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by
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Noise pollution in factories has become a major problem which has been highlighted in
recent years. This thesis attempts to construct a model which will predict sound

attenuation by finite barriers within enclosures, thus simulating factory conditions.

The research uses the classical Kirchhoff-Fresnel diffraction theory outlined in Bomn
and Wolf' to develop a model by which the barriers’ surface is divided into elements.
Using Babinet’s Principle, sound attenuation was predicted for a finite barrier in free

space. The sound source was assumed to be a point source of monotonic frequency.

The free space environment served as a basic theoretical model where computer
programs compared the zero and first-order models. This comparison showed that the
first-order model was the more productive and identified the optimum element size to

give an accuracy within the precision grade of measurement.

After validating the theory, the model was adapted to predict insertion loss, using a
finite barrier in contact with the ground. There is much contemporary literature for
this model but little research has been undertaken in predicting sound losses due to

finite barriers within enclosures.



A further extension to the research was to place the barrier in a flat room, where
reflections of the sound waves from the roof as well as the floor were included. This
model also allowed the effect on insertion loss to be examined by increasing the aspect

ratio of width/height of the barrier.

Finally, side walls were introduced into the model to see if they have any significant

effect on insertion loss as compared to the flat room model.
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1 INTRODUCTION

Hearing loss, due to excessive noise in industry, is a serious problem that has been
highlighted in recent years. This report attempts to construct theoretical models which
use barriers -;to reduce noise in enclosures and hence simulate factory conditions.
Although there has been a great deal of research into straight-edged semi-infinite
barriers, the work presented in this thesis predicts noise reduction produced by

barriers in finite enclosures. To the author's knowledge little work has been done on

this aspect of the subject.

Initially, the report uses the classical Kirchhoff-Fresnel diffraction theory outlined in
Born and Wolf! to develop a model by which the barriers' surface was divided into
elements. By incorporating Babinets' Principle into the model, sound attenuation was

predicted for a barrier in free space.
The Kirchhoff-Fresnel theory is described in Section 1.1.
1.1  The Integral Theorem of Kirchhoff

The basic idea of the Huygens-Fresnel theory is that the disturbance at a point P arises
from the superposition of secondary waves that proceed from a surface situated
between this point and the source. This idea was put on a sounder mathematical basis
by Kirchhoff, who showed that the Huygens-Fresnel principle may be regarded as an
approximate form of a certain integral theorem which expresses the solution of the
homogeneous wave equation, at an arbitrary point in the field, in terms of the values of
the solution and its first derivatives at all points on an arbitrary closed surface

surrounding P.

We consider first a strictly monochromatic scalar wave:

- V(x,p,z,8) = U(x, y,z)e (1.1.1)



In vacuum the space-dependent part then satisfies the time-independent wave

equation:

(V2+k2)u=0 (1.1.2)

where k =% or k=2%, )\ being the wavelength of the medium. Equation (1.1.2) is
known as the Helmholtz equation and was first deduced for monochromatic accoustic
waves. It implies that there is no dissipation or absorption. This is not strictly true in

air - especially over long disances.

Let v be a volume bounded by a closed surface s, and let P be any point within it; we
assume that U possesses continuous first- and second-order partial derivatives within
and on this surface. If U! is any other function which satisfies the same continuity

requirements as U, we have by Green's theorem:

J.'”V(Uvz U =-ul v? UVV= J‘L(u é’;l _U Z]ds’ (1.1.3)

where %, denotes differentiation along the inward normal to S (Green's theorem is

usually expressed in terms of the outward normal, but the inward normal is more
convenient in the present application). In particular, if U! also satisfies the time-

independent wave equation, ic if

(V2 +k2)u1 =0 (1.1.4)

Figure 1:

Derivation of the Helmholtz-Kirchhoff

integral theorem: region of integration

then it follows at once from (1.1.2) and (1.1.4) that the intergrand on the left of (1.1.3)

vanishes at every point of v, and consequently:



laU)ars 0 (1.15)
.

(o2

Suppose we take U'(x,y,z) = ¢/, where 5 denotes the distance from P to the point

(x,3,z). This function has a singularity for s = 0, and since U! was assumed to be
continuous and differentiable, P must be excluded from the domain of integration. We
shall therefore surround P by a small sphere of radius € and extend the integration
throughout the volume between S and the surface S! of this sphere (Figure 1). In

place of (1.1.5), we then have:

a iks iks ﬁ
M0 {2 ()-S5 oo
whence Hs + Hs, {u%(ﬁl:—) —f;—%— S = —Hs, {u%(ik -9 _%b %:i}d 1

(1.1.6)

where dQQ denotes an element of the solid angle. Since the integral over s is
independent of € — 0; the first and third terms in this integral give no contribution in

the limit, and the total contribution of the second term is 4m(P). Hence
U(P)=_H (_)_I_b_ﬁi ds (1.1.7)
s ¢hn o

This is one form of the ‘integral theorem of Helmholtz and Kirchhoff'.

We note, that as £ — 0, the time independent wave equation (1.1.2), reduces to
Laplace's equation V2U = 0, and (1.1.7) then goes over into the well known formula

of potential theory.

u(P):—H{ () é,d:)}dS - (1.1.8)



If P lies outside the surface S, but U is still assumed to be continuous and differentiable
up to the second order within S, and if as before we take L' =/, equation (1.1.3)
remains valid through out the whole volume within S. According to (1.1.5) the surface

integral then has the value zero.

There is a complementary form of the Helmholtz-Kirchhoff theory for the case when U
is continuous and differentiable up to the second order outside and on a closed surface
S (sources inside). In this case, however, as in other problems of propagation in an
infinite medium, the boundary values on S are no longer sufficient to specify the
solution uniquely and additional assumptions must be made about the behaviour of the

solution as .S — oo.
1.2 Kirchhoff's Diffraction Theory

Whilst the integral theorem of Kirchhoff embodies the basic idea of the Huygens-
Fresnel principle, the laws governing the contributions from different elements of the
surface are more complicated than Fresnel assumed. Kirchhoff showed, however, that
in many cases the theorem may be reduced to an approximate but much simpler form,
which is essentially equivalent to the formulation of Fresnel, but which in addition
gives an explicit formula for the inclination factor that remained undetermined in

Fresnel's theory.

So far we have considered strictly monochromatic waves. We now derive a general
form of Kirchhoff’s theorem which applies to waves that are not necessarily

monochromatic.

Let V(x,y,z,¢) be a solution of the wave equation

Py L7

= (1.1.9)

and assume that ¥ can be represented in the form of a Fourier integral



1 = .
V(x,y,2,t) = \/-T—H-J'_mum(x,y,z)e"“"da) (1.1.10)

Then, by the Fourier inversion formula

OuCe.2) = = [V ey z e (1111)

Since V(x,y,z,1) is assumed to satisfy the wave equation (1.1.9), the time independent

component U (x,y,z) will satisfy the time independent equation (1.1.2).

Also, if V satisfies the appropriate regularity conditions within and on a closed surface

S (concerning the first and second derivatives), we may apply the Kirchhoff formula

separately to each Fourier component U (x,y,z) =u,, (P) .

1 7 e”“) e™ Ju :

H P)=—|| qu, —| — | ———=dS 1.1.12
ence U, (P) MHS{%[S - 0%} (1.1.12)
Combining equations (1.1.10) and (1.1.12), changing the order of integration and

replacing £ by £ gives:

~im(r—f) —im(:—fj
1 1 g dle ¢ “ ou
R e B e e

), 8],

1 1 (= 17
el Uw{‘;(; e

We note from equation 1.1.10 that

é(V (x,,2, t)) _ \/21_7r J‘: U, (%,0,2) - (icoe"‘”’ )da)




This enables us to write:
1 a(1 1& || 1|V
V(P,0)=— | L{[V]gh—(;) —;5[5]—;{5]}49 (1.1.13)

where the square brackets denote ‘retarded values’ ie values of the function taken at

the time (t - £). Equation 1. 1.13 is the general form of Kirchhoff’s Theorem.

Consider.a monochromatic wave, from a point source Po, propagated through an
opening in a plane opaque screen and let P (as before) be the point at which the light

disturbance is to be determined.

We assume that the linear dismensions of the opening, although large compared with

the wavelength, are small compared to the distances of both Po and P from the screen.

(b)

(a)

Figure 2 Opening in a plane opaque screen

To find the disturbances at P we take the Kirchhoff integral over a surface S formed by

A, the opening in the screen, (8, a portion of the non illuminated side of the screen and

C, a portion of a large sphere of radius R, centred at P which, together with # and (3,

forms a closed surface.

Applying Kirkhhoff’s Theorem (equation 1.1.7) to this surface gives:

AP)- MMEJF]{U?%(.?) (< %J}ds (11149



where, as before, s is the distance of the element dS from P and % denotes

differentiation along the inward normal to the surface of integration.

The difficulty is that the values of U and 22 on A, {§ and  which should be substituted
into (1.1.14) are not known exactly.
However, it is reasonable to suppose that everywhere on 4, except in the immediate

neighbourhood of the rim of the opening, U and £’ will not differ appreciably from

the values obtained in the absence of the screen, and that on [} these quantities will be

approximately zero. Kirchhoff accordingly set:

ond u=ud o”_uzﬁu(l)
T o (1.1.15)
5 ou :
onf: u=0 ,=——= 0
on
where

. ikr (I) ikr

) _ Ae ou _ Ae™ | 1
oW = , = 2 ’

; = - [1 - cos (n,7)

The derivative is obtained as follows:

o”u(i) _ A{r ike™ __eikr} _ Ae™ [ik_l]

2

o r r r
WAVEFRONT From the diagram shown, provided
. that we make Or, on small, the
.
wavefront can be regarded as
on

essentially plane and so

% = cos(n, V)

as or — 0 we have % = cos(n,r)



ou  Hu0 & Ae™ { 1}
= —= ik —— s 1.1.16
now —- P e L cos(n,r) ( )

The approximation set in 1.1.15 are called Kirchhoff’'s Boundary Conditions and are

the basis of Kirchhoff Diffraction Theory.

We must now consider the spherical portion . The assumption is made that the radius
R of the sphere at [ can be made sufficiently large so that the radiation does not reach

C until time 7 =1, . At any time before that time we can ignore the integral over (.

(This implies a departure from monochromacy since a perfectly monochromatic field

must exist for all time £.)
It is now possible to substitute (1.1.15) and (1.1.16) into (1.1.14) to obtain a more

explicit form of U(P).

S

ks
Consider the term u—g—(e——)

By the same argument as was applied to the deduction that
or a
— = co9qn,r) we have — = cos(S,

N 3 (™) _ Sike®-e™
ow 5= :
s ) s

é,(eiks\ eiks(- l)
or —|—=—|ik -~
_ A\ s J s s

Hence, from (1.1.16)

iks ikr iks
Ui(e_) = Ae . e—(ik - l) . cos(n,s)

A\ s 2 S S

. (ik - 3 cos(n,s)

A e ik(H-s)

S



Also, from (1.1.16)

iks iks ikr
e_.o"u_L de [k———]cos(n r)
S o S 2

Aexk(r+s)

= (ik - %) cos(n,r)

rs

Therefore equation (1.1.14) can now be rewritten as:

U(P) = H Ae,k(m) [(ik - 3 cos(n,s) — (ik - —1—) cosn,r]dS (1.1.17)

v

This is the exact form of the Fresnel-Kirchhoff diffraction formula. In the optical

treatment, because of the short wavelength both { and 7 are neglected in comparison

with k. Making this approximation and setting & = Zf gives:

xk(r+s)

—-——H —~ co s(n,r) - cos(ns)] (1.1.18)

The way in which the theory is modelled allows attenuation to be calculated regardless
of the shape and size of the barrier and of the proximity of source and receiver to the
barrier. A method of predicting sound attenuation for a barrier in contact with the
ground is then described. This model makes provision for sound being reflected from

changing ground conditions as well as that taking the direct route.

The model was then extended to that of a flat room, where reflections from the roof,
as well as the ground, contribute to sound loss due to the barrier. Finally, walls weie
introduced into the model, allowing the insertion loss to be predicted using a barrier

within an enclosure.



2 REVIEW OF PREVIOUS RESEARCH

During the period up to 1980, much investigation, which develops and extends optical
diffraction theory for the purpose of predicting sound levels behind barriers is
summarised by T Isei, TF W Embleton and J E Piercy2. They classify both

theoretical and experimental work in their area into four categories:

(i) To obtain generality for different geometries, the attenuation or insertion loss of a
barrier has been derived as a function of non-dimensional variables which are
determined by barrier geometry. Redfearn3 showed the attenuation by a barrier to
be a function of the non-dimensional ratio of the length of the perpendicular from
the edge of the barrier to the line between source and receiver, divided by

wavelength, using the diffraction angle as a parameter.

Maekawa?>, developed his well known chart, in which attenuation is shown as a
function of Fresnel number, by extending Kirchhoffs diffraction theory and
correcting the theoretical values empirically to allow for the presence of the
ground. Kurze and Anderson® have given a similar chart for an incoherent line
source, also in terms of Fresnel number. Kawai et al” have developed a simple,
approximate expression for Bowman and Senior's formulad, which is based on
MacDonald's rigorous solution®, again using the Fresnel number. Most of these
prediction schemes are based on the idea of a semi-infinite screen, which does not

allow for interference due to reflection from the ground.

(i) Several studies have been made of the effectiveness of absorbent material on the
barrier surface. Kawai et al” have discussed the effect of the image source in a
perfectly reflecting barrier using the second term of the approximate expression® of
MacDonald's solution. Fujiwara et all® showed the intensity of the diffracted field
due to the image in the barrier by introducing the complex pressure reflection

coefficient for incident plane waves into the second term of MacDonald's

10



equation8. Yuzawall also evaluated the diffracted field due to the image source in
the barrier, using the second term of an approximate solution by Piercel?, but
regarded the imaginary part of the admittance of the barrier surface as zero. This
work on absorptive barriers also assumes semi-infinite barriers, and so does not

allow for interference which arises in the presence of the ground.

(iii) Diffraction theory has been developed for different shaped obstacles, such as a
wedge or a thick barrier. Pierce!2 developed the theory for diffraction by a wedge
and extended it to double-edge diffraction, and, hence, to a thick barrier, usﬁg
Keller's geometrical theory of diffraction3. Fujiwara et all4 have discussed the

effect of barrier thickness in terms of MacDonald's theory?.

(iv)Some work has been presented which allows for the presence of the ground, and
also interference due to waves reflected from the ground, Scholes et all> carried
out full scale barrier measurements on grass-covered ground. They observed an
interference pattern due to reflection at the ground on measurements both with and
without the barrier. Isei et all® have also observed interference patterns using a
motor-driven artificial line source on the ground. Jonasson!? has proposed a
method for calculating the noise reduction of a barrier on ground of finite
impedance. To evaluate the diffracted field due to ground reflections, Jonasson
introduced Ingard's theory!8 of sound propagation along a boundary, into the first
term of MacDonald's solution, negiecting the second term, and assumed that the
ground-reflected field could be set equal to the field due to the real source when
source and receiver were both situated close to the reflecting surface. Thus he
found a simple approximate solution for the diffracted and reflected fields due to
barrier and ground which includes only one phase-dependent term. He concluded
that the insertion loss of a barrier is often small, even negative, and this tendency
appears when the excess attenuation due to the ground is large. Thomasson!9-22
déveloped a new ground impedance modell%-22 and introduced it into a diffraction

theory based on numerical integration of the direct and complex reflected waves

11



over the surface of the barrier. Application of Babinet's principle yields the
diffracted field at the receiver behind the barrier. In Thomasson's model, the
admittance of the ground is described by four parameters that are adjusted for best
fit to measurements of a sound field above the same type of ground. Thomasson
also carried out full-scale barrier experiments?? on several kinds of grouﬁd and

found good agreement with his theory.

In their work on barriers, T Isei, T F W Embleton and J E Piercy?3-24 reported on
one calculation scheme and have used it to quantitatively analyse the interference
pattern measured in the diffracted field behind barriers. In this scheme the Weyl-
van der Pol?3 equation is applied to the sound field on each side of the barrier: the

diffraction of each direct, reflected, and ground wave thus appears explicitly.

Isei, T F W Embleton and J E Piercy? seek a better understanding of barrier
performance in practical situations. Sound levels behind barriers on the ground, as
predicted by five different theories, are first compared with each other and with

measured results.
The five theories are:

1 Keller's geometrical theory of diffraction!3

2 Kirchhoff-Fresnel diffraction theoryl-26

3 Thomasson's theory based on Babinet's principle2!-22

4 Edge-integral diffraction theory based on the Young-Rubinowicz formula2?
5 A modification of MacDonald's diffraction theory?8.

Despite the vast amount of research described above, there is a dearth of published

work on noise attenuation due to finite barriers.

Maekawa*> postulated a method for the prediction of the attenuation due to a
ﬁﬁite barrier on reflecting ground by applying the method of calculation of

diffraction over the top edge of a semi-infinite screen also to the ends of the finite

12



screen. However, his theory limits the location of source and receiver and also the
barrier is restricted to rectangular shapes. Kurze and Anderson® deal with finite
barriers in a way which predicts the length of the barrier required in the presence of
an infinite line source that gives approximately the same attenuation as an infinitely

long barrier.

From the background work, described above, it can be seen that predicted
solutions have been confined to straight-edged semi-infinite barriers. The work
described in this report subdivides the barrier into elements to enable a rigorous
solution of any barrier shape. H Medwin3l, in 1989, described a technique for
calculating the acoustical shadowing due to finite barriers. More than 20 years
previous to Medwin's paper Biot and Tolstoy's32 paper on normal coordinates
provided a closed form solution to the diffraction of a pulsé by an infinite rigid
wedge. Medwin made use of Biot and Tolstoy's pulse solution for an infinite
wedge as a building block, which when used in conjunction with a computer, can
produce both time- and frequency-domain solutions to real-world problems of

shadowing by finite noise barriers.

The advantage of the pulse description when adapted to digital computer
calculations is the same as in physical model experiments which use pulse
techniques; a diffracted contribution from each barrier edge can be initiated at the
least time when the pulse diffracts from the edge and it can be terminated at the
mstant when the diffracted pulse from the end of the edge has passed.
Superposition gives the total impulse when there is more than one edge. The total
temporal response can then be Fourier tranformed digitally to provide the desired

frequency response of the finite barrier.

In 1982, Y Nicolas, T F W Embleton and J E Piercy54 chose to concentrate on the
effects of diffraction and to minimise the effects of ground reflection. They chose

to compare three different methods of performing the diffraction part of the
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calculation using the same method for calculating ground effects. For the latter, a
method was chosen which had previously been successful for predicting the
propagation of sound over various ground surfaces (without barriers). The Weyl-
Van der Pol formulation familiar for the propagation of electromagnetic waves33 is
used as adapted for acoustics by Rudnick®# and corrected by Chesse1135h. The
ground is considered as a semi-infinite porous medium whose acoustic properties
can be specified using a single parameter, the flow resistivity, by empirical

equations of Delany and Bazley39.
The three methods used for the diffraction part of the calculation are:

(1) The first order approximate Macdonald solution

The computer program 'SCREEN' of Isei et al? is used for prediction here,
including the effect of the ground. The reflection coefficient of the barrier is

assumed to be unity.

(2) Line integral solution

The classical theory of diffraction is the Kirchhoff-Fresnel theory which is
much used in optics. Embleton2? removed the approximations implicit in using
a constant obliquity factor, unity or otherwise, by numerically evaluating a line
integral formulation based on the Young-Rubinowicz solution. The program
'DIFRCT" described by Isei et al? is used for this calculation, and it too includes

the effect of the ground.

(3) Macdonald solution

The more exact solution proposed originally by Macdonald® in 1915 for
diffraction by a rigid wedge has been improved by a number of investigations.
Ambaud and Bergassoli?? computed the amplitudes of the diffracted wave, and
- confirmed them by measurements in an anechoic chamber. While useful, these

results do not form a satisfactory basis for the design of noise barriers because
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(a) there are extreme computational difficulties38, (b) distances between the
barrier and source or receiver are limited to a small number of wavelengths for
both the computational method and the measurements, (c) the environmental
field is perfectly anechoic, without the reflecting ground plane, and (d) tests are

done for only one frequency, 10 kHz.

Fortunately, Hadden and Pierce3® have adapted the theory to a form which can

readily be integrated numerically with established Laguerre techniques.

Due to the increase in interest in protection against noise in industrial enclosures,
E Katarbinska3? presented a method of calculating the insertion loss of an acoustic
barrier in a flat room. The calculation requires that both diffraction and reflection

phenomena are taken into account.

A relatively simple case is a barrier in a flat room where the energy of the waves
reflected from the boundary walls is negligibly small compared with the energy of a
direct wave and waves reflected from the floor and the roof. Bolleter4? describes a
flat room as a room the height of which is at least five times lower than the other

two dimensions.

Kurze*! has presented the theoretical model of the shielding by a barrier in a flat
room, filled with randomly distributed, small scatterers. The barriers insertion loss
is due to the shielding of the direct and diffuse field and enhancement of the
scattered field because of reflections from a barrier. This approach is based on the

statistical concept of the scattered sound.

Katarbinska presented a different approach. To analyse both reflection and
diffraction phenomena new assumptions to the image source method have been
introduced. The analysis of barrier performance is made for a semi-infinite rigid

screen, located in a flat empty room, when the sound source is an omnidirectional
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point source. The energy of airborne sound and of sound energy going through

the barrier is neglected.

Katarbinska concluded that the insertion loss of a barrier in a flat room is

influenced by: -

(a) the reduction or limitation of the direct waves and the waves reflected from the

floor and the roof;

(b) the presence of the waves diffracted over the barriers edges and the reflected-

diffracted waves.

The new assumptions of the expanded image source method allow for geometrical
analysis of the reflected wave and the reflected-diffracted wave field, which lead to

a simple algorithm of the barriers insertion loss.

The theoretical model of the barrier's performance in a flat room was initially

verified by model scale measurements.

André L'Esperance?? presented a paper in 1989, the purpose being to extend, to
the case of finite barriers, the method suggested by Jonasson!” for computing the
insertion loss of infinite barriers on the ground. It combines diffraction theory with
a model for sound propagation over the ground to estimate the diffracted field
created by each diffracted path. The diffracted paths are identified by simple
geometrical considerations. The method was compared with the models proposed
by Thomasson?! and Medwin3! and with experimental measurements. However,
the barriers studied by Thomasson were rather long compared to their height,
which did not allow a significant diffraction contribution around the sides of the
barrier. Also, the source-barrier and barrier-receiver distances that he considers
are quite large in comparison to the height of the screen (a typical ratio is 10:1). In
préctical situations, barriers are often erected near the source or receiver, making

his model inappropriate.
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Medwin3! studied the case of a barrier with a height-length ratio of approximately

0.5, with comparable source-barrier and receiver-barrier distances.

In 1991, D C Hothersall, S N Chandler-Wilde and M N Hajmirzae3 used a
numerical model to investigate the sound field in the region of outdoor noise
barriers using the boundaq.' element method. The model can be applied to barriers
of different cross-sectional shapes and arbitrary distribution of surface cover. The
model is two-dimensional but results show good agreement with those obtained for
the three-dimensional problem of propagation from a point source over a noise
barrier of infinite length. The model is used to compare the efficiency of a wide
range of constructions of single noise barriers of different height, cross-sectional

shape and surface cover. The effects of the ground are also considered.

The results of the numerical model do not predict the absolute values of the
insertion loss of barriers for incoherent line sources such as road traffic. However,
the model provides useful predictions of the relative performance of the barrier

forms for this type of source.

The numerical model confirms that barrier height is of fundamental importance to
the attenuation produced. Also, the type of ground cover has a large effect upon
the calculated insertion loss of banie;rs. However, for the configurations
considered it appears that this effect is largely independent of the form of the

barrier.

For barriers with reflecting surfaces, those with vertical or nearly vertical sides
perform significantly better than those with shallow sloping sides. There is general
agreement that the insertion loss for the wedge is lower than for the screen, but no

concensus as to the magnitude of this effect.

Kawai and Terai44, in 1990, theoretically investigated diffracted fields by thin rigid

or absorbant barriers by using integral equations derived from Helmholtz-
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Kirchhoffs formula and from its normal derivative. The surface of the barrier is
divided into elements to solve the integration equations numerically and the
potential is assumed to be uniform on each element. For the numerical treatment
of the integral equations in three dimensions, the integral including the strongly
singular kernel is evaluated by the line integral along the edge of the elemer;t: this
reduces the amount of computation and avoids the difficulty due to singularity. A
numerical method which removes the problem of singularity is also presented to
solve the integral equations in two dimensions. For a flat rigid barrier, farfield
solutions in the high frequency range are evaluated asymptotically on the basis of

Kirchhoff's boundary conditions and compared with exact solutions.

