proportions. Vv, Vb,
and Va are volumetric proportion of air voids, bituminous binder, and aggregate
respectively (in percentage). VMA is volumetric proportion of voids in mineral
aggregate (Vv+Vb), also in percentage.

In the UK, bituminous macadam and rolled asphalt mixtures are the most common types
of bituminous mixtures. Other types of bituminous mixtures, such as: asphaltic concrete,
porous asphalt, and stone mastic asphalt, can also be found in Europe (see Figure 1.2).

The main properties of these mixtures are summarised in Table 1.1.

Figure 1.2 Typical cross-sectional views of a bituminous macadam or an asphaltic
concrete (upper left), a rolled asphalt (upper right), a stone mastic asphalt (lower leff),
and a porous asphalt (Tower right) mixtures.
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Table 1.1 Typical Characteristics of Various Bituminous Mixtures.

Stone Mastic Hot Rolled Asphaltic Bituminous Porous
Asphalt Asphalt Concrete Macadam Asphalt
(SMA) (HRA)
Aggregate gap (open), single | gap (open) continuous | continuous continuous
grading size
Primary aggregate stiffness of aggregate aggregate aggregate
source for the | interlock and mortar interlock interlock interlock
strength of the | stiffness of
mixture mortar®

These types of mixtures are normally placed as the surfacing materials in the road
pavement, and some particular mixtures are also used as the base course and road base

materials. A typical flexible road pavement structure is shown in Figure 1.3.

Wearing Course
Base Course
Bituminous
layers Road Base
Granular
Subbase
Subgrade

Figure 1.3 A Typical Road Pavement Structure

1.3 The Reasons for Bitumen Modification

In the late twentieth century, a rapid increase in the demands placed on highways (i.e.,
traffic levels, higher tyre pressures, new axle designs, and heavier trucks) has been
recognised to significantly increase pavement distress [10]. The Federal Highway
Administration (FHWA) of the United States has reported an increase in heavy vehicle
traffic by twofold within the last 15 years [11]. Heavy vehicles typically make up about

¢ Mortar is a mixture of sand, filler, and binder
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10% to 15% of traffic, but cause about 80% to 90% of pavement distress, including

permanent deformation, fatigue cracking and surface wear [12].

Car traffic in the UK is expected to rise by 14% to 23% and up to 18% for heavy vehicle
traffic by the year 2000, where 90 out of every 100 tonne of inland freight will be
moved by road [13]. Data from the British Road Federation (BRF) also shows that the
increase of heavy vehicle traffic between 1983 and 1993 is up to 38% and 67% on rural
areas and motorways, respectively [13]. The Refined Bitumen Association (RBA)
reported that the defects that can be seen in the road structure including cracking,
deterioration, patching, and potholesd, have increased by an average of 42.2% over the

past 10 years [14].

These distresses have raised awareness of the serious problems faced in road paving
technology, from the material design to the related application techniques. Furthermore,
the damage level caused by the increase of traffic loading is very significant with regard
to the service life of the road pavement. The damage level is a condition where the road
is at minimum level of serviceability to support traffic, e.g. roads can be designed at the
minimum present servicability indices (see Chapter Two) of 2.5. and 2.0 for major
highways and highways at lower traffic, respectively [8]. Figure 1.4 shows the damage
level, in term of equivalent standard axles (ESA), increases in accordance to a 4™ power
law, as the axle load increases. From the AASHO road test, an axle carrying load of
8.16 tonnes (18000 Ib.) has been adopted as being the standard axle [15], or this means
that 1 ESA is equivalent to an axle load of 8.16 tonnes. An axle carrying a load of 16.32
tonnes would do as much damage as 16 passes of a standard axle (8.16 tonnes). This
condition shows that even a small increase of axle loads can cause a huge increase in the
damage level, and hence leads to the reduced service life of a road pavement.
Additionally, the recently adopted super single tyres can escalate up to twice as much
damage to pavements as dual tyres [16]. The Author needs to emphasise here that the
AASHO road test used a static axle load for the formulation of pavement damage due to

the simulated traffic loading (i.e. dynamic loading). Pavement damage, however, can

4 Further information on the damage mechanisms of road pavement is presented in Chapter Two.
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also be attributed to the interactions between traffic (dynamic) loading with the road
pavement, such as: spatial repeatability, speed and frequency of traffic loading, dynamic
tyre force, efc. An extensive reviews and analysis on the effect of dynamic loading on

the development of pavement damage has been reported by Collop [17], Cebon [18] and
Potter et al [19].
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Figure 1.4 Effect of traffic loading (axle load) to the damage level of a road pavement
in term of equivalent standard axles. After Croney and Croney [15].

