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ABSTRACT

by

- Jose Luis Vasquez Cedeno

The extent to which heat conduction within large
steel samples (billets) influences and is influenced by
solid state transformation reactions has been studied
under conditions of one dimensional heat flow with heat
removed by convection with a constant heat transfer
coefficient. Values of fhe heat transfer coefficient
in the range 130-220 (W/m“°C) has been used. These
values were independently measured using steady state
heat transfer and mass transfer analogy techniques which
gave results in fair agreement. The progress of trans-
formation front was followed using thermal analysis
technique. :

The effects of different values of the heat
transfer coefficient during transformation were inves-
tigated. The principal purpose of this investigation
was to try to discover whether the assumptions made in
establishing the theoretical method provided a basis
for predicting the rates at which steel transformation
reactions took place. The theoretical method assumed
that the rate of the transformation was controlled by
the rate of cooling and hence by the rates at which
heat was transferred from the cooling steel cocmpconent.
The rate of transformation could thus be predicted by

solving the heat transfer equation. The theory developed
ignored any interaction between the kinetics of the
transformation and the heat transfer process. The

reaction was assumed to take place over so narrow a range
cf temperature that the latent heat of the reaction could
be assumed to be liberated at a single unique temperature.
The method used to solve the heat transfer equation, and
hence to predict the transformation rates was the integral
profile method. This is an approximate method that uses
assumeduadralic temperature profiles within the transformed
and untransformed steel in order to obtain average
solutions to the heat transfer equation in the two regions.

The experimental results obtained are relevant to
cooling rates significanily lower than those involved in
most previous investigations and extend our current
knowledge concerning heat transfer during transformation
in large steel components.
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tigated. The principal purpose of this investigation
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establishing the theoretical method provided a basis
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that the rate of the transformation was controlled by
the rate of cooling and hence by the rates at which
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ignored any interaction between the kinetics of the
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The heat transfer during solid state trans-
formation reactions are normally studied using samples
that are small enough for temperature variations within

the sample to be ignored.

Ps

The present work studied the eXtent to which
heat¥ conduction Within large steel samples (billets)
influences an d is influenced by, solid state trans-
formation reactions. The method used was the thermal
analysis technique, which consists of placing thermo-
couples at various positions in the steel sample and
recording the cooling curves given by these thermo-
couples as tfansformation occurs. The progress of
transformation could be followed from these cooling
curves. The method basically depends on three factors:
accurate positioning of the thermocouples, accurate
temperature measurement by the thermocouples, and rapid
response of the thermocouples to changes in temperature.
In addition to the experimental work, a theoretical
method has been developed from the integral-profile
method capable of predicting the progress of the
transformation front and of predicting temperature
histories throughout the sample. A computer programme
has been produced from this method and used to obtain
theoretical results. In order to compare the pre-
dictions of the integral profile theories with the
experimental results, a value was needed for the heat
transfér coefficient from the surface of the solid

steel to the cooling air and in order to get a reliable

1/1

1/71



value for this important quantity two independent
methods were used to evaluate this factor. One
of these methods depended on steady state heat

transfer and the other method was a mass transfer

analogy.

The second chapter of this thesis contains
a survey of studies related to integral profile
method (heat balance integral), eutectoid trans-
formation, interlamella spacing and predictions in

solid state transformation.

The next chapter develops the theoretical
treatment of heat transfer during solid‘state trans-
formations following the integral profile method
for the prediction of solidification rates and also

the computer programme produced from this method.

Chapter Four describes the experimental work
that was carried out during the development of this

thesis.

The results are presented in Chapter Five and:

discussed in Chapter Six.

Finally, the conclusions and propositions for

further work are presented in Chapter Seven.
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2.1 THE INTEGRAL PROFILE METHOD (HEAT BALANCE

INTEGRAL)

The integral profile method is analogous to the
momentum integral used by Von Karmann and Pohlhansen(i)
to solve boundary layer problems in fluid Mechanics.
Further details of the approach are given in standard

(2) and (3)

works on boundary layers.

The application of the method to the solid state
transformation problem is complicated by two effects
which do not arise in fluid flow boundary layers. At
the outer surface of the cooled solid the temperature
may be a constant or a variable, but is never zero.

In fluid flow the velocity at the corresponding boundary
is always zero. At the transformation front a source

of heat is always present but in fluid flow a source of
momentum is rarely present at the analogous surface, the

surface of the boundary layer.

A layer of transformed material is assumed to
exist between the transformation front and the outer
cooled surface of the solid steel. In the simplest
application of the integral profile method, temperature
gradients are assumed to exist only within this trans-
formed layer. Beyond the transformation front the
temperature fallsrapidly to the transformation temperature
and remains there until passage of the transformation

front.

2/1



2/2

Further assumptions made are that the steel has
~a unique transformation point and that heat conduction
occurs in one dimension only. The principle of the
conservation of thermal energy is then applied using
solid steel layer as a macroscopic control volume.
This leads to the conservation equation which is
analogous to the unsteady state heat conduction equation,
which is obtained by a rigorous statement of the problem.
The conservation equation contains the integral of the
temperature profile across the solid steel layer, hence

the name of the technique.

In order to evaluate this integral, it is assumed
that the temperature profile can be represented as a
function of the space variable only. The function
most used is a polynomial series, the coefficients of
which are not functions of the space variable but are
~functions of time. The coefficients are determined

from the boundary conditions of the problem.

In effect, the use of the boundary conditions
ensures that the assumed profile is correct near the
two boundaries (the outer surface and the transformation
front) and the use of the integral of the assumed profile
in the conservation equation ensures that it is correct,
on average, across the solid steel layer. If the
integral of the temperature profile is obtained in this
way and substituted in the conservation equation, an

ordinary differential equation can be obtained for the

2/2
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rate of advance of the transformation front. This
equation can be solveq analytically in many cases,
but if it is non-linear it can be solved by a simple
numerical technique. Detailed application of the

method to solid state transformation is presented in

Chapter 3.

Assumptions made in applying the integral profile

method to solid state transformation problems

The basic assumption which must be made in using
the integral profile method is that of one dimensional
heat conduction, as the method can only be applied to

this case.

In order to simplify the application of the
integral profile method to solid state transformation
one other assumption has been made, that is, that the
steel has a unique transformation point (eutectoid

temperature).

The accuracy of the integral profile method

The integral profile method is not an exact
technique as the expression developed for the temperature
profile in the solid steel is approximate. It is
therefore interesting to compare results obtained by
the use of this method with exact theoretical results

(where available) and with experimental results.

For the case of solid state transformation with

2/3



heat removed by convection'(where neither boundary
temperature nor boundary heat are constant), no

exact theoretical solution is available. For this

case an original integral profile solution has been
obtained and is given in Chapter 3  as an example

of the use of the integral profile method. This

solution applies to thé case of a constant heat transfer
coefficient. The accuracy of the integral profile method
depends on the order of the polynomial used to represent
the temperature profile in the solid steel layer, and

on which of the available boundary conditions are used.
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2.2 THE FORMATION OF PEARLITE

Hiller(Q) reviewed the literature and gave his
contribution to the subject. In the eutectoid decomposition
of austenite the two new phases, ferrite and cementite,
can arrange themselves in two different ways, giving
rise to two differentlstructures, bainite and Pearlite.
Consequently, it nmust be of primary interest to arrive
at a picture of the eutectoid transformation of austenite
which is capable of explaining the existence of two
~different structures. Since there is good evidence
that bainite is nucleated by ferrite, it may seem quite
natural to assume that pearlite is nucleated by cementite
although the evidence is not quite as good on this point.
Furthermore, it is well known that the formation of nucleil
with some special orientation realtionship to the parent
phase is often favoured in comparison to randomly oriented
nuclei. In view of the well established fact that the
nuclei for bainite are ferrite crystals of widmanstatten
nature, it could thus seem quite safe to assume that
pearlite is nucleated by a platelet of cementite in a
widmanstatten relationship to the parent austenite.

This hypothesis is also very attractive from another
point of view. First, it yields an explanation for

the lamellar nature of pearlite and, second, it yields
some understanding of the accepted fact that all parallel
plates which form during sidewise growth by repeated

nucleation exhibit the same lattice orientation.
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Accepting this view, it must be expected that the
orientation relationships between the two new phases
and the parent phase will be of much importance during

growth.

The active nucleus of a pearlite colony may'be
defined as the first one, either of ferrite or cementite,
to form with the particular lattice orientation which
will be found in the pearlite colony. The question
of which phase provides the active nucleus is thus
intimately related to the question of orientation

relationships.

Long before bainite was ever desc?ibed, pearlite
was known to be composed of two phases, ferrite and
cementite. In view of this knowledge, Benedicks(s)
made the suggestion that proeutectoid ferrite as well as
cementite could act as germs for the formation of troostite
(i.e. fine pearlite). Benedicks could support his
suggestion by the experimental observation that this kind
of pearlite forms preferentially in contact with pro-
eutectoid ferrite or cementite. Later on, when bainite
had been described and X-ray methods were available for
orientation determinations, Mehl and co-workers(6—8)
reported that bainitic ferrite has the same orientation
relationship to the parent austenite as proeutectoid
ferrite, whereas.pearlitic ferrite appeared to have

quite a different orientation relation with respect to

the parent austenite. In the case of cementite, the
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X-ray methods did not yield such a definite answer but
seemed to indicate that proeﬁtectoid cementite and
pearlitic cementite could very well have identical
orientation relationships to the parent austenite.

As a consequence doubt started as to the validity of
Benedicks' suggestion. Upon microscopic inspection
of the junction between proeutectoid ferrite and

pearlitic ferrite, Hull and Mehl(g)

found a grain
boundary between the two and reported that: '""The case
is never observed, however, in which proeutectoid
ferrite is continuous with ferrite or pearlite'.

In view of this, Dube(lo) and Aaronson(11) suggested
that the proeutectoid ferrite should only be considered
as an informal nucleus which provides a preferred site
for the nucleation of cementite with the correct
lattice orientation. This latter crystal being the
active nucleus for pearlite, is capable of nucleating
ferrite with the lattice orientation characteristic of
pearlitic ferrite and thus with a grain boundary toward
the proeutectoid grain of ferrite. Furthermore, Hull
and Mehl found that on quenching a partially transformed
specimen with an insufficient rate of cooling, coarse
pearlite will give rise to a rim of very fine pearlite
(troostite), whereasvproeﬁtectoid ferrite gives rise

to bainite. There was thus strong evidence in favour

of the idea that bainite is nucleated by ferrite but

pearlite is not.
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(12)

Modin pointed out that many micrographs
published by Hanemann and Schrader in their Atlas

Metallographicus(13)

show that there often is mo grain
boundary between proeutectoid and pearlitic ferrite.
After a thorough microscopic investigation Modin came

(12) found in

to the same conclusion. Later on Modin
a particular case éhat the grain boundary was missing

for about 30% of the pearlite units, a figure which

seems too high to be ignored. This result is in serious
conflict not only with the metallographic results of

Hull and Mehl but also with the conclusions drawn from

the X-ray measurements stating that pearlitic ferrite

does not have the same lattice orientation as prqeutectoid

(14) ¢ und it

ferrite. As a consequence, Mehl and Hagel
difficult to accept Modin's result in spite of the high
quality of his metallographic work. In this situation
it appeared essential to test the validity of the X-ray
work which had been carried out on separate specimens,
one containing proeutectoid ferrite of widmanstatten
character, another containing pearlite. A definite
answer would be obtained by an orientation determination
of a single colony of pearlite and the adjoining grains
of ferrite. This determination could be carried out by
means of a microbeam X-ray technique. However, metallo-
graphic techniques are also available and have been

applied to this problem independently by Hillert(ls)

and Hultgren and Ohlin(16).
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Hiller used the characteristic propensity of
elching To attack all ferrite crystals in a polished
section except the ones closely perpendicular to the

(17)

surface. Unetched crystals of ferrite were thus
seen in the microstructure of a hypoeutectoid steel.
After etching in picral, most of them were found to
consist of pearlite as well as adjoining proeutectoid
ferrite. Hultgren(18) has refined an etching method
which produces etch pits characteristic of the
orientation of each grain of ferrite. Different
lattice orientation can thus be distinguished micro-
scopically by the application of polarized light.
Hultgren and Ohlin applied this etch to partially
transformed specimens in which the pearlite colonies
were still quite small, the idea being that every
pearlite colony found in a microsection should be close
to the proeutectoid grain of ferrite which had served
as its nucleus, informal or active. This investigation
gave a very clear answer to the question concerning the
role of proeutectoid ferrite. The ferrite constituent
in 60-80% of all the pearlite colonies was found to have
the same lattice orientation as some adjoining grain of
proeutectoid ferrite, proving that these grains had been
active, rafher than informaf, nuclei.