In 1992, Trevor J Cox and Y W Lam*3 concentrated on the application of various
solutions of the Helmholtz-Kirchhoff integral equation to ﬁredict the scattering
from simple finite sized rigid reflectors commonly found in auditoria. These were
plane panels and cylindrically curved panels. For the more approximate prediction
methods their limitations were defined in terms of the accuracy achieved and the
range over which the methods were applicable. These methods were also used to
investigate the use of a cut-off frequency to describe the limit above which
specular type reflections dominate the scattering. It was found to be applicable
only close to the geometric scattering angle. The scattering due to curvature was
predicted by considering the variation in the direction of the local normal to the

panel surface.

Also, in 1992, Y W Lam an S C Roberts#6 developed a simple model of diffraction
that predicts accurately the insertion loss of finite length barriers. The model is
based on the geometric theory of minimum diffracted paths. Assumptions were
made on the phase and amplitude of each diffracted wave to obtain a new and
rather simple formulation of the solution. It provides a clear picture of the sound
attenuation performance of a barrier as a function of barrier length. Extensive

model experiments are used to verify the model. The model's accuracy in
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predicting the overall pattern of the narrow-band insertion loss is found to be
comparable to that of an integral equation method, although the latter method
produces better prediction in the fine details of the sound field. The model is much
simpler than and as accurate as other methods that apply the usual geometric
solutions to each diffracted path, and represents a major improvem:ant on

Maekawa's energy summation method for octave band finite barrier calculations.

In 1994, Y W Lam#7 describes a simple model for the calculation of finite length
barrier insertion loss, based on the concept of minimum diffraction paths. It makes
use of Maekawa's empirical curve to estimate the attenuation associated with each
diffracted path. However, instead of summing the energy contributions of the
diffracted waves as suggested by Maekawa, a new formulation of phase
relationships between the waves is developed to allow pressﬁre summation. The
result is a model which is simple to use and yet has accuracy substantially better
than Mackawa's energy summation method, in predicting both narrow and octave
band insertion loss of finite length barriers. It is believed that the model is both
simple and accurate enough to replace Maekawa's energy summation method in

engineering practice.

Also, in 1994, Y W Lam?*® developed a simple model for the calculations of the
attenuation of complex ground terrain profiles. The model is based on the simple
ground reflection and minimum diffraction path developed by Y W Lam and
S C Roberts?. The ground model is compared with existing environmental noise
calculation models: the draft ISO™ model, the CONCAWE"""? model and
ENM™. It is found that the new ground model has the best overall performance
and agrees well with measured data on a variety of ground terrain profiles and
conditions. The measured data are taken from the existing literature and cover
both short- and long-range propagation. Serious errors are also found in the draft
ISO model and in ENM which cast doubts on their suitability as standard

environmental noise calculation models.
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Takagi, Hotta and Yamamoto?, in 1994, presented a practical expression for the
estimation of sound attenuation by a finite barrier. The attenuation is determined
by taking account of sound contributions from rectangular sections of a plane
barrier located between a point source and a receiver. The expression for the
attenuation due to a finite length barrier is finally formulated by combm{ng the

attenuations due to semi-infinite plane barriers.

Scale model experiments were carried out to check the validity of the expression
and the results showed good agreement between them. It is shown that the
expression obtained is useful and applicable to the design of a finite length barrier
when the sound source has a broad band spectrum and the overall sound pressure

level is a matter of interest.

The aim of this work is to predict by calculation the noise reduction by finite barriers.
The theoretical background is based on Kirchhoff-Fresnel diffraction theory, from

which an easy to use computer package has been compiled.

The work described in this thesis, therefore, gives greater flexibility in predicting noise
reduction by finite barriers in free space, in outside conditions and also in enclosures.
Comparison is made with results obtained by other workers for similar barrier

geometries.
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3 DESCRIPTION OF WORK PRESENTED IN THIS REPORT

Although much work has been carried out on the predicuction of sound losses by
semi-infinite barriers in outside conditions, little research has been undertaken in
predicting sound losses due to finite barriers within enclosures. The main aim of this
thesis, therefore, was to ultimately construct a model which will predict sound
attenuation by finite barriers within enclosures, and thus simulate conditions which
may prevail in factories. In recent years, hearing loss, due to excess noise in factories,
has become a major issue and this thesis tries to predict ways of minimising this noise

before the practical difficulties are encountered.

The research began by using the classical diffraction theory outlined by Bom and
Wolf! to develop a model by which the barriers' surface was divided into elements. By
incorporating Babinets' Principle, this allowed the attenuation of sound to be predicted
by a finite barrier in free space. It was assumed that the sound source was a point
source of monotonic frequency. This assumption was made for two reasons, firstly
because this type of source lends itself most favourably to a clear description of the
diffraction technique and secondly because it acts as a basic model upon which the

theory for more complex types of source may be developed at some later stage.

The barrier was assumed to be two-dimensional and the free space environment was
initially assumed, again, because it served as a basic theoretical model which allowed

other models to be developed to suit more complex environments later on.

Computer programs were written in Fortran, for both the zero and first order models.
The models were compared to discover which was the more productive and used to
identify the optimum element size to give an accuracy within the precision grade of

measurement

Validation of the basic theory was accomplished by comparison with Fresnel and

Fraunhofer diffraction theory. Further validation was accomplished by using the
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elemental computer model, with no barrier present, to examine the effect of extending

the source-receiver distance.

Having established a theory that gave flexibility in calculating attenuation by a finite
barrier in free space, the model was extended to predict insertion loss, using a.barrier
in contact with the ground. There is much contemporary literature for this model and

the author compares his findings with other workers for similar barrier geometries.

A further extension to the research was to place the barrier in a flat room, which
includes reflections of the sound waves from the roof as well as the floor, but ignores
the contribution of the walls. This model examines the effect on insertion loss of
increasing the aspect ratio of width/height of the barrier. Although there is a dearth of

research using barriers in enclosures, the author is able to compare the trends of his

model with that of other recent work.

Finally, side walls were introduced into the model to see if there have any significant

effect as compared to the flat room model.
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4 NUMERICAL SOLUTION OF THE KIRCHHOFF-FRESNEL
DIFFRACTION EQUATION

\/’ ~ ny) g
¢( \L\/\'\j (71,S>
S
k,
SoukcE PECENER

According to the Kirchhof-Fresnel diffraction theory, the amplitude at P, due to sound
diffracted through the hole is given by:

A e ik(r+s)

Y = . L = [(ik - %) cos(n,r) - (ik - ;1-) cos(n,s)]dS 4.1)

where S = surface of the hole

A = amplitude at unit distance from the source

2
k = wave number = 7”

It is more convenient to intreduce 6 = (n, s) and & = 180° - (n, ) so that
cos 6 = cos (n, 5)
—cos J =cos (n, r)

[NOTE: The diagram above is actually in three dimensions so that generally the

vectors r and s do not lie in the same plane.]

g __i eik(r+s) k 1 . 1 d
") = 4,[”5 — - cosd + zk—; cos@ |dS (4.2)
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Now we can re-write equation (4.2) as follow:

A ik(r+s
Sty = [[*c*F(r.5)ds (4.3)
(., 1 |
where F(r,s) = —[(zk - —) cosP + (zk - —) cosﬁ] (4.3)
rs r s

At high frequencies, the variations of A&(r + s) and hence e™("*s) will be considerably
greater than the variation of F(r, s) as we move across the area over which the
integration is taking place. Therefore it should be possible to obtain a more rapid
convergence of a finite element integration if F(r, s) is treated as a constant over the

area of integration whilst the term e™("+) is integrated explicitly.

Hence by making s sufficiently small we may effect the following simplifications of
equation (4.3).

A F (r 7S) ik(r+s)
YT _Tﬂse ds (4.4)

Consider a small rectangular area in the generalised barrier plane shown below:
PLANE  NORMAL

?'; ‘Of DO’IA{/ArES FROM RECEIVER
4
BARRIER  PLANE k RECEIVER

o -0RDINATES

(o0,0) oN

BARRIER  PLANE \ o
GENERALISED

/ BARRIER PLANE

LANE NofNAL
‘oM SouRCE

\ ELEMENT OF

BARRIER  AREA

SoURCE

Figure 3 Small rectangular area in a generalised barrier plane
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The intersection between the barrier plane normal to the source and the barrier plane
has coordinates (o, 0) along x and y where both x and y are specified as being in the

barrier plane.

Let the centre of the element under consideration, from the source, be specified by

coordinates (x, +x, y, +y) where x, y may take values between +Ax, £Ay respectively.

Then, for.a general point:

s = \/spz +(x, +x)‘2 +(y, +y)2
e s=(s,) +x’ +2rx 4y, 42y, y 4’ +y2)%
However, x2 and y? are very small compared to the other terms and can be ignored.
But from the diagram:

2 2 2 2
s, =5, +x,"+Y,

[

S0 s~ s, +2(x,x+y,y) for smallx, y

ie szso\/1+—2—2(xox+yoy)
s

o

or S™S, +l(xox +,9)
s

o

Now in the case of »

r=qr, +(x, = p+x) +(n, —g+y)°

ie
1
2

r =(rp2 +x,? =2px, +2x,x~-2px+ p* +x* +y,° - 2qy, +2y,y—2qy - ¢* +y2)

But 1, = \/rpz +x7=2px, +p*+y7-2qy, + ¢

giving r = \/roz +2x,x-2px+2y,y-2qy+x* +y°
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Again x2 and y? are very small compared to the other terms and can be ignored.

1
ie rer, +r—[x(xo -p)+y(y, - q)]

o

and so r + s may be written as:

r+s=r,+s, +XFL+MJ+){
S r

(4 o

2. beog)

4 o

or more conveniently:

r+s=r, +s, +ax+by

Wh[_w] , ,,[y_(l__q)]

I

o o

and equation (4.4) then becomes:

A'F(robsa) ik(r,+s,) by A g ikby
u(p)——T.e _AyJ‘_A‘e .e"dxdy

Now, J._Azy _[_A; ™™ ™ dxdy = J‘_A:y e™dy J‘_A; ™™ dx

[eikby "lAy l:eikax:r‘
ik 1oL ka |,

_ _I_[eild)Ay _e—ithy] 1 [eikan _ e—ikan]

kb ika

But I—?(ei’r -e"") =2sinx

so the integral becomes:

e sin(kbAy) sin(kaAx) and is therefore ALL REAL
a

As a result, two approximations now become possible.
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(1) "Crude" Zero Order Approximation
AsAx, Ay —>0
and hence kaAx, kbAy — 0

sin (kaAx), sin (kbAy) — kaAx, kbAy

AF(5S) k(o) 4
Vi = 2T e kzab kalx, kbAy

all
elements

and for (r,s) in F(r,s) we must choose r = r,, s = 5, as the best mean values, so

Up = -éF(ro,so) *ote) Ax, Ay
n

all
elements

(2) "More Refined' 1st Order Approximation

— ik(r,+s,) sm(kan) Sln(kbAy)
Yo = 2 '—F(o> 5,)e P

elements

4.1 Computational Details

The term F(r,,s, )e*(***) needs to be separated into real and imaginary parts.

1 [(ik - —1—) cosd +(ik - i] cos 9]
raSo rD SO

(cos 0+ cos@)

Now F(r,,s,) =

= (r cos 0 +s, cos®)+
r’s r.s,

4 o o

Also, e"(v*) = cos[k(ro +so)] +isin [k(ro +sa)]

Real terms are:

1

r, S

[cos [k(r +5 )] 7, cos 0 +s, cos@)] - [sm[k(r +5 )](cos @ +cos @)]

Imaginary terms are:
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i
2.2
roso

[sin [k(ro +s, )](ro cos @ + s, cos @)] + é’—:—o— cos{k(ro +s, )](cos @+ cos @)]

In order to calculate these real and imaginary terms, xj,and y, must first be

specified for the element.

Then s, can be calculated from:
%

2 2 2
s, =(sp +x,”+y, )

and r,, from:
4
r,=(r, + (e, = p) + (- 9))

This in turn enables cos0 to be calculated from:

s
cosf=-~%

S

o

and cos@ from:

,
cos =~

rO

The "constants" a and b need to be evaluated as they have a particular value for

each element.

We are now able to compute the intensity of sound which would pass through a
hole which has the same geometry as the barrier. However, in order to calculate
the effect of the barrier rather than the effect of the hole of the same geometry we

use Babinet's principle:
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where U p) is the sound pressure at the receiver when the barrier is present

Y(p) is the sound pressure at the receiver in the absence of any sort of
barrier

U ) is the sound pressure at the receiver due to a hole the same size
and geometry as the barrier

Aeikd
d

Now v, =

but e = cos (kd) + i sin(kd) and d is the distance between the source and receiver

and is given by:
%
d= ((rp +sp)2 +p° +q2)
The attenuation due to the barrier will therefore be:

U d’
Attenuation = 10 log[—(%——}(dB)

Sound attenuation can then be calculated by the programs in Appendices 1 and 2.
The program in Appendix 1 uses the first order approximation and the program in

Appendix 2 uses the zero order model.

The programs in Appendices 3 and 4 are respective derivations of the programs in
Appendices 1 and 2, which enable us to investigate what effect reducing the size
of the elements, and hence increasing the number of elements, might have on the

accuracy of the results.
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4.2 Investigation on the effect of element size on convergence

Figure 4 compares the zero and first order models at a frequency of 1kHz, using a
10 m square barrier. Figures 5 and 6 examine the number of elements required for
a 5 m square and a 15 m square barrier to converge to its ultimate sound
attenuation. Figure 7 useé a high frequency, 10 kHz, in order to find the optimum

element size that will give accuracy within precision grade measurement.
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4.3 Discussion on the effect of element size on convergence

Figure 4 shows the attenuation, using a barrier in free space, and highlights the
contrast in the results using a first order model, based on the Kirchhoff-Fresnel
integral, to that of a zero order model. Using a 10 m square barrier at a frequency
of 1 kHz, the first order model converged to within 1% of its ultimate value using
just 1600 elements, ie 40 elements per side. The zero order model only reached
55% of this value when the same number of elements were used. It is therefore

more productive to use the first order model with fewer elements.

Figures 5 and 6 use the first order model to predict the attentuation for a 5 m
square and a 15 m squére barrier respectively. The 5 m square barrier converges
using 400 elements, ie 20 elements per side, and the 15 m square barrier converges

using 6400 elements, ie 80 elements per side.

At a high frequency of 10 kHz, figure 7 demonstrates that more elements are
required for the sound attenuation to converge to it's ultiniate value. For a 4 m
square barrier, 102400 elements, ie 320 elements per side, were required to predict
a sound attenuation within 2% of the ultimate value. This 2% accuracy represents
a change of 0.57 dB, and in context of measurement standards 0.57 dB can be
compared to the degree of uncertainty using a precision grade sound level meter,
where at mid-frequency the tolerance is + 1dB. Thus, it is justified in this work to
consider an optimum element size for accuracy within the precision grade of

measurement, which is approximately 0.0125 m.
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5 VALIDATION OF RESULTS

Ideally we should now set up a barrier in free space and practically verify the results
that have been obtained from the computer model. This, however, is not a possibility,

so the results from the computer model have to be validated by other means.
Diffraction phenomena are divided into two classes:

(i) those where the source or receiver, or both, are at finite distance from the aperture,

called Fresnel diffraction, and

(ii) those where the source and receiver are effectively at infinite distance from the

aperture, called Fraunhofer diffraction.

Showing that the results from the computer model accurately reflect Fresnel
diffraction, and in certain circumstances give a reasonable approximation to

Fraunhofer diffraction will support the validity of the computer model.

5.1 Simulation of Fresnel Diffraction using Kirchhoff-Fresnel Diffraction

Computer Model

Figure 8 in Jenkins and White2? shows the effect of adding the amplitudes of

successive half-period zones, which are alternately positive and negative.

To simulate the Fresnel diffraction theory from Jenkins and White2%, we sub-divide
the half-period zones into smaller zones, and convert the zero order computer
model. This program adds the amplitudes due to the areas of these successive
circular zones, increasing the radius of each area by a small amount, Ax, each time,

see Figure 9.

-~ [/ —
FIGURE 8: i A IA.%

Addition of the amplitudes from half- 21 de
period zones. A7
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Figure 9 Addition of the amplitudes due to the areas of successive circular

zones
Now
Area of zone 1 = 7z(Ax)2 .. Area of zone 2 = 47z(Ax)2 - 7z(Ax)2
Areaof zones 1 and 2 = 7r(2Ax)2 = 47r(Ax)2 = 37r(Ax)2

. Area of zone3 = 971-(Ax)2 - 47r(Ax)2

Areaof zones 12 and3 = 7Z(3Ax)2 = 9”(Ax)2 5 (Ax)2
=571

. Area of zone 4 = 167[(A)c)2 - 97r(Ax)2
Area of zones 12 3and4 = ﬂ(4Ax)2 = 167r(Ax)2 = 77;(Ax)2

ete...

The area of each successive zone can be found by the relationship (2n-1)n(Ax)2.
The program in Appendix 5 converts the zero order model to simulate Fresnel

diffraction.

Fresnel diffraction theory predicts that the distance from the outer edge of each
half-period zone is half a wavelength further away from the receiver than the

previous one. This is shown in Figure 10.
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Receet

b |
Fiure 10 Prediction by Fresnel diffraction theory that the distance from the

outer edge of each half-period zone is half a wavelength further
away from the receiver than the previous one

However, since we have a point source, the half-period zones are formed by each
outer edge being a quarter of a wavelength further from both source and receiver,

than the previous one, Figure 11.

Sovrce Receiver

- b i< b =
T~ l\
! Figure 11 Prediction, since we have a point source, the half-period zones !
are formed by each outer edge being a quarter of a wavelength
further from both source and receiver, than the previous one

Taking a round hole, where the distance of the source and receiver from the hole
are 10 m the wavelength is 0.34 m and the element size is 0.025 m, we are able to

predict the position of each half-period from zone using Pythagoras' Theorem:

OA=v (10.0852-10=1307 = 20 = 52 clements
0.025
.8
OB = v (10.172 - 102) = 1.852 = 1852 74 elements
0.025
2.273
" OC = v (10.2552 - 102) = 2.273 = 0025 - 91 elements
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2.630
0.025

n
]

OD = v (10.342 - 102) = 2.630 105 elements

118 elements

I

129 elements

= 140 elements

= 150 elements

I

159 elements
etc

The amplitude at the receiver should, therefore, be a maximum after 52 elements, a
minimum after 74 elements, a maximum after 91 elements, a minimum after 105
elements, and should continue to alternate in this way. We should also observe
that the maximum values should steadily decrease while the minimum values

should steadily increase.

The program in Appendix 5, which simulates Fresnel diffraction, produced results
which used the same parameters as were used in the prediction from the theory.
The graph, in Figure 12, of relative amplitude against half-period zone, from these
results, clearly shows that the relative amplitude alternates to give steadily
decreasing maxima and steadily increasing minima. The results also show that
these maxima and minima occur at exactly the positions which were predicted from

the theory.
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5.2 Simulation of Fraunhofer Diffraction using Kirchhoff-Fresnel Diffraction

Computer Model

Jenkins and White30 illustrate that Fraunhofer diffraction at a single slit gives a
minimum value of intensity when B = +x , 27, 37 , etc, and a maximum value of
intensity when B = i:l.433ﬁ , £2.467 , £3.47n , +4.47747, etc. B is a convenient
variable, which signifies one-half the phase difference between the contributions

comixig from opposite edges of the slit, see fig. 13. »

—

)

//
op=—2 L
\ Z// Py
s\ P

ds‘O > % ’

2
-

i

Figure 13
Geometric'a] ‘construction for investigating the intensity in the single-slit diffrac-
tion pattern.

The first secondary maximumis only 4.72 percent of the intensity of the central

maximum, while the second and third secondary maxima are only 1.65 and 0.83

percent respectively.

For a minimum, we have

ﬂb(sini + sin 6)
A

p=mr=

where b is the slit width, 7 is the angle that incident light makes with the normal

and @1is the angle where each secondary wave reaches point P.

but sini =0
Therefore, mz= 7 sin
ie. in 9= "2

b
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For a maximum, we have

at Ist secondary, .437z= 7bsin 6
therefore,. sin @= ﬂ

at 2nd secondary, sin 8= %

at 3rd secondary, sin 6= % ’ otc

If we use the above theory, with a 2 m wide slit, wavelength of 0.34 m and the
source and receiver placed centrally 50 m either side of the slit, we can calculate
the positions of the maxima and minima when the receiver position is moved away

from its central position.

The following table illustrates these calculations:

Maxima Minima
O(degree) Offset from centre of slit (m) O(degree) Offset from centre of slit (m)
0 0 9.79 8.62
14.04 12.53 19.88 18.08
24.72 23.02 30.66 29.65
36.15 - 36.53 42.84 46.37

The program in Appendix 6 converts our original computer model to simulate the

above calculations by the first order approximation.

The results from the program in appendix 6 give maximum and minimum values of
intensity at almost the predicted positions. The resulis give first, second and third
secondary maxima of 4.6%, 1.3% and 0.47% of the central maxima for intensity.
This compares with respective values of 4.72%, 1.65% and 0.83% from the
Fraunhofer diffraction theory.
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The results from the computer model are shown graphically, Figure 14, where

relative intensity is plotted against receiver offset.

43



ov

¢

W ()G JO SIOUEISIP JOAIS0 PUE 90IN0S PUR W £ YITUS[oABM
‘s opma w 7 © SwiSn uondoRLy Iojoryumnely JO UONE[NUIS

(W) 19s30 1983109y

o€ §¢ 0z¢

p1 eIngiy

Alsuaiu annejay

44



5.3 Using the elemental model to effect the sound level by increasing the source-

receiver distance, with no barrier present

In using Babinet's Principle, the sound pressure at the receiver in the absence of
any sort of barrier, Uy, is given by:

Ael’kd
UD= d

The same values for this sound pressure can be attained by the elemental theory of
the basic model if this theory is correct. Using a 50 m square area to represent free
space, with element sizes of 0.025 m, the source-receiver distance was
progressively doubled, using a frequency of 1 kHz. Figure 15 shows a 6 dB
reduction in sound level for each doubling of source-receiver distance, and so

confirms the well known theoretical result.
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5.4 Results for a barrier in free space

Having verified the behaviour of the model it is now possible to generate results

for a rectangular barrier in free space.

Using a 2 m x 4 m barrier, Figure 16 shows the variation of attenuation with
increasing frequency when the receiver-barrier distance is successively doubled.
Figure 17 shows what effect moving the receiver away from the central position

has on the level of sound attenuation.
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5.5 Discussion of results for a barrier in free space

Much of the research in this thesis uses a barrier size of 4 m x 2 m, and in free
space conditions Figure 16 shows three curves where the receiver-barrier distances
are successively doubled from 2.5 m, 5 m and 10 m. Each curve shows a trend of
attenuation steadily increases with respective increases in frequency. Also,
increasing the receiver distance lowers the sound attenuation for respective

frequencies, but introduces more rapid deviations from the line of general trend.

These recalcitrant deviations from the genéral trend are caused by the sensitivity of
the trigonometric terms, cos[k(ro +se)] and sin[k(ro +s,)]. Instability will occur
at high frequencies where the wave number £ 2%, will change rapidly due to the
low values of the wavelength A. These same trigonometric terms will also oscillate
more rapidly, and éo become more sensitive, as the source-element, s, and/or

receiver-element, r., distances are increased.

> Yoo

Figure 17 shows variations in attenuation as the receiver is moved away from its
central position. We see that the sound attenuation decreases with increasing
receiver offset, but the curve oscillates about the general reducing trend. The
sound pressure at the receiver when the barrier is present, Up, is calculaied using
Babinet's Principle, Ug = Up — Uy, Where Uy, is the sound pressure at the receiver
in the absence of the barrier, and Uy is the sound pressure at the receiver due to a
hole the same size as the barrier. Now Uy and Uy are constantly changing phase
so the sound pressure, Ug, will vary according to the difference in the amplitudes
due to these phase changes. The sound pressures are greatest near the central
position and so the phase changes produce greater deviations from the general

trend in central positions.

Changing the position of the receiver has the same effect as leaving the receiver in
a 'stationary position and changing the angle of the barrier, therefore increased

attenuation may be possible sloping the barrier away from the normal.
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6 BARRIER IN CONTACT WITH THE GROUND

The principles employed for calculating the sound attenuation by a barrier in free
space, are again used for a barrier in contact with the ground. The calculation
becomes more complex, however, because we now have to consider reflected

contributions from the ground as well as the direct sound pressure, as discussed in

chapter 4.

In order to find the attenuation of a barrier in contact with the ground we apply
Babinet's Principle rigidly. The sound diffracted round the barrier is simply the
difference between what reaches the receiver directly and what passes through a hole
of the same geometry as the barrier. We then need no longer worry about subtle

aspects of the barrier geometry.

In order to perform the calculation correctly, the direct amplitude wp must include the
reflected component. This is a simple reflection problem, but the complex reflection
coefficient, Cr, can be incorporated for the specular angle of reflection. Figure 18
shows the angle of incidence, 7, and the angle of reflection, r, for the reflected sound

path.