Hot Rolled Asphalt (HRA) has been used as the primary road surfacing material in the
UK. This material has performed well in most major sites, even under extreme loading
conditions. However, this scenario will change with the increase of traffic volumes of
heavy good vehicles, in particular with the rapid adoption of super-single truck tyres in
recent years, that results in the need to develop more deformation resistance HRA [20].
The UK Highway Agency has released a draft clause (Clause 943) of the UK Highway
Agency’s Specification for Highway Works containing the performance based

specification for HRA mixtures (see Table 1.2) [21].
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Table 1.2 Draft Clause 943 Wheel-tracking Requirements for Site Classification [21]

Classification | Description of Site | Test Temperature | Rut Rate f[mm/h], | Total Rut Depth [mm],
[°C) max. max.

Lightly stressed,
not requiring

0 specific design for
permanent Should comply with the requirements of BS594: Part 1
deformation
resistance

Not Required.

Moderate to
heavily stressed,
1 requiring high 45 2.0 4.0
permanent
deformation
resistance

Very heavily
stressed, requiring ]
2 very high 60 5.0 7.0
permanent
deformation
resistance

The resistance to deformation of HRA mixtures is predominantly obtained from the
properties of the mortar of sand, filler, and binder, in which most of the strength of the
mortar are from the properties of the sand and the binder. However, bitumen as a
viscoelastic material will undergo changes in properties with changes in temperature and
loading conditions. The use of hard bitumens, such as a 35 pen grade bitumen, may not
be sufficient to overcome the increased distress experienced by the World’s Highways
as hard bitumens tend to be brittle at low temperatures and hence susceptible to
cracking. On the other hand, soft bitumens can be superior to prevent cracking at low
temperatures but cannot sustain heavy loading at high temperatures. Therefore, a
modification of bitumen can be an alternative and economical solution. Furthermore,
Clause 943 allows the use of an approved polymer modified binder, if a combination of
a particular sand and a normal paving grade bitumen (unmodified binder) cannot meet

the permanent deformation requirements of Clause 943.

Van Beem and Bresser proposed an "ideal" performance of road bitumens, as illustrated
in Figure 1.5, and steps towards this performance can be achieved by addition of

polymer modifier [22].




napier 1. 1rurvuuciiurn

| < Flexibility
T <80°C )
> > Resistance to
= 2 deformation
% Resistance to %
1S deformation S
S S — O <
3 10 500 50 100 150
10 loading time, seconds 10 temperature (degrees C)

Figure 1.5. Time/temperature behaviour of "ideal" bitumen. After Van Beem and
Bresser [22]

There are some common reasons for modifying bituminous binders and mixtures with a

polymer, such as:

1. To obtain softer mixtures at low service temperatures to reduce cracking and to
increase flexibility and for the mixtures to become stiffer at high temperatures to
reduce permanent deformation.

This is the condition that has been proposed by Van Been and Bresser [22], that the
service temperature range can be extended by using polymer modified mixtures (see
Sections 3.3 and 3.4).

2. To increase structural strength.

For road pavements treated as a multilayer structural system, the strength of the
whole structure is interdependent on the strength of the constituent layers. Therefore,
an increase in the strength of a particular layer can also increase the strength of the
whole pavement structure. Some particular bituminous mixtures, such as HRA,
where the strength of the mixtures relies on the stiffness of mortar binder may gain
the most benefit from the polymer modification.

3. To improve workability and compaction.

Adverse weather conditions, such as strong winds and low temperatures, is one of the
major problems in road construction. Addition of polymers in bituminous mixtures
can extend the temperature range for mixing, laying, and compaction [23]. Hence, it
improves the workability (see also Section 3.4.1).

4. To improve marginal asphalt binders.

The addition of polymers generally reduces the penetration of the binder by one
grade, for example: the addition of 5% EVA into 200 pen bitumen can produce a
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mixture with performance better than/or similar to a mixture with 100 pen bitumen
[24].

5. To allow thicker binder films on aggregate.
As the addition.of polymers can also increase the stiffness and viscosity of the binder
(see Section 3.3), it is also possible to apply thicker binder films, i.e. as a binder-rich
mixture, to gain a better workability and a better fatigue resistant mixture without
sacrificing the resistance to permanent deformation. A typical binder-rich mixture
that can gain potential benefits from polymer modification is the SMA mixture.

6. To improve bonding and to reduce stripping of bitumen and aggregate.
Loss of adhesion between binder and aggregates, especially in the presence of
moisture, leads to serious problems in terms of stripping and other moisture damage
mechanisms (see Section 2.3.2) that happens regularly in surfacing materials [25].
The addition of polymers has shown a significant improvement in reducing moisture
damage potential (see Section 3.4).

7. To reduce bleeding (high temperature)
It has been stated in points one and five that the addition of polymers improves the
service temperature range and increases the stiffness at high temperatures,
consequently the bleeding potential can also be reduced.

