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Abstract

The ongoing electrical activity of the brain is known as the electroencephalogram (EEG). Evoked 
potentials (EPs) are voltage deviations in the EEG elicited in association with stimuli. EPs provide 
clinical information by allowing an insight into neurological processes. The amplitude of EPs is 
typically several times less than the background EEG. The background EEG has the effect of 
obscuring the EPs and therefore appropriate signal processing is required for their recovery.

The EEG waveforms recorded from electrodes placed on the scalp contains the ongoing background 
EEG, EPs from various brain sources as well as signal components with sources external to the brain. 
An example of externally generated signal which is picked up by the electrodes on the scalp is the 
electrooculogram (EOG). This signal is generated by the eyes when eye movements or blinks are 
performed.

Saccade-related EEG waveforms were recorded from 7 normal subjects. A signal source separation 
technique, namely the independent component analysis (ICA) algorithm of Bell and Sejnowski 
(hereafter refereed to as BS_ICA), was employed to analyse the recorded waveforms. The 
effectiveness of the BS_ICA algorithm as well as that of the ICA algorithm of Cardoso, was 
investigated for removing ocular artefact (OA) from the EEG. It was quantitavely demonstrated that 
both ICA algorithms were more effective than the conventional correlation-based techniques for 
removing the OA from the EEG.

A novel iterative synchronised averaging method for EPs was devised. The method optimally 
synchronised the waveforms from successive trials with respect to the event of interest prior to 
averaging and thus preserved the features of the signals components that were time-locked to the 
event.

The recorded EEG waveforms were analysed using BS_ICA and saccade-related components (frontal 
and occipital pre-saccadic potentials, and the lambda wave) were extracted and their scalp 
topographies were obtained. This initial study highlighted some limitations of the conventional ICA 
approach of Bell and Sejnowski for analysing saccade-related EEG waveforms.

Novel techniques were devised in order to improve the performance of the ICA algorithm of Bell and 
Sejnowski for extracting the lambda wave EP component. One approach involved designing a 
template-model that represented the temporal characteristics of a lambda wave. Its incorporation into 
the BS_ICA algorithm improved the signal source separation ability of the algorithm for extracting the 
lambda wave from the EEG waveforms. The second approach increased the effective length of the 
recorded EEG traces prior to their processing by the BS_ICA algorithm. This involved abutting EEG 
traces from an appropriate number of successive trials (a trial was a set of waveforms recorded from 
64 electrode locations in a experiment involving a saccade performance). It was quantitatively 
demonstrated that the process of abutting EEG waveforms was a valuable pre-processing operation for 
the ICA algorithm of Bell and Sejnowski when extracting the lambda wave.

A Fuzzy logic method was implemented to identify BS_ICA-extracted single-trial saccade-related 
lambda waves. The method provided an effective means to automate the identification of the lambda 
waves extracted by BS_ICA. The approach correctly identified the single-trial lambda waves with an 
Accuracy of 97.4%.
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Chapter 1. Introduction

1.1 Chapter Summary

In this chapter the background of the study is provided. The aims and objectives of the 

research are stated and an outline of the thesis is included.

1.2 Background of the Study

Electroencephalogram (EEG) is a record of the electrical activity of the brain. It contains 

valuable information about the brain functions and its abnormalities. Evoked potentials 

(EPs) are voltage deviations in the EEG which are time-locked to the onset of stimuli. They 

contain information about the neuronal mechanisms involved in sensory functions.

They are caused by external stimuli or cognitive processes triggered by external events. EPs 

have found numerous applications in clinical neurophysiology and psychiatry. This is 

because their recording is non-invasive and accurate, and they are consistently shown to be 

an indicator of brain functions and its abnormalities. For example, visual EPs have proved 

valuable in improving the understanding of dyslexia and were used as an objective method 

for early diagnosis of dyslexia [1 .1 ] [1 .2 ].

This study was based on a saccade-related visual EP called the lambda wave. Saccades are 

rapid changes in the orientation of the eyes for realigning the visual axes on objects of 

interest. Dysfunction in this system may affect various visual functions such as depth 

perception and reading [1.3]. The lambda wave is believed to be related to visual 

information processing triggered by the relative movement of features of the visual field 

across the retina [1.4]. The lambda wave has a number of sub-components. These are 

generated by the brain when a subject visually follows a target stimulus (such as a red 

square) appearing at different locations on a black and white checkerboard background. 

These sub-components are time-locked to the saccade onset (i.e. initiation of the eye- 

movement) and its offset (i.e. termination of the eye-movement) [1.5]. One of these sub­

components has a pronounced positive peak which appears within a 2 0 0  ms time window 

after the saccade offset [1.5]. A typical lambda wave together with its saccadic eye- 

movement EOG waveform are shown in Fig. 1.1.
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F i g .1 .1  A typical lambda wave together with its saccadic EOG waveform.

It is reported that the lambda wave originates in the parieto-occipital area (back of the head) 

of the cerebral cortex [1.6]. The study of the saccade-related EPs provides valuable 

information about how the brain deals with vision when eye-movements are performed 

[1.7].

Saccade-related EEG waveforms recorded from electrodes placed on the scalp contain a

mixture of signals. These are:

i) Saccade-related EP components (for example the lambda wave).

ii) Non-saccade-related EEG components, i.e. the background EEG and stimulus time- 

locked EP components that are not related to the saccade.

iii) The contaminating electrophysiological signals such as the electrooculogram (EOG). 

EOG is generated by the eyes when eye-movements or blinks are performed. Other 

contaminating electrophysiological signals include for example muscle activity 

(electromyogram, EMG) and the heart beat (electrocardiogram, ECG).

iv) Non-electrophysiological (external) contaminating signals, for example the noise 

generated by the recording system and the 50 hertz mains interference.

The conventional method for recovering EPs from the background EEG is based on 

averaging. Using this method a large number (typically about 50) of EEG waveforms are



recorded and then averaged. Averaging is a valuable pre-processing tool prior to signal 

source separation as it can improve the signal-to-noise ratio. However, the EP recovered 

using this method remains a mixture of signal components from a number of different 

sources.

Therefore, signal source separation techniques that allow the recorded EEG waveforms to be 

unmixed are valuable for extracting and studying specific EP components such as the 

lambda wave. A detailed review of signal source separation methods is provided in Chapter

2. Techniques that can be used for this puipose are called independent component analysis 

(ICA) techniques. The goal of ICA techniques is to recover the independent source signals 

given only the recorded mixtures. ICA techniques are reviewed in reference [1.8]. Bell and 

Sejnowski [1.9] proposed a method for implementing ICA that extracts independent 

components by maximising the joint entropy (i.e. minimising the mutual information) of the 

separated components. Cardoso [1.10] proposed an approach for implementing ICA which 

exploits the fourth-order cumulant. The operation of the ICA algorithm of Bell and 

Sejnowski [1.9] (hereafter refereed to as BS_ICA) is based on a number of assumptions. 

These are: (i) the mixing process is linear, (ii) not more than one source signal has a 

Gaussian distribution, (iii) the source signals are stationary and statistically independent. 

When BS_ICA is applied to the EEG waveforms, the source signals are considered to be 

concurrent electromagnetic activities that are temporally independent of each other and that 

are generated by spatially fixed sources. These signals are mixed as they propagate from 

their sources to the electrode locations on the scalp.

ERPs are susceptible to contaminations from various electrophysiological signals. The most 

serious of these (which are picked up by the electrodes on the scalp) is the electrooculogram 

(EOG). The human eye contains an electric dipole with a positive cornea and negative 

retina. As a result of eye movements or blinks, the electric dipole changes causing the 

voltage potential known as EOG. A fraction of the EOG spreads across the scalp and it is 

superimposed on the EEG, causing it serious contamination. The current method of OA 

removal is based on correlation-based techniques. A detailed review of some of the most 

relevant work done in the area of OA removal is provided in Chapter 5. In this study, the 

performances of two ICA-based approaches, namely the ICA algorithm of Bell and 

Sejnowski (BS_ICA) [1.9] and the joint diagonalisation of eigen matrices (hereafter refereed
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to as JADE) algorithm of Cardoso [1.10], were quantitatively assessed and compared to that 

of two correlation-based methods for removing EOG based contamination from the EEG.

The features of EPs contained in successive EEG recordings can vary slightly in time, due to 

cognitive and electrophysiological effects. A novel iterative synchronised averaging method 

for EPs was devised. The method provided the ability to optimally synchronise the trials 

with respect to an event of interest prior to averaging, in order to preserve the signals 

components that are time-locked to the event.

For the EEG to conform to the stationarity requirement of BS_ICA, the statistical properties 

of its signal components should be time invariant. However, EEG signal components (such 

as EPs) are short-duration transient signals and may not fully conform to the stationarity 

assumption of BS_ICA. In this study a method was devised to increase the effective length 

of the EEG traces containing the EPs so as to increase their stationarity pre-requisite. The 

performance of BS_ICA for extracting the lambda wave was assessed for different lengths 

of EEG waveforms.

BS_ICA was investigated and applied to the recorded saccade-related waveforms. This 

enabled the extraction of a number of EP components related to the performance and 

generation of saccadic eye movements, and their scalp topographies to be obtained. Theses 

were: the frontal and occipital pre-saccadic potentials, and the lambda wave. This initial 

study also highlighted some limitations of BS_ICA for analysing saccade-related EEG 

waveforms.

The ICA algorithm of Bell and Sejnowski (BS_ICA) [1.9] does not allow prior knowledge 

of the source signals to be incorporated as part of its signal separation operation. Prior 

information, when available can aid the extraction of a component of interest. Therefore it 

may prove valuable to incorporate such prior information into the algorithm. In this study, a 

novel template-model that represented the temporal characteristics of a saccade-related EP 

called the lambda wave was developed. A method for its incorporation into the BS_ICA 

algorithm was devised and implemented. The signal source separation ability of this model- 

based BS_ICA algorithm for extracting the lambda wave from the EEG waveforms was 

investigated and its performance was compared to that of the conventional (model-less) 

BS_ICA technique.
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Nonlinear principal component analysis (NLPCA) is a recursive least-square based signal 

separation algorithm [1.11]. In this study, NLPCA technique was applied to saccade-related 

signals and its performance was compared to that of BS_ICA. The results obtained with 

NLPCA provided further insight into the functioning of the brain during the performance of 

a saccadic eye movement.

The application of BS_ICA to n recorded EEG waveforms resulted in n independent signal 

components. These components were originally visually inspected to identify a specific EP. 

The task of visual identification of specific EPs (specially when dealing with single-trials) 

can be time consuming and requires an expert familiar with the characteristic features of the 

desired component. A fuzzy c-means method that automated the process of identifying the 

single-trial lambda waves extracted by BS_ICA from the recorded EEG waveforms was 

implemented and its effectiveness was investigated.

1.3 Aims and Objectives of the Study

The aim of the study was to develop and apply novel signal processing techniques to 

improve the estimation, analysis and interpretation of EPs. The objectives are listed below 

and introduced as highlighted in the original proposal.

1. Recording of saccade-related electroencephalogram (EEG) signal waveforms

In this study, saccade-related EEG waveforms will be recorded from 7 subjects using an 

Electrical Geodesics Inc. (EGI) EEG recording machine. A variety of skills will be 

learnt and mastered in order to conduct a saccade-related experiment successfully. These 

will include for example practical skills related to utilising the EEG recording 

equipments (such as applying a network of electrodes on a subject’s scalp) and softwares 

(for example to initialise parameters of the EEG recording machine, display the data on 

the screen and store the recorded data to the hard-drive for later processing and 

analysis). Prior to recording the data, an appropriate saccade-related experiment will be 

designed with the collaboration of clinicians to enable brain activity related to eye- 

movements to be monitored and studied.
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2. Investigation of the effectiveness of independent component analysis (ICA) 

techniques for performing electrooculogram (EOG) filtering of the EEG - 

Comparison of ICA-based methods with correlation-based methods for EEG 

ocular artefact (OA) removal

In this study, the performances of two main signal source separation techniques, namely 

the independent component analysis algorithm of Bell and Sejnowski (BS_ICA) [1.9] 

and the joint approximation diagonalisation of eigen-matrices (JADE) algorithm of 

Cardoso [1.10] will be quantitatively assessed and compared to that of existing 

correlation-based methods for removing EOG based contamination from the EEG. The 

correlation-based methods to be investigated in the study will be principal component 

analysis (PCA) [1.12] and the EOG subtraction method [1.13]. The effect of additive 

noise on the performance of the four approaches will also be investigated.

3. Investigation of BS_ICA for extracting saccade-related EEG components

The Independent component analysis of Bell and Sejnowski (BS_ICA) will be applied to 

the recorded saccade-related waveforms so as to enable the extraction of a number of EP 

components related to the performance and generation of saccadic eye movements, and 

their scalp topographies will be obtained. The components of interest are: the frontal and 

occipital pre-saccadic potentials, and the lambda wave.

4. Devise techniques to improve the performance of BS_ICA for extracting the 

lambda wave -  Three approaches.

Novel procedures will be developed in order to improve the performances of BS_ICA to 

extract an EP signal of interest called the lambda-wave. Three approaches will be 

investigated.

The first approach will consist of devising an iterative synchronisation procedure to 

optimally time synchronise the waveforms with respect to an event of interest prior to 

averaging, in order to preserve the signals components that are time-locked to the event. 

The performances of the iterative time synchronisation process will be quantitavely
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evaluated and assessed for preserving the features of EP components in the EEG, prior 

to input to the BS_ICA algorithm.

The second approach will consist of devising a method to increase the effective length of 

the EEG waveforms processed by BS_ICA in order to enhance their stationarity property 

and thus to make them more suitable for BS_ICA signal source separation. The 

performance of a process which involves abutting EEG waveforms prior to BS_ICA will 

be quantitatively assessed when extracting the lambda wave.

The third approach will consist of developing a novel model-based BS_ICA algorithm to 

extract the lambda wave from the EEG waveforms. This will include developing a 

template-model that represents the temporal characteristics of a saccade-related EP 

called the lambda wave and incorporate it into the BS_ICA algorithm. The conventional 

BS_ICA techniques do not allow prior knowledge of the source signals to be 

incorporated as part of the algorithm’s signal separation operation. Prior information, 

when available can aid the extraction of a component of interest. Therefore it may prove 

valuable to incorporate such prior information into the algorithm. The signal source 

separation ability of the developed model-based BS_ICA will be investigated and its 

performance for extracting the lambda wave will be compared to that of a conventional 

(model-less) BS_ICA technique.

5. Investigate nonlinear principal component analysis (NLPCA) peformance for 

extracting the lambda wave

Nonlinear principal component analysis (NLPCA) is a recursive least-square based 

signal separation algorithm signal separation technique. Signal source separation 

algorithms such as the ICA algorithm of Bell and Sejnowski maximises entropy in order 

to extract signal components. However NLPCA uses a recursive least square algorithm 

for tracking signal subspaces in the data. In this study, NLPCA technique will be applied 

to saccade-related signals and its performance will be compared to that of ICA algorithm 

of Bell and Sejnowski [1.9].
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6. Devise a method for automating the identification of BS_ICA-extracted lambda 

waves

A fuzzy logic based method will be implemented to automate the process of identifying 

the single-trial lambda waves extracted by BS_ICA from the recorded EEG waveforms. 

The application of BS_ICA to n recorded EEG waveforms resulted in n independent 

signal components. These components originally were visually inspected to identify a 

specific EP such as the lambda wave. The task of visual identification of specific EPs 

(specially when dealing with single-trials) can be time consuming and requires an expert 

familiar with the characteristic features of the desired component. The performance of a 

fuzzy c-means clustering pattern recognition approach to perform the identification of 

the single-trial BS_ICA-extracted lambda waves will be assessed.

1.4 Original Contribution

Novel ICA-based signal processing procedures were developed for the analysis and

quantification of techniques employed for the extraction of saccade-related EP components

from the recorded EEG waveforms. The original contributions of the study are as follows:

- Development of a procedure that enabled the quantitative assessement of four methods 

employed to perform OA removal of the EEG. (chapter 5)

- Development of an iterative synchronisation procedure that enabled the features of the 

saccade-related component signals to be preserved during averaging, (chapter 6 )

- Development of an abutted-trial averaging procedure that enabled the stationary 

properties of the EEG waveforms to be enhanced prior to BS_ICA application, (chapter 

6 )

- Using BS_ICA, the characteristics of the temporal and spatial relationships of three 

saccade-related EP components were analysed. The EP components were: the frontal 

and occipital pre-saccadic potentials, and the lambda wave, (chapter 6 )



-. Development of a novel model-based BS_ICA approach that enabled a priori knowledge 

of the EP component of interest called the lambda wave to be incorporated into the 

BS_ICA algorithm for improving its performance for extracting the lambda wave, 

(chapter 7)

- An analysis of saccade-related EEG waveforms using nonlinear PCA technique that 

provided a new insight into the scalp distribution of the brain mechanisms involved in 

the generation and performance of saccades. (chapter 8 )

- Implementation of a Fuzzy logic based procedure that enabled the automation of the 

identification of BS_ICA-extracted single-trial lambda waves, (chapter 9)

1.5 Organisation of Thesis

An outline of the organisation of the thesis is provided in this section.

Chapter 1: The background of the study is provided. The aims and objectives of the research 

are identified and an outline of the thesis is given.

Chapter 2: The theoretical background of the signal processing techniques used in the study 

is provided. The discussion concentrates mainly on two signal source separation algorithms, 

namely the ICA algorithm of Bell and Sejnowski [1.9] and the JADE algorithm of Cardoso 

[1.10]. The methods of PCA [1.12] and NLPCA [1.11] are also explained in this chapter.

Chapter 3: The signals used in the study are described. The discussion concentrates on 

saccade-related EPs.

Chapter 4: The experimental procedures and methodologies used to record the signal 

waveforms are described. This includes a description of the data recording system/set-up 

and the design and implementation of the experiments.

Chapter 5: An analysis of signal source separation approaches for removing ocular artefact 

from the EEG is provided. The methods were the ICA algorithm of Bell and Sejnowski 

[1.9], the JADE algorithm of Cardoso [1.10], the PCA data decomposition [1.12] method
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and the EOG subtraction method [1.13]. Procedures to quantify the algorithms performances 

are developed and explained. The results obtained when using each method to remove OA 

from the EEG are provided.

Chapter 6 : Procedures to improve the performances of BS_ICA to extract an EP signal of 

interest called the lambda-wave are described. Three approaches are provided.

The first approach is a iterative synchronisation procedure devised to optimally time 

synchronise the waveforms with respect to an event of interest prior to averaging, in order to 

preserve the signals components that are time-locked to the event. A detailed description of 

the algorithm is provided and the results of the effects of the iterative synchronisation 

process on the averaged waveforms are provided.

The second approach is a method devised to increase the effective length of the EEG 

waveforms processed by BS_ICA. The performance of BS_ICA for extracting the lambda 

wave is assessed for different lengths of EEG waveforms. The results of applying BS_ICA 

to the abutted waveforms and to the not-abutted waveforms are provided. Results for both 

simulated waveforms and saccade-related waveforms are shown. Plots of the BS_ICA- 

extracted lamda wave components waveforms produced by the two approaches (BS_ICA 

applied to abutted and not-abutted waveforms) are provided and the results are compared.

Chapter 7: The design of a model-based BS_ICA algorithm for improving the extraction of 

a saccade-related ERP component called the lambda wave is provided. The procedures used 

to develop (i) a model for the lambda wave, (ii) a suitable cost-function for incorporation 

into the BS_ICA algorithm and (iii) a model tracking algorithm are decribed and explained. 

The results of applying the model-based BS_ICA algorithm to both simulated waveforms 

and saccade-related waveforms are shown. The results of comparing the performances of the 

model-based BS_ICA algorithm with that of conventional (model-less) BS_ICA are 

discussed. Plots of the BS_ICA-extracted lamda wave components produced by the two 

approaches (with and without model) are provided and the results are compared.

Chapter 8 : The performance of the adaptive NLPCA method for the EEG signal source 

separation and extraction of the lambda wave is investigated. The methodology and results 

are discussed. The findings of this investigation are compared with the results obtained
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using the ICA algorithm of Bell and Sejnowski [1.9]. Plots of the waveforms produced by 

the two approaches are provided and the results are compared.

Chapter 9: A method that automates the process of identifying the single-trial lambda waves 

extracted by BS_ICA from the recorded saccade-related EEG waveforms is implemented. 

The performance of a fuzzy c-means clustering based pattern recognition approach is 

investigated for this purpose and the results obtained are provided.

Chapter 10: A summary of the overall results, a conclusion to the study and future works are 

provided.
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Chapter 2. Signal Source Separation (SSS) Principles

2.1 Chapter Summary

An overview of the signal processing techniques used in the study is included in this 

chapter. A general introduction to signal source separation (SSS) principles is initially 

provided. The most relevant SSS studies over the past fifteen years are reviewed. The 

discussion concentrates mainly on the independent component analysis (ICA) of Bell and 

Sejnowski [1.9] and the joint approximation diagonalisation of eigen-matrices (JADE) of 

Cardoso [1.10]. The related methods of principal component analysis (PCA) [1.12] and 

non-linear principal component analysis (NLPCA) [1.11] are also described.

2.2 The Objectives of Signal Source Separation

Consider for example a situation where there are a number of signals emitted by some 

physical objects or sources. These sources could be, for instance, different brain areas 

emitting electric signals, people speaking in the same room, emitting speech signals, or 

mobile phones emitting their radio waves. Further, assume that there are several sensors or 

receivers placed at different locations so that each one records a mixture of the original 

emitted signals with slightly different weights, depending on the distance between the 

sources and the sensors. When several signals are transmitted down the same medium at 

the same time, it is often difficult to identify them at the receiving-end (sensor) as they are 

very likely to have been mixed together during transmission. One must therefore attempt to 

separate the different signals in the recorded mixtures in order to retrieve the original 

signals.

Techniques such as matched filters exist and often require prior knowledge of the 

dynamics of the signals. In cases where both the source signals and the way the signals 

were mixed are unknown, it is not possible to design appropriate processing to optimally 

separate them. Therefore methods that can separate signals from mixtures without the need 

for prior information about the dynamics of the signal sources are valuable. These methods 

are called Blind source separation (BSS). The goal of BSS (hereafter referred to as SSS 

for signal source separation) is to recover independent sources given only sensor
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observations that are mixtures of the original signals. The technique is said to be ‘blind’ 

because it assumes no a priori knowledge of:

1 - the characteristics of the signals that have been mixed,

2 - the number of original sources in the mixtures,

3- the physical properties of the transmitting medium,

4- the mixing relation between original sources and observations.

The principle of SSS is illustrated in Fig.2.1.

Original signals Recorded mixtures 

Xr

Mixing Matr ix Separating IV atrix

(o r /  ;

Estimated signals

U,

U2

Fig.2.1 The signal source separation (SSS) principle.

The technique assumes that n sources transmit certain signals s,-, which, after transmission 

through an arbitrary medium, are measured by n sensors Note that for simplicity, the 

case where the number of sensors is set equal to the number of sources will be used all 

throughout the thesis. The measured signals will be related to the transmitted signals by 

some unknown function / ,  referred to as the mixing relation. With added measurement 

noise iii, this becomes,

*/=/( sI, . . . , s n) + ni (2 .1 )

The aim is to find a separating matrix W - A ' 1 and thus to estimate the original signals ut as 

shown in Fig.2.1 by the operation:

Ui=f'1( x l f . . . , x n) (2 .2 )

The estimated signals w/ are the underlying components that describe the essential structure 

of the data (recorded mixtures). These components correspond to some physical causes
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that were involved in the processes that generated the mixtures. In most cases, /  is 

considered a linear function because the interpretation of the representation is simpler, and 

so is its computation. Thus every component u; is expressed as a linear combination of the 

observed variables:

n

«.= Y . wi] x i (2-3)
i , j = l

where W y  are the coefficients of the separating matrix W  that define the representation. The 

problem can then be rephrased as the problem of determining the coefficients w y .  Using 

linear algebra, the linear transformation in (2.3) can be expressed as a matrix multiplication

/  \ c v \U2 * 1

• = W •
• •

<.Un;

It can be safely assumed that the mixing coefficients are different enough to make the 

matrix that they form (A) invertible. Thus there exist a matrix W  with coefficients w y  so 

that the h,- can be separated. W  will be determined by the statistical properties of the 

transformed components w,-.

2.3 A review of the most relevant SSS techniques

This section provides an account of the most relevant work in the area of SSS. Table 2.1 

contains some of the main techniques that have been reported recently.
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Part of this review was obtained from the independent component analysis (ICA) book 

[2.96]. For more details on ICA, the reader may refer to the three recently published books 

by Lee [2.96], Hyvarinen, Karhunen and Oja [2.97].

2.4 A brief review of the Principal Component Analysis (PCA)

Principal component analysis (PCA) [1.12] is a multivariate data analysis procedure that 

transforms a set of n correlated variables, X  = {x j , ... , x n}, into a set of uncorrelated 

variables called principal components U = {uj, 112, . . . ,  u,,}. Each variable jc,- and w, contains 

N  time-points. The method is implemented using a technique called singular value 

decomposition (SVD) [2.98] that finds orthogonal directions of greatest variance in the 

data set (more details on the principle of SVD are given in the next paragraph). The first 

principal component accounts for most of the variability in the data while each of the 

succeeding components in turn account for the highest amount of the remaining variability.

SVD is usually used as a method to principal component analysis of the EEG. SVD may be 

used to express any nxN  matrix X  as a product of three matrices by the equations X  = 

PXMT, where P is a nxN  matrix such that PTP = 1, X is an 11X 11 diagonal matrix, and M  is 

an nxn matrix such that M rM  = MMr = 1. If AT is an epoch of EEG data (with n channels 

and N  time points), P will contain the n normalised (with no amplitude information) 

principal component waveforms of the EEG, that is n decorrelated waveforms or features 

that can be combined to reconstruct the original EEG. Decorretelated means that the 

correlation between any two waveforms in P  is zero, that is the waveforms are non­

correlated in time as well as in their spatial distribution. X will contain n ordered eigen­

values (or amplitudes) that apply to the n normalised principal component waveforms. M  is 

a matrix that contain the corresponding eigen-vectors or mapping matrix (set of linear 

weighting factors) that is used to combine the 11 component waveforms. Each eigen-value 

in X specifies the amount of data variance associated with the direction defined by a 

corresponding eigen-vector. M  can be displayed as a topographic map or as a histogram; 

My is the contribution of jth principal component waveform to the ith EEG channel. With 

the definition L = PX (the 11 non-normalised principal component waveforms of the EEG, 

which can be displayed as multichannel waveforms), X  can be expressed as X  = L M T. Each 

principal component is a linear combination of the variables X. The ith principal
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component j,- can thus be expressed as, yi = M Ti X  where, M, is the ith eigen-vector of the 

covariance matrix Rx of X  (M7/ is the transpose of Mi). Note that the dimension of y,- is 

lxN,  that of M Ti is 1 xN  and that of X  is nxN.

The SVD method is based on second order covariance matrix. SVD identifies components 

by a systematic approach that analyses the variations in all the waveforms in X. This 

analysis starts by computing the correlations (or covariance), Rx = E[XXT], of each of the 

time points with each of the other time points across all waveforms in the data set X. In 

SVD the eigen-vectors of the signal covariance matrix gives the directions of greater 

variance on the input data X. The structure is computed from these correlations, with the 

key idea that variables (time-points) that are correlated belong to the same underlying 

component. SVD finds an orthogonal basis for its given data set X, and therefore the 

principal components found by projecting X  onto those perpendicular basis vectors are 

uncorrelated, and their directions orthogonal.

2.5 A brief overview of the Non-linear PCA (NLPCA) Approach

A recursive least square (RLS) algorithm for adaptive tracking of signal subspaces was 

reported by Yang [2.27]. The algorithm is derived from the cost function,

J2(W)= E[|| X - W W TX  ||2] (2.5)

where X  = {* ;,..., is the matrix of signal mixtures, n is the number of mixtures, W  is an 

nxn  weight matrix (n is the number of sources and is assumed to be equal to the number of 

mixtures as described in section 2.2, Fig.2.1), T represents the transpose and E[.] the 

expectation operations. The minimum of the cost function in (2.5) is provided by any 

orthogonal matrix W  whose columns span the PCA subspace defined by the principal 

eigen-vectors of the covariance matrix of X. The method is recursive in the sense that 

starting from some initial (arbitrary) value for the weight vector, it improves with the 

increased number of iterations.

Karhunen and Pajunen [1.11] have extended Yang's RLS algorithm so that it can be used 

for minimising the nonlinear cost function reported in [2.26] given as,
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J2( W ) = B [ \ \X - W g ( W TX)\ \2] (2.6)

where g(.) is a non-linear transfer function. This transfer function enables the method to 

deal with the higher-order (higher than second order) statistics of the data. This means that 

the method of NLPCA will not only decorrelate the data but will also attempt to deal with 

higher-order dependencies and can therefore be applied to perform blind source separation.

This resulted in an adaptive learning algorithm described by the following steps.

y(t) = g(WT(t-l)v(t)) = g(U(t)), 

h(t) = Q(t-l)y(t),

m(t) = h ( t ) / ( P + y T(t)h(t)), (2.7)

Q(t) = j  Tri[Q(t-l) -  m(t)hT(t)],

e(t) = v(t)-W(t-l)y(t),

W(t) = MV(t-l)+ e(t)mT(t).

where e(t) is the training error, U(t) is an estimate of the underlying source signals and y(t) 

is the output of the nonlinear tranfer function g(.). The matrix v(t) is the input to the 

algorithm and is produced by whitening the mixtures X(t). The whitening matrix is chosen 

so that the covariance of the whitened vectors v(t) expressed as E \v(t) v(7)r ] is equal to the 

identity matrix, I. Prewhitening is performed on the data X(t) by v(t) = Ox(t)X(t), in order 

to help the separation process by decorrelating the data. Decorrelation is a necessary 

prerequisite of independence. The algorithm is implemented using the RLS scheme 

described in [2.99] for solving the weight matrix W  iteratively. The constant 0 < ft < 1 is a 

forgetting term which is normally set close to 1  because the source signals are assumed 

nonstationary. The use of the weighting factor in general is intended to ensure that data in 

the distant past are ‘forgotten’ in order to afford the possibility of following the statistical 

variations of the observable data when the filter operates in a nonstationary environment. 

Q(t) is referred to as the inverse correlation matrix of the input signals weighted by /?, and 

Q(t-l) is the ‘old’ value of the correlation matrix. Q(t) is a symmetrical matrix where its 

upper triangular part is computed by operation Tri and its transpose is copied to the lower 

triangular part. In (2.7) variables h(t) and m(t) are intermediate variables used for 

computational purposes when implementing the matrix inversion lemma described in

[2.99] for computing the least-square solution for the weight matrix W.
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The algorithm reported in [1.11] may be regarded either as a neural network learning 

algorithm or adaptive signal processing algorithm. The algorithm is implemented within a 

two-layer network structure with weight matrices Ox and W. A block diagram that 

illustrates the NLPCA algorithm operation when applied to 2 sources is shown in Fig.2.2.

g(u)
Learning rule in 

(2.7)

Determine e(t)

Fig.2.2 Block diagram of the operation of NLPCA when applied to 2 sources;

Ox(.) is the whitening process of the mixtures.

2.6 Independent Component Analysis of Bell and Sejnowski (BS_ICA)

The independent component analysis of Bell and Sejnowski (BS_ICA) can be viewed as an 

extension of PCA that not only decorrelates the data but also reduces higher order 

dependencies (up to fourth-order moments). BS_ICA and PCA have two different goals. 

Indeed whereas the aim of PCA aim is to summarise Gaussian data in as few principal 

(uncorrelated) components as possible, BS_ICA on the other hand tries to find as many 

statistically independent components as possible within non-Gaussian data. This means 

that the value of any one of the components gives no information on the values of the other 

components.

2.6.1 Assumptions and general principle

BS_ICA technique is a mathematically rigorous method based on statistical principle used 

in signal processing to perform blind signal source separation (BSS) of independent 

components from within linear mixtures of them. The goal of the BS_ICA technique is to 

recover the independent sources given only sensor observations that are unknown linear 

mixtures of the unobserved source signals.
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The BS_ICA technique relies on a number of fundamental assumptions. BS_ICA assumes 

that:

different physical processes tend to generate statistically independent signals,

- the physical processes responsible for mixing the sources are linear,

the probability distribution function of independent signals has a non-Gaussian (i.e. 

uniform) distribution whereas the distribution of a mixture of them has a Gaussian 

distribution,

- the joint distribution of non-Gaussian distribution of the independent sources has 

maximum Entropy,

- the sources signals are at each instant mutually independent, 

at most one source is normally distributed,

- instantaneous mixing is assumed: in EEG analysis, the propagation of the signals is 

considered immediate as the electrodes on the scalp are placed close to each other 

(about a centimetre a part) over the entire surface of the scalp. It takes a short time 

(typically less than 1 0  milliseconds) for a signal to propagate across the scalp. 

Consequently, it is assumed that no significant time-delays are introduced in the mixing 

and that the mixing transformation is instantaneous. Moreover, as shown in Fig. 1.1, the 

latency of the signal of interest in this study (i.e. the lambda wave) typically lies within 

a 500 ms time window from the onset of the stimulus. The sampling rate being 250Hz 

(i.e. 4 ms per time-point), instantaneous mixing is considered appropriate.

- no sensor noise or only low additive noise signals is permitted.

2.6.2 The information theoretic principle

The ICA algorithm of Bell and Sejnowski [1.9] (the algorithm used in this study) is based 

on the information theoretic principle. This principle can be described as follows. Let px be 

the distribution of any signal in mixtures matrix X. The mixtures matrix X  is such that X  = 

AS  where S  contains n independent source signals and A is a linear mixing of the sources

S. Each source signal in S  has a distribution ps. There exits a linear unmixing 

transformation W  followed by a non-linear transformation p(.), such that the resultant 

distribution, Y = p(WX), has maximum entropy and p(WX) = p(S). This can be used to 

recover the original sources S  by defining a plausible distribution (i.e. non-Gaussian), and 

then finding an unmixing matrix W  that maximises the entropy of Y= p(U) thus making the
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outputs U = WX  as independent as possible. If a set of signals that have a non-Gaussian 

distribution can be extracted from a set of signal mixtures, then these extracted signals are 

likely to be the original source signals; those signals are mutually independent and the 

mutual information (MI) between them is equal to zero. The information theoretic principle 

is illustrated in Fig.2.3.

H(X\Yj

H(Y)

Fig.2.3 The information theoretic principle 

In Fig.2.3,1(X;Y) is the mutual information between variables X  and Y, i.e. a measure of 

the amount of information that a variable X  contains about another variable Y. H(X,Y) 

represents the joint entropy between variables X  and Y. H(X\Y) and H(Y\X) are the 

conditional entropies between the two variables and H(Y) and H(X) are their marginal 

entropies [2 .1 0 0 ].

The entropy H(X) of a variable X  ={xi,..vjcn} with probability distribution p(xt) is defined 

as,

H ( X )  = - ' £ p ( x i ) ln (p (x t )) (2.8)
i=l

H(X) is a measure of variability of the variable X  [2.100].

The joint entropy H(X,Y) of a pair of variables with a joint distribution p(xi,yi) where x,- = 

{xlt x 2, ...,xn) andy* = {y1} y 2, is defined as,

H( X ,Y  ) = ~ Y j p( x i , y i )ln( p( x . , y . )) (2.9)
i=l
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which can also be expressed as,

H ( X , Y )  = - E [ M p (X,Y)) \ (2.10)

where E[.] is the expectation operation. The relative entropy is also known as the Kullback 

Leibler distance [2.100] between two probability distributions. Let pi(x{) and p 2(Xi) be two 

probability distributions of variable j c ,- = {xj, X2, The Kullback Leibler distance is

defined as,

° ( P i (  x i >11 Pi( x t ) ) = L p t (  x i )ln
X=1

= E, In P , ( X )  
p 2( X )

Pl(x  i f ' 
\P2( x i )/  

\ 1

(2.11)
/

Consider the two variables X  and Y with a joint distribution p(Xi,yt), and probability 

distributions p(xt) and p(yi). It can be shown that the mutual information I(X;Y) is the 

relative entropy between the joint distribution p(Xi,yt) and the product distribution p(xi)p(yi)

[2 .1 0 0 ], giving,

I ( X ; Y  ) = ^  P ( x . „ y t )ln p ( x i , y t )
w \ p ( x i ) p ( y t ).

= D ( p ( x i , y l )\\p(x , )p(y i ))

(  P ( X , Y  A
= E In

P<X)p(Y).
(2.12)

From (2.12), it can be shown that I(X;Y) is the reduction of uncertainty of X  due to the 

knowledge of Y  [2.100].

I ( X ; Y )  = Y Jp ( Xl, y i )ln
1=1

r p ( x i , y t )  N

p(  x i )p( y t ).

= Y Jp ( x i>yl )in
i=2

p(  x i I y , )
p (  x i )  .
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n n

= ~ Y ,p ( x i>yt )ln( p ( x >))+T , p ( x ‘> y> )ln( p( x >\ y>))
1=1 / = 1
n it

~Yj p ( x i )ln( p ( x i )) ~ -  S  p ( x i > yi )ln( p( x i I y i ))
1=1 /=i

= H(X) -  H(X\Y) (2.13)

According to Fig.2.3, I(X,Y) is the intersection between the information in X  and the 

information in Y, giving,

where H(Y\X) is whatever information the output Y  has, which did not come from the input 

X. Note that in the low-noise case, i.e. where little to no noise is assumed in the generative 

model of the BS_ICA algorithm (see BS_ICA assumptions in section 2.6.1), this H(Y\X) 

term can be neglected.

2.6.3 A neural network implementation of BS_ICA

Bell and Sejnowski have proposed an unsupervised neural network algorithm based on the 

information theoretic principle [1.9].

Artificial neural networks are computer programs that are inspired from the biological 

learning systems to model the learning function in neurons. A neural network is 

characterised by three specifications: the architecture, the activation function and the 

learning rule. The architecture specifies the variables involved in the model and the 

topological relationship between them, the variables being the weights of the connections 

between neurons and the activities of the neurons. The activation function specifies the 

dynamics between the input and output of the network. The learning rule specifies the way 

in which the neural network’s weights changes with time. When the learning process 

depends solely on the unlabeled data and objective functions, then the learning process is 

unsupervised. The purpose of unsupervised learning rule is to discover significant pattern 

or features in the data. During the training, the algorithm adjusts the weights in such a way 

as to minimise the objective function. Rather than minimising the function, some

I(X;Y) = H (X )-H (X \Y )  

= H (Y)-H (Y\X) (2.14)
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unsupervised algorithm learning rules make use of the gradient of the objective function 

with respect to the weights.

2.6.3.1 Principle of maximum entropy preservation (infomax)

Bell and Sejnowski showed that maximising the joint entropy H(yi, yn) of the output of 

a neural network processor can approximately minimise the mutual information among the 

outputs signal components Y = g (U) [1.9], where g(.) is an invertible monotonic non-linear 

transfer function and U=WX.

The joint entropy of the outputs of a neural network is,

Where H(yt) are the marginal entropies of the outputs and I(yi,..., y n) is their mutual 

information. Maximising H(yi, y„) consists of maximising the marginal entropies and 

minimising the mutal information. The output y,- are amplitude-bounded random variables 

and therefore the marginal entropies are maximum for a uniform distribution of y,\ 

Maximising the joint entropy will also decrease y„) since the mutual information is

always positive. For/(y/,..., yn) = 0 the joint entropy is the sum of the marginal entropies.

The maximal value for H(yi, . . y„) is achieved when the mutual information among the 

bounded random variables {y i y„} is zero and their marginal distribution is uniform.

2.6.3.2 The BS_ICA learning rule

Using the infomax principle described in section 2.6.3.1, the learning rule of the neural 

network can be derived from equation (2.14), by considering the gradient of information 

theoretic quantities with respect to some parameter W  in the network as,

H(yb . . yn) = H(yj) + . . .+  H(yn) -  I(yh . . y n) (2.15)

H(yi, ...,y„) = H(yt) + .. .  + H(yn) (2.16)

dI(Y,X) _ dH(Y) 
dW dW \

(2.17)
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The mutual information equation can be therefore differentiated with respect to the 

learning parameter W  involved in the mapping from X  to Y. Moreover, Nardal et Parda 

showed that maximisation of the mutual information I(Y;X) between the input X  and ouput 

Y  of a neural network is equivalent to maximisation of the output entropy H(Y) as the 

H(Y\X) quantity is considered as additive noise which does not vary with respect to W  and 

can therefore be neglected [2.13]. This is only true in the low-noise case [2.13], as 

previously described in equation (2.14). The learning rule is derived by maximising output 

entropy H(Y) with respect to the weights matrix W  giving,

m o c ^H(Yl  (2.i8)
d w

This implies that the non-linearity g (.) has the form of the distribution of the true original 

signal distribution s,-. The choice of the non-linear function of the neural network usually 

depends on the type of transformation required between input and output of the network. 

Here, the aim is to find an invertible non-linear squashing transformation capable of 

transforming a highly Gaussian input distribution (of the mixtures) into a nearly-flat 

uniform output distribution of the extracted independent sources. Independent source 

signals have marginal distributions with different means. As a result, the joint distribution 

of a large number of independent source signals will tend to a near-to-flat uniform 

distribution.

In practice, a logistic transfer function sigmoid, shown in Fig.2.4, is used. It has a non­

linear sigmoidal shape which fits the previous requirement.

(b)

4

Y  = g ( U )  

where U = W X

P (X )

0  X

Fig.2.4 Optimal information flow in sigmoidal neurons [1.9]
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(a) The Gaussian p(X) is passed through the sigmoid non-linear function. The information 

in the resulting density p(Y) is obtained by matching the mean and variance of X  to the 

threshold Wo and slope W  of the sigmoid. This is done by adjusting the weights W of 

the neural network.

(b) W  is optimum when p(Y) has a near-flat shaped distribution. The entropy H(Y) of the 

output Y  is maximised when the high density parts of the distribution of X  is aligned 

with the highly sloping parts of the function sigmoid. This is the idea of matching a 

neuron’s input-output function to the expected distribution of signals.

2.6.4 Mathematical Analysis and derivation of the BS_ICA learning rule

Suppose the output sensors X  = {xi , , *«} of n measurement devices are a linear

mixture of n independent signal sources S = { s i , . . . ,  s„} , such that X  = AS, where A  is an 

nxn matrix. We wish to find an nxn unmixing matrix W  such that each of the n 

components recovered by U = WX is one of the original signals S.

As discussed in section 2.6.2, an unmixing matrix W can be found by maximising the joint 

entropy H(yi, ..., yn) of the output signal Y=g(U) where U = WX.

Assume, that the learning activation function is a sigmoid function which is monotonically 

increasing (i.e. has a unique inverse). The BS_ICA algorithm may be broken down and 

summarised in five main steps. They are as follows:

step 1. The distribution p(Y) of the output Y, can be written as a function of the distribution 

p(X) of the input X  in the following manner:

p(Y) = P(X)
(2.19)

where |.| denotes absolute function.
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The transformation of a given data set X  affects the entropy of the transformed data Y 

according to the change in the amount of ‘spread’ introduced by the transformation. Given 

a multidimensional signal X, if a cluster of points in X  is mapped to a large region in Y, 

then the transformation implicitly maps infinitesimal volumes from one space to another. 

The ‘volumetric mapping’ between spaces is given by the Jacobian of the transformation 

between spaces. The Jacobian J  combines the derivative of each axis in X  with respect to 

every axis in Y  to form a ratio of infinitesimal volumes in X  and Y.

