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ABSTRACT

This thesis deals with the elastic analysis of non-
uniform coupled-shear wall structures.

The main methods of analysis availablé for coupled
shear walls, namely the wide column frame method,:the
continuous connection method and the finite element method,
are discussed. Particular attention is giveh to non-
uniform walls, non-rigid foundations, the importance of
beam-wall flexibility and the importance of»coupiing‘action.‘

The direct solution of the governing differential
equafion, derived using the continuous connecfion approach,
is.briefly outlined for a'uniform«strﬁcture, but since the
equations involved very soon became unmanageable when the
vmethod is exténded ﬁo cater fdr non-uniforﬁ'walls, a
numerica% sblution in the form of the Matrix Progression
Méthod is studied with a view to using it for cpmplicated
structures. The method is first applie&'to a uniform.
coupled shear wall containing one bah& of’openings and
subjected to both a uniformly distributed-lateral ibad and
a point 1oad.» The analysis is then extended to deal with
structures having abrupt changes in geometry and containing
‘more than one band of openings. A‘briéf deséfibtion of the

computational methods invelved in the 501ution'is given.



Matrix Progression solutions are presented for a
variety of nOn-uniform couﬁled shear wails, including walls
of varying degrees of couﬁling action supported on both
central and offset columns, and the results are compared
with wide column frame splutions. In additién, for both
symmetrical and non-symmetrical‘walls with‘one abrupt change
in cross-section, the solqtions are cémpared with

experimental results obtained from tests on Araldite models.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

With low rise buildings the primary concern of ‘a
'design is to provide ah'adéquate structure to supporf the
applied vertical loads. In tall buildings, however, the
effect of lateral loads is very significant, from botﬁ the
strength and serviceability points of view, and it is
important to ensure‘adequate stiffness to resist these
lateral loads which may be due to wind, blasts or earth?
quake actidn.

| The required stiffness may be achieved in various ways.
In framed structures it is obtained from the rigidity of
the member conmections but when thé frame system alone is
_ipsufficient, addigiénal bracing members may be added or,

as is more usual, reinforced concrete 'shear walls' are

~

introduced. The term 'shear wall' can céver stair wells,
1ift shafts and central service cores but in the presént
work it is used to demote plane-ﬁalls in which tﬁe kigh in-
plane stiffness is used to resist the lateral.forces.

In its simplest form the shear wall consists of a
single cantilevered}wall which beﬁaves accordingkté simple

bending theory. 'Internaliwalis, however,'may not only



contain openings for doors and corridors but may also
 have‘an abrupt change in cross-section at a certain height
- or may even be éupported dn columns. In such cases the
behaviour of the walls is much more complicated.

The structures considered in the present work are
those comprising shear walls Cdnnectéd by beams which form
part of fhe'wall, or floor slabs, or a cqmbination of both.
1.2 Past Work |

Prior to 1960 little attention was paid to the
development of>aha1ytica1 techniques for shear walls. In
recent yéars, howevef, much reseafch hés'been carried out
and comprehensive reviews of the methods of analysis, and
sources of information on the subjectthave been presented
by Coull and Stafford Smith (1 and 2) and Fintel et al (3).

The only work which will bé mentioned here is that
which is Trelevant to the work considered in this thesis. '

\?he analysis bf walls pierced by sets of openings
(coupled shear walls) hés received much éttention but as
ﬁith any complicated structural system the accuracy of the
analysis is deﬁendent upon the form of idealization given
to the a¢tua1 structure together with the assumptions that
‘the idealization involves. Since méthods of analysis
involving the solution of the éo&erniﬁg plane stress

elasticity equations are difficult to implement in connection



with coupléd shear walls, all the methods bf analysis
which have been used previously have involved the idealizé—
tion of the structure as an interconnection of elements of
whi;h the properties are known or can be estimated. The
main methods which have been used are:
(i)‘frame analogies
(ii) finite element‘method
(iii) continuous cohnection method.

Frame Analogies

The first of the frame analogies is the"equivalent
frame methpd’; In this method the walis'are replaced b&
line members_aiong.their centroidal axes ana the lengtﬁs of
the conneéting beams arevtaken to be £he‘distances befﬁeen
the resulting line'members, thus making the stfucturé a
vertical vierendeel girder (see-Figurevlél(b)). Because in
most cases the widgﬁ.of the walls is ﬁot negligible compared
with their centfe line‘distances, this épproach is
unrealistic énd will generally oVerestimate.the”defleétibﬁs;

Green (4) adopted this procedure énd used the jportal:‘
frame' method of analysis, aSéumiﬁg pbinﬁs Qf‘contfa-
flexure at the mid-points of all members. Although he
used modifiedbstiffnesses to take a@count'of shear as well

as bending, he neglected axial deformations of the walls

and these may be of major importancz in tall slender structures.
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Figure 1.1 Coupled Shear Wall and Idealized Structures



An improvement on the 'equivalent frame method' is
the so-eelled 'wide column frame'. In this method the
length of the beam connecfing elements is taken as the
clear distance between adjacent walls and account is taken
of the effect of the vertical deflections at the ends of
the beams, which are due to rotation of the walls, by
assuming that the member joining the‘beam end to the wall
centre-line is infinitely rigid (see Figure 1.1(c)).

Oncelthe analogous system has been set up, the analysis
is best preformed by usihg matrix stiffness or matrix
flexibillty ﬁethods of analysis. Both ﬁethode are well
established and 60cumented (e.g. 5 and 6) and standard
computer.programs are available, usually adopting the
stiffness approaeh (e.g..7 and 8), o

- Frischmann, Prabhu.and Toﬁler (9) used the flexibility
méthod for the solution of.e wide column frame, but‘as_with
Green axial deformations ofvthe”wallsvwere ignored.

Maeleod (10) used the etiffness method to obtain a
eolution by incorporating stiffness matrices for.elements
which have infinitely etlff end sections.

A yariation of the above_method, allowing standard
computer programs to be used, was;presented by Schwaighofer
and Microys (11). They consieered the rigid arms as

additional members with high but finite values of cross-



sectional aréé and moment of inertia. A disadvantage of
this method; however, is that the number of nodes in the
structure is doubled, thus making much heavier demands on
computer capacity and time.

.A further variation for symmetrical structures only
was preseﬁted by Stafford Smith (12) who replaced the
rigid-armed beam by an analogous uniform beamkwith the same
1erationa1 end stiffness. :This allbwed a standard computer,t
program to be used Withouf any increase in the number of
nodes. |

Finite Element Method

The basis of the finite element method is that any
structure can be considered as an éssémblage of iﬁdividual
elements, of which the properties ére known, conneCfed to
~each other only at discretg nodes. This is in factbwhat
has been done in the frame analogies buﬁ finite element
analx§is usually refers to systems where tﬁe élements are
two ér three dimensional rather than_Iinegelements. The
aethod is well docﬁmented and typiéal.works are by
Zienkiewicz (13) and Rockey et al (14).

Aithough elements of any shape can be used it is
géneral, in shear wall'analysis; to use either rectangular.
or triangular elements with the triangulaf.elements being
used in transitional afeas between coarse meshes in regions

I



of mnearly unifofm etress and fine meshes in regions of
high stress gradients. One very big disadvantage.of the
technique is the large amount of cdmpqterkstorage required
for a solution and because of this the value of the method
lies in the analysis of local stress distributions fatherv
than an overall analysis of a structure.

Choudhury (15) used the method to make comparieons
with the solutiohs obtained from other forms of analysis
and MacLeod (10)—used the method for the aﬁalysis of
eoupled shear walls with relatively stiff beems; His work
showed that rectahgular elements gave satisfactory results“
provided‘the mesh was not too coarse.

MacLeod (16) also derived a special eiement having a
rotational degree of.freedom at_each node and was thus able
to combine line elements in'Bending, which are needed fo#
slender connecting beams, with the plane stress elements of -

the walls.

Continuoue Connection Method

In the 'continuous eonnection.method"the diecrete set
of conmecting beems, which are usually evenly spaeed, is
Vrepleced by an equivalent eontinuouskmedium which is
- assumed to be rigidly attached toithe walls but which is
only capable of transmitting actions of the same type as

the diserete system (see Figure 1.1(d)). By assuming that



the connecting beams have a point of contraflexure at mid-
span and that they do not deform exially, the method leads
to a definition of the benaviour of the system as a second
order differential equation which can be solved for
particular load cases.

Although the replacement of a series of membere had
been used before for tall frame buildings by Chitty (17),
Beck (18) appears to have been the first to apply this
metnod to coupled shear.wails when he considered the single
case of two uniform coupled shear walls on a‘rigid founda-
tion, subjected to a_uniformly dietribnted lateral load.
In the enalysis he used the shear forces in the connecting
medium as the statically indeterminate function.

Using the integral of the shear force in the connecting
medium as the indeterminate'function, Rosman (19) derived
solutions“fof a wall system withIOne or two symmetric
bande\of openings, with various support conditions at the
base of the walls, and for'both a uniformlyvdistribuced
ioad and a single point load at the cop.

Coull and furi (20) considered the same problem as
‘Beck but}in their analysis they took account of the shear
deformations in the walls,lin additionlto the axial andb
| bending deformations in the wa-lls}, and the bending and

shear deformations in the connecting medium. These effects



of shear had'been ignored by previous researchers and were
shown noﬁ to haVe a significant effect on the results of
the analysis.

In the design procedure for sheaf walls put forward by
Pearce and Mathews (21), the basic equations of the continu-
ous connection method were re-written to include the windf
loading shape of CP3 (22). .Howevef, it waé éoncluded that
for practical purposes, sétisfactofy fesults could be
obtained by using the forﬁulae for aruniform loading.

The simplicity of the_general techniqueAhas enabled
Coull and Choudhury to put forward desigﬁ curves (23 and
24) and Rosman to put‘forward design.tables (25) which“
enable a rapid and aCCufate énalysis of the structure for

standard load cases.