Although proeutectoid cementite has always been
considered able to serve as active nucleus for pearlite
in a hypereutectoid steel, this opinion did not seem to

be based on any experimental information until Modin(iz)
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reported that inspection by polarized light revealed
that pearlitic and adjoining proeutectoid cementite
have the same lattice orientation. This point was

(16)

again tested by Hultgren and Ohlin who found this
to be true for almost 100% of the pearlite colonies

in a partially transformed hypereutectoid steel.

In view of this result, it appears necessary
to conclude that Benedicks was correct when he suggested
that pearlite can be nucleated by either ferrite or
cementite. In hypereutectoid steels, cementite will
normally form first and will then nucleate pearlite;
in hypoeutectoid steels, ferrite will form first and

(19)

then nucleate pearlite. Nicholson arrived at the
same conclusion by analyzing kinetic data for the
- formation of pearlite. Hisbarguments have been
criticized by Cahn(zo), however, and may not be quite

valid although his conclusion now seems to be confirmed.

Accepting the fact that both ferrite and cementite
may nucleate pearlite, an explanation of the X-ray
results must now be sought out. It seems that an
answer can be provided by a hypothesis proposed by
Smith(21). Smith suggested that a crystal of proeutectoid
ferrite, formed at the grain boundary between two grains
of austenite, would have a definite orientation
relationship to one of them, resulting in a partially

coherent interface. Ordinarily the lattice orientation

of the ferrite crystal cannot at the same time be related
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to the other grain of austenite and an incoherent interface

will thus form on this side.

At a low degree of undercooling, growth will occur
predominantly by the movement of the incoherent interface.
The crystal of ferrite thus grown into the grain of
austenite to which it bears no orientation relationship.
At a higher degree of undercooling, the available free
energy may be large enough to overcome the high elastic
strain energy that opposes the movement of the coherent
interface. The crystal of ferrite can then grow into
the grain of austenite to which it is related. This

growth will result in widmanstatten forms.

Smith further proposed that the ferrite component
of a pearlite unit, formed at a grain boundary, should
also be related to one of the grains of austenite, whether
nucleated before or after the cementite component. By
analogy to discontinuous precipitation he suggested that
the pearlite unit would only be able to grow by the advance
of the incoherent ferrite-austenite interface, i.e. into
the grain of austenife to which the lattice orientafion

of the ferrite is unrelated.

The pearlite ferrite found in a transformed grain
of austenite should then bear a. specific orientation
relationship to a neighbouring grain of austenite, this
grain being the true parent grain for the crystal of
ferrite which later developed into pearlité. This

hypothesis is thus able to explain why an X-ray examination
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will yield different orientation relationships for
pearlitic and widmanstatten ferrite when referred to
the matrix grain of austenite. According to Smith,
the lattice orientation of pearlitic ferrite in a
particular matrix grain of austenite should be random
except for the avoidance of certain orientation, which
would give a coherent interface between ferrite and

matrix austenite, preventing the formation of pearlite.

The reason for Smith's suggestion concerning
the growth of pearlite was two-fold. First, the
mobility of an incoherent interface is high whereas
a coherent interface sometimes may be rather immobile.
Secondly, an appreciable increase of the diffusivity can
be expected along an incoherent interface, allowing a
rapid lateral diffusion and a high growth rate of a
two-phase composite. Smith's hypothesis should thus

be generalized to read as follows:

The ferrite and cementite constituents of pearlite
can have any orientation relationships to the matrix
auatenite except for those which the formation of inter-
faces which are partially coherent with the matrix
austenite. The lattice orientations of pearlitic
ferrite and cementite are thus random with respect to the matrix

austenite except for the avoidance of some orientations.

Hulgren and Ohlin in their study of pearlite(16)

independently reached the conclusion that Smith's hypothesis
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can be generalized to hold for the‘cementite constituent
of pearlite as well as the ferrite. In order to check
the importance of orientation relationships further,

they particularly studied the formation of pearlite in

a hypereutectoid steel where the individual grains of
austenite were first isélated from each other by the
formation of a continuous film of proeutectoid cementite.
Apparently, in this case the lattice orientation of the
ferrite constituent of pearlite cannot be directly
related to any of the neighbouring grains of austenite, as
had been suggested by Smith(zl). Hulgren and Ohlin

found that pearlite could form without any difficulty even
under these circumstances, a fact that indicated that
orientation relationships of the pearlite phases to

austenite are of even less significance than suggested

by Smith.
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2.3  EFFECT OF COOLING RATE ON PEARLITE TRANSITION

(22)

Carpenter and Robertson worked on this problem
and they got very important results. In the iron carbon
diagram the formation of pearlite is represented as
taking place at a point which is the intersection of

two lines: 1) that repfesenting the lowering of the
allotropic change by addition of carbon, and 2) that
representing the decrease in the solubility of carbon

in ¥-iron with fall in temperature. It is only under
certain conditions, however, that pearlite forms at

constant temperature from austenite of uniform composition.

The conditions are as follows:

(1) When the rate of cooling between Ar3 and Ar1

is sufficiently slow to enable a uniform
distribution of carbon in the residual austenite

to be maintained.

(2) When the rate of abstraction of heat during
the eutectoid change is sufficiently slow to
enable the heat evolved by the change to keep

the temperature constant.

The iron carbon diagram shows that the formation
of pearlite takes place at a constant temperature, but
it does not indicate how long this must be maintained
to enable the change to proceed to completion. With
the -slow rates of cooling usually employed the rate of

abstraction of heat exceeds the rate of evolution of heat.
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Consequently the change is spread over a range of
temperature. But if the temperature is maintained
constant at the point where the formation of pearlite
begins, or at any lower temperature, the change will

proceed to completion.

When the rate of cooling from above the Ar_ point

3

is more rapid than that required for equilibrium, the

following conditions are realised:

(1) A concentration gradient is produced in the
austenite during cooling fhrough the range
between Ar3 and Arl. The austenite in contact
with ferrite contains more carbon than that

more remote from it, and consequently the eutectoid

change begins in non-uniform austenite.

(2) Even when the austenite is uniform, as in
steels in which no separation of ferrite precedes
the eutectoid change, this change is lowered by

increasing the rate of cooling.

(3) In hypoeutectoid steels the eutectoid point is
moved towards a lower carbon content, and
consequently, by increasing the rate of cooling,
steels containing considerably less than 0.9 %
of carbon may be made to consist entirely of

pearlite.

(4) Whether the austenite in which the eutectoid change

begins is uniform or not, the formation of pearlite
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is spread over a range of temperature by any
rate of cooling faster than the equilibrium

rate.

When the rate of cooling of a hypoeutectoid steel
is faster than the equilibrium rate the results obtained
are affected by all the above factors. The formation
of pearlite begins at a lower temperature than that
represented by the diagram. The change begins in
austenite containing less than 0.9 per cent of carbon,
it proceeds as the temperature falls, and austenite
containing progressively less carbon is gradually trans-

formed to pearlite.

In some respects the presence of other elements
affects the eutectoid change in the same way as an increase
in the rate of cooling, but in other respects the effects
are different. Some elements lower the temperature of
the eutectoid change, while othérs raise it. All elements
decrease the carbon content of pearlite. The presence
of other elements does not directly result in a non-uniform
distribution of carbon in the residual austenite, but
owing to their effect in retarding the diffusion of carbon
they tend to facilitate the formation of concentration
gradients. When other elements are present the system
is not binary, and consequently cannot be accurately
represented by the iron-carbon diagram. In a ternary
system the eutectoid change takes place over a range of

temperature. This may be lowered and widened by increasing
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the rate of cooling, but even at the SIOWest‘rate the
formation of pearlite does not take place at a point.
The eutectoid change is accompanied by selective
crystallisation, and the ferrite forming part of the
eutectoid contains a different concentration of the
third element from that in the austenite from which it

is derived.

Thus, the eutectoid range resulting from the
presence of other elements differs from that produced
by increasing the rate of cooling, for in the latter case
the formation of pearlite proceeds to completion if the
temperature is held constant at any point below that at

which the change takes place under equilibrium conditions.

In the experiments on the eutectoid change, no
distinction was made between the effect of the rate of
cooling and that of the other element present. The
specimens were cooled continuously to a certain point and
then quenched. It was observed that with slow cooling
the eutectoid change took place within a very narrow range
of temperature and that this range was widened as the rate
of cooling was incfeased. In the experiments carried

(23) the different effects were distinguished,

out by Whiteley
for, by keeping his specimens at different temperatures for
different lengths of time,he observed that the eutectoid
change took place over a range of temperature, that at

any temperature within that range it proceeded at constant

temperature but not to completion, and that it went further
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the lower the soaking temperature. Had the specimens
contained no element besides carbon and iron, the change
would have been completed in time at any of the soaking
temperatures below that at which it was observed to begin,
and had they been cooled to the soaking temperature at
the equilibrium rate, then in the presence of manganese
and other elements, no change would have taken place at
constant temperature. What was actually observed was
the combined effect of a rate of cooling faster than the

equilibrium rate and of the presence of other elements.

It is well known that the pearlite lamellae become
finer as the rate of cooling isincreased, but a rise in
the carbon content has the opposite effect, and in a
series of slowly-cooled steels the pearlite is finest
in the steel of lowest carbon content. It is also well
known that increasing the rate of cooling increases the
amount of pearlite, so that with suitable cooling, steels
with less than 0.5 per cent of carbon can be made to
consist entirely of pearlite. In this respect, increases
in the rate of cooling and carbon content have a similar

effect.

Two other effects of these factors may be discussed,
on the way in which pearlite grows, and the relation of
this to the structure existing when the eutectoid change

begins.

In slowly-cooled steels which contained less than

0.5 per cent of carbon, a considerable amount of ferrite
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is formed before the eutectoid change begins. This
occurs as irregular masses round the boundaries of the
grains, or more rarely as isolated crystals in their
interiors. Pearlite begins to form in irregular masses
of austenite and extends until these are completely

converted.

By increasing the rate of cooling or the carbon
content, the amount of proeutectoid ferrite is decreased,
and the pearlite begins to form in polyhedral grains of
austenite surrounded by envelopes of ferrite. Under
these conditions the shapes assumed by the growing particles
are not determined so much by the shapes of the areas of
austenite in which they form, as by the manner of their
growth. It begins at a number of points on the boundaries
and extends inwards. The external shape of the pearlite
units is determined by their mode of growth. When the
transformation is completed each austenite grain is
occupied by a number of particles of pearlite which have

grown from different points.

With suitable combinations of carbon content and
rate of cooling the formation of proeutectoid ferrite
may be almost or completely prevented. In this case the
formation of pearlite has little relation to the grain
structure of the austenite. It may begin at the boundaries
of the austenite grains, or at points in their interiors,
but the general structure of the steel, at any intermediate

stage, or when the change is complete, is largely determined
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by the way in which the pearlite grows.

During slow cooling, in any steel of lower carbon
content, the transition from austenite to pearlite begins
in irregularly shaped particles of austenite. The units
of pearlite formed in this way have no definite shape of
their own. As the rate of cooling is increased, however,
the units exhibit an increasing tendency to grow radially.
The pearlite growing from the ferrite boundaries forms
nodules round the austenite grains. A further increase
in the rate of cooling or carbon content, besides reducing
the amount of proeutectoid ferrite, increases the tendency

towards radial growth.

In a steel of 0.73 per cent of Carbon, 0.56 per cent
of Manganese, 0.23 per cent of Silicon, air cooled, a few
narrow boundaries of ferrite were formed, and from them
pearlite developed. At some of the ferrite boundaries
pearlite grew on one side only, while at others growth
took place on both sides. In this same specimen there
were many areas in which the formation of pearlite had
begun at points remote from existing ferrite. This is
the condition necessary for perfect radial growth, for
the pearlite may then develop in all directions from the

point at which its formation began..

The tendency for pearlite to grow radially when the
rate of cooling is increased is the result of the combined
operation of two factors. In the first place, it tends

to grow so that the edges of the plates will always be
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presented to the direction of growth ‘and, in the second

place,

so that in a given time the maximum amount of

austenite will be transformed. Thus, when the rate of

cooling is increased, the eutectoid change accommodates

itself to the altered conditions, and attains greater

rapidity in three ways:

(1)

(2)

(3)

The individual plates of ferrite and cementite
become finer and the distances over which carbon

must diffuse are decreased.

The units of pearlite exhibit an increased
tendency to grow radially, and thus produce the
maximum amount from the minimum number of

centres of growth.

The formation of pearlite begins at a greater
number of points, though this number does not
increase to an extent commensurate with the
increase in the rate of cooling. Even with
the most rapid cooling the number of centres
from which pearlite forms is not great, and
this factor is of less importance than the

others.