8. To improve resistance to ageing or oxidation.
Durability of bituminous mixtures in term of resistance to ageing or oxidation has
been reported to be significantly improved by the addition of polymers (see Section
3.4.2). The improvement is even higher than the addition of antioxidant into the
mixtures. This property can be beneficial for porous asphalts where binder exposure
to oxidation and salt is greater.

9. To reduce structural thickness of road pavement layers.
Some pavement design methods, such as The Shell Method [30], use the thickness of
individual pavement layers and their stiffness values as the parameters for designing
the pavement structure to meet the strength criteria (see Section 2.1) and it has been
pointed out previously that the addition of polymers can increase the structural
strength (see point two). Therefore, structural thickness may be reduced by addition

of polymers to meet the same strength criteria as the road pavement structure without

polymer modification in its bituminous layers.
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However, there are some arguments in opposition to the use of polymers as bitumen

modifiers, such as:

1. Polymer modified binders are more expensive than the unmodified bitumen, the cost
might be up to seven times of the unmodified one [26], but normally in the range of
two to three times more expensive. In order to achieve effectiveness, practicability,
and economical use of modified bitumen, it has been suggested that the modifier:
should be readily available, have good solubility when blending with bitumen, should
resist degradation at asphalt mixing temperatures, should improve resistance to flow
at high road temperatures without increasing viscosity of bitumen at mixing and
laying temperature or making it too stiff or brittle at low road temperature and the
polymer-bitumen blends can be applied with the conventional techniques used in
bitumen industry [27,28].

2. The improvement of the performance of modified binders should offset the additional
cost of using the polymer. Additionally, in order to optimise the cost effectiveness,
the modified binders are best applied in combination with high quality aggregate, in
uncommon mixtures such as porous asphalt, in regions which need exceptional
resistance to permanent deformation.

3. Current design methods and specifications are mostly based on an empirical
approach that is only valid for materials based on unmodified bitumens or those with
characteristics similar to unmodified bitumens. Consequently, other design
techniques such as analytical designs or mechanistic-analytical designs can be more

suitable for polymer modified materials (see Section 2.1).

Further discussions on polymer modified binders are presented in Chapter Three.

1.4 Statement of Problems

In the analysis and design of a new pavement structure or an overlay, engineers used to
focus on the issue of fatigue as the main damage mechanism in the bituminous layers
[29, 30, 31], rather than looking at the importance of the plastic flow that leads to

deformation at higher service temperatures [31]. The increases in the severity of road
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traffic have caused permanent deformation to become a more important issue for thick
structurally sound pavements [32]. Furthermore, the “global warming situation™ that
the Earth’s atmospheric temperature is increasing gradually will worsen this problem.
Even though, fatigue is still important especially for thin pavements which constitute the

majority of the road networks [31].

It was reported that the permanent deformation on the M11 was rapidly increasing
during the hot Summer in 1995. With the traffic flows exceeding 32000 vehicles over a
16-hour period on an average week day of which about 20% were heavy goods vehicles,
the average permanent deformation of 0 to 10 mm at the end of 1994 was found to have
accelerated to be more than double, i.e. the worst permanent deformations observed by
October 1995 were 25 to 30 mm [34]. The use of hard binders may accommodate the
increasing demands on highway networks. However, the use of hard binders may also
bring other problems due to thermal cracking occur at low pavement temperatures.

Therefore, there is a need to develop new materials and designs that can cope with the

new conditions.

The use of additives to improve the performance of bituminous mixtures has increased
in recent years. Polymeric additives have been proposed as a potential source of
improvement of the performance of bituminous road pavements especially under
adverse loading and climatic conditions. For example, rubbers have been implemented
in the USA and Canada since the 1970's. In the UK, polymer modified mixtures for
construction and maintenance of some main roads, such as the use of polymer modified
mixtures on motorways (e.g. on the M11 between junctions 9 and 10, on the M25

between junction 23 and 24) and other major routes (e.g. on the A14, on the A21, on the
A346, and on the A38) [33, 34, 35 ,36].

The increased use of polymer modified binders has been followed by some problems

related to properties of the base binder (i.e. the bitumen) and the polymer modifier. The

¢ Scientists from the United Nations (UN) sponsored Intergovernmental Panel on Climatic Change (IPCC) predicted
that the Earth’s average temperature could rise by about 2.8°C during the next century. Source: “Earth Week : a
Diary of the Planet”, The Observer 17 December 1995.
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bitumen may be manufactured from one or more crude oils which can lead to a large
variety in the properties and end performance of the mixtures. The addition of polymer
may add to this complexity. In previous conferences [37, 38], researchers have also
reported that some conventional tests are not valid if applied to polymer modified
mixtures [31] as they tend to undermine the enhanced performance of the polymer
modified mixtures (see also Sections 3.3 and 3.4. for further information). Therefore, a
better understanding on the properties of the bitumen (e.g. physical and chemical
properties) which relates to the end performance of the mixture is very important [39],
and the understanding should lead to developments of test methods and specifications

that accommodate the use of polymer modified binders.