. Importance of Beam-Wall Flexibility

In all the aﬁalyses outlined it has been assumed that
the"bgém—wall connection is fully rigid, bﬁt due to high
stress intensities at these conneétioﬁs local deformations
Qill-occur which effectively increése the flexibility of
the connectingbbeams. |

Michael (26) analysed these localvdeformations by

-considering the wall as a semi-infiﬁite elastic plane and
the effects of these deformations were calculated as

.reduction factors for the beam stiffnesses. The variations



of the reduction factors with the geometric proportions
of the beambwere presented as graphs. He suggested that
for most span to depth ranios likely to occur in practice .
it is possible to take this egtra flexibility into account
by assuming an increase %n the clear spanvof'the beam of
‘ half its depth on each side. -~ |

Further work was done by Bhatt (27) who conducted an
investigation of the local deformations using the finite
element procedure. He connluded that the effect of jnnction
deformations was only important when the ratio of béaﬁ
 length to depth was less than 5, and than for ratios
between 5 and 3 the cofrection suggested by MichaelAcould.
be used. For the analysié of wallé witn stiffer connecting f
beamélhe presented furtner modifications inigraphical and |
tabular form which could be applied to both the.continuousv'
connection and wide column frame methods of analysis.v

Importance of Coupling Action

When the openings in a coupled shear wall system are
very small their effect on the overallAétate of streéé is
minor. Larger openings have a mofe pronounced effect and,
if large enough, result in a system in which typical frame
action predominates. The degree of‘Coupling between the two
walls connected byvbeams has been conveniently expreseéd in
terms of the non-dimensionalugeometric parameter oH, which

- 10 -



‘gives a measure of the relative stiffness of the connecting
beams withvrespect to that of the walls. The parameter
appears in the basic differential equation of the continuous
»connection_method.

A study by Marshail (28) iﬁdicated that when ézH
exceeds 13 the walls may be analysed as a single solid
cantilever, and when &H is less thaﬁ 0.8 the walls ﬁay be
treated as .two separaﬁe cantiievers. For intermediate
vélues, the stiffnesé of the»conneéting beams should be
considered. '

. The questionAof when coupling aétion i.s important was
also considéred by Pearce and Mathews (21) and they decided
that the upper limit for oH should be 16 and that the
lower limit  should be 4. |

However, despite thé difference in thé‘sets of‘figurés
giﬁen,'iﬁzwould appear that}for most wall systems likely |
to ocpuf in pracfice the couﬁling action should be

considered.

Non-Uniform Coupled Shear Walls

Because the cqupled shear wall system is_replaced by
allarge>number of individual elements in the wide column-
frame méthod, any number of variations in cross-section or
any number of conneCﬁed'walls Qan eaéily be accommodated, -

subject to computer capacity not being exceeded.

- 11 -



However,”with the continuous connection mehhod the
- algebraic expressions involved only allow a limited number
of discontinuities to be incorporated.

- Traum (29) used the continuous connection method to
analfee a system of symmetrical coupled shear walls pierced
| by one band of openings and with a single stepped Variation-
in crosé—section and intehsity of uniformly distributed
loading. The upper‘zone of hhe wall wes'solved as being
elastically supported on the lewer one and that was then
analysed by subjecting it to.axial forces, bending moment
and shearing force at its.top together with the external
horizontal loading.

Using the same appfoach, but appiying all the loads
simultaneously, Coull and Puri (30) presented a siﬁpler
analysis of the problem considered by Traum bﬁt which also
included "the effecte.of ehearing deformations in the walls.
Pisanty and Traqm (31) presented their own simplified
analysis hut there seemed to be disagreement between the
, hwo sets of authors as to the conditions to be adopted at
the change'in wall section. |

Another type of discontinﬁity was presented by Coull
and Puri (32) who considered a stepped variation in the
thickness of the walls. |

To overcome the complexity of analysing shear wall

- 12 -



systems'with more than.oﬁe abrupt change in cross-section
-.and/or more than one band of openings by the analytical
proceduresv(i.é. by direct solution of the governing
differéntial equations) a numerical approach to the problem
in the_form of a matrik progression solution was présented

5y Puri (33). |

The essential features of the 'matrix progression

method' are given by Tottenham (34). When applied to
coupled shear wall aﬁalysis the basis of the method is that
the structure is divided into uniform zones ahd differential
equapibns governing the behaviour of each zone can be
determiﬁed.’ An overall solution islthén obtained by
applying boundary and cOntinuity conditions. The only
limitation of the method, when applied to shear walls;_is
‘that the centre line of each band of openings must be -
continuous throughout the total height of the wall;

-\?he method was extended by Coull, Puri and Tottenham
(35) to the solution of coupled shear wall systems containing
‘ény number of stepped variatioﬁs iﬁ cross-section-apd any
number of bands of openings.' At the same time the number
of differential equations go?erning-the behaviour of each
- zone was reduced, thus lessening the work load required in
an aﬁalysis. |

' The method was also adopted by Tso and Chan (36) who

- 13 -



only considered walls containing one band of openings but
included the effects of flexible foundations in their
analysis.

Non-Rigid Foundations

Many shear wall systems are rigidly buiit in at
_foundation level but in practice other base conditioné can .
occur. 'Oﬁ one hand the walls may be built on independent
foundations-which yield vertically and rotationally relative
to each otﬁer. On the other hand, the walls may be
supported aﬁ first floor level on a column sYstem to allow
large open spaceé at ground_floorvlevei.. If»either of
these two conditions occur, the beﬁaviour of the lower
parts of the wall system can be signigicantly altered.

The analysis of walls on flexiblé foundations using
the wide column frame method présents no.problemsbas most
standard témputer programs allow'preséribed displacements o
to bq\applied at any node. |

MacLeod and Green (37) used the wide column frame
ﬁethod to analee a wall with‘one‘ﬁahd of opgnings supported:_.
on a beamland column syStemﬂ They considered symmetrical
~and hqn-SYmmetrical walls with both stiff and flexible
connecting Beams and'they showed that’the results obtained
agree‘satisfactorily with finité element-analysis.~

The use of the continuous connection method for the

- 14 -



analysis of walls supported on columns was first put
forwéré by Rosman (19).

Further work using this method has been done by Coull
and Chantoksiﬁopas (38) who presented design curves for
any pair_of walls or a set of three symmetrical walls
supportéd on any elastic foundation or any beam column
system. Three loading cases, nameiy a uniformly distri-
buted load, a point load at the top and a triangular load
were cohsidered and a comﬁlete sélution for aﬁy load form
and aﬁy base condition can be obtained using only threg
- design charts. A comprehénsive séries of formulae, father
than’cha;ts, for'the analysis of similar structures havé
also been presented by,Céullﬁand Mukhérjee (39). )
| Arvidsson (40) also considered ﬁhé problem and
presénted»a method for aﬁalysiﬁg shear walls with two
bandsAof‘bpenings supported‘bn an elastic foundation;

1.3 Scope of Present Work

Although the continuous connegtioﬁ'method is well
éccepted for thé analysis of uniform coupled shear wall
systems, it has frequently been.criticised as not having
the flexibility of the wide column frame method to cover
non-uniform structures. Although this criticism is
justified when the analytical solution is employed, it has

been shown, in theory, that the method has much greater

- 15 - ° -



potential for.thé analysis of complex wall systems if a
numerical solution is adopted.

The object'of thevprésent work is to check the
accuracy of the matrix progression solution of the
continuous connection method against both experimental
results and the wide column frame method for a variety of

ngn—uniform.coupled shear walls, including walls supported

on columns.



CHAPTER 2

ANALYTICAL SOLUTION

2.1 Introduction

In this chapﬁer, the differential equations governing
the behaviour of a uniform poupied shear wall structure
with a rigid foundation are derived using the continuous
connection, and an analytical solution is obtained.

Although the method itself has appeared frequeﬁtly_ ‘
before, it was‘thought-necéssary to include it here to
show tﬁe procedure adopteévin‘the solution, and also as an
introduction to the numerical method presented in Chapter 3.

To achieve consistency with the numerical solution,
the equations have been derived using the base of'ﬁhe wall
as the origin for the x co-ordinate, and in this respect
tyey differ from previously published equations.

vThe only loading case considered,is that‘of a uniform
lateral load.
2.2 Notation

.The'following symbols are used in this chapter:

Ap, Ap Cross-sectional area of walls A and B respectively

b Length of connecting beams
d Dépth of connecting beams
E Yoﬁng's modulus

- 17 -



G Shear modulus‘

H Total height of Wall

h Storey height

I,, Iz Moment of inertia of walls A and B respectively

Iy | -Moment of inertia of connecting beams

I, Reduced moment of inertia of connecting beams
Q Distance between centroidal axes of walls

MA, MB Bending moment in walls A and B respectiVely at
- a height x ‘

M - Applied bending mbment at a height x

Np, Np . Axial force in walls A and B respectlvely at a

height x
q J_..Applied lateral distfibuted load
V,, V Shear force in walls A and B respectlvely at a
A’ "B
height x. :
v ~Distributed shear force in the substitute
. connecting medium at a height x
x’ Height above foundation

Ly~ Lateral deflection of walls at a height x
Any other symbols used are defined as they afe
introduced.

2.3 Assumptions

(a) The walls have a rigid foundation

(b) The moments of inertia and crosé—Sectional areas of
- both the walls and the connecting beams, and the storey
height are constant throughout the height of the

structure.



(c) The points of contraflexure of the connecting beams are

at their midspan

(d) The connecting beams do not deform axially and hence
the lateral deflection of individual walls is the

same at any level

(e) In each zone the discrete set of uniform.cohnecting
~beams may be replaced by a uniform equivalent connecting
medium of the same stiffness. The stiffness of the
connecting medium for-half a storey height above the
_foundation is considered as taken from the rigid

connection at the foundation

(f) Plane sections of the wall before bending remain plane
after bending. This allows the moment-curvature
relations based on the_engineérs theory of bending to

be used for individual walls
(g) The beam-wall connection is fuily rigid. .

2.4 Uniform Coupled Shear Wall Containing One Band of ‘
Openings

The structure considered is shown in Figure 2.1,
where the individual connecting beams of stiffness EIp
are réplaced by an equivalent continuous medium or |

lamellae of stiffness EIp/h per unit~height;

Governing Differential Equation

Consider a 'cut' along the centre line of the medium
connectingvthé two walls. There will be movement of the
two parts of the medium due to both rotation and vertical

movement of the walls.

