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ABSTRACT

Corrosion of steel reinforcement is a major concern in concrete construction, particularly 
in aggressive environments. Therefore corrosion resistant materials such as fibre 
composites are becoming increasingly feasible as an alternative concrete reinforcement. 
There are relatively few reported design guidelines for fibre composites in concrete.
Hence, there is an urgent need for research and development to extend existing guidelines 
and standards such as those produced by the UK Institution of Structural Engineers and the 
ACI Committee (US), to encourage the wider use and acceptance of fibre composites as an 
alternative to steel in reinforced concrete elements.

This investigation compares the behaviour and properties of a range of reinforced concrete 
beams under two point loading comprising different concrete grades and types using both 
steel and Glass Fibre Reinforced Plastic (GFRP) as primary and secondary reinforcement. 
A variety of conventional and ‘novel’ rebar configurations were used to assess their effect 
upon material efficiency and load capacity. Compressive and tensile strength and elastic 
moduli of all component properties were measured together with load, deflection, rebar 
and concrete strains on the reinforced concrete beams. Health and safety concepts through 
a risk assessment process were introduced for the testing at an early stage of the 
investigation.

Principal measures of beam performance include the ultimate load capacity, stiffness and 
failure modes together with a ‘performance quotient’; a mathematical expression derived 
as an efficiency comparator for beams of different types and composition. Photographic 
and video records were also used to monitor behaviour throughout. Experimental 
measurements generally showed good agreement with the corresponding theoretical, quasi- 
theoretical and design based values although the latter tended to overestimate the structural 
performance of the beams. In general, load capacity increased with increase in main rebar 
area but was affected to a lesser extent by concrete strength. The beams reinforced with 
steel had a greater load capacity than those reinforced with GFRP. However, GFRP 
reinforced beams generally displayed a greater capacity to absorb energy than steel but 
exhibited reduced stiffness at any given load although this was enhanced by the inclusion 
of glass fibres in the mix. Cracks in the GFRP reinforced beams were usually larger and 
deeper compared with those in the equivalent steel reinforced beams. Failure of the more 
lightly reinforced steel beams, including one GFRP beam, were predominantly in ‘flexure’. 
The more heavily reinforced steel and the remainder of the GFRP reinforced beams 
exhibited mostly ‘shear-bond’ type failure. The ‘novel’ rebar geometry proved to be a 
simple, efficient and viable alternative to conventional rebar configurations in terms of 
load capacity and preferred mode of failure.

It is suggested that further developments and applications could focus on small reinforced 
concrete elements such as lintels in aggressive environments and further refinement of the 
‘performance quotient’ concept.
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NOTATION

The definitions of the symbols used in the thesis are given below. 

ast tgfrp actual '■ experimental stress in the reinforcing bars at the cracked section (MPa)

fst i gfrp : stress in the reinforcing bars obtained from tensile test (MPa) 

fy v : cliarecteristic strength of mild steel stirrups (MPa) 

vmax theo : theoretical ultimate shear strength of the beam (MPa) 

actual • actual ultimateshear strength of the beam based on shear force diagram (MPa) 

f c : concrete cube strength (MPa)

Ejt/ggp : modulus of elasticity of the reinforcorcing bars (GPa)

Ec : modulus of elasticity of the concrete (GPa)

Zst/gftprheo : theoretical strain in the reinforcing bars at the uncracked section

£st/gfrpacta£ : experimental strain in the reinforcing bars at the uncracked section

£ st i gfrp ■ theoretical strainin the reinforcing bars at the cracked section

actual -experimental strainin the reinforcing bars at the cracked section

e co : the maximum concrete compression strain 

ecl : measured strain at the first DEMEC disk 

ec2 : measured strain at thesecond DEMEC disk 

e cZ : measured strain at the third DEMEC disk 

ec4 imeasuredstrainatthefourthDEMECdisk

em : difference between measured strains at the fourth and the third DEMEC disks 

Mtheowcr ’• theoretical bending moment at theuncrackedsection (kNrn)

M  actual uncr '• experimental bending moment at theuncrackedsection (kNm)

Mtheo ̂  : theoretical bending moment at the cracked section (kNm)



Mactualcr '■ experimental bending moment at the cracked section (kNm)

înitial '• the initial visible crack load of the concrete beam (kN)
Fmax : the failure load of the concrete beam (kN) 
w : distributed load (kN/m)

Athe0uncr • theoretical deflection at the uncracked section (mm)

: theoretical deflection at the cracked section (mm)

A actuals : experimental deflection at the uncracked section (mm)

âctual„ '• experimental deflection at the cracked section (mm)

: minimum cover to the reinforcing bar (mm) 

wmax̂ o : estimated maximum crack width based on the theoretical formula (mm)

: crack width based on measured strain at the third DEMEC disk (mm)

: crack width based on measured strain at the fourth DEMEC disk (mm) 

w r ml • average maximum crack width (mm)

Xtheouna- '■ theoretical neutral axis depth at the uncracked section (mm)

Xactualuncr '■ experimental neutral axis depth at the uncracked section (mm)

Xtheocr: theoretical neutral axis depth at the cracked section (mm)

Xactualcr : experimental neutral axis depth at the cracked section (mm)

a, : fixed distance from top edge o f the beam to the first DEMEC disk (mm)

a2 : fixed distance from top edge o f the beam to the second DEMEC disk (mm)
aCT : diagonal distance from the bottom edge o f the beam to the edge o f the reinforcing bar (mm)

b : width o f the concrete section (mm)
d : effective depth o f the concrete section (mm)
h : overall depth of the concrete section (mm)
D : diameter o f reinforcing bar (mm) 

e : fixed distance between the two loading points (mm)
Ls : fixed distance for span (mm)

L : fixed distance from the loading point to the end of the beam (mm)

sv : spacing of stirrups along the beam (mm)

sVam : maximum spacing o f stirrups along the beam (mm)

Astlgfrp : area o f reinforcing bars (mm2)

: the cross sectional area o f the two legs o f the strirrup (mm2 )

Itheouncr '■ theoretical second moment of area o f the uncracked section (mm4)

^ actual uncr : experimental second moment o f area o f the uncracked section (mm4)

Itheocr '■ theoretical second moment o f area of the cracked section (mm4)

I  actual cr '■ experimental second moment o f area o f the cracked section (mm4)
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CHAPTER 1

1. Introduction

1.1 Background

The development and innovations that have been achieved in the application of 

concrete over the centuries are remarkable. According to the archaeological 

excavations in former Yugoslavia it has been found that the earliest application of 

concrete was in floors and it is dated 5600 BC1. The Egyptian, Greek and Etruscans 

civilisations produced concrete in lime mortar composition before the Romans 

introduced and developed Pozzolonic cement in 75 BC from a red volcanic powder 

near Naples. The invention of Ordinary Portland Cement (OPC) which is widely used 

in today’s concrete structures, was in 1824 by an English man, Joseph Aspdin.

The presence of bronze strips and rods as reinforcing material in some concrete 

constructions is dated between 300BC-500AD, and may suggest that the Romans had 

first observed the limitation of concrete i.e. being strong in compression and weak in 

tension. A degree of enhancement in the tensile strength of concrete by using bronze 

reinforcement was achieved but the Romans soon realised that the structure had 

started having cracks and spalling had occurred. This was principally due to the 

higher coefficient of thermal expansion of bronze compare to concrete2. The practice 

of Reinforced Concrete (RC) using a mesh of iron rods and wires became clear in 

early 1830 and became common between 1848-1897. Eugene Freyssinet (France) 

discovered another way to overcome the shortcoming of concrete for sustaining 

flexural loads and introduced prestressed concrete to the construction industry in 

1930. The use of prestressing on any scale in Britain was after high strength tensile 

steel became readily available in the 1940s.

The construction methods and speed of building of structures improved over the years. 

Today, RC is claimed to be the major construction material in most civil engineering 

structures and bridgeworks. However, as the quantity of RC increased so did the scale 

of the problems associated with durability of the material. These problems can be 

separated into two categories. The ones in relation to the defects that develop in the
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actual structure and the substructure because of the use of inferior materials or poor 

workmanship.

The other one, which is the major problem in structural concrete, is the corrosion of 

steel reinforcement. This occurs when RC is exposed to weathering and it progresses 

quickly particularly in salt contaminated concrete structures i.e. in marine and coastal, 

highways and bridges when salt and de-icing chemicals are used or in chemical plants.

The complete discussion of the processes of corrosion together with the techniques 

available to control corrosion is beyond the scope of this research considering the 

processes and the techniques are subjects for investigation themselves. Therefore, 

they will be described in brief for comprehending and appreciating the complexity of 

the problem.

The corrosion or rusting of steel is a complex electro-chemical process that occurs 

with a flow of current from the reactive anodic region to the un-reactive cathodic 

region of steel. The sum of these reactions is given by the following equation:

4Fe + 3 0 2 + 2H20  = 2Fe20 3 H20  3

i.e. (Iron/Steel) + (Oxygen) + (Water) = (Rust)

It can be seen from above that the corrosion occurs when oxygen and water are 

present. This means that the rate of corrosion is directly related to the oxygen and 

water i.e. as the availability of oxygen and water increases, the rate of corrosion 

increases as well. The presence of atmospheric contaminants such as carbondioxide, 

chlorides and sulphates also has major effects on corrosion rates.

Carbonation caused by the steady diffusion of carbondioxide (CO2) into the concrete, 

takes place very slowly, if concrete has low permeability. This can be achieved by 

well-compacted concrete, which has a low water/cement ratio. The depth of 

carbonation in a good quality concrete is between 10 and 20mm after years of 

exposure4. Chlorides and sulphates both increase steel corrosion rates. Chlorides put
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steel reinforcement at risk quicker than carbonation5. The main source of chlorides 

comes from salt. This means that the highly aggressive environments such as marine 

and coastal structures together with highways where de-icing salt used, are more 

susceptible to corrosion.

The source of sulphates comes from the ground. When they react with water they 

become active and produce acidic solution which destroys the passivity of steel in the 

concrete. The most common places where a high level of sulphates attacks concrete 

are industrial environments.

The concrete cover plays an important role in the protection of steel against corrosion. 

If the concrete cover is insufficient the steel rusts with a loss of some of the cross- 

sectional area. This leads to disruption and spalling of concrete. The corrosion of 

steel usually gives warning through cracks, which appear, along the location of 

reinforcement in the concrete with rust staining. However, in some cases the 

corrosion of steel spreads throughout the structure without any warning resulting in 

collapse6. The damage caused by the corrosion of steel is usually localised and repair 

is possible but very expensive. It has been reported that approximately £500M is 

spent each year on concrete repair in the UK7 and 42% of bridges in the USA need to
o

be repaired . The estimated cost of the repair bill on parking structures in Canada is 

$4 to $6 billion and on highway bridges in the USA is $50 billion9. This clearly 

illustrates the scale of the problem.

A considerable amount of research has been carried out by different groups and 

organisations around the world in finding out a better way of avoiding concrete 

deterioration caused by the corrosion of steel. Initially, improving the concrete by 

using high cement content and designing low water/cement ratio mixes together with 

improved quality control during and after the concrete placement play a very 

important part in providing adequate durability of concrete.

There are several techniques available for controlling the corrosion of steel 

reinforcement. In the 1970s, the surfaces of concrete bridges in Germany and USA 

were coated with silanes to prohibit water10. Epoxy-coated reinforcement has been
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used in bridges in North America since 197311 and has been studied and used in 

Europe including Britain, Norway and Holland since the 1980s12. The cathodic 

protection techniques have been developed and applied to a number of bridges in the 

USA and Canada13. Stainless steel has been developed in the UK and USA since 

1910 and used in many structures14.

All these present techniques have inherent problems in relation with their use and 

application. Most of them are expensive and need continuous maintenance. Besides, 

whichever technique is employed the core material which is vulnerable to corrosion is 

still present and that is steel reinforcing bar.

Therefore, it seems reasonable to seek a solution which involves the substitution of 

conventional steel with a material that is immune to corrosive environments and is 

able to extend the service life and lead to lower maintenance costs. Fibre Reinforced 

Plastics(FRP) are ideal candidates for this substitutional material. These composites 

have been developed and used in the aerospace industry for more than 30 years as a 

substitute for metals and alloys. Research and development was first realised in the 

early 1950s by German Ministry of Defence engineers exploring the possible uses of 

glass fibre reinforcement for civil engineering15. Since then, one area of international 

research and development is the use of fibre composites in the form of corrosion 

resistant FRP reinforcing bars primarily used in prestressing to make use of their high 

tensile strength15. International works suggest that unstressed systems have been 

explored, but the mechanical behaviour of FRP reinforcement in concrete is still not 

well known. The contribution of these bars to the flexural and shear capacities of 

concrete needs to be defined. Therefore, determination of their behavioural 

characteristics is essential for enhancing the performance and the efficiency of 

concrete elements reinforced with FRP rebars.
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1.2 Research Aims and Objectives

The overall investigation is based on the feasibility of using a relatively low cost glass

FRP (GFRP) bar, of a type, which has been successfully applied to prestressed

concrete, as reinforcement in concrete.

Principal Aims

The principal aims of this work is to:

• review the practice of using GFRP as a reinforcement in concrete elements and 

structures and investigate the scope for improving its performance

• postulate simplified novel rebar configurations and compare their performance 

with that of conventional ones for a range of concrete grades and types

• evaluate and compare the material/performance efficiency over an optimal range 

of configurations rebar types and concrete grades tested in the investigation

• test the validity of existing design criteria for assessing and predicting the 

performance of GFRP reinforced elements

Objectives

The objectives of this work cover the following aspects:

• Review previous research, applications and limitations of FRP and GFRP as 

reinforcement for concrete

• Review existing test methods and assessments of performance

• Compare the fundamental behaviour of high tensile steel and GFRP as simple 

reinforcement configurations for a range of concrete grades

• Investigate the use of simple novel rebar geometries to enhance performance

• Apply an idealised rebar geometry to a given concrete for optimising efficiency

• Assess and compare the performance of conventionally reinforced concrete beams 

using GFRP and high tensile steel rebar singly and in combination

• Compare and contrast the performance and material efficiency of the range of 

concrete elements tested

• Identify key modifications to design parameters for application to GFRP 

reinforced elements
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Although, FRP reinforcing bars have already been used in structural applications the 

performance of FRP reinforced concrete is not fully understood. In order to establish 

the objectives above, firstly, it was clearly necessary to identify the differences in 

mechanical properties of both conventional steel and the FRP bars. Secondly, it was 

also necessary to select certain criteria such as load and deflection capacities, failure 

mode together with the cross section of the concrete element to give a proper 

definition of performance.

1.3 Thesis Layout

The thesis is divided into 8 Chapters. It presents a comprehensive literature review on 

the subject in Chapter 2. Previous research referred to in this thesis (wherever 

possible) is listed at the end of each Chapter. An introduction to the thesis is given in 

Chapter 1.

Details of the experimental programme including the equipment and instrumentation 

used to monitor ‘two-point loading’ tests in the laboratory are given in Chapter 3. The 

comparative data based on the mechanical properties of steel and FRP is also included 

in this Chapter.

The results obtained from the ‘two-point loading’ tests on the simply supported 

concrete beams, the analysis of all data and the discussions are included in Chapters 4, 

5, 6 and 7 respectively.

Conclusions and proposals for future research presented in Chapter 8 and publications 

and presentations to date arising from the results of this research programme are given 

at the end of the thesis.
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CHAPTER 2

2. LITERATURE REVIEW 

2.1 Fibre Reinforced Plastic(FRP) Reinforcement

2.1.1 Fibre Types & Forms

Definition o f  fibre: A fibre may be defined as a linear filament of material with a 

more or less uniform, small cross-section of thickness or diameter less than 100pm 

and aspect ratio (ratio of length to thickness or diameter) greater than 1001. The 

typical tensile properties of fibre materials are shown in Appendix l 1. The 

classifications of the fibres are shown in Figure 2.1.

Background

The natural polymer fibres (wool, silk, and cotton) have been known and used 

extensively in the textile industry for thousands of years. The FRP industry started in 

1940 due to the electronic needs of World War II in respect of manufacture of the 

radars for military aircraft2. Carbon Fibre Reinforced Plastic (CFRP) and Aramid 

Fibre Reinforced Plastic (AFRP) were developed and used mainly in the aerospace 

industry. They have been introduced to concrete structures as reinforcements 

subsequently.

Composites can be split into two categories: those with long fibres (continuous fibre- 

reinforced composites) and those with short fibres or staples (discontinuous fibre- 

composites). Fibre composites contain two components, fibre and resin. Those of 

commercially available fibres used in the production of grids, rods, plates and ropes 

for concrete reinforcement cover the following range:

• Carbon

• Aramid

• Glass
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2.1.1.1 Carbon Fibres 

Background

Carbon fibres are black colour and are produced from organic cellulose based 

precursors such as cotton, rayon, PAN (Polyacrylonitrile) being carbonized without 

melting followed by graphitisation at high temperatures of 1000 °C -2000°C and of 

2500 °C -3000°C respectively. Apart from offering higher modulus and strength than 

all reinforcing fibres, carbon fibres are not affected by stress corrosion at room 

temperature unlike glass and polymeric fibres. Thomas Edison first achieved the 

transformation of cotton and bamboo strips in to carbon fibres to use as filaments in 

incandescent electric lamp3.

Avvlications o f  Carbon Fibres

Carbon fibres were mainly developed for the aerospace industry and have been used in 

automotive, mass transportation (railways), chemical industry (water pipelines) and 

medical (bone plates)4.

2.1.1.2 Aramid Fibres 

Background

Aramid fibre is a generic name for synthetic organic fibres called aromatic polyamide 

fibres. Trade name of Kevlar was commercialised by Du Pont Company in 1972 in 

the USA and it is the most commonly used fibre throughout the world. Several other 

commercial aramid fibres are namely Nomex (USA), Teijinconex and Technora 

(Japan) and Twaron (Holland)5. Kevlar fibres are bright yellow colour and are in 

different types such as Kevlar (used as rubber reinforcement), Kevlar 29 (used for 

ropes, cables, coated fibres, architectural fabrics and ballistic protection fabrics,

Kevlar 49 (used as reinforcement for epoxy, polyester, and other resins).

Avvlications o f Aramid Fibres

Kevlar fibers have been produced in many industries to use in applications such as 

bullet-proof vests, industrial gloves, ropes and cables, tyres, pressure hoses, conveyor 

belts, boat hulls, friction products, various forms of composites6.
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2.1.1.3 Glass Fibres 

Background

Ancient Egyptians were the first civilisation, which made glass. The idea of fibre 

glass was first described by Robert Hooke in 1665 and the modem industry started 

recognising the use of it as plastic reinforcement, in the 1930s when the Owens- 

Coming Fibreglass Corporation was set up in the U.S.A7. Glass fibre is a generic 

term like carbon fibre or steel. Common glass fibres are silica based (50%-60% Si02) 

and contain a host of other oxides of calcium, boron, sodium, aluminium and iron. 

Table 2.1 contains the compositions of some commonly used glass fibres. In 

borosilicate E-glass, E stands for electrical and it was originally developed for 

electrical insulators having a good strength and reasonable elastic modulus and better 

resistance to water and to acids than the standard alkali soda lime silica glass (A- 

glass) as used in windows or containers. In C-glass, C stands for corrosion and it has 

a better resistance to chemical corrosion than E-glass. In alumino-magnesium silicate 

S-glass, S stands for the higher silica content and it has higher strength and elastic 

modulus than other types plus it is able to withstand higher temperatures than other 

glasses but also is more expensive.

Table 2.1 Approximate chemical compositions o f some glass fibres (wt %)

A-glass C-glass E-glass S-glass
Si02 72-72.5 60-65 52-56 64.3-65

AI2O3 0 .6 -1 .5 2 - 6 12-16 24.8-25
CaO 9-10 9-10 16-25 0 .0 1

MgO 2.5-3.5 3-4 0 - 6 10-10.3
Na20 13-14.2 7.5-12 0 -1 0-0.27
b 2o 3 - 2-7 8-13 -

The most often used glass composition is E-glass and it is available in a variety of 

forms and is the least expensive. C and S glasses are used when high chemical 

resistance, stiffness and strength are the main requirements.

Avvlications o f Glass Fibres

Glass fibres have been used in the automotive, electronic and aircraft industry. Their 

use in civil enginering started in the mid 1980s. The main application of glass fibres 

in forms of plastic reinforcing bars and grids are in marine structures, chemical plants, 

bridge decks and precast highway traffic barrier walls.

11



2.1.1.4 Steel Fibres 

Background

Steel fibres were first patented in the USA in 19628. They are usually manufactured 

by three processes (1) by cutting cold drawn wire, (2) by slitting steel sheet, (3) by 

extracting them from a pool of molten steel (melt extract) for producing straight or 

deformed shapes having circular, rectangular or irregular cross sections.9 10 

Depending on their grade, the tensile strengths of steel fibres range from 345MPa to 

2070 MPa. Their sizes range from 13 x 0.25mm to 64 x 0.76mm. Many researchers 

worked on using steel fibres in concrete in order to reduce cracking by making the 

concrete tougher (enhanced energy absorption) and more ductile. Also, using steel 

fibres substantially increases shear and tensile strength of concrete11.

Avvlications o f Steel Fibres

The proven applications of steel fibre reinforced concrete include shotcrete, precast 

concrete, slabs and floors, pavements, seismic structures and repairs.

2.1.1.5 Comparison of Carbon, Aramid and Glass Fibres

The Table in Appendix 2 adopted from Yang5 shows the comparison of selected high 

performance fibres. Fibre flexibility is associated with modulus of elasticity and the 

diameter. The diameter becomes the dominant parameter controlling the flexibility in 

high-modulus fibres. For a given E value, the smaller the diameter the more flexible 

it is.

Kevlar aramid fibres have rather poor strength properties in compression compared 

with those in tension although this can be solved by utilising cost effective (based on 

specific properties) advanced hybrid composites such as Kevlar/carbon or 

Kevlar/glass.

Carbon fibres offer the highest strength and elastic modulus amongst all reinforcing 

fibres. They are not susceptible to stress corrosion or stress rupture failure at room 

temperature unlike glass and polymeric fibres.
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Glass fibres are not moisture absorbent and are not degraded by exposure to sunlight. 

They have a very high resistance to chemicals and can be used up to 500 °C and will 

not bum. They are the least expensive fibres compared to carbon and aramid fibres.

Kevlar aramid and high strength polyethylene fibres are employed for both rigid and 

flexible stmctures whereas carbon and glass fibres are mostly limited to the 

reinforcement of rigid composites. Glass and carbon fibres are definitely the first 

choice for applications at exteremely high temperatures. Another important 

characteristic of these high performance fibres is their rather low values of strain 

(generally less than 2-3%) to fracture. For this reason, it is necessary to distribute 

these low ductility slender fibres into a binding medium called a resin matrix. The 

function of the matrix is not just for holding the fibres together but also for 

transmitting the applied loads to the fibres. The nature of fibre and resin matrix 

bonding also influences the strength and toughness of a composite.

2.1.2 R esin Types

Fibre composites are formed in a resin matrix, which can be either:

• thermosetting (e.g. epoxy-Araldite, phenolformaldehyde-Bakelite, polyester, 

vinlyester, polyaromatic, urea formaldehyde).

• thermoplastic (e.g. polycarbonate, polythelene, polypropylene, polystyrene, 

polyvinyl chloride (PVC), polytetrafluoroethylene (PTFE), polymethyl 

methacrylate (Perpex or Plexiglass), polyamides (Nylon).

Background

Thermosetting resin phenolformaldehyde (PF) as Bakelite was the earliest one (1907) 

which was developed in the modem thermoplastic resin industry dating from the 

1920s12. The selection of a resin for FRPs depends upon the requested composite 

performance. In this case, there are several factors to be considered including cost, 

density, interfacial bonding, tensile, compressive and flexural properties, compatibility 

of thermal expansion, environmental resistance to solvents, moisture, temperatures 

and processability. Resins are often selected on the basis of their modulus of 

elasticity. In general terms, the characteristics of low elastic modulus resins (soft
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resins) are relatively high breaking strain, good flexural properties and good bonding 

whereas high elastic modulus resins (rigid resins) offer high compressive strength, 

brittleness and relatively poor bonding. In general, the resin matrix should bond well 

with fibres, protect the fibres from permanent damage and be capable of transferring 

large forces as a result of high shearing strength13.

2.1.2.1 Thermosetting

Thermosetting resins supplied as liquids, pastes and solids harden upon application of 

heat. They display good resistance against creep and severe environmental conditions 

(heat, cold, radiation, humidity and chemical atmospheres)14. Typical physical and 

mechanical propertis of commercial matrix materials15 are given in Table 2.2.

Table 2.2 Typical physical and mechanical properties o f thermosetting resins

Polyester Epoxy Vinylester
Tensile strength(MPa) 20-100 55-130 70-80
Tensile modulus(GPa) 2.1-4.1 2.5-4.1 3-3.5
Ultimate strain(%) 1-6 1-9 3.5-5.5
Poisson’s ratio - 0.2-0.33 -

Density(kg/m3) 1000-1450 1100-1300 1100-1300
Tg(°C) 100-140 50-260 90-140
Coefficient of Thermal 
Expansion CTE (10'6/°C)

55-100 45-90 21-73

Cure shrinkage(%) 5-12 1-5 5.4-10.3

Comvarison o f Polyester. Vinylester and Epoxy Resins

Both polyester and vinlyester resins have low viscosity and they cure fast so that they 

are well suited for manufacturing FRPs. Polyesters are resistant to fire, moisture, 

acids, and alkalines, but are degraded by chlorinated solvents. Vinylester resins have 

advantages over polyester resins in terms of chemical resistance and high temperature 

resistance. They are easier to handle during processing than polyester and epoxy 

resins, and have better resilience than polyester but they are more expensive than 

polyester resins. Epoxy resins which can be used in all FRP manufacturing processes, 

have high strength and creep resistance, strong adhesion to fibres, chemical and 

solvent resistance, good electrical properties, high glass transition temperature, and 

low shrinkage and volatile emission during curing. Epoxy resins are most often used
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in combination with Kevlar aramid fibres. Thermoset composites are generally stiffer, 

more thermally stable and brittle than thermoplastic composites.

2.1.2.2 Thermoplastic

Thermoplastic resins are those that melt or soften upon application of heat. They are 

also available in the form of liquids, pastes and solid. In contrast to thermosettings, 

thermoplastic resins display weakness against creep and severe environmental 

conditions. Their strength and stiffness are lower than thermosetting resins. They are 

employed for fast assembly packaging materials and plastic film laminates. 

Thermoplastic resins are more compatible with aramid fibres. Nylon is the most often 

used thermoplastic in Kevlar aramid fibre composites.

Table 2.3 Typical physical and mechanical properties o f common thermoplastic 

resins16

Property

Fibre Type

Glass
trasition
temperature
(°C)

Density
(kg/m3)

Coefficient 
of Thermal 
Expansion 
(xlO'6 °C)

Tensile
Strength
(MPa)

Tensile
Elastic
Modulus
(GPa)

Polyethylene -120 920 220 8 0.5
PTFE -120 2100 110 20 0.5
Polyproplene -27; 10 900 110 30 1.3
Nylon 66 57 1140 90 70 2.6
Polycarbonate 150 1220 55 60 2.7
Polymethylmethacrylate 80-100 1180 65 70 2.9
Polystyrene 80-100 1050 70 50 3.0
Polyvinylchloride 80 1400 70 50 3.2

2.1.2.3 Manufacture of Different Type and Size of FRP Reinforcements

Regardless of the manufacturing technique, there are three stages common to 

construction of FRP composites: (1) deciding which type of resin will be used with 

which type of fibre, (2) forming resin and fibre into the required shape, (3) shaping 

and curing of the composite material into its final geometry.

The manufacturing process affects the mechanical properties of FRP composites. 

However, it possible to achieve the best mechanical properties through using strong 

fibres, tough resin, long fibre geometries and high volume fibre densities. 

Nevertheless, this is often not possible or very expensive to apply using available 

techniques. There are several techniques for manufacturing of FRP composites17 18.
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Table 2.4 adopted from Ellyin18 shows the types of FRP composite manufacturing 

techniques and the suitable resins used for each technique. It can be seen that the 

thermosetting resins can be used in the majority of the techniques. The Table also 

indicates that the polyester and epoxy resins are suitable for the pultrusion process.

Table 2.4 The common type resins used in dijfrent manufacturing technique
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Hand Lay-Up

Spray-Up

Filament Winding

Pultrusion

Compression Moulding * * * * *

Resin Transfer Moulding

Reaction Injection Moulding * * * «
Injection Moulding

Braided Preform

The pultrusion process has been in use since the 1950s and it has been widely 

accepted by civil engineering, architectural and construction industries due to its fast 

speed of operation and good quality control at a relatively low cost. The mechanical 

and physical properties of final product are dependent on the process variables such as 

fibre volume, pulling speed and temperature inside the die zone which contains three 

parts in which temperature increases gradually to provide temperature gradient from 

the surface of the product to its core19. A two-point loading test conducted on a 

rectangular shape pultruded product made of graphite fibre and epoxy resin by Lackey 

and Vaughan showed that the higher the percentage of fibre (63.9% in their case) and 

the pull speed (40.6cm/min) the higher the flexural strength of the product20. Pull 

force measurement technique21 contributes to the quality control of the process by 

monitoring the resin blockage problem (if any) developing in the die zone (curing 

process) through the changes in pull force. In this way, it is possible to take corrective 

action before the problems get accumulated. Typical values of pull forces given by
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Lackey in another paper are 9.08-18.16kN for graphite/epoxy pultrusion and less than 

4.54kN for glass/epoxy22.

The pultrusion process is particularly suitable for manufacturing composite 

components with continuous, constant cross-section profiles. The combination of 

glass fibre and polyester resin is the most common composition of FRP products used 

in this technique. The GFRP rebars supplied by the manufacturer in the USA and 

used in this investigation were also produced by pultrusion process. Pultruded 

composites offer relatively better physical properties. This can be combined with 

reduced cost and durability. They have a better surface finish and close tolerances 

compared to other composite manufacturing processes due to the axial nature of the 

process. Researchers have investigated the pultrusion process for many years. 

Although the manufacturing process is not complicated, the effects of different 

process parameters and their complex interactions are critical for obtaining an 

optimum product23.

Kevlar or carbon fibres combined with epoxy or thermo plastic resin have also been 

successfully used in this process for manufacturing FRP reinforcing bars. In contrast 

with steel bars, there are no standards for the size of FRP reinforcing bars so they are 

manufactured in a wide range of sizes. Hooks and bends can be shaped on FRPs 

depending on the type of resin used. It is important to note that if a thermosetting 

resin is used, it is not possible to bend composite reinforcing bars after the fabrication 

process is completed24.
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2.1.3 Com parison o f FR P Reinforcem ents com pared to C onventional Steel 

Reinforcem ents

Besides its corrosion resistance, potential advantages of FRP reinforcements 

compared to steel are:

• High strength

• Fatigue characteristics of high performance fibres are three times higher than steel

• High energy absorption

• Low density

• Low conductivity and electrical interference

• Lower concrete cover in concrete applications such as cladding panels25

• Low maintenance cost

However, potential disadvantages exist for FRP reinforcements and these are:

• High cost (5 to 50 times more than steel, however cost of stainles steel also high 
approximately 6 times more than steel)

• Low modulus of elasticity

• Glass fibre deterioration by alkaline attack (this may be counterbalanced by using 
alkaline resistant glass fibres and polyester or vinylester resins26)

• Anchorage for prestressing FRP tendons needs special attention

• Long-term strength of FRP reinforcement can be lower than short-term static 
strength (it has been reported by Saadatmanesh , that the long-term strength of 
glass FRP is approximately 70% of its short-term strength)

• FRP reinforced element is difficult to modify and recycle once it is erected27

2.1.3.1 Manufacturers of FRP Composites for Concrete

Summary of products and manufacturers of FRP composites for concrete are given in 

Table 2.5. It shold be noted that the information gathered in the Table is up to year of 

1993.
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Table 2.5 Manufacturers o f FRP composites

TRADE NAME MANUFACTURER USE & FORM MAKEUP

KODIAK
IGI International 

Gratings, USA
Rebar

Glass fibre reinforced 

plastic and polyester resin

POLYSTAL
Stabag and Bayer AG, 

Germany

Rebar and 

prestressing tendon

Glass fibre reinforced 

plastic and polyester resin

ISOROD Pulltall Inc., Canada Rebar
Glass fibre reinforced 

plastic and polyester resin

IMCO
IMCO Reinforced 

Plastics Inc., USA
Rebar

Glass, carbon or aramid 

fibre reinforced plastics

JITEC Cousin Frere, France Rebar

Glass or carbon fibre 

reinforced plastic and 

vinylester resin

DYWIDUR
DYWIDAG-Systems 

International, Germany
Rebar

Glass fibre reinforced 

plastic and epoxy resin

NEFMAC
Nefcom Corporation, 

Japan

2D & 3D reinforcing 

grids

Glass, carbon or aramid 

fibre reinforced plastics

PARAFIL ROPE
ICI Linear Composites, 

UK
Prestressing strands

Aramid fibre reinforced 

plastic

FIBRA

A-ICS 

Corporation/Mitsui 

Construction Co.Ltd., 

Tokyo, Japan

Rebar & 

prestressing strands

Aramid or/and carbon 

fibre reinforced plastics 

and epoxy resin

ARAPREE

AKZO and Hollandsche 

Beton Groep nv, 

Holland

Rebar & 

prestressing strands

Aramid fibre reinforced 

plastic and epoxy resin

TOKYO ROPE
Tokyorope/Toho 

Rayon, Japan
Prestressing strands

Carbon fibre reinforced 

plastics

19



2.2 Mechanical Properties of FRP Composite Reinforcements

It should be bome in mind that the mechanical properties of FRPs are entirely based 

on the factors such as volume and type of fibre and resin (contains large amounts of 

carbon, nitrogen and hydrogen), fibre orientation and quality control during 

manufacturing. Therefore, they differ from one product to another. In addition to 

that, pultruded FRP reinforcements are anisotropic with the highest values of their 

tensile strength obtained along the fibres.

2.2.1 Tensile Strength

Unlike steel, all types of FRP materials exhibit linear elastic behaviour right up to 

failure under tension. However, it has been suggested that it is possible to change the 

linear behaviour into a more ductile manner close to the failure by using FRP rebars 

containing low modulus fibres inside and high modulus fibres outside or alternatively 

producing braided FRP rebars with foam plastic at the centre29. Also, as Neale and 

Labossiere30 pointed out that many polymers behave linear elastically under low 

tension stresses but under high stress levels they behave as viscoelastic materials. If 

this is to be considered, the stress-strain curve deviates slightly from linearity at some 

point after loading. This is due to the combinaton of microdamage in the resin matrix 

and debonding between the fibres and the resin matrix30. Typical tensile strengths of 

FRPs are given in Table 2.6.

Table 2.6 The range o f  tensile strengths o f different type o f FRP composites

GFRP CFRP AFRP
Hybrid

(Glass+Carbon)

Hybrid

(Aramid+Carbon)

Tensile Strength 

(MPa)
470-1910 628-2400 1120-3000 520-797 1050-1350

W arring1 draws attention to the fact that when the glass and resin are combined FRPs 

do not produce a material with the full strength of the glass since the relatively weaker 

strength of the resin bond will lower the ultimate performance under load. He points 

out that the strength is more or less directly proportional to the glass:resin ratio.
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out that the strength is more or less directly proportional to the glass:resin ratio. 

Clarke et al also draw attention to the fact that the mechanical properties of the 

composite will be less than those of the fibres themselves and will depend on the type 

and percentage of fibres used. The authors point out that this could be due to the 

molecular structure of the fibres on their own are not distorted so that the ultimate 

strength is higher than the composite.

33Dervaux & Tousseyn state that the unidirectionally reinforced composite bars 

containing a reasonably high percentage of fibres lose 40% and 50% of their short 

term stiffness over 50 and 30 years respectively. However, the composite bars 

containing continuous fibres and loaded in the direction of fibres may show rather 

more favourable characteristics.

Ueda et al34 studied the failure criteria of braided aramid fibre rebars with diameters 

of 8 and 50mm subjected to a combination of tensile and shear forces. The modulus 

of elasticity of these rebars is 66GPa with a Poisson’s ratio of 0.30. They also used 

6mm diameter aramid fibre reinforced stirrups. They observed that the tensile 

strength of the FRP rod reduces at the crack intersection under a combination of 

tensile and shear forces and at the bend of stirrups under tensile forces. They also 

stated that it is possible to quantify the strength reduction at those locations via finite 

element analysis.

A model consisting of long parallel fibres embedded in resin and stressed in tension 

along the fibre direction can be considered in order to obtain tensile strength and 

tensile load capacity of a composite with assumptions being; (1) Poisson’s ratio 

effects are neglected (2) breaking strain of the resin is less than that of the fibre then 

the composite will fail at a stress given below35,

Oo=  Of Vf +Or V r

oG: the total tensile stress of FRP composite
Of, or: tensile strength of fibre and resin respectively
Vf.- volume fraction of fibres (%)
Vr: volume fraction of resin (%)
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2.2.2 Tensile M odulus o f E lasticity

The tensile modulus of elasticity of FRPs can be obtained from the stress-strain curves 

of FRPs. Agbim  points out that the E value of a glassfibre rod based on the gross 

sectional area lies theoretically between two limiting values: 74GPa for the glass 

fibres themselves and 3.51GPa for most resins. The greater the proportion of glass 

fibres in a rod, the higher its E value. There is, however, a practical lower limit to the 

amount of resin in a rod, below which tensile strength of a rod shows a sharp drop due 

to the local overstressing. The E value of glassfibre rods is therefore usually below 

49GPa.

Due to the low modulus of elasticity of FRPs compared to steel, Bedard1* points out 

that this may severely limit the use of composite bars in flexural members unless there 

is a substantial increase in the cross section depth or in the quantity of reinforcement 

used in the members to control deflection and cracking.

The reinforced plastic composite consists of two main components, fibre and resin. 

McCrum35 has drawn attention to the fact that other components cannot be neglected 

e.g. the size, the presence of minute and unwanted voids. The principal purposes of 

fibre reinforcement are to increase modulus and to increase strength. The fibre length 

and fibre diameter are important parameters in determining both composite modulus 

and strength. This means if the aspect ratio (1/d) is high, the mean stress and the 

tensile modulus of the fibre will also be high. On this count continous fibres are an 

advantage over discontinous fibres.

Bruce37 gives an equation for calculating elastic modulus of fibre reinforced plastic 

composite containing longitudinal fibres only in tension and compression. These 

equations are from a simple model which is called the rule of mixture or 

homogeneous strain and are assuming that the geometry, arrangement and distribution 

of the phases are the same, also there is a perfect bond between fibre and the matrix 

material, no difference between the Poisson’s ratio of the fibre and the matrix material 

and finally that there is no creep within the polymeric matrix.
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E0=EfV f + EmVm

E0: modulus of GRP
Ef*. modulus of glass fibre (e.g. 70GPa glass)
Em: modulus of plastic resin (e.g. 3.5GPa polyester)
Vm: percentage content of resin (e.g. 29%)
Vf: percentage content of fiber (e.g. 71%)

2.2.3 C om pressive Strength

FRPs are weaker in compression than in tension and this with their brittle fracture 

limits their use in concrete elements, which are subjected to compression forces. The 

information pertaining to compressive properties of FRPs has not been reported 

widely in the literature. Wu38 and Ehsani24 reported that the compressive strength of 

GFRP having a tensile strength of 550-990 MPa, range from 320MPa to 470 MPa. 

Petrina & White39 reported compressive strength values 1140MPa for GFRP and 

1656MPa for CFRP having tensile strengths of 1580MPa and 1860MPa respectively. 

Chaallal & Benmokrane40 reported 540MPa compressive strength for GFRP having a 

tensile strength of 700MPa.

2.2.4 Com pressive M odulus o f Elasticity

Petrina & White39 give the same value of 48.3GPa for GFRP and 148GPa for CFRP 

as their tensile modulus of elasticity. However Chaallal et al40 and Benmokrane et 

al41 give the compressive modulus of elasticity value of 40 GPa for GFRP bars having 

a tensile modulus of elasticity of 45GPa. In Wu ’s report38 this value is 36-47GPa for 

GFRP bars having a tensile strength of 41-55 GPa. In general, compressive modulus 

of elasticity of FRPs is lower (-30%) than their tensile modulus of elasticity.

2.2.5 P oisson’s Ratio

It is assumed35 that the axial strains in the fibre direction and in the matrix are equal to 

the strain in the composite and both constituents exhibit linear elastic behaviour i.e. Sf 

= 8r = £ the Poisson’s ratio (v) of composite can be calculated from a rule of mixtures 

law similar to the one derived for the modulus of elasticity (E). Therefore;
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v = VfVf + Vr vr = Vf Vf + (1- Vf)vr

Vfi poisson's ratio of fibres 
vr: poisson's ratio of resin 
Vfi percentage content of resin 
Vr: percentage content of fiber

In the literature, the average Poisson’s ratio of GFRP, AFRP and CFRP rebar products 

is given as 0.27, 0.48 and 0.3 respectively.

2.2.6 Shear Strength

Bank42 points out that the information on shear moduli and strength are not usually 

given by manufacturers and they are needed in design of structures when considering 

local buckling, web crippling and connection details. In general, composites have low 

shear strength owing to the fact that they are cut easily through transverse direction 

with a hacksaw. Shear strength of GFRP reinforcing bars given in the paper published 

by Masmoudi et at43 and Kodiak44 bars data sheet as 180MPa for 20mm diameter and 

58.60MPa for 15.87mm diameter bars respectively.

2.2.6.1 Determination of Shear Properties

Determination of shear properties of isotropic materials was introduced by Iosipescu45 

in 1960s through a test method which produces pure shear loading by generating a 

shear force in the zero-moment section of a straight beam. The method was 

successfully applied to railway weldments, rolled metals e.g aluminium alloys, mild 

steel, brass as well as various cast metals e.g. zinc, cast iron, cast brass, bronze and 

cast aluminium by Iosipescu. However, it was found that the method can be applied 

also to anisotropic solids, including polymers and randomly oriented fibre reinforced 

composites46. Walrath & Adams46 mention several other shear test methods and they 

are namely, off-axis tensile tests, picture frame and rail shear test, cross sandwich 

beam test, slotted tension shear test, plate-twist test, short beam shear test47. 90 

degree angular notches of depths equal to a quarter of their height are applied to the 

test specimen and placed at midspan. It should be noted that the composites are less 

susceptible to effects of stress concentrations such as those caused by notches, holes 

etc than metals48. The test set up and the geometry of test specimen are shown in 

Figure 2.2.
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Figure 2.2 Shear test set up

Weinberg49 carried out Iosipesu shear tests on numbers of different composite 

materials. The shear strength and modulus of graphite/epoxy specimen were reported 

as 93.7 MPa ±9.58 and 7.10GPa ±0.568. He points out that the shear properties are 

strongly dependent on both the fibre/matrix bond and the matrix itself. The average 

ultimate shear strength of GFRP vinylester specimens obtained through the Iosipescu 

test method is 77.8+/-4.8 MPa and 65.7+/-4.4 MPa for the GFRP polyester 

specimens42. Besides the method’s more realistic approach for creating pure shear 

stresses across the section, all authors claim that the method is easy to conduct with, 

less time spend on preparation and fabrication of the test specimen.

2.2.7 Relative Density

The specific gravity of FRPs range from 1.25 to 2 which is approximately four to six 

times lighter than steel. This provides easy transportation and less effort for handling 

on site together with installation compared to steel.

2.2.8 Coefficient o f Therm al Expansion

The coefficient of thermal expansion of GFRP rebars is reported as 8.39 x 10'6 °C for 

volume fraction of 41% hybrid fibres (E-glass and carbon) impregnated in vinylester 

resin50 and 9 x 10‘6 °C for volume fraction of 73 to 78 % E-glass fibres impregnated in 

polyester resin51. Ehsani24reported the coefficient value for FRP as 10 x 10'60C.
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2.3 Factors Affecting Performance of FRP Reinforcements

2.3.1 V oid Content

McCrum35 emphasizes the effects of microvoids (an average cross sectional diameter 

of less than 50pm) present in the composite on mechanical properties including shear 

strength, compressive strength, fatigue life and, to a lesser extent, modulus of 

elasticity. A volume fraction of void below 0.01 is considered to be a low void 

content.

2.3.2 Fatigue

Long fibres used in the composite materials exhibit good fatigue resistance. It has 

been reported that after so many millions of cycles (107) carbon FRP, aramid AFRP 

and glass FRP materials can conserve up to 80%, 40% and 25 % of their static 

strengths respectively30. Mandell et a t 2 reported that the fatigue degredation rate of 

either unidirectional or injection moulded glass fibre/thermoplastic composites is the 

same and that is approximately 10% loss in their tensile strength per decade of fatigue 

cycle.

2.3.3 Creep

Creep is time dependent deformation under a constant load. Long term deformation 

due to creep is a significant phenomenon for composite materials including concrete. 

The parameters such as type of fibre and resin, fibre volume, stress levels, type of 

loading, the ambient temperature and moisture affect the creep behaviour of 

composites. It is reported by Ehsani24 that for a high quality GFRP rebar, the 

additional strains caused by creep are estimated to be only 3% of the initial elastic 

strains. It is also reported that the results of creep tests conducted in Germany using 

different bar diameters of GFRP rebars at 20°C indicate that the stress rupture reduces 

if the constant loads are limited to 60% of the short term strength of rebar.

Gerritse, A & Den Uijl53 studied the long term behaviour of aramid fibre/epoxy resin 

(ARAPREE) pretensioned tendons having 20mm width and 1.5mm thickness 

including creep and relaxation in an alkaline environment with pH 13 at 20 and 60 °C.
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They observed that creep and relaxation are not sensitive to temperature and do not 

differ at temperatures at either 20 or 60 °C after 42 days with a constant load of 30 kN 

applied. 40% more relaxation occures in an alkaline solution than in air proving that 

the moist environment affects relaxation as well as creep.

Rahman et al50 studied the creep behaviour of two types of vinlyester resin FRP (one 

is a mixture of E-glass and carbon fibres and the one carbon fibres only) which are in 

a form of 2-D mesh (NEFMAC) over 417 days. They applied five levels of tension 

10%, 25%, 40%, 60%, and 75% of the ultimate tensile strength. After 417 days in air 

and, stressed up to 75% of the ultimate tensile strength both types of bars showed 

negligibily small creep. Both types retained their full tensile strength capacity under 

the above conditions. Neither creep strain nor residual tensile strength were affected 

too much by the elevated temperature of 50°C.

Uomoto et al54 studied and evaluated the creep and the fatigue strength of three types 

of 6mm diameter, 400mm FRP rods which have 55% fibres by volume, GFRP, AFRP 

and CFRP. They obtained tensile strengths of 1491MPa, 1658MPa and 1364MPa for 

GFRP, AFRP and CFRP respecively from the tensile tests. The applied tensile stress 

was sustained at 67% and 95% of GFRP tensile strength, 70% and 90% of AFRP 

tensile strength and 96% and 101% of CFRP tensile strength for the creep test. The 

applied tensile stress was 20% to 100% of their static tensile strength for the dynamic 

fatigue test. From the creep test at the same applied stress they obtained the time for 

failure approximately 21 days for CFRP, 2days for AFRP and 10 hours for GFRP.

The fatigue strength of CFRP (more than 4 millions fatigue cycles) is higher than 

GFRP and AFRP.

2.3.4 Environm ental factors

Many types of materials used in certain applications are often subjected to 

environmental factors that can lead to the degradation of their properties, loss of 

tenacity and expected performance and eventually failure at an early stage of their use. 

These factors include, moisture, incompatible chemicals, weather, stress corrosion, 

fire, temperature and ultraviolet rays.
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2.3.4.1 Moisture & Incompatible Chemicals

An excessive degree of water absorption should be avoided in composites since it has 

a plasticizing effect on the material resulting modifications in the mechanical 

properties of the resin as well as the modulus of elasticity of the composite. It is 

reported by Neale & Labossiere™, that moisture causes a reduction of properties by as 

much as 25% to 30% of those for dry composites.

The strength of glass fibres depends critically on the presence of water at the surface35. 

Since water is absorbed by and diffuses through the vast majority of polymeric solids 

at measurable rates at ambient temperatures and humidities it is clear that the glass 

fibres will be exposed to molecular water. The attack of water will be on the resin, 

the interface or on the fibres. It is recommended to use water-resistant resins and 

alkali resistant fibres in composites which are exposed to continuous wet condition.

Aslonova & Resnyansky55 studied corrosion resistance of mineral (glass, basalt) and 

chemical (carbon, aramid) fibres exposed to an acidic environments, as well as the 

contribution of final coating applied to the fibre rebars to the resistance of corrosion. 

They stated that the most chemically resistant fibres are zirconium-containing glass 

fibres and aramid fibres. The glass fibre reinforced plastic with the 

aluminoborosilicate fibre has less resistance in acidic and alkaline media than the 

zirconium-containing fibre reinforced plastic and the basalt fibre reinforced plastic. 

They observed that the basalt fibres have good corrosion resistance in an alkaline 

medium and as a result of this they suggest to use of basalt fibres as a reinforcement in 

concrete. They also observed the carbon fibres completely dissolving in the alkaline 

medium.

Katsuki & Uomoto56 investigated the alkali penetration at 40 °C of AFRP, CFRP and 

GFRP vinylester resin matrix, using 6mm round rods containing 55%fibre by volume. 

They observed that the alkali solution penetrates GFRP (low alkali resistance) rods 

however does not penetrate AFRP or CFRP (both high alkali resistance) after 120 

days of exposure. The authors carried out tensile tests on 200mm long specimens, 

which had been immersed in alkaline solution (NaOH). The results showed that the

28



strength loss of GFRP is 25% at 7days, 46% at 30days, 67% at 90days and 72% at 

120days. No loss of strength occurred for AFRP and CFRP at 30 and 120 days.

Zayect1 examined marine structural environments on physical and mechanical 

performance of unidirectional E-glass fibre impregnated in a polyester resin matrix 

FRP bars. The bars were exposed for 140 days to: saturated calcium hydroxide 

solution (as in concrete), 3.5 w% sodium chloride and saturated calcium hydroxide 

solution mixture (as in marine environment) respectively. The following conclusions 

were drawn from his work. A high level of weight was gained as a result of exposure 

to alkaline environments with salt. There is negligible effect on the strain and the 

elastic modulus with average values of 3.2% and 43GPa (6.3xl06psi) respectively 

under the selected exposure of the environments. Also a 15% loss in the ultimate 

strength was observed after the bars were exposed to a calcium hydroxide-sodium 

chloride environment. The author recommends that future studies should cover longer 

exposure time to be applied on FRP bars supplied by different manufacturers within 

identical environments.

