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Noise pollution in factories has become a major problem which has been highlighted in 

recent years. This thesis attempts to construct a model which will predict sound 

attenuation by finite barriers within enclosures, thus simulating factory conditions.

The research uses the classical Kirchhoff-Fresnel diffraction theory outlined in Bom 

and Wolf1 to develop a model by which the barriers’ surface is divided into elements. 

Using Babinet’s Principle, sound attenuation was predicted for a finite barrier in free 

space. The sound source was assumed to be a point source of monotonic frequency.

The free space environment served as a basic theoretical model where computer 

programs compared the zero and first-order models. This comparison showed that the 

first-order model was the more productive and identified the optimum element size to 

give an accuracy within the precision grade of measurement.

After validating the theory, the model was adapted to predict insertion loss, using a 

finite barrier in contact with the ground. There is much contemporary literature for 

this model but little research has been undertaken in predicting sound losses due to 

finite barriers within enclosures.



A further extension to the research was to place the barrier in a flat room, where 

reflections of the sound waves from the roof as well as the floor were included. This 

model also allowed the effect on insertion loss to be examined by increasing the aspect 

ratio of width/height of the barrier.

Finally, side walls were introduced into the model to see if they have any significant 

effect on insertion loss as compared to the flat room model.



MEMORANDUM

This thesis is an account of original research performed by the author in the School of 

Science, Division of Applied Physics, Sheffield Hallam University.
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1 INTRODUCTION

Hearing loss, due to excessive noise in industry, is a serious problem that has been 

highlighted in recent years. This report attempts to construct theoretical models which 

use barriers to reduce noise in enclosures and hence simulate factory conditions. 

Although there has been a great deal of research into straight-edged semi-infinite 

barriers, the work presented in this thesis predicts noise reduction produced by 

barriers in finite enclosures. To the author's knowledge little work has been done on 

this aspect of the subject.

Initially, the report uses the classical Kirchhoff-Fresnel diffraction theory outlined in 

Bom and Wolf1 to develop a model by which the barriers1 surface was divided into 

elements. By incorporating Babinets' Principle into the model, sound attenuation was 

predicted for a barrier in free space.

The Kirchhoff-Fresnel theory is described in Section 1.1.

1.1 The Integral Theorem of Kirchhoff

The basic idea of the Huygens-Fresnel theory is that the disturbance at a point P  arises 

from the superposition of secondary waves that proceed from a surface situated 

between this point and the source. This idea was put on a sounder mathematical basis 

by Kirchhoff who showed that the Huygens-Fresnel principle may be regarded as an 

approximate form of a certain integral theorem which expresses the solution of the 

homogeneous wave equation, at an arbitrary point in the field, in terms of the values of 

the solution and its first derivatives at all points on an arbitrary closed surface 

surrounding P.

We consider first a strictly monochromatic scalar wave:

. V(x,y,z,t) = u(x,y,z)e~i0,t ( 1 . 1 . 1 )

1



In vacuum the space-dependent part then satisfies the time-independent wave 

equation:

{v2 +k2Yj = 0 ( 1. 1.2)

where k - a/ c or k = 2f ,  X being the wavelength of the medium Equation (1.1.2) is 

known as the Helmholtz equation and was first deduced for monochromatic accoustic 

waves. It implies that there is no dissipation or absorption. This is not strictly true in 

air - especially over long disances.

Let v be a volume bounded by a closed surface s, and let P  be any point within it; we 

assume that w possesses continuous first- and second-order partial derivatives within 

and on this surface. If vj1 is any other function which satisfies the same continuity 

requirements as u , we have by Green's theorem:

where %, denotes differentiation along the inward normal to S (Green's theorem is 

usually expressed in terms of the outward normal, but the inward normal is more 

convenient in the present application). In particular, if u 1 also satisfies the time- 

independent wave equation, ic if

( v 2  +/C2 ) u 7  = 0 (1.1.4)

Figure 1:

Derivation of the Helmholtz-Kirchhofif 

integral theorem: region of integration

then it follows at once from (1.1.2) and (1.1.4) that the intergrand on the left of (1.1.3) 

vanishes at every point of v, and consequently:

2



£
d^j1 x d^J kj--------- LJ
dn dn

dS = 0 (1.1.5)

Suppose we take u 7 (x,y,z) = e'h/ , where s denotes the distance from P  to the point

(x,y,z). This, function has a singularity for 5  = 0, and since u 1 was assumed to be 

continuous and differentiable, P  must be excluded from the domain of integration. We 

shall therefore surround P  by a small sphere of radius e and extend the integration 

throughout the volume between S and the surface S1 o f this sphere (Figure 1). In 

place of (1,1.5), we then have:

£+£
9  ( e'M  e‘k dcj
fit V 5 s dn

iS=  0

whence
dn

eiks dKj 
s dn l s = - J l

iks

kj— i ik — --------—
s V sJ s an

em d^>
IS'

( 1.1.6)

where dH denotes an element of the solid angle. Since the integral over s is 

independent of e —» 0 ; the first and third terms in this integral give no contribution in 

the limit, and the total contribution of the second term is 4 nu(P). Hence

d_
dn

f  ik s\e e,ks d \ j
1

\  s J s dn J
dS (1.1.7)

This is one form of the 'integral theorem of Helmholtz and Kirchhoff.

We note, that as k -» 0, the time independent wave equation (1.1.2), reduces to 

Laplace's equation V2u  = 0, and (1.1.7) then goes over into the well known formula 

of potential theory.

d  f  1 d^j
4n ^ s'\ d n \s) s dn

yds ( 1 1 8 )
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IfP  lies outside the surface S, but u  is still assumed to be continuous and differentiable 

up to the second order within S', and if as before we take u 1 = e,ks/ ,  equation (1.1.3) 

remains vabd through out the whole volume within S. According to ( 1 .1.5) the surface 

integral then has the value zero.

There is a complementary form of the Helmholtz-Kirchhoff theory for the case when u  

is continuous and differentiable up to the second order outside and on a closed surface 

S (sources inside). In this case, however, as in other problems of propagation in an 

infinite medium, the boundary values on S are no longer sufficient to specify the 

solution uniquely and additional assumptions must be made about the behaviour of the 

solution as S —» oo.

1.2 Kirchhoff s Diffraction Theory

Whilst the integral theorem of Kirchhoff embodies the basic idea of the Huygens- 

Fresnel principle, the laws governing the contributions from different elements of the 

surface are more complicated than Fresnel assumed. Kirchhoff showed, however, that 

in many cases the theorem may be reduced to an approximate but much simpler form, 

which is essentially equivalent to the formulation of Fresnel, but which in addition 

gives an explicit formula for the inclination factor that remained undetermined in 

Fresnel's theory.

So far we have considered strictly monochromatic waves. We now derive a general 

form of Kirchhoff s theorem which applies to waves that are not necessarily 

monochromatic.

Let V(x,y,z, t) be a solution of the wave equation

c 2 a :-  <u -9>

and assume that V can be represented in the form of a Fourier integral

4



1 r
V (x ,y ,z ,t) = - j= ? \  (x,y,z)e~'a dm ( 1.1.10)

Then, by the Fourier inversion formula

v a(x ,y ,z) = - V ( x , y , z , t ) e l0*dt 
dlTU

Since V(x,y,z, t) is assumed to satisfy the wave equation (1.1.9), the time independent 

component (x ,y ,z ) will satisfy the time independent equation ( 1 . 1 .2 ).

Also, if  V satisfies the appropriate regularity conditions within and on a closed surface 

S (concerning the first and second derivatives), we may apply the Kirchhoff formula 

separately to each Fourier component (p)-

d_
dn

r eiks\  eiks d \ j .
\  s J s ch

\dS ( 1. 1. 12)

Combining equations (1.1.10) and (1.1.12), changing the order of integration and 

replacing k by - 7  gives:

4n -Jin
d
dn

e  ̂ c)
-IQjf

e
s s

\  J

Okj.
dn

dco

= —

47rJJs d in
V l-f-ff) e v c/ d<~>.

\dfi Vs/ sc ch I s dn
dco

We note from equation 1.1.10 that

d(v(x ,y ,z ,t))  1  r  , .
- = - j ^ L u ‘°(x ’y ’z ) ~ \ ,a)e )deodt

(W 1 d^J
and —  = - 7= f   °-e'iatdco

<h d in  J " ° °  dn
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This enables us to write:

1 ds dV~ 1 dV~
cs ch _ dt _ s _ dn _

iS

where the square brackets denote ‘retarded values’ ie values of the function taken at 

the time (t - f ). Equation 1.1.13 is the general form of Kirchhoff s Theorem.

Consider, a monochromatic wave, from a point source Po, propagated through an 

opening in a plane opaque screen and let P  (as before) be the point at which the light 

disturbance is to be determined.

We assume that the linear dismensions of the opening, although large compared with 

the wavelength, are small compared to the distances of both Po and P  from the screen.

(a)

Figure 2 Opening in a plane opaque screen

To find the disturbances at P  we take the Kirchhoff integral over a surface S formed by 

jd, the opening in the screen, (S, a portion of the non illuminated side of the screen and

C ,  a portion of a large sphere of radius R, centred at P  which, together with cl and (E, 

forms a closed surface.

Applying Kirklilioff s Theorem (equation 1.1.7) to this surface gives:

d'u(  iks \ (  iks Ae e
K S ) I s ) 3 i

\dS (1.1.14)
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where, as before, s is the distance of the element dS from P  and denotes 

differentiation along the inward normal to the surface of integration.

The difficulty is that the values of ̂  and on A, (A and C which should be substituted

into (1.1.14) are not known exactly.

However, it is reasonable to suppose that everywhere on A, except in the immediate 

neighbourhood of the rim of the opening, kj and will not differ appreciably from 

the values obtained in the absence of the screen, and that on (A these quantities will be 

approximately zero. Kirchhoff accordingly set:

on
dn ch

on (A: = 0  , = 0
dn

(1.1.15)

where

A e*  <9w(1) A e*
r ’ dn r

The derivative is obtained as follows 

d J V  d\rik e itr- e itr\
- s t = a \ — — r

i k - ~
r

cos (»,r)

Ae ikr

i k ~ -
r

Sr

St*
as 8 r —» 0  we have —  = cos(n,r)

From the diagram shown, provided 

that we make 8 r, 8 n small, the 

wavefront can be regarded as 

essentially plane and so

dr , v —  « cos(«,v)
3 i

1



now
d'u^  dr Ae ikr

dn dr dn
i k - -

1
cos(n,r) (1.1.16)

The approximation set in 1.1.15 are called Kirchhoff s Boundary Conditions and are 

the basis of Kirchhoff Diffraction Theory.

We must now consider the spherical portion C. The assumption is made that the radius 

R of the sphere at C can be made sufficiently large so that the radiation does not reach 

C  until time t = to . At any time before that time we can ignore the integral over C.  

(This implies a departure from monochromacy since a perfectly monochromatic field 

must exist for all time t.)

It is now possible to substitute (1.1.15) and (1.1.16) into (1.1.14) to obtain a more 

explicit form of

Consider the term u —  
3i \  s J

By the same argument as was applied to the deduction that

—  = cosfw.r) we have —  = cos(S,r) 
dn ^ J dn ^ }

f  A ks\

Now

or d_
6&

iks „ iksS.i.k.e - e
\  s J

iks

\  S J
ik —  

v s.

Hence, from (1.1.16)

/  - ik s \

u-
di

Ae ikr - iks

\  s
• - — ( ik -  — j • cos(n,s)

Ae1k{r+s)
rs
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Also, from (1.1.16)

 •
s

Therefore equation (1.1.14) can now be rewritten as:

cos«,r dS (1.1.17)

This is the exact form of the Fresnel-Kirchhoff diffraction formula. In the optical

treatment, because of the short wavelength both 7  and 7  are neglected in comparison
TLtz

with k. Making this approximation and setting k = —  gives:

The way in which the theory is modelled allows attenuation to be calculated regardless

barrier. A method of predicting sound attenuation for a barrier in contact with the 

ground is then described. This model makes provision for sound being reflected from 

changing ground conditions as well as that taking the direct route.

The model was then extended to that of a flat room, where reflections from the roof, 

as well as the ground, contribute to sound loss due to the barrier. Finally, walls were 

introduced into the model, allowing the insertion loss to be predicted using a barrier 

within an enclosure.

of the shape and size of the barrier and of the proximity of source and receiver to the

9



2 REVIEW OF PREVIOUS RESEARCH

During the period up to 1980, much investigation, which develops and extends optical 

diffraction theoiy for the purpose of predicting sound levels behind barriers is 

summarised by T Isei, TFW Embleton and J E Piercy2. They classify both 

theoretical and experimental work in their area into four categories:

(i) To obtain generality for different geometries, the attenuation or insertion loss of a 

barrier has been derived as a function of non-dimensional variables which are 

determined by barrier geometry. Redfeam3  showed the attenuation by a barrier to 

be a function of the non-dimensional ratio of the length of the perpendicular from 

the edge of the barrier to the line between source and receiver, divided by 

wavelength, using the diffraction angle as a parameter.

Maekawa4-5, developed his well known chart, in which attenuation is shown as a 

function of Fresnel number, by extending Kirchhoffs diffraction theoiy and 

correcting the theoretical values empirically to allow for the presence of the 

ground. Kurze and Anderson6  have given a similar chart for an incoherent line 

source, also in terms of Fresnel number. Kawai et al7  have developed a simple, 

approximate expression for Bowman and Senior's formula8, which is based on 

MacDonald's rigorous solution9, again using the Fresnel number. Most of these 

prediction schemes are based on the idea of a semi-infinite screen, which does not 

allow for interference due to reflection from the ground.

(ii) Several studies have been made of the effectiveness of absorbent material on the 

barrier surface. Kawai et al7  have discussed the effect of the image source in a 

perfectly reflecting barrier using the second term of the approximate expression8  of 

MacDonald's solution. Fujiwara et al1 0  showed the intensity of the diffracted field 

due to the image in the barrier by introducing the complex pressure reflection 

coefficient for incident plane waves into the second term of MacDonald's

10



equation8. Yuzawa1 1  also evaluated the diffracted field due to the image source in 

the barrier, using the second term of an approximate solution by Pierce12, but 

regarded the imaginary part of the admittance of the barrier surface as zero. This 

work on absorptive barriers also assumes semi-infinite barriers, and so does not 

allow for interference which arises in the presence of the ground.

(iii)Dififraction theoiy has been developed for different shaped obstacles, such as a 

wedge or a thick barrier. Pierce1 2  developed the theory for diffraction by a wedge 

and extended it to double-edge diffraction, and, hence, to a thick barrier, using 

Keller's geometrical theory of diffraction13. Fujiwara et al1 4  have discussed the 

effect of barrier thickness in terms of MacDonald's theory9.

