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Abstract

The ongoing electrical activity of the brain is known as the electroencephalogram (EEG). Evoked
potentials (EPs) are voltage deviations in the EEG elicited in association with stimuli. EPs provide
clinical information by allowing an insight into neurological processes. The amplitude of EPs is
typically several times less than the background EEG. The background EEG has the effect of
obscuring the EPs and therefore appropriate signal processing is required for their recovery.

The EEG waveforms recorded from electrodes placed on the scalp contains the ongoing background
EEG, EPs from various brain sources as well as signal components with sources external to the brain.
An example of externally generated signal which is picked up by the electrodes on the scalp is the °
electrooculogram (EOG). This signal is generated by the eyes when eye movements or blinks are
performed.

Saccade-related EEG waveforms were recorded from 7 normal subjects. A signal source separation
technique, namely the independent component analysis (ICA) algorithm of Bell and Sejnowski
(hereafter refereed to as BS_ICA), was employed to analyse the recorded waveforms. The
effectiveness of the BS_ICA algorithm as well as that of the ICA algorithm of Cardoso, was
investigated for removing ocular artefact (OA) from the EEG. It was quantitavely demonstrated that
both ICA algorithms were more effective than the conventional correlation-based techmques for
removing the OA from the EEG.

A novel iterative synchronised averaging method for EPs was devised. The method optimally
synchronised the waveforms from successive trials with respect to the event of interest prior to
averaging and thus preserved the features of the signals components that were time-locked to the
event.

The recorded EEG waveforms were analysed using BS_ICA and saccade-related components (frontal
and occipital pre-saccadic potentials, and the lambda wave) were extracted and their scalp
topographies were obtained. This initial study highlighted some limitations of the conventional ICA
approach of Bell and Sejnowski for analysing saccade-related EEG waveforms.

Novel techniques were devised in order to improve the performance of the ICA algorithm of Bell and
Sejnowski for extracting the lambda wave EP component. One approach involved designing a
template-model that represented the temporal characteristics of a lambda wave. Its incorporation into
the BS_ICA algorithm improved the signal source separation ability of the algorithm for extracting the
lambda wave from the EEG waveforms. The second approach increased the effective length of the
recorded EEG traces prior to their processing by the BS_ICA algorithm. This involved abutting EEG
traces from an appropriate number of successive trials (a trial was a set of waveforms recorded from
64 electrode locations in a experiment involving a saccade performance). It was quantitatively
demonstrated that the process of abutting EEG waveforms was a valuable pre-processing operation for
the ICA algorithm of Bell and Sejnowski when extracting the lambda wave.

A Fuzzy logic method was implemented to identify BS_ICA-extracted single-trial saccade-related
lambda waves. The method provided an effective means to automate the identification of the lambda
waves extracted by BS_ICA. The approach correctly identified the single-trial lambda waves with an
Accuracy of 97.4%.
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Analysis-of-variance
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Evoked Potential

Event-Related Potential

Extended version of the ICA algorithm of Bell and Sejnowski

Fuzzy C-Means

Geodesic Sensor Net
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4. -4,
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anl ann
}‘)11 : }‘)In . . . . .
W= unmixing (or separating) matrix where the w; are referred to as weights
or unmixing coefficients).
w;xl * wnn ( g )
f function that relates the measured signals to the transmitted signals
P matrix of normalised (i.e. no amplitude information) principal
components
MI * Alln
M=. ... eigen-matrix (set of linear weights factors) or mapping matrix
MII ¢ Mm

A={ A eee s An } matrix of eigen-values

Tr={Ty..,T,} matrix of eigen-vectors



Wopt

J

AW

AW,

Hn

my, my, m3

¢’ ¢Sa ¢si

matrix of non-normalised (i.e. that contain amplitude information)
principal components

covariance (correlation) matrices of mixtures X

covariance (correlation) matrix of output signals Y
covariance (correlation) matrix of source signals S
covariance (correlation) matrix of whitened mixtures V
probability distribution functions

expectation operation

NLPCA cost function

non-linear transfer function

Natural logarithm function

whitened mixture

output of tranfert function g(.)

intermediate variables used for computational purposes.
inverse correlation matrix of the input signals in the RLS algorithm
estimated error

constant forgetting term

operation that computes the upper triangular part of a matrix
whitening operation

probability distribution

Entropy measure

Mutual information

First derivative with respect to weight W

proporfional to

bias weight matrix

optimum value for W

Jacobian matrix

Rate of change in the weight matrix W

Rate of change in the bias weight matrix W,
Learning rates

gradients of the lambda wave template model

model cost-function, smallest cost-function value, normalising factor
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Cy

C;

'
~

Hor#) -

Q 'G >

ki k;

S
S1

n

nn

constant-that controls the contribution of the model to the BS_ICA
algorithm

constant that controls the contribution of the error to the model cost-
function

Finite fourth-order cumulants of mixture X

Kurtosis

function of C,

nth-order cumulants function

diagonalisation operation

sum operation

Identity matrix

matrix of whitened mixtures

transpose operator

inverse operator

Hermetian operator (or pseudo-inverse operator)

Estimation operaor

Conjugate operator

norm (or absolute function)

square route function

hyperbolic tangent function

Unitary matrix

Set of matrices (input to the joint diagonalisation process)

fraction symbol

row vector

original signal

recovered signal

scaling factors

Euclidean distance

correlation coefficient

Sum of normalised contributions of a component to all electrodes
Sum of normalised contributions of a component to the parieto-

occipital area of the cerebral cortex
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Cs5.C C,
F3, F4, F7, Fs, F,
Fp:, Fp2

P; P4 P,
0,0,0.
T3, Ts, Ts, T
Julo f3

o

F

topographic feature (percentage of S, over S;).

names of the electrodes located on the scalp region near the ears
names of the electrodes located in the central region of the scalp
names of the electrodes located in the frontal region of the scalp
names of the electrodes located in the frontal pole region of the scalp
names of the electrodes located in the parietal region of the scalp
names of the electrodes located in the occipital region of the scalp
names of the electrodes located in the temporal region of the scalp
temporal features of the lambda wave

viewing angle

set of BS_ICA-extracted component waveforms

cluster prototype (mean) in fuzzy c-means clustering algorithm
iteration number in fuzzy c-means clustering algorithm
membership value of a waveform & to a class i

distance between a pattern k and the ith cluster center

matrix of degree of membership values

fuzzification factor

percentage of waveforms classified to a category

iteration termination tolerance in fuzzy c-means clustering algorithm
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Chapter 1. Introduction

1.1 Chapter Summary

In this chapter the background of the study is provided. The aims and objectives of the

research are stated and an outline of the thesis is included.
1.2 Background of the Study

Electroencephalogram (EEG) is a record of the electrical activity of the brain. It contains
valuable information about the brain functions and its abnormalities. Evoked potentials
(EPs) are voltage deviations in the EEG which are time-locked to the onset of stimuli. They
contain information about the neuronal mechanisms involved in sensory functions.

They are caused by external stimuli or cognitive processes triggered by external events. EPs
have found numerous applications in clinical neurophysiology and psychiatry. This is
because their recording is non-invasive and accurate, and they are consistently shown to be
an indicator of brain functions and its abnormalities. For example, visual EPs have proved
valuable in improving the understanding of dyslexia and were used as an objective method

for early diagnosis of dyslexia [1.1][1.2].

This study was based on a saccade-related visual EP called the lambda wave. Saccades are
rapid changes in the orientation of the eyes for realigning the visual axes on objects of
interest. Dysfunction in this system may affect various visual functions such as depth
perception and reading [1.3]. The lambda wave is believed to be related to visual
information processing triggered by the relative movement of features of the visual field
across the retina [1.4]. The lambda wave has a number of sub-components. These are
generated by the. brain when a subject visually follows a target stimulus (such as a red
square) appearing at different locations on a black and white checkerboard background.
These sub-components are time-locked to the saccade onset (i.e. initiation of the eye-
movement) and its offset (i.e. termination of the eye-movement) [1.5]. Oneyof these sub-
components has a pronounced positive peak which appears within a 200 ms time window
after the saccade offset [1.5]. A typical lambda wave together with its saccadic eye-

movement EOG waveform are shown in Fig.1.1.
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Fig.1.1 A typical lambda wave together with its saccadic EOG waveform

It is reported that the lambda wave originates in the parieto-occipital area (back of the head)
of the cerebral cortex [1.6]. The study of the saccade-related EPs provides valuable

information about how the brain deals with vision when eye-movements are performed

[1.7].

Saccade-related EEG waveforms recorded from electrodes placed on the scalp contain a
mixture of signals. These are: |

i) Saccade-related EP components (for example the lambda wave).
ii) Non-saccade-related EEG components, i.e. the background EEG and stimulus time-

locked EP components that are not related to the saccade.
iii) The contaminating electrophysiological signals such as the electrooculogram (EOG).

EOG is generated by the eyes when eye-movements or blinks are performed. Other

contaminating electrophysiological signals include for example muscle activity

(electromyogram, EMG) and the heart beat (electrocardiogram, ECG).
iv) Non-electrophysiological (external) contaminating signals, for example the noise

generated by the recording system and the 50 hertz mains interference.

The conventional method for recovering EPs from the background EEG is based on

averaging. Using this method a large number (typically about 50) of EEG waveforms are
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recorded and then averaged. Averaging is a valuable pre-processing tool prior to signal
source separation as it can improve the signal-to-noise ratio. However, the EP recovered
using this method remains a mixture of signal components from a number of different

sources.

Therefore, signal source separation techniques that allow the recorded EEG waveforms to be
unmixed are valuable for extracting and studying specific EP components such as the
lambda wave. A detailed review of signal source separation methods is provided in Chapter
2. Techniques that can be used for this purpose are called independent component analysis
(ICA) techniques. The goal of ICA techniques is to recover the independent source signals
given only the recorded mixtures. ICA techniques are reviewed in reference [1.8]. Bell and
Sejnowski [1.9] proposed a method for implementing ICA that extracts independent
components by maximising the joint entropy (i.e. minimising the mutual information) of the
separated components. Cardoso [1.10] proposed an approach for implementing ICA which
exploits the fourth-order cumulant. The operation of the ICA algorithm of Bell and
Sejnowski [1.9] (hereafter refereed to as BS_ICA) is based on a number of assumptions.
These are: (i) the mixing process is linear, (ii) not more than one source signal has a
Gaussian distribution, (iii) the source signals are stationary and statistically independent.
When BS_ICA is applied to the EEG waveforms, the source signals are considered to be
concurrent electromagnetic activities that are temporally independent of each other and that
are generated by spatially fixed sources. These signals are mixed as they propagate from

their sources to the electrode locations on the scalp.

ERPs are susceptible to contaminations from various electrophysiological signals. The most
serious of these (which are picked up by the electrodes on the scalp) is the electrooculogram
(EOG). The human eye contains an electric dipole with a positive cornea and negative
retina. As a result of eye movements or blinks, the electric dipole changes causing the
voltage potential known as EOG. A fraction of the EOG spreads across the scalp and it is
superimposed on the EEG, causing it serious contamination. The current method of OA
removal is based on correlation-based techniques. A detailed review of some of the most
relevant work done in the area of OA removal is provided in Chapter 5. In this study, the
performances of two ICA-based approaches, namely the ICA algorithm of Bell and

Sejnowski (BS_ICA) [1.9] and the joint diagonalisation of eigen matrices (hereafter refereed



to as JADE) algorithm of Cardoso [1.10], were quantitatively assessed and compared to that

of two correlation-based methods for removing EOG based contamination from the EEG.

The features of EPs contained in successive EEG recordings can vary slightly in time, due to
cognitive and electrophysiological effects. A novel iterative synchronised averaging method
for EPs was devised. The method provided the ability to optimally synchronise the trials
with respect to an event of interest prior to averaging, in order to preserve the signals

components that are time-locked to the event.

For the EEG to conform to the stationarity requirement of BS_ICA, the statistical properties
of its signal components should be time invariant. However, EEG signal components (such
as EPs) are short-duration transient signals and may not fully conform to the stationarity
assumption of BS_ICA. In this study a method was devised to increase the effective length
of the EEG traces containing the EPs so as to increase their stationarity pre-requisite. The
performance of BS_ICA for extracting the lambda wave was assessed for different lengths

of EEG waveforms.

BS_ICA was investigated and applied to the recorded saccade-related waveforms. This
enabled the extraction of a number of EP components related to the performance and
generation of saccadic eye movements, and their scalp topographies to be obtained. Theses
were: the frontal and occipital pfe-saccadic potentials, énd the lambda wave. This initial
study also highlighted some limitations of BS_ICA for analysing saccade-related EEG

waveforms.

The ICA algorithm of Bell and Sejnowski (BS_ICA) [1.9] does not allow prior knowledge
of the source signals to be incorporated as part of its signal separation operation. Prior
information, when available can aid the extraction of a component of interest. Therefore it
may prove valuable to incorporate such prior information into the algorithm. In this study, a
novel template-model that represented the temporal characteristics of a saccade-related EP
called the lambda wa{/e was developed. A method for its incorporation into the BS_ICA
algorithm was devised and implemented. The signal source sepération ability of this model-
based BS_ICA algorithm for extracting the lambda wave from the EEG waveforms was
investigated and its performance was compared to that of the conventional (model-less)
BS_ICA technique.



Nonlinear principal component analysis (NLPCA) is a recursive least-square based signal
separation algorithm [1.11]. In this study, NLPCA technique was applied to saccade-related
signals and its performance was compared to that of BS_ICA. The results obtained with
NLPCA provided further insight into the functioning of the brain during the performance of

a saccadic eye movement.

The application of BS_ICA to n recorded EEG waveforms resulted in n independent signal
components. These components were originally visually inspected to identify a specific EP.
The task of visual identification of specific EPs (specially when dealing with single-tn'alé)
can be time consuming and requires an expert familiar with the characteristic features of the
desired component. A fuzzy c-means method that automated the process of identifying the
single-trial lambda waves extracted by BS_ICA from the recorded EEG waveforms was

implemented and its effectiveness was investigated.
1.3 Aims and Objectives of the Study

The aim of the study was to develop and apply novel signal processing techniques to
improve the estimation, analysis and interpretation of EPs. The objectives are listed below

and introduced as highlighted in the original proposal.
1. Recording of saccade-related electroencephalogram (EEG) signal waveforms

In this study, saccade-related EEG waveforms will be recorded from 7 subjects using an
Electrical Geodesics Inc. (EGI) EEG recording machine. A variety of skills will be
learnt and mastered in order to conduct a saccade-related experiment successfully. These
will include for example practical skills related to utilising the EEG recording
equipments (such as applying a network of electrodes on a subject’s scalp) and softwares
(for example to initialise parameters of the EEG recording machine, display the data on
the screen and store the recorded data to the hard-drive for later processing and
analysis). Prior to recording the data, an appriopriate saccade-related experiment will be
designed with the collaboration of clinicians to enable brain activity related to eye-

movements to be monitored and studied.



2. Investigation of the effectiveness of independent component analysis (ICA)
techniques for performing electrooculogram (EOG) filtering of the EEG -
Comparison of ICA-based methods with correlation-based methods for EEG

ocular artefact (OA) removal

In this study, the performances of two main signal source separation techniques, namely
the independent component analysis algorithm of Bell and Sejnowski (BS_ICA) [1.9]
and the joint approximation diagonalisation of eigen-matrices (JADE) algorithm of
Cardoso [1.10] will be quantitatively assessed and compared to that of existing
correlation-based methods for removing EOG based contamination from the EEG. The
correlation-based methods to be investigated in the study will be principal component
analysis (PCA) [1.12] and the EOG subtraction method [1.13]. The effect of additive

noise on the performance of the four approaches will also be investigated.

3. Investigation of BS_ICA for extracting saccade-related EEG components

The Independent component analysis of Bell and Sejnowski (BS_ICA) will be applied to
the recorded saccade-related waveforms so as to enable the extraction of a number of EP
components related to the performance and generation of saccadic eye movements, and
their scalp topographies will be obtained. The components of interest are: the frontal and

occipital pre-saccadic potentials, and the lambda wave.

4. Devise techniques to improve the performance of BS_ICA for extracting the

lambda wave — Three approaches.

Novel procedures will be developed in order to improve the performances of BS_ICA to
extract an EP signal of interest called the lambda-wave. Three approaches will be

investigated.

The first approach will consist of devising an iterative synchronisation procedure to
optimally time synchronise the waveforms with respect to an event of interest prior to
averaging, in order to preserve the signals components that are time-locked to the event.

The performances of the iterative time synchronisation process will be quantitavely



evaluated and assessed for preserving the features of EP components in the EEG, prior

to input to the BS_ICA algorithm.

The second approach will consist of devising a method to increase the effective length of
the EEG waveforms processed by BS_ICA in order to enhance their stationarity property
and thus to make them more suitable for BS_ICA signal source separation. The
performance of a process which involves abutting EEG waveforms prior to BS_ICA will

be quantitatively assessed when extracting the lambda wave.

The third approach will consist of developing a novel model-based BS_ICA algorithm to
extract the lambda wave from the EEG waveforms. This will include developing a
template-model that represents the temporal characteristics of a saccade-related EP
called the lambda wave and incorporate it into the BS_ICA algorithm. The conventional
BS_ICA techniques do not allow prior knowledge of the source signals to be
incorporated as part of the algorithm’s signal separation operation. Prior information,
when available can aid the extraction of a component of interest. Therefore it may prove
valuable to incorporate such prior information into the algorithm. The signal source
separation ability of the developed model-based BS_ICA will be investigated and its
performance for extracting the lambda wave will be compared to that of a conventional
(model-less) BS_ICA technique. |

. Investigate nonlinear principal component analysis (NLPCA) peformance for

extracting the lambda wave

Nonlinear principal component analysis (NLPCA) is a recursive least-square based
signal separation algorithm signal separation technique. Signal source separation
algorithms such as the ICA algorithm of Bell and Sejnowski maximises entropy in order
to extract signal components. However NLPCA uses a recursive least square algorithm
for tracking signal subspaces in the data. In this study, NLPCA technique will be applied
to saccade-related signals and its performance will be compared to that of ICA algorithm
of Bell and Sejnowski [1.9].



6. Devise a method for automating the identification of BS_ICA-extracted lambda

waves

A fuzzy logic based method will be implemented to automate the process of identifying
the single-trial lambda waves extracted by BS_ICA from the recorded EEG waveforms.
The application of BS_ICA to n recorded EEG waveforms resulted in n independent
signal components. These components originally were visually inspected to identify a
specific EP such as the lambda wave. The task of visual identification of specific EPs
(specially when dealing with single-trials) can be time consuming and requires an expert
familiar with the characteristic features of the desired component. The performance of a
fuzzy c-means clustering pattern recognition approach to perform the identification of

the single-trial BS_ICA-extracted lambda waves will be assessed.

1.4 Original Contribution

Novel ICA-based signal processing procedures were developed for the analysis and
quantification of techniques employed for the extraction of saccade-related EP components

from the recorded EEG waveforms. The original contributions of the study are as follows:

- Development of a procedure that enabled the quantitative assessement of four methods

employed to perform OA removal of the EEG. (chapter 5)

- Development of an iterative synchronisation procedure that enabled the features of the

saccade-related component signals to be preserved during averaging. (chapter 6)

- Development of an abutted-trial averaging procedure that enabled the stationary
properties of the EEG waveforms to be enhanced prior to BS_ICA application. (chapter
6)

- Using BS_ICA, the characteristics of the temporal and spatial relationships of three
saccade-related EP components were analysed. The EP components were: the frontal

and occipital pre-saccadic potentials, and the lambda wave. (chapter 6)



- . Development of a novel model-based BS_ICA approach that enabled a priori knowledge
of the EP component of interest called the lambda wave to be incorporated into the
BS_ICA algorithm for improving its performance for extracting the lambda wave.

(chapter 7)

- An analysis of saccade-related EEG waveforms using nonlinear PCA technique that
provided a new insight into the scalp distribution of the brain mechanisms involved in

the generation and performance of saccades. (chapter 8)

- Implementation of a Fuzzy logic based procedure that enabled the automation of the

identification of BS_ICA-extracted single-trial lambda waves. (chapter 9)

1.5 Organisation of Thesis

An outline of the organisation of the thesis is provided in this section.

Chapter 1: The background of the study is provided. The aims and objectives of the research

are identified and an outline of the thesis is given.

Chapter 2: The theoretical background of the signal processing techniques used in the study
is provided. The discussion concentrates mainly on two signal source separation algorithms,
namely the ICA algorithm of Bell and Sejnowski [1.9] and the JADE algorithm of Cardoso
[1.10]. The methods of PCA [1.12] and NLPCA [1.11] are also explained in this chapter.

Chapter 3: The signals used in the study are described. The discussion concentrates on

saccade-related EPs.

Chapter 4: The experimental procedures and methodologies used to record the signal
waveforms are described. This includes a description of the data recording system/set-up

and the design and implementation of the experiments.

Chapter 5: An analysis of signal source separation approaches for removing ocular artefact
from the EEG is provided. The methods were the ICA algorithm of Bell and Sejnowski
[1.9], the JADE algorithm of Cardoso [1.10], the PCA data decomposition [1.12] method



and the EOG subtraction method [1.13]. Procedures to quantify the algorithms performances
are developed and explained. The results obtained when using each method to remove OA

from the EEG are provided.

Chapter 6: Procedures to improve the performances of BS_ICA to extract an EP signal of

interest called the lambda-wave are described. Three approaches are provided.

The first approach is a iterative synchronisation procedure devised to optimally time
synchronise the waveforms with respect to an event of interest prior to averaging, in order to
preserve the signals components that are time-locked to the event. A detailed description of
the algorithm is provided and the results of the effects of the iterative synchronisation

process on the averaged waveforms are provided.

The second approach is a method devised to increase the effective length of the EEG
waveforms processed by BS_ICA. The performance of BS_ICA for extracting the lambda
wave is assessed for different lengths of EEG waveforms. The results of applying BS_ICA
to the abutted waveforms and to the not-abutted waveforms are provided. Results for both
simulated waveforms and saccade-related waveforms are shown. Plots of the BS_ICA-
extracted lamda wave components waveforms produced by the two approaches (BS_ICA

applied to abutted and not-abutted waveforms) are provided and the results are compared.

Chapter 7: The design of a model-based BS_ICA algorithm for improving the extraction of
a saccade-related ERP component called the lambda wave is provided. The procedures used
to develop (i) a model for the lambda wave, (ii) a suitable cost-function for incorporation
into the BS_ICA algorithm and (iii) a model tracking algorithm are decribed and explained.
The results of applying the model-based BS_ICA algorithm to both simulated waveforms
and saccade-related waveforms are shown. The results of comparing the performances of the
model-based BS_ICA algorithm with that of conventional (model-less) BS_ICA are
discussed. Plots of the BS_ICA-extracted lamda wave components produced by the two

approaches (with and without model) are provided and the results are compared.

Chapter 8: The performance of the adaptive NLPCA method for the EEG signal source
separation and extraction of the lambda wave is investigated. The methodology and results

are discussed. The findings of this investigation are compared with the results obtained

10



using the ICA algorithm of Bell and Sejnowski [1.9]. Plots of the waveforms produced by

the two approaches are provided and the results are compared.

Chapter 9: A method that automates the process of identifying the single-trial lambda waves
extracted by BS_ICA from the recorded saccade-related EEG waveforms is implemented.
The performance of a fuzzy c-means clustering based pattern recognition approach is

investigated for this purpose and the results obtained are provided.

Chapter 10: A summary of the overall results, a conclusion to the study and future works are

provided.
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Chapter 2. Signal Source Separation (SSS) Principles

2.1 Chapter Summary

An overview of the signal processing techniques used in the study is included in this
chapter. A general introduction to signal source separation (SSS) principles is initially
provided. The most relevant SSS studies over the past fifteen years are reviewed. The
discussion concentrates mainly on the independent component analysis (ICA) of Bell and
Sejnowski [1.9] and the joint approximation diagonalisation of eigen-matrices (JADE) of
Cardoso [1.10]. The related methods of principal component analysis (PCA) [1.12] and

non-linear principal component analysis (NLPCA) [1.11] are also described.

2.2 The Objectives of Signal Source Separation

Consider for example a situation where there are a number of signals emitted by some
physical objects or sources. These sources could be, for instance, different brain areas
emitting electric signals, people speaking in the same room, emitting speech signals, or
mobile phones emitting their radio waves. Further, assume that there are several sensors or
receivers placed bat different locations so that each one records a mixture of the original
emitted signals with slightly different weights, depending on the distance between the
sources and the sensors. When several signals are transmitted down the same medium at
the same time, it is often difficult to identify them at the receiving-end (sensor) as they are
very likely to have been mixed together during transmission. One must therefore attempt to
separate the different signals in the recorded mixtures in order to retrieve the original

signals.

Techniques such as matched filters exist and often require prior knowledge of the
dynamics of the signals. In cases where both the source signals and the way the signals
were mixed are unknown, it is not possible to design appropriate processing to optimally
separate them. Therefore methods that can separate signals from mixtures without the need
for prior information about the dynamics of the signal sources are valuable. These methods
are called Blind source separation (BSS). The goal of BSS (hereafter referred to as SSS

for signal source separation) is to recover independent sources given only sensor
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observations that are mixtures of the original signals. The technique is said to be ‘blind’
because it assumes no a priori knowledge of:

1- the characteristics of the signals that have been mixed,

2- the number of original sources in the mixtures, |

3- the physical properties of the transmitting medium,

4- the mixing relation between original sources and observations.

The principle of SSS is illustrated in Fig.2.1.

Original signals Recorded mixtures Estimated signals
1 + 1 — | Goparating Matrix
—» | Mixing Matrix— — eparating iviatrix
s2 A xZ ' \%Y
: - (orf™7) '
Su___, (orf) X u,

Fig.2.1 The signal source separation (SSS) principle.

The technique assumes that n sources transmit certain signals s;, which, after transmission
through an arbitrary medium, are measured by n sensors x;. Note that for simplicity, the
case where the number of sensors is set equal to the number of sources will be used all
throughout the thesis. The measured signals will be related to the transmitted signals by
some unknown function f, referred to as the mixing relation. With added measurement

noise n;, this becomes,

xi=f( S1y,...,58:) +n; ‘ (2.1)

The aim is to find a separating matrix W =A™’ and thus to estimate the original signals u; as

shown in Fig.2.1 by the operation:

wi=f xr, .y Xn) 2.2)

The estimated signals #; are the underlying components that describe the essential structure

of the data (recorded mixtures). These components correspond to some physical causes

13



that were involved in the processes that generated the mixtures. In most cases, f is
considered a linear function because the interpretation of the representation is simpler, and
so is its computation. Thus every component u; is expressed as a linear combination of the

observed variables:

U= W. X (2.3)

where wj; are the coefficients of the separating matrix W that define the representation. The
problem can then be rephrased as the problem of determining the coefficients wj;. Using

linear algebra, the linear transformation in (2.3) can be expressed as a matrix multiplication

u, X
=W/ (2.4)
un xn

It can be safely assumed that the mixing coefficients are different enough to make the
matrix that they form (A) invertible. Thus there exist a matrix W with coefficients w; so
that the u; can be separated. W will be determined by the statistical properties of the

transformed components u;.

2.3 A review of the most relevant SSS techniques

This section provides an account of the most relevant work in the area of SSS. Table 2.1

contains some of the main techniques that have been reported recently.
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Part of this review was obtained from the independent component analysis (ICA) book
[2.96]. For more details on ICA, the reader may refer to the three recently published books
by Lee [2.96], Hyvarinen, Karhunen and Oja [2.97].

2.4 A brief review of the Principal Component Analysis (PCA)

Principal component analysis (PCA) [1.12] is a multivariate data analysis procedure that
transforms a set of n correlated variables, X = {xj, ... , x,}, into a set of uncorrelated
variables called principal components U = {u, u, ..., u,}. Each variable x; and u; contains
N time-points. The method is implemented using a technique called singular value
decomposition (SVD) [2.98] that finds orthogonal directions of greatest variance in the
data set (more details on the principle of SVD are given in the next paragraph). The first
principal component accounts for most of the variability in the data while each of the

succeeding components in turn account for the highest amount of the remaining variability.

SVD is usually used as a method to principal component analysis of the EEG. SVD may be
used to express any nxXN matrix X as a product of three matrices by the equations X =
PAMY, where P is a nxN matrix such that P'P = 1, A is an nxn diagonal matrix, and M is
an nxn matrix such that MTM = MM" = 1. If X is an epoch of EEG data (with n channels
and N time points), P will contain the n normalised (with no amplitude information)
principal component waveforms of the EEG, that is n decorrelated waveforms or features
that can be combined to reconstruct the original EEG. Decorretelated means that the
correlation between any two waveforms in P is zero, that is the waveforms are non-
correlated in time as well as in their spatial distribution. A will contain n ordered eigen-
values (or amplitudes) that apply to the n normalised principal component waveforms. M is
a matrix that contain the corresponding eigen-vectors or mapping matrix (set of linear
weighting factors) that is used to combine the n component waveforms. Each eigen-value
in A specifies the amount of data variance associated with the direction defined by a
corresponding eigen-vector. M can be displayed as a topographic map or as a histogram,;
M;; is the contribution of jth principal component waveform to the ith EEG channel. With
the definition L = PA (the n non-normalised principal component waveforms of the EEG,
which can be displayed as multichannel waveforms), X can be expressed as X = LMT. Each

principal component is a linear combination of the variables X. The ith principal
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component y; can thus be expressed as, y; = MT,- X where, M; is the ith eigen-vector of the
covariance matrix R, of X (MT,- is the transpose of M;). Note that the dimension of y; is

1xN, that of M"; is 1xN and that of X is nxN.

The SVD method is based on second order covariance matrix. SVD identifies components
by a systematic approach that analyses the variations in all the waveforms in X. This
analysis starts by computing the correlations (or covariance), R, = E[XXT , of each of the
time points with each of the other time points across all waveforms in the data set X. In
SVD the eigen-vectors of the signal covariance matrix gives the directions of greater
variance on the input data X. The structure is computed from these correlations, with the
key idea that variables (time-points) that are correlated belong to the same underlying
component. SVD finds an orthogonal basis for its given data set X, and therefore the
principal components found by projecting X onto those perpendicular basis vectors are

uncorrelated, and their directions orthogonal.
2.5 A brief overview of the Non-linear PCA (NLPCA) Approach

A recursive least square (RLS) algorithm for adaptive tracking of signal subspaces was

reported by Yang [2.27]. The algorithm is derived from the cost function,
LW)=E[|| X-WW'X|’] 2.5)

where X = {x,, ..., x,} is the matrix of signal mixtures, n is the number of mixtures, W is an
nXn weight matrix (n is the number of sources and is assumed to be equal to the number of
mixtures as described in section 2.2, Fig.2.1), T represents the transpose and E[.] the
expectation operations. The minimum of the cost function in (2.5) is provided by any
orthogonal matrix W whose columns span the PCA subspace defined by the principal
eigen-vectors of the covariance matrix of X. The method is recursive in the sense that
starting from some initial (arbitrary) value for the weight vector, it improves with the

increased number of iterations.

Karhunen and Pajunen [1.11] have extended Yang's RLS algorithm so that it can be used

for minimising the nonlinear cost function reported in [2.26] given as,
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Jo(W)=E[|| X - W g(W "X) |I’] (2.6)

where g(.) is a non-linear transfer function. This transfer function enables the method to
deal with the higher-order (higher than second order) statistics of the data. This means that
the method of NLPCA will not only decorrelate the data but will also attempt to deal with

higher-order dependencies and can therefore be applied to perform blind source separation.

This resulted in an adaptive learning algorithm described by the following steps.

y(t) = g(W(t-1) (1)) = g(U(1)),
h(t) = Q(t-1)y(1), 4
m(t) = h(t)/( B+y'(t)h(1)), 2.7)

Q(t) = 5 Tri[Q(r-1) - m(0h"(1)],

e(t) = v(t)— W(t-1)y(t),
W(t) = W(t-1)+ e(t) m"(1).

where e(t) is the training error, U(?) is an estimate of the underlying source signals and y(z)
is the output of the nonlinear tranfer function g(.). The matrix v(z) is the input to the
algorithm and is produced by Whitening the mixtures X(#). The whitening matrix is chosen
so that the covariance of the whitened vectors v(z) expressed as E[v(z) v( ) is equal to the
identity matrix, I. Prewhitening is performed on the data X(z) by v(?) = Ox(1)X(t), in order
to help the separation process by decorrelating the data. Decorrelation is a necessary
'preréquisite of independence. The algorithm is implemented using the RLS scheme
described in [2.99] for solving the weight matrix W iteratively. The constant 0 < f<Iisa
forgetting term which is normally set close to 1 because the source signals are assumed
nonstationary. The use of the weighting factor in general is intended to ensure that data in
the distant past are ‘forgotten’ in order to afford the possibility of following the statistical
variations of the observable data when the filter operates in a nonstationary environment.
Q1) is referred to as the inverse correlation matrix of the input signals weighted by f, and
Q(r-1) is the ‘old’ value of the correlation matrix. Q(z) is a symmetrical matrix where its
upper triangular part is computed by operation Tri and its transpose is copied to the lower
triangular part. In (2.7) variables h(t) and m(t) are intermediate variables used for
computational purposes when implementing the matrix inversion lemma described in

[2.99] for computing the least-square solution for the weight matrix W.
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The algorithm reported in [1.11] may be regarded either as a neural network learning
algorithm or adaptive signal processing algorithm. The algorithm is implemented within a
two-layer network structure with weight matrices O, and W. A block diagram that

illustrates the NLPCA algorithm operation when applied to 2 sources is shown in Fig.2.2.

x; ™ —| v; \ Wit u yr >
Wi Learning rule in
0.(x) ; 8w
2.7
wa |~ ! T
Determine e(t)
x; —>| V2 W2z u |, Y2 |—»

Fig.2.2 Block diagram of the operation of NLPCA when applied to 2 sources;

O,(.) is the whitening process of the mixtures.

2.6 Independent Component Analysis of Bell and Sejnowski (BS_ICA)

The independent component analysis of Bell and Sejnowski (BS_ICA) can be viewed as an
extension of PCA that not only decorrelates the data but also reduces higher order
dependencies (up to fourth-order moments). BS_ICA and PCA have two difff;rent goals.
Indeed whereas the aim of PCA aim is to summarise Gaussian data in as few principal
(uncorrelated) components as possible, BS_ICA on the other hand tries to find as many
statistically independent components as possible within non-Gaussian data. This means
that the value of any one of the components gives no information on the values of the other

components.
2.6.1 Assumptions and general principle

BS_ICA technique is a mathematically rigorous method based on statistical principle used
in signal processing to perform blind signal source separation (BSS) of independent
components from within linear mixtures of them. The goal of the BS_ICA technique is to
recover the independent sources given only sensor observations that are unknown linear

mixtures of the unobserved source signals.
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The BS_ICA technique relies on a number of fundamental assumptions. BS_ICA assumes

that:

- different physical processes tend to generate statistically independent signals,

- the physical processes responsible for mixing the sources are linear,

- the probability distribution function of independent signals has a non-Gaussian (i.e.
uniform) distribution whereas the distribution of a mixture of them has a Gaussian
distribution,

- the joint distribution of non-Gaussian distribution of the independent sources has
maximum Entropy,

- the sources signals are at each instant mutually independent,

- at most one source is normally distributed,

- instantaneous mixing is assumed: in EEG analysis, the propagation of the signals is
considered immediate as the electrodes on the scalp.are placed close to each other
(about a centimetre a part) over the entire surface of the scalp. It takes a short time
(typically less than 10 milliseconds) for a signal to propagate across the scalp.
Consequently, it is assumed that no significant time-delays are introduced in the mixing
and that the mixing transformation is instantaneous. Moreover, as shown in Fig.1.1, the
latency of the signal of interest in this study (i.e. the lambda wave) typically lies within
a 500 ms time window from the onset of the stimulus. The sampling rate being 250Hz
(i.e. 4 ms per time-point), instantaneous mixing is considered appropriate.

- no sensor noise or only low additive noise signals is permitted.
2.6.2 The information theoretic principle

The ICA algorithm of Bell and Sejnowski [1.9] (the algorithm used in this study) is based
on the information theoretic principle. This principle can be described as follows. Let p, be
the distribution of any signal in mixtures matrix X. The mixtures matrix X is such that X =
AS where S contains n independent source signals and A is a linear mixing of the sources
S. Each source signal in S has a distribution p;. There exits a linear unmixing
transformation W followed by a non-linear transformation p(.), such that the resultant
distribution, Y = p(WX), has maximum entropy and p(WX) = p(S). This can be used to
recover the original sources S by defining a plausible distribution (i.e. non-Gaussian), and

then finding an unmixing matrix W that maximises the entropy of Y= p(U) thus making the

25



outputs U = WX as independent as possible. If a set of signals that have a non-Gaussian
distribution can be extracted from a set of signal mixtures, then these extracted signals are
likely to be the original source signals; those signals are mutually independent and the
mutual information (MI) between them is equal to zero. The information theoretic principle

is illustrated in Fig.2.3.

H(X,Y)

/ \

H(X) H(Y)

Fig.2.3 The information theoretic principle

In Fig.2.3, I(X;Y) is the mutual information between variables X and Y, i.e. a measure of
the amount of information that a variable X contains about another variable Y. H(X,Y)
represents the joint entropy between variables X and Y. H(X|Y) and H(Y|X) are the
conditional entropies between the two variables and H(Y) and H(X) are their marginal

entropies [2.100].

The entropy H(X) of a variable X ={xj,...,x,} with probability distribution p(x;) is defined

as,

H(X)==3 p(x )in(p(x,) 28)

H(X) is a measure of variability of the variable X [2.100].

The joint entropy H(X,Y) of a pair of variables with a joint distribution p(x;y;) where x; =

{x1, x5, ...,xn} and y; = {y1, y2, ...,yn}, is defined as,
H(X,Y)==) p(x;,y;)In(p(x;,y;)) (2.9)
i=1
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which can also be expressed as,
H(X,Y)=-E[In(p(X,Y))] (2.10)

where E[.] is the expectation operation. The relative entropy is also known as the Kullback
Leibler distance [2.100] between two probability distributions. Let p;(x;) and p,(x;) be two
probability distributions of variable x; = {x;, X, ...,.x,}. The Kullback Leibler distance is

defined as,

D(p,(x; )” pa(x;))= ;pl(x" )ln[i)):;::z ﬂ

-E, [m(——ig ;)] 2.11)
2

Consider the two variables X and Y with a joint distribution p(x;y;), and probability
distributions p(x;) and p(y;). It can be shown that the mutual information I(X;Y) is the
relative entropy between the joint distribution p(x;y;) and the product distribution p(x;)p(y:)
[2.100], giving,

2 p(x;,y;)
I(X;Y)= Ly L EeYi)
(X5¥)=2, p(x30) "{p(x,.)p(y,.)J

=D( p(x;,y;)|| plx; )p(v;))
~ p(X,Y)
= E"(xi’y‘)lrln(—p(X)p(Y)JjI (2.12)

From (2.12), it can be shown that I(X;Y) is the reduction of uncertainty of X due to the
knowledge of Y [2.100].

I0X:Y)=3 p(x,,, )ln(—i’(x—”—j

i=1 p(x; )p(y;)

z p(x;|y:)
= LY, )in) 2T

;p(x, y )n( ) )
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== pCxe,y I p(x )+ Y p(xisy, in( p(x, | 3, ))
i=1 i=1

== px i p(x, »—[—ip(x,-,y,- Jin p(x; |3, »J

= H(X)- H(X|Y) (2.13)

According to Fig.2.3, I(X,Y) is the intersection between the information in X and the

information in ¥, giving,

I(X;Y) = H(X) - HX|Y )
= H(Y)- H(Y|X) (2.14)

where H(Y|X) is whatever information the output ¥ has, which did not come from the input
X. Note that in the low-noise case, i.e. where little to no noise is assumed in the generative
model of the BS_ICA algorithm (see BS_ICA assumptions in section 2.6.1), this H(Y|X)

term can be neglected.
2.6.3 A neural network implementation of BS_ICA

Bell and Sejnowski have proposed an unsupervised neural network algorithm based on the

information theoretic principle [1.9].

Artificial neural networks are computer programs that are inspired from the biological
learning systems to model the learning function in neurons. A neural network is
characterised by three specifications: the architecture, the activation function and the
learning rule. The architecture specifies the variables involved in the model and the
topological relationship between thefn, the variables being the weights of the connections
between neurons and the activities of the neurons. The activation function specifies the
dynamics between the input and output of the network. The learning rule specifies the way
in which the neural network’s weights changes with time. When the learning process
depends solely on the unlabeled data and objective functions, then the learning process is
unsupervised. The purpose of unsupervised learning rule is to discover significant pattern
or features in the data. During the training, the algorithm adjusts the weights in such a way

as to minimise the objective function. Rather than minimising the function, some
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unsupervised algorithm learning rules make use of the gradient of the objective function

with respect to the weights.
2.6.3.1 Principle of maximum entropy preservation (infomax)

Bell and Sejnowski showed that maximising the joint entropy H(yj, ..., ¥») of the output of
a neural network processor can approximately minimise the mutual information among the
outputs signal components Y = g (U) [1.9], where g(.) is an invertible monotonic non-linear

transfer function and U=WX.