Recever

,(: -=,A‘/“' =Y *For H\e CCL/CU/.aflon O‘F C¢

Figure 18 Reflected sound path, showing angle of incidence and reflection
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| Referring to Theoretical Acoustics by Philip M Morse and K Uno Ingard pages 259-
264, for frequency - dependent surface impedance, the reflection coefficient, Cr, is
given by:

(@% - 0?)+io[R/ m) - ((pc/ mcosv)]

Cr+
(@® - @2)+io[(R/ m)+ (pc/ mcosv)]

Where
o is the frequency of the applied medium
@, is the resonant frequency of the ground material
R is the mechanical resistance factor
m is the effective mass per unit area
pc is the characteristic impedance of the medium

For very low frequencies (0<<w,), the reflection coefficient, Cr, becomes unity,
independent of v: the incident pressure wave is reflected with no change in amplitude
or phase: thus no energy is absorbed by the reflecting material. This is also true for
- very high frequencies (0>>n,). At resonance (o~®,), however, Cr is cmaller than
unity and dependent on the angle of incidence v. The reflected intensity at resonance
is smallest when the angle of incidence is arccos (pc/R), if R>pc, or for normal

incidence, if R<pc.

To remove complex numbers from the denominator of the expression for Cr, we
multiply both numerator and denominator by the complex conjugate of the

denominator.
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Therefore

Cr = (0® - w?)+io[(R/m)—((pc/ mcosv)] (&® - w?)—iw[R/m)+(pc/ mcosv)]
"= (0* - 0?) +io[(R]/ m)+(pc/ mcosv)] (@ —wi)—iw[R/m)+(pc/mposv)]

Cr=(0®-w2)* +w*[(R/m)—(pc/mcosv)].[(R/m)+(pc/ mcosv)]

tio(w® - 02)(R/m)— pe! mcosv)]-iw(w® — w?)[(R/m)+(pc/ mcosv)]
(0® —@2) +@*[(R/ m)+(pc ! mcosv)]?

(0* —02)* +@*[(R/ m)* — (pc/ mcosv)*]-2iw(w® — v’ )X pc/ mcosv)
(wz—w§)+w2[(% )+ (pc ! mcosv)J?

Cr=

or Cr = CORL -iCOIM

(0~ 0.)" +[(RI ) ~ (e meosv]
(w2 - woz)z +|(R/m)+(pe/ mcos ")]2

where CORL =

2(0((02 —cooz)(pc/mcosv)
(a)2 —a)oz)2 +[(R/m)2 —(pc/mcosv)zl

and COIM =

6.1 Computational Details

Calculation of the sound passing through the a hole, the same geometry as the barrier.

The following cases need to be considered:

1 Direct diffracted sound, source-receiver

*/L//A R
]
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2 Sound initially reflected and then diffracted

S ; R
5 \
v 7 ’
'«
3 Sound initially diffracted and then reflected 2
l
S |
4 Sound initially reflected, then diffracted and then reflected again
I R
° %\\ /\\
Ve ’ l D
7 N \
il \
S¥ \
\,
¥R

All four sound pressures need to be combined to produce a total complex sound

pressure for that passing through the hole, ie Uy.
Then, the pressure: of the sound around the barrier, Ug = Up - Ug.
Computation of the above four stages

(1) The direct diffracted sound is computed in exactly the same way as that in free

space.

(2) Sound initially reflected and then diffracted
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where y = barrier height and I and J are the respective horizontal and vertical

locations of the element

ZB1=ZB+2.Y1

QO1=0+2.71

For each element we compute the real and imaginary parts of the reflection
coefficient ie CORL and COIM, and to do this we require the 3-dimensional angle

v, between the sound path and the normal.

On the side elevation
Y2=Y-J.DY+DY/2

where DY is the size of the vertical element

and using similar triangles

i_
D1 (SP-Di)
- ple (1.5P)
' (Y1+7Y2)

and for the end elevation

DP=((zL-1.DX +DX 2)2)%
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where DX is the size of the horizontal element

and again using similar triangles

Yo r2
w1 (DP-W) Py
 mpp) J/
T (r1+r2)

So

Z1=(DP* + W12)%
X1=(Y1* + D1 +W1*)"

v= arcsin(Z }{Yl)

The sound pressure, which is initially reflected and then diffracted, can then be
computed where

SOUNDPRESSURE = (RL.CORL +UNRL.COIM) +i(UNRL.CORL — RL.COIM)

where RL = real part of the sound pressure
UNRL = imaginary part of the sound prssure
(3) Sound initially diffracted and then reflected

Side Elevation Fnd  FElevation

,9—>|70

sl
{

!
%
~

| S .
&
©

rd
G~
~

~i£
-~
~
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02=—(Q +(2.71))

For each element we compute the real and imaginary parts of the reflection
coefficient ie CORL and COIM, and to do this we require the 3-dimensional angle

v, between the sound path and the normal.
On the side elevation

Y2=Y-J.DY+DY /2

and using similar triangles

Y2 0O+l
D3 RP-D3
(r2.RP)

s.D3= (—YmZTQ)

and for the end elevation

DP=((XL-1.DX+DX /2 +P)2)%

and again using imilar triangles

Y2 _ y2.DP
W3 DP-W3
... (r2.DP)
T (r1+12+ Q)

So
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z1=(D3" +W32)y’
X1=(r2* +D3? w3

V= a;csm(z}ﬁ,l)

The sound pressure, which is initially diffracted and then reflected, can then be

computed where

SOUND PRESSURE = (RL.CORL +UNRL.COIM) +i(UNRL.CORL — RL.COIM)

(4) Sound initially reflected, then diffracted and finally reflected again.
Side  Elevation £nd Elevation

S
|
!
{
|' ¥
-—HW}F— w3 \ l
Jl,é—bf) ] Df. Q-Y*r‘

03=-Q
‘For each element we compute the real and imaginary parts of the reflection
coefficient before diffraction takes place, ie CORL1 and COIM1, and also.the real
and imaginary parts of the reflection coefficient after diffraction, ie CORL2 and
COIM2. In order to do this we require the respective 3-dimensional angles v, and

v,, which lie between the sound path and the normals at the respective points of

reflection.
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On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

_ (r1.sp)
~(r1+12)

5 (12.RP)
T (Y1+12+Q)

and for the end elevation
DP1=((ZL-1.DX +DX | 2)’)%
2\%
DP2=((XL-1.DX +DX /2 +P)’)

and again using similar triangles

_(pPLTY)
~(Y1+72)

_ (pP2.12)
- (Y1+12+0)

Z1=(Dr? +W12)%

X1=(r2* + D1 + W)

N

2 =(D3? +W32)y’
x2=(r2? + D3 +W3*)"

v, = arcsin(Z}{YI)

LV, = arcsm(z%,z)
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The sound pressure, which is initially reflected, then diffracted and then reflected

again, can then be computed where

SOUND PRESSURE = (RL +iUNRL)(CORL1 - iCOIM1)(CORL2 - iCOIM?2)

=(RL.CORL1.CORL2+UNRL.COIM1.CORL2
+UNRL.CORL1.COIM?2 - RL.COIM1.COIM?2)

+i(UNRL.CORL1.CORL2 - RL.COIM1.CORL2
—RL.CORL1.COIM?2 -UNRL .COIM1.COIM?2)

The free space conditions were relatively easy to model because the sound pressure

at the receiver in the absence of a barrier, L), was

Aeikd
d

UD=

The sound pressure in the absence of a barrier, where ground conditions exist,

becomes a more complicated problem.

The problem is solved by treating the sound pressure, in the absence of a barrier, in
exactly the same way as calculating the sound pressure at the receiver due to a

hole, the same size and geometry as an 'infinite' barrier. We, therefore, need to
ikd

know what size 'hole' represents the term, , to a given accuracy. By using

the free-space model, this was achieved by increasing the size of the barrier until
the sound attenuation converged to a maximum value. The procedure for
calculating the sound pressure at the receiver, in the absence of a barrier, then

becomes the same as that for sound passing through the ‘hole'

The sound attenuation that results from a barrier in contact with the ground can
then be computed by the program in Appendix 8. This program allows the

position of the receiver to be systematically changed in a vertical direction.
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6.2 Results for a barrier in contact with the ground

Having generated results for a barrier in free space, the model is modified and able
to produce results for similar barriers in contact with a concrete surface. Figures
19-24 represent the change in insertion loss for increasing frequency of the sound
wave from 100 Hz to 10,.000 Hz, for various barrier geometries. Some results
represent the author's chosen model geometries while other geometries are chosen
to compare the author's results with those of other workers. Figure 25 shows the
variation in insertion loss as the receiver is moved away from its central position, in

a vertical direction.
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6.3 Discussion of results for a barrier in contact with the ground.

This model uses direct contributions and reflected contributions from the ground,
so introducing interference effects similar to those incurred in Lloyd's Mirror
experiment in optics. There is a wealth of contemporary literature on this subject,
some of which is validated by experimental detail. The author, therefore, compares
his results with those of other workers, using the same barrier geometries where

possible.

D C Hothersall, S N Chandler-Wilde and M N Hajmirzae (1991) introduced a
numerical model for a barrier in contact with the ground, using the boundary
element method. They found that if the source is above the surface, the
monofrequency sound field varies in a complicated way due to the interference
between the two waves originating from the source and from the image of the
source in the ground surface. This interference produces complicated variations in
the received sound behind the barrier, which have been found to be related to the
configuration of the interference pattern in the region above the barrier. The
received levels thus depend strongly on the source height and barrier height. In
order to simplify the results, they eliminated interference effects caused by
reflected waves, by placing the source at ground level. Typical results from their
model, Figure 26, show similar trends to that of the author's model, Figure 19 A,
where insertion loss increases with respective increases in frequency at the rate of

~3 dB/octave.

o T T T

Insertion loss (dB)

30 1 1 1
63 00 S00 1000 4000
Frequency (Hz)

69
Flgure 26 Insertion loss spectra for vertical screens. The source, barrier and receiver geometry is indicated.
All surfaces have zero admittance.



In 1994, Y W Lam developed a simple model tor calculating the attenuaron oi
complex ground terrains. He compares his ground model with existing
environmental noise calculation models: the draft ISO model, the CONCAWE
model, and ENM. It is found that the new ground model has the best overall
performance and agrees well with measured data on a variety of ground terrain
profiles and conditions. For the respective data, Figures 20 and 21 shovx; that the
author's model behaves in a simlar way to that of Lam, Figures 27 and 28, although
the author's model is closer to the ISO model at low frequncies. The conditions do
differ, however, in that the author uses a 10 m wide barrier and hard ground

conditions, whereas Lam uses an infinite barrier with softer ground conditions.

[ M Measured  -E3- Ground Model =¥ Etod + 150 J
25 1
20 A
o
B 151
5 4
= 10
a
3
C
S 5 /*
< .y
S
—S ] —L—_Oio "ISU a -—1-: 0.50
T -
“']O T !‘ T 4100 T T ll T T 7 6% T T !1 T 1 T 1
100 1000 ‘ 10000

Frequency (Hz)
Fig. 27 Attenuation of a thin barrier on a ground with a flow resistivity of 300 kN sm *.
The measured data are taken from Leang er al®s
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Fig. 28 Attenuation of a thin barrier on a ground with flow resistivity of 20 000 kN sm *
on the source side and 300 kNsm * on the receiver side. The measured data are taken
from Isei e al. 70



Using a 2 m x 4 m finite barrier, Figure'.z 2 shows a steady increase in insertion loss
as the frequency rises. A line of best fit is superimposed on the data and deviations
from this line can be observed. This model still encounters instabilities where the
trigonometric terms cos[k(ro +s°)] and sin[l‘c(r,= +s°)] are sensitive to change in
frequency at low values of wavelength, but interference effects from the diréct and
reflected sound waves also contribute to the deviations from the general trend,
shown by the line of best fit. The ground model is time consuming, due to the high
number of elements used in computing the sound pressure with no barrier present
when Babinet's Principle is applied. The deviations away from the general trend
would therefore be reduced if time allowed more elements to be used in the
calculation. The results were obtained using an element length of 0.05 m, whereas
it was shown earlier that an element length of 0.0125 m was required to give

accuracy within precision grade measurement.

Figure 23 shows that a smoother curve is obtained by increasing the width of the
barrier from 4 m to 10 m. Many of the curve's instabilities are removed because
diffraction and interference effects around the sides of the barrier become less
significant in wider positions. Figure 24 demonstrates that increasing the source-
barrier distance from 1 m to 5 m amplifies the sensitivity of the trigonometric
terms, which results in large deviations from the general trend at the high end of

the frequency spectrum.

Figure 25 shows a steady reduction in insertion loss as the receiver is moved
vertically from it's central position, but the curve oscillates around the general
trend, with a large initial peak. Comparing this curve to that in Figure 17, for free
space conditions, the initial peak value for insertion loss is seen to be larger. The
difference in sound pressures due to phase changes between Up and Uy must
therefore be larger for this receiver position than that respective position in free

space. This large peak value in insertion loss may be reproduced by sloping the
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barrier, which seems equivalent to moving the position of the receiver, an

argument that was discussed earlier for a barrier in free space.
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7 BARRIER IN A FLAT ROOM

Because the object of this work is to calculate insertion loss, due to finite barriers in
enclosures, the next logical step is to introduce a roof to the existing ground model,
discussed in Chapter 6. This model is referred to as the 'flat-room’' model because at

this stage there are no walls present.

In calculating the insertion loss due to a barrier in contact with the ground we applied
Babinet's Principle. Also, in this model we included the reflected contribution from the
ground in addition to the direct component. The same principles apply to the flat
room model, but this time further complications are introduced by adding the reflected
contribution from the roof. The complex reflection coefficient, Cr, is incorporated
once again for the specular angle of reflection for both the ground and the roof. Two
sets of results are incorporated in this model: one using single reflections and one

using multi-reflections between the ground and the roof.
7.1 Computational Details

Calculation of the sound passing through the barrier shaped hole are the same for

that of the model using ground conditions, plus the following cases:

1 Sound initially reflected and then diffracted
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2 Sound initially diffracted and then reflected

xR
7/

/
e

SX/l

3 Sound initially reflected, then diffracted and then reflected again

s X ' ;
\ /XR

\ Vg

5 //\i//\"

4 Sound initially reflected twice, and then diffracted
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6 Soundin xtg '?lly reflected twice, then diffracted and qn reflected twice again
SN Kﬂé

VALY

7 Sound initially reflected twice and then diffracted

s /\V{"‘"}""R
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All the sound pressures, illustrated above, plus those of the direct and reflected
components from the ground, are combined to produce a total sound pressure for

that passing through the hole, ie Wy
Then the sound pressure around the barrier,
VB~ YD~ VYH
Sound reﬂeéted from the ceiling

(1) Sound initially reﬂected and then dﬂfracted

% 52
l \ End Elevabion
\

Qu \

R

_j

|
- -
i |
! |
| ZB2 =ZB—(2.5PC) | th—P_;I
04 =—((2.5PC)-Q)

For each element we compute the real and imaginary parts of the reflection
coefficient ie CORL and COIM, and in order to do this we require the 3-

dimensional angle v, between the sound path and the normal.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles
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SPC _ SPC+SPF -T2
D1 SP-DI
. (sp.spc)
"7 ((2.8PC) + SPF - 12)

and from the end elevation

SPC _ SPC +SPF - Y2
w1 DP-Wl
(DP.SPC)

((2.8PC) +SPF - 12)

Hence

21=(D1* +w1?)*
X1=(SPC* + D1 +W1?)*
and v = arcsin(Z1/ X1)

S

The sound préssure, which is initially reflected and then diffracted, can then be
computed where

SOUND PRESSURE = (RL.CORL +UNRL.COIM) +i(UNRL.CORL ~ RL.COIM)

where RL = real part of the sound pressure
UNRL = imaginary part of the sound pressure
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(2) Sound initially diffracted then reflected

Side - Elevabion ’ . . End Elevation

o - = -

] e —— —

L
Y]

05=—((2.5PC)- Q)

For each element we need to compute the real and imaginary parts of the
reflection coefficient ie CORL and COIM, and in order to do this we require

the 3-dimensional angle v, between the sound path and the normal.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

SPC-Q _SPF+SPC-Y2
D3~ RP-D3
(rP(sPC Q)
((2.8PC)+SPF - Y2~ Q)
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and from the end elevation

DP=((ZL—I.DX+DX/2+P)2)%

Using similar triangles

SPC-Q _ SPF+SPC-Y2
w3 DP W3
(DP(SPC - Q)

(@ sPC) + SPF-12- ()

Z1=(D3* +W3*)"
X1=((SPC- Q) + D3 +W
and v = arcsin(Z1/ X1)

The sound pressure, which is initially diffracted and then reflected, can then be

computed where

. SOUND PRESSURE = (RL.CORL +UNRL. CO]M) +i(UNRL. CORL - RL.COIM)
(3) Sound initially reflected, then diffracted and finally reflected again =~ £nd  Elevabion

%82 o S2_ — -
] ide  £levalion %
\ !\ I

I\ Q6
R, 4

—jlf- i
A

| |
S I |
|

1 |
tim ..,«. DP2-
f_) .,
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For each element we compute the real and imaginary parts of the reflection
coefficient before diffraction takes place, ie CORL1 and COIM]1, and also the
real and imaginary parts of the reflection coefficient after diffraction, ie CORL2
and COIM2. In order to do this we require the respective 3-dimensional angles
vy and v, between the sound path and the normals at the respective p(;ints of

reflection.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

SPC _ SPC +SPF Y2
D1 SP- D1
(SPC.SP)

((2.8PC)+ SPF - ¥2)

and

SPC-Q _ SPC+SPF ~Y2
D3 RP-D3

. (re(spc-0))

7 ((2-SPC) + SPF - Y2 - Q)

and for the end elevation

SPC _ SPC + SPF - Y2
w1 DP1-W1
(SPC.DPI)

((2.8PC) +SPF - 12)

and

SPC-Q _SPC+SPF -2
w3 DP2-W3
e (pP*(sPC - Q)
((2.sPC)+SPF-Y2-Q)
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Z1=(Dr*+ W12)yz

X1

(spc*+Dr* + le)%

z2=(D% +w3)*
x2=((sPC~ Q) + D3 + )’
and v, = arcsin(Z1/ X1)

v, = arcsin(Z3/ X 3)

S The sound pressure, which is initially reflected, then diffracted and then

reflected again, can then be computed where

SOUND PRESSURE =(RL + iUNRL)(CORL1—iCOIM1{CORL2 —iCOIM2)
=(RL.CORL1.CORL2 +UNRL.COIM1.CORL2 + UNRL.CORL1.COIM 2 — RL.COIM1.COIM2)

+i(UNRL. CORL1.CORL2 — RL.COIM1.CORL2 —~ RL.CORL1.COIM 2 —UNRL.COIM 1.COIM 2)

(4) Sound initially reflected twice and then diffracted.
END ELEVATION

| SidE ELEVATION "
X
\
R I
\
\
\
\
A
R
s,\/ &?\"
WIk—J
P

2B5=((2.(SPF + SPC)) - ZB)
Q7=—(2.(SPF = SPC)) +Q

For each element we compute the real and imaginary parts of the reflection
coefficient, ie CORL1, CORL2, COIMI and COIM2, and in order to do this

we require the 3-dimensional angle v, between the sound path and the normal.
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On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

SPF _ (3.8PF) +(2.8PC) -2
D1 SP
_ SP.SPF
" (3.8PF) +(2.SPC)- 12

and for the end elevation

DP=((ZL—I.DX+DX/2)2)%

Using similar triangles

SPF _(3.SPF)+(2.5PC)-Y2
w1 DP
Wl = DP.SPF
(3.8PF)+(2.SPC) -T2

|
f ! ,
/(\ | l z1=(Dr* +w1*)"
[ |
Xi \’/" - X1=(SPF* + D1? +w1)"*
| § = and v, = arcsin(Z1/ X1)

The sound pressure, which is initially reflected twice and then diffracted, can

then be computed where

SOUND PRESSURE = ((RL.CORL1.CORL?2) - (UNRL.COIM1.CORL?2) -
(RL.COIM1.COIM?2) — (UNRL.CORL1.COIM?2))
+i((RL.CORLL.COIM?2) - (UNRL.COIM1.COIM?2) +
(RL.COIM1.CORL?) + (UNRL.CORL1.COIM?))
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(5) Sound initially diffracted then reflected twice.

SIDE ELEVATION END ELEVATION

/
7}
R
s,/ﬁ

R
b P

For each element we compute the real and imaginary parts of the reflection
coefficientS, ie CORL1, CORL2, COIM1, and COIM2, and in order to do this

we require the 3-dimensional angle v, between the sound path and the normal.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

Y2 _SPF+Q
D3 RP-D3
(Y2.rP)

. D3 =
(SPF +Y2+0)

and using similar triangles

D3 RP
SPF+Q  (3.SPF)+(2.8PC)+ Q-2
D3 RP.(SPF +0Q)

" (3.SPF) +(2.5PC) + Q- 12
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and for the end elevation

Using. similar triangles
w3 ' DP

DP=((ZL—I.DX+DX/2+P)2)%

SPF+Q (3.8PF)+(2.5PC)+Q -2

DP.(SPF + ()

"W = GsPR)+(2.5P0) +0-12

R

- n1=(p3+ W32)%
X1= ((SPF+Q)2+ D3 + W)
and v = arcsin(Zl / X1)

“The sound pressure, which is initially diffracted and then reflected, can then be

computed where

SOUND PRESSURE = ((RL.CORL1.CORL2)- (UNRL.COIM1.CORL2) -
(RL.COIM1.COIM 2)~ (UNRL.CORL1.COIM 2)) +

i((RL.CORL1.COIM 2) - (UNRL.COIM1.COIM 2) +
(RL.COIM1.CORL2) + (UNRL.CORL1.COIM2))

(6) Sound initially reflected twice, then diffracted and finally reflected twice again.

g ,)‘Rg@
X S

- ki
S{f ! v 13’ —ﬁr
e L

{
st XR
X /

B

|

|
T

|

\‘ /
AP
S_&(/:\/"R

ol | s
DP1 >t DF2: 84



For each element we compute the real and imaginary parts of the reflection
coefficients CORL1, CORL2, CORL3, CORL4, COIM1, COIM2, COIM3,
COIM4 and in order to do this we require the respective 3-dimensional angles

vy and v, between the sound path and the normals.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

SPF _(3.SPF)+(2.SPC)~-Y2
D1 SP
_ SP.SPF
~ (3.8PF)+(2.8PC) - Y2

and
D3 RP
SPF+Q (3.SPF)+(2.SPC)+Q~12
D3 RP.(SPF +Q)

" (3.SPF) +(2.5PC)+ Q- 12

and for the end elevation

DP1=((ZL~-1.DX +DX/2)2)%

DP2=((ZL-1.DX +DX 12+ P)Z)%

Using similar triangles

SPF _(3.SPF)+(2.SPC)-Y2
w1 DP
DP.SPF
Wl =
(3.8PF)+(2.5PC) - 12
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and

w3 DP
SPF+Q  (3.8PF)+(2.SPC)+Q - Y2
DP(SPF +Q)

" (3.5PF) +(2.5PC) + Q- 12

1= (SPF? + DI* + W12)
Z1= (DI + Wl’)
X2 =((SPF +Q)’ + DF + W32)
2= (D3 + W32)
and v, = arcsin(Z1/ X1)
v, = arcsin(Z2/ X 2)

The sound pressure, which is initially reflected twice, then diffracted and then
reflected twice again, can then be computed where

SOUND PRESSURE = ((RL.CORLLCORL2. CORL3.CORL4) - (UNRL.COIML CORL?2.CORL3.CORLA)
~(UNRL.CORLL CORL3.CORLA.COIM2) - (RL.COIML COIM2. CORL3.CORL4)
~(UNRL.CORL1.CORL?2.CORLACOIM3) — (RL.COIML.COIM3.CORL2.CORLA4)
~(RL.CORL1.CORLA.COIM2.COIMS3) + (UNRL.COIML COIM?2. COIM3.CORLA)
~(RL.CORLL.CORL?.COIM3.COIM4) + (UNRL.COIML COIM3.COIM4.CORL?)
+{UNRL.CORL1.COIM2.COIM3.COIM4) + (RL.COIM1.COIM2.COIM3.COIM4)
~(UNRL.CORL1.CORL2.CORL3.COIM4) - (RL.COIML COIM4.CORL2.CORL3)
~(RL.CORLL.CORL3.COIM?2.COIM4) + (UNRL.COIML COIM?2. COIM4.CORL3)
+i((RL.CORLLCORL2.CORL3.COIMA4) — (UNRL.COIML COIM4.CORL2. CORL3)
—~(UNRL.CORLL CORL3.COIM2.COIM4) - (RL.COIM1.COIM?2. COIM4.CORL3)
—(UNRL.CORL1.CORL2.COIM3.COIM4) - (RL.COIMLCOIM3.COIM4.CORL?)
~(RL.CORLLCOIM?2.COIM3.COIM4) + (UNRL.COIML COIM2.COIM3.COIM4)
+(RL.CORL1.CORL2.CORLA.COIM4) — (UNRL.CORL2. CORL4.COIM1.COIM3)
~(UNRL.CORLL CORLA.COIM2.COIM3) — (RL.CORL4.COIML COIM?2. COIM3)
+{UNRL.CORL1.CORL?2.CORL3.CORLA) + (RL.CORL2.CORL3.CORL4.COIM1)
+(RL. CORLLCORL3.CORL4.COIM2) — (UNRL.CORL3.CORLA.COIM1.COIM?)
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(7) Sound initially reflected twice, then diffracted

3val

i R
S* 7(
/
/

ZB6 = (2.(SPF + SPC)) + ZB
010=(2.(SPF +SPC)) +Q

For each element we compute the real and imaginary parts of the reflection
coeffiicents, ie CORL1, CORL2, COIM1, COIM2 and in order to do this we

need the 3-dimensional angle, v, between the sound path and the normal.
On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

D1 _ SP
SPC ~ (2.SPC)+ SPF +12
- Dl SP.SPC

" (2.8PC) + SPF +Y2

and for the end elevation

1
DP=((ZL-—[.DX+DX/2)2)A
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Using similar triangles

w1 _ DP
SPC (2.SPC)+SPF +Y2
DP.SPC
W=
- (2.SPC) + SPF + Y2

Hence

Z1=(D1* + W12)y’
X1=(SPC?* + DI +wiz)”
and v = arcsin(Z1/ X1)

The sound pressure, which is initially reflected twice and then diffracted, can

then be computed, where

SOUND PRESSURE = ((RL.CORLL.CORL2) - (UNRL.COIM1.CORL2) -
(RL.COIM1.COIM?2) - (UNRL.CORL1.COIM?2))
+i((RL.CORL1.COIM?2.) - (UNRL.COIM1.COIM?2)
+(RL.COIM1.CORL2) +(UNRL.CORL1.COIM2))

(8)  Sound initially diffracted, then reflected twice

—?‘Dﬂ&
4\ .____-.._ N !
Se 2 \}“53
’h-*.._—‘Lq - - - = - - -
SP[ L
T l—sr H——RP —>|
\\ Qlf
R‘\X—
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For each element we compute the real and imaginary parts of the reflection
coefficients, ie CORL1, CORL2, COIM1, COIM2, and in order to do this we

need the 3-dimensional angle, v, between the sound path and the normal.
On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles

D3 _ RP
SPC-Q (2.8PC)+SPF+Y2-Q
RP.(SPC - Q)

~.D3=
(2.SPC)+ SPF +Y2-Q

and for the end elevation

1
DP=((X-1.DX +DX /2 +P)2)A

Using similar triangles

w3 DP
SPC-Q (2.8PC)+SPF +Y2-Q
_ DP(SPC-Q)
~ (2.8PC)+SPF +Y2~-Q

S W3

Hence

R

K.
| X
] >/ p
. R z21=(D3 +w3)"
i
| X1=((SPC-Q) +D3* +W3)
| ~ .
- and v = arcsin(Z1/ X1)
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The sound pressure, which is initially diffracted and then reflected twice, can

then be computed, where

SOUND PRESSURE = ((RL.CORL1.CORL?2) - (UNRL.COIM1.CORL2) -
(RL.COIM1.COIM?2) - (UNRL.CORL1.COIM?2))
+i((RL.CORLLCOIM?2) — (UNRL.COIMLCOIM?2) +
(RL.COIM1.CORL2) +(UNRL.CORL1.COIM?2))

(9) Sound initially reflected twice, then diffracted and finally reflected twice again.