As long as the residual austenite is completely

converted to pearlite the mamner of its growth has little

effect on the final structure. It influences the

arrangement of the plates of cementite and ferrite within

each unit, but at low magnifications the pearlite simply
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appears as dark masses filling the spaces occupied by

the residual austenite. If, however, the austenite is
only partly converted, then the mode of growth of the
pearlite determines the shape of the units. In heat
treatment the formation of pearlite is mnot interrupted,
except under certain conditions of quenching when large
specimens are used, or when the immersion in the water

is not sufficiently rapid. When this occurs the pearlite
appears in the form of dark nodules, usually located at
the boundaries of austenite grains, and more rarely in

the interior. It is recognised that these are formed
because growth has taken place radially, but this method
of formation is regarded as exceptional and different

from that of pearlite. It follows, however., from the
foregoing description of the effect of the rate of cooling
and the pre-existing structure, that these nodules are
actually typical of pearlite formed under the imposed
conditions. Fér, as the rate of cooling is increased,
pearlite shows an increasing tendency to grow radially,
and when no previous separation of ferrite has taken place,
its formation begins at a point and spreads radially from
it. Thus the dark nodules observed in imperfectly

quenched steels are characteristic pearlite structures.

In slowly-cooled low carbon steels the crystals
of ferrite assume fairly regular shapes, and with an
increase in the rate of cooling or the carbon content

they tend to become elongated. The response of pearlite
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to these influences is directly opposite to that of
ferrite, and under these cénditions the units of pearlite
tend to become spherical. This difference in the shapes
is due to the difference in the conditions under which
.they are formed. During the formation of ferrite the
excess carbon is driven into the austenite, and under
conditions of accelerated cooling the ferrite tends to
grow in the way that permits the most rapid removal of
carbon from the ferrite-austenite interface. During
the formation of pearlite, however, there is no diffusion
of either constituent into the residual austenite.

The units may therefore be of any shape, and during
acceleratedAcooling they tend to become spheres, for

this is the shape that permits the most rapid increase
in the amount of pearlite forming from a limited number

of centres.
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2.4 THE INTERLAMELLAR SPACING OF PEARLITE

Pellissier, Hawkes and Mehl(zq)

reviewed the
literature about this important subject and gave their
contribution to it. Attention was called to the
importance of the interlamellar spacing in pearlite by

(25)

Belaiew in 1922 ; Belaiew's work followed the earlier

(26),(27) 8)

studies of Oknof , and Forsman(2 on the
stereometry of pearlite. In 1929 Greene attempted to
correlate the mechanical properties of pearlite with its

(29).

interlamellar spacing The usefulness of pearlite
spacing measurements in studying the mechanical properties
of anneal steels, and also in studying the rate of
formation of pearlite, has become more generally recognized.
Systematic investigations of the correlation of the
mechanical properties with spacing of pearlite have been
conducted by Gensamer and his collaborators(Blb!BQ)

Belaiew has proposed the use of spacing data to describe
the fineness of pearlite, in place of the qualitative terms
coarse, medium, and fine frequently used, in order to

avoid confusion or ambiguity in nomenclature, and has
suggested that such data might be used to decide whether
there is any real justification for the belief that the
range of pearlite structures is discontinuous(BZ).

Mehl in a study of the mechanism and rate of the decom-
position of austenite, has shown that pearlite spacing
data must be considered in any effort to analyze the rate
of growth of pearlite nodules and, therefore, élso the

(33).

rate of formation of pearlite Moreover, spacing
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measurements have been used to predict a change in the
mechanism of austenite decomposition (i.e. from the
pearlite to the bainite reaction) as the temperature of
transformation is decreased below about 550 degrees

(33)_

centigrade

(34)

The need of a treatment of the interlamellar
spacing of pearlite more comprehensive than that provided
by Belaiew became evident in studies on the physics of
hardenability of steel(Bs), and also in the studies by
Eensamer and his co-workers on the correlation of the
mechanical properties and spacing of pearlite. The
basic assumption in Belaiew's work that the interlamellar
spacing of pearlite is constant when the pearlite is
formed under controlled conditions was the result of
casual observation and heretofore has not been subjected
to experimental test. In fact, reasonable doubt has
existed that the spacing is strictly constant even in
pearlite formed isothermally, for a statistical variation
seemed more likely. There is need also for a more accurate
method of determining pearlite spacing. Furthermore,
information should be available on the possible effects
of such variables as prior austenite grain size, carbon

content of the austenite, and the presence of various

alloying elements upon the interlamellar spacing of pearlite.

Constancy of Interlamellar spacing

Belaiew drew attention to the rather obvious fact

that the wide variation in interlamellar spacing observed
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(25)

on a plane of polish is not real but apparent . The
true spacing (8o) of pearlite formed under controlled
conditions was believed to be constant, and the wvariation
in spacing on a plane of polish was attributed to the
intersection with this plane of randomly oriented groups
of parallel ferrite and cementite lamellae (pearlite
colonies) at a range of angle from O to 90 degrees.
The apparent spacing (OW) on the sectioning plane was
related to the true spacing by means of the angle (W)
between the normal to the lamellae and the plane.

This secant relationship, W = sec_%JlE y, provided
a simple means of determining.ﬂo in pearlitgocompletely

resolved by the microscope.

The smallest apparent spacing encountered on
scanning a sufficiently large area of the specimen
presumably was equal to the true spacing. This method
of determining Ao apparently involves two assumptions:

a) that the true spacing is strictly constant, and

b) that the orientation of pearlite colonies with respect
to the plane of polish is random. Obviously, values of
Ao for fine pearlites, incompletely resolvable under the
microscope, could not be obtained by this method. A
more indirect method of measurement was devised for this

case.

Belaiew had noted that at a few locations on the
plane of polish where the apparent spacing was very large,

the edges of the cementite plates exhibited a characteristic
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frayed or broken appearance. Using a completely
resolvable bearlite specimen, Qo was determined by the
method just described, and it was shown that this
peculiar aspect of the cementite lamellae corresponded

to values of W greater than about 83 degrees. Evidently
this critical value of W was of real significance, for
the secant relationship predicted a greatly accelerated
increase in the apparent spacing (AW) as the value of W
approached and exceeded 83 degrees. This phenomenon
was assumed to apply generally to pearlite of any'ﬂo

and it was used to determine fJo values of incompletely
resolved pearlite. The apparent spacing of cementite
plates which exhibited this frayed appesarance was measured,
the angle was assumed to be 83 degrees, and thelﬂo was

calculated from the secant relationship.

The basic assumption in this treatment, that the
interlamellar spacing is characteristic of the heat
treatment (Belaiew used no iso-thermal treatment) and is
a constant (Ao) throughout the entire specimen when cooling

conditions are uniform, has been questioned.

(34) (35)

Rosenhain and Benedicks both doubted the
validity of this claim and suggested methods for its
experimental verification. The supposition of the
constancy of Ao was, however, not without some foundation,
qualitative though it was. Belaiew observed that the

proportion of specimen area occupied by lamellae oriented

at very oblique angles to the plane of polish is relatively
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much less than that occupied 5y lamellae oriented nearly
normal to the surface, as the geometry of the case predicts.
Certainly, this conception of the constancy of spacing
requires some modification in the light of research by

(36)_

Bain, Davenport and co-workers At least qualitatively,
Mo appears more precisely to be a function of the temperature
of isothermal decomposition of austenite to pearlite,

rather than a function of the cooling rate(37). It is

true that slow cooling results in complete transformation

to pearlite (at a high temperature) within a narrow

" temperature interval, but at faster rates of cooling, this

is not true within wide limits. In fact, it is believed

that the recalescence in a large specimen, isothermally
transformed to pearlite at temperatures near the knee of

the S-curve, may result in an appreciable range of spacing(Bl)
Furthermore, it was suspected that pearlite formed iso-
thermally under the most carfully controlled temperature
conditions does not possess a strictly constant interlamellar

spacing, but rather a statistical distribution of true

spacings about a mean.

Experimental methods

The problem of investigating the constancy of the
y(26)

interlamellar spacing (So and that of determining So
are related but not necessarily identical. The constancy
of So may be tested either by determining So at several

random locations in a specimen or by other less direct

means. Speculation reveals at least three possible
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procedures, as hinted by Rosenhain

(1)

(2)

(34) (35),

and Benedicks

A specimen of pearlite is polished repeatedly on
one surface and a selected pearlite colony is
photographed at the successively lower levels to

(33)

determine whether the apparent spacing remains
constant. If these successive sections are

maintained exactly parallel, it can be assumed

that any variation in S reflects a variation in So.

The true spacing cannot be determined by this method
hor can the eﬁtent of any variation in So be
ascertained owing to extreme manipulative difficulties
in determining the lateral displacement of a given
lamella on successive polishing. The method can

be refined so as to permit the construction at
considerable magnification of a spatial model of

a pearlite colony(28), though the difficulties in

registry affect its accuracy.

A second method involves polishing a specimen of

coarse pearlite on two surfaces intersecting in an
edge at a known angle; selecting a pearlite colony
which exhibits traces of the same lamellae on both
surfaces; and measuring (a) the plane angles
between the lamellae traces and the edge, (b) the
apparent spacing of the lamellae on each surface.
So may be computed from this data by the methods

of descriptive geometry or more simply by the use

(38).

of the stereographic projection The constancy
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of So can be tested by applying this method at
several locations along the edge. Calculations
show that an uncertainty of as much as 10 degrees,
in determining the dihedral angle between surfaces,
results in a minor error in the calculated So

( L10 per cent). This method may be shortened
considerably, for it may be shown that if the traces
of the lamellae on one surface make an angle of from
60 degrees to 120 degrees with the edge, then the
apparent spacing of the lamellae on an adjoining
perpendicular surface may be taken as the true
spacing with less than 14 per cent error. The
major difficulty and at the moment apparently an
insuperable one, lies in the feat of polishing two
surfaces so as to maintain an edge between them
sufficiently sharp to provide the requisite accuracy
for a single peérlite colony. This difficulty

might be minimized by electropolishing.

(3) A method which involves less experimental difficulty
consists in measuring the relative amount of surface
area occupied by various small ranges of apparent
spacing and comparing these data with values
calculated on the assumption of a constant So by
probability mathematics. Such a statistical method

is tedious, but it has been used with success.

Methods of Determining Interlamellar Spacing

It is convenient to classify the methods of determining
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interlamellar spacing into two groups:

1. Methods applicable to coarse pearlite which

are completely resolvable under the microscope.

2. Methods applicable to fine pearlites which are

only partially resolvable under the microscope.

In Group 1 at least three methods are available.
One method, which was devised by Belaiew(zs), consists in
adopting the smallest observed spacing as the true inter-
lamellar spacing, A second method was developed by

(39)

Scheil . This method yields accurate and complete

information about the spacing, but it is rather lengthy.

A third method is an abbreviated form of the latter
method developed by Miss E. B. Pearsall, and is more useful(Bl).
The absolute accuracy of this method is not known;
certainly it is dependent to a large degree on the validity
of the assumption that the limit of resolution practically
achieved is equivalent to the theoretical resolving power
of the objective. An evaluation of this assumption is

difficult because of the many variables which influence

the l1limit of resolution.

In Group 2 there are two methods. One system developed

(25).

by Belaiew Some experience with this method has
indicated that it is not capable of providing consistent
results. Evidently the source of greatest inaccuracy is

the uncertainty in assigning a definite value of the

orientation angle to lamellae which exhibit this irregular
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appearance; an error of as little as 5 degrees in
eétiﬁating this angle results in an inaccuracy of about
100 per cent in the calculated So. Furthermore, it is
believed that polishing technique, as well as the true
spacing (So), may affect the empirical correlation of

this characteristic appearance with the oricutation angle.

The other method available for determining the
interlamellar spacing of incompletely resolvable pearlite
is the method developed by Miss Pearsall(Bl). This
method may be applied equally well to completely resolvable
pearlite and to partially resolvable pearlite; it has

been used almost exclusively to study effects of variables

on the interlamellar spacing.

Other methods were developed to determine inter-

(40)

lamellar spacing by Brown and Ridley , and Asundi and

(41)

West They pointed out that the mean spacing value

is known to vary with time, temperature and composition.
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2.5 EFFECT OF TEMPERATURE VARIATION AND OF HEAT

TRANSFER PROCESSES

(36)

The very important work of Davenport and Bain
about transformation of austenite at constant subcritical
temperature in which they preésented the results of a study
of the time required for the transformation of austenite
to ferrite and carbide at a variety of temperatures and
also of the time required for the reaction austenite —
martehsite at the temperatures at which this reaction occurs
instead of the one first mentioned, is considered now a
pioneer work on structural prediction. In the discussion
of the results the authors concluded that the C-shaped
curves for all steels resulting from plotting temperature
of transformation (between entectoid temperature and that
of maximum time) against time required may be predicted
from purely physical-chemical considerstions. Following

(50)

this work, Austin and Rickett in their paper Kinetics
of the decomposition of austenite at constant temperature,
studied existing data with a view to finding some function
of the direct oBservations that will reduce the data to a

straight line, a device for treating observations that

often offers advantages and has been widely used.