The joint entropy of the outputs of a neural network is,

H(yp, ooy y) =Hy1) + ... + Hyw) = 11,5 Yn) (2.15)

Where H(y;) are the marginal entropies of the outputs and I(yj,..., ¥,) is their mutual
information. Maximising H(yj, ..., ¥») consists of maximising the marginal entropies and
minimising the mutal information. The output y; are amplitude-bounded random variables
and therefore the marginal entropies are maximum for a uniform distribution of y;.
Maximising the joint entropy will also decrease I(yj,..., y») since the mutual information is

always positive. For I(yy,..., y») = 0 the joint entropy is the sum of the marginal entropies.

H(yy, ..oy yu) = HE1) + ... + H(yn) (2.16)

The maximal value for H(yy, ..., y») is achieved when the mutual information among the

bounded random variables {yj,..., ¥»} is zero and their marginal distribution is uniform.
2.6.3.2 The BS_ICA learning rule

Using the infomax principle described in section 2.6.3.1, the learning rule of the neural
network can be derived from equation (2.14), by considering the gradient of information

theoretic quantities with respect to some parameter W in the network as,

(Y, X) - JH(Y)
oW oW

2.17)
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The mutual information equation can be therefore differentiated with respect to the
learning parameter W involved in the mapping from X to Y. Moreover, Nardal et Parda
showed that maximisation of the mutual information I(Y;X) between the input X and ouput
Y of a neural network is equivalent to maximisation of the output entropy H(Y) as the
H(Y]X) quantity is considered as additive noise which does not vary with respect to W and
can therefore be neglected [2.13]. This is only true in the low-noise case [2.13], as
previously describedvin equation (2.14). The learning rule is derived by maximising output

entropy H(Y) with respect to the weights matrix W giving,

C>C07H(Y)

AW (2.18)

This implies that the non-linearity g (.) has the form of the distribution of the true original
signal distribution s;. The choice of the non-linear function of the neural network usually
depends on the type of transformation required between input and output of the network.
Here, the aim is to find an invertible non-linear squashing transformation capable of
transforming a highly Gaussian input distribution (of the mixtures) into a nearly-flat
uniform output distribution of the extracted independent sources. Independent source
signals have marginal distributions with different means. As a result, the joint distribution
of a large number of independent source signals will tend to a near-to-flat uniform

distribution.

In practice, a logistic transfer function sigmoid, shown in Fig.2.4, is used. It has a non-

linear sigmoidal shape which fits the previous requirement.

(a) (b)
D~

\ Y=g(U)

Z where U=WX

- o] W, X

) /V p(X)
X W
0x P

Fig.2.4 Optimal information flow in sigmoidal neurons [1.9]
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(a) The Gaussian p(X) is passed through the sigmoid non-linear function. The information
in the resulting density p(Y) is obtained by matching the mean and variance of X to the
threshold Wy and slope W of the sigmoid. This is done by adjusting the weights W of

the neural network.

(b) W is optimum when p(Y) has a near-flat shaped distribution. The entropy H(Y) of the
output Y is maximised when the high density parts of the distribution of X is aligned
with the highly sloping parts of the function sigmoid. This is the idea of matching a

neuron’s input-output function to the expected distribution of signals.
2.6.4 Mathematical Analysis and derivation of the BS_ICA learning rule

Suppose the output sensors X = {x; , ..., x,} of n measurement devices are a linear
mixture of n independent signal sources S ={s;, ..., s}, such that X = AS, where A is an
nxn matrix. We wish to find an nxn unmixing matrix W such that each of the n

components recovered by U = WX is one of the original signals S.

As discussed in section 2.6.2, an unmixing matrix W can be found by maximising the joint

entropy H(yj, ..., yn) of the output signal Y=g(U) where U = WX.

Assume, that the learning activation function is a sigmoid function which is monotonically
increasing (i.e. has a unique inverse). The BS_ICA algorithm may be broken down and

summarised in five main steps. They are as follows:

step 1. The distribution p(Y) of the output Y, can be written as a function of the distribution
p(X) of the input X in the following manner:

p(v) =2

= (2.19)
17Y/, |

where |.| denotes absolute function.
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The transformation of a given data set X affects the entropy of the transformed data Y
according to the change in the amount of ‘spread’ introduced by the transformation. Given
a multidimensional signal X, if a cluster of points in X is mapped to a large region in Y,
then the transformation implicitly maps infinitesimal volumes from one space to another.
The ‘volumetric mapping’ between spaces is given by the Jacobian of the transformation
between spaces. The Jacobian J combines the derivative of each axis in X with respect to

every axis in Y to form a ratio of infinitesimal volumes in X and Y.

Analogously, the multivariate distribution of Y can be written as follows, where J is the

determinant of the matrix of partial derivatives:

[ dy L dy 1 |
dx , " ox,
p(Y) =£(|}J('—l) where J =det | : . (2.20)
Iy, I,
| ox, = " ox, |

step 2. The general expression of the entropy of signal ¥ with distribution p(Y ) can be

expressed as,
H(Y) = —LP(Y)IH(P(Y))dY =-E[in(p(Y ))] 2.21)

step 3. Substituting equation (2.20) into equation (2.21) gives,

' (X)
H(Y) = - E[ n B2 ’
n |J|

=-E[In( p(X )-In(|J )]

=-E[ln(p(X )] +E[In(|J])]

E[ln(|J )] -Elin(p(X ))]

Elin(|J )]+ H(X) (2.22)

‘where H(X) is the entropy of the input X. Considering that H(X) is constant and therefore
not affected by the changes in W maximising the entropy H(Y) with respect to W needs
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only maximising the first term of equation (2.22) which is the average logarithm of how

Y

the input affects the output, where | J | = 54

Estimating that E[In( | J |)] = In(|J |) , the BS_ICA learning rule can be derived as,

LOHY) 9 19Y|

AW _
W oW o x|

(2.23)

Using mathematical derivation rules [2.98], the right hand-side of equation (2.23) can be

calculated as follows,

%
44

in|K| = (k|) 2.24)

where K = ﬂ and,
X

= —|= (2.25)

Thus combining equations (2.25) and (2.24) yields,

g oY | _ (lo¥v\\" 2 (3Y
! - .
ow 9 X | [Iaxl IW o"X) (2.26)

step 4. Setting Y equal to the sigmoid learning activation function gives,

1

Y=
1+e®

(2.27)

where D = WX +W, and W, is the bias weight of the learning rule.
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The right hand side of equation (2.26) will be derived to provide the update rule for the
weight matrix W of the neural network. This operation will be carried out in 2 stages (a)

and (b).

Stage (a) - The first part of the right hand side of (2.26) can be derived as follow,

1

= 2.28
dX dX : (2.28)
Using the mathematical derivation rule,
3(1@] P(X) ). BOX) o

8X))_ _ox 0X (2.29)
JX g(X)
yields,
P 1

oY 1 + e WXHW) We WX +Weo)

= = 2.30
X dX (1 _,_(l,-(vwnwa))2 (2.30)
Using equation (2.27), the following equalities can be deduced,

1 : : 1 ; 1

Y= Ty gives I+e ™M) = y &ives € WaWo) - — 7—1 (2.31)
Substituing equation (2.31) into equation (2.30) gives,
Y W(é - 1)

= 2.32
ox 1 (2.32)

y?

Y
—=WY(1-Y 2.33
B ( ) (2.33)
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Stage (b) - Using equation (2.33), the second part of equation (2.26) can be derived as

follow,

7 (5% =wtrrer) e
aaw (3 ;Y(J i;»aw (W( 1+e-(1wx+w,,)J(1 1T é-(lvvx+wu)J) @39
a9w (jg =0—f;, (W(I+e-({vx+W.,)J"W(I+e-(1wx+w,,))(1+e_(1vyx+wa)n e
;?W (3;) =[?0;V (1+e-‘:‘:¢x+w,,) _(1+e-(?;’+w,,))z] (2.37)

Deriving equation (2.37) with respect to W gives,

oW \dXx '
(1+e-(WX+W,,) )+WXe-(WX+Wa) —(1+e-(IVX+‘V,,))2 +2wx(1+e-(WX+W,,))(e-{WX+W,))
(1+e'(WX+Wo))2 (1+e-(WX+W,,))4

Substituing appropriately equation (2.31) into equation (2.38) yields,

s (ory 71 ()] o
oW (axj G)Z

7

Multiplying both the numerator and denominator of equation (2.39) by ¥? yields,

2 4
J (QYJ=Y—+Y2WX L_IJ_Y__ZWXY"[i\J(.I__]J (2.40)
oW \dX Y Y Y? Y N\Y
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After simplification, equation (2.40) becomes,

9_ (-‘Q—Y-) =Y +YWX -Y’WX -Y? -2WXY* i) i—lj (241)
dW \9X Y )\Y

9 (—3—’1) =Y +YWX -Y?’WX -Y? - 2WXY? + 2WXY? (2.42)
oW \dX

After further simplification and factorisation, (2.42) becomes,

Jd (dY
W(a_f) =Y(-Y)(I+WX(1-2Y)) (2.43)

Equations (2.43) and (2.33) can be combined to express equation (2.26) as follows,

(&YJ_’ J (&Y) _YI-V)a+WX(1-2Y)) e
ix) ow\ax) ~ Wr(1-v) |
(an_ J (‘QY) = L+X_2XYV (2.45)
dX) IW\2X w

The AW rule which updates the value of the weights matrix W after each iteration of the

neural network training process is given as,

GHY) (oYY & (JYJ Trd ool
= = - 4
oW (axj owlgx) SV 172X (2.46)

The adaptive learning process can be carried out in small steps by multiplying by a factor

value of size 7 which yields,

IH(Y)_

) 'd ' 2.47
W nfw-] (2.47)
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where 7 is called the learning rate of the neural network. Additionally, the AW rule can be
multiplied by the W'W ‘natural gradient’ of Amari [2.40] to avoid matrix inversion and

also to speed up the learning convergence of the neural network yielding,

oco”H(Y)
7a4

AW wiw (2.48)

Combining equations (2.47) and (2.48), the following derivation can be carried out,

AW = %QWTW= ((Wf)”+(1—2y )XT)WTW

=W+ X" WW-2YX"wr'w
=W+ U'W-2YU"W

= [1+@-2v)uT]w (2.49)
where UT = X" W7,
The BS_ICA learning rule can therefore be expressed as,
aw o PH gy ol (12007 Iw 2.50)

JW

step S. A similar operation as in step 4 is carried out in order to obtain the update rule for

the bias weights matrix W, using the following learning rule,

Jd |9y ]| (v o (av ,
I = : : .
ow. o x| (axj IW, (ax} @31

The first part of the right hand side of equation (2.51) does not vary with respect to W,

therefore this part remains equal to equation (2.33), i.e.§—§ =WY(I-Y).
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The second part of the right hand side of (2.51) can be derived with respect to W, as

follows,

J (M) _dwy(-v))

= 2.52
oW, \JdX W, (2:32)
7 (aY = i VZ/X w,) ‘v}:; W.) 2 (2.53)
AW, \IdX) W, \I+e ™) (14 ™))
(WX +W, ) “(WX+W, ) (WX +W, )
d Y __We _2W(1+e )e ) (2.54)
aWo a X (1+e-(WX+W,,))2 (1+e-(WX+W,))4
Substituing appropriately equation (2.31) into equation (2.54) yields,
1 1Y 1
Wl—=-1| 2W|—=|—=-1
J (aY) _ (Y J_ (YJ(Y ) 2.55)
IW, \JdX 1Y 1Y '
Y Y
2 4 4
d (aY _Y W—WYZ—ZWf 2wy (2.56)
dW, \Jd X Y Y Y
After simplification, equation (2.56) becomes,
ad (dY 3
— | =WX(1I-Y-2Y+2Y 2.57
() e ) @57
d aY
— | =WX(1-Y)(1-2Y 2.58
oW, ( 3 XJ ( )( ) (2.58)

Combining equations (2.58) and (2.33), the following ratio can be expressed,
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(ay)“’ J ((QY)_WX(I-Y)(I-ZY) ‘ 259
dX) W, \dX WY (1-Y) '
Simplification of equation (2.59) yields the learning rule,

dH(Y) (v 2 (&YJ »
AW o< = =1-2Y 2.60

oW, (é’X) dW,\JdX (2.60)

Taking small steps of size 7 yields,

JdH(Y)
AW < =n(l-2Y 2.61

o

As can be shown on Fig.2.4, the effect of these two balanced learning rules is to produce an
output distribution p(Y) that is close to the near-flat distribution.

- the AW, rule centres the steepest part of the sigmoid curve to the peak of the distribution
p(X), matching input density to output slope using equation (2.61).

- the AW rule then scales the slope of the sigmoid curve to match the variance of the

distribution p(X) using equation (2.50).
2.6.5 The extended version of the BS_ICA learning rule

The ICA algorithm of Bell and Sejnowski [1.9] which uses a sigmoidal activation function
is specifically suited to separate signals with super-Gaussian distribution (i.e. positive
kurtosis). Lee and Sejnowski [2.24] proposed an extension of the infomax algorithm
proposed by Bell and Sejnowski that is able to separate signals with sub- as well as super-
Gaussian distributions. This preserves the architecture of Bell and Sejnowski ICA
algorithm but it uses a learning rule derived by Girolami and Fyfe [2.23]. It determines the
sign changes (positive to negative and vice versus) required by the algorithm to handle
both sub- and super-Gaussian distributions. This is achieved by considering the normalised
fourth-order kurtosis (Ky) of the estimated signal sources. In extended ICA, the amount of

change (AW ) required to update the unmixing weight matrix W is given by,
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S1

S2

JH(Y)
W

AW o WTW=|l-sign(K,)(1-2Y U -UUT | W (2.62)

where WIW is the natural gradient of Amari et al. [2.40] used as an optimiser for

speeding up the convergence.

A detailed description of BS_ICA and its extended version are included in the book by Lee
[2.96].

2.6.6 Mode of operation of BS_ICA

s
The concept of BS_ICA for a situation involving two signal sources (§ = |: 1j|) is
§2

x
illustrated in Fig.2.5 The mixtures (X = [ !

}) are generated by the operation, X= AS,
x2

apy a2 | . .. .
where A= is the mixing matrix.
az; az

> —> —vy, —> .
AN an TN Wi W 41 learning
az Wai R rule
g
ap Wiz Determine
change in
Z ap >X, Z Wi u,— Yy — w

Fig.2.5 A diagram to illustrate the operation of BS_ICA.

wir W12

The aim is to estimate an unmixing matrix W=[
w21 W22

]which in turn enables an

uj

estimate of the signal sources U =[
%)

} to be obtained by U= W X.

40



2.7 ICA using the Joint Diagonalisation of Eigen Matrices (JADE)

2.7.1 Definition and assumptions

In this signal source separation technique called the Joint Approximation Diagonalisation
of eigen-matrices (JADE) algorithm [1.10], the key assumption blind identification relies
on is the statistical independence of the sources, which is exploited using a family of
fourth-order cumulant-based criteria for blind source separation so as to separate
statistically independent signals in a mixture. These criteria involve a set of cumulant

matrices, whose joint diagonalisation is equivalent to criterion optimisation.

Contrary to some other ICA algorithms, JADE does not operate on the data themselves but
on a statistical representation of them which is a set of fourth-order cumulants C, of the
array output. For X a complex n-dimensional random vector with coordinates X={xj,...,xn}

and finite fourth-order cumulants, it can be defined a cumulant set denoted C; as,
Cr ={Cum(x;) | I1<il<n) (2.63)

The process x() is assumed stationary therefore does not depend on 7; so Ci() is denoted
C:. The JADE technique relies on a number of assumptions for its algorithm to hold. They
are,

Ay - The source signals and noise are assumed jointly stationary.

A; - A source is said to be kurtic if it has a non-zero kurtosis. In JADE, the case is
restricted where there is at most one non-kurtic source.

The key assumptions that the blind identification relies on are related to independence, and
is exploited in this algorithm by assuming non-Gaussian signals. More specifically, it
assumes that,

A; - The vectors A = {ay,...,a,} of the mixing process are linearly independent but
otherwise arbitrary.

As - The sources signals S = {ss(?),...,s4(1)} are statistically independent for each ¢.

It is further assumed that,

A4 - There exist consistent estimate of C, and R, where C, and R, is the cumulant matrix

and the correlation matrix respectively of the mixture signals.
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As - The additive noise N() is normally distributed and independent from the sources.

An estimate of the cumulant matrix of the mixtures is then an estimate of C, since the
cumulants are additive for independent variables and since higher-order cumulants are zero
for normally distributed variables.

A¢ - The additive noise is spatially white with unknown variance. Therefore, an estimate of
R, (i.e. the correlation matrix of the output ¥(z) = X(#) + N(1)) can be constructed from the

eigen decomposition of an estimate of R,.
2.7.2 JADE principle and mathematical analysis
2.7.2.1 Concept

The JADE algorithm transforms the identification problem into a diagonalisation problem.
The fourth-order cumulants of the received signals X (observed mixtures) are exploited to
recover the source signals which are assumed statistically independent and non-normally
distﬁbuted. JADE tests this independent with respect to higher-order statistics by using the
cumulants as a criteria. According to the theory ‘of separation described in [1.10], the
second-order cross cumulant of two random (Gaussian) signals equals the covariance of the
two signals when they are independent, the covariance being equal to zero. Therefore
JADE cost function separates prewhitened (decorrelated) sources by optimising the sum of
fourth-order cumulants (also called kurtosis) of the signals. The kurtosis of the ith signals

x;1s defined as,
Ky = Cum™(x;) = E[x;*] - 3[E[x{] 1 (2.64)

Due to prewhitening, E[x;”] = 1, and it suffices to consider the sum of fourth-order
moments of the signals. Generally, this criterion is minimised for sub-Gaussian sources
(for which thc kurtosis is negative), and maximised for super-Gaussian sources (having a
positive kurtosis value). For Gaussian sources, the kurtosis is zero. It has been reported that
the sources are perfectly recovered but subject to a permutation change (i.e. signals are
recovered in the incorrect channel) and subject to a scale change (i.e. signals are recovered
without the right amplitude information) [2.101]. The scale change of the recovered signals
is due to the fact that the measured mixtures are whitened as a pre-possessing step to signal

source separation (see section 2.7.2.2 for more details on whitening), thus normalising their
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variance to unity. It is therefore assumed that the sources are normalised up to the unit
variance (i.e. E[[s(?)]"] = 1; 1<i<n) and that the amplitude information of the sources is
contained in the corresponding column of the mixing matrix A. For independent sources,

this gives,

R = E[s(1)s(t)"] = Cov(s(1)s(t)") = I, (2.65)
Where Cov(.) is the covariance operation and I, is the identity matrix, so that

R, = AA" (2.66)

where R; and R, are spatial covariance operator, A% = ( AfA )'IAH is the pseudo-inverse of A
where ¥ stands for Hermitian adjoint or component-wise-conjugate transpose of A (also

A= 4T).

JADE algorithm uses a whitening operation to simplify the BSS problem. Whitening
makes use of the previously mentioned second-order information in the form of the
estimate of R, so as to reduce the determination of the n-by-n mixing matrix A to the
determination of a unitary n-by-n matrix Z. This is only possible because the sources have
been normalised to the unit variance so that their amplitude information is accounted for in

the mixing matrix A, yielding R, = AA”.
2.7.2.2 Whitening

The whitening process consists of making the observed mixture vector X(z) spatially white.
This means that is it linearly transformed so that the fesulting vector has decorrelated
components. Furthermore the variance of each component is normalised to unity. Formally,

a whitening transform O, is such that the whitened vector,
V=0.X \ (2.67)

has its correlation (covariance) matrix R,= E [VVT] =1, , where I, is the identity matrix.

Using this notation, the estimate of the sources vector becomes,

U=2"v=7"0.x (2.68)
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where ZT0; is the separating matrix or unmixing matrix, and X the observed mixtures

vector.

It can be shown that the separating matrix of the pre-whitened vector V, i.e. vector with
zero mean and unit variance, is orthogonal. Indeed, the correlation matrix of the output

vector U is equal to,

Ry=E[ZTVV'Z] (2.69)
Ru=E[ZTZ]1E[VV]] (2.70)
Ry=E[Z"Z] R, ' (2.71)

since Ry=E [VVT] = I, this yields,
Ry=7Z"Z=1, (2.72)

The last equality means that Z is orthogonal as a matrix Z is said to be orthogonal if Z'Z =
I,,. Therefore when pre-whitening is used, it is sufficient to find an orthogonal matrix Z (as
the sources can be assumed to have unit variance). From there, the whiteness condition (i.e.

R, =1I,,)) can be expressed as follows,

I,=E[(0:X) (0.X)"] | (2.73)
I, =E [0.XX70,"] (2.74)
I,=E[0,"0,] E [XX"] (2.75)
I,=0,"0.R, (2.76)
I,=0,"0,AAT (use of second-order information in 2.66) (2.77)
I,=0,AA"0, " (2.78)
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The last equation means that 0.Aisa unitary matrix.
2.7.2.3 Simplification of the SSS problem

This last equation implies that for any whitening matrix O, it then exists a unitary matrix Z

such that O,A = Z. As a consequence, matrix A can be factorised as:
A=0,"2=017,,...,2,] (2.79)
where Ox# is the pseudo-inverse of O.. The use of the second order information, in the form

of the estimate of R, which is used to solve for Ox, has reduced the determination of the n-

by-n mixing matrix A to the determination of a n-by-n unitary matrix Z.

n-by-n n-by-n n-by-n
S A X O, |4 Z U
Mixing Whitening Unitary
matrix matrix matrix
> e e e
N

Fig.2.6 A diagram to illustrate the operation of JADE: inverting A
by chaining a whitener and a unitary matrix.

As shown in Fig.2.6, W = O,Z is the separating matrix. Discarding the additive noise, the

whitened process V = O.X still obeys the linear model shown in Fig.2.6 according to:
V=0.X=0.AS=1ZS (2.80)

The signal part of the whitened process now is a unitary mixture of the source signals.
2.7.2.4 Determining the unitary matrix through joint-diagonalisation

In the case of JADE algorithm, the épproach obtains an estimate of Z as the optimiser of

some identification criterion C(Z) which is a function of the whole cumulant set C,

previously described. C(Z) is defined as follows,
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C(z)= Y |Cum®(x; )| | (2.81)

i=1,n

The main reason for considering this criterion is its link to underlying eigen-structures,

which allows for an efficient optimisation of it by the mean of joint-diagonalisation.

The link between optimisation-based and eigen-based blind identification techniques is
established by considering the joint diagonalisation of several cumulant matrices. The joint
diagonalisation of a set of square matrices consists of finding the orthonormal change of
basis which makes the matrices as diagonal as possible. Joint diagonalisation of a set B of

m matrices with common size n-by-n is defined as the unitary diagonaliser of the criterion,

C(Z,B)= ) |diag(Z"B,Z) | with B={B,|1<r<m} (2.82)

r=1,m

where |diag( . )| is the norm of the vector build from the diagonal of the matrix argument.
The Jacobi technique [2.102] for diagonalising a unique Hermitian matrix is extended for a
joint approximate diagonalisation of a set B of arbitrary matrices. It consists in maximising
the diagonalisation criterion by successive Givens rotations. When the set B contains only
one Hermitian matrix (B=B;"), joint diagonalisation is equivalent to unitary
diagonalisation; this extension offers a computational cost-efficiency which is roughly m.
times the cost-efficiency of diagonalising a single matrix. If the set B cannot be exactly
jointly diagonalised (this is the case when sample cumulants are processed), the unitary
maximisation of the above criterion defines a joint approximate diagonalisation. Blind

identifiability via joint unitary diagonalisation is possible with assumptions Ag-As.

The fourth-order cumulants can be represented by eigen-matrices. Indeed, the joint
diagonalisation computational efficiency can be further increased by downsizing B to a

smaller set made of the significant eigen-matrices. For any n-dimensional complex random

vector x with fourth-order cumulants, there exists n° real numbers A;, . . ., A ,2 and n

called eigen-values, where My, ..., M 2 are the eigen-matrices, verifying,
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CM,)=AM, 1 <r<n? (2.83)

where C(.) is the quadricovariance associated with any n-dimensional complex random
- vector x with fourth-order cumulants; it is defined by a linear matrix-to-matrix mapping M

-> B = C(M), where M and B are n-by-n matrices with entries My, and B;; related by,

Bij= ) Cum™(x,) My 1<, j<n (2.84)

k,l=1,n

The algorithm produces # eigen-values equal to the kurtosis of the sources. An orthonormal
set of eigen-matrices provides an alternate way of representing the set of all possible
fourth-order cumulants of a random variable n-vector x. The advantage of this approach
lies in the data reduction: the quadrivariance of x has exactly rank » so that only n out of n?
eigen-values are non-zero. As a consequence, the whole fourth-order cumulant information
is actually contained in a set of n eigen-pairs ( A, M, | r = 1, n') where the convention is
taken to number from 1 to n the eigen-values associated with non-zero eigen-values. The
eigen-values are ordered by decreasing order of magnitude and form an eigen-reference of
the cumulant matrix which contains the relevant fourth-order information. This reduced set
of n matrices (rather than n”) together with the extended Jacobi technique makes the

maximisation of C(Z) computationally efficient.
2.7.2.5 Summary of the main steps of the JADE algorithm

The operation of the JADE algorithm can be summarised through the four main steps

outlined below.

A A

i) The covariance matrix (R ) of the mixtures is obtained. The whitening matrix O x is

A A A

computed by considering the whitening condition I=0, R.0."

. Replacing R«
gives =0, A A" 0.", where I is the identity matrix. This implies that O, A is a

unitary matrix (Z) and therefore A can be factorised as A= 0.'7.
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A A

ii) The mixtures are then whitened according to V=0:X . The operation involves

iii)

A
computing the estimate of the covariance matrix (R ) of the mixtures ( X). The

whitening matrix (0 :) is computed by considering the whitening condition

I=0:R. OXH, where O.” is the Hermitian matrix of O « and I is the identity

A A

matrix. The whitened mixtures (V) are obtained by V=0, X . The whitened mixtures

(V) obey the linear model V=0, AS. Substituting forA gives

In order to determine the unitary matrix Z, the fourth-order cumulants of the whitened
mixtures are computed. Their n most significant eigen-values ( A; ) and their

corresponding eigen-matrices (M;) are determined. An estimate of the unitary matrix

(Z) is obtained by maximising the criteria B=4; M; by means of joint

diagonalisation.

A A A

An estimate of the unmixing matrix (W ) is obtained by W=0,Z . This is then used

A A A

to compute an estimate of the original signal sources U=ZV .

2.8 Conclusion

An overview of the signal source separation (SSS) techniques used in this study has been

provided. A second-order statistics methods, namely PCA, is briefly described. The ability

of SSS approaches to deal with higher-order dependencies is introduced. The ICA-based

signal source separation techniques of the NLPCA algorithm, the ICA algorithm of Bell

and Sejnowski and the JADE algorithm of Cardoso are discussed, and their ability to deal

with higher-order dependencies of the signals is outlined.
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Chapter 3. Description of Signals Processed in the Study

3.1 Chapter Summary

This chapter provides an overview of the signals processed in this study. Firstly, it
describes the electroencephalogram (EEG) and electrooculogram (EOG), and the method
used to record them. Then, properties and characteristics of evoked potentials (EPs) and
event-related potentials (ERPs) are outlined and factors that need to be considered during
their recording are discussed. Finally, a description of the type of signals used in this study,
namely saccade-related evoked potentials is provided and their clinical interest is
highlighted. An analysis methodology to extract the EPs of interest from the EEG mixtures

is discussed.

3.2 Electroencephalogram (EEG)

The Electroencephalogram (EEG) is the measurement of the ongoing electrical activity
generated by a large number of brain neurons, usually recorded from surface electrodes on
the scalp. Specifically, it is a measure of the extracellular current flow associated with the
summed activity of many individual neurons [3.1]. Surface recorded potentials reflect
predominantly the activity of cortical neurons in the area underlying the EEG electrode.
This activity is defined by frequency and amplitude of electrical signals. The study of
electrical activity of the brain (EEG) is a tool which gives an insight into the brain and its
abnormalities. Because it is noninvasive, the EEG is important in the clinical assessment of
cortical function. For example, it provides important indices for studying certain normal
behavioural states such as arousal, wakefulness, sleep and dreaming and for diagnosing

certain disease states such as epilepsy and coma.

The first reported observation of EEG was made by [3.2]. Berger was the first to observe
EEG in human subjects by putting electrodes on the scalp [3.3]. Since then there have been
significant advances in both recording and interpretation of EEG waveforms. The EEG is a
record of the electrical activity of the brain while the subject is sitting quietly or sleeping.
The EEG is also recorded during specific repetitive natural sensory simulation (such as a

tap on the skin, presentation of a flash of light or a tone) and thus can be made to be time-
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locked to the occurrence of discrete stimuli (events). The stimuli can be visual, auditory or
cognitive processes, triggered by external sources to activate sensory receptors. They cause
voltage fluctuations within the EEG that are known as sensory evoked potential or event-

related potential. These components are described in the next section.

Electroencephalograms are analysed in the temporal, frequency and spatial domains. The
frequencies of the potentials recorded from the surface of the scalp of a normal human

typically vary from 1-30Hz, and the amplitudes typically range from 20-100uV.

A computer samples the EEG for a brief period before and after the stimulus and the

sample data are averaged to enhance the signal-to-noise ratio.

3.3 Evoked Potentials (EPs) and Event Related Potentials (ERPs)
3.3.1 EPs/ERPs characteristics

Evoked potentials (EPs) are very small voltage deviations (usually in the range of 4 to
30nV) in the EEG generated in the brain structures in response to specific events or
stimuli. These stimuli time-locked potentials are selected from the ongoing EEG activity
by averaging epochs of EEG following repeated sensory stimuli such as series of clicks
(auditory stimuli) or flashes of light (visual stimuli) [3.4]. ERPs and the way they change
under various recording conditions are a powerful, non-invasive and relatively simple
means of relating psychopathology to underlying physiology, and by comparing ERPs with
imaging data, it should be possible'to compare electrical activity with changes in brain

structure and blood flow in different disease states.

It takes about 20 to 30 ms for information to reach the cortex from a peripheral sense
organ, so early-ERPs generated within this time mainly reflect neuronal activity in the
sensory organ itself and in the afferent pathways of the brain-stem [3.4]. These early
responses are termed ‘exogenous’ because they are generated regardlesé of what the
subject is thinking, and they are quite independent of any response the subject may
subsequently make to the stimulus. They are very useful clinically for detecting disorders

of sensory end organs and the brain-stem.
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In contrast to these exogenous potentials, ERPs generated after about 70 ms often reflect
the manner in which a stimulus is evaluated by the subject. These later components are
termed ‘cognitive’ or ‘endogenous’ ERPs because their amplitudes and latency may
depend on the motivation of the subject and the cognitive, affective or motor response to
that particular stimulus. It is therefore valuable to record these late endogenous ERPs in
psychiatric patients with conditions such as dementia, depression and schizophrenia (ERPs
have been extensively studied in order to improve the understanding of sensory organs and
to diagnose a number of brain related disorders including schizophrenia ([3.5] [3.6]),
which are associated with disordered attention since ERPs might contribute to diagnosis
and provide a method for monitoring cognitive change in response to specific treatments.
For example, all three subject groups, Huntington’s, Parkinson’s and schizophrenia’s
demented groups, were differentiated with reasonable accuracy on the basis of ERPs
(related articles includes [3.5] [3.7]). Various factors such as age and sex are known to
affect the characteristics of ERPs. When using ERPs to investigate brain
functions/dysfunctions, the subjects/patients participating in the experiment are usually

matched with each other in terms of these contributing parameters.

In the category of ‘exogenous’ processes are the sensory EPs which represent the
summated electric fields from the synchronous activation of neuronal populations by an
external stimulus event. Because the sensory EPs reflect the processing of the physical
characteristics of the stimulus, they are clinically useful for assessing the functions of
sensory systems. Sensory EPs, which areAby definition, rather not easily influenced by
variations of the psychological state of the observer, are distinguished from ERPs which
are dependent on the context in which the stimulus is presented such as whether the
stimulus is expected or a surprise. These ERPs form the class of ‘endogenous’ ERPs which
are coupled with perceptual, cognitive (include decision making, recognition, memory,
concentration, attention, motivation), affective, sensory and motor (it is the cortical activity

preceding and accompanying voluntary movements) processes in the brain.
3.3.2 EP/ERP analysis

The conventional methods for extracting the EPs/ERPs from the ongoing EEG involves
computer averaging procedures where, the background EEG waves considered as “noise”

in most EP/ERP experiments, are typically larger than the waves of interest. This technique
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requires that both the wave shape of the EP/ERP and its temporal relationship to the time
locking reference event (stimulus) remain constant from one occurrence to the next. Since
the background EEG fluctuations are not time-locked to the reference event, they will
average out toward zero when the EPs/ERPs from the successive trials are added together
by the computer, thus improving the signal-to-noise ratio (SNR). Following the SNR
improvement techniques, EPs/ERPs are typically characterised using peak polarity,

amplitude and latency (usually with respect to the stimulus onset) measures.
3.3.3 Clinical and other applications of ERPs

An understanding of the genesis and working of ERPs leads to increased knowledge of the
complex system associated with the brain. This knowledge has application in a number of
areas. Most importantly, in understanding the working of the brain, mental disorders
including schizophrenia and epilepsy can be better understood and perhaps treated more
efficiently. This knowledge also allows modelling of the brain and hence the ability to
produce improved artificially intelligent systems. The application of such systems is
widespread and is likely to change the way in which computers operate. For example
artificial neural network chips could be integrated into computer systems to allow
computers to converge to a solution to a problem through a process of adaptive learning
(i.e. learning from experience) in a similar way as the human- brain operates. The
intermediate ground is in the area of human computer interfacing. Recent reports show that

control of computers by severely disabled people will be possible in the future [3.8].
3.4 Electrooculogram (EOG)

EEG can be contaminated by a number of electrophysiological signalis, the largest of which

is the electrooculogram (EOG).
3.4.1 EOG characteristics
The human eye contains an electrical dipole caused by a positive cornea and negative

retina. When the eyes move (i.e. eye movements and blinks), the electrical dipole changes

orientation thus causing an electrical signal known as EOG. The shape of the EOG
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waveform depends on factors such as the direction of eye movements. There are several
types of ocular movements ([3.9] [3.10]), of which the more relevant to EEG work are

described in this section.

Blinks (Fig.3.1) are characterised by a brief artefact potential of between 0.2 to 0.4 secs in
duration and occur at intervals of 1-10 secs. Barry and Jones [3.11] and Matsuo et al.
[3.12] showed that blinks were attributable to the eyelid moving over the cornea. Ocular
artefact (OA) is a collective name given to the electrical contaminants of EEG caused by
eye movements and blinks [3.13]. OA due to blinks is always of concern in any experiment
in which the eyes are open. Electrical signals produced by blinks (i.e. by the eyelid moving

up and down) cause spike-shaped waveform as shown in Fig.3.1.
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Fig.3.1 Spike-shaped EOG waveform caused by blinks

Saccadic eye movements (Fig.3.2) are rapid conjugate movements of speeds between 100
and 500 degrees per second. Normal every day movements of the eye from one fixation
point to another (e.g. when reading or scanning a visual field) come under this category.
Vertical and horizontal eye movements (eyes moving up, down, left and right from the

centre and vice versa) produce a square-like EOG waveform as shown in Fig.3.2.
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Fig.3.2 Square-like waveforms caused by saccadic

eye movements.
3.4.2. EOG filtering

A fraction of the EOG spreads across the scalp and it is superimposed on the EEG. This
presents serious problems for EEG interpretation and analysis. In order for the EEG to be
interpreted for clinical use, EOG contamination needs to be removed (filtered) from the
EEG. Analogue and digital filters are not effective for this purpose as EEG and EOG
signals occupy similar frequency band (covering a range close to DC to about 100 Hz).
Conventional methods of EP/ERP averaging may not cancel all artefacts induced by eye
movement or blinks as they are time-locked to experimental events. Often all epochs
contaminated by large eye artefacts, usually larger than some arbitrarily selected EEG
voltage value, are rejected as unusable, though this may prove unacceptable when blinks
and eye movements occur frequently and when limited data are available. Frontal channels
are also often used as reference signals to regress out eye artefacts, but inevitably portions
of relevant EEG signals also appearing in EOG channels are thereby eliminated or mixed

into other scalp channels.
3.5 Saccade-Related Evoked Potentials

Saccades are rapid changes in the orientation of the eyes for realigning the visual axes on
objects of interest. Dysfunction in this system may affect various visual functions such as

depth perception and reading [3.14]. The study of the saccade-related EPs provides
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valuable information about how the brain deals with vision when eye movements are

performed.
3.5.1 Types of saccade-related EPs

Saccadic eye movements influence the electrical brain activity. The literature on the
neuronal mechanisms of eye movements in humans illustrates that electrical brain activity
can be obtained with three different experimental paradigms analysing: (1) motor activity —
related neuronal correlates of eye movements; (2) lambda waves of the EEG following eye
movements; and (3) evoked cortical activity modulated by the occurrence of saccades. The

present study will focus on the two former [1.7].

motor activity — related neuronal correlates of eye movements: In all motor activities, the
planning and execution of saccades is preceded by a ‘readiness’ potential as well as by the
neuronal activation of specific areas of the motor cortex [3.14]. This potential appears to be
identical to what has been termed presaccadic negativity which in part originates in the
supplementary motor area that is crucial for the control of self-initiated movements ([3.15]
[3.16]). In addition, the initiation of saccades is paralleled by activity of neurons in the
frontal and supplementary eye fields that has been recorded in animals before and during
saccadic eye movements [3.17] [3.18] as well as in humans [3.19]. This activity is
independent of the so-called spike potential which originates in ’the eye-muscles at the

beginning of the saccades [3.20].

lambda waves of the EEG following eye movements: following rapid eye movements the -
spontaneous EEG displays so-called lambda waves that have been reported to originate in
the parieto-occipital area (back of the head) of the cerebral cortex ([1.6] [3.21]). Lambda
waves are believed to be related to visual information processing triggered by the relative
movement of visual features of the visual field across the retina (e.g. [1.4]), and thus, their
appearance has first been paralleled to the conventional visually evoked potential.
However, a more recent study has shown that such components are involved in a special
kind of visual processing reflecting the functional combination of corollary neuronal
activity from motor areas involved in the planning and execution of saccades with
primarily sensory brain activity elicited by stimulus occurrence, which appears to be

indépendent from incoming visual information and thus is not influenced by the variation
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of physical stimulus parameters [1.7]. The lambda wave is a saccade-related EP which
provides a means of studying the neuronal mechanisms involved in saccade performance.
Studies have reported that it could be observed in EEG recordings with eyes open but it
was found to be inhibited during steady fixation or in the absence of a contrast (e.g. a black
and white checkerboard pattern) ([3.22] [3.23]). The lambda wave has a number of sub-
components, which are time-locked to the saccade onset (i.e. initiation of the eye-
movement) and offset (i.e. termination of the eye-movement) [1.5]. These sub-components
include a pronounced positive peak which appears within a 200 ms period after the saccade
offset [1.5].

3.5.2 Saccade-related EP/ERP model

The electrical activity recorded on the surface of the scalp can be assumed to be the sum of
a number of signal sources from the cortex. Large numbers of functional imaging reports
of the brain have showed that performance of particular tasks increases blood flow within
small (of the order of several cubic centimetres) discrete regions [3.24]. The time course of
these activations suggests the hypothesis that spatially independent groups of neurons are
recruited to accomplish a given task. Furthermore, different regions of the brain are known
to be responsible for given tasks, i.e. visual and motor cortex. In trying to understand the
functionality of the brain several models have been suggested [3.25]. Most models are
based on a grouping of a number of neurons into a single source or generator of electrical
activity. The way in which the models differ is related to the constraints that are placed on
the sources. In particular the types of signal or activity they produce. Each signal source
can be considered to be an oscillator which has analogies in both electrical and mechanical
engineering [3.26]. An oscillator has a number of parameters which alter its characteristics.

These are amplitude, frequency and phase of the signal’s oscillation.

When BS_ICA is applied to the EEG waveforms, the source signals are considered to be
concurrent electromagnetic activities that are temporally independent of each other and
that are generated by spatially fixed sources [3.27]. These signals are mixed as they
propagate from their sources to the electrode locations on the scalp. Networks producing
such concurrent activity are defined not by compact spatial distributions in the brain but by
the covarying field measurements they produce at the scalp sensors. In general “sources”

of BS_ICA components may be distributed brain networks rather than “physically compact
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active brain regions”. These networks may be functionally linked, forming larger networks.
Rather than thinking about the brain as being a collection of physically discrete neural
networks which pass information to each other by impulses as we send letters or emails to
each other (viewpoint of classical anatomy and physiology), BS_ICA treats the brain as
being a dynamically shifting collection of interpenetrating, distributed and possibly
transient neural networks that communicate via some form(s) of mass action (viewpoint of
a slowly emerging dynamic systems perspective on neuroscience) [3.27]. Brain networks
are most probably not physically wholly isolated from one another, nor do they act wholly
independently. The two viewpoints are complementary, hence the answers they produce

may be complementary parts of the functioning of the brain.