Analogously, the multivariate distribution of Y can be written as follows, where J  is the 

determinant of the matrix of partial derivatives:

P ( Y )  =
P ( X )

\j \
where J  = det

<hj_ 
dx j

dy n 

dx j

dy i 
dx „

d y  n

dx _

(2.20)

step 2. The general expression of the entropy of signal Y  with distribution p ( Y ) can be 

expressed as,

H ( Y ) = -  [_ p (Y  )ln(p(Y ))dY  = - E[ln ( p (Y  ))] (2.21)

step 3. Substituting equation (2.20) into equation (2.21) gives,

H(Y) = - E [ l n ^ l ]

= - E [ ln (p (X  )-ln(\J\)]

= -E  [ l n ( p ( Xn  + E[ ln(\ J  |) ]

= E[ln( | J  |j] -E [ l n ( p ( X) n

= E[ln(\J\))+H (X)  (2.22)

where H(X) is the entropy of the input X. Considering that H(X) is constant and therefore 

not affected by the changes in W maximising the entropy H(Y) with respect to W needs
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only maximising the first term of equation (2 .2 2 ) which is the average logarithm of how

, , d Y  the input affects the output, where | J 1 =
d X

Estimating that E [ln( \J\)] ~ ln(\ J  | ) , the BS_ICA learning rule can be derived as,

d  Y
d x

(2.23)

Using mathematical derivation rules [2.98], the right hand-side of equation (2.23) can be 

calculated as follows,

dW
ln\K\ = d K \Y (2.24)

d Y
where K  = ——  and, 

d X

dW
\K\ =

d dY
dW d x

(2.25)

Thus combining equations (2.25) and (2.24) yields,

d W
In

d Y f dY \ -  a
d X \ d x y d w [ d x )

(2.26)

step 4. Setting Y  equal to the sigmoid learning activation function gives,

1
Y =

1 +e -D (2.27)

where D = WX +WQ and W0 is the bias weight of the learning rule.
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The right hand side of equation (2.26) will be derived to provide the update rule for the 

weight matrix W  of the neural network. This operation will be carried out in 2 stages (a) 

and (b).

Stage (a) - The first part of the right hand side of (2.26) can be derived as follow, 

f  1  '
d Y
d X

1  +e -(WX+WB )

d X
(2.28)

Using the mathematical derivation rule,

_ dx dx
d X g ( x y

(2.29)

yields,

d Y 1  +e ■(WX+W0 ) We ■(WX+W. )

d x  d x  {l + e (wx*w'>)
(2.30)

Using equation (2.27), the following equalities can be deduced,

Y =
1 +e -(WX+WC— gives 1 +e ■(WX+WJ 1  • -(WX+W0 ) 1  T / 0  0 1 \— gives e y ° = ------- 1  (2.31)

Y Y

Substituing equation (2.31) into equation (2.30) gives,

( 1  } W  1
d Y  _ \ Y  J  
d X  J _

Y 2

(2.32)

d Y
d X

= W Y ( 1 - Y ) (2.33)
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Stage (b) - Using equation (2.33), the second part of equation (2.26) can be derived as 

follow,

d  ( d Y
d\ V { d x ) d W

d f Y ] d
d W { a x ] ~ d W

d f Y ' d

(w y (i - y )) (2.34)

I  + e - ( W X + W o ) 1  +  e
-(WX+W0 ) (2.35)

d W  \ d X )  d W

(  (  
W

V v 1  +  e

1  \  (  1  ^ - W  ----------------■( WX+W„)■(WX+\V0 )

w

J  \ l  + e  - j l + e - ( W X + W o )
(2.36)

JJ

d f  w w  )
d W [ d x j d w [ 1  + e -<^W., ( l+ e-<wx" v'>)2}

(2.37)

Deriving equation (2.37) with respect to W  gives, 

d ( d Y ^
d W d x

(2.38)
A  J

(1  +  e-orar+ir. ; }  +  W X e -(wx+w0 > (J  +  e -(wx+w0 > )2 +  2 W X (1  +  e -(wx+w0 > ) ( e -(wx+w0 >}

(l  +  e ' (w x + w ° > ) 2 (l  + e -(wx+w° > ) 4

Substituing appropriately equation (2.31) into equation (2.38) yields,

d ( d Y '
d W  I d X

J
( 1  } r n 2

f  7) ( 1  }— + WX — 1 + 2WX - - 1
Y I y  J [ y ) U J U  J

2
r r

j )

(2.39)

Multiplying both the numerator and denominator of equation (2.39) by Y2 yields,

_ d _  
d W f f ]

Y 2 ( 1 Y 4 „ 4 ( l \II + - 1 -----t - 2 W X Y 4 —
{ d x J Y J ) y  W

(2.40)
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After simplification, equation (2.40) becomes,

d W
d Y ) ( i  1= Y + Y W X - Y 2W X - Y 2 - 2 W X Y 4 — ~ i

x ) ,Y  j
(2.41)

d W
( d Y \  
y d X j

= Y + Y W X - Y 2W X - Y 2 - 2 W X Y 2 +2WXY (2.42)

After further simplification and factorisation, (2.42) becomes,

d W
( d Y _ \  
Kd X j

= Y ( 1 - Y ) ( 1 + W X ( 1 - 2 Y  ) ) (2.43)

Equations (2.43) and (2.33) can be combined to express equation (2.26) as follows, 

d f  d Y  V Y ( 1 -Y )(1 + WX (  1 - 2 Y ) )d Y  
\ d  X  j d W  ( d X WY ( 1  - Y )

(2.44)

d  ( d Y  
d X )  d W K d X w

+ X - 2 X Y (2.45)

The AW rule which updates the value of the weights matrix W after each iteration of the 

neural network training process is given as,

dH(Y) _ f a r ) -  d \ d Y )
d W [ d X j d W { a x )

= [ W T]-‘ - 2YXt (2.46)

The adaptive learning process can be carried out in small steps by multiplying by a factor 

value of size rj which yields,

mn=rl[w'}-'.2YXr
d w

(2.47)
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where ij is called the learning rate of the neural network. Additionally, the AW rule can be 

multiplied by the WTW  ‘natural gradient’ of Amari [2.40] to avoid matrix inversion and 

also to speed up the learning convergence of the neural network yielding,

AW^ H(Y)WtW (2.48)
dW

Combining equations (2.47) and (2.48), the following derivation can be carried out,

AW= dHS Y ) W TW = (tyvT)'!M1- 2Y ) X T) w TW  

= W +  X TW TW - 2Y X t W t W 

=  W  +  UtW - 2YUt W

=  [ l + ( l -2Y) ur ] w  ( 2 '4 9 )

where UT =  X T WT.

The BS_ICA learning rule can therefore be expressed as,

AW «  ^ ~ W TW =  77 [ /  +  (2 -  2Y)Ut }w (2.50)

step 5. A similar operation as in step 4 is carried out in order to obtain the update rule for 

the bias weights matrix WQ using the following learning rule,

d W .
In d Y ( d Y d

d X [ d X  J dw„ Id x )
(2.51)

The first part of the right hand side of equation (2.51) does not vary with respect to Wa

d Ytherefore this part remains equal to equation (2.33), i.e. = W Y ( 1 - Y ) .
d X
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The second part of the right hand side of (2.51) can be derived with respect to W0 as 

follows,

d _d(WY(l-Y))
d w 0

d

[ a x )

( d Y  ' j

d w .

d f W W . ' j
d w 0

d

{ a x )

( * ¥ )

~dW0 { l  + e-("'X4W‘) (l+e-,WX4W->)2 J

We -firar+iv.> 2W(l+e <v,x*w- > )(e > \
d w 0 { d x ) ~(l + e-(",X4W‘>f  (l + e-<WX4W-))4

Substituing appropriately equation (2.31) into equation (2.54) yields,

dW.o V

d Y ''I 
d x

r
W

\ f
 1

J  i
f f ?

2W 1 Y  - ~ i
jkY ;

I
\ Y j

dW.
Y 2W 2WY4 2WY4

— WY -

After simplification, equation (2.56) becomes,

d  d Y
d W 0 { d X

= W X (  1 - Y - 2 Y  + 2 Y 3)

dW,0 \

d Y \  
d X

= W X ( 1 - Y ) ( 1 - 2 Y )

Combining equations (2.58) and (2.33), the following ratio can be expressed,

(2.52)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)
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d Y
d X

\ - 1 d f  d Y WX(1-Y)(1-2Y)
d W 0 { d X j  WY ( 1 - Y  )

(2.59)

Simplification of equation (2.59) yields the learning rule,

dH(Y) ( d Y  V ' d ( d Y }
AW.

dW, { d X j d W 0 \ d X j
= 1 - 2 Y (2.60)

Taking small steps of size rj yields,

A T I7 dH(Y)  ^
AW0 w  = n ( l - 2 Y )  

d w
(2.61)

As can be shown on Fig.2.4, the effect of these two balanced learning rules is to produce an 

output distribution p(Y) that is close to the near-flat distribution.

- the AW0 rule centres the steepest part of the sigmoid curve to the peak of the distribution 

p(X), matching input density to output slope using equation (2.61).

- the AW  rule then scales the slope of the sigmoid curve to match the variance of the 

distribution p(X) using equation (2.50).

2.6.5 The extended version of the BS_ICA learning rule

The ICA algorithm of Bell and Sejnowski [1.9] which uses a sigmoidal activation function 

is specifically suited to separate signals with super-Gaussian distribution (i.e. positive 

kurtosis). Lee and Sejnowski [2.24] proposed an extension of the infomax algorithm 

proposed by Bell and Sejnowski that is able to separate signals with sub- as well as super- 

Gaussian distributions. This preserves the architecture of Bell and Sejnowski ICA 

algorithm but it uses a learning rule derived by Girolami and Fyfe [2.23]. It determines the 

sign changes (positive to negative and vice versus) required by the algorithm to handle 

both sub- and super-Gaussian distributions. This is achieved by considering the normalised 

fourth-order kurtosis (K4)  of the estimated signal sources. In extended ICA, the amount of 

change ( AW  ) required to update the unmixing weight matrix W  is given by,
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AW o c ^ ^ l w TW=[l-sign(K4 ){l-2 Y y / T - U V T] W (2.62)

Twhere W ' W  is the natural gradient of Amari et al. [2.40] used as an optimiser for 

speeding up the convergence.

A detailed description of BS_ICA and its extended version are included in the book by Lee 

[2.96].

2.6.6 Mode of operation of BS_ICA

The concept of BS_ICA for a situation involving two signal sources (S  = S 1

s 2
) is

illustrated in Fig.2.5 The mixtures (.X =

is the mixing matrix

X 1

x 2.
) are generated by the operation, X= AS,

where A  = a l l  a 1 2  

a 2 1  a 2 2

> xrSi Wn learning
rule

Determine 
change in 

w

Fig.2.5 A diagram to illustrate the operation of BS_ICA.

The aim is to estimate an unmixing matrix W =
wn  w12  

W21 w 22
which in turn enables an

estimate of the signal sources U =
Uj

u 2
to be obtained by U = W X.
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2.7 ICA using the Joint Diagonalisation of Eigen Matrices (JADE)

2 .7 .1  D e f i n i t i o n  a n d  a s s u m p t i o n s

In this signal source separation technique called the Joint Approximation Diagonalisation 

of eigen-matrices (JADE) algorithm [1.10], the key assumption blind identification relies 

on is the statistical independence of the sources, which is exploited using a family of 

fourth-order cumulant-based criteria for blind source separation so as to separate 

statistically independent signals in a mixture. These criteria involve a set of cumulant 

matrices, whose joint diagonalisation is equivalent to criterion optimisation.

Contrary to some other ICA algorithms, JADE does not operate on the data themselves but 

on a statistical representation of them which is a set of fourth-order cumulants Cx of the 

array output. For X  a complex rc-dimensional random vector with coordinates X={xi,...,xn} 

and finite fourth-order cumulants, it can be defined a cumulant set denoted Cx as,

Cx = { C um (4>( Xi )  I 1 < i l  <n } (2.63)

The process x(t) is assumed stationary therefore does not depend on t\ so Cx(t) is denoted 

Cx. The JADE technique relies on a number of assumptions for its algorithm to hold. They 

are,

Ao - The source signals and noise are assumed jointly stationary.

Ai - A source is said to be kurtic if it has a non-zero kurtosis. In JADE, the case is 

restricted where there is at most one non-kurtic source.

The key assumptions that the blind identification relies on are related to independence, and 

is exploited in this algorithm by assuming non-Gaussian signals. More specifically, it 

assumes that,

A2 - The vectors A = {ai,...,an} of the mixing process are linearly independent but 

otherwise arbitrary.

A3 - The sources signals S = {si(t),...,sn(t)} are statistically independent for each t.

It is further assumed that,

A4  - There exist consistent estimate of Cx and Rx where Cx and Rx is the cumulant matrix 

and the correlation matrix respectively of the mixture signals.
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A5 - The additive noise N(t) is normally distributed and independent from the sources.

An estimate of the cumulant matrix of the mixtures is then an estimate of Cx since the 

cumulants are additive for independent variables and since higher-order cumulants are zero 

for normally distributed variables.

A6 - The additive noise is spatially white with unknown variance. Therefore, an estimate of 

Ry (i.e. the correlation matrix of the output Y(t) = X(t) + N(t)) can be constructed from the 

eigen decomposition of an estimate of Rx.

2.7.2 JADE principle and mathematical analysis

2.7.2.1 Concept

The JADE algorithm transforms the identification problem into a diagonalisation problem. 

The fourth-order cumulants of the received signals X  (observed mixtures) are exploited to 

recover the source signals which are assumed statistically independent and non-normally 

distributed. JADE tests this independent with respect to higher-order statistics by using the 

cumulants as a criteria. According to the theory of separation described in [1.10], the 

second-order cross cumulant of two random (Gaussian) signals equals the covariance of the 

two signals when they are independent, the covariance being equal to zero. Therefore 

JADE cost function separates prewhitened (decorrelated) sources by optimising the sum of 

fourth-order cumulants (also called kurtosis) of the signals. The kurtosis of the ith signals 

Xi is defined as,

K, = Cum(4>(Xi) = Etc,-4] -  3[E[*,-2] f  (2.64)

Due to prewhitening, E[x, ] = 1, and it suffices to consider the sum of fourth-order

moments of the signals. Generally, this criterion is minimised for sub-Gaussian sources 

(for which the kurtosis is negative), and maximised for super-Gaussian sources (having a 

positive kurtosis value). For Gaussian sources, the kurtosis is zero. It has been reported that 

the sources are perfectly recovered but subject to a permutation change (i.e. signals are 

recovered in the incorrect channel) and subject to a scale change (i.e. signals are recovered 

without the right amplitude information) [2.101]. The scale change of the recovered signals 

is due to the fact that the measured mixtures are whitened as a pre-possessing step to signal 

source separation (see section 2.7.2.2 for more details on whitening), thus normalising their
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variance to unity. It is therefore assumed that the sources are normalised up to the unit 

variance (i.e. E[|s,-(7)|2] = 1; 1 <i<ri) and that the amplitude information of the sources is 

contained in the corresponding column of the mixing matrix A. For independent sources, 

this gives,

Rs = E [s(t)s(tf] = Co v(s(t)s(t)T) = In (2.65)

Where Cov(.) is the covariance operation and /„ is the identity matrix, so that

Rx = AA h (2.66)

where R s and R x are spatial covariance operator, A* = ( A HA)'1A H is the pseudo-inverse of A  

where H stands for Hermitian adjoint or component-wise-conjugate transpose of A  (also 

A h = A t ).

JADE algorithm uses a whitening operation to simplify the BSS problem. Whitening 

makes use of the previously mentioned second-order information in the form of the

estimate of Rx so as to reduce the determination of the n-by-n mixing matrix A  to the

determination of a unitary n-by-n matrix Z. This is only possible because the sources have 

been normalised to the unit variance so that their amplitude information is accounted for in 

the mixing matrix A, yielding Rx = AAH.

2.7.2.2 Whitening

The whitening process consists of making the observed mixture vector X(t) spatially white. 

This means that is it linearly transformed so that the resulting vector has decorrelated 

components. Furthermore the variance of each component is normalised to unity. Formally, 

a whitening transform Ox is such that the whitened vector,

V = O xX  (2.67)

rp
has its correlation (covariance) matrix R v=  E [ W  ] = /,,, where I n is the identity matrix. 

Using this notation, the estimate of the sources vector becomes,

U = Z TV = Z T6 xX  (2.68)
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where ZT0 X is the separating matrix or unmixing matrix, and X  the observed mixtures 

vector.

It can be shown that the separating matrix of the pre-whitened vector V, i.e. vector with 

zero mean and unit variance, is orthogonal. Indeed, the correlation matrix of the output

vector U is equal to,

R v = E [Z tW tZ] (2.69)

Ru = E [ZTZ] E [VVT\ (2.70)

Rv = E [Z tZ] R r (2.71)

since Ru= E [ W T] = /„, this yields,

R v = Zt Z = 1„ (2.72)

The last equality means that Z is orthogonal as a matrix Z is said to be orthogonal if Z Z = 

/„. Therefore when pre-whitening is used, it is sufficient to find an orthogonal matrix Z (as 

the sources can be assumed to have unit variance). From there, the whiteness condition (i.e.

Ry = In) can be expressed as follows,

/„ = E[( 6 xX ) ( 0 xX ) t ] (2.73)

/„ = E [6 xXXl Ox T] (2.74)

In = E [ d xT6 x] E[ XXT ] (2.75)

h  = 0 / O xRx (2.76)

In = OxTOx AA  (use of second-order information in 2.66) (2.77)

I„ = 6 xAA t0 x t (2.78)
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The last equation means that OxA  is a unitary matrix.

2.7.2.3 Simplification of the SSS problem

This last equation implies that for any whitening matrix Ox, it then exists a unitary matrix Z 

such that OxA  = Z. As a consequence, matrix A  can be factorised as:

A = o/z = 0 / [ Z , Z „ ]  (2.79)

JS A
where Ox is the pseudo-inverse of Ox. The use of the second order information, in the form 

of the estimate of Rx which is used to solve for Ox, has reduced the determination of the n- 

by-n mixing matrix A  to the determination of a n-by-n unitary matrix Z.

n-by-n n-by-n n-by-n

s A
Mixing
matrix

X
A

ox
Whitening

matrix

V z
Unitary
matrix

u

i
N

Fig.2.6 A diagram to illustrate the operation of JADE: inverting A  
by chaining a whitener and a unitary matrix.

As shown in Fig.2.6, W = OxZ  is the separating matrix. Discarding the additive noise, the 

whitened process V = OxX  still obeys the linear model shown in Fig.2.6 according to:

V = OxX  = OxAS = ZS  (2.80)

The signal part of the whitened process now is a unitary mixture of the source signals.

2.7.2.4 Determining the unitary matrix through joint-diagonalisation

In the case of JADE algorithm, the approach obtains an estimate of Z as the optimiser of 

some identification criterion C(Z) which is a function of the whole cumulant set Cx 

previously described. C(Z) is defined as follows,
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C(Z) = 2 1  Cum<4>(x, ) \ 2
i= l , n

(2 .81)

The main reason for considering this criterion is its link to underlying eigen-structures, 

which allows for an efficient optimisation of it by the mean of joint-diagonalisation.

The link between optimisation-based and eigen-based blind identification techniques is 

established by considering the joint diagonalisation of several cumulant matrices. The joint 

diagonalisation of a set of square matrices consists of finding the orthonormal change of 

basis which makes the matrices as diagonal as possible. Joint diagonalisation of a set B  of 

m matrices with common size n-by-n is defined as the unitary diagonaliser of the criterion,

C(Z,B)=  2 1  diaS( Z HBr Z ) \ 2 with B  = { Br \ 1 <r <m } (2.82)
r =  1 ,m

where |diag( . )| is the norm of the vector build from the diagonal of the matrix argument. 

The Jacobi technique [2.102] for diagonalising a unique Hermitian matrix is extended for a 

joint approximate diagonalisation of a set B  of arbitrary matrices. It consists in maximising 

the diagonalisation criterion by successive Givens rotations. When the set B  contains only 

one Hermitian matrix (Bi=BjH), joint diagonalisation is equivalent to unitary 

diagonalisation; this extension offers a computational cost-efficiency which is roughly m 

times the cost-efficiency of diagonalising a single matrix. If the set B  cannot be exactly 

jointly diagonalised (this is the case when sample cumulants are processed), the unitary 

maximisation of the above criterion defines a joint approximate diagonalisation. Blind 

identifiability via joint unitary diagonalisation is possible with assumptions A 0 -A 3 .

The fourth-order cumulants can be represented by eigen-matrices. Indeed, the joint 

diagonalisation computational efficiency can be further increased by downsizing B  to a 

smaller set made of the significant eigen-matrices. For any ^-dimensional complex random

2 2 vector x  with fourth-order cumulants, there exists n real numbers A j , . . . , A n 2 and n

called eigen-values, where M i , . . . ,  M n 2 are the eigen-matrices, verifying,
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C ( M r ) = A r M r 1 < r < n (2.83)

where C(.) is the quadricovariance associated with any rc-dimensional complex random 

vector x  with fourth-order cumulants; it is defined by a linear matrix-to-matrix mapping M  

-> B = C(M), where M  and B are n-by-n matrices with entries Mu  and Bij related by,

Bij= ^ C u m ^ i x . ) Mui l < i , j < n  (2.84)
k , l = l ,n

The algorithm produces n eigen-values equal to the kurtosis of the sources. An orthonormal 

set of eigen-matrices provides an alternate way of representing the set of all possible 

fourth-order cumulants of a random variable n-vector x.  The advantage of this approach 

lies in the data reduction: the quadrivariance of x  has exactly rank n so that only n out of n2 

eigen-values are non-zero. As a consequence, the whole fourth-order cumulant information 

is actually contained in a set of n eigen-pairs (Ar Mr \ r  = l , n )  where the convention is 

taken to number from 1 to n the eigen-values associated with non-zero eigen-values. The 

eigen-values are ordered by decreasing order of magnitude and form an eigen-reference of 

the cumulant matrix which contains the relevant fourth-order information. This reduced set 

of n matrices (rather than n2) together with the extended Jacobi technique makes the 

maximisation of C(Z) computationally efficient.

2.7.2.5 Summary of the main steps of the JADE algorithm

The operation of the JADE algorithm can be summarised through the four main steps 

outlined below.
A  A

i) The covariance matrix ( R x ) of the mixtures is obtained. The whitening matrix O x is
A A A  A

computed by considering the whitening condition I=Ox R x Ox . Replacing R x

A A A
r t  ^

gives I  = O x A A O x , where I  is the identity matrix. This implies that Ox A  is a

A

unitary matrix (Z) and therefore A can be factorised as A= O x Z  .
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ii) The mixtures are then whitened according to V = O xX  . The operation involves

A

computing the estimate of the covariance matrix ( R x ) of the mixtures ( X).  The
A

whitening matrix (O x ) is computed by considering the whitening condition
A A A  A A

H HI  - O x R x O x , where Ox is the Hermitian matrix of O x and I  is the identity
A A A

matrix. The whitened mixtures ( V ) are obtained by V = Ox X  . The whitened mixtures
A A A

( V ) obey the linear model V = O x A S .  Substituting for A gives
A A A

v - o  xo ” z s = z s .

iii) In order to determine the unitary matrix Z, the fourth-order cumulants of the whitened 

mixtures are computed. Their n most significant eigen-values ( A,• ) and their 

corresponding eigen-matrices (Mi) are determined. An estimate of the unitary matrix

(Z )  is obtained by maximising the criteria B=Ai M i by means of joint 

diagonalisation.

A A A A

iv) An estimate of the unmixing matrix (IT ) is obtained by W=OxZ  . This is then used
A A A

to compute an estimate of the original signal sources U=Z V  .

2.8 Conclusion

An overview of the signal source separation (SSS) techniques used in this study has been

provided. A second-order statistics methods, namely PCA, is briefly described. The ability

of SSS approaches to deal with higher-order dependencies is introduced. The ICA-based

signal source separation techniques of the NLPCA algorithm, the ICA algorithm of Bell

and Sejnowski and the JADE algorithm of Cardoso are discussed, and their ability to deal
%

with higher-order dependencies of the signals is outlined.
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Chapter 3. Description of Signals Processed in the Study

3.1 Chapter Summary

This chapter provides an overview of the signals processed in this study. Firstly, it 

describes the electroencephalogram (EEG) and electrooculogram (EOG), and the method 

used to record them. Then, properties and characteristics of evoked potentials (EPs) and 

event-related potentials (ERPs) are outlined and factors that need to be considered during 

their recording are discussed. Finally, a description of the type of signals used in this study, 

namely saccade-related evoked potentials is provided and their clinical interest is 

highlighted. An analysis methodology to extract the EPs of interest from the EEG mixtures 

is discussed.

3.2 Electroencephalogram (EEG)

The Electroencephalogram (EEG) is the measurement of the ongoing electrical activity 

generated by a large number of brain neurons, usually recorded from surface electrodes on 

the scalp. Specifically, it is a measure of the extracellular current flow associated with the 

summed activity of many individual neurons [3.1]. Surface recorded potentials reflect 

predominantly the activity of cortical neurons in the area underlying the EEG electrode. 

This activity is defined by frequency and amplitude of electrical signals. The study of 

electrical activity of the brain (EEG) is a tool which gives an insight into the brain and its 

abnormalities. Because it is noninvasive, the EEG is important in the clinical assessment of 

cortical function. For example, it provides important indices for studying certain normal 

behavioural states such as arousal, wakefulness, sleep and dreaming and for diagnosing 

certain disease states such as epilepsy and coma.

The first reported observation of EEG was made by [3.2]. Berger was the first to observe 

EEG in human subjects by putting electrodes on the scalp [3.3]. Since then there have been 

significant advances in both recording and interpretation of EEG waveforms. The EEG is a 

record of the electrical activity of the brain while the subject is sitting quietly or sleeping. 

The EEG is also recorded during specific repetitive natural sensory simulation (such as a 

tap on the skin, presentation of a flash of light or a tone) and thus can be made to be time-
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locked to the occurrence of discrete stimuli (events). The stimuli can be visual, auditory or 

cognitive processes, triggered by external sources to activate sensory receptors. They cause 

voltage fluctuations within the EEG that are known as sensory evoked potential or event- 

related potential. These components are described in the next section.

Electroencephalograms are analysed in the temporal, frequency and spatial domains. The 

frequencies of the potentials recorded from the surface of the scalp of a normal human 

typically vary from l-30Hz, and the amplitudes typically range from 20-100jxV.

A computer samples the EEG for a brief period before and after the stimulus and the 

sample data are averaged to enhance the signal-to-noise ratio.

3.3 Evoked Potentials (EPs) and Event Related Potentials (ERPs)

3.3.1 EPs/ERPs characteristics

Evoked potentials (EPs) are very small voltage deviations (usually in the range of 4 to 

30pV) in the EEG generated in the brain structures in response to specific events or 

stimuli. These stimuli time-locked potentials are selected from the ongoing EEG activity 

by averaging epochs of EEG following repeated sensory stimuli such as series of clicks 

(auditory stimuli) or flashes of light (visual stimuli) [3.4]. ERPs and the way they change 

under various recording conditions are a powerful, non-invasive and relatively simple 

means of relating psychopathology to underlying physiology, and by comparing ERPs with 

imaging data, it should be possible to compare electrical activity with changes in brain 

structure and blood flow in different disease states.

It takes about 20 to 30 ms for information to reach the cortex from a peripheral sense 

organ, so early-ERPs generated within this time mainly reflect neuronal activity in the 

sensory organ itself and in the afferent pathways of the brain-stem [3.4]. These early 

responses are termed ‘exogenous’ because they are generated regardless of what the 

subject is thinking, and they are quite independent of any response the subject may 

subsequently make to the stimulus. They are very useful clinically for detecting disorders 

of sensory end organs and the brain-stem.
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In contrast to these exogenous potentials, ERPs generated after about 70 ms often reflect 

the manner in which a stimulus is evaluated by the subject. These later components are 

termed ‘cognitive’ or ‘endogenous’ ERPs because their amplitudes and latency may 

depend on the motivation of the subject and the cognitive, affective or motor response to 

that particular stimulus. It is therefore valuable to record these late endogenous ERPs in 

psychiatric patients with conditions such as dementia, depression and schizophrenia (ERPs 

have been extensively studied in order to improve the understanding of sensory organs and 

to diagnose a number of brain related disorders including schizophrenia ([3.5] [3.6]), 

which are associated with disordered attention since ERPs might contribute to diagnosis 

and provide a method for monitoring cognitive change in response to specific treatments. 

For example, all three subject groups, Huntington’s, Parkinson’s and schizophrenia’s 

demented groups, were differentiated with reasonable accuracy on the basis of ERPs 

(related articles includes [3.5] [3.7]). Various factors such as age and sex are known to 

affect the characteristics of ERPs. When using ERPs to investigate brain 

functions/dysfunctions, the subjects/patients participating in the experiment are usually 

matched with each other in terms of these contributing parameters.

In the category of ‘exogenous’ processes are the sensory EPs which represent the 

summated electric fields from the synchronous activation of neuronal populations by an 

external stimulus event. Because the sensory EPs reflect the processing of the physical 

characteristics of the stimulus, they are clinically useful for assessing the functions of 

sensory systems. Sensory EPs, which are by definition, rather not easily influenced by 

variations of the psychological state of the observer, are distinguished from ERPs which 

are dependent on the context in which the stimulus is presented such as whether the 

stimulus is expected or a surprise. These ERPs form the class of ‘endogenous’ ERPs which 

are coupled with perceptual, cognitive (include decision making, recognition, memory, 

concentration, attention, motivation), affective, sensory and motor (it is the cortical activity 

preceding and accompanying voluntary movements) processes in the brain.

3.3.2 EP/ERP analysis

The conventional methods for extracting the EPs/ERPs from the ongoing EEG involves 

computer averaging procedures where, the background EEG waves considered as “noise” 

in most EP/ERP experiments, are typically larger than the waves of interest. This technique
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requires that both the wave shape of the EP/ERP and its temporal relationship to the time 

locking reference event (stimulus) remain constant from one occurrence to the next. Since 

the background EEG fluctuations are not time-locked to the reference event, they will 

average out toward zero when the EPs/ERPs from the successive trials are added together 

by the computer, thus improving the signal-to-noise ratio (SNR). Following the SNR 

improvement techniques, EPs/ERPs are typically characterised using peak polarity, 

amplitude and latency (usually with respect to the stimulus onset) measures.

3.3.3 Clinical and other applications of ERPs

An understanding of the genesis and working of ERPs leads to increased knowledge of the 

complex system associated with the brain. This knowledge has application in a number of 

areas. Most importantly, in understanding the working of the brain, mental disorders 

including schizophrenia and epilepsy can be better understood and perhaps treated more 

efficiently. This knowledge also allows modelling of the brain and hence the ability to 

produce improved artificially intelligent systems. The application of such systems is 

widespread and is likely to change the way in which computers operate. For example 

artificial neural network chips could be integrated into computer systems to allow 

computers to converge to a solution to a problem through a process of adaptive learning 

(i.e. learning from experience) in a similar way as the human brain operates. The 

intermediate ground is in the area of human computer interfacing. Recent reports show that 

control of computers by severely disabled people will be possible in the future [3.8].

3.4 Electrooculogram (EOG)

EEG can be contaminated by a number of electrophysiological signals, the largest of which 

is the electrooculogram (EOG).

3.4.1 EOG characteristics

The human eye contains an electrical dipole caused by a positive cornea and negative 

retina. When the eyes move (i.e. eye movements and blinks), the electrical dipole changes 

orientation thus causing an electrical signal known as EOG. The shape of the EOG
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waveform depends on factors such as the direction of eye movements. There are several 

types of ocular movements ([3.9] [3.10]), of which the more relevant to EEG work are 

described in this section.

Blinks (Fig.3.1) are characterised by a brief artefact potential of between 0.2 to 0.4 secs in 

duration and occur at intervals of 1-10 secs. Barry and Jones [3.11] and Matsuo et al. 

[3.12] showed that blinks were attributable to the eyelid moving over the cornea. Ocular 

artefact (OA) is a collective name given to the electrical contaminants of EEG caused by 

eye movements and blinks [3.13]. OA due to blinks is always of concern in any experiment 

in which the eyes are open. Electrical signals produced by blinks (i.e. by the eyelid moving 

up and down) cause spike-shaped waveform as shown in Fig.3.1.

100

CL

0 2 4 6 8 10
Time (sec.)

Fig.3.1 Spike-shaped EOG waveform caused by blinks

Saccadic eye movements (Fig.3.2) are rapid conjugate movements of speeds between 100 

and 500 degrees per second. Normal every day movements of the eye from one fixation 

point to another (e.g. when reading or scanning a visual field) come under this category. 

Vertical and horizontal eye movements (eyes moving up, down, left and right from the 

centre and vice versa) produce a square-like EOG waveform as shown in Fig.3.2.
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Fig.3.2 Square-like waveforms caused by saccadic 

eye movements.

3.4.2. EOG filtering

A fraction of the EOG spreads across the scalp and it is superimposed on the EEG. This 

presents serious problems for EEG interpretation and analysis. In order for the EEG to be 

interpreted for clinical use, EOG contamination needs to be removed (filtered) from the 

EEG. Analogue and digital filters are not effective for this purpose as EEG and EOG 

signals occupy similar frequency band (covering a range close to DC to about 100 Hz). 

Conventional methods of EP/ERP averaging may not cancel all artefacts induced by eye 

movement or blinks as they are time-locked to experimental events. Often all epochs 

contaminated by large eye artefacts, usually larger than some arbitrarily selected EEG 

voltage value, are rejected as unusable, though this may prove unacceptable when blinks 

and eye movements occur frequently and when limited data are available. Frontal channels 

are also often used as reference signals to regress out eye artefacts, but inevitably portions 

of relevant EEG signals also appearing in EOG channels are thereby eliminated or mixed 

into other scalp channels.

3.5 Saccade-Related Evoked Potentials

Saccades are rapid changes in the orientation of the eyes for realigning the visual axes on 

objects of interest. Dysfunction in this system may affect various visual functions such as 

depth perception and reading [3.14]. The study of the saccade-related EPs provides
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valuable information about how the brain deals with vision when eye movements are 

performed.

3.5.1 Types of saccade-related EPs

Saccadic eye movements influence the electrical brain activity. The literature on the 

neuronal mechanisms of eye movements in humans illustrates that electrical brain activity 

can be obtained with three different experimental paradigms analysing: (1 ) motor activity -  

related neuronal correlates of eye movements; (2) lambda waves of the EEG following eye 

movements; and (3) evoked cortical activity modulated by the occurrence of saccades. The 

present study will focus on the two former [1.7].

motor activity -  related neuronal correlates o f eye movements’. In all motor activities, the 

planning and execution of saccades is preceded by a ‘readiness’ potential as well as by the 

neuronal activation of specific areas of the motor cortex [3.14]. This potential appears to be 

identical to what has been termed presaccadic negativity which in part originates in the 

supplementary motor area that is crucial for the control of self-initiated movements ([3.15] 

[3.16]). In addition, the initiation of saccades is paralleled by activity of neurons in the 

frontal and supplementary eye fields that has been recorded in animals before and during 

saccadic eye movements [3.17] [3.18] as well as in humans [3.19]. This activity is 

independent of the so-called spike potential which originates in the eye-muscles at the 

beginning of the saccades [3.20].

lambda waves o f the EEG following eye movements: following rapid eye movements the 

spontaneous EEG displays so-called lambda waves that have been reported to originate in 

the parieto-occipital area (back of the head) of the cerebral cortex ([1.6] [3.21]). Lambda 

waves are believed to be related to visual information processing triggered by the relative 

movement of visual features of the visual field across the retina (e.g. [1.4]), and thus, their 

appearance has first been paralleled to the conventional visually evoked potential. 

However, a more recent study has shown that such components are involved in a special 

kind of visual processing reflecting the functional combination of corollary neuronal 

activity from motor areas involved in the planning and execution of saccades with 

primarily sensory brain activity elicited by stimulus occurrence, which appears to be 

independent from incoming visual information and thus is not influenced by the variation
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of physical stimulus parameters [1.7]. The lambda wave is a saccade-related EP which 

provides a means of studying the neuronal mechanisms involved in saccade performance. 

Studies have reported that it could be observed in EEG recordings with eyes open but it 

was found to be inhibited during steady fixation or in the absence of a contrast (e.g. a black 

and white checkerboard pattern) ([3.22] [3.23]). The lambda wave has a number of sub­

components, which are time-locked to the saccade onset (i.e. initiation of the eye- 

movement) and offset (i.e. termination of the eye-movement) [1.5]. These sub-components 

include a pronounced positive peak which appears within a 2 0 0  ms period after the saccade 

offset [1.5].

3.5.2 Saccade-related EP/ERP model

The electrical activity recorded on the surface of the scalp can be assumed to be the sum of 

a number of signal sources from the cortex. Large numbers of functional imaging reports 

of the brain have showed that performance of particular tasks increases blood flow within 

small (of the order of several cubic centimetres) discrete regions [3.24]. The time course of 

these activations suggests the hypothesis that spatially independent groups of neurons are 

recruited to accomplish a given task. Furthermore, different regions of the brain are known 

to be responsible for given tasks, i.e. visual and motor cortex. In trying to understand the 

functionality of the brain several models have been suggested [3.25]. Most models are 

based on a grouping of a number of neurons into a single source or generator of electrical 

activity. The way in which the models differ is related to the constraints that are placed on 

the sources. In particular the types of signal or activity they produce. Each signal source 

can be considered to be an oscillator which has analogies in both electrical and mechanical 

engineering [3.26]. An oscillator has a number of parameters which alter its characteristics. 

These are amplitude, frequency and phase of the signal’s oscillation.

When BS_ICA is applied to the EEG waveforms, the source signals are considered to be 

concurrent electromagnetic activities that are temporally independent of each other and 

that are generated by spatially fixed sources [3.27]. These signals are mixed as they 

propagate from their sources to the electrode locations on the scalp. Networks producing 

such concurrent activity are defined not by compact spatial distributions in the brain but by 

the covarying field measurements they produce at the scalp sensors. In general “sources” 

of BS_ICA components may be distributed brain networks rather than “physically compact
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active brain regions”. These networks may be functionally linked, forming larger networks. 

Rather than thinking about the brain as being a collection of physically discrete neural 

networks which pass information to each other by impulses as we send letters or emails to 

each other (viewpoint of classical anatomy and physiology), BS_ICA treats the brain as 

being a dynamically shifting collection of interpenetrating, distributed and possibly 

transient neural networks that communicate via some form(s) of mass action (viewpoint of 

a slowly emerging dynamic systems perspective on neuroscience) [3.27]. Brain networks 

are most probably not physically wholly isolated from one another, nor do they act wholly 

independently. The two viewpoints are complementary, hence the answers they produce 

may be complementary parts of the functioning of the brain.

BS_ICA can only successfully separate “BS_ICA-relevant” processes, i.e. processes whose 

activities satisfy several assumptions used in BS_ICA (see section 2.6.1 in chapter 2). 

BS_ICA analysis of ERP data must therefore be viewed as explanatory and care must be 

taken to test the functional distinctness of the resulting BS_ICA components. Simply 

demonstrating their replicability across subjects and experimental conditions is not 

sufficient to ensure their physiological unity. One must attempt to establish relationships 

between component activations and independent variables such as subject performance and 

behaviour as well as considering their physiological plausibility.

3.6 Analysis of the data considered in this study

The EEG waveforms recorded from the scalp during a saccade-related performance are 

signal mixtures consisting of the following: (i) Saccade-related EP components. These 

overlap in time and may also have overlapping spatial topographies, (ii) The obscuring 

non-saccade-related EEG components, i.e. the background EEG and EPs that are not . 

related to the saccade. (iii) The contaminating electrophysiological signal artefacts such as 

the electrooculogram (EOG) generated by the eyes and the electromyogram (EMG) caused 

by muscle activity, (iv) Non-electrophysiological (external) sources of contamination, for 

example the mains interference.

Different neural signal components are involved in preparation and execution of saccadic 

eye movements. One of these is described as a frontal pre-saccadic potential related to
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motor commands for saccade generation preceding voluntary saccades [3.28]. Others, such 

as efferent feedback from saccade generating centres to visual cortex are believed to 

provide visual stability of the surrounding world across the eye movements. The saccadic 

movement is accompanied by an EEG signal associated with visual information processing 

called the lambda-wave [1.5]. The extraction of these components will be useful for 

providing information about how the brain deals with the problem of vision with moving 

eyes.

3.7 Conclusion

The study of saccade-related EP components will be useful as it provides information 

about how the brain deals with the problem of vision with moving eyes. The EEG 

waveforms recorded from the scalp during a saccade-related performance are mixtures of a 

number of different signals. Conventional EP/ERP averaging methods are useful for 

reducing the obscuring background EEG. However this method cannot separate the 

electrooculogram (EOG) signal caused by eye movements from the saccade components of 

interest. A signal source separation based methodology such as BS_ICA is valuable in 

order to filter the EOG signals from the EEG signals and to extract saccade-related 

components from the EEG mixtures and identify the brain regions responsible for their 

generation.
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Chapter 4. Data Recording Experimental Methodology

4.1 Chapter Summary

This chapter is concerned with technical aspects of recording. It describes the experimental 

procedures and methodology utilised to record the data used in this study. This includes a 

description of the data recording system and set-up utilised to record the waveforms and 

the design and implementation of the clinical experiments carried out by the subjects.

4.2 Data Recording System Set-Up

In order to establish and run an EEG laboratory to satisfactory standards, it is necessary to 

be able to record the EEG signals faithfully and with minimal distortion. Only then one is 

in a position to comment on its clinical significance. Sensitive amplifying and filtering 

equipments are required to enhance potentials picked up from skin electrodes, which are 

inevitably situated at a considerable distance from the generator source, and to discriminate 

between the evoked responses and other usually larger potentials of physiological and 

extrinsic origin with which it is intermixed.

To record the EEG at least two electrodes are used. An ‘active electrode’ is placed over a 

site of neuronal activity, and an ‘indifferent electrode’ is placed at some distance from this 

site. In clinical EEG recordings numerous active electrodes are situated over different parts 

of the head. All recordings however, measure the potential difference between two 

electrodes, either between the active and indifferent electrode or between two active 

electrodes. The recording electrodes are usually placed over the frontal, parietal, occipital, 

and temporal lobes on the left and right hemispheres of the scalp, symmetrically distributed 

with respect to the nasion-inion line and the pre-auricular line (A1-A2 ), according to a 

conventional scheme shown in Fig.4.1. The nasion and the inion lines cross on the scalp at 

a point called the Vertex (denoted by Cz in Fig.4.1). When recording all types of brain 

electrical signal, it is common practice to place electrodes at or near sites determined by 

the 10-20 system of electrode location. This system was originally designed to 

standardised placement of electrodes for recording EEGs and makes use of percentage
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distances (mostly 10 and 20%) to compensate for different head sizes and shapes [4.1], as 

shown in Fig.4.1.

(a)
Nasion

(b )

Left Ai

(vertex)

10%

Nasion

Inion

Fig.4.1 The international 10-20 system of electrode placement: (a) top view and (b) 
side view of the head with the alpha-numeric designation of electrodes placement on 
the scalp for the EEG recordings.

The international 10-20 system of electrode placement utilised an alpha-numeric 

designation of electrodes placement on the scalp for the EEG recordings. Abbreviations for 

multiple electrodes are: A, auricle; C, central; Cz, vertex; F, frontal; Fp, frontal pole; O, 

occipital; P, parietal; T, temporal. The multiple electrodes placements overlying a given 

area (e.g. temporal) are indicated by numerical subscripts.