(iv) Some work has been presented which allows for the presence of the ground, and 

also interference due to waves reflected from the ground, Scholes et al1 5  carried 

out full scale barrier measurements on grass-covered ground. They observed an 

interference pattern due to reflection at the ground on measurements both with and 

without the barrier. Isei et al1 6  have also observed interference patterns using a 

motor-driven artificial line source on the ground. Jonasson1 7  has proposed a 

method for calculating the noise reduction of a barrier on ground of finite 

impedance. To evaluate the diffracted field due to ground reflections, Jonasson 

introduced Ingard's theory1 8  of sound propagation along a boundary, into the first 

term of MacDonald's solution, neglecting the second term, and assumed that the 

ground-reflected field could be set equal to the field due to the real source when 

source and receiver were both situated close to the reflecting surface. Thus he 

found a simple approximate solution for the diffracted and reflected fields due to 

barrier and ground which includes only one phase-dependent term. He concluded 

that the insertion loss of a barrier is often small, even negative, and this tendency 

appears when the excess attenuation due to the ground is large. Thomasson1 9 - 2 2  

developed a new ground impedance model1 9 -2 2  and introduced it into a diffraction 

theory based on numerical integration of the direct and complex reflected waves



over the surface of the barrier. Application of Babinet's principle yields the 

diffracted field at the receiver behind the barrier. In Thomasson's model, the 

admittance of the ground is described by four parameters that are adjusted for best 

fit to measurements of a sound field above the same type of ground. Thomasson 

also carried out full-scale barrier experiments2 2  on several kinds o f ground and 

found good agreement with his theory.

In their work on barriers, T Isei, T F W Embleton and J E Piercy2 3 -2 4  reported on 

one calculation scheme and have used it to quantitatively analyse the interference 

pattern measured in the diffracted field behind barriers. In this scheme the Weyl- 

van der Pol2 5  equation is applied to the sound field on each side of the barrier: the 

diffraction of each direct, reflected, and ground wave thus appears explicitly.

Isei, T F W Embleton and J E Piercy2  seek a better understanding of barrier 

performance in practical situations. Sound levels behind barriers on the ground, as 

predicted by five different theories, are first compared with each other and with 

measured results.

The five theories are:

1 Keller's geometrical theory of diffraction1 3

2 Kirchhoff-Fresnel diffraction theory1 -2 6

3 Thomasson's theory based on Babinet's principle2 1 *2 2

4 Edge-integral diffraction theory based on the Young-Rubinowicz formula2 7

5 A modification of MacDonald's diffraction theory28.

Despite the vast amount of research described above, there is a dearth of published 

work on noise attenuation due to finite barriers.

Maekawa4 - 5  postulated a method for the prediction of the attenuation due to a 

finite barrier on reflecting ground by applying the method of calculation of 

diffraction over the top edge of a semi-infinite screen also to the ends of the finite

12



screen. However, his theoiy limits the location of source and receiver and also the 

barrier is restricted to rectangular shapes. Kurze and Anderson6  deal with finite 

barriers in a way which predicts the length of the barrier required in the presence of 

an infinite line source that gives approximately the same attenuation as an infinitely 

long barrier.

From the background work, described above, it can be seen that predicted 

solutions have been confined to straight-edged semi-infinite barriers. The work 

described in this report subdivides the barrier into elements to enable a rigorous 

solution of any barrier shape. H Medwin31, in 1989, described a technique for 

calculating the acoustical shadowing due to finite barriers. More than 20 years 

previous to Medwin's paper Biot and Tolstoy's3 2  paper on normal coordinates 

provided a closed form solution to the diffraction of a pulse by an infinite rigid 

wedge. Medwin made use of Biot and Tolstoy's pulse solution for an infinite 

wedge as a building block, which when used in conjunction with a computer, can 

produce both time- and frequency-domain solutions to real-world problems of 

shadowing by finite noise barriers.

The advantage of the pulse description when adapted to digital computer 

calculations is the same as in physical model experiments which use pulse 

techniques; a diffracted contribution from each barrier edge can be initiated at the 

least time when the pulse diffracts from the edge and it can be terminated at the 

instant when the diffracted pulse from the end of the edge has passed. 

Superposition gives the total impulse when there is more than one edge. The total 

temporal response can then be Fourier tranformed digitally to provide the desired 

frequency response of the finite barrier.

In 1982, Y Nicolas, T F W Embleton and J E Piercy5 4  chose to concentrate on the 

effects of diffraction and to minimise the effects of ground reflection. They chose 

to compare three different methods of performing the diffraction part of the
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calculation using the same method for calculating ground effects. For the latter, a 

method was chosen which had previously been successfid for predicting the 

propagation of sound over various ground surfaces (without barriers). The Weyl- 

Van der Pol formulation familiar for the propagation of electromagnetic waves3 3  is 

used as adapted for acoustics by Rudnick3 4  and corrected by Chessell35. The 

ground is considered as a semi-infinite porous medium whose acoustic properties 

can be specified using a single parameter, the flow resistivity, by empirical 

equations of Delany and Bazley36.

The three methods used for the diffraction part of the calculation are:

(1) The first order approximate Macdonald solution

The computer program 'SCREEN1 of Isei et al2  is used for prediction here, 

including the effect of the ground. The reflection coefficient of the barrier is 

assumed to be unity.

(2) Line integral solution

The classical theory of diffraction is the Kirchhoff-Fresnel theoiy which is 

much used in optics. Embleton2 7  removed the approximations implicit in using 

a constant obliquity factor, unity or otherwise, by numerically evaluating a line 

integral formulation based on the Young-Rubinowicz solution. The program 

'DIFRCT described by Isei et al2  is used for this calculation, and it too includes 

the effect of the ground.

(3) Macdonald solution

The more exact solution proposed originally by Macdonald9  in 1915 for 

diffraction by a rigid wedge has been improved by a number of investigations. 

Ambaud and Bergassoli3 7  computed the amplitudes of the diffracted wave, and 

confirmed them by measurements in an anechoic chamber. While useful, these 

results do not form a satisfactory basis for the design of noise barriers because
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(a) there are extreme computational difficulties38, (b) distances between the 

barrier and source or receiver are limited to a small number of wavelengths for 

both the computational method and the measurements, (c) the environmental 

field is perfectly anechoic, without the reflecting ground plane, and (d) tests are 

done for only one frequency, 10 kHz.

Fortunately, Hadden and Pierce3 8  have adapted the theory to a form which can 

readily be integrated numerically with established Laguerre techniques.

Due to the increase in interest in protection against noise in industrial enclosures, 

E Katarbinska3 9  presented a method of calculating the insertion loss of an acoustic 

barrier in a flat room The calculation requires that both diffraction and reflection 

phenomena are taken into account.

A relatively simple case is a barrier in a flat room where the energy of the waves 

reflected from the boundary walls is negligibly small compared with the energy of a 

direct wave and waves reflected from the floor and the roof. Bolleter4 0  describes a 

flat room as a room the height of which is at least five times lower than the other 

two dimensions.

Kurze4 1  has presented the theoretical model of the shielding by a barrier in a flat 

room, filled with randomly distributed, small scatterers. The barriers insertion loss 

is due to the shielding of the direct and diffuse field and enhancement of the 

scattered field because of reflections from a barrier. This approach is based on the 

statistical concept of the scattered sound.

Katarbinska presented a different approach. To analyse both reflection and 

diffraction phenomena new assumptions to the image source method have been 

introduced. The analysis of barrier performance is made for a semi-infinite rigid 

screen, located in a flat empty room, when the sound source is an omnidirectional
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point source. The energy of airborne sound and of sound energy going through 

the barrier is neglected.

Katarbinska concluded that the insertion loss of a barrier in a flat room is 

influenced by:

(a) the reduction or limitation of the direct waves and the waves reflected from the 

floor and the roof;

(b) the presence of the waves diffracted over the barriers edges and the reflected- 

diflfacted waves.

The new assumptions of the expanded image source method allow for geometrical 

analysis of the reflected wave and the reflected-dififr acted wave field, which lead to 

a simple algorithm of the barriers insertion loss.

The theoretical model of the barrier's performance in a flat room was initially 

verified by model scale measurements.

Andre L'Esperance4 2  presented a paper in 1989, the purpose being to extend, to 

the case of finite barriers, the method suggested by Jonasson1 7  for computing the 

insertion loss of infinite barriers on the ground. It combines diffraction theory with 

a model for sound propagation over the ground to estimate the diffracted field 

created by each diffracted path. The diffracted paths are identified by simple 

geometrical considerations. The method was compared with the models proposed 

by Thomasson2 1  and Medwin3 1  and with experimental measurements. However, 

the barriers studied by Thomasson were rather long compared to their height, 

which did not allow a significant diffraction contribution around the sides of the 

barrier. Also, the source-barrier and barrier-receiver distances that he considers 

are quite large in comparison to the height of the screen (a typical ratio is 10:1). In 

practical situations, barriers are often erected near the source or receiver, making 

his model inappropriate.



Medwin3 1  studied the case of a barrier with a height-length ratio of approximately 

0.5, with comp arable source-barrier and receiver-barrier distances.

In 1991, D C Hothersall, S N Chandler-Wilde and M N Hajmirzae4 3  used a 

numerical model to investigate the sound field in the region of outdoor noise 

barriers using the boundary element method. The model can be applied to barriers 

of different cross-sectional shapes and arbitrary distribution of surface cover. The 

model is two-dimensional but results show good agreement with those obtained for 

the three-dimensional problem of propagation from a point source over a noise 

barrier of infinite length. The model is used to compare the efficiency of a wide 

range of constructions of single noise barriers of different height, cross-sectional 

shape and surface cover. The effects of the ground are also considered.

The results of the numerical model do not predict the absolute values of the 

insertion loss of barriers for incoherent line sources such as road traffic. However, 

the model provides useful predictions of the relative performance of the barrier 

forms for this type of source.

The numerical model confirms that barrier height is of fundamental importance to 

the attenuation produced. Also, the type of ground cover has a large effect upon 

the calculated insertion loss of barriers. However, for the configurations 

considered it appears that this effect is largely independent of the form of the 

barrier.

For barriers with reflecting surfaces, those with vertical or nearly vertical sides 

perform significantly better than those with shallow sloping sides. There is general 

agreement that the insertion loss for the wedge is lower than for the screen, but no 

concensus as to the magnitude of this effect.

Kawai and Terai44, in 1990, theoretically investigated diffracted fields by thin rigid 

or absorbant barriers by using integral equations derived from Helmholtz-
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Kirchhoffs formula and from its normal derivative. The surface of the barrier is 

divided into elements to solve the integration equations numerically and the 

potential is assumed to be uniform on each element. For the numerical treatment 

of the integral equations in three dimensions, the integral including the strongly 

singular kernel is evaluated by the line integral along the edge of the element: this 

reduces the amount of computation and avoids the difficulty due to singularity. A 

numerical method which removes the problem of singularity is also presented to 

solve the integral equations in two dimensions. For a flat rigid harrier, farfield 

solutions in the high frequency range are evaluated asymptotically on the basis of 

Kirchhoff s boundary conditions and compared with exact solutions.

In 1992, Trevor J Cox and Y W Lam4 5  concentrated on the application of various 

solutions of the Helmholtz-Kirchhoff integral equation to predict the scattering 

from simple finite sized rigid reflectors commonly found in auditoria. These were 

plane panels and cylindrically curved panels. For the more approximate prediction 

methods their limitations were defined in terms o f the accuracy achieved and the 

range over which the methods were applicable. These methods were also used to 

investigate the use of a cut-off frequency to describe the limit above which 

specular type reflections dominate the scattering. It was found to be applicable 

only close to the geometric scattering angle. The scattering due to curvature was 

predicted by considering the variation in the direction of the local normal to the 

panel surface.

Also, in 1992, Y W Lam an S C Roberts4 6  developed a simple model of diffraction 

that predicts accurately the insertion loss of finite length barriers. The model is 

based on the geometric theory of minimum diffracted paths. Assumptions were 

made on the phase and amplitude of each diffracted wave to obtain a new and 

rather simple formulation of the solution. It provides a clear picture of the sound 

attenuation performance of a barrier as a function of barrier length. Extensive 

model experiments are used to verify the model. The model's accuracy in
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predicting the overall pattern of the narrow-band insertion loss is found to be 

comparable to that of an integral equation method, although the latter method 

produces better prediction in the fine details of the sound field. The model is much 

simpler than and as accurate as other methods that apply the usual geometric 

solutions to each diffracted path, and represents a major improvement on 

Maekawa's energy summation method for octave band finite barrier calculations.

In 1994, Y W Lam4 7  describes a simple model for the calculation of finite length 

barrier insertion loss, based on the concept of minimum diffraction paths. It makes 

use of Maekawa's empirical curve to estimate the attenuation associated with each 

diffracted path. However, instead of summing the energy contributions of the 

diffracted waves as suggested by Maekawa, a new formulation of phase 

relationships between the waves is developed to allow pressure summation. The 

result is a model which is simple to use and yet has accuracy substantially better 

than Maekawa's energy summation method, in predicting both narrow and octave 

band insertion loss of finite length barriers. It is believed that the model is both 

simple and accurate enough to replace Maekawa's energy summation method in 

engineering practice.

Also, in 1994, Y W Lam4 8  developed a simple model for the calculations of the 

attenuation of complex ground terrain profiles. The model is based on the simple 

ground reflection and minimum diffraction path developed by Y W Lam and 

S C Roberts46. The ground model is compared with existing environmental noise 

calculation models: the draft ISO5 0  model, the CONCAWE5 1 ,5 2  model and
53ENM . It is found that the new ground model has the best overall performance 

and agrees well with measured data on a variety of ground terrain profiles and 

conditions. The measured data are taken from the existing literature and cover 

both short- and long-range propagation. Serious errors are also found in the draft 

ISO model and in ENM which cast doubts on their suitability as standard 

environmental noise calculation models.
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Takagi, Hotta and Yamamoto49, in 1994, presented a practical expression for the 

estimation of sound attenuation by a finite barrier. The attenuation is determined 

by taking account of sound contributions from rectangular sections of a plane 

barrier located between a point source and a receiver. The expression for the 

attenuation due to a finite length barrier is finally formulated by combining the 

attenuations due to semi-infinite plane barriers.

Scale model experiments were carried out to check the validity of the expression 

and the results showed good agreement between them. It is shown that the 

expression obtained is useful and applicable to the design of a finite length barrier 

when the sound source has a broad band spectrum and the overall sound pressure 

level is a matter of interest.

The aim of this work is to predict by calculation the noise reduction by finite barriers. 

The theoretical background is based on Kirchhoff-Fresnel diffraction theory, from 

which an easy to use computer package has been compiled.

The work described in this thesis, therefore, gives greater flexibility in predicting noise 

reduction by finite barriers in free space, in outside conditions and also in enclosures. 

Comparison is made with results obtained by other workers for similar barrier 

geometries.
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3 DESCRIPTION OF WORK PRESENTED IN THIS REPORT

Although much work has been carried out on the predicuction of sound losses by 

semi-infinite barriers in outside conditions, little research has been undertaken in 

predicting sound losses due to finite barriers within enclosures. The main aim of this 

thesis, therefore, was to ultimately construct a model which will predict sound 

attenuation by finite barriers within enclosures, and thus simulate conditions which 

may prevail in factories. In recent years, hearing loss, due to excess noise in factories, 

has become a major issue and this thesis tries to predict ways of minimising this noise 

before the practical difficulties are encountered.