Q12=0

For each element we compute the real and imaginary parts of the reflection
coefficients CORL1, CORL2, CORL3, CORL4, COIM1, COIM2, COIM3,
COIM4, and in order to do this we need the 3-dimensional angles, v, and v,,

between the sound path and the normals.

On the side elevation

Y2=Y-J.DY+DY/2

and using similar triangles
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Dl _ SP
SPC (2.SPC)+SPF+Y2
SP.SPC
~Dl=
(2.SPC) + SPF +Y2

and for the end elevation
DP1=((2L~1.DX + DX / 2)2)%

1
DP2=((ZL~-1.DX +DX /2+ P)Z)é

Using similar triangles

D3 _ RP
SPC-Q (2.SPC)+SPF+Y2-Q
RP.(SPC - Q)

~.D3=
(2.SPC)+ SPF +Y2-Q

Xz;((sy?c—gz +D8 4173
and v, =arcsin( Z1/ X1)
v, =arcsin{22/ X2)

The sound pressure, which is initially reflected twice, then diffracted, and then

reflected twice again, can then be computed, where
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SOUND PRESSURE = ((RL.CORLL.CORL2.CORL3.CORL4)- (UNRL.COIM 1.CORL2.CORL3.CORLA4)
- (UNRL.CORL1.CORL.3CORL4.COIM 2)~ (RL.COIM 1.COIM 2.CORL3.CORL4)
- (UNRL.CORL1.CORL2.CORL4.COIM 3)~ (RL.COIM 1.COIM 3.CORL2.CORL4)
- (RL.CORL1.CORL4.COIM 2.COIM 3)+ (UNRL.COIM 1.COIM 2.COIM 3.CORL4)
~ (RL.CORL1.CORL2.COIM 3.COIM 4)+ (UNRL.COIM 1.COIM 3.COIM 4.CORL2)
+ (UNRL.CORL1.COIM 2.COIM 3.COIM 4)+ (RL.COIM 1.COIM 2.COIM 3.COIM 4)
- (UNRL.CORL1.CORL2.CORL3.COIM 4)~ (RL.COIM 1.COIM 4.CORL2.CORL3)
-~ (UNRL.CORL1.CORL3.COIM 2.COIM 4)+ (UNRL.COIM 1.COIM 2.COIM 4.CORL3))
+ i((RL.CORL1.CORL2.CORL3.COIM 4)- (UNRL.COIM 1.COIM 4.CORL2.CORL3)
- (UNRL.CORLLCORL3.COIM2.COIM 4)- (RL.COIM 1.COIM 2.COIM 4.CORL3)
~ (UNRL.CORL1L.CORL2.COIM 3.COIM 4)- (UNRL.COIM 1.COIM 3.COIM 4.CORL2)
- (RL.CORL1.COIM 2.COIM 3.COIM 4)+ (UNRL.COIM 1.COIM 2.COIM 3.COIM 4)
+ (RL.CORL1.CORL2.CORLA4.COIM 3)- (UNRL.CORL2.CORL4.COIM 1.COIM 3)
- (UNRL.CORL1.CORLA4.COIM 2.COIM 3)- (RL.CORL4.COIM 1.COIM 2.COIM 3)
+ (UNRL.CORL1.CORL2.CORL3.CORL4)+ (RL.CORL2.CORL3.CORL4.COIM 1)
+ (RL.CORL1.CORL3.CORL4.COIM 2)~ (UNRL.CORL3.CORLA4.COIM 1.COIM 2))

The sound pressure in the absence of a barrier, where reflected components
from the ground and roof exist, becomes even more complicated than that for
ground conditions alone. Again, we treat the sound pressure, in the absence of
a barrier, in exactly the same way for the ground model. This sound pressure,
at the receiver, is calculated using the elemental theory to compute the sound
level through a hole, the same size and geometry as an 'infinitely wide' barrier

which is the same height as the room.

The rest of the calculation uses Babinet's Principle in the same way as that for a
barrier under ground conditions. The calculation is obviously more
complicated because we have to include sound pressures from more reflected
components. Again, to perform the calculation correctly, we need to

- incorporate the complex reflection coefficient, Cr, for all surfaces.
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7.2 Results for a barrier in a flat room

After the introduction of a roof results for single and muiti-reflections were

obtained for this 'flat room' configuration.

Figures 29 and 30 use the model, where the finite barrier extends from the Qound
to the roof. Both sets of results record the behaviour in insertion loss with
increasing frequency. Figure 31 repeats the geometry of the room for Figure 30,
but introduces a gap between the top of the barrier and the roof. Figure 32 uses a
2 m x 4 m barrier in a ‘flat room' of height 3 m, and shows the variation in insertion

.loss as the receiver is moved vertically from its central position.

Figure 33 used the 'flat room' model to investigate the variations in insertion loss as
the aspect ratio of width/height of the barrier is increased, the barrier extending

from the ground to the roof.
7.3 Discussion of results for a barrier in a 'flat room'

The author's model enables both single and multi-reflections from the ground and
roof to be included, and using a 2 m x 4 m barrier which extends from the ground
to the roof, Figure 29 shows a steady increase in insertion loss with increasing
frequency. Figure 30 extends the barrier height to 2.4 m but the rest of the
geometry remains the same. The curves are smoother than those for the ground
model, the reason being that no diffraction or interference takes place above or
below the barrier. Due to increased interference around the sides of the barrier,
multi-reflections cause greater deviations from the general trend of the curve than

is the case for single reflections.

Figure 31 introduces a gap of 0.1 m between the top of the barrier and the roof,
and although the general trend is a steady increase in insertion loss with respective
increases in frequency, the curve deviates from this trend, particularly at the high

end of the frequency spectrum. A line of best fit is superimposed over the true
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curve to demonstrate the magnitude of these deviations. The barrier is finite and
therefore diffraction and interference around the sides, as well as over the top, is

extremely significant.

Using the geometry shown in Figure 34, the results pr(;duced by E Katarbinska,
Figure 35, show a similar trend of increasing insertion loss with respective
increases in frequency, to the curves produced by the author. The experimental
data tends to deviate around the general trend and this data was produced using a

model of scale 1:5.

: 20 _
(d:BLl 16 AT
X < o
H =z 8 /\'r 12 ﬁ,}:\{ ,,2—-4{, <L~ e
—— - 4
0 0 < s 1
T el it 5 LT T LY e
h.f =30 cm
/2 /2 0 r=60 cm

S 638 1 12516 2 25315 4 5 63 8
model frequency f[kHz]

Figure 35 Caleulated (O ---O) and cxperimental ( x - - -~ x ) data of Inscrtion Loss of the
barrier in & model of a room of two heights: (a) H =240cm; (b) /= 120cm.

Figure 34 Symbols used in the cquations.

Comparing Figure 32, which uses a 2 m x 4 m barrier in a flat room of height 3 m,
with Figure 25 (ground conditions only), it can be seen that there is less reduction
in insertion loss as the receiver position is moved vertically, and the deviations
from the general trend of the curve are less dramatic. This is especially true for the
initial peak value. The curve for multi-reflections gives a lower value in sound
reduction than that for single-reflections, but in the case of multi-reflections, the
general trend of the curve is to remain static. This suggests that sloping the barrier

will have little effect in a 'flat room'.

The 'flat room' model is used to investigate the change in insertion loss as the
aspect ratio of width/height of the barrier is increased, the barrier extending from
the ground to the roof Figure 33 shows an initial rapid increase in the curve,

which can be interpreted as 'finite' conditions; the increase then becomes less
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rapid, giving 'semi-infinite' conditions and finally the curve flattens, where the

barrier becomes 'infinite’.

400



8 BARRIER IN AN ENCLOSURE

Authors of previous research, using barriers in enclosures, have ignored the
contribution of boundary walls in their calculations. The author thought it necessary
to introduce side walls into his model and compare the results with those, for identical

geometries, in his 'flat room' model.

Adding side walls brings added complictions to the 'flat room' model. The reflection
coefficient, Cr, is incorporated once again for the specular angle of reflection for all

surfaces.
8.1 Computational details

Calculation of the sound passing through the barrier shaped hole is the same for

that in the 'flat room' model, but now includes the following cases:

1 Sound initially reflected and then diffracted
R .

S/

2 Sound initially diffracted and then reflected

R

NNNNN \/ NN NMNNNNNN

\
\
\

S x

AN A NAN YA VA N N ¥ \\\\\\
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3 Sound initially reflected, then diffracted, and finally reflected again.
R % ¥ R :

-

(

TS 7\/\\\ ST

\
\

e

For the left hand wall

4 Sound initially reflected and then diffracted

\

SAN \\\\ SOUN NN NN

\<\}’< . |

5 Sound initially diffracted and then reflected

§x="

/
/

SONNNNNN SN

//X R
\\ ‘
v
6 Sound initially reflected, then diffracted and finally reflected again.

R'x _ /)?/*R

~

/
/

SO AN AN VA
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All the sound pressures illustrated above, plus those of the direct and reflected
components in the 'flat room' model, are combined to produce a total complex

sound pressure for sound passing through the hole, ie Uy.
Then, again, the sound pressure around the barrier,
U =Up — UK
Computation of the above stages:
Sound reflected from the right hand wall

(1) Sound initially reflected an then diffracted

- Plan End Elevation

L/ 7/
/T /
7 /
/ /
7 /
- /

/
L /

;\\ YZ a
N ol B——— ]
7 \\\ . S - _—_-/
2 S ~¥S3 7!

T
!
. l
I
!
!
|
|
l

ZL3=ZL +(2.SPR) \1
P7=—((2.5PR)-P)

For each element we compute the real and imaginary parts of the reflection
coefficient, ie CORL and COIM, and in order to do this we require the 3-

dimensional angle v, between the sound path and the normal.
On the plan

Y2=ZL3-SPR-1.DX+DX /2
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and using similar triangles

SPR X2
Dl SP-D1
. (SPR.SP)
©77 T (X2 + SPR)

and from the end elevation

Y2=((ZB—J.DY+DY/2)2)%

Using similar triangles

SPR X2

w1 Y2-Wwl
1 (SPRY2)
7 (X2 +SPR)

z1=(D1* + le)yz
X1=(SPR* + DI* + le)y’
and v = arcsin(Z1/ X1)

The sound pressure, which is initially reflected and then diffracted, can then be

computed where

SOUND PRESSURE = (RL.CORL +UNRL.COIM) +i(UNRL.CORL — RL.COIM)
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(2) Sound initially diffracted and then reflected.

f«— SPR —=
' P8

P8 =((2.5PR)- P)

I;-_ B o y Plan | End Elevation
R ¥ — - — | - R3

%2 ‘ ! 4
AN #
% ! 4
an |
g | R L
5 —_— L

, X2 / I KA T —fwa- - -

l g Y2 —
. ‘ ¥ T
7 Q , ’
L | -
; \ ‘l | /
% N I #
- : 5 | #
2 ! A Z
; v

7]

e 5Pk ——

For each element we compute the real and imaginary parts of the reflection
coefficient, ie CORL and COIM , and in order to do this we require the 3-

dimensional angle v, between the sound path and the normal.
On the plan

X2=ZL+SPR-1.DX+DX/2

and using similar triangles

SPR-P X2
D2  RP-D2
(RP(sPR - P)

~D2=
(X2 +SPR-P)

. and from the end elevation
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r2=((zB-0- J.DY+DY/2)2)%

Using similar triangles
SPR-P X2

w2 Y2-Ww2
_ (r2(spr- P))

U (X2+8PR-P)

1= (D2 + w22)*

X1=((sPR~ PY + D2 + sz)”
and v = arcsin(Z1/ X1)

The sound pressure, which is initially diffracted and then reflected, can then be

computed where

SOUND PRESSURE =(RL.CORL +UNRL.COIM) +i(UNRL.CORL - RL.COIM)

(3) Sound initially reflected, then diffracted and finally reflected again.

End Elevation

e
/
/

R 4 _L

o “‘E ”_)‘?3

X2 —> ' >ﬁ?

/

\/\\\
<

~5)
/
/
/

T -%s3
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For each element we compute the real and imaginary parts of the reflection
coefficient before diffraction takes place, ie CORL1 and CORL2 and also the
real and imaginary parts of the reflection coefficient after diffraction, ie CORL2
and COIM2. In order to do this we require the respective 3-dimensional angles
V] and v,, between the sound path and the normals at the respective p(;ints of

reflection.
On the plan

X2=ZL+SPR-1.DX+DX/2

and using similar triangles

D= _({rP(sPR.P))

(X2 +SPR)
. (RP(SPR.P))
" T (X2 +SPR-P)

and for the end elevation

v2=((zB-J.DY +DY | 2)2)%

v3=((zB-0- J.DY +DY 12)’)"

Using similar triangles

_ (SPRY2)
" (X2 +SPR)
e (Y3(SPR - P))
(X2+SPR- P)

107



z1=(DP + W)t
X1=(SPR* + DI* + WP)*
73=(D3+ w3)*

X3=((SPR- P + D3 + W3 )%
and v, = arcsin(Z1/ X1)
v, = arcsin(Z3/ X3)

The sound pressure which is initially reflected, then diffracted and then

reflected again, can then be computed where

SOUND PRESSURE =(RL+iUNRL)(CORL1~iCOIMI)(CORL2 —iCOIM?2)
=(RL.CORLL.CORL2+ UNRL.COIML CORL2 + UNRL. COIML COIM2 — RL. COIML COIMR)
+i(UNRL.CORLL CORL2~ RL.COIM1. CORL2~ RL.CORLL. COIM2 — UNRL. COIML. COIM2)
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Sound reflected from the left hand wall
(4) Sound initially reflected and then diffracted

Plan End Elevation

PIO

—5 ===

P10=((2.8PL)+Q) '
ZL4=((2.8PL)-ZL)

< SPL

For each element we compute the real and imaginary parts of the reflection
coefficient ie CORL and COIM, and in order to do this we require the 3-

dimensional angle v, between the sound path and the normal.
On the plan

X3=S8SPL-ZL+1.DY-DX/2

and using similar triangles

SPL X3
D1 SP-DI
Dl (SPL.SP)

T (X3+SPL)

and from the end elevation

Y3=((ZB—J.DY+DY/2)2)%
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Using similar triangles

SPL X3
w1l Y3-W1
_ (SPL.Y3)

Wl
W1=x3+sPD)

z1=(Dr* + le)%
X1=(SPL* +DI* +W12)%
and v = arcsin(Z1/ X1)

The sound pressure, which is initially reflected and then diffracted, can then be

computed where

SOUND PRESSURE =(RL.CORL +UNRL.COIM) +i(UNRL.CORL - RL.COIM)

(5) Sound initially diffracted and then reflected

Plan End Elevation
/|
- - - A— — — — ——<—x7R
~N /| i
~ V4
RN Y ' ,
R ¥ ‘ ]
7 /
(i f /
/
; "Yj\)‘i —L/—-——-—.___
l . Te—ew) T
/ =i T Y3
e X3 | ;] g
; | ;’ X3
¢ ! 1 | ¥ - — _ _ _L
/
¢ ! /
/ S ' A
e ]

P11=((2.SPL) + P)
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For each element we compute the real and imaginary parts of the reflection
coefficient, ie CORL and COIM, and in order to do this we require the 3-

dimensional angle v, between the sound path and the normal.
On the plan

X3=S8SPL-ZL+1.DY-DX/2

and using similar triangles

SPL+P X3
D3  SP-D3

(RP(SPL + P))

T (X3+SPL+ P)

and from the end elevation

Y3=((ZB~J.DY +DY /2~ Q)z)%

Using similar triangles
SPL+P X3

w3 Y3-W3
_ (r3(sPL+ P))

S W3=
(X3+SPL+ P)

Z21=(D3* +w3*)*
X1= ((SPL +P)’ +D3* + W32)y’
and v = arcsin(Z1/ X1)

The sound pressure, which is initially diffracted and then reflected, can then be

. computed where

SOUND PRESSURE =(RL.CORL +UNRL.COIM) +i(UNRL.CORL — RL.COIM)
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(6) Sound initially reflected, then diffracted and finally reflected again.

Plan , End Elevation
/1
R /
e —— - ; ]
~
| ~ o / A
~ 237 v
I # R | R
~| 7 - — /A P
[ RP _&‘4 H- — W3 / ’//}1{\/72—
| G I _l*,
/]
| , =
. < Yz
{
| A= q,v(_fwf_.k\&__-_i_
, / se T s
/|
s s
| —7;\';// 'é—P _9,
! - DiA
Ve
| SH ¥ 7
/
Pl
P2~ 7

P12=-P

For each element we compute the real and imaginary parts of the reflection
coefficient before diffraction takes place, ie CORL1 and COIMI1, and also the
real and imaginary parts of the reflection coefficient after diffraction, ie CORL2
and COIM2. In order to do this we require the respective 3-dimensional angles
v; and v, between the sound path and the normals at the respective points of

reflection.
On the plan

X2=SPL-ZL+1.DY-DX/2
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and using similar triangles

_ (SPL.SP)

= (X2+570)
. (RP(SPL+P))
T (X2 +SPL+ P)

and from the end elevation

- r2=((zB-J.0Y + DY 12)})*

Y3=((ZB—J.DY+DY/2—Q)2)%

" Using similar triangles

1o SPLY2)
(X2 +58PL)
_ (3(spL+P)
T (X2 + SPL+ P)
Hence
Zl:(Dl2 +W12)%
/ - =X _,__.%. X1=($PLZ+D12+W12)%
ZZ_ / Z3=(D32 +W32)%
._é X3=(($’L—p)2 +DF +VV32)%
/ - — 2=/ and v, =arcsin(Z1/ X1)
/‘—— _ V2 =aI‘CSiﬂ(Z3/X3)
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The sound pressure which is initially reflected, then diffracted and then
reflected again, can then be computed where
SOUND PRESSURE =( RL+iUNRL) CORL1—iCOMI) CORL2~iCQM2)
=( RLOORIL CORL2+UNRL COIML. GORL2 +UNRL CORLL COM2— RLCOMLCOIM)
+{UNRL CORLL GORL2— RLOOIML AORL2 - RL ORI COM2 ~UNRL COIMLCO2)
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The sound pressure, in the absence of a barrier, in an enclosure becomes more
complicated than that for the 'flat room' model, due to the added reflective surfaces,
introduced by the side walls. Again, we treat the sound pressure, in the absence of a
barrier, in the same way as that for a barrier in a 'flat room'. The sound pressure at the
receiver, is again calculated by using the elemental thebry to compute the sound level

through a hole, the same size and geometry as the cross-section of the enclosure.

Once agéin, the rest of the calculation uses Babinet's Principle, and is even more
complicated due to added reflected components from the walls. The complex

reflection coefficient, Cr, is once more incorporated for all reflective surfaces.
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Results for a barrier in an enclosure

As far as the author is aware, there is no literature which includes the reflective
contributions from boulidary walls. The author considers it a logical progression to
add side walls to his model. Figure 36 uses the same barrier geometries as the 'flat
room' model but places thé barrier centrally between two walls. Figure 37

superimposes a line of best fit to Figure 36.

Figure 38 uses a 2 m x 4 m barrier in an enclosure of height 3 m and shows the
variation in insertion loss as the receiver is moved vertically from its central position.
" Figure 39 allows comparison with Figure 33, where the aspect ratio changes the value

of insertion loss in a 'flat room'.
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8.3 Discussion of results for a barrier in an enclosure

Although Katarbinska ignored the contributions from the boundary vy;{ﬂs, see Figure
Page 96, the author introduced side walls to the model. Figure 36 uses the same
barrier geometries as the flat room model but places the barrier symmetrically between
two side walls 10 m apart. Néte that one curve leaves a 0.1 m gap between the top of
the barrier and the roof while the other fills the gap between the ground and the roof.
The curves behave with the same trend as that for the 'flat room' model, but the
introduction of side walls generally lowers the insertion loss by about 4dB. Figure 37
superimposes a line of best fit on Figure 36, for the curve which represents a gap over
the top of the barrier, showing reduced values in the magnitude of deviations from the

‘flat room' model.

Figure 38 shows the insertion loss as the receiver is moved vertically, using the same
barrier geometry except there is a 1 m gap between the top of the ‘barrier and the roof.
Comparing with Figure 32, which has identical geometries in a 'flat room', we see that
the insertion loss is generally about 4dB lower. Figure 39, the graph of insertion loss
against aspect ratio, gives reduced values compared with the model without boundary
walls, but the value of insertion loss rises steeply as the barrier width approaches the

width of the enclosure.

The research has demonstrated clearly that for finite barriers within an enclosure, the
effects of the boundary walls are important in that they are responsible for a significant

reduction in the insertion loss.
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9 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Conclusions

The aim of this research was to build a computer model which would predict_sound
loss due to finite barriers within enclosures thus simulating conditions within factory
type buildings. The report uses the classical Kirchhoff-Fresnel diffraction theory
throughout and all models divide the barrier's surface into elements. Initially, by
incorporating Babinet's Principle into the model, sound attenuation was calculated for

a barrier in free space.

Experimentation allowed the optimum element size of 0.0125 m to be found within the

precision grade of measurement.

Validation of the model was achieved by comparing it's trends with Fresnel and
Fraunhofer diffraction theory. Further validation was effected by using the elemental
theory to produce a 6dB reduction in sound level for each respective doubling of

source-receiver distance in a free field..

Using a barrier size of 2 m x 4 m, it was shown that sound attenuation steadily
increases with respective increases in frequency. However, as ihe receiver-barrier
distance is increased, the curve becomes more unstable, with more rapid deviations
from the general trend. Increasing the receiver offset position produces a general
decrease in sound attenuation but the curve oscillates about its general trend. A large

peak value occurs when the receiver position is close to its central position.