A major problem with the 10-20 system of electrode placement for recording EPs and 

ERPs is that the sites and spacing of electrodes are not optimal for displaying all types of 

responses. A modification of the 10-20 system was implemented by the Electrical 

Geodesics Inc. (EGI) [4.2] to allow for the positions of more closely spaced electrodes to 

be specified. A more detailed description of the EGI EEG recording system is provided in 

section 4.3.

A satisfactory environment for both the subjects and equipment must be ensured. The 

subject is usually conformably sited on a chair, in an room isolated from external noises
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and disturbances, and the network of electrodes is carefully adjusted on the subject’s scalp 

before beginning the experiment.

The raw EEG signals waveforms picked up by all electrodes are recorded during the 

experiment and the data acquired are stored on the computer drive for offline use, 

processing and analysis. Information about the subjects (this includes details such as their 

name, age, sex, medical history, etc.), recording settings and stimulus parameters are also 

carefully stored in order to facilitate later retrieval and manipulation of the data.

4.3 Electrical Geodesic Inc. (EGI) EEG Recording System

The EGI EEG recording system includes a Geodesic Sensor Net (GSN), an amplifier unit 

(Net Amps) and a Data acquisition computer (DAC) running EGI Net Station software.

A functional diagram of the EGI System is shown in Fig.4.2.
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Fig.4.2 The Electrical Geodesics Inc. (EGI) system

4.3.1 The Geodesic Sensor Net (GSN)

During EEG recordings, subjects wear a Geodesic sensor net (GSN). It consists of an array 

of 64 sensors, together with a reference and isolated common sensors. A diagram of the 

GSN is shown in Fig.4.3.
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Geodesic Sensor Network 
64 Channels

common

Fig.4.3 The Electrical Geodesics sensor 
network (GSN) of 64 electrodes

The network of 64 silver-silver chloride (Ag/AgCl) electrodes rest against the head of the 

subject and covers the surface of the scalp. A subject wearing a 64-channel adult-sized 

GSN is shown in Fig.4.4.

Fig.4.4 Subject wearing the 64-channel GSN.

The GSN features EGI’s patented dense array of EEG sensors held in a tension structure 

that stretches over the subject’s head. The sensors’ contact with the surface of the head is 

achieved using electrolyte-wetted sponges, and without abrasion of the subject’s scalp.
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The 64-channel GSN sensors pick up changes in voltage originating at the surface of the 

subject’s head (the EEG), along with a certain amount of electrical noise originating in the 

room environment. Physically, the GSN is connected to the amplifier unit via the Geodesic 

Sensor Net Interface Cable (GSNIC).

4.3.2 The Geodesic Sensor Net Interface Cable (GSNIC)

The GSNIC allows the subject to be positioned conveniently within a meter or two of the 

amplifier unit. Each sensor in the GSN is wired via the GSNIC to an individual pin on a 

multi-pin receptacle called an Hypertronics connector located on the front of the amplifier 

unit as shown in Fig.4.2.

4.3.3. The Net Amps Amplifier Unit

The Net Amps amplifier unit inputs are differential, i.e. the voltage measured at every 

channel is the difference in voltage between the reference (vertex) sensor and the channel 

sensor. There is no ground sensor per se, i.e. the subject is never connected to earth 

ground. This would make the subject vulnerable to electrical hazard, just as standing in 

water makes one vulnerable to electric shock. The ground sensor on the GSN is actually an 

isolated common, which means it is tied to the zero level or common the isolated amplifier 

circuit’s power supply. This supply is isolated, so it is not connected to earth, the 

computer, or anything else. Thus an electrical hazard would not make a dangerous loop 

with the isolated common.

Electrophysiological amplifier arrays, such as the Net Amps, take low-level, microvolt 

signals and amplify them to a level that conventional electronics can manipulate. With the 

Net Amps, each channel’s amplification factor, or Nominal Gain , is approximately 1000 

(meaning that the amplifier output signal is 1 0 0 0  times greater than the input).

Electrical signals from all the sensors of the GSN are received simultaneously by the 

amplifier unit where they are measured, amplified, filtered, sampled at millisecond 

intervals and digitized.
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As quickly as the samples are acquired they are packaged and sent out to the data 

acquisition computer (DAC) along the universal serial bus (USB) cable that connects the 

amplifier and the DAC. The digitized samples are transferred to the DAC in real time.

4.3.4. The Data Acquisition Computer (DAC)

Once the packets of data containing digitized EEG samples are received by the DAC, the 

Net Station software can collect them for display and storage to disk. Since the USB cable 

is bidirectional, Net Station software can send queries and commands to the amplifier unit 

as well as receive data from it.

4.3.5. The Net Station software

Net Station resides on the DAC, where it is capable of continuously collecting dense array 

EEG data from the amplifier unit. In Net Station, users can display EEG data in a variety 

of ways and record them to permanent computer files. The data of each sensor are 

segregated into their own channels. As the samples stream into the DAC over the USB 

cable, Net Station gathers, organizes, and displays each channel’s EEG data in the manner 

of a traditional chart recorder. When Net Station is instructed by the user (via mouse and 

keyboard) to record the data to a file, the chart recorder display continues on the monitor 

without interruption while the data are being written to disk.

A maximum sample rate of 1000 samples per second stream continuously into Net 

Station’s buffers. Users can observe the waveforms of each channel in groups limited only 

by the size of the computer monitor, even as the data are written to disk.

Users access the settings of the Net Amps (amplifier unit) using the Net Station software. 

Net Station monitors, calibrates, and controls the amplifier channels, and acquires EEG 

data from the Net Amps. In addition to Net Amps calibration and channel impedance 

measurements, Net Station’s Net Amps controls panel allows modification of the following 

amplifier settings:

• Sampling rate (50-1000 samples per second)
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• Lowpass hardware filter cutoff (0.0-400.0 Hz)

• Bessel versus elliptical hardware filter type

• Option to auto set filter cutoff to Nyquist frequency

• Highpass hardware filter cutoff

Hardware filters (also described as “analog signal filtering”) integrate with each discrete 

amplifier to form an amplifier/filtering unit with sample and hold. After amplification, 

filtering, and sampling, the EEG signals are digitized by a 16-bit analog-to-digital 

converter.

4.4 Data Recording Procedure

Two sets of data were used in the study. The first set of data consisted of EEG and EOG 

waveforms recorded from an experiment where subjects were relaxed and fixating at a 

white board. The second set of data consisted of saccade-related waveforms recorded from 

an experiment where subjects followed with gaze a red square stimulus that changes 

location on a checkerboard pattern screen display. For the second set of experiments, 

subjects were asked to avoid blinking and body movements, in order to limit the 

contamination of the data by ocular and muscle artefacts. In both experiments, the signals 

were recorded using electrodes placed on the subjects scalp.

4.4.1. First set of experimental data: EOG filtering from the EEG waveforms

The data collected in the first experiment was used to quantify the effectiveness of a 

number of OA removal methods. The operation required the availability of the EEG 

waveforms before and after OA contamination so that the recovered EEG waveforms could 

be compared with the original (uncontaminated) EEG. Furthermore, the OA removal used 

required the original signal sources to be independent.

The EEG and EOG data were recorded in an EEG data recording room with subjects 

relaxed and fixating at a white board. Four sets of EEG waveforms were recorded from 

four subjects (2 males, 2 females), mean-age 32 years (standard deviation 9). Each set 

consisted of thirty-two waveforms. By recording each EEG data set from a different
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subject, the condition for independence of the signal sources was conformed. Thirty-two 

EOG waveforms were recorded from another subject. The subject was asked to make eye 

movements and blinks (in random order) at a rate of about one every second during each 

EOG recording so as to record OA electrical activity. By recording the EOG data from a 

separate subject it was ensured that they had not contaminated any of the EEG data sets.

EEG data were recorded from the scalp (location CZ in accordance with the 10-20 standard 

electrode positions). EOG data were recorded using a pair of electrodes placed adjacent to 

the right eye. The reference for both EEG and EOG recordings was a pair of joined 

electrodes placed on the ear lobes. Silver-silver chloride electrodes were used for all 

recordings. The sampling rate was 125 Hz and the signals were band limited to 30 Hz. 

Each waveform contained 1500 data points (i.e. about 12 seconds).

4.4.2. Second set of experimental data: Saccade-related EEG and EOG waveforms

The second set of data was recorded in order to study the electrical brain activity that is 

generated during the performance of saccadic eye movements. Seven healthy adults (3 

males, 4 females) mean age 27 years (standard deviation 6 ) with normal or corrected-to- 

normal vision participated in the study. The subjects had no history of a neurological or 

ophthalmologic disease and were all right-handed. They were seated in an EEG recording 

laboratory at about 60 cms from a computer that displayed a black and white checkerboard 

pattern background.

A red square visual target stimulus (hereafter referred to as the stimulus) appeared on a 

computer screen at one of five predefined checkerboard locations: centre, left, right, up and 

down as shown in Fig.4.5. The sequence of the stimulus appearance on the checkerboard 

was random to reduce the effect of expectancy.
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Fig.4.5 A representation of the checkerboard showing 
the directions of saccade and the viewing angle.

The subjects were instructed to visually follow the stimulus as fast as possible. They were 

also asked to avoid head movements and minimise blinks in order to limit to a minimum 

the contamination of the EEG by ocular and muscle artefacts. The viewing angle (oc, 

shown in Fig.4.5) of the peripheral positions from the centre was about 10 degrees. This 

value was also used in one of the saccade experiments reported in [1.5]. This made it 

possible to compare the lambda waves observed in both studies. There were 8  directions of 

saccade and a fixation. These were: 4 centre-to-peripherals, 4 peripherals-to-centre and a 

centre-to-centre (i.e. no eye-movement) as indicated in Fig.4.5.

In order to avoid the effect of anticipating the onset of the stimulus, the ’pre-stimulus 

period' was varied randomly (between 850ms to 1500 ms). The 'response period' is the 

time it takes for a subject to initiate the eye-movement after the onset of stimulus (i.e. after 

the red-square appears at a new location). The ‘post-response period' consists of the time it 

takes for the subject to visually re-orientate his/her visual axis to a new stimulus location 

(i.e. saccade duration) and the time duration that the subject fixates the stimulus at one of 

the five predefined checkerboard locations (i.e. fixation time). The composition of the 

trials is shown in Fig.4.6.
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Fig.4.6 Composition of the recorded trials.

The EEG and EOG data were recorded using a network of 64 silver-silver chloride 

electrodes. The type of EEG recording machine was the Electrical Geodesics. Its features 

together with the details of the electrode locations on the subject's scalp can be found at 

reference [4.2]. The structure and operation of the EGI data recording system are described 

in section 4.3. The EOG data were recorded so that the eye-movements can be monitored. 

All channels (EEG and EOG) were referred to the vertex (Cz) electrode. The recording 

system band-pass filter had a frequency range of 0.01 to 100 Hz. The digitisation sampling 

rate was 250 Hz. The term recorded-waveform is used (in this thesis) to refer to a 

waveform recorded from an electrode site. A collection of the recorded-waveforms from 

the 64 electrode sites when performing a single saccade is referred to as one trial. Up to 

fifty trials were recorded per saccade direction. Each trial lasted about 2 seconds, however 

the lambda wave was contained within a one-second window of each trial. This one-second 

window was selected and processed in the analysis performed in the study. A collection of 

50 trials is referred to as an event. The total number of recorded trials per subject was up to 

450 (i.e. 50 trials x (8 directions of saccade + 1 fixation)).

4.5 Conclusion

In this chapter, a description of the data recording system and set-up utilised to record the 

signal waveforms and the design and implementation of the two clinical experiments 

earned out, was provided. The data collected in the first experiment was used to quantify
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the effectiveness of a number of ocular artefact (OA) removal methods which required the 

availability of the EEG waveforms before and after OA contamination. The second set of 

data was recorded in order to study the electrical brain activity that is generated during the 

performance of saccadic eye movements by the subjects when visually following a red 

square target on a checkerboard pattern background. The signals were recorded using 

electrodes placed on the subjects scalp.
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Chapter 5. Analysis of Conventional and Signal Source 

Separation Approaches for Removing Ocular 

Artefact from the EEG

5.1. Chapter Summary

A procedure for quantifying the effectiveness of an algorithm for removing ocular artefact 

(OA) from the EEG was devised. A comparative investigation of four methods for OA 

removal was carried out. Procedures to overcome some of the limitations of two ICA-based 

OA removal methods were implemented. The experimentation details are provided and the 

results obtained are discussed.

5.2. Introduction

The human eye contains an electrical dipole which is caused by a positive cornea and negative 

retina [5.1]. Eye movements and blinks change the dipole causing an electrical signal known 

as the electrooculogram (EOG). A fraction of the EOG spreads across the scalp and it is 

superimposed on the EEG. In order for the EEG to be interpreted for clinical use, the EOG 

needs to be removed (filtered) from the EEG. Analogue and digital filters are not effective for 

this purpose as EEG and EOG signals occupy similar frequency band (covering a range close 

to DC to about 100 Hz).

One of the earliest methods for OA removal was based on the use of potentiometers to 

balance out the effect of vertical and horizontal eye movements [5.2]. The required 

adjustments were made manually by monitoring the EEG and thus they were subjective. A 

software-based OA removal method was proposed by Quilter et. al. [1.13]. The method, 

known as EOG subtraction, involves subtracting a fraction of the EOG from the contaminated 

EEG. Its operation is based on the assumptions that: (i) the recorded (contaminated) EEG is a 

linear combination of the original (i.e. uncontaminated) EEG and OA, (ii) the contaminating 

OA can be estimated from the EOG, (iii) there is no correlation between the original EEG and 

the EOG signals. The method can easily be implemented but it causes distortion of the
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recovered EEG. This is because a fraction of the EEG also contaminates the EOG and thus the 

subtraction process causes part of the desired EEG to be removed.

In order to improve the performance of the EOG subtraction method, a technique referred to 

as “multiple source eye correction” was developed by Berg and Scherg [5.3]. They estimated 

the component of the recorded EOG which was not contaminated by the EEG. A fraction of 

this component was then subtracted from the recorded EEG. The method however, required 

an accurate modelling of propagation paths for the signals involved.

Adaptive digital filters have also been used for OA removal. For example, Rao and Reddy 

[5.4] developed an on-line method of OA removal system based on this approach. They used a 

non-linear recursive least square algorithm to train an adaptive digital filter. The main 

limitation of the method was the need for a suitable EOG reference model for adapting 

(training) the filter.

Principal component analysis (PCA) [1.12] is a well known decorrelation technique and has 

provided another approach for OA removal from the EEG. PCA enables an epoch of multi­

channel EEG to be decomposed into linearly uncorrelated components on the basis of their 

spatial distribution across channels. By omitting unwanted components (such as OA) from the 

linear combination, a less contaminated EEG can then be reconstructed. Lagerlund, et al. 

[2.10] developed a variation of this technique in which the PCA coefficients were stored in a 

single matrix. This allowed the matrix to be calculated on the basis of one representative 

epoch that contained the artefacts to be removed. The matrix was then applied to the 

subsequent EEG epochs, without repeating the PCA operation. The limitations of the PCA 

approach are that: (i) it is unable to completely separate the OA from the EEG, specially when 

both waveforms have similar voltage magnitudes, (ii) it requires the distribution of the signal 

sources to be orthogonal, (iii) its effectiveness is limited to decorrelating signals and thus it 

cannot deal with higher-order (i.e. greater than second order) statistical dependencies.

In order to overcome the limitations of PCA, Makeig et al. [5.5] applied independent 

components analysis of Bell and Sejnowski (BS_ICA) for removing artefacts from the EEG. 

BS_ICA is an extension of the PCA which not only decorrelates but can also deal with higher- 

order statistical dependencies. Bell and Sejnowski proposed an information-theoretic based 

BS_ICA algorithm that uses an unsupervised learning rule [1.9]. It finds a linear
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transformation within the data to make the separated signal components as statistically 

“independent” as possible. The technique does not need a priori knowledge of the physical 

location or the configuration of the sources and unlike PCA, it does not require the 

distribution of the signals sources to be orthogonal. However for it to function correctly, the 

signal sources must be statistically independent and the distribution of not more than one 

source can be Gaussian. The EEG signal sources represent the signals produced by the various 

signal generators of the brain and not the recorded EEG signals that represent a mixture of 

brain electrical activities from many sources. The BS_ICA algorithm applied by Makeig et. 

al. [5.5] is suitable for sources with super-Gaussian distribution (i.e. irregularly occurring 

signals with sharply peaked distributions and positive kurtosis). Lee and Sejnowski [2.24] 

extended the BS_ICA algorithm to make it also suitable for signal sources with sub-Gaussian 

distribution (i.e. signals with negative kurtosis). Jung et. al. [5.6] applied the extended version 

of the BS_ICA algorithm to isolate and remove a variety of EEG contaminating artefacts.

Another ICA algorithm for signal source separation was proposed by Cardoso [1.10]. The 

method is based on the joint approximate diagonalisation of eigen-matrices (JADE). It 

operates by exploiting the higher-order statistical properties of the signals based on their 

fourth-order cumulants. Like the ICA algorithm of Bell and Sejnowski [1.9], this algorithm 

also requires the sources to be statistically independent and at most the distribution of one 

source can be Gaussian [5.7].

In the study presented in this chapter, a method to quantitatively evaluate the effectiveness of 

an algorithm for OA removal from EEG waveforms was devised. The method was used to 

evaluate and compare the performance of two ICA-based approaches, namely the extended 

version of the ICA algorithm of Bell and Sejsnowski (hereafter refereed to as extended-ICA) 

[1.9] and the ICA algorithm of Cardoso (hereafter refereed to as JADE) [1.10] to that of two 

decorrelation-based methods, namely PCA [1.12] and EOG subtraction [1.13] methods, for 

removing the OA from the EEG. EOG subtraction method was included because it is one of 

the conventional methods for performing OA removal from the EEG. PCA was included in 

order to investigate the need for considering the higher statistical dependencies in OA removal 

process. Extended-ICA and JADE were included as they are well-established ICA-based 

signal source separation techniques. Both extended-ICA and JADE are based on information 

theoretic principles, however the extended-ICA algorithm of Bell and Sejnowski uses entropy 

while the JADE algorithm of Cardoso exploits the fourth-order cumulants of the data.
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A review  of the most relevant w ork in  the area of EOG removal over the past 20 years is 

provided in Table 5.1.

73



Ta
bl

e 
5.1

 
A 

rev
iew

 
of 

re
po

rte
d 

wo
rk

 
on 

oc
cu

la
r 

ar
te

fa
ct

 r
em

ov
al

 o
ve

r 
the

 
pa

st 
20 

ye
ar

s.

• -  n s
V i >  o

o  «
X 2  «
3 .2 E

«J< ' o  03
~  o Xc/3

TS
O
Xx
03s
0)

X
X
s
o

c
03
E
E
o

U

3
E

• 8  «* T 3  -4->
' o

03 ,cd

j o
I S

c
3
c/3
3X

T3
3
3

03 c/3
6 0  §  
03 . 2

_ c
3
E
o

"O

^  § 
S i x
3  cd 
CT 03 
03 •“

c 2  2t OI <4-i

• =  - 2> 3>  c/3
03 <u 

2cd cd 
3  c/3 C 3 X

"cd - a
E c

3 «dc
£  . 2 °  
cd c/3
2 a  

§  w1 w
2  <u
3 ■£

■ a1
cd S  
03 ’ >
C/3 I-,
1) 03
r  c/3 

- 3  X  
i O

cd
X

co
3

3  " g  
3

.cd- a  2
<4- <Xo 03
C/3 S-
c/j cd 
°  03

•4-J
G  ^  
a  —

cd

s p ’g
^  03 
3  3 32  "J 

O  0
- a
- 2  x
> .  I S
3  cd
E .E

6 03
■ 5
cd

_03

o>

0 3
0 3

T3
X

"5 0C+-H
OJ

X)
3
3

CO
cd

O
E
3

3"3 .2
0 ‘0
3 x

X
3

X 33
60 3
E X
C/3 0

30
03 O

X O3 03C/3 x
03 0

X 03
1 c

cd
3
6 0

03
>
3X
> 4
3
E

Cd
3!C
o
Q
03 3
c/3 c«

-  £  
—  «  

c

S o  ° 2  2  2

4)
X

C
03
03
£
03XI
co
3

13
■—
co
cj

o
3

Oo
w

co  
a.

O  
w  
w
' x  . 2

03
a
3

X

c/3 r -
13 O
C OS
CO cj

C/3 2

O  - S  
O  5  
m  ,

03
X

03
>
OX
3

13
£
C/3
03
Otoo

X
03

X
£
cd
3

3!
toO
3

03 cd 
03 °

I  ©
3. 1/3 

" 3  ^  
03 03

x  .2
03 p i  
E 03 
O  ~

3
O
C/3
03X

. X

I fH .  3  
c

I d  O  
2  M  
6 0  O  

• 3  x

2 C/33 u 2 E
too 3 

X  3s
CJ c/3
cd 3  X  i

• 03
3  " 3  a 3  
X  x<4-1 X
2  X .

a

<
O Q
2  W
03 m
> ^  3

O  
toO 

X  a
3  X  
03 X

3  cd 
3 3  X
O  3
x  ~X  X
03 °

■ S  c
<4—1 3

°  2 toO E
3  3

X u
cdX
3
3X■4—*
S-C
03X
6 0

2 x  
'3 3
03 E
^  C/3

03
033
cd

' £
cd
>

4 -4  O3 O 
X  x3 
03 g  
03 3
3  c/3
cd 03
B u 
S  —
o 2

"03 x
O  £O  T>too £
> T3> C ^
O  O  43

X  03 -2
c/3 03 £
C/3 ^
Cd C43

X  .2

j u
a

" S

* C

too
2
>
cdx  a
O  W

- 2  W T 3
C  C  

x >
03 u  

T 3  •— 1 
03C/3 t- 

T3 .-4 
O  cd X  X  
03 2

E I
C  O  
O  -C
oo

0)
feb ^
03 * J
I-, i—i
>% X  
CJ 03
c  c
03 C  3 3
CP X  
03 O

<i3 c>0 
x  .23 c/3
*  £  
03 23 toO G (U

© 8  CQ bo

<o
" S  I d•c 3 

>  O

o 2  
I d  " 3

oc- a  ■ -
03 c<3

1 1  3 W 
3  _.
°  3

.52 cd

O
O
w
O  03 

3TD -3 3 2
X 2  

03 
T 303

g <
3  O 
cd X
o

ao
w
03X

03 5j

° X x  3
X 3

3 O  
03 J =  X  X

3  s  
CQ >

o
CJ X3 
w  03 
cd 03

’S  g  
o 0
W  3  
W  - 5
2  «3O  (D 

3  3  
O  5

O  3  
^  60 
60 3

. E ’s  ' 

" 2  $  '

o § ' 
.3  8  
^  ■ 
c  ^

x  I  ^  g '
, 2  ' OQ 03

« 2  03
C/3 <-JD 3
°  yD .  3  ■ X

"O  to

‘o  3  
S3 §. 
E ^
3 03
c  a

^  • §
2  ^  3
O  
X
3
c/33_o
X
E3

3
03
>
3X

w  03

k E•2 3
2  c« 
X  cd
2  -Q
cn 3
03 cd 

■ — c/3

03 O 
C2 W

C/3 03
0 toob.
w 3
W 3
3 3
>4 O

c/3
> 03

3*4
03 03
3 03
03 X
4̂03 too

X c
O 'x
030c >4
3 XV303k.

60
3

X 'M03 3X
03 X
CJ -a
3

-303
'0>3

2 0
C/3 T3
3 03
O XC/3on 3

"3 T3
03 3

• S . 1

"I 1
-5Q 3 

O
03

03

M 3  
id  O  
03 0 3  03 
P  O - S  
* - '0 3
ed £  E  X  o o  
-GO . r,
g < <I o o
c/i "O  ' 2
S3 c

l -  "3
2  C/3X  03

2  - 3
>■> O  
X

I d

cd

-  a
3  W

5.w
^  ^  x  3 3 V, X

3  o  “  

E co o

03 .2 
3  0 0  
23 -C  >> o
03 . '

o '  " 3  3
T 3  Wl
2  ’c«

x  O

- 8  0  
wC/3

3  M  3

D .
Oc-
a .

x
o
3
o2 .2

X
Q .
3
H
6 0
O
X
o

iH  2 ' o  
0 . 5  °
£  x  g  
o  3 - 2
03 2  *-*u O O 
3  03 3O u- 2

• a  g  - e
03 y
^ .2 ”  ,3 x  ^  pq 

ffl 3 x  W

W- .3 2

a  a
03

I S>  03
03 X  
03 * 2  
i-L  X  3 O

- a  
3 3

a

CO

0  
w  
w

1 -  
< 2  ^  
x  o
03 W  
3  XX 0
E £
o  3  
CJ X

3
X
3
O

3
6 0
3
X
O
inX

X
o
6 0

_ 3

13
" 3
O  .
E ^G 3

-a 2
03 X

.52 03 — X03 "2
03 2
E o
Cd X
3  W>

^  0 3  I -
o  X

3  2
PQ 3

c/i X
< 3  3
o  £
X  3

0  o
8 > 
G ^
D
CO T 3
(U *-i

X  ?
M =x  o
3 8

CO

i 2  c  
3  oc d
CO CO

rK  cd
o  ^
W  CO

w  8
c/3 33 3
03 CT 
3  c/3
3    1X  3

w

C/3

■'sT
O

■O
o

X

>4
03

03 S
E 2. C /3•p—< CT

d  £  o  
• S  ^
g  G  cS

! : s
cn ,5  .C
8  3  2
W> E E 
«  °  °  

K  -O  - 2

«
0/ 
3

X  .§ 1
E  c
*5 -g
C  - 2

"O
o

X

13 E
o- —
O  03
X T3
s ia/ E4 J  ”A 1/1O  0/

1 1  
CZ) T3

C
#o
"4-4
3
X

C
o
> 4

w

2

03
0 / 03

x  t -  
x  O

nw  <u 

C J  03

w  £
CZ2 3

O
1/3

- o
o
X
X
03

03 g  
03 c
2  e

“ • I  

■ a  S i

.2f> 2C/2 &

c
o
u
3
03
S T3 

X o 
- X

03



Ta
bl

e 
5.1

 
(c

on
tin

ue
d)

•-  X
c/3 > O* X "G 
X 3  g

3 .2 S
•CT* ’3 4/^  O £

c/3 mc/3 OS

Xo
X
MCJ
s
O)

X■m
co

sCJs
So

U

«
a
’3
*E
Oh

Xo
X

C/3
C/3 CJ
C OO Cx CJ3 X egX
'C

cuD.
eg

X
C/3 CJ C

X X 2
C/3 C/3 'TsiO 043c x 3CJ c/3 egc0 'm3 0
Q. C/3 c
E0 M<U

0C
0 X X
<u s—OX X £

X c 000 0 _c
>. CJCJ 13
3

C/3

0 <DXC MO Q. O00 3 cm0 C/3 _CJX
L -

CJ> X
M0 O

C/3 E '3u CJ C/3
E u<
3 >> O
043 £̂3 G
0433 GO 043

cjX
c(U

043 c
CJc

_o CJ
0

H3

"eg>
c
2

M
3

X1—'mCJ 3043 > 043
X
0 C43 <—
CJ CJ ‘5
X 3 CLCJ CJ
cm
O

4—1 
00 E

_>< cm
O S-

'C
eg
E

043
C_o

043
«
X
2CJ 0

CJ
c

CJ4-
c
3
>3 X'C 33 3 X> c

O 0 3CJ 00 CJ
4— 0 X
u X

X Lh >.
0 0 CJ

X C/3
X <u3 G XO

CJ
CJ
in

(m

<
X

CJ u 'I
X IX 3
00 eg

_G 3 X
'c/3 3 CJ
D X X

c<ucoCL
E
o
c j

£>0c
>4

00co
CJX

Xs
3
CJ
Co
cj

cCJco
a  ^  
£ <  
o  U  

U  a,
e g  .c/3  ft *S
’3
S c*
"= 5 eu <

S  ~ 1 gi ;x m 
. c n c n . cn

i/-\ *C~j

o C
CJ c j  
CJ xM c 
00 <u c  _

C/3CJ
o c/3

caj c
o  G  G  g*E

O  XT CJ eg 
X U G 
T3 r  O  
t  «  6£

CJ 
X  
s-CJ

T 3  j _  w  
£ m oo

.2  E 'o X
a -s & g
60 SP —

‘35 x  £ o
CJ C/3 q-5 8 60.2
« 3 O c
G -g 6  •£

cjX
cm
O
C_o
3X

& £  G
3 '5 M
M O' W
3  CJ 00

x  >- c
^ 0-2 
CJ C 3
"m 1/3 X
2  g -r
M O Ma 3  M
c/3 1 X

G c/3 O cj
E<U 3

.2 2 M CgG  _0 ^2 M CG.D* c/3
«  G 
G  g

•5 § 2* O-
CJ E1-  o
1 O

G tg
2 ^  
3 CJ CL X  CJ M
“  e  
eg -EG "g 
00 -  
© Go  x
■3 ®

<UX
c<U<u
£
M0)X

.0
c
Cl
C3
oc
c/33
C/3

CL
<u

3  G
CJ 00,5 '3

C/3i>0x
G uj 
U CJ 
m G eg CJ c/3 X
O c 
W D. W U 
X  "3C .5eg

<1 
O E
<u 2X  X

o 4-1 x  Cm 
U Oc- —■
°  s<U O X  MV eg
5 eg .2  G

M  CJCg C/3
2 "G
c2  G
C -G•— c3
£ C/3
°  E
G £c/i X
e l
% icd C
•3 0fl

043 XU cj

O- V~ 043

g- s  
0  -2  
cj 3  60-cX  CJ CJ m X  CJ 
>  egM
O  eg  C XX  CJ

C/3

13c
G Z
-S =^  G G C
4J g

<
u

"g c«
■G ’SC ®« £•< 3 £ 

^  £ u  ts « £ S = b !

cn



As reported in Table 5.1, EOG subtraction, PCA and the extended-ICA have all been 

previously applied to the problem of OA removal, however the aim of this part of the study is 

to extend the information available by providing a quantitative evaluation and comparison of 

their performance based on a series of statistical tests.

From the OA removal studies reported in Table 5.1, it was deduced that an efficient technique 

for performing the removal of ocular artefacts from the background EEG was Extended-ICA. 

This method is based on the key assumption of statistical independence between the brain and 

the artefacts waveforms. This independency between the components is assessed through a 

measure of similarity between their joint amplitude distribution using a principle of 

information theory called entropy. The technique appears to be an improvement from the 

traditional artefact cancelling methods and seems to be a generally applicable and effective 

method for removing a variety of artefacts from EEG recordings, since their time-courses are 

generally temporally independent, and differently distributed than sources of cerebral activity.

From the literature review outlined in Table 5.1, the advantages of the extended-ICA method 

over the more conventional OA removal methods were identified as follows: (1) It is 

generally applicable to remove a wide variety of EEG artefacts. (2) Separate analyses are not 

required to remove different classes of artefacts. (3) A single analysis simultaneously 

separates both the EEG and its artefacts into independent components based on the statistics 

of the data, without relying on the availability of ‘clean’ reference channels. This avoids the 

problem of mutual contamination between regressing and regressed channels. Moreover no 

arbitrary threshold (variable across sessions) are needed to determine when regression should 

be performed. (4) Once the training is complete, the artefacts-free EEG records can then be 

derived by eliminating the contributions of the artefactual sources. (5) In most cases, 

extended-ICA preserves the recovered brain electrical activity more acurately when compared 

with PCA in decomposing EEG data. (6) The extended-ICA algorithm is computationally 

more efficient than BS_ICA algorithm as it speeds up convergence [2.40].

In most cases this independence is verified due to the differences in physiological origins of 

those signals. In experimental data, extended-ICA was able to extract the eye-information 

present in the EOG signals, and use this information in the removal of this type of artefact, 

rather than the complete EOG (that still has some remaining brain activity).
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The effectiveness of other types of algorithm such as for instance the ‘non-neural’ JADE 

algorithm developed by Cardoso and Souloumiac [2.16] which is an ICA method that exploits 

the higher order statistics fourth-order cumulants of the data should be investigated and their 

performance in performing OA removal from the EEG compared with the extended-ICA 

algorithm.

As the operations of both ICA algorithms of Cardoso and Bell and Sejnowski are subject to 

amplitude scaling and channel permutation, procedures were incorporated as part of these two 

methods to estimate the amplitude of the separated signals and to allocate them to the correct 

channels. A description of the theory of the signal separation methods (JADE, extended-ICA 

and PCA) is provided in chapter 2. A brief description of the EOG subtraction method is 

provided in section 5.3. Then the experimental procedures are outlined and the results 

obtained are discussed.

5.3. A brief overview of the EOG Subtraction method

The operation of EOG subtraction [1.13] method for removing OA from an EEG waveform 

consisting of N  data points is outlined below. The contaminated EEG waveform (EEGC) can

be expressed as the sum of the original EEG ( EEG0 ) and a fraction (<9) of the EOG 

waveform, i.e.

The correlation (at zero lag) between the EOG and contaminated EEG waveforms is given by,

EEGc(i)=EEG0(i)+ GEOG(i) i=l,2, . . ,N (5.1)

TV

Correlation=]T EEG c (i )EOG(i) (5.2)
i= 7

Substituting EEG( from equation (5.1) into equation (5.2) results,

TV A  N

Correlation=YJEEG„(i)EOG(i) + (5.3)
i= 7

Equating equations (5.2) and (5.3) provides,

TV TV a  TV

Y  EEGc(i)EOG(i)= Y  EEG» (5.4)
1=]
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However in this method it is assumed that there is no correlation between the original EEG 

and EOG therefore,

The original EEG waveform can be obtained by using 6 in equation (5.1). Therefore,

As described in section 5.2, the method of EOG subtraction involves subtracting a fraction

(# )  of the EOG from the contaminated EEG. However, because the algorithm assumes that 

there is no correlation between the original EEG and the EOG signals, the method causes an

estimation error to be introduced at two levels: (1) the estimation of 6 will be erroneous since 

the EOG channel is not pure and contains some EEG signal and, (2) the recovered EEG will 

be distorded since the fraction of the EEG that has contaminated the EOG will be removed 

from the desired EEG signal during the subtraction process.

5.4. Experimental procedures

5.4.1. Experimental methods

In order to quantify the effectiveness of each OA removal method, the recovered EEG 

waveforms were compared with the original (uncontaminated) EEG. A measure of similarity 

indicated how well the OA removal method had performed. The operation required the 

availability of the EEG waveforms before and after OA contamination. Furthermore,

N
Z E E G 0(i) EOG(i) = 0 (5.5)

Substituing equation (5.5) into equation (5.4) simplifies equation (5.4) and from it the value of

0 can be determined by,

N

y  EEGr (i)EOG(i)

f j EOG(i)2
(5.6)

(=1

EEG() (ii)=EEG(. ( /)- OEOG(i) i=l,2, . . ,N (5.7)
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extended-ICA and JADE required the original signal sources to be independent. The steps for 

satisfying these requirements are described as part of the overall experimental method. The

experiments consisted of: (i) comparison of the four OA removal methods based on single 

EEG and EOG channels, (ii) analysis of the effect of mixing matrix values on the recovered 

(separated) EEG waveforms, (iii) analysis of the effect of additive Gaussian noise on the 

operation of the four OA removal methods, (iv) comparison of the two ICA algorithms of 

JADE and extended-ICA, based on multiple EEG and EOG channels.

Further details on the data recording procedures used to record the EEG and EOG data are 

provided in section 4.4.1. of Chapter 4.

5.4.2. Source signals and mixtures generation

In order to carry out the analysis based on single EEG and EOG channels, 32 pairs of EEG

' 0.8 0.2 '
and EOG mixtures were generated using the mixing matrix A  

operation was carried out by performing

. The mixing

EEG C
= A

EEG 0
EOGc EOGa

0.2 0.8 

, where EEG () and EOG0 were

the original EEG and EOG respectively and EEGC and EOG( were the resulting 

contaminated mixtures. The operation caused the original EEG waveforms to be contaminated

by J_ of the EOG (and vice versa). This mixing matrix was considered appropriate as only a
5

fraction of the EOG and EEG can contaminate each other. The mixing operation resulted in 

32 pairs of contaminated EEG and EOG mixtures.

The distribution of the EEG and EOG waveforms was tested by the Univariate procedure 

using Statistical Analysis System [5.24]. This indicated that the EEG waveforms had a 

Gaussian distribution while the EOG were not Gaussian. Therefore, the requirement for both 

JADE and extended-ICA where not more than one source can be Gaussian was not breached.

The 32 pairs of EEG and EOG mixtures generated using the mixing matrix A —
0.8 0.2
0.2 0.8

were also used to investigate the effect of additive Gaussian noise on the operation of the four 

OA removal algorithms. Gaussian noise (band limited to 50 Hz) were added to the 32 pairs of
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mixtures and then the four methods for OA removal were applied to recover the EEG 

waveforms. Statistical parameters (described in section 5.4.3) were calculated to determine 

the ability of each method in recovering the EEG when contaminated by additive Gaussian 

noise. For each test, the 32 recovered EEG waveforms were averaged to produce a single 

representative EEG waveform. The experiment was repeated for different amounts of noise. 

The signal-to-noise ratio (SNR) values represented the signal power (before addition of the 

noise) to the noise power.

The mixing matrix A  used in the above analysis conformed to a unity value for the sum of 

elements in its columns. In order to investigate the effect of not conforming to this condition, 

the experiment for the recovery of EEG waveforms was repeated using the mixing matrix 

0.5 0.2'
A =

0.3 0.5

The analysis based on multiple EEG and EOG channels was carried out by using the four 

EEG and EOG data sets. The condition for independence of sources was ensured as each of 

the four EEG data sets had been recorded from a different subject. The Univariate statistical 

procedure was used to test the EEG and EOG distribution. This indicated that while the EOG 

data were not Gaussian, the EEG data had a Gaussian distribution and therefore they could not 

be considered as valid signal sources for extended-ICA and JADE algorithms. The required 

EEG signal sources were obtained by transforming the recorded EEG data. The 

transformation involved the following steps: i) a DC offset was added to the EEG signals so 

that their minimum values became zero, ii) they were squared and their mean values were 

removed, iii) the resulting signals were re-scaled to the original amplitude ranges, iv) the 

Univariate statistical procedure was applied to the transformed EEG waveforms to ensure they 

had the required non-Gaussian distribution. Typical distributions of transformed EEG 

waveform are shown in Fig.5.1. This transformation of the EEG waveforms prior to carrying 

out the mixing of the waveforms was required in order to simulate a situation where the 

original brain signals in the mixtures are independent of each other and have non-Gaussian 

distributions.

Regarding the EEG waveforms transformation procedure, the following comments can be 

made. In step ii), the waveforms were squared. Althougth they were re-scaled to their original 

amplitude range as described in step iii) (so as to simulate a situation where the EEG
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waveforms have a typical EEG amplitude range), the values remain in juV2 unit. A way to get 

back the juV unit may have been to square-root the waveforms. Other types of 

transformations (such as xA3 , tanh(x), 1/x) were also investigated. However, best results (i.e. 

least Gaussian distribution) were obtained for the xA2 transformation described in steps i) to 

iv).

400r

F ig .5 .1  Typical distributions of transformed EEG waveforms 

(the horizontal axis is amplitude in juV2 and the vertical axis is 

frequency of occurrence for an amplitude range).

Thirty two sets, each consisting of five signal mixtures were generated by carrying out the 

mixing operation,

EEGlc EEGlt

e e g 2c EEG2t
EEG3c = A EEG3t
EEG4c EEG4t
EOGc EOG0

where EEGic to EEG4c were the contaminated EEG signals and the EOGc was the 

contaminated EOG. EEG]t to EEG4t were the transformed EEG signals and EOG0 was the 

original EOG waveform. The values of the mixing coefficients in matrix A  was chosen 

arbitrarely. A contamination by 0.125 of each contaminating signal was considered 

appropriate as only a fraction of the EOG and EEGs can contaminate each other. The mixing 

matrix A  was given by,
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0.5 0. 125 0. 125 0.125 0.125
0.125 0.5 0. 125 0.125 0.125
0.125 0.125 0.5 0.125 0.125
0.125 0.125 0.125 0.5 0.125
0.125 0.125 0.125 0.125 0.5

5.4.3. Procedures to Enable JADE and Extended-ICA Deal with the Problems of 

Amplitude Scaling and Channel Permutation

JADE and extended-ICA scale and may invert the recovered signals. Furthermore, the 

recovered signals may not appear in the correct channels (channel permutation). In order to 

deal with the channel permutation problem, each recovered signal was compared with each 

mixture and their correlation coefficient was calculated. A recovered signal was then allocated 

to the channel which corresponded to the highest correlation coefficient value. The operation 

assumed that each mixture contained a larger contribution from the original signal source than 

from the contaminating source. The possible sign change (i.e. signal inversion) was corrected 

by considering the sign of the correlation coefficient.

In order to estimate the amplitude of the recovered signals for both JADE and extended-ICA, 

a modified version of a procedure proposed by Cardoso [5.25] was implemented. The steps 

are outlined below for a case involving two signal sources, however the method can be 

extended to situations involving more than two sources. The original Cardoso’s Algorithm 

involved the following steps:

i) The inverse of the unmixing matrix W ' 1 =

estimate of the mixing matrix.

ii) The total contribution of each original signal source to the mixtures was estimated from 

W '1 . This required summing the squared elements in each of its columns. The resulting 

sums were square rooted. The squaring of the elements was necessary to ensure negative 

values did not cancel positive values during the summing process.

The modification to Cardoso’s procedure consisted in multiplying the resulting square- 

rooted sums by a scaling factor (kj). This produced a row vector,

wn wn 
W21 ™22

was obtained. This provided an
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P = [^iV(wi2i +w 2 i ) ’ ^ 2  V{w \2 + w22)] • The scaling factor ki and were required to deal 

with for the mathematical inequality that for any two values (x and y),

\x\ + \y \* J x *  + y 2 . The expression for kj (j= 1,2) is given by,

± K I
* , - 7 f = r  (5-8)

where wy represents an element (in the ith row and jth  column) of the matrix W A . It was 

observed that with the modification kj included, p  could be computed by a simple 

addition operation p  = [ wn + w 2l , w l2 + w 22 ] .  The unmixing matrix W  was then 

re-scaled by multiplying its columns by the corresponding columns of the row vector,/?.

The reason behind the modification of Cardoso’s procedure through the use of a factor kj 

was that the Cardoso’s procedure obtained a measure of energy, whereas a measure of 

amplitude was required to estimate the amplitude of the recovered signals.

5.4.3. Parameters for Evaluating the OA Removal Methods

In order to assess the performance of each OA removal method, the similarity between the 

original and recovered EEG waveforms was measured. This required quantifying any change 

in the amplitude and shape of the waveforms. The required measurements were carried out by 

using the correlation coefficient, standard deviation and Euclidean distance parameters. The 

justification for using these parameters is provided below.

i) Correlation coefficient. This provided a measure of the similarity in shape for the

recovered and original EEG waveforms. A value with magnitude of 1 indicated that the

recovered and original waveforms had exactly the same shape. However, this parameter

did not provide any information about amplitude changes.

ii) Standard deviation ratio. This was the ratio of the original EEG standard deviation to that

of the recovered EEG. A value of 1 indicated that the original and recovered signals had

the same power. A value more than 1 indicated a loss in the recovered signal power. As

both extended-ICA and JADE scale the amplitude of the recovered signals, this parameter
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indicated how well (for a particular mixing matrix) the Cardoso’s amplitude estimation 

operates as part of JADE and extended-ICA algorithms,

iii) Euclidean distance. This provided a measure of similarity in both shape and amplitude. 