BS_ICA can only successfully separate “BS_ICA-relevant” processes, i.e. processes whose
activities satisfy several assumptions used in BS_ICA (see section 2.6.1 in chapter 2).
BS_ICA analysis of ERP data must therefore be viewed as explanatory and care must be
taken to test the functional distinctness of the resulting BS_ICA components. Simply
demonstrating their replicability across subjects and experimental conditions is not
sufficient to ensure their physiological unity. One must attempt to establish relationships
between component activations and independent variables such as subject perfbrmance and

behaviour as well as considering their physiological plausibility.
3.6 Analysis of the data considered in this study

The EEG waveforms recorded from the scalp during a saccade-related performance are
signal mixtures consisting of the following: (i) Saccade-related EP cémponents. These
overlap in time and may also have overlapping spatial topographies. (ii) The obscuring
non-saccade-related EEG components, i.e. the background EEG and EPs that are not,
related to the saccade. (iii) The contaminating electrophysiological signal artefacts such as
the electrooculogram (EOG) generated by the eyes and the electromyogram (EMG) caused
by muscle activity. (iv) Non-electrophysiological (external) sources of contamination, for

example the mains interference.

Different neural signal components are involved in preparation and execution of saccadic

eye movements. One of these is described as a frontal pre-saccadic potential related to
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motor commands for saccade generation preceding voluntary saccades [3.28]. Others, such
as efferent feedback from saccade generating centres to visual cortex are believed to
provide visual stability of the surrounding world across the eye movements. The saccadic
movement is accompanied by an EEG signal associated with visual information processing
called the lambda-wave [1.5]. The extraction of these components will be useful for
providing information about how the brain deals with the problem of vision with moving

eyes.
3.7 Conclusion

The study of saccade-related EP components will be useful as it provides information
about how the brain deals with the problem of vision with moving eyes. The EEG
waveforms recorded from the scalp during a saccade-related performance are mixtures of a
number of different signals. Conventional EP/ERP averaging methods are uséful for
reducing the obscuring background EEG. However this method cannot separate the
electrooculogram (EOG) signal caused by eye movements from the saccade components of
interest. A signal source separation based methodology such as BS_ICA is valuable in
order to filter the EOG signals from the EEG signals and to extract saccade-related
- components from the EEG mixtures and identify the brain regions responsible for their

generation.
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Chapter 4. Data Recording Experimental Methodology

4.1 Chapter Summary

This chapter is concerned with technical aspects of recording. It describes the experimental
procedures and methodology utilised to record the data used in this study. This includes a
description of the data recording system and set-up utilised to record the waveforms and

the design and implementation of the clinical experiments carried out by the subjects.
4.2 Data Recording System Set-Up

In order to establish and run an EEG laboratory to satisfactory standards, it is necessary to
be able to record the EEG signals faithfully and with minimal distortion. Only then one is
in a position to comment on its clinical significance. Sensitive amplifying and filtering
equipments are required to enhance potentials picked up from skin electrodes, which are
inevitably situated at a considerable distance from the generator source, and to discriminate
~ between the evoked responses and other usually larger potentials of physiological and

extrinsic origin with which it is intermixed.

To record the EEG at least two electrodes are used. An ‘active electrode’ is placed over a
site of neuronal activity, and an ‘indifferent electrode’ is placed at some distance from this
site. In clinical EEG recordings numerous active electrodes are situated over different parts
of the head. All recordings however, measure the potential difference between two
electrodes, either between the active and indifferent electrode or between two active
electrodes. The recording electrodes are usually placed over the frontal, parietal, occipital,
and temporal lobes on the left and right hemispheres of the scalp, symmetrically distributed
with respect to the nasion-inion line and the pre-auricular line (A;-A,), according to a
conventional scheme shown in Fig.4.1. The nasion and the inion lines cross on the scalp at
a point called the Vertex (denoted by C, in Fig.4.1). When recording all types of brain
electrical signal, it is common practice to place electrodes at or near sites determined by
the 10-20 system of electrode location. This system was originally designed to

standardised placement of electrodes for recording EEGs and makes use of percentage
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distances (mostly 10 and 20%) to compensate for different head sizes and shapes [4.1], as

shown in Fig.4.1.

(@ (b)
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(vertex)

YO%
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Fig.4.1 The international 10-20 system of electrode placement: (a) top view and (b)
side view of the head with the alpha-numeric designation of electrodes placement on
the scalp for the EEG recordings.

The international 10-20 system of electrode placement utilised an alpha-numeric
designation of electrodes placement on the scalp for the EEG recordings. Abbreviations for
multiple electrodes are: A, auricle; C, central; C,, vertex; F, frontal; Fp, frontal pole; O,
occipital; P, parietal; T, temporal. The multiple electrodes placements overlying a given

area (e.g. temporal) are indicated by numerical subscripts.

A major problem with the 10-20 system of electrode placement for recording EPs and
ERPs is that the sites and spacing of electrodes are not optimal for displaying all types of
responses. A modification of the 10-20 system was implemented by the Electrical
Geodesics Inc. (EGI) [4.2] to allow for the positions of more closely spaced electrodes to
be specified. A more detailed description of the EGI EEG recording system is provided in

section 4.3.

A satisfactory environment for both the subjects and equipment must be ensured. The

subject is usually conformably sited on a chair, in an room isolated from external noises
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and disturbances, and the network of electrodes is carefully adjusted on the subject’s scalp

before beginning the experiment.

The raw EEG signals waveforms picked up by all electrodes are recorded during the
experiment and the data acquired are stored on the computer drive for offline use,
processing and analysis. Information about the subjects (this includes details such as their
name, age, sex, medical history, etc.), recording settings and stimulus parameters are also

carefully stored in order to facilitate later retrieval and manipulation of the data.
4.3 Electrical Geodesic Inc. (EGI) EEG Recording System

The EGI EEG recording system includes a Geodesic Sensor Net (GSN), an amplifier unit
(Net Amps) and a Data acquisition computer (DAC) running EGI Net Station software.

A functional diagram of the EGI System is shown in Fig.4.2.

GSN
64-channel
Sensor
G
; Monitor
I
C 3
Hypertronics —» Bidirectional Displaying EEG
connector USB Cable waveforms data
Net Amps l DAC
amplifier = running Recording data [  Keyboard
Net Station [ to disk

Fig.4.2 The Electrical Geodesics Inc. (EGI) system

4.3.1 The Geodesic Sensor Net (GSN)

. During EEG recordings, subjects wear a Geodesic sensor net (GSN). It consists of an array
of 64 sensors, together with a reference and isolated common sensors. A diagram of the

GSN is shown in Fig.4.3.
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Geodesic Sensor Network
64 Channels

common

Fig.4.3 The Electrical Geodesics sensor
network (GSN) of 64 electrodes

The network of 64 silver-silver chloride (Ag/AgCl) electrodes rest against the head of the
subject and covers the surface of the scalp. A subject wearing a 64-channel adult-sized

GSN is shown in Fig.4.4.

Fig.4.4 Subject wearing the 64-channel GSN.

The GSN features EGI’s patented dense array of EEG sensors held in a tension structure
that stretches over the subject’s head. The sensors’ contact with the surface of the head is

achieved using electrolyte-wetted sponges, and without abrasion ofthe subject’s scalp.
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The 64-channel GSN sensors pick up changes in voltage originating at the surface of the
subject’s head (the EEG), along with a certain amount of electrical noise originating in the
room environment. Physically, the GSN is connected to the amplifier unit via the Geodesic

Sensor Net Interface Cable (GSNIC).
4.3.2 The Geodesic Sensor Net Interface Cable (GSNIC)

The GSNIC allows the subject to be positioned conveniently within a meter or two of the.
amplifier unit. Each sensor in the GSN is wired via the GSNIC to an individual pin on a
multi-pin receptacle called an Hypertronics connector located on the front of the amplifier

unit as shown in Fig.4.2.
4.3.3. The Net Amps Amplifier Unit

The Net Amps amplifier unit inputs are differential, i.e. the voltage measured at every
channel is the difference in voltage between the reference (vertex) sensor and the channel
sensor. There is no ground sensor per se, i.e. the subject is never connected to earth
ground. This would make the subject vulnerable to electrical hazard, just as standing in
water makes one vulnerable to electric shock. The ground sensor on the GSN is actually an
isolated common, which means it is tied to the zero level or common the isolated amplifier
circuit’s power supply. This supply is isolated, so it is not connected to earth, the
computer, or anything else. Thus an electrical hazard would not make a dangerous loop

with the isolated common.

Electrophysiological amplifier arrays, such as the Net Amps, take low-level, microvolt
signals and amplify them to a level that conventional electronics can manipulate. With the
Net Amps, each channel ’s amplification factor, or Nominal Gain , is approximately 1000

(meaning that the amplifier output signal is 1000 times greater than the input).

Electrical signals from all the sensors of the GSN are received simultaneously by the
amplifier unit where they are measured, amplified, filtered, sampled at millisecond

intervals and digitized.
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As quickly as the samples are acquired they are packaged and sent out to the data
acquisition computer (DAC) along the universal serial bus (USB) cable that connects the

amplifier and the DAC. The digitized samples are transferred to the DAC in real time.
4.3.4. The Data Acquisition Computer (DAC)

Once the packets of data containing digitized EEG samples are received by the DAC, the
Net Station software can collect them for display and storage to disk. Since the USB cable
is bidirectional, Net Station software can send queries and commands to the amplifier unit

as well as receive data from it.
4.3.5. The Net Station software

Net Station resides on the DAC, where it is capable of continuously collecting dense array
EEG data from the amplifier unit. In Net Station, users can display EEG data in a variety
of ways and record them to permanent computer files. The data of each sensor are
segregated into their own channels. As the samples stream into the DAC over the USB
cable, Net Station gathers, organizes, and displays each channel’s EEG data in the manner
of a traditional chart recorder. When Net Station is instructed by the user (via mouse and
keyboard) to record the data to a file, the chart recorder display continues on the monitor

without interruption while the data are being written to disk.

A maximum sample rate of 1000 samples per second stream continuously into Net
Station’s buffers. Users can observe the waveforms of each channel in groups limited only

by the size of the computer monitor, even as the data are written to disk.

Users access the settings of the Net Amps (amplifier unit) using the Net Station software.

Net Station monitors, calibrates, and controls the amplifier channels, and acquires EEG
data from the Net Amps. In addition to Net Amps calibration and channel impedance
measurements, Net Station’s Net Amps controls panel allows modification of the following

amplifier settings:

* Sampling rate (50-1000 samples per second)
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* Lowpass hardware filter cutoff (0.0-400.0 Hz)

* Bessel versus elliptical hardware filter type

* Option to auto set filter cutoff to Nyquist frequency
* Highpass hardware filter cutoff

Hardware filters (also described as “analog signal filtering”) integrate with each discrete
amplifier to form an amplifier/filtering unit with sample and hold. After amplification,
filtering, and sampling, the EEG signals are digitized by a 16-bit analog-to-digital

converter.

4.4 Data Recording Procedure

Two sets of data were used in thé study. The first set of data consisted of EEG and EOG
waveforms recorded from an experiment where subjects were relaxed and fixating at a
white board. The second set of data consisted of saccade-related waveforms recorded from
an experiment where subjects followed with gaze a red square stimulus that changes
location on a checkerboard pattern screen display. For the second set of experiments,
subjects were asked to avoid blinking and body movements, in order to limit the
contamination of the data by ocular and muscle artefacts. In both experiments, the signals

were recorded using electrodes placed on the subjects scalp.
4.4.1. First set of experimental data: EQG filtering from the EEG waveforms

The data collected in the first experiment was used to quantify the effectiveness of a
number of OA removal methods. The operation required the availability of the EEG
waveforms before and after OA contamination so that the recovered EEG waveforms could
be compared with the original (uncontaminated) EEG. Furthermore, the OA removal used

required the original signal sources to be independent.

The EEG and EOG data were recorded in an EEG data recording room with subjects
relaxed and fixating at a white board. Four sets of EEG waveforms were recorded from
four subjects (2 males, 2 females), mean-age 32 years (standard deviation 9). Each set

consisted of thirty-two waveforms. By recording each EEG data set from a different
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subject, the condition for independence of the signal sources was conformed. Thirty-two
EOG waveforms were recorded from another subject. The subject was asked to make eye
movements and blinks (in random order) at a rate of about one every second during each
EOG recording so as to record OA electrical activity. By recording the EOG data from a

separate subject it was ensured that they had not contaminated any of the EEG data sets.

EEG data were recorded from the scalp (location CZ in accordance with the 10-20 standard
electrode positions). EOG data were recorded using a pair of electrodes placed adjacent to
the right eye. The reference for both EEG and EOG recordings was a pair of joined
electrodes placed on the ear lobes. Silver-silver chloride electrodes were used for all
recordings. The sampling rate was 125 Hz and the signals were band limited to 30 Hz.

Each waveform contained 1500 data points (i.e. about 12 seconds).
4.4.2. Second set of experimental data: Saccade-related EEG and EOG waveforms

The second set of data was recorded in order to study the electrical brain activity that is
generated during the performance of saccadic eye movements. Seven healthy adults (3
males, 4 females) mean age 27 years (standérd deviation 6) with normal or corrected-to-
normal vision participated in the study. The subjects had no history of a neurological or
ophthalmologic disease and were all right-handed. They were seated in an EEG recording
laboratory at about 60 cms from a computer that displayed a black and white checkerboard

pattern background.

A red square visual target stimulus (hereafter referred to as the stimulus) appeared on a
computer screen at one of five predefined checkerboard locations: centre, left, right, up and
down as shown in Fig.4.5. The sequence of the stimulus appearance on the checkerboard

was random to reduce the effect of expectancy.
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Red
square

Fig.4.5 A representation of the checkerboard showing
the directions of saccade and the viewing angle.

The subjects were instructed to visually follow the stimulus as fast as possible. They were
also asked to avoid head movements and minimise blinks in order to limit to a minimum
the contamination of the EEG by ocular and muscle artefacts. The viewing angle (o,
shown in Fig.4.5) of the peripheral positions from the centre was about 10 degrees. This
value was also used in one of the saccade experiments reported in [1.5]. This made it
possible to compare the lambda waves observed in both studies. There were 8 directions of
saccade and a fixation. These were: 4 centre-to-peripherals, 4 peripherals-to-centre and a

centre-to-centre (i.e. no eye-movement) as indicated in Fig.4.5.

In order to avoid the effect of anticipating the onset of the stimulus, the 'pre-stimulus
period' was varied randomly (between 850ms to 1500 ms). The 'response period' is the
time it takes for a subject to initiate the eye-movement after the onset of stimulus (i.e. after
the red-square appears at a new location). The ‘post-response period' consists of the time it
takes for the subject to visually re-orientate his/her visual axis to a new stimulusllocation
(i.e. saccade duration) and the time duration that the subject fixates the stimulus at one of
the five predefined checkerboard locations (i.e. fixation time). The composition of the

trials is shown in Fig.4.6.
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f Onset of stimulus (appearance of the red-square at a new location)

Fig.4.6 Composition of the recorded trials.

The EEG and EOG data were recorded using a network of 64 silver-silver chloride
electrodes. The type of EEG recording machine was the Electrical Geodesics. Its features
together with the details of the electrode locations on the subject's scalp can be found at
reference [4.2]. The structure and operation of the EGI data recording system are described
in section 4.3. The EOG data were recorded so that the eye-movements can be monitored.
All channels (EEG and EOG) were referred to the vertex (Cz) electrode. The recording
system band-pass filter had a frequency range of 0.01 to 100 Hz. The digitisation sampling
rate was 250 Hz. The term recorded-waveform is used (in this thesis) to refer to a
waveform recorded from an electrode site. A collection of the recorded-waveforms from
the 64 eclectrode sites when performing a single saccade is referred to as one trial. Up to
fifty trials were recorded per saccade direction. Each trial lasted about 2 seconds, however
the lambda wave was contained within a one-second window of each trial. This one-second
window was selected and processed in the analysis performed in the study. A collection of
50 trials is referred to as an event. The total number of recorded trials per subject was up to

450 (i.e. 50 trials x (8 directions of saccade + 1 fixation)).

4.5 Conclusion

In this chapter, a description of the data recording system and set-up utilised to record the
signal waveforms and the design and implementation of the two clinical experiments

earned out, was provided. The data collected in the first experiment was used to quantify

68



the effectiveness of a number of ocular artefact (OA) removal methods which required the
availability of the EEG waveforms before and after OA contamination. The second set of
data was recorded in order to study the electrical brain activity that is generated during the
performance of saccadic eye movements by the subjects when visually following a red
square target on a checkerboard pattern background. The signals were recorded using

electrodes placed on the subjects scalp.
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Chapter 5. Analysis of Conventional and Signal Source
Separation Approaches for Removing Ocular

Artefact from the EEG

5.1. Chapter Summary

A procedure for quantifying the effectiveness of an algorithm for removing ocular artefact
(OA) from the EEG was devised. A comparative investigation of four methods for OA
removal was carried out. Procedures to overcome some of the limitations of two ICA-based
OA removal methods were implemented. The experimentation details are provided and the

results obtained are discussed.

5.2. Introduction

The human eye contains an electrical dipole which is caused by a positive cornea and negative
retina [5.1]. Eye movements and blinks change the dipole causing an electrical signal known
as the electrooculogram (EOG). A fraction of the EOG spreads across the scalp and it is
superimposed on the EEG. In order for the EEG to be interpreted for clinical use, the EOG
needs to be removed (filtered) from the EEG. Analogue and digital filters are not effective for
this purpose as EEG and EOG signals occupy similar frequency band (covering a range close

to DC to about 100 Hz).

One of the earliest methods for OA removal was based on the use of potentiometers to
balance out the effect of vertical and horizontal eye movements [5.2]. The required
adjustments were made manually by monitoring the EEG and thus they were subjective. A
software-based OA removal method was proposed by Quilter et. al [1.13]. The method,
known as EOG subtraction, involves subtracting a fraction of the EOG from the contaminated
EEG. Its operation is based on the assumptions that: (i) the recorded (contaminated) EEG is a
linear combination of the original (i.e. uncontaminated) EEG and OA, (ii) the contaminating
OA can be estimated from the EOG, (iii) there is no correlation between the original EEG and

the EOG signals. The method can easily be implemented but it causes distortion of the
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recovered EEG. This is because a fraction of the EEG also contaminates the EOG and thus the

subtraction process causes part of the desired EEG to be removed.

In order to improve the performance of the EOG subtraction method, a technique referred to
as “multiple source eye correction” was developed by Berg and Scherg [5.3]. They estimated
the component of the recorded EOG which was not contaminated by the EEG. A fraction of
this component was then subtracted from the recorded EEG. The method however, required

an accurate modelling of propagation paths for the signals involved.

Adaptive digital filters have also been used for OA removal. For example, Rao and Reddy
[5.4] developed an on-line method of OA removal system based on this approach. They used a
non-linear recursive least square algorithm to train an adaptive digital filter. The main
limitation of the method was the need for a suitable EOG reference model for adapting

(training) the filter.

Principal component analysis (PCA) [1.12] is a well known decorrelation technique and has
provided another approach for OA removal from the EEG. PCA enables an epoch of multi-
channel EEG to be decomposed into linearly uncorrelated components on the basis of their
spatial distribution across channels. By omitting unwanted components (such as OA) from the
linear combination, a less contaminated EEG can then be reconstructed. Lagerlund, et al.
[2.10] developed a variation of this technique in which the PCA coefficients were stored in a
single matrix. This allowed the matrix to be calculated on the basis of one representative
epoch that contained the artefacts to be removed. The matrix was then applied to the
subsequent EEG epochs, without repeating the PCA operation. The limitations of the PCA
approach are that: (i) it is unable to completely separate the OA from the EEG, specially when
both waveforms have similar voltage magnitudes, (ii) it requires the distribution of the signal
sources to be orthogonal, (iii) its effectiveness is limited to decorrelating signals and thus it

cannot deal with higher-order (i.e. greater than second order) statistical dependencies.

In order to overcome the limitations of PCA, Makeig et al. [5.5] applied independent
components analysis of Bell and Sejnowski (BS_ICA) for removing artefacts from the EEG.
BS ICA is an extension of the PCA which not only decorrelates but can also deal with higher-
order statistical dependencies. Bell and Sejnowski proposed an information-theoretic based

BS ICA algorithm that uses an unsupervised learning rule [1.9]. It finds a linear
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transformation within the data to make the separated signal components as statistically
“independent” as possible. The technique does not need a priori knowledge of the physical
location or the configuration of the sources and unlike PCA, it does not require the
distribution of the signals sources to be orthogonal. However for it to function correctly, the
signal sources must be statistically independent and the distribution of not more than one
source can be Gaussian. The EEG signal sources represent the signals produced by the various
signal generators of the brain and not the recorded EEG signals that represent a mixture of
brain electrical activities from many sources. The BS ICA algorithm applied by Makeig et.
al. [5.5] is suitable for sources with super-Gaussian distribution (i.e. irregularly occurring
signals with sharply peaked distributions and positive kurtosis). Lee and Sejnowski [2.24]
extended the BS ICA algorithm to make it also suitable for signal sources with sub-Gaussian
distribution (i.e. signals with negative kurtosis). Jung et. al. [5.6] applied the extended version

of the BS _ICA algorithm to isolate and remove a variety of EEG contaminating artefacts.

Another ICA algorithm for signal source separation was proposed by Cardoso [1.10]. The
method is based on the joint approximate diagonalisation of eigen-matrices (JADE). It
operates by exploiting the higher-order statistical properties of the signals based on their
fourth-order cumulants. Like the ICA algorithm of Bell and Sejnowski [1.9], this algorithm
also requires the sources to be statistically independent and at most the distribution of one

source can be Gaussian [5.7].

In the study presented in this chapter, a method to quantitatively evaluate the effectiveness of
an algorithm for OA removal from EEG waveforms was devised. The method was used to
evaluate and compare the performance of two ICA-based approaches, namely the extended
version of the ICA algorithm of Bell and Sejsnowski (hereafter refereed to as extended-ICA)
[1.9] and the ICA algorithm of Cardoso (hereafter refereed to as JADE) [1.10] to that of two
decorrelation-based methods, namely PCA [1.12] and EOG subtraction [1.13] methods, for
removing the OA from the EEG. EOG subtraction method was included because it is one of
the conventional methods for performing OA removal from the EEG. PCA was included in
order to investigate the need for considering the higher statistical dependencies in OA removal
process. Extended-ICA and JADE were included as they are well-established ICA-based
signal source separation techniques. Both extended-ICA and JADE are based on information
theoretic principles, however the extended-ICA algorithm of Bell and Sejnowski uses entropy

while the JADE algorithm of Cardoso exploits the fourth-order cumulants of the data.

72



A review of the most relevant workin the area of EOG removal over the past 20 years is

provided in Table 5.1.
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As reported in Table 5.1, EOG subtraction, PCA and the extended-ICA have all been
previously applied to the problem of OA removal, however the aim of this part of the study is
to extend the information available by providing a quantitative evaluation and comparison of

their performance based on a series of statistical tests.

From the OA removal studies reported in Table 5.1, it was deduced that an efficient technique
for performing the removal of ocular artefacts from the background EEG was Extended-ICA.
This method is based on the key assumption of statistical independence between the brain and
the artefacts waveforms. This independency between the components is assessed through a
measure of similarity between their joint amplitude distribution using a principle of
information theory called entropy. The technique appears to be an improvement from the
traditional artefact cancelling methods and seems to be a generally applicable and effective
method for removing a variety of artefacts from EEG recordings, since their time-courses are

generally temporally independent, and differently distributed than sources of cerebral activity.

From the literature review outlined in Table 5.1, the advantages of the extended-ICA method
over the more conventional OA removal methods were identified as follows: (1) It is
generally applicable to remove a wide variety of EEG artefacts. (2) Separate analyses are not
required to remove different classes of artefacts. (3) A single analysis simultaneously
separates both the EEG and its artefacts into independent components based on the statistics
of the data, without relying on the availability of ‘clean’ reference channels. This avoids the
problem of mutual contamination between regressing and regressed channels. Moreover no
arbitrary threshold (variable across sessions) are needed to determine when regression should
be performed. (4) Once the training is complete, the artefacts-free EEG records can then be
derived by eliminating the contributions of the artefactual sources. (5) In most cases,
extended-ICA preserves the recovered brain electrical activity more acurately when compared
with PCA in decomposing EEG data. (6) The extended-ICA algorithm is computationally

more efficient than BS _ICA algorithm as it speeds up convergence [2.40].

In most cases this independence is verified due to the differences in physiological origins of
those signals. In experimental data, extended-ICA was able to extract the eye-information
present in the EOG signals, and use this information in the removal of this type of artefact,

rather than the complete EOG (that still has some remaining brain activity).
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The effectiveness of other types of algorithm such as for instance the ‘non-neural’ JADE
algorithm developed by Cardoso and Souloumiac [2.16] which is an ICA method that exploits
the higher order statistics fourth-order cumulants of the data should be investigated and their
performance in performing OA removal from the EEG compared with the extended-ICA

algorithm.

As the operations of both ICA algorithms of Cardoso and Bell and Sejnowski are subject to
amplitude scaling and channel permutation, procedures were incorporated as part of these two
methods to estimate the amplitude of the separated signals and to allocate them to the correct
channels. A description of the theory of the signal separation methods (JADE, extended-ICA
and PCA) is provided in chapter 2. A brief description of the EOG subtraction method is
provided in section 5.3. Then the experimental procedures are outlined and the results

obtained are discussed.
5.3. A briefoverview of the EOG Subtraction method

The operation of EOG subtraction [1.13] method for removing OA from an EEG waveform

consisting of N data points is outlined below. The contaminated EEG waveform (EEG(Q can

be expressed as the sum of the original EEG ( EEG0O) and a fraction (<9) of the EOG

waveform, i.e.

EEGe(i)=EEGO(i)+ GEOG(i) i=12, ..,N (5.1

The correlation (at zero lag) between the EOG and contaminated EEG waveforms is given by,

v
Correlation=T EEGc(i)EOG(i) (5.2)

i=7

Substituting EEG( from equation (5.1) into equation (5.2) results,

i A N

Correlation=YJEEG,, ())EOG(i) + (5.3)
Equating equations (5.2) and (5.3) provides,

v v a v

Y  EEGc()EOG(i)= Y  EEG» (5.4)
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However in this method it is assumed that there is no correlation between the original EEG

and EOG therefore,
N
ZEEGO() EOG(i) =0 (5.5)

Substituing equation (5.5) into equation (5.4) simplifies equation (5.4) and from it the value of

0 can be determined by,

N

y EEGr(i)EOG(i)

(5.6)
fJEOG(i)2
=1
The original EEG waveform can be obtained by using 6 in equation (5.1). Therefore,
EEG(@)=EEG((/)- OEOG(i) =12, ..,N (5.7)

As described in section 5.2, the method of EOG subtraction involves subtracting a fraction

(#) of the EOG from the contaminated EEG. However, because the algorithm assumes that

there is no correlation between the original EEG and the EOG signals, the method causes an

estimation error to be introduced at two levels: (1) the estimation of 6 will be erroneous since
the EOG channel is not pure and contains some EEG signal and, (2) the recovered EEG will
be distorded since the fraction of the EEG that has contaminated the EOG will be removed

from the desired EEG signal during the subtraction process.

5.4. Experimental procedures

5.4.1. Experimental methods

In order to quantify the effectiveness of each OA removal method, the recovered EEG
waveforms were compared with the original (uncontaminated) EEG. A measure of similarity
indicated how well the OA removal method had performed. The operation required the

availability of the EEG waveforms before and after OA contamination. Furthermore,
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extended-ICA and JADE required the original signal sources to be independent. The steps for
satisfying these requirements are described as part of the overall experimental method. The
experiments consisted of: (i) comparison of the four OA removal methods based on single
EEG and EOG channels, (ii) analysis of the effect of mixing matrix values on the recovered
(separated) EEG waveforms, (iii) analysis of the effect of additive Gaussian noise on the
operation of the four OA removal methods, (iv) comparison of the two ICA algorithms of

JADE and extended-ICA, based on multiple EEG and EOG channels.

Further details on the data recording procedures used to record the EEG and EOG data are

provided in section 4.4.1. of Chapter 4.

5.4.2. Source signals and mixtures generation

In order to carry out the analysis based on single EEG and EOG channels, 32 pairs of EEG

08 02

and EOG mixtures were generated using the mixing matrix A4 02 08 ° The mixing
. . . EEGC EEGO

operation was carried out by performing =4 , where EEG (and EOG0were
EOGc EOGa

the original EEG and EOG respectively and EEGC and EOG( were the resulting
contaminated mixtures. The operation caused the original EEG waveforms to be contaminated

by J of the EOG (and vice versa). This mixing matrix was considered appropriate as only a
5

fraction of the EOG and EEG can contaminate each other. The mixing operation resulted in

32 pairs of contaminated EEG and EOG mixtures.

The distribution of the EEG and EOG waveforms was tested by the Univariate procedure
using Statistical Analysis System [5.24]. This indicated that the EEG waveforms had a
Gaussian distribution while the EOG were not Gaussian. Therefore, the requirement for both

JADE and extended-ICA where not more than one source can be Gaussian was not breached.

08 02
The 32 pairs of EEG and EOG mixtures generated using the mixing matrix 4 — 02 08

were also used to investigate the effect of additive Gaussian noise on the operation of the four

OA removal algorithms. Gaussian noise (band limited to 50 Hz) were added to the 32 pairs of
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mixtures and then the four methods for OA removal were applied to recover the EEG
waveforms. Statistical parameters (described in section 5.4.3) were calculated to determine
the ability of each method in recovering the EEG when contaminated by additive Gaussian
noise. For each test, the 32 recovered EEG waveforms were averaged to produce a single
representative EEG waveform. The experiment was repeated for different amounts of noise.
The signal-to-noise ratio (SNR) values represented the signal power (before addition of the

noise) to the noise power.

The mixing matrix A used in the above analysis conformed to a unity value for the sum of
elements in its columns. In order to investigate the effect of not conforming to this condition,

the experiment for the recovery of EEG waveforms was repeated using the mixing matrix
05 02

A= .
03 05

The analysis based on multiple EEG and EOG channels was carried out by using the four
EEG and EOG data sets. The condition for independence of sources was ensured as each of
the four EEG data sets had been recorded from a different subject. The Univariate statistical
procedure was used to test the EEG and EOG distribution. This indicated that while the EOG
data were not Gaussian, the EEG data had a Gaussian distribution and therefore they could not
be considered as valid signal sources for extended-ICA and JADE algorithms. The required
EEG signal sources were obtained by transforming the recorded EEG data. The
transformation involved the following steps: i) a DC offset was added to the EEG signals so
that their minimum values became zero, ii) they were squared and their mean values were
removed, iii) the resulting signals were re-scaled to the original amplitude ranges, iv) the
Univariate statistical procedure was applied to the transformed EEG waveforms to ensure they
had the required non-Gaussian distribution. Typical distributions of transformed EEG
waveform are shown in Fig.5.1. This transformation of the EEG waveforms prior to carrying
out the mixing of the waveforms was required in order to simulate a situation where the
original brain signals in the mixtures are independent of each other and have non-Gaussian

distributions.

Regarding the EEG waveforms transformation procedure, the following comments can be
made. In step ii), the waveforms were squared. Althougth they were re-scaled to their original

amplitude range as described in step iii) (so as to simulate a situation where the EEG
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waveforms have a typical EEG amplitude range), the values remain in £V ? unit. A way to get
back the 4V unit may have been to square-root the waveforms. Other types of

transformations (such as x"3 , tanh(x), 1/x) were also investigated. However, best results (i.e.

least Gaussian distribution) were obtained for the x*2 transformation described in steps i) to

iv).
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Fig.5.1 Typical distributions of transformed EEG waveforms
(the horizontal axis is amplitude in 4V ? and the vertical axis is

frequency of occurrence for an amplitude range).

Thirty two sets, each consisting of five signal mixtures were generated by carrying out the
mixing operation,

'EEG,,| [EEG,]
EEG,, EEG,,
EEG3, |=A|EEG3, |,
EEG,, EEG,,
EOG, EOG,

where EEG,. to EEG,. were the contaminated EEG signals and the EOG, was the
contaminated EOG. EEG;, to EEGy, were the transformed EEG signals and EOG, was the

original EOG waveform. The values of the mixing coefficients in matrix A was chosen
arbitrarely. A contamination by 0.125 of each contaminating signal was considered
appropriate as only a fraction of the EOG and EEGs can contaminate each other. The mixing

matrix A was given by,
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[0.5 0.125 0.125 0.125 0.125]
0.125 0.5 0.125 0.125 0.125
A=|0.125 0.125 0.5 0.125 0.125].
0.125 0.125 0.125 0.5 0.125
0.125 0.125 0.125 0.125 0.5

5.4.3. Procedures to Enable JADE and Extended-ICA Deal with the Problems of

Amplitude Scaling and Channel Permutation

JADE and extended-ICA scale and may invert the recovered signals. . Furthermore, the
recovered signals may not appear in the correct channels (channel permutation). In order to
deal with the channel permutation problem, each recovered signal was compared with each
mixture and their correlation coefficient was calculated. A recovered signal was then allocated
to the channel which corresponded to the highest correlation coefficient value. The operation
assumed that each mixture contained a larger contribution from the original signal source than
from the contaminating source. The possible sign change (i.e. signal inversion) was corrected

by considering the sign of the correlation coefficient.

In order to estimate the amplitude of the recovered signals for both JADE and extended-ICA,
a modified version of a procedure proposed by Cardoso [5.25] was implemented. The steps
are outlined below for a case invoiving two signal sources, however the method can be
extended to situations involving more than two sources. The original Cardoso’s Algorithm

involved the following steps:

Wi Wi

i) The inverse of the unmixing matrix W { } was obtained. This provided an

W Wa
estimate of the mixing matrix.

i1) The total contribution of each original signal source to the mixtures was estimated from
WL . This required summing the squared elements in each of its columns. The resulting

sums were square rooted. The squaring of the elements was necessary to ensure negative

values did not cancel positive values during the summing process.

The modification to Cardoso’s procedure consisted in multiplying the resulting square-

rooted sums by a scaling factor (k). This produced a row vector,
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p =Ilk, \/ (wlzl +w221), k, \/ (wlz2 +ws, )] . The scaling factor k; and k, were required to deal

with for the mathematical inequality that for any two values (x and Yy),

|x| +| y| # \/xz +y? . The expression for k; (j=1,2) is given by,

2
Z,Wul

k=—ihe (5.8)

where wj; represents an element (in the ith row and jzi column) of the matrix W . It was

observed that with the modification k;j included, p could be computed by a simple

b

addition operation p=/[ |W11I+‘w21 w12|+|wzz| /. The unmixing matrix W was then

re-scaled by multiplying its columns by the corresponding columns of the row vector, p.

The reason behind the modification of Cardoso’s procedure through the use of a factor k;
was that the Cardoso’s procedure obtained a measure of energy, whereas a measure of

amplitude was required to estimate the amplitude of the recovered signals.

5.4.3. Parameters for Evaluating the OA Removal Methods

In order to assess the performance of each OA removal method, the similarity between the

original and recovered EEG waveforms was measured. This required quantifying any change

in the amplitude and shape of the waveforms. The required measurements were carried out by

using the correlation coefficient, standard deviation and Euclidean distance parameters. The

justification for using these parameters is provided below.

Correlation coefficient. This provided a measure of the similarity in shape for the
recovered and original EEG waveforms. A value with magnitude of 1 indicated that the
recovered and original waveforms had exactly the same shape. However, this pérameter
did not provide any information about amplitude changes.

Standard deviation ratio. This was the ratio of the original EEG standard deviation to that
of the recovered EEG. A value of 1 indicated that the original and recovered signals had
the same power. A value more than 1 indicated a loss in the recovered signal power. As

both extended-ICA and JADE scale the amplitude of the recovered signals, this parameter
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indicated how well (for a particular mixing matrix) the Cardoso’s amplitude estimation
operates as part of JADE and extended-ICA algorithms.

iii) Euclidean distance. This provided a measure of similarity in both shape and amplitude.
The Euclidean distance between two signals (x and y) of length N can be expressed as

[5.26],

N
Euclidean distance = Z (x,-y,) . (5.9)

i=1
5.4.5 Statistical Tests for Determining the Significance of Differences

In order to determine the significance of the differences between the performance of the four
OA removal methods, a number of tests were carried out using the Statistical Analysis System
[5.24] package. The tests were based on the analysis-of-variance (ANOVA) technique. This
enabled the F-statistic test [5.27] to be carried out on the mean values (over thirty two trials)
for each the three parameters (correlation coefficient, Euclidean distance and standard
deviation ratio) across the four OA removal methods. The F-statistic was suitable because it
tested the null hypothesis that a significant difference did not exist between the means for a
given parameter. An F value close to 1 resulted in accepting the null hypothesis, otherwise it

was rejected.

Although the F-statistic indicated whether means were significantly different across the four
OA removal methods, it did not however indicate which mean differed significantly from the
other means. In order for this to be determined, Tukey’s studentised range test [5.24] was

performed. This test was based on analysing the pair-wise differences between the means.
5.5. Results and Discussion

The results obtained for JADE and extended-ICA were computed after incorporating the
amplitude estimation procedure as part of their algorithms. The mixtures were processed by
the four OA removal methods in order to recover the original EEG waveforms. The results are

described in the following sections.

84



5.5.1. Single EEG and EOG Data Set Analysis

08 02

This investigation used the signals generated with the mixing matrix A= I: 02 08

i| . Typical

plots for one pair of original EEG and EOG waveforms, their mixtures and the recovered EEG
waveforms following the application of the four OA removal algorithms are shown in
Figs.5.2a-h.
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Fig.5.2Typical plots of original EEG (a), EOG (b), contaminated EEG (c), contaminated
EOG (d), recovered EEG waveforms using JADE (e), extended-ICA (f), EOG subtraction

(g) and PCA (h). The vertical axis is amplitude in £V *and horizontal axis is time in
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The standard deviation ratio, Euclidean distance and correlation coefficient values were

computed for the EEG signals. Plots of these for the 32 trials are shown in Figs.5.3a-1.
(a) (e) )

JADE
12
1
08

1 1" 2 3 1 il 2 a

(b) () ®

ExtendecHCA

JHE JADE

400504
asE0
A0E04

B 250604

200504

5150804
100604
S00ECS
Qe 4

o
N ]
B

1 " 2 3 1 ul 2

«

© (8) (k)
e EOGSubtraction . EOG Subtraction BOG Subtraction
200604
099
08 15604
sow7 -_-;
Zoss 2004
£ ]
808 I
oo 500505
o83
QOB -+ ++
o082 1 1 21 3
1 1" 21 3 |
1 PCA , PCA PCA
3WE04
15
095 25604
15
e ; 200504
was 208 g
: i 2 eor
14 0.
3 @ 100504
13
08 S0E
13
075 a .
1251 ; — B
1 1 2t 3 1 n 21 3 ! u 2 3

Fig.5.3 Plots of standard deviation ratio (STDR) (a-d), correlation coefficient (e-h) and
Euclidean distance (i-1) parameters for JADE, extended-ICA, EOG subtraction and PCA

algorithms. The horizontal axis is trial number for all plots.
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The corresponding means and variances are provided in Table 5.2.

Table 5.2 Means and variances for the three parameters over 32 trials.

Standard deviation Correlation Euclidean
Methods ratio coefficient distance
Mean | Variance | Mean | Variance Mean Variance
(X10%) (X10%) (10 (X10%)

PCA 145 3.0 0.95 22 . 159 1.7
Extended-ICA 0.95 294 0.99 043 0.85 7.4
JADE 0.97 159 1.00 0.034 0.60 2.1
EOG subtraction 1.35 0.4 0.99 0.23 1.18 0.48

The following observations were made for the standard deviation ratio parameter. EOG
subtraction method farovided smallest variance and thus the highest consistency. However, it
was always larger than 1 indicating a loss of amplitude in the recovered EEG. This confirmed
the limitation of EOG subtraction method in which the part of the EEG which contaminates
the EOG is also subtracted from the recovered EEG resulting in a loss of its amplitude (this
was first referred to in the introduction section). PCA technique also reduced the amplitude of
the recovered EEG. This indicated that PCA could not completely separate the mixtures. This
may be because PCA is unable to deal with higher-order statistical dependencies. For
extended-ICA and JADE, the standard deviation ratio parameter assessed not only their ability
to separate the signal components in the mixtures, but also the ability of the Cardoso’s
amplitude estimation in re-scaling the separated signals. The resul_ts show that JADE and
extended-ICA together with the Cardoso’s amplitude estimation procedure have provided an

accurate recovery of the original EEG waveforms.