The model was extended to place the barrier in contact with the ground, where direct
and reflected sound contributions tend to introduce interference effects. There is much
contemporary literature dealing with barriers on the ground, some of which is
valida;ed by experimental detail. The author, therefore, compares his results with

those of other workers.
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As in the case of free space, a 2 m x 4 m barrier in contact with the ground gives a
steady rise in insertion loss as the frequency increases. This curve is smoothed by
increasing the width of the barrier from 4 m to 10 m, thereby making the effects of
diffraction and interference around the sides of the barrier less significant. Increasing
the source-barrier distance amplifies the sensitivity of the trigonometric terms; which
results in large deviations from the general trend of the curve at the high end of the

frequency spectrum.

A steady reduction in insertion loss is observed as the receiver is moved vertically from
its central position, but the curve oscillates around this trend with a large initial peak
value. It may be possible to reproduce this peak value by sloping the barrier instead of

moving the receiver position.

Introduction of a roof enables both single and multi-reflections to be included and from
this model we observed steady increases in insertion loss for respective increases in
frequency. This trend was also observed by E Katarbinska. Smoother curves are
produced than those in the ground model if the barrier extends from the ground to the
roof. Due to increased interference, multi-reflections cause greater deviations from the
general trend than do single reflections. Moving the receiver position has less effect
on the value of insertion loss as compared with ground conditions alone. The 'flat
room' model allowed investigation into the effect on insertion loss as the aspect ratio
of width/height of the barrier was increased. The resulting curve allowed us to

differentiate between terms like 'finite’, 'semi-infinite' and 'infinite' barriers.

Finally, side walls were added to the model and placing these walls 10 m apart gave a
general reduction of about 4dB in insertion loss. 4dB can be significant in sound

calculations and so the introduction of walls to the model is justified.

The models are flexible, and comparison with other literature and experimental
evidence show reasonable agreement. Many deviations in results would undoubtedly

have been produced if the author could have used the optimum element size of
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0.0125 m. Unfortunately, the computing facilities did not allow sufficient time to run

some of the models to the required accuracy.

Suggestions for Future Research

Future research may extend to using a point source which emits more than one
frequency. Where the author uses hard concrete for all reflecting surfaces, a material
which is usually found in most factory conditions, data can be fed into the models to

give different reflective properties.

After using multi-reflections in the 'flat room' model, this facility can easily be added to
the model within an enclosure. It will also be a relatively simple modification to use

the elemental theory to predict sound loss using angled barriers. Modification within

the program would be:
_ . i .
A
'
X
X ‘ R
S X
% HT o g
| | @ ‘ |
! (
|
1 ! i
[ ' i
i 1 |
e—WTH ——>|
5P K Re\ -

The barrier is moved through an angle 6
The vertical element size

DY =HT/N
where N is the number of vertical elements

WTH =HT tan 0

124



Now each vertical element has a new distance from the source and receiver. If the
original source and receiver distances are SP1 and RP1 respectively, then for each
subroutine of the new program, the new source and receiver positions will be SP and

RP where: ‘
SP = SP1 + WTH - N.DL + DL/2

RP =RP1-WTH + N.DL - DL/2

where DL =WTH/N

Similar modifications can be made for other barrier geometries, hemispherical, cross-

section barriers for example.

The flexibility of the theory will allow excess sound loss to be computed by the use of

double and maybe triple barriers.

Double Barrier

\o1. BarRieR

> 2y BRReER

r/

RCS)

N x

As with all previous models the sound loss at the first receiver position, R, can be
calculated. This receiver position then becomes the new source position, S;, for the
second barrier. The sound loss due to the second barrier can then be computed at the
second receiver position, R;. It is then possible to slope both barriers and so form a

wedge shaped barrier.
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Using the same technique, a third barrier may be added.

Triple Barrier

X

X
R(s ‘3

R, (5)

o x

The triple barrier should be very effective because the distance between S; and R, for

the central barrier, can be made quite small compared with the distance SR and S;R,.
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WRITE(6,*)BARRIER IN FREE SPACE-FIRST ORDER MODEL'
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE- BARRIER DISTANCE'
READ(5,*)SP
WRITE(6,*fRECEIVER-BARRIER DISTANCE'
READ(5,¥)RP
WRITE(G,*)'HORIZONTAL RECEIVER OFFSET'
READ(5,%)P
WRITE(G, *)'VERTICAL RECEIVER OFFSET"
READ(5.%)Q )
WRITE(G,*)'’X COORDINATE FROM LHS OF BARRIER'
READ(5,%)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,%¥)YB
WRITE(G,*)'HORIZONTAL ELEMENT SIZE'
READ(5,¥)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(5.¥)DY :
WRITE(6,*)'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,%)M
WRITE(6,*)NUMBER OF VERTICAL ELEMENTS'
READ(5.%)N
WRITE(6,%)'WA VELENGTH"
READ(5,%)WL
PI=3.1415926
WN=(2.0%PI)/WL
SUMR=0
SUMI=0
DO 2 J=I.N
DO 1I=LN
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+S0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN* AK*SENK*(CUST+CUSF)
UNRL=AK**2*SENK *(RO*CUST+SC*CUSF)-WN*AK *CUSK*(CUST+

+ CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/(PI*WN**2*
+ A*B)

SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
1 CONTINUE
2 CONTINUE
DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0(ALOG10(EB*DIB**2))
WRITE(6,3)DB
3 FORMAT(ATTENUATION=',G14.6)
STOP



WRITE(6,*)BARRIER IN FREE SPACE-ZERO ORDER MODEL'
WRITE(G,*)'THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
READ(5,*)SP
WRITE(6,*)RECEIVER-BARRIER DISTANCE'
READ(5,%)RP
WRITE(6,*)'HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET"
READ(5,%)Q '
WRITE(6,*)'’X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,%)YB
WRITE(6,*YHORIZONTAL ELEMENT SIZE'
READ(5,¥)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(S,*)DY
WRITE(6,*'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,%)M
WRITE(6,*)NUMBER OF VERTICAL ELEMENTS'
READ(5,%)N
WRITE(6,*)'WAVELENGTH'
READ(5,%)WL
PI=3.1415926
WN=(2.0%PI)/WL
SUMR=0
SUMI=0
DO 2 J=LN
DO 1 I=1.M
XO=XL-I*DX+DX/2.0
YO=YB-*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=XP/RO
CUSK=COS(WN*RO+SO))
SENK=SIN(WN*{RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *(CUST+CUSF)
UNRL=AK**2*SENK *(RO*CUST+SO*CUSF)-WN*AK*CUSK*(CUST+
+  CUSF)
FIR=((DX/2.0)*(DY/2.0))/P1
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
1 CONTINUE
2 CONTINUE
DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI[**2
DB=-10.0*(ALOG10(EB*DIB**2))
WRITE(6,3)DB
3 FORMAT(ATTENUATION="G14.6)
STOP
END



WRITE(6,*)'BARRIER IN FREE SPACE-FIRST ORDER MODEL-CHANGING
+ELEMENT SIZE'
WRITE(G,*)'THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
READ(5,*)SP
WRITE(6,*)'RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'HORIZONTAL RECEIVER OFFSET'
READ(5,%)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET'
READ(5,%)Q
WRITE(6,*)'X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL
PI=3.1415926
WN=(2.0*PI)/WL
WRITE(6,*)'WIDTH OF BARRIER'
READ(5,*)WTH
WRITE(6,*)'HEIGHT OF BARRIER'
READ(5,*)HT
DO 5 M=10,100.1
N=M
SUMR=0
SUMI=0
DX=WTHM
DY=HT/N
DO 2 J=LN
DO 1 I=1.M
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)RO
B=(YO/RO)+(YO-Q)/SO
CUSK=COS(WN*RO+S0))
SENK=SIN(WN*RO+S0))
AK=1.0/(RO*SO)
=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/

+ (PI*WN**2*A*B)

SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
I CONTINUE
2 CONTINUE
DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=({SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0*(ALOGIU(EB*DIB**2))
WRITE(6.3)M



3 FORMAT(NUMBER OF ELEMENTS="13)
WRITE(6,4)DB
4 FORMAT(ATTENUATION=',G14.6)
5 CONTINUE
STOP
END



WRITE(6,*)'BARRIER IN FREE SPACE-ZERO ORDER MODEL-CHANGING
+ELEMENT SIZE"
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
- READ(5,*)SP
WRITE(G,*)RECEIVER-BARRIER DISTANCE!
READ(5,*)RP
WRITE(6,*'HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET'
READ(5,%)Q
WRITE(6,*)'’X COORDINATE FROM LHS OF BARRIER'
READ(5,%)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,%)YB
WRITE(6,*)'WAVELENGTH'
READ(5,¥)WL
PI=3.1415926
WN=(2.0*PI)/WL
WRITE(6,*)'WIDTH OF BARRIER'
READ(5,*)WTH
WRITE(6,*)'HEIGHT OF BARRIER'
READ(5,*)HT
DO 6 M=10.100,1
N=M
SUMR=0
SUMI=0
DX=WTH/M
DY=HT/N
DO 2 J=1.N
DO 11=1.M
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*(CUST+
+ CUSF)
=AK**2*SENK*[RO*CUST+SO*CUSF)-WN*AK*CUSK*
+ (CUST+CUSF)
FIR=((DX/2.0)*(DY/2.0))/PI
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
I  CONTINUE
2 CONTINUE
DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0*(ALOG 10(EB*DIB**2))
WRITE(6.4)M
4 FORMAT(NUMBER OF ELEMENTS="I3)
WRITE(6.5)DB
5 FORMAT(ATTENUATION="G14.6)



DIMENSION AMP(500),REL(500)
WRITE(6,*)'SIMILATION OF FRESNEL DIFFRACTION'
WRITE(6,*)THE DATA IS'
WRITE(6,*)'SOURCE BARRIER DISTANCE'
READ(5,*)SP
WRITE(6.*)'RECEIVER BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'X-COORDINATE FROM LHS OF BARRIER'
READ(5,%)XL
WRITE(6,*)'ELEMENT SIZE'
READ(5,*)DX
WRITE(6.*)'NUMBER OF ELEMENTS'
READ(5,*)M
WRITE(6.*)'WAVELENGTH'
READ(5,*)WL
PI=3.1415927
WN=(2.0+PI)/WL
- PUG=PI*DX**2
SUMR=0
SUMI=0
DO 1 I=1M
XO=XL-I*DX+DX/2.0
SO=SQRT((SP**2)+(X0**2))
RO=SQRT((RP**2)+(X0*%*2))
C=(WN*((RO*SP)+(SO*RP)))/(RO**2)*(SO**2))
B=(((RO**2)*SP)+((SO**2)*RP))/((RO**3)*(SO**3))
R=WN*(RO+S0)
RL=(B*COS(R))*+(C*SIN(R))
UNRL=(B*SIN(R))-(C*COS(R))
SUMR=SUMR+(RL*(2.0*I-1)*PUG)
SUMI=SUMI+(UNRL*(2.0*I-1)*PUG)
AMP(I)=SQRT((SUMR**2)+(SUMI**2))
REL(I)=APM(I)/AMP(1)
WRITE(6,4)I
4 FORMAT(ELEMENT NUMBER="'I3)
WRITE(6.3)AMP(I)
3 FORMAT(AMPLITUDE="G14.6)
WRITE(6.2)REL(I)
2 FORMAT(RELATIVE AMPLITUDE="G4.6)
1 CONTINUE
STOP
END



DIMENSION EA(500),REL(500)
WRITE(6.*)'SIMILATION OF FRAUNHOFER DIFFRACTION'
WRITE(6,*)'THE DATA IS'
WRITE(6,*)EXTREME VALUE'
- READ(5,%)X
WRITE(6,*)'STEP VALUE'
READ(5,%)Y
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
READ(S,*)SP
WRITE(G, *)'RECEIVER-BARRIER DISTANCE'
READ(S,*)RP
WRITE(6, *)'VERTICAL RECEIVER OFFSET"
READ(5,%)Q
WRITE(6,*)'X-COORDINATE FROM LHS OF BARRIER'
READ(S,%)XL
WRITE(G,*)'Y-COORDINATE FROM TOP OF BARRIER'
READ(5,%*)YB
WRITE(6,*)'HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(S5,*)DY
WRITE(6,*)NUMBER OF HORIZONTAL ELEMENTS'
READ(5.*)M
WRITE(6.*)'NUMBER OF VERTICAL ELEMENTS'
READ(5.*)N
WRITE(6,*)'WAVELENGTH:'
READ(5,*)WL
PI=3.1415926
WN=(2.0*PI)/WL
DO 5 K=1.X.Y
SUMR=0
SUMI=0
DO 2 J=I,N
DO 1I=1M
XO=XL-I*DX+DX/2.0
YO=YP-J*DY+DY/2.0
SO=SQRT((SP**2)+(X0**2)+(YO**2))
RO=SQRT((RP**2)+(X0-K)**¥2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO0/SO)+(XU-K)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*[RO+S0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN#*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/

+ (PI*WN**2*A*B)

SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
1 CONTINUE
2 CONTINUE
EA(K)=SUMR**2+SUMI**2
REL(K)=EAK)/EA(])
WRITE(6,3)K



3 FORMAT('RECEIVER OFFSET="14.1)
WRITE(6,4)REL(K)
4 FORMAT('RELATIVE INTENSITY="G14.6)
5 CONTINUE
STOP
END



WRITE(6,*)BARRIER IN FREE SPACE-RECEIVER OFFSET'
WRITE(6,*)THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
READ(5,*)SP
~WRITE(6,*)'RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)’HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'’X-COORDINATE FROM LHS OF BARRIER'
READ(5,%)XL '
WRITE(6,*)'Y-COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*’HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(5,¥)DY
WRITE(6,*)’NUMBER OF HORIZONTAL ELEMENTS'
READ(5.¥)M
WRITE(6,*'NUMBER OF VERTICAL ELEMENTS'
READ(5,%)N
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL
WRITE(6,*)'INITIAL VALUE'
READ(5,*)R
WRITE(6,*)FINAL VALUE'
READ(5,%)S
WRITE(6.*)'STEP VALUE'
READ(5,*)T
PI=3.1415926
WN=(2.0*PI)/WL
DO 5Q=RS.T
SUMR=0
SUMI=0
DO 2 J=1.N
DO 1 I=1M
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*RO+S0))
SENK=SIN(WN*RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK *SENK *

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK *

+ (CUST+CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/

+ (PI¥WN**2*A*B)

SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
1  CONTINUE
2 CONTINUE
DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR



UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0*(ALOG 10(EB*DIB**2))
WRITE(6.3)Q

---—3  FORMAT(RECEIVER OFFSET="G14.6)
WRITE(6.4)DB

4 FORMAT(ATTENUATION="G14.6)
5 CONTINUE

STOP

END



WRITE(6,*)'THE DATA IS'
WRITE(6,*)ENTER SOURCE-BARRIER DISTANCE'
READ(5.%)SP
WRITE(6,*)'ENTER RECEIVER-BARRIER DISTANCE'
READ(5,%)RP
WRITE(6,*)ENTER HORIZONTAL RECEIVER OFFSET'
READ(5,%)P
WRITE(G, *)'ENTER X-COORDINATE OF L.H.S. OF BARRIER'
READ(S,*)ZL
WRITE(G,*)'ENTER Y-COORDINATE OF TOP OF BARRIER'
READ(5,*)ZB
WRITE(6, *)'ENTER HORIZONTAL ELEMENT SIZE'
READ(5,¥)DX
WRITE(6,*)ENTER VERTICAL ELEMENT SIZE'
READ(5,%)DY
WRITE(6,*)ENTER NUMBER OF HORIZONTAL ELEMENTS'
READ(S5,*M
WRITE(6,*)ENTER NUMBER OF VERTICAL ELEMENTS'
READ(5,*)N
WRITE(6,*)ENTER WA VELENGTH'
READ(5.*)WL
WRITE(G,*)'ENTER POSITION OF SOURCE FROM FLOOR'
READ(5.%)Y1
WRITE(6,*)ENTER RESONANT FREQUENCY"
READ(5.*)W0
WRITE(6.*)ENTER CHARACTERISTIC ACOUSTIC IMPEDANCE OF MEDIUM'
READ(5,*)ROEC
WRITE(6.*)'ENTER MECHANICAL RESISTANCE FACTOR'
READ(5,%)R
WRITE(G,*)ENTER EFFECTIVE MASS PER UNIT AREA'
READ(5,*)MASS
WRITE(6,*)'INITIAL VALUE'
READ(5,%)S
WRITE(6,*)EXTREME VALUE'
READ(5,%)G
WRITE(6,*)'STEP VALUE'
READ(5,%)T
P1=3.1415926
WN=(2.0%PI)/WL
W=340.0/WL
X=M*DX
WRITE(6,1)X
1 FORMAT(5X.'WIDTH OF BARRIER=",G14.6)
Y=N*DY
WRITE(6,2)Y
2 FORMAT(5X.'HEIGHT OF BARRIER=",G14.6)
DO 8 E=S,G.T
WRITE(6.15)E
15 FORMAT(5X.'VERTICAL OFFSET="G14.6)
CALL BARRI(RP.SP.P.E.ZL.ZB DX.DY,M.N.PI, WN.SUMC.SUMD)
D3=(Y I¥(RP+SP))/((2.0%Y 1)+E)
QI=E+(2.0*Y1)
ZBI=ZB+(2.0*Y1)
CALL BARR2(RP.SP.Y.P,Q1,ZL,ZB1.DX.DY M,N.PL, WN.Y 1.W,WO.R,
+ MASS,ROEC.SUME.SUMF)
Q2=-(E+(Z2.0%Y1))
CALL BARR3(RP.SP.Y,P.Q2.E,ZL.ZB.DX.DY.M,N,PL. WN.Y .W.WO.R,
+ MASS,ROEC.SUMG.SUMH)



Q3=-E
CALL BARR4(RP.SP.Y.P.Q3.E,ZL,ZB1.DX.DY,M,N.PL. WN.Y1.

+ W,WO,R.MASS,ROEC.SUMJ.SUMK)
W3=(Y 1*P)/((2.0%Y 1 )+E)
XO1=SQRT((Y 1**2)+(D3**2)+(W3**2))
ZO1=SQRT((D3**2)+(W3**2))
V=ASIN(ZO1/XO1)
CUSSV=COS(V)
CALL REFCO(W,W0,R MASS,CUSSV,ROEC.CORL,COIM)
DIB1=SQRT((P**2)+(E**2)+(RP+SP)**2)
DIB2=SQRT(((2.0%Y 1)+E)**2+(P**2)+(RP+SP)**2)
UBR=(COS(WN*DIB1))/DIB1
UBI=(SIN(WN*DIB1))/DIB]
UBRI1=(((COS(WN*DIB2))*CORL)+((SIN(WN*DIB2))*COIM))/DIB2
UBLI=(((SIN(WN*DIB2))*CORL)-((COS(WN*DIB2))*COIM))/DIB2
EBR=UBR+UBRI
EBI=UBI+UBI1
UBR2=EBR-(SUMC+SUME+SUMG+SUMIJ)
UBI2=EBI-(SUMD-+SUMF+SUMH+SUMK)
dB=10.0%*(ALOG L0((EBR**2+EBI**2)/(UBR2**2+UBI2**2)))
WRITE(6,7)dB

7 FORMAT(5X.'ATTENUATION="G14.6)

8 CONTINUE

STOP
END

SUBROUTINE BARRI(RP.SP.P.Q.XL,YB.DV.DZ,L.N.P1. WN_SUMR.SUMI)
SUMR=( :
SUMI=0
DO 4 J=I.N
' DO3I=IL
XO=XL-1*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(X0O/SO)+(X0O-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*RO0+S0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *
+ (CUST+CUSF)
UNRL=AK**2*SENK *(RO*CUST+SO*CUSF)-WN*AK*CUSK*
+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/
+ (PI¥*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
3 CONTINUE
4 CONTINUE
RETURN
END

SUBROUTINE BARR2(RP.SP.Y,P,Q.XL.YB,DV.DZ,L.N.PLWN.Y 1.W . W(,
+R MASS ROEC.SUMR,SUMI)
SUMR=0



SUMI=0
DO 6 J=1.N
DO 5I=1L
XO=XL-[*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2)+(X0**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+S0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+  (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/

+  (PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0

DI1=(Y1*SP)/(Y 1+Y2)

DP=SQRT((XL-(I*DV)+(DV/2.0))**2)
WI1=DP*Y 1)/(Y 1+Y2)
X1=SQRT((Y 1*¥*2)+(D 1 **2)+(W1**2))
Z1=SQRT((D1**2)+(W1%*2))

V=ASIN(Z1/X1)

CUSV=COS(V) -
CORL=(((W**2)-(W0**2))**2+W**2%((R/MASS)**2-(ROEC/

+  (MASS*CUSV))Y**2))/(((W**2)-(WO**2))**2+W** 2%

+  ((RIMASS)+(ROEC/(MASS*CUSV)))**2)
COIM=(2.0*W*((W**2)-(W0**2)y*(ROEC/

+  (MASS*CUSV))/(((W**2)-(WO**2))**2+W**2*

+ ((R/MASS)+HROEC/(MASS*CUSV)))**2)
SUMR=SUMR-+((RL*CORL)+(UNRL*COIM))*FIR
SUMI=SUMI+((UNRL*CORL)-(RL*COIM))*FIR

5 CONTINUE

6 CONTINUE

RETURN

END

SUBROUTINE BARR3(RP.SP,Y.P.QZ,Q,XL,YB,DV.DZ L N,PL.WN,Y1,W W0,
+R,MASS,ROEC.SUMR.SUMI)
SUMR=0
SUMI=0
DO 10 J=1,N
DO9I=1,L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-QZ)**2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/SO)+(XO-P)/RO
B=(YO/SO)+(YO-QZ)/RO
CUSK=COS(WN*(RO+S0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)



RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/

+ (PI*WN**2*A*B) '

Y2=Y-J]*DZ+DZ/2.0

D3=(Y2*RP)/(Y 1+Y2+Q)
DP=SQRT((XL-(I*DV)+(DV/2.0)+P)**2)

W3=(Y2*DP)/(Y 1+Y2+Q) '
X1=SQRT((Y2**2)+(D3**2)+(W3**2))
Z1=SQRT((D3**2)+(W3**2))

V=ASIN(Z1/X1)

CUSV=COS(V)
CORL=(((W**2)-(W0**2))**2+W**2*((R/MASS)**2-(ROEC/

+ (MASS*CUSV))**2))/(W**2)-(WO**2))y¥*2+WH*2*

+ (R/MASS)HROEC/(MASS*CUSV)))**2)
COIM=(2.0*W*((W¥**2)-(W0**2))*(ROEC/

+ (MASS*CUSV))Y(((W**2)-(WO**2))**¥2+W**) *

+ ((R/MASS)+HROEC/(MASS*CUSV)))**2)
SUMR=SUMR-+((RL*CORL)+(UNRL*COIM))*FIR
SUMI=SUMI+((UNRL*CORL)-(RL*COIM))*FIR

9 CONTINUE

10 CONTINUE

RETURN

END

SUBROUTINE BARR4(RP.SP.Y.P.QZ.Q.XL,YB,DV,DZ L NPLWN.Y1.
+W,W0.R.MASS.ROEC.SUMR.SUMI)
SUMR=0
SUMI=0
DO 12 J=1.N
DO 111=1L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(Y0O-QZ)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/S0)+(XO-P)/RO
B=(YO/SO)+(YO-QZ)/RO
CUSK=COS(WN*(RO+SO0))
SENK=SIN(WN*(RO+S0))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK *
+  (CUST+CUSF)
UNRL=AK**2*SENK *(RO*CUST+SO*CUSF)-WN*AK *CUSK *
+  (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*[DV/2.0))/
+ (PI*WN**2*A*B)
Y2=Y-J*DZ+DZ/2.0
DI=(Y1*SP)/(Y1+Y2)
DP1=SQRT((XL-(I*DV)+(DV/2.0))**2)
WI=(DP1*Y )/(Y1+Y2)
X1=SQRT((Y 1*¥*2)+(D [ ¥¥2)+(W1**2))
Z1=SQRT((D 1¥¥2)+(W1**2))
VI=ASIN(ZI/X1)
CUSVI=COS(V1)



CORLI=(((W**2)-(W0**2))**2+W**2¥((RIMASS)**2-(ROEC/

+  (MASS*CUSV1))**2))/(((W**2)-(WO**2))** 2+ W**2*

+  ((RIMASS)+ROEC/(MASS*CUSV1)))**2)
COIMI=(2.0* W*((W**2)-(W0**2))*(ROEC/

+  (MASS*CUSV))(((W**2):(WO**2))y**2+Wr*2*

+  ((RIMASS)+HROEC/(MASS*CUSVI1)))**2)
D3=(Y2*RP)/(Y 1+Y2+Q)
DP2=SQRT((XL-I*DV+DV/2.0+P)**2)

W3=(Y2*DP2)/(Y 1+Y2+Q)
X2=SQRT((Y2**2)+(D3**2)+(W3**2))
Z2=SQRT((D3**2)+(W3**2))

V2=ASIN(Z2/X2)