58Tannous and Saadatmanesh investigated the effect of corrosive chemical solutions 

on 10mm and 19.5mm diameters rebars made of E-glass fibre embedded in either 

vinylester or polyester resin. The authors also conducted flexural tests on 10 concrete 

beams having dimensions of 200mmx405mmx2400mm. The beams were reinforced 

with two 10mm dia, GFRP rebars and 10mm steel strimips. They were subjected to 

deicing salt solution and were tested after one and two years. The authors pointed out 

that there is a significant loss of strength on rebars as well as the beams when they are 

exposed to chemical solutions.

2.3.4.2 Temperature

Changes in temperature create deterioration in composites30. It is important that the 

enviromental conditions should be sound during the curing process of composite 

material since it shrinks as the concrete. Resin usually changes its colour at high 

temperatures. Since resin and fibre have different coefficients of thermal expansion, 

any changes in temperature will affect the bond between the fibre and the resin.
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Temperature variations can result in relatively high thermal stresses in concrete 

structures. The stresses due to temperature may produce cracking that can seriously 

affect the serviceability and the integrity of structures. Abdalla and Elbadry59 

considered this aspect and carried out experimental work on the concrete beams 

(250mmx500mmx3350mm) reinforced with FRP and compared with steel reinforced 

beams. The beams were subjected to initial equal end moments before heating. Test 

results showed that the maximum width of cracks in GFRP reinforced beams are 20% 

wider than in the steel reinforced beams at the temperature difference (AT) higher than 

100 °C. The results also showed that the high transverse coefficient of thermal 

expansion of the GFRP creates bursting stresses within the concrete around the rebars 

at high temperature. This results in a loss of bond between the concrete and the GFRP 

consequently, a reduction in the tension stiffening of the concrete and increase in 

deflection.

2.3.4.3 Stress Corrosion/Environmental Stress Cracking

First observation of static fatigue (stress corrosion) was made in 1899; the strength of 

glass depending on load duration35. The rate of static fatigue in fibres is not 

essentially different to the rate of static fatigue in bulk glass. The assumption is that 

the static fatigue arises from the growth of minute cracks in the surface of the 

specimen, under the influence of stress and the attacking medium. When the crack 

has grown to a size that the applied stress causes rupture instantaneously. Static 

fatigue causes loss in strength and modulusof elastcity of glass fibres. Stress cracking 

is the long-term brittle failure of a material under a tensile stress appreciably below 

the limits of its short time strength; it is frequently accelerated by the presence of an 

active environment (stress corrosion cracking) and by triaxial stress.

It should be noted that the stress corrosion appears not only to be a problem with 

fibre-resin composites but also with steel reinforcement. Page & Anchor60 reported a 

brittle fracture due to the stress corrosion of stainless steel wire hangers, which were 

used to support the light suspended ceilings above a swimming pool in the UK. They 

point out that the environmental factors associated with stress corrosion of stainless 

steel are the presence of significant concentrations of chloride ions and elevated 

temperatures. In another paper, it has been reported that a similar incident occured in
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Switzerland, heavy concrete ceiling reinforced with stainless steel above a swimming 

pool resulted in fatal collapse in May 1985 after 13 years of service life61.

2.3.4.4 Fire

The resin matrix of a composite is more susceptible to fire due to its high content of 

flammable carbon, hydrogen and nitrogen constituents. When the resin matrix bums 

off, it creates a dense black smoke, which can be very toxic. It is possible to improve 

the fire resistance of a resin matrix by using additives. Ehsani24 reported an 

investigation carried out in Germany involving E-glass plastic rods which have been 

stressed to 50% of their tensile strength, could maintain 85% of their room 

temperature strength after 30 minutes fire exposure at 300°C. The author also 

reported that GFRP rebars could maintain 50% of their tensile strength at 500°C. 

However, when FRP rebars are used in concrete elements and exposed to fire, the 

concrete acting as a barrier, will protect the rebar from direct contact with fire. This 

means that the performance of FRPs in concrete at elevated temperature is an 

important factor to be considered for concrete elements such as cladding panels which 

are very likely to be exposed to fire.

Tanano et al62 investigated the residual flexural strength of 200x300x3000 mm 

concrete beams reinforced with either carbon, aramid or glass fibre reinforced plastic 

rebars and compared it with steel reinforced beams. The authors reported that the 

residual strength of FRP reinforcement decreases as the temperature increases and the 

failure mode changes from crushing failure of the concrete to rupture of the 

reinforcement. They also observed that the stiffness of the FRP reinforced beams 

decreases at 250°C. However, the decrease in strength is very small. The tests carried 

out on steel reinforced beams showed that approximately 87 % of yield and maximun 

strength of the beams were maintained at 450°C. Table 2.7 shows the melting points 

of different materials.
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Table 2.7 The melting points o f different materials63

M aterial Tem perature 
(approx.) °C

Effect

Polythelene 110 melts
Cellulose (cotton, wood) 260 decomposes

Zinc (galvanizing) 410 melts
*Steel 550 becomes non-load bearing

1500 melts
Pyrex glass 550 annealing
Aluminium 650 melts

Brass 900 melts
Copper 1050 melts

'Regarding the strength of structural steels, the carbon content which is about 1-2% has next to no influence at elevated temperatures. Reinforcing 
bars which can have up to 3% carbon has little effect but since it is insulated by concrete will not get that hot. The main influencing factors at 
elevated temperatures are niobium and vanadium. Carbon does, however, have a slight influence over the specific heat where it rises as the carbon 
content rises but not by a great deal.

Fujisaki et al64 carried out fire resistance tests on 3600mm high, 1500mm width and 

150mm thick lightweight concrete panels reinforced with grid shaped carbon, glass 

and hybrid (carbon and glass) fibres impregnated by vinylester resin produced by a 

filament winding process. The results showed that the panels could take a 

temperature of approximately 800°C after 30 minutes of fire exposure.

Okamoto et al65 studied the fire resistance of precast partially prestressed concrete 

(PPC) beams which were used for the upper foundation of a seismic base-isolated 

storey, containing braided aramid fibres impregnated with epoxy resin. The authors 

point out that there is no necessity for obtaining fire resistance of beams in design 

where a foundation is involved. They suggest that the beams can resist fire after two 

hours exposure. The residual tensile strength of aramid fibre rebars were measured at 

400°C showing 40% and 59% maintenance of their original tensile strengths 

respectively.

2.3.4.5 Ultraviolet Rays

Ultraviolet rays present in sunlight cause damage to composites. The action of the 

rays causes chemical reactions in the polymeric matrices leading to a deterioration of 

their properties. Although, it is possible to prevent the deterioration by using carbon 

or special additives, which prefentially absorb the rays and convert it to less harmful
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thermal energy1. However, this kind of damage is not particularly important, if FRP 

reinforcements are used inside the concrete.

2.4 Bond Performance of Reinforcements

Bond between reinforcing bars and concrete is an important factor and it should be 

adequate for satisfactory performance of reinforced concrete structures. For 

development of the bond strength, the main influential parameters are concrete 

strength, embedment length, concrete cover, type of rebar and rebar spacing. This 

section contains the bond performance of steel and FRP rebars in concrete studied by 

others.

2.4.1 Steel rebars

Bond stress is described by Kong & Evans66 as the shear stress acting parallel to the 

reinforcement bar on the interface between the bar and the concrete. Adhesion, 

friction and mechanical interaction betweeen concrete and steel (bearing) are the 

typical components of bond. Steel reinforcing bars having ribbed surface texture have 

better bond than smooth surface textured rebars (plain rebars). It has been reported 

that the bigger the rib area the higher the magnitude of the bond stress of steel bars67. 

Bond of plain rebars is dependent on adhesion and friction whereas bond of ribbed 

rebars primarily depends on the mechanical interlock. The effect of adhesion is small 

and friction does not occur up until the slip occurs between rebar and concrete. 

Concrete bearing stresses against the ribs generate radial stresses together with 

circumferential tension in the concrete around the rebar resulting in longitidunal 

splitting of the concrete along the rebar, and bond failure. Using high strength 

concrete, heavier shear links and larger concrete cover to the rebars help to prevent 

such splitting. The other type of bond failure is the pullout failure where the rebar is 

pulled out and leaves the surrounding concrete intact.
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Average bond stress can be calculated using the equations given in BS811068.

f b = l L .  Fs = f s * * -  
b n$ 1 5 5 4

f b : bond stress between the steel and the concrete

Fs : force in the rebar or group of rebars

$: effective rebar size

1: anchorage length

f s :steel stress

fb u  =  f i J f Z

f bu : design ultimate bond stress 

f cu : concrete stress

P : bond coefficient (0.28 for plain rebar in tension, 0.50 for ribbed rebars in tension)

Failure mode of plain rebars is normally by pullout, once the adhesion and friction 

mechanisms no longer exist. If the cover/rebar diameter ratio (c/d) is less than 1.0, 

splitting failure may occur for plain and ribbed rebars. If the cover/diameter ratio is 

large or heavier shear links are present then the failure mode changes from splitting 

failure to shearing of concrete. The specimens having pullout failure result in higher 

bond stress than the specimens failed in splitting.

Traditional bond test methods are based on the concept of pullout failures giving an 

ultimate bond strength. Chana69 argues that this concept is valid for mild steel (plain) 

bars but for ribbed steel bars, tests of this kind will give misleading results for most 

practical situations, where failure is caused by splitting of the concrete cover. 

Therefore, assessing the pullout test method for bond strength is based on the type of 

specimen used. The author compared the bond test methods and their results given in 

BS444910 and RILEM71 standards. The author has drawn attention to the fact that 

neither British nor RILEM standards based on bond test are measuring the value, 

which can be directly related to a real life situation. However, these test standards can 

be useful for investigating basic pheneomena in relation to bond and for obtaining 

load-slip behaviour of steel rebars. A pullout test specimen in BS4449 consists of 

straight reinforcing rebars embedded in the centre of a concrete prism with links. This 

results in bond stresses having a very high value, 10-20 MPa. In BS811068 and 

BS540072 the value of ultimate bond stress lies between IMPa and 4MPa which are 

representative values for members with a low cover. These values in BS8110 and 

BS5400 are not derived from any standard bond test. The RILEM test specimen
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consists of a standard cube with the test rebar incorporated on its axis and as with the 

British Standard, this also gives higher values of ultimate bond stress. The author 

claims that for a realistic bond stress which can be used for design purposes, a 

specimen giving a splitting failure should be used. Therefore, the author proposes a 

test specimen, which can be used in a bond test. Two plain and two ribbed 16mm 

diameter steel rebars without links were cast in top and bottom regions of a 300mmm 

x 300mm x 200mm concrete block with 25mm cover (c/d=1.5). The specimen 

enables the bond strength to be determined for both top and bottom cast conditions. 

The sketch of the loading arrangement and the specimen are shown in Figure 2.3.

Figure 2.3 The loading arrangement fo r  bond test

Table 2.8 shows the comparison between the experimental bond stress values and 

the characteristic values of BS8110 based on fcu>40 MPa. The experimental results 

agreed with BS8110 standard. It can be seen in Table that the bond stress of top cast 

bars is higher than the bottom cast bars. It is suggested by Azizinamini et al13 that this 

is due to the fact that bleeding of the concrete results in lower quality concrete 

underneath the top reinforcing bar and this limits the bearing capacity that each rib can 

provide. Therefore, this reduction in bearing capacity allows crushing of concrete 

adjacent to the ribs.
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Table 2.8 The comparison o f bond strength o f steel rebars in concrete through 

experimental results and BS8110.

feu (MPa) Rebars
Experimental

values
(MPa)

BS8110
characteristic

values
(MPa)

Plain: Top cast 1.83 1.53
30.1 Bottom cast 2.22 2.14

Ribbed: Top cast 1.90 1.56
Bottom cast 3.34 2.19

Plain: Top cast - 1.79
41.0 Bottom cast 2.56 2.50

Ribbed: Top cast 2.76 1.83
Bottom cast 3.88 2.56

Plain: Top cast 1.14 2.02
52.6 Bottom cast 3.16 2.83

Ribbed: Top cast 3.51 2.07
Bottom cast 3.64 2.90

Plain: Top cast 1.85 2.15
59.5 Bottom cast 4.12 3.01

Ribbed: Top cast 3.40 2.21
Bottom cast 5.15 3.09

Plain: Top cast 1.07 2.44
77.0 Bottom cast 3.83 3.42

Ribbed: Top cast 4.48 2.51
Bottom cast 5.19 3.51

It has been reported that the plain bars cast in a horizontal position exhibit lower bond 

resistance than vertical bars74. The effect of direction of casting of the pullout test 

specimen on bond performance of steel bars is also emphasized by Menzel75. The 

author’s experimental results showed that the best performance was observed for 

vertical bars pulled against the direction of casting and furthermore the bigger the 

depth of concrete under the bar, the more the bleeding water accumulates under the 

bar resulting in weakness in the bond resistance.

It has also been reported that keeping the curing conditions the same for all specimens 

is an important factor to be considered, since the pullout behaviour of test samples is 

strongly affected by shrinkage of the concrete76.
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Mohamed & Clark11 studied the bond behaviour of 16mm diameter plain and ribbed 

steel rebars with and without links (6mm links diameter) of low strength concrete 

(5MPa concrete strength) using the same set up and the dimensions of concrete block 

suggested in Chana ’s69 paper. It is reported in the paper that the bond stress of plain 

and deformed rebars in low strength concrete should be calculated as (the values 

include a partial safety factor of 1.4):

f b =P( 0 . 5  + c /  (j>)ft + 6.4A  / s<j)<P J t 
A,: area of link 
c: cover to the main rebar 
f b\ bond strength
f cu: cube strength of concrete (100mm cube)

/, :  splitting tensile strength of concrete (it can be assumed that/, =

s: spacing of links
(jr. diameter of main rebar
Px\ 0.30 (for bottom cast rebars), 0.21 (for top cast rebars)

P2\ 0.90 (for bottom cast ribbed rebars), 0.63 (for top cast ribbed rebars)
0.45 (for bottom cast plain rebars), 0.32 (for top cast plain rebars)

The authors pointed out that the design values of bond strength in BS8110 can be used 

to assess the bond strength of ribbed rebars in low strength concrete but, 30% 

reduction should be applied to the values in BS8110 for assessing the bond strength of 

plain rebars. The ribbed rebars with covers of twice the c/d and /or links cause shear 

cracks in the specimen before bond failure and this lowers the bond strength. The 

authors suggest that this should be alerted when assessing the bond strength of a 

ribbed rebar in a region of high shear force in a low strength concrete structure.

Bond strength tests have been conducted for ribbed rebars in lightweight aggregate
7 o

concrete by Clarke & Birjandi . Three different methods were used i.e. BCA 

(adopted from Chana’s69), BS4449 and RILEM and the bond stress values obtained 

from each one were compared. Table 2.9 shows the bond stress of steel rebars to 

concrete based upon three different methods. Three different failure modes, splitting, 

pull out and shear were observed. The advantage of using lightweight aggregate is the 

reduction in self-weight, which are about 20% less than normal weight concrete. It 

has been reported that in various countries lightweight concrete has been used in a 

variety of structures, resulting in overall savings in total cost of 10-20% over the
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normal weight concrete structures. It is suggested to use bond coefficient (p) of 0.28 

for top cast rebar and 0.40 for the bottom cast rebar embedded in lightweight concrete.

Table 2.9 Comparison o f bond stresses measured using three methods

Aggregate Bar dia. 
(mm)

feu
(MPa)

Bond Stress (MPa)

BCA BS4449 RILEM
Pellite 16 41.7 3.6 13.9 14.7
Pellite 10 41.7 3.3 14.0 15.8
Pellite 16 23.2 3.0 12.7 10.3
Pellite 16 48.5 3.5 14.3 12.4
Leca 16 24.7 2.5 12.8 8.4
Fibo 16 25.3 2.3 12.9 7.0

As it can be seen in the Table that the values obtained from BS4449 and RILEM are 4 

to 6 times of the values obtained from the BCA method.

Tensile bond strengths of ribbed rebars embedded in high strength concrete beams
70have been studied by Hwang et al . The use of high strength concrete in high 

buildings, bridges, offshore structures and pavements has been very common since the 

mid-1980s. The authors conducted flexural tests on 20 concrete beams. Ten of them 

had dimensions of 300 x 250 x 2850mm which were cast to investigate lap-splice 

strength (splice length series - see Figure 2.4) and the other 10 of which had 

dimensions of 450mm x 250mm x 1850mm to investigate development strength 

(developed length series). Some of the beams from the two series contained links.

Figure 2.4 Loading and reinforcement arrangements o f  the beam specimens

ld development length
ls splice

splice length series developed length series

Failure mode of all the beams was splitting of concrete before the rebars yielded. 

Concrete strength obtained from cylinders ranged from 40 to 70 MPa. The concrete 

of grade 60 and 28.7mm diameter ribbed steel rebars having yield strength of
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518.6MPa, were used throughout the investigation. The concrete cover was 50mm for 

all the beams. The formula used below is for calculating the uniform average bond 

strength of steel rebars to concrete. The authors concluded that the bond performance 

of high strength concrete is similar to the normal weight concrete for either case i.e 

lap-splice or developed length.

u = 4 ^
41

db: nominal diameter of anchored rebar 
f s: steel stress of the anchored rebar at failure 
/: splice or developed length

Note that in the majority of the American papers concrete strengths are obtained from 

the compression tests carried out on the cylinders instead of cubes. Therefore, the 

Author feels that it is useful to include the relationship between the concrete cylinder 

and the cube strength given in Al-Shawi et al's80 paper.

f c  =0.563( / CM)U 0 2

f c : compressive strength of cylinder (MPa) 

/  : compressive strength of cube (MPa)

The effect of bar diameter on the bond strength of steel rebars embedded in high 

strength concrete (95 MPa) containing silica fume and normal weight concrete 

(42MPa) was studied by Larrard et alsl using RILEM beam test standard. The 

authors concluded that the high strength concrete containing silica fume enhances the 

bond strength by 80 % for 10mm bars and by 30 % for 25mm bars.

Using silica fume in concrete mixes enhanced the bond between aggregates and the 

concrete matrix associated with low porosity concrete resulting in high strength
82  83 83concrete . Gjorv et al also reported that adding condensed silica fume to 

concrete mix up to 16 % by weight of cement shows improvement in the pullout 

strength, especially in the high compressive strength range of concrete.

Bond of ribbed rebars reinforced in steel fibre reinforced concrete has been studied by
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84Soroushian et al studied the effects of rebar confinement and compressive strength 

of concrete on local bond performance of deformed bars in reinforced concrete joints. 

They found that the confinement of concrete by transverse reinforcement does not 

directly influence the local bond behaviour of deformed bars in joint conditions where 

the vertical bars in the columns are sufficient to restrain the widening of bond splitting 

cracks. The authors also reported that the variations in concrete compressive strength 

do not influence the bond stress and slip relationship, however, ultimate bond strength 

increases almost proportionally with the square root of the concrete compressive 

strength.

21 beams reinforced with epoxy coated ribbed rebars with lap splices have been tested 

and compared with uncoated ribbed steel rebars for bond by Treece & Jirsa85. The 

authors concluded that the bond strength reduced with epoxy coated rebars compared 

with uncoated rebars, due to loss of adhesion between the ribs and the concrete. The 

loss of adhesion between concrete and the rib also means loss in friction capacity.

The failure hypothesis of bond explained by the authors. When the rib of the rebar 

bears against the surrounding concrete, the concrete key tends to slide up the face of 

the rib causing splitting of concrete cover. The friction between the concrete and steel 

along the face of the rib acts to prevent the concrete key from sliding relative to the 

rib. If the friction between concrete and steel is lost, the only component of the bond 

strength is the force perpendicular to the face of the rib. The magnitude of the bond 

force is controlled by the amount of radial pressure the concrete cover can resist 

before splitting. This is the vertical component of the resultant forces in Figure 2.5. 

The horizontal component of the resultant is the effective bond strength. If the 

capacity of the cover is the same for either case, the bar with no friction will have a 

much smaller bond capacity than the bar, which is ribbed. In a pullout failure, friction 

should be much less important than in a splitting failure. A pullout failure usually 

occurs when the steel is well confined by concrete cover or transverse steel, 

preventing a splitting failure. In this case, the bond strength should be controlled 

primarily by the capacity of the concrete in direct shear.
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Figure 2.5 The resultant forces o f bond on the bars
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It has been reported that the bond strength of a coated rebar to that of an uncoated 

rebar with an identical rib geometry reduces with increasing relative rib area86. Cairns
0 7

& Abdullah suggest that the improvement in bond strength can be achieved by using 

steeper rib face angles and a more heavily ribbed deformation pattern.

Clearly & Ramirez88 studied the bond of epoxy coated ribbed steel rebars within the 

splice length, to concrete by testing slab-type member under three point loading. 

Splitting bond failure occurred for all the specimens. The comparison for bond made 

between epoxy-coated and uncoated ribbed rebars is approximately 15 % less than the 

uncoated ones. Although, epoxy coating technique is for protecting steel from 

corrosion, the authors stated that the members reinforced with epoxy coated rebars 

have fewer but wider cracks which can be a problem with the members exposed to 

cold weather. They also point out that the deflection is not significantly different from 

that with members reinforced with uncoated rebars.
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Ghaffari et a f 9 have drawn attention to the effects of cover, casting position (top or 

bottom cast rebars) and slump of concrete on bond strength of epoxy coated ribbed 

steel rebars. The authors stated that the casting position of a rebar affects its bond 

strength. The greater the amount of concrete cast below a rebar, the greater the effects 

of settlement and bleeding and the lower the bond strength. The results obtained from 

their tests show the the top-cast rebars exhibit a lower bond strength than the 

corresponding bottom-cast rebars, and rebars cast in high slump (203mm) concrete 

exhibit a reduced bond strength if the concrete is not vibrated. The top cast rebars in 

high slump concrete, whether vibrated or not, have a lower bond strength than the top- 

cast rebars in lower slump (64mm) concrete. They also reported that the bond 

strength of both coated and uncoated rebars increases, regardless of casting position, 

bar size or rib pattern. The bond strength of rebars cast in low slump concrete is 

higher than the ones cast in high slump concrete for the same compressive strength of 

concrete. Lack of vibration (consolidation) of high slump concrete effect the bond 

strength of coated or uncoated top or bottom cast rebars. It is more detrimental for 

coated rebars than for uncoated rebars.

In general, the reduction in bond strength of epoxy coated steel rebars reported by 

different researchers is between 6% and 35 %. This could be due to the fact that 

different rib geometry rebars have been used. Details of rib geometry of test rebars 

have not often been reported. Swamy & Koyama9Q reported different reductions in 

bond strengths of coated steel rebars having three different rib geometries, 

perpendecular, diagonal and double-diagonal. The authors used a pull-out type 

specimen with a confining helix of reinforcement around the test bar and reported the 

reductions of 3.9, 13.7 and 31.4% in bond strength with a free end slip of 0.05mm.

2.4.2 FRP rebars

There are no available design guidelines for bond behavior of GFRP rebars in 

concrete. However, numbers of people have conducted bond tests based on bond 

testing methods currently available for steel rebars.

Development length is defined as the minimum embedded length required to develop 

the ultimate tensile force of the rod and it is recommended that the development 

length can be taken as approximately 20 times the bar diameter for both normal and
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high strength concrete. Ehsani et al91 developed design recommendations for 

anchorage of straight and hooked GFRP rebars to concrete. A total number of 48 

beam specimens, 18 pullout specimens and 36, 90° hooked rebar pullout specimens 

were tested. The mean concrete strengths were 28 and 56 MPa, and the GFRP rebars 

were made of 72% E-glass and 28% polyester resin by volume. The results showed 

that the bond strength and slip are greater with pullout specimens due to the absence 

of concrete flexural cracks. The authors state that it is more reliable and realistic 

relying on beam test data for determination of development length. They point out 

that the lower modulus of elasticity of GFRP rebars gives greater elongation which 

contributes to the loaded-end slip. In addition, the ribs on GFRP rebars are shallower 

than steel rebars which means that the rebars cannot resist large bond stress resulting 

in greater slip on both loaded and free ends. The bond stresses were calculated using 

the formula;

T
u = -------

7tdbld
u : bond strength
T : applied tensile force
db : bar diameter

ld : embedded length

Nanni et al92 carried out pull-out tests by embedding the FRP and deformed-steel 

reinforcing bars into 150mm side concrete cube specimens in order to determine the 

bond performance of the two types of rods. Types of FRP rods used were glass-FRP 

vinylester, carbon-FRP vinylester and carbon-FRP epoxy resin having smooth and 

deformed surface texture. They concluded that the concrete strength does not have 

any influence on the bond strength and the failure mechanism of FRP rods. They also 

concluded that smaller diameter (6.3mm) FRP rods have higher bond strength than 

larger diameter (12.7mm). Test results showed that two deformed steel rods having 

diameters of 9.5 and 12.7mm have higher bond strength than smooth FRP but lower 

bond strength than deformed FRP rods.

Hattori et al studied the bond creep behavior of 7.5mm diameter epoxy resin twisted 

carbon (PAN) fibre cable and 6mm diameter vinylester resin spiral wound aramid 

(Technora HM 50) round bar embedded in concrete having strengths ranging from
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26.6 to 47.7MPa. They compared the two types of FRP reinforcement with 10mm 

diameter deformed mild steel bar. The authors initially carried out pull-out test using 

two 100mm side concrete cubes in which the bars were horizontally embedded in a 

bond length of 64mm from both sides. The average bond stresses of the bars are 1.6, 

7.3 and 7.3 MPa for carbon cable, aramid bar and steel bar respectively. After 11 

months, pull out creep test results showed that the bond slip (free end slip) of aramid 

fibre is more than steel bar and carbon cable. Carbon cable gives less value of bond 

slip than steel bar. They concluded that the bond slip behavior of the types of FRPs 

used in their study influenced by the mechanical properties of resin type in the long 

term. After collecting numbers of people’s work on bond characteristic of different 

types of FRP bars, which have different surface texture, the authors stated that the 

bond performance of FRP bars depends on the surface texture and manufacturing 

process. Nevertheless, it is possible to manufacture FRP bars having similar or 

greater bond strength than steel bars94.

Taerwe & Pallemans95 carried out tests on prestressed lm  long concrete prisms using 

AFRP-Twaron IM (ARAPREE) bars having diameters of 7.5 and 5.3 mm to 

determine the critical concrete cover. They concluded that the sand coatings applied 

on the bars and the use of high strength concrete plus the addition of fibres reduces the 

critical concrete cover.

Jerrett & Ahmacf6 conducted short-term bond tests on 8mm diameter CFRP rods 

which have smooth and deformed surface texture embedded in concrete. The average 

bond strength of deformed bars associated with the maximum load was 7.4MPa and

0.42MPa for smooth bars.

The fiberglass reinforced bars have a lower tensile strength and MOE, but better bond 

strength than the aramid (Kevlar 49) reinforced rods97. Four pull-out tests were done 

with 6.4mm bars, 19 tests with 9.5mm bars, and 21 tetsts with 12.7mm bars. Bond 

strength tests were conducted on 27 tests samples. Of these, 22 can be considered 

'good' failure. A 'good' failure for the bond strength test is one where the rod actually 

pulled out of the concrete before the concrete or rod broke. A bad failure would be 

one where the rod broke at the grip or the concrete crushed.

44



GangaRao & Faza9S showed that, in order to develop good bond strength between 

FRP rebars and concrete, different surface conditions for rebar were developed. 

Among them, 45 degree angular wrapping or helical ribs produce a deformed surface 

on the rebar. Coating FRP rebars with epoxy and rolling them in a bed of sand creates 

a roughened surface and is one of the alternatives that will improve bond strength.

Benmokrane et al51 studied the bond strength of GFRP and steel rebars using bending 

and pull-out test methods". The results indicate that the diameter effect on bond 

observed for steel rebars is also present for GFRP rebars i.e. the average bond strength 

of GFRP rebars decreases as the rebar diameter increases100. This could be explained 

by the bleeding of water in concrete101. The bigger the diameter of the rebar, the 

higher the quantity of bleeding water gets trapped beneath the rebar, creating a greater 

void. This void reduces the contact surface between the rebar and the concrete and 

hence the bond. The bond strength obtained from the pull-out tests is approximately 

5% up to 82% higher than that obtained from the rectangular beam tests. It is 

concluded that the bond strength of GFRP rebars is approximately 60 to 90 percent 

lower than that of steel rebars depending on rebar diameter102. This is comparable to 

epoxy coated steel rebars whose bond strength varies from 62 to 84 percent of that of 

deformed steel rebars40. Approximately 80% increase in bond strength can be 

achieved with sand coated GFRP rebars compared to the uncoated rebars. It is also 

reported that the contribution of reduced pitch of ribbed FRP rebars is not significant.

2.5 Field Applications of FRP Reinforcements

The development and the field applications of FRPs have been increasing since the 

1970s103. It has been reported that the use of FRPs such as GFRP, AFRP and CFRP 

in highway and pedestrian bridges built in Europe, China, Canada and the USA, has 

increased significantly in recent years25104. It has also been reported that, in Japan, 

continuous fibres are being used both in actual practice and experimentally as 

prestressing tendons, reinforcing bars and mesh for both new construction and 

retrofitting. CFRP and GFRP grids have been used in the lightweight concrete curtain 

walls outside buildings105.
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Potential applications of FRP reinforced concrete structures have been categorised by 

Chaallal et a /106. Structures subjected to de-icing salts; including multi-storey parking 

facilities, pavement slabs, concrete bridge decks, retaining walls etc and other 

corrosive environments; including water treatment plants, chemical factories, paper 

mills, liquid gas and oil reservoirs and pipelines, chimneys and nuclear plants, 

foundation slabs etc. or those in which a low thermal or electrical conductibility is 

required; including aluminium plants, radio and T.V transmission towers, airport 

control towers, military structures (invisibility to radar).

30Neale & Labossiere give the current applications where FRPs are used, in their 

paper. These are namely, roof lights and dome lights, domes and other roof structures, 

cladding, tanks and cisterns, pipes and ducts.

The bridges where GFRP reinforcements are used are set out by Meier107 in 

chronological order.

Pedestrian Bridges
• Tel Aviv (Israel) - 1970s
• Virginia (U SA )-1971
• Westminister Cathedral Footbridge (UK) - 1970s
• The Chongquing Cable Stayed (China) -1986
• Shinmiya Bridge (Japan) - 1988108
• The Marenfelde (Germany) -1989
• Hakui Bicycle Bridge 1 & 2 (Japan) -1991 & 1992108
• Parafil Tendon Footbridge (Hertfordshire, UK) - 1994109
• The Chalgrove (UK) - 1995110

Highway Bridges
• The Paper Reinforced Plastic (USA) - before 1970
• The Lunen’sche Gasse (Germany) -1980
• The Ginzi (Bulgaria) -1982
• The Miyun (China) -1982
• The road Bridge (Japan) - 1990111
• Rapid City Road Bridge (USA) - 1991112
• Notsch Road Bridge (Austria) - 1992113
• Beddington Trial/Centre Street Bridge (Canada)114
• The McKinleyville Road Bridge (USA) - 1996115
• The Taylor (Canada). - 1997116
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Field applications have also been carried out using the method of wrapping FRP 

sheets to repair the damaged structure resulting in enhanced seismic and fatigue 

resistance. These applications are;

• The Ibach Bridge, (Switzerland) - 1991117
• The covered wooden Bridge (Sins, Switzerland) - 1992117
• The multi-storey parking garage (Flims, Switzerland) - 1993117
• Retrofitting of earthquake damaged brick walls in buildings (California, USA) -  

1994n ®.
• The Nikkureyama tunnel repair (Japan) - 1994 .
• Two building columns (Canada) - 1995, University of Sherbrooke’s Faculty of 

Business entrance120
• Highway ten overpass columns (Quebec, Canada) - 1996120
• Champlain bridge piers in St. Lawrence River (Montreal, Canada) - 1996120
• Numbers of columns and beams in Webster Parkade parking garage structure 

(Sherbrooke, Canada) - 1996120.
• CFRP strips to strength the roof structure of the North End Water Pollution Control 

Center (Manitoba, Canada) - 1996121.

Wrapping FRP straps around existing columns to increase their ductility and shear 

capacity, is another alternative application for FRP composites122. The authors stated 

that the glass tendons are economical alternatives in rock engineering and tunnelling 

and carbon fibre tendons as stay cables123.

2.6 Cost Considerations

In cost comparison, one should certainly consider the other expenses in relation to 

durability, rehabilitation, transportation and handling on the site, and not only the 

initial cost of the material.

Costs should be compared on the basis of the total cost of the finished structure and 

not the particular material chosen. For instance, the additional cost of using an 

alternative material will be a small percentage of the total cost of the structures, 

though the reinforcing bar itself is considerably more expensive than conventional 

steel. In addition, where corrosion is a significant factor, the extra cost of the 

alternative material should be set against the cost of protecting conventional steel, or 

possibly the cost of replacing it during the life of the structure.
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Several people have already made cost comparisons. In terms of cost, the price per

linear foot of FRP rebar is approximately twice that of steel and approximately equal

to that of epoxy coated rebars124 125. FRPs are expensive compared to steel but they

provide a solution to the deterioration of concrete bridges, eliminating the steel

corrosion problem. Experience has shown that corrosion related problems in some

structures become apparent only five years after construction106. The cost of repairs

can be, after a few years, as much as actual construction. Thus repair policies based

on initial costs can be reviewed in favour of a more realistic policy based on long term

costs. It has been reported that the overall cost of FRP bridges is less than steel

bridges of the same type. Test results indicate that the FRP structures are maintenance

free for 40 years, except in especially bad environments . Membranes wear out or

crack with time, sealers must be re-applied every few years, and even epoxy-coated

steel bars have lost their corrosion resistance after less than 10 years of service in 
28some cases .

Ehsani24 finds the price comparison based on weight or volume of materials 

meaningless. This is because most manufacturers add a premium for special shapes 

which are more labour intensive such as hooks, stirrups, spirals and the author also 

thinks that since FRPs are stronger than steel bars, consideration should be given to 

the reduction in the required area as a saving on cost. As an example, the prices per 

linear foot of straight rebars for Kodiak which is in use for this project ranges from 

$0.27 (1992) for a No 2(6mm) rebar to $2.05 (1992) for a No 9(29mm) rebar.

Basically, the initial cost of FRPs needs careful consideration to be given to all 

advantages of these rebars, including high strength, light weight, non-conductivity, 

corrosion resistance and long term savings in repair and maintenance cost, in order to 

be easily justified. However, more research must be conducted for defining the 

appropriate factors of safety and performance of FRP reinforced concrete elements 

under different applications and conditions31.
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2.7 FRP Reinforced Concrete Elements

There is a growing interest in the use of fibre composites. This section outlines the 

research carried out by other people on the potential areas where FRP can be utilised.

2.7.1 Externally Reinforced Concrete Elements Using FRP Composites

The behaviour of concrete beams externally reinforced with steel plates has already 

been studied. It has been reported that substantial improvements in performance with 

the right epoxy used, could be achieved in terms of ultimate load, crack control, and
126 127stiffness . Bonding of steel plates to concrete has been shown to be an effective 

upgrading method when three important practices are followed.

1. The surfaces to be bonded must be clean-sandblasting for the steel and the concrete 

surfaces being preferred.

2. The epoxy should have a bond strength of at least that of the concrete (failure 

should occur in the concrete)

3. Plates must be long and thin to avoid an undesirable brittle plate separation failure, 

although additional anchorage at the ends of the plate can also be used to avoid this 

type of failure.

Steel plate bonding technique to the tension face of concrete elements has been used 

in Australia, Japan, Switzerland and South Africa since 1960s126. The technique 

offers advantages of being economical and fast to apply without or with very little 

disturbance to the structure operation together with non alteration of the configuration 

of the structure. The major disadvantage of this technique is the corrosion of steel 

plate, which damages the bond and results in failure of the structure. Therefore, the 

use of corrosion resistant fibre composite plates in lieu of steel is desirable because it 

eliminates the likehood of bond failure as a result of corrosion of steel. However, one 

has to be aware of brittle failure of FRP plates as well as the risk of fire, vandalism or 

accidental damage unless the strengthening is protected128.

It has been reported that wrapping a column with fibre composites significantly
120increases the column capacity and the method is most effective on circular columns .
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1 ”̂ f tSadaatmanesh and Ehsani reported that about one half of the approximately 

600 000 highway bridges in the US are in need of replacement or rehabilitation. 

Bonding steel plates on the tension face of a concrete member is a repairing and 

strengthening technique, which was used in the USSR in 1974 for a deteriorated 60- 

year old continuous-span reinforced concrete bridge. The authors studied the 

behaviour of four concrete beams externally reinforced with GFRP plates using four 

different types of epoxies, under two point bending. They stated that the selection of a 

suitable epoxy is very important in the success of this strengthening technique. They 

suggested that the rubber-toughened epoxies are particularly suitable for this 

application. It concluded that the flexural strength and stiffness of concrete beams can 

be increased by bonding GFRP plates to the tension zone using epoxy, and the 

behaviour of beams strengthened in this way is very similar to the behaviour of beams 

strengthened with steel plates.

The effectiveness of external strengthening using FRP plates was investigated by 

Ritchie et al131. Sixteen under-reinforced beams were tested under two point bending. 

Plates of glass, carbon, and aramid fibers were bonded to the tension side of the beams 

using a two-part epoxy. Contribution to the shear strength was achieved on some of 

the beams where side plates were used for end anchorage. It has been demonstrated 

that bonded plates of FRP are indeed a feasible method of upgrading the strength and 

stiffness of a reinforced concrete beam. This is also valid for concrete slabs132.

Eight reinforced concrete beams with epoxy-bonded fiberglass reinforced plastic 

(FRP) plates is experimentally investigated by Alfarabi et al133. The RC beams are 

initially loaded to 85% of the ultimate flexural capacity and subsequently repaired 

with FRP plates, bonded to the tension face of the beam. The results generally 

indicate that the flexural strength of the repaired beams is increased. The use of an I- 

jacket plate provided a proper anchorage system and improved the ductility of beams 

repaired with plates of large thickness.

An et al134 studied the behaviour of reinforced concrete beams having rectangular and 

T cross section together with epoxy bonded FRP plates to their tension face. They 

observed increase in stiffness, yield moment and ultimate moment of the beams and
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reduction in the curvature at failure. They suggest that the strengthening technique is 

particularly effective in beams with a relatively low steel reinforcement ratio. Using a 

high strength concrete beam combined with epoxy bonded FRP plate on the tension 

face increases the ultimate moment of the section.

For achieving full flexural capacity and ensuring ductility at failure for concrete beams 

strengthened with either steel or glass, glass-carbon and aramid FRPs it is
1 i p

recommended by Swamy et al that width to thickness ratio (b/t) of a plate should 

not be less than 50.

1  'l/T

Arduini et al reported typical failure types observed for plain concrete beams which 

are externally reinforced with GFRP and AFRP plates bonded to their tension zone. 

Plate peeling close to the plate end, shear cracks starting from the plate ends, flexural 

tensile cracks in concrete with rupture of FRP plate and flexural tensile cracks in 

concrete with also concrete crushing in the compression zone are the typical failures. 

The authors point out that using fully connected bottom and side plates (L-shape) 

helps to avoid plate peeling and shear failure.

1 ̂ 7Wight et al conducted two point bending tests on four 300mm x 575mm x 5000mm 

concrete beams containing tension and compression steel reinforcements. One of the 

beams was a control specimen, another one was reinforced with non-prestressed 

carbon fibre sheets and two of them reinforced with prestressed carbon sheets. The 

CFRP sheets used in their study contained a volume fraction of 65% with thickness of

0.2mm and width of 300mm. The composite sheets were bonded to the tension zone 

of the beams. The authors point out that the labour and material cost of prestressing 

FRP sheets is very expensive. However, prestressed sheets are slightly more effective 

strengthening than unstressed sheets in terms of reduction in crack widths and 

delaying the initial cracking stage. The reduction in cracking provides smaller 

deflection for prestressed sheets. Both non-prestressed and prestressed sheets, which 

were externally bonded to concrete beams showed higher load capacity compared to 

the control specimen which contained no externally bonded FRP sheets.
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Green et al138 studied freeze-thaw behaviour of twenty-one rectangular steel 

reinforced concrete beams (100mmxl50mmx 1220mm) with CFRP sheets attached to 

their tension zone. The beams subjected to freeze-thaw cycles for 16 hours were 

placed in a room where the temperature kept at -18°C overnight and thawed 8 hours in 

a water bath (15°C) during the day. After exposure to freeze-thawing conditions for 

the period of 50 days, the beams were tested under two-point loading. The authors 

observed that the cracking load of the beams subjected to freeze-thaw conditions was 

reduced. This is due to the fact that, the freeze-thaw action affects the properties of 

concrete and therefore concrete gets damaged slightly. The main failure mode of the 

beams was peeling of the CFRP sheet. The concluded that CFRP sheets are effective 

at strengthening reinforced concrete beams in both flexure and shear. Their results 

showed that the beams strengthened with CFRP sheets did not appear to be damaged 

by exposure to up to 50 days.

2.7.2 FRP Grid Reinforcements Used in Concrete Elements

There is very little information on the use of three dimensional fibre fabrics in 

structural concrete. For the purpose of improving the durability of reinforced concrete 

two- or three dimensional grid shape New Fibre Composite Material for Reinforcing 

Concrete (NEFMAC) which is composed of glass or carbon FRPs, have been 

developed and used in tunnel structures in Japan since 1986139. Sekijima et al140 

constructed a pedestrian bridge reinforced with prestressed NEFMAC grid 

reinforcement. The application is a success considering the bridge is already in use.

Zia et al141 examined the flexural and shear behaviour of concrete beams reinforced 

with 3-D continuous carbon fiber fabric having 1.79 specific gravity, 3430MPa tensile 

strength and 235.2GPa elastic modulus. Conventional steel reinforced beams have 

also been tested under two point bending for a comparison. Their results showed that 

both types of beam developed the same ultimate strength as designed and reached the 

same deflection at failure. Bank & Xi142 also have expressed similar conclusions. The 

closely spaced vertical carbon fibre elements served very effectively as shear 

reinforcement to prevent shear failure.
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Ahmad et al143 conducted punching shear tests on four carbon fibre reinforced (CFRP) 

and two mild steel reinforced concrete slabs. The load applied on all slabs was 

monotonic and was at the centre. The test results showed that CFRP reinforced slabs 

behaved in a more ductile manner than that of steel reinforced ones resulting from a 

non-linear behaviour in the post-cracking stage.

Bank et al144 suggested that the potential for developing three-dimensional FRP cages 

for reinforcing concrete elements is high. The authors studied flexural behaviour of 

200mm x 300mm x 3000mm (2400mm span) concrete beams reinforced with cages 

containing pultruded glass fibres with polyester resin. The beams containing the steel 

cage have also been cast for comparison. The failure mode observed for all beams 

was a brittle one, which took place in the tension zone of the beam. They point out 

that this type of failure is not desireable for serviceability design considerations. The 

authors noted that the number of flexural cracks in FRP reinforced beams were less 

than the steel reinforced beams. They also observed wider cracks in FRP cage 

reinforced beams than the steel cage reinforced beams. However, in terms of load 

capacity, the FRP cage reinforced beams performed well.

2.7.3 Prestressed Concrete Beams Using FRP Tendons

In the prestressing process beneficial stresses are deliberately introduced into a 

structure. This way, longer linear elastic behaviour of a concrete element at service 

load can be achieved. It is usually applied to materials, which are strong in 

compression but relatively weak in tension, such as concrete and sometimes 

brickwork. Highly tensioned cable or tendon is passed through the member and then 

securely anchored at the ends. This puts the member into compression before any 

external loads are applied and gains the elimination of cracks.

It is suggested, if FRPs are used as prestressing tendons for prestressed concrete 

instead of high strength steel, the loss of prestress caused by creep, shrinkage, elastic 

strain, and temperature changes in the concrete, is expected to be small due to the low 

elastic modulus of FRP compared to steel145 146. Research by Kajfasz147 suggests that 

fibre-glass tendons in the form of stiff rods in which the fibres are glued together with
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polyester resin would prove to be more efficient for prestressing. Longitudinally 

prestressed Polystal (68% glass fibre glued together with polyester resin) tendons have 

already been used in a bridge and a tunnel in Dusseldorf in Germany in 1980148.

Somes149 stated that if FRP tendons are used in concrete for prestressing, 

consideration should be given to the aspects, such as the design and manufacture of 

anchorages, avoidance of surface damage to the tendons at casting and the choice of 

correct tensioning stress. The author conducted two point bending tests on eight FRP 

tendon reinforced prestressed beams that showed failure of concrete in compression.

However, Iwaki et al150 pointed out that in most cases prestressed concrete beams can 

fail in a catastrophic way i.e. brittle flexural failure due to elastic rupture of the FRP 

used. This type of failure mode is undesirable from the view point of the maintenance 

and hazard anticipation of structures. They suggest that an appropriate combination of 

bonded and unbonded tendons with different amounts of tensioning force will satisfy 

the required ductility i.e. elimination of catastrophic failure.

Mutsuyoshi et al151 pointed out that prestressed concrete structures with an external 

steel cable system have been applied to real life structures mainly in Europe. The 

authors carried out two point bending tests on T-shaped beams having 3000mm length 

400mm overall depth. The beams were reinforced with steel rebars and stirrups. For 

each beam externally prestressed stranded steel cable, AFRP and CFRP cables were 

longitudinaly fixed on opposite sides. The prestressing force applied on steel, AFRP 

and CFRP cables was 63%, 58% and 52% of their ultimate tensile strengths. Failure 

mode of concrete compression failure was observed for steel and AFRP beams 

whereas CFRP beams were failed simultaneously both in compression failure of 

concrete and breaking of cables. It should be noted that in their study the breaking 

load of CFRP cables is smaller than the others with the same amount of prestressing 

force (70kN) applied on all cables. This could be considered as a reason for breaking 

of CFRP cables. Test results based on the load deflection relationship showed that the 

beams reinforced with FRP indicate almost the same behaviour as the steel reinforced 

beam. They claim that FRPs can be applied to actual prestressed concrete as external 

cables.
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Currier et al152 studied the deflection of nine concrete beams having dimensions of 

127mm x 254mm x 5490mm reinforced with prestressed epoxy/earbon, epoxy/aramid 

and glassfibre tendons for a period of one year. The authors stated that the current 

methods available for determining the long-term deflections underestimate the 

deflections of members prestressed with FRP tendons.

2.7.4 Unstressed Concrete Beams Reinforced with FRP Composites

The beam is probably the most common structural element and is subjected to bending 

which causes curvature of the member. Steel reinforced concrete elements have been 

studied for years and their design equations and standards are well established. 

However, the current design methodology for steel reinforced concrete beams cannot 

be applied directly to FRP reinforced concrete beams153. However, the others state 

that the classical theories employed for analysing steel reinforced beams can be used 

for accurately predicting the behaviour of GFRP reinforced concrete beams125.

Clarke154 states that there are two approaches when introducing a new type of 

reinforcement, which have very different properties. Either adapt the existing method 

or formulate new design rules. Fortunately, the first is the most feasible option, as it 

will cost less and is quicker.

Nawy and Neuwerth155 investigated the flexural behaviour of concrete beams 

reinforced with GFRP bars. They used chopped wire in the concrete mix for some of 

the beams to increase the shear capacity. Test results showed that at ultimate load, the 

deflection of GFRP reinforced beams was approximately three times greater than that 

of the corresponding steel reinforced beams. A larger number of distributed cracks 

were observed in GFRP reinforced beams than in the steel reinforced beams. This 

indicates a good mechanical bond between the bar and the concrete. The test results 

also showed that the behaviour of the beams regarding cracking, ultimate load and 

deflection could be predicted with the same degree of accuracy as for steel reinforced 

concrete beams.

Pre-and post-cracking deflection behaviour of twenty-five rectangular concrete beams 

reinforced with FRP rebars were designed and tested under bending by Faza et al153.
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Test variables included concrete strengths (29-69 GPa), type of FRP rebar (smooth, 

ribbed, sand coated), and rebar size. The test results showed that the use of sand 

coated FRP rebars with high strength concrete improves the load deflection behaviour 

of concrete beams. The authors found that the theoretically predicted deflections of 

GFRP reinforced beams were underestimated using an effective moment of inertia 

(Ie), as specified in the A C I318 Building Code156.

Behaviour of concrete beams reinforced with GFRP bars and stirrups was 

experimentally investigated by Saadatmanesh and Ehsani130. Three beams were 

constructed with GFRP longitudinal rebars and conventional steel stirrups; the other 

three were constructed with longitudinal steel rebars and GFRP stirrups. The results 

indicated that GFRP stirrups effectively resisted the shear forces in all beams, 

considering none of the beams failed in shear. The number and pattern of shear cracks 

observed was similar to the beams that had conventional steel stirrups. Based on the 

observation of a large number of uniformly distributed cracks, it was concluded that a 

good mechanical bond was developed between the GFRP bars and concrete. The 

authors stated that deflection might become the limiting design criterion for specific 

structural elements due to the low modulus of elasticity of GFRP rebars.

Chaallal et al106 investigated the effect of temperature on the flexural behaviour of 

simply supported rectangular concrete beams, four reinforced with 2No 9.3mm GFRP 

and three with 2No 11.3mm steel rebars. 30MPa strength concrete beams were tested

under two point bending at two temperatures, 20°C and -30°C. Flexure tests also 

were carried out on 30MPa concrete beams reinforced with steel and with NGFR 

(New Glass Fibre Reinforcement) rebars for two temperatures: 20 and -30 C. It was 

observed that GFRP beams performed in a similar manner to steel beams at low 

temperature (-30 C) which did not affect the overall strength of concrete beams 

reinforced with GFRP rebars.

157Benmokrane et al investigated the flexural behaviour of concrete beams containing 

FRP rebars and identical conventional steel rebars. An experimental and theoretical 

comparison was made between the beams, in terms of cracking behaviour, load- 

carrying capacities and modes of failure, load-deflection response, flexural rigidity,
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and strain distribution. Experimental strain distributions demonstrated the perfect 

bond between FRP bars and the surrounding concrete. The authors stated that ACI 

Code formulae for predicting deflection response, cracking-ultimate moments, and 

cracked-effective moments of inertia could easily be adapted for modelling the 

flexural behaviour of concrete beams reinforced with FRP reinforcing bars if 

appropriate modifications are made.

Larralde et al124 conducted bending tests to investigate the behaviour of concrete 

beams reinforced with FRP rebars and FRP in combination with steel bars. The 

results showed that the calculated ultimate loads differ from the experimental values. 

The deflection values are fairly well predicted at load levels of approximately 30% of 

the ultimate load.

Satoh et al158 conducted flexural tests on four 100/150/1200mm concrete beams 

reinforced with conventional steel, AFRP, CFRP, GFRP straight bars and steel 

strirrups as well as on four polymer mortar repaired beams containing the same type 

of reinforcement. The results showed that tensile stress in the main reinforcement, the 

concrete crack width and the central displacement of FRP reinforced beams agreed 

with the calculated values. Those parameters showed decreased values for repaired 

reinforced concrete beams.