JADE provided a correlation coefficient closest to 1 and an Euclidean distance value closest

to 0. It was also most consistent (i.e., smallest variance) for these two parameters.

In order to determine the significance of the difference between the observed means two
statistical tests were carried out by using the analysis of variance (ANOVA) technique [5.24].

These were F-statistics and Tukey’s studentised range test.

The F-statistic test was performed for each measured parameter (standard deviation ratio,

correlation coefficient and Euclidean distance) across the four OA removal methods. This
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indicated that significant differences (p<0.0001) existed between the means for each of the

three parameters across the four methods.

The Tukey’s studentised range test was then performed to determine the sign (positive or
negative) of the pair-wise differences between the means. This indicated whether a mean was

significantly smaller or larger than another mean. The results are shown in Table 5.3.

Table 5.3 Tukey’s test (at level of significance 0.05) for pair-wise

differences between algorithms.

Pair-wise differences Standard Correlation | Euclidean
between the algorithms deviation ratio | coefficient distance
EOG Subt. s(+) s () s (+)
PCA- JADE s(+) s(-) s (+)
Ext. ICA s(+) s(-) s(+)
PCA s(-) s (+) s(-)
EOG Subt.- | JADE s(+) ns (-) s (+)
Ext. ICA s (+) ns (-) s (+)
PCA s(-) s (+) s (-)
JADE -~ EOG Subt. s () ns (+) s ()
Ext. ICA ns (+) ns (+) ns (+)
PCA s(-) s(+) s ()
Ext. ICA - EOG Subt. s(-) ns (+) s ()
JADE ns (-) ns (-) ns (-)

key: s = significant, ns = not significant

Conéidering the standard deviation ratio parameter, the performance of PCA and EOG
subtraction was significantly different from JADE and extended-ICA. The performance of

Extended-ICA and JADE were not found to be significantly different.

Considering the correlation coefficient parameter, the performance of PCA was significantly
different (smaller mean) from the other three algorithms. The latter did not show significant
differences between their performances. This parameter indicated that PCA was least effective

in preserving the shape of the recovered EEG waveforms.
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Considering the results for Euclidean distance parameter, JADE and extended-ICA differed
significantly from PCA and EOG subtraction, however they did not differ significantly from

each other.
5.5.2. Analysis to Determine the Effect of Mixing Matrix

The results shown in Table 5.2 were obtained using a mixing matrix that conformed to unity

for the sum of elements in its columns. In order to investigate the effect of not conforming to

05 02
this condition, the experiment was repeated using the mixing matrix A=[O3 05}. The

results are shown in Table 5.4.

Table 5.4 Performance evaluation results when the mixing matrix

Az [0.5 0.2} ' /
03 05 (
Methods Standard deviation Correlation Euclidean
ratio coefficient distance (X 10“‘)
PCA 3.15 0.89 2.93
Extended-ICA 1.23 0.98 1.06
JADE 1.27 0.99 0.87
EOG subtraction 2.77 0.95 2.68

The results for standard deviation ratio (from Table 5.4) indicated that JADE and extended-
ICA performed better than PCA and EOG subtraétion. Values close to 1.2 signified that little
amplitude difference (i.e. a small fraction (0.2) of original waveforms) between original and
recovered waveforms was observed for the ICA-based technique. However with values close
to 3 (i.e. 3 times the amplitude range of original waveforms) both PCA and EOG subtraction
methods resulted in a significant loss in the recovered EEG amplitude. The result also showed
that the performance of the amplitude estimation procedure was affected by the mixing matrix
values. The results for correlation coefficients were all still close to 1 indicating that the
values associated with the mixing matrix do not affect the recovered signals shape. The
experiment was repeated with several other mixing matrices. The results were consistent with

the above observations.
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5.5.3. Effect of Additive Gaussian Noise

The effect of additive Gaussian noise on the performance of the four OA removal methods

was also investigated. The plots for the observations are shown in Figs.5.4a-c.

(@)

1.45 +

1.35 +

1 W
1.15 +

1.05 +

095 +

0.85 +

0.75 +

Standard deviation ratio
*

0.65 +

0.45

SNR 200 250 309 350

(b)

0.95 +

0.85 +

Correlation Coefficlent

0.8 +

0 50 100 150 200 250 300 350
SNR

(c)

6.00E-04 —

5.00E-04 +

4.00E-04 +

3.00E-04 +

Euclidean distance

2.00E-04 +

1.00E-04 +

0.00E+00 + + + + + + !
0 50 100 150 SNR 200 250 300 350

Fig.5.4 Plots to demonstrate the effect of noise on the performances of
extended-ICA (-m-), JADE (-#-), PCA (-x-) and EOG subtraction (-A-).
The horizontal axis is linear signal-to-noise ratio (SNR).
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On Fig.5.4, the signal-to-noise ratio (SNR) is linear and is defined as the ratio of the signal
power over the noise power. The results indicated that the performances of all four algorithms

for OA removal degrade rapidly for signal-to-noise ratios below 50.
5.5.4. Multiple EEG Channels Analysis

The results obtained for the data consisting of four sets of thirty two transformed EEG

waveforms (EEG;to EEGy,) are presented in Table 5.5.

Table 5.5 Results obtained when the allgorithms were applied to four

transformed EEG sources.

Transformed | Standard deviation | Correlation coefficient | Euclidean distance
EEG Data ratio means means (X10°)
JADE | Ext.ICA | JADE Ext. ICA JADE | Ext.ICA
EEG, 1.04 1.08 0.95 0.95 11.75 11.48
EEGy, 1.15 1.10 0.95 0.96 8.00 7.80
EEG;, 1.00 0.97 0.96 0.96 6.28 7.62
EEGy 1.05 1.02 0.98 0.97 7.87 9.31

The mean value for each parameter was obtained by averaging the results over thirty two
waveforms. The results obtained were consistent with those obtained involving one set of
EEG waveforms. Only JADE and extended-ICA were included in this analysis because they
had performed significantly better than PCA and EOG subtraction methods when analysing
one set of EEG and EOG channels.

5.6. Key Observations of this Part of the Study

The key observations of the study reported in this chapter were:

e The devised procedures made it possible for the performances of the four algorithms for
OA removal to be quantified and compared.

e However, although the transformation of the waveforms highlighted in section 5.4.2 was
carried out purely for generating non-normally distributed source signals, one must reflect
on the validity of performing such a transformation. Indeed such a situation cannot be

applied to real-life signals as the original signal sources are not accessible in the real-life
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situation. However, the aim was not to simulate a real-life problem, but rather to simulate
a situation where four methods could be quantitively assessed for performing OA removal
of the EEG. In order to perform the assessment, the original signal sources needed to be
.known so that they could be compared to the recovered signals. Nonetheless the main
drawback of the procedure was that it was to some extent biased into producing “ICA-
friendly” signals. In a situation where the signals sources had Gaussian distribution,
decorrelation-based techniques such as PCA may have performed better than ICA-based
separation techniques to recover the EEG.

The amplitude recovery method enabled the amplitude of the recovered EEG to be
estimated for both JADE and extended-ICA. However, the results were affected by
changing the values of the mixing matrix.

The proposed correlation based method provided a means for dealing with the problems
of channel permutation and sign changes problems associated with JADE and extended-
ICA algorithms.

JADE and extended-ICA performed significantly better than PCA. This could be because
PCA only decorrelates signals while JADE and extended-ICA attempt to make the
recovered signal components as independent as possible.

The EOG subtraction attenuated the recovered EEG signals. This is because a fraction of
the EEG that contaminates the EOG signal is also subtracted from the recovered EEG
component.

Extended-ICA method required a significantly longer time to carry out the OA removal
operation when compared with JADE. This is because extended-ICA is an iterative
algorithm which requires a number of passes through its learning algorithm to converge
while JADE only requires one pass through its algorithm.

Statistical tests showed that on average the performances of JADE and extended-ICA for
OA removal were not significantly different. However JADE provided a more consistent
set of results and both JADE and extended-ICA performed significantly better than PCA
and EOG subtraction.

The performances of the four OA removal methods were not significantly affected by an

additive Gaussian noise source for a signal-to-noise ratio above 50.

92



5.7. Conclusion

A procedure for quantifying the effectiveness of an algorithm for removing OA from the EEG
was devised. This enabled the similarity between the EEG waveforms before contamination
by OA and the contaminated EEG waveforms following their processing by an OA removal
method to be measured. Four methods for OA removal were included in the study. These were
the two ICA-based algorithms of extended independent component analysis (ICA) and joint
approximation diagonalisation of eigen-matrices (JADE), the principal component analysis
(PCA)‘ technique and the EOG subtraction method. The operation of JADE and extended-ICA
is subject to amplitude scaling and channel permutation. Procedures were incorporated to
estimate the amplitude of the recovered EEG waveforms and to allocate them to the correct

channels.

It was demonstrated that the signal separation techniques of JADE and extended-ICA were
more effective than EOG subtraction and PCA for removing OA from the EEG. EOG
subtraction method was shown to cause attenuation of the recovered EEG waveforms. The
effect of additive Gaussian noise on the performance of the four OA removal methods was
also investigated. This indicated that the performance of the methods was unaffected by an

additive Gaussian noise source as long as the signal-to-noise ratio remained above 50.

This part of the study has demonstrated that the ICA-based signal source separation
techniques of JADE and extended-ICA are valuable methods for OA removal of the EEG.

However, care must be taken when interpreting the results of the study. The validity of such
results can only be appreciated within the context of the procedure developped and used to
assess the four methods for performing OA removal of the EEG. In a situation where the
source signals had different (i.e. non ICA-friendly) distributions, the ICA-based separation

methods may have performed poorly as compared to the decorrelation-based methods.
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Chapter 6. The Effect of Signal Length on the Performance
of Independent Component Analysis for

Extracting the Lambda Wave
6.1. Chapter Summary

The effect of signal length on the performance of a signal source separation method called
independent component analysis of Bell and Sejnowski (BS_ICA) for extracting a visual
evoked potential called the lambda wave from saccade-related electroencephalogram
(EEG) waveforms was investigated. The methodology and results obtained are discussed in
this chapter. An iterative synchronisation procedure was devised to time-synchronise the
recorded waveforms across the recorded trials. The implementation details of the devised
procedures are provided. Results for both the artificially generated mixtures as well as the

recorded EEG and EOG waveforms are provided and compared.
6.2. Introduction

The main saccade-related EEG component of interest in this study is a visual evoked
potential (EP) called the lambda wave. An introduction to saccade-related data is provided
in chapter 1, section 1.2. A detailed description of the lambda wave EP signal, together

with its clinical attributes are provided in chapter 3, section 3.5.

For the EEG to conform to the stationarity requirement of BS_ICA, the statistical
properties of its components should be time invariant. However, EEG signal components
(such as EPs) are short-duration (few hundred milliseconds) transient signals and may not
fully conform to the stationarity assumption of BS_ICA. In this chapter, a method is
devised which enables the effective length of the recorded EEG traces to be increased prior
to processing by BS_ICA, so as to increase their stationarity pre-requisite. This involves
abutting EEG traces from an appropriate number of successive trials (a trial is a set of
waveforms recorded from 64 electrode locations in a experiment involving a saccade

performance).
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BS_ICA was applied to the saccade-related EEG and electrooculogram (EOG) waveforms
recorded from the electrode locations. The performance of BS_ICA for extracting the
lambda wave was assessed for different lengths of EEG waveforms. One spatial and five
temporal features of the lambda wave were monitored to assess the performance of
BS_ICA applied to both abutted and not-abutted waveforms. A description of the theory of
the ICA algorithm of Bell and Sejnowski (the algorithm used in this part of the study) is
provided in chapter 2, section 2.6. The experimental methodologies are outlined and the

results obtained are presented.
6.3. Experimental Method

Details of the data recording procedures are provided in chapter 4, section 4.4.2.
6.3.1. Pre-Processing Procedures

The recorded data were digitally lowpass filtered at 45 Hz in order to remove any 50 Hz
mains interference and the unwanted high frequency signal components. The baseline for
each waveform was adjusted by calculating the mean of the pre-stimulus section and
subtracting it from the whole waveform. The trials were sorted into their respective
directions of saccade and time-synchronised using a procedure described in the next

section.
6.3.2. Iterative Time-Synchronisation Operation and its Evaluation

Temporal averaging of the waveforms across trials was carried out to reduce the effect of
background EEG before processing by BS_ICA (this is described in section 6.3.3). The
lambda wave is time-locked to the eye-movement EOG waveforms. The initiation of the
eye-movement (i.e. the saccade onset time) and its termination (saccade offset time) vary
between trials. This means that the lambda waves from different trials are not time-
synchronised. Therefore the averaging process would have produced a distorted waveform.
In order to overcome this, an algorithm which time-synchronised the trials was devised.
The algorithm ensured that the temporal features of the lambda wave from different trials
were aligned to a single reference signal prior to averaging. The EOG waveform was

chosen as the reference signal for the synchronisation process because the lambda wave
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was time-locked to it. The operations involved when performing the time-synchronisation

are outlined below.

i

1i

i

iv

The EOG waveforms across all trials for the desired event were averaged with
respect to the stimulus onset. The resulting EOG waveform provided the averaged
stimulus onset information.

A section of the averaged EOG waveform which contained both the onset and the
offset of the saccade was selected by the software as the reference signal.

The reference signal and the EOG waveform from the trial being synchronised were
correlated at each time point (sample value). The maximum correlation coefficient
value between the two waveforms indicated the amount of shift required to
synchronise the EOG waveform in that trial. This synchronisation was repeated for
the EOG waveforms in the remaining trials.

The newly synchronised EOG waveforms from all trials were then averaged. The
resulting waveform retained the averaged stimulus onset information. Steps ii-iv (i.e.
one iteration) were repeated until the reference signal did not change significantly
from one iteration to the next. The changes in the reference signal from one iteration
to the next was measured by computing the Euclidean distance between the
corresponding waveforms. The synchronisation improved the alignment of EOG
waveforms across all trials after each iteration.

The last iteration in the above process produced the required reference EOG signal.
This signal was then correlated with the original (not synchronised) EOG waveform
for each trial and the amount of shift required for their alignment was determined.
All 64 waveforms in the corresponding trial were then time-shifted by the calculated
amount. The algorithm therefore synchronised all waveforms in all trials to the

reference EOG signal.

The iterative time-synchronisation operation is described using a flowchart and

explanatory diagrams in Fig. 6.1. Let matrix X be a mxp matrix that contains the recorded

data waveforms x; ;, where i is the channel (electrodes) index, and j is the index of the trial

number for the waveform x. Matrix X can therefore be written as,

X1 - - Xy Xi1p
X;p - - Xy X,
X =|. . , where 1< i <m and i=FE is the index of an
Xg, Xg; S Xp, EOG channel.
_xml PN xmj .. xmp ] 96




Fig. 6.1 Flowchart of the iterative time-synchronisation operation.
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The performance of the time-synchronisation procedure was evaluated. This involved
plotting the histogram of the saccade offset across the 50 trials for a given subject and

experimental event. In order to determine the saccade offset of the EOG waveforms the

following procedure was followed.

A visual inspection of the data recorded from the 7 subjects, indicated that it takes about
160 to 200 ms for a subject to start moving his/her eyes in response to the appearance of
the stimulus at a new location on the checkerboard. Furthermore, it can be assumed that the
saccade is complete within the following 300 ms [6.1]. The saccade offset corresponded to
the largest peak in the eye-movement EOG waveform within this 300 ms time interval. In

order to locate this peak, the first derivative of the eye-moverhent EOG waveform was

computed as shown in Fig.6.2.
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Fig.6.2 Scaled eye-movement EOG waveform and its first derivative.

Time, sec.

The maximum value of the derivative within the 300 ms time window was identified by a
computer program. This corresponded to the highest gradient value of the EOG waveform
within this time interval. The first zero-crossing after this peak represented the saccade
offset for an EOG waveform of a given trial. The statistical distribution (histogram) of the

saccade offsets across the 50 trials could then be obtained by repeating the procedure for

each trial.
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6.3.3. Averaging Process

Both spatial and temporal averaging of the waveforms were carried out. A description of

each follows.

6.3.3.1 Spatial Averaging

The saccade-related EEG waveforms recorded from the 64 channels were spatially
averaged. This operation was carried out so as to reduce their number from 64 to 22 and to
further enhance the features of the waveforms to enable the BS_ICA algorithm to operate
more effectively. The operation involved averaging together the waveforms from channels
close to the international 10-20 system of electrode site placement as denoted by the
regions circles by dashed lines in Fig.6.3a. This operation resulted in 20 EEG waveforms
obtained from the 20 locations highlighted by the alpha-numeric numeric designation of
electrodes placement in Fig.6.3b, and 2 EOG waveforms (EOGy and EOGg for the left and
right sides respectively) which were then used as input to BS_ICA. The 22 resulting
locations were symmetrically distributed on the left and right hemispheres of the scalp,
with respect to the nasion-inion line and the pre-auricular line (A;-A;), according to the
conventional scheme shown in Fig.6.3b. Details of the electrodes placement and

designation are provided in chapter 4, section 4.2.

(a) (b)
Geodesic Sensor Network
64 Channels Nasion

_\‘_Right EOG
(6)/" channel

Left EOG, , -«
channel 5

Spatial

EOG,

averaging

Inion

Fig.6.3 Spatial averaging operation: (a) the Electrical Geodesics sensor network of
64 electrodes and (b) the International 10-20 system of electrode placement with the

alpha-numeric designation of electrodes placement on the scalp for the EEG.
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6.3.3.2 Temporal Averaging

This was performed to reduce the obscuring effect of the background EEG on the EP

component of interest (i.e. the lambda wave). For evaluation purposes, temporal averaging

was carried out in three forms:

i) Not-abutted, averaged waveforms without time-synchronisation. This involved

obtaining the mean of the waveforms for each channel across the 50 trials.

ii) Not-abutted, averaged waveforms with time-synchronisation. This was similar to the
first form except that the waveforms were time-synchronised prior to averaging.

iii) Abutted, averaged waveforms with time-synchronisation. This involved abutting
time-synchronised waveforms from a suitable number of successive trials and then
obtaining the mean. The number of trials abutted were determined experimentally as

described in the Analysis Procedure section.
6.3.4. Whitening Process and Application of BS_ICA

The averaged waveforms were whitened. Whitening is a process which makes the mixtures
mutually uncorrelated as well as ensuring they have unity variance [6.2]. By decorrelating
the data beforehand, BS_ICA can concentrate on the higher-order statistical dependencies

of the waveforms.

BS_ICA has a number of parameters which need to be initialised. One of these is the

learning rate (77, described in chapter 2, section 2.6). It was experimentally found that a
value of 5 x 10 was an appropriate initial value for this parameter. The value of 7 was
gradually decreased during the learning process until the rate of change was less than 1 X
10°. The weight matrix (W) was initialised to the identity matrix and then updated during
the learning process by the amounts AW and AW, using equations (2.50) and (2.61)
respectively. The training of BS_ICA stopped when the value of AW became less than a

predefined small value (1 X 10).
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6.3.5. Backprojection of the Separated Components

The whitened waveforms were then input into BS_ICA. The resulting BS_ICA time series
were back-projected to the 22 scalp locations (i.e. the 10-20 international EEG and EOG
electrode placement locations) in order to obtain their scalp distributions. This involved
multiplying the inverse of the unmixing matrix (W) by the BS_ICA time series to obtain an

estimate of the contributions of the separated components at each of the 22 scalp locations.

A procedure was devised to assess the effectiveness of BS_ICA for determining the scalp

distribution of the lambda wave. This estimated the percentage contribution of each

BS_ICA-extracted component to the expected region of the scalp associated with the

lambda wave (i.e. parieto-occipital). The procedure used is outlined below.

i) The estimated contributions of each extracted component to all electrode sites were

normalisation between 0 and 1. ‘

ii) The sum (S;) of the resulting contributions was obtained.

iii) The sum (S;) of the contributions for the parieto-occipital area of the cerebral cortex
(i.e. region defined by the 8 electrodes Ps, P4, P, Oy, O,, O,, Ts and T, as shown in
Fig.6.3b) was calculated.

iv) The required percentage contribution was then determined as S = (S4/5,)x100.
6.3.6. Analysis Procedure

The analysis was initially carried out on artificially mixed waveforms. This allowed the
approaches to be quantitatively assessed. The analysis was then extended to the 22
spatially and temporally averaged waveforms (described in section 6.3.3). The details of

these analysis are provided next.

For the artificially mixed signals, the 22 averaged waveforms were visually inspected and
two waveforms were selected. These two waveforms were selected from different subjects
to ensure their independence. One waveform was an EEG waveform with the temporal
features of the lambda wave (as described in the literature such as [1.5]). The other was an
eye-movement EOG waveform (recorded from EOGy, site in Fig. 6.3b). Different lengths
of averaged waveforms were produced by abutting successive trials (described in section
6.3.3). The abutted EEG and EOG waveforms for waveform length corresponding to 3

trials are shown in Figs.6.4 and 6.5 respectively. EOG can be hundreds of microvolts in
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Amplitude (1V)

Amplitude (LV)

magnitude and contain the signal components caused by blinks and eye-movements. The
EOG waveforms shown in Fig.6.5 are caused by eye movements. The magnitude of this
type of EOG is affected by the amount which the eyes are moved when performing
saccade (i.e. the viewing angle defined in chapter 4, section 4.4.2 ). The viewing angle of
10 degrees used in this study causes a small deviation of the eyes, thus generating eye-

movement waveforms of the range shown in Fig.6.5.

Amplitude (uV)

|
1
o
* Time, sec.

Trials: 1 2 3
Fig.6.4 Averaged EEG waveform with lambda wave features: (a) not-abutted, (b)

abutted for 3 trials. Vertical arrow indicates the average stimulus onset.
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Fig.6.5 Averaged eye-movemént EOG waveform: (a) not-abutted, (b) abutted for 3 trials.

Vertical arrow indicates the average stimulus onset.

The Univariate statistical procedure [5.25] was used to test the Gaussianity of the selected
EEG and EOG signals. The Univarivate procedure tested the null hypothesis that the input
data values were a random sample from a normal distribution. In order to decide whether
to reject the null hypothesis of the test for normality, it was necessary to examine the
probability associated with the test statistic (i.e. the probability value for Shapiro-Wilk

statistic). The value obtained was less than 0.05 (i.e. 95% confidence level) for all four
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waveforms (the not-abutted and abutted time-synchronised averaged EEG and EOG
waveforms). Therefore the null hypothesis was rejected and it was concluded that the four

waveforms were not significantly Gaussian.

Artificial mixtures were generated by carrying out the matrix operation,

EEGy,\ (an an [EEG] 6.0)
EOG,, ay ay \EOG ’

Where EEG and EOG were the original signal sources, EEG,, and EOG,, were the resulting
mixtures, and a;; and a;; were the mixing coefficients for the EEG signal, and a,; and az,
were the mixing coefficients for the EOG signal. ICA algorithm of Bell and Sejnowski
(BS_ICA) [1.9] was applied to unmix the mixtures. The effect of signal length on the
performance of BS_ICA was investigated by gradually increasing the length of averaged
waveforms from 256 data points (corresponding to 1 triai) to 1536 data points
(corresponding to 6 abutted trials). This was carried out for a number of mixing

coefficients shown in Table 6.1.

Table 6.1 The mixing coefficients

used to generate the EEG mixtures.

a; | 055065 | 0.75 | 0.85
a;; | 045 ] 035 | 025 | 0.15

The EOG mixing coefficients were ay; = 1- a;; and az; = 1 - aj2. The gradual increase of
the waveforms' length was carried out in such a way that each waveform always contained
an integer number of lambda wave section. Indeed, as the lambda wave occurred within the
500 ms time interval following the onset of the stimulus, the abutting process ensured that

the end point of the resulting abutted trials did not lie within the this 500 ms window.

The similarity between the original and recovered waveforms was quantified by calculating
the following parameters. ,

i Correlation coefficient (0). The value of p is between -1 and 1. Zero indicated no

similarity while -1 and 1 indicated 100% similarity in shape (-1 meant an inversion in

polarity of the extracted component).
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ii Euclidean distance (& ). This provided a measure of similarity in both magnitude and

shape of the waveforms and was calculated by,

e=\/i(o(i)—r(i))2

i=1

6.2)

where o(i) and r(i) were the original and recovered signals respectively and L was their

length.

6.3.7 Summary diagram for the data processing and analysis procedures

A prototype data processing tool was developed and implemented in MATLAB 5.3

software development tool [6.3] for the processing and analysis of the data recorded from

the Electrial Geodesic Inc. system [4.2]. The main data processing and analysis procedures

operations are outlined in a block diagram in Fig.6.6.
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Fig.6.6 Block diagram of the main data processing operations and

analysis procedures.
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6.4. Results and Discussion

6.4.1. Iterative Time-Synchronised Averaging

Fig.6.7a shows an typical average of 50 eye-movement EOG waveforms prior to iterative
synchronisation. Fig.6.7b shows the histogram (distribution) of the saccade offsets of the
EOG waveforms. The saccade offset of each trial was determined using the procedure
described in section 6.3.2. Figs.6.7c and d show the same information once the iterative
synchronisation has been performed. It can be observed that the process has reduced the
deviation of the saccade offset distribution and thus provided a less distorted averaged

EOG waveform.
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Fig.6.7 (a) The averaged eye-movement EOG waveform before synchronisation, (b)
the saccade offsets distribution. (¢) the averaged eye-movement EOG waveform after

synchronisation, (d) the saccade offsets distribution.
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Amplitude (nV)

Fig.6.8a shows the averaged lambda wave (over 50 trials) without time-synchronisation
together with its eye-movement EOG waveform. The waveforms following iterative
synchronisation are shown in Fig.6.8b. The process of iterative synchronisation resulted in
the extraction of the lambda wave feature f, which was not visible in the averaged lambda
wave without time-synchronisation. The significance of the features f, f3 and negative shift

(NS) which are shown in Fig.6.8 are outlined in section 6.4.3.

Amplitude (V)

-200 4] 200 400 600
Time (ms) A Time (ms)

- b

Fig.6.8 The lambda wave (top) and eye-movement EOG waveform (bottom)
obtained by (a) averaging without time-synchronisation, (b) averaging with

time-synchronisation. The vertical arrow indicates the average stimulus onset.

Fig.6.9 shows the full set of 22 spatially and temporally time-synchronised averaged
waveforms obtained for the 22 electrode locations for a typical subject’s event recording.
Fig.6.9a shows the waveforms displayed in a clinical format, i.e. normalised waveforms
placed on top of each other shown together with their associated electrode name (as
described in Fig.6.3b), in order to show the time relation between the waveforms. Fig.6.9b
shows the non-normalised waveforms together with their amplitude range (in microvolts)
and time course (in second) information. These waveforms are a typical set of waveforms

used as input to BS_ICA signal source separation algorithm.
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Fig.6.9 The 22 averaged waveforms displayed (a) in a clinical format and (b) with their amplitude range

and time-course information. In (b), the vertical axis is in microvolts and the horizontal axis is in second.

6.4.2. BS_ICA Applied to Artificial Mixtures

Figs.6.10a and b show the effect of signal length on BS_ICA performance when the
artificially mixed waveforms were processed. The points on the graphs correspond to the
mixing ratios indicated in Table 6.1. The effectiveness of BS_ICA for extracting the EEG

waveform from the mixtures gradually improved (i.e. o closer to 1, € closer to 0) when

the signal length was increased (by abutting process) from 256 data points (i.e. 1 trial) to

1024 data points (i.e. 4 trials).
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Fig.6.10 (a) Correlation coefficient values and (b) Euclidean distance

values, between the original and recovered EEG waveforms.

The components of the artificially generated signal mixtures (i.e. the EOG waveform and
the EEG waveform with main lambda wave characteristics) are short-duration transient
signals. The abutting of the waveforms to increase their lengths improved their stationarity.
As BS_ICA relies on the stationarity of the signals, the abutting process therefore provided
a means to make the waveforms more suitable for processing by BS_ICA. For waveforms

greater than 1024 data points, no further improvement was observed.

Consistent observations with the above results were made for the extracted eye-movement
EOG waveform and the results are summarised in Table 6.2 and Fig.6.11. Correlation
coefficient values and Euclidean distance values were obtained for the EOG waveform for
the 4 mixing ratios indicated in Table 6.1. However, it was observed that the different
mixing ratios did not affect significantly the values of the correlation coefficient and the
Euclidean distance obtained for each waveform length. Therefore the mean values across
the 4 mixing ratios were obtained at each waveform length for both parameters (correlation

and euclidean distance) and the results are summarised in Table 6.2.

108



Table 6.2 Mean and standard deviation (std) values (across the four mixing

ratios) for o and £ (in pV) for different lengths of waveforms.

EOG Waveform Performance Measure
lengths P €
Mean Std Mean Std
256 0.976 0.020 0.813 0.934
414 0.984 0.022 0.540 0.715
434 0.981 0.018 0.556 0.721
512 0.995 0.005 0.217 0.180
768 0.997 0.004 0.258 0.140
800 0.998 0.002 0.222 0.085
1024 0.997 0.001 0.120 0.045
1280 0.995 0.002 0.120 0.041
1430 0.994 0.005 0.128 0.055
1480 0.997 0.002 0.155 0.074
1536 0.997 0.004 0.183 0.101
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Fig.6.11 (a) Mean Correlation coefficient values and (b) mean Euclidean
distance values, (across the four mixing ratios), between the original and

recovered EOG waveforms.
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The mean and standard deviation (std) values (across the four mixing ratios) for o and &

are given in Table 6.2. Plots of the means (indicated in Table 6.2) are shown in Figs.6.11a

and b, for p and & respectively. Figs.6.11a and b indicated that the effectiveness of

BS_ICA for extracting the eye-movement EOG waveform from the mixtures gradually

improved (i.e. o closer to 1, & closer to 0) when the signal length was increased (by the

abutting process) from 256 data points (i.e. 1 trial) to 1024 data points (i.e. 4 trials).

It was observed that the variation in the mixing ratios affected the recovery of EEG
waveform whereas it did not affect the recovery of EOG waveform. Fig 6.10 indicated that
the recovery of the EEG waveform was degraded as the contamination of the EEG by the
EOG (i.e. larger a;; and smaller aj;) increased. The recovery of the EOG waveform

remained unaffected.
6.4.3. BS_ICA Applied to 22 Spatially and Temporally Averaged Waveforms

In this section the results of applying the BS_ICA-based approaches to 22 spatially and

temporally averaged waveforms are presented.
6.4.3.1. BS_ICA extraction of three saccade-related EPs components

A prelimirary study was carried out to investigate the BS_ICA algorithm when applied to
the recorded saccade-related waveforms. In this preliminary study, BS_ICA was applied to
not-abutted time-synchronised averaged waveforms. This enable the extraction of a
number of EPs components related to the‘performance and generation of saccadic eye
movements, and their scalp distribution to be obtain. These were: the frontal and occipital

pre-saccadic potentials, and the lambda wave.

The results for the centre-to-left saccade event of a typical subject are presented in this -
section. Figs.6.12-6.16 show the extracted BS_ICA components for this subject, however
similar waveforms were observed in the other subjects. The colour shading reflects the

relative strength of an extracted component at various scalp regions.

110 -



Voltage

-100 0 100 200 300 400 500

Time (ms) Time (ins')
Fig.c.1> The extracted EOGI Fig.6.13 The extracted EOGR
waveform. waveform.
&
S
A 21000 0 100 200 300 400
Tame (ms) Time (ms)
Fig.6.15 The lambda wave

Fig.6.14 Thjd pre-saccadic
potential exffacted in the frontal

arca.

component.

Voltage

-100 0 100 200 300 400 500

Time (ms)

Fig.6.16 The pre-saccadic potential
extracted in the occipital area.

I11

500



In all figures, the onset of stimulus is shown at 0 ms. Fig.6.12 shows a component with
peak activity close to the left eye. It had the characteristics of a saccadic eye movement
because of its sharp transition at about 200 ms (saccade onset) after the stimulus onset. A
similar component shown in Fig.6.13 was extracted from a region close to the right eye.
Waveforms with similar time courses shown in Fig.6.9 are observed in the EOG channels,
EOG right (EOGRr) and EOG left (EOG). The extraction of these components indicated
that the method successfully isolated the EOG waveforms caused by eye movements.
Fig.6.14 and 6.16 shows two potentials extracted from the frontal (top picture) and
occipital (bottom picture) areas. These occurred shortly prior to the saccade onset. The
frontal pre-saccadic potential is believed to be related to motor commands preceding
voluntary saccades [3.28]. The occipital pre-saccadic potential was found to occur about 30
ms after the frontal one. This finding suggested that the occipital pre-saccadic potential is
an efferent feedback or copy from the frontal areas for saccade generation. This is believed

to be a prerequisite for visual stability during eye movements [1.7].

Fig.6.16 shows three sub-components (pointed to by arrows) extracted from the occipital
area. These appeared immediately after the saccade onset and ended shortly after the
saccade offset (about 300 ms aftér stimulus). These are associated with visual information
processing triggered by the relative movement of visual field features across the retina
during a saccade [1.5]. The fact that the occipital pre-saccadic potential and the following
three sub-components were extracted separately suggested that they were generated by
independent neural processes. This could not have been detected without the application of

a signal source separation technique. Consistent results were obtained for 7 subjects.

This preliminary study highlighted some of the limitation of BS_ICA algorithm when
applied to EEG and EOG recorded waveforms. It was observed that BS_ICA is sensitive to
large differences in amplitudes ranges between the EEG and the eye-movement EOG
signals. To this effect, prior to applying BS_ICA to the waveforms, the amplitude range of
the EOG signals and of the EEG signals recorded from channels close to the EOG
electrodes location, were scaled down to the range of the recorded EEG signals (typically —
40 to +40 microvolts) in order to reduce the difference in amplitude between the
waveforms. This was considered to be appropriate at this stage as only the time course of
the components was of importance and the objective of this preliminary was to extract EPs

of very small amplitude (when compared to amplitude of EOG amplitude). The effect of
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various scaling range was investigated. It was ensured that the scaling range of the EOG
always remained equal or greater than the range of the EEG signals because in a realistic
situation, the EOG is seldom smaller in amplitude range than the EEG. Best results were

obtained when the EOG were scaled down to the range of the recorded EEG signals.

This preliminary study indicated that the signal source separation of BS_ICA was a
valuable tool for extracting EPs from the recorded saccade-related waveforms. The results
of this part of the study revealed valuable information about the brain mechanisms
involved in performing saccades. It also highlighted some of the limitation of BS_ICA

algorithm when applied to EEG and EOG recorded waveforms.

6.4.3.2. The effect of signal length on the performance of BS_ICA for extracting the

lambda wave

In this section, BS_ICA was applied to the spatially and temporally time-synchronised
waveforms but no scaling operation was performed on the waveforms prior to input to

BS_ICA, as such procedure may distort the amplitude relation between the signals.

As a finite number of trials had been recorded (i.e. 50 trials per subject), increasing the
number of trials for the abutting process would have resulted in the averaging being carried
out over a smaller number of trials, thus reducing the ability to attenuate the background
EEG prior to BS_ICA operation. It was decided to set the length of the abutted waveforms
to 3 trials. This was considered to be a reasonable compromise for satisfying these two
criteria. Once the components were extracted by BS_ICA, a further averaging across the

trials was carried to produce a single lambda wave.

Fig.6.17 shows typical BS_ICA-extracted lambda waves (top row) and left-eye eye-
movement waveform (bottom row) together with their corresponding scalp distributions,
for the not-abutted (a and b) and abutted (c and d) time-synchrbnised averaged approaches.
Similar results were obtained for the other subjects and the results when assessing the

methods for all subjects are summarised later in this section.
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Fig.6.17 BSICA-extracted lambda waves (top row) and eye-movements (bottom row)

the abutted approaches. The vertical arrow indicates the average stimulus onset.

The followings are the main observations ofthis part ofthe study:

BSICA managed to extract the lambda wave and the eye-movement waveform when
it was applied to both abutted and not-abutted averaged time-synchronised waveforms.
However, the features of the lambda wave extracted when BS ICA was applied to the
abutted waveforms were preserved more accurately. The features considered for this
evaluation were//, f2 and/?, and the pre-saccadic negative shift (NS) (negative shift in
the EEG which appears from the onset of the stimulus and ends once the saccade is
performed). The featuresfi, f2 andfo are believed to be related to the movement of the
visual field across the retina [1.5]. The features // and 2 were reported to be time-
locked to the onset of the saccade and the feature to be time-locked to the offset of
the saccade [1.5]. The characteristics of these features depend on factors such as the
saccade duration or the viewing angle (a , shown in Fig.4.5 in chapter 4). In our study,
where a short duration of saccade (about 20 ms) was used, we did not observed the
feature// in either time-synchronised or not time-synchronised averaged lambda waves
(see Fig.s .sb). This was in accordance with the observations made in [1.5]. However,
in our study this feature became visible when BS ICA was applied to either not-

abutted or abutted time-synchronised averaged waveforms. The feature// was observed
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by [1.5] only in the averaged EEG waveform of a subject for a longer duration of

saccade (75 ms to 100 ms).

Table 6.3 contains a summary of the analySis results across the 7 subjects for the
temporal features NS, f;, f> and f3 when assessing the methods to recover the lambda

wave component.

Table 6.3 Summary of the analysis results for the teniporal features
of the lambda wave when assessing four methods to recover the

lambda wave component.

Lambda wave temporal feature

» NS Ji [ N}
Not-abutted, averaged waveforms without 7 1 1 1
time-synchronisation

Not-abutted, averaged waveforms with

Methods

. e 7 2 5 4
time-synchronisation
BS_ICA applied to not-abutted, averaged
1 e o 7 4 6 6
waveforms with time-synchronisation
BS_ICA applied to abutted, averaged 7 7 7 7

waveforms with time-synchronisation

The methods were:
e Not-abutted, averaged waveforms without time-synchronisation.
e Not-abutted, averaged waveforms with time-synchronisation.
e BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation.

e BS_ICA applied to abutted, averaged waveforms with time-synchronisation.

An expert familiar with the features of the lambda wave inspected the recovered
lambda waves for each method. Four features of the recovered lambda waves (NS, f7, f>
and f3) were monitored for their visibility. Table 6.3 contains the number of subjects in
which each feature was observed for each method. The NS feature was observed in all
7 subjects for all 4 methods. The averaging method without time-synchronisation was
least effective, as with this method, each one of the features f;, f> and f; were observed
only once across the 7 subjects. Averaging with time-synchronisation was more
effective than averaging without synchronisation, as the method managed to preserve
features f;, f> and f3 in 2, 5 and 4 subjects respectively. The results were further
improved when BS_ICA was applied to not-abutted time-synchronised averaged

waveforms. The method successfully extracted features f;, f; and f; in 4, 6 and 6

115



subjects respectively. The best performance was achieved when BS_ICA was applied
to the abutted time-synchronised averaged waveforms as the features f;, f> and f; were

visible in all 7 subjects.

Table 6.4 contains a summary of the analysis results across the 7 ‘subjects for the scalp
distribution (spatial feature) and the amplitude range when assessing the four methods

to recover the lambda wave.

Table 6.4 Summary of the analysis results for the scalp distribution
and amplitude range features when assessing four methods to

recover the lambda wave component (std = standard deviation).

Percentage Scalp | Amplitude Range
distribution (%) (V)
Methods
mean std mean std
Not-abutted, averaged waveforms without
. . -- -- 48 13
time-synchronisation
Not-abutted, averaged waveforms with
. o e -- -- 48 18
time-synchronisation
BS_ICA applied to not-abutted, averaged
b g8 e 55 9 97 25
waveforms with time-synchronisation
BS_ICA applied to abutted, averaged
. . = 73 11 29 7
waveforms with time-synchronisation

The amplitude range represents the peak-to-peak magnitude of the lambda wave as
previously indicated in Fig.6.17. The table provides both the mean and standard
deviation values for each of the two parameters across the 7 subjects. Neither
averaging methods (i.e. with and without time-synchronisation) provided the scalp
distribution of the recovered lambda wave. When using BS_ICA, the backprojection
method described in section 6.3.5, was applied to obtain an estimate of the amplitude
ranges. In the same section, the procedure used to estimate the percentage contribution
of the BS_ICA-extracted components to the parieto-occipital region of the cerebral

cortex is provided.

When BS_ICA was applied to the abutted averaged time-synchronised waveforms the
contribution of the extracted lambda wave component to the parieto-occipital region of
the cerebral cortex (back of the head) was estimated to be 73%. When BS_ICA was
applied to not-abutted averaged time-synchronised waveforms, the contribution was

55%. Therefore, the abutting process improved the spatial resolution of the extracted
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lambda wave. With their ability to obtain the scalp distribution of each extracted
component, BS_ICA-based approaches provided a more accurate identification of the
area of the cerebral cortex concerned with the lambda wave electrical activity, as
compared to the averaging method which did not allow for the spatial resolution of the

waveforms to be obtained..