The first data taken for study were the original
dilatometric measurements made by Davenport and Bain(36).
Their investigations, which included six steels of different
composition and covered the temperature range from 37090

to room temperature, are particularly suitable because the

observations were carefully made, were almost completely
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objective and furnished a practically continuous record
of the transformation. Measurements of the rate of
decomposition of austenite at constant temperature can
be made to plot on a straight line, if time is plotted
on a logarithmic scale and the percentage transformed is

plotted on the integrated-probability scale.

The straight line plot permits easy and rapid
interpolation and also extrapolation to 1 per cent and
99 per cent transformation, which are convenient points
to take as the beginning and end of the transformation.
It has a further use as an aid in judging the consistency

of a set of measurements from the scatter of the points.

The isothermal rate curves for a given steel
plotted in this manner have the same slope over the
temperature range in which austenite transforms to bainite.
Moreover, within this same range the time required for
completion of a given fraction of the transformation varies

inversely with the absolute temperature.

Below about 2509C the isothermal rate curves show
two steps instead of one. The rate at which the second
reaction goes on is also represented by a straight line
on log-probability paper. The logarithm of the time
required for completion of a given fraction of the trans-
formation varies inversely with the absolute temperature.

Johnson and Mehl(sl)

in their paper reaction kinetics in
processes of nucleation and growth, derived an analytical

expression for the rate of reaction in a reaction proceeding

by nucleation and growth when nucleation occurs without
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regard for matrix structure and the nuclei tend to grow
into sphericalknodules. The effects upon the reaction
curve of vafiations in the rate of nucleation and in the
rate of growth, have been derived from the analytical
expression. Distribution curves are derived for the
sizes of nodules and for the corresponding areas of the
surface of polish. The application of the analysis to
the process of freezing and recrystalization is discussed.
The calculation of the rate of nucleation and the rate of

growth from easily obtained experimental data is described.

It was soon realized that a method of predicting
the anisothermal transformation was required. Schiel's
rule(sg) has been used extensively up to now to compute
the beginning of transformation from the incubation periods
during isothermal transformation. Manning and Lorig(53)
suggested the existence of two independent domains of
validity of the rule of additivity resulting from the work-'
of Scheil. After that a few models were outlined which

extended the prediction to the growth period of the trans-

formation:

(54)

(a) Grange and Kiefer developed an empirical
method for estimating the cooling transformation
from isothermal data. The isothermal diagram
shows the fundamental transformation behaviour

of austenite at constant temperature; most actual
heat treatments involve transformation as it

occurs during cooling through a range of temperatures.

The isothermal diagram is not, therefore, directly
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applicable to cooling transformation but can be
used provided the relationship between the two
types of transformation can be evaluated.

The results of a systematic study of cooling
transformation in S.A.E. 4340 steel indicate

that the transformation occurs over a temperature
range in which transformation at any instant
during the cooling corresponds to isothermal
transformation at the same temperature. Cooling
transformation is therefore related to isothermal
transformation; the relationship can be predicted
with sufficient accuracy for most practical purposes
from the isothermal diagram by a method developed
empirically from experimental observations.

A cooling transformation diagram analogous to

the isothermal diagram can be derived from iso-
thermal data or determined experimentally; it
lies below and to the right of the corresponding
isothermal diagram. The amount of the displacement
in general increases with more rapid cooling up

to the rate which just produces on cooling to room
temperature a fully marteusitic structure.

The derived relationship between transformation on
cooling and isothermal transformation may be
employed to advantage in actual heat treatments
provided the cooling history is known; it may
also be used for determining the rate of cooling
necessary to achieve a desired final product and

combination of mechanical properties.
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(v) Liedholm(ss) presented a method whereby a
series of Jominy end quench bars is used to
predict the structure and hardness in normal

quenches.

(56)

(c) Pumphrey and Jones proposed a model based on
the discretization of the cooling law and on

adding the increments of transformation calculated

for each time step.

The method adopted by the authors for the calculation
of continuous cooling data from the isothermal transformation
diagram, has enabled the hardness along a Jominy bar to be
calculated. For the three steels considered the hardenability
curves calculated in this way were found to be in reasonable
agreement with those determined experimentally. Although
calculations and experiments have not been carried out
with all possible steel compositions, the investigation
indicates the validity of the method for steels of the types
considered and suggests that the hardenability of a steel
may be related quantitatively with its S curve. A further
point of great practical importance is the question of the
range of temperatures over which transformation occurs in
a steel during continuous cooling, since the mechanical
properties are considerably affected by the temperature at
which a steel transforms. The method used by the authors
enable the transformation range during continuous cooling
to be obtained from the S curve. For the types of steel
uséd the range calculated in this way shows fair agreement

with that obtained by the method of the interrupted Jominy
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quench.. Cahn(57) had shown that a transformation

which nucleates heterogeneously will quite often obey a
rule of additivity and transform non isothermally'aCCOrding
to simple rate laws which can be calculated from isothermal

data.

The problem of transformation kinetics under non
isothermal conditions is of tremendous practical importance.
It has not been extensively studied, using fundamental
kinetics quantities. Part of the difficulty is that both
the nucleation rate and growth rate of the transformation
product are time-dependent if the temperature is time-
dependent. However, it has been fournd that some transformation

(52) (58)

obey an additivity rule Avrami has shown that
for the case where the nucleation rate is proportional to
the growth rate over a range of temperatures, the reaction
is additive. This is a very special condition, and it
would not expect to encounter such a system. Especially
for the case of the pearlite reaction where, even isothermally,
the nucleation rate is a function of time, this condition
would not hold. Many systems in which nucleation is
heterogeneous exhibit the property that all nucleation
occurred early in the reaction. This may be due to the
fact that only a limited number of sites for nucleation
exist, such as impurity particles or grain corners, or in
case of grain surface or edge nucleation that these sites
can be consumed very early in the reaction. This is a

general property of heterogeneous nucleation, and will be

called site saturation.
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Many reactions where the nucleation is apparently
homogeneous also are describable by the assumption that

all nucleation occurred early in the reaction.

The above mentioned literature concerns the

‘"transformations with nucleation and growth.

As a consequence of the greater possibilities
offered by computers since the 1960s, nmuch work has been
done in writing programs based on models of increasing
(59)

complexity; Markowitz and Richman's work using the

(54)

Kiefer and Grange method wrote a basic program for

the computation of the continuous transformation diagrams
from isothermal-transformation data. All that is needed

as input data are the co-ordinates of several points on

the isothermal curve above the nose temperature, several
cooling rates, and the temperature at which the cooling
curve is to start. The isothermal curves are approximated
by straight-line segments and the data points must be chosen

so that they are closer together near the nose than at

longer times.

The computed continuous transformation curves
representing the start of pearlite and bainite formation
agree quite well with the experimental curves taken from
the work of Grange and Kiefer; and the pearlite finish
curve does not exhibit a very large discrepancy. Much
of the errors are introduced as uncertainties in the
isothermal-transformation data at long transformation

(60

times. Lindholm presented a composed model for the
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temperature distribution within a steel body during
cooling where phase transformation occurs. The
calculations have been executed in a computer.
Calculated and measured structures and temperatures
conformed well for the steel rollers dealt with as

an example.

The proposed model seems to be valid under the
conditions tésted.. Consequently, all material constants
used, such as thermal conductivities, specific heats
and phase transformation diagrams, are sufficiently correct
in these particular cases. In addition, the measured
coefficient of heat transfer and its temperature dependence
have proved to be valid for the case. All these constants
are critical since it is obvious that the model cannot be
more accurate than its constants. Because of this all
input data have to be thoroughly examined and carefully
simulated to the real tests undertaken. However, it is
evident that the hardening process may be treated in a

theoretical way by numerical solution.

(61)

Hildenwall and Ericsson presented a computer
calculation model for the response to the hardening of
carburized steel. The model avoids many of the previously
used simplifying assumptions and approximations. The
temperature calculation and calculation of phase trans-
formations has been tested in several ways and they give
good starting conditions for the stress calculations.

The calculated stresses are in good agreement with

experimental experiences.
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(62)

Agarwal and Brimacombe' - developed a mathematical
model incorporating both heat transfer and the transformation
of austenite to pearlite in entectoid carbon steel rods.

A computer program based on the impiicit finite-difference
technique has been written which permits the temperature
distribution and fraction of austenite transformed to be
predicted as a function of cooling conditions, rod diameter
and the transformation characteristics of the steel. The
program takes into account the temperature-dependent heat
transfer and thermophysical properties; and stresses the
importance of the enthalpy of transformation. The model

has been checked for internal consistency with theoretical
equations, and model predictions have been compared to
published industrial data for rod cooling in water at 100°2¢C.
The effect on the temperature distribution and fraction of
austenite transformed of several variables, rod diameter,
starting temperature, heat transfer conditions, transformation
characteristics and quenchant temperature, has been predicted
using the model. The range of variables studied is typical
of those found in industrial processes such as patenting

and controlled cooling.

(63)

Umemoto, Komatsubara and Tamura presented a
mathematical formulae describing anisothermal sfructural
evolution for linear cooling laws. They considered the
relationship between the size of material, fraction of
martensite and austenite grain size for a certain

entectoid steel under a certain cooling condition. It

is assumed that the isothermal pearlite transformation is

2/41



&) X4

additive over the whole transformation range. The
cooling rate is determined as a function of section

(64) studied the

size. Umemoto, Horuchi and Tamura
isothermal and continuous cooling transformation kinetics

of bainite using an automatic quench dilatometer. It

was found that the overall isothermal bainite transformation
kinetics were well expressed by Johnson-Mehl type equation

and that the transformation rate decreased with increase

in the austenite grain size. The analysis of transformation
kinetics and the optical microscope observations suggested
that the nucleation site of bainite was both on the grain
boundaries and inside the austenite grain. This effect

of austenite grain size on the rate of isothermal trans-
formation to bainite was found to be smaller than that to
pearlite. Comparisons of the observed cooling transformation
kinetics with that predicted from the isothermal kinetic

data showed that the transformed fractions were additive

in bainite transformation. This result might be understood
if it were assumed that the bainite transformation proceeds

with repeated nucleation and growth of basic subunits,

each attaining the limit size rapidly.

(65)

Fernandes, Deins and Simon .developed a model

for the prediction of a cooling law and of the kinetics

of phase transformation in steels. The input data required
to run the computations are the kinetics of isothermal
transformations, the coefficient of heat transfer, and the

thermophysical properties of the metal, including the

enthalpy of transformation; all these parameters are
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expressed as functions of the temperature and the

percentage of phase formed.

It was shown that a good prediction of the cooling
law as well as that of the kinetics of pearlitic trans-
formation can be obtained without taking into account the
effect of stress on the transformation for slow cooling
rates or small specimens. For faster cooling rates and
larger specimens it is necessary to introduce a mechanical
parameter, namely, the effect of the internal stresses
developed during cooling on the kinetics of transformation.
On introducing this parameter into the computation, the
calculated values showed to agree very well with those

from experiments.

In the main, the work that has been carried out
previously relates to transformations occurring in
relatively small components under intense heat transfer
conditions. The slowest cooling rate considered in the

(62)

work of Agarwal and Brimacombe for example, was some
22c.s”1. At this, and higher cooling rates, there is a
significant interactive coupling between the heat transfer
process and the kinetics of transformation. The coupling

becomes less and less significant as the cooling rate is

decreased.
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3.1 HEAT TRANSFER DURING SOLID STATE TRANSFORMATIONS

THEORETICAL TREATMENT

The theoretical treatment of heat transfer during
solid state transformations presented here follows the

(66) for the

integral-profile method developed by Hills
prediction of solidification rates. The metal billet
undergoing transformation is considered to be cooled from
its outer surface and the heat transfer is considered to
be one-dimensional i.e. in the direction normal to the
cooled surface. A remote insulated plane is identified
which is either the central plane of a billet cooled from
both sides or the uncooled surface of a billet cooled from
one side only. The co-ordinate system within the billet
has its origin in the cooled surface and the remote

insulated surface is positioned at a distance 'L' from

this surface.