CUSV2=COS(V2)
CORL2=(((W**2)-(W0**2)y**2-+W**2*(R/MASS)**2-(ROEC/

+  (MASS*CUSV2))**2))/((W**2)-(WO**2))*¥*2+W**2*

+  ((RIMASS)+HROEC/(MASS*CUSV2)))**2)
COIM2=(2.0¥W((W**2)-(W0**2))*(ROEC/

4+ (MASS*CUSV2)N/(((W**2)-(WO**2))**2+ Wk

+  ((RAMASS)+ROEC/(MASS*CUSV2)))**2)
SUMR=SUMR-+(((RL*CORL | *CORL2)+(UNRL*COIMI*CORL2)-

+  (RL*COIMI*COIM2)+(UNRL*CORL1*COIM2))*FIR)
SUMI=SUMI+(((UNRL*CORL1*CORL2)-(RL*COIM I *CORL2)-

+  (RL*CORLI*COIM2)-(UNRL*COIM1*COIM2))*FIR)

11 CONTINUE

12 CONTINUE

RETURN

END

SUBROUTINE REFCO(W.W0.R MASS,CUSSV,ROEC,CORL.COIM)
CORL=(((W**2)-(W0*%2))*%2+W+*2%((R/MASS)**2-(ROEC/
+F(MASS*CUSSV))**2))/(((WH*2)-(WO*¥2) k¥ 2+ Wk
+((R/MASS)+ROEC/(MASS*CUSSV)))**2)
COIM=(2.0*W*((W**2)-(W0*%2))*(ROEC/
+(MASS*CUSSV)))/(((W**2)-(WO**2))**2+ W*2
+((R/MASS)+ROEC/(MASS*CUSSV)))**2)

RETURN

END



ggig?éf;;AQ;MPLITUDE’
‘_ggégzézigiizgzzzﬂ-BARRIER DISTANCE'
READ (5 T VER-BARRIER DISTANCE'
gg;g?éf;;;‘HORIZONTAL RECEIVER OFFSET' )
ggig?;f;;;;x-COORDINATE FROM L.H.S. OF BARRIER'
::ig?éf;;;éY-COORDINATE FROM TOP OF BARRIER'
zgigﬁéf;;%;HORIZONTAL ELEMENT SIZE OF BARRIER'
ggig?éf;;%;VERTICAL ELEMENT SIZE OF BARRIER'
::;g?é?;;&INUMBER OF HORIZONTAL BARRIER ELEMENTS®
ggig?é?;;;'NUMBER OF VERTICAL BARRIER ELEMENTS'
:g;gféf;;%;WAVELENGTH'
ggig?é?;;;ég—COORDINATE FROM L.H.S. OF SPACE'
ggig?é?;;;ég-COORDINATE FROM TOP OF SPACE'
:gig?é?;;;;§0RIZONTAL ELEMENT SIZE OF SPACE'
ggig%é?:;;;gERTICAL ELEMENT SIZE OF SPACE'
ﬁgﬁg?é?;;ﬁéNUMBER OF HORIZONTAL SPACE ELEMENTS'
__%gégzéf;;;;NUMBER OF VERTICAL SPACE ELEMENTS'
READ(;?;;%QRESONANT FREQUENCY OF FLOOR'
gg;g?é?;;;égﬁéRACTERISTIC ACOUSTIC IMPEDANCE OF FLOOR'
ggig?é?;;;‘MECHANICAL RESISTANCE FACTOR OF FLOOR'
ggig?éf;;ggggFECTIVE MASS PER UNIT AREA OF FLOOR'
ggig?é?;;aégESONANT FREQUENCY OF CEILING'
*) 1
§§§§Z%Z;l%?gggRACTERISTIC ACOUSTIC IMPEDANCE OF CEILING'
READ(S';)RS HANICAL: RESISTANCE FACTOR OF CEILING'
ggig?éf:;&;gggECTIVE MASS PER UNIT AREA OF CEILING'
:g;g?éf;;%;§ESONANT FREQUENCY OF RIGHT-HAND WALL'
*y
gggéz%Z;l%?ggz:z:TERISTIC ACOUSTIC IMPEDANCE OF RIGHT-HAND WALL'
READ(s,;)Rl ICAL RESISTANCE FACTOR OF RIGHT-HAND WALL'
ggig?é?‘;&;ggiECTIVE MASS PER UNIT AREA OF RIGHT-HAND WALL'
gg;g?é?;;éégESONANT FREQUENCY OF LEFT-HAND WALL'
*
gg%ézézil%égggRACTERISTIC ACOUSTIC IMPEDANCE OF LEFT-HAND WALL'
‘—~READf5,' ?ANICAL RESISTANCE FACTOR OF LEFT-HAND WALL'
gg;g?éf;;&AgggECTIVE MASS PER UNIT AREA OF LEFT-HAND WALL'
ggig?é?;;é;§OSITION OF SOURCE FROM FLOOR'
:gig?éf;;;;gOSITION OF SOURCE FROM CEILING'
:gig?éf;;;;§OSITION OF SOURCE FROM RIGHT-HAND WALL'
ggig?é?;IQQEOSITION OF SOURCE FROM LEFT-HAND WALL'
ggig?éf;;ééGROUND OR ENCLOSURE CONDITIONS'



WRITE(6,*) 'INITIAL VERTICAL OFFSET'
READ(S5, *)S
WRITE (6, *) 'EXTREME VERTICAL OFFSET'
READ(S5, *)G
WRITE (6, *) *STEP VALUE OF OFFSET'
READ(5,*)T
PI=3.1415926
WN=(2.0*PI) /WL
W=340.0/WL
X=M*DX
WRITE (6, l)X

1 FORMAT (5X, 'WIDTH OF BARRIER=',G14.6)
Y=N*DY

WRITE(6,2)Y

2 FORMAT(S5X,*HEIGHT OF BARRIER=',G14.6)
Y1=NS*DYS
Do 8 E=S,G,T

19

20

21

22

23

2%

25

26

27

28

29

30

WRITE(6,19)E

FORMAT (5X, 'VERTICAL OFFSET=',G14.6)

CALL BARR1l(RP,SP,P,E,2L,ZB,DX,DY,M,N,PI,WN, SUMC, SUMD)
WRITE(6,20)SUMC

FORMAT (5X, 'SUMC="',G14.6)

Ql=E+(2.0*SPF)

ZB1=ZB+(2.0*SPF)

CALL BARR2(RP,SP,Y,P,0Q1,2L,2B1,DX,DY,M,N,PI,WN, SPF,W,W0,R,
MASS, ROEC, SUME, SUMF)

WRITE(6,21)SUME

FORMAT(5X, 'SUME="',G14.6)

Q2=-(E+(2.0*SPF))

CALLBARR3 (RP,SP,Y,P,Q2,E, 2L, 2B, DX,DY,M,N,PI, WN, SPF, W WO,R,
MASS, ROEC, SUMG, SUMH)

WRITE (6,22) SUMG

FORMAT (5X, 'SUMG="',G14.6)

Q3=-E

CALL BARR4 (RP,SP,Y,P,Q3,E,2L,ZBl1,DX,DY,M,N,PI,WN,SPF,W,W0,
R,MASS, ROEC, SUMJ, SUMK)

WRITE(6,23)SUMJ

FORMAT(5X, 'SUMJ="',G14.6)

Q4=-((2.0*SPC)-E)

ZB2=ZB-(2.0*SPC)

CALL BARZ2A(RP,SP,Y,P,Q4,2L,2B2,DX,DY,M,N,PI,WN, SPF,SPC,W,
w05,R5,MASSS5,ROECS, SUMELl, SUMF1)

WRITE (6,24)SUMEl

-FORMAT(S5X, 'SUME1="',G14.6)

Q5=((2.0*SPC)-E)

CALL, BAR3A(RP,SP,Y,P,Q5,E,2L,2B,DX,DY,M,N,PI,6WN, SPF, SPC,W,
W05,R5,MASS5, ROECS, SUMG1, SUMH1)

WRITE(6,25)SUMG1L

FORMAT(5X, 'SUMG1="',G14.6)

Q6=-E

CALL BAR4A(RP,SP,Y,P,06,E,2L,2B2,DX,DY,M,N,PI,WN, SPF, SPC,W,
W05,R5,MASSS, ROECS5, SUMJ1, SUMK1)

WRITE(6,26)SUMJ1

FORMAT(5X, 'SUMJ1="',G14.6)

CALL BARR1(RP,SP,P,E,ZLS,ZBS,DXS,DYS,MS,NS, PI,WN, SUML, SUMM)
WRITE(6,27)SUML

FORMAT(5X, 'SUML="',G14.6)

ZB3=ZBS+(2.0*SPF)

CALL BARR2(RP,SP,Y1,P,01,2LS,ZB3,DXS,DYS,MS,NS,PI,WN, SPF,W,
W0, R,MASS, ROEC, SUMN, SUMP)

WRITE (6,28)SUMN

FORMAT(SX, ' =',G14.6)

CALL BARR3(RP,SP,Y1,P,Q2,E,2LS,2BS,DXS,DYS,MS,NS, PI WN, SPF,
W,W0,R,MASS, ROEC, SUMQ, SUMR)

WRITE(6,29)SUMQ

FORMAT(5X, 'SUMQ="',G14.6)

CALL BARR4 (RP,SP,Y1l,P,Q3,E,2LS, ZB3,DXS,DYS,MS,NS, PI,WN, SPF,
W,W0,R,MASS, ROEC, SUMS, SUMT)

WRITE(6,30)SUMS

FORMAT (5X, *SUMS="',G14.6)

IF (GE.EQ.1.0) GO TO 70

"ZB4=ZBS-(2.0*SPC)

31

L_BARZA(RP, SP,Y1,P,0Q4,2LS,2B4, DXS, DYS,MS,NS,PI,WN, SPF,
8PC,W,W05,R5,MASSS5, ROECS5, SUMN1, SUMP1)
WRITE(6,31)SUMNL
FORMAT (5X, *SUMN1="',G14.6)



32

33
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55

56

57

58
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59

60

61

62

63

64

CALL BAR3A(RP,SP,Y1l,P,0Q5,E,2LS,ZBS,DXS8,DYS,MS,NS,PI,WN, SPF,
SPC,W,W05,R5,MASSS5, ROECS, SUMQ1, SUMR1)

WRITE(6,32)SUMQ1

FORMAT(5X, 'SUMQ1="',G14.6)

CALL BAR4A(RP,SP,Y1,P,Q6,E,2ZLS,ZB4,DXS,DYS,MS,NS,PI,WN, SPF,
8SpPC,W,W05,R5,MASSS, ROECS5, SUMS1, SUMT1)

WRITE (6,33) SUMS1

FORMAT(5X, *SUMS1=",G14.6)
EBR=SUML+SUMN+SUMQ+SUMS+SUMN1+SUMQ1+SUMS1
EBI=SUMM+SUMP+SUMR+SUMT+SUMP1+SUMR1+SUMT1

UBR=EBR~ ( SUMC+SUME +SUMG+SUMJ+SUME1+SUMG1+SUMJ1)
UBI:EBI-(SUMD+SUMF+SUMH+SUMK+SUMF1+SUMH1+SUMK1)

dB=10.0* (ALOG10 ((EBR**2+EBI**2)/ (UBR**2+UBI**2)))
WRITE(6,7)dB

FORMAT (5X, 'INSERTION LOSS FOR SINGLE REFLECTIONS=',Gl4.6)
AT1=SQRT({ (SUML-SUMC) **2) + ( (SUMM-SUMD) **2))

AI2=SQRT( ( ( (SUMN-SUME) + (SUMQ-SUMG) + (SUMS-SUMJ) ) **2) +

( { (SUMP-SUMF) + (SUMR-SUMH) + (SUMT-SUMK) ) **2))

AY3=SQRT( ( ( (SUMN1~-SUME1l) + (SUMQ1-SUMGL) + (SUMS1-SUMJ1) ) **2) +
( ((SUMP1-SUMF1)+ (SUMR1-SUMH1) + (SUMT1-SUMK1) ) **2))

ASI1=SQRT (SUML**2+SUMM**2)

ASIZ2=SQRT( ( (SUMN+SUMQ+SUMS) **2) + ( (SUMP+SUMR+SUMT) **2) )
ASI3=SQORT( ( (SUMN1+SUMQ1+SUMS1) **2) + ( (SUMP1+SUMRL1+SUMT1) **2))

-EBH=AST1+ASI2+ASI3

UBH=AI1l+AI2+AI3

dBB=10.0* (AL.OG10 ( (EBH**2) / (UBH**2)))

WRITE(6,11)dBB

FORMAT (5X, ' INSERTION LOSS SINGLE2=',G14.6)

ZBS5=-((2.0* (SPF+SPC) ) -ZB)

Q7=-(2.0*(SPF+SPC) ) +E

CALL BAR2B(RP,SP,Y,P,Q7,2L,ZBS, DX, DY,M,N,PI,WN, SPF, SPC,
W,W0,R,MASS, ROEC, W05, R5, MASSS, ROECS5, SUME2, SUMF2)
WRITE(6,55) SUME2

FORMAT (5X, 'SUMEZ2="',G14.6)

Q8=(2.0*(SPF+SPC) )+E

CALL BAR3B(RP,SP,Y,P,Q8,E,2L,ZB,DX,DY,M,N,PI,6WN, SPF,SPC,
W,W0,R,MASS, ROEC,W05,R5, MASS5, ROECS5, SUMG2, SUMH2)
WRITE (6, 56) SUMG2

FORMAT(5X, 'SUMG2="',G14.6)

Q9=E

CALL BAR4B(RP,SP,Y,P,Q9,E,ZL,2B5,DX,DY,M,N, PI,WN, SPF, SPC,
W,wW0,R,MASS, ROEC, W05, R5, MASSS, ROEC5, SUMJ2, SUMK2)
WRITE (6, 57) SUMJ2

FORMAT (5X, 'SUMJ2=",G14.6)

ZB6=(2.0* (SPF+SPC) ) +ZB

Q10=(2.0* (SPF+SPC) ) +E

CALL, BAR2C(RP,SP,Y,P,Q10,%L,ZB6, DX, DY,M,N, PI,WN, SPF, SPC,
W,W0,R,MASS, ROEC, W05, R5, MASSS, ROECS, SUME3, SUMF3)
WRITE (6, 58) SUME3

FORMAT (5X, 'SUME3="',G14.6)

Ql1=-((2.0* (SPF+SPC))-E)

CALL BAR3C(RP,SP,Y,P,0Q11,E,2ZL,2B,DX,DY,M,N, PI,WN, SPF, SPC,
W,W0,R,MASS, ROEC, W05, R5, MASS5, ROECS, SUMG3, SUMH3)

'WRITE (6, 59)SUMG3

FORMAT (5X, 'SUMG3="',G14.6)

Ql2=Q

CALL BAR4C(RP,SP,Y,P,Q12,E,2L,Z2B6,DX,DY,M,N,PI,WN, SPF, SPC,
W,W0,R,MASS,ROEC,W05,R5,MASSS5, ROECS, SUMJ3, SUMK3)
WRITE(6,60)SUMJ3

FORMAT(5X, 'SUMJ3="',G14.6)

CALL BAR2B(RP,SP,Y1l,P,Q7,2LS,ZBS,DXS,DYS,MS,NS,PI,WN, SPF,
SPC,W,W0,R,MASS,ROEC,W05,R5,MASS5, ROECS, SUMN2, SUMP2)
WRITE (6, 61) SUMN2

FORMAT (5X, 'SUMN2="',G14.6)

CALL BAR3B(RP,SP,Y1l,P,Q8,E,2LS,ZBS,DXS,DYS,MS,NS,PI,WN,
SPF, SPC,W,W0,R,MASS, ROEC,W05,R5,MASS5, ROECS5, SUMQ2, SUMR2)
WRITE (6, 62) SUMQ2

FORMAT (5X, *SUMQ2="',G14.6)

CALL BAR4B(RP,SP,Y1,P,Q9,E,2LS,ZB5,DXS,DYS,MS,NS,PI, WN,
SPF, SPC,W,W0,R,MASS, ROEC,W05,R5,MASS5, ROECS, SUMS2, SUMT2)
WRITE (6, 63) SUMS2

" FORMAT (5X, 'SUMS2="',G14.6)

CALL BAR2C(RP,SP,Y1,P,Ql0,2LS,ZB6,DXS,DYS,MS, NS, PI,WN, SPF,
SPC,W,W0,R,MASS, ROEC, W05, R5, MASS5, ROEC5, SUMN3, SUMP3)
WRITE (6, 64) SUMN3

FORMAT (5X, 'SUMN3="',G14.6)



CALL BAR3C(RP,SP,Y1,P,Ql1,E,Z2LS,ZBS,DXS,DYS,MS,NS,PI,WN,
+ SPF, SPC,W,W0,R,MASS, ROEC, W05, R5,MASS5, ROECS, SUMQ3, SUMR3)
WRITE (6, 65) SUMO3
65~ FORMAT(5X, ' SUMO3="',G14.6)
CALL BAR4C(RP,SP,Y1,P,012,E,ZLS,%2B6,DXS,DYS,MS,NS,PI,WN,
+ SPF, SPC,W,W0,R,MASS, ROEC, W05, R5, MASS5, ROECS, SUMS3, SUMT3)
WRITE (6, 66) SUMS3
66 FORMAT (5X, 'SUMS3="',G14.6)
EBR1=EBR+SUMN2+SUMQ2 +SUMS2 + SUMN3 +SUMQ3+SUMS3
EBI1=EBI+SUMP2+SUMR2+SUMT2+SUMP3+SUMR3+SUMT3
UBR1=EBR1- (SUMC+SUME+SUMG+SUMJ+SUME1+SUMG1l+SUMJ1+
+ SUME2+SUM2+SUMJ2+SUME3+SUMG3+SUMJ3)
UBI1=EBI1l- (SUMD+SUMF+SUMH+SUMK+SUMF1+SUMH1+SUMK1+
+ SUMF2+SUMH2 + SUMK2 + SUMF3 +SUMH3 +SUMK3)
dB1=10.0* (ALOG10 ( (EBR1**2+EBI1**2)/ (UBR1**2+UBI1**2)))
WRITE(6,9)dB1
] FORMAT (5X, *INSERTION LOSS FOR MULTI-REFLECTIONS=',Gl4.6)
AT4=SORT( ( ( (SUMN2-SUME2) + (SUMQ2-SUMG2) + (SUMS2-SUMJ2) ) **2) +
+ (({SUMP2-SUMF2) + (SUMR2-SUMH2) + (SUMT2-SUMK2) ) **2))
AIS=SQRT( ( ( (SUMN3-SUME3) + (SUMQ3-SUMG3) + (SUMS3~-SUMJ3) ) **2) +
+ ( ( (SUMP3-SUMF3) + (SUMR3-SUMH3) + (SUMT3~-SUMK3) ) **2))
ASI4=SORT ( ( (SUMN2+SUMQ2+SUMS2) **2) + ( (SUMP2+SUMR2+
+ SUMT2) **2))
ASIS5=SQRT( ( (SUMN3+SUMQ3+SUMS3) **2) + ( (SUMP3+SUMR3+
+ SUMT3) **2))
EBH1=EBH+ASI4+ASIS
UBH1=UBH+AI4+AI5
dBB1=10.0* (ALOGLO0{ (EBH1**2) /(UBH1**2)))
WRITE(6,12)dBBl
12 FORMAT (5X, ' INSERTION LOSS MULTI2=',Gl4.6)
P7=-((2.0*SPR) -P)
ZL3=ZL+ (2 .0*SPR)
_CALL BAR2D(RP, SP,P7,E, ZL3, ZB, DX, DY, M, N, PI, WN, SPR, W, W01,

+ RI,MASSI,ROEC1, SUME4, SUMF4)
WRITE (6,72)SUME4
72 FORMAT (5X, 'SUME4=",G14.6)

P8=((2.0*SPR)-P)
CALIL BAR3D(RP,SP,P8,P,E,2L,ZB,DX,DY,M,N,PI,WN, SPR,W, W01,
+ R1,MASS1,ROEC1, SUMG4, SUMH4)
WRITE(6,73)SUMG4
73 FORMAT (5X, ' SUMG4=",G14.6)
P9=-P
CALL BAR4D(RP,SP,P9,P,E,2L3,2ZB,DX,DY,M,N,PI,WN, SPR,W, W01,
+ R1,MASS1,ROEC1, SUMJ4, SUMK4)
WRITE(6,74)SUMJI4
74 FORMAT (5X, *SUMJ4="',G14.6)
P10=(2.0*SPL) +P
2L4=-((2.0*SPL) -ZL)
CALL BARZ2E (RP, SP,P10,E,2L4,%B,DX,DY,M,N,PI,WN, SPL,W,W02,
+ R2,MASS2,ROEC2, SUMES, SUMF5)
WRITE(6,75)SUMES
75 FORMAT (5X, ' SUME5="',G14.6)
P1ll=-({(2.0*SPL) +P)
CALL BAR3E(RP,SP,P1l1,P,E,ZL,2B,DX,DY,M,N,PI,WN, SPL,W,W02,
+ R2,MASS2,ROEC2, SUMG5, SUMH5)
WRITE(6,76) SUMG5
76 FORMAT (5X, 'SUMG5="',G14.6)
Pl2=-P
CALL BAR4E(RP,SP,Pl12,E,E,ZL4,ZB,DX,DY,M,N,PI,WN, SPL,W,W02,
+ R2,MASS2, ROEC2, SUMJS, SUMKS)
WRITE(6,77)SUMJI5
717 FORMAT (5X, *SUMJ5=",G14.6)
| Tt 2hE5=256+4{2 .0*SPR)
CALL BAR2D(RP, SP,P7,E,ZLS,ZBS,DXS,DYS,MS,NS,PI,WN,SPR,W,W01,
+ R1,MASS1,ROEC1, SUMN4, SUMP4)
WRITE(6,78)SUMN4
78 FORMAT(5X, 'SUMN4="',G14.6)
CALI, BAR3D(RP, SP,P8,P,E, 2LS,ZBS, DXS, DYS, M3, NS, PI,WN, SPR, W, W01,
+ R1,MASS1,ROEC1, SUMQ4, SUMR4)
WRITE(6,79)SUMQ4
79 FORMAT (5X, 'SUMQ4="',G14.6)
‘CALL BARA4D(RP, SP,P9,P,E,2ZL5,2BS, DXS, DYS,MS,NS, PI,WN, SPR, W, W01,
+ R1,MASS1,ROEC1, SUMS4, SUMT4)
WRITE (6, 80) SUMS4
80 FORMAT(5X, 'SUMS4="',G14.6)
ZL6=- ((2.0*SPL) -ZLS)



+

CALL BARZ2E (RP,SP,P10,E, 2L6,2ZBS,DXS,DYS,MS,NS, PI,WN, SPL,W,W02,
R2,MASS2, ROEC2, SUMNS, SUMP5)
WRITE (6, 81) SUMNS

81 FORMAT (5X, ' SUMNS="',G14.6)
CALL BAR3E(RP, SP, Pll P,E,ZLS,ZBS,DXS,DYS,MS,NS, PI,WN, SPL, W,
+ w02,R2,MASS2,ROEC2, SUMQS, SUMRS) . - ...
WRITE (6, 82) SUMQ5
82 FORMAT (5X, ' SUMQS5="',G14.6)
CALL BARAE (RP, SP,P12,P,E, ZL6,ZBS, DXS,DYS, MS,NS, PI,WN, SPL, W,
+ W02,R2,MASS2, ROEC2, SUMS5, SUMT5)
WRITE (6, 83) SUMSS5
83 FORMAT (5X, 'SUMS5=",G14.6)
AT6=SQRT( ( ( (SUMN4-SUME4 ) + (SUMQ4~-SUMG4 ) + (SUMS4-SUMJI4) ) **2) +
T TTTSUMP4=SUMF4) + (SUMR4 ~-SUMHA4 ) + (SUMT4~-SUMK4) ) **2))
AI7=SQRT( ( ( (SUMNS5-SUMES) + ( SUMQ5-SUMG5) + (SUMS5-SUMJ5) ) **2) +
+ ( ( (SUMP5~SUMF5) + (SUMRS5-SUMHS) + (SUMT5-SUMKS) ) **2) )
ASI6=SQRT ( { (SUMN4+SUMQ4 +SUMS4) **2) + ( (SUMP4+SUMR4+SUMT4) **2))
ASI7=8SQRT ( ( (SUMNS5+SUMQS5+SUMSS5) **2) + ( (SUMP5+SUMRS +SUMT5) **2) )
EBH2=EBH+ASI6+ASI7
UBHZ2=UBH+AI6+AI7
dBB2=10.0* (ALOGLO ( (EBH2**2) / (UBH2**2)))
WRITE(6,95)dBB2
95 FORMAT (5X, ' INSERTION LOSS FOR ENCILOSURE',G14.6)
70 ATI1=SQRT( ( (SUML-SUMC) **2) 4 ( (SUMM-SUMD) **2))
AT2=SQRT( ( ( (SUMN-SUME) + ( SUMQ-SUMG) + (SUMS-SUMJ) ) **2) +
+ ( ( (SUMP-SUMF) + (SUMR-SUMH) + ( SUMT-SUMK) ) **2))
ASI1=SQRT (SUML**2+SUMM**2)
ASI2=SQRT( ( (SUMN+SUMQ+SUMS) **2) + ( (SUMP+SUMR+SUMT) **2) )
EEBH=ASI1+ASI2
UUBH=AI1l+AI2
ddBH=10.0* (ALOG10 ( (EEBH**2) / (UUBH**2)))
WRITE(6,71)ddBH
71 FORMAT (5X, 'INSERTIUN LOSS FOR GROUND CONDITIONS',G1l4.6)
8 CONTINUE
STOP
END
SUBROUTINE BARR1(RP, SP,P,Q,XL,YB,DV,DZ,L,N,PI,WN, SUMR, SUMI)
SUMR=0
SUMI=0
DO 4 J=1,N
DO 3 I=1,L