The research began by using the classical diffraction theory outlined by Bom and 

Wolf1 to develop a model by which the barriers' surface was divided into elements. By 

incorporating Babinets' Principle, this allowed the attenuation of sound to be predicted 

by a finite barrier in free space. It was assumed that the sound source was a point 

source of monotonic frequency. This assumption was made for two reasons, firstly 

because this type of source lends itself most favourably to a clear description of the 

diffraction technique and secondly because it acts as a basic model upon which the 

theory for more complex types of source may be developed at some later stage.

The barrier was assumed to be two-dimensional and the free space environment was 

initially assumed, again, because it served as a basic theoretical model which allowed 

other models to be developed to suit more complex environments later on.

Computer programs were written in Fortran, for both the zero and first order models. 

The models were compared to discover which was the more productive and used to 

identify the optimum element size to give an accuracy within the precision grade of 

measurement

Validation of the basic theory was accomplished by comparison with Fresnel and 

Fraunhofer diffraction theory. Further validation was accomplished by using the
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elemental computer model, with no barrier present, to examine the effect of extending 

the source-receiver distance.

Having established a theory that gave flexibility in calculating attenuation by a finite 

barrier in free space, the model was extended to predict insertion loss, using a .barrier 

in contact with the ground. There is much contemporary literature for this model and 

the author compares his findings with other workers for similar barrier geometries.

A further extension to the research was to place the barrier in a flat room, which 

includes reflections of the sound waves from the roof as well as the floor, but ignores 

the contribution of the walls. This model examines the effect on insertion loss of 

increasing the aspect ratio of width/height of the barrier. Although there is a dearth of 

research using barriers in enclosures, the author is able to compare the trends of his 

model with that of other recent work.

Finally, side walls were introduced into the model to see if there have any significant 

effect as compared to the flat room model.
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4 NUMERICAL SOLUTION OF THE KIRCIIHOFF-FRESNEL 
DIFFRACTION EQUATION

According to the Kirchhof-Fresnel diffraction theory, the amplitude at P, due to sound 

diffracted through the hole is given by:

where S = surface of the hole

A = amplitude at unit distance from the source

k = wave number = —
X

It is more convenient to introduce 0 = (n, s) and 0  = 180° - (n, r) so that 

cos 0  = cos (n, s)

-  cos 0  = cos (n, r)

S3Uf£i£
h

[NOTE: The diagram above is actually in three dimensions so that generally the 

vectors r and s do not he in the same plane.]



Now we can re-write equation (4.2) as follow:

where F(r,s) = — 
rs

ik —  
rJ

cos0  + | ik —  I cos#
s.

(4.3)

(4.3)

At high frequencies, the variations of Ur + s) and hence eik(̂ s) will be considerably 

greater than the variation of F(r, s) as we move across the area over which the 

integration is taking place. Therefore it should be possible to obtain a more rapid 

convergence of a finite element integration if F(r, s) is treated as a constant over the 

area of integration whilst the term eik̂ s) is integrated explicitly.

Hence by making s sufficiently small we may effect the following simplifications of 

equation (4.3).

A F(r,s) |-|- e<Hr̂ )ds (4.4)
(p) 4 fl- JJs

Consider a small rectangular area in the generalised barrier plane shown below:
PlflNF NoRrtfU. 
FROtA RCCtNFR

C o  -oR&irtftTTFS

( o J o )  oa/

IflRa A/oRHflL 
o/1 SouRCu

SouRCS

Figure 3 Small rectangular area in a generalised barrier plane
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The intersection between the barrier plane normal to the source and the barrier plane 

has coordinates (o, o) along x and y  where both x and y  are specified as being in the 

barrier plane.

Let the centre of the element under consideration, from the source, be specified by 

coordinates (xQ + x, y 0 +y)  where x, y  may take values between ±Ax, ±Ay respectively.

Then, for.a general point:

However, x2  andy2  are very small compared to the other terms and can be ignored. 

But from the diagram:

so

or
o

Now in the case of r

r = (rp2 + xe2 - 2px0 +2xox - 2 p x  + p 2 + x 2 + y ? - 2 q y o + 2ycy - 2 q y - q 2 +j<2) ’

But

giving r = ^ra2 + 2xax -  2px + 2 y oy  - 2 qy+ x2+ y 2
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Again x2  and y 1 are very small compared to the other terms and can be ignored, 

ie r  » r „ + — [x{x0 ~ p )+ y { y o ~q)\

and so r + s may be written as:

r + s  = r + s „ + xo o +y y o , (y° ~ (i)

or more conveniently:

r + s  = r0 +s0 +ax+by

where a = ! {X° - P ) b =

and equation (4.4) then becomes:

K J,,w  = • e^dedy

Now, f^  e,tm. em>,cbcdy = emydy f ̂  eitm dx
J —A v " —Ax> J —Av J — Ax

£1---1

~eikax'
A*

-ikl -L, ika -Ax

—  ̂ \ C m h y  C ~ ikbAy 1  ̂ fc ikaAx _  p ~ ika*\x 1
h)\a\ J

But -(e* - e  “ ) = 2  sin x

so the integral becomes:

4
k 2 ab

sm(kbky) sin(forAx) and is therefore ALL REAL

As a result, two approximations now become possible.
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(1) "Crude” Zero Order Approximation

As Ax, Ay —> 0

and hence kaAx, kb Ay —> 0

sin (kaAx), sin (kb Ay) —> kaAx, kb Ay

all
elements

An k 2ab

and for (r,s) in F(r,s) we must choose r = r0, s  = s0 as the best mean values, so

= Z  ~ ~ A r<” so)'
M ro +So ) Ax, Ay

all 71
elements

(2) "More Refined" 1st Order Approximation

= Z  - ~ F(r >sw
all
elements

k Mab

4.1 Computational Details

The term F(r0,s0')ek̂ °+S°̂  needs to be separated into real and imaginary parts. 

Now F(r„,sc) = — V i '
V r j

C O S 0 + V i - '
V S J

cos 6

1  ik
=  z—z-(r0 cos 0 + so cos0 ) +  (cos 6 + cos0 )

r s  r s n v 7O O o o

Also, e,k(r°+s°̂  = cos|&(r0 + s c ) J  + i sin \k(ra +  s0)]

Real terms are:

2r so . o

|cos \k(rc + so )](rc cos 6 + so cos 0 )] -  |sin[A;(r0 + sQ )](cos 6 + cos 0 )]

Imaginary terms are:
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In order to calculate these real and imaginary terms, x0and y Q must first be 

specified for the element.

Then sQ can be calculated from:

The "constants" a and b need to be evaluated as they have a particular value for 

each element.

We are now able to compute the intensity of sound which would pass through a 

hole which has the same geometry as the barrier. However, in order to calculate 

the effect of the barrier rather than the effect of the hole of the same geometry we 

use Babinet's principle:

and rQ from:

ro = { rp2 +{ xo - p )2 +{y»~ o f f

This in turn enables cos0 to be calculated from:

and cos0  from:

C O S 0 =  —  
rn



U (B) ~ W(D) U (ff)

where is the sound pressure at the receiver when the barrier is present

Sound attenuation can then be calculated by the programs in Appendices 1 and 2 . 

The program in Appendix 1 uses the first order approximation and the program in 

Appendix 2 uses the zero order model.

The programs in Appendices 3 and 4 are respective derivations of the programs in 

Appendices 1 and 2, which enable us to investigate what effect reducing the size 

of the elements, and hence increasing the number of elements, might have on the 

accuracy of the results.

is the sound pressure at the receiver in the absence of any sort of 

barrier

is the sound pressure at the receiver due to a hole the same size 

and geometry as the barrier

but eikd = cos (kd) + / sin(kd) and d  is the distance between the source and receiver 

and is given by:

The attenuation due to the barrier will therefore be:

B)d  /  \Attenuation = 10 log ———̂ (dB)

29



4.2 Investigation on the effect of element size on convergence

Figure 4 compares the zero and first order models at a frequency of 1kHz, using a 

1 0  m square barrier. Figures 5 and 6  examine the number of elements required for 

a 5 m square and a 15 m square barrier to converge to its ultimate sound 

attenuation. Figure 7 uses a high frequency, 10 kHz, in order to find the optimum 

element size that will give accuracy within precision grade measurement.
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4.3 Discussion on the effect of element size on convergence

Figure 4 shows the attenuation, using a barrier in free space, and highlights the 

contrast in the results using a first order model, based on the Kirchhoff-Fresnel 

integral, to that of a zero order model. Using a 10 m square barrier at a frequency 

of 1 kHz, the first order model converged to within 1% of its ultimate value using 

just 1600 elements, ie 40 elements per side. The zero order model only reached 

55% of this value when the same number of elements were used. It is therefore 

more productive to use the first order model with fewer elements.

Figures 5 and 6  use the first order model to predict the attentuation for a 5 m 

square and a 15 m square barrier respectively. The 5 m square barrier converges 

using 400 elements, ie 20 elements per side, and the 15 m square barrier converges 

using 6400 elements, ie 80 elements per side.

At a high frequency of 1 0  kHz, figure 7 demonstrates that more elements are 

required for the sound attenuation to converge to it's ultimate value. For a 4 m 

square barrier, 102400 elements, ie 320 elements per side, were required to predict 

a sound attenuation within 2% of the ultimate value. This 2% accuracy represents 

a change of 0.57 dB, and in context of measurement standards 0.57 dB can be 

compared to the degree of uncertainty using a precision grade sound level meter, 

where at mid-frequency the tolerance is ± ldB. Thus, it is justified in this work to 

consider an optimum element size for accuracy within the precision grade of 

measurement, which is approximately 0.0125 m
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5 VALIDATION OF RESULTS

Ideally we should now set up a barrier in free space and practically verify the results 

that have been obtained from the computer model. This, however, is not a possibility, 

so the results from the computer model have to be validated by other means.

Diffraction phenomena are divided into two classes:

(i) those where the source or receiver, or both, are at finite distance from the aperture, 

called Fresnel diffraction, and

(ii) those where the source and receiver are effectively at infinite distance from the 

aperture, called Fraunhofer diffraction.

Showing that the results from the computer model accurately reflect Fresnel 

diffraction, and in certain circumstances give a reasonable approximation to 

Fraunhofer diffraction will support the validity of the computer model.

5.1 Simulation of Fresnel Diffraction using Kirchhoff-Fresnel Diffraction 

Computer Model

Figure 8  in Jenkins and White2 9  shows the effect of adding the amplitudes of 

successive half-period zones, which are alternately positive and negative.

To simulate the Fresnel diffraction theory from Jenkins and White29, we sub-divide 

the half-period zones into smaller zones, and convert the zero order computer 

model. This program adds the amplitudes due to the areas of these successive 

circular zones, increasing the radius of each area by a small amount, Ax, each time, 

see Figure 9.

An.,

FIGURE 8 :
Addition o f  the amplitudes from half- 
period zones. -‘V
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Figure 9 Addition of the amplitudes due to the areas of successive circular 
zones

Now

Area of zone 1 = /r(Ax) 2 1 Area of zone 2 = 4;r(Ax) 2  -  7r(Ax)
Area of zones 1 and 2 = ;r(2 Ax) 2 = 4;r(Ax) 2 J = 3;t(Ax)2

Area of zones 1 2 and 3 = ;r(3Ax) 2 = 9/r(Ax)' Area of zone 3 = 9;r(Ax) 2 -  4^r(Ax)" 
= 57t(Ax)2

Area of zones 1 2  3 and 4 = n (4 Ax) 2 = 16^-(Ax)'
Area of zone 4 = 16;r(Ax)2 -  9^(Ax)' 

= 7;r(Ax) 2 

etc...

The area of each successive zone can be found by the relationship (2 n-l) 7t(Ax)2. 

The program in Appendix 5 converts the zero order model to simulate Fresnel 

diffraction.

Fresnel diffraction theory predicts that the distance from the outer edge of each 

half-period zone is half a wavelength further away from the receiver than the 

previous one. This is shown in Figure 1 0 .



Fiure 10 Prediction by Fresnel diffraction theory that the distance from the 
outer edge of each half-period zone is half a wavelength further 
away from the receiver than the previous one 

However, since we have a point source, the half-period zones are formed by each

outer edge being a quarter of a wavelength further from both source and receiver,

than the previous one, Figure 11.

Soufce

Figure 11 Prediction, since we have a point source, the half-period zones 
are formed by each outer edge being a quarter of a wavelength
further from both source and receiver, than the previous one 

Taking a round hole, where the distance of the source and receiver from the hole

are 10 m the wavelength is 0.34 m and the element size is 0.025 m, we are able to

predict the position of each half-period from zone using Pythagoras' Theorem:

1.307
OA = S  (10.0852 - 102) = 1.307 

OB = S  (10.172 - 102) = 1.852 

OC = ✓ (10.2552 - 102) = 2.273

0.025

1.852
0.025

2.273
0.025

= 52 elements

= 74 elements

= 91 elements
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2.630
OD = S  (10.342  - 102) = 2.630 =   = 105 elements

V '  0.025

: = 118 elements

: = 1 2 9  elements

: = 140 elements

: = 1 5 0  elements

: = 1 5 9  elements

etc

The amplitude at the receiver should, therefore, be a maximum after 52 elements, a

minimum after 74 elements, a maximum after 91 elements, a minimum after 105

elements, and should continue to alternate in this way. We should also observe 

that the maximum values should steadily decrease while the minimum values 

should steadily increase.

The program in Appendix 5, which simulates Fresnel diffraction, produced results 

which used the same parameters as were used in the prediction from the theory. 

The graph, in Figure 12, of relative amplitude against half-period zone, from these 

results, clearly shows that the relative amplitude alternates to give steadily 

decreasing maxima and steadily increasing minima. The results also show that 

these maxima and minima occur at exactly the positions which were predicted from 

the theory.
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5.2 Simulation of Fraunhofer Diffraction using Kirchhoff-Fresnel Diffraction 

Computer Model

Jenkins and White30 illustrate that Fraunhofer diffraction at a single slit gives a 

minimum value of intensity when P = ±7 1 , ±2ti , ±371, etc, and a maximum value of 

intensity when p = ±1.43371 , ±2.467t , ±3.47ti , ±4.477471, etc. P is a convenient 

variable, which signifies one-half the phase difference between the contributions 

coming from opposite edges of the slit, see fig. 13.

Geometrical construction for investigating the intensity in the single-slit diffrac
tion pattern.

The first secondary maximum is only 4.72 percent of the intensity of the central 

maximum, while the second and third secondary maxima are only 1.65 and 0.83 

percent respectively.

For a minimum, we have

7rb(smi + sin (9)
/? = run =

where b is the slit width, / is the angle that incident light makes with the normal 

and 0 is the angle where each secondary wave reaches point P.

but sin/ = 0

Therefore, mn~

le sin 6 -

nbsmO
I

m X
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For a maximum, we have

TibsmO
at 1st secondary, .43;r= 

therefore, sin 0=

at 2nd secondary, sin 6=

A

1.431
b

2.461
b

• 3.471at 3rd secondary, sm 6 = -------- , etc

If we use the above theory, with a 2 m wide slit, wavelength of 0.34 m and the 

source and receiver placed centrally 50 m either side of the slit, we can calculate 

the positions of the maxima and minima when the receiver position is moved away 

from its central position.