- 19 -
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The axial force in wall A at any height x is given

by:

-and thus the vertical movement of wall A at a height x is

Lo(x (i
EAX'JO Jb Vd"dX

where 1 is a dummy variable which is used to signify the

given by:

- variation of NA within the region 0 to x.
For vertical equilibrium of the wall system ;

and thus the vertical movement of wall B at a height x is

o 1 x: H
- EKE.{O’ J de dx
D

Thus the total relative displacement at the cut is

givén by:

g}ven by: _ : : _—
¢ _gdy 1(1 ,1) [* (B
Q—Q%—E(KA-FKB) Jo Jbvdbdx

To restore continuity in the connecting medium, a

shearing force v must be applied across the cut so that

12EIv §.
v =
hib

where Iy is a reduced moment of inertia to take account of
shear and is given by:

Ib
v =15 1.2 /G (9/b)2
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Thus the compatibility equation is:

3 X (H |
Gy me . 1d 1) E J viy dx = 0 (2.1)

dx  12EI, Ap T Ap) o Iy
The moment curvature relationship for the walls is:
d%y _ -M.
dx2 EI
where M = My + My

and I=IA+IB
and thus: -

%y _ g 2 .
,EIdxz =3 (H-x)- ¢ vdx (2.2)
% v

A differential equation governing theAdistributed shear
force can now be obtained by differentiating Equation 2.1

w.r.t.x, substituting Equation 2.2 and differentiating

again.
Thus:
d%v _ ®?v = -2p (H - x) ' | (2.3)
dx2 | ‘ . ‘ - .
where 2o 121y (22 A )
and . B = ql 121y 1

V and whére A = AA + AB

- Solution for Diétributed Shear Force

The general solution of Equation 2.3 is:
v=Pe 4 Qe 2P - x) (2.4)

where P and Q are constants of integration which depend on

- 22 -



the boundary coﬁditioﬁs.
| a At thé base, the rotatioﬁ is zero and thus, from
Equation 2.1, we obtain: |
v =0 when x = 0
At the top of theiwall, the moment, and thus the

curvature are zero and once again from Equation 2.1 we

obtain:
dv 0 when x = H
dx
'Using the above conditions, Equation 2.4 becomes:
1 . - L -
v i Fq : , (2.5)
where ' : o : '
. d4oaHsinhed . (. x)
( ,x) ( x ) |
vcgsh (fo ) + ( 1 - )
and )
AAAB QZ

Height of. Maximum Distributed Shear Force

From Equation 2.5 it is seen that thelmaximum value
of the distributed shear fofce v occurs when Fj is a
maximum;

Thus, differentiating Equation 2.6 W.T.t.X and equating -

to zero, the only valid solution for x is

=1 -1y, € coshaH + sinhaH - «H ) (2.7)

X
"H T xH “9%e ( coshaH - sinhaH + «H )

Thus;~thé_va1ue of Vvmax is obtained by substituting
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Equation 2.7 into Equation 2.6 to give Fqymax and then
substituting this value into Equation 2.5.

Axial Force and Bending Moment

The axial force in each wall is given by:

H
N = J vdx
<

'vSﬁbstituting Equation 2.5 and re-arranging the terms

we obtain:

= : ‘ .8
N e Foy | o (2.8)
where _g(H - x}z
_ - Mq = 7
and _ 2 ‘ '1+stinh«H (%)
F2 = @2, x)2 g coshe 0SB
v (1'H) |

- () L e ()2
| 4 +-mH31nh(«H§) 4 —7?——»( 'ﬁ) E

The moment resisted by the axial forces N is NQ, which

from Equation 2.8 is equal to MaF?

Thus the moment resisted by bending of both walls is

given by: ; , | , ‘
M = Mq§1 - EZ; - C(2.9)
: P - - :
Deflections A

The deflection y at'any height can be obtained by
substituting Equation 2.5 into Equation 2.2, integrating
twice w.r.t.x and applying the appropriate boundary

conditions,
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© dx
Thus
y:ﬂg% o (2.10)
where |
ps =G B 15 &1 (2]
iz (B * oo MR
< (0“1{)3 sinh go(H-}é;} |

For the maximum deflection ypgx the condition x = H

can be substituted into the equatioh for F3 and thus

qu4 ‘ . A
Ymax = gy T4 o (2.11)
where : . - :
' (e-1) 8 { 1 coshoH - £HsinheH - 1
F, = = 4+ 2 + <
47 ( Hg) Ko 2(xH)2 ‘(dH)4cosh«H

2.5 Complex Shear Wall Systems

| Theﬁmethod of analysis presented in Section 2.4 can
obvigusly be extended to cater for any number of bands of
openings and any number of ébrupt changes in cross-section.
However, each band of openings produces.a differentiali
equatidn of second order, ahd each change in cross-section
“requirés ﬁhe éolutions of the equations below and above the
discontinﬁity té bé matched. Thuskonly two, or possibly |
three, such effects can be dealt with before £he algebraic

expressions involved become unmanageable and it is for
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this reason that alternative methods of analysis have been

developed.



CHAPTER 3

MATRIX PROGRESSION SOLUTIONS

3.1 Introduction

The Matrix Progression Method, as outlined by
Tottenhaﬁ (34), is a techniqﬁe of structural analysis
espegially designed for application to complex structures
éomposed of several shell or plate elements. The analysis
of these structures involQes a considerable amdunt of
numerical computation whatever method is used and the
purpose of the_métrix progreSsion'method is to make the
analysis aé simple as possible, because by using matrixr
algebra the calculations are-reédily planned.

-The basis of the method is a special form of solution
of the basic differential equations governing the stress
apd displacement conditions in a structure. The solution
is in two parts, corresponding to the complementary function
and ﬁﬁe particular integral, the first part of which depends
only on the boundary conditions at one end of the structure
and the second part of which depends only on the lo;ding
system. By using the solution in this form we can write
the solution for an element of the structure in general
terms and add in the effects of applied loads, or cﬁanges

in structural properties, as and when they occur.
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The essential reouirements of‘the method are thatkthe
sum of the order of the basic differential equations must
be even, and one half of the boundary conditions must be
known at each.end. |

In this chapter, a uniform coupled.shear wall contain-
ing one band of openings and subjected to both a uniformly
distributed load and a point load is considered first. The
analysis is then extended to deal with sYstems in which an
abrupt change in'geometry of the structure takes place at
a particular height. This is done by splitting the structure
into two zones such that'the geometric properties and
applied loading intensity remain constant in any one zone.
The only restriction to the variation\of the geometric
properties and loading from‘one zone‘to the other is that
the line of the centres of the‘connecting beams 1is continu-
ous through the two zones. Sets of differential equations
govezning the behaviour of each zone are determined and a
solution is obtained by.applying appropriate continuity and
ooundary conditioms. ,

The solution is then extended to deal with structufes
containing two oands of openings and having an abrupt cnange
in cross-section, and finally the analysis is generalised:
for coupled ehear walls with any number of bands.of
openings and any number of abrupn variations in cross-section.

/

- 28 -



3.2 Notation

" The following symbols are used in this chapter:

Ap, Ap

aN,A» aN,B

Bas Bp
b.

d

My, Mp

Na» Np

VA’ VB

Cross-sectional area of walls A and B respectively

Axial displacement of walls A and,Bvrespectivély
at a height x

Width of walls A and Brrespéctively

Leﬁgth of connecting beams

Depth of connectiﬁg beams

Young's modulus

Applied point load

Shear modulus

Total height of wall or zone

Storey height

Moment of inertia of walls A and B réspectively |
Moment of inertia of conunecting beams |

Reduced moment of inertia of connecting beams

Distance between centroidal axes of walls

Bending moment in walls A and B respectively at
a height x

Axial force in walls A and B reSpectlvely at a
height x

Applied distributed load

Shear force in walls A and B respectively at a
height x

Distributed shear force in the substitute
connecting medium at a height x
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X ~ Height above foundation or discontinuity
y o Deflection of walls at a height x
S Rotation of walls at a height x
- The additional suffices 1 and 2 after any symbol

refer to zones 1 and 2‘respectively.

Matrices are denotea by undeflining the symbol e.g. A.

Any other symbols used are defined as they first
appear. |

3.3 Assumptions

-The assumptions made are the same as in Section 2.3

except that (a) need.not apply.

3.4 Uniform Coupled Shear Walls Containing One Band of
Openings | h

The coupled shear wall system referred to in the
following analysis is shown in Figure 3.1.

Displacement and Elasticity Relationships

. At any distance x from the base, the lateral displaceF

ment y and the rotation 6 are eqﬁal for both the walls and

their relationship is given by:

d ) . . . -

=0 (3.1)
Consider now a 'cut' along the centre line of the

medium connecting the two walls. There will be a movement

of the two parts of the medium due to both rotation and

vertical movement of the walls (See Figure 3.2).
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Figure 3.1 Coupled Shear Wall

- 31 - .



Wall A . Wall B

Figure 3.2 - Displacement of the ends of the cut connecting

medium
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The end attached to wall A will apprbach the base by

. an amount

b, BA,,
G+ 70 - ay,a

while the end attached to wall B will move away from the

base by an amount | °
b, BBy -
‘(-2-+—é—)e+aN,B
' The relative displacement at the cut, § , is thus
given by
6 = QG-aN,A-!-aN’B
To restore continuity 'in the connecting medium, a
shearing force v must be applied across the cut.

The deflection of a unit cantilever due to bending and

shear is given by

_hb3
= 12E1,

where I, is a reduced moment of inertia to take account of
shear force and is given by

- Ip
v = 411.95c (2

Thus the value of the shear force is given by

(ﬂe -»aN,A + aN,B) (3.2)
The moment-curvature relationship for the walls is

éd M

ax = "EI (3.3)

where M = My + My and I = I + Ig.
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The vértioal strain of the centre line of wall A is

EEE;A and is given by.

dx
daN A NA
288 8
dX ” ‘EAA (3'4)
Similarly
daN B NB
, - S———
dx  EAp (3.5)

Diffentiating Equation 3.2, and substituting Equations

3.3, 3.4 and 3.5, we obtain

. N N 5
dv - 12IV ( I‘qu A + —B-) ‘ (3.6)

d 3p3 (7T T Ap Ap)

Equilibrium Conditions

Consider an elementary part of wall A of height dx as
shown in Figure 3.3.
For vertical equilibrium

dNp
.——.dx = -—V ’ . ) (3'7)

For moment equilibrium, ignoring the second order -

derivatives
dMp (BA 1) :
=V (Z*3 * VA (3.8)

Consider now an eiementary part of wall B of height
dx as shown in Figure 3.4.