When considering the amplitude range feature, the averaging methods with and
without time-synchronisation provided mean values of 48 uV. BS_ICA applied to the
abutted averaged time-synchronised waveforms provided a mean value of 29 uV for
the amplitude range while that for BS_ICA applied to the not-abutted averaged time-
synchronised waveforms was 97 pV. The former range is closer to the previously
reported lambda wave amplitude range of about 30 puV [1.5]. A smaller standard
deviation value of 7 pV across subjects indicated that BS_ICA applied to the abutted
waveforms resulted in more consistent results than that obtained when BS_ICA
applied to the not-abutted waveforms which provided a standard deviation value of 25
puVv.

In summary, the four approaches reported in this study were ranked in the following order

of decreasing effectiveness for extracting the lambda wave.

BS_ICA applied to abutted, averaged waveforms with time-synchronisation.
BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation .
Not-abutted, averaged waveforms with time-synchronisation.

Not-abutted, averaged waveforms without time-synchronisation.

6.5. Conclusion

Novel procedures were developed in order to improve the extraction of saccade-related EP

components from the recorded EEG and EOG mixtures.

An BS_ICA-based methodology which enabled three saccade-related EPs components to

be successfully extracted from the EEG and EOG recorded waveforms and their scalp

distribution to be obtained, was described. The components of interest were: the frontal and

occipital pre-saccadic potentials, and the lambda wave. This part of the study demonstrated

the usefulness of a signal source separation method (such as BS_ICA) for analysing
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saccade-related EEG waveforms and revealed valuable information about the brain

mechanisms involved in performing saccades.

An iterative time-synchronisation procedure was devised to time-synchronise the recorded
waveforms across trials. This ensured that the time features of the lambda wave were
preserved during the subsequent averaging operation used to reduce the effect of

background EEG.

The effect of waveform length on the performance of independent component analysis
(BS_ICA) for extracting a visual evoked potential called the lambda wave from saccade-
related EEG waveform was investigated. Experiments were carried out using both
artificially generated mixtures as well as the recorded EEG and EOG waveforms. The
length of the waveforms were varied by a process which involved abutting successive
trials. The study demonstrated that increasing the length of the waveforms improved the
performance of BS_ICA in extracting both the temporal and spatial characteristic features
of the .comp,onents from the recorded electroencephalogram (EEG) mixtures. The reason
for this improvement was considered to be due to an improvement to the stationarity of the
signals thus making them more suitable for processing by BS_ICA. This section of the
study demonstrated that the abutting of the trials is a valuable mechanism for improving
the perforinance of BS_ICA in extracting evoked potentials from the recorded EEG

waveforms.
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Chapter 7. Model-Based Independent Component Analysis for
Extracting the Lambda Wave

7.1 Chapter Summary

In this chapter, an approach for incorporating the signal model into independent component
analysis of Bell and Sejnowski (BS_ICA) was developed. The effectiveness of this model-
based BS_ICA was both quantitatively and visually assessed and compared with the same
BS_ICA algorithm without the model. The methodology and results obtained are discussed
and details of the implementation is provided. The résults for both simulated signal

waveforms as well as the recorded EEG and EOG waveforms are provided and discussed.
7.2 Introduction

As described in chapter 2, section 2.6, the operation of BS_ICA requires:
e The number of sources and available (recorded) mixtures to be equal.
e The source signals to be stationary.

e The mixing process to be linear.

¢ Not more than one source signal to be Gaussian.

However, the above requirements do not fully conform with the components of the EEG
signal. For example EPs are short duration transient signals which might not be stationary.

To this effect, a novel method was presented in chapter 6 in order to increase the stationarity
pre-requisite of the EEG waveforms prior to BS_ICA operation. Another particularity of EPs
is -that they may have multi-modal type distributions. This mismatch between BS_ICA
assumptions and EPs properties may cause distortion of the components extracted by the
BS_ICA algorithm. Therefore, procedures to aid the BS_ICA algorithm to extract EPs from
the recorded EEG mixtures of interest may be valuable. In this chapter, an approach to
improve the performance of BS_ICA for extracting the lambda wave from saccade-related
EEG waveforms is presented. The developed method consists of utilising prior information
about the time characteristic features of the lambda wave as part of the BS_ICA signal source

separation operation, in order to guide the algorithm for extracting the EP component of
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interest (the lambda wave). The performance of the new BS_ICA-based approach was
assessed both quantitatively and visually, and its effectiveness was compared to that of the
conventional (without prior information) BS_ICA algorithm. A description of the developed

model-based (with prior information) BS_ICA approach is provided in section 7.3.2.
7.3 Experimental Procedure

Details of the data recording procedure are provided in chapter 4, section 4.4.2.
7.3.1 Outline of the Procedure for Extracting the Lambda Wave

The operations to extract the lambda wave consisted of the following:
i) Pre-processing
i1) Iterative Time-Synchronisation
iii) Time and Spatial Averaging
iv) Whitening
v) Application of either BS_ICA (without model) or the model-based BS_ICA

vi) Back-projection of the separated components to the electrode sites on the scalp.

Operations i) to iv) and vi) are described in more details in chapter 6, sections 6.3.1 to 6.3.4

- and 6.3.5 respectively.

In chapter 6, section 6.3.4, the appropriate initial value for the learning rate parameter of the
BS_ICA algorithm was heuristically found to be 75x10™. This initial value was used in both

BS_ICA-based approaches (with and without model).

Details of operation v) are provided in the following sections.

7.3.2 Design of the Model-Based BS_ICA for the Lambda Wave Extraction
The design of the model-based BS_ICA involved the following steps:

e Development of a model for the lambda wave.

e Development of a suitable cost-function.
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¢ Development of a model tracking algorithm.

e Integration of the model into the BS_ICA algorithm.

The details of these steps are provided next.
7.3.2.1 Development of a Model for the Lambda Wave

The function of the model was to represent the lambda wave. This had to be sufficiently
flexible to accommodate the variations in the time characteristics of the lambda wave. A
model which satisfied these requirements was designed by considering the general trend of
the temporal response of the lambda wave. The model consisted of three straight lines

sections characterised by their gradients (m;, m, and m3) and their respective starting and end

time points. The three sections of the model are shown in Fig.7.1.

Saccade offset

BN |
60 *i%—— Lambdawavepeak —| Aneye movement
by waveform
' ndol,
:| b, 08 n ; .“ /
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~ 40 . % s
> . . Sue “
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£ 20 \ section 3 (m3) - Ap EEG waveform
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E ¢ . / wave features
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N . *

section 2 (m;)

l l
0.4 0.6

Time, sec.

section 1 (m;)

1
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!

Averaged  Saccade offset
stimulus

onset

Fig.7.1 A model of the lambda wave represented by three straight lines.
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The parameters of section 1

The lambda wave has a negative shift (NS) starting from the averaged stimulus onset. This
was the starting point of section 1 of the model. The end point of this section was chosen to be
the saccade offset because the (positive) peak of the lambda wave is time-locked to this offset.
Furthermore this negative shift ends around the saccade offset point. The procedure for
determining the saccade offset is described in chapter 6, section 6.3.2. The statistical
distribution of the saccade offset across subjects was obtained by repeating the procedure for
all subjects. The saccade offset distribution was heuristically found to have a mean of 260 ms
and a standard deviation of about 30 ms. The peak of the distribution represented the mean

offset time for the saccade across all subjects.
The parameters of section 2

The starting point for the second section of the model was the mean saccade offset determined
in section 1. The lambda wave has then a positive shift which ends around the peak of the
lambda wave. Therefore the end of the second section was chosen to correspond to this peak.
In order to determine the time corresponding to the peak of the lambda wave the following
procedure was followed. The peak of the lambda wave is time locked to the saccade offset
and was experimentally determined (across all subjects) to occur within 200 ms (+30ms) from
the saccade offset. Therefore, the time of occurrence of the peak of the lambda wave

corresponded to its maximum amplitude within this region.
The parameters of section 3

The starting point for the third section of the model corresponded to the end point of the
second section. After this point the lambda wave has a negative shift. The point of this
negative shift was experimentally determined (across all subjects) to be around 500 ms from
the averaged stimuius onset. This time point was chosen to be the end of this section of the

model.

Once the starting and end points of the three sections were determined, a straight line was
fitted into the points in each section by using the least-mean-square technique [7.1] and their

corresponding gradients (mm;, m; and mj3) were obtained.
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7.3.2.2 Development of a Suitable Cost-Function

The purpose of the cost-function (¢) was to provide a measure of closeness between each

BS_ICA (extracted) component and the devised model of the lambda wave. The cost-function

used was,

¢ =\/(mlm - my; )2 + (m2m - My; )2 + (m3m - Mg; )2 (7'1)

where my,,, mo,, and ms,, are the three gradients obtained (using the procedure described in the
previous section) from an averaged saccade-related EEG waveform that contained the broad
(coarse) time characteristics (the three voltage shifts described in section 7.3.2.1 ) of the
lambda wave. The broad time features of the lambda wave were visible in the averaged EEG
waveforms. The gradients my;, my and mj3; were obtained for each extracted BS_ICA

component.
7.3.2.3 Development of a Model Tracking Algorithm

The purpose of this algorithm was to identify which BS_ICA component most closely

matched the model of the lambda wave. The smallest cost-function value (¢ ) was identified

and the BS_ICA component which corresponded to it was selected.
7.3.2.4 Integration of the Model into the BS_ICA algorithm

The amount of change (AW ) for the unmixing weight matrix (W) at each iteration of the

learning rate for BS_ICA without model was based on equation (2.50). However, for the

model-based BS_ICA, this equation was modified to,

AW =71+ @-2v)UT lw

n,  fortheselectedICA component
= (7.2)

n, for allother ICA components

With this modification, this equation can be rewritten as, .
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The m™-row of W corresponds to the channel that contained the selected BS_ICA component
and n is the number of input waveforms to BS_ICA. For the selected BS_ICA component, the

learning rate (77) was set to 7, and for the remaining components, it was set to 77,. The value

of 77, was determined by,

g ] (7.4)

where C; and C; are constants and ¢ ; is the value of ¢, after the first BS_ICA iteration.

The justification for the approach and equation (7.4) is provided next.

BS_ICA is an unsupervised learning algorithm. The model-based BS_ICA however provides
a form of feedback to the BS_ICA learning rule. This is achieved by using the cost function
information to provide a higher learning rate for the selected BS_ICA component. This makes
the model-based BS_ICA a partially supervised learning algorithm where the lambda wave
has become the main target for the algorithm. The aim of this operation was to emphasise the

extraction of the desired component over the other components.

The expression for #; has two terms. The first term, (i.e. C; #2) is a bias to ensure #; remains

always larger than 7, This provides a faster convergence rate for the desired component thus

¢S

—=—)isa

emphasising its extraction over the other components. The second term (i.e. C, 77,
' 2 Vsi

smoothing factor for #;. The term provides a dynamic adjustment of #; proportional to the

value of the calculated error (¢,). The term ¢ is a normalising factor for ¢, to ensure that

the value of the smoothing factor (second term of the expression of #;) was not out of range

when compared to the first term C; #2. ¢; corresponded to the initial error, i.e. the value of
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¢, after the first BS_ICA iteration.. The values of the constants C; and C, control the

contribution of each term to #;. Their values were determined experimentally.

Fig.7.2 shows the overall structure of the fnodel-based BS_ICA approach for a 2-input case.
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__________________________________

Key to the figure
s, = signal sources.
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ay, = elements of mixing matrix.

AW = change in weight matrix.

7;and 17, = learning rates.
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Fig.7.2 The model-based BS_ICA operation.

7.4  Analysis Procedure

The performance evaluation of the two BS_ICA approaches (i.e. with and without model) was
carried out in two stages. Initially a quantitative evaluation was carried out by using
artificially mixed waveforms. Then an evaluation of the approaches was carried out when
applying the methods to the 22-averaged EEG waveforms (described in chapter 6, section
6.3.3).
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The artificially mixed waveforms were generated by using the procedure described in chapter

6, section 6.3.6.

The two BS_ICA approaches were applied to unmix the waveforms. The EEG mixing
coefficients are shown in Table 7.1. The EOG mixing coefficients were az; = 1- aj;and axn =

1-a12.

Table 7.1 The mixing ratios.

ap 0.55|0.60 | 0.65]0.70|0.75 | 0.80 | 0.85 | 0.90
ap 04510.400.351030|025(0.20]0.15 | 0.10

The sum of a;; with a;; (similarly for ap;- with az;) was equal to 1. Therefore, the total
signals powers before and after the mixing operation remained constant. An investigation was

also carried out using mixing coefficients where this condition did not apply.

The similarity between the original and recovered waveforms was assessed by calculating

both the Correlation coefficient () and the Euclidean distance (€ ) as described in chapter 6,

section 6.3.6.

7.5 Results and Discussion

7.5.1 Simulated Signal Mixtures
Table 7.2a shows the values obtained for p and & when extracting the EEG signal from the

two simulated mixtures using BS_ICA with and without model. The same information is

shown in Table 7.2b when extracting the EOG signal.
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~ Table 7.2 Correlation coefficient ( ©) and Euclidean distance ( € ) values for

the two BS_ICA approaches for (a) the EEG waveform and (b) the EOG

waveform. (a)
BS 1CA |1 [»055 | 0.60 | 0.65 | 070 | 075 | 0.80 | 0.85 | 0.90
~ arz 15045 | 040 | 035 | 030 | 025 | 020 | 015 | 0.10
without
ool 0.116 | 0.451 | 0.641 | 0.789 | 0.890 | 0.957 | 0.992 | 1.000
with
ool 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
without | & | 5 05 | 1 446 | 1347 | 0.528 | 0384 | 0.283 | 0222 | 0.206
model
with 1 €1 104 | 0.060 | 0200 | 0.031 | 0.154 | 0249 | 0.147 | 0.205
model
(b)
an |,
055 | 0.60 | 065 | 070 | 075 | 0.80 | 0.85 | 0.90
BS_ICA |20 045 | 040 | 035 | 030 | 025 | 020 | 015 | 0.10
without | 01 ges | 0997 | 0997 | 0999 | 0.992 | 0.998 | 0.996 | 0.995
model
with P
o del 0.985 | 0.993 | 0.983 | 0.999 | 0.999 | 0.999 | 0.995 | 0.994
without | &1 55151 1345 | 1.071 | 0971 | 0.940 | 0.944 | 0.967 | 1.006
model
with | &1 538 | 0602 | 0.944 | 0.968 | 1.023 | 1.088 | 0.560 | 0.826
model

For values of aj; less than or equal to 0.2 (i.e. mild contamination of the EEG by EOG), the
performance of the two approaches in recovering the EEG waveform was not significantly
different. However, for larger values of a;; (i.e. more severe contamination of the lambda
wave by the EOG), the model-based BS_ICA performed significantly more effectively in
extracting the EEG waveform with the lambda wave features (i.e. larger values of o and
smaller values for &£). No significant difference was observed between the 2 methods

regarding the extraction of the EOG.

The mean and standard deviation (std) values of o and & for the data shown in Table 7.2 are

summarised in Table 7.3a. The incorporation of the model into the BS_ICA did not
deteriorate the recovery of the EOG component from the mixtures. This is demonstrated by
the results in Table 7.3b.
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Table 7.3 Mean and standard deviation (Std) values
of p and & (in uV) for the data shown in Table 2,

for (a) EEG and (b) the EOG waveforms.

(a)
EEG Waveform
BS_ICA P ¢
Mean Std Mean Std
Without | o518 | o401 | 1081 | 0695
l\‘ﬁi;';l 1.000 | 0.000 0.144 | 0.075
(b)
EOG Waveform
BS_ICA |—— g Std_ | Mean T Std
Wihowt 1 0963 | 0030 | 1358 | 0464
| 0993 0006 | 0830 | 0212

Table 7.4 shows typical results obtained for cases where the sum of a;; with a;; (similarly for
az; with ap;) was not equal to 1. As before the model-based BS_ICA was the more effective

approach.

Table 7.4 Correlation coefficients ( 0 ) and Euclidean distance

(€ in pV) for the approaches. The total power of each signal
within the mixtures were less than its power before mixing.

BS_ICA Approach

MiXil'lg Wave- | Without model | With model
matrix form
Yo, £ P 3

06 03 EEG | 0.605 | 1.334 | 1.000 | 0.333

#2%J1 EoG | 0999 | 1.026 | 0.934 | 1.030

06 05 EEG | 0.906 | 0.325 | 1.000 | 0.103

\>% %6/ 1 EOG | 0999 | 0941 | 0.985 | 0.520
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7.5.2 BSICA Applied to the 22-Averaged Waveforms

The results obtained when the two BS ICA approaches were applied to the 22 spatially and
temporally time-synchronised averaged waveforms for the centre-to-left saccade event are
described in this section. The results for a typical subject are provided. However consistent

results were observed in the other subjects and they are summarised later in this section.

The visual inspection of the 22 components extracted by each BS ICA approach showed two
waveforms with the characteristic features of the lambda wave. These are shown in the top

and middle rows of Fig.7.3. The bottom row shows the corresponding extracted EOG

waveforms.
high
fs (b)
low
2 >t
10 X 0
20 400 600 20 20 400 600
_%) 2 NS'
20 400 600 20 400 600
60 "
by Gy
D LY
" -40
20 0 A0 400 600 20 0 20 400 600
Time (ms) Time (ms)

Fig.7.3 Two Lambda wave components extracted by BS ICA (top and middle) with
their respective scalp distributions (side) and the corresponding extracted EOG
component (bottom) for (a) BS ICA without model, (b) model-based BS ICA. The
vertical arrow indicates the average stimulus onset.
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The following observations were made when comparing the results.

-Both BS_ICA approaches managed to extract the lambda wave and their corresponding

EOG waveforms. The features monitored were fi, f>, f3 (see Fig.7.3) and pre-saccadic
negative shift (NS, a negative shift in the EEG baseline following the onset of the
stimulus). The features f;, f> and f3 are believed to be related to the movement of the visual
field across the retina [1.5]. All these 4 features were visible in the extracted lambda wave
componénts when both BS_ICA approaches were applied. However, when using the
model-based BS_ICA, the features were preserved more accurately. This indicated that
the model-based BS_ICA provided a further improvement in extracting the features of the

lambda wave as compared with the BS_ICA without model.

The peak activity of the lambda wave (observed from its scalp distribution) for both
BS_ICA approaches was dominant in the left and right sides of the parietal area (see top
row in Fig.7.3) as well as in the centre of the parietal area of the cerebral cortex (see
middle row in Fig.7.3). The spatial resolution of the lambda wave components however,
was more concentrated in the aforementioned regions for the model-based BS_ICA. The
scalp distribution of the lambda wave obtained using the BS_ICA approaches was in
accordance with the region (parieto-occipital area of the cerebral cortex) from which the

lambda wave signal was reported to have been recorded (in [1.5]).

Table 7.5 contains a summary of the analysis results across the 7 subjects for the temporal
features NS, f1, f> and f3 when assessing the two BS_ICA-based approaches to recover the

lambda wave component.

Table 7.5 Summary of the analysis results for the temporal features of the
lambda wave when assessing the two BS_ICA-based approaches to recover

the lambda wave component.

Lambda wave temporal feature

Methods
NS S S J3
BS_ICA applied to averaged waveforms
i e 7 4 6 6
with time-synchronisation
Model-BS_ICA applied to averaged 7 7 7 7

waveforms with time-synchronisation
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The methods were:
— BS_ICA applied to averaged waveforms with time-synchronisation.

— Model-BS_ICA applied to averaged waveforms with time-synchronisation.

Table 7.5 contains the number of subjects in which each feature was observed for each
method. The NS feature was observed in all 7 subjects for both BS_ICA-based
approaches. When BS_ICA was applied to the averaged waveforms, the method
successfully extracted features f;, f> and f3 in 4, 6 and 6 subjects respectively. The best
performance was achieved when the developed model-BS_ICA algorithm was applied to

the averaged waveforms as the features fj, f> and f3 were visible in all 7 subjects.

Table 7.6 contains a summary of the analysis results across the 7 subjects for the scalp
distribution (spatial feature) and the amplitude range when assessing the two BS_ICA-

based methods to recover the lambda wave.

Table 7.6 Summary of the analysis results for the scalp distribution
and amplitude range features when assessing the two BS_ICA-based approaches

to recover the lambda wave component (std = standard deviation).

Percentage Scalp Amplitude Range
distribution (%) (nv)
Methods
mean std mean std
BS_ICA appl}ed t.o the averagefl . 55 9 97 25
waveforms with time-synchronisation
Model-BS_ICA applied to the averaged
s e e 73 9 21 34
waveforms with time-synchronisation

The table provides both the mean and standard deviation values for each of the two
parameters across the 7 subjects. The amplitude range represents the peak-to-peak
magnitude of the lambda wave as indicated in Fig.7.3. The backprojection method
described in chapter 6, section 6.3.5, was applied as part of the signal separation process
in order to obtain an estimate of the amplitude ranges of the extracted components. In the
same section, the procedure used to estimate the percentage contribution of the BS_ICA-

extracted components to the parieto-occipital region of the cerebral cortex is provided.
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When BS_ICA was applied to the averaged waveforms the contribution of the extracted
lambda wave component to the parieto-occipital region of the cerebral cortex (back of the
head) was estimated to be 73% with a standard deviation of 9. When the developed
model-BS_ICA approach was applied to the averaged waveforms, the contribution was
55% with a standard deviation of 9. Therefore, the incorporation of a lambda wave
temporal model into the signal separation operation of the BS_ICA algorithm improved

the spatial resolution for the extracted lambda wave.

When considering the amplitude range feature, the developed model-BS_ICA applied to
the averaged waveforms provided a mean value of 29 pV with a standard deviation of 3.4
nV for the amplitude range while that for BS_ICA was 97 pV with a standard deviation
of 25 nV. The former range is closer to the previousiy reported lambda wave amplitude
range of about 30 pV [1.5]. A smaller standard deviation value across subjects indicated
that the developed model-BS_ICA approach resulted in more consistent results than that

obtained when normal (without model) BS_ICA was used.

7.6 Discussion on the effects of the error feedback

In this section, the results obtained when experimenting with different values of the
contribution of the smoothing factor (SF) to the learning rate #; (of the model) are described. In
Figs.7.4 to 7.6, the vertical axis represents the correlation bet.ween the BS_ICA-extracted
lambda wave and the original lambda wave, and the horizontal axis represents the number of

iterations for the training process of the model-based BS_ICA algorithm.

* Fig.7.4 shows the effect of gradually increasing the constant C,/C, that controls the
contribution of the error-feedback (SF) to the overall model cost-function. The constant C;
that controls the contribution of the model to the overall BS_ICA learning rule is set to a
value of 45 for a the mixing ratio of (a;;=0.75, a;2=0.25). The value of the ratio C;/C; is then
gradually increased from less than 0.33 to '10. This case (i.e. C; = 45) was shown as a

representative one, but similar results were observed for other values of C;.
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Iteration number
As shown in Fig.7.4, the introduction of an error-feedback loop (or smoothing factor) into

function by increasing the value of constant ratio C;/C,. C; was set to 45 for all cases.
the model cost-function improved the smoothness of the learning. The learning became
more gradual. Therefore the error-feedback loop provided a better stability of the adaptive
training process. These results were obtained for mixing ratio (a;;=0.75, ar:
However, similar results were observed for other mixing ratios. The optimum value for the

Fig.7.4 (a) The training results when no SF was incorporated into the model cost function.
(b)-(h) The effect of gradually increasing the contribution of the SF to the model cost



ratio C;/C, that controls the contribution of the error-feedback cost-function to the overall
model cost-function was determined experimentally. Although it was observed that the
introduction of the smoothing factor improved the performance of the model cost-function,
at this stage, no in-depth understanding of the reasons behind this observation was provided.
However, it could be observed that within a defined range of values for Cs, the smoothing
factor was effective and that very large values of C; (i.e. C; = o0) will cause the smoothing

factor to stop perfonning efficiently as shown in Fig.7.4a (cf. equation 7.4).

A dropping effect is caused by overtraining as shown in Fig.7.5a and c, for two different
values of the C; respectively. Fig.7.5b and d show the same information when the smoothing
factor was incorporated into the model cost function. In Fig.7.5a and c, C; is set to 49 which
was found to be the optimum value for the model at mixing ratio (a;;=0.75, a;2=0.25). In
Fig.7.5b and d, C; is set to the value when the model did not perform well (C;=45) at the
same mixing ratio. Fig.7.5a and c indicated that, in both cases, a faster drop in performances
was observed when the smoothing factor was not incorporated into the model cost function.
However, when the smoothing factor was incorporated into the model, this dropping effect
associated with overtraining was reduced as shown in Fig.7.5b and d. These results were
obtained for a mixing ratio 6f (a;;=0.75, a;,=0.25). However, similar observations were

made for other mixing ratios.
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Fig.7.5 Effect of the feedback-error on the dropping effect caused by overtraining. (a) and (c)
Training results for model without smoothing factor. (b) and (d) Same information when the

smoothing factor is incorporated into the model.
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Correlation (p)

Fig.7.6a shows a case when the model does not work for a given value of C; (i.e. C;=54).
Fig.7.6b shows the same case (i.e. with C;=54) when the smoothing factor was incorporated
into the model. The cases where the model did not work usually involved the situations
where the bias constant C; had a very small span of possible values for the model to work.
It was observed that the incorporation of the smoothing factor into the model cost-function

increased the span of values which the constant C; could take.
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Fig.7.6 (a) The training results for a value of C; (C;=54) when the model does not
work. (b) The same training results for the same value of C; (C;=54) when the error-
feedback was incorporated into the model cost function.

It was observed that the use of a bias constant C; was necessary for the model to operate
satisfactorily. This enabled the learning rate associated with the component of interest to
always be larger than that of the other components, thus guiding the BS_ICA algorithm in

extracting the component of interest.

It was observed that the amount of the smoothing factor (determined by the ratio C;/C2)
which needed to be incorporated into the model cost function, varied with respect to the
mixing ratio (i.e. the level of contamination of the lambda wave by the EOG) used to
generate the mixtures. This C;/C, parameter has to be experimentally adjusted and fine-

tuned in order to find the optimum value for a given mixing ratio.
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7.7 Conclusion

An approach for incorporating the EP signal temporal model into independent component
analysis (BS_ICA) was developed. The resulting model-based BS_ICA was then used to
perform the signal source separation of saccade-related electroencephalogram (EEG)
waveforms and to extract a visual evoked potential called the lambda wave. Prior information
about the time characteristic features of the lambda wave was utilised to develop the model.
The model provided a means of providing extra guidance for BS_ICA to extract the lambda
wave. The effectiveness of the model-based BS_ICA was both quantitatively and visually
assessed and compared with the that of the BS_ICA algorithm without the model. The study
indicated that the model-based BS_ICA was significantly more effective than BS_ICA
without the model, in preserving the characteristic features (both temporal and spatial) of the

extracted lambda wave.

The procedure followed to incorporate the signal model into the BS_ICA algorithm is general
purpose and thus it is applicable to a number of other signal source separation applications
where some prior knowledge of the time characteristics of the desired signal component is

available.
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hapter 8. An Analysis of Adaptive Non-linear PCA for EEG
Signal Source Separation and the Extraction

of the Lambda Wave

-1 Chapter Summary

signal source separation method called non-linear principal component analysis (NLPCA) was
sed to analyse saccade related EEG waveforms recorded from 7 normal subjects. The methodology
md results are discussed in this chapter. The findings of this investigation using NLPCA are
~mpared with the results obtained when BS ICA were used. Plots of the waveforms produced by

e two approaches are provided and the results are compared.

»2 Introduction

Chapters 6 and 7, a number of signal source separation methodologies were devised and were
-ed to extract saccade related EP components from the EEG mixtures. The methods were based on
= independent component analysis algorithm of Bell and Sejnowski (BS ICA) [1.9]. A typical
anbda wave extracted using the BS ICA algorithm, together with the corresponding eye-
iovement EOG waveform, are shown in Fig.8.1 a and b respectively.
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Fig.8.1 (a) The BS ICA-extracted lambda wave, (b) The corresponding
EOG component. The vertical arrow indicates the averaged stimulus.
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| Three sub-components (f7, f> and f3) related to the movement of the visual field across the retina
were visible in the extracted lambda wave. The sub-components f; and f, are time locked to the
onset of the saccade and were also observed in another study [1.5]. The sub-component f; is time-
locked to the offset of saccade and has been reported to occur at about 100 ms after the saccade
offset [1.5].

The ICA algorithm of Bell and Sejnowski is a stochastic gradient algorithm. Such adaptive neural
algorithms apply a coarse instantaneous estimate of the gradient and often require careful choice of
the learning parameters for obtaining acceptable performance. For example, if the learning rate is
too small, it could lead to a slow convergence speed but on the other hand if this parameter is too
large, the learning process may become unstable. A review of different neural approaches to signal
source separation is provided in [1.8]. The final accuracy of these algorithms partly depends on the

chosen initial values of the learning parameters.

In this chapter, the results of applying the recursive least-squares based non-linear PCA (NLPCA)

algorithm reported in (1.11] to the saccade-related EEG waveforms, are provided.

The ICA algorithm of Bell and Sejnowski uses entropy as a measure of signal independence while
the NLPCA algorithm reported in [1.11] uses an adaptive signal subspaces tracking method derived
using a recursive least square approach, as described in chapter 2, section 2.5. Both algorithms

attempt to extract the unknown source signals from their instantaneous linear mixtures.

A review of both the NLPCA algorithm and the ICA algorithm of Bell and Sejnowski are provided

in chapter 2, sections 2.5 and 2.6 respectively.

8.3 Experimental Procedure

Details of the data recording procedure are provided in chapter 4, section 4.4.2.

8.3.1 Data Analysis

The operations to analyse the lambda wave were:
i Signal pre-processing

ii . Iterative synchronisation

iii ~ Temporal and spatial averaging
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iv  Signal source separation using NLPCA.

Operations (i) to (iii) are described in more details in chapter 6, sections 6.3.1. to 6.3.3. respectively.
Details of operation iv) are provided in the following sections.

8.3.2 Signal Source Separation using NLPCA

The spatially averaged saccade-related EEG waveforms were processed by the NLPCA algorithm
showed by equation (2.7) in chapter 2. Experiments were carried out to determine a suitable non-
linear transfer function (g(.)), a suitable value for the forgetting factor (#) and the number of
iterations. The selected parameters were: $=0.9 and g=tanh(.). The NLPCA learning process
stopped when the amount of change in the weight matrix W became less than a predefined small

value (e.g. 1E-6). The number of iterations was approximately 300 for the data used in this study.
8.4 Results and Discussion

Typical results obtained when the NLPCA was applied to the 22 spatially-averaged saccade related
EEG waveforms for the centre-to-left saccade event are described in this section. The top row of
Fig.8.2 shows two extracted lambda waves from the occipital region and their respective scalp
distributions. The corresponding time-locked EOG waveforms are shown in the bottom row of
Fig.8.2. A number of other similar lambda waves were extracted from parietal region of the visual

cortex. These are shown in the two middles rows of Fig.8.2.
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Fig.8.2 Subject 1: Typical NLPCA extracted lambda waves with their scalp

distributions (top three rows) and the corresponding extracted EOG waveforms with
their scalp distributions (bottom row).
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The following were observed in the study:

The main features of the lambda wave (labelled f}, f>, f3 and negative shift, NS) were visible in
the extracted waveforms. This indicated that the NLPCA algorithm extracted lambda wave like
components. The shape of the extracted components was similar to the lambda wave extracted
by using the ICA algorithm of Bell and Sejnowski (see Fig.8.1). Similar lambda wave like
waveforms were extracted by NLPCA from the other subjects. A summary of the analysis

results for the four temporal features of the lambda wave, obtained across the 7 subjects is

provided in Table 8.1.

Table 8.1 Summary of the analysis results for four
temporal features of the lambda wave across the 7
subjects, when assessing the NLPCA approach to
recover the lambda wave component.

NS | fi f2 | f
Subject1| v | v |/
Subject2 | v v %3 v
Subject3 | 3% 3 v v
Subject4 | v v v v
Subject 5| $2 2 8 v
Subject 6 | 3% v v 8
Subject 7| v b4 «® #®
Total of
subjects i ! 4 >

Key: = the feature was visible, $¢ = the feature
was not visible

Table 8.1 indicated that not all the lambda wave features appeared in the components extracted
by NLPCA. It was also observed that the four lambda wave temporal features were not all
extracted for the 7 subjects. The features NS, f;, f>and f; were extracted in 4, 4, 4 and 5 subjects

respectively, as indicated in Table 8.1.

Fig 8.2 indicated that NLPCA extracted a number of components from the parieto-occipital area
of the cerebral cortex. Some of these had the main characteristics of the lambda wave but

showed some variations in their time courses. The peak activities of the components were
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localised in distinct regions of parieto-occipital area. For each lambda wave peak activity
identified over the left hemisphere a Symmetrical peak of activity was observed over the right
hemisphere. A typical set of lambda wave components with symmetrical peaks of activity are
shown in Fig.8.2. This symmetry may be because both eyes follow the same target stimulus (red

square on checkerboard).

e BS_ICA extracted a lambda wave component with peak of activity which spread across the
parieto-occipital area (see Fig.8.1). A comparison of the lambda wave peak activities obtained
using the two methods indicated that NLPCA identified a number of distinct lambda wave
sources within the parieto-occipital area while BS_ICA treated the whole region as a single
source. This may be due to non-linear PCA being more sensitive to the time course variations of

the extracted lambda waves.

e The EOG components from both the left and the right eyes were also extracted (see bottom row
of Fig.8.2). The polarity change for the left and right EOG waveforms is due to the reference

electrode location (C,).

The above observations were consistent across the subjects included in the study. The results for
three other subjects are shown in Fig.8.3, Fig.8.4 and Fig.8.5 for comparison purposes. A summary
of the analysis results for the four temporal features of the lambda wave, obtained across the 7

subjects was provided in Table 8.1.
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Fig.8.3 Subject 2: The NLPCA extracted lambda waves with their scalp distributions
(top three rows) and the corresponding extracted EOG waveforms with their scalp
distributions (bottom row).
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Fig.8.4 Subject 3: The NLPCA extracted lambda waves with their scalp distributions
(top three rows) and the corresponding extracted EOG waveforms with their scalp
distributions (bottom row).
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8.5 Conclusion

In this study an analysis of a signal source'separation method called non-linear PCA (NLPCA) for
extracting a saccade-related EEG component called the lambda wave, was carried out. A number of
components with the main features of the lambda wave were extracted from the parieto-occipital
area of the cerebral cortex. The peak of activities of these components corresponded to discrete
locations and showed a symmetry over the left and right hemisphere. When comparing the
performance of NLPCA to that of independent component analysis of Bell and Sejnowski
(BS_ICA), the study showed that NLPCA extracted the lambda wave from discrete regions of
parietal-occipital area of the visual cortex while BS_ICA treated the whole region as one source.
These findings indicate that BS_ICA considered the whole parieto-occipital area to be a single
source for the lambda wave whereas NLPCA identified a number of symmetrical independent
sources for the lambda wave in that'region. From a clinical point of view, the brain is made of two
symmetrical hemispheres. Clinicians believe that, although the two hemispheres of the brain are to
some extent inter-connected, they do tend to operate independently from one another but in a

symmetrical way. This viewpoint therefore seems to support the symmetrical solution of NLPCA.

The difference between the answers that NLPCA and BS_ICA give when applied to the same data
set, may be due to the difference in the assumptions made the two algorithms. NLPCA looks for
subspaces in the data set whereas BS_ICA looks for statistically independent components in the
data set. As the two signal separation approaches look for different things in the data, they will

probably converge to different solutions.
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Chapter 9. Fuzzy Clustering Identification of
BS_ICA-Extracted Single-Trial
Lambda Waves

9.1 Chapter Summary

The aim of the work described in this chapter was to automate the identification of the
single-trial lambda waves components extracted by independent component analysis
from the saccade-related background electroencephalogram (EEG) waveforms. The
results obtained when a fuzzy clustering approach was used to achieve this aim are

reported in this chapter.
9.2 Introduction

As described in previous chapters, the analysis of lambda wave requires it to be
separated from the various interfering signal components which are also picked up
from the electrodes on the scalp. The application of BS_ICA to n recorded
electroencephalogram (EEG) waveforms resulted in n independent signal
components. These components were visually inspected to identify specific EP
components. The task of visual identification of specific EPs (specially when dealing
with single-trials) was time consuming and required familiarity with the characteristic

features of the components.

The aim of this study was to extract single-trial lambda waves from the background
EEG and to automate their identification posterior to BS_ICA application. The
method was based on a fuzzy c-means clustering algorithm. Fuzzy logic clustering is
an unsupervised pattern recognition algorithm which partitiones the data into required
number of waveform categories [9.1] [9.2]. It provides the degree that an extracted

BS_ICA component belongs to a certain group.
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9.3 Fuzzy C-Means (FCM) Clustering Pattern Recognition

The object of cluster analysis is to classify waveforms according to their similarities.
Clustering is a form of unsupervised learning pattern recognition as it does not require
prior information on the waveforms of known types. In a 'binary clustering' a
waveform can only be allocated to a single class as shown in Fig.9.1a. However, in
fuzzy clustering a waveform can belong to a number of classes with different degrees
of membership as shown in Fig.9.1b. This is achieved by providing a membership

value ( 4;x ) which indicates the degree a waveform & belongs to the class (cluster) i.

Hy
A
(a)
1
class A class B
0 -
Waveforms
Hi (b)
) class A class B
0 >
l Waveforms

Fig.9.1 (a) Binary clustering membership functions and
(b) Fuzzy logic clustering membership functions.

For a waveform k and c clusters, u;; is normally constrained to 0<x, <1 and

C
Z M, =1. The main advantage of fuzzy clustering over binary clustering is that a

i=1
waveform is not forced to belong to one class. Therefore, an extracted single-trial
component which partly resembles the lambda wave can still belong to the lambda

wave category but with a degree of membership less than 1.
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There are several fuzzy cluster analysis approaches. Hoppner et al. [9.1] and Bezdek
et al. [9.2] provided a review of fuzzy clustering algorithms. In this study the fuzzy c-

means clustering algorithms [9.2] was used.

Given a set of N waveforms, each represented with n features as,

Fiy Fa e iy
F21 F22 LT F2N

F=| . . . . , the fuzzy c-means clustering partitions F into
Foi Fpp : F.N

predefined number of classes (c¢) by using the algorithm described below.
Repeat for ¢ =12, ...

step 1: compute the cluster prototypes (means):

N

Z(ﬂi(kg_l))a F,

y($) =kl , 1<i<ec 9.1)

3 (e

k=1

where F,=[F,,...F, ] Ts the k" pattern and §>1 influences the cluster partitioning

by controlling the degree of fuzziness for the membership of the waveforms to the
clusters. As the value of ¢ approaches 1, the membership of the clusters becomes
closer to binary values (i.e. O for not a member and 1 for a full member). As its value
becomes larger than 1, the membership of the waveforms to the clusters becomes
more fuzzy, i.e. a waveform becomes more associated with a larger number of
clusters.

step 2: compute the Euclidean distances between each pattern k to the i™ cluster

center:
T
a2=(F, —v(®) (F,—v/¥))  1<i<c 1<k<N. 9.2)
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step 3: update the degree of membership values:

if d, >0 for 1<i<c, 1<k<N,

/ui(kf) = !
§e }(;:)
J=1 d Jjk

otherwise =1

until “ Vel —w(f"”“ <7

where ¥ is the matrix of degree of membership values represented by,

FiNe) =

AN HoN e BN

The parameter 7 >0 is the iteration termination tolerance.

9.4 Experimental method

9.3)

94)

9.5)

Details of the data recording procedures are provided in chapter 4, section 4.4.2.

9.4.1 Operations for Extracting the Single-Trial-Components from EEG

Mixtures

The operations to extract the lambda wave were:
1) Pre-processing
i1) Spatial averaging

iii) Abutting successive trials.

iv) Signal source separation (i.e. whitening and application of BS_ICA)

v) Back-projection of the separated components to the electrode sites on the scalp.
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These operations are described in the following sections.

Operations i), ii) and iii) are described in chapter 6, sections 6.3.1, 6.3.3.1 and 6.3.3.2
respectively. Section iv) and v) are described in chapter 6, sections 6.3.4 to 6.3.5

respectively.
9.4.2 Inspection of BS_ICA-Extracted Components

990 BS_ICA component waveforms were extracted from the spatially averaged
single-trial waveforms recorded from a subject. The BS_ICA components were
divided by an expert familiar with the features of the lambda wave into 390 lambda
waves and 600 non-lambda waves. This manual classification of the components was
necessary in order to be able to assess the performance of the fuzzy clustering method

against the decisions of the expert.
9.4.3 Lambda Wave Representation by Feature Set

The lambda wave was charactérised by a spatial and three temporal features. The
spatial feature represented the scalp topography of the BS_ICA-extracted
components. The saptial feature estimated the percentage contribution of each
BS_ICA-extracted component to the expected region of the scalp associated with the
lambda wave (i.e. parieto-occipital). Details of its calculation are provided in chapter

6, section 6.3.5.