1.5 Research Aims and Objectives

1.5.1 Aims
To investigate the characteristics of polymer - bitumen blends and to develop a better
understanding of the relationship between the interaction mechanism within polymer-

bitumen blends and their effect on the performance of bituminous mixtures.

1.5.2 Objectives

a) To develop an understanding of the properties of bituminous binders, both
unmodified and polymer modified ones, by using more fundamental tests (e.g. using
a dynamic shear rheometer and a viscometer) as opposed to empirical tests (e.g. the
penetration, and the ring and ball softening point tests), and also the fundamental
properties of bituminous mixtures over a range of test frequencies and temperatures

by using a dynamic mechanical test.

b) To study the performance of bituminous mixtures in relation to their permanent

deformation characteristics.

c¢) To develop a new approach using dissipated energy as a performance indicator of the

resistance to permanent deformation.

12
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1.6 Organisation of Thesis

This thesis is divided into ten chapters, which has been arranged and presented by the
following orders: the introduction (Chapter One), literature review (Chapters Two and
Three), hypothesis (Chapter Four), testing arrangements and data collection (Chapter
Five), analyses (Chapters Six and Seven), general discussions (Chapter Eight),
conclussion (Chapter Nine) and recommendations (Chapter Ten), as demonstrated in
Figure 1.6. This arrarigement is found useful when distinguishing each objective set in
this thesis. The first three chapters are to present the level of understanding acquired by
the Author during this research work whereas the rest of the thesis is to explore this

understanding further, i.e. to develop a novel contribution to knowledge.

Descriptions of each chapter are as follows:

General views of the development of bituminous materials with regards to their
historical facts, material performance, and current demands, which have led to the use of
polymer modified bitumens to overcome the increase in severity and damage level
experienced by today’s highways, is presented in Chapter One. The importance of
having a good understanding of damage mechanisms for the analysis and design of road
pavements is highlighted in Chapter Two, together with a presentation of various
approaches in the pavement design. The study is then focused in Chapter Three on the
identification on behaviour and properties of polymer modified bituminous mixtures.
Their performances with particular reference to resistance to permanent deformation are
presented more comprehensively in Chapter Four. The discussions on the resistance to
permanent deformation lead to the development of a novel approach for assessing the
performance of bituminous mixtures, i.e. by using the dissipated energy method.
Research methodology and procedure for conducting these tests are presented in
Chapter Five. Reviews on the limitations of some conventional test procedures, in
comparison to the dynamic mechanical test, when using polymer modified materials are
also presented. The analysis and discussions on the interaction mechanisms of polymer
modified mixtures and the applicability of the use of the dissipated energy method for
assessing the mixture performance are presented in the Chapters Six, Seven and Eight.
The last chapters (Chapters Nine and Ten) present findings of this research, and some

suggestions and recommendations for further works.
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2. Pavement Performance

2.1 Introduction

In bituminous (flexible) pavements, the tensile and compressive stresses induced by
heavy vehicle loads decrease with increasing depth. This condition allows the use of a
gradation of materials, where the relatively strong and expensive materials are used for
the surfacing and the less strong and cheaper ones for base and subbase. The whole
structure of pavement must limit the stresses in the subgrade to an acceptable level, and
the upper layers must in a similar manner protect the layers below. Figure 2.1 shows
that, in a multilayer pavement system, normal stresses become smaller (o,< o; < G1)

with the increase in depth of the pavement structure, due to the distribution of wheel

loads throughout the pavement layers.

The main objective of pavement design is to economically build road pavements with
good performance which meet criteria on both structural and functional conditions
during the design life. The functional condition is the riding quality which is primarily
related to the roughness of the pavement, and sometimes termed the serviceability of
the pavement. The structural condition is concerned with the bearing capacity, e.g. how

long the pavement will maintain its structural integrity and continue to protect the

subgrade, efc.
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Figure 2.1 Illustration of the distribution of traffic loading at various depths of road
pavements showing reduction of stress level(c) at each layer.

In general there are three approaches that have been used for the analysis and design of
bituminous pavement; empirical, analytical (mechanistic), and semi-empirical

(analytical-empirical or mechanistic-empirical) methods.

Traditionally, most road pavements are designed using an empirical approach which is
based on experience accumulated from practice and from specially constructed test
sections, as this kind of approach is simple and generally suitable for certain materials
under certain environmental and loading conditions. The most commonly used method
in this category is the California Bearing Ratio (CBR) method, in which the strength of
the subgrade and granular materials is measured by the CBR test (Figure 2.2) [1]. Road
Note 29 [2] and Road Note 31 [3] are empirical design procedures which were produced
by the Transport and Road Research Laboratory (TRRL) - UK. This approach, however,
cannot any longer accommodate the current changes and the development of new road

materials and the increased demand in road traffic. Therefore, an analytical approach is

used instead.