In Okamura et aV s159 paper, the design concept of concrete members reinforced with 

continuous fibre reinforcing materials is discussed. For the design concept they point 

out the following for reinforced concrete:

• Shear failure which could be brittle failure of concrete in the compression zone or 

breaking of FRP rebars

• Flexural failure which could be brittle failure of concrete crushing in the 

compression zone and the rupture failure of FRP

Both concrete and FRP are brittle materials and hence the failure of the FRP 

reinforced members is influenced by the least ductile element within the member
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resulting in catastrophic failure. Research by the authors suggests that to deal with 

this issue two concepts need to be adopted:

1. An enhanced materials factor(ym) should be used to increase the safety factor for 

FRP materials i.e. fd=fk/Ym

fd: design strength

fk: chararecteristic strength of the reinforcement

Ym of FRP is suggested to be higher than Ym of steel which is 1. For FRP it may be 

taken to be between 1 and 1.3.

2. The design capacity of the member cross section Rd should be determined as 

below in order to obtain sufficient safety of concrete members by using an 

appropriate member factor:

R d=R/Yb

R: calculated capacity of member cross section 

Yt>: member factor (1.15 for steel, it may be taken as 

between 1.15 to 1.3 for FRP. (Note that in the latest ammendments of BS8110, 

this factor is given as 1.05)

In this paper, the authors also suggest limits for allowable crack widths being between 

0.3 and 0.5mm in the case of combined use of FRP and steel, and the material 

coefficient for static fatigue (1 for steel) may be taken as between 1.2 and 1.3.

Al-sayed et al160 studied the flexural behaviour of concrete beams. The authors tested 

nine beams, three of which were reinforced with 3<j)14 steel bars at an effective depth 

of 160mm having the dimensions of 200x210x2900mm. The other three were 

reinforced with 4(j)19 GFRP bars at an effective depth of 157.5mm, having the same 

dimensions as above. The last three beams were reinforced with 4(j)12.7 GFRP bars at 

an effective depth of 210.7mm, having the dimensions of 200x260x2900mm. All the 

beams were provided with <j)8 steel links at 120mm centres, tested simply supported 

over a span of 2700mm and loaded by two concentrated loads. The compressive 

strength of concrete was 31.3 MPa obtained from a w/c of 0.5. The tension steel had a 

yield stress of 553MPa, the 12.7mm GFRP bars had an ultimate stress of 740MPa,
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and the 19mm GFRP had an ultimate stress of 620MPa. The authors concluded that 

the GFRP reinforced beams can be flexurally designed using the ultimate design 

method for over-reinforced sections. However they point out that the deflection at 

service load for such beams may control the design of many GFRP reinforced 

structures. They also point out that the minimum cost criteria, which connects to an 

optimum design can be achieved by simply increasing the depth of cross section by 

24%. This increase reduces the GFRP bars by 55%, increases the flexural capacity by 

40 %, reduces the deflection at service load by 34% and at an ultimate load by 13%, 

decreasing the overall cost by 40%. They also suggest that for relatively ductile types 

of concrete, compression failure of GFRP reinforced beams can be obtained by using 

a 1.5 factor of safety against the possibility of experiencing tensile failure of GFRP 

bars.

In Mikami H  et a /’s161 paper, fatigue characteristics of reinforced and prestressed 

concrete beams reinforced with braided AFRP rods (aramid fibres are 65% by 

volume) are discussed based on laboratory experiments. Rods were used as tendons, 

tension reinforcement and spirally-formed shear reinforcement in rectangular beams 

having dimensions of 200mmx250mmx2400mm. The ratio of shear span to effective 

depth of the beam was taken as 3. Before casting the concrete, tendons were stressed 

at about 45% the ultimate tensile force of AFRP rod. Shear reinforcement consisted 

of either deformed bars (6mm dia. links) or braided AFRP spiral (6.9mm dia.) 

reinforcement. MOE of deformed (19.1mm and 6.3mm), braided, straight spiral bars 

(15.9mm-straight and 6.9mm-spiral) were 196GPa, 63.76GPa and 59.84GPa 

respectively. Concrete strengths varied with values of 32, 22 and 39MPa. None of 

the specimens had failed up to 2million cycles. It was concluded that for the restraint 

of incremental beam deflection, AFRP tendons offer the same efficiency as deformed 

steel bars. Also, beam test results for fatigue of concrete can be predicted 

conservatively by the equation given in the Japaneese Standard162 but the beam test 

results for fatigue of AFRP tendons are not in good agreement with the equation 

proposed by the author.

Ozawa et al studied the static and flexural fatigue behaviour of concrete beams 

reinforced with FRP longitidunal bars and stirrups, which were formed in one body
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and was placed in the concrete beams. FRP reinforcements consisted of continuous 

glass and carbon fibres impregnated with resin and formed in one body by the 

filament winding method. 10 specimens were tested under two-point bending; two of 

them were statically loaded and the other eight were fatigue loaded. The authors' 

static test results showed that compared with a steel reinforced concrete beam, the 

lower stiffness of FRP reinforcement leads to higher location of neutral axis, lower 

flexural rigidity of the beam and larger stresses in the bottom longitidunal bar after 

initial flexural cracking. Also, their experimental results agree with the calculations 

by the elastic theory in which total cross sectional area is effective before flexural 

cracking and approach the calculation by the beam theory in which tensile stress in 

concrete is ignored after cracking. After appearance of diagonal cracks, however, the 

measured deflection becomes larger than the calculated one because of the assumption 

that shear deformation of the beam is neglected. The authors point out that the their 

fatigue results were varied. Fatigue failure of the bottom longitidunal bars in the 

constant moment region or that of the longitidunal bars and stirrups in the shear span 

caused the failure of all specimens. The rupture of FRP reinforcement occurred at the 

cross point of longitudinal bar and stirrup near cracks. Most flexural cracks 

propagated along the stirrups and a few between stirrups.

Clarke et al carried out two-point bending test on the beams having the dimensions 

of 150mm x 250mm x 2500mm and shear spans of 787mm. The main variables are 

reinforcement type, surface texture and cross-sectional shape of the bars, stirrup 

spacing and main reinforcement areas. The authors outlined the points based on the 

test results:

Bond failure: The bond characteristics of textured FRP pultruded rods are dominated 

by the shear strength of the resin matrix at the surface. Suitable pultrusion resins have 

a shear strength higher than that of concrete and, hence, bond failure of textured rods 

is expected at the concrete interface. Deformations on the surface of FRP rods similar 

to the ones found on deformed steel rebars cannot theoretically enhance the bond 

characteristics in the same way, since shear failure could occur through the composite.
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The stress levels in FRP reinforcement: The overall stresses developed in the FRP 

rods at failure of the beams were well below the theoretical predicted values. This is a 

consequence of the fact that FRP reinforced elements tend to be over reinforced, 

leading to the failure of the concrete in compression. However, such premature 

failures do not help establish the maximum bond and tensile stresses that can be 

developed in FRP rods. As a result, some experiments were designed aimed at 

pushing the stress in the FRP rods to as high a level as possible. This was achieved 

partly by designing the section with relatively small areas of reinforcement and partly 

by enhancing the strain potential of the concrete in compression.

Shear failure and deformation: Combinations of steel and FRP reinforcement were 

used as main and link reinforcement in order to differentiate the effects. FRP shear 

links designed to resist specific stress levels were also demonstrated to perform well 

and to prevent shear failures without increasing the overall deflections significantly. 

Analytical work carried out in parallel with the experimental work gives good 

predictions of the behaviour of FRP and steel reinforced beams and validates the 

assumption that plane sections remain plane. This is very important from the design 

point of view, since it means that established design equations can be used with only 

minor modifications.

Serviceability: due to the lower stiffness, deflections and crack widths may become 

dominant criteria. For a given load, cracks in a FRP reinforced beam will generally be 

wider than for equvalent steel reinforced beam. However initial studies have shown 

that existing formulae may be used to predict crack widths.

Ngo & Scordelis164 claim that the finite element analysis (FEA) offers a complete 

picture of the stress distribution in the entire beam, which cannot be usually obtained 

by other analytical or experimental methods. However, the authors have drawn 

attention to the fact that there are several factors that should be kept in mind regarding 

the use of the FEA method. The method is an approximate analytical procedure 

whose accuracy depends on the fineness of the mesh size. Furthermore, the accuracy 

of the analytical results, when referred to actual RC members, all dependent on 

(including all of the major influences) the analytical idealization of the actual member.
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The other important thing is the computational effort of the method i.e. the 

consideration of time which takes quite a bit to solve the problem and the storage 

capacity of the computer. However, nowadays, the storage capacity of the computers 

is not a problem.

Alsayed & Al-Salloum165 present a minimum cost design and behavioural assessment 

for simply supported beams reinforced with FRP and steel beams. They emphasized 

that due to no yielding plateau with FRP reinforced concrete beams, it is expected that 

a concrete member reinforced with FRP materials may have brittle failure, higher 

initial cost and higher deflection under service load conditions.

The proposed formula for the initial cost of the beam per unit length for a given cross 

section is as follows:

Z(p, d)=[b(d+di)-pbd]Cc+pbdCp+[2(d+di)+b]Cf

p: reinforcement ratio 
diiconcrete cover
Cc:cost of concrete per unit sectional area of concrete 
per unit length of beam
Cficost of formwork per unit peripheral length around 
section (sides and bottom) per unit length of beam 
Cp.'cost of fibre plastic rebars per unit of area of material 
employed in section per unit length of beam 
Cs: cost of steel rebars per unit area of material 
employed in section per unit length of beam

Some researchers have recommended reduction factors to be applied to the FRP 

ultimate tensile strength, to minimize the failure due to breaking of FRP rebars which 

is more brittle than failure due to crushing of concrete166.

t anFaza & Gangarao recommended that the maximum permissible strength be 0.80 of 

the design strength. Nanni suggested that the strength reduction factor to be taken 

as 0.70.

Kobayashi & Fujisaki169 conducted tests on concrete prisms having the dimensions of 

100mm x 100mm x 650mm subjected to compressive forces. They point out that the

b
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aramid FRP rebars failed earlier than their ultimate compressive strength. This 

suggests that the aramid FRP reinforcements may not be suitable for columns.
17ftFaza & GangaRao conducted two-point bending tests on twenty-two beams having 

the dimensions of 152mm x 305mm x 3000mm, reinforced with straight FRP rebars 

and FRP stirrups. The concrete cylinder strengths of the beams were 29MPa, 35MPa, 

45MPa and 52MPa respectively. The size of the rebars and the stirrups is not clearly 

specified in the paper. They reported that the ultimate moment capacity of concrete 

beams having 52MPa of concrete strength was increased by 90% when FRP rebars of 

ultimate strength of 869MPa were used instead of mild steel rebars. The authors refer 

to 52MPa concrete as a high strength concrete and also conclude that the cracking 

moment of the high strength concrete beams was increased with noticeable reduction 

in crack widths. The failure mode observed was a shear failure followed by secondary 

compression failure.

The principal factors that influence the short-term deflection of a member under load 

are the magnitude and distribution of the load, span and conditions of restraint, section 

properties including reinforcement percentages, material properties, number and 

extent of flexural cracking171.

Alsayed172 studied the predicted and measured load deflection relationships for 12 

concrete beams reinforced with steel and GFRP reinforcing bars and steel stirrups. In 

this study he used ACI318 Code and proposed a modified effective second moment of 

area, Im i.e. Im replaces Ie effective second moment of area. The author concluded that 

the current ACI model for predicting the load-deflection relationship for steel RC 

beams underestimates the actual deflection of GFRP RC beams. However, replacing 

Ie with Im improves the prediction of the service load deflection of GFRP RC beams.

Nawy & Neuwerth1™ used Branson's deflection equation for evaluating the effective

moment of inertia of the cracked section: The beams tested contain FRP rebars
/

(6.3mm dia.) in the tension zone of the concrete beams.
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I e : effective moment of inertia 

l m '■ proposed effective moment of inertia 

I cr : cracked section moment of inertia 

M cr : cracking moment as observed in the tests of the beams 

M a : moment of deflection level sought

Deflection:

A„»* = - P —  (3L2 -  4a2)
24 ECI,

a : distance from the loading point to the support at each end (mm)
P : concentrated load (kN)
L : span (mm)

Ec : the concrete modulus modulus of elasticity(GPa)

The authors point out that the values of deflection for beams (ACI318-71C) 

reinforced with FRP rebars underestimates Ie for low percentage of GFRP 

reinforcement. Therefore, calculated deflections are lower than observed values.

Masmoudi174 studied the effects of the reinforcement ratio on the concrete and FRP 

reinforcement strains, neutral axis depth and ultimate moment capacity. The 

dimensions of the simply supported beams tested under two-point loading were 

200mmx300mmx3300mm. The FRP rebars used in the study were E-glass fibres 

impregnated in a thermoset polyester resin. The beams were reinforced with 2012.7, 

3012.7, 4012.7 , 6012.7 FRP rebars respectively. The beams also contained 32010 

steel strirrups. The experimental results showed that immediately following the first 

crack, the neutral axis was close to the extreme compression fibres and then moved 

down as the applied moment increased. The authors believe that this is due to the 

unstable propagation of first cracks. The effect of the reinforcement ratio on neutral 

axis depth was simply, as the reinforcement ratio increased, the neutral axis moved 

away from the extreme compression fibres. When the ratio of the reinforcement 

increased, the strain of concrete and that of the FRP rebars decreased for a given load 

level. Finally, ultimate moment capacity of the beams increased with increase in the
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reinforcement ratio. This is also confirmed by Theriault et al115. The authors carried 

out two-point loading tests on the concrete beams (130mmxl80mmx 1800mm) 

reinforced with 012.3  GFRP rebars and 0 6  smooth steel compression rebars and 

stirrups. The authors focused on the effects of the concrete strength and the 

reinforcement ratio on the behaviour of concrete beams including cracking and 

deflection. The results showed that the higher the concrete strength, the wider the 

crack for the same applied moment. The authors pointed out that this could be 

tempered by a higher reinforcement ratio. They also observed that the stiffness of the 

tested beams stayed about the same whether the beams loaded statically or cyclically. 

The stiffness also did not change much with the concrete strength but, it was higher 

for the beams containing more rebar area than the ones less rebar area.

2.8 Conclusions

The literature review carried out by the Author describes fibre composites and their 

types, manufacturing techniques, mechanical properties, physical and environmental 

factors affecting their performance and their applications as reinforcements in 

concrete.

Glass fibres are more popular in the construction sector than carbon and aramid fibres. 

This is due to the fact that they are easier to obtain and the least expensive. GFRP 

rebars are usually composed of glass fibres bound together with a thermosetting resin, 

and manufactured using a pultrusion process.

There are no standard bar sizes or surface profiles of FRPs yet due to the fact that each 

supplier has its own method of producing a bar. There are several companies 

producing FRP bars commercially in the UK (Fibreforce), USA, Japan, Canada, 

France, Germany and Holland. In this research, work has been focused upon using 

GFRP rebars (KODIAK-72% glass fibres+28% polyester resin) in concrete beams.

Embedded steel is generally very durable and it is protected from corrosion by the 

alkaline environment of concrete. However, in highly aggressive environments the 

protection offered by concrete to steel can be insufficient and necessitate expensive
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work of concrete repair in service. In the case of FRP, the durability is a function of 

both resin and the fibre composition. The amount and the type of fibre in the 

composite directly influence the mechanical properties of FRP materials. One must 

note that glass fibres and some resins are degraded by the high alkalinity of concrete. 

So far, the works have been concentrated on alkali resistant glass (AR glass) or the 

use of carbons or aramids but little attention has been given to the resin176.

The main advantage of FRP over steel is its corrosion free feature. High tensile 

strength, high fatigue performance, high energy absorption, low density, low 

conductivity and electrical interference, lower concrete cover in concrete applications 

such as in cladding panels and low maintenance cost are the potential advantages of 

FRPs over steel. However, there are also disadvantages present for FRPs compared 

with steel i.e. high cost, low elastic modulus, glass fibre deterioration by alkaline 

attack (although this may be couterbalanced by using alkali resistant glass and 

polyester and vinylester resins), FRP prestressing tendons need to be anchored with 

care, long term strength of FRP can be lower than short term strength.

Bond between reinforcing bars and concrete should be adequate for satisfactory 

performance of reinforced concrete sructures. In order to make the bond strength 

high, one has to consider the influential parameters such as concrete strength, 

embedment length, concrete cover, type of rebar and rebar spacing. Many people 

have studied the bond of steel. It is well known that steel bars having a ribbed surface 

texture have better bond than smooth rebars (plain rebars). The bigger the ribs are the 

higher the magnitude of the bond strength of steel rebars. Typical values for bond 

strength of reinforcement obtained from pull-out tests on concrete blocks are 2.22MPa 

(plain steel) and 3.34MPa(ribbed steel) for a concrete strength of 30MPa, 

3.83MPa(plain steel) and 5.19MPa(ribbed steel) for a concrete strength of 77MPa.

This suggests that the higher the concrete strength the higher the bond strength. When 

silica fume is used in the concrete, the bond strength is enhanced significantly.

Having said that the number of methods available for determining the bond strength of 

steel reinforcement varies and hence the values for bond strength too. The bond of 

epoxy coated ribbed steel rebars is between 6% and 35% less than the bond strength
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of uncoated ribbed steel bars. This could be due to the differences in rib geometry 

between rebars.

There are no available design guidelines for bond behaviour of FRP rebars in 

concrete. However, tests conducted for the bond of FRP rebars have so far used the 

current methods available for steel rebars. The bond strength of ribbed GFRP rebars 

obtained from pull-out tests is higher than smooth and sand coated GFRP rebars. The 

bond strength of GFRP is aproximately 10% lesser than steel rebars.

The development and the field applications of FRPs have been increasing since 1970s. 

Potential applications of FRP reinforced concrete structures are namely, structures 

subjected to de-icing salt, multistorey parking facilities, pavement slabs, concrete 

bridge decks, retaining walls, water treatment plants, chemical factories, paper mills, 

liquid gas and oil reservoirs, pipelines, chimneys and nuclear plants, foundation slabs 

etc. Wrapping FRP straps around the existing columns to increase their ductility and 

shear capacity is another alternative application for FRP composites.

In the whole life cost of analysis and comparison, one should consider not only the 

initial cost of material but the other expenses in relation to durability, maintenance, 

transportation and handling on site. FRPs' initial cost is high compared with steel but 

when the other factors are considered then the cost of using FRP in concrete will be 

less.

The external strengthening with steel plates on the concrete is a technique used for 

repairing concrete, increasing ductility, reducing crack width, increasing ultimate load 

capacity and increasing fatigue strength. Nevertheless, the weakness of steel against 

corrosion, which causes debonding, is still apparent. Hence, using FRP plates for 

external strenghtening (which is relatively new) eliminates the likelihood of bond 

failure as a result of corrosion. However, the selection of the adhesive plays an 

important role in FRP case. Before actually using the adhesive for bonding, it is 

important to find out its suitability through testing.
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So far, there is very little information on the use of 3-D fibre fabric in structural 

concrete. However, the comparison made between FRP grid(cage) reinforced beams 

and steel cage reinforced beam shows a reduction in the number of flexural cracks less 

but wider than steel reinforced ones. In terms of load capacity 3D FRP reinforced 

beams perform better than steel cage reinforced beams for a similar amount of rebar.

FRP bars and cables are perfect candidates for prestressing due to the fact that the loss 

of prestress caused by creep, shrinkage, elastic strain and temperature changes in 

concrete are expected to be small because of the low modulus of elasticity of FRP 

compared to steel. The available anchorage systems used in prestressing steel cannot 

be applied on FRPs since their transverse strength is approximately 75% less than 

steel. Different types of achoring systems for FRP rebars were proposed by several 

researchers but the most common one used in the laboraory tests is embedding the 

ends of the rebar into steel/copper tubes which contain epoxy resin. This method is 

adopted for this study due to its reasonably fast production and good accuracy in the 

test results.

Steel reinforced concrete elements have been studied for many years and as a result of 

this the design methodology has been long established and in general, providing safe 

structures. Flexural behaviour of FRP reinforced unstressed beams has been looked at 

by several researchers, but still remains an ongoing process. The existing 

conventional (steel based) design formulae are used to predict how FRP reinforced 

beams may behave compared to steel reinforced ones. The question is to decide 

whether the existing codes and equation can be used for FRP reinforced elements or 

not. Up until now, flexural behaviour of FRP reinforced beams under two point 

loading can be summarised as follows.

Crack widths have traditionally been limited because it was thought that they 

influenced the corrosion of the steel reinforcement. It is now generally accepted that 

crack widths have little or no significant influence on the long term durability of 

reinforced concrete structures . Therefore, the main reason for controlling crack 

widths appears to be the aesthetic view of the structures and perhaps also their
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watertightness. In FRP elements cracks seem deeper and fewer compared to steel 

reinforced beams.

Deflections are likely to be higher than for equvalent steel-reinforced elements. For 

an uncracked section the deflection will be a function of the gross concrete cross 

section only and therefore not influenced so much by the type of reinforcement. In 

general, the actual deflection will depend on the distribution of cracks, which will be 

influenced by the bond between the reinforcement and concrete.

Shear and rupture of FRP rebars are typically observed failure modes with or without, 

stirrups used in the beams. Some reduction factors have already been suggested for 

FRP’s ultimate strength to minimize the risk of failure due to breaking of FRP rebars 

which is more brittle than that due to crushing of concrete alone. Up to present, most 

research suggests using existing design equations helps to predict the behaviour of 

FRP reinforced beams.

The idea of using GFRP in this research is that glass is less expensive than corrosion 

resistant steel, less rebar cover is needed, hence reduced handling weight and the 

possibility of using a lower concrete grade to reduce cost.

Despite FRP’s recogniseable properties and durability, it is unlikely that the FRP 

reinforcement will fully replace steel in future. Previous work so far has shown that 

FRP reinforcement is a viable and cost effective alternative to steel in special 

circumstances i.e. as an alternative to stainless steel110. Also, it has been accepted so 

far that the use of FRP in applications where the consequences of failure are not too 

severe should be considered. There are several significant aspects that need to be 

addressed for use of FRP such as suitable reinforcement shapes with a consistent 

quality in terms of their properties, better understanding of the behaviour of the 

concrete elements reinforced with FRP under different load and environmental 

conditions, an orthodox development of design for structures reinforced with FRP. 

The need for Codes and Standards for FRP reinforced concrete elements is essential. 

There are so far design guidelines reported by the ACI178 and the Institution of
170Structural Engineers . More research and development work is required on different
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FRP materials embedded in different type of concrete elements before fibre 

composites can be widely accepted. In this way general design rules can be based 

upon different configurations and dimensions of rebars for the best value solutions. 

Following on from the last point, the application of FRP reinforced concrete beams 

for use in precast concrete elements such as lintels and short span wall units, where 

deflection is not likely to be a critical consideration but exposure is would be 

particularly appropriate. Precast lintels are very common and used widely throughout 

the construction and building industry and there is much commercial scope for 

replacing steel rebar with FRP especially for small beam cross sections; where cover 

is necessarily limited. The market potential could be considerable; encompassing units 

up to 4.5m in length180 and with typical commercial section of rectangular 100mm 

wide 200mm deep up to 200mm by 200mm181.

However, one has to decide whether154 to adopt existing design methods or devise a 

completely new set of design rules, which although technically correct but might not 

justify the time and effort involved for the economic return gained. Therefore, it 

would be more expedient, at least in the first instance, to opt for following the former 

course i.e. use existing standards and codes as a basis and tailor them to suit the 

particular properties and behaviour of the new material.
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Resume o f  objective targets for Research Programme

The properties, behaviour, existing and possible applications of FRP materials have 

been comprehensively discussed in this chapter. Therefore, in summary the Author 

considers that the proposed programme should incorporate a further consideration and 

investigation of the following aspects and points stated below:

• the practicalities of the specimen size in respect of an experimental programme

• a simple performance comparison within the context of the adopted design 

envelope

• the context of the current design codes such as BS8110

• areas of practical application

• the efficient use of the materials

• serviceability constraints

• the influence of different grades and types of materials

• novel approaches to design element geometry
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CHAPTER 3

3. EXPERIMENTAL WORK 

3.1 Test Programme & Methodology

The two-point loading test programme was split into four parts and contained 59 

concrete beam tests in total. The purpose of the first part was to investigate the 

performance of different grade of concrete beams reinforced with conventional steel 

and the state-of-the-art material GFRP rebars. In the second part, the same grade of 

concrete beams tested having different profiles of GFRP rebars. The third part 

contained beams having the same GFRP rebar profiles but with different types of 

concrete. In the final part, the same grade of concrete beams contained steel and 

GFRP main rebars and mild steel/GFRP stirrups. A test rig of 300kN load capacity

free standing frame was used for the tests. The test mode was in deflection control in |
• |

order to eliminate sudden catastrophic failure and also to monitor the behaviour of the \ j

beams at each load increment safely. Applied load was monitored by the control

panel and load deflection response by the plotter. Concrete and rebar strains as well

as the crack patterns were observed and readings saved on the computer during the

test. A video camera was used to film the behaviour of each beam. The overview of

the testing apparatus used for two point loading can be seen in Photo 3.1 (also play

control panel.mpeg video clip on the compact disk). All beams in Part 1, 2, 3 ,4  were

simply supported on a span of 2440mm and were subjected to two equal concentrated

loads 900mm apart and symmetrically placed at the mid-span. The shear span of the

beams was a constant value of 770mm throughout the experimental work. Bottom

and the top covers to the reinforcement were 25mm. Two concrete cylinders and six

cube specimens corresponding to each beam were tested under compression using a

3000kN maximum load capacity Avery Denison machine.
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Photo 3.1 An overview o f  the test apparatus used during two-point loading.
(1. control panel, 2.plotter, 3. deflection display, 4. computer data store, 5.printer, 
6. test beam, 7. the frame, 8. LVDT)

Also, tensile tests were carried out on the reinforcing bars. The test programme is 

outlined as follows:

3.1.1 P a r t  1 - F R P  & Steel R ein fo rced  N orm al, M ed ium  an d  H igh 

S tren g th  C oncre te  B eam s

Beam specimens were split into two groups. One group containing concrete beams 

reinforced with two ribbed high tensile steel and the other group containing two 

GFRP reinforcing bars. The beams were reinforced in the tension zone 

(see Figure 3. / ,  (a), (b), (c) and (d)). A range of different concrete grades (C20, C40, 

C60) and different bar sizes, 8mm 12mm 16mm steel and 8.77mm 13.19mm 

16.44mm GFRP were used (see Photo 3.2).
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Photo 3.2 The size o f the steel and GFRP rebars used in this study

The primary purpose of this part of the test programme was to make a comparison 

between the beams reinforced with steel and GFRP bars in terms of their structural 

performance and efficiency. A total number o f twenty beams were tested at 42/43 

days. In addition, two beams containing dispersed glass fibre added to the concrete 

mix were tested at 28 days. A number of tests was repeated bringing the total number 

of specimens in Part 1 to thirty.

The physical properties of the beams are summarized in Table 3.1. To comply with 

laboratory facilities and availability, the first eight beams were tested at 42/43 days.

It was decided to test the next beams at the same age in order to maintain consistency 

throughout the investigation. The beams in further parts were tested at 28/29 days. 

Concrete generally increases its strength with age. This characteristic increase is fast 

up to 28 days and becomes more gradual thereafter1. Therefore, it should be noted 

that the difference in the cube strengths for 42/43 days and 28/29 days was not large 

for a given concrete grade.
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3.1.2 Part 2 - H igh Strength Concrete Beam s Reinforced w ith G FRP  

R einforcing Bars Using Straight & Curved Geom etric 

Configurations

The Part 2 tests were based upon the results obtained from the Parti and was 

concerned with applying different configurations i.e. curved or straight profiles 

{Figure 3.2 a, band Figure 3.3 a, b, c) of 8.77mm FRP bars for the same concrete 

grade (C60) with different reinforcement areas (121mm2,181.5mm2, 242mm2 and 

546.56mm ) in order to assess the structural performance of the beams with more 

conventional configuration.

The majority of the GFRP reinforced beams in Part 1 failed in shear and in some cases 

resulted in rebars snapping in the shear region. It was felt that if the profile of the 

GFRP rebars were modified, this could reduce or eliminate the propensity for shear 

failure and enhance the performance of the beams. Therefore, Part 2 contained beams 

reinforced with, ‘straight only’, ‘curved only’ and the combined ‘straight and curved’ 

profiles. A total of eleven beams were tested in this part of the investigation at 28/29 

days. The physical properties of the beams are summarized in Table 3.2. TB8 

(T.'Test, B:Beam, 8:number of the beam) and the repeats from Parti here also included 

in this part of the programme.
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3.1.2.1 Procedure for Rebar Fixing

End plates of steel/wood 104mm width x 204mm height were manufactured and 

drilled with the necessary numbers of holes and they were fixed at both ends of the 

beam moulds before the rebars were put through. Two symmetrical reference 

numbers which are shown in Figure 3.2, were selected prior to bending of rebars.

The rebars were put through Reference2-2’ first, then fixed at Reference 1-1’ in order 

to be bent (see also Photo 3.3). Top and bottom cover to the main reinforcement was 

maintained at 25mm for all beams.

Photo 3.3 Two curved and two straight profile GFRP rebars fixed  in a mould prior to 
manufacturing
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3.1.3 Part 3 - V arious C oncrete Types o f Beam s R einforced with  

O ptim um  G FRP R ebar Configurations

From the results of Part 2, it was decided to carry out the tests for Part 3 based on the 

beams with the best performance for a given area of reinforcement (242mm2 and 

546.56mm ) having a novel geometry, using two straight and two curved profiles of 

GFRP rebars (see Figure 3.3 (b), (c)). It was decided to compare the performance of 

beams with the model geometry of the GFRP rebars before ultimately comparing them 

with conventional shear reinforcement in the final part of the programme. Partly due 

to problems with delivery of GFRP shear reinforcements.

The beams were reinforced with four 8.77mm, and four 13.19mm FRP and were 

tested at 28/29 days. The tests were set up for 15 beams including one repeat. The 

concrete grades and types used were C20 and C40 normal weight, C20 normal weight 

with microsilica, C20 and C50 lightweight, C20 lightweight with microsilica and C40 

normal weight and with dispersed glass fibres. The physical properties of the beams 

are summarized in Table 3.3. Note that all the rebar profiles involve the combinations 

of straight and curved for GFRP only.
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3.1.4 Part 4 - Norm al W eight (C20) Concrete Beam s Reinforced with  

G FRP and H igh Tensile Steel Rebars com bined w ith GFRP and  

Steel Stirrups

Six beams were cast using C20 grade of concrete mix throughout Part 4 tests, which 

were split into three groups. The first group of beam specimens contained two 8mm 

and two 12mm diameter high tensile steel rebars respectively along with twenty-four 

6mm mild steel stirrups. Two 8.77mm and two 13.19mm diameter GFRP rebars were 

used instead of steel rebars as the main reinforcements in the second group. The 

beams in the third group consisted of the same diameter of main reinforcement as in 

the second group along with twenty-four 6.9mm GFRP stirrups. All the beams 

contained two 6mm mild steel rebars in the compression zone i.e. top rebars. This 

was for the stirrups to be held perpendicular to the top and the bottom rebars. The 

reason for the selection of nominal C20 grade concrete in this part was due to; firstly, 

the average strength of concrete suggested the use of nominally lower grade of 

concrete for GFRP beams not significantly prejudice their performance in terms of 

both load capacity and durability. The physical properties of the beams are 

summarized in Table 3.4. The loading arrangement and beam details are shown in 

Figure 3.4.
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3.2 MATERIALS

3.2.1 R ein fo rcem en t

3.2.1.1 Steel rebars

Three different diameters of nominal size, 8mm, 12mm and 16mm of hot rolled 

deformed high tensile steel reinforcing bars were used as tension reinforcement and 

6mm mild steel reinforcing bars were used as top bars in the compression zone and as 

stirrups within the shear zones in the concrete beams. The steel was supplied by 

Derim Steels Ltd., Chesterfield, Derbyshire. Tensile tests were carried out on 

reinforcing bars using 300kN capacity ESH machine located in the laboratory in 

accordance with BS/EN 10002-1:1990 2 (see Photo 3.4).

Photo 3.4 ESH Tensile testing apparatus : 1. plotter, 2. control panel, 3. bottom jaw,
4. top jaw, 5. rebar sample

The tensile properties obtained from the tests are given in Table 3.6. Stress-strain 

graphs for all four diameters of steel rebars are shown in Figure 3.5. All high tensile 

steel reinforcing bars exhibited less necking than the mild steel reinforcing bars
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before failure occurred. Linear elastic behaviour was exhibited by all steel rebars. 

The applied load became constant at the yield point with increase in strain without 

increase in load. All four diameter rebars exhibited linear elastic behavior up to the 

yield point. The standard deviation of the modulus of elasticity was calculated for 

each bar diameter. The values of modulus of elasticity for all rebars fell within ±5%  

of the mean value for the group (see Table 3.6). The percentage range in the table is 

expressed as the ratio of mean modulus of elasticity to the standard deviation. The 

chemical composition of the steel reinforcements is given in Table 3.5.

Table 3.5 Chemical composition o f the steel rebars provided by the manufacturer*
Diameter (mm) [type]

Chemical
Composition
(%)

6
[mild]

8
[high tensile]

12
[high tensile]

16
[high tensile]

C 0.100 0.170 0.170 0.200

Mn 0.600 0.620 0.770 0.760

Si 0.120 0.200 0.160 0.200

S 0.027 0.019 0.022 0.016

P 0.018 0.023 0.014 0.016

Cr - 0.110 0.070 0.090

Ni - 0.230 0.270 0.130

Mo - 0.070 0.070 0.050

N - 0.009 0.010 0.009

Cu - 0.520 0.430 0.320

Ceq - 0.359 0.372 0.384
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Table 3.6 Tensile Properties o f Steel Rebars

Diameter (mm) 6 8 12 16

(Type) (mild) (high tensile) (high tensile) (high tensile)

Density (kg/m3) 7920 7730 7690 7880

Grip Pressure (MPa) 2.76 2.76 2.76 2.76

Rebar Surface Texture smooth ribbed ribbed ribbed

No. of Test Samples 3 6 6 6

Yield Load (kN) 8.60 26.31 56.15 93.88

*Yield Stress (N/ram2) 304 523.5 497 467

**YieId Stress (N/mm2) 382 581.6 580 558.3

Strain at Yield 0.0015 0.0028 0.0026 0.0023

Ultimate Load (kN) 10.90 28.67 67.96 118.9

Ultimate Stress (N/mm2) 386 571 601 592

Elastic Modulus (GPa) 195 186 189 200

Standard Deviation (GPa) 6.512 3.002 4.216 16.597

(Range -%) (3) (2) (2) (8)

Failure Mode ductile ductile ductile ductile

* Based on nominal area of cross-section
** Results given by the manufacturer based on six specimens for each diameter
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Figure 3.5 Stress versus Strain Graphs o f steel rebars obtained during the tensile test.

Stress vs Strain Graph of 6mm 
Diameter Mild Steel Rebar up to 

Yield Point
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Stress vs Strain Graph of 8mm 
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Stress vs Strain Graph of 12mm 
Diameter High Yield Steel Rebar 

up to Yield Point

600
Yield point (497 MPa)
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Stress vs Strain Graph of 16mm 
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3.2.1.2 GFRP rebar

The Kodiak rebars are manufactured by an American company, International Grating 

Inc. and are made of E-glass fibres. These fibres are impregnated in a thermosetting 

polyester resin of 72% by volume and includes a small quantity of fibres which are 

wrapped around the longitudinal fibres in a helical pattern to induce deformation on 

the surface of the rebar so that, enhanced bond behaviour with concrete can be 

achieved. The mechanical properties of the Kodiak GFRP rebars were provided by 

the manufacturer as shown in Table 3.7. Note that the figures in the table are the 

typical values and not specified for any diameter (size) of GFRP rebars.

Table 3.7 Typical mechanical properties o f GFRP specified by the manufacturer4
Ultimate Tensile Strength (MPa) 695

Modulus of Elasticity (GPa) 50.04

Compressive Strength (MPa) 417

Bond Strength (MPa) 8.34

Shear Strength (MPa) 59.07

Yield Strength (MPa) N/A

Water Absorption (%) 0.25 max.

Specific Gravity 2

The diameters of reinforcing bars and their area of cross sections used in the concrete 

beams are given in Table 3.8. The equivalent diameter of GFRP rebars determined 

through the method for determination of density of hardened concrete in 

BS1881:Partll45.

Table 3.8 GFRP and Steel rebar diameters and the areas o f the cross section.
Rebar Type Diameter (mm) 

[Area (mm2)]
GFRP 6.9

[37.39]
8.77

[60.50]
13.19

[136.50]
16.44

[212.50]
Steel 6

[28.27]
8

[50.50)
12

[113.00]
16

[201.00]
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3.2.1.3 Test Methods & Properties

The tensile specimens were selected from different batches and cut into 500mm 

lengths. Load versus extension graphs were obtained directly from a 100mm gauge 

length extensometer which was attached to the specimen at the middle. Static tensile 

tests were carried out for all four diameters of GFRP reinforcing bars as well as the 

steel reinforcing bars. All reinforcing bars were subjected to uniaxial tension. The 

main concern for GFRP rebar was the gripping mechanism of the ends since they are 

weak in shear. For this reason, the ends of each specimen were protected by casting 

into tubes thus alleviating the stress concentration resulting from the very deep 

indentations on the actual rebar caused by the jaws of the testing machine. The grip 

pressures used and the test results obtained from all the tests are included in Table 3.9. 

The speed rate of the cross-head for the tensile test was chosen to be either lmm/min. 

or 5mm/min following a survey of relevant standards (see Table 3.10). Note that 

ASTM D3916-846 is the only standard available for tensile testing of GFRP rebars 

which have a circular cross section.
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The mechanical properties of FRP rebars differ from one manufacturer to another. 

Most manufacturers specify the tensile strength of the rebars based on the gross area 

of the rebar7. It is also pointed out that the resin matrix does not contribute 

significantly to the overall tensile capacity of the tendon and hence it can be ignored in 

strength calculations. In the majority of papers published, the reported strength of the 

tendons is lower than the strength of an individual fibre that composes the fibre. 

Dolan's1 paper states that when the probability of failure of an individual fibre and the 

redundancy of a multiple fibre bundle considered, the total tendon strength is reduced 

by 35% to account for the matrix volume fraction of the cross section.

Table 3.10 Standards available fo r  tensile test speed
Name of the Standard Form of Tensile Specimen Test Speed (mm/min)

BS 2782: Part 10: 19778 plastic coupon 2

ISO/R527.T966 (E)9 plastic coupon 1

JIS (Japanese) K 7054:198710 GFRP coupon 1

JIS (Japanese) K 7073:1988“ CFRP coupon 1-2-3 or 5

ASTM D 3916-846 GFRP rod 5
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The methods used for tensile testing are outlined below:-

3.2.1.3.1 Method 1 - GFRP rebars having plain ends

In this approach all GFRP rebars were tested under tension in a plain form. That is to 

say, the ends of the rebars were not protected. Two specimens from each diameter 

were tested using ASTM D 3916-846 standard which specifies the speed of the test 

(rate of separation of the grips of the test machine) as 5mm/min. Only 6.9mm GFRP 

rebar failed in a satisfactory manner i.e. the failure took place along the free length of 

the specimen. The remaining of the rebars failed close to the jaws and their ends 

disintegrated. It was noted for all the rebars that the helical fibres ruptured before 

complete failure occurred. It can be seen in Figure 3.6 that there is a big difference in 

failure stress for each diameter. It seems that the larger diameter GFRP rebas are 

more susceptible to the grip pressure of the jaws and hence the larger the diameter the 

less is the apparent strength. This is due to the rebars being severed by the jaws 

before the full tensile capacity of the rebars can be fully utilized. The absence of yield 

of GFRP can also be noted in Figure 3.6 even though the failures were not 

satisfactory. It can be concluded that some sort of protection needs to be applied on 

the ends of the rebars to enable the tensile strength to be accurately determined.
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Figure 3.6 Stress versus Strain Graphs ofplain-end GFRP rebars obtained during the
tensile test
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3.2.1.3.2 Method 2 - GFRP rebars having cast ends

In this method the ends of the tensile specimens were cast into 100mm length copper 

and steel tubes having a thickness of 1.5mm and 2.5mm respectively. The inside of 

each tube was sand blasted in order to give a clean surface to ensure a good bond 

between the resin and the tubes. Sand blasting also creates a fine striated area where 

resin can flow in and bond to the tube adequately. Five specimens were prepared for 

each diameter of rebar. To enable systematic and accurate assembly of the specimens 

a stand apparatus has been designed by the Author in order to cast the rebars into 

tubes (see Photo 3.5).

Photo 3.5 Vertical Stand Apparatus (VSA) fo r  casting the ends o f  the GFRP rebars

Steel/Copper
Tube

Six rebars can be cast one end at a time using the stand. The tubes are then fastened 

to the bottom of the stand. Their bottom ends, resting on a flat surface, were covered 

with an adhesive tape in order to prevent the leakage of the epoxy resin which was 

injected inside the tubes. The rebars were placed inside the tubes before the resin was 

poured. In order to cast the ends in line the other six tubes were secured at the top of 

the stand. The other end of the rebars was then cast into tubes after twenty-four
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hours. It was important to decide on the appropriate epoxy to be suitable for this 

application in terms of its compatibility with the resin type used in the rebar and for its 

viscosity to be sufficiently low for ease of the injection. The type of epoxy used for 

casting was suggested by the rebar manufacturer. The epoxy, Sikadur 32 is a two 

component resin and it is mainly used to permanently bond freshly mixed mortar or 

concrete, to hardened concrete, glazed bricks, tiles, steel or other structural 

materials12. Table 3.11 contains the technical data of the epoxy. 2/3 of part A and 1/3 

of part B of Sikadur 32 were mixed in a glass container using a speed controllable 

stirrer before the injection. The rebars were tested after the epoxy was fully cured for 

seven days in the laboratory where the temperature is kept between 20-23°C.

Table 3.11 Technical data o f  Sikadur 3212

Colour Grey

Density(mixed) 1.4kg/litre (approx.)

Cure rates at 5°C 10°C 20°C 30°C

Full cure 13 days 10 days 7 days 5 days

Tensile strength 22 N/mm2

Flexural strength 35 N/mm2

Compressive strength 70 N/mm2

Application range min 5°C - max 30°C

Adhesion strengths to concrete typical 3 N/mm2 (concrete failure) 

to steel typical 20N/mm2 (epoxy failure)
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ASTM D 3916-846 standard was used to conduct the tensile tests on GFRP rebars. A 

cross head speed rate of lmm/min which is in the Japanese standards10, was also used 

in order to find out the effect of test speed on the tensile properties of the rebars. Five 

8.77mm diameter rebars with copper ends were tested at both test speeds, 5mm/min 

and lmm/min. It can be seen in Table 3.12 that the influence of test speed is not 

significant in terms of the tensile properties of the rebars.

Table 3.12 Comparison on the tensile properties o f  GFRP rebars using two different 
test speed extracted from Japanese and American Standards

[Test Speed] mm/min

[1]
JIS K 7054 198710

[5]
ASTM D3916-846

Diameter (mm) 8.77 8.77

Grip pressure (MPa) 3.45 3.45

No of Test Samples 5 *5

Ultimate Load (kN) 28.33 29.49

Ultimate Stress (MPa) 464.20 483.13

Ultimate strain (calc.) 0.01085 0.01071

Elastic Modulus (GPa) 42.76 45.09

Standard deviation (GPa) 2.576 3.669

♦First sample was initial compressed vertically by the jaws and hence the average results of 4 samples were used in here.
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The results of tensile tests on glass FRP reinforcing bars with three methods of cast- 

ends are given in Table 3.9. Note that these results are based on the test speed of 

5mm/min. The numbers in the brackets indicate the results obtained from rebars 

which did not pull out. Apart from the pulled out specimens, the rest of the rebars 

cast in both copper and steel ends failed in a satisfactory manner i.e. failure took place 

within the free length of the specimen (see Photo 3.6). The failure for all the rebars 

took place with the prior snapping of helical fibres before the ultimate rupture of the 

rebar.

Some of the rebars, which were cast into steel tubes, were debonded i.e. the resin and 

the rebar together were pulled out from the tube (see Photo 3.6 and Photo 3.7). The 

test results of those were not included in the Table. Figure 3.7 and Figure 3.8 are the 

stress versus strain diagrams of the GFRP specimens with steel and copper ends 

respectively.
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Photo 3.6 The failed GFRP specimens with steel/copper ends.
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Figure 3.7 Stress versus Strain Graphs o f steei-end GFRP rebars obtained during the
tensile test
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Figure 3.8 Stress versus Strain Graphs o f copper-end GFRP rebars obtained during
the tensile test
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3.2.1.3.3 Review of test methods and properties

It can be seen in the stress versus strain diagrams of GFRP rebars that the magnitude 

of ’failure stress' for particularly 013.19 and 016.44 rebars are more influenced by 

having their ends cast in steel/copper tubes. These tubes play an important role 

against the 'bite-in' action of the jaws and hence better results can be achieved. Some 

complex fibre-matrix and specimen- grip interactions rather than being dominated 

purely by the fibre properties could influence the tensile failure results for each 

method of end casting. It also seems that the tensile properties of these rebars are 

dependent on specimen diameter. Generally, the steei-end rebars give higher stress 

values at failure for a given diameter, than the copper-end rebars. However, it should 

be noted that the results for the steei-end rebars are based on a smaller number of 

specimens than the copper-end ones (see Table 3.9). The tensile strengths were based 

on the copper-end specimens throughout the investigation due to the fact that a more 

satisfactory failure was achieved. Also, none of the copper tubes pulled out during the 

tensile test.

Figure 3.9 shows the typical recovery of 08.77, 013.19 and 016.44 GFRP rebars 

under tension. The tension was applied to the rebars up to 70% of its ultimate load 

capacity then the tension load was reduced to zero and finally the load applied again 

up to failure. The figure shows that the elastic recovery of the material is influenced 

by the rebar diameter.

It was decided to monitor the tensile strains simultaneously for a GFRP rebar 

(016.44) using an extensometer and a strain gauge attached to the rebar. This was to 

whether there is a big difference between the reading from two different instruments. 

Figure 3.10 confirms the consistency of the readings obtained.
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Figure 3.9 A representative graphs fo r  the recovery o f GFRP rebars under tension
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The results of tensile tests (see Table 3.13) carried out by Malvar13on four different 

types of, Type A, Type B (look very similar to Kodiak rebars used in the 

investigation), Type C and Type D 19mm diameter glass FRP rods having a fibre 

fraction of 45% or more embedded in a vinlyester or polyester resin. The author also 

used ASTM D 3916-84 standard for conducting the tests. The results of tensile tests 

carried out by the Author for the reinforcing bars used in this investigation are given 

in Table 3.14.

Table 3.13 The tensile test results reported by Malvar
B ar type No of tests M odulus of

elasticity
(GPa)

Ultimate
Stress
(MPa)

Ultimate
strain

A 5 45.5 598 0.0014
B 5 28.29 449.19 0.0017
C 5 47.4 562 0.0012
D 5 39.8 561 0.0018
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3.2.2 Cementitious Materials

3.2.2.1 Cement

Portland Cement (OPC-42.5) having a range of particle size of 5pm to 30pm was 

provided by Castle Cement Ltd. Their product was used throughout the investigation. 

Cement from the manufacturer was delivered several times over a period of four years 

throughout the programme. Chemical composition and the physical characteristics of 

Portland Cement (PC) and are given in Table 3.15.

3.2.2.2 M icrosilica

EMS AC 500 S microsilica was provided by the manufacturer, ELKEM in 

Buckinghamshire with an average particle size of 0.15pm product was used in some 

of the beams in Part 3. The microsilica content, which is recommended in the 

technical data sheet14, was 10% of the original cement content added to the mixes. 

Chemical composition and the physical characteristics of microsilica are given in 

Table 3.15. The purpose of using microsilica for the beam testing programme was to 

achieve higher strength concrete and bond [see Chapter 2, ref. 81 ] through the 

improvement in cohesion of mix constituents. It can be seen in Table 3.15 that one 

kilogram of microsilica covers 40-50 times bigger area than OPC. In other words, 

fine particulated microsilica is able to fill the micro gaps in the concrete reducing 

bleeding and therefore, it was felt that this would provide an enhancement in bond 

between GFRP reinforcing bars and the concrete.

Table 3.15 Physical & Chemical Data Comparison between Microsilica(Elkem) and 
Portland Cement
Si02
(%)

ai2o3
(%)

Fe20 3
(%)

Cl
(%)

Na20
(%)

k 2o
(%)

MgO
(%)

so3
(%)

CaO
(%)

Surface
Area
(m2/kg)

Bulk
Density
(kg/m3)

Specific
Gravity

OPC 21 5 3 0.03 0.13 0.67 1.1 3.1 64.5 380 1444 3.12
Microsilica 92 1 1 1.5 0.3 0.8 0.6 0.3 0.3 15000-

20000
200-300 2.20
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3.2.2.3 Chopped Glass Fibre Strands

CEM-FIL 60/2, 24mm long chopped fibres were supplied by the manufacturer in 

Merseyside, Liverpool. These fibres were used in some of the beams in Part 3 

(see Photo 3.8). The tensile strength, modulus of elasticity and the density of the 

fibres are 1700 MPa, 72 GPa and 2680kg/m3 (specific gravity 2.68) respectively.

Glass fibre strands were added to the mix by sprinkling shortly after water was added 

to the dry mix of cement, coarse and fine aggregate. In this way better and more even 

distribution of fibres within the mix could be achieved. It was felt that the use of 

chopped fibres in the beams might be able to contribute to the resistance in shear and 

improve bond condition around the rebar [see Chapter 2, ref. 155].

Photo 3.8 A sample o f  chopped glassfibre strands used in concrete mixes

CEM-FIL fibres exhibit a high degree of general, acid and alkali, chemical resistance 

but were specifically developed to resist the very high alkalinity produced by the 

hydration of cement. They are corrosion resistant and incombustible with good heat 

resistance13.
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3.2.3 Aggregates

3.2.3.1 Coarse aggregates

3.2.3.1.1 Normal weight

5-20mm graded quartzitic coarse aggregates supplied by Tarmac Roadstone Ltd. 

(Nottingham) used throughout except for some lightweight aggregate beams in Part 3 

(see Photo 3.9). This size of aggregates is commonly used in reinforced concrete 

structures. The grading curve of the aggregates is given in Appendix 3. This was 

determined in accordance with BS 81216.

3.2.3.1.2 Lightweight

6-12mm graded Lightweight aggregates (see Photo 3.10) were used in some of the 

beams in Part 3. The product is available from Boral Lytag manufacturer in 

Eggborough. Lytag is specifically designed for reducing concrete self-weight17 

improving its specific performance in respect of strength and stiffness. The basic 

material is pelletised pulverised fuel ash (the waste product from the generation of 

electricity at coal burning power stations) which is suitable to produce lightweight 

aggregates. The grading curve of the aggregate is given in Appendix 3.