3

——XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (XO**2) + (YO**2)).
RO=SQRT ( (RP**2) + (XO-P) **24 (YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A= (X0/S0)+(X0-P) /RO
B=(YO/S0)+(Y0-Q) /RO
CUSK=COS (WN* (RO+S0) )
SENK=SIN(WN* (RO+S0))
AK=1.0/ (RO*S0)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+S0O*CUSF) -WN*AK*CUSK*
(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR
CONTINUE

4 CONTINUE
RETURN

END

SUBROUTINE BARR2 (RP,SP,Y,P,Q,XL,Y¥B,DV,DZ,L,N, PI,WN,SPF,W,WO0,
+R,MASS, ROEC, SUMR, SUMI)

=1,N
5 I=1,L

O=XL-I*DV+DV/2.0

YO=YB-J*DZ+DZ/2.0

SO=SQRT( (SP**2) +(X0**2) +(YO0**2))
RO=SQRT( (RP**2) + (XO-P) **2+ (YO-Q) **2)
CUST=8P/SO



CUSF=RP/RO

A=(X0/S0) + (X0-P) /RO

B=(Y0/S0) +(Y0-Q) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN(WN* (RO+S0))

AK=1.0/(RO*S0)

RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**Z*A*B)

Y2=Y-J*DZ+DZ/2.0 _
D1=(SPF*SP)/ (SPF+Y2)
DP=SQRT( (XL-I*DV+DV/2.0) **2)
Wl= (DP*SPF)/ (SPF+Y2)
X1=SQRT ( (SPF**2) + (D1**2) + (W1**2))
21=SQRT ( (D1**2) + (W1**2))
. V=ASIN(Z1/X1)
CUSV=COS (V)
CORL= ( ( (W**2) - (WO**2) ) **24+W**2* ( (R/MASS) **2- (ROEC/

+ (MASS*CUSV) ) **2) )/ (((W**2) - (WO**2) ) **24W**2*
+ ( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
— e COIM==-(2.0*W* ((W**2) - (WO0**2)) *(ROEC/
+ (MASS*CUSV) )}/ (((W**2) - (WO*#%2) ) **24W**2*
+ ((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

SUMR=SUMR+ ( (RL*CORL) - (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (RL*COIM) + (UNRL*CORL) ) *FIR
5 CONTINUE
6 CONTINUE
RETURN
END

SUBROUTINE BARR3 (RP,SP,Y,P,QZ,Q,XL,YB,DV,DZ,L,N,PI,WN, SPF,W,W0,
+R,MASS, ROEC, SUMR, SUMI)

SUMR=0
SUMI=0
DO 10 J=1,N
DO 9 I=1,L

XO=XL-I*DV+DV/2.0

YO=YB-J*DZ+D2/2.0

SO=SQRT( (SP**2) +(X0**2) +(Y0O**2))

RO=SQRT( (RP**2) + (X0O-P) **2+ (Y0-Q2Z) **2
CUST=SP/SO

CUSF=RP/RO

A=(X0/S0) + (X0-P) /RO

B=(Y0/S0) +(¥0-QZ) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN(WN* (RO+SO))

AK=1.0/(RO*SO)

RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) ~WN*AK*CUSK*

-—..____(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0
D3=(Y2*RP) / (SPF+Y2+Q)

DP=SQRT ( (XL~ (I*DV) +(DV/2.0) +P) **2)
W3=(Y2*DP) / (SPF+Y2+Q)
X1=8QRT((Y2**2) +(D3**2) +(W3**2))
Z1=SQRT((W3**2)+(D3**2))

=ASIN(Z1/X1)
CUSV=COS(V)
CORL=( ( (W**2) - (WO**2)) **2+W**2* ( (R/MASS) **2~- (ROEC/
+ (MASS*CUSV) ) **2) )/ (((W**2) = (WO**2) ) **24W**2*
+ ((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

COIM=-(2.0*W*( (W**2) - (WO**2)) *(ROEC/
(MASS*CUSV) ) )/ (((W**2) - (WO**2) ) ** 2 **2*
( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
SUMR=SUMR+ ( (RL*CORL) - (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (RL*COIM)+ (UNRL*CORL) ) *FIR
9 CONTINUE
10 CONTINUE

RETURN

END

+ +

SUBROUTINE BARRA (RP,SP,Y,P,0QZ,0,XL,YB,DV,DZ,L,N,PI,WN, SPF,W,W0,



+R,MASS, ROEC, SUMR, SUMI)
SUMR=0
—-SUMI=0____
Do 12 J=1,N
DO 11 I=1,L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (X0**2) +(YO**2))
RO=SQRT ( (RP**2) + (XO-P) **2+ (YO-QZ) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) + (X0-P) /RO
B=(Y0O/S0) +(Y0-Q2Z) /RO
CUSK=COS (WN* (RO+S0))
SENK=SIN(WN* (RO+S0))
AK=1.0/(RO*SO)
=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
_ UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(D2/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0

D1=(SPF*SP) / (SPF+Y2)

DP1=SQRT( (XL-(I*DV)+(DV/2.0))**2)
W1l=(DP1*SPF) / (SPF+Y2)

X1=SQRT((SPF**2)+(D1**2) + (W1l**2))
Z1=SOQRT((DL1**2)+(W1l**2))

V1=ASIN(Z1/X1)

CUSV1=COoS (V1)
CORL1=(((W**2) - (WO**2)) **24+W**2* ((R/MASS) **2~ (ROEC/

+ (MASS*CUSVL) ) **2) )/ (((W**2) - (WO**2) ) **24W**2*
-t { (R/MASS) + (ROEC/ (MASS*CUSV1))) **2)
T COIMI==(2.0*W*((W**2)- (WO**2))*(ROEC/
+ (MASS*CUSV1) ) )/ (((W**2) - (WO**2) ) **24W**2*
+ ((R/MASS) + (ROEC/ (MASS*CUSV1}) ) **2)

D3=(Y2*RP) / (SPF+Y2+Q)

DP2=8SQRT ( (XL-I*DV+DV/2.0+P)**2)
W3=(Y2*DP2) / (SPF+¥2+Q)

X2=SQRT( (Y2**2)+(D3**2) +(W3**2))

22=SQRT ((D3**2) +(W3**2))

V2=ASIN(22/X2)

CUSV2=COS(V2)

CORL2={( ( (W**2) - (WO**2) ) **2+W**2* ((R/MASS) **2~ (ROEC/

+ (MASS*CUSV2))**2) )/ (((W**2) -~ (WO**2) ) ** 24 yxs2*
+ ( (R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)
COIM2=~(2.0*W* ((W**2)-(W0**2))*(ROEC/
+ (MASS*CUSV2)))/(((W**2) = (WO**2) ) **24W**2*
+ ( (R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)
SUMR=SUMR+ ( ( (RL*CORLL*CORL2) - (UNRL*COIM1*CORL2) -
+ (RL*COIM1*COIM2) - (UNRL*CORL1*COIM2) ) *FIR)
SUMT=SUMI+ ( ( (RL*CORL1*COIM2) - (UNRL*COIM1*COIM2)+
+ (RL*COIM1*CORIL2) + (UNRL*CORL1*COIM2) ) *FIR)
11 CONTINUE
12 CONTINUE
RETURN
END

SUBROUTINE BAR2A(RP,SP,Y,P,Q,XL,YB,DV,DZ,L,N,PI,WN, SPF,SPC,W,W0,
+R,MASS, ROEC, SUMR, SUMI)
SUMR=0

XO=XL,-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0

SO=SQRT( (SP**2) + (X0**2) + (YO**2))

RO=SORT( (RP**2) + (XO-P) **2+(YO-Q) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/80) + (X0~P) /RO

B=(Y0O/S0) +(Y0-Q) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN (WN* (RO+S0))

AK=1.0/ (RO*S0)

RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*



13

(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)
DP=SQRT{ (XL~ (I*DV) + (DV/2.0)) **2)
Y2=Y-J*DZ+DZ/2.0
D1=(SP*SPC) / ((2.0*SPC) +SPF-Y2)
W1l=(DP*SPC) / ((2.0*SPC) +SPF-Y2)
X1=SQRT( (SPC**2)+(D1**2) +(W1**2))
Z1=SQRT ( (D1**2) + (W1l**2))
=ASIN(Z1/X1)
CUSV=COS (V)
CORL=( { (W**2) -~ (WO**2) ) **24W**2* ( (R/MASS) **2 -~ (ROEC/
TTTT{EASS*CUSV) ) **2) ) / ( ((W**2) = (WO**2) ) **24W*x*2*
((R/MASS) + (ROEC/ (MASS*CUSV) )) **2)
COIM=-(2.0*W* ((W**2) - (WO**2) ) *(ROEC/
(MASS*CUSV) ) )/ (((W**2) = (WO**2) ) **24W**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
- SUMR=SUMR+ ( (RL:*CORL) - (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (UNRL*CORL) + (RL*COIM) ) *FIR
CONTINUE

14 CONTINUE
RETURN

END

SUBROUTINE BAR3A(RP, SP,Y,P,02,Q,XL,YB,DV,DZ,L,N,PI,WN, SPF, SPC,

+W,W0, R, MASS, ROEC, SUMR, SUMI)

+

+

15
16

+!

SUMR=0

SUMI=0

Do 16 J=1,N

DO 15 I=1,L
XO0=XIL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (XO**2) + (YO**2))
RO=SQRT ( (RP**2) + (XO-P) **2+ (YO-QZ) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) + (X0-P) /RO
B=(Y0/S0) + (Y0-QZ) /RO
CUSK=COS8 (WN* (RO+S0) )
SENK=SIN (WN* (RO+S0))
AK=1.0/ (RO*S0)

T ———RE=AK* £ 2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK * (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*
(CUST+CUSF')

FIR=SIN(WN*B* (DZ/2.0))*SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)
Y2=Y~J*DZ+DZ/2.0
DP=SQRT ( (XL- (I*DV)+(DV/2.0) +P) **2)
D3=(RP*(SPC-Q))/((2.0*SPC) +SPF-Q-Y2)
W3=(DP*(SPC-Q) )/ ((2.0*SPC) +SPF-Q-Y2)
X1=8QRT( (SPC-Q) **2+ (D3**2) + (W3**2))
Z1=SQRT((D3**2) +(W3**2))
V=ASIN(Z1/X1)
CUSV=C0S (V)
CORL=( ((W**2) - (WO**2) ) **2;W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) )/ (((W**2) = (WO**2) ) **2,**2*
{ (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIM=- (2.0*W* ((W**2) - (WO**2) )+ (ROEC/
(MASS*CUSV) ) )/ (((W**2) = (WO**2) ) **24Wh*2~
( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

=SUMR+ ( (RL,*CORL) - (UNRL*COINM) ) *FIR
SUMY=SUMI+ ( (UNRL*CORL) + (RL*COIM) ) *FIR

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE BAR4A(RP,SP,Y,P,Q2,0,XL,YB,DV,DZ,L,N,PI,WN, SPF,SPC,
W, W0, R,MASS, ROEC, SUMR, SUMI)
SUMR=0

-~ -SUMI=

Do 18 J=1,N
Do 17 I=1,L
XO=XIL,-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT ( (SP**2)+ (XO**2) +(YO**2))



RO=SQRT( (RP**2)+ (XO-P) **2+(YO-QZ) **2)

CUST=SP/SO

CUSF=RP/RO

A= (X0/80) + (X0-P) /RO

B=(YO/S80) + (Y0-QZ) /RO

CUSK=COS (WN* (RO+S0))

SENK=SIN (WN* (RO+S0))

AK=1.0/ (RO*SO0)

RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0
DP1=SQRT ( (XL- (I*DV) +(DV/2.0)) **2)
D1=(SP*SPC)/ ((2.0*SPC) +SPF-Y2)
Wil=(DP1*SPC) / ((2.0*SPC)+SPF-Y2)
- X1=SQRT ( (SPC**2) + (D1**2) + (W1**2))
Z1=SQRT( (D1**2) + (W1**2))
V1=ASIN(Z1/X1)
CUSV1=COS (V1)
T e CORL1=(( (W**2)- (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/

+ (MASS*CUSV1) ) **2) )/ (((W**2) - (WO**2) ) ** 24 W *

+ ((R/MASS) + (ROEC/ (MASS*CUSV1) ) ) **2)
COIMl=-(2.0*W* ((W**2)-(W0**2))*(ROEC/

+ (MASS*CUSV1)) )/ (((W**2) = (WO**2) ) **24W**2*

+ ( (R/MASS) + (ROEC/ (MASS*CUSV1) ) ) **2)

DP2=SQRT ( (XL-I*DV+DV/2.04P) **2)
D3=(RP*(SPC-0Q))/((2.0*SPC) +SPF-Q-Y2)

W3=(DP2* (SPC-Q) )/ ((2.0*SPC) +SPF-Q-Y2)

X2=SQRT( (SPC-Q) **2+ (D3**2) + (W3**2))

Z2=SQRT( (D3**2) + (W3**2))

V2=ASIN(Z2/X2)

CUSV2=C0S (V2)

CORL2={( ( (W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/

+ (MASS*CUSV2) ) **2) )/ (((W**2) - (WO**2) ) **24W**2*
+ ( (R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)
COIM2=-(2.0*W*((W**2)-(W0**2))*(ROEC/
+ (MASS*CUSV2) ) )/ (((W**2) = (WO**2) ) **24W**2*
+ ((R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)
SUMR=SUMR+ ( ( (RL*CORL1*CORL2) - (UNRL*COIM1*CORL2) -
+ (RL*COIM1*COIM2) - (UNRL*CORL1*COIM2) ) *FIR)
SUMI=SUMI+ (( (RL*CORL1*COIM2) - (UNRL*COIM1*COIM2)+
+ (RL*COIM1*CORL2) + (UNRL*CORL1*COIM2) ) *FIR)
17 CONTINUE
18 CONTINUE
RETURN
END

SUBROUTINE BAR2B(RP,SP,Y,P,Q,XL,Y¥B,DV,DZ,L,N,PI,WN, SPF, SPC,
- —+W, W0 MASS,ROEC, W05, R5,MASS5, ROECS, SUMR, SUMI)

SUMR=0
SUMI=0
DO 41 J=1,N
DO 40 I=1,L

XO0=XL-I*DV+DV/2.0

YO=YB-J*DZ+DZ/2.0

SO=SORT( (SP**2)+(X0**2)+(YO**2))

RO=SORT( (RP**2) + (XO-P) **2+ (YO-Q) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/80) + (X0-P) /RO

B=(Y0/80) +(Y0-Q) /RO

CUSK=COS (WN* (RO+S0))

SENK=SIN (WN* (RO+S0))

AK=1.0/(RO*S0)

RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ ) (PI*WN*A*B)

Y2=Y-J*DZ4DZ/2.0

D1=(SP*SPF)/ ((3.0*SPF)+(2.0*SPC)-Y2)
DP=SQRT( (XL-I*DV+DV/2.0)**2)
W1l=(DP*SPF)/((3.0*SPF)+(2.0*SPC)-Y2)
X1=8SQRT( (SPF*%*2)+(D1**2) + (W1**2))

————————



Z1=SQRT((D1**2)+(W1**2))

e V=ASTN(Z1/X1)

+
40

41 CONTINUE

CUSV=COS (V)

CORL1=( ((W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) ) / { ((W**2) - (WO**2) ) **24[**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIM1=-(2.0*W* ((W**2) - (WO**2)) *(ROEC/
(MASS*CUSV) ) )/ (((W**2) = (WO**2) ) **24[**2*

( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

CORL2=( ( (W**2) - (WO5**2) ) **24+W**2* ( (R5/MASS5) **2- (ROECS5/
(MASSS5*CUSV) ) **2) )/ (((W**2) - (WO5**2) ) **24W**2*

( (R5/MASS5) + (ROECS5/ (MASSS5*CUSV) ) ) **2)
COIM2=-(2.0*W* ((W**2) - (WO5**2) ) * (ROEC5/
(MASSS5*CUSV) ) )/ (((W**2) = (WOS**2) ) **24|y**2*

( (RS/MASSS) + (ROECS/ (MASS5*CUSV) ) ) **2)

SUMR=SUMR+ ( { (RL*CORL1*CORL2) - (UNRL*COIM1*CORL2) -
(RL*COIM1*COIM2) ~ (UNRL*CORL1*COIM2)) *FIR)
SUMI=SUMI+ ( { (RL*CORL1*COIM2)- (UNRL*COIM1*COIM2)+
(RL*COIM1*CORL2) + (UNRL*CORL1*COIM2) ) *FIR)

CONTINUE

RETURN
END

SUBROUTINE BAR3B(RP, SP,Y,P,0Z,0,XL,Y¥B,DV,DZ,L,N,PI, WN, SPF, SPC,
+W,W0,R,MASS, ROEC, W05, R5,MASSS, RECS5, SUMR, SUMI)

SUMR=0
SUMI=0

DO 43 J=1,N
DO 42 I=1,L

+
+

+

+
+

+
+

+

+
42

XO=XL-I*DV+DV/2.0

YO=YB-J*DZ+DZ/2.0

SO=SORT( (SP**2) + (X0**2) + (YO**2))

RO=SQRT( (RP**2) + (XO-P) **2+ (YO-QZ) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/S0) +(XO~P) /RO

B=(Y0/S0)+(Y0-QZ) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN (WN* (RO+S0))

AK=1.0/(RO*S0)

RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) ~WN*AK*CUSK*
(CUST+CUSF)

FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0
D3=(RP*(SPF+Q))/{(3.0*SPF)+(2.0*SPC) +0-Y2)
DP=SQRT ( (XL-I*DV+DV/2.0+P) **2)

W3=(DP* (SPF+Q) )/ ((3.0*SPF) +(2.0*SPC) +Q-Y2)
X3=SQRT( (SPF+Q) **2+ (D3 **2) + (W3**2))
Z3=SORT((D3**2) +(W3**2))

V=ASIN(Z3/X3)

CUSV=CO0S (V)

CORLL=( ((W**2) - (WO**2) ) **24W**2* ((R/MASS) **2- (ROEC/
{(MASS*CUSV) ) **2) )/ {((W**2) - (WO**2) ) **24*k*2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIMl=-(2.0*W*((W**2)-(W0**2)) *(ROEC/
(MASS*CUSV) ) )/ (((W**2) - (WO**2) ) **24W**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

TTTTTTTTCOREZ= € ( (WA *2) - (WO5**2) ) **24W**2* ( (R5/MASS5) **2- (ROEC/

(MASSS*CUSV) ) **2) ) / (((W**2) ~ (WOS5**2) ) ** 24 **Q*
((R5/MASS5) + (ROECS5/ (MASS5*CUSV) ) ) **2)
COIM2=-(2.0*W* ((W**2)-(W05**2))* (ROECS/
(MASSS*CUSV) ) )/ (((W**2) - (WOS**2) ) %24 W**2 %

( (R5/MASSS) + (ROECS/ (MASSS5*CUSV) ) ) **2)

SUMR=SUMR+ ( ( (RL*CORL1*CORL2) - (UNRL*COIM1*CORL2) -
(UNRL*CORL1*COIM2) - {(RL*COIM1*COIM2) ) *FIR)
SUMI=SUMI+ ( ( (UNRL*CORL1*CORL2) + (RL*COIM1*CORI.2) +
(RL*CORL1*COIM2) - (UNRL*COIM1*COIM2) ) *FIR)

_ CONTINUE
43 CONTINUE

RETURN
END



SUBROUTINE BAR4B(RP, SP, Y, P,0QZ,Q,XL,YB,DV,DZ,L,N, PI,WN, SPF, SPC,
+W,W0,R,MASS, ROEC,W05,R5,MASSS, ROEC5, SUMR, SUMI)

SUMR=0
SUMI=0

DO 45 J=1,N

+
+
+

+

+
+

DO 44 I=1,L

XO=XL~I*DV+DV/2.0

YO=YB-J*DZ+DZ/2.0

SO=SQRT( (SP**2) +(X0**2) +(YO**2))
RO=SQRT ( (RP**2) + (XO-P) **2+(YO-QZ) **2)
CUST=SP/SO

T TTTTcusF=RP/RO

A=(X0/S0) + (X0-P) /RO
B=(YO/S0) +(YO-QZ) /RO
CUSK=COS (WN* (RO+S0) )
SENK=SIN (WN* (RO+S0))
AK=1.0/ (RO*SO)

. RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*
(CUST+CUSF)

FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*R) .

Y2=Y-J*DZ+DZ/2.0

D1=(SP*SPF)/ ((3.0*SPF)+(2.0%*SPC)-Y2)

DP1=SQRT( (XL~I*DV+DV/2.0) **2)
W1=(DP1*SPF)/((3.0*SPF)+(2.0*SPC)-Y2)

X1=SORT( (SPF**2)+(D1**2) + (W1**2))

Z1=SORT ((D1**2) +(W1**2))

V1=ASIN(Z1/X1)

CUSV1=COS (V1)

CORL1=( ( (W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2~ (ROEC/
(MASS*CUSV1) ) **2) ) /(((W**2) - (WO**2) ) **24W**2*

( (R/MASS) + (ROEC/ (MASS*CUSV1))) **2)

COIMl=- (2.0*W* ((W**2)~-(WO**2))*(ROEC/
(MASS*CUSV1) ) )/ (((W**2) - (WO**2) ) **24Wk*2*

( (R/MASS) + (ROEC/ (MASS*CUSV1)) ) **2)

CORL2=( ((W**2) - (WO5%**2) ) **24W**2* ( (R5/MASS5) **2- (ROECS5/
(MASSS5*CUSV1))**2) )/ (((W**2) - (WO5**2) ) **24+W**2*
((R5/MASSS5) + (ROECS5/ (MASS5*CUSV1)) ) **2)

COIM2=- (2.0*W* ((W**2)-(WO5**2)) * (ROEC5/

CTETTTTT—(MASS5%CUSV1) ) ) / (((W**2) - (WO5**2) ) **2+Wr*2*

+

+ +

R

+ %

+ 4+ +

((R5/MASSS5) + (ROECS5/ (MASS5*CUSV1)) ) **2)
D3=(RP*(SPF+Q) )/ ((3.0*SPF)+(2.0*SPC) +Q-¥2)

DP2=SQRT( (XL~I*DV+DV/2.0+P) **2)

W3=(DP2* (SPF+Q))/((3.0*SPF)+(2.0*SPC) +Q-Y2)

X3=SQRT( (SPF+Q) **2+(D3%*2) + (W3%*2))

Z3=SORT ((D3**2) +(W3**2))

V2=ASIN(Z?/X3)

CUSV2=Cos (V2)

CORL3=( ( (W**2) - (WO**2) ) **24+W**2*( (R/MASS) **2- (ROEC/
(MASS*CUSV2) ) **2) )/ (((W**2) = (WO**2) ) **24yr*2*

( (R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)

COIM3=~(2.0*W* ((W**2)-(WO**2))* (ROEC/
(MASS*CUSV2)) )/ (((W**2) =~ (WO**2) ) **24W*xw2*

( (R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)

CORLA= (( (W**2) - (WO5%*2) ) **24W**2* ( (R5/MASSS5) **2~- (ROEC5/
(MASS5*CUSV2) ) **2) )/ (((W**2) - (WOS5%*2) ) **24W{*x*2*
((RS/MASSS5) + (ROECS5/ (MASSS5*CUSV2) ) ) **2)
COIMA=-(2.0*W* ((W**2) - (W05**2)) *(ROECS/
(MASSS5*CUSV2) ) )/ (((W**2) — (WOS5**2) ) **24[x*2*
((RS/MASSS5) + (ROECS/ (MASSS*CUSV2) ) ) **2)

SUMR=SUMR+ ( ( (RL*CORL1*CORL2 *CORL3 *CORL4 ) - (UNRL*COIM1*
CORL2*CORL3 *CORL4) - (UNRL*CORL1*CORL3 *CORL4 *COIM2) -
(RL*COIM1*COIM2*CORL3*CORL4) - (UNRL*CORL1 *CORL2 *CORL4 *
COIM3) - (RL*COIM1*COIM3*CORL2*CORL4) - (RL*CORL1*CORL4*
COIM2*COIM3)+ (UNRL*COIM1*COIM2*COIM3*CORL4) - (RL*CORL1*
CORL2*COIM3*COIM4 )+ (UNRL*COIM1*COIM3*COIM4 *CORL2) +
(UNRL*CORL1*COIM2*COIM3*COIM4) + (RL*COIM1*COIM2*COIM3*
COIM4) - (UNRL*CORL1*CORL2*CORL3*COIM4) - (RL*COIM1*COIM4A*