The Euclidean distance between two signals (.x and y ) of length N  can be expressed as

5.4.5 Statistical Tests for Determining the Significance of Differences

In order to determine the significance of the differences between the performance of the four 

OA removal methods, a number of tests were carried out using the Statistical Analysis System 

[5.24] package. The tests were based on the analysis-of-variance (ANOVA) technique. This 

enabled the F-statistic test [5.27] to be carried out on the mean values (over thirty two trials) 

for each the three parameters (correlation coefficient, Euclidean distance and standard 

deviation ratio) across the four OA removal methods. The F-statistic was suitable because it 

tested the null hypothesis that a significant difference did not exist between the means for a 

given parameter. An F value close to 1 resulted in accepting the null hypothesis, otherwise it 

was rejected.

Although the F-statistic indicated whether means were significantly different across the four 

OA removal methods, it did not however indicate which mean differed significantly from the 

other means. In order for this to be determined, Tukey’s studentised range test [5.24] was 

performed. This test was based on analysing the pair-wise differences between the means.

5.5. Results and Discussion

The results obtained for JADE and extended-ICA were computed after incorporating the 

amplitude estimation procedure as part of their algorithms. The mixtures were processed by 

the four OA removal methods in order to recover the original EEG waveforms. The results are 

described in the following sections.

[5.26],

Euclidean distance = (5.9)
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5.5.1. Single EEG and EOG Data Set Analysis

This investigation used the signals generated with the mixing matrix A=
0.8 0.2'

0.2 0.8
Typical

plots for one pair of original EEG and EOG waveforms, their mixtures and the recovered EEG 

waveforms following the application of the four OA removal algorithms are shown in 

Figs.5.2a-h.

- 2 0  -

140 

120 
100 
80 

w  cno  6 0
LU 40 

20 
0 

-20  
-4 0

<b)

H------ 1------1------1----- 1------h
2 4 6 8 10 12

LU 20 4  
LU

o
0-20 -

2 4 6 8 10 12

Q  15 -■

30 -

60  -r

30 -■

%LU- 30

_  20  - -

8 10 12

Fig.5.2Typical plots of original EEG (a), EOG (b), contaminated EEG (c), contaminated 
EOG (d), recovered EEG waveforms using JADE (e), extended-ICA (f), EOG subtraction 
(g) and PCA (h). The vertical axis is amplitude in juV2 and horizontal axis is time in 
seconds.



The standard deviation ratio, Euclidean distance and correlation coefficient values were 

computed for the EEG signals. Plots of these for the 32 trials are shown in Figs.5.3a-1.

(a) (e) (i)

(b)

(c)

5  1.50604

a  1.00604
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(g)

(h)

(g)

3

(k)

31

(1)
PCA PCA

31

Fig.5.3 Plots of standard deviation ratio (STDR) (a-d), correlation coefficient (e-h) and 

Euclidean distance (i-1) parameters for JADE, extended-ICA, EOG subtraction and PCA 

algorithms. The horizontal axis is trial number for all plots.
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The corresponding means and variances are provided in Table 5.2.

T a b l e  5 .2  Means and variances for the three parameters over 32 trials.

Methods

Standard deviation 

ratio

Correlation

coefficient

Euclidean

distance

Mean Variance

(X10'3)

Mean Variance

(X10‘3)

Mean

(io-4)

Variance

(X10‘9)

PCA 1.45 3.0 0.95 2.2 1.59 1.7

Extended-ICA 0.95 29.4 0.99 0.43 0.85 7.4

JADE 0.97 15.9 1.00 0.034 0.60 2.1

EOG subtraction 1.35 0.4 0.99 0.23 1.18 0.48

The following observations were made for the standard deviation ratio parameter. EOG 

subtraction method provided smallest variance and thus the highest consistency. However, it 

was always larger than 1 indicating a loss of amplitude in the recovered EEG. This confirmed 

the limitation of EOG subtraction method in which the part of the EEG which contaminates 

the EOG is also subtracted from the recovered EEG resulting in a loss of its amplitude (this 

was first referred to in the introduction section). PCA technique also reduced the amplitude of 

the recovered EEG. This indicated that PCA could not completely separate the mixtures. This 

may be because PCA is unable to deal with higher-order statistical dependencies. For 

extended-ICA and JADE, the standard deviation ratio parameter assessed not only their ability 

to separate the signal components in the mixtures, but also the ability of the Cardoso’s 

amplitude estimation in re-scaling the separated signals. The results show that JADE and 

extended-ICA together with the Cardoso’s amplitude estimation procedure have provided an 

accurate recovery of the original EEG waveforms.

JADE provided a correlation coefficient closest to 1 and an Euclidean distance value closest 

to 0. It was also most consistent (i.e., smallest variance) for these two parameters.

In order to determine the significance of the difference between the observed means two 

statistical tests were carried out by using the analysis of variance (ANOVA) technique [5.24]. 

These were F-statistics and Tukey’s studentised range test.

The F-statistic test was performed for each measured parameter (standard deviation ratio, 

correlation coefficient and Euclidean distance) across the four OA removal methods. This
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indicated that significant differences (pcO.OOOl) existed between the means for each of the 

three parameters across the four methods.

The Tukey’s studentised range test was then performed to determine the sign (positive or 

negative) of the pair-wise differences between the means. This indicated whether a mean was 

significantly smaller or larger than another mean. The results are shown in Table 5.3.

T a b l e  5 .3  Tukey’s test (at level of significance 0.05) for pair-wise

differences between algorithms.

Pair-wise differences 

between the algorithms

Standard 

deviation ratio

Correlation

coefficient

Euclidean

distance

PCA-

EOG Subt. s(+) s(-) s (+)

JADE s(+) s(-) s(+ )

Ext. ICA S(+) S(-) s(+ )

EOG Subt. -

PCA S(-) s(+ ) S (-)

JADE s(+ ) ns (-) s(+)
Ext. ICA s(+) ns (-) s(+)

JADE -

PCA S(-) s(+) S(-)

EOG Subt. S(-) ns (+) s (-)

Ext. ICA ns (+) ns (+) ns (+)

Ext. ICA -

PCA s(-) s(+) s(-)
EOG Subt. s(-) ns (+) s(-)
JADE ns (-) ns (-) ns (-)

k e y :  s = significant, ns = not significant

Considering the standard deviation ratio parameter, the performance of PCA and EOG 

subtraction was significantly different from JADE and extended-ICA. The performance of 

Extended-ICA and JADE were not found to be significantly different.

Considering the correlation coefficient parameter, the performance of PCA was significantly 

different (smaller mean) from the other three algorithms. The latter did not show significant 

differences between their performances. This parameter indicated that PCA was least effective 

in preserving the shape of the recovered EEG waveforms.



Considering the results for Euclidean distance parameter, JADE and extended-ICA differed 

significantly from PCA and EOG subtraction, however they did not differ significantly from 

each other.

5.5.2. Analysis to Determine the Effect of Mixing Matrix

The results shown in Table 5.2 were obtained using a mixing matrix that conformed to unity 

for the sum of elements in its columns. In order to investigate the effect of not conforming to

'0.5 0 .2 '
this condition, the experiment was repeated using the mixing matrix A -  

results are shown in Table 5.4.

0.3 0.5
The

Table 5.4 Performance evaluation results when the mixing matrix 

*0.5 0.2*
A =

0.3 0.5

Methods Standard deviation 

ratio

Correlation

coefficient

Euclidean 

distance (X10'4)

PCA 3.15 0.89 2.93

Extended-ICA 1.23 0.98 1.06

JADE 1.27 0.99 0.87

EOG subtraction 2.77 0.95 2.68

The results for standard deviation ratio (from Table 5.4) indicated that JADE and extended- 

ICA performed better than PCA and EOG subtraction. Values close to 1.2 signified that little 

amplitude difference (i.e. a small fraction (0 .2 ) of original waveforms) between original and 

recovered waveforms was observed for the ICA-based technique. However with values close 

to 3 (i.e. 3 times the amplitude range of original waveforms) both PCA and EOG subtraction 

methods resulted in a significant loss in the recovered EEG amplitude. The result also showed 

that the performance of the amplitude estimation procedure was affected by the mixing matrix 

values. The results for correlation coefficients were all still close to 1 indicating that the 

values associated with the mixing matrix do not affect the recovered signals shape. The 

experiment was repeated with several other mixing matrices. The results were consistent with 

the above observations.
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5.5.3. Effect of Additive Gaussian Noise

The effect of additive Gaussian noise on the performance of the four OA removal methods 

was also investigated. The plots for the observations are shown in Figs.5.4a-c.
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Fig.5.4 Plots to demonstrate the effect of noise on the performances of 
extended-ICA (-■-), JADE (-♦-), PCA ( - X - )  and EOG subtraction ( -A -) .  
The horizontal axis is linear signal-to-noise ratio (SNR).

90



On Fig.5.4, the signal-to-noise ratio (SNR) is linear and is defined as the ratio of the signal 

power over the noise power. The results indicated that the performances of all four algorithms 

for OA removal degrade rapidly for signal-to-noise ratios below 50.

5.5.4. Multiple EEG Channels Analysis

The results obtained for the data consisting of four sets of thirty two transformed EEG 

waveforms (EEGuto EEG4O are presented in Table 5.5.

Table 5.5 Results obtained when the algorithms were applied to four 

transformed EEG sources.

Transformed 

EEG Data

Standard deviation 

ratio

Correlation coefficient 

means

Euclidean distance 

means (X10'5)

JADE Ext. ICA JADE Ext. ICA JADE Ext. ICA

EEGlt 1.04 1.08 0.95 0.95 11.75 11.48

EEG2t 1.15 1.10 0.95 0.96 8.00 7.80

EEG3t 1.00 0.97 0.96 0.96 6.28 7.62

EEG4t 1.05 1.02 0.98 0.97 7.87 9.31

The mean value for each parameter was obtained by averaging the results over thirty two 

waveforms. The results obtained were consistent with those obtained involving one set of 

EEG waveforms. Only JADE and extended-ICA were included in this analysis because they 

had performed significantly better than PCA and EOG subtraction methods when analysing 

one set of EEG and EOG channels.

5.6. Key Observations of this Part of the Study

The key observations of the study reported in this chapter were:

• The devised procedures made it possible for the performances of the four algorithms for 

OA removal to be quantified and compared.

• However, although the transformation of the waveforms highlighted in section 5.4.2 was 

carried out purely for generating non-normally distributed source signals, one must reflect 

on the validity of performing such a transformation. Indeed such a situation cannot be 

applied to real-life signals as the original signal sources are not accessible in the real-life
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situation. However, the aim was not to simulate a real-life problem, but rather to simulate 

a situation where four methods could be quantitively assessed for performing OA removal 

of the EEG. In order to perform the assessment, the original signal sources needed to be 

known so that they could be compared to the recovered signals. Nonetheless the main 

drawback of the procedure was that it was to some extent biased into producing “ICA- 

friendly” signals. In a situation where the signals sources had Gaussian distribution, 

decorrelation-based techniques such as PCA may have performed better than ICA-based 

separation techniques to recover the EEG.

• The amplitude recovery method enabled the amplitude of the recovered EEG to be 

estimated for both JADE and extended-ICA. However, the results were affected by 

changing the values of the mixing matrix.

• The proposed correlation based method provided a means for dealing with the problems 

of channel permutation and sign changes problems associated with JADE and extended- 

ICA algorithms.

• JADE and extended-ICA performed significantly better than PCA. This could be because 

PCA only decorrelates signals while JADE and extended-ICA attempt to make the 

recovered signal components as independent as possible.

• The EOG subtraction attenuated the recovered EEG signals. This is because a fraction of 

the EEG that contaminates the EOG signal is also subtracted from the recovered EEG 

component.

• Extended-ICA method required a significantly longer time to carry out the OA removal 

operation when compared with JADE. This is because extended-ICA is an iterative 

algorithm which requires a number of passes through its learning algorithm to converge 

while JADE only requires one pass through its algorithm.

• Statistical tests showed that on average the performances of JADE and extended-ICA for 

OA removal were not significantly different. However JADE provided a more consistent 

set of results and both JADE and extended-ICA performed significantly better than PCA 

and EOG subtraction.

• The performances of the four OA removal methods were not significantly affected by an 

additive Gaussian noise source for a signal-to-noise ratio above 50.
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5.7. Conclusion

A procedure for quantifying the effectiveness of an algorithm for removing OA from the EEG 

was devised. This enabled the similarity between the EEG waveforms before contamination 

by OA and the contaminated EEG waveforms following their processing by an OA removal 

method to be measured. Four methods for OA removal were included in the study. These were 

the two ICA-based algorithms of extended independent component analysis (ICA) and joint 

approximation diagonalisation of eigen-matrices (JADE), the principal component analysis 

(PCA) technique and the EOG subtraction method. The operation of JADE and extended-ICA 

is subject to amplitude scaling and channel permutation. Procedures were incorporated to 

estimate the amplitude of the recovered EEG waveforms and to allocate them to the correct 

channels.

It was demonstrated that the signal separation techniques of JADE and extended-ICA were 

more effective than EOG subtraction and PCA for removing OA from the EEG. EOG 

subtraction method was shown to cause attenuation of the recovered EEG waveforms. The 

effect of additive Gaussian noise on the performance of the four OA removal methods was 

also investigated. This indicated that the performance of the methods was unaffected by an 

additive Gaussian noise source as long as the signal-to-noise ratio remained above 50.

This part of the study has demonstrated that the ICA-based signal source separation 

techniques of JADE and extended-ICA are valuable methods for OA removal of the EEG.

However, care must be taken when interpreting the results of the study. The validity of such 

results can only be appreciated within the context of the procedure developped and used to 

assess the four methods for performing OA removal of the EEG. In a situation where the 

source signals had different (i.e. non ICA-friendly) distributions, the ICA-based separation 

methods may have performed poorly as compared to the decorrelation-based methods.
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Chapter 6. The Effect of Signal Length on the Performance 

of Independent Component Analysis for 

Extracting the Lambda Wave

6.1. Chapter Summary

The effect of signal length on the performance of a signal source separation method called 

independent component analysis of Bell and Sejnowski (BS_ICA) for extracting a visual 

evoked potential called the lambda wave from saccade-related electroencephalogram 

(EEG) waveforms was investigated. The methodology and results obtained are discussed in 

this chapter. An iterative synchronisation procedure was devised to time-synchronise the 

recorded waveforms across the recorded trials. The implementation details of the devised 

procedures are provided. Results for both the artificially generated mixtures as well as the 

recorded EEG and EOG waveforms are provided and compared.

6.2. Introduction

The main saccade-related EEG component of interest in this study is a visual evoked 

potential (EP) called the lambda wave. An introduction to saccade-related data is provided 

in chapter 1, section 1.2. A detailed description of the lambda wave EP signal, together 

with its clinical attributes are provided in chapter 3, section 3.5.

For the EEG to conform to the stationarity requirement of BS_ICA, the statistical 

properties of its components should be time invariant. However, EEG signal components 

(such as EPs) are short-duration (few hundred milliseconds) transient signals and may not 

fully conform to the stationarity assumption of BS_ICA. In this chapter, a method is 

devised which enables the effective length of the recorded EEG traces to be increased prior 

to processing by BS_ICA, so as to increase their stationarity pre-requisite. This involves 

abutting EEG traces from an appropriate number of successive trials (a trial is a set of 

waveforms recorded from 64 electrode locations in a experiment involving a saccade 

performance).
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BS_ICA was applied to the saccade-related EEG and electrooculogram (EOG) waveforms 

recorded from the electrode locations. The performance of BS_ICA for extracting the 

lambda wave was assessed for different lengths of EEG waveforms. One spatial and five 

temporal features of the lambda wave were monitored to assess the performance of 

BS_ICA applied to both abutted and not-abutted waveforms. A description of the theory of 

the ICA algorithm of Bell and Sejnowski (the algorithm used in this part of the study) is 

provided in chapter 2, section 2.6. The experimental methodologies are outlined and the 

results obtained are presented.

6.3. Experimental Method

Details of the data recording procedures are provided in chapter 4, section 4.4.2.

6.3.1. Pre-Processing Procedures

The recorded data were digitally lowpass filtered at 45 Hz in order to remove any 50 Hz 

mains interference and the unwanted high frequency signal components. The baseline for 

each waveform was adjusted by calculating the mean of the pre-stimulus section and 

subtracting it from the whole waveform. The trials were sorted into their respective 

directions of saccade and time-synchronised using a procedure described in the next 

section.

6.3.2. Iterative Time-Synchronisation Operation and its Evaluation

Temporal averaging of the waveforms across trials was carried out to reduce the effect of 

background EEG before processing by BS_ICA (this is described in section 6.3.3). The 

lambda wave is time-locked to the eye-movement EOG waveforms. The initiation of the 

eye-movement (i.e. the saccade onset time) and its termination (saccade offset time) vary 

between trials. This means that the lambda waves from different trials are not time- 

synchronised. Therefore the averaging process would have produced a distorted waveform. 

In order to overcome this, an algorithm which time-synchronised the trials was devised. 

The algorithm ensured that the temporal features of the lambda wave from different trials 

were aligned to a single reference signal prior to averaging. The EOG waveform was 

chosen as the reference signal for the synchronisation process because the lambda wave
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was time-locked to it. The operations involved when performing the time-synchronisation

are outlined below.

i The EOG waveforms across all trials for the desired event were averaged with 

respect to the stimulus onset. The resulting EOG waveform provided the averaged 

stimulus onset information.

ii A section of the averaged EOG waveform which contained both the onset and the 

offset of the saccade was selected by the software as the reference signal.

iii The reference signal and the EOG waveform from the trial being synchronised were 

correlated at each time point (sample value). The maximum correlation coefficient 

value between the two waveforms indicated the amount of shift required to 

synchronise the EOG waveform in that trial. This synchronisation was repeated for 

the EOG waveforms in the remaining trials.

iv The newly synchronised EOG waveforms from all trials were then averaged. The 

resulting waveform retained the averaged stimulus onset information. Steps ii-iv (i.e. 

one iteration) were repeated until the reference signal did not change significantly 

from one iteration to the next. The changes in the reference signal from one iteration 

to the next was measured by computing the Euclidean distance between the 

corresponding waveforms. The synchronisation improved the alignment of EOG 

waveforms across all trials after each iteration.

v The last iteration in the above process produced the required reference EOG signal. 

This signal was then correlated with the original (not synchronised) EOG waveform 

for each trial and the amount of shift required for their alignment was determined. 

All 64 waveforms in the corresponding trial were then time-shifted by the calculated 

amount. The algorithm therefore synchronised all waveforms in all trials to the 

reference EOG signal.

The iterative time-synchronisation operation is described using a flowchart and 

explanatory diagrams in Fig. 6.1. Let matrix X  be a mxp matrix that contains the recorded 

data waveforms Xij, where i is the channel (electrodes) index, and j  is the index of the trial 

number for the waveform x. Matrix X  can therefore be written as,

X =
X ;

. . X j j  . . X

Ej E p

where 1< i < m and i=E is the index of an 
EOG channel.
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Fig. 6.1 Flowchart of the iterative time-synchronisation operation.

START

1. Perform averaging with respect to stimulus onset, over p  EOG traces 
as, (Xei + • •.+ xEp) Ip

2. Obtain an averaged EOG signal waveform EOG_av, that contains 
averaged stimulus onset information.

3. Select section EOG_ref that contains onset and offset of saccadic 
eye movement, t is the time-position when EOG_ref is synchronised

with EOG av.

4. Compute correlation p  between EOG_ref and EOG trace xEj.

5. From position tmax of pM , deduce amount of shift tshift, required 
for synchronising xEj- and EOG_av waveforms.

6. Synchronise xEj  waveforms to EOG_av by shifting xEj  by tshif,j.

7. Produce an averaged waveform EOG_sync of all synchronised traces. 
This waveform contains averaged stimulus information as it is 

synchronised to EOG_av.

8. Determine amount of change (err) between previous average waveform 
(EOG_av) and new synchronised-averaged waveform (EOG_sync).

9. An optimally synchronised EOG signal (EOG_opt) is obtained at the 
end of the iterative synchronisation process

10. EOG_opt is used to synchronise the original EOG trace xEj  of each 
trial. Subsequently, all remaining waveforms j i n  the trial will be shifted

accordingly.
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The performance of the time-synchronisation procedure was evaluated. This involved 

plotting the histogram of the saccade offset across the 50 trials for a given subject and 

experimental event. In order to determine the saccade offset of the EOG waveforms the 

following procedure was followed.

A visual inspection of the data recorded from the 7 subjects, indicated that it takes about 

160 to 2 0 0  ms for a subject to start moving his/her eyes in response to the appearance of 

the stimulus at a new location on the checkerboard. Furthermore, it can be assumed that the 

saccade is complete within the following 300 ms [6.1]. The saccade offset corresponded to 

the largest peak in the eye-movement EOG waveform within this 300 ms time interval. In 

order to locate this peak, the first derivative of the eye-movement EOG waveform was 

computed as shown in Fig.6.2.

Time interval (300ms) for the
occurrence of saccade offset

A scaled 
EOG 

waveform

<u
T33
~ ude-W 
Ert
<U __73o

00
Zero-crossing point

The EOG 
waveform 
first derivative

-0 .2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Time, sec.
Averaged Saccade offset
stimulus
onset

Fig.6.2 Scaled eye-movement EOG waveform and its first derivative.

The maximum value of the derivative within the 300 ms time window was identified by a 

computer program. This corresponded to the highest gradient value of the EOG waveform 

within this time interval. The first zero-crossing after this peak represented the saccade 

offset for an EOG waveform of a given trial. The statistical distribution (histogram) of the 

saccade offsets across the 50 trials could then be obtained by repeating the procedure for 

each trial.
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6.3.3. Averaging Process

Both spatial and temporal averaging of the waveforms were carried out. A description of 

each follows.

6.3.3.1 Spatial Averaging

The saccade-related EEG waveforms recorded from the 64 channels were spatially 

averaged. This operation was carried out so as to reduce their number from 64 to 22 and to 

further enhance the features of the waveforms to enable the BS_ICA algorithm to operate 

more effectively. The operation involved averaging together the waveforms from channels 

close to the international 1 0 - 2 0  system of electrode site placement as denoted by the 

regions circles by dashed lines in Fig.6.3a. This operation resulted in 20 EEG waveforms 

obtained from the 2 0  locations highlighted by the alpha-numeric numeric designation of 

electrodes placement in Fig.6.3b, and 2 EOG waveforms ( E O G l  and E O G r  for the left and 

right sides respectively) which were then used as input to BS_ICA. The 22 resulting 

locations were symmetrically distributed on the left and right hemispheres of the scalp, 

with respect to the nasion-inion line and the pre-auricular line (A1-A2 ), according to the 

conventional scheme shown in Fig.6.3b. Details of the electrodes placement and 

designation are provided in chapter 4, section 4.2.
(a) (b)

Geodesic Sensor Network
64 Channels Nasion

 Right EOG
channel

Left EOG 
channel EOG,EOG,Spatial

averaging

.56) \
. 5 5 ) \

common

Inion

Fig.6.3 Spatial averaging operation: (a) the Electrical Geodesics sensor network of 

64 electrodes and (b) the International 10-20 system of electrode placement with the 

alpha-numeric designation of electrodes placement on the scalp for the EEG.



6.3.3.2 Temporal Averaging

This was performed to reduce the obscuring effect of the background EEG on the EP 

component of interest (i.e. the lambda wave). For evaluation purposes, temporal averaging 

was carried out in three forms:

i) Not-abutted, averaged waveforms without time-synchronisation. This involved 

obtaining the mean of the waveforms for each channel across the 50 trials.

ii) Not-abutted, averaged waveforms with time-synchronisation. This was similar to the 

first form except that the waveforms were time-synchronised prior to averaging.

iii) Abutted, averaged waveforms with time-synchronisation. This involved abutting 

time-synchronised waveforms from a suitable number of successive trials and then 

obtaining the mean. The number of trials abutted were determined experimentally as 

described in the Analysis Procedure section.

6.3.4. Whitening Process and Application of BS_ICA

The averaged waveforms were whitened. Whitening is a process which makes the mixtures 

mutually uncorrelated as well as ensuring they have unity variance [6.2]. By decorrelating 

the data beforehand, BS_ICA can concentrate on the higher-order statistical dependencies 

of the waveforms.

BS_ICA has a number of parameters which need to be initialised. One of these is the 

learning rate ( rj, described in chapter 2, section 2.6). It was experimentally found that a

value of 5 x 10' 4  was an appropriate initial value for this parameter. The value of rj was

gradually decreased during the learning process until the rate of change was less than 1  x 

10’6. The weight matrix (W) was initialised to the identity matrix and then updated during 

the learning process by the amounts AW and AW0 using equations (2.50) and (2.61) 

respectively. The training of BS_ICA stopped when the value of AW became less than a 

predefined small value ( 1  x 1 0 '9).
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6.3.5. Backprojection of the Separated Components

The whitened waveforms were then input into BS_ICA. The resulting BS_ICA time series 

were back-projected to the 22 scalp locations (i.e. the 10-20 international EEG and EOG 

electrode placement locations) in order to obtain their scalp distributions. This involved 

multiplying the inverse of the unmixing matrix (W) by the BS_ICA time series to obtain an 

estimate of the contributions of the separated components at each of the 2 2  scalp locations.

A procedure was devised to assess the effectiveness of BS_ICA for determining the scalp 

distribution of the lambda wave. This estimated the percentage contribution of each 

BS_ICA-extracted component to the expected region of the scalp associated with the 

lambda wave (i.e. parieto-occipital). The procedure used is outlined below.

i) The estimated contributions of each extracted component to all electrode sites were 

normalisation between 0  and 1 .

ii) The sum (St) of the resulting contributions was obtained.

iii) The sum (Sa) of the contributions for the parieto-occipital area of the cerebral cortex 

(i.e. region defined by the 8  electrodes P 3 , P 4 , Pz, Oi, O2 , Oz, T5 and T6 , as shown in 

Fig.6.3b) was calculated.

iv) The required percentage contribution was then determined as S = ( S a / S () x  100.

6.3.6. Analysis Procedure

The analysis was initially carried out on artificially mixed waveforms. This allowed the 

approaches to be quantitatively assessed. The analysis was then extended to the 22 

spatially and temporally averaged waveforms (described in section 6.3.3). The details of 

these analysis are provided next.

For the artificially mixed signals, the 22 averaged waveforms were visually inspected and 

two waveforms were selected. These two waveforms were selected from different subjects 

to ensure their independence. One waveform was an EEG waveform with the temporal 

features of the lambda wave (as described in the literature such as [1.5]). The other was an 

eye-movement EOG waveform (recorded from E O G l  site in Fig. 6.3b). Different lengths 

of averaged waveforms were produced by abutting successive trials (described in section 

6.3.3). The abutted EEG and EOG waveforms for waveform length corresponding to 3 

trials are shown in Figs.6.4 and 6.5 respectively. EOG can be hundreds of microvolts in
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magnitude and contain the signal components caused by blinks and eye-movements. The 

EOG waveforms shown in Fig.6.5 are caused by eye movements. The magnitude of this 

type of EOG is affected by the amount which the eyes are moved when performing 

saccade (i.e. the viewing angle defined in chapter 4, section 4.4.2 ). The viewing angle of 

1 0  degrees used in this study causes a small deviation of the eyes, thus generating eye- 

movement waveforms of the range shown in Fig.6.5.

(a) (b)
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■20

Time, sec.
O 0.5 1 1 . 5

Time, sec.
.5

Trials: 1 2
Fig.6.4 Averaged EEG waveform with lambda wave features: (a) not-abutted, (b)

abutted for 3 trials. Vertical arrow indicates the average stimulus onset.
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Fig.6.5 Averaged eye-movement EOG waveform: (a) not-abutted, (b) abutted for 3 trials. 

Vertical arrow indicates the average stimulus onset.

The Univariate statistical procedure [5.25] was used to test the Gaussianity of the selected 

EEG and EOG signals. The Univariate procedure tested the null hypothesis that the input 

data values were a random sample from a normal distribution. In order to decide whether 

to reject the null hypothesis of the test for normality, it was necessary to examine the 

probability associated with the test statistic (i.e. the probability value for Shapiro-Wilk 

statistic). The value obtained was less than 0.05 (i.e. 95% confidence level) for all four
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waveforms (the not-abutted and abutted time-synchronised averaged EEG and EOG 

waveforms). Therefore the null hypothesis was rejected and it was concluded that the four 

waveforms were not significantly Gaussian.

Artificial mixtures were generated by carrying out the matrix operation,

'EEGm all a 12 ' ' EEG'
\EOGm> Ka 21 a2 2 ) ,E ° G /

Where EEG and EOG were the original signal sources, EEGm and EOGm were the resulting 

mixtures, and an  and an  were the mixing coefficients for the EEG signal, and a2i and # 2 2  

were the mixing coefficients for the EOG signal. ICA algorithm of Bell and Sejnowski 

(BS_ICA) [1.9] was applied to unmix the mixtures. The effect of signal length on the 

performance of BS_ICA was investigated by gradually increasing the length of averaged 

waveforms from 256 data points (corresponding to 1 trial) to 1536 data points 

(corresponding to 6 abutted trials). This was carried out for a number of mixing 

coefficients shown in Table 6.1.

Table 6.1 The mixing coefficients 

used to generate the EEG mixtures.

a n 0.55 0.65 0.75 0.85

a 12 0.45 0.35 0.25 0.15

The EOG mixing coefficients were a2i = 1- an  and 0 2 2  = 1 - <2 7 2 - The gradual increase of 

the waveforms' length was carried out in such a way that each waveform always contained 

an integer number of lambda wave section. Indeed, as the lambda wave occurred within the 

500 ms time interval following the onset of the stimulus, the abutting process ensured that 

the end point of the resulting abutted trials did not lie within the this 500 ms window.

The similarity between the original and recovered waveforms was quantified by calculating 

the following parameters, 

i Correlation coefficient (/?). The value of p  is between -1 and 1. Zero indicated no 

similarity while -1 and 1 indicated 100% similarity in shape (-1 meant an inversion in 

polarity of the extracted component).
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ii Euclidean distance ( e ). This provided a measure of similarity in both magnitude and 

shape of the waveforms and was calculated by,

(6.2)
;=i

where o(i) and r(i) were the original and recovered signals respectively and L was their 

length.

6.3.7 Summary diagram for the data processing and analysis procedures

A prototype data processing tool was developed and implemented in MATLAB 5.3 

software development tool [6.3] for the processing and analysis of the data recorded from 

the Electrial Geodesic Inc. system [4.2]. The main data processing and analysis procedures 

operations are outlined in a block diagram in Fig.6 .6 .
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generation
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22 Recorded 
waveforms Scalp Back- 

projection of 
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components
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Fig.6.6 Block diagram of the main data processing operations and 
analysis procedures.
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6.4. Results and Discussion

6.4.1. Iterative Time-Synchronised Averaging

Fig.6.7a shows an typical average of 50 eye-movement EOG waveforms prior to iterative 

synchronisation. Fig.6.7b shows the histogram (distribution) of the saccade offsets of the 

EOG waveforms. The saccade offset of each trial was determined using the procedure 

described in section 6.3.2. Figs.6.7c and d show the same information once the iterative 

synchronisation has been performed. It can be observed that the process has reduced the 

deviation of the saccade offset distribution and thus provided a less distorted averaged 

EOG waveform.
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Fig.6.7 (a) The averaged eye-movement EOG waveform before synchronisation, (b) 

the saccade offsets distribution, (c) the averaged eye-movement EOG waveform after 

synchronisation, (d) the saccade offsets distribution.
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Fig.6 .8 a shows the averaged lambda wave (over 50 trials) without time-synchronisation 

together with its eye-movement EOG waveform. The waveforms following iterative 

synchronisation are shown in Fig.6 .8 b. The process of iterative synchronisation resulted in 

the extraction of the lambda wave feature/ 2  which was not visible in the averaged lambda 

wave without time-synchronisation. The significance of the features f 2, f 3 and negative shift 

(NS) which are shown in Fig.6 . 8  are outlined in section 6.4.3.
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Fig.6 . 8  The lambda wave (top) and eye-movement EOG waveform (bottom) 

obtained by (a) averaging without time-synchronisation, (b) averaging with 

time-synchronisation. The vertical arrow indicates the average stimulus onset.

Fig.6.9 shows the full set of 22 spatially and temporally time-synchronised averaged 

waveforms obtained for the 2 2  electrode locations for a typical subject’s event recording. 

Fig.6.9a shows the waveforms displayed in a clinical format, i.e. normalised waveforms 

placed on top of each other shown together with their associated electrode name (as 

described in Fig.6.3b), in order to show the time relation between the waveforms. Fig.6.9b 

shows the non-normalised waveforms together with their amplitude range (in microvolts) 

and time course (in second) information. These waveforms are a typical set of waveforms 

used as input to BS_ICA signal source separation algorithm.
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Fig.6.9 The 2 2  averaged waveforms displayed (a) in a clinical format and (b) with their amplitude range 

and time-course information. In (b), the vertical axis is in microvolts and the horizontal axis is in second.

6.4.2. BS_ICA Applied to Artificial Mixtures

Figs.6.10a and b show the effect of signal length on BS_ICA performance when the 

artificially mixed waveforms were processed. The points on the graphs correspond to the 

mixing ratios indicated in Table 6.1. The effectiveness of BS_ICA for extracting the EEG 

waveform from the mixtures gradually improved (i.e./? closer to 1 , £ closer to 0 ) when 

the signal length was increased (by abutting process) from 256 data points (i.e. 1 trial) to 

1024 data points (i.e. 4 trials).
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Fig.6.10 (a) Correlation coefficient values and (b) Euclidean distance 

values, between the original and recovered EEG waveforms.

The components of the artificially generated signal mixtures (i.e. the EOG waveform and 

the EEG waveform with main lambda wave characteristics) are short-duration transient 

signals. The abutting of the waveforms to increase their lengths improved their stationarity. 

As BS_ICA relies on the stationarity of the signals, the abutting process therefore provided 

a means to make the waveforms more suitable for processing by BS_ICA. For waveforms 

greater than 1024 data points, no further improvement was observed.

Consistent observations with the above results were made for the extracted eye-movement 

EOG waveform and the results are summarised in Table 6.2 and Fig.6.11. Correlation 

coefficient values and Euclidean distance values were obtained for the EOG waveform for 

the 4 mixing ratios indicated in Table 6.1. However, it was observed that the different 

mixing ratios did not affect significantly the values of the correlation coefficient and the 

Euclidean distance obtained for each waveform length. Therefore the mean values across 

the 4 mixing ratios were obtained at each waveform length for both parameters (correlation 

and euclidean distance) and the results are summarised in Table 6.2.
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Table 6.2 Mean and standard deviation (std) values (across the four mixing 

ratios) for p  and e (in /xV) for different lengths of waveforms.

EOG Waveform 
lengths

Performance Measure
P £

Mean Std Mean Std
256 0.976 0.020 0.813 0.934
414 0.984 0.022 0.540 0.715
434 0.981 0.018 0.556 0.721
512 0.995 0.005 0.217 0.180
768 0.997 0.004 0.258 0.140
800 0.998 0.002 0.222 0.085
1024 0.997 0.001 0.120 0.045
1280 0.995 0.002 0.120 0.041
1430 0.994 0.005 0.128 0.055
1480 0.997 0.002 0.155 0.074
1536 0.997 0.004 0.183 0.101
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Fig.6.11 (a) Mean Correlation coefficient values and (b) mean Euclidean 

distance values, (across the four mixing ratios), between the original and 

recovered EOG waveforms.



The mean and standard deviation (std) values (across the four mixing ratios) for p  and e 

are given in Table 6.2. Plots of the means (indicated in Table 6.2) are shown in Figs.6.11a 

and b, for p  and e respectively. Figs.6.11a and b indicated that the effectiveness of 

BS_ICA for extracting the eye-movement EOG waveform from the mixtures gradually 

improved (i.e./? closer to 1 , £ closer to 0 ) when the signal length was increased (by the 

abutting process) from 256 data points (i.e. 1 trial) to 1024 data points (i.e. 4 trials).

It was observed that the variation in the mixing ratios affected the recovery of EEG 

waveform whereas it did not affect the recovery of EOG waveform. Fig 6.10 indicated that 

the recovery of the EEG waveform was degraded as the contamination of the EEG by the 

EOG (i.e. larger an  and smaller an) increased. The recovery of the EOG waveform 

remained unaffected.

6.4.3. BS_ICA Applied to 22 Spatially and Temporally Averaged Waveforms

In this section the results of applying the BS_ICA-based approaches to 22 spatially and 

temporally averaged waveforms are presented.

6.4.3.I. BS_ICA extraction of three saccade-related EPs components

A prelimirary study was carried out to investigate the BS_ICA algorithm when applied to 

the recorded saccade-related waveforms. In this preliminary study, BS_ICA was applied to 

not-abutted time-synchronised averaged waveforms. This enable the extraction of a 

number of EPs components related to the performance and generation of saccadic eye 

movements, and their scalp distribution to be obtain. These were: the frontal and occipital 

pre-saccadic potentials, and the lambda wave.

The results for the centre-to-left saccade event of a typical subject are presented in this 

section. Figs.6.12-6.16 show the extracted BS_ICA components for this subject, however 

similar waveforms were observed in the other subjects. The colour shading reflects the 

relative strength of an extracted component at various scalp regions.
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In all figures, the onset of stimulus is shown at 0 ms. Fig.6.12 shows a component with 

peak activity close to the left eye. It had the characteristics of a saccadic eye movement 

because of its sharp transition at about 200 ms (saccade onset) after the stimulus onset. A 

similar component shown in Fig.6.13 was extracted from a region close to the right eye. 

Waveforms with similar time courses shown in Fig.6.9 are observed in the EOG channels, 

EOG right ( E O G r )  and EOG left ( E O G l ) .  The extraction of these components indicated 

that the method successfully isolated the EOG waveforms caused by eye movements. 

Fig.6.14 and 6.16 shows two potentials extracted from the frontal (top picture) and 

occipital (bottom picture) areas. These occurred shortly prior to the saccade onset. The 

frontal pre-saccadic potential is believed to be related to motor commands preceding 

voluntary saccades [3.28]. The occipital pre-saccadic potential was found to occur about 30 

ms after the frontal one. This finding suggested that the occipital pre-saccadic potential is 

an efferent feedback or copy from the frontal areas for saccade generation. This is believed 

to be a prerequisite for visual stability during eye movements [1.7].

Fig.6.16 shows three sub-components (pointed to by arrows) extracted from the occipital 

area. These appeared immediately after the saccade onset and ended shortly after the 

saccade offset (about 300 ms after stimulus). These are associated with visual information 

processing triggered by the relative movement of visual field features across the retina 

during a saccade [1.5]. The fact that the occipital pre-saccadic potential and the following 

three sub-components were extracted separately suggested that they were generated by 

independent neural processes. This could not have been detected without the application of 

a signal source separation technique. Consistent results were obtained for 7 subjects.

This preliminary study highlighted some of the limitation of BS_ICA algorithm when 

applied to EEG and EOG recorded waveforms. It was observed that BS_ICA is sensitive to 

large differences in amplitudes ranges between the EEG and the eye-movement EOG 

signals. To this effect, prior to applying BS_ICA to the waveforms, the amplitude range of 

the EOG signals and of the EEG signals recorded from channels close to the EOG 

electrodes location, were scaled down to the range of the recorded EEG signals (typically -  

40 to +40 microvolts) in order to reduce the difference in amplitude between the 

waveforms. This was considered to be appropriate at this stage as only the time course of 

the components was of importance and the objective of this preliminary was to extract EPs 

of very small amplitude (when compared to amplitude of EOG amplitude). The effect of
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various scaling range was investigated. It was ensured that the scaling range of the EOG 

always remained equal or greater than the range of the EEG signals because in a realistic 

situation, the EOG is seldom smaller in amplitude range than the EEG. Best results were 

obtained when the EOG were scaled down to the range of the recorded EEG signals.

This preliminary study indicated that the signal source separation of BS_ICA was a 

valuable tool for extracting EPs from the recorded saccade-related waveforms. The results 

of this part of the study revealed valuable information about the brain mechanisms 

involved in performing saccades. It also highlighted some of the limitation of BS_ICA 

algorithm when applied to EEG and EOG recorded waveforms.

6.4.3.2. The effect of signal length on the performance of BS_ICA for extracting the 

lambda wave

In this section, BS_ICA was applied to the spatially and temporally time-synchronised 

waveforms but no scaling operation was performed on the waveforms prior to input to 

BS_ICA, as such procedure may distort the amplitude relation between the signals.

As a finite number of trials had been recorded (i.e. 50 trials per subject), increasing the 

number of trials for the abutting process would have resulted in the averaging being carried 

out over a smaller number of trials, thus reducing the ability to attenuate the background 

EEG prior to BS_ICA operation. It was decided to set the length of the abutted waveforms 

to 3 trials. This was considered to be a reasonable compromise for satisfying these two 

criteria. Once the components were extracted by BS_ICA, a further averaging across the 

trials was carried to produce a single lambda wave.

Fig.6.17 shows typical BS_ICA-extracted lambda waves (top row) and left-eye eye- 

movement waveform (bottom row) together with their corresponding scalp distributions, 

for the not-abutted (a and b) and abutted (c and d) time-synchronised averaged approaches. 

Similar results were obtained for the other subjects and the results when assessing the 

methods for all subjects are summarised later in this section.
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Fig.6.17 BSICA-extracted lambda waves (top row) and eye-movements (bottom row) 

together with their respective scalp distributions for ((a), (b)) the not-abutted and ((c), (d)) 

the abutted approaches. The vertical arrow indicates the average stimulus onset.

The followings are the main observations of this part of the study:

• B SI C A managed to extract the lambda wave and the eye-movement waveform when

it was applied to both abutted and not-abutted averaged time-synchronised waveforms. 

However, the features of the lambda wave extracted when BS ICA was applied to the 

abutted waveforms were preserved more accurately. The features considered for this 

evaluation were //, f 2 and/?, and the pre-saccadic negative shift (NS) (negative shift in 

the EEG which appears from the onset of the stimulus and ends once the saccade is 

performed). The features fi, f 2 and fo are believed to be related to the movement of the 

visual field across the retina [1.5]. The features / /  and f 2 were reported to be time- 

locked to the onset of the saccade and the feature to be time-locked to the offset of 

the saccade [1.5]. The characteristics of these features depend on factors such as the 

saccade duration or the viewing angle (a  , shown in Fig.4.5 in chapter 4). In our study, 

where a short duration of saccade (about 2 0  ms) was used, we did not observed the 

feature/ /  in either time-synchronised or not time-synchronised averaged lambda waves 

(see Fig.6 .8 b). This was in accordance with the observations made in [1.5]. However, 

in our study this feature became visible when BS ICA was applied to either not- 

abutted or abutted time-synchronised averaged waveforms. The feature/ /  was observed
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by [1.5] only in the averaged EEG waveform of a subject for a longer duration of 

saccade (75 ms to 100 ms).

• Table 6.3 contains a summary of the analysis results across the 7 subjects for the 

temporal features NS , / ; , / 2  and fs when assessing the methods to recover the lambda 

wave component.

T a b l e  6 .3  Summary of the analysis results for the temporal features 

of the lambda wave when assessing four methods to recover the 

lambda wave component.

Methods
Lambda wave temporal feature

NS f i h h

Not-abutted, averaged waveforms without 
time-synchronisation 7 1 l 1

Not-abutted, averaged waveforms with 
time-synchronisation 7 2 5 4

BS_ICA applied to not-abutted, averaged 
waveforms with time-synchronisation 7 4 6 6

BS_ICA applied to abutted, averaged 
waveforms with time-synchronisation 7 7 7 7

The methods were:

• Not-abutted, averaged waveforms without time-synchronisation.