3.2.3.2 Fine Aggregate

The fine aggregate consisted of a medium grade sand ( ‘M ’ sand) used in all the 

beams. The grading curve was determined in accordance with BS 81216 is given in 

Appendix 3.
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Photo 3.9 A sample o f 5-20mm coarse aggregate used in concrete mixes

Photo 3.10 A sample o f  6-12mm lightweight aggregate used in concrete mixes



3.2.4 Admixtures

CORMIX SP4 type super plasticiser was used in only two micro silica added 

lightweight concrete beams, which are in Part3. The mix for those beams appeared to 

be too dry resulting in reduction of workability of the mix i.e. slump being outside the 

range (30mm-60mm). Therefore, the addition of super plasticiser compensated for 

this. The specified slump was achieved for the trial mixes of normal weight concrete 

containing microsilica, without any addition of superplasticiser.

3.2.5 Concrete M ixes

3.2.5.1 Properties & Mix Proportions

3.2.5.1.1 Normal, Medium and High Strength Concrete

C20, C40 and C60 normal weight concrete mixes were designed according to the 

design process given in Building Research Establishment Report18 “Design of normal 

concrete mixes”. Concrete mix proportions and properties are given in Table 3.16.

The mean density and the mean strength of concrete were obtained from six cube 

specimens. The designation 'wet condition' for strength in Table 3.16 is represented 

by three specimens which were cured in water tanks in accordance with BS 188119.

The designation 'dry condition' is for the other three specimens which were wrapped 

in plastic sheet and kept in the laboratory conditions similar to those of the beam 

specimens.

It should be pointed out that there is an apparent discrepancy between nominal grades 

and the actual strengths produced. In order to satisfy the workability criteria without 

either having unacceptably high workability or excessive fine aggregate content in 

fully compacted concrete, average mix strengths are generally higher than would 

normally be associated with the nominal grade. However the, mix design was 

consistent with the procedure given in the design of normal concrete mixes.
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Table 3.16 OPC-Normalweight Concrete Properties & Mix Proportions
MEAN DENSITY MEAN STRENGTH

CONCRETE

GRADE

(Nom inal)

MEAN

SLUMP

(mm)

C ondition C ondition MIX PROPORTIONS (kg/m 3)

DRY

(kg/m 3)

WET

(kg/m 3)

DRY

(MPa)

WET

(MPa)

W/C W ater C em en t FA CA

C20 50 2384 2418 43 45 0.56 180 321 570 1329

C40 54 2396 2428 60 64 0.42 180 429 787 1254

C60 56 2435 2459 75 77 0.30 180 600 405 1215

3.2.5.1.1.1 Mixing Process

In order to obtain the design free water content, moisture condition of fine aggregate 

was determined before batching the concrete. This was carried out using the ‘Speedy 

Moisture Tester’ in the laboratory. Cement, coarse and fine aggregates were mixed 

for 30 to 40 seconds and then the required amount of water was added to the concrete 

for a further 1.5 minutes mixing. The ‘Slump’ workability test was carried out in 

accordance withBS 1881:Part 10220.

3.2.5.1.2 Microsilica Added Concrete

The original C20 mix design was used for concrete containing microsilica.

Microsilica added to the mix was 10% of total cement content which is recommended 

by the manufacturer, ELKEM14. Concrete mix proportions and properties are shown 

in Table 3.17. There was no need to use superplasticiser in the mixes since the 

‘Slump Test’ was giving values within the range of required slump target range 

(30mm to 60mm).

Table 3.17 OPC-Microsilica Concrete Properties & Mix Proportions
MEANDENSITY MEAN STRENGTH

CONCRETE

GRADE

(Nom inal)

MEAN

SLUMP

(mm)

C ondition C ondition MIX PROPORTIONS (kg/m 3)

DRY

(kg/m 3)

WET

(kg/m 3)

DRY

(MPa)

WET

(MPa)

W /(C+S) W ater C em en t SILICA FA CA

C20 55 2378 2422 55 65 0.51 180 321 32.10 570 1329
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3.2.5.1.2.1 Mixing Process

Mixing procedure of microsilica concrete was followed as recommended14. The Fine 

Aggregate(FA) and Coarse Aggregate(CA) were mixed at the beginning for 30 to 40 

seconds. In order to achieve the required standard consistency in concrete, microsilica 

slurry (i.e. water mixed with microsilica) were poured into the mix and mixed for 

another 40 seconds. The cement was then added to the mix and further mixing was 

carried out for 1.5 minutes. The determination of moisture condition of fine aggregate 

and carrying out ‘Slump Test’ were as previously described.

3.2.5.I.3 Glassfibre Concrete Mix

The mix proportions of C40 concrete having chopped strand glass fibres are given in 

Table 3.18. Adding glassfibres into the mix tends to reduce workability of the 

concrete and hence both the workability of normal and glass fibre concrete must be 

measured so that some adjustments are made to improve it. For this reason, the slump 

of the original mix (C40) was designed to be greater, 50 to 100mm. Although the 

'Slump Test’ does not reflect the whole workability of the concrete, it is useful in 

detecting the uniformity of the fresh concrete for given proportions. The slump of the 

glass fibre concrete is in the range of 0-25mm, and the slump test cannot detect its 

uniformity since in this case the concrete is very dry. Therefore, the ‘Vebe Test’ in 

accordance with BS 1881:Part 10421 was used to measure the workability. This test is 

very suitable for the diy concrete and the treatment during the test is close to its use in 

practice. After several trial mixes, the proportions were adjusted to incorporate glass 

fibres of 0.5% of the total volume of the mix. Concrete mix proportions and 

properties are shown in Table 3.18.

Table 3.18 Cement-Glassfibre Concrete Properties & Mix Proportions
MEAN DENSITY MEAN STRENGTH

CONCRETE

GRADE

(Nom inal)

MEAN

SLUMP

(m m )

C ondition C ondition MIX PROPORTIONS (kg/m 3)

DRY

(kg/m 3)

WET

(kg/m 3)

DRY

(MPa)

WET

(MPa)

W/C W ater C em en t FIBRES FA CA

C40 N/A 2387 2393 57 60 0.42 195 464 13 711 1159
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3.2.5.1.3.1 Mixing Process

The procedure was similar to that for the cement concrete mix except that the 

glassfibres were sprinkled into the mix at the final stage of mixing and mixed for 1.5 

minutes after adding fibres. This mixing process was kept to a minimal time whilst 

ensuring good fibre dispersion. The typical Vebe time recorded for the glass fibre mix 

was 9.7 seconds and this is within the range of normal mix (8-10seconds) for a given 

equivalent slump.

3.2.5.1.4 Lightweight Concrete

For lightweight concrete, Lytag manufacturer’s C20 and C50 lightweight concrete mix 

designs were used. Concrete mix proportions and properties are shown in Table 3.19. 

Microsilica added to the C20 mix was 10% of total cement content.

Table 3.19 Cement-Microsilica-Lightweight Concrete
MEAN DENSITY MEAN STRENGTH

CONCRETE MEAN C ondition C ondition MIX PROPORTIONS 
(kg/m 3)

GRADE

(Nom inal)

SLUMP

(mm)

DRY

(kg/m 3)

WET

(kg/m 3)

DRY

(MPa)

WET

(MPa)

W/C

W/(C+S)
P la s tic ise r W ater C em en t SILICA FA LA

C20 70 1978 2023 47 46 0.5 - 180 360 - 600 796

C20 30 1977 2018 62 65 0.45 1.00 180 360 36 600 796

C50 60 1983 2012 66 66 0.3 - 180 600 - 345 802

3.2.5.1.4.1 Mixing Process

Mixing procedure for lightweight concrete was followed as recommended by the 

Boral Lytag manufacturer. Moisture condition in sand and Lytag aggregates 

determined before mixing. Typical percentage of moisture content determined in the 

lightweight aggregate (7% to 10%) was more than the fine aggregate (1% to 3%). 

Lytag aggregate particles were crushed then the moisture content was measured. The 

original water content was then adjusted. Approximately 50% of total water content 

was poured in the bowl of the mixer. Lytag aggregates, fine aggregate, cement and 

the remaining water were then added to the mix in sequence. The mixing time spent 

on the sequence of constituents was 1 minute, (40-90) seconds, (30 -40) seconds and 

90seconds respectively. Approximately 3.5 minutes mixing time was considered 

sufficient to distribute the materials uniformly.
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The trial mixes of C20 lightweight concrete containing microsilica was proved to be 

very dry and gave ‘slumps’ outside the required range (30mm to 60mm). Thus, 

CORMIX SP4 superplasticiser was added. Two slurries were prepared. The first one 

contained water and microsilica and the second one contained water and the 

superplasticiser. The second slurry was added to the mix at the final stage of mixing. 

The same sequence was carried out as previously with a slightly longer time of 

mixing.

3.3 Manufacturing and Curing of Concrete Specimens

The steel moulds in which the specimens cast were oiled lightly before the casting 

began. The concrete was mixed in an horizontal pan type mixer. One batch 

containing 187kg of total constituents was sufficient to manufacture a beam and the 

control specimens (cubes and cylinders). A slump test was carried out for each mix 

according to BS1881 Partl02:198320 (see Photo 3.11). The concrete was placed and 

compacted in 50mm layers for all specimens. The compaction applied was by a 

vibrating poker for the beams and vibrating table for the control specimens. 6 number 

of 100mm side test cubes along with 2 number of 100mm diameter 200mm high 

cylinders were manufactured from each mix (see Photo 3.12). 3 number of cubes and 

2 number of cylinders were cured adjacent to the test beam in the laboratory and 

wrapped with plastic sheet as the beam. The other 3 number of cubes were retained in 

the water tank after they stayed in the 90% humidity mist curing room for 24 hours. 

The cylinders were capped with a 3:1 mortar of high alumina cement and sieved 

(300pm) fine sand and were retained in the high humidity room 24 hours before the 

flexure test was conducted for beams. The concrete strength and the elastic modulus 

for each beam were obtained from the cubes and the cylinders respectively by 

conducting compression tests according to BS1881 Parti 16:198322 and BS1881 

Part121:1983Z3.
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Photo 3.11 Slump test carried out in the laboratoiy

Photo 3.12 The control specimens cast in the laboratory during the manufacturing o f  
the beams
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3.4 Instrumentation

3.4.1 E lectrical R esistance Strain Gauges

The strain in the reinforcing bars was measured by using electric resistance polyester 

(PS-20-11) and foil (FLA6) backed strain gauges attached to the reinforcements. 

These gauges were supplied by Techni Measure Ltd., Warwickshire. The details of 

the gauges are given in Table 3.20.

Table 3.20 Details o f  the two types o f strain gauged4.
Type Polvester/PS-20-11 Foil/FLA-6

Gauge Length (mm) 20 6

Gauge width (mm) 1 2.2

Base (mm) 30x2 12.5x4.3

Nominal Resistance (£2) 120 ± 0.3 120 ± 0 .3

Gauge Factor 2.14 2.12

Strain Limit (%) 2 3

Compatible Adhesives [P-2, CN, RP-2, NP-50, PS], EA-2 [P-2, CN, NP-50], EA-2

Operational Temperature (°C) [-30 ~ +80], -196 ~ +80 [-30 ~ +80], -196 ~ +80

PS-20-11 gauges were used in the first twelve beams. Initially, it was thought that the 

advantage of using this type of gauge is its long gauge length (20mm) which would 

give a good average of strain values and thin gauge width (1mm) which was 

convenient particularly for 8mm steel and 8.77mm FRP reinforcing bars. The surface 

of the location of the strain gauge was filed down. A flat surface was necessary for 

this type of strain gauge to be attached to the rebar since they are insufficiently supple 

to stick to a round surface. It was realized that the amount of these gauges available 

in stock was not enough to use throughout the investigation. It was also not possible 

to acquire more gauges from the manufacturer since they stopped making them in

1991.
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It was therefore decided to use foil FLA-6 strain gauges throughout the investigation.

The surface to which the gauge sticks was filed circumferentially. Foil gauges are

more supple than polyester gauges so that they can easily be seated on a round

location. The gauge installation was carried out before the rebars were assembled in

the moulds. A full description of the installation procedure is given below25,26.

Summary o f sa m e  fixing procedure

i. The location of the gauges on the rebars/stirrups was marked and any 

unevenness on the surface of the rebars was removed with a smooth file. 180 

grit emery paper was then used for the final finish.

ii. The gauge area was cleaned using a solvent with cotton tipped applicators and 

a degreaser.

iii. The gauge to be installed was placed on a clean glass surface together with 

solder tab (terminal) leaving a space of approximately 1.5mm between the 

gauge backing and the terminal. Cellophane tape was tacked to the glass 

behind the gauge and wiped forward firmly over the gauge and the terminal. 

The tape was then carefully lifted at a shallow angle (approximately 45 

degrees to the glass surface) bringing the gauge and the terminal with it.

iv. The gauge/tape assembly was positioned so that the alignment marks on the 

gauge were over the layout lines. After the correct alignment was made, one 

end of the tape was firmly fixed down.

v. The free end of the tape was then lifted at a shallow angle until the gauge and 

the terminal were free of the surface. The gauge area along with the back of 

the gauge and the terminal were then coated with P2 (Polyester) or CN 

(Cyanoacrylate) adhesive.

vi. The gauge/tape assembly was then wiped over the adhesive in a single stroke 

bringing the gauge back down on the alignment marks on the rebar. It was 

important to let as much adhesive as possible squeeze out during the wiping of 

the gauge/tape assembly.

A silicone gum pad was placed over the gauge and clamping pressures of 

between 0.54N/mm2 and 0.28N/mm2 were applied for twenty four hours for 

PS-20-11 and FLA-6 gauges respectively. However, this stage of the
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installation process was quicker when CN adhesive was used for FLA-6 

gauges, as its curing time is only one minute. The appropriate clamping 

pressure of could be achieved by pressing the thumb over the attached gauge 

for one minute. The details of the adhesives used in the installation process 

are given in Table 3.21.

Table 3.21 Adhesives used in Strain Gauge Installation
Adhesive Type P-2 CN

Base Polyester Cyanoacrylate

Curing Time 2-3 hours 1 min

Cure Pressure 0.20-0.30 N/mm2 0.98 N/mm2

Specimen Material 

Compatibility

All except some 

plastics

All except some 

plastics and concrete

Strain Limit 3% 20%

viii. A stress relief loop was placed between the gauge and the terminal. The lead 

wires were then soldered to the gauge and the terminal and the resistance of 

the gauge monitored to ensure full connection. A protective coating using P-2 

adhesive was applied to the overall gauge area in two layers. In the second 

layer, sand coating was applied to the installation area soon after the adhesive 

reached the gel form.

3.4.1.1 Determination of a Suitable Location for the Strain Gauges

One of the concerns regarding strain gauge installation was to decide on gauge 

location on the FRP rebar and the amount of material needing to be removed during 

filing. The average distance between the spiral bindings (pitch length) measured from 

3m long FRP rebars for four different diameters are given in Table 3.22.
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Table 3.22 Average pitch length o f FRP rebars

Diam eter (mm) 6.9 8.77 13.19 16.44

No of rebars 5 5 5 5

Overall Length (mm) 3000 3000 3000 3000

Avarage pitch length (mm) 11 12 15 32

(FLA-3 stra in  gauge) 

Backing length (mm)
8.8 8.8 8.8 8.8

(FLA-6 stra in  gauge) 

Backing length (mm)
12.5 12.5 12.5 12.5

Tensile tests were carried out for 2013.19 rebars up to failure. A total of four 

locations was selected. Two strain gauges, one through the binding (G l) and another 

one on the binding (G2) were attached on the first rebar. On the second rebar, both 

two gauges, G3 and G4, were attached within the pitch length owing to the cases of 

removing of an amount of material. All these are sketched in Figure 3.11. It can be 

seen from Table 3.22 that the 13.19mm and 16.44mm diameter rebars have the most 

suitable pitch length for FLA-6 strain gauge to be installed between the bindings for 

this observation. Therefore, these gauges were applied on 13.19mm diameter rebars 

only, since this diameter of rebars used mostly together with 8.77mm diameter GFRP 

rebars throughout the investigation. Also, note that the spiral binding on 016.44 

rebars had hardly any resin on them and hence the surface texture was not suitable for 

strain gauge installation.
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It can also be seen in Figure 3.12 that the strain gauges installed either on or beneath 

the spiral bindings follow the same trend as the extensometers suggesting that the 

location on the spiral binding with a small amount of resin removed is suitable for 

accurate strain measurements. The strain gauge (G4) installed between the spiral 

bindings with a smaller amount of resin removed also followed the same trend as 

strain gauges (G l, G2) and the extensometers. However, both strain gauges (G1, G3) 

beneath the level of spiral bindings debonded before the failure of the rebars. This 

consideration for strain gauge installation on GFRP rebars, could suggest that it is 

better to avoid removing excess material and hence reducing the cross sectional area 

of the rebar. The location of strain gauge (G4) has been adopted for the majority of 

the test programme.

Figure 3.12 Example o f  strain gauge readings monitored from  different locations on 
GFRP rebar.
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3.4.2 Extensometer gauges

On the concrete beams, the strain for the maximum moment and shear region was 

measured with a gauge length of 900 mm and 200mm manual extensometer using 

mechanical Demec disks located on the beams. Prior to testing, the pins were 

positioned and stuck on both sides of the beam using chemical metal adhesive (plastic 

padding) together with 900mm and 200mm long setting bars. The position and the 

location of the electrical resistance strain gauges on the bars and the DEMECs on the 

beams are shown in Figure 3.13. Demec disks were also fixed to both sides of the 

cylinder specimens in order to measure the strain over a gauge length of 100mm using 

an appropriate extensometer.

3.4.3 L inear V ariable D ifferential Transform er (LVDT)

In order to facilitate the crack marking, whitewash was applied to the overall length of 

the beam before commencement of the test. The beams were instrumented with a 

linear variable differential transformer (LVDT) and a central deflection dial gauge at 

mid-span to monitor deflection. A modified LVDT was used on its own for further 

tests in order to monitor the deflection up to failure of the beams. Avery Schenk beam 

rig was set up for two point loading in stroke control mode (Servo Control Hydraulic 

Actuator). An automatic data logger system was used to monitor loadings, mid-span 

deflection and deformations in the reinforcement and of the concrete.
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Figure 3.13 Locations ofDEMECs and strain gauges
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3.4.4 H ealth  and  Safety  R isk  A ssessm ent on S tru c tu ra l  T esting  o f 

C o n cre te  B eam s

It was experienced from Part 1 tests that the failure of both steel and FRP reinforced 

concrete beams could be catastrophic and explosive without warning. Therefore, it 

was necessary for the beam testing procedure to be risk assessed in terms of the likely 

hazards and the mode of their occurrence taking into account the need to be close to 

the test specimen during the experiment in order to monitor surface cracks and 

deformation.

Although, the machine operator’s experience must be relied upon during such tests as 

his or her feeling for the beam’s response will be critical, it was decided that the 

‘hands on ‘ working had to cease either at the 2/3 of expected maximum load or when 

it is not practicable to obtain two sets of DEMEC readings. It was also decided that 

the apparatus such as dial gauges and displacement transducers were to be removed at 

this stage. Therefore, the displacement transducer was modified in a way that the 

readings could be monitored up to the failure load by applying thorough cover 

protection (see Photo 3.13 and play LVDT.mov file on the compact disk). This new 

transducer can monitor deflections up to 150mm. This was necessary due to the high 

flexibility of GFRP reinforced beams and their large elastic range.

Photo 3.13 The LVDT with cover protection used to monitor deflection during the test
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3.5 Test Procedure

All of the beams were tested over a 2440mm span and loaded symmetrically at two 

points to give a 900mm long zone of uniform bending. The load was applied through 

103mm side square steel plates and was applied to the beam in increments of 2kN by 

means of one 300kN hydraulic actuator and was measured with a load cell. At each 

load, the cracks were marked on both sides and the deflection, strain from both 

reinforcements and concrete were recorded. The test was continued until failure either 

in flexure or shear occurred. The overall behaviour of reinforced concrete beams, in 

terms of crack patterns, load-deflection hysterises, failure mode together with load 

carrying capacities were filmed and photographed. Each test on average took 

approximately 4 hours. Filming each test was particularly useful for further 

observations and retrospective appraisal and analysis. Examples of the video clips for 

some of the tests and testing apparatuses are compressed in a compact disk and 

included in the thesis (see the disk pocket attached at the end). It is believed to be 

useful and valuable contribution to the method of monitoring experiments. These 

video clips can be viewed with QuickTime software programme, which runs on 

Windows 95,98, NT and 2000. It requires an Intel Pentium or compatible processor, 

32MB of RAM, SoundBlaster or compatible sound card and speakers.

Small specimen testing

Control specimens, cubes (for compressive strength) and cylinders (for elastic 

modulus) were tested in a 3000kN capacity Avery-Denison compression test machine 

in accordance with BS1881 Part 116 and 12 122 23. The average concrete strength of 

each beam was obtained from the cubes, which gave a normal failure mode. For each 

beam, specimens strains were measured up to 1/3 of the corresponding maximum 

concrete strength from the two cylinders. The linear elastic line was plotted within the 

stress versus strain graph. The modulus of elasticity of concrete was computed from 

the graphs and was taken as the average of the two cylinders (see Appendix 4).
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3.6 Conclusions

3.6.1 M aterials

1. Glass Fibre Reinforced Plastics can be manufactured in the form of 

longitudinal bars with circular cross section.

2. The helical strands applied to the GFRP rebars provide a nonuniform surface 

texture and therefore could improve the bond between the rebars and the 

concrete.

3. Tensile tests can be conducted on GFRP rebars as for the steel by providing an

appropriate anchorage at both ends of the material. The research showed that 

the copper/steel tubes at the ends of test specimens could be employed to 

achieve good anchorage.

4. GFRP rebars exhibited linear elastic behaviour up to failure under tension,

whereas steel rebars had a post yielding plateau. ?

5. The study confirmed that the concrete beams could be manufactured with 

different types and strengths of concrete using both GFRP and steel 

reinforcements.

3.6.2 Equipm ent

1. 300kN-load cell capacity displacement control beam test rig was used 

successfully to assess the behaviour of the concrete beams under two-point 

loading. The control panel had the facility for monitoring the load and 

displacement response of the beams.

2. A 150mm gauge length of a new LVDT has been used for the experiments.

The apparatus has been put in a protective box, which could function as a 

shield to prevent its breakage under catastrophic failure
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3. 600kN-load cell capacity multi-mode control universal test machine was used 

successfully to obtain tensile properties of both steel and GFRP rebars.

4. A ‘stand apparatus’ can be used for casting the ends of the GFRP rebars into

copper/steel tubes. An attention needs to be paid to the alignment of the rebars

whilst injecting the epoxy (Sikadur 32) inside the anchorage tubes.

5. lOOOkN-load cell capacity of compression test machine was used successfully 

to test concrete cube and cylinder specimens and to obtain the concrete 

properties.

3.6.3 M ethod o f M onitoring Test

1. It is advisable to carry out a formal Health and Safety risk assessment for the 

two point loading test in the laboratory prior to experimental programme of 

study. This could then provide data for the ‘test conductor’ to be aware of the 

precautions and to carry out tests safely.

2. Video filming and photographing were successfully adopted for monitoring 

the behaviour of the concrete beams. Particularly, the inclusion of the video 

clips on a compact disk is believed to provide an original way for introducing 

the test equipment and presenting the results.
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CHAPTER 4

4. Parti: GFRP & Steel Reinforced Normal, Medium and High 

Strength Concrete Beams 

4.1 Section Design and Detailing

4.1.1 Concrete B eam  Sizing

BS 81101 was used for checking the beam dimensions and detailing based on cover to 

the reinforcement, breadth (b), effective depth (d) and overall depth (h). The same 

overall beam dimensions were used for all parts of the investigation.

4.2 Experimental and Theoretical Results

4.2.1 Behaviour up to Failure

Bending tests were conducted on thirty concrete beams having three different concrete 

grades, mainly C20, C40 and C60 including some of the repeats (see Table 4.1). The 

chopped strand glass fibres added C40 grade concrete beams were also included in 

this Part. The main purpose was to investigate and compare the behaviour and 

performance of concrete beams reinforced with FRP rebars whether perform in a 

similar manner with those reinforced with high strength steel rebars.

The simply supported rectangular beams with the details shown in Figure 3.1 from 

Chapter 3, were tested under two point loading condition. In order to take advantage 

of the high tensile strengths of the FRP rebars, it was anticipated that using higher 

strength concrete could maximize the bending resistance of the beams in certain cases.
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4.2.2 Reinforcement Strains in the Maximum Bending Moment Region

The strain gauges were mounted on the reinforcing bars to measure the strains in the 

maximum bending moment region of all the beams. The locations of the strain 

gauges are shown in Figure 4.1.

Figure 4.1 The location o f the strain gauges in both shear and maximum bending 
moment regions

strain gauge in 
the max. bending 
moment region

strain gauge in 
the shear region

strain gauge in 
the shear region

It can be seen in Figure 4.2 the strain curves up to the initial crack load are straight 

lines for both steel and GFRP reinforced beams. The slope of the curve gets smaller 

beyond this but still continues on a straight line up to failure. The strains obtained 

from GFRP reinforcing bars are greater than those in the steel reinforcing bars at equal 

loads. This is due to the fact that the lower elastic modulus of GFRP makes the rebar 

bend more, resulting in a higher magnitude of strain. This is very similar to the load 

vs concrete strain relationship in Figure 4.3. This indicates that the average (bottom) 

reinforcement strains agreed quite well with average surface strains at the level of 

reinforcement. One can conclude from this that taking multiple mechanical surface 

strain measurements on the tension zone of a reinforced concrete member not only 

gives an accurate indication of crack width but also allows a fairly accurate estimate 

of average reinforcement strains or beam curvature, provided slippage between 

concrete and reinforcement is minor2. For the two GFRP reinforced beams the dotted 

lines in the Figures designate the strains at failure extrapolated from the regression 

line on the spreadsheet. This was necessary in cases where unbonding of the strain 

gauges occurred before the failure of the beam. However, the strain readings from
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both the strain gauge and the dial gauge are dependent upon the proximity of the 

cracks to the instruments and the variable properties of the concrete.

In this investigation, term ‘uncracked section ’ designates that there are no visible 

cracks observed but concrete may be considered to resist a small amount of tension. 

Similarly, the term ‘cracked section ’ designates concrete no longer resisting tension 

and visible cracks observed along the length of the beam.
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The stresses and strains in the reinforcing bars were calculated based upon the theory 

of bending at the cracked section. The formulae used for this purpose are given 

below. The sample calculations are included in Appendix 5.

Determination o f stress & strain in the reinforcements 

c r a c k e d  se c tio n :

M
a s t/g fr p aclUalcr — ( d ~  X a c tu a lc r )

actual cr

Table 4.2 contains the comparison of stresses in the rebars from the tensile (see 

Chapter 3) and bending tests. The maximum values obtained from the bending test 

(column 6) are based on using BS8110 equation at the cracked section and designate 

the experimental results used in the equation.

The comparison o f data in Table 4.2

It can be seen that the maximum stresses (column 5 & 6) in the steel rebars reach 

almost their full tension capacity whereas this is not quite the same with GFRP rebars 

except the (f)8.77 rebars. This could suggest that the rebar stresses are under the 

influence of failure modes i.e. the stresses in the rebars are more likely be close to the 

ultimate tensile capacity when the beam fails in flexure.

n 'g fn >  actual" C* zz  a
J st I gfrp actual cr  17

st/gfrp
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Table 4.2 The comparison o f  tensile stresses in steel and GFRP rebars from  the
tensile test and BS8110 equation

1
Beam

Code

2
Concrete

grade

3
Rebar

No.
Dia/Type

4 5 6
Failure

Mode

Maximum Tensile Stresses in the 
Rebars (MPa)

Tensile Test Bending Test
Measured *Calculated

TB15 C20 2-08S Flexure 523.5 505.6
RTB15 C20 2-08S Flexure 523.5 650.43
TB13 C20 2-12S Shear-Bond 497 240.91

RTB13 C20 2-725 Shear 497 411.81
TB17 C20 2-16S Shear-Bond 467 335.67
TB16 C20 2-08.77F Flexure 601 508.84

RTB16 C20 2-08.77F Shear 601 542.66
; RRTB16 C20 2-08.77F Shear 601 545.86

TB14 C20 2-13.19F Shear-Bond 470.7 314.95
' TB18 C20 2-16.44F Shear-Bond . 544 194.03

RTB18 C20 2-16.44F Shear 544 186.64

TB5 C40 2-08S Flexure 523.5 605.94
TB1 C40 2-12S Flexure 497 580.28

RTB1 C40 2-725 Flexure 497 605.02
TB9 C40 2-16S Shear-Bond 467 496.98
TB6 C40 • 2-08.77F Shear 601 452.47 '

;■ TTB16 C40FB 2-08.77F Shear 601 678.73
RTB6 C40 2-08.77F Shear 601 512.39

; TB2 C40 2-13.19F Shear-Bond 470.7 . 340.54
RTB2 C40 2-13.19F Shear. , 470.7 329.23

! TTB21 C40FB 2-13.19F Shear 470.7 345.99
TB10 C40 . 2-16.44F Shear-Bond , 544 193.60

TB7 C60 2-08 S Flexure 523.5 645.63
TB3 C60 2-12S Flexure 497 599.68
TB11 C60 2-16S Shear-Bond 467 431.72
TB8 C60 2-08.77F Flexure 601 583.85

• RTB8 C60 2-08.77F Shear 601 607.11
RRTB8 C60 2-08:77F Shear 601 642.03 .

TB4 C60 2-13.19F. Shear-Bond 470.7 402.98
• TB12 , C60 2-16.44F Shear-Bond .544 192.46
*based on BS8110 equation for cracked section using actual bending moment and neutral axis depth
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The comparison o f  data in Table 4.3

The tensile strains in steel and GFRP rebars obtained from ‘direct tensile test’ and 

‘beam bending test’ are compared in Table 4.3. The calculated strains in column 7 

were determined based upon substituting ‘actual’ bending moment, neutral axis depth 

and the second moment of area of the beams into the formula given previously (see 

also Appendix 5 for sample calculation). Generally, the agreement between the 

‘measured’ and ‘calculated’ strains based on the bending test is good (see column 6 

&7). The results indicated that the maximum tensile strains in the steel rebars reach 

almost their full tensile strain capacity whereas this is not quite the same with GFRP 

rebars except the (j)8.77 rebars (see column 5 & 6).
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Table 4.3 The comparison o f tensile strains in steel and GFRP rebars obtained from
the  ‘tensile ’ and Fending  ’  tests at failure load

1
Beam

Code

2 3 
Concrete Rebar

grade No.
Dia/Type

4 5 6 7

Failure
Mode

Maximum Tensile Strains in the 
Rebars (MPa)

Tensile test Bending test

Measured Measured Calculated
TB15 C20 2-08 S Flexure 0.0028 0.00299 0.00270

RTB15 C20 2-08S Flexure 0.0028 0.00575 0.00350
TB13 C20 2-12S Shear-Bond 0.0026 0.00289 0.00127

RTB13 C20 2-12S Shear 0.0026 0.00221 0.00218
TB17 C20 2-16S Shear-Bond 0.0023 0.00200 0.00168
TB16 C20 2-08.77F . Flexure 0.0130 0.01392 0.01120

 ̂ RTB16 C20 2-08.77F Shear 0.0130 0.02111 0.01203
RRTB16 C20 2-08.77F Shear 0.0130 0.00935 0,01211

; TB14 C20 2-13.19F Shear-Bond 0.0120 0.00515 0.00815
TB18 C20 2-16.44F Shear-Bond 0.0164 0.00168 0.00543

RTB18 C20 2-16.44 F Shear 0.0164 0.00566 0.00522

TB5 C40 2-08S Flexure 0.0028 0.00288 0.00326
TB1 C40 2-12S Flexure 0.0026 0.00338 0.00307

RTB1 C40 2-12S Flexure 0.0026 0.00252 0.00320
TB9 C40 2-16S Shear-Bond 0.0023 0.00197 0.00248

'« TB6 C40 2-08.77F Shear 0.0130 ' 0.01333 0.01005
; TTB16 C40FB 2-08.77F Shear 0.0130 0.01285 0,01508
1 RTB6 C40 2-08.77F Shear 0.0130 0.01385 0.01139 !
■ TB2 C40 2-13.19F Shear-Bond, 0,0120 0.00441 0.00873.
I RTB2 C40 2-13.19F . Shear 0.0120 : 0.00587 0:00844
: TTB21 C40FB 2-13.19F Shear .0.0120 0.00629 0.00887
• TB10 C40 2-16.44F Shear-Bond 0.0164 0.00531 0.00538

TB7 C60 2-08S Flexure 0.0028 0.00356 0.00347
TB3 C60 2-12S Flexure 0.0026 0.00238 0.00317
TB11 C60 2-16S Shear-Bond 0.0023 0.00235 0.00216

• TB8 C60 2-08.77F Flexure 0.0134 0.02667 0.01297
; RTB8 C60 2-08.77F Shear 0.0134 0.01195 0.01349
' RRTB8 C60 2-08.77F . Shear 0.0134 0.01132 0.01427
\ TB4 C60 2-13.19F Shear-Bond . 0.0120 0.01019 0.01033
' TB12 C60 2-16.44F Shear-Bond 0.0164 0.00318 0.00535
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4.2.3 Reinforcement Strains in the Shear Region

After the completion of Part 1, as most of the GFRP reinforced beams failed in shear 

(some of them were catastrophic), for the repeats in Part 1 and for further tests it was 

decided to measure reinforcement strains in the shear zone. It was felt that this way, 

one could also predict the likehood failure mode of the beam (mainly shear) and its 

location; whether on the left hand side or the right hand side of the beam (if it is a 

shear failure) and prevent the risk of injury due to catastrophic failure.

The load vs shear strains in the reinforcements from the repeat tests can be seen in 

Figure 4.4 and Figure 4.5. It can be seen that the average strains in GFRP rebars are 

greater than the steel rebars. This could indicate that the GFRP reinforced beams may 

be more susceptible to shear type of failure. The relationship between load and the 

strain is linear elastic up until the appearance of invisible cracks in the shear region for 

both steel and GFRP reinforced beams. The strains in the left and in the right hand 

side of all types of beams are very close in magnitude but the location of a large 

increase in strain indicates whether the beam will fail in shear on the left or the right 

hand side. The strains of <j)8.77 GFRP rebars are greater for all concrete grades 

compared to steel reinforced beams. This could be due to the crack widths being 

larger than for the steel reinforced beams. It can be seen in Figure 4.5 that C40 

chopped strand glass fibre reinforced beams (TTB16 and TTB21) reinforced with 

(j)8.77 GFRP and ({>13.19 GFRP rebars give higher stiffness in the shear region 

compared to C40 beams reinforced with the same size of GFRP rebars. This could 

indicate that the chopped fibres used in the concrete contribute to higher shear 

capacity.
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4.2.3.1 Concrete Strains in the Maximum Bending Moment Region

Concrete strains were measured (see Figure 4.6) through the depth of the beams using 

a DEMEC gauge over a 900mm gauge length. This data enabled the neutral axis 

depth and strain distribution to be examined. The measurements were taken after 2kN 

each load increment until concrete spalling caused the dial gauge to become loose or 

to extend up to its limit. This behaviour was consistent for all the beams, indicating 

that the failure of the beam was imminent.

Figure 4.6 The location o f the concrete strains measured at the maximum bending 
moment region o f the beams

DEMEC 1

DEMEC 2

DEMEC 3

DEMEC 4

An example load vs concrete strain curves are shown in Figure 4.7, Figure 4.8 and 

Figure 4.9 for beams reinforced with steel and GFRP rebars, failing in either flexure 

or shear. The flexural failure mode designates that either rebars (steel) yield followed 

by the concrete crushing at the top or the rebars rupture simultaneously with concrete 

splitting in the maximum bending moment region. The shear failure mode is 

designated by the diagonal cracks in the shear region developing rapidly when the 

beam approaches its ultimate capacity, followed by the flexural cracks within the 

maximum moment region and ultimately a large diagonal crack opens up to cause the 

beam to fail in shear.
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Figure 4.7, Figure 4.8 and Figure 4.9 show that regardless of size or type of 

reinforcing bars and concrete grade, the load vs strain curves are linear up to around 

load of 4kN (first visible crack appearance). Above this which the concrete strains 

above the neutral axis increase rapidly (more distinguishable in flexural failure and 

GFRP reinforced beams) with increasing load. This indicates that the concrete is in its 

non-elastic phase. As soon as the concrete reaches this phase, the neutral axis depth 

starts to decrease (see Figure 4.10, Figure 4.11 and Figure 4.12). The neutral axis 

depth of the beams was measured from the top of the concrete beam section. The rate 

of increase in strain with load and decrease in neutral axis depth are both greater for 

GFRP reinforced beams compared to steel reinforced beams. However, this 

phenomenon is more obvious for both steel and GFRP concrete for all concrete grades 

C20, C40, C60 beams reinforced with small diameter (<j)8 steel and <J)8.77 GFRP) 

reinforcing bars. It seems that the strain distribution for all the beams is linear both 

above and below the neutral axis (see Figure 4.13, Figure 4.14). However, one must 

remember that once the concrete is cracked the dial gauge reading is not the true 

strain, but is an average 'strain' which depends on the position of the cracks.

Therefore, the strain distribution may not be linear below the neutral axis for this 

reason.
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Figure 4.13 An example strain distribution o f C20 concrete beam reinforced with 12mm
diameter steel rebars
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Figure 4.14 An example strain distribution o f  C20 concrete beam reinforced
with 13.19mm diameter GFRP rebars
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4.2.3.2 Maximum Concrete Compressive Strain

The typical concrete strain distribution across the section is shown in Figure 4.15. 

This can be used for determining the actual neutral axis depth and the maximum 

concrete compressive strain.

Figure 4.15 Determination o f neutral axis depth and the maximum concrete 
compressive strain using measured concrete strains

Max compression strain, e,

Demec L
Measured strain, eci

Demec 2? ^ Measured strain, ec2

Demec 3Measured strain,

Measured strain, eC4
Demec 4

The derived formula (using similar triangles) below used to calculate the maximum 

concrete compressive strain. The sample calculations are included in Appendix 5.

maximun concrete compressive strength :

e  1 { x - a A  £ .x
——  = -------— => (max. compressive strain)^ = — ——
£ x  co ( x - a Aco 1
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Table 4.4 Extrapolated maximum concrete compressive strains in the beams

1 2 3 4 5
Beam Concrete Rebar Failure Maximum
Code grade No. Load Concrete

Dia/Type (kN) Compressive
Strain

TB15 C20 2-08 S 23.00 0.00109
RTB15 C20 2-08 S 25.10 0.00268
TB13 C20 2-12S 42.00 0.00181

RTB13 C20 2-12S 38.70 0.00124
TB17 C20 2-16S 56.30 0.00185

• TB16 C20 2-08.77F 28.00 ; ,0.00310
' RTB16 C20 2-08.77F 24-00 0.00205
. RRTB16 C20 2-08.77F 26.00 - 0.00206

TB14 C20 2-13 19F 31.50 0.00230
: TB18 C20 2-16.44F 30.00 0.00212

RTB18 C20 2-16.44F 26.60 0.00124

TB5 C40 2-08S 24.00 0.00102
TB1 C40 2-12S 50.00 0.00173

RTB1 C40 2-12S 51.00 0.00129
TB9 C40 2-16S 68.00 0.00178
TB6 C40 2-08.77F ’ . 20.00 0.00152

, TTB16 C40FB 2-08.77F . 33.60 0.00256
; RTB6 C40 2-08.77F 22.00 0.00154
1 TB2 C40 2-13.19F 34.00 0.00236
; RTB2 C40 2-13.19F 31.60 0.00181
- TTB21 C40FB 2-13.19F 36.00 0.00198
?.' TB10 C40 2-16.44F 29.00 0.00170

TB7 C60 2-08S 24.00 0.00090
TB3 C60 2-12S 48.00 0.00142
TB11 C60 2-16S 58.00 0.00129
TB8 C60 2-08.77F 26.00 0.00222

. RTB8 C60 2-08.77F 26.40 0.00186
; RRTB8 C60 2-08.77F .30.00 0.00214
, TB4 C60 2-13.19F 38.00 0.00199

TB12 C60 : 2-16.44F 28.00 0.00153
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The comparison o f data in Table 4.4

• The average compressive strains extrapolated (see Figure 4.15) from measured 

strains on top of the beam at failure were 0.0017 for C20 steel reinforced beams, 

0.0015 for C40 steel reinforced beams and 0.0012 for C60 steel reinforced beams. 

This suggests that the concrete could take more load in the compression zone since 

the design ultimate compressive strain of concrete, 0.0035, has not been reached.

• The average maximum concrete compressive strains extrapolated from the 

measured values were 0.0021 for C20 GFRP reinforced beams, 0.0019 for C40 

and C60 GFRP reinforced beams. Although most GFRP beams failed in shear 

(except TB16 and TB8) it seems that the max compressive strains for GFRP 

reinforced beams are higher than the steel reinforced beams due to the fact that the 

number of cracks in GFRP beams less but deeper than for the steel beams (see 

Appendix 6  to Appendix 8) leaving the maximum bending region of the beam 

under more stress.

• The concrete compressive strains in the steel and GFRP reinforced beams seem to 

be slightly influenced by the rebar diameter and the concrete grade. There is some 

evidence for both GFRP and steel reinforced beams that the maximum 

compressive strains are less for beams of higher concrete grades with bigger 

diameter bars than the lower grade of concrete beams reinforced with small 

diameter bars (see column 5 in Table 4.4). This is due to the fact that the higher 

grade concrete with bigger bars will resist bending more than the lower grade 

concrete with smaller bars.
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4.2.3.3 Neutral axis Depth at the uncracked and the cracked sections

Figure 4.15 can be adopted for determining the neutral axis depth for both steel and 

GFRP reinforced beams as well as the equations which are available in the BS 8110 

design code. A sample calculation is included in Appendix 5.

direct measurement o f the neutral axis depth at the uncracked and cracked sections:

£ r1  ( X ~ C L r )  ,  .  N
—— = -------- — (similar triangles)
£cX ( x - a t)

( £ c l ^ 2  £ c 2 ^ \ )
£ c\ X ~ £ c2 X  ~  £ c \ a i  ~ £ d a \ X  —  -  -

C£ c l ~ £ c 2 )

theoretical equations of the neutral axis depth at the uncracked and cracked sections 

uncracked: cracked:

1 f h Y
a ep  + - \  — I

% =2L = ---------- T T V -  ^ -  = ^ a , p ( 2 + a , p ) - a , p
d n

a eP+ -  
\ d

The comparison o f  data in Table 4.5

Table 4.5 contains the theoretical and the experimental neutral axis depth of the 

beams.

• The theoretical neutral axis depth of both steel and GFRP reinforced beams is in 

good agreement with the experimental values at the cracked section regardless of 

the modes of failure (see column 5 and 6).

• For all beams it was observed that the neutral axis depth decreases as the load 

increases and it becomes almost a constant value towards the failure (see Figure

4.10, Figure 4.11 and Figure 4.12).

• The neutral axis depth of GFRP reinforced beams at failure is far less than the 

steel reinforced ones due to the lower modulus of elasticity of the GFRP rebars.
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• The concrete grade does not seem to have an influence on the neutral axis depth. 

However, the rebar diameter seems to affect the depth of neutral axis i.e. the 

bigger the diameter of rebar the less the upward movement of the depth of the 

neutral axis. This is more obvious with steel reinforced beams.

• Note that the measured depths of neutral axis at the cracked section is based on the 

last DEMEC reading at a load nearer to the failure. It can be seen in the Figure

4.10, Figure 4.11 and Figure 4.12 that once the section cracks neutral axis depths 

eventually become straight line towards the failure.
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Table 4.5 The experimental and the theoretical neutral axis depths o f the beams at the 
uncracked and cracked sections

1 2 3 4 5 6
Beam Concrete Rebar 1 Neutral axis depth (mm) 1
Code grade No. Theory Theory max Measuredmax

Dia/Type Uncracked Cracked Cracked
TB15 C20 2-08 S 103.15 36.14 48.60

RTB15 C20 2-08S 103.06 35.21 43.70
TB13 C20 2-12S 105.35 52.83 92.10

RTB13 C20 2-12S 104.92 50.18 66.00
TB17 C20 2-16S 108.14 67.00 84.90
TB16 C20 2-08.77F 101.98 20.50 29.40

i RTB16 . C20 2-08.77F .101.94 19.68 22.50
: RRTB16 C20 2-08.77F 102.06 21,96 30.20

TB14 C20 2-13.19F 102.37 27.09 32.80
; TB18 C20 2-16.44F -102.73 32.09 39.60

RTB18 C20 2-16.44F 102.81 33.00 33.90

TB5 C40 2-08S 103.11 35.67 46.00
TB1 C40 2-12S 105.02 50.82 61.50

RTB1 C40 2-12S 104.92 50.18 59.40
TB9 C40 2-16S 107.27 63.18 68.80
TB6 C40 2-08.77F * 101.97 20.18 23.90

J TTB16 C40FB 2-08.77F 102.97 20.23 29.20
: RTB6 C40 2-08.77F 101.90 18.71 18.00
; TB2 C40 2-13.19F 102.37 27.22 .32.60
: RTB2 C40 2-13.19F 102.28 25.86 27.70
: TTB21 C40FB 2-13.19F 103.42 28.05 35.60

TB10 ; C40 2-16.44F 102.74 32.17 37.50

TB7 C60 2-08S 103.15 36.06 42.50
TB3 C60 2-12S 104.83 49.60 54.90

TB11 C60 2-16S 106.99 61.83 66.00
j TB8 C6 0 2-08.77F 101.96 i9.91 2330

RTB8 C60 2-08.77F 101.94 19.66 20.20
: RRTB8 C60 2-08.77F 101.96 19.93 26.40
: TB4 C60 2-13.19F 102.28 25.87 24.40
; TB12 . C60 2-16.44F 102.64 30.94 33.60
Note: The measured neutral axis depths at the uncracked section are omitted due to the fact that once 
the beam is loaded, the section starts to crack. Therefore, the actual values cannot be compared easily 
with the theoretical ones.



4.2.4 Elastic & Ultimate Load/Moment Capacities

In Table 4.6 the theoretical and measured (actual) bending moment capacities of each 

beam were calculated using BS8110 formulae below (see also Appendix 5). Note that 

the actual moment capacity of the beams was calculated by substituting the 

experimental load into the formulae whereas the theoretical bending moments were 

calculated using the theoretical neutral axis depth.

Actual and theoretical bending m oments: 
uncracked/cracked section:

F
— - e )  T 2
2  w L sM = —------------ 1----- —iVA actual ~  T  ~

uncracked section:

M  theouncr =  f s t !  gfrp^-s! gfrp a ----------
V

based on steel
y

cracked section:

^  theocr f s t  / gfrp^st / gfrp based on steel

The comparison o f  data in Table 4.6

• It can be seen in column 6 that the initial capacity (initial crack load) of the steel 

and GFRP reinforced beams are more or less the same. It also seems that the 

initial capacity of steel and GFRP beams is slightly increased with medium and 

high strength concrete.

• In columns 10 and 11 that the agreement between actual and theoretical maximum 

moment capacities of steel reinforced beams for all three diameters can be 

considered fair. When applied to GFRP reinforced beams, theory overestimates 

the ultimate moment capacity except the beams reinforced with <j)8.77 GFRP 

rebars. It is believed that this difference may have originated from possible 

material variations (e.g. slightly larger average area, or lower modulus of elasticity 

of the GFRP rebar). In addition to this, it may have resulted from the GFRP
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beams exhibiting very large deformations before reaching the ultimate flexural 

capacity so that, the simplifying assumptions made in the analysis caused larger 

errors than in conventional steel beams that reached their maximum moment at a 

considerably smaller curvature. However, it should be noticed that the values for 

(j)8.77 GFRP reinforced beams are well within the range of theoretical values. 

This is particularly so with high strength concrete.

• Failure loads suggest that the steel reinforced beams are more sensitive to rebar 

area and less sensitive to concrete grade than those reinforced with GFRP, 

however cognisance must be taken of failure mode in this respect. It was also 

interesting to note that the smaller diameter, <J)8.77 GFRP reinforced beams 

showed similar ultimate load capacity to steel, <j)8 reinforced beams even though 

most of GFRP beams failed in shear.
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4.2.5 Ultimate Shear Capacity

In Table 4.7 the theoretical and actual (measured based on the ultimate failure load) 

shear capacities of each beam calculated using the formulae below (see also 

Appendix 5).

Actual & theoretical shear strength of the beams

Sactual

_ 1000(F + Beam self weight) _  _ _

=*,*2 0-79
100 Ast/gfrp

\  1 / 3  ,  N 1 / 4
A f 400^

bd
where kj = l a n d k 2 = a V/3

v 25y

where /  is not to be taken as greater than 40MPa

The comparison o f data in Table 4.7

• The comparison between the theoretical and measured values indicates that the 

theory overestimates the shear capacity of both steel and GFRP reinforced beams.

• Generally, the shear resistance of the steel reinforced beams is higher than the 

GFRP reinforced ones. The results in the steel reinforced beams show that the 

shear resistance increases with increase in rebar area.

• C40 concrete beam (TTB16) mixed with glass fibre chopped strands give higher 

shear resistance (measured) for the section containing the same rebar area in 

GFRP reinforced beams (TB6 and RTB6).
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4.2.6 Deflection

The deflection behaviour of steel reinforced beams that failed in flexure showed yield 

line of steel reinforcing bars before the concrete crushed at the top of the beam (see 

Figure 4.16, Figure 4.17 and Figure 4.18). This was not the case with steel beams 

failed in shear. In the case of GFRP reinforced beams regardless of their modes of 

failure, all the beams behaved in a similar manner. The load vs deflection graphs are 

similar in shape for all concrete grades. In the pre-cracking stage the slope of first 

segment is steep i.e. small increase in deflection when load increases. The second 

segment is linear leading to beam failure. The slope of this portion is relatively 

smaller than the initial portion. This shows that once the concrete had cracked, the 

beam deflected at a faster rate when load continued to increase. When flexural 

cracking develops, the contribution of concrete in the tension region is considered 

negligible. This is also reflected by the results in that concrete grade is not the main 

factor that affects the deflection at a failure. It is apparent from the graphs that as well 

as elastic modulus of each material, the area of reinforcement also contributes to the 

deflection behaviour of the beams i.e. at the same load for a given beam the larger the 

area of rebar the smaller the deflection and the larger the load capacity.
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The midspan deflection values in Table 4.8, columns 10 & 12 were calculated using 

the formulae below (see also Appendix 5) corresponding to the initial crack and failure 

loads of the beams. The measured values were obtained directly from the test.