Cooling Modes

The metal billet undergoing transformation is
considered in three sections: uncooled metal, cooled
metal and transformed metal. The billet is initially
at a uniform temperature above the transformation temp-
erature and is of finite extent so that four different
cooling modes can be recognised. These modes are
described below and illustrated in Figure 1. The figure
shows the temperature distribution set up in each mode
together with a schematic picture which will be used

subsequently to represent that mode.
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component.
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1. Semi-infinite cooling mode (SI/C)

During this mode, the entire billet is above the
transformation temperature but its surface is being
cooled down towards the transformation temperature.
At the same time the extent of the region of cooled
metal is extending inwards from the cooled surface so
that the layer of cooled metal can be regarded as growing
into uncooled metal. There are thus two variables changing
during this mode, the temperature of the cooled surface QO

and the thickness of the cooled layer, tC'

2. Finite cooling mode (F/C)

During this mode, the entire billet is still above
the transformation temperature but the extent of the cooled
layer has grown to encompass the entire billet. Thus both

the temperature of the cooled surface, © and the temp-

O’
erature of the insulated surface, QI, are falling, these

being the two variables characterising this mode.

3. Semi-infinite transformation mode (SI/T)

The temperature of the cooled surface is below the
transformation temperature during this mode so that the
outer layers of the billet have already transformed. The
transformation front has moved into the billet, a layer of
transformed metal existing on the outside of the billet.
The layer of cooled metal exists inside the transformed
layer but does not extend as far as the insulated surface.

There are three variables that describe the progression
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of this mode, the thicknesses of the transformed and

cooled layers and the temperature of the cooled surface.

L, Finite transformation mode

In this mode, the layer in which the metal has
been cooled but not transformed has grown to encompass
all the untransformed metal. Thus the temperature of
the remote surface of the billet has started to cool below
the original billet temperature, The three variables
that describe this cooling process are the thickness of
the transformed layer, the temperature of the cooled

surface and the temperature of the remote surface.

Cooling/Transformation Path

The actual cooling/transformation process in any
given billet can follow one of two paths through the
different modes depending upon the initial temperature
of the billet, the billet size and the severity with which
the billet is cooled. In all cases the initial mode will
be the semi-infinite cooling mode. However, if the layer
of cooled metal extends to the remote insulated surface
before the temperature of the cooled surface falls to the
transformation temperature (tC = L: 90>'9T), the next mode
will be the finite cooling mode, the entire billet cooling
but remaining above the transformation temperature. If
these conditions are not met, the second mode will be the
semi-infinite transformation mode. Both these modes

terminate in the finite transformation mode.
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The two possible paths are illustrated in the
cooling/transformation algorithm shown in Figure 2.
As will be seen later, the computational scheme must
follow the same algorithm. Separate equations will
be used in the computation for the thickness of the
transformed layer, for the temperature of the cooled
surface once it has transformed, and for whichever is
the currénf appropriate parameter necessary to describe
the state of the cooled layer. The equations are first
order ordinary differential equations each expressing
the differential of one of the variables as a non-linear
function of all three. The equations thus form a set

of simultaneous differential equations.

The equations are derived in the following sections,
the first dealing with the transformed layer and the
second with the cooled layer. The subsequent sections

describe their solution using a Runge-Kutta routine.
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3.2 EQUATIONS FOR THE TRANSFORMED LAYER

There are two variables that describe the state
of the transformed layer at any one time, the thickmess
of the layer and the temperature of the cooled surface.
These two variables are analogous to the thickness of
the solidified layer and the temperature of the cooled
surface used to describe the thickness of solidified
metal in a solidification process such as continuous

casting.

The derivation of the equations for the temperature
of the cooled surface and the thickness of the transformed
layer thus follow fairly closely the method used by Hills

to describe solidification processes.

Temperatures within the transformed layer must
satisfy the heat conduction equation:

29 hY:
k?—x-z- —/0 BT (1)

This equation cannot be solved formally under the conditions
that apply during transformation. Instead, it will be
solved 'on average' by satisfying its integral form across

the transformed layer:

t 32 |
ké—;—dx ]f’c————dx ' (2).

The right hand side of this equation can be evaluated by

applying the Leibnitz integral formula(67) so that the

o

equation becomes:
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x| — - k| — = — codxp - fC — [o] (3)
Dx et Dx «wo 4U 0/0 / ar ¢

The left hand side can be derived by applying the con-

servation of heat at the two boundaries of the transformed

layer:
Do
-k b—; = qno = - h(QO - ga) (4)
x=0
and:
rbe' dt
- k| — = q" - /OH —— (5)
dx x=t t / dT

where h is the heat transfer coefficient at the cooled
surface, Ga the temperature of the cooling air, Q"t the
heat‘received at the transformation front from the cooled
layer of metal and H the latent heat of transformation.
Experimental determinations of the heat transfer coefficient
show that it varies slightly with surface temperature.

In the treatment presented here, however, we will assume
that the heat transfer coefficient is constant throughout

the cooling and transformation process.

Thus, equation (3) becomes:

dt d t dt
H — -43", - n(e, - o ) =—| fCOdx - pPCO,, — (6)
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Since equation (6) is linear in temperature, we
can arbitrarily allot the zero of temperature measurement
as the temperature of the cooling air. Thus Qa is zero,
and all temperature values used subsequently in theoretical

equations will be measured from the air temperature.

Equation (6) cannot be solved formally so that we
provide an average or integral solution to it by
representing temperature profile across the transformed

metal in the form of a cwadratic:

6 = a + a.x + a x2 ' (7)

The constants in this equation can be evaluated from the

following three boundary conditions:

1}
&
©
1]
©

x=0:0=0 and do/dx = (h/k)6, : x

whence thecuadddfic temperature function becomes:

ht x ht x2
0 =0_-|—o.|— + 0, - 6., + —0Q_ | — (8)
0 0 T T, 0

k t

so that the integfal across the transformed layer is:

t 1 2 1 ht
gdx =[ — 6. + —0© - ——0 t - (9)
3 T 3 O 6k © .
X \

If this integral is substituted into equation (6), we get:

dt a (1 2 1 ht dt
H— -§" -he, =—h—06_ +=0, -——0 t -0C0 —
ar ° ° arf(3 T 3 ° 6x © VAR

....O....O.l..‘(io)
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Evaluating the differential and rearranging gives:

1 : ht dt 2 o

H+— fgc| 2(6,, -06,) + —o0_|}— - —tA —
P 3./0 T R R

1ytzgﬁc de

+ - = hoe, + q"

6 k ar ° t (11)
Following Hills, we now define a set of dimensionless
variables:
dimensionless thickness: t* = ht/k;
dimensionless temperature of cooled surface: 6* = QO/QT;
dimensionless time:—-}f: h2r7g/bk);
dimensionless latent heat of transformation: H* = H/(CQT);
dimensionless heat flux from cooled metal: q* = é"t/(—hQT)

whence equation (11) becomes:

2 1 dt* t* de*
H* + — (1 - 6*) - — t*0* -~ (4 + t*) —— = 0* - g*

3 3 dz, 6 dZ

cecccsccescse (12)

This equation contains three unknown quantities, the thickness
of the transformed layer, the surface temperature of the

cooled surface and the heat flux from the layer of untrans-
formed metal. Before the progress of the transformation
process can be determined, equations must be available for
these other two wvariables. This will allow the transformation
process to be represented as the solution of three simultaneous

ordinary differential equations.

An equation for the surface temperature can be derived
by assuzming that the bg/bf varies linearly within the
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transformed layer. Thus we can write:

-159 ~2)9 X
—_ = | — + b (13)
fo -afx: t

=t 0]

The coefficient 'b' is the gradient of Dg/sf' across the
transformed layer which, since we assume a linear relation,
can be expressed as:
D Mo |
b = I __ (14)
ax —bfx=0

The order of differentiation can be reversed so that

equation (14) becomes:

Vo
b = \B _i (15)

3 [9x

Applying the heat transfer boundary condition, equation (%)
gives:

do h

. = _ © (16)

5x <=0 k
since we are taking the air temperature as the effective
temperature zero. h and k are constant so that the
substitution of equation (15) into (16) gives:

h 59

b = _ (17)
k o7
At the cooled surface, x = 0, we can write:
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0 (18)

n

T, ac
As far as the heat transfer process is concermned, the
transformation temperature can be assumed to be constant.
Thus we can write the following condition at the trans-
formation front:

a [ Vo7 at Do

e} = + o (19)
— | 7 (t,7) — — —
d x| .t ¥,

1}

The value of‘Z)Q/B:x( . is given by the boundary condition,
equation (5). Substitution of this equation into (19)

and rearranging gives:

[ do dt dt gn
— = - /iH_ - - _f_ (20)
D‘L/t at\ k¥ aT k

Substituting equations (17), (18) and (20) into equation (13)
gives the following ordinary differential equation for the

temperature of the cooled surface:

de ht PH [dt 2 qy dt
1+ = S + (21)
ar X k \aC k 4

In terms of the dimensionless variables defined above, this
becomes:

do* dt* dt*
(1 + t*) - H* - * (22)

;E— af, d?



Using equation (22) to eliminate dO‘/q; from equation
(12) and rearranging gives the following quadratic ordinary

differential equation for t*:
dt* dt* ‘
g ) +/_\ - /o= o0 (23)

wnere 2
r‘\

A\

H*t*(4 + t*) (24)

[;H* + 4(1 - o*) - zt*eﬁj (1 + £*)

t}

+ q;t*(4 + t*) (25)

6(e* - qz) (1 + t*) (26)

Using the theory of quadratic equations gives:

dt* —f‘{/f12 + 4./\.£i?

- = (27)

d§ 2 ()

As long as qz is less that 0*, dt*/qg will be positive.

Thus it is the positive root of equation (27) that is
relevant. The value ofE:L is zero at the start of the
transformation process so that equation (27) gives an in-
determinate value for this root under these conditions.
This indeterminacy is avoided, however, if it is remembered
that the constant term in a quadratic equation is equal

to the product of the two roots. The positive root can

thus be expressed as:

at*
RSy S RVY o
djé ’

in which form it does not suffer from any indeterminancy.

Equation (28), together with equations (24) to (26) and
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equation (22), conveniently rearranged in the form:

dt* 2

at*
- H* __ - af
ao* '
= 4% a% (29)
d} . 1 + t*

constitute two out of three simultaneous differential
equations. The third equation will show how q; varies
with dimensionless time and is to be derived for the

layer of cooled metal.
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3.3 THE EQUATION FOR THE COOLED LAYER

The actual state of the thermal layer at any
time during the cooling and transformation process depends
on the cooling mode currently operating. Figure 3
illustrated the layer in a generalised way. It extends
from x =t to x =t + tc wheré tC is its thickness.
Initially, the entire billet is above the transformatioﬁ
temperature so that t = 0, the near boundary of the cooled
layer is stationary, but the temperature there is falling.
Once transformation has started, however, this boundary is
moving into the billet but its temperature is constant.
If the cooled layer has not extended, by that time, as far
as the insulated surfacé, the other boundary will also be
moving into the billet, but at a faster rate, and its

temperature will also be constant - equal to the initial

temperature of the billet.

In the final stages, the cooled layer will have
extended to reach the insulated boundary so that this will
form the remote boundary of the cooled layer, no longer

moving but with its temperature falling.

The conditions at the boundaries of the colled

layer can thus be expressed as:
x=t:0 =29 (30)
x =1t : k(ae/Bx) = - ajc' (31)

XxX=t+t.:0=29 (32)

c (t + tc)
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x=t+tC:k(BG/ax)=O (33)
Equation (33) arises because the remote surface of the
cooled layer is either extending into uncooled metal
or is stationary at the insulated surface of the billet.

In both cases, no heat can cross the surface by conduction.

As with the transformed layer, the heat conduction

equation applies:

EFQ ‘/0 5@; (38)
k ___ = c __ 3
Ox° ot

and is to be integrated across the entire layer from

x =t tox =1t + t.:

C
> t+t t+t
C C
d 2 Jo
k dx = /KDC dx (35)
0x? otr
t t
which gives:
. R 4
59 do a (ftrte)
k -k =/Uc 0 dx
E§x t+t a:x t df’ t
C
dt dtc dt
-l o+ _- e(t+t y * — 8 (36)
C
av aCl ay¢

Equation (34) is comparable to equation (3) for the
transformed layer and has been derived in the same way.

The extra term on the right hand side arises from application
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of the Leibnitz integral formula because, in the case of
the cooled layer, both of the boundaries for the integ-

ration can be moving.