T =V (3.9)
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For moment equilibrium, once again ignoring the second

order derivatives

Bp)
2

dM o ’
B ) + Vp : (3.10)

M (b
dx "V (2 +

- Combining the moment equations 3.8 and 3.10 gives

L EERERTH
where V=1V, + Vg
" For vertical equilibéium of the wall system it is
, reqﬁired that
Ng = -Ny a - (3.12)
and substituting Equation 3.12 into Eqﬁafion 3.6 gives

dv _ -12Ty0, 12Ty (1, 1 )Ny

dx ~ hp31 nb3  (Ap  Ap)
or dv v : o

I = XM +}‘-NA | - | (3.13)
where ”- -121,

g hb31
“and _

L= TIEV S 4 2
_ i hb3 (A4 AB)

For horizontal equilibrium of the wall system

-

dv
o - 4 , | : (3.14)

System of Equations

In Equations 3.1, 3.3, 3.11, 3.14, 3.13 and 3.7 we
have obtained a set‘of six first order differential

equations containing the actions y, 6, M, V, v and Np. If
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we now express these equations in terms of a non-dimensional

height co-ordinate § where -

o
5=
we obtain
dy
de H6
do _ M
dg HET
dM )
de = -HQ v + HV
dv
ag =M
dv _ .
d = HyM+HRN,
dNp
'(—1—?;- = -Hv
and these equations‘ can be expressed in matrix form as
d |[Eyf _ |0 H 0 0 O O Ey
dg || = -H *
5 |Ee 0 07710 0 o |[Ese
7 M 0O 0 0 H-HRO M
1 0 0 0 0 0 O V| -Hq
v 0 0 Hy 0 O Hp \% 0
Np 0 0 0 0 -H O Np 0.
which can be written as
d s | '
-d_g =AS + B - . (3.15)

where
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A=H 0 1 0 o0 0
0 0 /I 0 0
0 0 0 1 -2 0
00 0 0 0 O
0O 0 ¥y O H
0 0 0 O 0
and B= o o o0 -Hg 0 o0|T

Solution of Equations

Equation 3.15 is a linear first order differential
equation and the integrating factor required for its
solution is

( {ade)l_( ae)?
(gj—g) " (e g)

Multiplying the equation by this factor gives

_(ag)?
AS () = (g‘%) B

(Ae)lds () _ (ag)l
) —3 o ()

‘'which reduces to

b {(é%)ﬁl s (g)}, _ syt

Integrating,we obtain
(A9 1s (g) = - a1 (eA8)"1B+K  (3.16)
where K is a constant df integration.
Substituting the boundary cdndition of
S (g) =S (0) when §= 0
gives

=5 () +Alp

I=
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Substituting this value of K into Equation 3.16 gives

8(g) = A5 s(0) - {_;-g_é%} Al B (3.17)

| | 2 3,3 »
Now oAS _ 1 4 Ag SRR ol L

- - = 2! 3!
Thus A2 .2 3¢3

‘_{1_ é§}=A€) +é 'c: + é % + ...

- - 2! - 31

and so

2 2.3
- _1__5_.‘.\.6}_4‘1§={_1_g+52%' +i'i3fv +} B

Equation 3.17 can now be written as

s(g) = G(g) 5(0) + F(g) (3.18)
where _ '
2.2 3.3 :
§(§)=l+é§ +é2%' +-A-3'% +
and

| =' Ag?  aZg3 |
F (5) {;g+ =5 .+....}§

" Boundary Conditions

At the base of the wall, i.e. when § = 0, the displace-
ments y, ‘aN,A and aN,B, and the rotation'e-are all zero

and by substituting the value of v as zero. Thus

Yo.= 0
90=0
Vo = ’

These boundary conditions can be used to express the
action matrix S(0) in terms of the matrix So which contains
only the unknown conditions at the base i.e. My, Vo, and Ng.

Thus S A : .
S(0) = Ky S, ' (3.19)
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Ko= [0 0 0

“ 0 0 ©

1 0 O

0 1 0

0 0.0

0 0. 1
and ’
' So = Mo
Vo
No

If the base is not fixed but is capable of rotation
and vertical settlement then the forces and displacements

at the base are related by

Yo = 0 0 0 Mo
90 C 1 O 0 VO
Vo Co2 0 C3 No

where C1, Cy and C3 are constants dependent upon the
rotational stiffness and the vertical displacement stiffness

of the base and thus the value of K, in-Equation 3.19 is

given by
K= |0 0 O
¢c4 0 O
1 0 O
1 0
Cy 0 C3
0 0 1
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By substitutiné Equation 3.19 into Equation 3.18 we can
write tﬁe solution of Equation 3.15 as
5(s) = 6(5) Ko So +E(5) - (3.20)
_Thus at the top of the wall, i.e. when § =1 |
S(1) = 6(1) Ko §o + F(1) : ' (3.21)
Now at the top of tﬁe wall, the bending moment and
axial forcé ére both zero and the horizéntal shear force
is equal to the applied péint load. Thus
4 Mg = O
Vg = ‘
Ng =

These boundary conditions can be used to write a

second equation for the action matrix §(i).

Thus v ‘

Ky S(1) = Fy , (3.22)
where

Ry = 0

0O O

and

EH =

0

Substituting Equation 3.21 into Equation 3.22 gives
Ry G(1) Ko So + kg E(1) = Fy
and rearranging the terms we obtain

So = ( Ry G(1) Ko )™ ( Fy - Ky E(1) ) (3.23)
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Action Matrix Valueé

if the total height of the wall is divided into k
sections each of height xk then the value of So obtained
from Equation 3.23 can be substitﬁted into Equation 3.20
to obtain the values of the action matrix at a height of
Xk = SkH-

Thus
SG51) = G(51) Ko'So + EGG1) (G2

Similarly at a height of 2§xH, the values of the

action matrix are given by

\

5(281) = G(285K) Ko So + F(2¢k) . (3.25)

~Now from the definition of G(§) it follows that

2..2 3.,3
A ~ 8A
G(2gy) = I + 246, + 4-—2;’k + —3?1‘ + ...
and : 2. 2 3. 3
gz(ék)=_l_2+légk+£5§k + 1875k 4 L.
o 2! ‘ 3¢
3¢4..3
+Lage+afel v 25 4 L
PRCE VS 1B 3 11 S
~ 27 2" B
| 4A2 £x2  ga3 g3
=L+ 28K+ =3 —j: .
Thus | .
6(25)= 62(5) ©(3.26)
_From the definition of E(g),it follows that
| 2 0,2 ..3
F(25y) = 26k + SASK L BAT ST,
20 . . 3!

but

- 42 =



- 2 2 . 3
(G(51)+I) F(gy) = 212, + 2L %fak 4 2L A 3'%1< +
+IAS + éz;jk3 TR ézzg'kB
2 an2 ¢.3 '
=216y + CASKT  BAT Sk, |
=okT ST T 7
Thus .
E(Z%k) = G(&yk) F(§y) + F(§1) (3.27)

Substituting Equations 3.26 and 3.27 into Equation 3.25

we obtain

5026, = 6(8) 6(6,) KS, +6(g,) F(6,) + E(5 )

or . . .
S(28¢) = 6(gx) 5(5y) + E(§y) - - (3.28)

From Equation 3.28 it can be seen that the values of
S(2§y) can be obtained by taking the values of S(§ k)
as the initial boundary coﬁditions for the region §y to
2€x%- |
Similarly for a‘height‘ of 3 § H, the values of
§:(2 gk) c”an be taken as the initial boundary condifions for ’
the region 2 §x to 3§y, and thus » _
5(381) = 6(g) 5(281) +F(§)  (3.29)
Thus for any multiple of £k, equations similar to
©3.24, 3.28 and 3.29 can be written to obtain the values of
the actibn matrix at any require.d height.

3.5 Coupled Shear Walls Containing One Band of Openings

and with One Abrupt Variation in Cross Section

A typical structure covered by the analysis given in
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this section‘iS»shown-in_Figure 3.5.
Zones 1 and 2 refer, respectively,to the wall systems

below and above the change in cross-sectionm.

Governing Equations
For the structure shown in Figure 3.5, the equationms
governing the actiomns in each of the two zomnes will be of
a similar nature i.e.
81(81) = 61(51) 51(0) + E5(§4)

and
S50 59) = Gy(§5) 55(0) + Fy(§5)

Continuity Conditions

In fhis section the values of the individual'actions
at the top 6f zone 1 and at the base of zone 2 are referred
to by using the §uffices 1(1) and 2(0) respectively.

The action ﬁatrix S5(0) is related to the‘action matrix
S4(1) by the equations of equilibrium and conditions of
c;ntinui£§ at the change in cross-section.

. For continuity of displacement

Y2(0) = Yi(1) ©(3.30)
©2(0) = 91(1) | - (3.31)
§2(0) = $1(1) . B3

where § denotes the relative displacement of the ends of
the 'cut' lamellae.
From Equation 3.2, the distributed shearing force in

each of the two zones is given by
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Figure 3.5 Coupled Shear Wall with One Abrupt Variation

in Cross Section
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12EI,,2 $2(0)

720 hyby?
and Vet - 12EI, 1 $1(1)
hyby3
and so, using Equatioﬁ‘3.32, we obtain
hibi’lv,2
vo(0) = h2b23IV,1 Vl(;) (3.33) :

The equilibrium conditions can be written with refer-
ence to Figure 3.6.