• Not-abutted, averaged waveforms with time-synchronisation.

• BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation.

• BS_ICA applied to abutted, averaged waveforms with time-synchronisation.

An expert familiar with the features of the lambda wave inspected the recovered 

lambda waves for each method. Four features of the recovered lambda waves (NS, f i , f 2 

and/i) were monitored for their visibility. Table 6.3 contains the number of subjects in 

which each feature was observed for each method. The NS feature was observed in all 

7 subjects for all 4 methods. The averaging method without time-synchronisation was 

least effective, as with this method, each one of the features f u f c  and f s  were observed 

only once across the 7 subjects. Averaging with time-synchronisation was more 

effective than averaging without synchronisation, as the method managed to preserve 

features /;, / 2  and / j  in 2, 5 and 4 subjects respectively. The results were further 

improved when BS_ICA was applied to not-abutted time-synchronised averaged 

waveforms. The method successfully extracted features /; , / 2  and f s  in 4, 6  and 6
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subjects respectively. The best performance was achieved when BS_ICA was applied 

to the abutted time-synchronised averaged waveforms as the features/h / 2  and / 3  were 

visible in all 7 subjects.

• Table 6.4 contains a summary of the analysis results across the 7 subjects for the scalp 

distribution (spatial feature) and the amplitude range when assessing the four methods 

to recover the lambda wave.

Table 6.4 Summary of the analysis results for the scalp distribution 

and amplitude range features when assessing four methods to 

recover the lambda wave component (std = standard deviation).

Methods

Percentage Scalp 
distribution (%)

Amplitude Range 
(bV)

mean std mean std

Not-abutted, averaged waveforms without 
time-synchronisation -- - 48 13

Not-abutted, averaged waveforms with 
time-synchronisation - - 48 18

BS_ICA applied to not-abutted, averaged 
waveforms with time-synchronisation 55 9 97 25

BS_ICA applied to abutted, averaged 
waveforms with time-synchronisation 73 11 29 7

The amplitude range represents the peak-to-peak magnitude of the lambda wave as 

previously indicated in Fig.6.17. The table provides both the mean and standard 

deviation values for each of the two parameters across the 7 subjects. Neither 

averaging methods (i.e. with and without time-synchronisation) provided the scalp 

distribution of the recovered lambda wave. When using BS_ICA, the backprojection 

method described in section 6.3.5, was applied to obtain an estimate of the amplitude 

ranges. In the same section, the procedure used to estimate the percentage contribution 

of the BS_ICA-extracted components to the parieto-occipital region of the cerebral 

cortex is provided.

When BS_ICA was applied to the abutted averaged time-synchronised waveforms the 

contribution of the extracted lambda wave component to the parieto-occipital region of 

the cerebral cortex (back of the head) was estimated to be 73%. When BS_ICA was 

applied to not-abutted averaged time-synchronised waveforms, the contribution was 

55%. Therefore, the abutting process improved the spatial resolution of the extracted
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lambda wave. With their ability to obtain the scalp distribution of each extracted 

component, BS_ICA-based approaches provided a more accurate identification of the 

area of the cerebral cortex concerned with the lambda wave electrical activity, as 

compared to the averaging method which did not allow for the spatial resolution of the 

waveforms to be obtained..

When considering the amplitude range feature, the averaging methods with and 

without time-synchronisation provided mean values of 48 pV. BS_ICA applied to the 

abutted averaged time-synchronised waveforms provided a mean value of 29 pV for 

the amplitude range while that for BS_ICA applied to the not-abutted averaged time- 

synchronised waveforms was 97 pV. The former range is closer to the previously 

reported lambda wave amplitude range of about 30 pV [1.5]. A smaller standard 

deviation value of 7 pV across subjects indicated that BS_ICA applied to the abutted 

waveforms resulted in more consistent results than that obtained when BS_ICA 

applied to the not-abutted waveforms which provided a standard deviation value of 25 

pV.

In summary, the four approaches reported in this study were ranked in the following order 

of decreasing effectiveness for extracting the lambda wave.

i) BS_ICA applied to abutted, averaged waveforms with time-synchronisation.

ii) BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation .

iii) Not-abutted, averaged waveforms with time-synchronisation.

iv) Not-abutted, averaged waveforms without time-synchronisation.

6.5. Conclusion

Novel procedures were developed in order to improve the extraction of saccade-related EP 

components from the recorded EEG and EOG mixtures.

An BS_ICA-based methodology which enabled three saccade-related EPs components to 

be successfully extracted from the EEG and EOG recorded waveforms and their scalp 

distribution to be obtained, was described. The components of interest were: the frontal and 

occipital pre-saccadic potentials, and the lambda wave. This part of the study demonstrated 

the usefulness of a signal source separation method (such as BS_ICA) for analysing
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saccade-related EEG waveforms and revealed valuable information about the brain 

mechanisms involved in performing saccades.

An iterative time-synchronisation procedure was devised to time-synchronise the recorded 

waveforms across trials. This ensured that the time features of the lambda wave were 

preserved during the subsequent averaging operation used to reduce the effect of 

background EEG.

The effect of waveform length on the performance of independent component analysis 

(BS_ICA) for extracting a visual evoked potential called the lambda wave from saccade- 

related EEG waveform was investigated. Experiments were carried out using both 

artificially generated mixtures as well as the recorded EEG and EOG waveforms. The 

length of the waveforms were varied by a process which involved abutting successive 

trials. The study demonstrated that increasing the length of the waveforms improved the 

performance of BS_ICA in extracting both the temporal and spatial characteristic features 

of the components from the recorded electroencephalogram (EEG) mixtures. The reason 

for this improvement was considered to be due to an improvement to the stationarity of the 

signals thus making them more suitable for processing by BS_ICA. This section of the 

study demonstrated that the abutting of the trials is a valuable mechanism for improving 

the performance of BS_ICA in extracting evoked potentials from the recorded EEG 

waveforms.
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Chapter 7. Model-Based Independent Component Analysis for 

Extracting the Lambda Wave

7.1 Chapter Summary

In this chapter, an approach for incorporating the signal model into independent component 

analysis of Bell and Sejnowski (BS_ICA) was developed. The effectiveness of this model- 

based BS_ICA was both quantitatively and visually assessed and compared with the same 

BS_ICA algorithm without the model. The methodology and results obtained are discussed 

and details of the implementation is provided. The results for both simulated signal 

waveforms as well as the recorded EEG and EOG waveforms are provided and discussed.

7.2 Introduction

As described in chapter 2, section 2.6, the operation of BS_ICA requires:

• The number of sources and available (recorded) mixtures to be equal.

• The source signals to be stationary.

• The mixing process to be linear.

• Not more than one source signal to be Gaussian.

However, the above requirements do not fully conform with the components of the EEG 

signal. For example EPs are short duration transient signals which might not be stationary.

To this effect, a novel method was presented in chapter 6  in order to increase the stationarity 

pre-requisite of the EEG waveforms prior to BS_ICA operation. Another particularity of EPs 

is -that they may have multi-modal type distributions. This mismatch between BS_ICA 

assumptions and EPs properties may cause distortion of the components extracted by the 

BS_ICA algorithm. Therefore, procedures to aid the BS_ICA algorithm to extract EPs from 

the recorded EEG mixtures of interest may be valuable. In this chapter, an approach to 

improve the performance of BS_ICA for extracting the lambda wave from saccade-related 

EEG waveforms is presented. The developed method consists of utilising prior information 

about the time characteristic features of the lambda wave as part of the BS_ICA signal source 

separation operation, in order to guide the algorithm for extracting the EP component of
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interest (the lambda wave). The performance of the new BS_ICA-based approach was 

assessed both quantitatively and visually, and its effectiveness was compared to that of the 

conventional (without prior information) BS_ICA algorithm. A description of the developed 

model-based (with prior information) BS_ICA approach is provided in section 7.3.2.

7.3 Experimental Procedure

Details of the data recording procedure are provided in chapter 4, section 4.4.2.

7.3.1 Outline of the Procedure for Extracting the Lambda Wave

The operations to extract the lambda wave consisted of the following:

i) Pre-processing

ii) Iterative Time-Synchronisation

iii) Time and Spatial Averaging

iv) Whitening

v) Application of either BS_ICA (without model) or the model-based BS_ICA

vi) Back-projection of the separated components to the electrode sites on the scalp.

Operations i) to iv) and vi) are described in more details in chapter 6 , sections 6.3.1 to 6.3.4 

and 6.3.5 respectively.

In chapter 6 , section 6.3.4, the appropriate initial value for the learning rate parameter of the 

BS_ICA algorithm was heuristically found to be 75xl0'4. This initial value was used in both 

BS_ICA-based approaches (with and without model).

Details of operation v) are provided in the following sections.

7.3.2 Design of the Model-Based BS_ICA for the Lambda Wave Extraction

The design of the model-based BS_ICA involved the following steps:

• Development of a model for the lambda wave.

• Development of a suitable cost-function.
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• Development of a model tracking algorithm.

• Integration of the model into the BS_ICA algorithm.

The details of these steps are provided next.

7.3.2.1 Development of a Model for the Lambda Wave

The function of the model was to represent the lambda wave. This had to be sufficiently 

flexible to accommodate the variations in the time characteristics of the lambda wave. A 

model which satisfied these requirements was designed by considering the general trend of 

the temporal response of the lambda wave. The model consisted of three straight lines 

sections characterised by their gradients (mi, m2 and m3) and their respective starting and end 

time points. The three sections of the model are shown in Fig.7.1.

Saccade offset

An eye movement 
waveform

Lambda wave peak

40

An EEG waveform 
with the lambda 
wave features

section 3 (m3) -1
CL
6<

**

section 2 (<m2)-20 section 1 (m7)

-0.2 0.2 0.4 0.6 
Time, sec.

Averaged Saccade offset
stimulus
onset

Fig.7.1 A model of the lambda wave represented by three straight lines.
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The parameters o f section 1

The lambda wave has a negative shift (NS) starting from the averaged stimulus onset. This 

was the starting point of section 1 of the model. The end point of this section was chosen to be 

the saccade offset because the (positive) peak of the lambda wave is time-locked to this offset. 

Furthermore this negative shift ends around the saccade offset point. The procedure for 

determining the saccade offset is described in chapter 6 , section 6.3.2. The statistical 

distribution of the saccade offset across subjects was obtained by repeating the procedure for 

all subjects. The saccade offset distribution was heuristically found to have a mean of 260 ms 

and a standard deviation of about 30 ms. The peak of the distribution represented the mean 

offset time for the saccade across all subjects.

The parameters o f section 2

The starting point for the second section of the model was the mean saccade offset determined 

in section 1. The lambda wave has then a positive shift which ends around the peak of the 

lambda wave. Therefore the end of the second section was chosen to correspond to this peak. 

In order to determine the time corresponding to the peak of the lambda wave the following 

procedure was followed. The peak of the lambda wave is time locked to the saccade offset 

and was experimentally determined (across all subjects) to occur within 200 ms (±30ms) from 

the saccade offset. Therefore, the time of occurrence of the peak of the lambda wave 

corresponded to its maximum amplitude within this region.

The parameters o f section 3

The starting point for the third section of the model corresponded to the end point of the 

second section. After this point the lambda wave has a negative shift. The point of this 

negative shift was experimentally determined (across all subjects) to be around 500 ms from 

the averaged stimulus onset. This time point was chosen to be the end of this section of the 

model.

Once the starting and end points of the three sections were determined, a straight line was 

fitted into the points in each section by using the least-mean-square technique [7.1] and their 

corresponding gradients (mi, m2 and mf) were obtained.
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7.3.2.2 Development of a Suitable Cost-Function

The purpose of the cost-function {(/)) was to provide a measure of closeness between each 

BS_ICA (extracted) component and the devised model of the lambda wave. The cost-function 

used was,

0  =  J (  m bn ~  m li ) 2  + (  m 2rn ~  m 2i ^  + (  m 3m ~  m 3i f  C7*1)

where mjm, rri2m and 1713m are the three gradients obtained (using the procedure described in the 

previous section) from an averaged saccade-related EEG waveform that contained the broad 

(coarse) time characteristics (the three voltage shifts described in section 7.3.2.1 ) of the 

lambda wave. The broad time features of the lambda wave were visible in the averaged EEG 

waveforms. The gradients mu, m2i and 7713/ were obtained for each extracted BS_ICA 

component.

7.3.2.3 Development of a Model Tracking Algorithm

The purpose of this algorithm was to identify which BS_ICA component most closely 

matched the model of the lambda wave. The smallest cost-function value ( (f) s) was identified 

and the BS_ICA component which corresponded to it was selected.

7.3.2.4 Integration of the Model into the BS_ICA algorithm

The amount of change (ATT ) for the unmixing weight matrix (W) at each iteration of the 

learning rate for BS_ICA without model was based on equation (2.50). However, for the 

model-based BS_ICA, this equation was modified to,

A W =rj 1  + ( l-2 Y )U T ]W rj =
7jx for the selected IC A component
H2 for all other IC A components 

With this modification, this equation can be rewritten as,

(7.2)
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AW  = /  + ( l - 2 Y )U T ]

(
*72 ^11 ^2 W\2 772 W13 72  *1„  '

W21 ^2 W22 T] 2 w 23 ”2 w 2n

1̂ Wm\ Vl Wm2 Vl w m3 1̂ ^  mn

\P2 Wn\ ^2 Wn2 r(2Wnh *••• *12 Wnn;

(7.3)

The mth-row of W  corresponds to the channel that contained the selected BS_ICA component 

and n is the number of input waveforms to BS_ICA. For the selected BS_ICA component, the 

learning rate ( r] ) was set to Tjl and for the remaining components, it was set to rj2 . The value 

of ij{ was determined by,

>7i =c i Vi 1 + (7.4)

where C; and C2 are constants and (f)si is the value of (f)s after the first BS_ICA iteration. 

The justification for the approach and equation (7.4) is provided next.

BS_ICA is an unsupervised learning algorithm. The model-based BS_ICA however provides 

a form of feedback to the BS_ICA learning rule. This is achieved by using the cost function 

information to provide a higher learning rate for the selected BS_ICA component. This makes 

the model-based BS_ICA a partially supervised learning algorithm where the lambda wave 

has become the main target for the algorithm. The aim of this operation was to emphasise the 

extraction of the desired component over the other components.

The expression for 777 has two terms. The first term, (i.e. C; 772) is a bias to ensure 777 remains 

always larger than 772. This provides a faster convergence rate for the desired component thus

6
emphasising its extraction over the other components. The second term (i.e. Cx rj2 ---- -— ) is a

c i a,-

smoothing factor for 777. The term provides a dynamic adjustment of 777 proportional to the 

value of the calculated error {(f)s). The term <psi is a normalising factor for <f)s to ensure that 

the value of the smoothing factor (second term of the expression of 777) was not out of range 

when compared to the first term C7 772. (psi corresponded to the initial error, i.e. the value of
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(j)s after the first BS_ICA iteration.. The values of the constants C; and C2  control the 

contribution of each term to 777. Their values were determined experimentally.

Fig.7.2 shows the overall structure of the model-based BS_ICA approach for a 2-input case.

Unmixing matrix
Mixing matrix

BS_ICA Algorithm

Determine 
AW using 
BS_ICA 
learning 

rule

Update the weights associated 
with the selected BS_ICA 
component with the learning 
rate 7/7. Update all other weights 
with learning rate 772.

Identify the 
BS_ICA 
component 
associated
with (j)Sm

Determine (j) for 
each component.

Identify smallest 
(j) value (i.e. (J) s)

Model tracking Algorithm

Key to the figure
sn = signal sources. 
xn = signal mixtures. 
amn = elements of mixing matrix. 
wmn = elements of unmixing matrix. 
un = recovered source signals. 
g(.) = non-linear function (sigmoid). 
yn = output of the non-linear 
function.
(f) = cost function value.
0 s = smallest cost-function value. 
AW = change in weight matrix. 
rji and 772 = learning rates.

Fig.7.2 The model-based BS_ICA operation.

7.4 Analysis Procedure

The performance evaluation of the two BS_ICA approaches (i.e. with and without model) was 

carried out in two stages. Initially a quantitative evaluation was carried out by using 

artificially mixed waveforms. Then an evaluation of the approaches was carried out when 

applying the methods to the 22-averaged EEG waveforms (described in chapter 6 , section 

6.3.3).
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The artificially mixed waveforms were generated by using the procedure described in chapter 

6 , section 6.3.6.

The two BS_ICA approaches were applied to unmix the waveforms. The EEG mixing 

coefficients are shown in Table 7.1. The EOG mixing coefficients were <221 = 1- an  and 0 2 2  = 

1 - ai2.

Table 7.1 The mixing ratios.

an 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

CI12 0.45 0.40 0.35 0.30 0.25 0.20 0.15 0.10

The sum of an  with a / 2  (similarly for a2 / with a22) was equal to 1. Therefore, the total 

signals powers before and after the mixing operation remained constant. An investigation was 

also carried out using mixing coefficients where this condition did not apply.

The similarity between the original and recovered waveforms was assessed by calculating 

both the Correlation coefficient ( p ) and the Euclidean distance ( s )  as described in chapter 6 , 

section 6.3.6.

7.5 Results and Discussion

7.5.1 Simulated Signal Mixtures

Table 7.2a shows the values obtained for p  and £ when extracting the EEG signal from the 

two simulated mixtures using BS_ICA with and without model. The same information is 

shown in Table 7.2b when extracting the EOG signal.
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Table 7.2 Correlation coefficient ( p ) and Euclidean distance ( £ )  values for 

the two BS_ICA approaches for (a) the EEG waveform and (b) the EOG 

waveform.

BS_ICA
an
an

-►0.55
-►0.45

0.60
0.40

0.65
0.35

0.70
0.30

0.75
0.25

0.80
0.20

0.85
0.15

0.90
0.10

without
model

P 0.116 0.451 0.641 0.789 0.890 0.957 0.992 1.000
with

model
P 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

without
model

£
2.045 1.446 1.347 0.528 0.384 0.283 0.222 0.206

with
model

£
0.104 0.060 0.200 0.031 0.154 0.249 0.147 0.205

(b)

BS_ICA
Qn
dl2 *  0.55

*  0.45
0.60
0.40

0.65
0.35

0.70
0.30

0.75
0.25

0.80
0.20

0.85
0.15

0.90
0.10

without
model

P 0.985 0.997 0.997 0.999 0.992 0.998 0.996 0.995

with
model

P 0.985 0.993 0.983 0.999 0.999 0.999 0.995 0.994

without
model

£
2.310 1.345 1.071 0.971 0.940 0.944 0.967 1.006

with
model

£
0.538 0.692 0.944 0.968 1.023 1.088 0.560 0.826

For values of an  less than or equal to 0.2 (i.e. mild contamination of the EEG by EOG), the 

performance of the two approaches in recovering the EEG waveform was not significantly 

different. However, for larger values of an  (i.e. more severe contamination of the lambda 

wave by the EOG), the model-based BS_ICA performed significantly more effectively in 

extracting the EEG waveform with the lambda wave features (i.e. larger values of p  and 

smaller values for e). No significant difference was observed between the 2 methods 

regarding the extraction of the EOG.

The mean and standard deviation (std) values of p  and e for the data shown in Table 7.2 are 

summarised in Table 7.3a. The incorporation of the model into the BS_ICA did not 

deteriorate the recovery of the EOG component from the mixtures. This is demonstrated by 

the results in Table 7.3b.
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Table 7.3 Mean and standard deviation (Std) values 
of p  and e (in /tV) for the data shown in Table 2, 
for (a) EEG and (b) the EOG waveforms.

(a)

B S_IC A
EEG Waveform

P £
Mean Std Mean Std

Without
Model 0.518 0.401 1.081 0.695

With
Model 1.000 0.000 0.144 0.075

(b)

B S IC A

EOG Waveform
P £

Mean Std Mean Std
Without
Model 0.963 0.030 1.358 0.464

With
Model 0.993 0.006 0.830 0.212

Table 7.4 shows typical results obtained for cases where the sum of an  with an  (similarly for 

a2i with <322) was not equal to 1. As before the model-based BS_ICA was the more effective 

approach.

Table 7.4 Correlation coefficients ( p ) and Euclidean distance 
{£ in jitV) for the approaches. The total power of each signal 
within the mixtures were less than its power before mixing.

Mixing
matrix

Wave­
form

BS_ICA Approach

Without model With model

P £ P £
/  \  0.6 0.3
0̂.3 0.6

EEG 0.605 1.334 1.000 0.333

EOG 0.999 1.026 0.934 1.030

0̂.6 0.5 N 
0̂.5 0.6

EEG 0.906 0.325 1.000 0.103

EOG 0.999 0.941 0.985 0.520
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7.5.2 BSICA Applied to the 22-Averaged Waveforms

The results obtained when the two BS ICA approaches were applied to the 22 spatially and 

temporally time-synchronised averaged waveforms for the centre-to-left saccade event are 

described in this section. The results for a typical subject are provided. However consistent 

results were observed in the other subjects and they are summarised later in this section.

The visual inspection of the 22 components extracted by each BS ICA approach showed two 

waveforms with the characteristic features of the lambda wave. These are shown in the top 

and middle rows of Fig.7.3. The bottom row shows the corresponding extracted EOG 

waveforms.
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Fig.7.3 Two Lambda wave components extracted by BS ICA (top and middle) with 
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The following observations were made when comparing the results.

• Both BS_ICA approaches managed to extract the lambda wave and their corresponding 

EOG waveforms. The features monitored were /}, / 2 , f s  (see Fig.7.3) and pre-saccadic 

negative shift (NS, a negative shift in the EEG baseline following the onset of the 

stimulus). The features f u f 2 and f s  are believed to be related to the movement of the visual 

field across the retina [1.5]. All these 4 features were visible in the extracted lambda wave 

components when both BS_ICA approaches were applied. However, when using the 

model-based BS_ICA, the features were preserved more accurately. This indicated that 

the model-based BS_ICA provided a further improvement in extracting the features of the 

lambda wave as compared with the BS_ICA without model.

• The peak activity of the lambda wave (observed from its scalp distribution) for both 

BS_ICA approaches was dominant in the left and right sides of the parietal area (see top 

row in Fig.7.3) as well as in the centre of the parietal area of the cerebral cortex (see 

middle row in Fig.7.3). The spatial resolution of the lambda wave components however, 

was more concentrated in the aforementioned regions for the model-based BS_ICA. The 

scalp distribution of the lambda wave obtained using the BS_ICA approaches was in 

accordance with the region (parieto-occipital area of the cerebral cortex) from which the 

lambda wave signal was reported to have been recorded (in [1.5]).

• Table 7.5 contains a summary of the analysis results across the 7 subjects for the temporal 

features NS , / ; , / 2  and f s  when assessing the two BS_ICA-based approaches to recover the 

lambda wave component.

Table 7.5 Summary of the analysis results for the temporal features of the 

lambda wave when assessing the two BS_ICA-based approaches to recover 

the lambda wave component.

Methods
Lambda wave temporal feature

NS f i f 2 f s

BS_ICA applied to averaged waveforms 
with time-synchronisation 7 4 6 6

Model-BS_ICA applied to averaged 
waveforms with time-synchronisation 7 7 7 7
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The methods were:

-  BS_ICA applied to averaged waveforms with time-synchronisation.

-  Model-BS_ICA applied to averaged waveforms with time-synchronisation.

Table 7.5 contains the number of subjects in which each feature was observed for each 

method. The NS feature was observed in all 7 subjects for both BS_ICA-based 

approaches. When BS_ICA was applied to the averaged waveforms, the method 

successfully extracted features f j ,  f 2 and f s  in 4, 6 and 6 subjects respectively. The best 

performance was achieved when the developed model-BS_ICA algorithm was applied to 

the averaged waveforms as the features f i , f 2 and/? were visible in all 7 subjects.

• Table 7.6 contains a summary of the analysis results across the 7 subjects for the scalp 

distribution (spatial feature) and the amplitude range when assessing the two BS_ICA- 

based methods to recover the lambda wave.

Table 7.6 Summary of the analysis results for the scalp distribution

and amplitude range features when assessing the two BS_ICA-based approaches

to recover the lambda wave component (std = standard deviation).

Methods

Percentage Scalp 
distribution ( % )

Amplitude Range 
(uV)

mean std mean std

BS_ICA applied to the averaged 
waveforms with time-synchronisation 55 9 97 25

Model-BS_ICA applied to the averaged 
waveforms with time-synchronisation 73 9 21 3.4

The table provides both the mean and standard deviation values for each of the two 

parameters across the 7 subjects. The amplitude range represents the peak-to-peak 

magnitude of the lambda wave as indicated in Fig.7.3. The backprojection method 

described in chapter 6, section 6.3.5, was applied as part of the signal separation process 

in order to obtain an estimate of the amplitude ranges of the extracted components. In the 

same section, the procedure used to estimate the percentage contribution of the BS_ICA- 

extracted components to the parieto-occipital region of the cerebral cortex is provided.
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When BS_ICA was applied to the averaged waveforms the contribution of the extracted 

lambda wave component to the parieto-occipital region of the cerebral cortex (back of the 

head) was estimated to be 73% with a standard deviation of 9. When the developed 

model-BS_ICA approach was applied to the averaged waveforms, the contribution was 

55% with a standard deviation of 9. Therefore, the incorporation of a lambda wave 

temporal model into the signal separation operation of the BS_ICA algorithm improved 

the spatial resolution for the extracted lambda wave.

When considering the amplitude range feature, the developed model-BS_ICA applied to 

the averaged waveforms provided a mean value of 29 pV with a standard deviation of 3.4 

pV for the amplitude range while that for BS_ICA was 97 pV with a standard deviation 

of 25 pV. The former range is closer to the previously reported lambda wave amplitude 

range of about 30 pV [1.5]. A smaller standard deviation value across subjects indicated 

that the developed model-BS_ICA approach resulted in more consistent results than that 

obtained when normal (without model) BS_ICA was used.

7.6 Discussion on the effects of the error feedback

In this section, the results obtained when experimenting with different values of the 

contribution of the smoothing factor (SF) to the learning rate 777 (of the model) are described. In 

Figs.7.4 to 7.6, the vertical axis represents the correlation between the BS_ICA-extracted 

lambda wave and the original lambda wave, and the horizontal axis represents the number of 

iterations for the training process of the model-based BS_ICA algorithm.

• Fig.7.4 shows the effect of gradually increasing the constant C7/C2 that controls the

contribution of the error-feedback (SF) to the overall model cost-function. The constant Cj 

that controls the contribution of the model to the overall BS_ICA learning rule is set to a 

value of 45 for a the mixing ratio of (au=0.15, (372=0.25). The value of the ratio C7/C2 is then 

gradually increased from less than 0.33 to 10. This case (i.e. C7 = 45) was shown as a 

representative one, but similar results were observed for other values of C7 .
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Fig.7.4 (a) The training results when no SF was incorporated into the model cost function.
(b)-(h) The effect of gradually increasing the contribution of the SF to the model cost 
function by increasing the value of constant ratio C7/C2 . C/ was set to 45 for all cases.

As shown in Fig.7.4, the introduction of an error-feedback loop (or smoothing factor) into 

the model cost-function improved the smoothness of the learning. The learning became 

more gradual. Therefore the error-feedback loop provided a better stability of the adaptive 

training process. These results were obtained for mixing ratio (an=0.15, a;2=0.25). 

However, similar results were observed for other mixing ratios. The optimum value for the
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ratio C7/C2 that controls the contribution of the error-feedback cost-function to the overall 

model cost-function was determined experimentally. Although it was observed that the 

introduction of the smoothing factor improved the performance of the model cost-function, 

at this stage, no in-depth understanding of the reasons behind this observation was provided. 

However, it could be observed that within a defined range of values for C2 , the smoothing 

factor was effective and that very large values of C2 (i.e. C2 ~ °°) will cause the smoothing 

factor to stop performing efficiently as shown in Fig.7.4a (cf. equation 7.4).

A dropping effect is caused by overtraining as shown in Fig.7.5a and c, for two different 

values of the Cy respectively. Fig.7.5b and d show the same information when the smoothing 

factor was incorporated into the model cost function. In Fig.7.5a and c, Cy is set to 49 which 

was found to be the optimum value for the model at mixing ratio (0/7=0.75, a n - 0 .2 5 ). In 

Fig.7.5b and d, Cy is set to the value when the model did not perform well (Cy=45) at the 

same mixing ratio. Fig.7.5a and c indicated that, in both cases, a faster drop in performances 

was observed when the smoothing factor was not incorporated into the model cost function. 

However, when the smoothing factor was incorporated into the model, this dropping effect 

associated with overtraining was reduced as shown in Fig.7.5b and d. These results were 

obtained for a mixing ratio of (ayy=0.75, a n = 0 .2 5 ). However, similar observations were 

made for other mixing ratios.
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Fig.7.5 Effect of the feedback-error on the dropping effect caused by overtraining, (a) and (c) 
Training results for model without smoothing factor, (b) and (d) Same information when the 
smoothing factor is incorporated into the model.
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Fig.7.6a shows a case when the model does not work for a given value of C; (i.e. C/=54). 

Fig.7.6b shows the same case (i.e. with C;=54) when the smoothing factor was incorporated 

into the model. The cases where the model did not work usually involved the situations 

where the bias constant Ci had a very small span of possible values for the model to work. 

It was observed that the incorporation of the smoothing factor into the model cost-function 

increased the span of values which the constant C] could take.
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Fig.7.6 (a) The training results for a value of C; (C;=54) when the model does not 
work, (b) The same training results for the same value of C; (C/=54) when the error- 
feedback was incorporated into the model cost function.

It was observed that the use of a bias constant C; was necessary for the model to operate 

satisfactorily. This enabled the learning rate associated with the component of interest to 

always be larger than that of the other components, thus guiding the BS_ICA algorithm in 

extracting the component of interest.

It was observed that the amount of the smoothing factor (determined by the ratio C 7/C 2) 

which needed to be incorporated into the model cost function, varied with respect to the 

mixing ratio (i.e. the level of contamination of the lambda wave by the EOG) used to 

generate the mixtures. This C 7/C 2 parameter has to be experimentally adjusted and fine- 

tuned in order to find the optimum value for a given mixing ratio.
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7.7 Conclusion

An approach for incorporating the EP signal temporal model into independent component 

analysis (BS_ICA) was developed. The resulting model-based BS_ICA was then used to 

perform the signal source separation of saccade-related electroencephalogram (EEG) 

waveforms and to extract a visual evoked potential called the lambda wave. Prior information 

about the time characteristic features of the lambda wave was utilised to develop the model. 

The model provided a means of providing extra guidance for BS_ICA to extract the lambda 

wave. The effectiveness of the model-based BS_ICA was both quantitatively and visually 

assessed and compared with the that of the BS_ICA algorithm without the model. The study 

indicated that the model-based BS_ICA was significantly more effective than BS_ICA 

without the model, in preserving the characteristic features (both temporal and spatial) of the 

extracted lambda wave.

The procedure followed to incorporate the signal model into the BS_ICA algorithm is general 

purpose and thus it is applicable to a number of other signal source separation applications 

where some prior knowledge of the time characteristics of the desired signal component is 

available.
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hapter 8. An Analysis of Adaptive Non-linear PC A for EEG 

Signal Source Separation and the Extraction 

of the Lambda Wave

-.1 Chapter Summary

signal source separation method called non-linear principal component analysis (NLPCA) was 

sed to analyse saccade related EEG waveforms recorded from 7 normal subjects. The methodology 

■ •.d results are discussed in this chapter. The findings of this investigation using NLPCA are 

~mpared with the results obtained when BS ICA were used. Plots of the waveforms produced by 

e two approaches are provided and the results are compared.

,.2 Introduction

Chapters 6 and 7, a number of signal source separation methodologies were devised and were 

-ed to extract saccade related EP components from the EEG mixtures. The methods were based on 

=e independent component analysis algorithm of Bell and Sejnowski (BS ICA) [1.9]. A typical 

anbda wave extracted using the BS ICA algorithm, together with the corresponding eye- 

iovement EOG waveform, are shown in Fig.8.1 a and b respectively.
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Fig.8.1 (a) The BS ICA-extracted lambda wave, (b) The corresponding 
EOG component. The vertical arrow indicates the averaged stimulus.

137



Three sub-components (/}, f i  and f£) related to the movement of the visual field across the retina 

were visible in the extracted lambda wave. The sub-components / ;  and f i  are time locked to the 

onset of the saccade and were also observed in another study [1.5]. The sub-component fs is time- 

locked to the offset of saccade and has been reported to occur at about 100 ms after the saccade 

offset [1.5].

The ICA algorithm of Bell and Sejnowski is a stochastic gradient algorithm. Such adaptive neural 

algorithms apply a coarse instantaneous estimate of the gradient and often require careful choice of 

the learning parameters for obtaining acceptable performance. For example, if the learning rate is 

too small, it could lead to a slow convergence speed but on the other hand if this parameter is too 

large, the learning process may become unstable. A review of different neural approaches to signal 

source separation is provided in [1.8]. The final accuracy of these algorithms partly depends on the 

chosen initial values of the learning parameters.

In this chapter, the results of applying the recursive least-squares based non-linear PCA (NLPCA) 

algorithm reported in [1.11] to the saccade-related EEG waveforms, are provided.

The ICA algorithm of Bell and Sejnowski uses entropy as a measure of signal independence while 

the NLPCA algorithm reported in [1.11] uses an adaptive signal subspaces tracking method derived 

using a recursive least square approach, as described in chapter 2, section 2.5. Both algorithms 

attempt to extract the unknown source signals from their instantaneous linear mixtures.

A review of both the NLPCA algorithm and the ICA algorithm of Bell and Sejnowski are provided 

in chapter 2, sections 2.5 and 2.6 respectively.

8.3 Experimental Procedure

Details of the data recording procedure are provided in chapter 4, section 4.4.2.

8.3.1 Data Analysis

The operations to analyse the lambda wave were:

i Signal pre-processing

ii . Iterative synchronisation

iii Temporal and spatial averaging
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iv Signal source separation using NLPCA.

Operations (i) to (iii) are described in more details in chapter 6, sections 6.3.1. to 6.3.3. respectively. 

Details of operation iv) are provided in the following sections.

8.3.2 Signal Source Separation using NLPCA

The spatially averaged saccade-related EEG waveforms were processed by the NLPCA algorithm 

showed by equation (2.7) in chapter 2. Experiments were carried out to determine a suitable non­

linear transfer function (g(.)), a suitable value for the forgetting factor (J3) and the number of 

iterations. The selected parameters were: /?=0.9 and g=tanh(.). The NLPCA learning process 

stopped when the amount of change in the weight matrix W  became less than a predefined small 

value (e.g. IE-6). The number of iterations was approximately 300 for the data used in this study.

8.4 Results and Discussion

Typical results obtained when the NLPCA was applied to the 22 spatially-averaged saccade related 

EEG waveforms for the centre-to-left saccade event are described in this section. The top row of 

Fig.8.2 shows two extracted lambda waves from the occipital region and their respective scalp 

distributions. The corresponding time-locked EOG waveforms are shown in the bottom row of 

Fig.8.2. A number of other similar lambda waves were extracted from parietal region of the visual 

cortex. These are shown in the two middles rows of Fig.8.2.
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Fig.8.2 Subject 1: Typical NLPCA extracted lambda waves with their scalp
distributions (top three rows) and the corresponding extracted EOG waveforms with
their scalp distributions (bottom row).
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The following were observed in the study:

• The main features of the lambda wave (labelled f i , f 2 , f 3 and negative shift, NS) were visible in 

the extracted waveforms. This indicated that the NLPCA algorithm extracted lambda wave like 

components. The shape of the extracted components was similar to the lambda wave extracted 

by using the ICA algorithm of Bell and Sejnowski (see Fig.8.1). Similar lambda wave like 

waveforms were extracted by NLPCA from the other subjects. A summary of the analysis 

results for the four temporal features of the lambda wave, obtained across the 7 subjects is 

provided in Table 8.1.

Table 8.1 Summary of the analysis results for four 
temporal features of the lambda wave across the 7 
subjects, when assessing the NLPCA approach to 
recover the lambda wave component.

NS fi f2 h
Subject 1 ✓ ✓ ✓ ✓

Subject 2 ✓ ✓ 54 ✓

Subject 3 55 it ✓ ✓

Subject 4 ✓ ✓ ✓ ✓

Subject 5 5 5 it ♦♦.* ✓

Subject 6 it ✓ ✓ 55

Subject 7 ✓ it 55 55

Total of
4 4 4 5

subjects

Key: / =  the feature was visible, & = the feature 
was not visible

Table 8.1 indicated that not all the lambda wave features appeared in the components extracted 

by NLPCA. It was also observed that the four lambda wave temporal features were not all 

extracted for the 7 subjects. The features NS, f i , f 2 and fs  were extracted in 4, 4, 4 and 5 subjects 

respectively, as indicated in Table 8.1.

• Fig 8.2 indicated that NLPCA extracted a number of components from the parieto-occipital area 

of the cerebral cortex. Some of these had the main characteristics of the lambda wave but 

showed some variations in their time courses. The peak activities of the components were
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localised in distinct regions of parieto-occipital area. For each lambda wave peak activity 

identified over the left hemisphere a symmetrical peak of activity was observed over the right 

hemisphere. A typical set of lambda wave components with symmetrical peaks of activity are 

shown in Fig.8.2. This symmetry may be because both eyes follow the same target stimulus (red 

square on checkerboard).

• BS_ICA extracted a lambda wave component with peak of activity which spread across the 

parieto-occipital area (see Fig.8.1). A comparison of the lambda wave peak activities obtained 

using the two methods indicated that NLPCA identified a number of distinct lambda wave 

sources within the parieto-occipital area while BS_ICA treated the whole region as a single 

source. This may be due to non-linear PCA being more sensitive to the time course variations of 

the extracted lambda waves.

• The EOG components from both the left and the right eyes were also extracted (see bottom row 

of Fig.8.2). The polarity change for the left and right EOG waveforms is due to the reference 

electrode location (Cz).

The above observations were consistent across the subjects included in the study. The results for 

three other subjects are shown in Fig.8.3, Fig.8.4 and Fig.8.5 for comparison purposes. A summary 

of the analysis results for the four temporal features of the lambda wave, obtained across the 7 

subjects was provided in Table 8.1.
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Fig.8.3 Subject 2: The NLPCA extracted lambda waves with their scalp distributions 
(top three rows) and the corresponding extracted EOG waveforms with their scalp 
distributions (bottom row).
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Fig.8.4 Subject 3: The NLPCA extracted lambda waves with their scalp distributions
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8.5 Conclusion

In this study an analysis of a signal source separation method called non-linear PCA (NLPCA) for 

extracting a saccade-related EEG component called the lambda wave, was carried out. A number of 

components with the main features of the lambda wave were extracted from the parieto-occipital 

area of the cerebral cortex. The peak of activities of these components corresponded to discrete 

locations and showed a symmetry over the left and right hemisphere. When comparing the 

performance of NLPCA to that of independent component analysis of Bell and Sejnowski 

(BS_ICA), the study showed that NLPCA extracted the lambda wave from discrete regions of 

parietal-occipital area of the visual cortex while BS_ICA treated the whole region as one source. 

These findings indicate that BS_ICA considered the whole parieto-occipital area to be a single 

source for the lambda wave whereas NLPCA identified a number of symmetrical independent 

sources for the lambda wave in that region. From a clinical point of view, the brain is made of two 

symmetrical hemispheres. Clinicians believe that, although the two hemispheres of the brain are to 

some extent inter-connected, they do tend to operate independently from one another but in a 

symmetrical way. This viewpoint therefore seems to support the symmetrical solution of NLPCA.

The difference between the answers that NLPCA and BS_ICA give when applied to the same data 

set, may be due to the difference in the assumptions made the two algorithms. NLPCA looks for 

subspaces in the data set whereas BS_ICA looks for statistically independent components in the 

data set. As the two signal separation approaches look for different things in the data, they will 

probably converge to different solutions.
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Chapter 9. Fuzzy Clustering Identification of 

BS_ICA-Extracted Single-Trial 

Lambda Waves

9.1 Chapter Summary

The aim of the work described in this chapter was to automate the identification of the 

single-trial lambda waves components extracted by independent component analysis 

from the saccade-related background electroencephalogram (EEG) waveforms. The 

results obtained when a fuzzy clustering approach was used to achieve this aim are 

reported in this chapter.

9.2 Introduction

As described in previous chapters, the analysis of lambda wave requires it to be 

separated from the various interfering signal components which are also picked up 

from the electrodes on the scalp. The application of BS_ICA to n recorded 

electroencephalogram (EEG) waveforms resulted in n independent signal 

components. These components were visually inspected to identify specific EP 

components. The task of visual identification of specific EPs (specially when dealing 

with single-trials) was time consuming and required familiarity with the characteristic 

features of the components.

The aim of this study was to extract single-trial lambda waves from the background 

EEG and to automate their identification posterior to BS_ICA application. The 

method was based on a fuzzy c-means clustering algorithm. Fuzzy logic clustering is 

an unsupervised pattern recognition algorithm which partitiones the data into required 

number of waveform categories [9.1] [9.2]. It provides the degree that an extracted 

BS_ICA component belongs to a certain group.
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9.3 Fuzzy C-Means (FCM) Clustering Pattern Recognition

The object of cluster analysis is to classify waveforms according to their similarities. 

Clustering is a form of unsupervised learning pattern recognition as it does not require 

prior information on the waveforms of known types. In a 'binary clustering' a 

waveform can only be allocated to a Single class as shown in Fig.9.1a. However, in 

fuzzy clustering a waveform can belong to a number of classes with different degrees 

of membership as shown in Fig.9.1b. This is achieved by providing a membership 

value ( juik) which indicates the degree a waveform k belongs to the class (cluster) i.

class A class B

Waveforms

class Bclass A
1

0
Waveforms

Fig.9.1 (a) Binary clustering membership functions and 
(b) Fuzzy logic clustering membership functions.

For a waveform k and c clusters, ju^  is normally constrained to 0 < juik < 1 and

c

^  juik = 1. The main advantage of fuzzy clustering over binary clustering is that a
i=i

waveform is not forced to belong to one class. Therefore, an extracted single-trial 

component which partly resembles the lambda wave can still belong to the lambda 

wave category but with a degree of membership less than 1.
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There are several fuzzy cluster analysis approaches. Hoppner et al. [9.1] and Bezdek 

et a l [9.2] provided a review of fuzzy clustering algorithms. In this study the fuzzy c- 

means clustering algorithms [9.2] was used.

Given a set of N  waveforms, each represented with n features as,

F  =

F 11 F 12 - •  F1N

F21 F22 - •  F2 N

Fnl Fn2 ' FnN

, the fuzzy c-means clustering partitions F  into

predefined number of classes (c) by using the algorithm described below. 

Repeat fo r  t, - 1 ,2 ,...

step 1 : compute the cluster prototypes (means):

v<i °  ---------- > \ < i < c  (9.1)

*=i

where F k = [Fl k , . . . ,Fnk ] is the pattern and d>l influences the cluster partitioning

by controlling the degree of fuzziness for the membership of the waveforms to the 

clusters. As the value of 8  approaches 1, the membership of the clusters becomes 

closer to binary values (i.e. 0 for not a member and 1 for a full member). As its value 

becomes larger than 1, the membership of the waveforms to the clusters becomes 

more fuzzy, i.e. a waveform becomes more associated with a larger number of 

clusters.

step 2: compute the Euclidean distances between each pattern k to the i th cluster 

center:

dl={Fk-v\(,f  fo -v '" ) 1 <i<c, l< k< N . (9.2)
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step 3: update the degree o f membership values: 

if dik >0 for l<i<c, l < k < N ,

(9.3)

otherwise =1

until (9.4)

where w is the matrix of degree of membership values represented by,

^11 ^21   Md

T (N ,c)  =  ( 9 ' 5 )

V 2 N   V cN  _

The parameter t >0 is the iteration termination tolerance.