As in the case of the transformed layer, we
represent the temperature distribution in the cooled layer

in the form of acuadratifequation:

x-t x-t 2
e = ao + a, + a, (37)
te tc

Choosing values of the coefficients in this equation to
satisfy boundary conditions (30), (32) and (33) gives the

temperature distribution in the cooled layer as:

x-t

O = O(pip) [b(t+tc) - et:] 1 - — (38)
C

Thus the integral of the temperature distribution across

the cooled layer is:

(et ) o 4
0 dx = "'g(t+tc) *o_ 0Tt (39)

Substituting this integral into equation (36) together

with boundary condition (31) and (33) and rearranging

gives:
d 2 1 dt dt.
211 — . -—
e “/OC —_— —-9(t+tc) 9% ¢ U — g(t+tc)
d¢/ 3 al d
dt :
Lo
+ 0 (
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Evaluating the differentials in equation (40) and re-

arranging gives:

1 dg(t+tc) do,
ay = PC _ted 2 Z * = Oleat) - 0,
3 d dg;
1 dt, dt
— —— + —
3 a¥Y dCTl..... (41)

In terms of dimensionless numbers, equation (41) becomes:

» A
£+ dg(t+tc) th
qE = 2 + - (o*

3 {% a%

(t+t) ~ O

1 dt* dt*

+ —ncny
3 q% g? cee. (42)

The heat flux from the cooled layer cannot be determined other
than from the temperature distribution within the cooled layer.
Thus equation (38) must be substituted into equation (31) to

give:

§" =-k (43)

In terms of dimensionless numbers, this becomes:
- %*
(t+tc) ° t)
* -
Q*y = (44)
*
tc

2(e*

The elimination of q*  between equations (41) and (44) gives
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the required differential equation for the cooled layer.

The actual form that this equation takes during any given
stage of the cooling and transformation process depends

upon the particular mode in operation. The derivation

of individual equations that operate in the different

modes is discussed in the different sections below, In

the case of the modes in which the transformed layer is

also growing, equation (44) is available to generate the
values of q*t that are required for the evaluation of
equations (28) and (29) for thickness and surface temperature

of the cooled layer.

The equations for the different cooling/transformation

modes are derived in the subsequent sectiomns.
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3.4 THE SEMI-INFINITE COOLING MODE

There is no. transformed layer during this mode
so that the cooled layer extends into the billet from

the cooled surface. We can therefore write:

o = ei/eT; 6* = @* (45)

*x . * —
tr =05 0 (t+tc) - 1 t 0

Since 91 is the initial temperature of the uncooled billet,

it is constant so that equation (42) becomes:

* *
1 do 0 1 dt c

9%, = t*e - _(e* -o90*)) (46)

3 4% 3 a%

This equation contains the differentials of the two variables

that are changing - the temperature of the cooled surface

and the thickness of the cooled layer. The heat flux
condition at the cooled surface allows these two variables

to be related. The heat flux condition at the cooled surface
during this mode is obtained by equating equation (4) to

equation (43) since Q"t is equal to §" Thus we have:

0.

2(91 - eo)
q" . = -k =h O (47)

tc

In terms of the dimensionless numbers, this becomes:

* _ * - * *
0%, = 2(0*, - e* )/t*, | (48)
and this equation can be used to eliminate one of the two

variables from equation (46). It is most convenient if the

thickness of the cooled layer, t*c is the wvariable that is
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eliminated. Re-arranging equation (48) gives:

t* = 2(9*1/9* - 1) (49)

C 0

whidy on differentiating, is:

* * *
dt c 20 1 de 0 .
= - (50)
2
*
qg 0%, aZ
Substituting equations (49) and (50) into equation (46)
and rearranging gives:
do* ~(3/2)0* 3
= 0 (51)
i 2 2
* - *
dg or % - o7,

This equation is to be solved from the initial starting
conditions which we assum®P to be the entire billet uniformly

heated to a temperature, © above the transformation

1’

temperature, © Thus we can write the initial time

T.

boundary condition as:

E;= 0: e = 9*1 (52)

Equation (51) can be integrated formally to determine how
the surface temperature varies during this mode. The

surface temperature is given by the eQuation:

9*0
2 2
2(e* - OF Ydoe*
gz - 1 Y Y (53)
3
30*
9*1 ©

Evaluating the integral gives:
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1t/ o* 9*
g= 1 - 1 - 21Ln 1 (54)

Duration of the Semi~infinite Cooling Mode

The transformation process will always start in
the semi-infinite cooling mode. The £uration of this mode
depends upon whether it is followed by the semi-infinite

transformation mode or by the finite cooling mode.

If the surface of the billet cools to the trans-
_formation temperature before the cooled layer has expanded
to occupy the entire billet, it is the semi-infinite trans-
formation mode that follows the semi-infinite cooling mode.
In this case, the duration of the semi-infinite cooling mode
is given in dimensionless terms by putting G*O equal to

unity in equation (54):

?1 = 1/3[9*? - 1 - 2Ln(9*1)J- (55)

On the other hand, if the temperature of the cooled
surface is still above the transformation temperature by
the time the cooled layer has expanded to occupy the entire
billet, the second mode will be the finite cooling mode.
If L* is the dimensionless thickness of the billet, its
surface temperature at the time the cooled layer has expanded
to occupy the entire billet will be given by substituting

L* for t*. in equation (49). After rearrangement, there

C

results:

3/23



e*, = 2 9*1/(2 + L*) (56)

Substituting this value into equation (54) and rearranging

gives:
é;z = 1/3 L}1 + L*/z)2 -1 -2 Ln(1 =+ L*/2)J (573

Which of the two modes it is that follows the semi-infinite
cooling mode will depend upon the initial temperature and
upon the cooling conditions used. If the value of 9*0
given by equation (56) is greater than unity, then the
surface will still be above the transformation temperature
when the cooled layer has expanded to occupy the entire

billet. Thus the critical value of 6*_ is given by putting

1

G*O equal to unity in equation (56) and re-arranging:

(a} 1 + L*/2 (58)

*
1,Crit.

If 6* is above this critical value, the finite cooling mode
will follow the semi-infinite cooling mode. If it is not,

it is the semi-infinite transformation mode that will follow.
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3.5 FINITE COOLING MODE

.During the finite cooling mode, the entire billet

is cooling but it is above the transformation temperature

at all points. Thus we can write:
* — * . * * . * — o * = *
o, = 0%55 9% (4rt) e*;s t* = 03 t*. = L (59)
so that equations (42) and (44) become:
L* de* de*
et = _h2 1o 0 (60)
3 a a%
and
2(e* - 6* )
* 1 0
0%, = (61)
L*
Re-arranging equation (61) gives:
6* = (L*/2 + 1)6* ‘ (62)

1 o

Differentiating this equation and substituting into equation
(60) gives:

do*
- 6% = L*(L*/3 + 1) 0 (63)

0 -
a3
This mode starts to operate when the surface temperature is
given by equation (56). Surface temperatures during this

mode are thus given by the equation:

3/25



9*

0 .
o | - 45 (64)
6%, L*(L*/3 + 1)
20* /(2+L*)

The mode ends when the surface temperature has dropped to

the transformation temperature (9*0 = 1). Thus the duration

of the solidification mode is given by:

?;; = L*(L*/3 + 1)1n{é*1/(1+L*/2);} (65)
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3.6 TRANSFORMATION DELAY

Depending on the conditions, one or both of the
above cooling modes must be completed before the metal

can start to transform. Thus a transformation delay

will exist.

If: 9*0 <<1(1 + L*/Q)

then the transformation delay is given by equation (55):

« 2
%Delay =4y = /309" 4. 21n (9*1)] (66)

If: 9*0 ;> (1 + L*/2)

then the transformation delay is the sum of-E;Z and E;B given

by equations (57) and (65):

§Delay = %2 + %’3

= 1/3 (1+L*/2)'_2.-1-2Ln(1+L*/22J +{f(L*/3+1)51n[e*1/(1+L*/2)]
® & o @080 0o (67)
Equation (66) or equation (67), whichever ié appropriate, is

used in the computer programme to determine the value of the

transformation delay.
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3.7 SEMI-INFINITE TRANSFORMATION MODE

In this mode, the cooled layer is still growing
into uncooled metal ahead of the growing transformed
layer. The development of the transformed layer is now
to be described by equations (28) and (29). The value
of g*% required for these equations is derived from the
appropriate form of equation (44), the development of the

cooled layer being determined from equation (42).

The conditions in the cooled layer are:

= 0% ;3 t* = t*; ©*. = t* (59)

0* = 1; 17

e (t+4)

Equation (42) thus becomes:

1 dt*, dt*
g*, = (e*, - 1) + (60)

R A 2

This equation can be re-arranged to give:

dt* 3q* dat*
C_ 3 ¢ - (61)
dg or -1 qg

with q*t determined from the relevant form of equation (44):

2(0*, - 1)
1 (62)

*
t7c

* —
q t -

These equations are incorporated into the Runge-Kutta methed
used in the computer programme to solve equations (28), (29),

(61); with equation (62) providing the linking value of q*t.
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3.8 THE FINITE TRANSFORMATION MODE

In this mode, the cooled liquid layer has expanded
to occupy all the untransformed metal in the billet. The
remote boundary of the cooled layer is thus stationary in the
insulated surface but the temperature there is falling.

Thus we have:

0* . ; t*=t*; t*, = L* - t* (63)

* — . * =
g =L (t+t) ~ ° 1T - c

In this case, equation (42) becomes:

2 de* dat*
q* = (L* - t%*) - (e*_ - 1) (64)

which can be re-arranged to give:

@, 3/2 qr, + (0%, - 1)9%" /aZ (65)
dé L* - t*
and equation (4k4) gives:
2(e*_ - 1) '
*, - T (66)
L* - ¢*

These equations are incorporated into the Runge-Kutta method
used in the computer programme to solve equations (28), (29),

and (65); with equation (66) providing the linking value of

*
qt.
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This Prozgram predicts the rate of transformation in a steel billet
under one dimensional heat transfer conditions.

The Program uses a two Runge-Kutta subroutines named ROKUT4 and

STEP4 to solve the three relevant differentional equations for

whichever cooling/transformation mode is in operation:-

| Transformed layer | = Cooled layer |
A R —1

Variable  Equation | Variable Equation |

-I- . -1

T Mode

I

|

|

-
Semi-infinite |

|

|

|

!

|

€r (@.28) | t*.  (e.61) |

" 6% (@.29) ! gty (@.62) |

|

Finite £ (@.28) | g*;  (@.65) |
" 8% (@.29) : a*t (@.66) :

The evaluation of the differential expressions that are the subject of
these equations is carried out by a differention subroutine called
DIFREL which is called by STEP4,

The main program first calls a subroutine called VALUES which asks
the operator to provide the relevant property valuves and process
conditions for which predictions are to be made, the values being set
into the un-named COMMON block used by all the subroutines.

The main program then calculates the valuve of (1 + L*/2 - 8*j3) so
that the initial transformation mode may be determined and the mode
indicator MODE set to the appropriate value:-

(1 + L*/2 = 8*0) Initial Transformation Mode MODE
Positive semi-infinte - 1
Zero or Negative finite 2

The value of MODE is also set into common

The transformation delay is then calculated together with the value
of the dirmensionless thickness of the cooled layer or of the
dimensionless temperature of the insulated surface depending on the
mode in which the transformation starts.

Runge-Kutta 1ntegration is then commenced, the cooling layer variable
and its corresponding equation being determined by the valwe of MODE.

The integration is managed by the subroutine RUKUT4 which calls

STEP4. After each integration step has been completed, it is
repeated twice with half the step length, the pairs of values for
each variable being compared. Integration only proceeds if the values
agree to an accetable level of error; if not the initial step length
is halved and the integration step re-traversed. Five such reductions
in step-length are allowed. If integration cannot be commenced,

RUKUT returns control to this main programme with the values of

INT = 1, and JST greater than 1. These values are contained in the
COMMON block CTRL.
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7 04

If the value of MODE is 1 (the current mode is the semi-infinte mode),
the value of (L* - t* - t*.) is evaluated so that the change to the
finite mode can be signalled by changing the value of MODE to 2.

In order for the time of the change to be accurately determined, the
final integration step in the semi-infinite mode is adjusted by trial
and error before integration is restarted in the finite mode.

The different sections of the main Program and indicated below with
clear headings in common.