The three temporal features represented the gradients m;, m, and m; of the trend of the
lambda wave as described in chapter 7, section 7.3.2.1. The three.temporal features
broadly characterised the three main sections of the lambda wave. A procedure was
developed to identify the starting and end points of each section. This procedure is
described in chapter 7, section 7.3.2.1. A first order polynomial was fitted into the
points within each of the three sections and then the corresponding gradients were

obtained.
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9.4.4 Classification of the BS_ICA-Extracted Components

The operations involved in classifying the BS_ICA-extracted components using the

fuzzy c-means algorithm are shown in Fig.9.2.

990 ICA-
extracted
single-trials

!

Feature
extraction

!

my, my, m3, S

¢

ECM «— . Fuzzification factor ()

clustering

!

Hi

l«— Number of iterations

Lambda Non lambda Indeterminate
waves waves components

{ ¢ {

Assess performance

Fig.9.2 Operations involved for fuzzy c-means clustering.

The three gradient features (m;, m, and m3) together with the scalp topography feature
(S) obtained from each BS_ICA-extracted component were processed by the fuzzy c-
means clustering algorithm. Suitable values for the fuzzification factor (6) and the
"~ number of iteration were detenhined by experimenting with a range of values as
described in the result section. The algorithm provided the degree of membership

(u,) that an BS_ICA-extracted component belonged to the lambda wave category

(the degree that an BS_ICA-extracted component belonged to the non-lambda wave
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category was 1- ;). Based on the values of 4, the components were classified as

lambda waves (for 0.55<u T 1.0), non-lambda waves (for 0.0< u I 0.45) and
indeterminate (for 0.45< u p <0.55). The indeterminate components could not be

confidently classified as belonging to either the lambda waves or non-lambda waves
categories. The results were then compared to those obtained when the BS_ICA-

extracted components were visually classified.
9.5 Results and Discussion

The plots of the features of the BS_ICA-extracted single-trial components (classified
visually as lambda or non-lambda waves) are shown in Figs.9.3a-d. Each feature set
has been normalised between -1 and 1 across trials. The features for the lambda

waveforms are represented by circles and non-lambda waveforms by crosses.

Figs.9.3a and b show 3-dimensional plots of the gradients (mj;, m; and m3). The
features formed two main clusters which partially overlaped. The plots of the scalp
topography feature are shown in Fig.9.3c and d. This feature tended to be mainly

positive for the lambda waves and mostly negative for the non-lambda waves.
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The results obtained when analysing the performance of the fuzzy c-means algorithm
are provided in Tables 9.1. After 10 iterations, 97.4% of the lambda waves?(i.e. 380
out of the 390) and 78.5% of the non-lambda waves (i.e. 471 out of 600) were
classified in accordance with visual classification. The results shown are for

fuzzification factor (6) equal to 2 which provided the most acurate results.

Table 9.1 Performance results of the fuzzy c-means clustering algorithm, with
fuzzification factor (6) = 2 and number of iteration (¢ ) =10.

(a) the lambda waves
Lambda Waves Non-lambda Waves Indeterminate

0 n ac | #2 | #4 ]| g aC | Ha M, n %C H, | K,

mean | std mean std mean | std

2 13809744 | 072 1007 4 1.02 | 042 | 0.01 6 154 | 045 | 0.04

(b) nonlambda waves .
Lambda Waves Non-lambda Waves Indeterminate

o n %C B Bl %C y2% M, n %C My | My

mean | std mean std mean | std

217 125 | 032 | 0.10] 4711 785 | 078 | 0.11 | 54 9 0.51 | 0.03

where n is the number of trial waveforms and %C = n/Tx 100 where T is the total

number of trial waveforms.

The main points of this study were summarised below.

e As fuzzy c-means clustering algorithm is an unsupervised learning algorithm, it
did not require training on the waveforms from known types. The method
provided the degree of membership for each waveform which is a measure of to
what extent an BS_ICA-extracted component belonged to the lambda wave
category. Table 9.2a indicated that 97.4% of the BS_ICA-extracted components
which were identified visualy as lambda wave were also classified as lambda

wave by the method.

155



e The discrepancies between the results obtained using the fuzzy c-means clustering
approach and those obtained by visual inspection may be due to a number of
factors: (i) The visual inspection process may have resulted in the erroneous
categorising of some of the BS_ICA-extracted components. (ii) The feature sets

used may have not been sufficiently sensitive for characterising the waveforms.

9.6 Conclusion

The effectiveness of a fuzzy c-means clustering approach for identifying lambda
waves components extracted by BS_ICA from single traces (or trials) of saccade-
related electroencephalogram (EEG) waveforms was investigated. The BS_ICA-
extracted single-trial components for 50 trials were visually inspected and were
separated into 390 lambda waves and 600 non-lambda waveforms. Each waveform
was represented by one spatial and three temporal features. These features were then
processed by a fuzzy c-means algorithm. Using this algorithm, 97.4% of the lambda
waves and 78.5% of the non-lambda waves were identified in accordance with visual

classification of the components.

The study demonstrated that it was possible to automate the identification of single-

trial lambda wave using the fuzzy c-means algorithm.
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Chapter 10.  Summary of overall results, Conclusions and

Future Works
10.1 Chapter Summary

This chapter provides a summary of the overall results, a conclusion to the study and future

works.

10.2 Summary of the overall results

The ongoing electrical activity of the brain is known as the electroencephalogram (EEG).
Evoked potentials (EPs) are voltage deviations in the EEG elicited in association with
stimuli. EPs therefore provide clinical information by allowing an insight into neurological
processes. The amplitude of an EP potential is typically several times less than the
background EEG. The background EEG has the effect of obscuring the EPs and therefore

appropriate signal processing is required for their recovery.

Saccade-related EEG waveforms were recorded from 7 subjects. The saccade-related EEG

waveforms recorded from electrodes placed on the scalp contain a mixture of signals.

These are: ’

i) Saccade-related EP components (for example the lambda wave).

ii) Non-saccade-related EEG components, i.e. the background EEG and stimulus time-
locked EP components that are not related to the saccade.

iii) The contaminating electrophysiological signals such as the electrooculogram (EOG).
EOG is generated by the eyes when eye-movements or blinks are performed.

iv) Non-electrophysiological (external) contaminating signals, for example the noise

generated by the recording system.

The conventional methods of recovering EPs from the background EEG are based on
averaging. Using these methods a large number (typically about 50) of EPs are recorded
and then averaged with respect to the onset of stimulus. Averaging is a valuable pre-

processing tool prior to signal source separation as it can improve the ‘signal-to-noise’
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ratio. However, the EP recovered using averaging remains a mixture of signal components
from a number of sources. A signal source separation methodology based on a technique
called the independent component analysis of Bell and Sejnowski (BS_ICA) was used to

analyse the recorded waveforms.

In chapter 5, a procedure for quantifying the effectiveness of al;goritth for removing EOG
contamination from the EEG was developed. Four methods for OA removal were included
in the study. These were the two BS_ICA-based algorithms of extended independent
component analysis (extended-ICA) and joint approximation diagonalisation of eigen-
matrices (JADE), the principal component analysis (PCA) technique and the EOG
subtraction method. The devised procedures made it possible for the performances of the

four algorithms for OA removal to be quantified and compared.

The operation of JADE and extended-ICA is subject to amplitude scaling and channel
permutation. Procedures were incorporated to estimate the amplitude of the recovered EEG
waveforms and to allocate them to the correct channels. Cardoso’s amplitude recovery
method enabled the amplitude of the recovered EEG to be estimated for both JADE and
extended-ICA. However, the results showed that the performances of Cardoso’s amplitude
recovery method were affected when changing the values of the mixing matrix. The
proposed correlation based method provided a means for dealing with the problems of
channel permutation and sign changes associated with JADE and extended-ICA

algorithms.

It was demonstrated that the signal separation techniques of JADE and extended-ICA were
more effective than the correlation-based techniques of EOG subtraction and PCA, for
removing OA from the EEG. Statistical tests indicated that on average the performances of
JADE and extended-ICA for OA removal were not significantly different. Extended-ICA
method required a significantly longer time to carry out the OA removal operation as
compared with JADE. This is because extended-ICA is an iterative algorithm which
requires many passes through its learning algorithm to converge while JADE only requires
one pass through its algorithm. However JADE provided a more consistent set of results
and both JADE and extended-ICA performed significantly better than PCA and EOG
subtraction. This could be because PCA only decorrelates signals while JADE and

extended-ICA attempt to make the recovered signal components as independent as
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possible. The EOG subtraction method was shown to cause attenuation of the recovered
EEG waveforms. This is because a fraction of the EEG that contaminates the EOG signal
is also substracted from the recovered EEG component. The effect of additive Gaussian
noise on the performance of the four OA removal methods was also investigated. This
indicated that the performance of the methods was unaffected by an additive Gaussian
noise source as long as the signal-to-noise ratio remained above 50. These investigations
demonstrated the suitability of ICA-based signal source separation techniques of JADE
and extended-ICA for OA removal of the EEG.

In chapter 6, an iterative time-synchronisation procedure was devised to time-synchronise
the recorded waveforms across trials. The method provided the ability to optimally
synchronise the trials with respect to the eye movement interest prior to averaging. This
ensured that the time features of the signals components that are time-locked to the eye
movement such as the lambda wave were preserved during the subsequent averaging
operation for reducing the effect of background EEG. The time-synchronisation procedure
was evaluated. This involved plotting the histogram of the saccade offset across the 50
trials for a given subject and experimental event. It was observed that the process has
reduced the deviation of the saccade offset distribution and thus provided a less distorted
averaged EOG waveform. It was observed that the process of iterative synchronisation
resulted in the extraction of the lambda wave feature f, which was not visible in the
averaged lambda waves without time-synchronisation. These results showed that the
devised iterative synchronise averaging method was an effective preprocessing operation

prior to the application of BS_ICA for extracting the lambda wave.

The recorded EEG waveforms were analysed using the Bell and Sejnowski ICA algorithm
(BS_ICA). The method successfully isolated the EOG waveforms caused by eye
movements in both the right and left eyes, together with their scalp distribution in the
region close to the right and left eye respectively. The method also enabled the extraction
of a number of EPs components related to the performance and generation of saccadic eye
movements, and their scalp distribution to be obtained. These were: the frontal and
occipital pre-saccadic potentials, and the lambda wave. These potentials had their peak of
activity in the frontal and occipital region of the cerebral cortex. The occipital pre-saccadic
potential was found to occur about 30 ms after the frontal one. This finding suggested that

the occipital pre-saccadic potential is an efferent feedback or copy from the frontal areas
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for saccade generation. Three sub-components were extracted from the occipital area of the
cerebral cortex. These appeared immediately after the saccade onset and ended shortly
after the saccade offset (about 300 ms after stimulus). The fact that the occipital pre-
saccadic potential and the following three sub-components were extracted separately
suggested that they were generated by independent neural processes. This could not have

been detected without the application of a signal source separation technique.

The characteristics of the lambda wave features depend on factors such as the saccade
duration or the viewing angle (&, shown in Fig.4.4 in chapter 4). In our study, where a
short duration of saccade (about 20 ms) was used, we did not observed the feature f; in
either time-synchronised or not time-synchronised averaged lambda waves. This was in
accordance with the observations made in [1.5] where the feature f; was observed only in
the averaged EEG waveforms of a subject for a longer duration of saccade (75 ms to 100
ms). However, in our study this feature became visible for the short duration of saccade
(about 20 ms) when BS_ICA was applied to the time-synchronised averaged waveforms.
In the study reported in [1.5] they did not observed the feature f; for such small duration of
saccade. This could not have been observed without the application of a signal source
separation technique such as BS_ICA. The results revealed valuable information about the

brain mechanisms involved in performing saccades.

Novel techniques were devised in order to improve the performance of BS_ICA for

extracting the lambda wave EP component.

In chapter 6, a method was devised to increase the effective length of the EEG waveforms
processed by BS_ICA, in order to enhance their stationarity property and thus to make
them more suitable for BS_ICA signal separation. This involved abutting EEG traces from
an appropriate number of successive trials (a trial was a set of waveforms recorded from 64
electrode locations in a experiment involving a saccade performance). The analysis was
initially carried out on artificially mixed waveforms. This allowed the approaches to be
quantitatively assessed by comparing the extracted BS_ICA components waveforms to the

original signal waveforms. The correlation coefficient (o) and euclidean distance (&)

parameters were used to quantitatively assess the similarity between the original and

recovered waveforms. This demonstrated that the effectiveness of BS_ICA for extracting
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the EEG waveform from the mixtures gradually improved (i.e. o closer to 1, € closer to 0)

when the signal length was increased (by abutting process) from 256 data points (i.e. 1
trial) to 1024 data points (i.e. 4 trials). This may be because the components of the
artificially generated signal mixtures (i.e. the EOG waveform and the EEG waveform with
main lambda wave characteristics) are short-duration transient signals and the abutting of
the waveforms to increase their lengths improved their stationarity. As BS_ICA relies on
the stationarity of the signals, the abutting process therefore provided a means to make the

waveforms more suitable for processing by BS_ICA.

The analysis was then extended to the not-abutted and abutted 22 time-synchronised
averaged waveforms and the performance of the two approaches (not-abutted and abutted)
was evaluated and compared for extracting the lamda wave across the 7 subjects. One
spatial and 5 temporal features of the lambda wave were monitored to assess the
performance of BS_ICA applied to both abutted and not-abutted waveforms. BS_ICA
applied to abutted trials managed to extract all 6 features across all the 7 subjects included
in the study. This was not the case when BS_ICA was applied to the not-abutted trials,
where it managed to extract some of the features in only some of the subjects. Moreover,
the both temporal and spatial features of the lambda wave extracted were preserved more
accurately when BS_ICA was applied to the abutted waveforms. These results
demonstrated that the abutting of the trials is an effective mechanism for improving the
performance of BS_ICA in extracting evoked potentials from the recorded EEG

waveforms.

In summary, the four approaches investigated were ranked in the following order of
decreasing effectiveness for extracting the lambda wave.

i) BS_ICA applied to abutted, averaged waveforms with time-synchronisation.

ii) BS_ICA applied to not-abutted, averaged waveforms with time-synchronisation .
iii) Not-abutted, averaged waveforms with time-synchronisation.

iv) Not-abutted, averaged waveforms without time-synchronisation.

In chapter 7, a model that represented the temporal characteristics of a saccade-related EP
called the lambda wave was developed and was incorporated into the BS_ICA algorithm.
The developed method consisted of utilising prior information about the time characteristic

features of the lambda wave, and the use of this information in order to guide the algorithm
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to extract the EP component of interest (the lambda wave). The performance of this model-
based BS_ICA approach was quantitatively assessed, and its effectiveness was compared
to that of the conventional (without prior information, i.e. model-less) BS_ICA algorithm.
The performance evaluation of the two BS_ICA approaches (i.e. with and without model)
was carried out by using artificially mixed waveforms and the 22-averaged EEG
waveforms. In the case of artificially generated mixtures, it was shown that the model-
based BS_ICA approach performed significantly more effectively than conventional
(without model) BS_ICA approach for extracting the lambda wave component, specially in
the case of severe contamination of the lambda wave by the EOG. It was also observed that
the incorporation of the model into the BS_ICA did not deteriorate the recovery of the

EOG component from the mixtures.

For the case when the BS_ICA approaches were applied to the 22-averaged EEG
waveforms, the model-based BS_ICA managed to extract successfully the five monitored
lambda wave features in all 7 subjects. This was not the case when the conventional
(without model) BS_ICA approach was used, where the five monitored features of the
lambda wave were visible only in some of the subjects and were more distorted than when
model-based BS_ICA was used. The results indicated that the incorporation into the
BS_ICA algorithm of a temporal model of the lambda wave improved its signal source

separation ability for extracting the lambda wave.

The characteristics of the developed model-cost function were also investigated. The
results showed that the introduction of a smoothing factor into the model cost-function

improved the stability of the BS_ICA-model based algorithm.

In chapter 8, a recursive least-squares based non-linear PCA (NLPCA) algorithm was used
to carry out the analysis of the 22 spatially-averaged saccade-related waveforms so as to
extract the lambda wave. The results were compared with those obtained using the
methodology based on the ICA algorithm of Bell and Sejnowski. The results showed that
the NLPCA algorithm was effective in extracting components with the main lambda wave
features. A number of components were extracted from the parieto-occipital area of the
cerebral cortex. Some of these had the main characteristics of the lambda wave but showed
some variations in their time courses. The peak activities of the components were localised

in distinct regions of parieto-occipital area. For each lambda wave peak activity identified
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over the left hemisphere a symmetrical peak of activity was observed over the right
hemisphere. This symmetry may be because both eyes followed the same target stimulus
(red square on checkerboard). A comparison of the lambda wave peak activities obtained
using the two methods indicated that NLPCA identified a number of distinct lambda wave
sources within the parieto-occipital area while BS_ICA treated the whole region as one
source. The application of NLPCA to the recorded averaged waveforms provided further
insight into the saccade-related data and assisted in understanding the possible brain

mechanisms involved during the generation and performance of saccadic eye movements.

In chapter 9, a procedure was implemented to automate the identification of single-trial
saccade-related lambda waves. The effectiveness of a fuzzy c-means clustering method
was investigated for identifying lambda waves extracted by BS_ICA. The BS_ICA-
extracted single-trial waveforms for the 50 trials were visually inspected and were
separated into 390 lambda waves and 600 non-lambda waveforms. Each waveforms was
represented by one spatial and three temporal features. These features were then processed
independently by the implemented fuzzy c-means pattern recognition algorithm in order to
identify the single-trial lambda waves. It was shown that this method cofrectly identified
the lambda waves with an accuracy of 97.4% in accordance with visual inspection results,

as shown in Fig.10.1.

Pattern Lambda waves Non- lambda waves

Regnition Correctly Mis- Un- Correctly Mis- Un-

Method classified | classified | Classified | classified | classified | Classified
(%) (%) (%) (%) (%) (%)

Fuzzy c-mean

clustering 97.4 1.02 1.54 78.5 12.5 9

algorithm

Fig.10.1 Results of the single-trial BS_ICA-extracted lambda waves
classification for the fuzzy c-means clustering approach.

The results demonstrated that the fuzzy c-means clustering method provided a effective
means to automate the identification of the single-trial lambda wave components extracted
by BS_ICA.

163



10.3 Thesis conclusion‘

The study led to the development of procedures based on signal source separation
techniques that facilitated the extraction of saccade-related evoked potentials (EPs) from
recorded mixtures and thereby contributed towards improving the clinical understanding of
vision when moving the eyes. Saccade-related evoked potential (EP) signals contained
within the recorded electrical activity of the brain (EEG mixtures) have amplitudes that are
typically several times less than the obscuring background electroencephalogram (EEG).
Moreover, the saccade-related EP signals are susceptible to contaminations from various

electrophysiological signals.

When dealing with saccade-related EEG waveforms, the ability to filter the contaminating
electrooculogram (EOGQG) signal from the recorded EEG is essential for an accurate EPs
estimation and clinical interpretation to be carried out. The ability to quantitavely assess
and compare the performances of four ocular artefact (OA) removal algorithms from the
EEG was demonstrated by devising a procedure that enabled the similarity between the
EEG waveforms before contamination by OA and the contaminated EEG waveforms
following their processing by an OA removal method to be measured. The devised
procedures made it possible for the performances of the four algorithms for OA removal to
be quantified and compared. They also enabled the significance of the difference between

their performances to be assessed and compared.

For saccade-related EPs estimation and analysis, the ability to preserve the time features of
the recorded EEG waveforms prior to averaging is essential. An iterative time-
synchronisation procedure that time-synchronised the recorded waveforms across trials
with respect to the eye movement was devised. The iterative time-synchronisation
-procedure preserved more effectively the features of the eye movement and of the signals
components that were time-locked to it (e.g. lambda wave). The results indicated that the
devised iterative time-synchronise averaging method was a valuable operation to be

performed on the recorded waveforms prior to averaging.

The ability to separate components from the EEG mixtures recorded from electrodes

placed on the sCalp is essential for clinical neurophysiology. The effectiveness of a signal
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source separation technique called independent component analysis (BS_ICA) was
demonstrated by extracting a number of EP components related to the performance and

generation of saccadic eye movements from the recorded mixtures.

The conformation of the recorded waveforms to the BS_ICA algorithm assumptions is
essential if these waveforms are to be analysed using an BS_ICA algorithm. The ability of
a novel method of averaging devised to enhance the stationarity property of the recorded
waveforms and thus to make them more suifable for BS_ICA signal source separation, was
demonstrated. This method involved abutting a number of successive EEG recording
(trials) and then performing the averaging process on the abutted trials. It was
quéntitatively demonstrated that BS_ICA performance for extracting the lambda wave was

significantly improved when it was applied to the abutted trials.

A template-model that represented the temporal characteristics of the lambda wave was
developed and its incorporation into the BS_ICA signal separation operation was
investigated. The effectiveness of the developed model-based BS_ICA method was
demonstrated by quantitatively assessing its performance in extracting the lambda wave. It
was demonstrated that the incorporation into the BS_ICA algorithm of a temporal model of
the lambda wave improved its ability to extract the lambda wave from the EEG

waveforms.

It can be a very time-consuming and tedious task to visually inspect the BS_ICA-extracted
components one by one, in order to identify the EP components. The ability to quickly and
accurately identify the lambda waves amongst the BS_ICA-extracted components is
therefore valuable. The effectiveness of a fuzzy c-means clustering method for this task
was investigated. The results showed that the method identified the single-trial lambda

waves with an accuracy of 97.4%.

A recursive least-squares based non-linear PCA (NLPCA) algorithm was used to carry out
fufther analysis of the 22 spatially-averaged saccade-related EEG waveforms. The
NLPCA-extracted components were compared with those obtained using the methodology
based on the ICA algorithm of Bell and Sejnowski. The results showed that the NLPCA
algorithm extracted a number of EP components with the main features of the lambda

wave from the parieto-occipital area of the cerebral cortex with peak activities localised in
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distinct and symmetrical regions on both hemisphere of the parieto-occipital area.
Comparing these results to that of BS_ICA lead to the conclusion that NLPCA considered
distinct regions of the parieto-occipital area of the cerebral cortex as being separate sources

of the lambda wave where as BS_ICA treated the whole region as one source.

The progress made so far in applying signal source separation based techniques to the
recorded saccade-related EEG waveforms provided an excellent foundation for further

investigations. The following sections will suggest ways to continue this work.

10.4 Suggestions for future work

The effectiveness of the BS_ICA-based algorithm could be improved in two main areas.
These are (i) investigating the ability of non-linear BS_ICA to unmix EEG waveforms as
EEG signal can contain linear as well as nonlinear mixtures and (ii) devising techniques
(mainly based on Bayesian mathematical approach) which will enable prior information
about both the temporal and spatial characteristics features of the signal components of

interest to be incorporated as part of the BS_ICA operation.
10.4.1 Non-linear ICA

In applying ICA, it is generally assumed that the mixing process is linear. However, the

signal components making up the EEG waveforms propagate through complex media.
There is evidence that these components can interact producing both linear as well as
nonlinear mixtures. For example, in a study the presence of quadratic phase coupling (i.e.

quadratic nonlinearitties) has been observed in EEG during various vigilance states [10.1].

The use of linear ICA in situations where nonlinear mixing processes are involved can

result in distortion of the extracted components.

A number of nonlinear algorithms have been reported. A brief review of these algorithm is

provided in Table 2.1c in chapter 2. For example [2.66] described an algorithm which
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deals with nonlinear mixtures in two stages. The first stage deals with the effect of

nonlinearity. This then followed by linear signal source separation.
10.4.2 A Bayesian-based model approach to ICA

In EEG signal processing, there usually exists prior information about some characteristics
features of the components of interest. For example their approximate scalp distributions
and temporal features may be known. Inclusion of this prior information as part of the
unmixing algorithm may significantly improve the accuracy of the signal source

separation.

In order to be able to use the prior information as part of the ICA algorithm, it needs to be
formulated in a suitable mathematical form. Bayesian approaches are suitable for this task
as the theory behind them is well developed and they have successfully been applied to
numerous scientific problems (for example, differentiation of schizophrenic subjects from

normal controls, [3.5]).

Thé use of Bayesian approaches as part of the ICA algorithm provides a number of distinct
advantages which include: (i) the assumptions that go into finding a solution are made
explicit. (ii) the prior knowledge about a specific problem is expressed in terms of
probabilities that must be evaluated. In [10.2] for example, the technique of signal source
separation was reformulated within the Bayesian framework for the application to the
accoustic domain in order to solve the inverse problem by simultaneously performing
source separation and localisation. An algorithm was developed that utilises information
regarding both the statistics of the amplitudes of the signals emitted by the sources and the
relative locations of the detectors. The Bayesian approach provided a means for

incorporating prior information into a source model.

This work will result in techniques which will make the EEG a more effective tool in
clinical neurophysiology. Furthermore, the processing of saccade-related EEG waveforms
using ICA will result in improvements in the understanding of the signal components and

mechanisms involved when saccades are performed.
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10.4.3 Final remarks

The application of the technique of ICA to the EEG is a relatively new area in biomedical
signal processing. The suggested future work will utilise nonlinear ICA and Bayesian
approaches to improve the accuracy of ICA applied to EEG. Although the Bayesiah theory
is well developed, the process of formulating the features of the EEG signal components of

interest and incorporating the resulting data as part of ICA requires further development.

The use of nonlinear ICA can reveal information about the properties of the mixing
processes involved in saccade-related EEG waveforms. As the investigation is based on
saccade-related EEG waveforms, the approaches devised in this study will also provide
further insight into the human vision mechanisms involved in the performance of saccadic

eye movements.

There are a number of other issues that could be subject to further investigations. As pointed
out in chapter 2, ICA methods rely on several model assumptions that may not always be
satisfied or may be inaccurate when dealing with real world data such as EEG/ERP/EP

signals.

For example, EPs and ERPs are short transient signals that may not be stationary, i.e. they
may appear, disappear in which case their statistical properties may vary with respect to
time. In these cases, the weight matrix W may change completely from one time point to the
next. Although researchers have started to work in this area of research (see Table 2.1 Part
D), further investigations are still required to develop methods that can help the ICA

algorithms to efficiently adjust to their changing environment.

Another example is the case where propagation delays may be introduced during the mixing
process, thus resulting in the mixing transformation W not being instantaneous. Researchers
have started to work in this area of research (for a sample of work reported in this area, see
Table 2.1 Part B). From literature, it emerges that for applications where the propagation
delays are negligible such as in the case of EEG/ERP/EP signals, the instantaneous mixing
model may be appropriate. However, it may still be worth investigating whether delays may
be of significant impact when dealing with the analysis and estimation of saccade-related

brain signals.
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ICA is a relatively new area of digital signal processing which can be of great benefit to
biomedical engineering. The proposed future work provides a timely opportunity to make

this technique improve the usefulness of EEG in clinical neurophysiology.
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put impedance condition. The two sets of solutions for the opti-
‘sed feed network are shown in Table 1.
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Fig. 2 Simulated and practical results of dual-feed square microstrip
atch antenna
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ig. 3 Simulated results for LHCP and RHCP designs
Axial ratio
Radiation pattern
J— LHCP
X— RHCP

able 1: Two sets of solutions for optimised feed network

1121 |0 | Z5 |63] Z3' | 04| Zg | Zy [Vo/Vyl|arg(Va/Vy)| CP
311135.011.96|132.4(0.81135.211.16 {134.3| 50-0.5i | 0.97 86 RH
.2(137.4/10.74(137.1}2.3135.7|1.97]138.6]49.5+0.5i| 1.08 89.7 LH

As can be seen in Table 1, it is possible to use an average value
impedance for all four feed lines as this value is within the
sign and typical manufacturing tolerances. This makes the
ign particularly attractive as the effect of the step discontinuity

eliminated and also spurious radiation is reduced.

Practical and simulated (full-wave analysis software) results for

e reflection coefficient of the LHCP solution using 137.2Q are
own in Fig. 2 and indicate that a good matching condition at
GHz has been obtained.

The simulated results of the axial ratio and radiation pattern of

¢ LHCP and RHCP designs are shown in Fig. 3 with a good
‘al ratio and the expected radiation patterns.

nclusion: 1t has been shown that the design of a dual-feed net-
rk for a square patch antenna for circular polarisation involves

t variables and that a closed form solution to the problem
not be obtained. An MGA with specified constraints has been

essfully implemented to optimise the design of a dual-feed net-
k. A feed network with single feed impedance has been real-
d. The practical and simulated results for the return loss, axial
io and radiation pattern show good agreement and confirm the
idity of the approach.
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Independent component analysis of
saccade-related electroencephalogram
waveforms

L. Vigon, R. Saatchi, J. Mayhew, N. Taroyan,
J. Frisby, D. Johnston and O. Pascalis

A methodology based on the signal separation technique of
extended independent component analysis (ICA) is devised to
analyse saccade-related electroencephalogram (EEG) waveforms.
‘The methodology enables saccade-related components to be
successfully extracted from the EEG mixtures and the brain
regions responsible for their generation to be identified.

Introduction: Saccades are rapid changes in the orientation of the
eyes that are used to realign the visual axes on -objects of interest.
Dysfunction in this system may lead to difficulties in various vis-
ual functions such as depth perception and reading. Different neu-
ral signal components are involved in preparation and execution
of saccadic eye movements. One of these is described as a pre-sac-
cadic potential related to motor commands for saccade genera-
tion. Others, such as effcrent feedback from saccade generating
centres to visual cortex, are believed to provide visual stability of
the surrounding world across the eye movements. The saccadic
movement is accompanied by an EEG signal associated with vis-
ual information processing called the lambda-wave [1].

The investigation described in this Letter required the obscuring
ongoing background EEG as well as the electrooculogram (EOG)
signal caused by eye movements to be separated from the saccade
components of interest. A popular signal separation technique is
independent component analysis (ICA) [2]. ICA is an extension of
principal component analysis (PCA) that deals with higher-order
statistical dependencies. It is based on the assumption that the sig-
nal sources are statistically independent. The extended version of
ICA (hereafter referred to as ICA) can handle both super- and
sub-Gaussian signals [2]. In this Letter, an analysis of the saccade-
related EEC waveforms is carried out by applying an ICA-based
procedure. The study provides information about how the brain
deals with the problem of vision with moving eyes.

Experimental procedure: EEC and EOG data were recorded for six
healthy human adults using a network of 64 silver-silver chloride
electrodes. All electrodes were referred to the vertex. The data
were filtered (bandpass frequency range from 0.1 to 100Hz) and
digitised with a sampling rate of 250. The subjects were instructed
to fixate a red square that appeared randomly on the screen of a
computer at one of five predefined checkerboard locations: centre,
left, right, up and down. For each location 50 trials were recorded.
The duration of each trial was 2s.

Analysis procedure: The recorded signals were digitally lowpass fil-
tered at 45 Hz and their baselines were adjusted to zero. To pre-
serve the saccade-related EEG components, the waveforms in each
trial were time synchronised with reference to the EOG signal in
that trial. The synchronised averaged waveforms were decorrelated
using PCA and sphered [2]. The EEG waveforms recorded from
the locations close to the international 10-20 system of electrode
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waveforms and enabled the ICA algorithm to operate more ettec-
tively. The back-projection technique described in [2] was used to
obtain the scalp distribution of the extracted ICA components. As
ICA is subject to amplitude scaling, the magnitude range for
extracted components was estimated by considering both the
amplitude of the averaged waveforms and the relative magnitude

of the extracted components.
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Fig. 1 Extracted EOG left waveform
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Fig. 2 Pre-saccadic potentials extracted from frontal (top) and occipital
(bottom) areas

Results and conclusion: For this Letter, only results for the saccade
to the left are reported. Figs. 1 — 3 show the waveforms for one
ubject, although similar waveforms were observed in the other
ubjects. The colour shading reflects the relative strength of an
itracted component at various scalp regions. In all Figures, the
nset of stimulus is shown at Oms. Fig. 1 shows a component
ith peak activity close to the left eye. It had the characteristics of
saccadic eye movement because of its sharp transition at ~200ms
saccade onset) after the stimulus onset. A similar component (not
hown) was extracted from a region close to the right eye. The

* © IEE 2000

two potentials exiracied Irom tne Irontal (1Op pICLlure) anu owipi-
tal (bottom picture) areas. These occurred shortly prior to the sac-
cade onset. The frontal pre-saccadic potential is believed to be
related to motor commands preceding voluntary saccades [4]. The
occipital pre-saccadic potential was found to occur ~30ms after
the frontal one. This finding suggested that the occipital pre-sac-
cadic potential is an efferent feedback or copy from the frontal
areas for saccade generation. This is believed to be a prerequisite
for visual stability during eye movements [S].
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Fig. 3 Lambda wave component

Fig. 3 shows three sub-components (indicated by arrows)
extracted from the occipital area. These appeared immediately
after the saccade onset and ended shortly after the saccade offset
(~300ms after stimulus). These are associated with visual informa-
tion processing triggered by the relative movement of visual field
features across the retina during a saccade [3]. The fact that the
occipital pre-saccadic potential and the following three sub-com-
ponents were extracted separately indicated that they were gener-
ated by independent neural processes. This could not have been
detected without the application of a signal source separation
technique.

An ICA-based methodology enabling saccade-related EEG
waveforms to be successfully extracted has been described. Con-
sistent results were obtained for six subjects. The study revealed
valuable information about the brain mechanisms involved in per-
forming sactades.
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Quantitative evaluation of techniques for ocular artefact

filtering of EEG waveforms

L.Vigon, M.R.Saatchi, J.E.W.Mayhew and R.Fernandes

Abstract: The clectrical dipoles of cyes change by eye movements and blinks, producing a signal
known as an clectrooculogram (EOG). A fraction of EOGs contaminate the clectrical activity of the
brain (clectroencephalogram, EEG). Ocular artefact (OA) is a collective term used to represent EEG
contaminating potentials caused by cyc movements and blinks. A procedure for quantifying the
cffectivencss of an algorithm for removing OA from the EEG was devised. This enabled the similarity
between the EEG waveforms before contamination by OA and the contaminated EEG waveforms
following their processing by an OA removal method to be measured. Four methods for OA removal
were included in the study: extended independent component analysis (ICA), joint approximation
diagonalisation of cigenmatrices (JADE), principal component analysis (PCA) and EOG subtraction.
The operation of JADE and ICA is subject to amplitude scaling and channel permutation.
Procedures were incorporated to estimate the amplitude of the recovered EEG waveforms and to
allocate them to the correct channels. It was demonstrated that the signal separation techniques of
JADE and extended ICA were more cffective than EOG subtraction and PCA for removing OA
from the EEG. EOG subtraction was shown to causc aticnuation of the recovered EEG wavcforms.
The cffect of additive Gausstan noisc on the performance of the four OA removal methods was also
investigated. This indicated that the performance of the methods was unaffected by an additive

Gaussian noise source, as long as the signal-to-noisc ratio remained above 50.

1 Introduction

The study of electrical activity of the brain (clectroencepha-
logram. EEG) is a tool which gives an insight into the
brain and its abnormalitics. The first reported observation
of EEG was made by Caton [1]. Berger [2] was the first to
observe EEG in human subjects by putting electrodes on
the scalp. Since tixen ihere have been significant advances in
both recording and interpretaticn of EEG waveforms. The
recording of EEG is sometimes time-locked to the oceur-
rence of discrete stimuli (events). The stimuli can be visual.
auditory or cognitive processes  triggered by external
sources. They cause voltage fluctuations within the EEG
that arc known as cvent-related potentials (ERPs). ERPs
have been extensively studied in order to improve the
understanding of sensory organs and to diagnose a number
of brain-related disorders including schizophrenia [3, 4].
EEG can be contaminated and thus obscured by various
noisc sources. The noisc generated from the recording sys-
tem-can be significantly reduced by a carcful design of the
system and by following appropriate signal recording pro-
cedures.- EEG can also be contaminated by a number of
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clectrophysiological signals, the largest of which is the clec-
trooculogram (EOG). The human cyc contains an clectrical
dipole caused by a positive cornea and negative retina. Eye
movements and blinks change the dipole causing an clectri-
cal signal known as an EOG. The shape of the EOG wave-
form depends on factors such as the direction ol cye
movements. Vertical eye movements (cycs moving up and
down) produce a square-like EOG waveform while blinks
causc a spike-shaped waveform.

A fraction of the EOG spreads across the scalp and it is
superimposed on the EEG. ‘Ocular artefacts’ (OA) is a
collective term used to describe a number of EEG contam-
inating voltage potentials caused by eyc movements and
blinks [5]. In order for the EEG to be interpreted for clini-
cal use, OAs nced to be removed (filtered) from the EEG.
Analoguc and digital filters arc not cficctive for this

- purpose, as EEG and EOG signals occupy a similar

frequency ‘band (covering a range close to DC to about -
100Hz). :

One of the carliest methods for OA removal was based
on the use of potentiometers to balance out the effect of
vertical and horizontal cyc movements [6]. The required
adjustments were made manually by observing the EEG
and thus they were subjective. A software based OA
removal method was proposed by Quilter ¢r «al. [7). The
method, known as EOG subtraction, involves subtracting a
fraction of the EOG from the contaminated EEG. Its oper-
ation is based on the assumptions that: (i) the recorded
(contaminated) EEG is a lincar combination of the original
(i.c. uncontaminated) EEG and OA, (ii) the contaminating
OA can be estimated from the EOG, and (iii) there is no
correlation between the original EEG and the EOG signals.
The method can casily be implemented but it causes distor-
tion of the recovered EEG. This is because a [raction of the
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In order to improve the performance of the EOG sub-
traction method, a technique referred to as ‘multiple source
eye correction’ was developed by Berg and Scherg [8]. They
estimated the component of the recorded EOG that was
not contaminated by the EEG. A fraction of this compo-
nent was then subtracted from the recorded EEG. The
method, however, required an accurate modelling of propa-
gation paths for the signals involved.

Adaptive digital filters have also been used for OA
removal. For example, Rao and Reddy [9] developed an
online method of OA removal system based on this
approach. They used a nonlinear recursive least-square
algorithm to train an adaptive digital {ilter. The main limi-
tation of the method was the need for a suitable EOG ref-
erence model for adapting (training) the filter.

Principal component analysis (PCA) [10] is a well known
decorrelation  technique and has provided another
approach for OA removal from the EEG. PCA enables an
epoch of a multichannel EEG to be decomposed into line-
arly uncorrelated components on the basis of their spatial
distribution across channels. By omitting unwanted compo-
nents (such as OA) from the linear combination, a less con-
taminated EEG can then be reconstructed. Lagerlund ef al.
[11] developed a variation of this technique, in which the
PCA coefficients were stored in a single matrix. This
allowed the matrix to be calculated on the basis of one rep-
resentative epoch that contained the artefacts to be
removed. The matrix was then applied to the subsequent
EEG epochs, without repcating the PCA operation. The
limitations of the PCA approach are that: (i) it is unable to
completely scparatc OAs from the EEG, especially when
both waveforms have similar voltage magnitudes, (i) it
requires the distribution of the signal sources to be orthog-
onal, (iif) its effectivencss is limited to decorrclating signals
and thus it cannot deal with higher-order statistical depend-
encies.

In order to overcome the limitations of PCA, Makeig ¢t
al..[12] applied independent component analysis (ICA) for
removing artefacts from the EEG. ICA is an extension of
the PCA which not only decorrelates but can also deal with
higher-order statistical dependencies [13]. Bell and Sejnowski
[14] proposed an information-theoretic-based ICA algo-
rithm that uses an unsupervised learning rule. It finds a lin-
ear transformation within the data to make the separated
signal components as statistically ‘independent’ as possible.
The technique does not need « priori knowledge of the
physical location or the configuration of the sources and,
unlike PCA, it docs not require the distribution of the sig-
nals sources to be orthogonal. However, for it to function
correctly, the signal sources must be statistically independent
and the distribution of not more than onc source can be
Gaussian. The EEG signal sources represent the signals pro-
duced by the various signal gencrators of the brain and not
the recorded EEG signals that represent a mixture of brain
electrical activities from many sources. The ICA algorithm

" applied by Makeig er al. [12] is suitable for sources with
super-Gaussian distribution (i.c. irregularly occurring signals
with sharply peaked distributions and positive kurtosis). Lec
and Sejnowski [15] extended the ICA algorithm to make it
also suitable for signal sources with sub-Gaussian distribu-
tion (i.e. signals with negative kurtosis). Jung et al. [16]
applied the extended ICA algorithm to isolate and remove a
variety of EEG-contaminating artefacts.

An alternative approach for signal source separation was
proposed by Cardoso [17]. The method is based on the
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cal properties of the signals based on thexr fourth order
cumulants. Like ICA, this algorithm also requires the
sources to be statistically independent and, at most, the dis-
tribution of one source can be Gaussian [18].