9.4 Experimental method

Details of the data recording procedures are provided in chapter 4, section 4.4.2.

9.4.1 Operations for Extracting the Single-Trial-Components from EEG 

Mixtures

The operations to extract the lambda wave were:

i) Pre-processing

ii) Spatial averaging

iii) Abutting successive trials.

iv) Signal source separation (i.e. whitening and application of BS_ICA)

v) Back-projection of the separated components to the electrode sites on the scalp.
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These operations are described in the following sections.

Operations i), ii) and iii) are described in chapter 6, sections 6.3.1, 6.3.3.1 and 6.3.3.2 

respectively. Section iv) and v) are described in chapter 6, sections 6.3.4 to 6.3.5 

respectively.

9.4.2 Inspection of BS_ICA-Extracted Components

990 BS_ICA component waveforms were extracted from the spatially averaged 

single-trial waveforms recorded from a subject. The BS_ICA components were 

divided by an expert familiar with the features of the lambda wave into 390 lambda 

waves and 600 non-lambda waves. This manual classification of the components was 

necessary in order to be able to assess the performance of the fuzzy clustering method 

against the decisions of the expert.

9.4.3 Lambda Wave Representation by Feature Set

The lambda wave was characterised by a spatial and three temporal features. The 

spatial feature represented the scalp topography of the BS_ICA-extracted 

components. The saptial feature estimated the percentage contribution of each 

BS_ICA-extracted component to the expected region of the scalp associated with the 

lambda wave (i.e. parieto-occipital). Details of its calculation are provided in chapter 

6, section 6.3.5.

The three temporal features represented the gradients mi, m2 and m3 of the trend of the 

lambda wave as described in chapter 7, section 7.3.2.1. The three temporal features 

broadly characterised the three main sections of the lambda wave. A procedure was 

developed to identify the starting and end points of each section. This procedure is 

described in chapter 7, section 7.3.2.1. A first order polynomial was fitted into the 

points within each of the three sections and then the corresponding gradients were 

obtained.
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9.4.4 Classification of the BS_ICA-Extracted Components

The operations involved in classifying the BS_ICA-extracted components using the 

fuzzy c-means algorithm are shown in Fig.9.2.

990 ICA- 
extracted 

single-trials

Feature
extraction

FCM
clustering

Fuzzification factor (<5) 

Number of iterations

Ma

No
0.55 <ju < 1.0

Yes Yes No

Non lambda IndeterminateLambda
waves waves components

_J L
Assess performance

Fig.9.2 Operations involved for fuzzy c-means clustering.

The three gradient features (mj, m2 and m3) together with the scalp topography feature 

(1S) obtained from each BS_ICA-extracted component were processed by the fuzzy c- 

means clustering algorithm. Suitable values for the fuzzification factor (<5) and the 

number of iteration were determined by experimenting with a range of values as 

described in the result section. The algorithm provided the degree of membership 

(jUA) that an BS_ICA-extracted component belonged to the lambda wave category 

(the degree that an BS_ICA-extracted component belonged to the non-lambda wave
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category was 1 - JLLX). Based on the values of fix the components were classified as

lambda waves (for 0.55 <ju  < 1 .0 ) , non-lambda waves (for 0.0 <ju  < 0 .4 5 )  and
A  A

indeterminate (for 0.45 < n  < 0 55 )• The indeterminate components could not be

confidently classified as belonging to either the lambda waves or non-lambda waves 

categories. The results were then compared to those obtained when the BS_ICA- 

extracted components were visually classified.

9.5 Results and Discussion

The plots of the features of the BS_ICA-extracted single-trial components (classified 

visually as lambda or non-lambda waves) are shown in Figs.9.3a-d. Each feature set 

has been normalised between -1 and 1 across trials. The features for the lambda 

waveforms are represented by circles and non-lambda waveforms by crosses.

Figs.9.3a and b show 3-dimensional plots of the gradients (mi, m2 and m3). The 

features formed two main clusters which partially overlaped. The plots of the scalp 

topography feature are shown in Fig.9.3c and d. This feature tended to be mainly 

positive for the lambda waves and mostly negative for the non-lambda waves.
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The results obtained when analysing the performance of the fuzzy c-means algorithm 

are provided in Tables 9.1. After 10 iterations, 97.4% of the lambda waves (i.e. 380 

out of the 390) and 78.5% of the non-lambda waves (i.e. 471 out of 600) were 

classified in accordance with visual classification. The results shown are for 

fuzzification factor (d) equal to 2 which provided the most acurate results.

Table 9.1 Performance results of the fuzzy c-means clustering algorithm, with 
fuzzification factor (S) = 2 and number of iteration (£) =10.

 _____ _________  (a) the lambda waves_______________________
Lambda Waves Non-lambda Waves Indeterminate

s
n %C Ma

mean
Ma

std
n %c Ma

mean
Ma

std
n %C Ma

mean
Ma

std

2 380 97.44 0.72 0.07 4 1.02 0.42 0.01 6 1.54 0.45 0.04

(b) nonlambda waves
Lambda Waves Non-lambda Waves Indeterminate

S
n %C Ma

mean
Ma

std
n %c Mx

mean
Ma

std
n %c Mx

mean
Ma
std

2 75 12.5 0.32 0.10 471 78.5 0.78 0.11 54 9 0.51 0.03

where n is the number of trial waveforms and %C = n/Tx 100 where T is the total 

number of trial waveforms.

The main points of this study were summarised below.

• As fuzzy c-means clustering algorithm is an unsupervised learning algorithm, it 

did not require training on the waveforms from known types. The method 

provided the degree of membership for each waveform which is a measure of to 

what extent an BS_ICA-extracted component belonged to the lambda wave 

category. Table 9.2a indicated that 97.4% of the BS_ICA-extracted components 

which were identified visualy as lambda wave were also classified as lambda 

wave by the method.
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• The discrepancies between the results obtained using the fuzzy c-means clustering 

approach and those obtained by visual inspection may be due to a number of 

factors: (i) The visual inspection process may have resulted in the erroneous 

categorising of some of the BS_ICA-extracted components, (ii) The feature sets 

used may have not been sufficiently sensitive for characterising the waveforms.

9.6 Conclusion

The effectiveness of a fuzzy c-means clustering approach for identifying lambda 

waves components extracted by BS_ICA from single traces (or trials) of saccade- 

related electroencephalogram (EEG) waveforms was investigated. The BS_ICA- 

extracted single-trial components for 50 trials were visually inspected and were 

separated into 390 lambda waves and 600 non-lambda waveforms. Each waveform 

was represented by one spatial and three temporal features. These features were then 

processed by a fuzzy c-means algorithm. Using this algorithm, 97.4% of the lambda 

waves and 78.5% of the non-lambda waves were identified in accordance with visual 

classification of the components.

The study demonstrated that it was possible to automate the identification of single­

trial lambda wave using the fuzzy c-means algorithm.
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Chapter 10. Summary of overall results, Conclusions and 

Future Works

10.1 Chapter Summary

This chapter provides a summary of the overall results, a conclusion to the study and future 

works.

10.2 Summary of the overall results

The ongoing electrical activity of the brain is known as the electroencephalogram (EEG). 

Evoked potentials (EPs) are voltage deviations in the EEG elicited in association with 

stimuli. EPs therefore provide clinical information by allowing an insight into neurological 

processes. The amplitude of an EP potential is typically several times less than the 

background EEG. The background EEG has the effect of obscuring the EPs and therefore 

appropriate signal processing is required for their recovery.

Saccade-related EEG waveforms were recorded from 7 subjects. The saccade-related EEG 

waveforms recorded from electrodes placed on the scalp contain a mixture of signals. 

These are:

i) Saccade-related EP components (for example the lambda wave).

ii) Non-saccade-related EEG components, i.e. the background EEG and stimulus time- 

locked EP components that are not related to the saccade.

iii) The contaminating electrophysiological signals such as the electrooculogram (EOG). 

EOG is generated by the eyes when eye-movements or blinks are performed.

iv) Non-electrophysiological (external) contaminating signals, for example the noise 

generated by the recording system.

The conventional methods of recovering EPs from the background EEG are based on 

averaging. Using these methods a large number (typically about 50) of EPs are recorded 

and then averaged with respect to the onset of stimulus. Averaging is a valuable pre­

processing tool prior to signal source separation as it can improve the ‘signal-to-noise’
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ratio. However, the EP recovered using averaging remains a mixture of signal components 

from a number of sources. A signal source separation methodology based on a technique 

called the independent component analysis of Bell and Sejnowski (BS_ICA) was used to 

analyse the recorded waveforms.

In chapter 5, a procedure for quantifying the effectiveness of algorithms for removing EOG 

contamination from the EEG was developed. Four methods for OA removal were included 

in the study. These were the two BS_ICA-based algorithms of extended independent 

component analysis (extended-ICA) and joint approximation diagonalisation of eigen- 

matrices (JADE), the principal component analysis (PCA) technique and the EOG 

subtraction method. The devised procedures made it possible for the performances of the 

four algorithms for OA removal to be quantified and compared.

The operation of JADE and extended-ICA is subject to amplitude scaling and channel 

permutation. Procedures were incorporated to estimate the amplitude of the recovered EEG 

waveforms and to allocate them to the correct channels. Cardoso’s amplitude recovery 

method enabled the amplitude of the recovered EEG to be estimated for both JADE and 

extended-ICA. However, the results showed that the performances of Cardoso’s amplitude 

recovery method were affected when changing the values of the mixing matrix. The 

proposed correlation based method provided a means for dealing with the problems of 

channel permutation and sign changes associated with JADE and extended-ICA 

algorithms.

It was demonstrated that the signal separation techniques of JADE and extended-ICA were 

more effective than the correlation-based techniques of EOG subtraction and PCA, for 

removing OA from the EEG. Statistical tests indicated that on average the performances of 

JADE and extended-ICA for OA removal were not significantly different. Extended-ICA 

method required a significantly longer time to carry out the OA removal operation as 

compared with JADE. This is because extended-ICA is an iterative algorithm which 

requires many passes through its learning algorithm to converge while JADE only requires 

one pass through its algorithm. However JADE provided a more consistent set of results 

and both JADE and extended-ICA performed significantly better than PCA and EOG 

subtraction. This could be because PCA only decorrelates signals while JADE and 

extended-ICA attempt to make the recovered signal components as independent as
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possible. The EOG subtraction method was shown to cause attenuation of the recovered 

EEG waveforms. This is because a fraction of the EEG that contaminates the EOG signal 

is also substracted from the recovered EEG component. The effect of additive Gaussian 

noise on the performance of the four OA removal methods was also investigated. This 

indicated that the performance of the methods was unaffected by an additive Gaussian 

noise source as long as the signal-to-noise ratio remained above 50. These investigations 

demonstrated the suitability of ICA-based signal source separation techniques of JADE 

and extended-ICA for OA removal of the EEG.

In chapter 6, an iterative time-synchronisation procedure was devised to time-synchronise 

the recorded waveforms across trials. The method provided the ability to optimally 

synchronise the trials with respect to the eye movement interest prior to averaging. This 

ensured that the time features of the signals components that are time-locked to the eye 

movement such as the lambda wave were preserved during the subsequent averaging 

operation for reducing the effect of background EEG. The time-synchronisation procedure 

was evaluated. This involved plotting the histogram of the saccade offset across the 50 

trials for a given subject and experimental event. It was observed that the process has 

reduced the deviation of the saccade offset distribution and thus provided a less distorted 

averaged EOG waveform. It was observed that the process of iterative synchronisation 

resulted in the extraction of the lambda wave feature /2  which was not visible in the 

averaged lambda waves without time-synchronisation. These results showed that the 

devised iterative synchronise averaging method was an effective preprocessing operation 

prior to the application of BS_ICA for extracting the lambda wave.

The recorded EEG waveforms were analysed using the Bell and Sejnowski ICA algorithm 

(BS_ICA). The method successfully isolated the EOG waveforms caused by eye 

movements in both the right and left eyes, together with their scalp distribution in the 

region close to the right and left eye respectively. The method also enabled the extraction 

of a number of EPs components related to the performance and generation of saccadic eye 

movements, and their scalp distribution to be obtained. These were: the frontal and 

occipital pre-saccadic potentials, and the lambda wave. These potentials had their peak of 

activity in the frontal and occipital region of the cerebral cortex. The occipital pre-saccadic 

potential was found to occur about 30 ms after the frontal one. This finding suggested that 

the occipital pre-saccadic potential is an efferent feedback or copy from the frontal areas
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for saccade generation. Three sub-components were extracted from the occipital area of the 

cerebral cortex. These appeared immediately after the saccade onset and ended shortly 

after the saccade offset (about 300 ms after stimulus). The fact that the occipital pre- 

saccadic potential and the following three sub-components were extracted separately 

suggested that they were generated by independent neural processes. This could not have 

been detected without the application of a signal source separation technique.

The characteristics of the lambda wave features depend on factors such as the saccade 

duration or the viewing angle (a , shown in Fig.4.4 in chapter 4). In our study, where a 

short duration of saccade (about 20 ms) was used, we did not observed the feature / ;  in 

either time-synchronised or not time-synchronised averaged lambda waves. This was in 

accordance with the observations made in [1.5] where the feature/; was observed only in 

the averaged EEG waveforms of a subject for a longer duration of saccade (75 ms to 100 

ms). However, in our study this feature became visible for the short duration of saccade 

(about 20 ms) when BS_ICA was applied to the time-synchronised averaged waveforms. 

In the study reported in [1.5] they did not observed the feature/; for such small duration of 

saccade. This could not have been observed without the application of a signal source 

separation technique such as BS_ICA. The results revealed valuable information about the 

brain mechanisms involved in performing saccades.

Novel techniques were devised in order to improve the performance of BS_ICA for 

extracting the lambda wave EP component.

In chapter 6, a method was devised to increase the effective length of the EEG waveforms 

processed by BS_ICA, in order to enhance their stationarity property and thus to make 

them more suitable for BS_ICA signal separation. This involved abutting EEG traces from 

an appropriate number of successive trials (a trial was a set of waveforms recorded from 64 

electrode locations in a experiment involving a saccade performance). The analysis was 

initially carried out on artificially mixed waveforms. This allowed the approaches to be 

quantitatively assessed by comparing the extracted BS_ICA components waveforms to the 

original signal waveforms. The correlation coefficient ( p ) and euclidean distance ( s )  

parameters were used to quantitatively assess the similarity between the original and 

recovered waveforms. This demonstrated that the effectiveness of BS_ICA for extracting
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the EEG waveform from the mixtures gradually improved (i.e. p  closer to 1, e closer to 0) 

when the signal length was increased (by abutting process) from 256 data points (i.e. 1 

trial) to 1024 data points (i.e. 4 trials). This may be because the components of the 

artificially generated signal mixtures (i.e. the EOG waveform and the EEG waveform with 

main lambda wave characteristics) are short-duration transient signals and the abutting of 

the waveforms to increase their lengths improved their stationarity. As BS_ICA relies on 

the stationarity of the signals, the abutting process therefore provided a means to make the 

waveforms more suitable for processing by BS_ICA.

The analysis was then extended to the not-abutted and abutted 22 time-synchronised 

averaged waveforms and the performance of the two approaches (not-abutted and abutted) 

was evaluated and compared for extracting the lamda wave across the 7 subjects. One 

spatial and 5 temporal features of the lambda wave were monitored to assess the 

performance of BS_ICA applied to both abutted and not-abutted waveforms. BS_ICA 

applied to abutted trials managed to extract all 6 features across all the 7 subjects included 

in the study. This was not the case when BS_ICA was applied to the not-abutted trials, 

where it managed to extract some of the features in only some of the subjects. Moreover, 

the both temporal and spatial features of the lambda wave extracted were preserved more 

accurately when BS_ICA was applied to the abutted waveforms. These results 

demonstrated that the abutting of the trials is an effective mechanism for improving the 

performance of BS_ICA in extracting evoked potentials from the recorded EEG 

waveforms.

In summary, the four approaches investigated were ranked in the following order of 

decreasing effectiveness for extracting the lambda wave.

i) BS_ICA applied to abutted, averaged waveforms with time-synchronisation.

ii) BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation .

iii) Not-abutted, averaged waveforms with time-synchronisation.

iv) Not-abutted, averaged waveforms without time-synchronisation.

In chapter 7, a model that represented the temporal characteristics of a saccade-related EP 

called the lambda wave was developed and was incorporated into the BS_ICA algorithm. 

The developed method consisted of utilising prior information about the time characteristic 

features of the lambda wave, and the use of this information in order to guide the algorithm
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to extract the EP component of interest (the lambda wave). The performance of this model- 

based BS_ICA approach was quantitatively assessed, and its effectiveness was compared 

to that of the conventional (without prior information, i.e. model-less) BS_ICA algorithm. 

The performance evaluation of the two BS_ICA approaches (i.e. with and without model) 

was carried out by using artificially mixed waveforms and the 22-averaged EEG 

waveforms. In the case of artificially generated mixtures, it was shown that the model- 

based BS_ICA approach performed significantly more effectively than conventional 

(without model) BS_ICA approach for extracting the lambda wave component, specially in 

the case of severe contamination of the lambda wave by the EOG. It was also observed that 

the incorporation of the model into the BS_ICA did not deteriorate the recovery of the 

EOG component from the mixtures.

For the case when the BS_ICA approaches were applied to the 22-averaged EEG 

waveforms, the model-based BS_ICA managed to extract successfully the five monitored 

lambda wave features in all 7 subjects. This was not the case when the conventional 

(without model) BS_ICA approach was used, where the five monitored features of the 

lambda wave were visible only in some of the subjects and were more distorted than when 

model-based BS_ICA was used. The results indicated that the incorporation into the 

BS_ICA algorithm of a temporal model of the lambda wave improved its signal source 

separation ability for extracting the lambda wave.

The characteristics of the developed model-cost function were also investigated. The 

results showed that the introduction of a smoothing factor into the model cost-function 

improved the stability of the BS_ICA-model based algorithm.

In chapter 8, a recursive least-squares based non-linear PCA (NLPCA) algorithm was used 

to carry out the analysis of the 22 spatially-averaged saccade-related waveforms so as to 

extract the lambda wave. The results were compared with those obtained using the 

methodology based on the ICA algorithm of Bell and Sejnowski. The results showed that 

the NLPCA algorithm was effective in extracting components with the main lambda wave 

features. A number of components were extracted from the parieto-occipital area of the 

cerebral cortex. Some of these had the main characteristics of the lambda wave but showed 

some variations in their time courses. The peak activities of the components were localised 

in distinct regions of parieto-occipital area. For each lambda wave peak activity identified
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over the left hemisphere a symmetrical peak of activity was observed over the right 

hemisphere. This symmetry may be because both eyes followed the same target stimulus 

(red square on checkerboard). A comparison of the lambda wave peak activities obtained 

using the two methods indicated that NLPCA identified a number of distinct lambda wave 

sources within the parieto-occipital area while BS_ICA treated the whole region as one 

source. The application of NLPCA to the recorded averaged waveforms provided further 

insight into the saccade-related data and assisted in understanding the possible brain 

mechanisms involved during the generation and performance of saccadic eye movements.

In chapter 9, a procedure was implemented to automate the identification of single-trial 

saccade-related lambda waves. The effectiveness of a fuzzy c-means clustering method 

was investigated for identifying lambda waves extracted by BS_ICA. The BS_ICA- 

extracted single-trial waveforms for the 50 trials were visually inspected and were 

separated into 390 lambda waves and 600 non-lambda waveforms. Each waveforms was 

represented by one spatial and three temporal features. These features were then processed 

independently by the implemented fuzzy c-means pattern recognition algorithm in order to 

identify the single-trial lambda waves. It was shown that this method correctly identified 

the lambda waves with an accuracy of 97.4% in accordance with visual inspection results, 

as shown in Fig. 10.1.

Pattern
Regnition
Method

Lambda waves Non- lambda waves
Correctly
classified

(%)

Mis-
classified

(%)

Un­
classified

(%)

Correctly
classified

(%)

Mis-
classified

(%)

Un­
classified

(%)
Fuzzy c-mean
clustering
algorithm

97.4 1.02 1.54 78.5 12.5 9

Fig.10.1 Results of the single-trial BS_ICA-extracted lambda waves 
classification for the fuzzy c-means clustering approach.

The results demonstrated that the fuzzy c-means clustering method provided a effective 

means to automate the identification of the single-trial lambda wave components extracted 

by BS_ICA.
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10.3 Thesis conclusion

The study led to the development of procedures based on signal source separation 

techniques that facilitated the extraction of saccade-related evoked potentials (EPs) from 

recorded mixtures and thereby contributed towards improving the clinical understanding of 

vision when moving the eyes. Saccade-related evoked potential (EP) signals contained 

within the recorded electrical activity of the brain (EEG mixtures) have amplitudes that are 

typically several times less than the obscuring background electroencephalogram (EEG). 

Moreover, the saccade-related EP signals are susceptible to contaminations from various 

electrophysiological signals.

When dealing with saccade-related EEG waveforms, the ability to filter the contaminating 

electrooculogram (EOG) signal from the recorded EEG is essential for an accurate EPs 

estimation and clinical interpretation to be carried out. The ability to quantitavely assess 

and compare the performances of four ocular artefact (OA) removal algorithms from the 

EEG was demonstrated by devising a procedure that enabled the similarity between the 

EEG waveforms before contamination by OA and the contaminated EEG waveforms 

following their processing by an OA removal method to be measured. The devised 

procedures made it possible for the performances of the four algorithms for OA removal to 

be quantified and compared. They also enabled the significance of the difference between 

their performances to be assessed and compared.

For saccade-related EPs estimation and analysis, the ability to preserve the time features of 

the recorded EEG waveforms prior to averaging is essential. An iterative time- 

synchronisation procedure that time-synchronised the recorded waveforms across trials 

with respect to the eye movement was devised. The iterative time-synchronisation 

procedure preserved more effectively the features of the eye movement and of the signals 

components that were time-locked to it (e.g. lambda wave). The results indicated that the 

devised iterative time-synchronise averaging method was a valuable operation to be 

performed on the recorded waveforms prior to averaging.

The ability to separate components from the EEG mixtures recorded from electrodes 

placed on the scalp is essential for clinical neurophysiology. The effectiveness of a signal
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source separation technique called independent component analysis (BS_ICA) was 

demonstrated by extracting a number of EP components related to the performance and 

generation of saccadic eye movements from the recorded mixtures.

The conformation of the recorded waveforms to the BS_ICA algorithm assumptions is 

essential if these waveforms are to be analysed using an BS_ICA algorithm. The ability of 

a novel method of averaging devised to enhance the stationarity property of the recorded 

waveforms and thus to make them more suitable for BS_ICA signal source separation, was 

demonstrated. This method involved abutting a number of successive EEG recording 

(trials) and then performing the averaging process on the abutted trials. It was 

quantitatively demonstrated that BS_ICA performance for extracting the lambda wave was 

significantly improved when it was applied to the abutted trials.

A template-model that represented the temporal characteristics of the lambda wave was 

developed and its incorporation into the BS_ICA signal separation operation was 

investigated. The effectiveness of the developed model-based BS_ICA method was 

demonstrated by quantitatively assessing its performance in extracting the lambda wave. It 

was demonstrated that the incorporation into the BS_ICA algorithm of a temporal model of 

the lambda wave improved its ability to extract the lambda wave from the EEG 

waveforms.

It can be a very time-consuming and tedious task to visually inspect the BS_ICA-extracted 

components one by one, in order to identify the EP components. The ability to quickly and 

accurately identify the lambda waves amongst the BS_ICA-extracted components is 

therefore valuable. The effectiveness of a fuzzy c-means clustering method for this task 

was investigated. The results showed that the method identified the single-trial lambda 

waves with an accuracy of 97.4%.

A recursive least-squares based non-linear PCA (NLPCA) algorithm was used to carry out 

further analysis of the 22 spatially-averaged saccade-related EEG waveforms. The 

NLPCA-extracted components were compared with those obtained using the methodology 

based on the ICA algorithm of Bell and Sejnowski. The results showed that the NLPCA 

algorithm extracted a number of EP components with the main features of the lambda 

wave from the parieto-occipital area of the cerebral cortex with peak activities localised in
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distinct and symmetrical regions on both hemisphere of the parieto-occipital area. 

Comparing these results to that of BS_ICA lead to the conclusion that NLPCA considered 

distinct regions of the parieto-occipital area of the cerebral cortex as being separate sources 

of the lambda wave where as BS_ICA treated the whole region as one source.

The progress made so far in applying signal source separation based techniques to the 

recorded saccade-related EEG waveforms provided an excellent foundation for further 

investigations. The following sections will suggest ways to continue this work.

10.4 Suggestions for future work

The effectiveness of the BS_ICA-based algorithm could be improved in two main areas. 

These are (i) investigating the ability of non-linear BS_ICA to unmix EEG waveforms as 

EEG signal can contain linear as well as nonlinear mixtures and (ii) devising techniques 

(mainly based on Bayesian mathematical approach) which will enable prior information 

about both the temporal and spatial characteristics features of the signal components of 

interest to be incorporated as part of the BS_ICA operation.

10.4.1 Non-linear ICA

In applying ICA, it is generally assumed that the mixing process is linear. However, the 

signal components making up the EEG waveforms propagate through complex media.

There is evidence that these components can interact producing both linear as well as 

nonlinear mixtures. For example, in a study the presence of quadratic phase coupling (i.e. 

quadratic nonlinearitries) has been observed in EEG during various vigilance states [10.1].

The use of linear ICA in situations where nonlinear mixing processes are involved can 

result in distortion of the extracted components.

A number of nonlinear algorithms have been reported. A brief review of these algorithm is 

provided in Table 2.1c in chapter 2. For example [2.66] described an algorithm which
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deals with nonlinear mixtures in two stages. The first stage deals with the effect of 

nonlinearity. This then followed by linear signal source separation.

10.4.2 A Bayesian-based model approach to ICA

In EEG signal processing, there usually exists prior information about some characteristics 

features of the components of interest. For example their approximate scalp distributions 

and temporal features may be known. Inclusion of this prior information as part of the 

unmixing algorithm may significantly improve the accuracy of the signal source 

separation.

In order to be able to use the prior information as part of the ICA algorithm, it needs to be 

formulated in a suitable mathematical form. Bayesian approaches are suitable for this task 

as the theory behind them is well developed and they have successfully been applied to 

numerous scientific problems (for example, differentiation of schizophrenic subjects from 

normal controls, [3.5]).

The use of Bayesian approaches as part of the ICA algorithm provides a number of distinct 

advantages which include: (i) the assumptions that go into finding a solution are made 

explicit, (ii) the prior knowledge about a specific problem is expressed in terms of 

probabilities that must be evaluated. In [10.2] for example, the technique of signal source 

separation was reformulated within the Bayesian framework for the application to the 

accoustic domain in order to solve the inverse problem by simultaneously performing 

source separation and localisation. An algorithm was developed that utilises information 

regarding both the statistics of the amplitudes of the signals emitted by the sources and the 

relative locations of the detectors. The Bayesian approach provided a means for 

incorporating prior information into a source model.

This work will result in techniques which will make the EEG a more effective tool in 

clinical neurophysiology. Furthermore, the processing of saccade-related EEG waveforms 

using ICA will result in improvements in the understanding of the signal components and 

mechanisms involved when saccades are performed.
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10.4.3 Final remarks

The application of the technique of ICA to the EEG is a relatively new area in biomedical 

signal processing. The suggested future work will utilise nonlinear ICA and Bayesian 

approaches to improve the accuracy of ICA applied to EEG. Although the Bayesian theory 

is well developed, the process of formulating the features of the EEG signal components of 

interest and incorporating the resulting data as part of ICA requires further development.

The use of nonlinear ICA can reveal information about the properties of the mixing 

processes involved in saccade-related EEG waveforms. As the investigation is based on 

saccade-related EEG waveforms, the approaches devised in this study will also provide 

further insight into the human vision mechanisms involved in the performance of saccadic 

eye movements.

There are a number of other issues that could be subject to further investigations. As pointed 

out in chapter 2, ICA methods rely on several model assumptions that may not always be 

satisfied or may be inaccurate when dealing with real world data such as EEG/ERP/EP 

signals.

For example, EPs and ERPs are short transient signals that may not be stationary, i.e. they 

may appear, disappear in which case their statistical properties may vary with respect to 

time. In these cases, the weight matrix W  may change completely from one time point to the 

next. Although researchers have started to work in this area of research (see Table 2.1 Part 

D), further investigations are still required to develop methods that can help the ICA 

algorithms to efficiently adjust to their changing environment.

Another example is the case where propagation delays may be introduced during the mixing 

process, thus resulting in the mixing transformation W  not being instantaneous. Researchers 

have started to work in this area of research (for a sample of work reported in this area, see 

Table 2.1 Part B). From literature, it emerges that for applications where the propagation 

delays are negligible such as in the case of EEG/ERP/EP signals, the instantaneous mixing 

model may be appropriate. However, it may still be worth investigating whether delays may 

be of significant impact when dealing with the analysis and estimation of saccade-related 

brain signals.
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ICA is a relatively new area of digital signal processing which can be of great benefit to 

biomedical engineering. The proposed future work provides a timely opportunity to make 

this technique improve the usefulness of EEG in clinical neurophysiology.
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put impedance condition. The two sets of solutions for the opti- 
‘sed feed network are shown in Table 1.
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ig. 3 Simulated results fo r  L H C P  and R H C P  designs

Axial ratio 
Radiation pattern 
3 — LHCP  
X—  RHCP

able 1: Two sets of solutions for optimised feed network

Zi ®2 ^2 03 Z 3 04 Z4 7 .in \V2!Va\arg (F2/K4) CP

135.0 1.96 132.4 0.8 135.2 1.16 134.3 50-0.5/ 0.97 86 RH

137.4 0.74 137.1 2.3 135.7 1.97 138.6 49.5+0.5/ 1.08 89.7 LH

As can be seen in Table 1, it is possible to use an average value 
impedance for all four feed lines as this value is within the 

sign and typical manufacturing tolerances. This makes the 
ign particularly attractive as the effect of the step discontinuity 

eliminated and also spurious radiation is reduced.
Practical and simulated (full-wave analysis software) results for 
e reflection coefficient of the LHCP solution using 137.2Q are 
own in Fig. 2 and indicate that a good matching condition at 
GHz has been obtained.

The simulated results of the axial ratio and radiation pattern of 
e LHCP and RHCP designs are shown in Fig. 3 with a good 
'al ratio and the expected radiation patterns.

nclusiott: It has been shown that the design of a dual-feed net- 
rk for a square patch antenna for circular polarisation involves 
t variables and that a closed form solution to the problem 

not be obtained. An MGA with specified constraints has been 
essfully implemented to optimise the design of a dual-feed net- 

rk. A feed network with single feed impedance has been real- 
d. The practical and simulated results for the return loss, axial 
io and radiation pattern show good agreement and confirm the 
idity of the approach.
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Independent component analysis of 
saccade-related electroencephalogram 
waveforms
L. Vigon, R. Saatchi, J. Mayhew, N . Taroyan,
J. Frisby, D . Johnston and O. Pascalis

A  methodology based on the signal separation technique o f  
extended independent component analysis (ICA) is devised to 
analyse saccade-related electroencephalogram (EEG) waveforms. 
The methodology enables saccade-related components to be 
successfully extracted from the EEG mixtures and the brain 
regions responsible for their generation to be identified.

Introduction: Saccades are rapid changes in the orientation of the 
eyes that are used to realign the visual axes on objects of interest. 
Dysfunction in this system may lead to difficulties in various vis­
ual functions such as depth perception and reading. Different neu­
ral signal components are involved in preparation and execution 
of saccadic eye movements. One of these is described as a pre-sac- 
cadic potential related to motor commands for saccade genera­
tion. Others, such as efferent feedback from saccade generating 
centres to visual cortex, are believed to provide visual stability of 
the surrounding world across the eye movements. The saccadic 
movement is accompanied by an EEG signal associated with vis­
ual information processing called the lambda-wave [1].

The investigation described in this Letter required the obscuring 
ongoing background EEG as well as the electrooculogram (EOG) 
signal caused by eye movements to be separated from the saccade 
components of interest. A popular signal separation technique is 
independent component analysis (ICA) [2]. ICA is an extension of 
principal component analysis (PCA) that deals with higher-order 
statistical dependencies. It is based on the assumption that the sig­
nal sources are statistically independent. The extended version of 
ICA (hereafter referred to as ICA) can handle both super- and 
sub-Gaussian signals [2]. In this Letter, an analysis of the saccade- 
related EEC waveforms is carried out by applying an ICA-based 
procedure. The study provides information about how the brain 
deals with the problem of vision with moving eyes.

Experimental procedure: EEC and EOG data were recorded for six 
healthy human adults using a network of 64 silver-silver chloride 
electrodes. All electrodes were referred to the vertex. The data 
were filtered (bandpass frequency range from 0.1 to 100Hz) and 
digitised with a sampling rate of 250. The subjects were instructed 
to fixate a red square that appeared randomly on the screen of a 
computer at one of five predefined checkerboard locations: centre, 
left, right, up and down. For each location 50 trials were recorded. 
The duration of each trial was 2s.

Analysis procedure: The recorded signals were digitally lowpass fil­
tered at 45 Hz and their baselines were adjusted to zero. To pre­
serve the saccade-related EEG components, the waveforms in each 
trial were time synchronised with reference to the EOG signal in 
that trial. The synchronised averaged waveforms were decorrelated 
using PCA and sphered [2]. The EEG waveforms recorded from 
the locations close to the international 10-20 system of electrode
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waveforms and enabled the ICA algorithm to operate more ellec- 
tively. The back-projection technique described in [2] was used to 
obtain the scalp distribution of the extracted ICA components. As 
ICA is subject to amplitude scaling, the magnitude range for 
extracted components was estimated by considering both the 
amplitude of the averaged waveforms and the relative magnitude 
of the extracted components.
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Fig. 1 Extracted E O G  left waveform
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Fig. 2 Pre-saccadic potentials extracted from  fron ta l {top) and occipital 
{bottom) areas

Results and conclusion: For this Letter, only results for the saccade 
to the left are reported. Figs. 1 -  3 show the waveforms for one 
ubject, although similar waveforms were observed in the other 
ubjects. The colour shading reflects the relative strength of an 
:tracted component at various scalp regions. In all Figures, the 
nset of stimulus is shown at Oms. Fig. 1 shows a component 
ith peak activity close to the left eye. It had the characteristics of 
saccadic eye movement because of its sharp transition at ~200ms 

saccade onset) after the stimulus onset. A similar component (not 
hown) was extracted from a region close to the right eye. The

two potentials extracted irom tne irontai tiop picture; anu ueeipi- 
tal (bottom picture) areas. These occurred shortly prior to the sac­
cade onset. The frontal pre-saccadic potential is believed to be 
related to motor commands preceding voluntary saccades [4]. The 
occipital pre-saccadic potential was found to occur ~30ms after 
the frontal one. This finding suggested that the occipital pre-sac­
cadic potential is an efferent feedback or copy from the frontal 
areas for saccade generation. This is believed to be a prerequisite 
for visual stability during eye movements [5].

200 
time, ms

1291/31

Fig. 3 Lambda wave component

Fig. 3 shows three sub-components (indicated by arrows) 
extracted from the occipital area. These appeared immediately 
after the saccade onset and ended shortly after the saccade offset 
(~300ms after stimulus). These are associated with visual informa­
tion processing triggered by the relative movement of visual field 
features across the retina during a saccade [3]. The fact that the 
occipital pre-saccadic potential and the following three sub-com­
ponents were extracted separately indicated that they were gener­
ated by independent neural processes. This could not have been 
detected without the application of a signal source separation 
technique.

An ICA-based methodology enabling saccade-related EEG 
waveforms to be successfully extracted has been described. Con­
sistent results were obtained for she subjects. The study revealed 
valuable information about the brain mechanisms involved in per­
forming sactades.
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Quantitative evaluation of techniques for ocular artefact 
filtering of EEG waveforms

L.Vigon, M.R.Saatchi, J.E.W.Mayhew and R.Fernandes

Abstract: The electrical dipoles of eyes change by eye movements and blinks, producing a signal 
known as an elcctrooculogram (EOG). A fraction of EOGs contaminate the electrical activity o f the 
brain (electroencephalogram, EEG). Ocular artefact (OA) is a collective term used to represent EEG 
contaminating potentials caused by eye movements and blinks. A procedure for quantifying the 
effectiveness o f an algorithm for removing OA from the EEG was devised. This enabled the similarity 
between the EEG waveforms before contamination by OA and the contaminated EEG waveforms 
following their processing by an OA removal method to be measured. Four methods for OA removal 
were included in the study: extended independent component analysis (ICA), joint approximation 
diagonalisalion of eigcnmalriccs (JADE), principal component analysis (PCA) and EOG subtraction. 
The operation of JADE and ICA is subject to amplitude scaling and channel permutation. 
Procedures were incorporated to estimate the amplitude of the recovered EEG waveforms and to 
allocate them to the correct channels. It was demonstrated that the signal separation techniques of  
JADE and extended ICA were more effective than EOG subtraction and PCA for removing OA 
from the EEG. EOG subtraction was shown to cause attenuation of the recovered EEG waveforms. 
The effect of additive Gaussian noise on the performance of the four OA removal methods was also 
investigated. This indicated that the performance of the methods was unaffected by an additive 
Gaussian noise source, as long as the signal-lo-noisc ratio remained above 50.

1 Introduction

The study of electrical activity of the brain (electroencepha­
logram, EEG) is a tool which gives an insight into the 
brain and its abnormalities. The first reported observation 
of EEG was made by Caton [l]. Berger [2] was the lirst to 
observe EEG in human subjects by putting electrodes on 
the scalp. Since then there have been significant advances in 
both recording and interpretation o f EEG waveforms. The 
recording o f EEG is sometimes time-locked to the occur­
rence of discrete stimuli (events). The stimuli can be visual, 
auditory or cognitive processes triggered by external 
sources. They cause voltage fluctuations within the EEG 
that arc known as event-related potentials (ERPs). ERPs 
have been extensively studied in order to improve the 
understanding of sensory organs and to diagnose a number 
of brain-related disorders including schizophrenia [3, 4].

EEG can be contaminated and thus obscured by various 
noise sources. The noise generated from the recording sys- 
tcm-can be significantly reduced by a careful design o f the 
system and by following appropriate signal recording pro­
cedures.-EEG can also be contaminated by a number of
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elcclrophysiologieal signals, the largest o f which is the elec- 
irooculogram (EOG). The human eye contains an electrical 
dipole caused by tt positive cornea and negative retina. Eye 
movements and blinks change the dipole causing an electri­
cal signal known as an EOG. The shape of the EOG wave­
form depends on factors such as the direction o f eye 
movements. Vertical eye movements (eyes moving up and 
down) produce a square-like EOG waveform while blinks 
cause tt spike-shaped waveform.

A fraction of the EOG spreads across the scalp and it is 
superimposed on the EEG. ‘Ocular artefacts’ (OA) is a 
collective term used to describe a number o f EEG contam­
inating voltage potentials caused by eye movements and 
blinks [5]. In order for the EEG to be interpreted for clini­
cal use, OAs need to be removed (filtered) from the EEG. 
Analogue and digital filters arc not effective for this 
purpose, as EEG and EOG signals occupy a similar 
frequency band (covering a range close to DC to about 
100 Hz).

One o f the earliest methods for OA removal was based 
on the use of potentiometers to balance out the effect of 
vertical and horizontal eye movements [6]. The required 
adjustments were made manually by observing the EEG 
and thus they were subjective. A software based OA 
removal method was proposed by Quillcr et a!. [7]. The 
method, known as EOG subtraction, involves subtracting a 
fraction o f the EOG from the contaminated EEG. Its oper­
ation is based on the assumptions that: (i) the recorded 
(contaminated) EEG is a linear combination o f the original 
(i.e. uncontaminatcd) EEG and OA, (ii) the contaminating 
OA can be estimated from the EOG, and (iii) there is no 
correlation between the original EEG and the EOG signals. 
The method can easily be implemented but it causes distor­
tion of the recovered EEG. This is because a fraction o f the
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In order to improve the performance of the EOG sub­
traction method, a technique referred to as ‘multiple source 
eye correction’ was developed by Berg and Scherg [8]. They 
estimated the component of the recorded EOG that was 
not contaminated by the EEG. A fraction of this compo­
nent was then subtracted from the recorded EEG. The 
method, however, required an accurate modelling of propa­
gation paths for the signals involved.

Adaptive digital filters have also been used for OA 
removal. For example, Rao and Reddy [9] developed an 
online method of OA removal system based on this 
approach. They used a nonlinear recursive least-square 
algorithm to train an adaptive digital filler. The main limi­
tation of the method was the need for a suitable EOG ref­
erence model for adapting (training) the Filter.

Principal component analysis (PCA) [10] is a well known 
decorrelation technique and has provided another 
approach for OA removal from the EEG. PCA enables an 
epoch of a multichannel EEG to be decomposed into line­
arly uncorrelated components on the basis o f their spatial 
distribution across channels. By omitting unwanted compo­
nents (such as OA) from the linear combination, a less con­
taminated EEG can then be reconstructed. Lagerlund et al. 
[11] developed a variation of this technique, in which the 
PCA coefficients were stored in a single matrix. This 
allowed the matrix to be calculated on the basis o f one rep­
resentative epoch that contained the artefacts to be 
removed. The matrix was then applied to the subsequent 
EEG epochs, without repeating the PCA operation. The 
limitations of the PCA approach are that: (i) it is unable to 
completely separate OAs from the EEG, especially when 
both waveforms have similar voltage magnitudes, (ii) it 
requires the distribution of the signal sources to be orthog­
onal, (iii) its effectiveness is limited to dccorrelaling signals 
and thus it cannot deal with highcr-order statistical depend­
encies.

In order to overcome the limitations of PCA, Makeig et 
al., [12] applied independent component analysis (ICA) for 
removing artefacts from the EEG. ICA is an extension of 
the PCA which not only decorrelates but can also deal with 
higher-order statistical dependencies [13]. Bell and Sejnowski 
[14] proposed an information-theoretic-based ICA algo­
rithm that uses an unsupervised learning rule. It finds a lin­
ear transformation within the data to make the separated 
signal components as statistically ‘independent’ as possible. 
The technique does not need a priori knowledge of the 
physical location or the configuration of the sources and, 
unlike PCA, it does not require the distribution of the sig­
nals sources to be orthogonal. However, for it to function 
correctly, the signal sources must be statistically independent 
and the distribution of not more than one source can be 
Gaussian. The EEG signal sources represent the signals pro­
duced by the various signal generators of the brain and not 
the recorded EEG signals that represent a mixture o f brain 
electrical activities from many sources. The ICA algorithm 
applied by Makeig et al. [12] is suitable for sources with 
super-Gaussian distribution (i.e. irregularly occurring signals 
with sharply peaked distributions and positive kurtosis). Lee 
and Sejnowski [15] extended the ICA algorithm to make it 
also suitable for signal sources with sub-Gaussian distribu­
tion (i.e. signals with negative kurtosis). Jung el al. [16] 
applied the extended ICA algorithm to isolate and remove a 
variety o f EEG-contaminating artefacts.