For equilibrium of axial forces in WalliA

Na,2¢0) = Ma,1¢1) G

For shear force equilibrium of the wall system

Va,2(0) * VB,2(0) = Va,1(1) T VB,1(1)

or : S
For moment equilibrium of the wall system
Mp,2¢0) * MB,2¢0) = Ma,1¢1) * MB,1(1) " Na,1(1)%a
- Ng,1(1)eB
or

M2¢0) = M1(1) - Na,1(1)ea - NB,1(1)eB
which can, using Equation 3.12, be_written as
Myo) = Mi(1) - Na,1(1)(ea - ep) (3.36)
In Eqﬁation»3.36-the value of_é for a particular wall
ié considered positive if the movement from the centre line

of zone 1 of the wall to the Centfe line of zone 2 of the

7
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Figure 3.6 Interaction Forces at Discontinuity
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wall is in the positive y direction.

We have‘now obtained six equations, namely 3.30, 3.31,
"3.36, 3.35, 3.33 and 3.34, relating the actions at the base
of zone 2 to the actions at thé top of zone.i.

Thu; the relationship between S9(0) and S1(1) can be

expressed as

S9(0) = Q S1(1) - ' : (3.37)
wheref .
Q= |t 0 0 0 0 0
| 0 1 0 0 0 O
0 0 1 0. 0 -(ep-ep)
0O 0 0 1 0 0
0 0 0 0 p O
o 0 0 0 0 1
and where
hqbq° I
L= 1°1 “v,2
3
hybo7T,, 4

Values of Action Matrices

The matrix S, can now be calculated by a process
similar to the case of the uniform wall system.
Thus

_§1(O) =% 35

51(1) = 64(1) Ko S o + Fq(1)

and using Equétion 3.37

5p(1) = €,(1) @ & (1) K, 8, + G5(1) @ Fy(1) + Fy(1)
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Now
Ky 5,(1) = Iy

and thus
So =(Kut G2(1) Q G1(1) Ko)™* (Fy = Ku Gp(1) Q Fy(1)

- gH_F2(1) ) (3.39)
Thus knowing the value of §o,‘the actions at any
required height in zone 1 or zome 2 can be calculated using

equations of the form
S1(n§y 1) = G1(§k ) 51( (n-1)63,1 ) + Fl(%k 1)
' (3.40)

and
Sp(n§y o) = Gz(gk 9) Sy (n'1)§k 2 ) + Ey(y,2)
| (3.41)

for zones 1 and 2 respectively.

3.6 Uniform Coupled Shear Wall Contéining Two Bands of
Openings |

The coupled shear wall system referred to in the
folldwing analysis is shown in Figure 3.7.

Displacement and Elasticity Relationship

The displacement-rotation relatiohsip for the wall
system is

4y _ g - (3.42)

By considering a cut along the centre line of each
connecting medium, the distributed shearing forces may be

shown to be

12EIV A : ! ‘
VA hA bA3 (QAe - aN A + aN B) . (3.43)
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and iZEIV,B ' ' .
VB = h b 3 (QBG - aN’B + aN,C) (3.44)
BB -
for connecting medium A and connecting mediumAB respectively.

The vertical strains of the centre lines of walls A,

B and C are,'respe;tively'

day A _ N ' | (3.45)
dx EA A :

day g - Np . (3.46)
dx EAB '

day,c - Ne ' C(3.47)

The moment curvature relationship for the walls is

de -M

va—;{'= BT (3.48)
where |
and :

’I=IA+IB+IC

Now, differentiating Equations 3.43 and 3.44 and

substituting Equations 3.45, 3.46, 3.47 and 3.48 we obtain

~ dya _ 12Iy,A (M A _ No  Np) (3.49)
énd | ‘
dvg _ 12Iy,3 (M B _ N3 , Nc¢) | (3.50)
& g bg> (I Ay Ag)

‘B

"Equilibrium Conditions

The equilibrium conditions may be determined by
considering elementary parts of'each of the walls as shown

in Figure 3.8.
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A axial
. M, +dM
load Va-+dMp ATTA force
dx : . ' ' FAdxj .
q dx o \i/NA npdx
| . Wall A
beam Np+dNp beam
axial Mp+dNg axial
force VptdVp B force
- ‘dx o VAdXJ | _ rdexz
nAdx MBskir/ VB ‘anx
- N .
| "B o
S Wall B
bean | NgHNG
axial : MC+dMC
force Vc+dVe
i._;dx deXJ v , Ve
- Mc\i/
anx , NC
Wall C

Figure 3.8 Elementary parts of Walls A, B and C
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For horizontal equilibrium of the wall system

av _ _ | 3.51)
= = | ( ).

where V = VA + VB + VC

For moment equilibrium of each of the walls

aMy _ (B, Q) | 3.52

&= O RE T TR -3
dMg _ _, s, W) _, B, B .y (3.53)
e S S U s T

E Egg = -VB(EE + gg) + ‘b (3;54)
dx (2 2) :

Combining the moment equations 3.52, 3.53 and 3.54
gives .
o “Quvy ~Qpvg + V (3.55)
dx AVA “XBVB ° - .
For vertical equilibrium of walls A and B

dNp

. = -V . ’ ) 3- 56
o A | ( )
and -
E§§ = VA - VB : ' ‘(3057)
dx : |

Now for vertical equilibruim of the wall system it is
required that

Ny + Ng+ N, =0 : (3.58)

and substituting Equation 3.58 into Equation 3.50 gives

dvg _ 12y 5 (-Mg -Ny -Np(1 L 1)
dX  hpbgS T &, (4 Ag)

B

or
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dVB

'a;‘(". = XBM + "LCNA + ,“'BCNB k (3.59)
where
‘ YB = ‘1ZIV,BQB
3
AthB I
i hpbp>Ag
- - ~121y B (l'. 1 )'
hpbp

Now, Equation 3.49 can be re-written in a form similar

to Equation 3.59.

Thus '
.. d
. d‘;A = ¥AM + paNp +}‘BNB | (3.60)
where _ ;121v AQA
xa= —aht
hpabp™ I
o =121
= A
A= —=
habp~Ap
'.;F'B = -121V,A
3
habp~Ap

System of Equations

In Equations 3.42, 3.48, 3.55, 3.51, 3;60, 3;59, 3.56 |
and 3.57 we have estéblished a set of eight first order
differehtial equations containing the actions y, 6, M, V,

: VA5 vps Np and Np. If we now express these equatiomns in both
- matrix form.and in terms of a nén-dimensional height
co-oi:dinat'e § we obtain

] :
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dleyl=|om 0o o o o o o | |ey|+
1| |00 o o o o o | |me
00 O H -Hl)-HLER O O M

v 00 0 0 0O 0, 0 O V| |-Hq
VA 00 Hyp 0 O 0 _HHA HPB VA 0
No| (00 0 0 -H O 0 0 Ny 0
Ng 00 0 0 H -H 0 0 Ng o

or
B -as+n ' (3.61)
de, '

Solution of Equations and Boundafy Conditions
The method of solution of Equation 3.61 for values of
the action matrix at any required height is exactly the

same as in Section 3.4 except that the boundary matrices

Kor So0 Ky énd Fy must be re-defined.
At the base of the wall system, the following conditions
e%ist
\‘YO'_'O
6o =0
Vo,A=O
VO,B=O
Thus
" K,= [0 0 0 o©
, 0 0 0 O
1 0 0 O
o 1 0 .0
O o0 O ©
0O 0O O O
o o0 1 O
O 0 0 -1

!
(9]
w

]



and

So= M
Vo
No,A
No,B

At the top of the wall system the following conditions

exist

My=20
Vg =0
Ng,o =0
NH’B=O
Thus
kg= [0 0 1 0 0 0 0 o0
0 0 0 1 0 0 0 0
0o 0 0 0 0 0 1 0
0o 0 0 0 0 0 0 1
and
Fy= |0
0
0
0

3.7 Coupled‘Shear Walls Containing Two Bands of Openings

and with One Abrupt Variation in Cross Section

Once'new cohtinuity»conditions have been determined,
’the}apprdach used in Section 3.6 can also be used here.
However, it should be remembered that the centre-line of
each band of openings must be continuous throughout -the

height of the wall system.
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The displacément and rotation continuity conditions

are
Y2(0) = Y1(1)
and
®2¢0) = ®1(1)
By considering the vertical displacement continuity
conditions, the distributed shearing forces above and below

the discontinuity for each connecting band can be related

by similar equations to Equation 3.33. Thus

.3
hy 1P, 17Ty .8,2

v -
A,2(0) — A,1(1)
’ 'hA,ZbA,Z IV',A,l ’
o _bg by 13Ty p 2
B,2(0) B,1(1)

3
hg 2bp,271y,B,1
The equilibrium equations can be written with reference
to Figure 3.9.

For equilibrium of axial forces in walls A and B

Na,2(0) = Na,1(1)
NB,z(o) = N, 1(1)

“For shear force equilibrium of the wall system
V2(0) = V(1)
For momgnt equilibrium of the wall system .
M0y = Mi(1) - Na,1¢1)ea - Np,1(1)eB - Ne,1(1)%c
vand using Equatioh 3.58 | |
M2(0) = Mi(1) - Na,1(1)(ea~ec) - M, 1(1)(ep-ec)
Thus the relationship between S,(0) and §;(1) is

5,(0) = Q 54(1)
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where

Q=1 0o 0o 0 0 0 0 0
0o 1 0 0 0.0 0" 0
0 0 1 0 0 O -(ep-ec) -(ep-eg)
o 0 0 1 0 0 0 0
0 0 0 0 py O 0 0
lo o 0 0 0 pp 0 0
O 0 0 0 0 O 1 0
o 0 0 0 0 O 0 1
where ' 3
oa = hp 1ba 17Ty, A, 2
ha,2bA, 27Ty, A,1
ane PB =.hB,1bB',131v,B,2
hg, 25, 2Ly, 5,1

3.8 Coupled Shear Walls Containing n Bands of Opénings and

with m Abrupt Variations in Cross Section

The methods presented can obviously be extended to cater
for shear wallbsystems'contéihing any number of bands of
oﬁepingsﬁand having any number of abrppt variations in cross
section.

System with n walls

The method of solution is similar to that présented_‘v
in Section§3.4 énd 3.6 but ?he ofder 6f the various matrices
will increase with the increase in the number of walls."l

For a system with n walls the action matrix will
consist of y, 6, M and V plus the (n-1) distributed sheariﬁg

forces plus the axial forces in the first (n-l) walls.
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System with m discontinuities

The method of solution is similar to that presented in

Sections 3.5 and 3.7 but different continuity matrices Qi

must be set up for each of the m discontinuities.