An investigation to analyse residual ocular artefacts sub-
sequent to ocular artefact removal from the EEG has been
carricd out in another study [19]. In this study, however, a
method to quantitatively evaluate the cffectivencss of an
algorithm for OA removal from EEG wavclorms was
devised. The method was uscd to cvaluate and compare the
performance of extended ICA, JADE, PCA and EOG sub-
traction methods for removing OAs from the EEG. EOG
subtraction was included because it is a well known
method. PCA was included in order to investigate the need
for considering the higher statistical dependencies in OA
removal process. Extended ICA and JADE were included
as they are well established signal source separation tech-
niques. Both extended ICA and JADE are based on infor-
mation theoretic principles, however ICA uses entropy
while JADE cxploits the fourth-order cumulants [20]. EOG
subtraction, PCA and ICA have all been previously applied
to the problem of OA removal, however the aim of this
study is to extend the information available by providing a
quantitative evaluation and comparison of their (including
JADE) performance based on a series of statistical tests. As
the operations of JADE and extended ICA are subject to
amplitude scaling and channel permutation, procedures
were incorporated as part of these two methods to estimate
the amplitude of the separated signals and to allocate them
to the correct channels.

Initially, a brief description of the theory of the four
methods is provided. Then the experimental procedures are
outlined and the results obtained are discussed.

2 Theoretical review of the four OA removal
methods

2.1 EOG subtraction

The operation of EOG subtraction method for removing
OA from an EEG waveform consisting of N data points is
outlined in this Section. The contaminated EEG waveform
(EEG,) can be expressed as the sum of the original EEG
(EEG) and a fraction () of the EOG waveform, i.e.

EEG. (i) = EEGy(i) + 6EOG() i=1,2,...,N
(1)

The correlation (at zero lag) between the EOG and con-
taminated EEG waveforms is given by

N
correlation = Z EEG. (i) EOG() (2)
i=1

Substituting EEG.. from eqn. 1 into eqn. 2 results

correlation = Z EEG( )EOG i)+0 z EOG(z

=1 =1
3)
Equating eqns. 2 and 3 provides
Z EEG.(i)EOG(i) Z EEG(i)EOG (i)
i=1 i=1
N
+0) EOG(i)? (4)
=1
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X, EEG(i) EOG(i) = 0. This simplifies cqn. 4 and from it
the value of 6 can be determined by

i EEG.(i)EOG(i)

= ®)
5 EOG(i)?
i=1

The original EEG wavelorm can be obtained by inserting
6 in eqn. 1. Therefore,

- EEGo(i) = EEG.(i) —EOG() i=1,2,...,N
(6)

2.2 Principal component analysis

Principal component analysis (PCA) is a multivariate data
analysis procedure that transforms a set of n correlated
variables, X = (x;, X5, ..., X;,), into a set of uncorrelated
variables called principal components (p;, ps, -, p,) [10].
The first principal component accounts for most of the
variability in the data, while each of the succeeding compo-
nents in turn account for the highest amount of the remain-
ing variability. Each principal component is a linear
combination of the variables, X. The ith principal compo-
nent can thus be expressed as

Y. = e;FX (7)

where ¢; is the eigenvector of the covariance matrix (R) of
X (¢ is the transpose of ¢;). The variance of the ith princi-
pal component is given by

Var(Y;)=elR e=)\; i=12,....,n (8)
where]i is the ith eigenvalue.

r 1-1 F---==-n l
S1<—9n | "I-"-l‘-\—wn | Uy —» Y1 — learr(ying
% W rule
21 Lo | o ‘
12 b wy ! AR
] 11 [}
sp<-02; %2 T—L—w22 2 —v2 W
L-dL - ——f__—-,

Fig.1 Diagram to illsstrate the operation of 1ICA

- 2.3 Independent component analysis

The concept of ICA for a situation involving two signal
sources S is illustrated in Fig. 1. The mixtures X are gener-
ated by the operation

X =AS (9)

s=|a]x=2)

and the mixing matrix A4 is given by

A= [011 (112]

az1 (22

where

The aim is to estimate an unmixing matrix W which, in
turn, enables an estimate of the signal sources U to be
obtained by

U=WX (10)
where

ve[ ]l

w1 W22 u2
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(i) The unmixing matrix W is initialised to an identity
matrix.

(if) The signal sources are estimated by eqn. 10 and then
they are transformed by a nonlinear transfer function. For
a sigmoidal transfer function, the resulting signals (Y) are
expressed as

1

Y = g(U) = 1 + e—-(U+W())

(11)
where a is a vector of bias weights which is initialised to a
zero vector.

(iii) The nonlinearly transformed signals (Y) are processed
by a learning rule which maximises their joint entropy (i.c.
minimises their mutual information). This is achieved by
changing the weight matrix by the amount AW [14], where

AW = [WT)™ 4 (1 - 29)aT (12)

and the superscripts 7" and -1 represent matrix transpose
and inversion, respectively. The change in the bias weight is
expressed by [14]

Awg=1-2y (13)

(iv) The ICA algorithm is trained by repeating steps (ii) and
(iii). After each iteration the unmixing matrix W is updated
by AW until convergence is achieved. The algorithm stops
training when the rate of change falls below a predefined
small value, e.g. 1.0 x 107, The rate of change is computed
by squaring the difference between corresponding elements
of the unmixing matrix before and after each iteration and
then summing the values.

The ICA algorithm of Bell and Sejnowski [14] which uses a
sigmoidal activation function is specifically suited to sepa-
rate signals with super-Gaussian distribution (i.e. positive
kurtosis). Lee and Sejnowski [15] proposed an extension of
ICA that is able to scparate signals with sub- as well as
super-Gaussian distributions. This preserves the ICA archi-
tecture of Bell and Sejnowski [14] but it uses a learning rule
derived by Girolami and Fyfe [21]. It determines the sign
changes (positive to negative and vice versa) required by
the algorithm to handle both sub- and super-Gaussian
distributions. This is achieved by considering the normal-
ised fourth-order kurtosis (k) of the estimated signal
sources. In extended ICA, the amount of change (AW)
required to update the unmixing weight matrix W is given
by :
OH(Y) o1
AW W WwW'wW

= [I-sign(ks)(1 -2y —uuTW (14)
where WTW is the ‘natural gradient’ of Amari et al. [22]
used as an optimiser for speeding up the convergence.

For a detailed description of ICA and its extended
version, the reader may refer to the book by Lee [20].

2.4 Joint approximate diagonalisation of
eigenmatrices (JADE)

The second signal source separation technique used in this
study was the joint approximation diagonalisation of eigen-
matrices (JADE). A description of this method is provided
by Cardoso [17]. JADE algorithm exploits the fourth-order
moments in order to separate signals in a mixture. The
operation of JADE is outlined in the following:

(i) The covariance matrix (R,) of the mixtures is obtained.
This operation is based on the assumption that the signal
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“op :
the mixing matrix A Tlns cndblcs R lo be cxpxc%scd as R
= AA", where A’ is the Hermitian matrix of A. The whil-
ening matrix Q\ is computed by considering the wlnlemng
condition I = Q\R\Q\”. Replacing R, gives I =
0, AA”Q,f , where 7 is the identity matrix. This 1mphes
that Q.4 is a unitary matrix (¥) and therefore 4 can be
factorised as 4 = Q /.

(i) The mixtures are then whitened according to Z = Q X.
The whitened mixtures (Z) obey the linear model Z =
0.AS. Substituting for A gives Z = 0,0 #VS=VS.

(iii) In order to determine ¥, the fourth-order cumulants of
the whitened mixtures are computed. Their # most signifi-
cant eigenvalues (A) and their corresponding eigenmatrices
(M ) are determined. An estimate of the unitary matrix (V)
is obtained by maximising the criteria N = 4M; by means
of joint diagonalisation. If NV cannot be exactly jointly diag-
onalised, the maximisation of the criteria defines a ‘joint
approximate diagonalisation’.

(iv) An estimate of the unmixing matrix (W) is obtained by
W = Q.V. This is then used to compute an estimate of the
original signal sources U as shown in Fig. 2.

mixing |- whitening | 35 unitary
i, matrix X matrix z matrix _U,
A Qy \

Fig.2  Diagram 1o illustrate the operation of JADE

3 Experimental method

To quantify the effectiveness of each OA removal method,
the recovered EEG waveforms were compared with the

original (uncontaminated) EEG. A measurc of similarity

indicated how well the OA removal mcthod had per-
formed. The operation required the availability of the EEG
wavclorms belore and after OA contamination. Further-
more, extended ICA and JADE required the original signal
sources to be independent. The steps for satislying thesc
requirements are described as part of the overall experi-
mental method. The experiments consisted of: (i) compari-
son of the four OA removal methods based on single EEG
and EOG channels, (i) analysis of the effect of mixing
matrix values on the recovered (scparated) EEG wave-
forms, (iii) analysis of the effect of additive Gaussian noise
on the operation of the four OA removal methods, and (iv)
comparison of JADE and extended 1CA based on multiple
EEG and EOG channels.

3.1 Data recording procedure

The EEG and EOG data were recorded in an EEG data
recording room with subjects relaxed and fixating at a
white board. Four sets of EEG waveforms were recorded
from four subjects. Each sct consisted of thirty-two wave-
forms. By recording cach EEG data sct from a different
subject, the condition for independence of the signal
sources was satisfied. Thirty-two EOG wavclorms were
recorded from another subject. By recording the EOG data
from a separate subject it was cnsurcd that they had not
contaminated any of the EEG data scts. The subjects were
asked to avoid eye movements and blinks during cach
EEG recording in order to minimisc OA contamination.
EEG data were recorded from the scalp (location CZ in
accordance with the 10-20 standard clectrode positions).
EOG data were recorded using a pair of electrodes placed
adjacent to the right eye. The reference for both EEG and
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all recordings. The sampling rate was 125Hz and the
signals were band limited to 30Hz. Each waveform
contained 1250 data points (i.e. 10 seconds).

3.2 Generation of required signal sources and
mixtures
Mixing matrices used in this analysis are

0.8 0.2 0.5 0.2
A= [0.2 0.8] A2 = [0.3 0.5]

In order to carry out the analysis based on single EEG and
EOG channels, 32 pairs of EEG and EOG mixtures were
generated using the mixing matrix 4 = A4;. The mixing
operation was carried out by performing

EEG.] _ , [FEGo
EOG.| ~ | EOG,

where EEGy and EOG, were the original EEG and EOG,
respectively, and EEG, and EOG, were the resulting con-
taminated mixtures. The operation caused the original
EEG waveforms to be contaminated by one fifth of the
EOG (and vice versa). This mixing matrix was considered
appropriate as only a fraction of the EOG and EEG can
contaminate each other. The mixing operation resulted in
32 pairs of contaminated EEG and EOG mixtures.

The distribution of the EEG and EOG waveforms was
tested by the UNIVARIATE procedure using the Statisti-
cal Analysis System [23]. This indicated that the EEG
waveforms had a Gaussian distribution while the EOG
were not Gaussian. Therefore, the requirement for JADE
and ICA, where not more than one source can be Gaus-
sian, was not breached.

The 32 pairs of EEG and EOG mixtures generated using
the mixing matrix A = A; were also used to investigate the
cflect of additive Gaussian noise on the operation of the
four OA removal algorithms. Gaussian noise (band limited
to 50Hz) was added to the 32 pair of mixtures and then the
four methods for OA removal were applied to recover the
EEG waveforms. Statistical parameters (described in
Section 3.2) were calculated to determine the ability of each
method in recovering the EEG when contaminated by
additive Gaussian noise. For each test the results obtained
for recovering the 32 EEG waveform were averaged. The
experiment was repeated for ditferent amounts of noise.
The signal-to-noise ratio (SNR) values represented the
signal power (before addition of the noise) to the noise
power.

The mixing matrix 4 used in this analysis conformed to
a unity value for the sum of elements in its columns. To
investigate the cffect of not conforming to this condition,
the experiment for the recovery of EEG waveforms was
repeated using the mixing matrix 4 = A,.

The analysis based on multiple EEG and EOG channels
was carricd out by using the four EEG and EOG data scts.
The condition for independence of sources was ensured as
cach of the four EEG data scts had been recorded from a
different subject. The UNIVARIATE statistical procedure
[23] was used to test the EEG and EOG distribution. This
indicated that while the EOG data were not Gaussian, the
EEG data had a Gaussian distribution, and thercfore they
could not be considered as valid signal sources for ICA and
JADE algorithms. The required EEG signal sources were
obtained by transforming the recorded EEG data. The
transformation involved the following steps: (i) a DC offsct
was added to the EEG signals so that their minimum
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Fig.3  Typical distributions of transformed EEG waveforms

values became zcro, (i) they were squared and their mean
values were removed, (iii) the resulting signals were rescaled
to the original amplitude ranges, and (iv) the UNIVARI-
ATE statistical procedure [23] was applied to the trans-
formed EEG waveforms to cnsure they had the required
non-Gaussian distribution. Typical distributions of trans-
formed EEG waveform arc shown in Fig. 3.

Thirty-two sets, cach consisting ol live signal mixtures
were generated by carrying out the mixing operation,

FEEG,. EEG,
EEG,. EEG,;
EEG;. | = A | EEG3,
EEG,. EEGy;
EOG. EOG,

where EEG,. to EEG,, were the contaminated EEG signals
and the EOG, was the contaminated EOG. EEG),, to
EEG,, were the transformed EEG signals and EOG, was
the original EOG waveform. The mixing matrix 4 was
given by

0.5 0.125 0.125 0.125 0.125

0.125 0.5 0.125 0.125 0.125
A=10.125 0.125 0.5 0.125 0.125
0.125 0.125 0.125 0.5 0.125

0.125 0.125 0.125 .0.125 0.5 .

3.3 Procedures to enable JADE and ICA deal
with the problems of amplitude scaling and
channel permutation
JADE and ICA scale and may invert the rccovered signals.
Furthermore, the recovered signals may not appecar in the
correct channels (channel permutation). In order to deal
with the channel permutation problem, cach recovered sig-
nal was compared with each mixture and their correlation
oefficient was calculated. A recovered signal was then allo-
ated to the channel which corresponded to the highest cor-
lation coefficient value. The operation assumed that each
ixture contained a larger contribution from the original
ignal source than from the contaminating source. The pos-
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sible sign change (i.e. signal inversion) was corrected by
considering the sign of the correlation coefficient.

In order to estimate the amplitude of the recovered sig-
nals for both JADE and extended 1CA, a procedure pro-
posed by Cardoso [Note 1] was implemented. The steps are
outlined in the following for a case involving two signal
sources, however the method can be extended to situations
involving more than two sourcces:

(i) The inverse of the unmixing matrix W' was obtained.
This provided an cstimate of the niixing matrix. W= is

given by
w12
Wa2

(ii) The total contribution of each original signal source to
the mixtures was estimated from W-!. This required
summing the squared elements in each of its columns. The
resulting sums were square rooted and then multiplied by a
scaling factor (k). This produced a row vector, p =
kNOvd + wh), TeNowh + w)] . The squaring of the
clements was necessary to ensure negative values did not
cancel positive values during the summing process. The
scaling factor k; and k, were required to deal with the
mathematical inequality that, for any two values (x and y),
x + p # (2 + y?). The cexpression for &; (j = 1, 2) is given
by

w11

W= [
w21

2
> Wij
=1 ’

oy = —=l L
> :
wgl(wij)z

where 1w represents an clement (in the ith row and jth
column) of the matrix W-!. The unmixing matrix W was
rescaled by multiplying its columns by the corresponding
columns of the row vector p.

)

Note 1: Cardoso, J.-F.: Personal communication, 1998, (address: Ecole Nation-
ale Supeneure des Telecommunications, Telecom Paris, Department Signal, 46
rue Barrault, 75634 Paris Cedex 13, France
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In order to assess the performance of each OA removal
method, the similarity between the original and recovered
EEG waveforms was mecasured. This required quantifying
any change in the amplitude and shape of the waveforms.
The required measurements were carried out by using the
correlation cocfficient, standard deviation and Euclidean
distance paramcters. The justification for using these
parameters is provided by the following:

(i) Correlation cocefficient: This provided a measure of the
similarity in shape for the recovered and original EEG
waveforms. A value of | indicated that the recovered and
original waveforms had exactly the same shape. However,
this parameter did not provide any information about
amplitude changes. :
(ii) Standard deviation ratio: This was the ratio of the origi-
nal EEG standard deviation to that of the recovered EEG.
A value of 1 indicated that the original and recovered
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Fig.4 Typical plots
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b Original EOG

¢ Contaminated EEG

d Contaminated EOG
¢ Recovered EEG wavelorms using JADE
S Extended ICA .
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a loss 1n the recovered signal power. As both 1CA and
JADE scale the amplitude of the recovered signals, this
parameter indicated how well (for a particular mixing
matrix) the Cardoso’s amplitude estimation operates as
part of JADE and extended ICA algorithms.

(iti) Euclidean distance: This provided a measure of similar-
ity in both shape and amplitude. The Euclidean distance
between two signals (x and y) can be expressed as [24]

Fuclidean distance =

N
Z(xi - yi)? (16)
i=1

3.5 Statistical tests for determining the

significance of differences '
In order to determine the significance of the differences

between the performance of the four OA removal methods,
a number of tests were carried out using the Statistical

120

80

£ EOG subtraction
h PCA
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E-statistic test |25] to be carricd out on the mean values
(over thirty-two trials) for each of the three parameters
(correlation coefficient, Euclidcan distance and standard
deviation ratio) across the four OA removal methods. The
F-statistic was suitable because it tested the null hypothesis
that a significant difference did not exist between the means
for a given parameter. An F value close to | resulted in
accepting the null hypothesis, otherwise it was rejected.

Although the F-statistic indicated whether means were
significantly different across the four OA removal methods,
it did not however indicate which mean differed signifi-
cantly from the other means. In order for this to be deter-
mined, Tukey’s studentised range test [23] was performed.
This test was based on analysing the pairwise differences
between the means.

Al1lv 1WwoWIlLY VULdllllivi 1V J2 AL/ tULIW ALY LIVIRWE 2d A T Wi

computed after incorporating the amplitude estimation
procedure as part of their algorithms. The mixtures were
processed by the four OA removal methods in order to
recover the original EEG waveforms. The results are
described in the following Sections.

4.1 Single EEG and EOG data set analysis
This investigation used the signals generated with the mix-
ing matrix 4 = 4.

Typical plots for one pair of original EEG and EOG
waveforms, their mixtures and the recovered EEG wave-
forms following the application of the four OA removal
algorithms are shown in Figs. 4a-/.

The standdrd deviation ratio, Euclidean distance and
correlation coefficient values were computed for the EEG
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Fig.5  Plots of standurd deviation ratio (STDR), correlation coefficient and Eucllclcwz distance for different techniques

Top to bottom: JADE, extended-ICA, EOG subtraction, PCA
a~d STDR

e-h Corrd.mon cocficient

i-1 Euclidean distance

Table 1: Means and variances for the three parameters over 32 trials

Standard deviation ratio

Correlation coefficient

Euclidean distance

Methods
Mean Variance (x 103)  Mean Variance (x 103)  Mean (x 10%) Variance (x 1079)
PCA 1.45 3.0 0.95 2.2 1.59 17
Extended ICA 0.95 29.4 0.99 0.43 0.85 7.4
JADE 097 159 . 100 0.034 0.60 21
EOG subtraction 1.35 0.4 099 0.23 1.18 0.48
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provided in Table 1.

The following obscrvations were made for the standard
deviation ratio parameter. The EOG subtraction method
provided smallest variance and thus the highest consistency.
However, it was always larger than 1 indicating a loss of

amplitude in the recovered EEG. This confirmed the limi- ~

tation of the EOG subtraction method, in which the part of
the EEG which contaminates the EOG is also subtracted
from the recovered EEG, resulting in a loss of its amplitude
(this was first referred to in the Introduction, Section 1).
The PCA technique also reduced the amplitude of the
recovered EEG. This indicated that PCA could not com-
pletely separate the mixtures. This may be because PCA is
unable to deal with higher-order statistical dependencies.
For extended ICA and JADE, the standard deviation ratio
parameter assessed, not only their ability to separate the
signal components in the mixtures, but also the ability of
the Cardoso’s amplitude estimation in rescaling the sepa-
rated signals. The results show that JADE and extended
ICA, together with the Cardoso’s amplitude estimation
procedure, have provided an accurate recovery of the origi-
nal EEG waveforms.

JADE provided a correlation cocfficient closest to 1 and
a Euclidean distance value closest to 0. It was also the most
consistent (i.e. smallest variance) for these two parameters.

To determine the significance of the difference between
the observed means, two statistical tests were carried out by
using the analysis of variance (ANOVA) technique [23].
These were F-statistics and Tukey’s studentised range test.

The F-statistic test was performed for each measured
parameter (standard deviation ratio, correlation coefficient
and Euclidean distance) across the four OA removal meth-
ods. This indicated that significant differences (» < 0.0001)
existed between the means for cach of the three paramcters
across the four methods.

The Tukey’s studentised range test was then performed
to determine the sign (positive or negative) ol the pair-wise
differences between the means. This indicated whether a

- mean was significantly smaller or larger t]mn another
mean. The results are shown in Table 2.

Regarding the standard deviation ratio parameter, the
performance of PCA and EOG subtraction was signifi-
cantly different from JADE and extended ICA. The per-

With respect to the correlation coefficient parameter, the
performance of PCA was significantly different (smaller
mean) from the other three algorithms. The latter did not
show significant differences between their performances.
This parameter indicated that PCA was the least effective
in preserving the shape of the recovered EEG waveforms.

Considering the results for Euclidean distance parameter,
JADE and extended ICA differed significantly from PCA
and EOG subtraction, however they did not differ signifi-
cantly from each other.

4.2 Analysis to determine the effect of mixing
matrix

The results shown in Table 1 were obtained using a mixing
matrix that conformed to unity for the sum of elements in
its columns. To investigate the effect of not conforming to
this condition, the experiment was repeated using the mix-
ing matrix 4 = A,. The results are shown in Table 3.

Table 3: Performance evaluatlon results when the mixing
matrix A= A,

: Standar . .

vatods  dovaion  Comsion Gl
ratio .

PCA 3.15 0.89 2.93

Extended ICA 1.23 0.98 1.06

JADE 1.27 - 099 0.87

EOG subtraction 277 0.95 2.68

The results for standard deviation ratio (from Table 3)
indicated that JADE and extended ICA performed better
than PCA and EOG subtraction. Both PCA and EOG
subtraction methods resulted in a significant loss in the
recovered EEG amplitude. The results also showed that the
performance of the amplitude estimation procedure was
affected by the mixing matrix values. The results for corre-
lation coefficients were all still close to 1 indicating that the
values associated with the mixing matrix do not affect the
recovered signals’ shape. The experiment was repeated with
several other mixing matrices. The results were consistent
with these observations.

Table 2: Tukey's test (at level of significance 0.05) for pair-wise

differences between algorithms

Pair-wise differences between Star‘1d?rd Correlation Euclidean
the algorithms deylatlon coefficient distance
ratio

PCA- EOG subtraction s(+) s(-) s{+)
JADE s(+) s(-) s{+)
Extended ICA s(+) s{-) s{+)

EOG subtraction PCA s(-) s(+) s(~)
JADE s{+) ns(-) s(+)
Extended ICA s(+) ns(-) s(+)

JADE PCA s(-) s{+) s(-)
EOG subtraction s{-) ns(+) s(-)
Extended ICA ns(+) ns(+) ns(+)

Extended ICA PCA s(-) s(+) si-)
EOG subtraction s{-) ns(+) s{-)
JADE ns(-) ns(-) ns(-}

s = significant, ns = not significant
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of the four OA removal methods was also investigated. The

- plots for the observations arc shown in Figs. 6u—c. The
results indicated that the performances of all four algo-
rithms for OA removal degrade rapidly for signal-to-noise
ratios below 50.
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4.4 Multiple EEG channels analysis

. The results obtained for the data consisting of four sets of
thirty-two transformed EEG waveforms (EEG), to EEGy,)
are presented in Table 4. The mean value for each parame-
ter was obtained by averaging the results over thirty-two
waveforms. The results obtained were consistent with those
-obtained involving one set of EEG wavelorms. Only JADE
and extended ICA were included in this analysis because
they had performed significantly better than PCA and
EOG subtraction methods, when analysing onc set of EEG
and EOG data. ‘

* The devised procedures made it possible for the perform-
ances of the four algorithms for OA removal to be quanti-
fied and compared.

* Cardoso’s amplitude recovery method enabled the ampli-
tude of the recovered EEG to be estimated for both JADE
and extended ICA. However, the results were affected by
changing the values of the mixing matrix.

» The proposed correlation-based method provided a
means for dealing with the problems of channel permuta-
tion and sign changes problems associated with JADE and
extended ICA algorithms.

* JADE and extended ICA performed significantly better
than PCA. This could be because PCA only decorrelates
signals while JADE and extended 1CA attempt to make the
recovered signal components as independent as possible.

» The EOG subtraction attenuated the recovered EEG sig-
nals. This is because a fraction of the EEG that contami-
nates the EOG signal is also subtracted from the recovered
EEG component. :

* Extended ICA method required a significantly longer time
to carry out the OA removal operation when compared
with JADE. This is because extended ICA is an iterative
algorithm, which requires many passes through its learning
algorithm in order to converge, while JADE only requires
one pass through its algorithm.

» Statistical tests showed that, on average, the performances
of JADE and extended ICA, for OA removal, were not sig-
nificantly different. However, JADE provided a more con-
sistent sct of results and both JADE and extended ICA
performed significantly better than PCA and EOG subtrac-
tion.

*» The performances of the four OA removal methods were
not signilicantly aflected by an additive Gaussian noisc
source for a signal-to-noise ratio above 50.

5 Conclusion

The performances of four methods for removing ocular
artefacts from the EEG were quantified and compared.
The methods were extended independent component analy-
sis (ICA), joint approximation diagonalisation of eigenma-
trices (JADE), principal component analysis and
electrooculogram (EOG) subtraction. The study indicated
that JADE and extended ICA performed significantly
better than the other two methods. The performances of
JADE and extended ICA were not, on average, signifi-
cantly different, however JADE provided a more consistent
sct of results. All four algorithms could tolerate additive
Gaussian noise, provided the signal-to-noise ratio remained
above 50.

Table 4: Results obtained when the algorithms were applied to

four transformed EEG sources

Standard Correlation Euclidean distance

Transformed  deviation ratio coefficient means  means (x 1075)
* EEG data

JADE Ext.ICA  JADE Ext.ICA  JADE Ext. ICA
EEG;,; 1.04 1.08 0.95 0.95 11.75 11.48
EEG,, 1.15 1.10 0.95 0.96 8.00 7.80
EEG3; 1.00 0.97 0.96 0.96 6.28 7.62
EEGy, 1.05 1.02 0.98 0.97 7.87 9.31
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However, their main weaknesses are amphludc sullmg, and
channel permutation. Further work will be carried out to
improve the accuracy of the recovered signal amplitudes.
Other approaches to deal with the problem of channel per-
mutation will also be investigated.
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1 Peripheral neuropathy in HIV infection - G. Kanabar, S. Guna-
sekera, H. Longhurst, A.T. Pinching and K. Nagendran (Barts
and The London NHS Trust)

We studied 147 consecutive HIV + ve patients referred to our depart-
ment with possible diagnosis of peripheral neuropathy for assessment. All
had sural SAP, common peroneal motor conduction, and F and H wave
studies. Nincty-two in addition had quantitative thermal thresholds.

The summary of findings in the 92 patients who had large and small fibre
studies include 21 normal, 25 small fibre neuropathy (SFN) only, 6 large
fibre neuropathy alone, 10 radiculopathy with small fibre dysfunction and
30 small and large fibre ncuropathy. Six patients fulfilled the criteria for
demyelinating neuropathy but nonc had significant conduction block,
témporal dispersion to proximal stimulation or significant F wave prolon-
gation except in one case. Ankle jerks were frequently absent, and nearly all
had retained or brisk knee jerks despite the presence of well-established
neuropathy, suggestive of co-existing UMN dysfunction. A small group of
patients had significantly reduced MCV (without fulfilling the criteria for
demyelinating neuropathy) but preserved sural SAP and EDB CMAP.

We conclude that small fibre studies are more frequently abnormal
(70.6%) i HIV neuropathy. Demyelinating ncuropathy affects predomi-
nantly distal segments without conduction block or temporal dispersion.

2 Initial clinical experience with vibration threshold testing in
repetitive strain injury - D.S. Holder, V. Morris and M. Boland
(University College, London)

Greening and Lynn (1998) recently measured hand vibration thresholds
in subjects with repetitive strain injury (RSI) and found that they were
elevated (>0.6 pm) and increased by more than 50% after use of a
keyboard for 5 min. We report initial clinical experience in patients with
presumed RSI, using these criteria.

Vibration thresholds were recorded from median, ulnar and radial terri-
tories in each hand in 20 patients with RSI on clinical grounds, mainly
referred in the hope of providing support in a medicolegal claim.

Twelve subjects had a raised vibration threshold in median territory in
cither hand, but only two of these met the above criteria.

This method could be of considerable value if it is able to provide
objective evidence of RSI, but this initial clinical expericnce in this patient
group suggests a low sensitivity with the proposed conservative criteria. It
may be possible to increase sensitivity by adjusting criteria in the light of
§ larger clinical studies. The median abnormalitics support the hypothesis
that there is median nerve dysfunction in this condition.

Greening J, Lynn B. Vibration sense in the upper limb in patients with
repetitive strain injury and a group of at-risk office workers. Int Arch Occup
Environ Health 1998;71:29-34.

* Tel.: +44-115-970-9146; fax: +44-115-849-3225.
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3 The clinical utility of visual evoked responses in the assessment
of pituitary structural lesions — B. Anand, R.C. Pottinger and
D.A. Ingram (Barts and The London NHS Trust)

The advent of high-resolution neuroimaging has prompted re-evaluation
of the role of visual evoked responses (VERs) in the management of pitui-
tary structural lesions. We have therefore retrospectively examined the
results of VERs in 29 patients (mean age 46.8 + 16.0 (SD) years; 18
females) with various pituitary lesions and compared these with clinical
and radiological evidence of impingement on suprasellar visual pathways.
Whole-ficld and hemi-field pattern-evoked responses, obtained using stan-
dardized techniques, were evaluated blind for latency and amplitude
measurements by onc author (B.A.). These findings were then compared
with the results of computed tomography and magnetic resonance imaging
findings and carcfully mapped visual fields to 5 mm red stimuli.

Fourteen (48%) patients had radiological evidence of suprasellar invol-
vement of visual pathways and all demonstrated various VER abnormal-
ities. Of the remaining 15 (52%) patients without radiological evidence of
visual pathway involvement, 5 (17%) had normal VERs and 10 (34%) had a
VER abnormality. Of those with a VER abnormality 5 (17%) (two macro-
adenomata, one microadenoma, onc TSHoma and one resected supraclinoid
tumour) had a visual field defect. The remaining 5 (17%), including 3 who
had undergone previous transphenoidal surgery, had no associated visual
ficld defect. This suggests that in almost one-fifth of cases, evidence of
subglinical involvement of chiasmal visual pathways may be detected using

/,VERS.
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Signal source scparation of saccade-related evoked potentials —
L. Vigon®, ML.R. Saatchi®, J.E.H. Mayhew®, N. Taroyan® and
/J-P. Frisby® (*Sheflield Hallam University and “Sheffield
;% University)
_~The independent component analysis (ICA) signal source scparation
algorithm was extended by incorporating the template model of a visual
evoked potential (EP) called the Jambda-wave (Thickbroom et al,, 1991)
into the algorithm’s cost function. The template-model ICA algorithm was
evaluated in this study by analyzing saccade-related EEG data.

Saccade related EEG waveforms were recorded from 64 locations on the
scalp. Scven subjects participated in the experiments. Each subject sat 0.5
m from a computer screen which displayed a checkerboard pattern. They
were asked to visually follow a red square which appeared randomly at one
of 5 pre-defined locations (up, down, left, right and centre) on the checker-
board. The peripheral-to-centre viewing angle was 12 degrees. Up to 50
trials were recorded per event (i.c. a direction of saccade). Each trial lasted
about 2 s,

The template-model ICA algorithm was applied to the averaged saccade-
rclated EEG waveforms to extract the lambda wave and identify its saccade
time-locked subcomponents. Its corresponding scalp distribution obtained
using the developed method showed peak activity in the parieto-occipital
area of the cercbral cortex.

The results of the study demonstrated that the incorporation of a

CLINPH 2001533
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template-model into ICA significantly improved the extraction of the
lambda wave from the EEG data. The technique is applicable for the
extraction and analysis of other EPs and event-related potentials for
which models can be developed.

Thickbroom et al., Brain Res 1991;551:150-156.

5 Motor abnormalities in patients with chronic pain? - A.M.
Purves and M.S. Chong (Medway Maritime Hospital, Orping-
ton Hospital and Kings College Hospital, London)

Patients who present with chronic pain syndromes may have abnormal-
ities of function which are quite separate from the pain. They often also
complain of more subtle difficulties using the hand or arm, with loss of
power or dexterity, and the neurological basis for this is not well under-
stood.

We have used a recently described motor reflex (the group III reflex)
(Priori et al.,, 1998; Bume and Lippold, 1996) as a probe for changes in
motor unit excitability in patients with pain in one limb of unknown cause,
and have found 3 patterns of abnormality. In some patients (n = 19) there is
greater inhibition of the rectified averaged EMG signal in the forearm
muscles on the affected side after stimulation (P < 0.01, Mann-Whitney
U test), in others (n = 5) a more tonic inhibition and in a few (n=3) a
failure of recruitment of motor units with or without stimulation. The
possible significance of these findings for our understanding of pain
syndromes in the clinic will be discussed.

Priori et al. Brain 1998;121:373-380.

Burne JA, Lippold OC. Loss of tendon organ inhibition in Parkinson’s
discase. Brain 1996;119:1115-1121, :

6 Electrocorticographic findings in cortical dysplasia and dysem-
bryoblastic neurocpithelial tumour - C.D. Binnic, G. Alarcon,
A.Dcan, R.D.C. Elwes, C. Ferricer and C.E, Polkey (Guys, Kings
and St. Thomas’ School of Medicine, London)

Of all patients treated surgically for epilepsy over a 20 ycar period and
whose medical records were available, 17 underwent frontal resection for
cortical dysplasia (CD), 18 underwent frontal resection for other pathology,
12 underwent temporal resection for CD as the only pathology, 22 DNET,
and 17 other, non-atrophic lesions. The intraoperative electrocorticograms
(EcoGs) were related blind to the pathology before and after resection, with
reference to ictal or continuous epileptiform discharges (ICEDs) and
discontinuous sporadic spike or spike-and-wave discharges.

In the frontal group, pre-resection ICEDs were strongly associated with
CD (16/17 versus 4/18 in non-CD subjects, P < 0.001). Sporadic spikes did
not discriminate between CD and non-CD subjects (11/17 and 14/18). The
presence of ICEDs was associated with favourable surgical outcome (type 1
or I} (P <0.05) but ncither sporadic spikes nor the topography of
discharges was predictive of outcome. Post-resection, only 3 CD subjects
continued to exhibit ICEDs ~ all with unfavourable outcome, whereas
overall 9/17 patients had good outcome. ICEDs were abolished in all
non-CD patients but appeared de novo in one ~ with good outcome.

In the temporal group, pre-resection ICEDs were associated with CD (9/
12) and also occurred with DNET (6/22), but never with other pathology.
Sporadic spikes did not discriminate between pathologies. Neither the
presence nor post-resective persistence of ICEDs was predictive of surgical
outcome.

7 Bizarre prolongation of distal motor latency is a robust sign of
active motor axonal regencration — K. Nagendran (Barts and
The London NHS Trust)

Sixteen patients showed a markedly delayed distal motor latency to
target muscles (values ranging from 10.5 to 71 ms) during recovery follow-
ing severe or total axonopathic lesions such as severe traumatic nerve
injuries and severe compressive nerve lesions. Recordings were made
using concentric needle electrodes. The presence of ‘nascent units’ and
the appropriate time of occurrence confirmed that the recorded potentials
were re-innervating motor units. The phenomenon is probably due to a
relatively rapid advancement of axonal growth combined with a delayed
myelination process.

These findings provide (1) a useful electrodiagnostic test for motor
axonal regeneration and (2) a human model to study motor axonal regen-
eration.

8 Monitoring intercostal nerve function during thoracotomy —
L.M. Henderson®, M.L. Rogers® and J.P., Duffy® (*University
Hospital, Queen’s Medical Centre, Nottingham and bCity
Hospital, Nottingham)

Chronic postoperative pain persisting beyond 3 months is a distressing
and common complication of thoracotomy. Pain may result from intercostal
nerve injury by retraction or dissection, but the mechanism of injury intrao-
peratively has not been demonstrated.

We used intraoperative motor conduction studies of intercostal nerves
above and below the level of original incision to identify nerve injury.

Thirtcen paticnts undergoing first thoracotomy were recruited. Bipolar
recording needle electrodes were place anteriorly in the muscles of the two
intercostal spaces cither side of the planned incision and additionally one
space above or below. A monopolar probe stimulated each intercostal nerve
in turn with a 3.5 mA current giving a visible twitch. Motor responses
produced were recorded before (1) and after (2) the intercostal space was
cntered and ribs retracted. After intrathoracic surgery was completed, the
rib retractor was removed and motor responses were again recorded (3)
with a fourth recording after closing intercostal spaces.

The mean velocity (1,2) was 35.3 m/s and recording (3) in 12 cases
showed conduction block. In the nerve above the incision, the block was
total in 3 cases and at the level of the retractor in 9. In the nerve below, the
block was total in 3 cases, at retractor level in 8 and partial in one. One
patient without rib spreading showed no conduction change in (3).

We conclude that multiple nerves are routinely injured during thoracot-
omy due to rib spreading. The relation to post-thoracotomy pain has still to
be demonstrated.
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1. Summary :

Saccades are rapid changes in the orientation of the
eyes for realigning the visual axes on objects of
interest. Dysfunction in this system may affect
various visual functions such as depth perception
and reading. A signal source separation method
called non-linear principal component analysis
(NLPCA) was used to analyse saccade related EEG
waveforms recorded from 7 normal subjects. A
number of components with the main features of the
lambda wave were extracted from the parieto-
occipital area of the visual cortex. The peak of
activities of these components corresponded to
discrete locations and showed a symmetry over the
left and right hemisphere. In a previous study the
application of another -signal source separation
method called independent component analysis
(ICA) to the same data had indicated that the peak of
activity of the lJambda wave spread across the whole
‘parieto-occipital area. The findings of this study
indicated that ICA considered the whole parieto-
occipital area to be a single source for the lambda-
wave whereas NLPCA identified a number of
symmetrical independent sources for the lambda
wave in that region.

2. Introduction

The study of electrical activity of the brain
(electroencephalogram, EEG) is a tool for studying
the neuronal mechanisms associated with the brain
functions and its abnormalities. Evoked potentials
(EPs) are voltage deviations in the EEG which are
time-locked to the onset of stimuli. Saccades are
rapid changes in the orientation of the eyes for
realigning the visual axes on objects of interest.
Saccade mechanisms are associated with vision
when moving the eyes. Therefore their study
provides valuable ‘information about various visual
functions such as depth perception and reading. A
saccade performance generates a number of EPs
which are time locked to the onset of the stimulus
and the eye movement waveform (known as
electrooculogram, EOG). The lambda wave is a
saccade-related EP which has been reported to
originate in the parieto-occipital area (back of the
head) of the cerebral cortex [1]. It is believed to be
related to visual information processing triggered by
the relative movement of features of the visual field
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across the retina. The occurrence of the lambda
wave is time-locked to the saccade onset (i.e.
initiation of the eye-movement) and to the saccade
offset (i.e. termination of the eye-movement). It
has a pronounced positive peak which appears
within a 200 ms period after the saccade offset.

The EEG waveforms recorded from the scalp
during a saccade-related performance are signal
mixtures consisting of: (i) Saccade-related EP
components (such as the lambda wave). These
components overlap in time and may also have
overlapping spatial topographies. (ii) - The
obscuring background EEG and EPs that are not
associated with the saccade performance and
generation. (iii) The  contaminating
electrophysiological signal artefacts such as the
EOG generated by the eyes and the
electromyogram (EMG) caused by muscle activity.
(iv) Non-electrophysiological (external) sources of
contamination, for example the mains interference.

The conventional method for extracting saccade-
related EPs from the EEG waveforms involves
averaging a large number of recorded trials. The
process of averaging reduces the obscuring effect
of the background EEG: This is because the
background EEG components vary from one trial
to the next while the EPs have a more consistent
pattern. A typical lambda wave (obtained by the
averaging method) together with the corresponding
time-locked EOG waveform are shown in Fig.1.