An alternative approach for signal source separation was 
proposed by Cardoso [17]. The method is based on the

y o /  11 vpviuvvu KSJ------------------------------------------------------------------------— - ...................

cal properties of the signals based on their fourth-order 
cumulants. Like ICA, this algorithm also requires the 
sources to be statistically independent and, at most, the dis­
tribution of one source can be Gaussian [18].

An investigation to analyse residual ocular artefacts sub­
sequent to ocular artefact removal from the EEG has been 
carried out in another study [19]. In this study, however, a 
method to quantitatively evaluate the effectiveness of an 
algorithm for OA removal from EEG waveforms was 
devised. The method was used to evaluate and compare the 
performance of extended ICA, JADE, PCA and EOG sub­
traction methods for removing OAs from the EEG. EOG 
subtraction was included because it is a well known 
method. PCA was included in order to investigate the need 
for considering the higher statistical dependencies in OA 
removal process. Extended ICA and JADE were included 
as they are well established signal source separation tech­
niques. Both extended ICA and JADE are based on infor­
mation theoretic principles, however ICA uses entropy 
while JADE exploits the fourth-order cumulants [20]. EOG 
subtraction, PCA and ICA have all been previously applied 
to the problem of OA removal, however the aim of this 
study is to extend the information available by providing a 
quantitative evaluation and comparison o f their (including 
JADE) performance based on a series o f statistical tests. As 
the operations of JADE and extended ICA are subject to 
amplitude scaling and channel permutation, procedures 
were incorporated as part o f these two methods to estimate 
the amplitude o f the separated signals and to allocate them 
to the correct channels.

Initially, a brief description of the theory o f the four 
methods is provided. Then the experimental procedures are 
outlined and the results obtained arc discussed.

2 Theoretical review of the four OA removal 
m ethods

2.1 EOG subtraction
The operation of EOG subtraction method for removing 
OA from an EEG waveform consisting o f N  data points is 
outlined in this Section. The contaminated EEG waveform 
(EEGt) can be expressed as the sum of the original EEG 
(EEGq) and a fraction (6) o f the EOG waveform, i.e.

E E G c{i) =  E E G 0(i) +  0EOG(i ) i — 1 , 2 , . . . ,  TV
(a

The correlation (at zero lag) between the EOG and con­
taminated EEG waveforms is given by

correlation =  Y ^ E E G c{i)EOG{i)  (2)
i — 1

Substituting EEGC from eqn. 1 into eqn. 2 results,
N  N

correlation =  Y  E E G 0(i)EOG(i)+§ Y  EO G { i f
i= l i= 1

(3)
Equating eqns. 2 and 3 provides

N  N

Y E EGc{i)EOG{i) =  Y E E G o (i)EOG{i)
2=1 2=1

N

+ § Y E 0 G (i ) 2 (4)
i=i
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coireianon oeiween me original c,c,w <mu e u u ,  
'L^E E G fi) EOG(i) = 0. This simplifies eqn. 4 and from it 
the value o f 6 can be determined by

0 =
£  EEGc{i)EOG(i)

i — 1____________________

£  E O G i i f
i =  1

(5)

The original EEG waveform can be obtained by inserting 
0 in eqn. 1. Therefore,

• EE G 0{i) =  E E G c{i) -  9EOG{i) i =  1 , 2 , . . . ,  N
(6)

2.2 Principal com ponent analysis 
Principal component analysis (PCA) is a multivariate data 
analysis procedure that transforms a set of n correlated 
variables, X  = (Aq, x2, ..., x„), into a set o f uncorrelated 
variables called principal components (ph p2, ..., p„) [10]. 
The first principal component accounts for most of the 
variability in the data, while each of the succeeding compo­
nents in turn account for the highest amount o f the remain­
ing variability. Each principal component is a linear 
combination of the variables, X. The ith principal compo­
nent can thus be expressed as

y, = e j x  (7)
where ct is the eigenvector of the covariance matrix (R) of 
X  (t’T is the transpose of et). The variance of the /th princi­
pal component is given by

V a r (Y {) =  e [ R  e  =  Xi i =  1 , 2 , . . . ,  n  (8) 

where A,- is the /th eigenvalue.

si v - °n
c>21

I 11 W|2
11 /

—  y ,_ * learning
rule

g(U) determine
change in

—  Y 2 -* W

Fig.1 Diagram to illustrate the operation o f  ICA

2.3 Independent com ponent analysis 
The concept o f ICA for a situation involving two signal 
sources S  is illustrated in Fig. 1. The mixtures X  are gener­
ated by the operation

X  =  A S (9)
where

S  = Si
. *  =

Xi
.*2. .*2.

and the mixing matrix A is given by

_ an ai2 
«21  «22

The aim is to estimate an unmixing matrix W  which, in 
turn, enables an estimate o f the signal sources U  to be 
obtained by

U = W X  (10)
where

w = wn Wl2 ,u =
Ui

_W21 W22 _ .^2.

UtO î iuuu ij y  ii iv̂ i v/nu w ii iti, oivpj.

(i) The unmixing matrix IF is initialised to an identity 
matrix.
(ii) The signal sources are estimated by eqn. 10 and then 
they are transformed by a nonlinear transfer function. For 
a sigmoidal transfer function, the resulting signals (Y) are 
expressed as

v  -  m  -  x o n
where <w0 is a vector o f bias weights which is initialised to a 
zero vector.
(iii) The nonlinearly transfoimed signals (F) are processed 
by a learning rule which maximises their joint entropy (i.e. 
minimises their mutual information). This is achieved by 
changing the weight matrix by the amount A IF [14], where

A W =  [W T]~1 +  (1 -  2 y ) x T (12)

and the superscripts T  and -1 represent matrix transpose 
and inversion, respectively. The change in the bias weight is 
expressed by [14]

A w 0 =  1 -  2 y  (13)

(iv) The ICA algorithm is trained by repeating steps (ii) and 
(iii). After each iteration the unmixing matrix W  is updated 
by A IF until convergence is achieved. The algorithm stops 
training when the rate of change falls below a predefined 
small value, e.g. 1.0 x  10-6. The rate o f change is computed 
by squaring the difference between corresponding elements 
of the unmixing matrix before and after each iteration and 
then summing the values.
The ICA algorithm of Bell and Sejnowski [14] which uses a 
sigmoidal activation function is specifically suited to sepa­
rate signals with super-Gaussian distribution (i.e. positive 
kurtosis). Lee and Sejnowski [15] proposed an extension of  
ICA that is able to separate signals with sub- as well as 
super-Gaussian distributions. This preserves the ICA archi­
tecture of Bell and Sejnowski [14] but it uses a learning rule 
derived by Girolami and Fyfe [21]. It determines the sign 
changes (positive to negative and vice versa) required by 
the algorithm to handle both sub- and super-Gaussian 
distributions. This is achieved by considering the normal­
ised fourth-order kurtosis (/c4) o f the estimated signal 
sources. In extended ICA, the amount of change (A IF) 
required to update the unmixing weight matrix W  is given 
by

A W  — ^  W T W
o W

=  [I —sig n (k 4 ) ( l  — 2 y)u T — u u T]W  (14)

where !F7 !F is the ‘natural gradient’ o f Amari et al. [22] 
used as an optimiser for speeding up the convergence.

For a detailed description o f ICA and its extended 
version, the reader may refer to the book by Lee [20].

2.4 Joint approximate diagonalisation o f  
eigenmatrices (JADE)
The second signal source separation technique used in this 
study was the joint approximation diagonalisation o f eigen­
matrices (JADE). A description of this method is provided 
by Cardoso [17]. JADE algorithm exploits the fourth-order 
moments in order to separate signals in a mixture. The 
operation of JADE is outlined in the following:
(i) The covariance matrix (Rx) of the mixtures is obtained. 
This operation is based on the assumption that the signal
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the mixing matrix A. This enables Rx to be expressed as Rx 
= AAn, where A n is the Hermitian matrix ol A. The whit­
ening matrix Qx is computed by considering the whitening 
condition I  = Q XR XQX,!. Replacing R x gives /  = 
QxAA hQ xu, where I is the identity matrix. This implies 
that Q XA is a unitary matrix (V) and therefore A can be 
factorised as A = Q j'V .
(ii) The mixtures are then whitened according to Z  -  Q xX. 
The whitened mixtures (Z ) obey the linear model Z  = 
QXAS. Substituting for A gives Z  = Q XQXHVS = VS.
(iii) In order to determine V, the fourth-order cumulants of 
the whitened mixtures are computed. Their n most signifi­
cant eigenvalues (A,) and their corresponding eigenmatrices 
(Ml) are determined. An estimate of the unitary matrix (V) 
is obtained by maximising the criteria N  = A,M,- by means 
o f joint diagonalisation. If N  cannot be exactly jointly diag- 
onalised, the maximisation of the criteria defines a ‘joint 
approximate diagonalisation’.
(iv) An estimate o f the unmixing matrix (IV) is obtained by 
W  — QXV. This is then used to compute an estimate o f the 
original signal sources U  as shown in Fig. 2.

unitary
matrix

mixing
matrix

whitening
matrix

Fig.2 Diagram to illustrate the operation o f  JADE

3 Experimental method

To quantify the effectiveness of each OA removal method, 
the recovered EEG waveforms were compared with the 
original (uncontaminated) EEG. A measure of similarity 
indicated how well the OA removal method had per­
formed. The operation required the availability of the EEG 
waveforms before and after OA contamination. Further­
more, extended ICA and JADE required the original signal 
sources to be independent. The steps for satisfying these 
requirements are described as part of the overall experi­
mental method. The experiments consisted of: (i) compari­
son o f the four OA removal methods based on single EEG 
and EOG channels, (ii) analysis of the effect o f mixing 
matrix values on the recovered (separated) EEG wave­
forms, (iii) analysis o f the effect o f additive Gaussian noise 
on the operation o f the four OA removal methods, and (iv) 
comparison of JADE and extended ICA based on multiple 
EEG and EOG channels.

3.1 Data recording procedure 
The EEG and EOG data were recorded in an EEG data 
recording room with subjects relaxed and fixating at a 
white board. Four sets of EEG waveforms were recorded 
from four subjects. Each set consisted of thirty-two wave­
forms. By recording each EEG data set from a different 
subject, the condition for independence of the signal 
sources was satisfied. Thirty-two EOG waveforms were 
recorded from another subject. By recording the EOG data 
from a separate subject it was ensured that they had not 
contaminated any of the EEG data sets. The subjects were 
asked to avoid eye movements and blinks during each 
EEG recording in order to minimise OA contamination. 
EEG data were recorded from the scalp (location CZ in 
accordance with the 10-20 standard electrode positions). 
EOG data were recorded using a pair of electrodes placed 
adjacent to the right eye. The reference for both EEG and

all recordings. The sampling rate was 125Hz and the 
signals were band limited to 30Hz. Each waveform 
contained 1250 data points (i.e. 10 seconds).

3.2 Generation o f required signal sources and  
mixtures
Mixing matrices used in this analysis are

0.5 0 .2 '
0.3 0.5

In order to carry out the analysis based on single EEG and 
EOG channels, 32 pairs o f EEG and EOG mixtures were 
generated using the mixing matrix A -  A\. The mixing 
operation was carried out by performing

E E G C _  . E E G 0 
E O G c\ ~  [EO G o_

where EEG0 and EOGq were the original EEG and EOG, 
respectively, and EEGC and EOGc were the resulting con­
taminated mixtures. The operation caused the original 
EEG waveforms to be contaminated by one fifth of the 
EOG (and vice versa). This mixing matrix was considered 
appropriate as only a fraction of the EOG and EEG can 
contaminate each other. The mixing operation resulted in 
32 pairs of contaminated EEG and EOG mixtures.

The distribution o f the EEG and EOG waveforms was 
tested by the UNIVARIATE procedure using the Statisti­
cal Analysis System [23]. This indicated that the EEG 
waveforms had a Gaussian distribution while the EOG 
were not Gaussian. Therefore, the requirement for JADE  
and ICA, where not more than one source can be Gaus­
sian, was not breached.

The 32 pairs of EEG and EOG mixtures generated using 
the mixing matrix A = A\ were also used to investigate the 
effect of additive Gaussian noise on the operation of the 
four OA removal algorithms. Gaussian noise (band limited 
to 50 Hz) was added to the 32 pair of mixtures and then the 
four methods for OA removal were applied to recover the 
EEG waveforms. Statistical parameters (described in 
Section 3.2) were calculated to determine the ability of each 
method in recovering the EEG when contaminated by 
additive Gaussian noise. For each test the results obtained 
for recovering the 32 EEG waveform were averaged. The 
experiment was repeated for different amounts of noise. 
The signal-to-noise ratio (SNR) values represented the 
signal power (before addition of the noise) to the noise 
power.

The mixing matrix A used in this analysis conformed to 
a unity value for the sum of elements in its columns. To 
investigate the effect o f not conforming to this condition, 
the experiment for the recovery of EEG waveforms was 
repeated using the mixing matrix A = A 2.

The analysis based on multiple EEG and EOG channels 
was carried out by using the four EEG and EOG data sets. 
The condition for independence of sources was ensured as 
each of the four EEG data sets had been recorded from a 
different subject. The UNIVARIATE statistical procedure 
[23] was used to test the EEG and EOG distribution. This 
indicated that while the EOG data were not Gaussian, the 
EEG data had a Gaussian distribution, and therefore they 
could not be considered as valid signal sources for ICA and 
JADE algorithms. The required EEG signal sources were 
obtained by transforming the recorded EEG data. The 
transformation involved the following steps: (i) a DC offset 
was added to the EEG signals so that their minimum

Ai = 0.8
0.2

0.2
0.8 ? A2 —
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values became zero, (ii) they were squared and their mean 
values were removed, (iii) the resulting signals were rescaled 
to the original amplitude ranges, and (iv) the UNIVARI­
ATE statistical procedure [23] was applied to the trans­
formed EEG waveforms to ensure they had the required 
non-Gaussian distribution. Typical distributions of trans­
formed EEG waveform arc shown in Fig. 3.

Thirty-two sets, each consisting of live signal mixtures 
were generated by carrying out the mixing operation,

r E E G lc -\ - E E G U _
e e g 2c E E G 2t
e e g 3c =  A E E G 3t
E E G Ac E E G  At

. E O G c . . E O G q .

- 0.5 0.125 0.125 0.125 0.125-
0.125 0.5 0.125 0.125 0.125
0.125 0.125 0.5 0.125 0.125
0.125 0.125 0.125 0.5 0.125

.0 .125 0.125 0.125 0.125 0.5

where EEG\C to EEG4c were the contaminated EEG signals 
and the EOGc was the contaminated EOG. EEGU to 
EEG4, were the transformed EEG signals and EOG0 was 
the original EOG waveform. The mixing matrix A was 
given by

A  =

3.3 Procedures to enable JADE and ICA deal 
with the problem s o f amplitude scaling and  
channel permutation
JADE and ICA scale and may invert the recovered signals. 
Furthermore, the recovered signals may not appear in the 
correct channels (channel permutation). In order to deal 
with the channel permutation problem, each recovered sig­
nal was compared with each mixture and their correlation 
oefficient was calculated. A  recovered signal was then allo- 
ated to the channel which corresponded to the highest cor- 
lation coefficient value. The operation assumed that each 
ixture contained a larger contribution from the original 

ignal source than from the contaminating source. The pos­

sible sign change (i.e. signal inversion) was corrected by 
considering the sign o f the correlation coefficient.

In order to estimate the amplitude of the recovered sig­
nals for both JADE and extended ICA, a procedure pro­
posed by Cardoso [Note l] was implemented. The steps are 
outlined in the following for a case involving two signal 
sources, however the method can be extended to situations 
involving more than two sources:
(i) 'flic inverse of the unmixing matrix IF 1 was obtained. 
This provided an estimate of the mixing matrix. WA is 
given by

V l  Wl2 
W21 W22

(ii) The total contribution o f each original signal source to 
the mixtures was estimated from W~l. This required 
summing the squared elements in each of its columns. The 
resulting sums were square rooted and then multiplied by a 
scaling factor (k j). This produced a row vector, p  -  
[A:lV(iv,12| + W21), k f l ( ) V \2 + ^ 22)] • The squaring o f the 
elements was necessary to ensure negative values did not 
cancel positive values during the summing process. The 
scaling factor k | and k 2 were required to deal with the 
mathematical inequality that, for any two values (x* and y), 
x  + y  *  V(x2 + y 2). The expression for k j  {j = 1, 2) is given 
by

2
E  wij
i=l ' (15)

where Wy represents an element (in the /th row and yth 
column) of the matrix WA . The unmixing matrix W  was 
rescaled by multiplying its columns by the corresponding 
columns o f the row vector p.

Note 1: Cardoso, J.-F.: Personal communication, 1998, (address: Ecole Nation­
a l  Supeneure des Telecommunications, Telecom Paris, Department Signal, 46 
rue Barrault, 75634 Paris Cedex 13, France
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m ethods
In order to assess the performance of each OA removal 
method, the similarity between the original and recovered 
EEG waveforms was measured. This required quantifying 
any change in the amplitude and shape of the waveforms. 
The required measurements were carried out by using the 
correlation coefficient, standard deviation and Euclidean 
distance parameters. The justification for using these 
parameters is provided by the following:
(i) Correlation coefficient: This provided a measure of the 
similarity in shape for the recovered and original EEG 
waveforms. A value of 1 indicated that the recovered and 
original waveforms had exactly the same shape. However, 
this parameter did not provide any information about 
amplitude changes.
(ii) Standard deviation ratio: This was the ratio of the origi­
nal EEG standard deviation to that of the recovered EEG. 
A value of 1 indicated that the original and recovered

a loss in the recovered signal power. As both ICA and 
JADE scale the amplitude of the recovered signals, this 
parameter indicated how well (for a particular mixing 
matrix) the Cardoso’s amplitude estimation operates as 
part of JADE and extended ICA algorithms.
(iii) Euclidean distance: This provided a measure of similar­
ity in both shape and amplitude. The Euclidean distance 
between two signals (.v and / )  can be expressed as [24]

Euclidean distance =
\

N

(1C)
i =  1

3.5 Statistical tests for determining the 
significance o f differences
In order to determine the significance of the differences 
between the performance o f the four OA removal methods, 
a number o f tests were carried out using the Statistical
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F-statistic test [22>J to be carried out on the mean values 
(over thirty-two trials) for each of the three parameters 
(correlation coefficient, Euclidean distance and standard 
deviation ratio) across the four OA removal methods. The 
F-statistic was suitable because it tested the null hypothesis 
that a significant difference did not exist between the means 
for a given parameter. An F value close to 1 resulted in 
accepting the null hypothesis, otherwise it was rejected.

Although the F-statistic indicated whether means were 
significantly different across the four OA removal methods, 
it did not however indicate which mean differed signifi­
cantly from the other means. In order for this to be deter­
mined, Tukey’s studentised range test [23] was performed. 
This test was based on analysing the pairwise differences 
between the means.

computed after incorporating the amplitude estimation 
procedure as part of their algorithms. The mixtures were 
processed by the four OA removal methods in order to 
recover the original EEG waveforms. The results are 
described in the following Sections.

4.1 Single EEG and EOG data se t analysis 
This investigation used the signals generated with the mix­
ing matrix A = A j.

Typical plots for one pair of original EEG and EOG 
waveforms, their mixtures and the recovered EEG wave­
forms following the application of the four OA removal 
algorithms are shown in Figs. 4ci-h.

The standard deviation ratio, Euclidean distance and 
correlation coefficient values were computed for the EEG
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Table 1: Means and variances for the three parameters over 32 trials

Methods
Standard deviation ratio Correlation coefficient Euclidean distance

Mean Variance (x 10'3) Mean Variance (x 10'3) MeanlxlO-4) Variance (x 10'9)

PCA 1.45 3.0 0.95 2.2 1.59 1.7
Extended ICA 0.95 29.4 0.99 0.43 0.85 7.4
JADE 0.97 15.9 1.00 0.034 0.60 2.1
EOG subtraction 1.35 0.4 0.99 0.23 1.18 0.48
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provided in Table 1.
The following observations were made for the standard 

deviation ratio parameter. The EOG subtraction method 
provided smallest variance and thus the highest consistency. 
However, it was always larger than 1 indicating a loss of 
amplitude in the recovered EEG. This confirmed the limi­
tation o f the EOG subtraction method, in which the part of 
the EEG which contaminates the EOG is also subtracted 
from the recovered EEG, resulting in a loss of its amplitude 
(this was first referred to in the Introduction, Section 1). 
The PCA technique also reduced the amplitude of the 
recovered EEG. This indicated that PCA could not com­
pletely separate the mixtures. This may be because PCA is 
unable to deal with higher-order statistical dependencies. 
For extended ICA and JADE, the standard deviation ratio 
parameter assessed, not only their ability to separate the 
signal components in the mixtures, but also the ability of 
the Cardoso’s amplitude estimation in rescaling the sepa­
rated signals. The results show that JADE and extended 
ICA, together with the Cardoso’s amplitude estimation 
procedure, have provided an accurate recovery of the origi­
nal EEG waveforms.

JADE provided a correlation coefficient closest to 1 and 
a Euclidean distance value closest to 0. It was also the most 
consistent (i.e. smallest variance) for these two parameters.

To determine the significance of the difference between 
the observed means, two statistical tests were carried out by 
using the analysis o f variance (ANOVA) technique [23]. 
These were F-statistics and Tukey’s studentised range test.

The F-statistic test was performed for each measured 
parameter (standard deviation ratio, correlation coefficient 
and Euclidean distance) across the four OA removal meth­
ods. This indicated that significant differences (j) < 0.0001) 
existed between the means for each of the three parameters 
across the four methods.

The Tukey’s studentised range test was then performed 
to determine the sign (positive or negative) of the pair-wise 
differences between the means. This indicated whether a 
mean was significantly smaller or larger than another 
mean. The results are shown in Table 2.

Regarding the standard deviation ratio parameter, the 
performance o f PCA and EOG subtraction was signifi­
cantly different from JADE and extended ICA. The per-

With respect to the correlation coefficient parameter, the 
performance of PCA was significantly different (smaller 
mean) from the other three algorithms. The latter did not 
show significant differences between their performances. 
This parameter indicated that PCA was the least effective 
in preserving the shape o f the recovered EEG waveforms.

Considering the results for Euclidean distance parameter, 
JADE and extended ICA differed significantly from PCA 
and EOG subtraction, however they did not differ signifi­
cantly from each other.

4.2 Analysis to determ ine the effect o f mixing 
matrix
The results shown in Table 1 were obtained using a mixing 
matrix that conformed to unity for the sum of elements in 
its columns. To investigate the effect o f not conforming to 
this condition, the experiment was repeated using the mix­
ing matrix A = A2. The results are shown in Table 3.

Table 3: Performance evaluation results when the mixing 
matrix A = Az

Methods
Standard
deviation
ratio

Correlation
coefficient

Euclidean 
distance (x 10"4)

PCA 3.15 0.89 2.93
Extended ICA 1.23 0.98 1.06
JADE 1.27 0.99 0.87
EOG subtraction 2.77 0.95 2.68

The results for standard deviation ratio (from Table 3) 
indicated that JADE and extended ICA performed better 
than PCA and EOG subtraction. Both PCA and EOG 
subtraction methods resulted in a significant loss in the 
recovered EEG amplitude. The results also showed that the 
performance of the amplitude estimation procedure was 
affected by the mixing matrix values. The results for corre­
lation coefficients were all still close to 1 indicating that the 
values associated with the mixing matrix do not affect the 
recovered signals’ shape. The experiment was repeated with 
several other mixing matrices. The results were consistent 
with these observations.

Table 2: Tukey's test (at level of significance 0.05) for pair-wise 
differences between algorithms

Pair-wise differences between 
the algorithms

Standard
deviation
ratio

Correlation
coefficient

Euclidean
distance

PCA- EOG subtraction s(+) s(-) s(+)
JADE s(+) s(-) s(+)
Extended ICA s(+) s(-) s(+)

EOG subtraction PCA s(-) s(+) s(—)
JADE s(+) ns(-) s(+)
Extended ICA s(+) ns(-) s(+)

JADE PCA s(-) s(+) s(-)
EOG subtraction s(—) ns(+) s(-)
Extended ICA ns(+) ns(+) ns(+)

Extended ICA PCA s(-) s(+) s(—)
EOG subtraction s(-) ns(+) s(-)
JADE ns(-) ns(-) ns(-)

s = significant, ns = not significant
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of the four OA removal methods was also investigated. The 
plots for the observations are shown in Figs. 6a-c. The 
results indicated that the performances of all four algo­
rithms for OA removal degrade rapidly for signal-to-noise 
ratios below 50.
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4.4 Multiple EEG channels analysis 
The results obtained for the data consisting of four sets of 
thirty-two transformed EEG waveforms (EEGu to EEG4l) 
are presented in Table 4. The mean value for each parame­
ter was obtained by averaging the results over thirty-two 
waveforms. The results obtained were consistent with those 
obtained involving one set o f EEG waveforms. Only JADE 
and extended ICA were included in this analysis because 
they had performed significantly better than PCA and 
EOG subtraction methods, when analysing one set o f EEG 
and EOG data.

• The devised procedures made it possible for the perform­
ances of the four algorithms for OA removal to be quanti­
fied and compared.

• Cardoso’s amplitude recovery method enabled the ampli­
tude of the recovered EEG to be estimated for both JADE 
and extended ICA. However, the results were affected by 
changing the values of the mixing matrix.

• The proposed correlation-based method provided a 
means for dealing with the problems of channel permuta­
tion and sign changes problems associated with JADE and 
extended ICA algorithms.

• JADE and extended ICA performed significantly better 
than PCA. This could be because PCA only decorrelates 
signals while JADE and extended ICA attempt to make the 
recovered signal components as independent as possible.

• The EOG subtraction attenuated the recovered EEG sig­
nals. This is because a fraction o f the EEG that contami­
nates the EOG signal is also subtracted from the recovered 
EEG component.

• Extended ICA method required a significantly longer time 
to carry out the OA removal operation when compared 
with JADE. This is because extended ICA is an iterative 
algorithm, which requires many passes through its learning 
algorithm in order to converge, while JADE only requires 
one pass through its algorithm.

• Statistical tests showed that, on average, the performances 
of JADE and extended ICA, for OA removal, were not sig­
nificantly different. However, JADE provided a more con­
sistent set of results and both JADE and extended ICA 
performed significantly better than PCA and EOG subtrac­
tion.
• The performances of the four OA removal methods were 
not significantly affected by an additive Gaussian noise 
source for a signal-to-noisc ratio above 50.

5 Conclusion

The performances of four methods for removing ocular 
artefacts from the EEG were quantified and compared. 
The methods were extended independent component analy­
sis (ICA), joint approximation diagonalisation o f eigenma- 
trices (JADE), principal component analysis and 
electrooculogram (EOG) subtraction. The study indicated 
that JADE and extended ICA performed significantly 
better than the other two methods. The performances of 
JADE and extended ICA were not, on average, signifi­
cantly different, however JADE provided a more consistent 
set o f results. All four algorithms could tolerate additive 
Gaussian noise, provided the signal-to-noise ratio remained 
above 50.

Table 4: Results obtained when the algorithms were applied to 
four transformed EEG sources

Transformed 
EEG data

Standard 
deviation ratio

JADE Ext. ICA

Correlation 
coefficient means

JADE Ext. ICA

Euclidean distance 
means (x 10"5)

JADE Ext. ICA

EEGV 1.04 1.08 0.95 0.95 11.75 11.48
EEG2t 1.15 1.10 0.95 0.96 8.00 7.80
EEGZt 1.00 0.97 0.96 0.96 6.28 7.62
EEG,t 1.05 1.02 0.98 0.97 7.87 9.31
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However, their main weaknesses are amplitude scaling and 
channel permutation. Further work will be carried out to 
improve the accuracy of the recovered signal amplitudes. 
Other approaches to deal with the problem of channel per­
mutation will also be investigated.
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1 Peripheral neuropathy in HIV infection -  G. Kanabar, S. Guna- 
sekera, H. Longhurst, A.T. Pinching and K. Nagendran (Barts 
and The London NHS Trust)

We studied 147 consecutive HIV +  ve patients referred to our depart­
ment with possible diagnosis of peripheral neuropathy for assessment. All 
had sural SAP, common peroneal motor conduction, and F and H wave 
studies. Ninety-two in addition had quantitative thermal thresholds.

The summary of findings in the 92 patients who had large and small fibre 
studies include 21 normal, 25 small fibre neuropathy (SFN) only, 6 large 
fibre neuropathy alone, 10 radiculopathy with small fibre dysfunction and 
30 small and large fibre neuropathy. Six patients fulfilled the criteria for 
dcmyclinating neuropathy but none had significant conduction block, 
temporal dispersion to proximal stimulation or significant F wave prolon­
gation except in one case. Ankle jerks were frequently absent, and nearly all 
had retained or brisk knee jerks despite the presence of well-established 
neuropathy, suggestive of co-existing UMN dysfunction. A small group of 
patients had significantly reduced MCV (without fulfilling the criteria for 
demyelinating neuropathy) but preserved sural SAP and EDB CMAP.

We conclude that small fibre studies are more frequently abnormal 
(70.6%) in HIV neuropathy. Demyelinating neuropathy affects predomi­
nantly distal segments without conduction block or temporal dispersion.

2 Initial clinical experience with vibration threshold testing in 
repetitive strain injury -  D.S. Holder, V. Morris and M. Boland 
(University College, London)

Greening and Lynn (1998) recently measured hand vibration thresholds 
in subjects with repetitive strain injury (RSI) and found that they were 
elevated (>0.6  p.m) and increased by more than 50% after use of a 
keyboard for 5 min. We report initial clinical experience in patients with 
presumed RSI, using these criteria.

Vibration thresholds were recorded from median, ulnar and radial terri­
tories in each hand in 20 patients with RSI on clinical grounds, mainly 
referred in the hope of providing support in a medicolegal claim.

Twelve subjects had a raised vibration threshold in median territory in 
either hand, but only two of these met the above criteria.

This method could be of considerable value if it is able to provide 
objective evidence of RSI, but this initial clinical experience in this patient 
group suggests a low sensitivity with the proposed conservative criteria. It 
may be possible to increase sensitivity by adjusting criteria in the light of 

 ̂ larger clinical studies. The median abnormalities support the hypothesis 
that there is median nerve dysfunction in this condition.

Greening J, Lynn B. Vibration sense in the upper limb in patients with 
repetitive strain injury and a group of at-risk office workers. Int Arch Occup 
Environ Health 1998;71:29-34.

* Tel.: +44-115-970-9146; fax: +44-115-849-3225.

3 The clinical utility of visual evoked responses in the assessment 
of pituitary structural lesions -  B. Anand, R.C. Pottinger and 
D.A. Ingram (Barts and The London NHS Trust)

The advent of high-resolution neuroimaging has prompted re-evaluation 
of the role of visual evoked responses (VERs) in the management of pitui­
tary structural lesions. We have therefore retrospectively examined the 
results of VERs in 29 patients (mean age 46.8 ±  16.0 (SD) years; 18 
females) with various pituitary lesions .and compared these with clinical 
and radiological evidence of impingement on suprasellar visual pathways. 
Whole-field and hemi-field pattern-evoked responses, obtained using stan­
dardized techniques, were evaluated blind for latency and amplitude 
measurements by one author (B.A.). These findings were then compared 
with the results of computed tomography and magnetic resonance imaging 
findings and carefully mapped visual fields to 5 mm red stimuli.

Fourteen (48%) patients had radiological evidence of suprasellar invol­
vement of visual pathways and all demonstrated various VER abnormal­
ities. Of the remaining 15 (52%) patients without radiological evidence of 
visual pathway involvement, 5 (17%) had normal VERs and 10 (34%) had a 
VER abnormality. Of those with a VER abnormality 5 (17%) (two macro- 
adenomata, one microadenoma, one TSHoma and one resected supraclinoid 
tumour) had a visual field defect. The remaining 5 (17%), including 3 who 
had undergone previous transphenoidal surgery, had no associated visual 
field defect. This suggests that in almost one-fifth of cases, evidence of 
subplinical involvement of chiasmal visual pathways may be detected using
jVERs. \/

/ / -  j
f  4 Signal source separation of saccade-related evoked potentials -  

L. Vigon“, M.R. Saatchi", J.E.H. Mayhewb, N. Taroyanb and 
/  / J.P. Frisbyb ("Sheffield Hallam University and bSheffieId
{ University)

 ,T h e  independent component analysis (ICA) signal source separation
algorithm was extended by incorporating the template model of a visual 
evoked potential (EP) called the lambda-wave (Thickbroom et al„ 1991) 
into the algorithm’s cost function. The template-model ICA algorithm was 
evaluated in this study by analyzing saccade-related EEG data.

Saccade related EEG waveforms were recorded from 64 locations on the 
scalp. Seven subjects participated in the experiments. Each subject sat 0.5 
m from a computer screen which displayed a checkerboard pattern. They 
were asked to visually follow a red square which appeared randomly at one 
of 5 prc-defined locations (up, down, left, right and centre) on the checker­
board. The pcriphcral-to-ccntrc viewing angle was 12 degrees. Up to 50 
trials were recorded per event (i.e. a direction of saccade). Each trial lasted 
about 2 s.

The template-model ICA algorithm was applied to the averaged saccade- 
related EEG waveforms to extract the lambda wave and identify its saccade 
time-locked subcomponents. Its corresponding scalp distribution obtained 
using the developed method showed peak activity in the parieto-occipital 
area of the cerebral cortex.

The results of the study demonstrated that the incorporation of a

1388-2457/01/$ - see front matter © 2001 Elsevier Science Ireland Ltd. All rights reserved. 
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template-model into ICA significantly improved the extraction of the 
lambda wave from the EEG data. The technique is applicable for the 
extraction and analysis of other EPs and event-related potentials for 
which models can be developed.

Thickbroom et al., Brain Res 1991;551:150-156.

5 Motor abnormalities in patients with chronic pain? -  A.M. 
Purves and M.S. Chong (Medway Maritime Hospital, Orping­
ton Hospital and Kings College Hospital, London)

Patients who present with chronic pain syndromes may have abnormal­
ities of function which are quite separate from the pain. They often also 
complain of more subtle difficulties using the hand or arm, with loss of 
power or dexterity, and the neurological basis for this is not well under­
stood.

We have used a recently described motor reflex (the group III reflex) 
(Priori et al., 1998; Bume and Lippold, 1996) as a probe for changes in 
motor unit excitability in patients with pain in one limb of unknown cause, 
and have found 3 patterns of abnormality. In some patients (n =  19) there is 
greater inhibition of the rectified averaged EMG signal in the forearm 
muscles on the affected side after stimulation (P < 0 .0 1 , Mann-Whitney 
U test), in others (n =  5) a more tonic inhibition and in a few (n =  3) a 
failure of recruitment of motor units with or without stimulation. The 
possible significance of these findings for our understanding of pain 
syndromes in the clinic will be discussed.

Priori et al. Brain 1998;121:373-380.
Burnc JA, Lippold OC. Loss of tendon organ inhibition in Parkinson’s 

disease. Brain 1996;119:1115-1121.

6 Elcctrocorticographic findings in cortical dysplasia and dyscm- 
bryoblastic neuroepithelial tumour -  C.D. Binnic, G. Alarcon, 
A. Dean, R.D.C. Elwcs, C. Ferrier and C.E. Polkey (Guys, Kings 
and St. Thomas’ School of Medicine, London)

Of all patients treated surgically for epilepsy over a 20 year period and 
whose medical records were available, 17 underwent frontal resection for 
cortical dysplasia (CD), 18 underwent frontal resection for other pathology, 
12 underwent temporal resection for CD as the only pathology, 22 DNET, 
and 17 other, non-atrophic lesions. The intraoperative electrocorticograms 
(EcoGs) were related blind to the pathology before and after resection, with 
reference .to ictal or continuous epileptiform discharges (ICEDs) and 
discontinuous sporadic spike or spike-and-wave discharges.

In the frontal group, pre-resection ICEDs were strongly associated with 
CD (16/17 versus 4/18 in non-CD subjects, P <  0.001). Sporadic spikes did 
not discriminate between CD and non-CD subjects (11/17 and 14/18). The 
presence of ICEDs was associated with favourable surgical outcome (type 1 
or II) (P <  0.05) but neither sporadic spikes nor the topography of 
discharges was predictive of outcome. Post-resection, only 3 CD subjects 
continued to exhibit ICEDs -  all with unfavourable outcome, whereas 
overall 9/17 patients had good outcome. ICEDs were abolished in all 
non-CD patients but appeared de novo in one -  with good outcome.

In the temporal group, pre-resection ICEDs were associated with CD (9/ 
12) and also occurred with DNET (6/22), but never with other pathology. 
Sporadic spikes did not discriminate between pathologies. Neither the 
presence nor post-resective persistence of ICEDs was predictive of surgical 
outcome.

7 Bizarre prolongation of distal motor latency is a robust sign of 
active motor axonal regeneration -  K. Nagendran (Barts and 
The London NHS Trust)

Sixteen patients showed a markedly delayed distal motor latency to 
target muscles (values ranging from 10.5 to 71 ms) during recovery follow­
ing severe or total axonopathic lesions such as severe traumatic nerve 
injuries and severe compressive nerve lesions. Recordings were made 
using concentric needle electrodes. The presence of ‘nascent units’ and 
the appropriate time of occurrence confirmed that the recorded potentials 
were re-innervating motor units. The phenomenon is probably due to a 
relatively rapid advancement of axonal growth combined with a delayed 
myelination process.

These findings provide (1) a useful electrodiagnostic test for motor 
axonal regeneration and (2) a human model to study motor axonal regen­
eration.

8 Monitoring intercostal nerve function during thoracotomy -  
L.M. Henderson", M.I. Rogers'* and J.P. Duffyb ("University 
Hospital, Queen’s Medical Centre, Nottingham and bCity 
Hospital, Nottingham)

Chronic postoperative pain persisting beyond 3 months is a distressing 
and common complication of thoracotomy. Pain may result from intercostal 
nerve injury by retraction or dissection, but the mechanism of injury intrao- 
peratively has not been demonstrated.

We used intraoperative motor conduction studies of intercostal nerves 
above and below the level of original incision to identify nerve injury.

Thirteen patients undergoing first thoracotomy were recruited. Bipolar 
recording needle electrodes were place anteriorly in the muscles of the two 
intercostal spaces cither side of the planned incision and additionally one 
space above or below. A monopolar probe stimulated each intercostal nerve 
in turn with a 3.5 mA current giving a visible twitch. Motor responses 
produced were recorded before (1) and after (2) the intercostal space was 
entered and ribs retracted. After intrathoracic surgery was completed, the 
rib retractor was removed and motor responses were again recorded (3) 
with a fourth recording after closing intercostal spaces.

The mean velocity (1,2) was 35.3 m/s and recording (3) in 12 cases 
showed conduction block. In the nerve above the incision, the block was 
total in 3 cases and at the level of the retractor in 9. In the nerve below, the 
block was total in 3 cases, at retractor level in 8 and partial in one. One 
patient without rib spreading showed no conduction change in (3).

We conclude that multiple nerves are routinely injured during thoracot­
omy due to rib spreading. The relation to post-thoracotomy pain has still to 
be demonstrated.
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1 .  Summary
Saccades are rapid changes in the orientation o f  the 
eyes for realigning the visual axes on objects of  
interest. Dysfunction in this system may affect 
various visual functions such as depth perception 
and reading. A  signal source separation method 
called non-linear principal component analysis 
(NLPCA) was used to analyse saccade related EEG 
waveforms recorded from 7 normal subjects. A  
number o f  components with the main features o f the 
lambda wave were extracted from the parieto­
occipital area o f the visual cortex. The peak o f  
activities o f  these components corresponded to 
discrete locations and showed a symmetiy over the 
left and right hemisphere. In a previous study the 
application o f  another signal source separation 
method called independent component analysis 
(ICA) to the same data had indicated that the peak o f  
activity o f the lambda wave spread across the whole 
parieto-occipital area. The findings o f  this study 
indicated that ICA considered the whole parieto­
occipital area to be a single source for the lambda- 
wave whereas NLPCA identified a number of  
symmetrical independent sources for the lambda 
wave in that region.

2. Introduction
The study o f  electrical activity o f the brain 
(electroencephalogram, EEG) is a tool for studying 
the neuronal mechanisms associated with the brain 
functions and its abnormalities. Evoked potentials 
(EPs) are voltage deviations in the EEG which are 
time-locked to the onset o f  stimuli. Saccades are 
rapid changes in the orientation o f  the eyes for 
realigning the visual axes on objects o f interest. 
Saccade mechanisms are associated with vision 
when moving the eyes. Therefore their study 
provides valuable information about various visual 
functions such as depth perception and reading. A  
saccade performance generates a number o f  EPs 
which are time locked to the onset o f the stimulus 
and the eye movement waveform (known as 
electrooculogram, EOG). The lambda wave is a 
saccade-related EP which has been reported to 
originate in the parieto-occipital area (back o f the 
head) o f  the cerebral cortex [1]. It is believed to be 
related to visual information processing triggered by 
the relative movement o f  features o f the visual field

across the retina. The occurrence o f  the lambda 
wave is time-locked to the saccade onset (i.e. 
initiation o f the eye-movement) and to the saccade 
offset (i.e. termination o f  the eye-movement). It 
has a pronounced positive peak which appears 
within a 200 ms period after the saccade offset.

The EEG waveforms recorded from the scalp 
during a saccade-related performance are signal 
mixtures consisting of: (i) Saccade-related EP 
components (such as the lambda wave). These 
components overlap in time and may also have 
overlapping spatial topographies, (ii) The 
obscuring background EEG and EPs that are not 
associated with the saccade performance and 
generation. (iii) The contaminating 
electrophysiological signal artefacts such as the 
EOG generated by the eyes and the 
electromyogram (EMG) caused by muscle activity,
(iv) Non-electrophysiological (external) sources o f  
contamination, for example the mains interference.

The conventional method for extracting saccade- 
related EPs from the EEG waveforms involves 
averaging a large number o f recorded trials. The 
process o f averaging reduces the obscuring effect 
o f the background EEG. This is because the 
background EEG components vary from one trial 
to the next while the EPs have a more consistent 
pattern. A typical lambda wave (obtained by the 
averaging method) together with the corresponding 
time-locked EOG waveform are shown in Fig.l.

Dominant peak

-20
-200 0 600

I IT - - - - - -  r

-200 0 200 400 600

 ̂ Time (ms)
Fig.l The lambda wave extracted using conventional 
averaging method and the corresponding EOG component. 
The vertical arrow indicates the onset of stimulus.
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Averaging on its own is not sufficient when accurate 
interpretation o f the saccade-related components 
such as the lambda wave is required. For example, 
the operation cannot separate the individual 
components of the saccade-related EPs within Jhe 
recorded EEG mixtures. It also does not provide the 
scalp distribution o f the individual saccade-related 
EP components. As a result, the brain regions 
responsible for their generation cannot be accurately 
identified. Procedures that can separate the 
independent components in the mixtures are 
therefore valuable.

In a previous study, a signal source separation 
methodology was devised and was successfully used 
to extract saccade related EP components from the 
EEG mixtures [2]. The method was based on a 
signal source separation (blind deconvolution) called 
independent component analysis (ICA) [6]. A 
typical extracted lambda wave, its scalp distribution, 
together with the corresponding time-locked EOG 
waveform are shown in Fig.2.

low

5v—*

•a
3

600-200 200 400

4
-20

200 400 600•200 0
* Time (ms)

Fig.2 The lambda wave extracted using ICA 
and the corresponding EOG component.

Three sub-components (fi, f2 and f3) related to the 
movement of the visual field across the retina were 
visible in the extracted lambda wave. Sub­
components and f2 are time locked to the onset of 

. the saccade and have also been observed in another 
study [1], The sub-component f3 is time-locked to 
the offset o f saccade and has been reported to occur 
at about 100 ms after the saccade offset [1].