—~~—— CORL2*CORL3) ~ (RL*CORL1*CORL3 *COIM2*COIM4) + (UNRL*COIM1*

COIM2*COIM4 *CORL3))*FIR)

SUMI=SUMI+ ( ( (RL*CORL1*CORL2*CORL3*COIM4) - (UNRL*COIM1*
COIM4*CORL2*CORL3) - (UNRL*CORL1*CORL3*COIM2*COIM4) -
(RL*COIM1*COIM2*COIM4*CORL3) - (UNRL*CORL1*CORL2*COIM3*
COIM4) - (RL*COIM1*COIM3*COIM4*CORL2) - (RL*CORL1*COIM2*
COIM3*COIM4) + (UNRL*COIM1*COIM2*COIM3*COIM4) + (RL*CORL1*



+ 4+ o+

44

CORL2*CORL4 *COIM3) - (UNRL*CORL2*CORL4 *COIM1*COIM3) -
{ONRL*CORL1*CORL4 *COIM2 *COIM4) - (RL*CORL4 *COIM1*COIM2 *
COIM3) + (UNRL*CORL1*CORL2*CORL3*CORL4 ) + (RL*CORL2 *
CORL:3 *CORL4 *COIM1) + (RL*CORL1*CORL3 *CORL4 *COIM2) -
(UNRL*CORL3 *CORL4 *COIM1*COIM2) ) *FIR)

CONTINUE
45 CONTINUE
RETURN

SUBROUTINE BAR2C(RP, SP,Y,P,Q,XL,YB,DV,DZ,L,N,PI,WN, SPF, SPC,

+W,W0,R,MASS, ROEC,W05,R5, MASS5, ROEC5, SUMR, SUMI)

DO 47 J=1,N
DO 46 I=1,L
- XO0=XL~I*DV+DV/2.0

YO=YB~J*DZ+DZ/2.0
SO0=SQRT((SP**2) + (X0**2) + (YO**2))

T T ————RO=SQRT( (RP**2) + (XO-P) **2+ (YO-Q) **2)

+

+

CUST=8P/S0

CUSF=RP/RO

A= (X0/S0) + (X0-P) /RO

B=(Y0/S80) +(YO0-Q) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN(WN* (RO+S0))

AK=1.0/ (RO*SO)

RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*
(CUST+CUSF)

FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0

D1=(SP*SPC)/ ((2.0*SPC) +SPF+Y2)

DP=SQRT ( (XL~I*DV+DV/2.0) **2)

W1l=(DP*SPC)/ ((2.0*SPC)+SPF+Y2)

X1=SORT( (SPC**2) + (D1**2) +(W1**2))

Z1=SQRT( (D1**2)+ (W1**2))

V=ASIN(Z1/X1)

CUSV=COS8 (V)

CORL1=( ((W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) )/ (({(W**2) - (WO**2) ) **24+W**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

COIM1l=-(2.0*W* ((W**2)-(W0**2)) *(ROEC/
(MASS*CUSV) ) )/ (((W**2) - (WO**2) ) **2 4 Wrx*2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

CORL2=( ((W**2) - (WO5**2) ) **24+W**2* ( (R5/MASS5) **2- (ROEC5/
(MASSS5*CUSV) ) **2) ) /(((W**2) - (WO5%%*2) ) **24Wx*2*

~—t4—— ___ ((RS5/MASS5) +(ROECS5/ (MASS5*CUSV) ) ) **2)

+
4

+

+
46

COIM2=-(2.0*W* ((W**2)-(W05**2)) *(ROEC5/
(MASSS5*CUSV) ) ) / (((W**2) - (WO5**2) ) **24W**2*
((R5/MASS5) + (ROEC5/ (MASS5*CUSV) ) ) **2)

SUMR=SUMR+ { ( (RL*CORL1*CORL2) - (UNRL*COIM1*CORL2) -
(UNRL*CORL1*COIM2) - (RL*COIM1*COIM2) ) *FIR)
SUMI=SUMI+ ( ( (ONRL*CORL1*CORL2) + (RL*COIM1*CORL2) +
(RL*CORL1*COIM2) - (ONRL*COIM1*COIM2) ) *FIR)

CONTINUE

47 CONTINUE

RETURN
END

SUBROUTINE BAR3C(RP,SP,Y,P,0Q%,Q,XL,YB,DV,D2,L,N, PI, WN, SPF, SPC,

+W,W0,R,MASS, ROEC,W05,R5, MASS5, ROEC5, SUMR, SUMI)

SUMI=0
DO 49 J=1,N
DO 48 I=1,L

XO=XL-I*DV+DV/2.0

YO=YB~J*DZ+DZ/2.0

SO=SQRT( (SP**2) +(X0**2)+(YO**2))
RO=SQRT( (RP**2) + (XO-P) **24 (YO-QZ) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/S0) +(XO-P) /RO



S——me— e B=(YO/SO)+(Y0-QZ) /RO

48

CUSK=COS (WN* (RO+S0) )

SENK=SIN(WN* (RO+S0))

AK=1.0/ (RO*S0)

RL=AK* *2 *CUSK*-(RO*CUST+S0*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*
(CUST+CUSF)

FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0

D3=(RP*(SPC-Q))/ ((2.0*SPC) +SPF+Y2-Q)

DP=SQRT( (XL-I*DV+DV/2.0+P) **2)
W3=(DP*(SPC-Q))/((2.0*SPC) +SPF+Y2-Q)

X3=SQRT( (SPC-Q) **2+ (D3**2) + (W3**2))

Z3=SQRT( (D3**2)+(W3**2))

V=ASIN(23/X3)

CUSvV=COoS (V)

- CORL1=( ((W**2) - (WO**2)) **2+W**2*( (R/MASS) **2- (ROEC/

(MASS*CUSV) ) **2) ) / (((W**2) - (WO**2) ) **2 4 y*s*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

COIM1l=- (2.0*W* { (W**2) - (WO**2) )+ (ROEC/
(MASS*CUSV) ) )/ (((W**2) - (WO**2) ) **24W**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)

CORL2=( ((W**2) - (WOS**2) ) **24W**2* ( (R5/MASS5) **2- (ROECS/
(MASSS*CUSV) ) **2) ) / (((W**2) - (WO5**%2) ) * %24 y*x*2*

( (R5/MASSS) + (ROEC5/ (MASSS5*CUSV) ) ) **2)
COIM2=-(2.0*W*( (W**2)~- (W05**2) )+ (ROECS/
(MASSS5*CUSV) ) )/ (((W**2) = (WOS**2) ) **2  [y**2*
((RS5/MASSS5) + (ROEC5/ (MASSS5*CUSV) ) ) **2)

SUMR=SUMR+ ( ( (RL*CORL1*CORL2) - (UNRL*COIM1*CORL2) -
(UNRL*CORL1*COIM2) - (RL*COIM1*COIM2) ) *FIR) .
SUMI=SUMI+ ( ( (UNRL*CORL1*CORL2) + (RL*COIM1*CORL2) +
(RL*CORL1*COIM2) - (UNRL*COIM1*COIM2)) *FIR)

CONTINUE

49 CONTINUE

RETURN

END

SUBROUTINE BAR4C(RP,SP,Y,P,Q%2,0,XL,YB,DV,DZ,L,N,PI,WN, SPF, SPC,
+W,W0,R,MASS, ROEC, W05, R5,MASS5, ROECS, SUMR, SUMI)

SUMR=0
SUMI=0

DO 51 J=1,N

+

DO 50 I=1,L

XO0=XL-I*DV+DV/2.0

YO=YB-J*DZ+DZ/2.0

SO=SQRT( (SP**2) + (X0**2) +(Y0**2))

RO=SQRT( (RP**2) + (XO-P) **24 (YO-QZ) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/S0) +(XO0-P) /RO

B=(Y0/S0) + (YO-QZ) /RO

CUSK=COS (WN* (RO+S0) )

SENK=SIN(WN* (RO+S0))

AK=1.0/(RO*S0)

RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*
(CUST+CUSF)

T FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/

(PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0

D1=(SP*SPC)/((2.0*SPC) +SPF+Y2)

DP1=SORT( (XL~I*DV+DV/2.0)**2)

W1l=(DP1*SPC)/ ((2.0*SPC)+SPF+Y2)

X1=SQRT( (SPC**2)+(D1**2)+(W1**2))

Z1=SQRT( (D1**2) +(W1**2))

V1=ASIN(Z1/X1)

CUSV1=COS (V1)

CORL1=( ( (W**2)-(WO**2) ) **2+W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV1) ) **2) )/ (((W**2) - (WO**2) ) **24W**2*
((R/MASS) + (ROEC/ (MASS*CUSV1) ) ) **2)
COIMl=-(2.0*W*((W**2)-(W0**2))*(ROEC/
(MASS*CUSV1) ) )/ ({((W**2) - (WO**2) ) **24+W**2*

((R/MASS) + (ROEC/ (MASS*CUSV1)) ) **2)

CORL2=( ((W**2) - (W05**2)) **24+W**2* ( (R5/MASSS) **2~ (ROECS/



+ (MASS5%CUSVL) ) **2) )/ (((W**2) - (WO5**2) ) **24W**Q*
+ ((RS/MASSS5) + (ROEC5/ (MASSS5*CUSV1))) **2)
COIM2=~(2.0*W*((W**2)~(W05%*2))*(ROEC5/
(MASS5*CUSV1)) )/ (((W**2) -~ (WO5**2) ) **24W*r*x2*
+ ((R5/MASSS) + (ROECS5/ (MASSS*CUSV1))) **2)
D3=(RP*(SPC-Q))/((2.0*SPC) +SPF+Y2-Q)
DP2=SQRT( (XL-I*DV+DV/2.0+P) **2)
W3=(DP2*(SPC-Q) )/ ((2.0*SPC)+SPF+Y2-Q)
X3=SORT((SPC-Q) **2+ (D3**2)+(W3**2))
Z3=SQRT( (D3**2) + (W3**2))
V2=ASIN(Z3/X3)
CUSV2=CO0S (V2)
CORL3=( ((W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV2))**2) )/ (((W**2) - (WO**2) ) **24W**2*
+ ( (R/MASS) + (ROEC/ (MASS*CUSV2)) ) **2)
COIM3=-(2.0*W* ((W**2)~ (WO**2)) = (ROEC/
(MASS*CUSV2) ) )/ (((W**2) - (WO**2) ) **2+W**2*
+ . ((R/MASS) + (ROEC/ (MASS*CUSV2))) **2)
CORLA=( ((W**2) - (WO5**2) ) **24W**2* ((R5/MASS5) **2- (ROEC5/
(MASS5*CUSV2) ) **2) ) /(((W**2) - (WOS**2) ) **24W**2*
((RS/MASS5) + (ROEC5/ (MASS5*CUSV2)) ) **2)
COIMA=-(2.0*W*( (W**2)~ (WO05**2) ) *(ROEC5/
(MASSS5*CUSV2)) )/ (((W**2) - (WO5**2) ) **24W**2*
((RS/MASSS) + (ROEC5/ (MASS5*CUSV2)) ) **2)
SUMR=SUMR+ ( ( (RL*CORL1*CORL2*CORL3 *CORL4 ) - (UNRL*COIM1*
CORL2*CORL3 *CORLA4 ) - (UNRL*CORL1*CORL3 *CORL4 *COIM2) -
(RL*COIM1*COIM2*CORL3*CORL4) - (UNRL*CORL1*CORIL2*CORL4 *
COIM3) - (RL*COIM1*COIM3*CORL2*CORL4) - (RL:*CORL1*CORL4 *
COIM2*COIM3) + (UNRL*COIM1*COIM2*COIM3*CORL4) - (RL*CORL1*
CORL2*COIM3*COIM4 )+ (UNRL*COIM1*COIM3 *COIM4 *CORL2) +
(UNRL*CORL1*COIM2*COIM3*COIM4) + (RL*COIM1*COIM2*COIM3*
COIM4) - (UNRL*CORL1*CORL2*CORL3*COIM4 ) -~ (RL*COIM1*COIM4*
CORL2*CORL3) - (RL*CORL1*CORL3*COIM2*COIM4) + (UNRL*COIM1*
COIM2*COIM4*CORL3)) *FIR)
SUMI=SUMI+ ( ( (RL*CORL1*CORL2*CORL3*COI4) - (UNRL*COIM1*
COIM4*CORL2*CORL3) ~ (UNRL*CORL1*CORL3 *COIM2 *COIM4) -
(RL*COIM1*COIM2*COIM4*CORL3) - (UNRL*CORL1*CORL2*COIM3*
COIM4) - (RL*COIM1*COIM3*COIM4 *CORL2) - (RL*CORL1*COIM2*
: COIM3*COIM4) + (UNRL*COIM1*COIM2*COIM3*COIM4) + (RL*CORL1*
T CORL2*EORL4 *COIM3) - (UNRL*CORL2 *CORL4 *COIM1*COIM3) -
(UNRL*CORL1*CORL4 *COIM2 *COIM3) - (RL*CORL4 *COIM1*COIM2 *
COIM3) + (UNRL*CORL1*CORL2 *CORL3 *CORL4 ) + (RL*CORL2*CORL3*
CORL4 *COIM1) + (RL*CORL1*CORL3 *CORL4 *COIM2) - (UNRL*CORL3 *
CORL4 *COIM1*COIM2) ) *FIR)
50 CONTINUE
51 CONTINUE

RETURN

END

+
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+
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SUBROUTINE BAR2D(RP, SP,P,Q,XL,YB,DV,DZ,L,N,PI,WN,SPR,W,W0,R,MASS,
+ROEC, SUMR, SUMI)

SUMR=0

SUMI=0

DO 80 J=1,N

DO 79 I=1,L
XO=XL~I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2)+(X0**2) +(X¥0**2))
RO=SQORT((RP**2) 4+ (X0-P) **2+(YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0)+(X0-P) /RO
B=(Y0/S0)+(Y0-Q) /RO
CUSK=COS (WN* (RO+S0) )

SENK=SIN{(WN* (RO+S0))
AK=1.0/(RO*SO0)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) ~WN*AK*CUSK*

- TTEe-=—~———_(CUST+CUSF)
FIR=SIN(WN*B*(Dz/2.0))*SIN(WN*A*(DV/2.0))/

+ (PI*WN**2*A*B)

’ X2=XL-SPR-I*DV+DV/2.0
Y2=SQRT((YB-J*DZ+DZ/2.0) **2)
D1=(SPR*SP) / (X2+SPR)

Wl=(SPR*Y2) / (X2+4+SPR)
X1=SQRT( (SPR**2) 4 (D1**2) + (W1**2))



Z1=SQRT((D1**2)+(W1**2))

V=ASIN(Z1l/X1)

CUSV=CO0S (V)

CORL=( ({W**2) - (WO**2) ) **2+W**2* ((R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) )/ (((W**2) - (WO**2))**2+W**2*
( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIM=~(2.0*W* ((W**2)~-(W0**2)) *(ROEC/
(MASS*CUSV) ) )/ { ({(W**2) ~ (WO**2) ) **24W**2*

( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
SUMR=SUMR+ ( (RL*CORL) + (UNRL*COIM))*FIR
SUMI=SUMI+ ( (UNRL*CORL) - (RL*COIM) ) *FIR

79 CONTINUE
80 CONTINUE

RETURN
END

SUBROUTINE BAR3D(RP, SP,PZ,P,Q,XL,YB,DV,DZ,L,N, PI,WN, SPR,W, W0,
+R,MASS, ROEC, SUMR, SUMI)

SUMR=0

SUNIE0—————— -

DO 82 J=1,N
DO 81 I=1,L

+

XO=XL~I*DV+DV/2.0
YO=YB~J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (X0**2) 4+ (YO**2))
RO=SQORT ( (RP**2) + (XO-PZ) **2+ (YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) + (X0-PZ) /RO

B=(Y0/S0)+ (¥Y0-Q) /RO
CUSK=COS (WN* (RO+S0) )
SENK=SIN(WN* (RO+S0))
AK=1.0/(RO*S0O)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 * SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*
(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)
X2=XL+SPR-I*DV+DV/2.0
Y2=SORT ( (YB-Q-J*DZ+DZ/2.0) **2)
D2=(RP* (SPR~-P) )/ (X2+SPR-P)
W2=(Y2*(SPR-P) )/ (X2+SPR-P)
X1=SQRT ( (SPR-P) **2+ (D2**2) + (W2**2))

Z1=SQRT ((D2**2) + (W2**2))

=ASIN(Z1/X1)
CUSV=COS (V)
CORL=( ( (W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) )/ (((W**2) - (WO**2) ) **2. . gr*2*

c—g—-—— [ (R/MASS)+ (ROEC/ (MASS*CUSV) ) ) **2)

+
+

COIM=-(2.0*W* ((W**2)~(WO0**2)) * (ROEC/
(MASS*CUSV) ) )/ (((W**2) - (WO**2) ) **24W**2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
SUMR=SUMR+ ( (RL*CORL) + (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (UNRL*CORL) - (RL*COIM) ) *FIR

81 CONTINUE
82 CONTINUE

RETURN
END

SUBROUTINE BAR4D(RP, SP,PZ,P,Q,XL,YB,DV,DZ,L,N,PI,WN, SPR, W, W0,
+R,MASS, ROEC, SUMR, SUMI)

SUMR=0
SUMI=0

DO 84 J=1,N
DO 83 I=1,L

XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (XO0**2) + (YO**2))
RO=SQRT( (RP**2) + (XO-PZ) **2+ (YO-Q) **2)
CUST=SP/SO

CUSF=RP/RO

A=(X0/80) + (X0-PZ) /RO

B=(YO/S0) +(YO-Q) /RO
CUSK=COS (WN* (RO+S0))
SENK=SIN (WN* (RO+S0))

AK=1.0/ (RO*SO)



—_——

+

RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*
(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)

X2=XL-SPR-I*DV+DV/2.0

Y2=SQRT( (YB-J*DZ+DZ/2.0) **2)

D1=(SPR*SP)/ (X2+SPR)

Wl=(SPR*Y2) / (X2+SPR)

X1=SQRT ( (SPR**2) + (D1**2) +(W1**2))

Z1=SORT((D1**2) +(W1l**2))

V1=ASIN(21/X1)

CUSV1=COS (V1)

CORL1=({ (W**2) - (WO**2) ) **24|W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV1) ) *%*2) ) / (((W**2) = (WO**2) ) **24y**2*
((R/MASS) + (ROEC/ (MASS*CUSV1) ) ) **2)
COIMl=-(2.0*W* ((W**2) - (WO**2))*(ROEC/
(MASS*CUSV1) ) )/ (((W**2) - (WO**2) ) **24|r*2*

((R/MASS) + (ROEC/ (MASS*CUSV1) ) ) **2)

Y3=SQRT( (YB-Q-J*DZ+DZ/2.0) **2)
D3=(RP* (SPR-P) )/ (X2+SPR-P)
W3=(Y3* (SPR-P) )/ (X2+SPR-P)

X3=SQRT( (SPR-P) **2+(D3**2) + (W3**2))
Z3=SQRT((D3**2)+ (W3**2))

V2=ASIN(Z3/X3)

CUSV2=COS (V2)

CORL2=( ((W**2) - (WO**2) ) **24+W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV2) ) **2) ) / ( ((W**2) - (WO**2) ) **24W**2*

=4 ({R/MASS)+ (ROEC/ (MASS*CUSV2))) **2)

+
4

+

<+
83

COIM2=-(2.0*W* ((W**2) - (WO**2)) * (ROEC/
(MASS*CUSV2) ) )/ (((W**2) =~ (WO**2) ) **2 4 *2*
((R/MASS) + (ROEC/ (MASS*CUSV2) ) ) **2)

SUMR=SUMR+ ( ( (RL*CORL1*CORL2) -~ (UNRL*COIM1*CORL2) -
{RL*COIM1*COIM2) - (UNRL*CORL1*COIMZ) ) *FIR)
SUMI=SUMI+ ( ( (RL*CORL1*COIM2) - (UNRL*COIM1*COIM2) +
(RL*COIM1*CORL2) + (UNRL*CORL1*COIM2) ) *FIR)

CONTINUE

84 CONTINUE

RETURN
END

SUBROUTINE BARZE(RP,SP,P,Q,XL,YB,DV,DZ,L,N,PI,WN, SPL,W,W0,
+R,MASS,ROEC, SUMR, SUMI)

SUMR=0
SUMI=0

DO 86 J=1,N

DO 85 I=1,L

XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2) + (X0**2) + (YO**2))
RO=SQRT( (RP**2) + (XO-P) **2+ (YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) + (XO-P) /RO
B=(Y0/S0)+{Y0-Q) /RO
CUSK=COS (WN* (RO+S0))
SENK=SIN (WN* (RO+S0))
AK=1.0/ (RO*S0O)

= *2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*
(CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
(PI*WN**2*A*B)
X3=SPL-XL+I*DV-DV/2.0
Y3=SQRT((YB-J*DZ+DZ/2.0) **2)
D1=(SPL*SP) / (X3+SPL)
Wl=(SPL*Y3) / (X3+SSPL)
X1=SQRT((SPL**2)+(D1**2)+(W1**2))
Z1=SQRT((D1**2)+(W1**2))
V=ASIN(Z1/X1)
CUSV=COS(V)
CORL=( ((W**2) - (WO**2) ) **24+W**2* ( (R/MASS) **2- (ROEC/
(MASS*CUSV) ) **2) )/ (((W**2) -~ (WO*%*2) ) *#*24[*x*2*
((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIM=-(2.0*W* ((W**2) - (WO**2) ) * (ROEC/
(MASS*CUSV) ) )/ (( (W**2) - (WO®*2) ) **24**2*



+ ((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
SUMR=SUMR+ ( (RL*CORL) + (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (UNRL*CORL)~ (RL*COIM))*FIR

85 CONTINUE
86 CONTINUE
RETURN
END

-—-SUBRQUTINE BAR3E(RP, SP,PZ,P,Q,XL,YB,DV,DZ,L,N, PI,WN, SPL, W, WO,
+R,MASS, ROEC, SUMR, SUMI)
SUMR=0
SUMI=0
Do 88 J=1,N
DO 87 I=1,L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT( (SP**2)+ (X0**2) +(YO**2))
. RO=SQRT((RP**2) + (X0-P2) **2+(YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) + (X0-PZ) /RO
B=(Y0/S0)+(Y0-0Q) /RO
CUSK=COS (WN* (RO+S0))
SENK=SIN(WN* (RO+SO))
AK=1.0/ (RO*S0O)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK *SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUF) ~-WN*AK*CUSK*
+ - (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)
X3=SPL-XL+I*DV-DV/2.0
Y3=SORT((YB-J*DZ+DZ/2.0-Q) **2)
D3=(RP* (SPL+P) ) / (X3+SPL+P)
W3=(Y3*(SPL+P) )/ (X3+SPL+P)
X1=SQRT ( (SPL+4P) **24 (D3**2) + (W3**2))
Z1=SQRT((D3**2) +(W3**2))
V=ASIN(Z1/X1)
. CUSV=COS (V)
T CORLE(C(W**2) - (WO**2) ) **24W**2* ( (R/MASS) **2- (ROEC/

+ (MASS*CUSV) ) **2) )/ (((W**2) - (WO**2) ) **24Wr*2*

+ ((R/MASS) + (ROEC/ (MASS*CUSV) ) ) **2)
COIM=-(2.0*W* ((W**2)-(WO0**2)) *(ROEC/

+ (MASS*CUSV) ) )/ (((W**2) - (WO**2) ) **24W**2*

+ ((R/MASS) + (ROEC/ (MASS*CUSV)) ) **2)

SUMR=SUMR+ ( (RL*CORL) + (UNRL*COIM) ) *FIR
SUMI=SUMI+ ( (UNRL*CORL) - (RL*COIM) ) *FIR
87 CONTINUE
88 CONTINUE
RETURN
END

SUBROUTINE BARAE (RP,SP,PZ,P,Q,XL,YB,DV,DZ,L,N,PI,WN,SPL,W,WO0,
+R,MASS, ROEC, SUMR, SUMI)
SUMR=0
SUMI=0
DO 90 J=1,N
DO 89 I=1,L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2) +(X0**2)+(YO**2))
RO=SQRT( (RP**2) + (X0-PZ) **2+ (YO-Q) **2)
CUST=SP/SO
CUSF=RP/RO
A=(X0/S0) +(X0-PZ) /RO
B=(Y0/S0)+(YO-Q) /RO
CUSK=COS (WN* (RO+S0) )
SENK=SIN(WN* (RO+S0))
Tt ——AK=1. 0/ (RO*S0)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2 * SENK* (RO*CUST+SO*CUSF) ~-WN*AK*CUSK*
+ (CUST+CUSF)
: FIR=SIN(WN*B*(DZ/2.0)) *SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)
X2=SPL-XL+I*DV+DV/2.0
Y2=SQRT( (YB-J*DZ+DZ/2.0) **2)
D1=(SPL*SP) / {(X2+SPL)