The following table illustrates these calculations:

Maxima Minima

0  (degree) Offset from centre of slit (m) 0  (degree) Offset from centre of slit (m)

0 0 9.79 8.62
14.04 12.53 19.88 18.08
24.72 23.02 30.66 29.65
36.15 36.53 42.84 46.37

The program in Appendix 6 converts our original computer model to simulate the 

above calculations by the first order approximation.

The results from the program in appendix 6 give maximum and minimum values of 

intensity at almost the predicted positions. The results give first, second and third 

secondary maxima of 4.6%, 1.3% and 0.47% of the central maxima for intensity. 

This compares with respective values of 4.72%, 1.65% and 0.83% from the 

Fraunhofer diffraction theoiy.
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The results from the computer model are shown graphically, Figure 14, where 

relative intensity is plotted against receiver offset.
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5.3 Using the elemental model to effect the sound level by increasing the source- 

receiver distance, with no barrier present

In using Babinet's Principle, the sound pressure at the receiver in the absence of 

any sort of barrier, ^ D, is given by:

Aeikd

The same values for this sound pressure can be attained by the elemental theory of 

the basic model if this theory is correct. Using a 50 m square area to represent free 

space, with element sizes of 0.025 m, the source-receiver distance was 

progressively doubled, using a frequency of 1 kHz. Figure 15 shows a 6 dB 

reduction in sound level for each doubling of source-receiver distance, and so 

confirms the well known theoretical result.
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5.4 Results for a barrier in free space

Having verified the behaviour of the model it is now possible to generate results 

for a rectangular barrier in free space.

Using a 2 m x 4 m barrier, Figure 16 shows the variation of attenuation with 

increasing frequency when the receiver-barrier distance is successively doubled. 

Figure 17 shows what effect moving the receiver away from the central position 

has on the level of sound attenuation.

47



<J • o LO

04 in

o 0
0 C3
5  M 

* S
•g 6  E g
ea

rO l-l<D
oo<u

h- ? H

to ^ 
oJ-(0

1

f t
<o

oo in oino

oooo

ooo

NX
">•oca3CT<Uu.u.

oo

CO 04 CM

gp/uoi*enu9UV

48

Fi
gu

re
 

16 
Va

ria
tio

n 
of 

at
te

nu
at

io
n 

wi
th 

fre
qu

en
cy

 
for

 a 
ba

rri
er

 i
n 

fr
ee

-s
pa

ce



oto inoo
CM

If)
CM

o
CO

gp/uoijenuawv
49

Fi
gu

re
 

17 
Ef

fe
ct 

of 
ch

an
gi

ng
 

re
ce

iv
er

 p
os

iti
on

 
for

 
a 

ba
rri

er
 i

n 
fr

ee
-s

pa
ce



5.5 Discussion of results for a barrier in free space

Much of the research in this thesis uses a barrier size of 4 m x 2 m, and in free 

space conditions Figure 16 shows three curves where the receiver-barrier distances 

are successively doubled from 2.5 m, 5 m and 10 m. Each curve shows a trend of 

attenuation steadily increases with respective increases in frequency. Also, 

increasing the receiver distance lowers the sound attenuation for respective 

frequencies, but introduces more rapid deviations from the line of general trend.

These recalcitrant deviations from the general trend are caused by the sensitivity of 

the trigonometric terms, cosj&(r0 +*s0)J and sinj&(r0 Instability will occur

at high frequencies where the wave number k 2n/ x will change rapidly due to the 

low values of the wavelength X. These same trigonometric terms will also oscillate 

more rapidly, and so become more sensitive, as the source-element, s0, and/or 

receiver-element, rQ, distances are increased.

Figure 17 shows variations in attenuation as the receiver is moved away from its 

central position. We see that the sound attenuation decreases with increasing 

receiver offset, but the curve oscillates about the general reducing trend. The 

sound pressure at the receiver when the barrier is present, u B, is calculated using 

Babinet's Principle, u B = u D -  wH, where u D is the sound pressure at the receiver 

in the absence of the barrier, and is the sound pressure at the receiver due to a 

hole the same size as the barrier. Now u D and u H are constantly changing phase 

so the sound pressure, wB, will vary according to the difference in the amplitudes 

due to these phase changes. The sound pressures are greatest near the central 

position and so the phase changes produce greater deviations from the general 

trend in central positions.

Changing the position of the receiver has the same effect as leaving the receiver in 

a stationary position and changing the angle of the barrier, therefore increased 

attenuation may be possible sloping the barrier away from the normal.
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6 BARRIER IN CONTACT WITH THE GROUND

The principles employed for calculating the sound attenuation by a barrier in free 

space, are again used for a barrier in contact with the ground. The calculation 

becomes more complex, however, because we now have to consider reflected 

contributions from the ground as well as the direct sound pressure, as discussed in 

chapter 4.

In order to find the attenuation of a barrier in contact with the ground we apply 

Babinet's Principle rigidly. The sound diffracted round the barrier is simply the 

difference between what reaches the receiver directly and what passes through a hole 

of the same geometry as the barrier. We then need no longer worry about subtle 

aspects of the barrier geometry.

In order to perform the calculation correctly, the direct amplitude u D must include the 

reflected component. This is a simple reflection problem, but the complex reflection 

coefficient, Cr, can be incorporated for the specular angle of reflection. Figure 18 

shows the angle of incidence, /', and the angle of reflection, r, for the reflected sound 

path.

Ji z  t '  -  V -For- t t \ t  CCilculatfoA o~f C t

Figure 18 Reflected sound path, showing angle of incidence and reflection
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Referring to Theoretical Acoustics by Philip M Morse and K Uno Ingard pages 259- 

264, for frequency - dependent surface impedance, the reflection coefficient, Cr, is 

given by:

(co2 -co20) + ico[R/ ni) -  ((pc / mcos v)] ■■    —
{co2 -  oo20) + ico[(RI m) + (pc / wzcosv)]

Where

co is the frequency of the applied medium

co0  is the resonant frequency of the ground material

R is the mechanical resistance factor

m is the effective mass per unit area

pc is the characteristic impedance of the medium

For very low frequencies (co«co0), the reflection coefficient, Cr, becomes unity, 

independent of v. the incident pressure wave is reflected with no change in amplitude 

or phase: thus no energy is absorbed by the reflecting material. This is also true for 

very high frequencies (co»co0). At resonance (co~co0), however, Cr is smaller than 

unity and dependent on the angle of incidence v. The reflected intensity at resonance 

is smallest when the angle of incidence is arccos (pc/R), if R>pc, or for normal 

incidence, if R<pc.

To remove complex numbers from the denominator of the expression for Cr, we 

multiply both numerator and denominator by the complex conjugate of the 

denominator.
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Therefore

{co2 - co20) + io ) [ {R /m )-{ {pc / mcosv)] {co2 -co20)- io ) [R /m) + {pc / mcosv)] 
{co2 -  co 2) + ico[{R t m) + {pc / m cos v)] {co2 -  co2) -  ico[R / m) + {pc / m cos v)]

Cr = {co2 -  co2)2 + co2[{R / m) -  {pc / mcosv)].[{R / m) + {pc / mcosv)]

+ico{co2 -  co2)[{R I m) -  pc  / mcosv)]-ico{co2 -  co2)[{R / m) + {pc f mcosv)] 
{co2 -  co2)2 +co2[{R/m) + { p c / /ncosv ) ] 2

_ (<y2 - & > 2 ) 2 +<y2 [(i^/w ) 2 - { p c / m c o s v ) 2]-2ico{co2 - co20){pc/ mcosv)
(oj2 -<a’ )+<a2[ ( ^ /  ) + (pc/mcosv)]2

or Cr = CORL -iCOIM

(co2 -  co 02) +\{R! ni)2 - { p c  / mcosv)2\ 
where CORL = -------------L - A -----------------------------l_ i

(co2 -c o 02>j + ^ R /m )  + ( p c / /wcosv) ] 2

2co\(D2 -  c o 2\ p c / nzcosv) 
and COIM = ------------------------------------------ ----------

{co2 - c o 2  ̂ +UR / ni)2 -  (pc / mcosv)2

6 .1 Computational Details

Calculation of the sound passing through the a hole, the same geometry as the barrier. 

The following cases need to be considered:

1 Direct diffracted sound, source-receiver
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2 Sound initially reflected and then diffracted

/

Sound initially diffracted and then reflected

V
\

\

4 Sound initially reflected, then diffracted and then reflected again

\

All four sound pressures need to be combined to produce a total complex sound 

pressure for that passing through the hole, ie u H.

Then, the pressure: of the sound around the barrier, = u D - ^ H.

Computation of the above four stages

(1) The direct diffracted sound is computed in exactly the same way as that in free 

space.

(2 ) Sound initially reflected and then diffracted



where y = barrier height and I and J are the respective horizontal and vertical 

locations of the element

ZBl = ZB + 2.Yl 

0  = 2  + 2.71

For each element we compute the real and imaginary parts of the reflection 

coefficient ie CORL and COIM, and to do this we require the 3-dimensional angle 

v, between the sound path and the normal.

On the side elevation

Y2 = Y - J . D Y  + D Y /2  

where DY is the size of the vertical element

and using similar triangles

71 _ 72
D l ~  (S P -D l)

. m  =
(7 1  +  7 2 )

and for the end elevation



where DX  is the size of the horizontal element

and again using similar triangles

71 72

So

Z \  = { p \2 + W 1 2

x i = ( n 2 + d i 2 + w f ) ' A

v = a rcsin^J/^ jj

The sound pressure, which is initially reflected and then diffracted, can then be 
computed where

SOUNDPRESSURE = (RL. CORL + UNRL. COIM) + i(UNRL. CORL -  RL. COIM)

where RL = real part of the sound pressure 
UNRL = imaginary part of the sound prssure

(3) Sound initially diffracted and then reflected 
Side  Elevabon tnd E l e v a t i o n

W3

* j* 5 6



Q2 = -(Q  + (2 .n))

For each element we compute the real and imaginary parts of the reflection 

coefficient ie CORL and COIM, and to do this we require the 3-dimensional angle 

v, between the sound path and the normal.

On the side elevation

Y2 = Y - J . D Y  + DYI2

and using similar triangles

Y2 _ Q + Yl 
D3 ~ R P - D 3

. D 2 (Y 2 .R P )
(Y1 + Y2 + Q)

and for the end elevation

D P  = ([XL - I . D X  + D X / 2  + P ) 2\

and again using imilar triangles

Y2 _ Y2.DP 
W3~ D P -W 3

(Y 2 .D P )  

(Y I  + Y2  + 0

So



Zl = (D32 + W32) A 

X l  = (Y22 + D32 + W32)'A

'(% .)v = arcsin

The sound pressure, which is initially diffracted and then reflected, can then be 

computed where

SOUND PRESSURE = (RL. CORL + UNRL. COIM) + i(UNRL. CORL -  RL. COIM)

(4) Sound initially reflected, then diffracted and finally reflected again.
S id e  Ele\/abton End Elevation

v - - 1 ■‘T- 
\ |  <23
* k-R123= -Q

For each element we compute the real and imaginary parts of the reflection 

coefficient before diffraction takes place, ie CORL1 and COIM1, and also the real 

and imaginary parts of the reflection coefficient after diffraction, ie CORL2 and 

COIM2. In order to do this we require the respective 3-dimensional angles Vj and 

v2, which he between the sound path and the normals at the respective points of 

reflection.
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On the side elevation

Y2 = Y - J . D Y + D Y / 2

and using similar triangles 

(71 + 72)

r :  (Y 2-RP)

(71 + 72 + 2 )

and for the end elevation

DPI = iiZL - I . D X  + D X !  2 f \

DP2 = { ( X L -I .D X  + DX 12 + 

and again using similar triangles

(d p i .y \)
W1  =

W3 =

(71 + 72) 

(DP2.Y2)

(71 + 72 + 2 )

Z1 = (£>12 +W?)'A

x i = ( y i 2 + d \2 + m 2) /3

Z2 = (D32 +W32)'A 

X2 = (Y22 + D 3 2 +W32)'A

“ ( %  l)v , = arcsm

w  = arcsm



The sound pressure, which is initially reflected, then diffracted and then reflected 

again, can then be computed where

SOUND PRESSURE = (RL + iUNRL)(CORL\-  iCOIMl)(CORL2 -  iCOIM2)

= (RL. CORL 1.CORL2+ UNRL. COIMl. CORL2 
+ UNRL. CORL 1. COIM2 -  RL. COIMl. COIMl)

+i(UNRL.CORL L CORL2 -  RL.COIMl. CORL2 
-RL.CORLI.COIM2-UNRL.COIMI.COIM2)

The free space conditions were relatively easy to model because the sound pressure 

at the receiver in the absence of a barrier, uD, was

Aeikd

The soimd pressure in the absence of a barrier, where ground conditions exist, 

becomes a more complicated problem.

The problem is solved by treating the sound pressure, in the absence of a barrier, in

exactly the same way as calculating the sound pressure at the receiver due to a

hole, the same size and geometry as an 'infinite1 barrier. We, therefore, need to
AeiM

know what size 'hole' represents the term, --------- , to a given accuracy. By using
d

the free-space model, this was achieved by increasing the size of the barrier until 

the sound attenuation converged to a maximum value. The procedure for 

calculating the sound pressure at the receiver, in the absence of a barrier, then 

becomes the same as that for sound passing through the *hole'

The sound attenuation that results from a barrier in contact with the ground can 

then be computed by the program in Appendix 8 . This program allows the 

position of the receiver to be systematically changed in a vertical direction.
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6.2 Results for a barrier in contact with the ground

Having generated results for a barrier in free space, the model is modified and able 

to produce results for similar barriers in contact with a concrete surface. Figures 

19-24 represent the change in insertion loss for increasing frequency of the sound 

wave from 100 Hz to 10,000 Hz, for various barrier geometries. Some results 

represent the author's chosen model geometries while other geometries are chosen 

to compare the author's results with those of other workers. Figure 25 shows the 

variation in insertion loss as the receiver is moved away from its central position, in 

a vertical direction.
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6.3 Discussion of results for a barrier in contact with the ground.

This model uses direct contributions and reflected contributions from the ground, 

so introducing interference effects similar to those incurred in Lloyd's Mirror 

experiment in optics. There is a wealth of contemporary literature on this subject, 

some of which is validated by experimental detail. The author, therefore, compares 

his results with those of other workers, using the same barrier geometries where 

possible.

D C Hothersall, S N Chandler-Wilde and M N Hajmirzae (1991) introduced a 

numerical model for a barrier in contact with the ground, using the boundary 

element method. They found that if the source is above the surface, the 

monofrequency sound field varies in a complicated way due to the interference 

between the two waves originating from the source and from the image of the 

source in the ground surface. This interference produces complicated variations in 

the received sound behind the barrier, which have been found to be related to the 

configuration of the interference pattern in the region above the barrier. The 

received levels thus depend strongly on the source height and barrier height. In 

order to simplify the results, they eliminated interference effects caused by 

reflected waves, by placing the source at ground level. Typical results from their 

model, Figure 26, show similar trends to that of the author's model, Figure 19 , 

where insertion loss increases with respective increases in frequency at the rate of 

«3 dB/octave.