- 60 -



CHAPTER 4

COMPUTER PROGRAMS

4.1 Introduction

Computer programs have been written for both the
anélyticél solution presented in Chapter 2 and the matrix
progression solutions’presented in Chapter 3. If the
. analytical equations are to be used only for the calculation
of maximum values, then a;computer is mot strictly
necessary as the equations can be simplified and use made
of a scientific pocket cal;ulator. The matrix progression
method,_however, is computer brientatedvand the use of a
computer is essential.

All the programs have been written in both FORTRAN and
BASIC and the computations were performed initially‘bn an
IBM 1130 ,and later on an IBM 370 computer. The latter
machine offers both batch and femote ﬁerminal facilities.

~

4.2 Analytical Solution

A program has been written to calculate the variation
in bendinglmoment, éxial force, distributed shear fbrce
and deflection throughout the height of ﬁhe structure. The
sequence of operations followed in the program is outlined
in the flow diagram shown in Figure 4.1.

The input data required consists of the dimensions of
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Read and Print
Input Data

Calculate and Store
Constants not Dependent
on X :

Calculate and Print Values
of M, N, v and y for
a Given Height

Values
Calculated

at all
eights?

Yes

End

Figure 4.1 Flow Chart for Analytical Solution
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the structure, load value, material properties and heights

at which results are required. The latter is most easily

catered for by specifying the number of results required,

usually at each storey height.

The following equations are used to calculaté the

values required at each height..

Total bending moment -

Axial force in each wall

Distributed shear force

Deflection . -

If only maximum values of each of

required then a simpler program can be

of the following steps.

(a) Read and print input data

(b) Calculate required values from

v

y

Equation 2.9
Equation 2.8

Equation 2.5 .

| Equation 2.10

the functions are

written consisting

the following

equations:
Mmax Equation 2.9 with x =0
= Nmax Equation 2.8 with x = 0 |
Vmax Equation 2.5 with x/H obtained from
Equation 2.7
Ymax : Equation 2.11

(c) Print results.

The simplicity of the above procedure obviously lends

itself to hand calculations.
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4.3 Matrix Progression Solutions

Programs have been written for the solution of each
of the four structures deécribed in Sections 3.4 to 3.7.
Because of the large number of matrix operations involved
in the calculations, it has been found easier ﬁo use the
BASIC language which offérs simpler matrix subroutiﬁes..
The sequence of operationé followed in a general program
fbr a structure containing any number of zomes is given in
Figﬁre 4.2,

| All the progréms include subrogtines for the

following operationé:

(a) Reading and printing data for each zone and setting

up A and B

(b) Calculating G(g) and F(§)

(c) Calculaﬁing and Printing S(g)

The common data consists of foundation conditions and
material properties, and the zbné data consists of the
geoméfric properties of the zone, load value, and number of
' results required.v The output gives values 6f total bending'
moment, axial force in each wall, horizontal shear korce,
Adistributed shear force, deflection and rotation ét each
required height. |

All the calculations are performed using the equations

set out in Chapter 3. Although matrix operations are
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Read and Print

Common Data

Read and Print

Zone Data

Set up and Store
A and B for the
Zone

Calculate G(1) and
F(1) for the Zone

Values
Calculated
for all
Zones?

No

Set up Ky, Q,
I_( o and E—H

.(Cént)

Figure 4.2 Flow Chart for Matrix Progression Solution

/
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Calculate So

Calculate S(0)

Calculate G(gy) and
E(gk) for the Zone

Calculate and Print S(§)
at all Heights Required in
the Zone

Values

Calculated No

for all
Zones?

End

Figure 4.2 (Cont)
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involved in these calculaﬁions the procedures used are
quite straigmtforward, assuming a previous knowledge of
programming, apart from the calculations of G(g) and E(g)
and these arevconsidered here in more detail.
The value of G(g8) given in.Equationv3.18 is
A2g2 A3g3

g(g)=v_1_+_A_5+v—-2: _ 3,

-ASSuming, say, only five terms in the summations series
it can be re- wrltten as
A A A
0 - 1+ 251 45 47245
which is a Very convenient form for Pfogramming, and this
is the metﬂod'which has been adopted.

For some sﬁruqtures that wére analysed, only a few terms
were needed in the series to ensure convergence, but for
others a large number of terms were required and so to
cover alllbossible analyses it was found necéssary to program
fifty terms of the series (see Section 6.2).

~

The value of F(§) given in Equation 3.18 is

3 A2 23 )
CEG6) = ¢ I et =g _+""’)§

This can be re-written, as was done for G(g) but taking one

less term in the summation, as

Thus, to avoid a complete recalculation, the nest of

brackets used in the calculation of Q(g)‘can conveniently
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be used in the determination of F(g).

It will be notiged that.the method of calculation
used in the present Chapter and in Chapter 3 is not the
same as that presented by Coﬁll; Puri and Tottenham(35).

In their solution the base matrix Sp was obtained
from an equation of tﬁe form (assuming only‘one uniform
zone for convenience), |

So = (Kg 86" K 1(Fy - Ky (6l 1 + a6 2+

e ¥ 66 + D E(g) )

aﬁd the action matrix S(nfk) was evaluated from equation of
the form R |

S(EK) = GERT Ko So + ( Gl + Q(%k)“f2+ et |

6K +1) EFew)

where k is the total number of segments at which results
are‘required in the zomne.

Performing the operations ip this manner involves a
1arge~amount of calculation and storage of the powers of
G(g) which is unnecessary if the method of solution in this

present work is adopted.
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CHAPTER 5

EXPERIMENTAL WORK

5.1 Introduction ’ BN

Experimental work has been conducted on a series of
- Araldite models with thé main aim of checking the Validity
of the matrix progression method of solution for symmetfical
and non-symmetrical coupled shear walls with an abrupt
_ change in cross-section at a particular height. Deflections
and strains were measured on each of the models and
compared with the theofétical values. |
5.2‘ Material
The materials which have most commonly been uséd for
shear wall models are the two plastics, perspe# and
araldite. Aluminium has been used, but to produce
mgasurab%e deflections and strains either a.very large
load has to be'applied or the model has to be made very
thin:~in which case lateral inétability‘becomes a problem.
The low modulus of elasticity of both perspex and
araldite make them suitable for»use as a model maté&ial.
Perspex has been used widely for structural models, but it
has the disadvantagé that its'properties vary appreciably -
with change in temperature and humidity and it creeps

under load even at low stress levels. A further disadvantage
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is that its machinéability is poor. Araldite has none of
these shortcomings, although it is comparatively expensive.

The material used was Araldite CT 200 and it had a
Poisson ratio of 0.36 and a Young's modulus, determined
from tests on small beams, of 492000 lbf/inzi

5.3 The Models

The first model ;estéd was symmetrical and each new
model was obtained by machining the previous one. From
the‘material removed test beams were made for the determina-
tion of the modulus of elasticity of the matérial; The
dimensions of the four models tested éfé shown in Figures 5.1
and 5.2. Although the linear dimensions‘of the models do
hot vary by a large amount, the maxiﬁﬁmvratio of second
moments of area of adjacenttwalls is about 2 to 1, and the
maximum ratio of second momenté of area below and above'the
abrupt change is about 5.4 to 1.

PL-10 electrical resistance strain gauges were

~.

attached to the first model as shown in Figure 5.3. During
ﬁhe machining operations,.some gauges had to be rempved |
but whenever this happened further gauges were glued to

the edge of the new model. |

5.4 Method of Test

Each of the models was tested under the action of a.

point load at the top and a uniformly distributed load
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Figure 5.3 Positions of Strain Gauges on Model 1
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along the length of the wall (but not both together).
The testing érrangement_is shown in Figures 5.4 and 5.5.

The models were rigidly clamped atAtheir base level
by tightly compressing a 2in debth below_the'lowest opening
between two hardened serrated steel bars. Point loads
were applied to the top of the structufe by means of a
proving ring and were therefore 'exact'. For each test,
loads were applied in increments of 10 1bf up to a maximum
of 60 lbf; The uniform load condition was simulated by
applying point loads at eééh storey level through hangers'
carrying dead Qeights, and iﬁcrements of 1 lbf/in.wéfe used
up to a maximum of 6 1bf/in.

Deflections were measured at altérnate storey heights

by means of dial gauges mounted on a supporting ffame.
The strain distribution across‘each wall was measured at
two levels by means of the previously mentioned strain
gauges which were connected to a'Péekel automatic strain
indicator. Separate dummy gauges, connected to a similar
model to the one being testedr were'used for each of the
"live' gauges to overcome Heating effects.

For each test, the values of deflection per unit load
for each dial gauge, and values oflétrain per unit load
for each strain gauge were calculated using a~linear

regression procedure (using a Hewlett-Papkard desk top
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Figure 5.4 Testing Arrangement for Point Load
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computer). This was considered to be better than plotting

all the values and drawing best fit lines by eye.
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CHAPTER 6

'RESULTS -

6.1 1Introduction

In this chapter experimental and theoretical results
' for various shear wall systems are compiled in order to
make com@arisons between them. The systems considered are
as follows:

(i) walls with one band of openings and one abrupt

variation in cross-section
(ii) unifofm walls suppported on columns
(iii) walls with two bands of étaggeréd openings.
The following abbreviations are used on the graphs and
tables which are presented:-

Cc.C. Result obtained using a matrix progression

solution of the continuous connection method
‘W.C.F. Result. obtained using a wide column frame
Expt. Experimental Result

6.2 Theoretical Resﬁlts

The matrix progression solutions have been obtained
using the methods outlined in Chapters 3 and 4. vHowever,
to achieve convergence of the éolution, it was found that
the number of terms required in the éxponential series had
to be increased proportionally to an increase in the value

of AH. Ten terms were found satisfactory for «H = 4,

/
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whereas between forty and fifty terms were needed for
o« H = 16. Beyond oH = 18, convergence was found to be
impossible no matter how many térms were included. ' To
cover all the values of «H used in the analyses, fiffy
terms have been includéd in the solution.
| The wide column frame-solutions have been obtained
using the IBM standard program, STRESS. This program does
not have provisions for incorporatingAmémbers which have
infinitely stiff.end sections, and,therefore the
recommendations put forward by Schwaighofer and Microys
(11) and Stafford Smith (12) haveAbeén adopted for non-
symmetrical andvsymmetrical structures respectively.