In the analytical approach, theoretical analysis of the mechanical properties of

bituminous materials is used to assess a designed pavement structure. This approach
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offers the flexibility to accommodate new materials and changes in traffic and

environmental conditions.

Two of the well-known analytical methods are reviewed here, i.e. the Shell Pavement

Design Manual (SPDM) [4] and the Nottingham method [5]. Both methods apply a

similar principal criterion, i.e. by limiting the critical strains (Figure 2.3), e.g.:

+ horizontal tensile strain at the bottom of the bound layer which measures the
pavement’s resistance to fatigue,

. the vertical compressive strain at the top of the subgrade which measures the

pavement’s resistance to permanent deformation.

0 —
100 — 7000 Ib Wheel load
(light traffic)
: 200 |—
.g 300 —
:31
é 400 —
S 12000 Ib Wheel load
G 500 (heavy traffic)
g
A 600
700 ] 1 1 I S | 1 ! | | | P11
2 3 4 56 78910 15 20 30 40 50607080
California Bearing Ratio, %

Figure 2.2 An example of an empirical approach: California Bearing Ratio design
curve. After Whiteoak [1]
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Figure 2.3 The principal critical strains in the analytical design methods

The mechanistic-empirical approach has generally been adopted by highway agencies
following the vast development in bituminous materials, e.g. UK started adopting this
approach when TRRL proposed a design recommendation in LR 1132 [6] to replace the
previous recommendation in Road Note 29 [2]. Road Note 29 does not deal with the
resurfacing® and maintenance of existing roads, but merely with the construction of new
roads. The design life recommended by Road Note 29 is of 20 years to cater traffic of up
to 40 million standard axles (msa), of which the pavement is considered to be at a failed
state® and a major overlay or partial reconstruction® would be necessary at the end of
the service life of the pavement. However, this condition is not beneficial in terms of the
pavement’s performance after overlaying or reconstruction (as severe damage has
already developed). Therefore, LR 1132 recommends that a design should be based on
the structural deterioration associated with 10 mm rut in the wheel path rather than a 20
mm rut, to give a substantially longer service life. The pavement condition at a 10 mm

rut is considered to be at the “critical” condition where an overlay should take place (see

next section).

* Resurfacing is replacing the old surface layer with a new layer.
® This condition is in associated with a rut depth of 20 mm or more, in accordance to LR 1132 recommendation.

¢ Reconstruction is replacing the old pavement structure with a new structure, usually a new pavement design is
applied.
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This mechanistic-empirical approach is simple and is robust enough to be used on a
regular basis [7], which deals with two main components: response and performance.
The pavement response is normally calculated by an analytical method, such as the
theory of linear elasticity, to determine the critical stresses and strains in each of the
pavement layers for any combination of loading and environmental conditions. A rough
estimate of the pavement performance can be obtained by developing an empirical
relationship between the response and the rate of deterioration as measured by the

serviceability, and then the damage caused by different combinations of loading and

environmental conditions can be determined.

2.2 Serviceability

Serviceability is the ability of a specific pavement section to serve traffic in its existing
condition [7]. The serviceability can be quantified either using pavement roughness
alone, or using both roughness and distress condition (e.g. cracking or permanent

deformation in the wheel path, efc. -see next section-)

Pavement roughness is the main factor which represents the level of serviceability of the

pavement with regard to user benefits, such as:

1. Riding comfort: the rougher the pavement, the lower the riding comfort.

2. Road user costs: the rougher the pavement, the higher the user costs (e.g. due to the
increase in vehicle maintenance costs, the increase in fuel and oil consumption and
the longer journey time).

3. Safety, which is affected by skid resistance, permanent deformation, pavement colour
and light reflection characteristics.

4. Surface characteristics related to splash and spray.

5. Noise emission can be amplified by regularity of the pavement.

6. Tyre wear and rolling resistance, which are affected by the surface regularity of the

pavement.

During the AASHO road test, as described by Ullidtz [7], Present Serviceability Index
(PSI) is introduced as an index to be used to quantify the level of serviceability of road

pavement. This index is developed based on both pavement roughness as well as
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distress condition, i.e. the PSI is determined from the riding quality (SV), the rut depth
(RD), and the extend of cracking and patching (C+P). An empirical relationship was

derived for bituminous (flexible) pavements:

PSI =5.03-191log(1+SV) - 138RD’ - 0.01JC + P

Equation 2.1

where,

PSI = present serviceability index

5%

slope variance, the variance of slopes measured over a 6-inch wheel
base using a profilometer

RD  =average rut depth
C = pavement cracking in feet/1000 square feet of pavement surface; and
P