3 m

4 m
5 m

-  20

50 m

30
(000500

f r e q u e n c y  ( H z )

63 100

69' ig U r e  2 6  Insertion loss spectra for vertical screens. The source, barrier and receiver geom etry is indicated.
All surfaces have zero admittance.



In 1994, Y W Lam developed a simple model lor calculating tne attenuation 0 1  

complex ground terrains. He compares his ground model with existing 

environmental noise calculation models: the draft ISO model, the C O N C A W E  

model, and E N M . It is found that the new ground model has the best overall 

performance and agrees well with measured data on a variety of ground terrain 

profiles and conditions. For the respective data, Figures 20 and 21 show that the 

author's model behaves in a simlar way to that of Lam, Figures 27 and 28, although 

the author's model is closer to the ISO model at low frequncies. The conditions do 

differ, however, in that the author uses a 1 0  m wide barrier and hard ground 

conditions, whereas Lam uses an infinite barrier with softer ground conditions.
■  Measured " B -  Ground Model ENM ISO

25-

2 0 -
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~o M
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S o u rce

• 0.50 
-  K
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0.501.50 a —■-5 -
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1000100 1 0000
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Fie. 2.7 A ttenuation  o f  a thin barrier on a ground with a flow resistivitv o f  300 kN  sm 4.JTfT *The measured data are taken from Leans ei al.
S o u r c e

R eceiver0.260
0.125

2 0 - 2.000
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1000100 10000
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Fig. 2 8  Attenuation o f  a thin barrier on a ground with flow resistivity or 20 000 kN sm 4 
on the source side and 300 kN sm  4 on the receiver side. The measured data are taken

from Isei ei al.



Using a 2 m x 4 m finite barrier, Figure 2  2  shows a steady increase in insertion loss

as the frequency rises. A line of best fit is superimposed on the data and deviations

from this line can be observed. This model still encounters instabilities where the 

trigonometric terms cos|&(r0 +*s0)] and sin [ %  + s0)J are sensitive to change in

frequency at low values of wavelength, but interference effects from the direct and 

reflected sound waves also contribute to the deviations from the general trend, 

shown by the line of best fit. The ground model is time consuming, due to the high 

number of elements used in computing the sound pressure with no barrier present 

when Babinet's Principle is applied. The deviations away from the general trend 

would therefore be reduced if time allowed more elements to be used in the 

calculation. The results were obtained using an element length of 0.05 m, whereas 

it was shown earlier that an element length of 0.0125 m was required to give 

accuracy within precision grade measurement.

Figure 23 shows that a smoother curve is obtained by increasing the width of the 

barrier from 4 m to 10 m. Many of the curve's instabilities are removed because 

diffraction and interference effects around the sides of the barrier become less 

significant in wider positions. Figure 24 demonstrates that increasing the source- 

barrier distance from 1 m to 5 m amplifies the sensitivity of the trigonometric 

terms, which results in large deviations from the general trend at the high end of 

the frequency spectrum.

Figure 25 shows a steady reduction in insertion loss as the receiver is moved 

vertically from it's central position, but the curve oscillates around the general 

trend, with a large initial peak. Comparing this curve to that in Figure 17, for free 

space conditions, the initial peak value for insertion loss is seen to be larger. The 

difference in sound pressures due to phase changes between and must 

therefore be larger for this receiver position than that respective position in free 

space. This large peak value in insertion loss may be reproduced by sloping the
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barrier, which seems equivalent to moving the position of the 

argument that was discussed earlier for a barrier in free space.

receiver, an
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7 BARRIER IN A FLAT ROOM

Because the object of this work is to calculate insertion loss, due to finite barriers in 

enclosures, the next logical step is to introduce a roof to the existing ground model, 

discussed in Chapter 6 . This model is referred to as the 'flat-room' model because at 

this stage there are no walls present.

In calculating the insertion loss due to a barrier in contact with the ground we applied 

Babinet's Principle. Also, in this model we included the reflected contribution from the 

ground in addition to the direct component. The same principles apply to the flat 

room model, but this time further complications are introduced by adding the reflected 

contribution from the roof The complex reflection coefficient, Cr, is incorporated 

once again for the specular angle of reflection for both the ground and the roof. Two 

sets of results are incorporated in this model: one using single reflections and one 

using multi-reflections between the ground and the roof

7.1 Computational Details

Calculation of the sound passing through the barrier shaped hole are the same for 

that of the model using ground conditions, plus the following cases:

1  Sound initially reflected and then diffracted

s '

\
\

\
\
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2 Sound initially diffracted and then reflected

R

/

3 Sound initially reflected, then diffracted and then reflected again

4 Sound initially reflected twice, and then diffracted 
/

6  X

\

/v

5 Sound initially diffracted and then reflected twice

/ A '
/

r
/

/



6  Sound initjaUy reflected twice, then diffracted andjth^n reflected twice again 
6  \

7 Sound initially reflected twice and then diffracted

/
/

 _
/

/

<! v

8  Sound initially diffracted and then reflected twice

\
\

\

' x * '

9 Sound initially reflected twice, then diffracted and then reflected twice again

/
\

/ \

s
— V

/ \

sV
/ x /?'
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All the sound pressures, illustrated above, plus those of the direct and reflected 

components from the ground, are combined to produce a total sound pressure for 

that passing through the hole, ie wH

A

Z 6 Z

'f

Then the sound pressure around the barrier,

Sound reflected from the ceiling

( 1 ) Sound initially reflected and then diffracted
52  '

I \
i \ Side  t /e v /a t /o n

A ^ S 2

\ Zrnc/
\

<2
M-

SPF

Q4 = -{{2.SPC)-Q)

For each element we compute the real and imaginary parts of the reflection 

coefficient ie CORL and COIM, and in order to do this we require the 3- 

dimensional angle v, between the sound path and the normal.

On the side elevation

Y2 = Y - J .D Y  + D Y /2  

and using similar triangles
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SPC SPC + S P F -Y 2
Dl 

D l =

S P - D l
(SP.SPC)

((2.SPC) + SPF -Y2)

and from the end elevation 

SPC SPC + S P F -Y 2
W1  

■/. Wl =

D P - W 1 
(DP. SPC)

((2.SPC) + SPF -Y2)

Hence

z i =(d \2 + w i2) k

X1 = (SPC2 + Dl2 + W l2) >i 

and v = arcsin(Zl I X l)

The sound pressure, which is initially reflected and then diffracted, can then be 
computed where

SOUND PRESSURE = (RL. CORL + UNRL. COIM) + i(UNRL. CORL -  RL. COIM)

where RL = real part of the sound pressure 
UNRL = imaginary part of the sound pressure

77



(2) Sound initially diffracted then reflected

Side ■ tlegation  '  ■ &>cl tle va tio n

SPC

R PS P

Q5 = -{(2.SPC)-Q)

For each element we need to compute the real and imaginary parts of the

reflection coefficient ie CORL and COIM, and in order to do this we require

the 3-dimensional angle v, between the sound path and the normal.

On the side elevation

Y2 = Y -J .D Y + D Y /2

and using similar triangles

S P C -Q  SPF + S P C -Y 2  
D3 ~ R P -D 3  

D2 (RP(SPC-Q ))

((2. SPC) + SPF -  72 -  <2)
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and from the end elevation

DP = [(ZL - I .D X  + DX 12 + P f y

Using similar triangles

S P C -Q  SPF + S P C -Y 2
W3 

:.W3 =

D P -W 3  
(.D P(SPC-Q ))

((2.SPC) + S P F -Y 2 -Q )

Hence Z/

Z1 = (D32 +W31f i

XI = ((SPC -  Q)2 +D32 +W  

and v = arcsin(Zl / A"l)

The sound pressure, which is initially diffracted and then reflected, can then be 

computed where

SOUND PRESSURE = (RL. CORL + UNRL. COIM) + i(UNRL. CORL -  RL. COIM) 
(3) S ound initially reflected, then diffracted and finally reflected again tn d  b. IeV6  t /on

S Z -
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For each element we compute the real and imaginary parts of the reflection 

coefficient before diffraction takes place, ie CORL1 and COIM1, and also the 

real and imaginary parts of the reflection coefficient after diffraction, ie CORL2 

and COIM2. In order to do this we require the respective 3-dimensional angles 

Vj and v2  between the sound path and the normals at the respective points of 

reflection.

On the side elevation

72 = Y -J .D Y + D Y  / 2

and using similar triangles

SPC _ SPC + SPF -  72 
Dl ~ S P - D l  

(SPC.SP)
D l =

((2. SPC) + SPF -  72)

and

S P C -Q  SPC + SPF -  72 
D3 ~ R P -D 3

(RP(SPC-Q))
:.D3 =

((2.SPC) + S P F -Y 2 -Q )

and for the end elevation

SPC _ SPC + SPF -  72 
Wl ”  DPI -  Wl 

(SPC. DPI)
W1  =

((2 . SPC) + SPF -  72)

and

S P C -Q  SPC + SP F -Y 2  
W3 ~ DPI -  W3

(d p 2 (SPC -Q ))
W3 =

((2.SPC) + S P F -Y 2 -Q )
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r z i  = (d i2 + m 2f  

x i  = (SPC2 + Dl2 + w \ 2f  

Z2 = (D32 + W32f

X 2  = { (SPC- Q)2 + £>32 + W32J 2

and Kj = arcsin(Z1 / AT) 

v2 -  arcsin(Z3 / X3)

The sound pressure, which is initially reflected, then diffracted and then

reflected again, can then be computed where

SOUND PRESSURE = (RL + iUNRL)(CORL\-  iCOIM\)(CORL2 -  iCOIMl)
= (RL. CORLl. C.ORL2 + UNRL. COIM ICORL2 + UNRL. CORLl. COIM 2 -  RL. COIMY COIM2) 
+i(UNRL. CORLl CORL2 -  RL. COIMl CORL2 -  RL. CORLl COIM2 -  UNRL. COIMl COIM2)

(4) Sound initially reflected twice and then diflracted. 
. Side El£\lfCnoN

r < - -------------------
S'

eULVCUtod

617

ZB5 = - (( 2 .(SPF + SPC)) -  ZB) 

Q1 = - ( 2 . (SPF = SPC)) + Q

For each element we compute the real and imaginary parts of the reflection 

coefficient, ie CORLl, CORL2 , COIMl and COIM2, and in order to do this 

we require the 3-dimensional angle v, between the sound path and the normal.
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On the side elevation

Y2 = Y - J .D Y + D Y /2

and using similar triangles

SPF (3. SPF) + (2 . SPC) -  2  

~d i ~ SP
SP.SPF

(3. SPF) + (2 . SPC) -  72

and for the end elevation

DP = iiZL - I .D X  + DX 12 )2)"

Using similar triangles

SPF (3. SPF) + (2 . SPC) -  Y2
~ W l~  DP

DP. SPF
Wl =

(3. SPF) + (2 . SPC) -  72

Hence

Z'. = { p i1 +W12)'

X l  = (SPF2 + D 1 2  +W12) K 

and v, = arcsin(Zl / X l)

The sound pressure, which is initially reflected twice and then diffracted, can 

then be computed where

SOUND PRESSURE = ((RL. CORLl. CORLl) -  (UNRL. COIMl. CORLl) -

(RL. COIML COIMl) -  (UNRL. CORLl. COIMl))

+ i((RL. CORLL COIMl) -  (UNRL. COIML COIMl) + 

(RL. COIML CORLl) + (UNRL. CORLL COIMl))

82



(5) Sound initially d iffracted  then reflected twice.

SIDE ELEVATION

Q8 = 2.(SPF+SPC) + Q

END ELEVATION

/
/

/

-Hk/3
U-fcP-sJ

•<r~- p

For each element we compute the real and imaginary parts of the reflection 

coefficients, ie CORLl, CORL2, COIMl, and COIM2, and in order to do this 

we require the 3-dimensional angle v, between the sound path and the normal.

On the side elevation

Y2 = Y -J .D Y + D Y /2

and using similar triangles

72 SPF + Q 
~D3~ R P -D 3

(Y2.RP)
(SPF + Y2 + Q)

and using similar triangles

D3 RP
SPF+ Q ~ ( 3. SPF) + (2. SPC) + Q -Y 2  

m  RP.(SPF + Q)
(3.SPF) + (2.SPC) + Q -Y 2



and for the end elevation

d p = U z l  - i . d x + d x  n + p f y

Using similar triangles 

W3 DP

W3

SPF + Q (3. SPF) + (2. SPC) + Q -Y 2  

DP.(SPF + Q)
~ (3.SPF) + (2.SPC) + Q - Y 2

Hence

Z\ = (D32+W32)Vl

XI  = ((SPF + Q)2 + D32 + W32)Vl 

and v = arcsin(Zl I X  l)

The sound pressure, which is initially diffracted and then reflected, can then be 

computed where

SOUND PRESSURE = {(RL.CORLI.CORL2)-(UNRL.COIMI.CORL2)-
(RL.COIMl.COIM2)-(UNRL.CORLl.COIM2)) + 

i((RL. CORLl. COIM2) -  (UNRL.COIM 1. COIM2) + 
(RL.COIMl. CORL2) + (UNRL. CORLl. COIM2))

(6) Sound initially reflected twice, then diffracted and finally reflected twice again.

/ r
/

\
\

/

\
/

i>i |-«f—

Q9 = -Q

\ / 
\ /
\ /

«Vi|<— —*-jvV3—
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For each element we compute the real and imaginary parts of the reflection 

coefficients CORLl, CORL2, CORL3, CORL4, COIMl, COIM2, COIM3, 

COIM4 and in order to do this we require the respective 3-dimensional angles 

Vi and v2  between the sound path and the normals.