The equivalent frames suggested»by the two authors
are shown in Figure 6.1. |

The constants Kj and Ko fér Schwaighofer's frame were
given in "tabular forﬁ but from the given values, the

following general equations can be developed

Ky = 100-%
, |
o s

where B is the wall width
and b is the beam length.

The constant K for Stafford Smith's frame is given by

B)3

_
K= 1+

(
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6.3 Results for Walls Containing One Band of Openings

and with One Abrupt Variation in Cross-Section

The walls covéred in this section are Models 1 to 4
described in Chapter 5.

- All the models were subjected to two loadiﬁg conditions,
namely a'point load at thé top and a unifofmly distributed
late;al load. For each model and loading condition,
experimental results are compared with a matrix progféssidn
solution and a wide cdlumn frame solution.

The deflection profiles for the models are shown in
Figures 6.2 and 6.8. ’

Figures 6.9 and 6.10 show typical distributions of
total wall bending moment M,-thé axial force in each wall N,
and the distributed vertical shear force &.',From sucH -
distributions, theoretical strain profiles have been
cgltulatgg, for the matrix progressioﬁ solution only, at
the two heights where strain gauge readings were taken.
Thes;\strain distributions are given in Figﬁres 6.11 to 6.26.

Values of maximum deflection are compared in Table 6.1.

Using the experimental strain readings it is p;ssible
to calculate the magnitude of the internal moments and
these can be compéred with the knowﬁ external moments, to
provide an overall check on the accuracy of the measured-

strains. These moments are compéred in Table 6.2.
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' applied measured
Model | Loading Height | external | internal | % diff
moment moment
in. 1bf. in. 1bf. in.
1.375 19.6 17.8 -9
. PoLo ) .
12.375 8.63 7.66 -11
1 _
1.375 | 196.0 153.0 -22
U.D.L. .
12.375 38.5 30.8 -20
1.375 19.6 17.36 -12
P.L. ‘
12.375 8.63 7.77 -10
2 - 4
1.375] 196.0 147.0 -25
U.D.L.
12.375 38.5 33.6 -13
1.375 19.6 17.5 -11
P.L.
12.375 8.63 7.58 -12
3
1.375| 196.0 122.0 -38
U.D.L.
12.375 38.5 - -
1.375 19.6 17.4 B
P.L.
- 12.375 8.63 7.71 -11
4
1.375 | 196.0 168.0 -14
U.D.L. |
12.375 38.5 31.3 . -19

Table 6.2 Comparison of External

Models 1 to &
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Figure 6.2 Deflection profile of Model 1 due to a Point
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Figure 6.3 Deflection profile of Model 2 due to a Point
Load of 1 1bf at the top
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Figure 6.4 Deflection profile of Model 3 due to a Point
Load of 1 1bf at the top
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Figure 6.5 Deflection profile of Model 4 due to a Point
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Figure 6.6  Deflection profile of Model 1 due to a U.D.L.
of 1 1bf/in
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Figure 6.7 Deflection profile of Model 2 due to a U.D.L.
of 1 1bf/in
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Figure 6.12 Strain distribution across Model 2 at a height

of 1.375 in due to a Point Load of 1 1bf at
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Figure 6.13 Strain distribution across Model 3 at a height
| of 1.375 in due to a Point Load of 1 lbf at
the top
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Figure 6.15 Strain distribution across Model 1 at a height

of 1.375 in due to a U.D.L. of 1 1bf/in
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 Figure 6.16 Strain distribution across Model 2 at a height

of 1.375 due to a - U.D.L. of 1 1bf/in
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Figure 6.17 Strain distribution across Model 3 at a height

of 1.375 in due to a U.D.L. of 1 1bf/in
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Figure 6.18 Strain distribution across Model 4 at a height

of 1.375 in due to a U.D.L. of 1 1bf/in
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Figure 6.19 Strain distribution across Model 1 at a height

of 12.375 in. due to a Point Load of 1 1bf at
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Figure 6.20 Strain distribution across Model 2 at a height

of 12.375 in. due to a Point Load of 1 1bf at
the top
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Figure 6.23 Strain distribution across Model 1 at a height

of 12.375 in. ‘due to a U.D.L. of 1 1bf/in.
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Figure 6.24 Strain distribution across Model 2 at a héight
of 12.375 in. due to a U.D.L. of 1 1bf/in.
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Figure 6.25 Strain distribution across Model 3 at a height

of 12.375 in. due to a U.D.L. of 1 1bf/in.
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6.4 Results for Uniform Walls Supported on Columns

Typical structures covered in this section are shown"
in Figure 6.27.
" In the range of structures analysed, the following
parameters have been varied:- |
(a) Thé stiffness of the qonnecting‘beams.
This has an important effect on the degree of inter-
~action between the two wall sections. The parameter
K H is a measure of this interaction, and the two
values o H = 4 and oH = 16 -have been ﬁsed as they
represent extremes of the range over which cbuplingl
action is considered important.
The basic wall geometry of both wall systems has been
taken to be the same, as in Figure 6.28, and the o(H
value has'been artificially varied by assuming the
appfdbriate value of the moment of inertia of the
_connecting beam.
(b) The position of the support columné.
Both centfal and offset columns have been considered,
as shown in Figure 6.27.
(c) The stiffness of the support beam.
| Two values have been used{ the first in which the depth
of the beam is the same as the depth of the wall

connecting beams, and the second in which the depth of

/

- 109 -



J7777 \77777E 777777  TIITTI7
Support Beam o ~ Support Beam

Cenéral Columns : Offset Columns

Figure 6.27 Uniform Coupled Shear Walls Supported on

Columns

- 110 -



wall thickness = 0.4 m
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Figure 6.28 Dimensions of Walls with &«H=4 and &H=16
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the beam is equal to half the étorey height.’
Items (b) and (c) above have been combined in the four
column support systems shown in Figure 6.29.

Both types of wall; supported on each of the four
‘column'systems, have been analysed under the action of a
uniformly distributed 1oad of 1kN/m.

"When obtaining a matrix progréssion solution, the
column system has been treated as é uniform zone with the
support beam providing the equivalent continuous connection,
~and the actual_wa1l has been treated as a seéond uniform
zéne.

The results have been compared With those obtained
from a wide éolumn frame solﬁtion, which is assumed to
define the correct behaviour.

Figures 6.32 to 6.39 show the distributions of total
wall bending moment M, the distributed verticai shear
force v and the deflection y. Zero wall héight as shown
on the diagrams represents the top of the column system and 
the base of the wall. . : | | .

From the bending moment distributioms, togeﬁher with
the relevant values of axial force in the walls, stress
profiles have been caiculated at a height of 6m above the
column system/wall base junction. These stress distribu-
tions are given in Figures 6.42 to 6.49.

/

- 113 -



In order to have a basis for comparing,thé'above
results, solﬁtions have alsorbeen obtained for two walls
with rigid bases and relative stifﬁness values of <><H‘.= 4
and KH = 16.

_Dis;ributions of M, N, v and y for these two sets of
results are shown in Figurés 6.30 and 6.31 and stress
distributions at a height bf 6m above the base are given
in Figures 6.40 and 6.41. |

Values of maximum benaing moment, maximum distributed
shear force and maximum lateral deflection obtained using

a wide colum frame solution, an analytical solution and a

matrix progression solution are compared in Table 6.3.
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Analytical

aH |w.c.F. [RavEea c.c.
4 | 848.0 1 826.6 850.6
M at base '
kN.m. 16 | 434.8 415.8 425.6
4 2.33% 2.436 2.35%
vV max ’
KN/m 16 4. 36% 4.435 4. 4O%
4 | 1.12x1073 1.061x10"3 | 1.109x1073
y at top
m 16 | 5.7x10~4 5.661x10~% | 5.719x10~%

* Value obtained from graph (Figures 6.30 and 6.31)

Table 6.3 Values of Mpax, Vpax and ypax in Walls with
Rigid Bases and with & H=4 and &H=16
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Figure 6.31 Distribution of M, N, v and y in wall with
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Figure 6.33 Distribution of M, v and y in wall with «H=16
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Figure 6.41 Stress distribution at a height of 6m across
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Figure 6.42 Stress distribution at a height of 6m across

- wall with oH=4 supported on Column Type 1
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Figure 6.43 Stress distribution at a height of 6m across

wall with o(H=16 supported on Column Type 1
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wall with o«H=4 supported on Column Type 2
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wall with oH=4 supported on Column Type 3
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wall with oH=16 supported on Column Type 3

- 133 -



STRESS , N/mm2 x 1077

o
© o v & o § 5 % ¢ § §

i i i ! i i 1 |

—14
12
4-10

10

WALL B*'s"

WALL A

Figure 6.48 Stress distribution at a height of 6m across

wall with olH=4 supported on Column Type &4



~ STRESS , N/mm2 x 1072

[ &
© < [{«] (V]
g4 8 o o v « o ) i i ) T %Y
r { T T T | T q T T T q ]
o
and
— -l
g
=
{19
o Y
o =
<
-
— - |
<
2

Figure 6.49 Stress distribution at a height of 6m across

wall with «H=16 supported on Column Type &

- 135 -



6.5 Results for Walls Containing Two Bands of Staggered

Ogenings

The wall system analysed in this section is shown in
Figure 6.50(b), and it was subjected to a uniformly
distributed lateral loadvof 1kN/m.

The results obtained from the matrix progression 1?
solution have been compared with those obtained from a
wide columﬁ frame solution.

Figure 6.52 shows the distributions of total wall
bending moment M, the axial force in each end wall N, the
vertical shear force in each connecting medium v, and the
deflection y.

In order to have a basislfor comparing thé above-
results, solutions have also been obtained for a wall
containing two bands of openings as shown in Figure 6.50(a)
and the various action distributions are shown in Figure

6.51.
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CHAPTER 7

DISCUSSION OF RESULTS

_7.1 Introduction

In order to determine the accuracy of the matrix
progression results, it is necessary to have corre§pondi?g
'exact' values for comparison. 1In the present work thes;
values are assumed to be obtained from experimental work
and from wide column frame solufions.