The aim o f this study was to carry out an analysis of 
the lambda wave using non-linear PCA (NLPCA) 
and to compare the results with those obtained in our 
previous study using ICA [2]. The ICA algorithm 
uses entropy as a measure o f signal independence

while NLPCA uses a recursive least square 
algorithm. Both algorithms attempt to extract the 
unknown source signals from their instantaneous 
linear mixtures.

3. Brief Review of Non-Linear PCA and ICA
A recursive least square algorithm for adaptive 
tracking of signal subspaces was reported by Yang 
[3]. The algorithm is derived from the cost 
function,

J 2 m = E { l l x - W W T x l i 2 }  (1)

where, x = [ x ! t  x 2 ,  ... x , J T  is the matrix of signal 
mixtures, n  is the number o f mixtures, IF is an 
m X m  weight matrix ( m  is the number o f sources, 
m  is assumed to be equal to n in this study), r 
represents a matrix transpose, and E  is the 
expectation operation. The minimum o f this cost 
function is provided by any orthogonal matrix W  

whose columns span the PCA subspace defined by 
the principal eigen-vectors o f the covariance 
matrix o f x .  Karhunen and Pajunen [4] have 
extended Yang’s recursive least square algorithm 
so that it can be used for minimising the NLPCA 
cost function reported in [5] given as,

J 1 W "  E { / / x -  W g ( W T x ) / f )  (2)

where g ( )  is a non-linear transfer function. This 
transfer function enables the method to deal with 
the higher-order statistics o f the data.

This resulted in an adaptive learning algorithm 
described by the following steps.

z ( t )  =  g ( W T( t - l )  v ( t ) )  =  g ( y ( t ) ) ,  

h ( t )  = P ( t - l ) z ( t ) ,

m ( t ) = h ( t ) / ( f S  +  z T( t ) h ( t ) ) ,  (3)

P ( t )  = j  T r i [ P ( t - l )  —  m (t)h T( t ) J ,

e ( t ) ~ v ( t ) - W ( t - l ) z ( t ) .

W ( t )  = W ( t - 1 ) +  e ( t )  m T( t ) .

The matrix v ( t )  is the input to the algorithm and is 
produced by whitening x ( t ) .  The covariance o f v ( t )  

is expressed as E { v ( t )  v ( t ) T)  and is equal to the 
identity matrix, I .  The constant 0  <  f $  <  1  is a 
forgetting term which is normally set close to 1. P  

is a symmetrical matrix where its upper triangular 
part is computed by operation T r i  and its transpose 
is copied to the lower triangular part.

The block diagram of NLPCA operation when 
applied to 2 sources is shown in Fig.3.

19/2



Xj -» —  Zi ->-*■
Learning 

rule in 
eq. (3)

Determine

-► V2

Fig.3 Block diagram of the operation of NLPCA 
when applied to 2 sources; q(.) is the whitening 
process.

Another signal source separation algorithm, called 
independent component analysis (ICA), was 
proposed by Bell and Sejnowski [6]. It uses an 
unsupervised learning rule that maximises the joint 
entropy (i.e. minimises the mutual information) of 
the separated components with respect to the weight 

v  )
matrix (i.e. ------—  )• The change in the weight

d w
matrix (A IF ) at each iteration is given as,

AW=_ 3H(y) _
dW - K T ' -

+ ( l - 2 y ) x J

where y = g ( u )  = -

(4)

(5)

-7

1 + e-(u+»>.)
coo is a vector of bias weight, the symbol
represent matrix inversion, g()  is a non-linear 
transfer function such as sigmoid and the estimate of 
the signal sources is given by u — x W .  The 
change in the bias weight at each iteration is given 
by,

Aco0 - l - 2 y (6)

Amari et al. [7] modified the ICA algorithm of 
Bell and Sejnowski in order to avoid matrix 
inversion and thus speed up the convergence of 
the learning rule. The modification involved the
incorporation of W  W  into (4) as,

A Wmm i WTW
.. dW 

= [ l  + { l-2Y)UT ^W
(7)

4 . E x p e r im e n ta l  P r o c e d u r e s  
4 .1  D a ta  R e c o r d in g
Seven healthy adults (3 males, 4 females) mean 
age 27 years (standard deviation 6) with normal or 
corrected-to-normal vision participated in the 
study. The subjects had no history of a 
neurological or ophthalmologic disease and were 
all right-handed. They were seated in an EEG 
recording laboratory at about 60 cm from a 
computer that displayed a black and white 
checkerboard pattern background.

A red square visual target stimulus (hereafter 
referred to as the stimulus) appeared on a computer 
screen at one of five predefined checkerboard 
locations: centre, left, right, up and down as shown 
in Fig.4. The sequence of the stimulus appearance 
on the checkerboard was random to reduce the 
effect of expectancy.

Red
square \

Fig.4 The checkerboard showing the 
directions of saccade and the viewing angle.

The subjects were instructed to visually follow the 
stimulus as fast as possible. They were also asked 
to avoid head movements and blinks. The viewing 
angle (a, shown in Fig.4) of the peripheral 
positions from the centre was about 10 degrees. 
There were 8 directions of saccade and a steady 
fixation. These were: 4 centre-to-peripherals, 4 
peripherals-to-centre and a centre-to-centre (i.e. no 
eye-movement) as indicated in Fig.4. In order to 
avoid the effect of anticipating the onset of the 
stimulus, the j3re-stimulus period’ was varied 
randomly.

The EEG and EOG data were recorded using a 
network of 64 silver-silver chloride electrodes. The 
EOG data were recorded to monitor the eye- 
movements. All channels (EEG and EOG) were 
referred to the vertex (Cz) electrode. The recording 
system bandpass filter had a frequency range of 
0.01 to 100 Hz. The digitisation sampling rate was
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250 Hz. Up to fifty trials (a trial being a set o f 64 
recorded waveforms) were recorded per saccade 
direction. Each trial lasted about 2 seconds. A  group 
o f  50 trials is called an event. The total number of  
recorded trials per subject was up to 450 (i.e. 50 
trials X (8 directions o f saccade + 1 steady 
fixation)).

4.2 Data Analysis
The operations to analyse the lambda wave were:
i Signal pre-processing
ii Iterative synchronisation
iii Temporal and spatial averaging
iv Signal source separation using NLPCA.

These operations are described in the following 
sections.

4.2.1 Signal Pre-Processing
The recorded data were digitally lowpass filtered at 
45 Hz in order to remove any 50 Hz mains 
interference and unwanted high frequency signal 
components. The baseline for each waveform was 
adjusted by calculating the mean o f  the pre-stimulus 
section and subtracting it from the waveform. This 
operation ensured that the waveforms started at a 
zero reference level. The trials with magnitudes 
larger than 200 |iV  were rejected offline in order to 
remove severely contaminated waveforms (typically 
3-4 trials per event). The 200 pV threshold ensured 
that the eye-movement waveforms (which were 
needed for the analysis) were retained. The trials 
were sorted into their respective directions o f  
saccade and synchronised-averaged using the 
procedure described in the next section.

4.2.2 Iterative Synchronisation
The lambda wave is time-locked to the eye 
movement waveform (EOG). The initiation o f  the 
eye movement (saccade onset time) and its 
termination (saccade offset time) vary from one trial 
to the next. This means that the lambda waves from 
different recorded trials are not synchronised in 
time. Therefore the averaging o f the trials causes 
their features to be distorted. An algorithm which 
time synchronised the trials was devised. This 
algorithm ensured that the features o f the lambda 
wave were preserved during the signal averaging 
operation. The EOG waveform was chosen as the 
reference signal for performing the synchronisation 
because the lambda wave is time-locked to it. The 
operation o f the algorithm is outlined in [8].

4.2.3 Averaging Process
Both temporal and spatial averaging o f  the 
waveforms were carried out. The reasons and 
procedures for these operations are provided in the 
next two sections.

4.2.3.1 Temporal Averaging
Temporal averaging was necessary to reduce the 
obscuring effect o f the background EEG on the 
features o f the signal o f interest (i.e. the lambda 
wave). The synchronised trials obtained in section
4.2.2 were time averaged producing a mean 
waveform for each channel.

4.2.3.2 Spatial Averaging
In our previous study [2], it was found that the 
effectiveness o f  ICA in extracting saccade-related 
EEG components was improved when the saccade 
related EEG waveforms recorded from the 64 
channels were spatially averaged. The operation 
consisted o f averaging together the waveforms 
from channels close to the international 10-20 
system o f  electrode site placement. This resulted 
in 20 EEG and 2 EOG waveforms which were 
input to ICA. In this study, this form o f  averaging 
was used when applying N LPC A .

4.2.4 Signal Source Separation using NLPCA
This spatially averaged saccade related EEG 
waveforms were processed by the NLPCA 
algorithm outlined in eq.(3). Experiments were 
carried out to investigate the effect o f using 
different types o f non-linear transfer functions 
(g(.)), different values o f  forgetting factor (fi) and 
the number o f iterations in order to determine the 
optimum NLPCA parameters for processing the 
data. The selected parameters were: 0.9 and
g=tanh(). The NLPCA learning process stopped 
when the amount o f  change in the weight matrix W  
became less than a predefined small value. The 
number o f iterations was approximately 300 for the 
data used in this study.

5. Results and Discussion
Typical results obtained when the NLPCA was 
applied to the 22 spatially-averaged saccade related 
EEG waveforms for the centre-to-left saccade 
event are described in this section. Fig.5 a and b 
show two extracted lambda waves from the 
occipital region, their respective scalp distributions 
and the time locked EOG waveforms. A  number o f  
other similar lambda waves were extracted from 
parietal region o f the visual cortex.
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Fig. 5 The NLPCA extracted lambda waves with their scalp distributions (top two rows) and 
the corresponding extracted EOG waveforms with their scalp distributions (bottom row).

The following were observed in the study:
•  The main features o f the lambda wave (labelled 

fi, f2, f3 and negative shift, NS) were clearly 
visible. This indicated the effectiveness of  
NLPCA in extracting the lambda wave. The 
shape o f  the extracted lambda waves was 
similar to that extracted by using ICA (see Fig.s 
2 and 5).

•  NLPCA extracted a number o f components 
from the parieto-occipital area o f  the cerebral 
cortex. Some of these had the main 
characteristics o f the lambda wave but showed 
some variations in their time courses. The peak 
activities o f the components were localised in 
distinct regions o f parieto-occipital area. For 
each lambda wave peak activity identified over 
the left hemisphere a symmetrical peak of 
activity was observed over the right
hemisphere. A  typical set o f lambda wave 
components with symmetrical peaks o f activity 
are shown in Fig.5. This symmetry may be

because both eyes follow the same target 
stimulus (red square on checkerboard).

•  ICA extracted a lambda wave component 
with peak o f activity which spread across 
the whole parieto-occipital area (see Fig.2). 
A comparison o f the lambda wave peak 
activities obtained using the two methods 
indicated that NLPCA identified a number 
o f distinct lambda wave sources within the 
parieto-occipital area while ICA treated the 
whole region as one source. This may be 
due to non-linear PCA being more sensitive 
to the time course variations o f  the extracted 
lambda waves.

• The EOG components from both the left and 
the right eyes were also extracted (see Fig. 
5). The polarity change for the left and right 
EOG waveforms is due to the reference 
electrode location (Cz).
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The above observations were consistent across the 
subjects included in the study.

6. Conclusion and Further Work
In this study an analysis o f a signal source 
separation method called non-linear PCA (NLPCA) 
was carried out for extracting a saccade related 
EEG component called the lambda wave. Its 
performance was compared with that o f  
independent component analysis (ICA). The study 
showed that NLPCA extracted the lambda wave 
from discrete regions o f parietal-occipital area o f  
the visual cortex while ICA treated the whole 
region as one source. These findings indicate that 
ICA considered the whole parieto-occipital area to 
be a single source for the lambda-wave whereas 
NLPCA identified a number o f  symmetrical 
independent sources for the lambda wave in that 
region.

Further work will be carried out to determine the 
significance o f  the findings reported in this study 
and will include the use o f  non-linear ICA for 
analysing the saccade related EEG waveforms.
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Abstract— The aim o f the study was to investigate the effect o f  signal length on the 
performance o f a signal source separation method, independent component analysis 
(ICA), when extracting the visual evoked potential (EP) lambda wave from saccade- 
related electro-encephalogram (EEG) waveforms. A m ethod was devised that 
enabled the effective length o f the recorded EEG traces to be increased prior to
processing by ICA. This involved abutting EEG traces from an appropriate number o f 
successive trials (a trial was a set o f waveforms recorded from 64 electrode locations 
in a study investigating saccade performance). ICA was applied to the saccade- 
related EEG and electro-oculogram (EOG) waveforms recorded from the electrode 
locations. One spatial and five temporal features o f the lambda wave were moni­
tored to assess the performance of ICA applied to both abutted and non-abutted j
waveforms. ICA applied to abutted trials managed to extract all six features across 
all seven subjects included in the study. This was not the case when ICA was applied 
to the non-abutted trials. It was quantitatively demonstrated that the process 
of abutting EEG waveforms was useful for ICA preprocessing when extracting 
lambda waves.

Keywords—Independent component analysis, Evoked potentials, Saccade analysis,
Lambda wave, Electro-encephalogram
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v _________________________________:__________J \

1 Introduction

An  electro-encephalogram (EEG) is a record of the elec­
trical activity o f the brain. It contains valuable information about 
the brain functions and its abnormalities. Evoked potentials 
(EPs) are voltage deviations in the EEG that are time-locked to 
the onset of stimuli. They contain information about the 
neuronal mechanisms involved in sensory functions.

This study was based on a saccade-related visual EP called the 
lambda wave. Saccades are rapid changes in the orientation of 
the eyes for realigning the visual axes on objects of interest. 
Dysfunction in this system can affect various visual functions, 
such as depth perception and reading ( L e v e n t h a l .  1991). The 
lambda wave is believed to be related to visual information 
processing triggered by the relative movement of features of the 
visual field across the retina (BARLOW and ClGANEK. 1969). The 
lambda wave has a number of sub-components. These are 
generated by the brain when a subject visually follows a target 
stimulus (such as a red square) appearing at different locations
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e-mail: r.saatchi@ shu.ac.uk
Paper received  2 6  S e p tem b e r  2001 an d  in final form 4 February 
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on a black and white checker-board background. These sub- ; 
components are time-locked to the saccade onset (i.e. initiation 
o f the eye movement), and its offset (i.e. termination o f  the eye ; 
movement) (THICKBROOM et al., 1 9 9 1 ). One o f  these sub- ■ 
components has a pronounced positive peak that appears ; 
within a 200 ms time window after the saccade offset : 
(THICKBROOM et al., 1991). A  typical lambda wave, together 
with its saccadic eye-movement electro-oculogram (EOG) 
waveform, is shown in Fig. 1.

It is reported that the lambda wave originates in the parieto­
occipital area (back o f the head) o f the cerebral cortex 
(GREEN, 1 9 5 7 ). The study o f saccade-related EPs provides 
valuable information about how the brain deals with vision 
when eye movements are performed (SKRANDIES and LasCHKE. 
1997).

Saccade-related EEG waveforms recorded from electrodes 
placed on the scalp contain a mixture o f signals. These are

(i) saccade-related EP components (for example, the lambda 
wave)

(ii) non-saccade-related EEG components, i.e. the background 
EEG and stimulus time-locked EP components that are 
not related to the saccade

(iii) contaminating electrophvsiological signals, such as the 
EOG; EOG is generated by the eyes when eye m ovem ents 
or blinks are performed

Medical & Biological Engineering & Computing 2002, Vol. 40
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jv) non-electrophysiological (external) contaminating 
signals, for example the noise generated by the recording 
system.

therefore signal source separation techniques that allow the 
tcorded EEG waveforms to be unmixed are valuable for 
attracting and studying specific EP components, such as the 
imbda wave. A technique that can be used for this purpose is 
ndependent component analysis (ICA). The goal o f  ICA is to 
ecover the independent source signals given only the recorded 
nixtures. Its operation is based on a number o f assumptions, 
these are

a) the mixing process is linear
b) not more than one source signal has a Gaussian distribution
c) the source signals are stationary and statistically 

,j independent.

Vlien ICA is applied to the EEG waveforms, the source signals 
ire considered to be concurrent electromagnetic activities that 
.ire temporally independent o f each other and that are generated 
)y spatially fixed sources. These signals are mixed as they 
propagate from their sources to the electrode locations on the 
Scalp.
| The ICA technique is reviewed by H y v a r in e n  (1999). B e l l  
rid S e jn o w sk i (1995) proposed a method for implementing 
;CA that extracts independent components by maximising the 
joint entropy (i.e. minimising the mutual information) o f the 
.separated components. CARDOSO (1999) proposed an approach 
for implementing ICA that exploits the fourth-order cumulant. A 
itudy showed that both o f these approaches provided a more 
lccurate means for removing EOG-based contamination from 
he EEG than a number of correlation-based methods (VlGON 
it al., 2000a).
I For the EEG to conform to the stationarity requirement o f  
ICA, the statistical properties o f its signal components should 
)e time-invariant. However, EEG signal components (such as 
EPs) are short-duration transient signals and may not fully 
conform to the stationarity assumption o f ICA. In this study, a 

: Method was devised to increase the effective length o f  the EEG 
! jVaveforms processed by ICA so as to increase their stationarity 
i jire-requisite. The performance o f ICA for extracting the lambda 
.vave was assessed for different length EEG waveforms. 
Initially, a brief description o f the ICA algorithm o f B e l l  and 
Sejnowski (1995) is provided (this algorithm was used in our 
Jtudy). The experimental methodologies are outlined, and the 
•esults obtained are presented.
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that enables the original source signals

U =

“ i

to be estimated using the matrix operation 

u  =  IVX (1)
It is assumed that the number o f original signals and the recorded 
mixtures are equal. The unmixing matrix IF is initially set to the 
identity matrix, and then its elements are updated iteratively by 
an amount A IV, in such a way as to minimise the mutual 
information between the extracted signal components. The 
ICA algorithm o f B e l l  and S e jn o w sk i achieves this by 
maximising the rate o f  change o f entropy o f T vvith respect 
to W. Therefore, to derive the ICA learning rule. A IF is first 
expressed as

AIF =
dH(Y)

dW (2)

where

Y  =

y  i
yi

L-^J
is obtained by a non-linear transformation o f the signal compo­
nents U using a function such as sigmoid. (2) can be expanded as 
( B e l l  and S e jn o w sk i, 1995)

a r
dX\

ay
dX

-i a /a y  
a if  \ a x (3)

where In | • | is the natural logarithm o f the magnitude o f a 
variable, and the symbol -1 represents matrix inversion. For a 
sigmoid transfer function, Y  is determined by

y  =
i

(4)

where w0 is a bias term (initially set to zero vector). It can be 
shown that (BELL and SEJNOWSKI, 1995)

ay
dX

=  iy y ( i -  Y)

w { g )  =  ™ - W  +  » * ( i - 2n )

(5)

(6) 
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and bias term (A IV()) are expressed as

AIV =  [ f f / T n '  +  (1 -  2 Y)Xt  (7)

AIV0 =  1 —2Y  (8)

where 7 represents the matrix transpose operation. The matrix 
inversion is avoided by incorporating W IV into (7) (Amari 
et al., 1 996). This provides

A W  =  >/[/ +  (I -  2 Y )U t \ W ' (9)

where ;/ is the learning rate for controlling the speed of 
convergence.

3 Experimental method
3.1 Data recording

Seven healthy adults (three males and four females), mean age 
27 years (standard deviation 6), with normal or corrected- 
to-normal vision, participated in the study. The subjects had 
no history o f neurological or ophthalmological disease and were 
all right-handed. They were seated in an EEG recording 
laboratory at about 60 cm from a computer that displayed a 
black and white checker-board pattern background.

A red square visual target stimulus (hereafter referred to as 
the stimulus) appeared on a computer screen at one of five 
pre-defined checker-board locations: centre, left, right, up and 
down, as shown in Fig. 2. The sequence of the stimulus 
appearance on the checker-board was random to reduce the 
effect o f expectancy.

The subjects were instructed to follow’ visually the red square 
as fast as possible, without head movements, and to minimise 
blinks. The viewing angle (a, shown in Fig. 2) o f the peripheral 
positions from the centre was about 10 degrees. This value was 
also used in one o f the saccade experiments reported in 
THICKBROOM et al. (1991). This made it possible to compare 
the lambda waves observed in both studies. To avoid the effect 
of anticipating the onset o f the stimulus, the pre-stimulus period 
was varied randomly (between 850 ms and 1500 ms).

The EEG and EOG waveforms were recorded using a network 
of 64 silver-silver chloride elecrrodes. The type o f EEG 
recording machine, its features and the details o f the electrode 
locations can be found at reference (Electrical Geodesics Inc.). 
The EOG waveforms were recorded to monitor eye movements. 
All channels were referenced to the vertex Cz electrode. The 
recording system bandpass filter had a frequency range of

'S/a 1,

n
red

square

collection of the waveforms recorded from the 64 electrodes 
when a saccade was performed was referred to as a trial. Up to 50 
trials w'ere recorded per saccade direction. A collection of 50 
trials is referred to as an event. Each trial lasted about 2 s. 
However only a 1 s window o f each trial contained the lambda 
wave. This was selected and processed for this study.

Fig. 2 Representation o f  checker-board showing directions o f  
saccade and viewing angle
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3.2 Preprocessing procedures

The recorded data were digitally lowpass filtered at 45 Hz to 
remove any 50 Hz mains interference and the unwanted high- 
frequency signal components. The baseline for each waveform 
was adjusted by calculating the mean o f the pre-stimulus section 
and subtracting it from the whole waveform. The trials were 
sorted into their respective directions o f saccade and time- 
synchronised using a procedure described in the following 
Section.

3.2.1 Iterative time-svnchronisation operation and its evalua­
tion: Temporal averaging of the waveforms across trials was 
carried out to reduce the effect o f  background EEG before 
processing by ICA (this is described in Section 3.2.2). The 
lambda wave is time-locked to the eye-movement EOG wave­
forms. The initiation o f the eye movement (i.e. the saccade 
onset time) and its termination (saccade offset time) vary 
between trials. This means that the lambda waves from 
different trials are not time-synchronised. Therefore the aver­
aging process would produce a distoned waveform. To over­
come this, an algorithm that time-synchronised the trials was 
devised. The algorithm ensured that the temporal features of 
the lambda wave from different trials were aligned to a single 
reference signal prior to averaging. The EOG waveform was 
chosen as the reference signal for the synchronisation process 
because the lambda wave was time-locked to it. The opera­
tions involved when performing the time synchronisation are 
as follows:

(i) The EOG waveforms across all trials for the desired event 
were averaged with respect to the stimulus onset. The 
resulting EOG waveform provided the averaged stimulus 
onset information.

(ii) A section o f the averaged EOG waveform that contained 
both the onset and the offset o f  the saccade was selected 
by the software as the reference signal.

(iii) The reference signal and the EOG waveform from the trial 
being synchronised were correlated at each time point 
(sample value). The maximum correlation coefficient 
value between the two waveforms indicated the amount 
o f shift required to synchronise the EOG waveform in that 
trial. This synchronisation was repeated for the EOG 
waveforms in the remaining trials.

(iv) The newly synchronised EOG waveforms from all trials 
were then averaged. The resulting waveform retained the 
averaged stimulus onset information. Steps (ii)—Civ) (i.e. 
one iteration) were repeated until the reference signal did 
not change significantly from one iteration to the next. 
The changes in the reference signal from one iteration to 
the next were measured by computation o f the Euclidean 
distance between the corresponding waveforms. The syn­
chronisation improved the alignment o f EOG waveforms 
across all trials after each iteration.

(v) The last iteration in the above process produced the 
required reference EOG signal. This signal was then 
correlated with the original (not synchronised) EOG 
waveform for each trial, and the amount of shift required 
for their alignment was determined. AH 64 waveforms 
in the corresponding trial were then time-shifted by the
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III
| calculated amount. The algorithm therefore synchronised 
| alT waveforms in all trials to the reference EOG signal.

jrhe performance of the time-synchronisation procedure was 
ievaluated. This involved plotting the histogram of the saccade 
‘offset across the 50 trials for a given subject and experimental 
Went. To determine the saccade offset o f the EOG waveforms, 
the following procedure was followed, 
j It takes about 160-200 ms for a subject to start moving his/her 
.eyes in response to the appearance o f the stimulus at a 
new location on the checker-board (Vigon et al., 2000b). 
Furthermore, it can be assumed that the saccade is complete 
within the following 300ms (DlTCHBURN. 1973). The saccade 
offset corresponded to the largest peak in the eye-movement 
EOG waveform within this 300 ms time interval. To locate this 
peak, the first derivative o f the eye-movement EOG waveform 
was computed, as shown in Fig. 3.
> The maximum value o f the derivative within the 300 ms 
time window was identified by a computer program. This

form within this time interval. The first zero-crossing after this 
peak represented the saccade offset-for an EOG waveform o f a 
given trial. The statistical distribution (histogram) o f the saccade 
offsets across the 50 trials could then be obtained by repeating 
the procedure for each trial.

3.2.2 Averaging process: Both spatial and temporal averaging 
o f the waveforms were carried out. A description o f each 
follows.
Spatial averaging: In a previous study (ViGON et al., 2000/?), 
it was found that ICA was more effective in extracting the 
lambda wave when the saccade-related EEG waveforms 
recorded from the 64 channels were spatially averaged. The 
operation involved averaging together the waveforms from' 
channels close to the International 10-20 system o f electrode 
site placement, as denoted by the regions circled with broken 
lines in Fig. 4a. This resulted in 20 EEG waveforms obtained 
from the 20 locations highlighted by the alpha-numeric 
designation o f electrodes placement in Fig. 4b and two 
EOG waveforms (EOGL and EOGR for the left and right 
sides, respectively), which were then used as input to ICA. 
Temporal averaging: This was performed to reduce the 
obscuring effect o f the background EEG on the EP component 
of interest (i.e. the lambda wave). For evaluation purposes, 
temporal averaging was carried out in three forms

{a) non-abutted, averaged waveforms without time synchro­
nisation; this involved obtaining the mean o f the wave­
forms for each channel across the 50 trials

(b) non-abutted. averaged waveforms with time synchronisa­
tion; this was similar to the first form, except that the 
waveforms were time-synchronised prior to averaging

(c) abutted, averaged waveforms with time-synchronisation: 
this involved abutting time-synchronised waveforms from 
a suitable number of successive trials and then obtaining 
the mean: the number of trials abutted was determined 
experimentally, as described in Section 3.2.5.

geodesic  senso r  
network, 64 channels

left EOG 
channel ( (sJ

right EOG 
tri)) channel

nasion

spatial
averaging

.. j)

\1I
Ai

1
h* /

common

inion
b

Fig. 4 Spatial averaging operation: (a) Electrical Geodesics sensor network o f  64 electrodes and tb) International 10-20 system o f  electrode 
placement with alpha-numeric designation o f  electrodes placement on scalp fo r  EEG recordings
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j.z .o  nnuemng process uriu uppucuuuti uj jv^n. in^ uv^i- 
aged waveforms were whitened. Whitening is a process that 
makes the mixtures mutually uncorrelated, as well as 
ensuring that they have unity variance (ClCHOCKJ et al., 
1999). By decorrelating the data beforehand, ICA can 
concentrate on the higher-order statistical dependencies of 
the waveforms.

ICA - has a number of parameters that need to be initi­
alised. One o f these is the learning rate ;/, described in 
Section 2. It was heuristically found that a value o f 5 x 10“4 
was an appropriate initial value for this parameter. The value 
of t] gradually decreased during the learning process until the 
rate of change was less than 1 x 10-6 . The weight matrix W 
was initialised to the identity matrix and then updated during 
the learning process by the amounts A W (t and A IF, using 
(8) and (9), respectively. The training o f ICA stopped when 
the value o f A W  became less than a predefined small value 
(1 xlO-9).

3.2.4 Backprojection o f  the separated components: The 
whitened waveforms were then input into ICA. The resulting 
ICA time series were backprojected to the 22 scalp locations 
(i.e. the 10-20 International EEG and EOG electrode place­
ment locations) to obtain their scalp distributions. This 
involved multiplying the inverse o f the unmixing matrix W 
by the ICA time series to obtain an estimate o f the contribu­
tions of the separated components at each o f the 22 scalp 
locations.

A procedure was devised to assess the effectiveness o f ICA 
for determining the scalp distribution o f the lambda wave. This 
estimated the percentage contribution o f each ICA-extracted 
component to the expected region o f the scalp associated with 
the lambda wave (i.e. parieto-occipital). The procedure used was 
as follows:

(i) The estimated contributions o f each extracted component 
to all electrode sites were normalised between 0 and 1.

(ii) The sum St of the resulting contributions was obtained.
(iii) The sum S- o f the contributions for the parieto-occipital 

area o f the cerebral cortex (i.e. the region defined by the 
eight electrodes P3.P4.Pz, 0 j, 0 2. 0 z,T5 and T6, as 
shown in Fig. 46) was calculated.

(iv) The required percentage contribution was then determined 
as [SJSj) x 100.

3.2.5 Analysis procedure: The analysis was initially carried 
out on artificially mixed waveforms. This allowed the 
approaches to be quantitatively assessed. The analysis was 
then extended to the 22 spatially and temporally averaged 
waveforms (described in Section 3.2.2). The details o f the 
investigations follow.

For the artificially mixed signals, the 22 averaged waveforms 
were visually inspected, and two waveforms were selected. 
These two waveforms were selected from different subjects to 
ensure their independence. One waveform was an EEG wave­
form with the temporal features of the lambda wave (as 
described in the literature, such as THICKBROOM et al. (1991)). 
The other was an eye-movement EOG waveform (recorded from 
EOGl  site in Fig. Ah'). Different lengths o f  averaged waveforms 
were produced by the abutting o f successive trials (described in 
Section 3.2.2). The abutted EEG and EOG waveforms for 
waveform length corresponding to three trials are shown in 
Figs 5 and 6. respectively. EOG can be hundreds o f microvolts in 
magnitude and contain the signal components caused by blinks 
and eye movements. The EOG waveforms shown in Fig. 6 are 
caused by eye movements. The magnitude o f this type o f EOG is 
affected bv the amount that the eyes are moved when performing
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Fig. 5 Averaged EEG waveform with lambda wave features: (a) non- 
abutted. (b) abutted fo r  three trials. Vertical arrow indicates 
average stimulus onset

saccade (i.e. the viewing angle defined in Section 3.1). The 
viewing angle o f 10 degrees used in this study causes a small 
deviation o f the eyes, thus generating eye-movement waveforms 
of the range shown in Fig. 6.

The univariate statistical procedure (SAS, 1982) was used to 
test the degree to which the selected EEG and EOG signals were 
Gaussian. The univariate procedure tested the null hypothesis 
that the input data values were a random sample from a normal 
distribution. To decide whether to reject the null hypothesis of 
the test for normality, it was necessary' to examine the probability 
associated with the test statistic (i.e. the probability value for the 
Shapiro-Wilk statistic). The value obtained was less than 0.05
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Fig. 6 Averaged eye-movement EOG waveform: (a) non-abutted. (b) 
abutted fo r  three trials. Vertical arrow indicates average 
stimulus onset
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EEG mixtures

« I 2

0.55
0.45
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0.35

0.75
0.25
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0.15

.e. 95% confidence level) for all four waveforms (the non- 
; jutted and abutted time-synchronised averaged EEG and EOG 
.aveforms). Therefore the null hypothesis was rejected, and it 
,as concluded that the four waveforms were not significantly 
iaussian.
Artificial mixtures were generated by carrying out the matrix 

peration

EEG,, 
EOG„

a \i ai2 ^ (  EEG 
a2l a22 ) \E O G

( 10)

/here EEG and EOG were the original signal sources, EEGm 
nd EOGm w ere the resulting mixtures, flu and a l2 w ere the 
lixing coefficients for the EEG signal, and a:i and a22 w ere the 
lixing coefficients for the EOG signal. The ICA algorithm o f  
1ELL and S e jn o w sk i (1995) was applied to unmlx the m ixtures, 
h e effect o f  signal length on the performance o f  ICA was 
ivestigated by gradually increasing the length o f  the averaged  
vaveforms from 256  data points (corresponding to one trial) to 
536 data points (corresponding to six abutted trials). This was 
arried out for the m ixing coefficients shown in Table I .

The EOG mixing coefficients were a2i =  1 — fln 
i22 =  1 — a 12. The gradual increase in the waveforms’ length 

,vas carried out in such a way that each waveform always 
ontained an integer number of lambda wave sections. Indeed, 
s the lambda wave occurred within the 500 ms time interval 
ollowing the onset of the stimulus, the abutting process ensured 
hat the end point o f the resulting abutted trials did not lie within 
his 500 ms window.

The similarity between the original and recovered waveforms 
vas quantified by calculating the following parameters:

ib )

and I; zero indicated \o  similarity, and -1  and 1 indicated 
100% similarity in sfiape (—1 meant an inversion in 
polarity of the extracted component) 
euclidean distance c: this provided a measure of similarity 
in both magnitude and shape o f the waveforms and was 
calculated by

e =
N

-  r ( i))2 (ID
(=1

where o and r were the original and recovered signals, respec­
tively, and k  was their length.

4 Results and discussion

4.1 Evaluation o f  iterative synchronised averaging

Fig. la  shows a typical average of 50 eye-movement EOG 
waveforms prior to iterative synchronisation. Fig. lb  shows the 
histogram (distribution) o f  the saccade offsets of the EOG 
waveforms. The saccade offset o f each trial was determined 
using the procedure described in Section 3.2.1. Figs 7c and d  
show the same information once the iterative synchronisation 
has been performed. It can be observed that the process has 
reduced the deviation o f  the saccade offset distribution and thus 
provided a less distorted, averaged EOG waveform.

Fig. 8a shows the averaged lambda wave (over 50 trials) 
without time synchronisation, together with its eye-movement 
EOG waveform. The waveforms following iterative synchroni­
sation are shown in Fig. 86. The process o f iterative synchroni­
sation resulted in the extraction o f the lambda wave feature^, 
which was not visible in the averaged lambda wave without time 
synchronisation. The significance of the features f 2. J\ and 
negative shift NS, which are shown in Fig. 8. are outlined in 
Section 4.3.

100-

80-

q. 40-

20-1

0 -

a

140-

120-

100 -

80-(DT>3
Q.
Ero

20 -

-2 0 4
0.6- 0.2 0 0.40.2

time, s 
c

W3
;iv«

- $
-
- m

1

s
200 250 300 350

saccade offset time, ms 
d

'400

fig. 7 (a) Averaged eye movement EOG waveform before synchronisation; (b) saccade offset distribution; (c) averaged eye-movement EOG 
waveform after synchronisation: (d) saccade offset distribution
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Fig. 8 Lambda u’are (top) and eye movement EOG waveform 
(bottom) obtained by (a) averaging without time synchroni­
sation. (b) averaging with time synchronisation. Vertical 
arrow indicates average stimulus onset

4.2 ICA applied to artificial mixtures

Figs 9a and b show the effect o f signal length on ICA 
performance when the artificially mixed waveforms were 
processed. The points on the graphs correspond to the mixing 
ratios indicated in Table 1. The effectiveness o f ICA for 
extracting the EEG waveform from the mixtures gradually 
improved (i.e. p closer to 1. e closer to 0) when the signal 
length was increased (by the abutting process) from 256 data 
points (i.e. one trial) to 1024 data points (i.e. four trials).

The components of the artificially generated signal mixtures 
(i.e. the EOG waveform and the EEG waveform with main 
lambda wave characteristics) are short-duration transient 
signals. The abutting of the waveforms to increase their 
lengths improved their stationarity. As ICA relies on the 
stationarity of the signals, the abutting process therefore 
provided* a means to make the waveforms more suitable for 
processing by ICA. For waveforms greater than 1024 data 
points, no further improvement was observed.

4.3 ICA applied to 22 spatially and temporally averaged 
waveforms

The results for the centre-to-left saccade event are presented in 
this Section. As a finite number o f trials had been recorded (i.e. 
50 trials per subject), increasing the number o f trials for the 
abutting process would have resulted in the averaging being 
carried out over a smaller number of trials, thus reducing the 
ability to attenuate the background EEG prior to ICA operation. 
It was decided to set the length o f the abutted waveforms to three 
trials. This was considered to be a reasonable compromise for
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Fig. 9 (a) Correlation coefficient values and (b) Euclidean distance ■
values, between original and recovered EEG waveforms. . 
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satisfying these two criteria. Once the components were 
extracted by ICA, a further averaging across the trials was 
carried to produce a single lambda wave.

Fig. 10 shows typical ICA-extracted lambda waves (top row) 
and eye movement (bottom row) together with their corre­
sponding scalp distributions, for the non-abutted (Figs 10a 
and b) and abutted (Figs 10c and d) time-synchronised, averaged 
approaches. Similar results were obtained for the other subjects, 
and the results when the methods for all subjects were assessed 
are summarised later in this Section.

The following are the main observations o f this part o f the 
study:

First, ICA managed to extract the lambda wave and the eye- 
movement waveform when it was applied to both abutted and 
non-abutted averaged time-synchronised waveforms. However, 
the features o f the lambda wave extracted when ICA was applied 
to the abutted waveforms were preserved more accurately. The 
features considered for this evaluation were / ,  . / 2 and/  and the 
pre-saccadic negative shift N S  (negative shift in the EEG that 
appears from the onset of the stimulus and ends once the saccade 
is performed). The features/, .f2 a n d / are believed to be related 
to the movement o f the visual field across the retina 
(Thickbroom etal.. 1991). The features/, and f 2 were reported 
to be time-locked to the onset o f the saccade. and the feature/, 
was reported to be time-locked to the offset o f the saccade 
(Thickbroom etal., 1991). The characteristics o f these features 
depend on factors such as the saccade duration or the viewing 
angle (a, shown in Fig. 2).

In our study, where a short duration o f saccade (about 20 msi 
was used, we did not observe the feature / ,  in either time- 
synchronised or not time-synchronised, averaged lambda waves 
(see Fig. 8/;). This was in accordance with the observations made 
in Thickbroom etal. (1991). However, in our study, this feature 
became visible when ICA was applied to either nomabutted or 
abutted time-synchronised, averaged waveforms. The feature /, 
was observed by Thickbroom et al.{ 1991) only in the averaged 
EEG waveform of a subject for a longer duration o f  saccade 
(75̂ -TOO ms).

Secondly, Table 2 contains a summary' o f the analysis result* 
across the seven subjects for the temporal features A'S',/,../ antI
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Fig. 10 ICA-extracted lambda waves (top row) and eye movements (bottom row), together with respective scalp distributions fo r  (a), (bt non- 
abutted and (c), (d) abutted appwaches. Vertical arrow indicates average stimulus onset

f} when the methods to recover the lambda wave component 
were assessed.

The methods were

(i) non-abutted, averaged waveforms without time synchro­
nisation

(ii) non-abutted, averaged waveforms with time synchroni­
sation

(iii) ICA applied to non-abutted, averaged waveforms with 
time synchronisation

(iv) ICA applied to abutted, averaged waveforms with time 
synchronisation.

An expert familiar with the features of the lambda wave 
inspected the recovered lambda waves for each method. Four 
features o f the recovered lambda waves (NS, f ,  f 2 and / 3) 
were monitored for their visibility.' Table 2 contains the 
number o f  subjects in which each feature was observed for 
each method. The NS feature was observed in all seven 
subjects for all four methods. The averaging method 
without time synchronisation was least effective, as, with 
this method, each one of the features f ,  f 2 and / 3 were 
observed only once across the seven subjects. Averaging with 
time synchronisation was more effective than averaging

Table 2 Summary o f  analysis results fo r  temporal features o f  
lambda wave when four methods to recover lambda wave compo­
nent were assessed

Lambda wave temporal
feature

Methods NS A Jz Jl

non-abutted, averaged waveforms 7 l I 1
without time synchronisation

non-abutted, averaged waveforms 7 2 5 4
with time synchronisation

ICA applied to non-abutted. 7 4 6 6
averaged waveforms with
time synchronisation

ICA applied to abutted. 7 7 7 7
averaged waveforms with
time synchronisation

without synchronisation, as the method managed to preserve 
features J \. f 2 and f 3 in two, five and four subjects, respec­
tively. The results were further improved when ICA was 
applied to non-abutted, time-synchronised averaged wave­
forms. The method successfully extracted features J\ . f 2 and 

/ 3 in four, six and six subjects, respectively. The best 
performance was achieved when ICA was applied to the 
abutted, time-synchronised averaged waveforms, as the 
features f ,  f 2 and / 3 were visible in ail seven subjects.

Thirdly, Table 3 contains a summary o f the analysis results 
across the seven subjects for the scalp distribution (spatial 
feature) and the amplitude range, when the four methods to 
recover the lambda wave were assessed.

The amplitude range represents the peak-to-peak magnitude 
of the lambda wave, as indicated in Fig. 10. The Table provides 
both the mean and standard deviation values for each o f the two 
parameters across the seven-subjects. Neither averaging method 
(i.e. with or without time synchronisation) provided the scalp 
distribution of the recovered lambda wave. When using ICA. the 
backprojection method described in Section 3 was applied to 
obtain an estimate o f the amplitude ranges. In the same Section, 
the procedure used to estimate the percentage contribution o f the 
ICA-extracted components to the parieto-occipital region o f the 
cerebral cortex is provided.

When ICA was applied to the abutted, averaged, time- 
synchronised waveforms the contribution of the extracted 
lambda wave component to the parieto-occipital region o f the 
cerebral cortex (back o f the head) was estimated to be 73%. 
When ICA was applied to non-abutted, averaged, time-synchro­
nised waveforms, the contribution was 55%. Therefore the 
abutting process improved the spatial resolution for the extracted 
lambda wave. When wc consider the amplitude range feature, 
the averaging methods, with or without time synchronisation, 
provided mean values o f 48 pV. ICA applied to the abutted, 
averaged, time-synchronised waveforms provided a mean value 
of 29 |iV for the amplitude range, whereas that for ICA applied 
to the non-abutted, averaged, time-synchronised waveforms 
was 97 pV. The former range is closer to the previously reported 
lambda wave amplitude range o f about 3 0  pV (THICKBROOM 
eta l., 1991).

In summary, the four approaches reported in this study were 
ranked in the following order o f decreasing effectiveness for 
extracting the lambda wave:
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Percentage scalp Amplitude range,
distribution. % pV

Methods mean SD mean SD

non-abutted. averaged waveforms without 
time synchronisation

- - 48 13

non-abutted. averaged waveforms with 
time synchronisation

— — 48 18

ICA applied to non-abutted. averaged 
waveforms with time synchronisation

55 9 97 25

ICA applied to abutted, averaged 
waveforms with time synchronisation

73 11 29 7

(a) ICA applied to abutted, averaged waveforms with time 
synchronisation

(b) ICA applied to non-abutted, averaged waveforms with 
time synchronisation

(c) non-abutted, averaged waveforms with time synchroni­
sation

(d) non-abutted, averaged waveforms without time syn­
chronisation.

5 Conclusion

The effect o f waveform length on the performance o f  
independent component analysis for extracting a visual evoked 
potential called the lambda wave from saccade-related EEG 
waveforms was investigated. Experiments were carried out 
using both artificially generated mixtures and the recorded 
EEG and EOG waveforms. The length of the waveforms was 
increased by a process that involved abutting successive trials. 
The study demonstrated that increasing the length of the EEG 
waveforms by the abutting process increased the accuracy o f  
ICA for extracting the lambda wave.
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