On the side elevation

Y2 = Y -J .D Y  + D Y /2  

and using similar triangles

SPF _ (3. SPF) + (2 . SPC) -  72
Dl SP

SP.SPF
(3.SPF) + (2.SPC)-Y2

and

D3 RP
SPF + Q (3. SPF) + (2 . SPC) + Q -Y 2

m  RP.(SPF + Q)
(3. SPF) + (2 . SPC) + Q - Y 2

and for the end elevation

Using similar triangles

SPF _  (3. SPF) + (2 . SPC) -  Y2
Wl DP

(3. SPF) + (2 . SPC) -Y 2
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and

DP
SPF + Q (3. SPF) +  (2 . SPC) + Q - Y 2

. m  DP(SPF + Q)
(3. SPF) + (2 . SPC) + Q - Y 2

Hence

and v, = arcsin(Zl/ XI) 

v2 = arcsin(Z2/ X2)

Xl = ( S P F 2 + Dl2 + W\2f  

Z1 = (Z)12 +Wl 2f  

X2  = ((SPF + Q)2 + D32 + W32^  

Z2 = (D32 + W32f

The sound pressure, which is initially reflected twice, then diffracted and then 

reflected twice again, can then be computed where

SOUND PRESSURE = ((RL. CORLl CORLl. CORL3. CORL4) -  (UNRL. COIMl CORLl. CORLl. CORL4)
-(UNRL. CORLl CORLl. CORL4. COIMl) -  (RL. COIMl COIMl. CORLl. CORL4) 
-(UNRL. CORLl CORLl. CORL.4COIM1) -  (RL. COIMl COIMl. CORLl. CORL4) 
-(RL. CORLl CORL4. COIMl. COIMl) + (UNRL. COIMl COIMl. COIMl. CORL4) 
-(RL. CORLl CORLl. COIMl. COIM4) + (UNRL. COIMl COIMl. COIM4. CORLl) 
+(UNRL. CORLl COIMl. COIMl. COIM4) + (RL. COIMl COIMl. COIMl. COIM4) 
-(UNRL. CORLl CORLl. CORLl. COIM4) -  (RL. COIMl COIM4. CORLl. CORLl) 
-(RL. CORLl CORLl. COIMl. COIM4) + (UNRL. COIMl COIMl. COIM4. CORLl) 
+i((RL. CORLl CORLl. CORLl. COIM4) -  (UNRL. COIMl COIM4. CORLl. CORLl) 
-(UNRL. CORLl CORLl. COIMl. COIM4) -  (RL. COIMl COIMl. COIM4. CORLl) 
-(UNRL. CORLl CORLl. COIMl. COIM4) -  (RL. COIMl COIMl. COIM4. CORLl) 
-(RL. CORLl COIMl. COIMl. COIM4) + (UNRL. COIMl COIMl. COIMl. COIM4) 
+(RL. CORLl CORLl. CORL4. COIM4) -  (UNRL. CORLl. CORL4. COIMl COIMl) 
-(UNRL. CORLl C.ORL4. COIMl. COIMl) -  (RL. CORL4. COIMl COIMl. COIMl) 
+(UNRL. CORLl CORLl. CORLl. CORL4) + (RL. CORLl. CORLl. CORL4. COIMl) 
+(RL. CORLl CORLl. CORL4. COIMl) -  (UNRL. CORLl. CORL4. COIMl COIMl)
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(7) Sound initially reflected twice, then diffracted

wi j^-
1Y

A

SPF

SPC $
-if— £

/

/
/

* s s'*

ZB6 = (2 . (5PF + SPC)) + ZB 

Q\Q = {2.(SPF + SPC)) + Q

For each element we compute the real and imaginary parts of the reflection 

coeffiicents, ie CORLl, CORL2, COIMl, COIM2 and in order to do this we 

need the 3-dimensional angle, v, between the sound path and the normal.

On the side elevation

Y2 = Y -J .D Y  + D Y /2

and using similar triangles 

Dl SP
SPC (2 . SPC) + SPF + 72 

. SP.SPC
“ (2. SPC) + SPF + Y2

and for the end elevation

DP = \{ZL - I .D X  + D X / 2)2\'A
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Using similar triangles

Wl DP
SPC (2 . SPC) + SPF + Y2 

DP. SPC
Wl =

(2.SPC) + SPF + Y2

Hence

z \ = ( p \ 2 +W12) K

XI = (SPC2  + D l2 + Wl2 f ‘ 

and v = arcsin(Zl / Xi)

The sound pressure, which is initially reflected twice and then diffracted, can 

then be computed, where

SOUND PRESSURE = ((RL. CORLL CORL2) -  (UNRL. COIML CORLl) -

(RL. COIML COIMl) -  (UNRL. CORLL COIMl))

+ i((RL. CORLL COIMl) -  (UNRL. COIML COIMl) 

+ (RL. COIML CORLl) + (UNRL. CORLL COIMl))

( 8 ) Sound initially diffracted, then reflected twice

SPC  "X

Q//\
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For each element we compute the real and imaginary parts of the reflection 

coefficients, ie CORLl, CORL2, COIMl, COIM2, and in order to do this we 

need the 3-dimensional angle, v, between the sound path and the normal.

On the side elevation

Y2 = Y - J .D Y  + D Y /2  

and using similar triangles

D3 RP
SPC - Q  (2 . SPC) + SPF + Y 2 - Q

(2 . SPC) + SPF + Y 2 - Q

and for the end elevation

Using similar triangles

W3 DP
SPC - Q  (2 . SPC) + SPF + Y 2 - Q

(2 . SPC) + SPF + Y 2 - Q

Hence

and v  = arcsin(Zl / X\)

Z1 = (D f  + W32)}'

XI = ((SPC -  Q f  + D f  +W32\
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The sound pressure, which is initially diffracted and then reflected twice, can

then be computed, where

SOUND PRESSURE = ((RL.CORLICORL2) -  (UNRL.COIMlCORL2) -  

(RL. COIMl COIMZ) -  (UNRL. CORLl COIM2)) 

+ i((RL. CORLl COIMl) -  (UNRL. COIMl COIMl) + 

(RL. COIMl CORLl) + (UNRL. CORLl COIMl))

(9) Sound initially reflected twice, then diffracted and finally reflected twice again.

— i>l |- s -

k  SN  15T i / f  
■ i r - i - * -

z 6 i ,

Q12 = Q

For each element we compute the real and imaginary parts of the reflection 

coefficients CORLl, CORL2, CORL3, CORL4, COIMl, COIM2, COIM3, 

COIM4, and in order to do this we need the 3-dimensional angles, v } and v2, 

between the sound path and the normals.

On the side elevation

Y2 = Y -J .D Y  + D Y /2  

and using similar triangles
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Dl SP
SPC (2 . SPC) + SPF + Y2 

. SP.SPC
~ (2.SPC) + SPF + Y2

and for the end elevation

DPI = ((ZP - I .D X  + D X /  2)2) 

DPI = ((ZL - I .D X  + DX 12 + P)2\

Using similar triangles

_ D 3 _ _ _________ PP_________
S P C - g ”  (2.SPC) + SPF + Y 2 - Q

RP.{SPC-Q)
(2. SPC) + SPF + Y 2 - Q

Zi^Df+IVY'f

X\=(SPC?+Dt+Wtf 

Z 2= (B }+ W ff  

X2=/(SFC-Q2 +D? + m 2f  

and = arcao(Zl/Xty 

v2 =arcsin(Z2/A2)

The sound pressure, which is initially reflected twice, then diffracted, and then 

reflected twice again, can then be computed, where



S O U N D  P R E S S U R E  = ( ( R L . C O R L 1 . C O R L 2 . C O R L 3 . C O R L 4 ) -  (iU N R L . C O I M  l . C O  R L 2 . C O  R L 3 . C O  R L 4 )
-  (U N R L . C O R L 1 . C O R L . 3 C O R L 4 . C O I M  2 ) -  (R L . C O I M  1 . C O I M  2 . C O R L 3 . C O R L 4 )
-  ( U N R L . C O R L I . C O R L 2 . C O R L 4 . C O I M  3 ) -  ( R L . C O I M  l . C O I M  3 . C O R L 2 . C O R L 4 )
-  ( R L . C O R L l . C O R L 4 . C O I M  2 . C O I M  3 )+ ( U N R L . C O I M  l . C O I M  2 . C O I M  3 . C O R L 4 )
-  ( R L . C O R L 1 . C O R L 2 . C O I M  3 . C O I M  4 ) + ( U N R L . C O I M  l . C O I M  3 . C O I M  4 . C O R L 2 )
+ ( U N R L . C O R L  l . C O I M  2 . C O I M  3 . C O I M  4 )+ ( R L . C O I M  l . C O I M  2 . C O I M  3 . C O I M  4 )
-  ( U N R L . C 0 R L 1 . C 0 R L 2 . C 0 R L 3 . C 0 1 M  4 ) ~  ( R L . C O I M  l . C O I M  4.  C O R L 2 .  C O R L  3 )
-  ( U N R L . C O R L 1 . C O R L 3 . C O I M  2 . C O I M  4 )+ ( U N R L . C O I M  l . C O I M  2 . C O I M  4 . C O R L 3 ) )
+ i ( ( R L . C O R L 1 . C O R L 2 . C O R L 3 . C O I M  4 ) -  ( U N R L . C O I M  l . C O I M  4 . C O R L 2 . C O R L 3 )
-  ( U N R L . C O R L 1 . C O R L 3 . C O I M  2 . C O I M  4 ) -  ( R L . C O I M  l . C O I M  2 . C O I M  4 . C O R L 3 )
-  ( U N R L . C O R L 1 . C O R L 2 . C O I M  3 . C O I M  4 ) -  ( U N R L . C O I M  l . C O I M  3 . C O I M  4 . C O R L 2 )
-  ( R L .  C O R L l .  C O  I M 2 . C O I M  3 . C O I M  4 )+ ( U N R L . C O I M  l . C O I M  2 . C O I M  3 . C O I M  4 )
+ ( R L . C O R L 1 . C O R L 2 . C O R L 4 . C O I M  3 ) -  ( U N R L . C O R L 2 . C O R L 4 . C O  IM l . C O I M  3 )
-  ( U N R L .  C . O R L 1 . C O R L 4 .  C O I M  2 . C O I M  3 ) -  ( R L  . C O  R L 4  . C O  IM l . C O I M  2 . C O I M  3 )
+ (U N R L . C O  R L 1 . C O  R L 2 . C O R L 3 . C O  R L 4 )  + ( R L . C O R L 2 . C O R L 3 . C O R L 4 . C O I M  I )

+ ( R L . C O R L 1 . C O R L 3 . C O R L 4 . C O I M  2 ) -  ( U N R L . C O R L 3 . C O R L 4 . C O I M  l . C O I M  2 ))

The sound pressure in the absence of a barrier, where reflected components 

from the ground and roof exist, becomes even more complicated than that for 

ground conditions alone. Again, we treat the sound pressure, in the absence of 

a barrier, in exactly the same way for the ground model. This sound pressure, 

at the receiver, is calculated using the elemental theoiy to compute the sound 

level through a hole, the same size and geometry as an 'infinitely wide' barrier 

which is the same height as the room.

The rest of the calculation uses Babinet's Principle in the same way as that for a 

barrier under ground conditions. The calculation is obviously more 

complicated because we have to include sound pressures from more reflected 

components. Again, to perform the calculation correctly, we need to 

incorporate the complex reflection coefficient, Cr, for all surfaces.
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7.2 Results for a barrier in a flat room

After the introduction of a roof results for single and multi-reflections were 

obtained for this 'flat room' configuration.

Figures 29 and 30 use the model, where the finite barrier extends from the ground 

to the roof. Both sets of results record the behaviour in insertion loss with 

increasing frequency. Figure 31 repeats the geometry of the room for Figure 30, 

but introduces a gap between the top of the barrier and the roof. Figure 32 uses a 

2 m x 4 m barrier in a 'flat room' of height 3 m, and shows the variation in insertion 

. loss as the receiver is moved vertically from its central position.

Figure 33 used the 'flat room' model to investigate the variations in insertion loss as 

the aspect ratio of width/height of the barrier is increased, the barrier extending 

from the ground to the roof

7.3 Discussion of results for a barrier in a 'flat room'

The author's model enables both single and multi-reflections from the ground and 

roof to be included, and using a 2 m x 4 m barrier which extends from the ground 

to the roo£ Figure 29 shows a steady increase in insertion loss with increasing 

frequency. Figure 30 extends the barrier height to 2.4 m but the rest of the 

geometry remains the same. The curves are smoother than those for the ground 

model, the reason being that no diffraction or interference takes place above or 

below the barrier. Due to increased interference around the sides of the barrier, 

multi-reflections cause greater deviations from the general trend of the curve than 

is the case for single reflections.

Figure 31 introduces a gap of 0.1 m between the top of the barrier and the roof, 

and although the general trend is a steady increase in insertion loss with respective 

increases in frequency, the curve deviates from this trend, particularly at the high 

end of the frequency spectrum. A line of best fit is superimposed over the true

93



30 
-!

q p / s s o |  u o i p a s u !

Fi
gu

re
 

29 
In

se
rti

on
 

los
s 

for
 

a 
4 

m 
wi

de
 

ba
rri

er
 i

n 
a 

fla
t 

ro
om

, 
us

ing
 

co
nc

re
te

 
su

rfa
ce

s. 
Ba

rri
er

 o
f 

he
ig

ht
 2

m,
 e

xt
en

ds
 f

rom
 

flo
or

 t
o 

ce
ili

ng
.



oooo

ooo

oo
otoototo

CO CO

Ngc
aca3
0 *
0)

COc
.2o
03
v»—
03i_
03
Q.

~s
E

t
co
o03c=
03t—
03
CD£W

I

g p /s s o |  u o ijja su i
95

Fi
gu

re
 

30 
In

se
rti

on
 

los
s 

for
 

a 
4 

m 
wi

de
 

ba
rri

er
 i

n 
a 

fla
t 

ro
om

, 
us

ing
 

co
nc

re
te

 
su

rfa
ce

s. 
Ba

rri
er

, 
of 

he
ig

ht
 2

.4 
m,

 e
xt

en
ds

 f
rom

 
flo

or
 t

o 
ce

ili
ng



oooo
-------

vn

<o
CO

ooo

oT

tO
TT"

o
T

oin

NX
>»o
c<u3
cro>

cn
<u

PH

CO CM CM

a p /s s o i  u o ip a su i 96



t o

z *  -

CM

OO toino
CMin

CM

c

f
I .2jo I

<0

t

gp/ssoj uoiyasui
97

Fi
gu

re
 

32 
Ba

rri
er

 
in 

a 
fla

t 
ro

om
. 

Ef
fe

ct 
on 

in
se

rti
on

 
los

s 
by 

ch
an

gi
ng

 
th

e 
re

ce
iv

er
 p

os
iti

on
.



gp/ssoj uopjasui



curve to demonstrate the magnitude of these deviations. The barrier is finite and 

therefore diffraction and interference around the sides, as well as over the top, is 

extremely significant.

Using the geometry shown in Figure 34, the results produced by E Katarbinska, 

Figure 35, show a similar trend of increasing insertion loss with respective 

increases in frequency, to the curves produced by the author. The experimental 

data tends to deviate around the general trend and this data was produced using a 

model of scale 1:5.
20

-a.

r/ 2r/2

Figure 34 Symbols used in the equations.

tdB]

f - 9 0 *
h r  30 cmtt
t s 60 cm

.5 .63 .8 1 125 1.6 2 2.5 3.15 A 5 6.3 8
model f requency f ( kHz]

Figure 35 Calculated (O  O ) and experimental ( x  x ) data o f  Insertion Loss o f  the
barrier in a model o f  a room o f  two heights: (a) / /  =  240cm ; (b) H — 120cm.

Comparing Figure 32, which uses a 2 m x 4 m barrier in a flat room of height 3 m, 

with Figure 25 (ground conditions only), it can be seen that there is less reduction 

in insertion loss as the receiver position is moved vertically, and the deviations 

from the general trend of the curve are less dramatic. This is especially true for the 

initial peak value. The curve for multi-reflections gives a lower value in sound 

reduction than that for single-reflections, but in the case of multi-reflections, the 

general trend of the curve is to remain static. This suggests that sloping the barrier 

will have little effect in a 'flat room'.