The second moment of area of transformed section 

uncracked

uncr — f -
12 [d

hiZv uncr
2

uncr + aep\ 1-d 2d)

cracked

Moment curvature relationship & deflection :

uncracked section cracked section

b d 2 d  j

M theouncr

V h) /  theol c uncr V h) )  theo.

uncr
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The comparison o f  data in Table 4.8

• Generally, the calculated deflections of all the beams within the elastic limit (first 

segment of the curve) are smaller than the measured ones.

• The measured midspan deflections of GFRP reinforced beams at the uncracked 

section, are generally higher than the steel reinforced ones for a given initial crack 

load.

• The maximum calculated deflections of the steel and GFRP reinforced beams are 

very close to the measured deflections at the cracked section.

• The measured deflections of GFRP reinforced beams are bigger than the steel 

reinforced beams for a given load at failure at the cracked section.

• The ‘calculated’ deflections verified that the BS8110 equation can be used for 

predicting the deflection of the beams reinforced with either GFRP or steel.
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4.2.7 Cracking Behaviour

It is well known that concrete has a low tensile strength compared to its compressive 

strength. When the principal tensile stress from external and internal forces exceeds 

the tensile strength of concrete, cracks occur. The tensile strength of concrete will 

initially depend on the type of concrete mix, the compaction and the curing 

conditions. These cracks may reduce the durability of steel reinforcement significantly 

and it is necessary to limit the size and the distribution of them. Controlling the cracks 

is an advantage especially in aggressive environments where steel reinforcement 

requires large concrete covers.

Formation of cracks can happen soon after casting due to settlement of the plastic 

concrete. Also, during curing process of concrete the heat produced by the hydration 

will create temperature differences between internal and external parts that could give 

rise to cracks. All in all cracks can be formed both in a random manner or be 

influenced by structural characteristics of the external and internal forces, and material 

composition.

Excessive cracking is undesirable because it reduces stiffness and causes the 

possibility of deterioration of especially steel reinforced concrete with undesirable 

appearance. The crack control limits have been laid out in BS8110 Part2 Section 3.

d>8 Steel and 68.77 GFRP Reinforced C20 C40 C60 Concrete Beams 

First hairline cracks became visible at the maximum bending moment region under 

6kN total load for steel reinforced beams and subsequently grew more prominent and 

numerous as the load increased (see Appendix 6). The cracks developed in C40, C60 

grade concrete beams have more branches compared to C20 grade concrete beams.

The length of crushing in the compression zone of C60 beam was longer than C20 and 

C40 beams. As would be expected for GFRP having a low modulus of elasticity, 

most GFRP reinforced beams started to exhibit visible cracks under relatively low 

loads, 4kN, and cracks grew rather large when load increased. Table 4.9 contains the 

average number of cracks at failure of the beams.
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Table 4.9 Average number o f  cracks in 8mm diameter steel and 8.77mm diameter
GFRP reinforced beams at failure

No. of cracks a t failure First crack load (kN)

C20 C40 C60 C20 C40 C60
0 8  Steel 18 23 18 6 6 6
08.77  GFRP 9 9 9 4 4 4
08 .77  GFRP 
(fibre mix)

12

d>12 Steel and d>13.19 GFRP Reinforced C20 C40 C60 Concrete Beams

The first hairline cracks became visible within the maximum bending moment region 

under a 4kN total load for C20 and 8kN for C40 (except RTB1 which was 6kN) and 

C60 steel reinforced beams and subsequently grew more prominent and numerous as 

the load increased (see Appendix 7). The crack patterns resemble those reinforced 

with c{)8 steel reinforced beams for all grades of concrete in this category. The C20, 

GFRP reinforced beams developed visible cracks under relatively low load 4kN 

compared to C40-average of 5kN and C60 at 6kN load GFRP reinforced beams. 

Afterwards, the cracks grew much large when load increased. In this category, it 

seems that the number of cracks increases with an increased load capacity in high 

strength and fibre mix concrete. The comparison between (J)12 steel and (j)13.19 GFRP 

reinforced beams showed that the number of cracks developed in (j)13.19 GFRP is 

approximately 50-80% less than that of steel beams at failure. Table 4.10 contains the 

average number of cracks at failure of the beams.

Table 4.10 Average number o f cracks in 12mm diameter steel and 13.19mm diameter 
GFRP reinforced beams at failure

No. of cracks a t failure F irst crack loac (kN)
C20 C40 C60 C20 C40 C60

0 1 2  Steel 25 25 30 4 8(6) 6
013.19 GFRP 13 13 to 16 19 4 5 6
013.19 GFRP 
(fibre mix)

18
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4)16 Steel and <1)16.44 GFRP Reinforced C20 C40 C60 Concrete Beams

Initial cracking of the steel reinforced beams was observed under 6kN in C20, 12kN 

in C40 and 9kN in C60 concrete. The crack spaces in these beams are closer to each 

other compared to <j)8 small and <f>12 medium steel reinforced beams (see Appendix 8). 

This is probably due to the fact that the load capacity of these beams is higher than the 

small and medium size steel reinforced beams. This means that more cracks are 

developing to resist the beam in bending. Table 4.11 contains the average number of 

cracks at failure of the beams.

Cracking started in GFRP reinforced beams at a total load of 4kN to 4.6kN in C20, 

5kN in C40 and 5.8kN in C60 subsequently followed a pattern similar to that of 

beams reinforced with ({>8.77 GFRP with similar load capacities (except the cracks 

have more branches in this category). The number of cracks developed at failure 

again similar to the beams reinforced with (j)8.77 GFRP beams. The comparison 

between (j)16 steel and <j)16.44 GFRP reinforced beams showed that the number of 

cracks developed in (})16.44 GFRP is approximately 60-80% less than that of steel 

beams at failure.

Table 4.11 Average number o f cracks in 16mm diameter steel and 16.44mm diameter 
GFRP reinforced beams at failure

No. of cracks at failure First crack load (kN)

C20 C40 C60 C20 C40 C60
0 1 6  Steel 27 29 39 6 12 9
016.44 GFRP 10 9 8 4/4.6 5 5.8

4.2.7.1 Modes of Failure

The typical failure modes of the beams are shown in Photo 4.1 and Photo 4.2. The 

test carried out on GFRP and steel reinforced beams can be viewed on the 

representative video clips from the compact disk (play FRPJbeamtest Jla t.m ov , 

FRPJbeamtestl.mov and S tee lJb l7 _ l &2.mov). Initially, vertical cracks emanating 

from the bottom surface within the middle section preceded failure in all cases. In 

some cases, these were followed by inclined cracks towards the supports. At the
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ultimate condition, the beams in Part 1 failed either in flexure or in shear. The flexure 

failures comprised two types; meaning that the beams either failed gradually resulting 

in rebar yielding followed by concrete crushing in the compression zone or 

catastrophically in which rebars snapped followed by concrete broken at the midspan. 

The failure mode for GFRP reinforced beams was predominately shear failure. The 

shear failure was of two types. Type I resulted from simple diagonal shear between 

load point and support and Type II by shear-bond failure; along a line emanating from 

a loading point and passing diagonally across the section then horizontally along the 

rebar-concrete interface between one loading point and a support.

Development o f  crack pattern leading to Flexure Failure

The tensile stresses in the concrete are transferred to the reinforcing bar through bond 

forces developed between concrete and reinforcing bar. At the cracked section, tensile 

stress in concrete is relieved and becomes zero across the crack. As a result, the 

reinforcing bar must carry the tensile forces at that cracked section. The neutral axis 

then shoots upward at the cracked section in order to maintain equilibrium of the 

forces at that section. More cracks will appear between the 'old cracks' and this will 

continue at different locations until the concrete strains exceed the limiting concrete 

tensile stress. Eventually the increase in crack number will stop due to either the 

excessive slip between the rebar and concrete or the limit on the distance between 

cracks to transfer sufficient stress to the concrete to maintain equilibrium. When this 

happens the branches of the cracks will propagate at the midspan (max. bending 

moment region) until the flexural failure of the beam.
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Photo 4.1 A view offlexural failure of2(j)8 steel reinforced C20 grade concrete beam

Photo 4.2 A view o f  shear failure of2(/)8. 77 GFRP reinforced C60 grade concrete 
beam
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Development o f  crack pattern leading to Shear (Diagonal Tension) Failure

The mechanism of shear (diagonal tension) failure in reinforced concrete is not a 

simple phenomenon and despite the amount of experimental and theoretical research 

work, it is not fully understood. However, in all the principal reinforced concrete 

design texts, it is given that there are three main components in shear resistance of a 

beam without shear reinforcement. These are, with reference to concrete in the 

compression zone, dowelling action of tensile reinforcement and aggregate interlock 

across flexural cracks. The purpose of a beam is to transfer a load from its point of 

application to the support. This transfer creates tension cracks in the concrete which 

means that the load will rest on the longitudinal reinforcing bar (except in the case 

where the load is close to the support). If there is nothing in the beam to resist this 

load, then the reinforcing bar will be split apart from the concrete. It is emphasized in 

Nielsen et al's3 paper that this failure type should be avoided for two reasons. Firstly, 

it may occur at a load which is much lower than the flexural capacity of the beam and 

secondly, it is a sudden failure which may cause severe collapse.

In summary, nearer the supports, the cracks are inclined towards the span due to the 

combination of flexure and shear. In this case, the principal compression stresses are 

inclined at a steeper angle, so that the tensile stresses are liable to cause diagonal 

cracking. Under further load increments, these diagonal cracks develop quickly to 

cause failure.

4)8 Steel and 4)8.77 GFRP Reinforced C20 C40 C60 Concrete Beams

The morphology of beam failures is given in Table 4.12. As it can be seen in table 

that all steel reinforced beams were failed in flexure whereas GFRP reinforced beams 

were failed in shear with the exception of C20 TB16 and C60 TB8 beams. Shear 

failure occurred in two repeats of these two beams, RTB16, RRTB16, RTB8 and 

RRTB8.
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Table 4.12 The modes o f  failure o f 0 8  Steel and 08.77 GFRP Reinforced C20 C40 
C60 Concrete Beams

Beam
Code

Concrete Grade 
(Cube Strength- 
MPa)

Rebar No 
Dia/Type Failure Morphology (Failure Load-kN)

TB15 C20(36) 2(()8
Steel

Flexurefbalancedl-Catastroohic failure at the midsDan. 
concrete broke in two parts, steel bars disintegrated in the 
same region (23)

RTB15 C20(50) 2<J)8
Steel

Flexure-Steel yielded and concrete soalled in the 
compression zone (25.10)

TB5 C40(61) 2<J)8
Steel

Flexure-Steel yielded and concrete spalled in the 
compression zone (24)

TB7 C60(73) 2<J)8
Steel

Flexure-Steel yielded and concrete soalled in the 
compression zone (24)

TB16 C20(35) 2(J)8.77
GFRP

Flexure(balanced)-CatastroDhic failure at the midsoan, 
concrete broke in two parts, GFRP bars disintegrated in 
the same region (28)

RTB16 C20(49) 2<J)8.77
GFRP

Shear-Diaeonal tension crack propagated across the 
section outside the maximum bending moment region 
(24)

RRTB16 C20(47) 208.77
GFRP

Shear-Diaeonal tension crack propagated across the 
section outside the maximum bending moment region 
(26)

TB6 C40(69) 208.77
GFRP

Shear-Diaeonal tension crack Dropaeated across the 
section outside the maximum bending moment region 
(20)

RTB6 C40(65) 208.77
GFRP

Shear-Diaeonal tension crack orooaeated across the 
section outside the maximum bending moment region 
(22)

TTB16 C40FB(59) 208.77
GFRP

Shear-Diaeonal tension crack Dropaeated across the 
section outside the maximum bending moment region 
(33.60)

TB8 C60(72) 208.77
GFRP

FIexure(balanced)-Catastroohic failure at the midspan, 
concrete broke in two parts, GFRP bars disintegrated in 
the same region (26)

RTB8 C60(70) 208.77
GFRP

Shear-Diaeonal tension crack propagated across the 
section outside the maximum bending moment region 
(26.40)

RRTB8 C60(78) 208.77
GFRP

Shear-Diaeonal tension crack propagated across the 
section outside the maximum bending moment region 
(30)
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( 1)12 Steel and d> 13.19 GFRP Reinforced C20 C40 C60 Concrete Beams

The morphology of beam failures is given in Table 4.13. As it can be seen in the table 

that all steel reinforced beams failed in flexure with exception of C20 TB13 and its 

repeat which failed in shear. All GFRP reinforced beams failed in shear.

Table 4.13 The modes o f failure o f  (j) 12 Steel and (j) 13.19 GFRP Reinforced C20 C40 
C60 Concrete Beams

Beam
Code

Concrete Grade 
(Cube Strength 
MPa)

Rebar No 
Dia/Type Failure Morphology (Failure Load-kN)

TB13 C20(21) 2<hl2
Steel

Shear-bond-Diaeonal tension crack Dronaeated across the 
section and along the rebar, outside the maximum bending 
moment region (42)

RTB13 C20(50) 24)12

Steel

Shear-Diagonal tension crack propagated across the 
section outside the maximum bending moment region 
(38.70)

TB1 C40(55) 24)12

Steel
Flexure-Steel yielded and concrete spalled in the 
compression zone (50)

RTB1 C40(61) 24)12

Steel
Flexure-Steel yielded and concrete spalled in the 
compression zone (51)

TB3 C60(72) 24>12

Steel
Flexure-Steel yielded and concrete spalled in the 
compression zone (48)

TB14 C20(39) 24)13.19
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (31.50)

TB2 C40(57) 24)13.19
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (34)

RTB2 C40(63) 2(1)13.19
GFRP

Shear-Diaeonal tension crack orooaeated across the 
section outside the maximum bending moment region 
(31.60)

TTB21 C40FB(54) 2(1)13.19
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (36)

TB4 C60(79) 24)13.19
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending . 
moment region (38)
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d>16 Steel and d> 16.44 GFRP Reinforced C20 C40 C60 Concrete Beams

The morphology of beam failures is given in Table 4.14. As it can be seen in the table 

that both steel and GFRP reinforced beams failed in shear or shear-bond.

Table 4.14 The modes o f  failure o f  (p 16 Steel and (J) 16.44 GFRP Reinforced C20 C40 
C60 Concrete Beams

Beam
Code

Concrete
Grade
(Cube Strength 
MPa)

Rebar No 
Dia/Type Failure Morphology (Failure Load-kN)

TB17 C20(47) 2({)16
Steel

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (56.30)

TB9 C40(61) 2(J>16
Steel

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (68)

TB11 C60(75) 2(1)16
Steel

Shear-bond-Diaeonal tension crack propaeated across the 
section and along the rebar, outside the maximum bending 
moment region (58)

TB18 C20(42) 2(1)16.44
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (30)

RTB18 C20(45) 2<{)16.44
GFRP

Shear-Diaeonal tension crack Dropaeated across the section 
outside the maximum bending moment region (26.60)

TB10 C40(51) 2(])16.44
GFRP

Shear-bond-Diaeonal tension crack Dropaeated across the 
section and along the rebar, outside the maximum bending 
moment region (29)

TB12 C60(76) 2<J) 16.44 
GFRP

Shear-bond-Diaeonal tension crack propaeated across the 
section and along the rebar, outside the maximum bending 
moment region (28)

4.2.7.2 Estim ation of Flexural C rack W idths

Mogaham & Sender suggest that the reinforcement of GFRP can be placed close to 

the surface where it can be expected to be the most effective. Nawy & Neuwerth5 

measured the cracks on fourteen beams (127mmx305mmx3000mm) and compared 

them with A C I318-71 code formulae. The reinforcement % varied from 0.65% to 

2.88%. The results showed that the calculated crack widths seem less than the 

observed ones. This is probably due to the possibility that the concrete area in tension 

for fibreglass reinforced beams would have to be considered larger than stipulated by 

the code for steel reinforced beams. Nawy & Neuwerth6 also emphasized that using
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fibreglass as reinforcement should permit higher tolerable crack widths, since 

corrosion of FRP is no longer a major criterion for crack control.

Mosley & Bungey7 gives an expression for maximum surface crack width based upon 

BS8110 as below (see also Appendix 5). The detail of the cross section used in the 

crack width estimation is shown in Figure 4.19.

3arr£mw   -----------------CJ—HL
max f

1 + 2
h — x

CT J

Figure 4.19 Detail o f  the cross section used in the crack width estimation

2No bars (mm /over, cmin=25m m )

The estimated crack widths o f Part 1 beams are given in Table 4.15.
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The correlation between the theoretical and the experimental (using dial gauge 

method) crack widths for all steel reinforced beams is good. In the table, it can be 

seen that for steel reinforced beams, the values obtained from the equation are higher 

than the values obtained from the dial gauge method. Conversely, the values from the 

GFRP reinforced beams are higher than the values from the equation. Furthermore, 

the agreement between the two methods seem to be in a better agreement for higher 

strength concrete beams reinforced with GFRPs. The experimental values are 

generally higher than BS8110 for C20/C40 but lower for C60 concrete. Over all, the 

results show that using a dial gauge is not just useful to measure the strains in the 

concrete but also estimating the crack widths. The equation derived by the Author for 

estimating the crack widths using 900mm long dial gauge within the maximum 

bending moment region is given below (see also Figure 4.20).

Figure 4.20 Sketch o f  maximum bending moment portion o f the beam showing the 
strains measured at two positions.

900mm

2 0I
10 -

t 2*
01

e] 7= ------------ —----------- =>A,  = e.xG .L . and A, = £7xG.L.
* GaugeLength(G.L.) 1 1  ^

A, - A ,
A,  --------------------  k-^ ----------  —

no of cracks in max. bending moment region
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Table 4.15 The estimated crack widths o f P arti beams

1 2 3 4 5 6

1 Estimated crack widths (mm)
Beam Concrete Rebar *Number **BS8110 ***Experiment
Code grade No. of

Dia/Type Cracks
TB15 C20 2-08 S 10 0.23 0.21

RTB15 C20 2-08S 10 0.77 0.72
TB13 C20 2-12S 14 0.14 0.10

RTB13 C20 2-12S 13 0.18 0.13
TB17 C20 2-16S 12 0.20 0.16

: TB16 C20 2-08.77F. 5 1.06 . "  1.94 '
! RTB16 C20 2-08.77F 5 - 0.90 1.64
; RRTB16 C20 2-08.77F 8 0.65 0.75
• TB14 C20 ■2-13.19F 7 0.79 1.03
, TB18 C20 2-16.44F 7 0.53 0.69

RTB18 C20 2-16.44F 5 0.38 0.68
TB5 C40 2-08 S 12 0.30 0.23
TB1 C40 2-12S 10 0.29 0.27

RTB1 C40 2-12S 12 0.17 0.13
TB9 C40 2-16S 13 0.26 0.19
TB6 G40 2-08.77F . 4 .0.69 1.58

: TTB16 C40FB 2-08.77F 5 0.90 1.66
. RTB6 . C40 , 2-08.77F 6 0.76 1.15

TB2 C40 2-13.19F . 7 0.74 0.96 ,
RTB2 C40 2-13.19F 7 0.64 0.83
TTB21 C40FB 2-13.19F 8 0.59 0.68
TB10 C40 2-16.44F . 5 °*48 0.87
TB7 C60 2-08S 10 0.22 0.20
TB3 C60 2-12S 14 0.27 0.18
TB11 C60 2-16S 15 0.19 0.12
TB8 C60 2-08.77F 11 0.89 0.74

RTB8 C60 2-08.77F 10 0.95 0.87
! RRTB8 C60 2-08.77F 14 0.76 0.50
/ TB4 C60 2-13.19F 11 0.87. 0.72

TB12 C60 2-16.44F 4 0.51 1.14
♦in the maximum bending moment region '"♦based upon the formula

♦♦♦based upon the dial gauge measurements
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4.3 Performance Quotient (Qp)

This is a concept in which the efficiency of the structural unit or system is expressed 

in terms of the relationship between functional performance and the quantity and 

quality of material of which it is comprised. Using this principle the relative 

performance of different elements can be objectively measured and compared.

To assess the efficiency of the beam in resisting load it is useful to relate cost in real 

terms or energy equivalence to strength8. As an alternative to obviate the effect of 

capricious influences associated with market and manufacturing factors which vary 

from time to time, the Author proposes a quotient relating the load capacity with the 

load bearing potential based upon a measure of the strength of component materials 

and their average cross sectional area throughout the beam. This indicates also a 

measure of efficiency of utilisation of material for a given depth and span. It may be 

expressed as:

_ 1000(F + Beam Self Weight) 9

'  f c ( . b h - A „ . sfrp )  +  f „ .s f n ,A « . sfrP

For flexural failure the Performance Quotient (Qp) for steel and GFRP reinforced 

beams were comparable although not for the shear type failures (see Table 4.16). The 

high value of Qp indicates that the ultimate load capacity of a beam is also high (see 

Appendix 5 for sample calculations). In column 13, the numbers indicate that the steel 

reinforced concrete beams predominate in the ranking. The numbers formatted as 

‘bold’ is to show the beams have a very similar performance value.
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4.4 Conclusions

C20, C40 and C60 grade concrete beams reinforced with smaller (4>8.77 and (J)8), 

medium (<j)13.19 and <()12) and larger ((j)16.44 and (J)16) diameter GFRP and steel 

reinforcing bars tested under two point loading and the test results compared with 

theory (BS8110) based upon the aspects below:

• Stress and strain in the reinforcements and concrete at the maximum bending 

moment and shear regions (where obtainable)

• The depth of neutral axis

• The elastic and ultimate load/moment capacities

• The ultimate shear capacities

• The deflection

• The cracking behaviour and the estimation of crack widths

• The modes of failures and performance quotient

The stresses in the rebars at the cracked sections, can be calculated by substituting the 

actual (measured) bending moment, second moment of area and depth neutral axis in 

BS8110 equations (see Appendix 5). The results indicated that the maximum tensile 

stresses and strains in the steel rebars reach almost their full tensile capacity whereas 

this is not quite the same with GFRP rebars except the <{)8.77 rebars (see Table 4.2 

and Table 4.3).

The rebar and concrete strains can also be monitored in the shear zone of the concrete 

beams. In this way, it is possible to predict the most likely failure mode of the beam.

The results showed that the neutral axis depth of both the steel and GFRP beams, 

decreases as the load increases. It seems that the concrete grade has no influence on 

the neutral axis depth. However, when larger reinforcing bars are used, the depth of 

neutral axis shoots up less and this is more pronounced with steel reinforced beams. 

The agreement between the theoretical and measured (experimental) values of the
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depth of neutral axis of all types of beams at the cracked section is very good (see 

Table 4.5).

The initial crack (visible) load of all the beams seems to be approximately 4kN 

minimum (see Table 4.6). However, it also seems that this value increases as the 

concrete grade gets higher only for the beams reinforced with larger diameter rebars.

The ultimate load capacities of the beams seem to be influenced by the area of rebars 

for all the beams except the ones reinforced with <j)16.44 GFRP (see also Table 4.6, 

column 7).

Theoretical bending moment capacity of all the beams is less than the measured ones 

at the uncracked section (see Table 4.6). Theoretical values of moment capacity of the 

steel beams compare well with the experimental data at the cracked section, whereas 

the theory overestimates the moment capacity of GFRP reinforced beams. However, 

the moment capacity of the smaller 8.77 GFRP reinforced beams at the cracked 

section (especially with high strength concrete) agrees with theory fairly well.

The maximum theoretical shear capacity of all the beams is higher than the measured 

ones (see Table 4.7). The shear capacity of steel and GFRP reinforced beams 

increases with increase in rebar area and the concrete strength. The contribution of 

chopped fibres in concrete to the shear capacity of the beams is also noticeable.

Generally, the calculated deflections of all the beams within the elastic limit are 

smaller than the measured ones (see Table 4.8). The measured deflections of GFRP 

reinforced beams are bigger than the steel reinforced beams for a given load at failure. 

The deflection of GFRP reinforced beams is larger than the steel reinforced beams due 

to lower modulus of elasticity of GFRP.

The crack development and the patterns of all the beams are generally the same. 

However, in comparison with steel reinforced beams, the cracks in GFRP reinforced 

beams are deeper and larger gaps between the adjacent cracks (see Appendix 6).
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The theory for predicting the maximum crack widths in the beams is adequate for both 

steel and GFRP reinforced beams (see Table 4.15). Expectedly, cracks were wider in 

GFRP reinforced beams than the steel reinforced beams.

The mode of failure appears to be influenced by rebar type and area for all the beams 

(see Table 4.12, Table 4.13 and Table 4.14). For flexural failure GFRP beams display 

a greater capacity to absorb energy as indicated by the area under the load deflection 

curve than steel for similar ultimate load capacity, although they exhibit reduced 

stiffness.

Performance Quotient (Or) relating load capacity to section potential for similar beam 

span dimensions and load configuration may be a useful efficiency comparator (see 

Table 4.16). The high value of Qp indicates that the ultimate load capacity of a beam is 

also high. The results indicated that the steel reinforced concrete beams predominate 

using this method of ranking.
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CHAPTER 5

Contnniration

5 PART2: HIGH STRENGTH CONCRETE BEAMS WITH GFRP 

REBARS USING CURVED & STRAIGHT GEOMETRIC 

CONFIGURATION 

5.1 Experimental and Theoretical Results

5.1.1 Behaviour up to Failure

This section covers the second part of the experimental work and was conducted on 

C60 grade concrete beams using different configurations of 8.77mm diameter GFRP 

reinforcing bars. The behaviour of the beams in this Part was assessed and integrated 

similarly to that in Part 1 such as:

• Maximum failure load

• Deflection

• Rebar and concrete strains

• Performance quotient

• Type of failure e.g. flexural or shear

• Scope for improvement in capacity e.g. by changing mode of failure from shear to 

flexure and utilizing flexural capacity of GFRP rebars

The reinforcement configurations are set out in Figure 5.1, Figure 5.2, and Figure 

5.3. The geometrical definition of the ‘curved’ rebars is expressed mathematically in 

Appendix 11. The physical properties and the summary of the test results are given in 

Table 5.1. It can be seen in Figure 5.1 that the straight rebars were put straight in the 

tension zone of the concrete beams. Figure 5.2 shows the beams reinforced with 

2(j)8.77 and 3(j)8.77 curved profile GFRP bar only. Figure 5.3 shows the beam 

reinforced with 3(j)8.77 rebars (one rebar curved in the middle and the other two are 

straight) and 4(j)8.77 (two rebars curved in the middle and two rebars straight). The 

results of TB8 from Part 1 and its two repeat tests, RTB8 and RRTB8 were also 

included in this part together with TTB7 beam which was the only beam reinforced
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Configuration

with 13.19mm diameter GFRP reinforcing bars (see Table 5.7). The beam, TRIAL, 

which contains three curved profile GFRP rebars was initially tested for risk 

assessment purposes to see what safety precautions would need to be considered for 

further tests. For this reason, the behaviour of the beam was not fully monitored apart 

from its load vs deflection response. However, the repeat test for TRIAL beam 

(RTRIAL) was conducted to obtain more data for its behaviour under bending. From 

the first part, it was found that the performance of steel and GFRP reinforced beams is 

comparable and in most cases the existing theory is applicable to both steel and GFRP 

reinforced beams to predict their structural behaviour under bending. It was also 

observed that the shear failure is the dominant mode in GFRP reinforced beams for all 

grades of concrete. The shear failure was sudden and catastrophic in high strength 

concrete beams reinforced with GFRP and steel reinforced beams and confirmed in 

Imam et al's1 work. It is mentioned that this type of failure of high strength concrete 

is particularly relevant in structures which are subjected to earthquake, blast or 

suddenly applied loads. It is suggested by the author that the ideal solution for 

overcoming this disadvantage of high strength concrete is adding steel fibres into the 

mix and in this way also increase the ductility of the material. In Part 2 the work was 

mainly focused upon the GFRP reinforced beams. It was considered that in order to 

reduce the propensity to shear failure using different rebar profiles in high strength 

concrete beams with different geometry could be a solution. In this way it was 

considered that the ultimate load capacity of the beams could be enhanced together 

with a reduction in tendency to brittle failure. This chapter presents the results used to 

examine the behaviour of the beams reinforced with varying rebar profiles.
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Configuration

Figure 5.1 Details o f the beam reinforced with 2 & 3straight profile GFRP rebars
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Figure 5.2 Details o f the beam reinforced with 2 & 3curved profile GFRP rebars
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Configuration

Figure 5.3 Details o f the beam reinforced with 3 & 4 straight & curved profile GFRP
rebars
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The current design code (BS8110) has a limit for spacing between the horizontal 

rebars i.e. space between the bars should not be less than maximum size of coarse 

aggregate (hagg)+5 in mm for allowing the concrete to pass between the rebars easily. 

For this work, the limit for the space between the rebars should be 20+5=25mm. 

However, it can be noted that this is not the case for the beams reinforced with more 

than two rebars within 900mm maximum moment region. However, this did not 

cause a problem for concrete distribution and compaction due to the rebar 

configuration in the shear zone. The rebar spacing was maintained in the shear zone 

and subsequent investigation showed that the concrete flowed and compacted 

satisfactorily around the reinforcing bars.
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Configuration

5.1.2 Reinforcement Stresses and Strains in the Maximum Bending

Moment Region

The strain gauges were mounted on the reinforcing bars to measure the strains in the 

maximum bending moment and shear regions of all the beams. The locations of the 

strain gauges are shown in Figure 5.4.

Figure 5.4 The location o f the strain gauges in both shear and maximum bending

strain gauge in the 
max. bending 
moment region

strain gauges in the 
shear region

strain gauges in the 
shear region

The strains measured from the rebars in each beam in the maximum bending moment 

region are shown in Figure 5.5. The dotted lines in the graph represent the best-fit 

line up to failure. The Figure shows that the strains up to the initial crack load are 

linear (elastic limit) for the beams. The gradient of the line then decreases beyond the 

elastic limit but still continues approximately in a straight line up to failure. It can 

also be observed that the rebar strains decrease with increasing rebar area at each load 

increment beyond the elastic portion of the curve. Note that the slope of the curve 

after the elastic limit is steeper for the beams containing larger rebar area.
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Configuration

Stresses and strains in the reinforcing bars were calculated based on the bending 

theory at the cracked section (see Table 5.2). In the Table, 'calculated' values are 

based upon substituting the actual (measured) bending moment, second moment of 

area and the depth of the neutral axis in the theoretical equations (see column 7). The 

'measured' values were obtained directly from the experiments (see columns 6, 8 and 

9).

The comparison o f  data in Table 5.2

The tensile stresses and strains in GFRP rebars obtained from ‘direct tensile test’ and 

‘beam bending test’ are compared in the Table. The stress in the GFRP rebars 

obtained from the ‘tensile’ and ‘bending’ tests are in reasonably good agreement.

Also, the agreement between the ‘measured’ and ‘calculated’ strains based on the 

bending test is reasonably good (see column 9 & 10). The results indicated that the 

maximum tensile stress and strains in the GFRP rebars reach almost their full tensile 

strain capacity whereas this is not quite the same with <j)13.19 GFRP rebars (see 

column 8, 9 & 10). This could be due to the fact that the concrete failed in shear 

before the rebars reached their maximum tensile capacity. This could also suggest 

that the bigger that rebar diameter the less the deformation.
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Configuration

5.1.3 Reinforcement Strains in the Shear Region

The reinforcement strains were measured for all beams in the shear region using strain 

gauges. In Figure 5.6, it can be seen that the strains from the left and the right hand 

side of the beams follow a similar pattern in that they exhibit linear elastic behaviour 

up to the point where the crack openings are wide. From this point onwards there is a 

large proportioned increase in strains until the gauges lose their bond with the rebar. 

This usually indicates that the failure is more likely be 'shear'.

The purpose of the Figure is to show the ‘quantitative’ and ‘qualitative’ difference 

between ‘curved’ and ‘straight’ rebars as well as between each side of the beam. 

Although, the ‘curved’ rebars exhibit reduced stiffness in the shear zone, it is also 

worth noticing that the ‘curved’ rebars in particular show a distinctive ‘upward’ trend 

in stiffness towards failure. The comparison between 2<})8.77 (RRTB8)/3(f)8.77 

‘straight’ (TTB4) and 2(j)8.77 (TTB3)/3<j)8.77 (RTRIAL) ‘curved’ profile rebars 

showed that the strains for a given load in the curved rebars are larger than the strains 

in the straight rebars. When comparison is made between 2(j)8.77 (TTB3) curved and 

3(})8.77 (RTRIAL) curved rebars, it is apparent that the increase in rebar area enhances 

the linear-elastic portion of the curve. This could indicate that the cracks are 

appearing in the shear region of the beam reinforced with 3(J)8.77 GFRP rebars at a 

higher applied load compared to the beam reinforced with 2(j)8.77 GFRP rebars.
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Configuration

5.1.4 Concrete Strains in the Maximum Bending Moment Region

Concrete strains were measured throughout the depth of the beams over a 900mm 

gauge length (see Figure 5.7).

The strain distributions in Figure 5.8 and Figure 5.9 show the linearity of the strains 

and the position of neutral axis across the depth of the beam at each load. It can also 

be seen in the Figures that the strain distributions of both beams reinforced with 

3(j)8.77 straight and curved profile GFRP rebars are very similar. The neutral axis 

depth of the beam reinforced with three curved profile rebars seems to be higher 

compared to the one reinforced with three straight profile rebars i.e. increase in 

stiffness (see also Figure 5.7). It can also be seen that the strains above (compression) 

the neutral axis are lower compared to the strains below (tension) the neutral axis for 

both beams.
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Figure 5.8 An example strain distribution o f C60 grade concrete beam reinforced with
3No8.77 straight profile rebars
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Figure 5.9 An example strain distribution o f C60 grade concrete beam reinforced
with 3No 8.77 curved profile rebars
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Configuration

5.1.4.1 Maximum Concrete Compressive Strain

The maximum concrete compressive strain and the experimental neutral axis depth of 

the beams were determined using the linear line strain distributions (see Figure 5.8 

and Figure 5.9).

Table 5.3 Extrapolated maximum concrete compressive strains in the beams
1 2 3 4 5

Beam Concrete Rebar Rebar Maximum
Code grade No. Profile Concrete

Dia/Type Comp. Strain
*TB8 C60 2-08.77F straight 0.0022

*RTB8 C60 2-08.77F straight 0.0018
*RRTB8 C60 2-08.77F straight 0.0021

TTB3 C60 2-08.77F curved 0.0019
TRIAL C60 3-08.77F curved -

RTRIAL C60 3-08.77F curved 0.0019
TTB4 C60 3-08.77F straight 0.0021
TTB1 C60 3-08.77F straight & curved 0.0019
TTB2 C60 4-08.77F straight & curved 0.0024

RTTB2 C60 4-08.77F straight & curved 0.0023
TTB7 C60 4-13.19F straight & curved 0.0021

*beams tested in Parti -the beam tested for the risk assessment and only its load vs deflection behavior monitored

The comparison o f  data in Table 5.3.

• The average compressive strains at failure extrapolated from measured strains on 

top of the beam are 0.0021. This is approximately 2/3 (approximately 67%) of the 

maximum design concrete compressive strain given in BS8110.

• The results suggest that the maximum concrete compressive strains of the beams 

reinforced with ‘straight & curved’ profile rebars give highervalue (average of

0.0023). The maximum concrete compressive strain of the beams containing 

curved profile rebars only seems to be slightly lower than the beams containing 

straight profile rebars for the same rebar area.
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5.1.4.2 Neutral axis depth (N.A.) at the uncracked and the cracked sections

The calculation of the 'theoretical' and the 'measured' neutral axis depth of the beams 

was carried out using the formula given in Appendix 9.

Table 5.4 The experimental and the theoretical neutral axis depth o f  the beams at the 
uncracked and cracked sections

1 2 3 4 5 6 7
Beam Concrete Rebar Rebar Neutral axis depth (mm)
Code grade No. Profile Theory Theorymax Measuredmax

Dia/Type Uncracked Cracked Cracked
*TB8 C60 2-08.77F straight 101.97 20.11 23.30

*RTB8 C60 2-08.77F straight 101.95 19.87 20.20
*RRTB8 C60 2-08.77F straight 101.97 20.13 26.40

TTB3 C60 2-08.77F curved 102.43 19.34 17.70
TRIAL C60 3-08.77F curved 102.64 23.38 -

RTRIAL C60 3-08.77F curved 102.73 24.96 29.90
TTB4 C60 3-08.77F straight 102.61 22.97 23.80
TTB1 C60 3-08.77F straight & curved 102.59 22.57 23.60
TTB2 C60 4-08.77F straight & curved 102.83 26.39 27.60

RTTB2 C60 4-08.77F straight & curved 102.97 28.48 32.90
TTB7 C60 4-13.19F straight & curved 103.53 35.25 40.50

*beams tested in Parti -the beam tested for the risk assessment and only its load vs deflection behavior monitored

The comparison o f data in Table 5.4

Table 5.4 contains the theoretical and the experimental neutral axis depth of the

beams.

• As in the previous part, the theoretical neutral axis depth of the beams is in good 

agreement with the experimental values at the cracked section regardless of the 

modes of failure (see column 6 and 7).

• For all beams it was observed that the neutral axis depth decreases as the load 

increases and it becomes almost a constant value towards the failure (see Figure 

5.10). Note that the neutral axis depths given in Table 5.4 at the cracked section 

represent the values at failure.

• The rebar diameter seems to affect the depth of neutral axis i.e. the bigger the 

diameter of rebar the less the upward movement of the depth of the neutral axis.
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C onfiguration

• Note that the measured depths of neutral axis at the cracked section are based on 

the last DEMEC reading at a load close to the failure. It can be seen in that once 

the section cracks neutral axis depth tends towards a constant value until failure.

• The neutral axis depth of the beam reinforced with 2(})8.77curved profile GFRP 

rebars is less than the beams reinforced with 2(j)8.77 straight profile beams. This 

was probably because of reduced average rebar depth over the length of beam. 

Another reason could be due to the fact that more bending of the beam was 

occurring with the curved rebars. However, this seems to be an opposite way 

round with 3(j)8.77 reinforced beams. The results suggest that the increase in 

rebars area/diameter decreases the depth of neutral axis less i.e. increase in 

stiffness of the beam.
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Configuration

5.1.5 Concrete Strains in Shear Region

The concrete strains at the level of reinforcements were measured along a 200mm 

gauge length in the shear regions i.e. both the right and the left-hand side.

In Figure 5.I f  it can be seen that the strains obtained from the location where the 

straight rebars were placed are greater than the strains at the location where the 

curved rebars were placed. This is probably due to the fact the cracks initiate from 

the bottom of the beam and increase in length as the load is applied. There is also 

evidence that when the area of rebar is increased the resistance of the beam in the 

shear regions also increases. The comparison between reinforcement strains and 

surface strains at the level of reinforcements {Figure 5.6 and Figure 5.11) show quite 

good agreement up to the point where cracks are too wide to enable the dial gauge to 

be used. It seems that the concrete grade has no effect on the magnitude of strains 

together with the behaviour of the beam in the shear region. The strain gauges 

installed on the reinforcement give information regarding the shear behaviour of the 

beams.

Figure 5.11 The concrete strains obtained in the shear regions o f  the beams

36 x

24 -

0 500 1000 1500 30002000 2500

— -O — (R R TB8) Left hand-side bottom  2-08.77 G FR P straight profile Shear failure
— -s  — (R RTB8) R ight hand-side bottom  2-08.77 G FR P straight profile Shear failure
— -o  — (R RTB8) Left hand-side inclined 2-08.77 GFRP straig th  profile Shear failure
— -e — (R RTB8) R ight hand-side inclined 2-08.77 G FR P straight profile Shear failure 
——® ■ (RTRIAL) Left hand-side bottom  3-08.77 GFRP curved profile Shear failure 
— 3 —  (RTRIA L) Right hand-side bottom  3-08.77 G FRP curved profile 
“ • “ “ (R T R IA L )R ight hand-side inclined 3-08.77 GFRP curved profile Shear failure

■ (RTRIAL) Left hand-side inclined 3-08.77 G FR P curved profile Shear failure 
'(R T T B 2) Left hand-side bottom  4-08.77 GFRP straigth+curved profile Shear failure 
'(R T T B 2) R ight hand-side bottom  4-08.77 GFRP straight + curved profile Shear failure 

* °  '(R T T B 2) Left hand-side inclined 4-08.77 GF'RP straight+curved profile Shear failure 
'(R R TB 2) R ight hand-side inclined 4-08.77 G FR P straiglu+curvcd profile Shear failure
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5.1.6 Elastic & Ultimate Load/Moment Capacities

In Table 5.5, the theoretical and measured (actual) bending moment capacities of each

beam were calculated using the formulae in Appendix 9.

The comparison o f data in Table 5.5

• In column 7, the initial crack capacity of the beams is more or less the same, 4kN 

to 6kN. This was also observed in the previous Part of the investigation.

• In columns 9 and 10, initial theoretical moment capacity of the beams reinforced 

with straight profile rebars seem to be less than the initial measured moment 

capacity. However, the theoretical and the measured values are in better 

agreement for the beams containing larger rebar area and curved profile bars.

• Column 8, 11& 12 shows that the difference in ultimate load/moment capacity of 

the beams reinforced with curved (TTB3) and straight profile (TB8 and its 

repeats) 2({)8.77 GFRP rebars is small. However, the ultimate load/moment 

capacity of the beams reinforced with curved (RTRIAL) 3(j)8.77 GFRP rebars is 

generally higher than the straight (TTB4) profile 3(})8.77 GFRP reinforced beam.

• The beam (TTB1) containing 2 straight and 1 curved profile of <j)8.77 GFRP rebars 

has an ultimate load/moment capacity less than the curved profile beams and 

higher than the straight profile beam.

• The results suggest that the ultimate load/moment capacity of the beams 

reinforced with the same geometry of rebars increases together with increase in 

rebar area for the same diameter rebars (e.g. compare TB8 with TTB4 or TTB1 

with TTB2).

• Note that the ultimate load/moment capacity of the beam reinforced with 4(j)13.19 

is only slightly higher than the 4(J)8.77 reinforced beams but has twice the rebar 

area.

• The theory overestimates the ultimate bending moment of the beams at the 

cracked section. The difference between the theoretical and the actual moment 

values becomes by between 11% and 26% for <j)8.77 beams but by 49% for the 

<j>13.19 beam.
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o onnvuranon

5.1.7 Ultimate Shear Capacity

The theoretical and the measured shear capacity of the beams are given in Table 5.6

(see also Appendix 9 for the formulae used in the calculations).

The comparison of data in Table 5.6.

•  The results showed that the shear capacity of the beams increases with increased 

percentage of reinforcement (see column 6, 9 and 10).

• The comparison between the measured and the theoretical shear capacities 

indicates that the theory generally overestimates the shear capacity of the beams 

reinforced with 2 and 3(J)8.77 curved and straight profile rebars by between 17% 

and 35% (see column 9 and 10).

• The theoretical and the measured shear capacities of the beams reinforced with 

4(j)8.77 are in a good agreement. However, the theory overestimates the shear 

resistance of the beam reinforced with 4<j)13.19 rebars by around 21%. The 

measured shear capacity of both 4(J)8.77 and 4<{)13.19 is comparable.
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5.1.8 Deflection

The load vs deflection response of the beams is similar for all configurations of rebars 

(see Figure 5.12) in that the precracked 'stiffness', as indicated by the ratio of load to 

deflection was considerably greater than the postcracked 'stiffness' (i.e. loads greater 

than 4kN-6kN).

None of the beams showed yielding plateau beyond the elastic stage i.e. the load vs 

deflection response was still curvilinear up to beam failure. The 'stiffness' of the beam 

increases with increase in rebar area; reflected by the small increase in deflection as 

the load increases for the beams reinforced with more rebar area. It can also be seen 

in Figure 5.12 that the beams reinforced with 2<j)8.77 'straight only' and 'curved only' 

profile rebars exhibit lower stiffness compared to the beams reinforced with 3<J)8.77 

'straight only' and 'curved only' profile. The beam reinforced with 4(j)13.19 'curved 

and straight' profile rebars is stiffer than the beam reinforced with 4(j)8.77 'curved and 

straight' profile rebars due to the bigger area of rebars.
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C onfiguration

The formulae for calculating the deflections of the beams are given in Appendix 9. In 

Table 5.7 the calculated deflections are based upon the measured (actual) depth of 

neutral axis depth and the bending moments used in the theoretical formulae. The 

measured values were obtained directly from the test.

The comvarison of data in Table 5.7

• Generally, the calculated deflections of the beams within the elastic limit (first 

segment of the curve) are smaller than the measured ones.

• The results suggest that the measured deflections at the uncracked section are 

smaller for the beams containing 4(J)8.77 (RTTB2) and 4<j)13.19 (TTB7) 'straight 

and curved' profile rebars than the rest of the beams. The theoretical deflections of 

these two beams agree well with the measured ones.

• The maximum calculated deflections of the beams are less than the measured 

deflections except for TTB2 & RTTB2 when the reverse is true.
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Configuration

5.1.9 Cracking Behaviour

The crack developments in the beams are discussed below and the summary of the 

average number of cracks for each beam is given in Table 5.8.

Table 5.8 The summary o f average cracks in the beams
Load at first crack (kN) Number of cracks a t failure

Straight Curved Straight & 

Curved

Straight Curved Straight & 

Curved

2 rebars08.77 4/6 6 - 11 9 -

3 rebars08.77 5.6 4/6 6 11 14 12

4 rebars08.77 - - 4/6 - - 15

4 rebars013.19 - - 4 - - 16

2d) 8.77 'straight only' and 'curved only' vro file GFRP rebars in C60 Concrete 

Beams

The crack patterns of the beams are shown in Figure 5.13. Typically, first hairline 

cracks appeared at the maximum bending moment region under 4kN/6kN total load in 

the beams and subsequently grew more prominent and numerous as the load 

increased. Flexural and diagonal cracks developed in both types of beams in a similar 

manner.
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Figure 5.13 The cracks patterns o f  the beams reinforced with 2(f) 8.77 'straight only'
and 'curved only'profile GFRP

C60 TB8 288.77 s t r a ig h t  FRP Tension Failure 
Nunber o f  C racks; 11 (one side only)
Failure Load: 26kN

ZST

C60 RTB8 2D8.77 s t r a ig h t  FRP S h ear Failure 
Nunber o f  C racks; 10 (one side only)
Failure Load; 26.4kN

i C m \ \ I
_ Q _

------------------------2740nn------------

J L

C60 RRTB8 208.77 s t r a ig h t  FRP S hear Failure 
Nunber o f  C racks; 14 (one side only)
Failure Load; 30kN

C60 TTB3 208.77 c u rv e d  FRP S h e a r - r u p tu r e  Failure 
Nunber o f  C racks1 9 (one side only)
Failure Load; 27.2kN

J / / A ) m • t T  1 U i TJL

-------2740nn-------------

-CL

— 290nn

JL

------------ 2740nn--------------

J L

3(1)8.77 ’straight only' and 'curved only' and 'straight and curved’ profile GFRP 

rebars in C60 Concrete Beams

The crack propagation in the pre and post cracking stages of the beams in this 

category is very similar to the previous category except the flexural cracks in this 

category are longer and closer to the top edge of the beams. Also more cracks were 

developed in the beams (see Figure 5.14). The average number of cracks in the 

beams reinforced with curved profile rebars is more than the straight profile beams. 

Note that the number of shear cracks is more in the curved profile beams compared 

with straight profile beams.
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Figure 5.14 The cracks patterns o f the beams reinforced with 3 (J) 8.77 'straight only',
'curved only', 'straight and curved'profile GFRP

C60 TTB4 308.77 s t r a ig h t  FRP S h ear Failure 
Hur.ber  oF Cracks'- 11 (one side only)
Failure Load: 34kN

C60 TTB1 208.77 straight-*- 108.77 c u rv e d  FRP S h e a r Failure 
Nunber oF C rack s: 12 (one side only)
Failure Load: 35.2kN

-?740nn-

C60 TRIAL 308.77 c u rv e d  FRP S h e a r - r u p tu r e  Failure 
Nunber oF C racks: 13 (one side only)
Failure Load: 38.6kN

( l U i U
_£L

------------------------ 2740nn------------------------

JL

C60 RTRIAL 308.77 c u rv e d  FRP S h ear Failure 
Nunber oF C racks: 14 (one side only)
Failure Load: 38kN

•650nn—

—“450nn—■

■2740nn----------------------------------------------------------

44)8.77 combined with 'straight and curved' profile GFRP rebars in C60 Concrete 

Beams

The cracks that developed in these beams were similar to the previous ones except this 

time more branches appeared and the spacing between the cracks was closer 

(see Figure 5.15). The number of cracks observed in the beams was quite similar to 

the beams containing three curved GFRP rebars. In this category, the cracks were 

propagating with small increase in length at each load applied. This was started half 

way through to the load until the beams failed. This is probably due to the fact that 

these beams have higher load carrying capacities than the others.
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Figure 5.15 The cracks patterns o f the beams reinforced with 4 (j) 8.77 'straight and
curved' profile GFRP

C60 TTB2 208.77 s tr a ig h t*  208.77 c u rv e d  FRP Conpression Failure 
Nunber o f  C racks' 13 (one side only)
Failure Load' 52kN

_ £ i -

-----------------2740nn----------------

- 0 _

C60 RTTB2 208.77 s tr a ig h t*  208.77 c u rv e d  FRP S h ear Failure 
Nunber o f C racks' 17 (one side only)
Failure Load' 50kN

•860rm-

— 2 2 0 n n -

- ----------------------------------------------------------------2740rwv

C60 TTB7 2013.19 s tr a ig h t*  2013.19 cu rv ed  FRP Shear Failure 
Nunber o f  C racks' 16 (one side only)
Failure Load' 54kN

•*-440nri

5.1.9.1 Modes of Failure

The typical shear-rupture and compression failures of the beams are shown in 

Photo5.1 and Photo 5.2. The morphology of beam failures is given in Table 5.9. All 

beams except TB8 (reinforced with 2(j)8.77 'straight only' profile rebars) and TTB2 

(reinforced with 4(])8.77 'straight and curved' profile rebars) failed in shear at the 

ultimate condition. TB8 and TTB2 failed in flexure and compression respectively. 

Initially, vertical cracks developed from the bottom surface within the middle section 

and these were followed by diagonal cracks towards the supports in all cases.

The flexure failure occurred catastrophically in TB8 reinforced 2(j)8.77 'straight only' 

profile rebars and the beam snapped at the midspan. Although, the repeats of TB8 i.e. 