= patching in square feet/1000 square feet of pavement surface -

Generally, new pavements have a PSI between 4 and 5, and repair is usually needed
when PSI falls to between 1.5 and 2.5 (Figure 2.4) [8]. Furthermore, decisions on the
maintenance strategy for when work, for example: new overlay, should take place is
critical as the cost increases as the structural integrity decreases [9]. However, the
decision of when this “critical condition” will be reached is a rather complicated matter
because pavement deterioration involves various types of distress which may be
functional or structural in nature and other factors which contributes to the deterioration
such as traffic, environment and material properties. Therefore, accurate identification

of distress mechanisms and their levels of severity is important.
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Figure 2.4 Typical relationship between PSI and cumulative traffic, after Roberts et al
[8]

In the UK, the design criteria to determine terminal serviceability of a pavement
includes a critical distress parameter as determined by permanent deformation® [10], e.g.
a pavement is regarded as being at critical condition if it has a rut depth of 10 mm.
When this condition is reached, maintenance should be carried out without delay (if it
has not been already done) before the maintenance cost increases too rapidly. A
pavement failure is marked by a terminal rut depth of 20 mm where major maintenance
work, such as resurfacing or reconstruction, may be required. The complete

classification is presented in Table 2.1.

¢ Permanent deformation, rut, or rutting are of the same meaning and will be used interchangeably in this thesis.
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Table 2.1 Classification of the condition of the road surface used by TRL[10]

Classification

Code

Visible evidence

Sound

1

No cracking. Rutting under 2m straightedge less than 5 mm.
No cracking. Rutting from Smm to 9mm.

Critical

2
3
4

No Cracking. Rutting from 10mm to 19mm.
Cracking confined to a single crack or extending over less than half of the
width of the wheel path. Rutting 19mm or less

Failed

N A

Interconnected multiple cracking extending over the greater part of the
width of the wheel path. Rutting 19mm or less.

No Cracking. Rutting 20mm or greater.

Cracking confined to a single crack or extending over less than half of the
width of the wheel path. Rutting 20mm or greater.

Interconnected multiple cracking extending over the greater part of the
width of the wheel path. Rutting 20mm or greater.

2.3 Damage Mechanisms

Identification of distress is important in pavement design and maintenance. In the

mechanistic-empirical approach, each failure criterion is developed separately to take

care of each specific damage mechanisms [11]. One of the important steps in identifying

pavement distress is studying the damage mechanisms that occur in bituminous

pavements, then the level of severity can be quantified and a measurement criterion

developed. Table 2.2 presents different types of pavement distress. They can be

classified into four major damage mechanisms: cracking, rutting, moisture damage, and

age hardening.

Table 2.2 Typical distress in bituminous pavements. After Huang [11]

Type of Distress

Structural

Functional

Load-
associated

Non load-
associated

Alligator or fatigue cracking
Bleeding

Block cracking

Corrugation

Depression

Joint reflection cracking
Lane/shoulder drop-off or heave
Lane/shoulder separation
Longitudinal and transverse cracking
Path deterioration

Polished aggregate

Potholes

Pumping and water bleeding
Ravelling and weathering
Rutting

Slippage cracking

Swell

X

>

Ea T T -

X

><~ 3

® R

>

Eo T T

*Tyre abrasion
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2.3.1 Cracking

Cracking in bituminous pavements can be caused by thermal contraction under severe
climatic conditions, by fatigue under repeated loading, or by construction practices, e.g.
roller cracks. In terms of road performance, the existence of cracks at the road surface
must be avoided as they cause numerous problems, such as: discomfort for the users,
reduction of safety, intrusion of water and subsequent reduction of the bearing capacity
of the soil, and progressive degradation of the pavement structure in the presence of the

cracks due to localised excessive stresses.

2.3.1.1 Thermal Cracking

Thermal cracking, or low temperature cracking, is caused by the exposure of asphalt to a
single thermal cycle at which the temperature reaches a critical low temperature, or from
thermal cycling (relatively small number of large strain movements) above the critical
low temperature. At the critical temperature, a bituminous binder can no longer flow
quickly enough to relieve the stress as it attempts to accommodate the large tensile

strains developed due to expansion and contraction caused by variation in temperatures.

Failure occurs when the thermally induced stress exceeds the tensile strength. Usually,

this kind of mechanism can be observed as :

transverse cracking, as the main phenomenon, across the full width of bituminous

pavements at regular intervals,

longitudinal cracking parallel to the centre line of bituminous pavements, and
usually occurring at the joint between adjacent lanes,

block cracking in the transverse and longitudinal direction of road pavement, which
is usually caused by embrittlement of the binder, generally on low traffic roads (due

to less traffic densification) which leaves high voids allowing oxidation of the

bituminous surface.