The dimensioned dimensionless variables are defined as set out below:-

ONOOO0O0O000000O0000000CO00 OO0

cOOO0O0n

OOOOOO(‘)O(}(‘JOOF)DF)OGPO(‘)OOO

Variable | Definition

KSI( ) Dimensionless time

TD( ) Transformed thickness
TCD( ) Thickness of cooled layer

TMPIND( ) Temperature of the insulated surface

|
|
|
TMPOD( ) | Temperature of the cooled surface
|
|

REAL IR, LD, IATENT, LINTD, KSI(5)

DIMENSION TD{5), TCD{5), TMPOD(5), TMPINIX5)

0COMMON LR, LD, COND, DNSTY, SPCFHT, H, LATENT, LINTD, THTRNS,
1 THTAIR, THT1, THT1D, THKCNV, TIMCNV, MODE, NEXP

The definitions and relevant units of the variable names in common
are as set out below:-

Variable Definition Units
S R - | e ——

LR | Real length of slab | m

LD | Dimensionless length of slab | -
COND | Thermal conductivity of metal | v~7.m“li3("l
DNSTY | Density of metal | kg.m~
SPCFHT | Specific heat of metal | J.kg'lK“l

H { Surface heat transfer coefficient | W.m—2Kk—1
LATENT | Heat of transformation | J.kg™
LTNTD | Dimensionless heat of transformation | -
THTRNS | Transformation temperature | K
THTAIR | Temperature of cooling air | K
THT1 ] Iniital temperature of billet | K
THT1D | Dimensionless initial temperature | -
THKCNV | Thickness conversion factor | mm
TIMCNV | Time Conversion Factor | min
MODE | Mode change logic switch |

[ D — - - I | —— ——
COMMON /CTRL/JST, INTL
CALL VALUES
Determine in which mode the transformation starts
Y

the 1nsulated surface temperature when transformation starts:-
IF (1 + LD/2.0 - THTID) 2,2,1
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c

1 MODE = 1
TMDDIA = (THT1D**2 - 1.0 — 2.0*ALOG(THT1D))/3
TCD(1) = 2.0*(THTID - 1.0)
TMPIND(1) = THTID
GO TO 3
2 MODE = 2
OTMDDIA = ((14LD/2.0)**2 - 1.0 - 2.0*ALOG(1+1D/2.0))/3.0 +
1 LD*(LD/3.0 + 1.0)*ALOG({THTLD/(1+LD/2.0))
TCD(1) = LD
TMPIND(1) = THTID/(1.0 + LD/2.0)

C Convert the dimensiionless value of the delay time into the real
C delay time in minutes:-

c
3

OO0

TMDLA = TIMCNV*TMDDIA

Set and print out the initial values:-

TIMIN = 0
TRNSD = 0
COOLED = IR
TEMPSF = THT1
TEMPIN = THT1
KSI(2) = 0.0
™(2) = 0.0
TC{2) = 0.0

TMPOD(2) = THTID

TMPIND(2) = THTID

WRITE(2,513) NEXP, LR, LD, COND, INSTY, SPCFHT, LATENT, THTIRNS,
1THTAIR, LINTD, THT1, THT1D, H, TIMCNV, THRONV

513 OFORMAT(1X, 'THEORETICAL CALCULATIONS FOR EXPERIMENTAL RUN NUMBER °*,

112,/1X,'DATA USED IN THE CALCULATIONS:—'/1X,'LR/m LD
200ND/W.m-1K-1  DNSTY/kg.m-3  SPCFHT/J.kg—1K-1'/1X,F4.2,4X,
3R10.3, 8X, F4.1, 10X, E10.3, 9X, F5.1 //1X, LATENT/J.KG-1 THTRNS/
AC THTAIR/C LINTD THTL/C THTID HM.m-1K-1'/3X, E10.3, 4X,
5FS.1, 6X, F4.1, 3X, E10.3, 2X, FS.1, 2X, FS.3, 4X, FS.1//

61X, '"CONVERSION FACTORS:- TIMCNV = ', E10.3,', THKQWV = °,
7E10.3//) .

WRITE( 2,500)

500 OFORMAT(1X,‘'TIME/MIN THCRNSSES/MM TEMPERATURES/C  DIMENSNLSS VARI

1ABLS(*100) */1X, * TRNSD COOLD SURFCE INSLTD FESI T*
2 TC* THO* THIO*'/)

WRITE(2,501) TIMIN, TRNSD, COOLED, TEMPSF, TEMPIN, KSI(2), TD{2),
1 TCD{2), TMPOD(2), TMPINIX2)

501 OFORMAT(3X, F4.1, 3X, F4.0, 3X, F4.0, 4X, F4.0, 4X, F4.0, 3X,

1 5(1X, 2PF4.0))
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c
C Set and print out the values at the end of the transformation delay
C

TIMIN = TMDLA

KSI(2) = TMDDLA

TCD(2) = TCD(1)

COOLED = TCD(2)*THKCNV

TMPOD(2) = 1.0

TEMPSF = THTRNS

TMPIND(2) = TMPIND(1)

TEMPIN = (THTRNS — THTAIR)*IMPIND(2) + THTAIR
WRITE(2,501) TIMIN, TRNSD, COCLED, TEMPSF, TEMPIN, KSI(2), TI(2),
1 TCD(2), ™POD(2), TMPIND(2)

C

C Now we will calculate fram the end of the transformation delay up to
C the end of the first five minute period. First of all, we calculate
C the dimensionless time interval:-

C
HINT = (5.0 - TMDIA)/TIMCNV
RELERR = 0.001
TIMREF = 0.0
C
C
C Then we set the initial values for the integration:-
c
504 KSI(l) = KSI(2)
(1) = TD(2)

TMPOD(1) = TMPOD(2)
GO TO (5041, 5042), MOCE
5041 TCD(1) = TCD(2)
GO TO 5043
5042 T™PIND(1l) = TMPIND(2)
5043 CONTINUE
C
C
C This is the sequence for calling RUKUT4:-
C
506 GO TO (5061, 5062), MODE
5061 CALL RUKUT4(KsI, TD, ™MPOD, TCD, 1, HINT, HCH, RELERR)
IF (INTL .BEQ. 1) GO TO 5064
IF((TD(2)+ICD(2)) .GTr. LD) GO TO 507
GO TO 5063
5062 CALL RUKUT4(KSI, TD, TMPOD, T™MPIND, 1, HINT, HCH, RELERR)
IF (INTL .EQ. 1) GO TO 5064
5063 HINT = 5.0/TIMCNV
GO TO 5065
5064 HINT = HINT/2.0
GO TO 506
5065 CONTINUE
C
C
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C This is now the print out sequence:-
C .
505 TIMIN = KSI(2)*TIMCNV
TRNSD = TD(2)*THKCNV
TEMPSF = (THTRNS — THTAIR)*TMPOD(2) + THTAIR
TEMPIN = (THTRNS — THTAIR)*IMPIND(2) + THTAIR
GO TO (5051, 5052), MODE
5051 COOLED = TCIX{ 2)*THKCNV
GO TO 5053 v
5052 QOOLED = (LD - TD(2))*THKCNV
5053 WRITE(2,501) TIMIN, TRNSD, COOLED, TEMPSF, TEMPIN, KSI(2), TD(2),
1 TCD{2), TMPOD(2), TMPINIX2) ‘
IF (TRNSD .GT. 1000.0*LR) STOP .
GO TO 504

Now we have got to the mode change and end of transtormation seguence:

aOnaon

507 HINT = 0.S*HINT
CALL RUKUT4(KSI, TD, TMPOD, TCD, 1, HINT, HCH, RELERR)
IF (TD(2) + TCD{2) — LD) 5071, 5071, 507
5071 TIMREF = TIMREF + HINT :
KSI(1) = KSI(2)
T™D(1) = TD(2)
TMPOD(1) = TMPOD(2)
TCD(1) = TCD(2)
IF (ABS(TD(2) + TCD(2) - LD) .GT. 0.00l) GO TO 507
HINT = 5.0/TIMCNV — TIMREF

MODE = 2
GO TO 505
END

(@]
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SUBROUTINE RUKUT4(Y, Z, U, V, NWRITE, Hl, H2, ERR)

This subroutine controls the Runge-Kutta integration of four eguations
using STEP4. The differential expressions are calculated by a further
suwbroutine - DIFREL - that is called by STEP4.

The calling statement for this subroutine applied to the transformation
of a steel billet is:-

call rukutd(ksi, td, tmpod, tcd, hprt, hint, relerr)

Comparison between the two shows the relationship between the
variables in the calling programme and the subroutine.

The steplength 'hprt' is the printing length overwhich the calling
programme requires RUKUT to operate, 'hint' being the initial
integration steplength that the calling programme recomends.

DIMENSION X1(5), Y1(5), 21(5), UL(5), VI(5), Y{(3), 2(3), U(3),
1 v(3)
QOoMMON /CTRLYJST, INTL

CT WRITE( 1,2000)
CT 2000 FORMAT(1X,'AT LEAST RUKUTA HAS BEEN CALLED')
Y1(1) = Y(NWRITE)
z1(1) = Z(NWRITE)
UL(1) = U(NWRITE)
V1(1l) = V(NWRITE)

WRITE(1,2001) Y1{NWRITE), Z1(NWRITE), UL(NWRITE), Vl(NiRITE)

T
CT 2001 FORMAT(1X,'WITH THE FOLLOWING VALUES REVCEIVED:- '/
cT

o000 OO0

OO0 0O0n

a0

11X,'Y(1l) = ',F6.4,°2(1) = ',F6.4,'U(1) = ',F6.4,'V(1l) = ',F6.4)

The subroutine will reduce the steplength if this is necessary

to start the integration to the accuracy set by the calling progamme
in the argument ERR. RUKUT4 counts the number of such reductions in
the counter JST which must first be set equal to its initial value:-

JST = 0

The steplength is only reduced at the beginning of the printing
interval, the rest of the interval being traversed at the reduced
steplength. It 1s necessary to count the number of successeful
integrations so as to insure that the entire interval of 'hprt' has
been covered. This counting 1s done in a counter called JINT which
is first set to its initial value:-

JINT = 1
If the integration steplength that is initially successful,
subsequently causes integration errors outside the the specified

error band integration is aborted. The 'integration-commenced' toggle
INTL shows whether or not this is the case. It must first be cleared:-

INTL = 0

The COMMON block CTRL is used to send values of INTL and JST back to
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the caliing ﬁrogramme.

STEP4 is called for the first (and any subsequent) integration(s):-
40 CALL STEP4(Y1},z1,01,v1,H1,1)

(The final integer argument in this calling statement denotes the
position in the arrays at which integration is to start. Each time

STEP4 1is called, it returns the new values to an array position
advanced by one.)

Arfter the first integration, integration is then repeated twlce with
half the steplength:-

Y1(3) = Y1(1)
Z1(3) = 21(}1)
Ul(3) = U1(1)
V1(3) = V1(1)

DO 50 JTEST = 3,4
50 CALL STEP4(Yl,21,U1,V1,0.5*%Hl,JTEST)

Followed by an instability test involving defining

ERl = ABS(Y1(2)-YL(5))
ER2 = ABS(21(2)-Z1(5))
ER3 = ABS(UL(2)-UL(5))
ER4 = ABS(V1(2)-VL(5))

and testing:-
IF (ER1.GT.ERR .OR. ER2.GT.ERR .OR. ER3.GT.ERR .OR. ER4.GT.ERR)

THEN

1 GO TO 65
(in order to reduce the step length in search for stability)
OR
signal successful completion of an integration step -

JINT = JINT - 1
and test for successful traverse of the overall interval.-

IF (JINT) 99, 99, 39

Statement 39 sets the variables for a further integration and sets
the 'integration-cammenced' toggle:-
39 YI(l) = Y1(5)

Z1(1) = z21(5)

Ul(l) = UL(5)

V1(1l) = V1(5)

INTL = 1

GO TO 40
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Statement 99 sets the variables for the return to the calling
programme : -

OO0O0n

CT 99 WRITE(1,4000)
CT 4000 FORMAT(1X,"(99) INTEGRATION COMPLETED — RETURN TO TRNTST')
99 Y(NWRITE +,1) = Y1(5)
Z(NWRITE + 1) = 21(5)
U(MWRITE + 1) = UL(5)
V(NWRITE + 1) = V1(5)
INTL = 0
JST = 0

and returns to the calling prograrme:-

SNON Q!