RTB8 and RRTB8, failed in shear they both had a similar load capacity to TB8. The 

beams reinforced with 2<t>8.77 and 3(j)8.77 'curved only' profile rebars resulted in shear- 

rupture failure meaning that the beam was broken in the shear region and the rebars 

snapped. The rest of the beams exhibited shear failure as the diagonal crack widened 

between the load point and support. It should be noted that the failures in the beams 

containing curved profile rebars were more controlled in terms of the energy 

absorption and its dissipation within the beams even when the rebars were ruptured

i.e. failed less suddenly.
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Photo5.l A view of'shear-rupture' failure of 2<j)8.77 GFRP 'curved only' profile
reinforced C60 grade concrete beam (code TTB3)

Photo 5.2 A view o f  'compression' failure o f  4</>8. 77 GFRP 'straight and curved' 
profile
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The beam reinforced with 4(j)8.77 (code TTB2) straight and curved profile rebars 

failed in compression at the top of the beam between loading points [video clip of 

TTB2 can be viewed on ttb2_partl, 2&3.mov files from the compact disk]. On this 

occasion the failure scenario was different. The main diagonal cracks at both ends of 

the beam opened up wide and became dominant suggesting that the curved rebars 

were still intact and taking up more load together with the straight rebars in the 

tension zone. This gave more resistance to the beam against bending. More branches 

were developed on the flexural and shear cracks while the load was applied. The 

stress in the vertical flexural cracks due to the stress transfer from the shear regions 

and the bending was eventually released resulting in concrete being crushed at the top 

together with shear failures on both ends of the beam. The failure was remarkable 

since the GFRP rebars did not yield but the beam behaved like an over reinforced 

beam and everything failed together. This could be described as a 'balanced' failure.

The repeat test of TTB2, RTTB2 was performed in a similar manner except the beam 

had a main diagonal crack on both ends which resulted in shear failure. However, the 

repeat beam had a very close load carrying capacity to TTB2. It was noted that the 

number of cracks and the branches was more in the repeat test beam (RTTB2) than 

TTB2.

239



Configuration

Table 5.9 The modes o f failure o f  (f) 8.77 and (p 13.19 'straight only', 'curved only' and 
_________ 'straight and curved' profile GFRP Reinforced C60 Concrete Beams_____

Beam
Code

Concrete
Grade
(Cube
Strength
MPa)

Rebar No 
Dia/Type 
(Profile)

Failure Morphology (Failure Load-kN)

TB8 C60(72) 2(1)8.77 GFRP 
(straight)

Flexure(balanced)-CatastroDhic failure at 
the midspan, concrete broke in two parts, 
GFRP bars disintegrated in the same 
region (26)

RTB8 C60(70) 2(1)8.77 GFRP 
(straight)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (26.4)

RRTB8 C60(78) 2<{>8.77 GFRP 
(straight)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (30)

TTB3 C60(77) 2({>8.77 GFRP 
(curved)

Shear Rupture-Diagonal tension crack 
propagated across the section outside the 
maximum bending moment region and the 
rebars snapped (27.2)

TRIAL C60(77) 3<>8.77 GFRP 
(curved)

Shear Rupture-Diagonal tension crack 
propagated across the section outside the 
maximum bending moment region and the 
rebars snapped (38.6)

RTRIAL C60(73) 3(1)8.77 GFRP 
(curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (38)

TTB4 C60(77) 3<{)8.77 GFRP 
(straight)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (34)

TTB1 C60(78) 34)8.77 GFRP 
(straight & curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (35.2)

TTB2 C60(80) 4^8.77 GFRP 
(straight & curved)

Compression- Double shear together with
concrete crushed in the compression zone 
(52)

RTTB2 C60(73) 408.77 GFRP 
(straight & curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region on both ends, 
concrete at the top broken in the shear 
region with a wedge shape (50)

TTB7 C60(70) 4013.19 GFRP 
(straight & curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region on both ends but, 
the failure occurred at weak end (54)
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5.1.9.2 Estimation of Flexural Crack Widths

Theoretical and experimental estimations of the maximum crack widths are given in 

Table 5.10. The values were obtained from the equations which are given in 

Appendix 9.

Table 5.10 The estimated crack widths o f  Part 2 Beams
1

Beam
Code

2
Concrete

grade

3
Rebar
No.

Dia/Type

4
Rebar
Profile

5
^Number

of
Cracks

6 7 
| Estimated crack widths (mm) |
2**BS8110 3***Experiment

*TB8 C60 2-08.77F straight 11 0.89 0.74
*RTB8 C60 2-08.77F straight 10 0.95 0.87

*RRTB8 C60 2-08.77F straight 14 0.76 0.50
TTB3 C60 2-08.77F curved 9 1.26 1.27
TRIAL C60 3-08.77F curved 13 - -

RTRIAL C60 3-08.77F curved 15 0.62 0.38
TTB4 C60 3-08.77F straight 11 1.00 0.84
TTB1 C60 3-08.77F straight & curved 12 0.85 0.65
TTB2 C60 4-08.77F straight & curved 13 0.92 0.65
RTTB2 C60 4-08.77F straight & curved 16 0.74 0.43
TTB7 C60 4-13.19F straight & curved 16 0.53 0.31

♦beams tested in Parti -the beam tested for the risk assessment and only its load vs deflection behavior monitored

'*in the maximum bending moment region 2**based upon the formulae 3**based upon the dial gauge measurements

The values of max crack widths calculated using the equations in BS8110 are higher 

than the experimentally estimated values based on using dial gauge method (except 

for TTB3 where both values are very similar). As a general observation, it seems that 

when flexural and shear cracks have more branches, this could indicate a strong bond 

between the rebars and the concrete, thus reducing the maximum crack width in the 

maximum bending moment region i.e. the more the branches the less the width of 

maximum crack.
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Configuration

The performance quotient formula is given in Appendix 9. The performance quotients 

of the beams are given in Table 5.11. The Qp of the beams showing similar load 

carrying capacities and reinforced with 2(j)8.77 'straight only’ and ’curved only’ profile 

GFRP rebars is comparable.

However, the Qp of the beams reinforced with 3(J)8.77 'curved only1 profile rebars 

probably due to their higher load carrying capacity and the geometry of the rebars is 

higher than the beam reinforced with 3(j)8.77 'straight only' profile rebars.

It can be seen in the Table (column 13) that the Qp of the beams having higher load 

capacity is also generally higher. This is possibly due to the fact that the increase in 

the number and profile change of rebars increases the stiffness of the beams. The 

‘concrete term’ has disproportionate effect on the dominator term in the Qp whereas 

the load capacity is more sensitive to rebar area. The combination of 'straight and 

curved' profile of rebars used in the beams (TTB2, RRTB2 and TTB7) give a highest 

Qp. Also, when comparing the beams TTB2, RTTB2 reinforced with 4(j)8.77 'straight 

and curved' profile rebars which TTB7 reinforced with 4<j)13.19 'straight and curved’ 

profile rebars, the Qp of TTB7 is higher than both TTB2 and RTTB2 owing to the fact 

that the failure load of TTB7 is higher.
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5.3 Conclusions

The performance of high strength concrete beams reinforced with GFRP rebars 

studied under two point loading. The rebars were put in the beams in three 

geometrical combinations ('straight only', 'curved only' and 'straight and curved' 

profiles) to identify the differences in their performances. The test results compared 

with theory (BS8110) based upon the same aspects as in Chapter 4.

The results indicated that the maximum tensile stresses and strains in the ({>8.77 GFRP 

rebars reach almost their full tensile capacity whereas with ({>13.19 GFRP this is 

approximately 58% of the tensile capacity (see Table 5.2). The maximum 'measured' 

strains in larger diameter (({>13.19) are less than the smaller diameter (({>8.77) rebars 

indicating that the bigger the rebar area the less the deformation.

Theoretical neutral axis depth of the beams is in good agreement with the 

experimental values at the cracked section regardless of the modes of failure. For all 

beams it was observed that the neutral axis depth decreases as the load increases and it 

becomes almost a constant value towards the failure (see Figure 5.10). The results 

suggest that the increase in rebars area/diameter increases the depth of neutral axis i.e. 

increase in stiffness of the beam.

The initial crack (visible) load of the beams is not affected either by the diameter of 

the rebars or the profile of the rebars and it is 4kN to 6kN on average (see Table 5.5).

The ultimate load carrying capacity of the beams is influenced by the rebar areas but 

also partly by the rebar configurations. The results showed that the ultimate load 

capacity of the beams is higher when the number of rebars/area is increased in the 

beams (see Table 5.5). The beams reinforced with 4({>8.77 and 4<{>13.19 straight and 

curved profile rebars had the highest load carrying capacities of the group.

The theory overestimates the ultimate bending moment of the beams at the cracked 

section. The difference between the theoretical and the measured moment values 

becomes less when 4(j>8.77 used in the beams. Overall, the ultimate loads/moments
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suggest that the capacity of the beam increases with increase in rebar area and is 

enhanced by a curved profile (see ranking as evidence in Table 5.11).

Actual shear capacity of all beams increases with increase in rebar area (see Table 

5.6). The experimental results of the beams reinforced with 3<t>8.77 GFRP rebars 

indicated that the ‘curved profile’ contributes to the shear resistance of the beams (see 

also Table 5.6).

All the beams behaved in elasto-plastically up to first visible crack i.e. the slope of 

load vs deflection is steeper up to the initial crack load and beyond this point the slope 

decreases (see Figure 5.12). The slope in the elastoplastic stage is dominated by the 

rebar area i.e. the bigger the rebar area the steeper the slope. Overall, the calculated 

deflections where theoretical formula used are smaller than the measured ones at the 

uncracked section (see Table 5.7) except TTB2 and RTTB2 where reverse is true. 

Generally, the maximum calculated deflections of the beams are less than the 

measured deflections except TTB2 and RTTB2 where reverse is true. The rebar area 

and the configuration of the rebars seem to affect the deflection of the beams i.e. the 

greater the area of rebars the less the deflection. Furthermore, when straight and 

curved profile rebars are combined in the beam there is a reduction in deflection 

results.

The pattern of crack propagation in the beams is generally similar. However, beams 

reinforced with curved profile rebars seem to have more shear cracks compared to the 

beams reinforced with straight rebars. The beams reinforced with 4<j)8.77/13.19 

combined with straight and curved profile rebars developed more cracks and the gaps 

between them seem to be reduced (Figure 5.15).

The equation for predicting the crack widths can be employed for the beams 

reinforced with different configurations of GFRP rebars (Table 5.10). It seems that 

observing the number of shear cracks and the number of branches on the flexural and 

shear cracks could be very helpful to estimate the crack widths.
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Configuration

Overall, the mode of failure appears to be a shear type but rebar configuration seems 

to have an effect on behaviour of the beams approaching failure. The double shear 

occurrence is more common in the beams reinforced with 4<J)8.77/13.19 'straight and 

curved' profile rebars.

Performance Quotient (Op) correlates well with the ultimate load carrying capacity of 

the beams and is also be influenced by the rebar area and the rebar geometry (see 

Table 5.11). However, this approach although fundamentally attractive gives a 

considerable weighting to concrete strength and is possibly disproportionate in terms 

of financial and environmental efficiency. The results suggest there is evidence that 

the optimum rebar configuration can enhance the performance of the concrete beams 

and that using a combination of 'straight and curved' profile GFRP rebars in the beams 

is a better solution for preventing a catastrophic type of failure as well for a better 

control in ultimate and the serviceability conditions. The next chapter is mainly 

focused upon this rebar geometry with different type/strength concrete beams

5.4 REFERENCES

1 Imam M et al, Proportioning and Properties of very High Strength Concrete with and 
without Steel Fibres, Proceedings of the International Conference, Concrete 2000, 
September 1993, p i693-1705.

246



CHAPTER 6

6 PART3: BEAMS OF VARIOUS CONCRETE TYPES 

REINFORCED WITH OPTIMUM GFRP REBAR 

CONFIGURATIONS 

6.1 Experimental and Theoretical Results

6.1.1 Behaviour up to Failure

This Part of the investigation was based upon the experimental results obtained from 

Part 2 (Chapter 5). Using the combination of 'straight and curved' (optimum) profile 

GFRP rebars in the high strength concrete beams suggested that higher load carrying 

capacity could be achieved. This rebar profile could also reduce the chance of the 

beam failing catastrophically. A total number of fifteen beams, eight beams 

reinforced with 408.77 (two rebars curved in the middle and two rebars straight close 

to the edges) and seven beams reinforced with 4013.19 with the same rebar 

configurations, were tested under two point bending (see Figure 6.1). This Part 

contains beams manufactured from normal and lightweight concrete mixes. The 

cementitious material of microsilica (silicafume) and chopped glass fibres were added 

to the concrete mixes for some of the beams.

The performance of various types of concrete beams reinforced with optimum 

configuration of GFRP rebars was studied in this part of the programme. The 

physical properties used in the analysis of the beams are given in Table 6.1.
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Figure 6.1 Details of the beam reinforced with optimum GFRP rebar configurations
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6.1.2 Reinforcement Stresses and Strains in the Maximum Bending 
Moment Region

The rebar strains were measured in three different locations as in Part 2 i.e. two shear 

regions and the maximum bending moment region. The rebar strains versus applied 

loads in the maximum bending moment region are shown in Figure 6.2. The strains 

exhibit linear elastic behaviour up to the initial crack load for all beams. Beyond this 

point the slope of the curve becomes less steep, however, strains still continue on a 

straight line up to failure. The results showed that the <J)8.77 GFRP rebars are under 

the influence of higher stress during bending compared to stresses in <j)13.19 GFRP 

rebars. This is presumably because of longer strains in (j)8.77 rebars. The Figure also 

shows that the beams reinforced with the same diameter rebars fall into two separate 

groups with the <J)8.77 rebars attaining lower loads and higher strains at failure than the 

(j)13.19 rebars.
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The rebar strains obtained from TTB5 followed the same trend up to 56kN (see 

Figure 6.2). However, beyond this point the strains started to reduce as the load 

applied was increased and rapidly followed a vertical straight line up to failure. This 

discontinuity in the relationship could be due to the strain gauges having lost their 

circuits or adhesion. This failure load was abnormally high compared with others in 

the group (the behavior of the is discussed in the ‘deflection’ section).
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Stresses and strains in the reinforcing bars were calculated based on bending theory 

(see Appendix 5), at the cracked sections (see Table 6.2). In the Table, 'calculated' 

values are based upon substituting the actual (measured) bending moment, second 

moment of area and the depth of the neutral axis in the theoretical equations (see 

columns 6 and 9). The 'measured' values were obtained directly from the ‘tensile’ and 

‘bending’ tests (see columns 5, 7 and 8).

The comparison o f  data in Table 6.2

•  <})8.77 GFRP and (j)13.19 rebars in the beams (except TTB5) reached approximately 

67% and 46% respectively, of their ultimate tensile capacity on average

• Generally, the rebar strains measured from the bending test agreed well with the 

‘calculated’ strains. The deformation in the small diameter (4>8.77) rebar strains 

was higher than the larger diameter (<J)13.19) rebars at failure. Note that the rebar 

strains do not seem to be affected by the type of concrete.
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6.1.3 Reinforcement Strains in the Shear Region

The reinforcement strains measured for all beams in the shear region using strain 

gauges. It can be seen in Figure 6.3 that the strains measured in the left and right 

hand-side of the beams followed a very similar pattern (particularly until the 

appearance of a crack in the shear region). This applies to both rebar profiles i.e. 

straight and curved. The ‘blue’ and the ‘black’ lines on the graph represent ‘curved’ 

and ‘straight’ profile rebars respectively. The results suggest that the deformation in 

large diameter rebars is less compared to the smaller diameter rebars in the shear 

regions. This could also indicate that the shear resistance of the beams increases with 

increased rebar area/diameter.

Figure 6.3 A typical GFRP rebar shear strains measured from the microsilica added 
lightweight concrete beams reinforced with 4(j).8.77 and 4(j)13.19
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6.1.4 Concrete Strains in Maximum Bending Moment Region

The tensile strains were measured in the concrete throughout the depth of the beams 

over a 900mm gauge length. In Figure 6.4 and Figure 6.5, it can be seen that the 

strains above (compression) the neutral axis are lower compared to the strains below 

(tension) the neutral axis for all beams, due to the fact that concrete is strong in 

compression and weak in tension. Strain distributions in Figure 6.6 and Figure 6.7 

show the linearity of the strains and the changes in neutral axis across the depth of the 

lightweight concrete beams at each load. It can be seen that the neutral axis depth of 

the beam reinforced with smaller diameter ((j)8.77) GFRP rebars is less than the one 

reinforced with larger (<j)13.19) GFRP rebars.
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Figure 6.6 An example strain distribution ofC 20  grade lightweight aggregate concrete
beam reinforced with 4No 8.77 'straight and curved'profile rebars
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Figure 6.7 An example strain distribution o f C20 grade lightweight aggregate concrete
beam reinforced with 4No 13.19 'straight and curved' profile rebars
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6.1.4.1 Maximum Concrete Compressive Strain

The maximum concrete compressive strain and the experimental neutral axis depth of 

the beams were determined from the strain distributions (see Figure 6.6 and 

Figure 6.7). The maximum concrete strains are given in Table 6.3. The method 

followed for calculating the maximum compressive strains is given in Appendix 5.

Table 6.3 Extrapolated maximum concrete compressive strains in the beams
1 2 3 4

Beam Concrete Rebar Max. Conci
Code grade No. Comp.

Dia/Type strain
TTB5 C20 4-08.77F -

RTTB5 C20 4-08.77F 0.0027
TTB6 C20 4-13.19F 0.0019
TTB8 C20LT 4-8.77F 0.0022
TTB9 C20LT 4-13.19F 0.0022
TTB10 C20 SIL 4-08.77F 0.0020
TTB11 C20 SIL 4-13.19F 0.0015
TTB12 C20 LT SIL 4-08.77F 0.0017
TTB13 C20 LT SIL 4-13.19F 0.0015
TTB20 C40 4-08.77F 0.0017
TTB17 C40FB 4-08.77F 0.0024
TTB19 C40 4-13.19F 0.0023
TTB18 C40FB 4-13.19F - 0.0022
TTB14 C50LT 4-08.77F 0.0016
TTB15 C50LT 4-13.19F 0.0017
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The comparison o f data in Table 6.3

• The average maximum concrete compressive strain of 0.0027 obtained from C20 

normal weight concrete beam reinforced with 4({)8.77 GFRP rebars. This is the 

highest value of all and is approximately 77% of the maximum design concrete 

compressive strain, 0.0035.

• Based upon the results, the maximum compressive strain of C20 silica added 

normal weight, C20 silica added lightweight and C50 lightweight concrete beams 

are less than the rest of the beams, approximately 0.0016 (this is approximately 

46% of the maximum design concrete compressive strain of 0.0035).

• The results suggest that there is no dominant influential factor operating between 

different types of concrete beams for the maximum compressive strain.

6.1.4.2 Neutral axis Depth at the uncracked and the cracked sections

The theoretical and measured neutral axis depths of the beams are given in Table 6.4.

The values for each beam were calculated using the formula given in Appendix 5. The

results suggest similar findings as in Parti and Part2 of the experimental study.

The comparison o f  data in Table 6.4

• The theoretical neutral axis depth (at ultimate) of all types of the beams is 

generally less than the corresponding measured ones at the cracked section except 

for the beams of TTB10 and TTB20 (see columns 5 and 6).
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• It can also be observed that the neutral axis depth decreases once the beam cracks 

and it becomes almost a constant value towards the failure (see Figure 6.8).

• Generally, the neutral axis depth of the beams reinforced with 4({)8.77 GFRP rebars 

is only slightly less than the beams reinforced with 4(j)13.19.

Table 6.4 The experimental and the theoretical neutral axis depth of the beams at the
uncracked and cracked sections

1 2 3 4 5 6
Beam Concrete Rebar j Neutral axis depth (mm)
Code grade No. Theory Theorymax Measured^*

Dia/Type Uncracked Cracked Cracked
TTB5 C20 4-08.77F 102.95 28.16 25.00
RTTB5 C20 4-08.77F 103.08 29.81 40.20
TTB6 C20 4-13.19F 103.85 38.46 38.10
TTB8 C20LT 4-8.77F 103.52 34.91 42.00
TTB9 C20LT 4-13.19F 104.58 44.59 53.70
TTB10 C20 SIL 4-08.77F 102.95 28.10 39.80
TTB11 C20 SIL 4-13.19F 103.79 37.93 41.30
TTB12 C20LTSIL 4-08.77F 103.33 32.89 38.10
TTB13 C20LTSIL 4-13.19F 104.37 42.97 49.40
TTB20 C40 4-08.77F 102.95 28.10 41.40
TTB17 C40FB 4-08.77F 102.93 27.79 36.10
TTB19 C40 4-13.19F 103.69 36.90 36.20
TTB18 C40FB 4-13.19F 103.74 37.42 44.90
TTB14 C50LT 4-08.77F 103.29 32.36 37.90
TTB15 C50LT 4-13.19F 104.47 43.76 51.40
LT (Lightweight concrete) SIL (Silica added concrete)

FB (Glass fibre added concrete)
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6.1.5 Concrete Strains in the Shear Region

The concrete strains at the level of main ‘straight’ rebars and at the level of ‘curved’ 

rebars were measured along 200mm gauge length in the shear regions (see Figure 

6.9). The concrete strains of all the beams exhibited similar trends as in Figure 6.10. 

It can be seen in the Figure that the strains obtained from the level of main rebars are 

greater than those obtained from the inclined plane as in Part I and Part II (see also 

Table 6.5). In the Table, strain in ‘straight’ rebars is approximately twice that in 

‘curved’ rebars at higher loads. This partly explained by the curved rebars being 

much closest to the neutral axis. In the Table, the average ratio of strains at key points 

[20kN and 38kN] in cycle of 08 .77:013.19 is 2.25 compared with the ratio of rebar 

areas of 2.26 for 013.19:08.77 respectively (see Table 6.5). This could be an 

evidence that when the area of rebar is increased the stiffness of the beam in the shear 

regions also increases. It can also be seen that the curved profile rebars contribute to 

the shear and flexural resistance and stiffness of the beams.

Figure 6.9 The location of DEMEC disks in the shear region

DEMEC disks on 
inclined level in the 
shear region

DEMEC disks on 
horizontal level in 
the shear region
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Table 6.5 A typical glassfibre added concrete strains measured from the shear regions 
of the beams reinforced with 4(J).8.77 and 4<j)13.19 (microstrain)

TTB17 4No. 8.77 GFRP C40 FB TTB18 4No 13.19 GFRP C40 FB
Position 174.61mm 174.61mm inclined inclined 172.4mm 172.4mm inclined inclined

Load Av. Av. Av. Av. Av. Av. Av. Av.
(kN) Straight Straight Curved Curved Straight Straight Curved Curved

concrete concrete concrete concrete concrete concrete concrete concrete
strain strain strain strain strain strain strain strain
(Left) (Right) (Left) (Right) (Left) (Right) (Left) (Right)

0 0 0 0 0 0 0 0 0
2 15 5 0 15 15 15 5 0
4 25 30 15 10 30 0 15 10
6 35 20 15 15 35 35 15 10
8 40 30 15 15 50 35 10 10
10 45 25 15 20 60 50 20 15
12 50 45 15 25 75 55 25 20
14 50 50 25 35 80 60 25 15
16 60 250 20 30 95 70 30 15
18 80 255 25 40 70 105 35 30
20 410 265 180 40 125 170 40 60
22 585 280 260 45 135 225 40 90
24 730 635 335 185 175 250 55 105
26 885 895 440 335 250 345 90 140
28 1065 1080 545 430 625 495 295 230
30 1245 1240 655 515 790 675 395 320
32 1430 1435 765 580 945 860 490 430
34 1630 1715 875 660 1075 1035 570 530
36 1895 2445 1040 790 1245 1230 675 645
38 2675 3775 1565 1925 1435 1475 780 775
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6.1.6 Elastic & Ultimate Load/Moment Capacities

Table 6.6 contains the theoretical and measured (actual) bending moment together 

with the initial crack and ultimate load capacities of the beams. Note that the initial 

crack load in the Table designates the first visible crack observed in the maximum 

bending moment region (see also Appendix 5 for the formulae used in the 

calculations).

The comparison o f  data in Table 6.6

• Column 6 shows that the initial load capacity of the beams varies between 4kN 

and 6kN confirming the general trend in Parti and Part2 test programmes. The 

rebar diameter/area and type of concrete have no significant effect on the initial 

load capacity.

• The highest ultimate load of 96kN was obtained for the beam (TTB5) reinforced 

with 4({)8.77 GFRP rebars (see column 7). This beam performed in a rather 

unusual manner compared to the rest of the beams included in Parti and Part2. Its 

behaviour is discussed in the ‘deflection’ section.

• The lightweight aggregate concrete beams including those containing microsilica, 

failed at lower loads than the rest of the beams (see column 7). The average 

failure load obtained for these beams reinforced with 4(f>8.77 and 4(j)13.19 is 32kN 

and 38kN respectively. The results indicate that the concrete type seems to have 

an influence on the ultimate load/moment capacities.

• Generally, theory overestimates the bending moment capacity of the beams at the 

uncracked section compared to those measured (applied). The results suggest that 

the measured bending moment capacity of the beams reinforced with 4<J)8.77 and 

4(j)13.19 is approximately 82 % that of the theoretical bending moment (see 

column 8 and 9).

• The theory also overestimates the bending moment capacity of the beams at the 

cracked (ultimate) section compared to those measured (applied). The difference 

between the theoretical and the measured values varies depending on the type of 

concrete i.e. the measured values are between 35% and 76% that of the theoretical 

values (see columns 10 and 11).
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6.1.7 Ultimate Shear Capacity

The theoretical and the measured (applied) shear capacity of the beams are given in

Table 6.7 (see also Appendix 5 for the formulae used in the calculations).

The comparison o f  data in Table 6.7

• It can be seen in the Table that the theoretical shear resistances of all the beams 

(except TTB5) are higher than the measured ones (see columns 8 and 9). Note 

that the actual shear resistance values are based upon the ultimate failure loads of 

the beams.

• The results showed that, generally, the shear capacity of the beams increases with 

increased percentage of reinforcement together with the increase in concrete 

strength (compare TTB6 and TTB19, TTB17 and TTB18 in column 9).

• C40 grade glass fibre added concrete beams seem to give the highest values for the 

shear resistance (see column 9). This may indicate that the fibres make an extra 

contribution to aggregate interlock.

• The lightweight concrete (C20 and C50) and silica added lightweight beams seem 

to have less shear resistance compared to the rest of the beams. This could be due 

to LYTAG particles having lower crushing strength than the normal weight coarse 

aggregates.
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6.1.8 Deflection

The mid-span deflections of all the beams were measured using an LVDT during the 

test. The load vs deflection response of all the beams up to failure, can be seen in 

Figure 6.11.

The ‘elastic stage’ or the initial crack load ranged between 4kN or 6 kN. All of the 

beams displayed a small increase in deflection as the load increased up to the initial 

visible crack load. Subsequently, the slope of load vs deflection relationship of the 

beams reduced and followed an approximately linear form up to failure (elasto-plastic 

stage). The Figure also shows that the slope of the ‘plastic stage’ increases as the area 

of rebars increases i.e. the stiffness of the beam increases with increase in rebar area. 

Thus the beams reinforced with 4<j)8.77 GFRP rebars exhibit lower stiffness compared 

to the beams reinforced with 4013.19 GFRP rebars.

TTB5, C20 beam reinforced with 408.77 exhibited different type of stiffness (see 

Figure 6.11). The behaviour of this beam can also be reviewed on the compact disk 

(play ttb5_partl, 2, 3, 4 &5 (96kN).mov files). The value of the deflection increased 

rapidly from 34kN to 36kN with the difference being 11.62mm (approximately 20%). 

The deflection difference between 36kN and 38kN was only 2.63mm (approximately 

4%). From this point onward, the slope of the load versus deflection curve increases 

steeply until failure at a load of 96kN. A solid shear crack line could be distinguished 

on one side of the beam at 36kN, however, it did not fail until the second shear crack 

appeared at the other end of the beam resulting in double shear failure. The mode of 

this anomalous behaviour and failure has not been explained but could be due to a 

secondary constraint arising from the unusual geometry of the rebars. The experiment 

was repeated (beam RTTB5) but the beam behaved in a more conventional manner 

but with a higher overall stiffness than TTB5.
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The comparison of data in Table 6.8

• Generally, ‘measured’ deflections at the uncracked section of the beams are 

greater than those calculated (see columns 10 and 11).

• The ‘calculated’ deflections of all the beams at the cracked section (except TTB5) 

are very similar to those ‘measured’ (see columns 12, 13).

• The experimental results showed that the deflections of the beams reinforced with 

4(J)8.77 are greater than the ones reinforced with 4<j)13.19 rebars.

• Generally, the lightweight aggregate concrete beams seem to have larger 

deflection compared with the rest of the beams (except beam TTB5) for a given 

load and rebar area (see column 14 and its ranking).
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6.1.9 Cracking Behaviour

In this section, the crack developments in the beams are discussed. The summary of 

average cracks in all the beams is given in Table 6.9.

468.77 ‘straight and curved’ profile GFRP rebars in beams of various types o f  

concrete

The crack patterns developed in the beams can be seen in Figure 6.12. In this 

category, the beams containing smaller diameter of GFRP rebars with different types 

of concrete beams are put together. The reason for this is to show if the crack patterns 

differ from one type of concrete to another one. As in the Parti and Part2 of the beam 

tests, first hairline cracks appeared at the maximum bending moment region under 

4kN or 6kN total load in the beams and subsequently grew to be more prominent and 

numerous as the load increased. The average numbers of cracks developed in the 

overall length of the C20 beams was 14 for TTB5 and 21 for RTTB5. In TTB5 beam, 

the flexural cracks propagated more deeply and very close to the top edge of the beam 

whereas in the repeat experiment, the flexural cracks in the beam have more 

extensions. The C20 grade concrete beam containing microsilica and the C40 grade 

normal weight concrete beam developed similar amounts of total cracks (19 and 18 

respectively). Nevertheless, the flexural cracks in the maximum bending moment 

region of the silica added concrete beam have more branches and they are more 

closely spaced compared to the C40 grade concrete beam. The C40 glass fibre added 

concrete beam has the same amount of cracks as the C40 beam (total of 18) but, the 

number of branches in the fibre added concrete is greater compared to the C40 beam. 

When the C20 lightweight concrete beam is compared with the C50 lightweight beam, 

the total numbers of cracks in C50 beam are less than the C20 beam. The C20 

lightweight silica added concrete has fewer cracks than the C20 lightweight concrete, 

however, the branches in the silica added beams are more numerous compared to the 

C20 lightweight beam. Taken as a whole, it seems that adding silica and glass fibres 

into the beams increases the amount of crack branching but reduces the size of the 

cracks within the beams (see column 7 in Table 6.11).
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Figure 6.12 The crack patterns of the various types of concrete beams reinforced with
4(j) 8.77 ‘straight and curved’ profile GFRP

C20 TTB5 208.77 s tra ig h t*  208.77 curved  FRP S hear/S hear Failure 
Nunber o f  Cracks: 14 (one side only)
Failure Load: %kN

■ 750m-1 -

C20 RTTB5 208.77 s tra ig h t*  208.77 cu rved  FRP Shear Failure 
Nunber o f  Cracks: 21 (one side only)
Failure Load: 42.8kN

8j5nn

280nn —

C20 LYTAG TTB8 208.77 s tra ig h t*  208.77 curved  FRP Shear Failure 
Nunber o f Cracks: 20 (one side only)
Failure Load: 34kN

/ M  >
_Q_

---------2740nn--------------

J L
—360nn*

C20 SILICA TTBIO 208.77 s tra ig h t*  208.77 cu rved  FRP Shear Failure 
Nunber o f Cracks: 19 (one side only)
Failure Load: 42kN

nzr m . 21
—- 2B0nn -

C20 LYTAG+SILICA TTB12 208.77 s tra ig h t*  208.77 curved FRP S h ear/S h ear Failure 
Nunber o f Cracks: 17 (one side only)
Failure Load: 32l<N

-2740nn-

C40 TTB20 2D8.77 s tra ig h t*  208.77 cu rved  FRP Shear Failure 
Nunber o f Cracks: 18 (one side only)
Failure Load: 44kN

TST
210nn

•2740nn-

C40 FIBRC TTB17 208.77 s tra ig h t*  208.77 curved FRP Shear Failure 
Nunber of Cracks: 18 (one side only)
Failure Load: 46.8kN

-870nn—

C50 LYTAG TTB14 208.77 s tra igh t*  208.77 curved FRP Shear/Shear Failure 
Nunber o f Cracks1 14 (one side only)
Failure Load 30kN

•?30nn:

4(1)13.19 straight and curved profile GFRP rebars in beams o f various types of  

concrete

The crack propagation in the pre and post cracking stages of the beams in this 

category is very similar to the previous one. The average numbers of cracks in the 

C20 lightweight and C20 silica added lightweight beams are 24 and 23 respectively. 

The rest of the types of the beams have a very similar amount of cracking in them (see 

Table 6.9).
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Figure 6.13 The crack patterns of the various types of concrete beams reinforced with
4(J) 13.19 ‘straight and curved’ profile GFRP

C20 TTB6 2013.19 s t r a ig h t*  2013.19 c u rv e d  FRP S h ear Failure 
Nunber o f  Cracks: 16 (one side only)
Failure Load; 37.2kN

C20 LYTAG TTB9 2013.19 s t r a ig h t*  2013.19 c u rv e d  FRP S h ear Failure 
Nunber o f  C racks: 24 (one side only)
Failure Load: 39kN

B&Om

C20 SILICA TTB11 2013.19 s t r a ig h t*  2013.19 c u rv ed  FRP S h ear Failure 
Nunber o f  C racks: 17 (one side only)
Failure Load= 42kN

—240nn —

C20 LYTAG+SIL1CA TTB13 2013.19 s t r a ig h t*  2013.19 c u rv e d  FRP S h ear Failure 
N unber o f  Cracks: 23 (one side only)
Failure Load: 36kN

C40 TTB19 2013.19 s t r a ig h t*  2013.19 c u rv ed  FRP S h ear Failure 
Nunber o f  C racks: 16 (one side only)
Failure Load: 50kN

— 230m—

C40 FIBRE TTB18 2013.19 s t r a ig h t*  2013.19 c u rv ed  FRP S h e a r Failure 
Nunber o f C rocks: 17 (one side only)
Failure Load: 51.4kN

790nn

2 3 0 m -

C50 LYTAG TTB15 201319 s t r a ig h t*  2013.19 c u rv ed  FRP S h e a r /S h e a r  Failure 
Nunber o f  C racks: 18 (one side only)
Failure Load: 37.7kN

——400m—

■2740m-

Table 6.9 The summary of average cracks in the beams

No of  cracks at failure First crack load (kN)
No of 

Rebars
C20 C20

LT
C20
SIL

C20
LT
SIL

C40 C40
FB

C50
LT

C20 C20
LT

C20
SIL

C20
LT
SIL

C40 C40
FB

C50
LT

408.77 14 20 19 17 18 18 14 6 4 6 4 4 6 6
4013.19 16 24 17 23 16 17 18 4 4 6 4 4 6 6
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6.1.9.1 Modes of Failure

A typical 'single shear' failure (shear failure occurring only at the one end of the 

beam) of a lightweight aggregate concrete beam reinforced with 4<j)13.19 'straight and 

curved' profile GFRP rebars is shown in Photo 6.1. The morphology of beam failures 

is given in Table 6.10. All beams except TTB5 C20, TTB12 C20 lightweight silica 

added and TTB15 C50 lightweight concrete beam failed in 'double shear' (shear 

failure occurring at the both ends of the beam) at the ultimate load whereas the rest of 

the beams failed in 'single shear'. The vertical cracks developed from the bottom 

surface within the middle section and these were followed by diagonal cracks towards 

the supports in all cases. The above beams initially failed in shear but still continued 

to sustain residual load. At this stage, the load increased until shear failure occurred 

on the opposite end of the beams i.e. 'double shear' failure. It seems that the 

previously observed rebar rupture failure have been eliminated by the configuration of 

the rebars.

Photo 6 .1 A view of'single shear' failure of 4(j>13.19 GFRP 'straight and curved' profile 
reinforced C50 lightweight aggregate concrete beam
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Table 6.10 The modes o f failure o f 4 $8 .77  and 4 $13.19 'straight and curved' profile
________________________  GFRP reinforced beams o f various concrete types_________________________________________________________

Beam
Code

Concrete 
Grade (Cube 
Strength MPa)

Rebar No 
Dia/Type (Profile) Failure Morphology (Failure Load-kN)

TTB5 C20(43) 4({)8.77 GFRP 
(straight and curved)

Shear/Shear- Diagonal tension cracks 
propagated across the section outside the 
maximum bending moment region in both sides 
(96)

RTTB5 C20(44) 4<>8.77 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (42.8)

TTB6 C20(43) 4(1)13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (37.2)

TTB8 C20LYTAG(45) 4(|)8.77 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (34)

TTB9 C20LYT AG(48) 44)13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (39)

TTB10 C20Silica(59) 44)8.77 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (42)

TTB11 C20Silica(51) 44)13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (42)

TTB12 C20LYTAG + 
Silica(63)

44)8.77 GFRP 
(straight and curved)

Shear/Shear- Diagonal tension cracks 
propagated across the section outside the 
maximum bending moment region in both sides 
(32)

TTB13 C20LYTAG + 
Silica(61)

44)13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (36)

TTB20 C40(61) 4(1)8.77 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (44)

TTB17 C40Fibre(56) 4())8.77 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (46.8)

TTB19 C40(59) 4(()13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (50)

TTB18 C40Fibre(59) 4(])13.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (51.4)

TTB14 C50LYTAG(69) 4<})8.77 GFRP 
(straight and curved)

Shear/Shear- Diagonal tension cracks 
propagated across the section outside the 
maximum bending moment region in both sides 
(30)

TTB15 C50LYTAG(62) 4013.19 GFRP 
(straight and curved)

Shear-Diagonal tension crack propagated 
across the section outside the maximum 
bending moment region (37.7)
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6.1.9.2 Estimation of Flexural Crack Widths

Table 6.11 contains the theoretical and experimental estimations of the maximum 

crack widths using the equations given in Chapter 4 (see also Appendix 5).

The values of maximum crack widths calculated using the equations in BS8110, are 

comparable with the experimentally estimated values. It seems that the beams 

reinforced with larger diameter rebars have smaller flexural crack widths than those 

reinforced with smaller diameter rebars. This could be due to the fact that the larger 

the area of the rebar the more resistance against the tension in the concrete.

Table 6.11 Estimated crack widths of Part 3 beams
1 2 3 5 6 7

Beam Concrete Rebar ^Number 1 Estimated crack widths (mm) 1

Code grade No. of 2**BS8110 3***Experiment

Dia/Type Cracks

TTB5 C20 4-08.77F 6 - -

RTTB5 C20 4-08.77F 11 0.43 0.36
TTB6 C20 4-13.19F 9 0.21 0.21
TTB8 C20LT 4-8.77F 13 0.34 0.24
TTB9 C20LT 4-13.19F 12 0.29 0.22

TTB10 C20 SIL 4-08.77F 14 0.42 0.28
TTB11 C20SIL 4-13.19F 12 0.25 0.19
TTB12 C20 LT SIL 4-08.77F 12 0.29 0.22
TTB13 C20LTSIL 4-13.19F 13 0.22 0.15
TTB20 C40 4-08.77F 8 0.26 0.30
TTB17 C40FB 4-08.77F 12 0.42 0.33
TTB19 C40 4-13.19F 7 0.51 0.66
TTB18 C40FB 4-13.19F 9 0.30 0.31
TTB14 C50LT 4-08.77F 8 0.24 0.28
TTB15 C50LT 4-13.19F 9 0.25 0.25

-no accurate strains were obtained ‘*in the maximum bending moment region

J**based upon the formulae 3**based upon the dial gauge measurements
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6.2 Performance Quotent (Qp)

The Performance Quotient of the beams was calculated using the formula given in 

Appendix 5 and the results for this Part are included in Table 6.12 column 12.

It can be seen in the table that the beams with highest Qp also have higher load 

capacity. For the majority of the beams except C20 TTB5 and RTTB5normal, C50 

TTB14 and TTB15 lightweight concrete beams, there is not much difference in their 

Qp values due to the fact that they have similar load carrying capacities. It should be 

noted that the high ultimate tensile stress of <j)8.77 GFRP rebars does influence the Qp 

of the beams (compare TTB8 and TTB9). The results indicate that the higher the Qp 

of the beam, the better the performance. Also note that Qp values relate to ‘normal’ 

and ‘medium’ strength concretes and therefore yield higher values than in Chapter 5. 

Lowest Qps are for silica fume and higher grade lightweight concretes. Qp slightly 

enhanced by addition of fibres to concrete mix.
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6.3 Conclusions

The performance of normal weight C20 and C40 grade, C20 grade silica added, C20 

and C50 lightweight and C20 grade lightweight silica added together with C40 glass 

fibre added concrete beams reinforced with ‘straight and curved’ profile of 4(j)8.77 and 

4$ 13.19 GFRP rebars was studied.

<|)8.77 GFRP and <j)13.19 rebars in the beams (except TTB5) reached approximately 

67% and 46% respectively, of their ultimate tensile capacity on average (see Table 

6.2). The ‘measured’ strains in the rebars suggested that the large diameter rebars 

deform less than the small diameter rebars at failure and the concrete type does not 

seem to affect the magnitude of the strains. The ‘calculated’ strains in the rebars are 

comparable with the measured (experimental) values for all the beams confirming that 

the current equations are equally valid even when a different geometry is applied to 

the rebars (see Table 6.2).

The rebar strains obtained in the shear region (left and right hand side) of the beams 

are similar in magnitude for both straight and curved profiles (see Figure 6.3).

The magnitude of the ‘measured’ concrete strains at the uncracked section is very 

similar for all types of concrete at a given load up to the appearance of first crack (see 

Figure 6.4 and Figure 6.5).

The concrete strain distributions obtained from the experiments show a straight line 

across the section indicating regions of compression and tension (see Figure 6.6 and 

Figure 6.7).

The results suggest that there is no dominant influential factor operating between 

different types of concrete beams for the maximum compressive strain (see Table 6.3).

The theoretical neutral axis depth of all types of the beams are generally in good 

agreement with the corresponding measured ones at the cracked section (ultimate). 

However, it should be noted that the theoretical values are generally less than the
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measured ones (see Table 6.4). Overall, the results demonstrate that stiffness is 

enhanced as more rebars/area are put into the concrete indicated by the neutral axis 

depth shifting less after initial cracking.

In general, all the beams behaved in a very similar manner regardless of the type of 

concrete. As in Chapter 4 and Chapter 5 the magnitude of the first crack load of the 

beams is not affected either by the diameter of the rebars and the concrete type or the 

profile of the rebars i.e. it is between 4kN or 6kN on average {Table 6.6).

The lightweight aggregate concrete beams reinforced by either small or medium 

diameter rebars seem to have lower ultimate load capacity amongst all the beams (see 

Table 6.6). The results suggested that adding ‘silica’ and ‘glass fibres’ into the 

concrete mix could enhance the ultimate load capacity of the beams by 11% 

(particularly beam reinforced with medium diameter rebars) and 4.5% (on average for 

the beams reinforced with either small and medium diameter rebars) respectively. The 

ultimate load capacities of the beams seem to be influenced by the area of rebars 

(except TTB10 and TTB11) and concrete strength for all the beams.

Generally, theory overestimates the bending moment capacity of the beams at the 

uncracked and cracked sections compared to those measured (applied). The results 

suggest that the applied bending moment capacity of the beams reinforced with 4(})8.77 

and 4(j)13.19 is approximately 82 % that of the theoretical bending moment at the 

uncracked section (see Table 6.6). The difference between the theoretical and the 

applied bending moments at the cracked section varies probably depending on the type 

of concrete and rebar type i.e. the measured values are between 35% and 76% that of 

the theoretical values (see also Table 6.6).

The results suggested that, generally, the shear capacity of the beam increase with 

increased percentage of reinforcement together with the increase in concrete strength 

(see Table 6.7). The ultimate shear resistance of the concrete beams containing glass 

fibres is higher than the rest of the beams. The results showed that the ultimate shear 

resistance of the lightweight concrete beams was less compared to the rest of the 

beams.
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All the beams behaved elasto-plastically up to failure with a change in slope of the 

load vs deflection curve (see Figure 6.11) i.e. the slope is steeper up to the initial 

crack load and beyond this point the slope decreases. Note that although the rebar 

behaves elastically close to failure, the concrete does not. The slope in the plastic 

stage is controlled by the rebar area i.e. the larger the rebar area the steeper the slope.

Generally, the ‘measured’ deflections are higher than the ‘calculated’ ones at the 

uncracked section (see Table 6.8). However, they are very similar to each other at the 

cracked section confirming that the current equations given in BS8110 (see Appendix 

5) can be used for estimating the deflection of the beams containing ‘straight and 

curved’ profile GFRP rebars.

The initiation and the propagation sequence of the cracks in all beams are generally 

the same i.e. the first crack appears within the maximum bending moment region and 

subsequently grows to be more prominent and numerous as the load increases.

The values of maximum crack widths calculated using the equations in BS8110, are 

comparable with the experimentally estimated values for the all types of beams. 

According to the results, the maximum crack size of the beams range from 0.15mm 

and 0.66mm depending on the concrete type and rebar diameter (see Table 6.11).

The mode of failure is predominantly a shear type regardless of the type of concrete 

used in the manufacture of the beams. It was also observed that ‘double shear’ type of 

failure also occurs with the beams containing ‘straight and curved’ (optimum) profile 

GFRP rebars. However, the optimum rebar configuration seems to eliminate the 

‘catastrophic failure’ of the beams observed in the previous Parts of the test 

programme i.e. there were no beams failed as the result of rebars snapping or concrete 

exploding.

The results suggested that the high value of Performance Quotient (Oc) indicates that 

the load carrying capacity of the beams is also high. The lowest Qp of 0.0196 was 

obtained for the lightweight concrete beam (TTB 14) reinforced with 4(f)13.19 rebars
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(see Table 6.12). The normal weight concrete beams reinforced with 4<{)8.77 (TTB5 

and RTTB5) gave the highest Qp of 0.096 and 0.0413. Mean values of Qp were 

comparable for beams containing both small ((J)8.77) and medium (((>13.19) rebars. 

Both the highest and lowest Qp were achieved with small diameter rebars.
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CHAPTER 7

7 PART4: NORMAL WEIGHT CONCRETE BEAMS

REINFORCED WITH GFRP AND HIGH TENSILE STEEL 

REBARS WITH GFRP AND MILD STEEL STIRRUPS

7.1 Section Design and Detailing

The dimensions of the beams tested in this Part were the same as in Parti, Part2 and 

Part3 i.e. approximately 103mm (width) x 203mm (depth) x 2740mm (length). The 

beams were designed for shear reinforcement using the equations in BS8110 (see 

Appendix 5). Part 1 beam of TB15 was reinforced with 2<J)8 steel and failed 

catastrophically in tension and was considered for the design of all the beams in this 

Part of the investigation. This way, it was also thought that the predominant shear 

failure of most of the beams could be modified.

The numbers of (j)6 mild steel and (j)6.9 GFRP stirrups used in the shear regions of the 

beams were 10 in each side at 100mm spacing between the stirrups. Although, there 

was no need to include any stirrups in the maximum bending moment region for 

resisting shear, four more stirrups were put in this region to control bursting strains 

(see Figure 7.1). The total of 24 stirrups were used in each beam. It was considered 

that in this way the likelihood of shear failure could be eliminated, thus providing 

valuable complementary information regarding the flexural capacity of the beams 

reinforced with both GFRP and steel.
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7.2 Experimental and Theoretical Results

7.2.1 Behaviour up to Failure

The results showed so far that the performance of the beams is very much influenced 

by the configuration and the amount of the rebars used in the beams. The majority of 

the beams failed in shear mode suggesting that the load capacity of the beams could 

be enhanced by conventionally reinforcing with stirrups. Consequently, six C20 

concrete beams were manufactured and tested under two-point loading. The details 

and the physical properties of the beams are included in Figure 7.1 and Table 7.1 

respectively. All six beams had 2<J)6 mild steel rebar ’top bars' across the compression 

region of the beams. It was possible to split this Part into three groups. The first 

group contained beams reinforced with 2(j)8 and 2<{)12 high yield steel rebars in the 

tension region and 24(j)6 mild steel stirrups (see Photo 7.1)

Figure 7.1 Details o f  Part 4 beams
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Photo 7.1 A partial view o f  the group I  reinforcement cage (main steel rebars and 
mild steel stirrups)

In the second group everything was kept the same except 2(j)8.77 and 2(j)13.19 GFRP 

rebars were used in the tension region (see Photo 7.2).

Photo 7.2 A partial view o f  the group II reinforcement cage (main GFRP rebars and 
mild steel stirrups
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The third group was the same as the second one except 24(|)6.9 GFRP were used (see 

Photo 7.3). The GFRP stirrups were acquired from the company (ICL Ltd.) based in 

the USA. These stirrups were specially manufactured to meet the beam dimensions. 

Therefore, they had to be ordered in advance. The reinforcement cages were 

assembled and placed in the beam mould before casting (see Photo 7.4).

Photo 7.3 A partial view o f  the group III reinforcement cage (main GFRP rebars and 
stirrups

Photo 7.4 A view o f  the reinforcement cage placed in the steel mould before casting
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The main objectives of this part were to:

• modify the shear failure of the beams using steel/GFRP stirrups.

• observe if GFRP stirrups were capable of increasing the shear resistance of the 

beams compared with steel stirrups.

• compare the performance of the beams reinforced with GFRP and steel main 

rebars.

• assess if the load capacity of the beams had been enhanced with stirrups.

• ascertain if a combination of GFRP and steel rebars and stirrups would be 

applicable.

The concrete strength of C20 (43MPa nominal strength) was selected for this part of 

the investigation due to its common use in certain applications and also in order to 

reduce the potential cost of the beam and also to maintain a high performance 

quotient. Furthermore for GFRP rebar a lower grade of concrete could be permitted 

for durability purposes.

The analysis of the beams was carried out based on the equations used in Chapter 4, 

Chapter 5 and Chapter 6. However, the beams in this part were designed for shear 

reinforcement using BS8110 formulae (see Appendix 5). The compression force of 

the 'top bars' was computed for each beam using rectangular stress block for a doubly 

reinforced beam. It was found out that the compression force of the ‘top bars’ is 

approximately 8% of the ultimate compression force due to the concrete. Therefore, 

their contribution to concrete resistance in compression is not very significant.
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7.2.2 Reinforcement Stresses and Strains in the Maximum Bending

Moment Region

The strains along the main and the ‘top bars’ were measured. Figure 7.2 shows the 

rebar strains monitored against applied load. The dotted lines in the graphs represent 

the strains up to failure. As in the previous parts of the investigation, the strains 

exhibit linear elastic behaviour up to the initial crack load for both steel and GFRP 

beams. Once the curve passes the ‘elastic limit’, the slope continues on a different 

linear path at a reduced slope for all beams. This was also the case for steel rebars up 

to the point where the yielding plateau had occurred. The strains obtained from GFRP 

reinforcing bars are greater than those from the steel reinforcing bars at a similar load. 

However, it can be seen in the Figure that up to 6kN the strains in small diameter steel 

rebars combined with mild steel stirrups (TTB22) are comparable with those in small 

(TTB26 contains GFRP stirrups) and large (TTB25 and TTB27 contain steel and 

GFRP stirrups respectively) diameter GFRP rebars.