With the experiemntal work, as described in Chapter 5,
there are several possible sources of errors. The first
of these is the applied loadings. Point loads were applied
by meaﬁs of a proving ring and apart form any dial_gqygé
calibration errbrs, they can be assumed to be accufate.
Uniform loads, however, were simulated by a series of point
loads applied at each storey height. Because of difficulties
in ensuring that these loads were truly lateral and that
they were applied in the corner of each opening, slight
errors may have been introduced. -

Dial gauge errors may be assumed negligible and,
therefore, the ﬁeasured deflections can be taken as accurate.
Errors in the strain gauge readings are an unknqwn quantity
but an overall check on the accuracy of the results can be

-

made by comparing the measured internal moments with the
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known applied external moﬁents, and also by comparing the
éxial force in each wall. During the uniform loading tests
a few load points-were in close proximity to some gauges
and thus certain readings may have been adversely affected
by_local stresses. Errors are also likely to be caused; by
local stiffening effects of the gauges and their ;&hesi§é.
Tests by earlier researchers on Araldite beams showed this
stiffening effect to be responsible for recorded strains
being in the order‘ofklo% less than theoretical values.
That the effect occurred in the walls being tested is borne
out by the résults in Table 6.2 which show the measured |
internal moments at least 10% less than the applied moments.
From the above, it is very difficult to estimate a
valug for possible percentage grroré, but all errors
involved were minimised, for both point load and uniform
load conditions, by célculating deflections and strains per
unit load from the slopes of load-deflection and load-strain
curQes.

- Although the wide column frame method is an idéalization
of the true structure, it has been shown by past research
workers to give a good indication of the real behaviour of
- different types of coupled shear wall systems, and it is the
one most commonly used in practice. For these reasons, the

results obtained from the method can be assumed to be a good

- 141 -



“basis for comparison of different solutioms.

7.2 Walls Containing One Band of Openings and with One

Abrupt Variation in Cross-Section

| Figures 6.2 to 6.8 show comparisons between the two
sets of theoretical results and the experimental values:of
deflections for Models 1 to 4. It can be seen that cloéﬁ
agreement.is obtained between the matrix progression
method and both the assumed 'exact' solutions. For the
point load condition, the experimental values genefally lie
between the two theoretical curves, with the wide column
frame giving maximum values. For the uniform loading
condition, however, both the theoretical curves underestimate
the déflections with respect to the experimentél values.

Table 6.1 compares values of maximum deflections in
the models and it can be seen ghat the matrix progreésion
results agree with the wide'column.frame results and the
experimental values to within 7% and that the two latter
sets of values agree within 4% of each other.

When obtaining both the theoretical solutions, the
beam wall flexibility was taken into account. If this had
not been done theré~wou1d have been greater disagreement
between the matrix progression results and the experimental

values but it would have had no relative effect on the two

sets of theoretical values.
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Figures 6.11 to 6.26 show experimental and theoretical
étrain distributions across the walls at two particular
heights. The theoretical lines are only shown for the
matrix progression solution, it being seen from Figures 6.9
and 6.10 that the variations of forces throughcut the
height of the wall, obtained from both the»matrig\brogfé%sion
and wide column frame methods are in very close agreement.

When comparing the strain distributions it is_seen
that the maximum experimental strains are in the order of 7
to 15% less than the corresponding theoretical ones for the
~point loading condition and up to 30% less than the
corresponding theoretical ones for the uniform loading con-
dition. However, it can also be seen from the figures given
in Table 6.2 that the internal moments are in the order of
9 to 12% lower than the known apblied moments.for the point
loading condition and up to 38% lower for the uniform
loading condition. Bearing this in mind, it is seen that
good agreement 1is reached between the theoretical and.
experimental results..

- The discrepancies in the interhal and external moments
for the point loading cases are:in agreement with the
assumed 10% local stiffening effect of the strain géuges,

but everl allowing for this in the uniform loading cases

there are still substantial reductions in the measured
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internal moments. Why this should. be so cannot reedily

be explained. Errors in the actual loading, as mentioned

in the intfoduction to this chapter, cammot have been
excessive, and this is borne out by reasonable agreement
between the deflection results. Local stresses would

affect only certain strain'gauge readings and altBbugh'ﬁﬁese
effects can be noticed on certain strain profiles, they do
notvaffectAthe overall distributions.

7.3 Uniform Walls Supported on Columms

For walls with rigid.bases, Figures 6.30 and 6.31
show that irrespective of the degfee bf interaction betweenv
the two walls there is Very good agreement between the
deflection profiles obtained usiné the matrix progression
and wide column frame solutions. The matrix progression
methodlgives less deflection throughout the height of the.
walls but the difference in maximum values is only aboué 2%.
When the walls are supported on columns, the
differences between the two sets of deflection are once again
not greatly affected by the value of «H, aﬁd are generally. .
in good agreement as is seen from Figures 6.32 to 6.39.
lHowever, when the walls are supported on central columns
the matrix progression method generally overestimates the
' deflections whereas with offset columns the method under-

estimates the deflections. The range of differences is
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about +9% to -8%.

The differences in force actions obtained from the
two theoretical solutioﬁs for the walls with rigid bases
and with oH=4 and KH=16 are shown in Figures 6.30 to

6.31. When the relevant values of M and N are used to plot

e

stress distributions at a height of 6m, as shown in Figﬁées
6.40 and 6.41, the matrix progression method is found to
underestimate the maximum stress by 2% for the wall with
otH=4 and by 8% for the wall with o(H=16. When looking
at the curves for forée actions in the walls supported on
columns, Figures 6.32 to 6339, it can be seen that generally
the results do not compare as favourably as the rigid base
values. The reason for this is that the theoretical model
for the column system is quite different from that of the
remainder of the structure;_ This is because the continuous
connection ovér the column height is assumed to come partly
from the foundation and partly from the single support beam,
whereas the connecting beams for the rest of the structure
are at regular intervals for a much greater height and
therefore justify being replaced by a?continuous system.
However, when stress distributions are dréwn at a height of
6m, the matrix progression method is found to only“ﬁnder-
estimate the maximum stress by about @ to 16% for the central

column cases and by about 2 to 6% for the offset column
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cases. Thus even when there is a large difference between
the moments obtained from the two methods, for example the
wall with < H=16 supported on column type 1, there is good
agreement between stress values. For any given column

system, the value of KH does not seem to affect greatly:the

\.‘

« o4
i ¢

accuracy of the results.
Generally the value of the moment is a maximum at the
base of the wall But for the walls with <tH=16 supported
on central columns, the bending moment 'falls away' near the
base. This isolated non—standard behaviour is emphasised
by the wall with oH=16 supported on column type 2 where
the wide column framé results show the moment start to
reduce but then increase again. T
Overall, the results obtainéd for the offset columms
give closer agreement Lhaﬁ the.results for the central
columns. The matrix progression results for the central
column cases indicate behaviour of the walls ag if they were
supported on more flexible support beams than they actually
are. Thus the moments in the walls could be increased, to
obtain closer values to the wide column fraﬁe by assuming
an arfificially.inbreésed stiffness for the support beam.
This increase would be best obtained by considering—a

decrease in length rather than an increase in the second

moment of area. Unfortunately no simple rule for altering
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the stiffness seems possible. In general, better results
Awére obtained, for different structures, by reducing the
beam length by a factor of between 0.5 and 0.7. However,
any such variation in the beam stiffness only affects forces

in the lower regions of the wall.

7.4 Wall Containing Two Bands of Staggered Openiﬁgs L F

From Figure 6.52 it can be seen that the agreement
between the two sets of theoretical results is not very
good; The matrix progression method overestimates the wall
bending moment at the base but this is mnot typical of
results for most of the height. The matrix progression
solution shows a reversal of the bending moment about a
third of the way up the wall, but the wide columnifréme shows
no reversal at all. Even the deflection Qalues do not
give close agreement, unlike all the other wall systems‘ |
analyseq, with the matrix progreésion method overestimatihg‘;
the maximum value by about 21%. It is very difficult to
expiain the difference in behaviour suggested by the two
methods but presumably it is due to the conmecting stiffness'
used. The matrix progression resﬁlts suggest much more
flexible connecting beams than the wide column frame results.
‘and yet thé same reduced stiffness Was used in both analyses.

That the method can be adopted for wall systems

containing two full bands of openings is shown by Figure 6.51

1
i
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‘where close agreement is obtained between all the various

actions.

7.5 Conclusions and Suggestions for Future Work
Matrix progression solutions of the continuous

connection method have been presented and compared with;

~. Ji

d
o

experimental results and wide column frame solutions fof,a
variety of non-uniform coupled shezr walls.

The numerical method has been shown to give good
results, in general, for both stresses and deflections of
walls with one abrupt change in cross-section and of walls
supported on both central and offset columns. The resuits
for walls containing two bands of staggered openings do
not agree favourably with the wide column frame solution,
but in this case there must be some doubt as to how closely
Zeither of the solutions resemble the true behéviour of the
structure.
| Based on the experimental results obtained, it is
suggested that whereas the point loading results are
perfectly satisfactory, any results obtained for a uniform
loading condition applied as in the present work should be
treated with caution.

The'matrix progression method has bgen shown to be
capable “of dealing with fairly complex shear wall systems

and thus overccmes some of the past criticisms levelled at .
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Athe continuous connection method. The method has definite
advantages over the wide column frame approach in that any
solution requires far less data prepsration and far less
computer processing time. For example, the STRESS program.
could take up to 10 minutes central processing time for,a
single solution, whereés the same results were obEEinedign
about 8 seconds central processing time using the matrix
progression solution. However, it must be admitted that
even in its numerical form, the continuous connection
technique does not possess the full flexibility of the frame
analogies.

Shear wall researéh has been continuing for many years -’
now and it would seem that elastic anélysis has juéf Eboqt
exhausted itself, the only scope being‘inbthe solution of
individual problems such as the axis of the openings moving
laterally at an arbitrary height. The logical movement of
research in the future would therefore be to ultimate
1oad.ana1ysis and design, and this is one area where the

matrix progression method could quite easily be adopted.
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