GO TO 100

cOo

65 IF (INTL .EQ. 1)

then the significant integration errors have occured someway into the
overall interval, and RUKUT4 returns control to the calling programme:-

1 GO TO 100

otherwise, 1f integration has not started, the steplength can be reduced
in order to obtain stable integration conditions:-

O0O0c0 0000

H1 = 0.5*H1
JST = JST + 1
JINT = 2**JST

and the terminal informed -~

a0On

WRITE(1,64) Hl
64 FORMAT(' INTEGRATION STEP HAS BEEN REDUCED TO *,El10.3)

C
C No more than 5 such reductions are allowed
C so that only
C
IF (JST.LE.6)
C
C 1S it possible to continue the integration
C by instructing control to
C
1 GO TO 40
C
C
C COtherwise, the integration 1is aborted, this fact being reported to the
C terminal:-
C

WRITE(2,66) H1
66 FORMAT(® INTEGRATION HAS BEEN ABORTED WITH THE STEPLENGTH REDUCED
170 *,E10.3)

C
C and control transfered back to the calling programme:-—
c
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SUBROUTINE VALUES

This programme allows data to be read into the programme

OO0 @)

REAL LR, LD, IATENT, LINTD
0 COMMON LR, LD, OGOND, DNSTY, SPCFHT, H, LATENT, LINID, THTRNS,

1 THTAIR, THT1, THT1D, THKCNV, TIMCNV, MOLE, NEXP
The definitions and relevant wunits of these variable names are as set
out below:-

Variable Definition Units
R PR N —— - I -
LR | Real 1ength of slab | m
LD | Dimensionless length of slab” |
ConND | Thermal conductivity of metal | W. m‘l§‘l
DNSTY | Density of metal | kg.m
SPCFHT | Specific heat of metal b J. kg‘lK"l
H | Surface heat transfer coefficient | W. m—2k~1
LATENT | Heat of transformation | J .kg"l
LTNTD | Dimensionless heat of transformation | -
THIRNS | Transformation temperature ] K
THTAIR | Temperature of cooling air | K
THTL | Iniital temperature of billet | K
THT1D | Dimensionless initial temperature | -
THKCNV | Thickness Conversion Factor | mm
TIMCNV | Time Conversion Factor | min
MODE | Mode change ogic switch | -
| - —_——— - e |
The default values of the variables are now set -

oo O00CcOoO00CcoO0000n0n

IR = 0.15
COND = 30.0
DNSTY = 7.6E3
SPCFHT‘ 546

THTAIR = 40.0

THTL = 840.0

H = 236.0

NEXP = 99
C
C Checking the value of the billet length:-
C

101 WRITE (1,111)
1110 FORMAT (1X, ‘IS THE CALCULATION TO SIMULATE AN EXPERIMENTAL RIN?"'
1/1X, 'ENTER 1 FOR YES OR PRESS RETURN ')
READ (1,22) NEW
22 FORMAT (Il)
IF (NEW.BQ.0) GO TO 201
WRITE (1,131)
131 FORMAT (1X,'OK — THEN ENTER THE EXPERIMENTAL RON NUMBER IN I2 ')
READ (1,121) NEXP
121 FORMAT (I2)
201 WRITE (1,211) LR
2110 FORMAT (1X,"THE CURRENT VALUE OF THE BILLET LENGTH IS °,
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oReXp]

ann

1F5.3," M')
WRITE (1,21)
READ (1,22) NEW
210FORMAT (1X, 'DO YOU WISH TO CHANGE THIS VALUE - 1 FOR YES OR 0 FOR
1 NO ')
IF (NEW.EQ.0) GO TO 202
WRITE (1,231)
231 FORMAT (1X,'CK — THEN ENTER THE NEW VALUE IN FS.3° )
READ (1,221) LR
221 FORMAT (FS.3)

Checking the value of the conductivity:—

202 WRITE (1,212) COND
2120FORMAT (1X, 'THE CURRENT VALUE OF THE CONDUCTIVITY IS ‘*,F5.1,
1' W./M.K")
WRITE (1,21)
READ (1,22) NEW
IF (NEW.EQ.0) GO TO 203
WRITE (1,232) ,
232 FORMAT(1X, 'OK — THEN ENTER THE NEW VALUE IN F5.1' )
READ (1,222) COND
222 FORMAT (F5.1)

(hecking the value of the density:-

203 WRITE (1,213) DNSTY

2130FORMAT (1X,'THE CURRENT VALUE OF THE DENSITY IS ',F5.0,' KG/M3')
WRITE (1,21)
READ (1,22) NEW -
IF (NEW.EQ.0) GO TO 204
WRITE (1,233)

233 FORMAT(1X,'OK - THEN ENTER THE NEW VALUE IN F5.0 ')
READ (1,223) DNSTY

223 FORMAT (FS.0)

(hecking the value of the latent heat:—

204 WRITE (1,214) LATENT
2140FORMAT (1X,'THE CURRENT VALUE OF THE [ATENT HEAT IS ',F7.0.
1' J/KG.K')
WRITE (1,21)
READ (1,22) NEW
IF (NEW.EQ.0) GO TO 205
WRITE (1,234)
234 FORMAT(1X,'OK - THEN ENTER THE NEW VALUE IN F7.0 ')
READ (1,224) LATENT
224 FORMAT (F5.0)
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C
C Checking the value of the transformation temperature:-
C
- 205 WRITE (1,215) THTRNS
2150FORMAT (LX, 'THE CURRENT VALUE OF THE TRANSFORMATION TEMPERATURE
1Is ',F5.0,' C")
WRITE (1,21)
READ (1,22) NEW
IF (NEW.EQ.Q) GO TO 206
WRITE (1,2335)
235 FORMAT(1X,'OK - THEN ENTER THE NtWJ VALUE IN F5.0 ')
READ(1,225) THTRNS
225 FORMAT (F5.0)

Checking the value of the air temperature:-

OO0

206 WRITE (1,216) THTAIR
2160FORMAT (1X,'THE CURRENT VALUE OF THE QOOLING AIR TEMPERATURE IS '
1,F5.0,' C')
WRITE (1,21)
READ (1,22) NEW
IF (NEW.EQ.0) GO TO 207
WRITE (1,236)
236 FORMAT(LX,'OK — THEN ENTER THE NEW VALUE IN F5.0 ')
READ (1,226) THTAIR
226 FORMAT (F5.0)

(hecking the value of the initial temperature.-

OO0

207 WRITE (1,217) THTL
2170FORMAT (lX,'THE CURRENT VALUE OF THE INITIAL TEMPERATURE IS ',
1F5.0,' C')
WRITE (1,21) ‘
READ (1,22) NEW
IF (NiW.EQ.0) GO TO 203
WRITE (1,237)
237 FORMAT(1X, 'OK — THEN ENTER THE NiW VALUE IN FS5.0 ')
READ (1,227) THT1
227 FORMAT (FS5.0)

(hecking the value of the heat transfer coefficient:-

[N X!

208 WRITE (1,218) H
2180FORMAT (1X, "THE CURRENT VALUE OF THE HFAT TRANSFER COEFFICIENT IS
1',F5.0," W/(M.K)')
WRITE (L,21)
READ (1,22) NEW
IF (NEW.EQ.0) GO TO 209
WRITE (1,238)
238 FORMAT(1X,'OK — THEN ENTER THE NEW VALUE IN F5.0 ')
READ (1,228) H
228 FORMAT (F5.0)
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C
C Checking the value of the specific heat:-

C
209 WRITE (1,219) SPCFHT
2190FORMAT (1X,'THr CURRENT VALUE OF THE SPECIFIC HEAT IS ',t5.1,
1' J/(KG.K)")
WRITE (L,21)
READ (1,22) NEW
IF (NEW.EQ.0) GO TO 230
WRITE (1,239)
239 FORMAT(1X,'OK - THEN ENTER THE NEVW VALUE IN F5.1 ')
READ (1,229) SPCFHT
229 FORMAT (F5.1)
Cc
C Finished checking the values
C
230 LINTD LATENT/ ( SPCEFHT* ( THIRNS~-THTAIR) )
THT1D (THT1-THTAIR)/ (THTRNS-THTAIR)
THKCNV 1000.0*COND/H
TIMCNV = DNSTY*SPCFHT*COND/ (H**2*60.0)
LD = 1000.0*LR/THKCNV
WRITE (1,4000) LTNTD, THTLD, THKCNV, TIMCNV
4000 FORMAT (1X, 'LINTD = ', F8.2, 2X, 'THTID = ', F5.2, 2X, '"THKCNV =
1', E10.3,/1X, 'TIMCNV = ', E10.3/)
RETURN
END

hn
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101

102

100

1

SUBROUTINE STEP4(Y,Z U,V,H,N)

involve X,

Runge—Kutta subprogram that integrates 4 simultaneous differential
equations over an integration STEP H, set by the calling program
the dunmy variable N is the position in one dimensional arrays from
which the subprogram reads the initial values, retuning the final
values to positions N+l. Should the differential expressions

one variable must be X.

NB STEP4 requires the further subroutine DIFREL to calculate
the differentials.
X, its differential must be included and put equal to 1.

If the expressions for the differentials involve

DIMENSION Y(3), Z(3), U(3), V(3), YINC(5), ZINC(5), UINC(5),
VINC(5)

YA
ZA
vA
VA

L TR 1]

Y(N)
Z(N)
U(N)
V(N)

DO 100 J = 1,4
CALL DIFREL(YA,ZA,UA,VA,ADY,ADZ,ADU,ADV)

YINC(J
ZINC(J

)
)

UINC(J)
VINC(J)

IF (J-
YA

ZA

UA

VA

GO TO
YA

ZA

UA

" VA

3)

= non o

CONT'INU

Y(N+1)
Z(N+1)
U(N+1)
V(N+1)
RETURN
END

H*ADY
B*ADZ
H*ADU
H*ADV

101,102,100

Y(N)
Z(N)
U(N)
V(N)

Q0

Y(N)
Z(N)
U(N)
V(N)

Y(N)
Z(N)
U(N)
V(N)

+ 4+ o+

+ + + +

0.5*YINC(J)
0.5*ZINC(J)
0.5*UINC(J)
0.5*VINC(J)

YINC(J)
ZINC(J)
UINC(J)
VINC(J)

(YINC(L1)+2.0*YINC(2)+2.0*YINC(3)+YINC(4))/6
(ZINC(1)+2.0*2INC(2)+2.0*2INC(3)+2INC(4))/6
(UINC(L)+2.U*UINC(2)+2.0*UINC(3)+UINC(4))/6
(VINC(L1)+2.0*VINC(2)+2.0*VINC(3)+VINC(4))/6
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SUBROUTINE DIFREL(Y,Z,U,V,DY,DZ,DU,DV)

REAL LR, LD, LATENT, LINTD _

0 COMMON LR, LD, COND, DNSTY, SPCFHT, H, LATENT, LINTD, THTRNS,
1 THTAIR, THT1, THT1D, THKCNV, TIMCNV, MODE, NEXP

C

c _

C The actwal equations involved in DIFREL depend on the mode that is in
C operation. In both modes, y = ksi, z = td, and u = tmpod. The

C equations for the last two variables are (€.28) and (@.29) repectively
C and these equations involve q*t. It is the form of the equation

C for this variable that depends upon the mode.

]

C In the semi-infinite mode, when MODE = 1, the equation for g*. is

C equation (62) which involves the cooled layer thickness, tcd (v = tcd
C in this mode), so that DV is the differential of this ocooled layer
thickness - given by egquation (€61).

In the finite mode, MODE = 2, the equation for g*. is equation

(66) which involves the temperature of the irsula%ed surface, tmpind
(v = tmpind in this mode) so that DV is the differential of this
temperature — given by equation (@.65).

noOoOon0On

DY = 1.0
GO TO (401, 402), MODE
401 Q = 2.0*(THTLD - 1.0)/V
GO TO 403
402 Q0 = 2,0%(V - 1.0)/(LD - 2)
403 OMEGA = LINTD*%2*(4.0 + 2)
ADIAM = (6.0*LTINTD + 4.0*(1.0-U) - 2.0*Z*U)*(1.0+2) + Q*2*(4.0+42)
GAMMA = 6.0*(U-Q)*(1.0+2)
ARGMNT = ADLAM**2 + 4.0*GAMMA*QMEGA

During the initial attempts to establish stability in the Runge—Kutta
regime, ARGMNT might be incorrectly negative. In order to allow
camputation to continue for stability to be established, a positive
value of ARGMNT must be mresented to the SQRT function:

sEeNeNeNeNe)]

IF (ARGMNY .LT. 0.0) ARGMNT = — ARGMNT
DZ = 2.0%*GAMMA/(ADLAM + SQRT(ARGMNT))
DU = =(LINTDAUZ**2 + Q*D2)/(L.0+2)
GO TO (404, 405), MODE

404 DV = 3.0%(Q/(THTID - 1.0) - D2)

GO TO 406
405 OV = = (1.5*Q + (V = 1.0)*Dz)/(LD - 2)
406 RETURN |

END
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k.1 DESIGN OF THE APPARATUS

An apparatus was designed to study heat transfer
and transformation kinetics in steels. This consists
of a metal case, which is lined with H.G.I. insulating
bricks. The base is made of a 23Cwm x Q30w x 2.50wA
thick syndanyo plate with an /5.0¢w diameter recessed
hole. At the centre of the base is placed an R030»+ ID
x 25FGm oD x 20.3 0w high electrical heater with 3 Kw
of power and 240 volts. The space between this and
the side insulating bricks is packed with Kaowool bulk
fibre (Triton). The top is made of H.G.I. insulating
bricks unit, a layer of Kaowool board (Triton) above
and below, and covered with a Kaowool blanket (Triton).

More details in Figure 4.

Also used are 1.5 mm x 1 m Chromel-Alumel prrotenax
thermocouples, 50 BM Variac transformer, an ammeter and

a Leeds and Northrup Speedimax Multi-Point chart recorder.

In order to obtain one dimensional heat flow, the
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