The 'flat room' model is used to investigate the change in insertion loss as the 

aspect ratio of width/height of the barrier is increased, the barrier extending from 

the ground to the roof. Figure 33 shows an initial rapid increase in the curve, 

which can be interpreted as 'finite' conditions; the increase then becomes less
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rapid, giving 'semi-infinite' conditions and finally the curve flattens, where the 

barrier becomes 'infinite'.
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8  BARRIER IN AN ENCLOSURE

Authors of previous research, using barriers in enclosures, have ignored the 

contribution of boundary walls in their calculations. The author thought it necessary 

to introduce side walls into his model and compare the results with those, for identical 

geometries, in his 'flat room' model.

Adding side walls brings added complictions to the 'flat room' model. The reflection 

coefficient, Cr, is incorporated once again for the specular angle of reflection for all 

surfaces.

8 . 1  Computational details

Calculation of the sound passing through the barrier shaped hole is the same for 

that in the 'flat room' model, but now includes the following cases:

1 Sound initially reflected and then diffracted

2  Sound initially diffracted and then reflected

j r * '
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3 Sound initially reflected, then diffracted, and finally reflected again.

X5
For the left hand wall

4 Sound initially reflected and then diffracted

5*' X

5 Sound initially diffracted and then reflected

//
/

/
/
/
/
/
/

6  Sound initially reflected, then diffracted and finally reflected again. 
R 1 j(C

s  i '
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All the sound pressures illustrated above, plus those of the direct and reflected 

components in the 'flat room1 model, are combined to produce a total complex 

sound pressure for sound passing through the hole, ie ^jh.

Then, again, the sound pressure around the barrier,

Computation of the above stages:

Sound reflected from the right hand wall 

(1) Sound initially reflected an then diffracted

. Plan End Elevation
¥ - p

w r  -v  _

For each element we compute the real and imaginary parts of the reflection 

coefficient, ie CORL and COIM, and in order to do this we require the 3- 

dimensional angle v, between the sound path and the normal.

On the plan

T2  = ZL3 -  SPR -  I.DX + DX  / 2
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and using similar triangles

SPR _ X2  
Dl ~ S P - D l  

(SPR. SP)
: .D  1 =

(X2 + SPR)

and from the end elevation

Y2 = ([ZB -  J. DY + DY /  2) 2 ) 1

Using similar triangles 

SPR X2
W1 Y2 -  Wl 

(SPR.Y2)
W1 =

( X2 + SPR)

Hence

z i = ( d i 2  + m 2' f

XI = {SPR2 +D12 +IV12) >: 

and v = arcsin(Zl / Xi)

The sound pressure, which is initially reflected and then diffracted, can then be 

computed where

SOUND PRESSURE= (RL. CORL+ UNRL COIKd) + i(UNRL CORL -  RL. COlM)
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(2) Sound initially diffracted and then reflected.

Plan
z'

'■h? '  1

End Elevation
— >k 5PS-P-

n  -  -

■h

For each element we compute the real and imaginary parts of the reflection 

coefficient, ie CORL and COIM , and in order to do this we require the 3- 

dimensional angle v, between the sound path and the normal.

On the plan

X2 = ZL + SPR ~ I.D X  + DX  / 2

and using similar triangles

SPR -  P _ X2  
D2 ~ R P -D 2  

(RP(SPR-P ))

(X2 + S P R -P )

. and from the end elevation
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Y2 = {(ZB - Q - J .D Y  + DY / 1)2\

Using similar triangles 

S P R -P  X2
W2 Y 2 -W 2  

(Y2(SPR-P))
: .W 2 =

(X 2 + S P R -P ) /

Hence

Z\ = (D22 + W22y

XI = ((SPR -  p)2 + D2 

and v = arcsin(Z 1 / X  l)

The sound pressure, which is initially diffracted and then reflected, can then be 

computed where

SOUND PRESSURE= (RL. CORL+ UNRL. COIM) + iifJNRL. CORL -  RL. COIM)

(3) Sound initially reflected, then diffracted and finally reflected again.

Plan End Elevation

-XZ

P9 = -  P

wT ^  -

S 3

p

^ 5 3
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For each element we compute the real and imaginary parts of the reflection 

coefficient before diffraction takes place, ie CORLl and CORL2 and also the 

real and imaginary parts of the reflection coefficient after diffraction, ie CORL2 

and COIM2. In order to do this we require the respective 3-dimensional angles 

Vj and v2, between the sound path and the normals at the respective points of 

reflection.

On the plan

X2 = Z L + S P R -I.D X  + D X /2  

and using similar triangles

D \ = -±----------^
(X 2 + SPR)

(SPR.SP)

.•.£>3 =
(RP(SPR.P)) 

(X 2 + S P R -P )

and for the end elevation

Using similar triangles

(SPR.Y 2 )
(X2 + SPR)

(X2 + S P R -P )
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Hence

 /

Z\  = (d \2 + W\2f  

XI  = (SPR2 + Dl2 + Wl2f  

Z3 = (D32 + W32f

X3 = ((SPR -  P f  + D32 + W32)

and i/j = arcsin(Zl I X l) 

v2 = arcsin(Z3 I X  3)

The sound pressure which is initially reflected, then diffracted and then 

reflected again, can then be computed where

SOUND PRESSURE-(RL +iUNRL)(WRL\-iWIMi)(CORL2-iCOIM2)

=(RL. CORLl CORLl+ UNRL. COIMl CORLl+ UNRL. COIMl COIMl -  RL. COIMl COIMl) 

+i(UNRL. CORLl CORLl -  RL. COIMl CORLl -  RL. CORLl COIMl -  UNRL. COIMl COIMl)
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Sound reflected from the left hand wall

(4) Sound initially reflected and then diffracted

Plan End Elevation

f

X 3

n X s
^  -  -t, w/ /  
^  —  Tv /  

S t y -  T  /

P10 = ((2. £PZ,) + g ) 

ZL4 = ((2.SPL)-ZL)

For each element we compute the real and imaginary parts of the reflection 

coefficient ie CORL and COIM, and in order to do this we require the 3- 

dimensional angle v, between the sound path and the normal.

On the plan

X3 = SPL- ZL + 1 .DY -  DX / 2

and using similar triangles 

SPL X3
D \ 

D l =

S P - D l
(SPL.SP)

(.X3 + SPL)

and from the end elevation

Y3 = {(Z B -J .D Y  + DY / 2)2j
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Using similar triangles

SPL X3 
Wl "  Y3-W 1

(SPL.Y3) 
:.W 1=  v '

Hence

(X3 + SPL)

v

z i= (z > i 2 + w i2)'a

XI = (SPL2 +D 1 2 + W12) ’ 

and v = arcsin(Zl /X I )

The sound pressure, which is initially reflected and then diffracted, can then be 

computed where

SOUND PRESSURE= (RL. CORL+UNRLCODX) +i{UNRL. CORL -  RL. COM)

(5) Sound initially diffracted and then reflected

Plan End Elevation

X 3

PH P■>

W 3  >

PU = ((2.SPL) + P)
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For each element we compute the real and imaginary parts of the reflection 

coefficient, ie CORL and COIM, and in order to do this we require the 3- 

dimensional angle v, between the sound path and the normal.

On the plan

X3 = SPL -  ZL + 1 .DY -  DX / 2

and using similar triangles

SPL + P X3

D3 =

D3 S P -D 3  
(RP(SPL + P)) 

(X3 + SPL + P)

and from the end elevation

73 = ((ZB -J .D Y  + D Y / 2 -  Q)2)

Using similar triangles 

SPL + P X3

'A

W3 Y 3-W 3  
(Y3(SPL + P))

:.W3 =

- - %- R

Z\ = (D31 +W32)'A

XI = ((SPL + P f  + D32 + W3% 

and v = arcsin(Zl / X i)

The sound pressure, which is initially diffracted and then reflected, can then be 

computed where

SOUND PRESSURE= (RL. CORL+ UNRL. COIM) + i(UNRL. CORL -  RL. COlM)

(X3 + SPL + P)



(6) Sound initially reflected, then diffracted and finally reflected again.

Plan End Elevation

T ~  
V3

W3 /

PY2 = - P

For each element we compute the real and imaginary parts of the reflection 

coefficient before diffraction takes place, ie CORLl and COIMl, and also the 

real and imaginary parts of the reflection coefficient after diffraction, ie CORL2 

and COIM2. In order to do this we require the respective 3-dimensional angles 

Vj and v2  between the sound path and the normals at the respective points of 

reflection.

On the plan

X2 = SPL -Z L  + I.DY -  DX / 2
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and using similar triangles

ry. (S P L S P )
(X I  + SPL)

:.D3 =
(.RP(SPL + P))

(X2 + SPL + P)

and from the end elevation

Y2 = ({ZB - J .D Y  + DY / i f \ A 

Y3 = ((Z B -J .D Y  + D Y / 2 -  Q)2)

Using similar triangles

m _ J S P L J 2 )_
(X2 + SPL)

:.W3 =
(Y3(SPL + P)) 

(X2 + SPL + P)

Hence

zi=[D i2+ m 2f

X\=(SP£ +D11 +Wl2f  

Z3 = (nf+W 3‘f

X3= ((SPL- P f  +ZB2  + 0 ?  V

and vx = arcan(Zl/ Xi) 

v2 =arcsin{Z3/J3)
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The sound pressure which is initially reflected, then diffracted and then

reflected again, can then be computed where

30[M)Fmsm=(î +iiMlocm-acB îoĉ -aiMi)
=(K.aMiaj&+iML(xm.cu&+UM.caucaMi-FLOCiMiaaiMi)

îm.aomaom.-i&aomacm-i&oomaom-u ôcm.oQtm)
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The sound pressure, in the absence of a barrier, in an enclosure becomes more 

complicated than that for the 'flat room' model, due to the added reflective surfaces, 

introduced by the side walls. Again, we treat the sound pressure, in the absence of a 

barrier, in the same way as that for a barrier in a 'flat room'. The sound pressure at the 

receiver, is again calculated by using the elemental theory to compute the sound level 

through a hole, the same size and geometry as the cross-section of the enclosure.

Once again, the rest of the calculation uses Babinet's Principle, and is even more 

complicated due to added reflected components from the walls. The complex 

reflection coefficient, Cr, is once more incorporated for all reflective surfaces.
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Results for a barrier in an enclosure

As far as the author is aware, there is no literature which includes the reflective 

contributions from boundary walls. The author considers it a logical progression to 

add side walls to his model. Figure 36 uses the same barrier geometries as the 'flat 

room' model but places the barrier centrally between two walls. Figure 37 

superimposes a line of best fit to Figure 36.

Figure 38 uses a 2 m x 4 m barrier in an enclosure of height 3 m and shows the 

variation in insertion loss as the receiver is moved vertically from its central position. 

Figure 39 allows comparison with Figure 33, where the aspect ratio changes the value 

of insertion loss in a 'flat room'.
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8.3 Discussion of results for a barrier in an enclosure

Although Katarbinska ignored the contributions from the boundary walls, see Figure 

Page 96, the author introduced side walls to the model. Figure 36 uses the same 

barrier geometries as the flat room model but places the barrier symmetrically between 

two side walls 10 m apart. Note that one curve leaves a 0.1 m gap between the top of 

the barrier and the roof while the other fills the gap between the ground and the roof. 

The curves behave with the same trend as that for the 'flat room' model, but the 

introduction of side walls generally lowers the insertion loss by about 4dB. Figure 37 

superimposes a line of best fit on Figure 36, for the curve which represents a gap over 

the top of the barrier, showing reduced values in the magnitude of deviations from the 

'flat room' model.

Figure 38 shows the insertion loss as the receiver is moved vertically, using the same 

barrier geometry except there is a 1  m gap between the top of the barrier and the roof. 

Comparing with Figure 32, which has identical geometries in a 'flat room', we see that 

the insertion loss is generally about 4dB lower. Figure 39, the graph of insertion loss 

against aspect ratio, gives reduced values compared with the model without boundary 

walls, but the value of insertion loss rises steeply as the barrier width approaches the 

width of the enclosure.

The research has demonstrated clearly that for finite barriers within an enclosure, the 

effects of the boundary walls are important in that they are responsible for a significant 

reduction in the insertion loss.
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9 CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH

Conclusions

Tlie aim of this research was to build a computer model which would predict sound 

loss due to finite barriers within enclosures thus simulating conditions within factory 

type buildings. The report uses the classical Kirchhoff-Fresnel diffraction theory 

throughout and all models divide the barrier's surface into elements. Initially, by 

incoiporating Babinet's Principle into the model, sound attenuation was calculated for 

a barrier in free space.

Experimentation allowed the optimum element size of 0.0125 m to be found within the 

precision grade of measurement.

Validation of the model was achieved by comparing it's trends with Fresnel and 

Fraunhofer diffraction theory. Further validation was effected by using the elemental 

theory to produce a 6 dB reduction in sound level for each respective doubling of 

source-receiver distance in a free field..

Using a barrier size of 2 m x 4 m, it was shown that sound attenuation steadily 

increases with respective increases in frequency. However, as the receiver-banier 

distance is increased, the curve becomes more unstable, with more rapid deviations 

from the general trend. Increasing the receiver offset position produces a general 

decrease in sound attenuation but the curve oscillates about its general trend. A large 

peak value occurs when the receiver position is close to its central position.

The model was extended to place the barrier in contact with the ground, where direct 

and reflected sound contributions tend to introduce interference effects. There is much 

contemporary literature dealing with barriers on the ground, some of which is 

validated by experimental detail. The author, therefore, compares his results with 

those of other workers.
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As in the case of free space, a 2  m x 4 m barrier in contact with the ground gives a 

steady rise in insertion loss as the frequency increases. This curve is smoothed by 

increasing the width of the barrier from 4 m to 10 m, thereby making the effects of 

diffraction and interference around the sides of the barrier less significant. Increasing 

the source-barrier distance amplifies the sensitivity of the trigonometric terms, which 

results in large deviations from the general trend of the curve at the high end of the 

frequency spectrum

A steady reduction in insertion loss is observed as the receiver is moved vertically from 

its central position, but the curve oscillates around this trend with a large initial peak 

value. It may be possible to reproduce this peak value by sloping the barrier instead of 

moving the receiver position.

Introduction of a roof enables both single and multi-reflections to be included and from 

this model we observed steady increases in insertion loss for respective increases in 

frequency. This trend was also observed by E Katarbinska. Smoother curves are 

produced than those in the ground model if the barrier extends from the ground to the 

roof. Due to increased interference, multi-reflections cause greater deviations from the 

general trend than do single reflections. Moving the receiver position has less effect 

on the value of insertion loss as compared with ground conditions alone. The 'flat 

room' model allowed investigation into the effect on insertion loss as the aspect ratio 

of width/height of the barrier was increased. The resulting curve allowed us to 

differentiate between terms like 'finite', 'semi-infinite' and 'infinite' barriers.

Finally, side walls were added to the model and placing these walls 10 m apart gave a 

general reduction of about 4dB in insertion loss. 4dB can be significant in sound 

calculations and so the introduction of walls to the model is justified.