Similar strains were recorded in rebars of similar diameter at a given load indicating 

consistency of material properties throughout the tests. The strains in the <{>13.19 

GFRP rebars embedded in the beams TTB25 and TTB27 are less than the 

corresponding values in (j)8.77 GFRP rebars. This shows that the deformation in the 

rebars is influenced by the rebar diameter i.e. the bigger the diameter, the less the 

strain for a given load at the cracked section. It was interesting to see that the strains 

in the small (({>8.77) and large (((>13.19) diameter GFRP rebars combined with either 

mild steel or GFRP stirrups followed a path almost on the same line (see TTB24 and 

TTB26, TTB25 and TTB27 in Figure 7.2).

In summary, the steel and large diameter GFRP main rebars exhibit higher stiffness at 

the cracked section and the stiffness for rebars of similar diameter with steel or GFRP 

stirrups at the cracked section is also similar.
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Stresses and strains in the reinforcing bars were calculated based on bending theory 

(see Appendix 5), at the cracked sections (see Table 7.2). In the Table, 'calculated' 

values are based upon substituting the actual (measured) bending moment, second 

moment of area and the depth of the neutral axis in the theoretical equations (see 

columns 7 and 10). The 'measured' values were obtained directly from the ‘tensile’ 

and ‘bending’ tests (see columns 6, 8 and 9).

The comparison of data in Table 7.2

• In several cases the maximum ‘calculated’ values (in column 7), for stresses in 

steel and GFRP (TTB24) main bars are more than their ultimate tensile stress 

capacities (in column 6) for the beams of TTB22 ( ‘measured’ stress is 85% of 

‘calculated’ stress), TTB23 ( ‘measured’ stress is 96% of ‘calculated’ stress), and 

TTB24 ( ‘measured’ stress is 88% of ‘calculated’ stress).

• However, the maximum ‘calculated’ stresses in the GFRP rebars are less than 

their ultimate tensile stress capacities for the beams of TTB25 (‘calculated’ stress 

is 77% of ‘measured’ stress), TTB26 (‘calculated’ stress is 97% of ‘measured’ 

stress) and TTB27 ( ‘calculated’ stress is 69% of ‘measured’ stress).

• From the bending test, the maximum 'calculated' and 'measured' strains at the 

cracked section are in reasonably good agreement (see columns 9 and 10).

• The bending test results show that the maximum ‘measured’ strains in larger 

diameter (<})12) steel rebars are approximately 32% of those in larger diameter 

($13.19) GFRP rebars for given ultimate load capacity (compare beams TTB23 

and TTB25 in column 14).
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7.2.3 Strains in the ‘top bars’ at the maximum bending moment region

The strains measured in the ‘top bars’ at the maximum bending moment region o f the 

beams reinforced with 2(|)8.77 (beam TTB26) and 2<j)13.19 (beam TTB27) rebars and 

(J)6.9 GFRP stirrups followed the trend as shown in Figure 7.3. The compressive 

strains (- ve) recorded in TTB26 and TTB27 up to 4kN and 8kN respectively. Beyond 

these loads, the bars were under tension (+ ve) and followed almost a straight line up 

to 30kN. Note that the strain readings beyond this load could not be recorded due to 

the strain gauges losing their bond with the bars. The change in the status of the 

strains in the ‘top bars’ could be due to the location of the strain gauges i.e. the strain 

gauges attached to the tension face of the ‘top bars’ reading (+ ve) strains. Possibly, 

until the main rebars had taken the full tensile forces, the ‘top bars’ were under the 

influence of compression i.e. once the cracks were initiated at large flexural loads 

strains due to curvature would predominant compared with those due to axial 

compression. It can be seen in the Figure that the ‘top bar’ strains in beam TTB27 are 

less than those in beam TTB26 (approximately 45% of beam TTB26 at a load of 

30kN).

Figure 7.3 Strains measured in the ‘top bars ’ in the compression zone at the 
maximum bending moment region
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7.2.4 Reinforcement Strains in the Shear Region

Figure 7.4 shows the rebar strains measured in the shear regions (between the loading 

point and the edge at both ends) of the beams. The strains from the left and the right 

hand side of the beams follow a similar trend although not identical indicating that 

the bending applied was consistent in its effect. The results show that the strains in 

the shear region of the beams reinforced with ([>12 steel rebars and stirrups are less 

than in the GFRP and <|>8 steel reinforced beams. The slope of strains in the beams 

reinforced with (j)8 steel and (j>13.19 GFRP together with steel and GFRP stirrups is 

very similar. Also the defonnation in these rebars is less than in the <J)8.77 GFRP 

rebars.

Figure 7.4 Rebar strains in the shear region o f  the beams reinforced with 2(/)8/8.77 
and 2 ft'12/13.19 steel and GFRP stirrups.
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7.2.5 Stirrup strains in the shear region

As it can be seen in Figure 7.5 and Figure 7.6 the strains in the stirrups are based on 

two conditions, compression and tension. Both GFRP and steel stirrups behave in a 

similar manner owing to the fact that generally strain slope of the steel stirrups was 

steeper than the GFRP stirrups.

Figure 7.5 The bottom stirrup strains measured in the shear region
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Figure 7.6 The side stirrups strains measured in the shear region
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7.2.6 C oncre te  S tra in s  in M axim um  B ending  M om en t R egion

As in the previous Parts of the investigation, the concrete strains were measured (see 

Figure 7.7 and Figure 7.8) through the depth of the beams over a 900mm gauge 

length (distance between the two loading points). The concrete strains of the beams 

reinforced with GFRP main rebar and steel/GFRP stirrups are very similar in 

magnitude. This indicates that the GFRP stirrups could be used to replace steel 

stirrups. The dotted lines in the Figure designate the extrapolated strains at failure.

The strain distributions in Figure 7.9 and Figure 7.10 show the linearity of the strains 

and the changes in neutral axis across the depth of the beam at each load. The 

concrete strains in the steel reinforced beam increase much less at each load 

increment compared to GFRP reinforced beam.
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Figure 7.7 The concrete strains measured at the maximum bending moment region o f  
C20 concrete grade beams reinforced with small diameter (08 and 08.77) steel and 
GFRP main rebars and mild steel and GFRP stirrups
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Figure 7.8 The concrete strains measured at the maximum bending moment region o f  
C20 concrete grade beams reinforced with large diameter (pi 2 and (pi3.19) steel and 
GFRP main rebars and mild steel and GFRP stirrups
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Figure 7.9 An example strain distribution o f C20 grade concrete beam
reinforced with 2No 12mm steel and 24No 6mm mild steel stirrups
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Figure 7.10 An example strain distribution o f C20 grade concrete beam
reinforced with 2No 13.19mm GFRP and 24No 6.9mm GFRP stirrups
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7.2.6.1 Maximum Concrete Compressive Strain

The maximum concrete strains are given in Table 7.3 for the beams reinforced with 

steel and GFRP rebars and stirrups. As in Parti, Part2 and Part3 the maximum 

concrete compressive strains and the neutral axis depth of the beams were determined 

using the strain distributions (see Figure 7.9 and Figure 7.10). The equation used for 

calculating the maximum concrete compressive strain is given in Appendix 5.

Table 7.3 Extrapolated maximum concrete compressive strains in the beams
1 2 3 4 5

Beam Concrete Rebar Stirups Max. Concrete
Code grade No. No. Comp.

Dia/Type Dia/Type strain
TTB22 C20 2-08S 24-06S 0.0014
TTB23 C20 2-12S 24-06S 0.0016
TTB24 C20 2-08.77F 24-06S 0.0028
TTB25 C20 2-13.19F 24-06S 0.0028
TTB26 C20 2-8.77F 24-06.9F 0.0028
TTB27 C20 2-13.19F 24-06.9F 0.0026

The comparison o f data in Table 7.3

• The results show that the value of maximum concrete compressive strain in the 

steel reinforced beams is less than in the GFRP reinforced beams. It should also 

be noted that the maximum concrete compression strains in the beams reinforced 

with GFRP tension rebars and steel/GFRP stirrups are similar suggesting that the 

type of stirrups have no significant effect.

• The average compressive strains in the steel reinforced beams at failure, 

extrapolated from measured strains on top of the beam, are 0.0015. This is 

approximately 43% of the maximum design concrete compressive strain given in 

BS8110.

• The average concrete compressive strains in the GFRP beams are 0.0028 and this 

is approximately 80% of the maximum design concrete compressive strain given 

in BS8110.
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7.2.6.2 Neutral axis depth (N.A.) at the uncracked and the cracked sections

The 'theoretical' and 'measured' (experimental) neutral axis depths of the beams are 

given in Table 7.4. The values for each beam were calculated using the formula given 

in Appendix 5. The results suggest similar findings as in Parti, Part2 and Part3 of the 

experimental study.

The comvarison of data in Table 7.4

• The 'theoretical' and the 'measured' neutral axis depths at the cracked section of 

first three cases (TTB22, TTB23 and TTB24) are comparable with each other at 

failure (see column 6 & 7).

• The percentage difference in neutral axis depths between the beams reinforced 

with 2<j)8 steel rebars/mild steel stirrups (beam TTB22) and 2(J)8.77 GFRP 

rebars/GFRP stirrups (beam TTB26) is only 9%((32.20*100)/39.40). However, 

the percentage difference is 28% between 2(j)8 steel rebars/mild steel stirrups 

(beam TTB22) and 2(j)8.77 GFRP rebars/mild steel stirrups (beam TTB24). This 

means that the neutral axis depth of the beam containing GFRP main rebars and 

steel stirrups (beams TTB24) increases more than the beams (TTB22 and TTB26) 

that contain steel/GFRP main rebars and steel/GFRP stirrups (see column 7)

• However, the neutral axis depth of the beam containing ({>13.19 GFRP main rebars 

and stirrups (beam TTB27) rebars and stirrups increases more than those 

reinforced with ({>12/13.19 main rebars and mild steel/GFRP stirrups (beams 

TTB23 and TTB25) at failure (see columns 7).
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Table 7.4 The experimental and the theoretical neutral axis depth of the beams at the

uncracked and cracked sections

1 2 3 4 5 6 7
Beam Concrete Rebar Stirups | Neutral axis depth (mm)
Code grade No. No. Theory Theory max MeasuredmaX

Dia/Type Dia/Type Uncracked Cracked Cracked
TTB22 C20 2-08S 24-06S 103.50 40.11 39.40
TTB23 C20 2-12S 24-06S 106.09 55.30 60.80
TTB24 C20 2-08.77F 24-06S 102.06 22.49 28.70
TTB25 C20 2-13.19F 24-06S 103.02 29.93 42.20
TTB26 C20 2-8.77F 24-06.9F 102.07 22.77 32.20
TTB27 C20 2-13.19F 24-06.9F 102.48 29.44 38.00

As in Part 1, Part 2 and Part 3 of the investigation, it was observed for all beams that 

the neutral axis depth increases sharply once the beam cracks become apparent 

tending towards a constant value all the way to failure (see Figure 7.11). The results 

showed that the neutral axis depth of the beams is primarily influenced by the tension 

rebar areas and types.
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Steel Stirrups

7.2.7 Concrete Strains in Shear Region at the location of tension rebars

The concrete strains at the location of reinforcement (horizontal plane) were 

measured along a 200mm gauge length in the shear regions. In Figure 7.12, dotted 

lines designate the extrapolated values up to failure. It can be seen in the Figure that 

the beams reinforced with GFRP rebars and steel/GFRP stirrups are more exposed to 

the diagonal tension cracks than the ones reinforced with steel rebars and stirrups. 

This assumption is based upon the slope of the curve i.e. if the slope of the curve is 

shallow, this could be due to the increase in the number of cracks in the shear region. 

Also, according to the Figure the beams containing GFRP rebars have larger concrete 

strains than the steel beams in the shear region. There is also evidence that when the 

area of rebar increases, the resistance of the beam in the shear regions also increases 

regardless of type of stirrups used i.e. the slope of the curve is steeper for the beams 

showing higher resistance to shear.

Figure 7.12 The concrete strains obtained in the shear regions o f  the beams at the 
location o f  tension rebars
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— •k — (T1H25) Left liand-side2-13.19 GFRP rebars 24-06 steel stirrups

-  -k — (TFB27) Left hand-side2-13.19 GFRP rebars 24-06.9 GFRP stirrups

-  -o — (TTB22) Right liand-side2-08 steel rebars 24-06 steel stimips
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-  •*— (TFB27)Riglithand-sidc2-13.19GFRPrebars24-06.9GFRPstimips
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Steel Stirrups

7.2.8 Concrete Strains in the Shear Region at the location of stirrups

The concrete strains obtained at the location of stirrups are very similar to those 

obtained from the stirrups themselves (see Figure 7.13). It can be seen that all the 

beams are under compression in the shear region on a vertical plane. As the crack 

openings developed more the strains became tension type. This change to tension 

takes place with increase in load and possibly because of change in depth of the 

neutral axis as load increases.

Figure 7.13 The concrete strains obtained in the shear regions o f  the beams at the 
location o f  stirrups

WOmm
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— a  — (T T B 24) Right hand-side2-08.77 G FR P rebars 24-06 steel stirrups 
— •  — (TTB 26) L ett hand-side2-08.77 GFRJP rebars 24-06.9 G FR P stirrups
— -a — (T T B 26) Right hand-side2-08.77 G FR P rebars 24-06.9 GFRP stirrups 
— a  — (TTB 23) Left hand-side2-12 steel rebars 24-06 steel stim ips
— a  — (TTB 23) Riglit hand-side2-12 steel rebars 24-06 steel stirrups
— - h  — (TTB 25) Left hand-side2-13.19 GFRP rebars 24-06 steel stirrups
—  -a —  (T T B 25)R ight hand-side2-13.19 G FRP rebars 2 4 -0 6 steel stirrups
— -*  -  (TTB 27) Left hand-side2-13 .19 GFRP rebars 24-06.9 GFRP stirrups

7.2.9 E lastic  & U ltim ate  L o ad /M om en t C apac ities

Table 7.5 contains the initial crack and ultimate load capacities together with the 

'theoretical' and 'measured' (applied) bending moments o f all the beams. Note that the 

'initial crack' load in the Table designates the first visible crack observed in the 

maximum bending moment region (see also Appendix 5 for the formulae used in the 

calculations).
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The comparison of data in Table 7.5

• It can be seen in column 7 that the initial load capacities of the GFRP reinforced 

beams combined with either mild steel or GFRP stirrups are 2/3 of the beams 

reinforced with steel main rebars and stirrups at the uncracked section.

• The beams reinforced with 2(j)12 (beam TTB23) and 2<j)13.19 (beam TTB25) 

GFRP main rebars have exactly the same ultimate load capacity of 47kN (see 

column 8). Note that both beams contain mild steel stirrups and have the highest 

ultimate load capacity compared to the rest of the beams.

• It can be seen in column 8, the ultimate load capacities of three beams (beams 

TTB24, TTB26 and TTB27) are comparable with each other (from 32kN to 

38.7kN). The beam (TTB22) reinforced with 2(|)8 steel main rebars and stirrups 

has the lowest ultimate load capacity, 24kN, compared to the rest of the beams.

• The theory underestimates the bending moment capacity of all the beams 

compared to those 'measured' (applied) at the uncracked section.

• Generally, the maximum 'theoretical' bending moments of all the beams with some 

exceptions are less than those 'measured'.
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7.2.10 Ultimate Shear Capacity

The ultimate 'theoretical' and the 'measured' (applied) shear capacity of the beams are 

given in Table 7.6. (see also Appendix 5 for the formulae used in the calculations). 

Note that the maximum 'measure' shear capacity of the beams is based upon the 

ultimate failure load of the beams and their weights does not take into account either 

the concrete strength or the area of main rebars.

The comparison o f data in Table 7.6

• It can be seen in column 9 that the 'theoretical' shear resistances of all the beams 

are higher than the 'measured' ones. However, the difference between them is not 

large and in any case of the beams failed in flexural compression consistent with 

the relative magnitude of bending moment.

• The results also show that the potential shear capacity of the beams generally 

increases with increased percentage of tension reinforcement (see columns 5 and

9).
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7.2.11 Deflection

The load vs deflection response of all the beams can be seen in Figure 7.14. The 

‘elastic stage’ was continued up to the visible crack load of 6 kN for the steel 

reinforced beams and 4kN for the GFRP reinforced beams. The shape of the load vs 

deflection curve was similar to previously tested beams. The beams followed a steep 

straight line with a small increase in deflection up to the initial visible crack load. 

Beyond the ‘elastic stage’, the beams reinforced with steel rebars and stirrups 

displayed a smaller decrease in the slope compared to the ones reinforced with GFRP 

rebars and steel/GFRP stirrups. The yielding plateau of the steel rebar beams can be 

seen on the graph. The GFRP beams containing either steel or GFRP stirrups do not 

exhibit such a plateau but continue on a straight line up to failure. The lines of the 

beams containing smaller and larger diameter of GFRP rebars and steel/GFRP stirrups 

follow each other very closely. Note that the beams containing GFRP stirrups have a 

slightly reduced slope compared with those with the same diameter of rebars and steel 

stirrups. This could mean that the GFRP stirrups have the potential to replace steel 

stirrups when a consideration is given to the serviceability of the concrete beams. The 

Figure also shows that the slope of the ‘plastic stage’ increases as the area of rebars 

increases i.e. the beams reinforced with 2(j)12/13.19 rebars and steel/GFRP stirrups 

exhibit higher stiffness compared to the beams reinforced with 2(})8/8.77 rebars and 

steel/GFRP.
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The comparison o f  data in Table 7.7

The results suggest that beams containing GFRP main rebars and steel/GFRP stirrups 

deflect more than the steel reinforced beams at failure. For GFRP reinforced beams, it 

seems that the rebar diameter plays a more important role in the deflection behaviour 

of the beams. The smaller the tension rebar diameter the more the beam will deflect 

at the same load in the ‘post-cracked condition (see Figure 7.14).

• The 'calculated' deflections are of a comparable order of magnitude as those 

'measured' at the uncracked section for the steel reinforced beams (see columns 11 

and 12).

• The 'calculated' deflections of the beams containing GFRP main rebars and 

stirrups are also comparable with those 'measured' at the uncracked section 

especially the beams containing small diameter GFRP rebars ('measured' 

deflection is 89% of those 'calculated').

• Generally, the 'measured' and the 'calculated' deflections at the cracked section are 

of a comparable order of magnitude with each other (see columns 13 and 14). 

However, the 'calculated' deflections are less than those 'measured'.

• The 'calculated' deflection of the beams containing small and large diameter steel 

main rebars and mild steel stirrups are 74% and 52% of those 'measured' 

respectively (see columns 13 and 14) at the cracked section.

• The 'calculated' deflections of the beams containing small and large main GFRP 

rebars and mild steel stirrups are 94% and 82% of those 'measured' respectively 

(see also columns 13 and 14) at the cracked section.

• In the case of beam containing small diameter GFRP rebars and stirrups, the 

'calculated' deflections at the cracked section are 83% of those 'measured' (see also 

columns 13 and 14). For the beam containing large diameter GFRP main rebars 

and stirrups the 'calculated' deflections are 87% of those 'measured'.

• The results suggest that beams containing GFRP main rebars and steel/GFRP 

stirrups deflect more than the steel reinforced beams at failure. The smaller the 

tension rebar diameter the more the beam will deflect at the same load in the post

cracked condition (see Figure 7.14).
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7.2.12 Cracking Behaviour

The beams containing 268 /8 .77  steel/GFRP rebars and steel/GFRP stirrups

The crack patterns developed in the beams can be seen in Figure 7.15. In this 

category, the beams containing steel rebars have a total of 20 visible cracks whereas 

the GFRP beams with steel and GFRP stirrups have a total of 15 and 17 visible cracks 

along the full beam length. The numbers of cracks are less in the GFRP rebars than 

the steel ones but, there are more branches in the GFRP beams and the cracks are 

deeper compared to the steel beams.

Figure 7.15 The crack patterns o f  the concrete beams reinforced with 2(j)8/8.77 
rebars and steel/GFRP stirrups.

C20 TB22 208 ST (tension) + 206 ST(com pression) + 2406 ST ( s t ir r u p s )  Com pression Failure 
Number o f  Cracks:20 (one side only)
Failure Load: 24kN

•1230nrv

■2740nrr

C20 TB24 208.77 FRP(tension) + 206 ST(com pression) + 2406  ST ( s t ir r u p s )  Com pression Failure 
Number o f  C racksT5 (one side only)
Failure Load: 35.9kN

lG40nrv

1  -------  ■ ■ —  274 Onn-—   ■■ ■■ - ----------

C20 TB26 208.77 FRP(tension) + 206  ST(com pression) + 2406.9 FRP ( s t ir r u p s )  Compression Failure 
Number o f  C racksT7 (one side only)
Failure Load: 32kN

llOnn ■—

1080nn-

•2740mn-

The cracking behaviour of the beams is the same as the rest of the beams tested so far. 

The first hairline cracks appeared at the maximum bending moment region under 6kN 

total load in the beams and subsequently grew more prominent and numerous as the 

load increased.
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The beams containing 2d) 12/13.19 steel/GFRP rebars and steel/GFRP stirrups

The crack propagation in the pre and post cracking stages of the beams in this 

category is very similar to the previous category. The average numbers of cracks in 

the steel beam, GFRP beams with steel stirrups and GFRP beams with GFRP stirrups 

are 24, 18 and 23 respectively. The crack patterns are very similar in each beam with 

GFRP beams having more extensions.

Figure 7.16 The cracks patterns o f the concrete beams reinforced with 2 (j) 12/13.19 
rebars and steel/GFRP stirrups.

CEO TBS3 ED1E ST (tension) + B D 6  STCconpression) + E4D6 ST (s t ir r u p s )  Com pression Failure 
Number oF Cracks:E4 (one side only)
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121 Onn--------------------------
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CEO TBE5 ED13.19 FR P(tension) + ED6 ST(com pression) + E4D6 ST (s t ir r u p s )  Com pression Failure 
Number o f  C ra ck s‘18 (one side only)
ra ilure Load: 47kN
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CEO TBS7 ED13.19 FRP(tension) + ED6 ST(com pression) + 24D6.9 FRP (s t ir r u p s )  Com pression Failure 
Number o f  Cracks:E3 (one side only)
Failure Load: 38.7kN

1370nn-

•2740nn-

7.2.13 M odes o f Failure

Typical failure mode of each beam is shown in Photo 7.5. The morphology of beam 

failures is given in Table 7.8. All the beams failed in compression at the maximum 

bending moment region. As in the previous parts, the vertical cracks were initially 

developed from the bottom surface within the middle section and these were followed
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by diagonal cracks towards the supports in all cases. Also note in the Table that the 

‘failure morphology’ of all the beams can be classified as ‘flexural type’ but steel 

beams tended to fail as ‘under-reinforced’ rather than ‘over-reinforced’ sections on 

the bases of steel main rebars reaching their ‘yield plateau’ and soon after that 

concrete crushing at the ‘top’.

Photo 7.5 A view o f  ‘compression ’failure o f  a beam reinforced with steel/GFRP main 
bars and steel/GFRP stirrups

Table 7.8 The modes offailure o f  the concrete beams containing steel/GFRP stirrups

Beam
Code

Concrete Grade 
(Cube Strength- 
[VI Pa)

Rebar No 
Dia/Type Failure Morphology (Failure Load-kN)

TTB22 C20(43) 2<|> 8Steel 
24(j)6 Steel links

Compression- Steel yielded and concrete 
crushed in the top edges o f the beam (24)

TTB23 C20(44) 2cj) 12 Steel 
24<j)6 Steel links

Compression- Steel yielded and concrete 
crushed in the top edges o f the beam (47)

TTB24 C20(46) 2<j) 8.77GFRP 
24cj>6 Steel links

Compression- Concrete crushed in the 
top edges o f the beam (35.9)

TTB25 C20(46) 2(j) 13.19GFRP 
24(J)6 Steel links

Compression- Concrete crushed in the 
top edges o f the beam (47)

TTB26 C20(41)
2<f) 8.77GFRP 

24c|)6.9GFRP links
Compression- Concrete crushed in the 
top edges o f the beam (32)

TTB27 C20(39) 2(1> 13.19GFRP 
24(J>6.9GFRP links

Compression- Concrete crushed in the 
top edges o f the beam (38.7)
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7.2.14 Estimation of Flexural Crack Widths

Table 7.9 contains the theoretical and experimental estimations of the maximum crack 

widths using the equations given in Appendix 5.

Table 7.9 Estimated crack widths o f Part 4 beams
1 2 3 4 5 6 7

Beam Concrete Rebar Stirups ^Number [” Estimated crack widths (mm) |
Code grade No. No. of 2**BS8110 3***Experiment

Dia/Type Dia/Type Cracks
TTB22 C20 2-08S 24-06S 9 0.07 0.08
TTB23 C20 2-12S 24-06S 14 0.16 0.11
TTB24 C20 2-08.77F 24-06S 11 0.56 0.52
TTB25 C20 2-13.19F 24-06S 9 0.45 0.51
TTB26 C20 2-8.77F 24-06.9F 13 0.56 0.45
TTB27 C20 2-13.19F 24-06.9F 16 0.52 0.33

‘♦in the maximum bending moment region ‘♦♦based upon the formulae ‘♦♦♦based upon the dial gauge measurements

Also, for this Part, the values of maximum crack widths calculated using the equations 

in BS8110 are comparable with the experimentally estimated values except beam 

TTB27. It seems that the beams reinforced with main steel rebar and stirrups have 

smaller flexural crack widths than the ones reinforced with GFRP rebars and 

steel/GFRP stirrups whereas those reinforced with smaller diameter GFRP rebars and 

steel/GFRP stirrups tend to have larger crack widths compared to the ones reinforced 

with larger diameter GFRP rebars.
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7.3 Performance Quotient (Qp)

The Author proposed another Performance Quotient (Qp) considering the ‘top bars’ 

and the ‘stirrups’ in the beams. The formula is given below and the results are 

included in Table 7.10. Also, the calculations are given in Appendix 5.

<-

Q  =

1000( p 1 +B.SW)

/ (bh- As -  As'-neqs)+ f  As+ f '  As'+( f  .neqs)c j  s J S J s

neqs = (
- ( b - 2 C  min) + ( h - 2 C  min) 
SV -)As"

323



Ch
ap

te
r 

7 
N

or
m

al
 w

ei
eh

t 
Co

nc
re

te
 

Be
am

s 
Re

in
fo

rc
ed

 
wi

th 
Hi

gh
 

Yi
eld

 
St

ee
l 

an
d 

GF
RP

 
Re

ba
rs

 
co

m
bi

ne
d 

wi
th 

GF
RP

 
an

d 
M

ild
 

St
ee

l 
St

ir
ru

ps

QCO
OQ

V-
-v«i

R
•Si
o
a

o
a
a
a
£

cu
cp
K

»Si
< 5

e2

CN

<L>
13
6■■p

I

C/3 P 5

V3 fl-tV) K> <D Oh
C/5 ^

5f
• sVi
P•a

<D
o  5 
"H -a

fjv,

C/3 CO<L> Ph
-P s  on ^

o

£ «a t3^  •a oa

<D r3? 03
0 3  OT >

i C
0 0

VO <D

TOIT) :r -P X)

Tt P- S3
^Vh

#4—>
GO

oi

§
CQ

o
£

o
£

0)
T 3
O

u

<D(X
f
5

o
Z

VO - CN vo CO

On 00 Os r~- r - vo
■'3- CO CO i-H o VO
(N ^t- c o c o CO
O o o o o o
o ’ o o ’ o ’ o ’ o ’

CO VO vo Os
rt- Tt* '3 ‘ ’3- ■"i" CO

r f Tf
o o O o 00 00
CO CO CO CO vo vo

i/o r - C"
t*"

CO Os o o o o ’
CN ■rf o T'' vO r -
VO r f

Os I-'
"3" r - CN
CN vo r f CO 0 0

CO CO

p p p C e J-

_ o _ o _ o .2 _ o o

-a -a ’a * V3 i/3 "on
C/3 C/3 C/3 C/3 C/3 1/3
<D <D <D (U 1) <DVi Vi •— Vi
O, a o . o- a . O .

a P p e £ p
o o o o o O

U U o U U CJ

VO VO 00 vo tC
CO CO CO CO CO CO

’ 1
T—H 1

’-

1—< VO CO CO
o cn cn r - c \ r -
r-H CN I-H CN CN

CO CO CO CO
o o o O o o
CN CN CN CN CN O')

CO CO CO CO
o o o O o o
r—i r-H

1

U- U-
C/5 c/3 C/5 c/5 O- Os
VO VO VO VO
o O o O v b VO1 i 1 i o o
Tt- -3- 1 1
CN CN CN C'l r e

Ol a l

!-U u - Ci-« Uh
C/5 C/5 r~ O'. Ov00 CN r^- r~“ r-~O 00 CO CO
CN CN o —• CaJ

—*

CN CN CN Ĉ l
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Similar to previously obtained the Qp of the beams having higher load capacity is also 

higher for the beams containing mild steel stirrups. According to the results in Table 

7.10, the beams (TTB23 & TTB25) reinforced with <{>12/13.19 diameter steel/GFRP 

main rebars assembled with mild steel stirrups have a very similar performance 

quotient suggesting that the ultimate load capacity of these beams and the 

yield/ultimate stress of the main rebars are also very similar. In the case of beam 

(TTB24) reinforced with <{>8.77 diameter GFRP main rebars and mild steel stirrups, 

the performance quotient is higher than those reinforced with <{>8 main steel rebars and 

mild steel stirrups. However, the performance quotient of the beam reinforced with 

<{>8.77 and <{>13.19 main rebars and GFRP stirrups is less than the rest of the beams 

even though the ultimate load capacity of these beams are very similar in magnitude to 

beam TTB24. This is due to the fact that the ultimate stress of GFRP stirrups is 

almost twice of the yield stress of the mild steel stirrups. This suggests that Qp index 

of beams containing GFRP main rebars and stirrups having lower value for a higher 

load capacity when compared with the beams reinforced with GFRP main rebars and 

mild steel stirrups.

7.4 Conclusions

The performance of C20 normal weight concrete beams reinforced with 2<(>8, 2<j>8.77, 

2<j>12, 2<j>13.19 steel and GFRP main rebars combined with 24<{>6 mild steel stirrups 

and 24<{>6.9 GFRP stirrups, was studied. The main observations and tentative findings 

of this Part are outlined below.

The results indicated that the maximum tensile stresses and strains in the steel and 

<{>8.77 GFRP rebars reach their full tensile capacity whereas with <{>13.19 GFRP this is 

approximately 73% of the tensile capacity (see Table 7.2). Generally, tensile strains 

measured in the rebars were influenced by the rebar area i.e. the bigger the area the 

less the strain at a given load.

The strains of steel main rebars and stirrups in the shear region of the beams are less 

than those reinforced with GFRP main rebars combined with either steel or GFRP 

stirrups (see Figure 7.4).
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Compared with the force sustained by the concrete in the compression zone it was 

found that the contribution of 2(j>6 'top bars’ against compression was negligible. The 

results showed that there is a change in the status of strains in the 'top bars' (see 

Figure 7.3) i.e. compressive (-'ve) strains become tensile (+'ve). This could be due to 

the location of the strain gauges attached to the 'bars' and possible composite to non 

composite action during loading cycle.

The maximum concrete compressive strain in the beams reinforced with GFRP main 

rebars and steel/GFRP stirrups is the same suggesting that the type of stirrups has no 

significant effect (see Table 7.3).

There is also evidence that when the area of rebar increases the resistance of concrete 

in the shear regions at the location of main rebars, also increases regardless of type of 

stirrups (see Figure 7.12). The concrete strains of all the beams at the location of 

stirrups are initially compressive, however as the crack openings develop the concrete 

strains become progressively tensile (see Figure 7.13).

The results show that the main rebar areas and types primarily influence the neutral 

axis depth of the beams (see Figure 7.11).

The initial load carrying capacity of the beam reinforced with 2(j)8 steel, 2(j)8.77 and 

2<|)13.19 GFRP rebars was not affected by either of the stirrup types. The evidence for 

this is that the same beam with no stirrups tested in Part 1 (Chapter 4) has the same 

initial crack load of 6kN for the steel and 4kN for the GFRP reinforced beams. 

However, it seems that the beam reinforced with 2<j>12 steel rebars was influenced by 

the stirrups i.e. the initial load capacity of the beam increased from 4kN to 6kN. 

However, this is not highly significant in view of the fact that this depends on 

monitoring of visible cracks.

The overall trend for both steel and GFRP reinforced beams is that ultimate load and 

bending moment capacities can be enhanced with larger diameter of tension rebars. 

The GFRP and steel stirrups combined with GFRP main rebars are also influential
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factors on the enhanced load capacity of the beams (see Table 4.8 in Chapter 4 and 

Table 7.5).

Load versus deflection behaviour of GFRP reinforced beams containing stirrups also 

exhibited linear elastic curve up to failure as the beams tested in the previous Parts. 

The steel reinforced beams exhibited a yielding plateau at failure (Figure 7.14).

Generally, the 'measured' and the 'calculated' deflections at the cracked section are of 

similar orders of magnitude (see Table 7.7). However, the 'calculated' deflections are 

less than those 'measured'. The results suggest that beams containing GFRP main 

rebars and steel/GFRP stirrups deflect more than the steel reinforced beams at failure

The initiation and the pattern of propagation of the cracks in all the beams are 

generally the same (see Figure 7.15 and Figure 7.16) although at failure different 

from that in the majority of beams in the previous parts of the investigation i.e. 

concrete crushes at the top edge of the beam between the loading points.

It seems that the beams reinforced with main steel rebar and stirrups have smaller 

flexural crack widths than the ones reinforced with GFRP main rebars and steel/GFRP 

(see Table 7.9).

Using both mild steel and GFRP stirrups has modified the shear failure of the beams 

to compression (flexural) failure (see Photo 7 .5 \  The results suggest that the GFRP 

rebars can be combined with either mild steel or GFRP stirrups in the beams.

The beams having the highest Performance Quotient (0 D) generally have the higher 

load capacity, irrespective of whether the beams containing GFRP or mild steel 

stirrups (see Table 7.10). However, it should be noted that the Qp indices of beams 

containing GFRP main rebars and stirrups are lower values as their load capacity 

when compared with the corresponding beams reinforced with GFRP main rebars and 

mild steel stirrups.
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CHAPTER 8

8 CONCLUSIONS & RECOMMENDATIONS FOR FUTURE 

RESEARCH

This Chapter contains concluding discussions based on the experimental programme 

and theoretical (using BS8110 equations) results described in Chapter 3 to Chapter 7. 

The recommendations for further work are also included at the end of the Chapter.

8.1 Summary Review

A preliminary investigation was undertaken to establish the link designs and material 

including rebar property. Following the main laboratory testing programme (Part 1) 

further experiments (Part 2, 3 & 4) were conducted to investigate the behaviour and 

the performance of concrete beams under two point loading containing various types 

and grades of concrete in combination with various configurations of steel/GFRP 

rebars. In Part 1, the performance of steel and GFRP reinforced concrete beams with 

three different concrete grades, C20, C40 and C60 was examined. This was in 

relation to the strains in the reinforcing bars and concrete, ultimate load/bending 

capacities, deflection response, stiffness, performance quotient, ultimate shear 

capacity, failure modes and cracking behaviour. Following Part 1, the catastrophic 

failure of some of the GFRP rebars necessitated a formal risk assessment to be 

completed before the subsequent Parts were undertaken. This was carried out in 

conjunction with some modification to the monitoring procedure and technique to 

enable the measurement of performance indicators to proceed safely to an advanced 

stage up to incipient failure. Part 2 of the investigation was based upon the findings 

from Part 1 and focused on the GFRP reinforced high strength (C60) concrete beams 

and the optimisation of rebar configuration. Part 3 was based upon the perceived 

optimal rebar configuration varying the area of rebars, with different types and 

strengths of concrete i.e. lightweight aggregate concrete, concrete containing 

microsilica and chopped glass fibres. Finally, the purpose of the Part 4 was to 

examine and compare the performance of beams reinforced with steel/GFRP main 

reinforcing bars combined with steel/GFRP stirrups. Wherever possible, all the 

performance parameters considered were compared with the existing
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recommendations of codes of practice (BS8110) and/or findings from previous 

research.

The main conclusions of the work are summarized below and the thesis concludes by 

making recommendations for future research. The work carried out for this research 

contained a large amount of data and hence in order to focus more clearly upon the 

critical findings, the Author believed that it would be a good idea to make summary 

tables selecting only ‘top’ (higher performance) and ‘bottom’ (lower performance) 

three beams from each Part based upon their Performance Quotient (Qp). Table 8.1, 

8.2 and 8.3 contains the summary results of the beams in Parti, Part2 & 3 and Part4 

respectively. The ranking of the beams in the Tables helps to interpret the results 

based upon the loading of the tested beams. The Qp values in the Tables were 

calculated using the derived equations in Chapter 4 and Chapter 7 for the beams 

without and with stirrups respectively. The loading of the beams in the Tables were 

included in two categories, precracked (when first visible crack/s were apparent) and 

postcracked (when failure occurred) and based on the ratio of load to deflection.
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8.2 Conclusions

The conclusions drawn herein are based upon the key findings throughout the

experimental study.

Precracked Load Capacity

1. Generally, the precracked crack load capacity of all the beams having the 

dimensions of 103mm x 203mm x 2740mm and tested in Part 1 to Part 4 was 

approximately 4kN to 6kN minimum regardless of rebar type.

2. The precracked crack load capacity of Part 1 beams reinforced with both steel and 

GFRP main rebars, increased between 34% and 50% with increased concrete 

grade for a given rebar diameter (see column 6 in Table 8.1 for Part 1). However, 

concrete grade did not seem to influence the precracked load capacity of the beams 

reinforced with small diameter ((f>8) steel rebars.

3. The precracked load capacity of the beams reinforced with ‘straight only’, ‘curved 

only’ and ‘straight and curved’ GFRP rebar profiles was very similar in magnitude 

(4kN to 6kN). This suggests that the beams are not sensitive to the geometry of 

rebars within the precracked limit of the beams for a given concrete grade and 

rebar diameter (see column 9 in Table 8.2 for Part2).

4. The precracked load capacity of the beams did not seem to be influenced by the 

stirrup types for the beams reinforced with steel and GFRP main rebars for a given 

concrete grade and rebar diameter (compare column 6 in Table 8.1 for Parti with 

column 10 in Table 8.3 for Part4).

Postcracked (Ultimate) Load Capacity

5. For all grades of concrete, the ultimate load capacity of the beams reinforced with 

larger (4>16) and medium (012) diameter ‘straight profile’ steel rebars was higher 

than the beams reinforced with 08.77, 013.19, 016.44 diameter ‘straight profile’ 

GFRP rebars and 08 diameter steel (see column 7 in Table 8.1 for Part 1).

6. The ultimate load capacity of the beams reinforced with both steel and GFRP 

rebars increased between 3% and 18% with increasing concrete grade for a given 

rebar diameter and failure mode (see column 7 in Table 8.1 for Part 1). However, 

concrete grade did not seem to affect the ultimate load capacity of the beams
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reinforced with small diameter (<j)8) steel and large diameter (c{)16.44) GFRP 

rebars.

7. The ultimate load capacity of the steel reinforced beams increased between 40% 

and 60% with increased rebar area for a given concrete grade and failure mode. 

This was also the case for the GFRP reinforced beams but with a smaller 

percentage between 21% and 36% i.e. less sensitive to the rebar area (see column 

7 in Table 8.1 for Part 1). It should be noted that the beams reinforced with larger 

diameter (cj)16.44) GFRP rebars had a very similar ultimate load capacity to those 

reinforced with smaller diameter (<j)8.77) GFRP rebars.

8. The ultimate load capacity of the beams seemed to be influenced by the profile of 

the GFRP rebars. The beams containing ‘curved only’ profile rebars failed at a 

load 4% and 11% more than those reinforced with ‘straight only’ profile rebars for 

a given concrete grade, rebar area and failure mode (see column 10 in Table 8.2 

for Part2).

9. The beams reinforced with ‘straight and curved’ profile GFRP rebars (see column 

10 in Table 8.2 for Part 2) have reached the highest ultimate load capacity with 

increased concrete strength (compare column 10 in Table 8.2 for Part 2 and Part 3) 

for a given rebar diameter/area and failure mode.

10. The ultimate load capacity of the C40 glass fibre added concrete beams reached a 

higher value (51.4.kN and 46.8) than the rest of the beams in Part 3 (see column 

10 in Table 8.2) for a given rebar geometry. Also in Part3, C20 lightweight and 

microsilica added lightweight concrete beams seemed to be approximately 25% 

lower than the C20 normal grade concrete beams for a given rebar area, concrete 

grade and failure mode. Generally, lightweight aggregate concrete beams had a 

lower load capacity compared to normal grade concrete beams.

11. The ultimate load capacity of the beams reinforced with GFRP main rebars and 

stirrups was approximately 10% less than those reinforced with steel stirrups for a 

given concrete grade, rebar diameter and failure mode (see column 11 in Table 8.3 

for Part 4). Generally, the beams containing medium diameter (<j)12 and (J)13.19) 

main steel or GFRP rebars combined with steel/GFRP stirrups had the highest 

load capacity amongst all the beams in Part 4.

12. The ultimate flexural load capacity of the beams reinforced with GFRP main 

rebars and steel stirrups was approximately 30% more than those reinforced with
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GFRP main rebar only (failed in shear in Parti). This was approximately 20% for 

the beams reinforced with GFRP main rebars and stirrups (compare column 11 in 

Table 8.3 with column 7 in Table 8.1).

13. The beams containing stirrups had higher load capacities compared to those 

reinforced with two main rebars only. However, the beams reinforced with novel 

geometry of GFRP rebars ( ‘straight and curved’ profile) achieved higher load 

capacity than those containing stirrups with increased rebar area and concrete 

grade (compare column 11 in Table 8.3 for Part 4 with column 10 Table 8.2 Part

3). This could offer a potential for the fact that the GFRP rebars could be used 

more efficiently having this type of profile with a consequent saving on materials 

and assemblage time.

Precracked Stiffness

A high value of stiffness in both pre and postcracked cases, generally, indicates that

the beam deflected at a low value for a given load.

14. Steel reinforced C20 and C60 beams exhibited higher stiffness than the beams 

reinforced with GFRP rebars (see column 15 in Table 8.1 for Part 1).

15. The stiffness of the beams reinforced with ‘straight and curved’ profile GFRP 

rebars had higher stiffness than the rest of the beams in Part 2 for a given concrete 

grade (see column 16 in Table 8.2).

16. The stiffness of the beam containing ‘straight’ profile GFRP rebars was 

approximately 60% of the one reinforced with ‘curved only’ profile GFRP rebar 

for a given concrete grade and rebar diameter/area (compare column 14 in Table 

8.1 for Part 1 with column 15 in Table 8.2 for Part2).

17. C40 glass fibre added, C50 lightweight aggregate and C20 silica added lightweight 

aggregate concrete beams containing ‘straight and curved’ profile GFRP rebars 

had higher stiffnesses than the rest of the beams in Part 3 (see column 16 in Table 

8.2).

18. The beam reinforced with 2<j)8.77 GFRP main rebars with steel stirrups had the 

highest stiffness (see column 17 in Table 8.3 for Part4). The beams reinforced 

with 2(j)12 steel main rebars with steel stirrups and 2<j)8.77 GFRP main rebars with 

GFRP stirrups had the same stiffness.
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19. The stiffness of the C20 grade concrete beams containing steel and GFRP stirrups 

were higher compared to those without stirrups for a given rebar diameter/area 

(compare column 14 in Table 8.1 for Part lwith column 16 in Table 8.3 for Part

4). GFRP reinforced beams contained steel stirrups exhibited higher stiffnesses 

than those contained GFRP stirrups.

Postcracked Stiffness

Generally, the beams reinforced with GFRP rebars deflected more than the steel 

reinforced beams. However, in the further test programmes (Part 2, Part 3 and Part4) 

it was found that the rate of increase in deflection at each load increment could be 

influenced by using different areas of reinforcement and configurations. The 

following conclusions based upon the test results can be drawn.

20. All the steel reinforced beams had higher stiffnesses than the beams reinforced 

with GFRP rebars (see column 17 in Table 8.1 for Part 1 and column 19 in Table 

8.3 for Part 4).

21. The stiffness of the beams reinforced with steel or GFRP rebars with and without 

stirrups increased with increased rebar diameter/area for all concrete grades for a 

given failure mode (see column 17 in Table 8.1, column 18 in Table 8.2 for Part 2 

& 3 and column 19 in Table 8.3 for Part 4).

22. C40 with glass fibre added concrete beam had the highest stiffness of the beams in 

Part 3 for a given rebar profile and failure mode (see column 18 in Table 8.2).

23. The beams containing steel/GFRP stirrups exhibited higher stiffnesses for a given 

main rebar type and diameter (compare column 16 in Table 8.1 for Part 1 with 

column 18 in Table 8.3 for Part 4).
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Rebar strain capacity

24. The tensile recovery of the GFRP rebars under load versus extension curves was 

remarkable owing to the fact that the recoverable energy in the GFRP rebars was 

elastic rather than plastic as for steel rebars. This could indicate that the GFRP 

rebars have potential to perform better in post yield state in seismic design 

applications.

25. The strains measured from both steel and GFRP main rebars in the tension region 

of the beams suggested that the large diameter rebars deformed less than the small 

diameter rebars at failure and the concrete type did not seem to affect the 

magnitude of the rebar strains.

26. Generally, the maximum tensile stresses and strains in the steel rebars and small 

diameter ((})8.77) GFRP reached almost their full tensile capacity throughout the 

investigation.

Failure mode

27. Shear failure was to be the dominant type for GFRP reinforced beams. However, 

using either mild steel or preformed GFRP stirrups could modify this to tensile or 

compressive type of failure mode. The shear failure is not necessarily the worse 

type considering some of the beams containing steel main rebars failed in flexure 

catastrophically and ruptured.

28. The beams reinforced with GFRP rebars and which failed in shear-rupture were 

changed the ‘failure type’ with using larger area of rebars having different profiles 

or using steel/GFRP stirrups.

Crack patterns & widths

29. The initiation and the sequence of the crack development were very similar in all 

the beams. The first crack appeared within the maximum bending moment region 

and subsequently grown to be more prominent and numerous along the span as the 

load increased. In comparison with beams reinforced with ‘straight profile’ steel 

rebars, the cracks in GFRP reinforced beams were observed to be deeper with 

larger gaps between the adjacent cracks (Part 1). However, beams reinforced with 

‘curved profile’ GFRP rebars seemed to have more shear cracks compared to the 

beams reinforced with ‘straight profile’ GFRP rebars (Part2). The beams
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reinforced with combination of ‘straight and curved’ profile GFRP rebars 

developed more cracks but the gaps between them seemed to be reduced (Part3). 

The overall crack pattern of the beams containing mild steel/GFRP stirrups (Part4) 

was similar to the other Parts, however, the final appearance was governed by the 

compression failure.

30. The crack widths in the GFRP reinforced beams were observed to be larger

compared to the steel reinforced beams at failure. The results showed that the dial 

gauge used to measure the concrete strains within the maximum bending moment 

region of all the beams could be adopted for estimating the flexural crack widths 

which are comparable with those calculated using BS8110 formulae.

Performance Quotient

31. The following mathematical expressions have been derived for determining the 

performance (Performance Quotients, Qps) of concrete beams reinforced with 

either steel or GFRP main rebars combined with or without stirrups. The 

interpretations of Qp values are governed mainly by the ultimate load capacity, 

however, the concrete grade and the yield/ultimate strength of the rebar also affect 

the magnitude of Qp.

For beams containing main rebars only in the tension region:

_  1000 (Failure Load + Beam Self W eight) 

f  c (bh A st / gfrp ) + f  st / gfrp A  st / gjrp

For beams containing main rebars in the tension region and combined with stirrups: 

q  _  1000(Failure Load + Beam selfweight)

P f c [ b h - A „ ISfn> ~ K  - ”, J +  [ f v i t f i r  x A , i,fip +  A *  X K  + ( /„ * ■ « „ ,) ]

nev = \ Ls J
x A

{(b~ 2 c ^  ) + ( h -  2Crain)}eqs S..

30. The performance of the beams reinforced with <j)16 and (j)12 steel rebars was in the 

top rank whereas the beams contained (j)8 steel rebars were in the bottom rank
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amongst all the beams for all concrete grades (see column 11 in Table 8.1 for Part 

1).

31. The beams reinforced with <j)13.19 and (j)8.77 GFRP rebars had the top rank 

performance amongst all the beams reinforced with GFRP rebars except for C40 

concrete grade (see also column 11 in Table 8.1 for Part 1).

32. Qp values of the beams reinforced with either steel or GFRP rebars suggested that 

better or similar performance could be achieved with low grade concrete (C20) 

and with less rebar area (compare TB13 and TB9 in column 10 of Table 8.1).

33. The beams reinforced with 4<J)13.19 and 4cj)8.77 GFRP ‘straight and curved’ profile 

rebars had the top rank performances amongst all the beams tested in Part 2 (see 

column 12 in Table 8.2 for Part 2). Their Qp values were very similar due to the 

fact that they also had a similar load capacity but the beam reinforced with smaller 

diameter rebars failed in compression.

34. The beams containing ‘curved only’ profile GFRP rebars reached higher 

performance ranking with increased load capacity, compared to those that 

contained ‘straight only’ profile steel/GFRP rebars for a given diameter/area and 

concrete grade (C60) (compare column 11 in Table 8.2 for Part 2 and column 10 

in Table 8.1 for Part 1, also TTB3 with TB7).

35. The highest ranking performance was achieved with C20 concrete beams that 

contained 4(J)13.19 and 4(j)8.77 ‘straight and curved’ profile GFRP rebars in Part 3 

(see column 12 in Table 8.2).

36. The lowest performance ranking occurred with lightweight aggregate concrete 

beams in Part 3 (see column 12 in Table 8.2). However, the performance of the 

lightweight concrete beams containing microsilica was better than the beams 

containing only lightweight aggregate. The beams reinforced with <j)13.19 and 

(j)8.77 GFRP rebars had a very similar performance value (see column 11 in Table 

8.2).

37. The performance of the beams reinforced with main steel/GFRP rebars increased 

with using steel/GFRP stirrups for a given main rebar area. Although more rebar 

material was used in these beams, the failure mode was modified from shear to 

compression type (compare Table 8.1 with Table 8.3 for C20 concrete grade).
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38. The beams reinforced with (j)12 steel and <{>13.19 GFRP rebars and steel stirrups 

had the highest rank performance amongst the other beams in Part 4 (see column 

13 in Table 8.3)

Reliability of the existing code

39. The existing code of practice (BS8110) is a reliable source for assessing and 

predicting the performance of GFRP reinforced beams. However, when designing 

concrete elements containing GFRP rebars, a higher material factor (Ym) should be 

considered since the load versus extension characteristic of GFRP rebars exhibits 

linear behaviour up to brittle failure i.e. concrete element may not give any 

warning prior to failure. In addition, changing (increasing) load factor in design to 

compensate for potentially more ‘brittle’ behaviour of GFRP should also be 

considered. Alternatively, using the optimum (novel) rebar geometry proposed in 

design (i.e. main rebars having ‘straight and curved’ profile) would modify failure 

mode to less catastrophic ( ‘softer’) forms.