Dominant peak -~ g

208 400 600
Time (ms)

Fig.1 The lambda wave extracted using conventional
averaging method and the corresponding EOG component.
The vertical arrow indicates the onset of stimulus.

o b
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Averaging on its own is not sufficient when accurate
interpretation of the saccade-related components
such as the lambda wave is required. For example,
the operation cannot separate the individual
components of the saccade-related EPs within 2he
recorded EEG mixtures. It also does not provide the
scalp distribution of the individual saccade-related
EP components. As a result, the brain regions
responsible for their generation cannot be accurately
identified. Procedures that can separate the
independent components in the mixtures are
therefore valuable.

In a previous study, a signal source separation
methodology was devised and was successfully used
to extract saccade related EP components from the
EEG mixtures [2]. The method was based on a
signal source separation (blind deconvolution) called
independent component analysis (ICA) [6]. A
typical extracted lambda wave, its scalp distribution,
together with the corresponding time-locked EOG
waveform are shown in Fig.2.

Amplitude (uV)

A Time (ms)
Fig.2 The lambda wave extracted using ICA
and the corresponding EOG component.

Three sub-components (f}, f; and f3) related to the
movement of the visual field across the retina were
visible in the extracted lambda wave.
components ] and £, are time locked to the onset of
.the saccade and have also been observed in another
study [1]. The sub-component f; is time-locked to
the offset of saccade and has been reported to occur
at about 100 ms after the saccade offset [1].

The aim of this study was to carry out an analysis of
the lambda wave using non-linear PCA (NLPCA)
and to compare the results with those obtained in our
previous study using ICA [2]. The ICA algorithm
uses entropy as a measure of signal independence
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Sub- -

while NLPCA uses a recursive least square
algorithm. Both algorithms attempt to extract the
unknown source signals from their instantaneous
linear mixtures.

3. Brief Review of Non-Linear PCA and ICA

A recursive least square algorithm for adaptive
tracking of signal subspaces was reported by Yang
[3]. The algorithm is derived from the cost
function, '

J(W)=E{|x- WWT x|} 1

where, x=[x;, X3, . x,JT is the matrix of signal
mixtures, n is the number of mixtures, ¥ is an
mXm weight matrix (m is the number of sources,
m is assumed to be equal to n in this study), ©
represents a matrix transpose, and E is the
expectation operation. The minimum of this cost
function is provided by any orthogonal matrix W
whose columns span the PCA subspace defined by
the principal eigen-vectors of the covariance
matrix of x. Karhunen and Pajunen [4] have
extended Yang’s recursive least square algorithm
so that it can be used for minimising the NLPCA
cost function reported in [5] given as,

J(W)=E{[[x- WgWTx) [} )

where g() is a non-linear transfer function. This
transfer function enables the method to deal with
the higher-order statistics of the data.

This resulted in an adaptive learning algorithm
described by the following steps.

2(t) = g(W'(t-1) v(t)) = g((t),
h(t) = P(t-1)z(%),
m(®) =h()/ (B +2' Oh(), 3)

P@) = % Tri[P(-1) -m@k"W)],

e(t) =v(y) - W(t-1)z(t),
W) = Wt-1)+ et) m"(y).

The matrix v(2) is the input to the algorithm and is
produced by whitening x(z). The covariance of v(2)
is expressed as E{v(?) v(t)"} and is equal to the
identity matrix, I. The constant 0 < f# < ] is a
forgetting term which is normally set close to 1. P
is a symmetrical matrix where its upper triangular
part is computed by operation 77 and its transpose
is copied to the lower triangular part.

The block diagram of NLPCA operation when
applied to 2 sources is shown in Fig.3.



l

Learning
rule in
q. (3)

Determine

e(t)

7,

Fig.3 Block diagram of the operation of NLPCA
when applied to 2 sources; ¢(.) is the whitening
process.

Another signal source separation algorithm, called
independent component analysis (ICA), was
proposed by Bell and Sejnowski [6]. It uses an
unsupervised learning rule that maximises the joint
entropy (i.e. minimises the mutual information) of
the separated components with respect to the weight

dH(y)
oW

matrix (i.e. ———=). The change in the weight

matrix (AW ) at each iteration is given as,

qw=2H(y)

T [WT ] +(1-2y)xT )
h (1)= ! s
where y=g u)_]+e—(u+co,) )

o, is a vector of bias weight, the symbol ~

(4
represent matrix inversion, g(.) is a non-linear
transfer function such as sigmoid and the estimate of

the signal sources is given by wu=XxW . The
change in the bias weight at each iteration is given
bYa '

Awy=1-2y 6
Amari et al. [7] modified the ICA algorithm of
Bell and Sejnowski in order to avoid matrix

inversion and thus speed up the convergence of
the learning rule. The modification involved the

incorporation of W Tw into (4) as,

aw =2y Ty
oW (7)
=[1+ (1-2Y)UT]W
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4. Experimental Procedures

4.1 Data Recording

Seven healthy adults (3 males, 4 females) mean
age 27 years (standard deviation 6) with normal or
corrected-to-normal vision participated in the
study. The subjects had no history of a
neurological or ophthalmologic disease and were
all right-handed. They were seated in an EEG
recording laboratory at about 60 cm from a
computer that displayed a black and white
checkerboard pattern background.

A red square visual target stimulus (hereafter
referred to as the stimulus) appeared on a computer
screen at one of five predefined checkerboard
locations: centre, left, right, up and down as shown
in Fig.4. The sequence of the stimulus appearance
on the checkerboard was random to reduce the
effect of expectancy.

Red
square

Fig.4 The checkerboard showing the -
directions of saccade and the viewing angle.

The subjects were instructed to visually follow the
stimulus as fast as possible. They were also asked
to avoid head movements and blinks. The viewing
angle (a, shown in Fig4) of the -peripheral
positions from the centre was about 10 degrees.
There were 8§ directions of saccade and a steady
fixation. These were: 4 centre-to-peripherals, 4
peripherals-to-centre and a centre-to-centre (i.e. no
eye-movement) as indicated in Fig.4. In order to
avoid the effect of anticipating the onset of the
stimulus, the Ppre-stimulus period’ was varied
randomly.

The EEG and EOG data were recorded using a
network of 64 silver-silver chloride electrodes. The
EOG data were recorded to monitor the eye-
movements. All channels (EEG and EOG) were
referred to the vertex (C;) electrode. The recording
system bandpass filter had a frequency range of
0.01 to 100 Hz. The digitisation sampling rate was



250 Hz. Up to fifty trials (a trial being a set of 64
recorded waveforms) were recorded per saccade
direction. Each trial lasted about 2 seconds. A group
of 50 trials is called an event. The total number of
recorded trials per subject was up to 450 (i.e. 50
trials X (8 directions of saccade + 1 steady
fixation)).

4.2 Data Analysis

The operations to analyse the lambda wave were:
i Signal pre-processing

ii Iterative synchronisation

iii Temporal and spatial averaging

iv Signal source separation using NLPCA.

These operations are described in the following
sections. : '

4.2.1 Signal Pre-Processing

The recorded data were digitally lowpass filtered at
45 Hz in order to remove any 50 Hz mains
interference and unwanted high frequency signal
components. The baseline for each waveform was
adjusted by calculating the mean of the pre-stimulus
section and subtracting it from the waveform. This
operation ensured that the waveforms started at a
zero reference level. The trials with magnitudes
larger than 200 LV were rejected offline in order to
remove severely contaminated waveforms (typically
3-4 trials per event). The 200 pV threshold ensured
that the eye-movement waveforms (which were
needed for the analysis) were retained. The trials
were sorted into their respective directions of
saccade and synchronised-averaged using the
procedure described in the next section.

4.2.2 Iterative Synchronisation

The lambda wave is time-locked to the eye
movement waveform (EOG). The initiation of the
eye movement (saccade onset time) and its
termination (saccade offset time) vary from one trial
to the next. This means that the lambda waves from
different recorded trials are not synchronised in
time. Therefore the averaging of the trials causes
their features to be distorted. An algorithm which
time synchronised the trials was devised. This
algorithm ensured that the features of the lambda
“wave were preserved during the signal averaging
operation. The EOG waveform was chosen as the
reference signal for performing the synchronisation
because the lambda wave is time-locked to it. The
operation of the algorithm is outlined in [8].
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4.2.3 Averaging Process

Both temporal and spatial averaging of the
waveforms were carried out. The reasons and
procedures for these operations are provided in the
next two sections.

4.2.3.1 Temporal Averaging

Temporal averaging was necessary to reduce the
obscuring effect of the background EEG on the
features of the signal of interest (i.e.. the lambda
wave). The synchronised trials obtained in section
422 were time averaged producing a mean
waveform for each channel. '

4.2.3.2 Spatial Averaging

In our previous study [2], it was found that the
effectiveness of ICA in extracting saccade-related
EEG components was improved when the saccade
related EEG waveforms recorded from the 64
channels were spatially averaged. The operation
consisted of averaging together the waveforms
from channels close to the international 10-20
system of electrode site placement. This resulted
in 20 EEG and 2 EOG waveforms which were
input to ICA. In this study, this form of averaging
was used when applying NLPCA .

4.2.4 Signal Source Separation using NLPCA
This spatially averaged saccade related EEG
waveforms were processed by the NLPCA
algorithm outlined in eq.(3). Experiments were
carried out to investigate the effect of using
different types of non-linear transfer functions
(g(.)), different values of forgetting factor (#) and
the number of iterations in order to determine the
optimum NLPCA parameters for processing the
data. The selected parameters were: $=0.9 and
g=tanh()). The NLPCA learning process stopped
when the amount of change in the weight matrix W
became less than a predefined small value. The
number of iterations was approximately 300 for the
data used in this study.

5. Results and Discussion

Typical results obtained when the NLPCA was
applied to the 22 spatially-averaged saccade related
EEG waveforms for the centre-to-left saccade
event are described in this section. Fig.5 a and b
show two extracted lambda waves from the
occipital region, their respective scalp distributions
and the time locked EOG waveforms. A number of
other similar lambda waves were extracted from
parietal region of the visual cortex.
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Fig. 5 The NLPCA extracted lambda waves with their scalp distributions (top two rows) and
the corresponding extracted EOG waveforms with their scalp distributions (bottom row).

The following were observed in the study:

The main features of the lambda wave (labelled
fi, f;, 5 and negative shift, NS) were clearly
visible. This indicated the effectiveness of
NLPCA in extracting the lambda wave. The

- shape of the extracted lambda waves was

similar to that extracted by using ICA (see Fig.s
2 and 5).

NLPCA extracted a number of components
from the parieto-occipital area of the cerebral
cortex. Some of these had the main
characteristics of the lambda wave but showed
some variations in their time courses. The peak
activities of the components were localised in
distinct regions of parieto-occipital area. For
each lambda wave peak activity identified over
the left hemisphere a symmetrical peak of
activity was observed over the right
hemisphere. A typical set of lambda wave
components with symmetrical peaks of activity
are shown in Fig.5. This symmetry may be
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because both eyes follow the same target
stimulus (red square on checkerboard).

ICA extracted a lambda wave component
with peak of activity which spread across
the whole parieto-occipital area (see Fig.2).
A comparison of the lambda wave peak
activities obtained using the two methods
indicated that NLPCA identified a number
of distinct lambda wave sources within the
parieto-occipital area while ICA treated the
whole region as one source. This may be
due to non-linear PCA being more sensitive
to the time course variations of the extracted
lambda waves.

The EOG components from both the left and
the right eyes were also extracted (see Fig.
5). The polarity change for the left and right
EOG waveforms is due to the reference
electrode location (C,).



The above observations were consistent across the
subjects included in the study.

6. Conclusion and Further Work

In this study an analysis of a signal source
separation method called non-linear PCA (NLPCA)
was carried out for extracting a saccade related
EEG component called the lambda wave. Its
performance was compared with that of
independent component analysis (ICA). The study
showed that NLPCA extracted the lambda wave
from discrete regions of parietal-occipital area of
the visual cortex while ICA treated the whole
region as one source. These findings indicate that
ICA considered the whole parieto-occipital area to
be a single source for the lambda-wave whereas
NLPCA identified a number of symmetrical
independent sources for the lambda wave in that
region.

Further work will be carried out to determine the
significance of the findings reported in this study
and will include the use of non-linear ICA for
analysing the saccade related EEG waveforms.
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Abstract—The aim of the study was to investigate the effect of signal length on the
performance of a signal source separation method, independent component analysis
(ICA), when extracting the visual evoked potential (EP) lambda wave from saccade-
related electro-encephalogram (EEG) waveforms. A method was devised that
enabled the effective length of the recorded EEG traces to be increased prior to
processing by ICA. This involved abutting EEG traces from an appropriate number of
successive trials {a trial was a set of waveforms recorded from 64 electrode locations
in a study investigating saccade performance). ICA was applied to the saccade-
related EEG and electro-oculogram (EOG) waveforms recorded from the electrode
locations. One spatial and five temporal features of the lambda wave were moni-
tored to assess the performance of ICA applied to both abutted and non-abutted
waveforms. ICA applied to abutted trials managed to extract all six features across
all seven subjects included in the study. This was not the case when ICA was applied
to the non-abutted trials. It was quantitatively demonstrated that the process
of abutting EEG waveforms was useful for ICA preprocessing when extracting
lambda waves.

Keywords—/ndependent component analysis, Evoked potentials, Saccade analysis,
Lambda wave, Electro-encephalogram
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1 Introduction

AN ELECTRO-ENCEPHALOGRAM (EEG) is a record of the elec-
. trical activity of the brain. It contains valuable information about

J. P. Frisby® P

)

on a black and white checker-board background. These sub- |
components are time-locked to the saccade onset (i.e. initiation
of the eye movement) and its offset (i.e. termination of the eye :
movement) (THICKBROOM et al., 1991). One of these sub- -

the brain functions and its abnormalities. Evoked potentials
(EPs) are voltage deviations in the EEG that are time-locked to
the onset of stimuli. They contain information about the
neuronal mechanisms involved in sensory functions.

This study was based on a saccade-related visual EP called the
lambda wave. Saccades are rapid changes in the orientation of
the eyes for realigning the visual axes on objects of interest.
Dysfunction in this system can affect various visual functions,
such as depth perception and reading (LEVENTHAL. 1991). The
lambda wave is believed to be related to visual information
processing triggered by the relative movement of features of the
visual field across the retina (BARLOW and CIGANEK. 1969). The
lambda wave has a number of sub-components. These are
generated by the brain when a subject visually follows a target
stimulus (such as a red square) appearing at different locations
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components has a pronounced positive peak that appears :

within a 200ms time window after the saccade offset -
(THICKBROOM ef al., 1991). A typical lambda wave, together
with its saccadic eye-movement electro-oculogram (EOG)

waveform, is shown in Fig. 1.

It is reported that the lambda wave originates in the parieto-
occipital area (back of the head) of the cerebral cortex
(GREEN, 1957). The study of saccade-related EPs prO\-’ic_iﬂs
valuable iriformation about how the brain deals with vision

when eye movements are performed (SKRANDIES and LASCHKE. .

1997).
Saccade-related EEG waveforms recorded from electrodes
placed on the scalp contain a mixture of signals. These are

(i) ‘saccade-related EP components (for example, the Jambda
wave)

(i1) non-saccade-related EEG components. i.e. the background
EEG and stimulus time-locked EP components that ar¢
not related to the saccade

(ili) contaminating electrophysiological signals, such as 'h‘j
EOG; EOG is generated by the eyes when eye movements
or blinks are performed

1. 40
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iv) non-electrophysiological (external) contaminating
signals, for example the noise generated by the recording
system.

-fherefore signal source separation techniques that allow the
tcorded EEG waveforms to be unmixed arc valuable for
xtracting and studying specific EP components, such as the
ambda wave. A technique that can be used for this purpose is
adependent component analysis (ICA). The goal of ICA is to
ecover the independent source signals given only the recorded
nixtures. Its operation is based on a number of assumptions.
lhese are

g) the mixing process is linear

b) notmore than one source signal has a Gaussian distribution

¢) the source signals are stationary and statistically
independent.’

‘:‘-Vhen ICA is applied to the EEG waveforms, the source signals
're considered to be concurrent electromagnetic activities that
re temporally independent of each other and that are generated
)y spatially fixed sources. These signals are mixed as they
Jropagate from their sources to the electrode locations on the
dealp.
j The ICA technique is revu:wed by HYVARINEN (1999). BELL
nd SEINOWSKI (1995) proposed a method for implementing
iCA that extracts independent components by maximising the
.oint entropy (i.e. minimising the mutual information) of the
xparated components. CARDOSO (1999) proposed an approach
“brimplementing ICA that exploits the fourth-order cumulant. A
tudy showed that both of these approaches prov1ded a more
‘ccurate means for removing EOG-based contamination from
he EEG than a number of correlation-bascd methods (VIGON
#al., 2000a).
! For the EEG to conform to the stationarity requirement of
ICA, the statistical properties of its signal components should
Ye time-invariant. However, EEG signal components (such as
EPs) are short-duration transient sxgnals and may not fully
~0nform to the statnonanty assumption of ICA. In this study, a
method was devised to increase the effective length of the EEG
| ’laveforms processed by ICA so as to increase their stationarity
' fre-requlslte The performance of ICA for extracting the lambda
vave was assessed for different length EEG waveforms.’
itially, a brief description of the ICA algorithm of BELL and
kEJNOWSKJ (1995) is provided (this algorithm was used in our
dy). The experimental methodologies are outlined, and the
-}esults obtained are presented.
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The [CA algorithm of BELL and SENOWSKI (1995) receives
signal mixtures .

and determines an unmixing matrix

Wit Wi Wiy
W= | W2 W22 ot Way
War Wiz c00 Wiy

that enables the original source signals

i
U= Uy

Uy ' '

to be estimated using the matrix operation ,
U=wx ' : - m

It is assumed that the number of original signals and the recorded
mixtures are equal. The unmixing matrix ¥ is initially set to the
identity matrix, and then its elements are updated iteratively by
an amount AFV, in such a way as to minimise the mutual
information between the extracted signal components. The
ICA algorithm of BELL and SEJNOWSKI achi%es this by
maximising the rate of change of entropy of ¥ 'with respect
to I¥. Therefore, to derive the ICA learning rule. AW is first
expressed as

0H(Y) . )
W=— . 2
A oW : ' (‘)
where
Ji
Y = J2
In

is obtained by a non-linear transformation of the signal compo-
nents U using a function such as sigmoid. (2) can be expanded as
(BELL and SEINOWSKI, 1995)

0 (122 - ()7 2 " o
aw ax| ax/ 8w \aX
where In|-| is the natural logarithm of the magnitude of a

variable, and the symbol ~! represents matrix inversion. For a
sigmoid transfer function, ¥ is determined by

AW =

l .

T 1A e : “
where w, is a bias term (initially set to zero vector). It can be
shown that (BELL and SENOWSK], 1995)

¢

Y ‘ : :
= wra-v) 5)
d [dY '

_7(3?) = ¥(1 - )1 + WX(1 = 27)). ©6)
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and bias term (AJ¥,) are expressed as

AW =W 4 (1 = 21xT7 (7

AW, =1-=2Y ®)

where T represents the matrix transpose operation. The matrix
inversion is avoided by incorporating W' W into (7) (AMARI
er al., 1996). This provides

AW =g+ =2")UT W ) 9)

where 7 is the leamning rate for controlling the speed of
convergence. '

3 Experimental method
3.1 Data recording

Seven healthy adults (three males and four females), mean age
27 vears (standard deviation 6), with normal or corrected-
to-normal vision, participated in the study. The subjects had
no history of neurological or ophthalmological disease and were
all right-handed.” They were seated in an EEG recording
laboratory at about 60cm from a computer that displayed a
black and white checker-board pattern background.

A red square visual target stimulus (hereafter referred to as
the stimulus) appeared on a computer screen at one of five
pre-defined checker-board locations: centre, left, right, up and
down. as shown in Fig. 2. The sequence of the stimulus
appearance on the checker-board was random to reduce the
effect of expectancy.

The subjects were instructed to follow visually the red square
as fast as possible, without head movements, and to minimise
blinks. The viewing angle («. shown in Fig. 2) of the peripheral
positions from the centre was about 10 degrees. This value was
also used in one of the saccade experiments rcported in
THICKBROOM et al. (1991). This made it possible to compare
the lambda waves observed in both studies. To avoid the effect

of anticipating the onset of the stimulus, the pre-stimulus period

was varied randomly (between 850 ms and 1500 ms).
The EEG and EOG waveforms were recorded using a network
of 64 silver-silver chloride electrodes. The type of EEG

recording machine, its features and the details of the electrode -

locations can be found at reference (Electrical Geodesics Inc.).
The EOG waveforms were recorded to monitor eye movements.
All channels were referenced to the vertex C, electrode. The
recording system bandpass filter had a frequency range of

4

’
‘st [ LS
| Bl R
14 ¥

red
square

Represemtation of checker-board  showing directions  of
saccade and viewing angle

collection of the waveforms recorded from the 64 electradoy
when a saccade was performed was referred to as a trial. Upto 50
trials were recorded per saccade direction. A collection of 5()
trials is referred to as an event. Each trial lasted about 2.
However only a 1 s window of each trial contained the lambda
wave. This was selected and processed for this study,

3.2 Preprocessing procedures

The recorded data were digitally lowpass filtered at 45 Hz 1o
remove any 50 Hz mains interference and the unwanted high-
frequency signal components. The baseline for each waveform
was adjusted by calculating the mean of the pre-stimulus section

and subtracting it from the whole waveform. The trials were

sorted into their respective . directions of saccade and time-
synchronised using a procedure described in the following
Section. '

3.2.1 Iterative time-synchronisation operation and its evalua-
tion: Temporal averaging of the waveforms across trials was
carried out to reduce the effect of background EEG before
processing by ICA (this is described in Section 3.2.2). The
lambda wave is time-locked to the eye-movement EOG wave-
forms. The initiation of the eye movement (i.e. the saccade
onset time) and its termination (saccade offset time) vary
between trials. This means that the lambda waves from
different trials are not time-synchronised. Therefore the aver-
aging process would produce a distorted waveform. To over-
come this. an algorithm that time-synchronised the trials was
devised. The algorithm ensured that the temporal features of

the lambda wave from different trials were aligned to a single |

reference signal prior to averaging. The EOG waveform was
chosen as the reference signal for the synchronisation process

because the lambda wave was time-locked to it. The opera--

tions involved when performing the time synchronisation are
as follows: '

(i) The EOG waveforms across all trials for the desired event
were averaged with respect to the stimulus onset. The
resulting EOG waveform provided the averaged stimulus
onset information.

(i) A section of the averaged EOG waveform that containe¢
both the onset and the offset of the saccade was selected
by the software as the reference signal. ’

(iii) The reference signal and the EOG waveform from the trial

being synchronised were correlated at each time point

(sample value). The maximum correlation coefficient

value between the two waveforms indicated the amount

of shift required to synchronise the EOG waveform in that
trial. This synchronisation was repeated for the EOG
waveforms in the remaining trials.

The newly synchronised EOG waveforms from all trials

were then averaged. The resulting waveform retained the

averaged stimulus onset information. Steps (ii)—(iv) (i.¢.
one iteration) were repeated until the reference signal dic
not change significantly from one iteration to the next.

The changes in the reference signal from one iteration to

the next were measured by computation of the Euclidean

distance berween the corresponding waveforms. The syn-
chronisation improved the alignment of EOG waveforms
across all trials after each iteration.

(v} The last iteration in the above process produccd the
required reference EOG signal. This signal was then
correlated with the original (not synchronised) EOG
waveform for each trial, and the amount of shift required
for their alignment was determined. All 64 waveforms
in the corresponding trial were then time-shified by the

(iv)
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calculated amount. The algorithm therefore synchronised
all waveforms in all trials to the reference EOG signal.-

ifhe performance of the time-synchronisation procedure was
“waluated. This involved plotting the histogram of the saccade
hffset across the 50 trials for a given subject and experimental
fcvent. To determine the saccade offset of the EOG waveforms,
the following procedure was followed. :

[t takes about 160-200 ms for a subject to start moving his/her
2yes in response to the appearance of the stimulus at a
sew location on the checker-board (VIGON et al., 20005).

CULLODPUIILC G 0 siie tenmeemers oo
form within this time interval. The tirst zero-crossing afier this
peak represented the saccade offsey-for an EOG waveform of'a
given trial. The statistical dis{ributilq (histogram) of the saccade
offsets across the 30 trials could then be obtained by repeating
the procedure for each trial.

3.2.2 dAveraging process: Both spatial and temporal averaging
of the waveforms were carried out. A description of each
foilows. :

Spatial averaging: In a previous study (VIGON er al., 200056),
it was found that ICA was more effective in extracting the
lambda wave when the saccade-related EEG waveforms
recorded from the 64 channels were spatially averaged. The
operation involved averaging together the waveforms from
channels close to the International 10-20 system of electrode
site placement, as denoted by the regions circled with broken
lines in Fig. 4a. This resulted in 20 EEG waveforms obtained
from the 20 locations highlighted by the alpha-numeric
designation of electrodes placement in Fig. 46 and two
EOG waveforms (EOG, and EOGgy for the left and right
sides, respectively), which were then used as input to ICA.
Temporal averaging: This was performed to reduce the
obscuring effect of the background EEG on the EP component
of interest (i.e. the lambda wave). For evaluation -purposes,
temporal averaging was carried out in three forms

(a) non-abutted, averaged waveforms without time synchro-
nisation; this involved obtaining the mean of the wave-
forms for each channel across the S0 trials

Furthermore. it can be assumed that the saccade is complete  (b) non-abutted. averaged waveforms with time synchronisa-
within the following 300 ms (DITCHBURN, 1973). The saccade tion; this was similar to the first form, except that the
offset corresponded to the largest peak in the eyc-movement wavcforms were time-synchronised prior to averaging
EOG waveform within this 300 s time interval. To locate this (¢) abutted. averaged waveforms with tirr/l,c) synchronisation:
peak. the first derivative of the eye-movement EOG waveform this involved abutting time-synchronised waveforms from
was computed. as shown in Fig. 3. a suitable number of successive trials and then obtaining
; The maximum value of the derivative within the 300 ms the mean: the number of trials abutted was determined
fime window was identified by a computer program. This experimentally, as described in Section 3.2.5.
geodesic sensor
network, 64 channels nasion
left EOG __ ~~— Might EOG 3
channel channel
spatial
averaging

common
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Fig. 4 Sparial averuging operation: (a) Electrical Geodesics sensor network of 64 clectrodes and (bj International 10-20 system of electrode
placement with alpha-numeric designation of electrodes placement on scalp for EEG recordings
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aged waveforms were whitened. Whitening is a process that
makes the mixtures mutually uncorrelated, as well as
ensuring that they have unity variance (CICHOCK! et al.,
1999). By decorrelating the data beforehand, ICA can
concentrate on the higher-order statistical dependencies of
the waveforms.

ICA has a number of parameters that need to be initi-
alised. One of these is the leaming rate #, described in
Section 2. It was heuristically found that a value of 5x10~*
was an appropriate initial value for this parameter. The value
of 5 gradually decreased during the learning process until the
rate of change was less than 1x 1076, The weight matrix W
was initialised to the identity matrix and then updated during
the leamning process by the amounts AW, and AW, using
(8) and (9), respectively. The training of ICA stopped when
the valug of AW became less than a predefined small value
(1x1077).

3.2.4 Backprojection of the separated components: The
whitened waveforms were then input into ICA. The resulting
ICA time series were backprojected to the 22 scalp locations
(i.e. the 10-20 International EEG and EOG electrode place-
ment locations) to obtain their scalp distributions. This
involved multiplying the inverse of the unmixing matrix
by the ICA time series to obtain an estimate of the contribu-
tions of the separated components at each of the 22 scalp
locations.

A procedure was devised to assess the effectiveness of ICA
for determining the scalp distribution of the lambda wave. This
estimated the percentage contribution of each ICA-extracted
component to the expected region of the scalp associated with
the lambda wave (i.e. parieto-occipital). The procedure used was
as follows:

(i) The estimated contributions of each extracted component
to all electrode sites were normalised between 0 and 1.

(ii) The sum S, of the resulting contributions was obtained.

(iii) The sum S; of the contributions for the parieto-occipital
area of the cerebral cortex (i.e. the region defined by the
eight electrodes P;.P;.P,,0,,0,,0,,Ts and T4 as
shown in Fig. 45) was calculated.

(iv) The required percentage contribution was then determined
as (S;/S,) x 100.

3.2.5 Analvsis procedure: The analysis was initially carried
out on artificially mixed waveforms. This allowed the
approaches to be quantitatively assessed. The analysis was
then extended to the 22 spatially and temporally averaged
waveforms (described in Section 3.2.2). The details of the
investigations follow.

For the artificially mixed signals, the 22 averaged waveforms
were visually inspected. and two waveforms were selected.
These two waveforms were selected from different subjects to
ensure their independence. One waveform was an EEG wave-
form with the temporal features of the lambda wave (as
~ described in the literature. such as THICKBROOM et al. (1991)).
The other was an eve-movement EOG waveform (recorded from
EOG._ site in Fig. 44). Different lengths of averaged waveforms
were produced by the abutting of successive trials (described in
Section 3.2.2). The abuttied EEG and EOG waveforms for
waveform length corresponding to three trials are shown in
Figs 5 and 6. respectively. EOG can be hundreds of microvolts in
magnitude and contain the signal components caused by blinks
and eve movements. The EOG waveforms shown in Fig. 6 are
caused by eve movements. The magnitude of this type of EOG is
affected by the amount that the eyes are moved when performing
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saccade (i.e. the viewing angle defined in Section 3.1). The
viewing angle of 10 degrees used in this study causes a smali
deviation of the eyes, thus generating eye-movement waveforms
of the range shown in Fig. 6.

The univariate statistical procedure (SAS, 1982) was used to
test the degree to which the selected EEG and EOG signals were
Gaussian. The univariate procedure tested the null hypothesis
that the input data values were a random sample from a normal
distribution. To decide whether 1o reject the null hypothesis of
the test for normality, it was necessary to examine the probability
associated with the test statistic (i.e. the probability value for the
Shapiro-Wilk statistic). The value obtained was less than 0.03
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£. 95% confidence level) for all four waveforms (the non-
“jutted and abutted time-synchronised averaged EEG and EOG
aveforms). Therefore the null hypothesis was rejected, and it
as concluded that the four waveforms were not significantly
jaussian.

Artificial mixtures were generated by carrving out the matrix
peration

EEG," . a ap EEG
EOG", - sy Qan EOG
iere EEG and EOG were the original signal sources, EEG,,
nd EOG,, were the resulting mixtures, a;; and a;, were the
1ixing coefficients for the EEG signal, and u.; and d», were the
aixing coefficients for the EOG signal. The ICA algorithm of
JELL and SEINOWSKI (1995) was applied to unmix the mixtures.
he effect of signal length on the performance of ICA was
wvestigated by gradually increasing the length of the averaged
vaveforms from 256 data points (corresponding to one trial) to
536 data points (corresponding to six aburted trials). This was
arried out for the mixing coetficients shown in Table I.
The EOG mixing coefficients were 4,y =1—a;; and
ha = I — a;5. The gradual increase in the waveforms’ length
.vas carried out in such a way that each waveform always
“ontained an integer number of lambda wave sections. Indeed,
s the lambda wave occurred within the 500 ms time interval
ollowing the onsct of the stimulus, the abutting process ensured
hat the end point of the resulting abutted trials did not lie within
his 500 s window.
The similarity between the original and recovered waveforms
vas quantified by calculating the following parameters:

(10)
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and 1; zero indicated }Lo similarity. and —1 and | indicated
100% similarity in shape (=1 meant an inversion in
polarity of the extracted component)

(b) euclidean distance ¢: this provided a measure of similarity
in both magnitude and ;hape of the waveforms and was
calculated bv

k
> (oti) — (@)
i=l

where o and r were the original and recovered signals. respec-
tively, and & was their length.

(1

4 Results and discussion
4.1 Evaluation of iterative synchronised averaging

Fig. 7a shows a typical average of 30 eve-movement EOG
waveforms prior to iterative svnchronisation. Fig. 76 shows the
histogram (distribution) of the saccade offsets of the EOG
waveforms. The saccade offset of each trial was determined
using the procedure described in Section 3.2.1. Figs 7c and d
show the same information once the iterative synchronisation
has been performed. It can be observed that the process has
reduced the deviation of the saccade offset distribution and thus
provided a less distorted, averaged EOG waveform.

Fig. 8a shows the averaged lambda wave (over 30 trials)
without time synchronisation, together with its eve-movement
EOG waveform. The waveforms following iterative svnchroni-
sation are shown in Fig. 84. The process of iterative synchroni- .
sation resulted in the extraction of the lambda wave featre f3,
which was not visible in the averaged lambda wave without time
synchronisation, The significance of the feawres fi. f; and
negative shift VS, which are >hown in Fig. 8. are outlined in
Section 4.3.

relative frequency

relative frequency

rs - S - 4 T
200 250 300 350 ' 400

saccade offset time, ms
d

fig. 7 (1) Averaged eve movement EOG waveform before synchronisation; (b) saccade offset distribution; (c) uveraged eye-movement EOG

waveform after synchronisation: (d) saccade offset distribution
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4.2 ICH applied to artificial mixtures

Figs 9a and b show the effect of signal length on ICA
performance when the armificially mixed waveforms were
processed. The points on the graphs correspond to the mixing
ratios indicated in Table 1. The effectiveness of ICA for
exmracting the EEG waveform from the mixtures gradually
improved (i.e. p closer to 1, € closer to 0) when the signal
length was increased (by the abutting process) from 256 data
points (i.e. one trial) to 1024 data points (i.e. four trials).

The components of the artificially generated signal mixtures
(i.e. the EOG waveform and the EEG. waveform with main
lambda wave characteristics) are short-duration transient
signals. The abutting of the waveforms to increase their
lengths improved their stationarity. As ICA relies on the
stationarity of the signais. the abutting process therefore
provided*a means to make the waveforms more suitable for
processing bv ICA. For waveforms greater than 1024 data
points. no further improvement was observed.

43 IC4 applied to 22 spatiall and temporally averaged
waveforms

The results for the centre-to-left saccade event are presented in
this Section. As a finite number of trials had been recorded (i.e.
50 trials per subject). increasing the number of trials for the
abutting process would have resulted in the averaging being
carried out over a smaller number of trials, thus reducing the
ability to artenuate the background EEG prior to ICA operation.
It was decided to set the length of the abutted waveforms to three
trials. This was considered to be a reasonable compromise for
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Fig. 9 (a) Correlation coefficient values and (b) Euclidean distance
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satisfying these two criteria. Once the components were
extracted by ICA, a further averaging across the trials was
carried to produce a single lambda wave.

Fig. 10 shows typical ICA-extracted lambda waves (top row)
and eye movement (bottom row) together with their corre-
sponding scalp distributions. for the non-abutted (Figs 10a
and b) and abutted (Figs 10c and 4) time-synchronised, averaged
approaches. Similar results were obtained for the other subjects.
and the results when the methods for all subjects were assessed
are summarised later in this Section.

The following are the main observations of this part of the
study:

First, ICA managed to extract the lambda wave and the eve-
movement waveform when it was applied to both abutted and
non-abutted averaged time-svnchronised waveforms. However.
the fearures of the lambda wave extracted when ICA was applied
to the abutted waveforms were preserved more accurately. The
features considered for this evaluation were f;. f> and f; and the
pre-saccadic negative shift NS (negative shift in the EEG that
appears from the onset of the stimulus and ends once the saccade
is performed). The features f; . /> and f; are believed to be related
to the movement of the visual field across the retina
(THICKBROOM et al.. 1991). The features f, and /> were reported
to be time-locked to the onset of the saccade. and the feature f3
was reported to be time-locked to the offset of the saccade
(THICKBROOM et al., 1991). The characteristics of these features
depend on factors such as the saccade duration or the viewing
angle (2, shown in Fig. 2).

In our study, where a short duration of saccade (about 20 ms)
was used, we did not observe the feature f; in either time-
synchronised or not time-svnchronised. averaged lambda waves
(see Fig. 8h). This was in accordance with the observations made
in THICKBROOM et al. (1991). However. in our study, this featre
became visible when ICA was applied to either non-abutted or
abutted time-synchronised. averaged waveforms. The feature /,
was observed by THICKBROOM e al. (1991) only in the averaged
EEG waveform of a subject for a longer duration of saccade
(75=T00 ms).

Secondly, Table 2 contains a summary of the analysis resultf
across the seven subjects for the temporal features NS, f). /> and
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fy when the methods to recover the lambda wave component
were assessed.
The methods were

(i) non-abutted, averaged waveforms without time synchro-
nisation

(ii) non-abutted, averaged waveforms with time synchroni-
sation

(i) ICA applied to non-abutted, averaged waveforms with
time synchronisation

(iv) ICA applied to abutted. averaged waveforms with time
synchronisation.

An expert familiar with the features of the lambda wave .

inspected the recovered lambda waves for each method. Four
features of the recovered lambda waves (NS, f, f, and f3)
were monitored for their visibility. Table 2 contains the
number of subjects in which each feature was observed for
each method. The NS feature was observed in all seven
subjects for all four methods. The averaging method
without time synchronisation was least effective, as, with
this method, each one of the features f}, f5 and f; were
observed only once across the seven subjects. Averaging with
time synchronisation was more effective than averaging

Table 2 Summary of analvsis results for temporal features of
lambda wave when four methods to recover lambda wave compo-
nent were assessed

Lambda wave temporal

feature
Methods NS N S fs
non-abutted, averaged wavetorms 7 1 1 1
without time synchronisation
non-abutted, averaged waveforms 7 2 5 4
with time synchronisation .
ICA applied to non-abutted, 7 4 6 6

averaged waveforms with
time synchronisation
ICA applied to abutted,
averaged waveforms with
time synchronisation

~1
-
~
~
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without synchronisation, as the method managed to preserve
teatures f;. f> and f3 in two, five and four subjects respec-
tively.. The results were further improved when ICA was
applied to non-abutted, time-synchronised averaged wave-
forms. The method successfully extracted feawres f;. f3 and
fi in four, six and six subjects, respectively. The best
performance was achieved when ICA was applied to the
abutted. time-synchronised averaged waveforms. as the
features f, f; and f; were visible in ail seven subjects.

Thirdly, Table 3 contains a summary of the analysis results
across the seven subjects for the scalp distribution (spatial
feature) and the amplitude range. when the four methods to
recover the lambda wave were assessed.

The amplitude range represents the peak-to-peak magnitude
of the lambda wave, as indicated in Fig. 10. The Table provides
both the mean and standard deviation values for each of the two
parameters across the seven-subjects. Neither averaging method
(i.e. with or without time synchronisation) provided the scalp
distribution of the recovered lambda wave. When using ICA, the
backprojection method described in Section 3 was applied to
obtain an estimate of the amplitude ranges. In the same Section,
the procedure used to estimate the percentage contribution of the
ICA-extracted components to the parieto-occipital remon of the
cerebral cortex is provided.

When ICA was applied to the abutted, averaged. time-
synchronised waveforms the contribution of the extracted
lambda wave component to the parieto-occipital region of the
cerebral cortex (back of the head) was estimated to be 73%.
When ICA was applied to non-abutted, averaged. time-synchro-
nised waveforms, the contribution was 55%. Therefore the
abutting process improved the spatial resolution for the extracted
lambda wave. When we consider the amplitude range feature,
the averaging methods, with or without time synchronisation,
provided mean values of 48 uV. ICA applied to the abutted.
averaged, time-synchronised waveforms provided a mean value
of 29 pV for the amplitude range. whereas that for [CA applied
to the non-abutted, averaged, time-synchronised waveforms
was 97 uV. The former range is closer to the previously reported
lambda wave amplitude range of about 30 pV (THICKBROOM
etal., 1991).

In summary, the four approaches reported in this study were
ranked in the following order of decreasing etfectiveness for
extracting the lambda wave:
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Percentage scalp Amplitude range,

distribution. % pv
Methods mean SD mean SD
non-aburted. averaged waveforms without - - 48 13
time svnchronisation
non-abutted, averaged waveforms with - - 48 18 .
time synchronisation
ICA applied to non-abunted. averaged 55 9 97 25
waveforms with time synchronisation
ICA appiied to abutted, averaged 73 11 29 7

waveforms with time synchronisation

(a) ICA applied to abutted, averaged waveforms with time
synchronisation

(b) ICA applied to non-abutted, averaged waveforms with
time synchronisation

(c) non-abutted, averaged waveforms with time synchroni-
sation

(d) non-abutted, averaged waveforms without time syn-
chronisation.

~ 5 Conclusion

The effect of waveform length on the performance of
independent component analysis for extracting a visual evoked
potential called the lambda wave from saccade-related EEG
waveforms was investigated. Experiments were carried out
using both artificially generated mixtures and the recorded

. EEG and EOG waveforms. The length of the waveforms was
increased by a process that_involved abutting successive trials.
. The study demonstrated thay increasing the length of the EEG

waveforms by the abutting ‘process increased the accuracy of

" ICA for extracting the lambda wave.
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