A liquid bitumen or other type of sealing material can be used for repairing thermal
cracking in order to prevent moisture from penetrating the base course and subgrade and
helps to minimise ravelling near to the cracks. However, if cracking becomes too severe,

all cracked layers may have to be removed and replaced with an overlay, otherwise it is
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likely that the underlaying cracks will reflect through the overlay during the first or

second winter.

2.3.1.2 Fatigue Cracking

Fatigue in bituminous pavements has been defined as the phenomenon of cracking
which consists of two main phases, i.e. crack initiation and crack propagation, and is
caused by tensile strains generated in the pavement by traffic loading, temperature

variations, and construction practices [12].

Read [12] reported that “cracks always propagate around the coarse aggregate passing
as close to the aggregate as possible”, and they also travel the shortest route between
the point of crack initiation and the point of applied load. The cracks propagate to the
surface initially as one or more longitudinal parallel cracks but then under repeated
traffic loading, the cracks connect and develop a pattern like the skin of alligator,

therefore it is sometimes also termed alligator cracking.

Alligator cracking occurs only in areas that are subjected to repeated traffic loading, and
usually measured in square meters of surface area. The typical relationship between the
initial stress and the fatigue life of a pavement due to repetitive loading at different
temperatures is schematically illustrated in Figure 2.5. Construction induced cracking
(roller cracking), e.g. cracks due to wheel roller compactor, has also been reported to
have a detrimental effect upon fatigue life of bituminous pavements, in that the cracks
allow moisture to penetrate the subsequent layers resulting in stripping and loss of
tensile strength of up to 30%, which leads to a reduction in fatigue life of up to 50%
[13]. The use of soft plate compactors eliminates the possibility of roller cracking that is

generally found with conventional vibratory or steel wheeled rollers, and hence, to

longer fatigue lives (Figure 2.6).
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Figure 2.5 Schematic illustration on the effect of temperature on fatigue life for
controlled stress testing.
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Figure 2.6 Effect of different roller compactors to fatigue life [13]

In bituminous pavement design, a damage model originally developed by Miner is often
used for analysis and prediction of fatigue life due to repeated loading imposed onto a
pavement. A damage factor D; is defined as the number of load repetitions »; at
condition i divided by the number of load repetitions N; to failure at condition i, and Dy
is the accumulation of fatigue damage. The fatigue failure is reached when D; exceeds 1

(Dr = 0 if no damage, Ds=1 at failure), see Equation 2.2 [14].
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Equation 2.2
Wu [9] suggests that the Miner equation can be modified if fatigue life is considered to
be influenced by temperature and physical state (e.g. age and stiffness) of a pavement as

well as traffic loading, and hence:

Equation 2.3

where i = different levels of critical strain

j = different levels of combinations of temperature and physical state.

Fatigue cracking is also often associated with loads which are too heavy for the
pavement structure or more repetitions of a given load than provided for in the design.
Inadequate pavement drainage can exacerbate this problem by allowing the pavement
layers to become saturated and lose strength, which causes layers to experience high
strain and subsequently leads to premature fatigue failure [8]. This distress can lead to
the development of potholes when the individual pieces of bituminous material

physically separate from adjacent material and are dislodged from the pavement surface

by the action of traffic.

2.3.1.3 Reflection Cracking

Reflective cracking through a pavement structure is one of the main causes of premature
pavement deterioration. This phenomenon which frequently occurs when a layer of
bituminous material is placed on top of a discontinuous base, can represent many
different aspects related to the large number of factors governing the mechanism of
crack initiation and its propagation through a road structure. Reflection cracking is
produced by either traffic or thermally induced stresses (Figure 2.7) [8, 15] which may
be initiated from:

+ cracks or joints in an underlaying concrete pavement,
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+ cracks already existing in old bituminous surfaces before overlaying, e.g. low
temperature cracks, longitudinal cracks or fatigue cracks,

+ block cracks induced by the old bituminous surface, or those induced by subgrade
soil cracking due to shrinkage.

Traffic loading
Bituminous Overlay T Crack Growth Bituminous Overlay {l T Crack Growth
Concrete > ¢ , Thermal Bituminous 1‘ J‘ Traffic
__Pavement Expansion Laver y 4 Movement
Reflective cracking due to thermal expansion Reflective cracking due to traffic

Figure 2.7 Reflection cracking in road pavement

Roberts et al. [8] stated that “if the new surface is bonded to the old surface using a
standard tack coat, cracks in the underlaying layer almost always propagate through
the new surface within 1-2 years”, by considering that the crack is initiated by the action
of the underlaying layers to produce stresses in the bituminous surface which exceed the
strength of the material. Therefore, Francken [16] suggested two methods that can be
applied to reduce appearance of cracks at the road surface:
1. Interventions on cracks themselves to eliminate them or to limit their activity.
2. The use of an appropriate overlay system (Figure 2.8), which includes:

+ assessment of the site

+ preventive measures

+ preparatory work

«+ choice and possible laying of an interlayer

+ choice, design and laying of a wearing course

The development of efficient system involves innovative materials and products, €.g.:
1. Soft interlayer products (saturated geofabrics, rubber-bitumen)
2. Reinforcing interlayer products (polymer grids, metallic grids)

3. Composite materials (asphalt mixtures containing additives, fiber, efc.)
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Figure 2.8 Different components of an overlay system, after Francken [16].