Proposed Model

40. The theoretical values of performance parameters i.e. bending moment, ultimate 

shear capacity, deflection etc have been calculated using the formulae in the 

current code of practice, BS8110 and compared with the experimental data 

wherever possible. The study showed that the existing code, within certain limits 

is a reliable source, for assessing and predicting the performance of GFRP 

reinforced beams. However, direct substitution is unlikely in practice because of 

the difference in mechanical properties of the two materials. Traditional 

reinforced design relies upon the yielding of steel as the primary cause of failure 

(under-reinforced design concept). Whereas, when using GFRP an alternative 

design philosophy must be adopted in which a ‘softer’ compression or shear type 

failure condition must be induced either through a ‘soft’ compression or shear type 

failure but still maintaining structural continuity. Consideration should also be 

given to the serviceability design. GFRP’s lower elastic modulus will affect 

deflection in design. Although crack width is also one of the serviceability 

requirements and provides additional warning of failure prior to compression
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failure of concrete, it is suggested that due to GFRP’s corrosion resistant 

characteristics this would not be a significant consideration in design except for 

aesthetic reasons.

41. The beams manufactured in this investigation would be ideally suited for use as 

small structural precast components such as a prefabricated concrete lintel 

containing either ‘straight and curved’ GFRP rebars or GFRP main rebars 

combined with steel/GFRP stirrups. It is suggested that these configurations of 

rebars will enable the concrete element to fail in ‘softer’ shear or compression 

types of failures. Also, there is a potential use of GFRP reinforced elements in 

short span concrete members where deflection would not be the major concern.

8.3 Summary of Key Findings

• In general, increasing concrete strength had a small effect upon load capacity of 

the beams. Overall, steel reinforced beams had a greater load capacity than the 

GFRP reinforced beams. However, for flexural failure GFRP reinforced beams 

displayed a greater capacity to absorb energy than steel for similar loads but 

exhibited reduced stiffness at any given load although this was enhanced by the 

inclusion of glass fibres in the mix.

• The beams reinforced with GFRP main rebars demonstrated larger deflection than 

those reinforced with steel. In general, the results showed load capacity increases 

with increase in main rebar area. Deflection is the limiting criterion for 

serviceability design of GFRP reinforced beams and hence the potential use of 

GFRP rebars should be recommended for small/short span concrete elements.

• Overall, the crack widths in the GFRP reinforced beams were observed to be 

larger and deeper compared to the steel reinforced beams. However, this would 

not be the major concern for serviceability design due to non-corrodible nature of 

GFRP rebars.

• Failure of the steel reinforced beams was predominantly in ‘flexure’ for the more 

lightly reinforced sections and in ‘shear-bond’ for those with the largest areas of 

reinforcement. GFRP reinforced beams exhibited mostly ‘shear-bond’ type failure 

with the exception of the most lightly reinforced high strength concrete beam.

The failure mode was altered to ‘double shear’ and ‘compression’ types of failures
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by using combination of ‘straight and curved’ profile GFRP main rebars and mild 

steel/GFRP stirrups respectively.

• Experimental measurements generally agreed with the corresponding theoretical 

and quasi-theoretical values derived from fundamental principles and conventional 

design considerations. However, the theory generally overestimated the bending 

moment and shear resistance capacity and underestimated the neutral axis depth 

and deflection.

• A mathematical expression has been derived for the development of the concept of 

a ‘performance quotient’ as a useful efficiency comparator for the beams of 

different types and composition.

8.4 Recommendations for Future Work

The following may constitute important points for further research into the

performance of GFRP reinforced concrete elements

1. This study could provide useful amount of data for ‘shear’ failure of the beams 

reinforced with GFRP rebars.

2. This investigation has examined the differences in rebar type, configuration and 

concrete types and strength. It would be desirable to assess the effects of beams 

having deeper depths and shorter shear span on the shear performance.

3. Using Scanning Electron Microscope (SEM) in order to determine the bond 

between concrete and the GFRP rebars. However, the attention should be paid to 

cutting of the samples to the appropriate size with as less disturbance as possible 

to the bond between the rebar and the concrete.

4. New performance indices can be developed based upon deflection, energy 

absorbtion capacity or fatigue of the beams.
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Typical Tensile Properties of Single Fibres (after Weidmann1)

Material
Density
(kg/m3)

Tensile
Modulus

(GPa)

Tensile
Strength
(MPa)

natural fibres
cotton 1520 6-20 300-800

silk 1340 8-13 300-650
wool 1300 3-4 100-200

synthetic fibres
nylon 6 1130 0.7 330

nylon 6,6 1140 1-5 400-750
PET (Polyethylene 

terephthalate)
1380 12-19 600-800

PP(Polypropylene) 910 6.4 600
PAN (Poly acrylonitrile) 1140 7 380

high performance fibres
aramid (Kevlar 29) 

(Kevlar 49)
1400
1440

60
124

2800
3100

Polythelene (SPECTRA 900) 970 120 2600
carbon 1760-

1960
265-520 1900-

2800
inorganic fibres

E-glass 2550 72 3400
C-glass 2490 69 2800
S-glass 2490 87 4600
A-glass 2500 68 2400
zirconia 5600 100 700
alumina 2800 100 1000
boron 2600 380 3800

asbestos 2500 160 2100
silicon carbide 2500 410 4000

metallic
steel 7860 210 3000

XXV



The Comparison of Selected High Performance Fibres (after Yang5)

Kevlar
Fibre

Carbon
Fibre

High
strength
Polyethylene
Fibre

S 2-glass 
Fibre

Physical properties 

Density (kg/m3) 1440 1800 970 2480
Melt temperature (°C) 550 4000 147 1200
Tensile strength (MPa) 2300-3400 4000 2600-3000 4800
Tensile modulus (GPa) 55-143 400 120-171 85
Performance Parameters 

Tensile strength good very good very good poor
Tensile modulus good very good very good poor
Toughness good poor good poor
Compressive properties poor very good good good
Shear properties poor good good good
Light stability poor good good good
Creep good good very poor good
Flame resistance good very good very poor very good
Moisture regain poor good good good
Non-abrasiveness good poor good poor
Lightweight good poor very good poor
Thermal properties good very good very poor very good
Solvent resistance good very good poor very good
Impact resistance very good poor good poor
Adhesion poor good very poor poor
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SAMPLE CALCULATIONS

1. Neutral Axis Depth ( y t f ,Pn )  based uyoti BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

1 (  203V
a 'P  + ~

TCtheouncr _

1 ( h ^

a eP +
r h \

\ a 7

(5.636x0.00483) +
114)

(5.636x0.00483) +
^203^
v174y

x!7 4  = 103.15 mm (1)

1
a ep  + -

7Ctheo uncr _  2

f h ' 2
(1.366 x 0.00578)+ i

f  203 " 2

U , U73.61, X173.61

d a eP + [' H) (1.366x0.00578) +
r 203 ^

J ) ^173.61 J
•(

a , .  =

K  =

( E  ^E 'st

V
Oo
o

U 3 ;

= 5.636......(1) a .  =
( E  ^ f

gfrp

v Ec y

45.09
33

= 1.366......(2)

rtD2 2x3 .141x8 '
= 100.53mm2 -101m m ' •(1)

■̂ gfrp
riD2 2x3.141x8.772

D.

= 120.81mm -121 mm' •(2)

d - h -  (cover + —) = 203 -  (25 + —) = 174 mm (1)

d = h -  (cover + y )  = 203 -  (25 + ^ )  = 173.61 mm......(2)

P =
A 1

101 )
I  bh J 1^103x203J

= 0.00483......(1) p  =
A V eftp {  121 )bh J ^103x203J

= 0.00578...... (2)

cracked:

7Ctheo i-  = Ĵae p (  2 + a ep ) ~ a ep  a ep  = 5.636x0.00483 = 0.02722...... (1)

= [](0.02722) x  (2 + (0.02722)) -  0.02722]x 174 = 36.13 mm......(1)

= J a ,p (2  + a cp ) - a ep  a ep  = 1.366x 0.00578 = 0.00789.....(2)
d

= [^(0.00789) x (2 + (0.00789)) -  0.00789]x 173.61 = 20.48 mm (2)
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*    ~

Neutral Axis Devth ( r„rt„ni) based upon experimental strains

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

£̂c \a2 ~ ec2a))£ , x - £  r,x = £ , a ~ - e  x  7 = — -  — —cl c l  cl 2 c2 1 actual . (F - F \uncr/cr c2
uncracked:

_ ( £ d a 2 _ £ c 2 a l ) _  [(118-14x25)—(91.29x10)]x | ~ — / omm. (1)
a c t m l u n C r  (*c l ~ e c 2 )  (1 1 8 .1 4 -9 1 .2 9 ) —

e j =118.14(measured) e =91.29 (measured)

y  =10mm =25 mm
at 6kN (1)

_ (ecl fl2 “ *c2a l ) _[(88.64x25)-(24.16xl0)] _x j — JU.ozmm......(2)
actualuncr (ec \ ~ ec2 ) (88.64-24.16) — —

f  j = 88.61(measured) e ^ = 24.16(measured)

y  =10mm = 25mm

cracked:

at4kN (2)

,  J l c f 2 - e* N >  „  [(865.47x25)-(528.94xl0)] = 4858mm......
actual cr (£c1~£c2 ) (865.47-528.94).....................

e j = 865.47(measured) e ^ = 528.94(measured)

y  =10mm a2=25m m
at 23kN (1)

{ec la2 ~ Sc2a\ ) [(1469.59x25)-(331.15x10)]x  , = ----------------------= -------------------------------------- = 29.36mm......(2)
actual^  (e , - e  ) (1469.59-331.15) — —

£cl = 1469.59(measured) ec2 =331.15(measured) 
a{ =10mm a2 = 25mm

at 22kN (2)

xxxii



2. Second Moment of Area (SMA) o f Transformed Section (Inrt.mi) based upon the 
experimental neutral axis depth(Y„rt„ni) used in BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

^ actual uncr   ^

bd: 12
f  h ^ 3
\ u  J

h 
+ — 

d
X a c tu a l i

\ 2

V 2d + a eP
f  ^ 2

_  X a c tu a l uncr

\ J

I actual uncr

f 203^ 3

12
203    76 203 V

174J *** 1741^174 2x174J
+ 0.02722 x 1 -

76
174

x(103x l743)

actual uncr = 90 .10x l06mm4 at 6kN (1)

I actual uncr 12
203

173.61

\3
+ '

203
173.61

30.62 203
U73.61 2x173.61J

+ 0.00789 x f  30.62
1 -

173.61
x(103xl73.613)

actual uncr = 180 x l0 6mm4 at 6kN (2)

cracked :

^ actual cr   ^ X a c tu a l ci

bd‘ + <*eP
r \ 2
j /v actual ci

\ y

actual cr

48.58
174

+ 0.02722
48.58
174

x (103 x 1743) = 11.60 x 106mm4 at23kN (1)

1 (  29.36 V
actual cr 173.61

+ 0.00789 1 -
29.36
173.61

x(103xl73.613) = 3 .81x l06mm4 at22kN (2)
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3. Theoretical (Mu,™) Bendins M oment based upon BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

M theou, f s t ! g f r p  A/g frp  s i  gfrp
j  X th e o uncr

3 7
based on rebar

M lheo = 1 1 9 .3 8 X 1 0 3 xlOlxlO"6 x 0.174- 0.10315
= 1.68kNm...... (1)

f st = 119.38MPa (from the tensile test at 6kN)

M theo = 65.53xl03 x l2 1 x l0 -6 x 0.17361- 0.10198

fgfo = 65.53MPa (from the tensile test at 4kN)

wllkNm (2)

cracked:

M  theo„ f s t /  gfrp ̂ s t  /  gfrp

V
based on rebar

J

M theo = 523.5xl03 xlO lxlO '6 x 0.174- 0.03613
= 8.56kNm...... (1)

f st = 523.5MPa (from the tensile test at failure)

M tU.n = 601x10^ x l2 1 x l0 -6 xtheo, 0.174- 0.02048
3 j

f g rp = 601MPa (from the tensile test at failure)

= 12.13kNm......(2)
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4. A ctual (Mnrtuni) Bending Moments based upon the Bending M oment Diagram (BM P)

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

- H
wLiniticd { L - e )  ...r2

M actuai = —  ------------ + ------ (see Shear Force (SF) and BMD on next page)

6 x  ( 2 .4 4 - 0 .9 )  0 .4 8 x 2 .4 4 2 „ XT
M aclraW = — i— j ------- 1 +    = at 6kN...... (1)

w (kN/m) = bXkXbeamleH8thXPconc,‘" x 9 '8 1 x l0 ~3
beam length

0.103x0.203x2 .770x2340x9 .81x l0 ’3 . , OIXT,
w = ------------------------------------------------------ = 0.48kN/m

2.770

4 x (2.44 -  0.9) 0.48 x 2.442 , XT .. XT „ .
=    - +  = 1.90kNmat4kN......(2)actual uncr ^  g  ■ v '

w = 0.48kN/m

cracked:

- ( L - e )  ,2
2 wLM = — -------------1-------

actual c r 2 g

23 x (2 .44-0 .9 ) 0 .48x2.442 „ „ „ XI „ „ XT
=  L-  -   = 9;21kNm at 23kN......(1)

28x (2 .44-0 .9 ) 0 .48x2.442 XT
M actua,cf = ----------    +    = 11.13kNm at 28kN......(2)
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SHEAR FO RCE (SF) & BENDING M OM ENT DIAGRAMS (BM P) O F THE
BEAMS

! _  (c x Span) 

• 770mm
(c x Span) i

770mm • 150mm900mm150mm

2740mm

SF
(kN)

BMD
(kNm)

Pb Pb

xxxvi



5. Curvature o f  the Beams (Hr„«„„{) based upon the actual bending mom ent (M„rt„ni)
and SMA (l„H„ni) used in BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

V b J  actual.

M  actual uncr

^ c^ a c tu a l uncr

T
vrb;

2.67x10

actual

\  b J  actual.

33x10’ x90 .7 2 x l0 6

1.90X106 
33x10’ x 179.87x10'

= 8.91xl0~7(l/mm)......(1)

= 3.20xl0~7g/m m )......(2)

cracked :

^  2Cactual c

M
bd ‘

actual cr X
y

' l '
2 fa c tu a l c

vrby
V

actual,. E J a c tu a lc r

9.21x10 -
103x174"

x

V b Jactual

203 48.58 
174 174 ,
f  48.58^

V 174
= 1.93xl0~5(l/m m )...... (1)

33x10 x l2 .8 9 x l0

1 U 3 x 106_ 103x 173.617 x

203 29.36

' l '

V b y  actual,

173.61 173.61, 
29.36  ̂
173.61 = 6.95 x 10~5 (1/mm)......(2)

33x10 x4 .31x l0
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6. Deflection o f  the Beams (A,rt„ni) based upon the actual curvature (l/r„rt„ni)used in
BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked:

K , ^ , = K x L2x  l------
uncr y .

bactualuncr i cr

C2
K  = 0.125 -  —  (based on the shape of BMD)

0.3152
K  = 0.125  —  = 0.108 (constant for all beams)

=KL2— -—actual uncr
bactualuncr

  =  0 .108 x 24402 x  8.91 x 10‘7 = 0.57mm......(1)

A,ht0  = 0.108x24402 x 3 .2 0 x l0 "7 = 0.21mm......(2)

cracked :

âctual,, = Kl? -r.
°actualcr

=0.108 x 24402x l .9 3 x l0 “5 = 12.41mm..... (1)

Art„  = 0.108 x  24402 x  6.95 x l0 ‘5 = 44.69mm......(2)
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7. Stresses (Onrtuni) and strains (Snrtnni) in rebars from the two voint loading test based 
upon the actual bending moment (M„h,mi), the actual neutral axis depth (xnrtnni) and 
the actual SMA (I„H„ni)used in BS8110 equations

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

uncracked :
M  F

r r  — fY  actua ûncr r  w h e r e  (Y  — s t /
s t  /  S frpactUa luncr ‘  j  X actu a luncr W n e f e  & e g

a ctu a l c

cr. . = 5.636x 267x10 ,-x 7 6  = 12.61N/mnr =12.61xlO®N/nr =12.61MPa......(1)
90.72x10® — =

1 90x106
a  , =1.366 x , x 30.62 = 0.44N/mm2 = 0.44 x 106 N/m2 = 0.44MPa.....(2)tJ't'acmal,,., 179.87x10' ------- ---

cracked:
M a c t u a l /  r  \

G s t !  t f r p actualcr ~  e ~  (  ~ X actu a l c r )

a c tu a ls

9.21x10
, =5.oabx-

12.89x10”
a„    = 5.636x x (174-48.58) = 505.06N/mm2

= 505.06x10® N/m2 = 505.06MPa......(1)
i i  n v i n 6

cr . = 1.366x -  ” -x (173.61 -29.36) = 508.84N/mm2SfVvcml,, 4.31x10®
= 508.84xl0®N/m2 = 508.84MPa......(2)

uncracked:

_  ^ St /  & rp actualuncr 
st / gfrp actUalancr T?

st / gfrp

= 12.61xl0_ = 000007......(1) s., = 0 - 4 4 x 1 0 ........
W, 186x10 ~ =  45.09x10

cracked:

p
S t / g f r p  aclual

s t  /  SfrP  ac tu a l c

77
s t !  gfrp

_ 505.0_6 x l ( /  _ Q Q027......(1) = 508.84X10® ......
staciuaicr 186 xlO9 —  sfPac,ua'" 45.09 xlO9

xxxix



8. Maximum concrete compressive strain (€m) based uvon the measured strains in the
beams

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

Max compression 
strain, sco

Measured strain, eciDemec

Demec Measured strain, e c2

Demec 3

£ c \  ( X actual cr a \  )  £ X actual Cr
— (max. compressive strain) £ =

^ C O  X actual cr ^  (-X actual cr ^  J )

g = ,865.47_xl0jx48.58= .....
co (48.58-10) ~ '

=  2 0 4 4 2 2 X 1 0 ^ X 2 9 ^ .................. ......

co (29.36-10) = =

xl



9. Shear strength (vmnr)ofthe beams based uvon BS 8110 equation

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

Theoretical shear strength:

''max... = K K  0-79
100A

.1/3
s t /  gfrp

bd
'400
\  a  J

where kj = l a n d k 2 =
y / 3

^ 25 /

where /  not )40MPa

Vmaxrtf(,
'4 0 ^ 1/3 

V 25y
x0 .79x ' l 0 0 x l 0 l V /3 ( 400^1/4

V103x174
x

v174y
= 0.94MPa...... (1)

= lx f 40l
1/3

x0.79x 100x121 'l1/3 400 >1/4

U 5J 1^103x173.61J ll73.6lj
= l.OOMPa (2)

Actual shear strength:

actual
1000(Failure load + Beam selfweight) 

2bh

1000x(23 + 1.32)vnrtunl = ------------------------= 0.58MPa...... (1)
2x103x203   ■

1000x(28 + 1.32)
U  =  = 0.70MPa...... (2)

2x103x203 ----------

xli



10. Determination of number of stirrups required for the beams based on the shear
resistance

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)

min imum stirrups fo r  whole length o f beam:

((vmx,w +0.4) BS8110,Table3.8 

0.5 x  0.94 ( 0.58 ( (0.94 + 0.4)

0.47 <0.58 <1.34......(1)

the cross sectional area o f the two legs o f the stirrups:

0 4 h s
A  > — -Jljl. BS8110, Table 3.8

‘v 0.87 / „

0-87 f„ A „
s.. =

0.4 h

0.87x250x28.27 i/ir,
sv = -------------------------= 14 9mm

0.4x103

However maximum spacing of links should not exceed 0.75d 

: .s v = 0.75^ = 0.75x168 = 126mm......(1)

L , _  (mm) 920 
The number of stirrups (ns) = ------------------ = = 7.30 ~ 8 stirrups...... (1)

rmax

xlii
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11. Estimation o f  crack widths in the beams.based imon BS 8110 equation

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

w,
3 a £cr m

max theo {  \a — c . 'cr nun1 + 2
h - x cr y

+min
D \2

r
a„ =

__ 8V
25 + -  

V
x 2  —  = 37.01mm......(1)

2

a = J  25 +
8.77 \ 2

x 2 - H Z  = 37.17mm...... (2)

em = s c4 (at DEMEC4) -  £c3 (at DEMEC3)

em = 0.00346 -  0.00109 = 0.00237 (1)

£ =0 .0182-0 .0075 = 0.0107...... (2)

wmax theo
3x37.01x0.00237 ^

 x = 0.23mm......(I)
l + 2x 37.01-25  

.203-48.58 
3x37.17x0.0107

v-

wmax theo
l + 2x 37 .17 -25

203-29.36

= 1.05mm......(2)

xliii



12. Estimation o f  crack widths in the beams using a dial eause

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

w,
f rt.c4 =  ------- . => wl, = ec3 x  (G.L.) and wu = eci x  (G.L.)

Gauge Length (G.L.)

=0.00109x900 = 0.98mm..... (1)

=0.00346x900 = 3 .11mm (1)

=0.0075x900 = 6.75mm..... (2)

=0.0182x900 = 16.38mm..... (2)

wL = ------------------------------1-----------------------------------
averag' no. o f cracks in max imum bending moment region

3.11-0.98 
Wj = --------------- = 0.213mm...... (1)

average io  -  =" =
16.38-6.75 ,

w.  ----- = 1.93mm.....................(1)
^average ^

13. Performance Quotient (Ov) for concrete beams without stirrups

C20, TB15 reinforced with 2 0 8  Steel rebars in the tension region (1)
C20, TB16 reinforced with 208 .77  GFRP rebars in the tension region (2)

1000(Failure Load + Beam selfweight)

fc (bh — Ast!  g f r p )  ^  ( f st /  g f r p  X  A /  /  g f r p  )
Qp

Qp = _______ 1000X(23 + 1-32>________ = 0.0268 (1)
p 41x (103x203-101)+  (523.5x101) «

e ,  = _______ 1000x(28 + 1-32)_______ = 0.0317...... (2)
p 41 x (103x 203-121)+  (601x121) --------
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Performance Quotient (0„) for concrete beams with stirrups

C20, TTB22 reinforced with 2 0 8  Main Steel rebars and 2 4 0 6  M ild Steel stirrups and 2 0 6  
M ild Steel ’top rebars’.. .(1)

C20, TTB26 reinforced with 2 0 8 .7 7  Main GFRP rebars and 2 4 0 6 .9  GFRP stirrups and 
2 0 6  M ild Steel ’top rebars’.. .(2)

203mm

103mm

25mm

153mm

25 mm

Q ~ -

1000( p  + BSW)

2 L

f c  ( b h - A s - A s '-[(-

Y
Y

neqs

-)As"]) + f sAs + f ' s A 0 f ' s [

2 L ( b - 2 Cnia)
Sv

+ ( h - 2 c  n̂ n)

neqs

As"]

J

xlv



b= Breadth of the beam section (mm) 

h= Depth of the beam section (mm)

Cmin= Minimum cover to the reinforcement (mm)

L=Length of the beam (mm)

As= Cross sectional area of the main rebars (mm2)

A s’ = Cross sectional area of the top bars (mm2) 

neqs=Equivalent cross sectional area of stirrups (mm2)

Sv= Spacing between the stirrups (mm) 

fc = Cube strength (MPa)

fs = Yield/ ultimate(GFRP) tensile strength of main rebars (MPa) 

fs’= Yield /ultimate (GFRP) tensile strength of stirrups(MPa)

Ff= Failure Load (KN)

B.S.W .= Beam self weight (KN)

ioooc/ t^+f s .w )
^ p /* { b h -  As -  As'-neqs) + f  A s+  f '  As'+( /* .neqs)

v  C J  S  J  S  J  S

TTB22

fc=43 MPa 

b= 103 mm 

h= 203 mm 

L=2740 mm 

Sv= 100 mm 

Cmin= 25mm 

Ff= 24 KN

xlvi



B.S.W.= 1.36 KN 

fs= 528.74 MPa 

fs’=304 MPa

As =ttD2/4 = 2tl82/4 =101 mm2 

As’ = 7tD2/4 = 2tl62/4 = 56.54 mm2 

As” = 7iD2/4= n  6 2/ 4 =  56.5 mm2 

2 L
, s v ( b - 2Cimn) + (h - 2Cmin) 2.24[9103 -  2.25) + (203 -  2.25) 2

neqs = (— ----------------------------------------)As =-[-------------------------------------------- ]56.5 = 204mm
L 2740

G 1000(24 + 1.36)
= --------------------------------------------------------------------------     = 0.0249

p  43(103x203 -101  -  56.54 -  204) + (528.74x101) + (304x56.54) + (304x204)

TTB26

fc= 41 MPa 

b = 103 mm 

h= 203 mm 

L= 2740 mm 

Sv= 100 mm 

Cmin= 25 mm 

Ff = 32 KN 

B.S.W .= 1.35 KN 

fs= 601 MPa 

fs’= 581 MPa 

As= 121 mm2 

A s’=56.54 mm2

xlvii



—r r ~

A s” =27t(6.9)2/4= 74.78 mm2

2.24[103 -  50) + (203 -  5 0 ) , , ,  2
neqs =  174.78 = 210mm

2740

e.,=
1000(32 + 1.35)

p  2 41(103x203 -1 2 1 -5 6 .5 4  -  270) + (601x121) + (304x56.54) + (581x270)
0.0307

xlviii



The crack patterns of the C20 grade concrete beams reinforced with 2<J)8.77/8
GFRP/steel rebars
C20 TB15 2D8 ST Flexure Failure 
Number of Cracks: 20 Cone side only)
Failure Load: 23kN

2740mm

C20 RTB15 2D8 ST Flexure Failure 
Number of Cracks: 18 Cone side only)
Failure Load: 25.1kN

1 3 6 5 n n --------------------------------- —

--------------------------------------------- 2 7 4 0 n n

C20 TB16 2D8.77 FRP Flexure Failure 
Number of Cracks: 9 Cone side only)
Failure Load: 28kN

1650mm-------------------------------

------------------------------ 2 7 4 Onm

C20 RTB16 2D8.77 FRP Shear Failure 
Number of Cracks: 9 Cone side only)
Failure Load: 24kN

860nn

2 7 4 0 m m

x lix



The crack patterns of the C40 grade concrete beams reinforced with 2<|)8.77/8
GFRP/steel rebars

C40 TB5 208 ST Compression Failure 
Number of Cracks:23 (one side only)
Failure Load; 24kN

l O O m n —

2740nn

C40 TB6 2D8.77 FRP Shear Failure 
Number of Cracks=9 (one side only)
Failure Load; 20kN

850nn

—— 570nn

2740nn

C40 RTB6 2D8.77 FRP Shear Failure 
Number of Cracks: 10 (one side only)
Failure Load: P2kN

885nrv

—— 590nn
274 0 n n --------------------------------------------------------------------

C40 FIBRE TTB16 2D8.77 FRP Shear Failure 
Number of Cracks: 12 (one side only)
Failure Load: 33.6kN
—------------------------------- 8 7 0 m r i --------------------------------—

— 310nn-----

— 350nn —
2 7 4 0 n n

1



The crack patterns of the C60 grade concrete beams reinforced with 2<j)8.77/8
GFRP/steel rebars

C60 TB7 2D8 ST Compression Failure 
Number of Cracks=18 (one side only)
Failure Load: 24kN

750nn905mn

—------------------------------------------------------------------------- 2740nn

C60 TB8 2D8.77 FRP Tension Failure 
Number of Cracks:9 (one side only) 
Failure Load: 26kN

 ------------------------------------ 1380nn------------------------------------

— . 2740nn

C60 RTB8 2D8.77 FRP Shear Failure 
Number of Cracks: 8 (one side only) 
Failure Load: 26.4kN

2740nn

li



The crack patterns of the C20 grade concrete beams reinforced with 2(j)13.19/12
GFRP/steel rebars

C20 TB13 2D12 ST Shear Failure 
Number of Cracksi 25 Cone side only)
Failure Load: 41.7kN

-----------------8 9 0 n n ---------------

1— 2 0 5 n n —1
—------------------------------------------------------------------------------ 2 7 4 0 n n

C20 TB14 2D13.19 FRP Shear Failure 
Number of Cracks: 13 Cone side only)
Failure Load: 31.5kN

—  2 0 5 n n ——
2 7 4 0 n n -----------------------------------------------------------------------------

The crack patterns of the C60 grade concrete beams reinforced with 2(j)13.19/12 
GFRP/steel rebars

C60 TB3 2D12 ST Compression Failure 
Number of Cracks:30 Cone side only)
Failure Load: 48kN

130nn— ‘

2 7 4 0 n n

C60 TB4 2D13.19 FRP Shear Failure 
Number of Cracks:19 Cone side only)
Failure Load: 38kN

835mn

- — 4 5 0 n n — -
2 7 4 0 n n -------------------------------------------------------------------------------

lii



The crack patterns of the C40 grade concrete beams reinforced with 2<|)13.19/12
GFRP/steel rebars

C40 TB1 2D12 ST Compression Failure 
Number of Cracks:25 (one side only)
Failure Load: 50kN

llOOmn

-2740m n

C40 RTB1 2D12 ST Compression Failure 
Number of Cracks=26 (one side only)
Failure Load: 51kN

160nm

2 7 4 0 n n

C40 TB2 2D13.19 FRP Shear Failure 
Number of CracksT6 (one side only)
Failure Load: 34kN

6 70nn

—1 210nm

2 7 4 0 n n —-------------------------------------------------------------------------- -

C40 FIBRE TTB21 2D13.19 FRP Shear Failure 
Number of Cracks: 18 (one side only)
Failure Load: 36kN

2 7 4 0 m n
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The crack patterns of the C20 grade concrete beams reinforced with 2(j)l 6.44/16
GFRP/steel rebars

C20 TB17 2D16 ST Shear Failure 
Number of Cracks: 27 (one side only)
Failure Load: 56.3kN

880nn

2740mm

C20 TB18 2D16.44 FRP Shear Failure 
Number of Cracks: 10 (one side only)
Failure Load: 30kN

875mm

2740mm

C20 RTB18 2D16.44 FRP Shear Failure 
Number of Cracks: 10 (one side only)
Failure Load: 26.6kN

760mm

— 270mm —

2740mm----------------------------------------------------------------------------—

liv



The crack patterns of the C40 grade concrete beams reinforced with 2<j)16.44/16
GFRP/steel rebars

C40 TB9 2D16 ST Shear Failure 
Number of Cracks: 29 (one side only)
Failure Load: 67kN

990nrv

—---------------------------------------------------------------------- 274 Omn

C40 TB10 2D16.44 FRP Shear Failure 
Number of Cracks: 9 (one side only)
Failure Load: 29kN

L Z 2 T

870nn------------ —
----------------------------------------------------------2740nn

The crack patterns of the C60 grade concrete beams reinforced with 2<J>16.44/16 
GFRP/steel rebars

C60 TB11 2016 ST Shear Failure 
Number of Cracks: 39 (one side only)
Failure Load: 61.8kN

860nn-------------- —
--------------------------------------------------------2740nn

C60 TB12 2D16.44 FRP Shear Failure 
Number of Cracks: 8 (one side only)
Failure Load: 28kN

I T

955nn---------------------
-------------------------------------------------- 2740nn
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Geometrical definition of the GFRP rebars used in Part 5 and 6.

The configurations i.e. curved profile rebars used in Part 5 and 6 can be defined as a 

mathematical expression. The curved profile can be treated as a parabolic shape* and 

hence the length of each segment on the parabola can be defined to obtain the total 

length of the rebar and its location along the rebar length.

*shape: combination of the curved profiles from the shear regions.

y = ax2 -  bx -  c

a) x = 0 y= o 1)

b) x=L y = 0 2)

c) x = L/2 y= h 3)

from 1) c=0

from 2) 0 =aL2- bL------------ ► b=aL

from 3) h= a(L2/4) -  b(JJ2)----------------— ► a -

I II III VIV VI

s - 1 w - 1

segment segment



Parabola can be defined as

2 -  ox - 1 

  ̂ x
y = ax -  bx -  c 
 ►

Substitute a, b and c into the above

L

- 4  h x  4hLx

L  L

- 4  h
y  - — t { L x - x 2)

L

lvii



Constant boundary conditions are as follows.

When x= ki y=h kj = 935 mm h=203mm

x= ki + k3 y=h k3 = 900 mm

Length of curved profile can be derived as follows

y

X

y = ax2 + bx

ds = J d x 2 + dy2 

y = ax2 + bx differentiate

dy = (2 ax + b) dx

substitute dy into 1)

ds = 'Jdx2 + (2ax + b) 2 dx2

jd s  =  =  J (2ax + b )2 + ldx
x = 0

Integral solved in DERIVE math software programme

5nfcW(ft2 + P-l u h a H ^ A a b L  + b^ l ) + 2al+b])
4 a 4a 2 4 a

j d s - j J ( 2 a x + b ) 2 +1 *
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ABSTRACT. This paper presents the preliminary findings of an investigation into the 
performance o f medium to high strength concrete beams containing comparable areas of 
fibreglass-reinforced plastic(FRP) and high tensile steel reinforcing bars. Failure of the 
steel reinforced beams was predominantly in flexure for the more lightly reinforced sections 
and in shear-bond for those with the largest areas o f reinforcement whereas the FRP 
reinforced beams exhibited mostly shear-bond type failure with the exception of the most 
lightly reinforced high strength concrete beam which failed in flexure. In general, 
increasing concrete strength had a marginal effect upon ultimate load capacity. The 
development o f the concept o f a 'performance quotient’ is proposed as an efficiency 
comparator for elements o f different types and composition.
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INTRODUCTION

The current interest in non-ferrous reinforcement for use in concrete has occurred m ' 
the result o f  the extensive problems associated with the degradation o f existing fa3? /  ^  
and structures resulting from the corrosion o f steel rebar in adverse ^  ^  
environments^]. Design practice for enhancing the durability of reinforced struc tu^  
involves matching the assessed exposure with an appropriate amount of protection in t e ^  
of concrete grade and cover to rebar [2], [3], This often produces a concrete vvitlTa 
performance potential in excess o f that required for sustaining imposed service loads

The use o f fibre-reinforced polymers in concrete is not new[4] but improved manufacturing 
techniques and modified morphology have enabled a more efficient use of materials to 
produce elements which in strength and specific energy relative to performance excel that 
for ferrous reinforcement [5], [6], Furthermore the reinstatement or strengthening of 
structures may provide another opportunity for the use o f FRP in lieu o f steel [7] [81 
Although, as with steel, at elevated temperatures and during exposure to fire, loss in 
structural integrity of FRP reinforced concrete elements could occur mainly because of the 
susceptibility o f the resin component in the rebar.

This paper presents results from the first stage of an investigation into the behaviour of 
medium to high strength concrete beams reinforced with FRP and high tensile steel rebars 
and examines their comparative behaviour in the context of models currently used for 
conventional reinforced concrete design in the UK.

EXPERIM ENTAL DETAILS

Materials

Concrete:-?ori\zi\d cement (42.5) with uncrushed fine aggregate(M sand) and coarse 
aggregate (20-5mm gravel).

Reinforcement:- Steel and FRP reinforcement details are contained in Table 1

Table 1 Specified Reinforcement Details

REBAR DENSITY STRENGTH ELASTIC BAR
TYPE MODULUS SIZES

kg/m^ MPa GPa nun

High Tensile Steel 7,850 460 (Yield) 210 8, 12, 16
FRP 2,045 695(Ultimate) 50 8.8. 13.2, 16.4

Concrete Properties and Mix Proportions

Details o f grades, mean strengths,W/C ratios and mix proportions are shown in Table 2.1n 
addition, all concretes had slumps within the range 30 - 60mm.



FRP and Steel Reinforced Concrete 465

ainly as 
uildings 
service 

ructures 
in terms 

with a

acturing 
erials to 
cel that 
ning o f 
[7], [81- 
loss in 

e o f the

Table 2 Concrete Properties & Mix Proportions

CONCRETE MEAN W/C
MIX PROPORTIONS

GRADE
(Nominal)

STRENGTH
MPa

W C FA CA

C40 59 0.39 155 400 735 1170

C60 75 0.29 175 615 415 1250

viour of 
1 rebars 
sed for

BAR
SIZES

2, 16 
2, 16.4

M anufacture & Curing of Test Specimens

Two concrete grades(C40 and C60). three Bar sizes and and two rebar types (steel and 
FRP) were investigated giving a total o f 12 No. mixes for all combinations. Details o f test 
specimens manufactured and curing are given below.

Test Cubes

3 No. 100mm side test cubes were manufactured from each mix and cured adjacent to the 
test beam in the laboratory. The results are in Table 3. column 7

Beams composition

One beam 103mm(breadth) x 203(depth) x 2.740mni(Iength) containing 2 No. steel or 
FRP bars was manufactured from each mix; further details shown in Figure 1.

Testing of Concrete Specimens

Cubes were tested at 42/43 days, and compression tests were carried out in a 3000kN 
capacity compression testing machine in accordance with BS1881 Part 116.

Beams were tested 42/43 days in four point bending in stroke control mode. A 
displacement transducer placed at mid-span enabled a continuous record o f load versus 
displacement to be made. In order for failure mode transitions to be observed as area o f 
rebar(Ar) and concrete grade were changed no specific shear reinforcement w’as included. 
Details and dimensions of testing configuration are also shown in Figure 1.

FAILURE M ODELS AND M ECHANISM S

ble 2.1n
Models

In general these follow the basis o f  design for steel reinforced members in BS8110 with 
minor variations and are summarised below with appropriate explanation (3).
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F igure  1 Beam Dimensions and F ailure Modes

Ultimate Bending M oment(M u)

The ultimate theoretical bending moment(Mu) = C z  = T  z , where

Force in concrete stress block (C) = 0.67fc b d 0.9.v. Force in rebar ( T) = fv As Lever 
Arm (z) = ( d - 0.45x ) , Depth to  rebar(d) = 178mm, Beam width(b) -  103mm

Neutral axis depth(x) & Lever Arm(z)

For flexural failure in an under-reinforced section then at ultimate load and equating forces 
in concrete stress block (omitting materials factor. yni) with those in steel at yield gives:

0.67fr b d 0 .9 x  =

thus

fy As hence
fv As

0.603fr  b d 0.9
f y  A s

0.603fc b d 0.9
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Therefore the the ultimate moment(Mu) may be calculated from concrete cube strengthfy  
rebar strength(fy) and area of rebar(As). It should be noted however that when applied to 
FRP where area o f rebar is A f this model equation is likely to give an underestimate o f the 
moment capacity as there is minimal yield o f this material at failure. |

Resistance to Shear (vs)

After BS8110 (cl 3.4.5.4,Pt 1), but omitting the materials factor (ym). is expressed as 
follows:
vs(max) =  k l k2 0 7 9  ( 10°  M b d)1/3(400/d)1/4

where k j = 1.0 andk2 = (fc/25)^-5 where fc not > 40MPa 

Failure mechanisms

Sketches o f the two principal failure mechanisms are shown in Figure 1. Initially vertical 
cracks emanating from the bottom surface w'ithin the middle section preceded failure in all 
cases. In some cases these were followed by inclined cracks towards the supports. At the 
ultimate condition beams failed in two alternate modes.

Flexure failure:- resulted from yielding o f the steel or sudden rupture of the FRP followed 
by crushing o f concrete in the compression zone within the mid-span section The actual 
ultimate moment (Mu') is calculated on the basis of the maximum load at failure(F in kN) 
its lever arm 0.770m and takes into account the self weight of the beam(kN) and span(m) 
which approximates to:

Mu' = Failure Load x Lever Arm Beam self-weight x Span

2 8 

thus; Mu’ = 0.385 F + 0.40 kNm

Shear and Shear-Bond failure:- namely Type I resulted from simple diagonal shear 
between load point and support and Type II by shear-bond failure; along a line emanating 
from a loading point and passing diagonally across the section then horizontally along the 
rebar-concrete interface between one loading point and a support (9). The average failure 
shear stress across section(vs) was taken as approximately:

vs = 1000 (F + Beam self-weight) = 0.545(F + 1.3) MPa

2 b d

Performance Quotient (Qp)

To assess the efficiency of the beam in resisting load it is usefiil to relate cost (in real terms 
or energy equivalence) to strength(6). As an alternative to obviate the effect of capricious 
influences associated with market and manufacturing factors which vary from time to time, 
the authors propose a quotient relating the load capacity with the load bearing potential
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based upon a measure of the strength o f component materials and their average cross- 
sectional area throughout the beam. This may be expressed as:

>
Qp = 1000 (F + 1.3) where A r = area of

rebar
------------------------  fc = concrete strength

fc (b d - Ar) + fr Ar fr = rebar strength
i

RESULTS AND DISCUSSION

Table 3 contains details o f the beam references and experimental programme together with 
rebar details in columns 1- 4. Results from the experimental work and those from the 
theoretical models are contained in columns 5 to 14.

Failure modes

All steel rebar beams failed in flexure except those with 16mm diameter rebars(TB9 & 
TB11 - shear-bond mode) whereas FRP rebar beams failed in shear-bond with the 
exception o f C60 beam with 8.8mm diameter bars (TB8 - flexural rupture o f bars ) and 
C40 with 8.77mm diameter bars (TB6 - simple shear). See column 5.

Failure Load

Failure loads suggest that the steel rebar beams were more sensitive to rebar area and 
less sensitive to concrete grade than those reinforced by FRP, however cognisance must 
be taken o f failure mode in this respect. See column 6. !

Actual and Predicted Failure Mode and Capacity

The design models for steel rebar beams were consistent with the test results including 
the transition from flexural to shear failure as area o f rebar was increased (see TB5,TB1 I
and TB9). When applied to FRP beams these overestimated shear capacity but 
underestimated flexural capacity (TB8); the latter finding contrasts with some recent 
work by Brown and Bartholomew [10]. See colunms 5,6 & 10 - 13.

Performance Quotient I

For flexural failure the Performance Quotient for steel and FRP reinforced beams (TBS 
& TB8) were comparable although not for the shear type failures. See column 14.

LOAD VERSUS DEFLECTION BEHAVIOUR '

Load versus deflection behaviour for C40 concrete with 8mm steel rebars (TB5) 
compared with C60 concrete with 8.8mm FRP(TB8) rebars are shown in Figure 2. This 
suggests that although the FRP reinforced concrete displays a  higher deflection at a 
similar failure load , the toughness o f the 'FRP' beam (indicated by the area under the 
Load vs Deflection curve) is much higher than that for the steel beam o f a similar 
performance quotient for flexural failures.
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LOAD.kN

30

C40 grade 
8mm steel rebar

C60 grade

8.77mm FRP

— H 
70.000.00 20.00 40.00

DEFLECTION, mm
Figure 2 Load versus Deflection for steel and FRP reinforced beams

Figue 3 shows a similar curve comparing 16mm steel rebars with 16.44mm FRP rebars 
for C60 concrete (TB11 & TB12) and indicates that shear-bond failure tends 
to favour the perfomance o f the steel rebar beam compared with the FRP rebar beam.

LOAD, kN

60 C60 grade 
16mm steel rebar

50
C60 grade 

16.44mm FRP reb40

30

20

10

10.00
— I 

40 .00

— I—  

20.000.00 30.00

DEFLECTION, mm

Figure 3 Load versus Deflection for steel and FRP reinforced beams

PRACTICAL IMPLICATIONS OF RESULTS

The results suggest that performance o f the FRP beams containing the higher areas of 
tension reinforcement could be greatly enhanced by improving shear-bond capacity hence 
utilising their maximum flexural strength capability. Certain properties o f FRP should 
enable this to be attained more economically than with steel rebar. It is proposed to 
explore new design strategies in future stages o f the investigation.
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CONCLUSIONS

The mode o f failure appears to be influenced by rebar type and area although 
concrete grade was a confounding factor for FRP reinforced beams.

Conventional design models for steel reinforced concrete may require * 
modification for FRP rebar beams especially for shear failure.

For flexural failure FRP beams display a greater capacity to absorb energy than 
steel for similar load capacity, although they exhibit reduced stiffness.

A performance quotient relating load capacity to 'section potential' for similar 
geometry may be a useful efficiency comparator.

The development o f a design strategy for improving shear-bond performance 
without significantly increasing rebar area could be applied to FRP beams to 
enhance their performance.
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Name of delegate : Esref Ulas Abstract No. 37
Establishment: Sheffield Hallam University

Project Title : Investigation Into the Performance of Fibre Reinforced
Plastic(FRP) Reinforcement Used in Concrete Elements

Corrosion o f  steel reinforcement has always been a major problem for concrete 
construction, particularly, located in aggressive environments such as marine structures, 
bridges, chemical plants. Fibre composites have become popular in the civil engineering 
field in recent years. The area o f  research and development o f fibre composites in the 
concrete industry has been related to corrosion resistance fibre reinforced plastic(FRP) 
reinforcing bars.

The project investigates and assesses the performance and the efficiency o f  concrete beams 
reinforced with relatively low cost glass fibre reinforced plastic rebars in comparison with 
beams reinforced with conventional steel using a variety o f  rebar configurations and 
materials. As a preliminary investigation, a number o f  singly reinforced rectangular beams 
using different type and diameter o f  reinforcing bars with different grades o f  concrete, have 
been manufactured and tested under two point bending.

The results obtained from the experimental work so far, indicate that the potential 
contribution o f  the fibre reinforced plastic rebars to the flexural and shear capacities o f  
concrete need to be identified and defined more clearly and there are some advantages in 
the use o f  novel rebar geometry in enhancing beam properties.

Further investigative work focuses upon the evolution o f  models to accurately describe the 
behaviour o f  enhanced performance elements with a view to incorporating the findings into 
standards o f  codes o f  practice for concrete design using FRP rebars with state o f  the art 
materials currently use in construction.



A com parison  w ith steel as a re in fo rcem en t 
in  concre te  elem ents

FOCUS
This poster presents the methodology and findings from an 
ongoing program m e o f investigation into the comparative 
perform ance o f Fibre Reinforced Plastic (FRP) and steel 
reinforced concrete T h e  diam eter sizes o f the reinforcing 
bars are shown in Photo !

P h o to  1 T h e  »ize o f  S te e l a n d  F R P  b a r s

T h e  focus in this instance is on the applications to medium 
(C 40) and high strength CfiO) concrete beams under 
different loading regimes.

Test Regime

An autom atic data acquisition system was used to monitor 
loading, m id-span deflection and deformations o f both 
concrete and the reinforcem ents see Photo 3).

P h o to  3 (f ro m  r ig h t to  left) T h e  c o n tro l  p an e l, p lo tte r  

fo r lo ad  vs d e f le c tio n  re sp o n se  a n d  c o m p u te r  d a ta  s to re

T h e  load applied to the beam was increm ent o f 2kN. T he 
behaviour o f the beam s, in terms o f crack patterns, load- 
dctlection histories, failure m ode and load carrying capaci
ties were m onitored during the test.

P h o to  4 In s ta n ta n e o u s  c a ta s tro p h ic  ten sio n  

o f  C-40 G r a d e  2 0 8 m m  s tee l re in fo rc e d  b ea m

B A C K G R O U N D
During the past decade, increasing interest has been shown 
in the utilisation o f  alternative or com plem entary materials 
to steel for use as reinforcem ent in concrete. Several 
factors such  as cost, utility, inferior engineering properties 
have militated against their widespread use.

The advent of pultrudcd glass-libre reinforced polyester 
(FRP) bars of relatively low cost suggests a potential for 
use in situations w here there is a serious risk o f  corrosion 
and in o ther specialised applications such as the avoidance 
of radio wave interference.

M E T H O D O L O G Y

Sending Test Set up
Tw o-poin t bending test was conducted in the laboratory. 
T he beam s were subjected to two equal loads 
symmetrically placed on the m id-span as shown in 
Photo 2. T h e  beam  details in conjunction with the 
reinforcem ent arrangem ents are included in Figure I

M A T E R I A L  D A T A

Mechanical Properties o f  Materials:

REINFORCEMENT

Propertlos (Units) Types

Steel j FRP
S tre n g th  (M Pa) ".160 : " 6 9 5

E las tic  M o d u lu s  (G P a ) 21 0  50

D e n s ity  (kg/m 1) 7050  2045

"Yield s tre n g th  " U ltim a te  ten sile

T a b ic  I T h e  ty p ic a l  m e c h a n ic a l  p ro p e r t ie s  o f  s tee l an d  F R P  

re in f o rc e m e n ts  u se d  In th is  s tu d y

CONCRETE

P ro p e r tie s  (U nits) Mix Proportions
1

N om inal S tre n g th D ensity w/c FA D ensity
G r a d e s (M Pa) (kg/m 1) % (kg/rrr*)

C 4 0 60 2 3 9 6 0.42 39 429

C 60 75 2 4 3 5  i 0 .2 9 1 25 615

w /c (w a te r c e m e n t  ratio) rA  (F ine  A g g reg a te )

T ab le  2 T h e  p r o p e r t ie s  a n d  m ix  p ro p o r tio n s  o f  the c o n c re te  

e ro d e s  u se d  In th is  s tu d y

R E S U L T S  A N D  A N A L Y S I S

Crack patterns and failure inodes

F ig u r e  4 T y p ic a l  lo a d  v e rsu s  d e f le c tio n  beha  

c o n c re te  b e a m s  re in fo rc e d  w ith  F R P  a n d  .tc

C O N C L U S I O N
• T h e  num bers o f  cracks in FRF reinforced b 

less and deeper than the steel reinforced bea 
(see Figure 2 & 3).

• T h e  m ode o f  failure appears to be influence 
type and area although concrete grade was a 
confounding factor for FR F reinforced bean

• For flexural failure FRF reinforced beams di 
greater capacity  to absorb energy than steel 
ones for sim ilar load capacity, nevertheless, t 
reduced stiffness (see Figure 4).

Deflection o f  FR F  reinforced beams is large: 
steel reinforced beam s due to lower modulu; 
elasticity o f F R P  bars.

M A I N  C O N T R I B U T I O N

T h e  developm ent o f  a design strategy for enhar 
perform ance o f  FR F beam s e.g. by im proving li 
capacity relative to concrete quality and bar are: 
investigated and it shows potential for field appl

P h o to  2 T w o -p o in t  b e n d in g  (esc up

L , .   ___

F ig u re  1 T h e  b e a m  d e ta ils  a n d  th e  r e in fo rc e m e n t a r ra n g e m e n ts

L J U -

F ig u re  2 T y p ic a l  c ra c k s  a n d  s h e a r  fa ilu re  o b se rv ed  in  F R P  

re in fo rc e d  b e a m s

F ig u re  3 T y p ic a l c ra c k s  a n d  flex u ra l fa ilu re  o b se rv e d  in  s tee l 

re in fo rc e d  b e a m s
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