2.3.2 Moisture Damage

Moisture damage usually involves the displacement of the binder film from the
aggregate surface in the presence of water. Loss of cohesion®, adhesion failure in binder-
aggregate bond and related moisture-induced damage have costly consequences as they
reduce both pavement durability and serviceability. Durability here has been defined as
“the ability of the materials comprising the mixture to resist the effects of water, ageing
and temperature variations, in the context of a given amount of traffic loading” [17].
Failure of the adhesive bond between binder-aggregate (e.g. stripping) and/or reduction
of cohesion in the bituminous mixture results in a reduction of the strength and stiffness
of the mixture and, therefore, a reduction in the ability of the pavement to withstand
traffic induced stresses and strains. Two of the most popular moisture damages, e.g.

stripping and ravelling, are presented.

¢ Cohesion, as used here, is defined as the overall attraction by which particles of bodies stick together to make up a
compatible mixture .After Scholz [17].
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2.3.2.1 Stripping

Stripping is generally related to the presence of moisture and is characterised by the loss
of adhesion between the aggregates and the binder which typically begins at the bottom
of the bituminous layer and progresses upwards (i.e. flushing or bleeding) and resulting
in reduction of cohesion in the lower part of stripped layer as well as instability in the
upper part of the layer due to excessive bitumen [17]. Once stripping is developed, it
can manifest in several forms (such as ravelling, cracking, and permanent deformation),
which makes identification of stripping difficult [8], and consequently it is also difficult

to select appropriate remedies.

Stripping is more prevalent in moist pavements than in dry pavements. Before 1974,
stripping in bituminous pavements was considered to be a relatively minor problem
[18]. However, severe problems related to stripping have been noted in the period from
1974 to 1977 which caused research in this field to become extremely active to
overcome the problems [18, 19]. One of the findings indicated that bituminous mixtures

are more susceptible to stripping when exposed to severe traffic and climatic conditions.

The amount and ease with which moisture can enter a bituminous mixture are dependent
on the binder content and aggregate gradation. Dense, continuously graded mixtures
with the optimum binder content will prevent moisture ingress effectively. Adequate
compaction will reduce the air voids and the continuity of the air void system, which

prevents moisture ingress into the mixture.

Terrel and Shute [20] introduced the concept of “pessimum voids” content for stripping
(Figure 2.9). There are four regions as shown in Figure 2.9. Region A for mixtures with
air void content less than 5%, here the mixtures are virtually impermeable and, hence,
have good resistance to stripping. Mixtures with air void contents between regions B
and C, which are often found in construction practice, are most susceptible to stripping.
This region is termed “pessimum voids” because voids in this range are the opposite of
optimum. The mixture strength becomes less affected by moisture at air void contents

beyond region D, as the mixtures are free draining.
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The presence of water within a bituminous mixture can create a potential stripping

problem due to the build up of hydraulic pore water pressure under traffic loading, this

condition is often found in base courses [22].

Moisture, in the form of vapour or liquid, can also penetrate through the binder film to

reach the aggregate surface, especially where the binder film is very thin such as at the

sharp edges of aggregates. This movement may then produce a detached film of binder

which leads to film rupture in the presence of stresses imposed by traffic [1].

Reduction in stripping can be achieved by [18, 21, 22]:

1.

Controlling the moisture in mixture by:

+ preventing moisture ingress, e.g. creating an impermeable pavement layer

« discharging moisture as soon as possible, e.g. by providing adequate pavement
drainage

Controlling the quality of the aggregates:

+ avoid excessive dust coating on the aggregate

+ adequate drying of aggregate

« eliminate the use of moisture-susceptible aggregate

Adequate binder film thickness

Construction techniques:

+ minimise mixture segregation

+ provide adequate compaction to achieve an adequate air void level

Using some additives or anti-stripping agents

Sealing layers beneath a permeable layer (e.g. a porous asphalt surface)
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Figure 2.9 Air void content versus retained mixture strength. After Terrel and Shute

[20]

2.3.2.2 Ravelling

Ravelling is the wearing away of the pavement surface which progresses downward
through the pavement layers. Ravelling is usually caused by one or a combination of the
following factors [8 ,11, 23]:

1. Deficient binder content that causes poorly coated aggregate and reduces adhesion
between binder and aggregate. By increasing binder film thickness, the rate of ageing
can be reduced and also offset the effects of high air voids [8].
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