The models are flexible, and comparison with other literature and experimental 

evidence show reasonable agreement. Many deviations in results would undoubtedly 

have been produced if the author could have used the optimum element size of
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0.0125 m. Unfortunately, the computing facilities did not allow sufficient time to run 

some of the models to the required accuracy.

Suggestions for Future Research

Future research may extend to using a point source which emits more than one 

frequency. Where the author uses hard concrete for all reflecting surfaces, a material 

which is usually found in most factory conditions, data can be fed into the models to 

give different reflective properties.

After using multi-reflections in the 'flat room' model, this facility can easily be added to 

the model within an enclosure. It will also be a relatively simple modification to use 

the elemental theory to predict sound loss using angled barriers. Modification within 

the program would be:

*

7fv

S?t
WTH •*1

The barrier is moved through an angle 0 

The vertical element size 

DY = HT/N 

where N is the number of vertical elements 

WTH = HT tan 0
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Now each vertical element has a new distance from the source and receiver. If the 

original source and receiver distances are SP1 and RP1 respectively, then for each 

subroutine of the new program, the new source and receiver positions will be SP and

RP where:

SP = SP1 + WTH -  N.DL + DL/2 
RP = RP1 -  WTH + N.DL -  DL/2

where DL = WTH/N

Similar modifications can be made for other barrier geometries, hemispherical, cross- 

section barriers for example.

The flexibility of the theory will allow excess sound loss to be computed by the use of 

double and maybe triple barriers.

Double Barrier

X X
R,

As with all previous models the sound loss at the first receiver position, R, can be 

calculated. This receiver position then becomes the new source position, Sj, for the 

second barrier. The sound loss due to the second barrier can then be computed at the 

second receiver position, Rj. It is then possible to slope both barriers and so form a 

wedge shaped barrier.
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Using the same technique, a third barrier may be added. 

Triple Barrier

X X
R,(S

\ Z

The triple barrier should be very effective because the distance between Sj and R b for 

the central barrier, can be made quite small compared with the distance SR and S2 R2.

126



REFERENCES

1 M Bom and E Wol£ 1Principles o f O p t i c s Pergamon, New York, 1987, Sixth 
(Corrected) Edition, 375-380.

2 T Isei, T F W Embleton and J E Piercy, 'Noise reduction by barriers on finite 
impedance ground; 1980, J. Acoustic Society of America, 67(1), 46-58.

3 S W Redfeam, 'Some Acoustical source-observer problems'; 1940, Philos. Mag. J. 
7 (30), 223-236

4 Z Maekawa, 1Experimental study on acoustical designing o f a screen for noise 
reduction', 1962, J. Acoust. Soc. Japan, 18, 187-196

5 Z Maekawa, 'Noise reduction by screens', 1968, Appl. Acoust. 1, 157-173.

6  U J Kurze and G S Anderson, 'Sound attenuation by barriers', 1971, Appl. 
Acoust. 4, 35-53 .

7 T Kawai, K Fujimoto and T Itow, 'Noise propagation around a thin half plane', 
1978, Acustica, 38, 313-323.

8  J J Bowman, T B A Senior and P L E Uslenghi, 'Electromagnetic and acoustic 
scattering by simple shapes', 1969, North Holland, Amsterdam, 308-345.

9 H M Macdonald, 'A class o f diffraction problems', 1915, Proc. London Math. Soc 
14, 410-427.

10 K Fujiwara, Y Ando and Z Maekawa, 'Noise reduction by an absorptive barrier*, 
1976, J Acoust. Soc. Japan, 32, 430-435.

11 M Yuzawa, 'Sound attenuation by absorptive barriers', 1977, J Acoust. Soc. 
Japan, 33, 664-666.

12 A D Pierce, 'Diffraction o f sound around corners and over wide barriers', 1974, J 
Acoust. Soc. America, 55, 941-955.

13 JB  Keller, 'Geometrical theory o f diffraction', 1962, J Opt Soc. America, 52, 116- 
130.

14 K Fujiwara, Y Ando and Z Maekawa, 'Noise control by barrier\ 1977, AppL 
Acoust. 10, 147-159.

15 W E Scholes, A C Salvidge and J W Sargent, 'Field performance o f a noise 
barrier', 1971, J. Sound Vib. 16, 627-642.

16 T Isei and K Matsuguma, 'Experimental study on noise reduction of line sound 
source by b a rr ie r1976, Proc. Meeting of Acoust. Soc, Japan, 3-1-9, 297-298.



17 H G Jonasson, 'Sound reduction by barriers on the ground, 1972, J Sound Vib. 
22, 113-126.

18 U Ingard, 1On the reflections o f a spherical sound wave from an infinite plane', 
1951, J Acoust. Soc. America, 23, 329-335.

19 S I Thomasson, 'Reflections o f waves from a point source by an impedance 
boundary', 1976, J Acoust. Soc America, 59, 780-785.

20 S I Thomasson, 'Sound propagation above a layer with a large reflection index', 
1977, J Acoust. Soc. America, 61, 659-674.

21 S I Thomasson, 'Diffraction by a screen above an impedance boundary?, 1977, 
Rep TVBA-1001, Department of Building Acoustics, Lund Institute of 
Technology, Lund, Sweden.

22 S I Thomasson, 'Theory and experiments on sound propagation above an 
impedance boundary', Rep. 75, Division of Buliding Technology, Lund Institute 
of Technology, Lund, Sweden.

23 T Isei, T F W Embleton and J E Piercy, 'Influence o f reflections at the ground on 
insertion loss o f barriers', 1978, 95th ASA Meeting J. Acoust. Soc. Am Suppl. 
163, S59.

24 T Isei, T F W Embleton and J E Piercy, 'Comparison o f theoretical and measured 
sound levels behind barriers', 1978, J Acoust. Soc. Am SuppL 164, S172.

25 T Isei, T F W Embleton and N Olson, 'Outdoor sound propagation over ground o f  
finite impedence', 1976, J Acoust. Soc. Am 59, 267-277.

26 W C Elmore and M A Heald, 'Physics o f  waves', 1969, McGraw Hill-Kogakusha, 
Tokyo, Japan.

27 T F W Embleton, 'Line integral theory o f barrier attenuation', 1980, J Acoust. 
Soc. America, 67, 42-45.

28 T Isei, 'Absorptive noise barrier on finite impedance ground, 1980, J Acoust. 
Soc., Japan 1.

29 F A Jenkins and H E White, 'Fundamentals of Optics', 378-401.

30 F A Jenkins and H E White, 'Fundamentals of Optics’, 317-324.

31 H Medwin, 'Shadowing by finite noise barriers', 1980, J Acoust. Soc. Am, Vol 
69, No 4, 1060-1064

32 M A Biot and L Tolstoy, Formulation o f wave propagation in infinite media by 
normal coordinates with an application to diffraction J. Acoust. Soc. Am 29, 
381-391(1957)



33 JH  Stratton, 'Electromagnetic Theory', [McGraw-Hill, New York, 1941]

34 J Rudnick, 'The propagation o f an acoustic wave along a plane boundary', J 
Acoust. Soc. Am 19, 348-356 [1947]

35 C J Chessell,'Propagation o f noise along a finite impedance boundary', J Acoust. 
Soc. Am 62, 825-834 [1977]

36 M E Delany and E N Bazley,'Acoustical properties offibrous absorber materials', 
Appl. Acoust. 3, 105-116 [1970]

37 P Ambaud and A Bergassoli, 'Le problem du diedre en acoustique', Acustica 27, 
291-298 (1972)

38 W J Hadden and A D Pierce, 'Sound diffraction around screens and wedges for  
arbitrary point source locations', J Acoust. Soc. Am 69, 1266-1276 (1981)

39 E Katarbinska, 'How to calculate the efficiency o f an acoustic barrier in a flat 
room', Applied Acoustics, 23, 99-108 (1987)

40 U Bolleter, 'On the sound propagation in large flat weaving sheds', Proc. Inter- 
Noise, 77, Zurich 1977

41 U J Kurze, 'Scattering o f sound in industrial spaces', J Sound Vibration, 98(3) 
349-364(1985)

42 Andre L'Esperance, 'The insertion loss o f finite length barriers on the ground, J 
Acoust. Soc. Am 8 6 ( 1 ), (1989)

43 D C Hothersall, S N Chandler-Wilde and M N Hajimirzae, 'Efficiency o f single 
noise barriers', Journal of Sound Vibration, 146, 303-322 (1991)

44 Yasuhito Kawai and Toshio Terai, 'The application o f integral equation methods 
to the calculation o f sound attenuation by barriers', Applied Acoustics 31, 1 0 1 - 
117(1990)

45 Trevor J Cox and Y W Lam ,'Evaluation o f methods for predicting the scattering 
from simple rigid panels', Applied Acoustics 40, 123-140 (1992)

46 Y W Lam and S C Roberts, 'A simple method for accurate prediction o f finite 
barrier insertion loss', J Acoust. Soc. Am 93, 1445-1452 (1993)

47 Y W Lam, 'Using Mackawa’s chart to calculate finite length barrier insertion 
loss', Applied Acoustics 42, 29-40 (1994)

48 Y W Lam, 'On the modelling o f the effect o f ground terrain profile in 
environmental noise calculations', Applied Acoustics, 42, 99-123 (1994)



49 Koichi Takagi, Ryota Hotta and Kohei Yamamoto, 'A simple method for the 
calculation o f noise attenuation by a finite length barrier\ Applied Acoustics, 43, 
353-365 (1994)

50 ISO, Acoustics - Attenuation of Sound During Propagation Outdoors - Part 2: A 
General Method of Calculation (DIS9613-2). Draft International Standard, ISO, 
Switzerland, 1992.

51 Conware, The Propagation o f Noise from Petroleum and Petrochemical 
Complexes to Neighbouring Communities (CONCAWE Report No 4/81), 
Madouplein 1, B-1030, Brussels, Belgium, 1981.

52 K J Marsh, The CONCA WE model for calculating the propagation o f noise from 
open-air industrial plants. Appl. Acoustics, 15, (1982) 411-28.

53 R Tonin, Estimating noise levels from petrochemical plants, mines and industrial 
complexes. Accoustics, Australia 13(2), (1984), 59-67.

54 J Nicolas, T F W Embleton and J E Piercy, Precise model measurements versus 
theoretical prediction o f barrier insertion loss in presence o f the ground. 
J. Acoust. Soc. Am Vol 73, No 1 (1983) 44-54

55 Leang, L K Yamashita, Y & Matsui M, Simplified calculation method for oise 
reduction by barriers on the ground. J. Acoust. Soc. Japan (E), 11(4), (1990) 
199-205



WRITE(6, *)'B ARRIER IN FREE SPACE-FIRST ORDER MODEL’ 
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE- BARRIER DISTANCE'
READ(5,*)SP
WR3TE(6,* JRECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6, *)'HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET'
READ(5,*)Q
WRITE(6,*)'X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*)'HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(5,*)DY
WRITE(6,*)'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,*)M
WRITE(6,*)'NUMBER OF VERTICAL ELEMENTS'
READ(5,*)N
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL 
PI=3.1415926 
WN=(2.0*PI)/WL 
SUMR=0 
SUMI=0 
DO 2 J=1,N 

DO 1 1=1,N 
XO=XL-I*DX+DX/2.()
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP*5*'2)+(XO-P)**2+0AO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)
RL=AK**2*CUSK^RO*CUST+SO*CUSF)+WN*AK*SENK*(CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO+CUSF)-WN*AK*CUSK*(CUST+

+ CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/(PI*WN**2*

+ A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

1 CONTINUE
2 CONTINUE

DB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UB1**2
DB=-10.0*(ALOG10(EB*DIB**2))
WRITE(6,3)DB

3 FORMAT('ATTENUATION-, G14.6)
STOP



WRITE(6,*)'BARRIER IN FREE SPACE-ZERO ORDER MODEL* 
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'
READ(5,*)SP
WRITE(6,*)'RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET’
READ(5,*)Q
WRITE(6,*)'X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*)'HORIZONTAL ELEMENT SIZE’
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
R£AD(5,*)DY
WRITE(6,*)'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,*)M
WRITE(6,*)'NUMBER OF VERTICAL ELEMENTS'
READ(5,*)N
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL 
PI=3.1415926 
WN=(2.0*PI)/WL 
SUMR=()
SUMI=0 
DO 2 J=1,N 

DO 1 I=1,M
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*(CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*(CUST+

+ CUSF)
FIR=((DX/2.0)*(DY/2.0))/P1
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

1 CONTINUE
2 CONTINUE

DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2)
UBR=((COS(WN*DIB))/DIB)-SUMR
UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0*(ALOG10(EB*DIB**2))
WRITE(6,3)DB

3 FORMAT('ATTENUATION=\G14.6)
STOP ‘
END



WRITE(6,*)'BARRIER IN FREE SPACE-FIRST ORDER MODEL-CHANGING 
+ELEMENT SIZE'
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE-BARRIER DISTANCE'

* READ(5,*)SP 
WRIT £(6,*)'RECEIVER-B ARRIER DISTANCE'
READ(5,*)RP
WRITE(6, * )'HORIZONTAL RECEIVER OFFSET’
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET’
READ(5,*)Q
WRITE(6,*)'X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL 
PI=3.1415926 
WN=(2.0*PI)/WL
WRITE(6,*)'WIDTH OF BARRIER’
READ(5,*)WTH
WRITE(6,*)'HEIGHT OF BARRIER'
READ(5,*)HT 
DO 5 M=10,100.1 

N=M 
SUMR=0 
SUMI=0 
DX=WTH/M 
DY=HT/N 
DO 2 J=1,N 

DO 1 1=1,M 
XO=XL-I*DX+DX/2.0 
YO=YB-J*DY+DY/2.0 
SO=SQRT((SP**2)+(XO**2)+(YO**2)) 
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/RO)+(YO-Q)/SO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=LO/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENKnRO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FlR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/

+ (PI*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

1 CONTINUE
2 CONTINUE 

DEB=SQRT((P**2)+(Q**2)+(RP+SP)**2) 
UBR=((COS(WN*DIB))/DIB)-SUMR 
UBI=((SIN(WN*DIB))/DIB)-SUMI 
EB=UBR**2+UBI**2 
DB=-10.0*(ALOG 10(EB*DIB**2))
WRITE(6.3)M



3 FORMAT(’NUMBER OF ELEM ENTS-, 13) 
WRITE(6,4)DB

4 FORMAT ('ATTENU A T IO N -, G 14.6)
5 CONTINUE 

STOP 
END



WRITE(6,*)'BARRIER IN FREE SPACE-ZERO ORDER MODEL-CHANGING 
+ELEMENT SIZE'
WRITE(6,*)'THE DATA IS'
WRITE(6,*)’SOURCE-BARRIER DISTANCE'
READ(5,*)SP
WRITE(6,*)'RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'HORIZONTAL RECEIVER OFFSET’
READ(5,*)P
WRITE(6,*)'VERTICAL RECEIVER OFFSET'
READ(5,*)Q
WRITE(6,*)'X COORDINATE FROM LHS OF BARRIER'
READ(5,*)XL
WRITE(6,*)'Y COORDINATE FROM TOP OF BARRIER'
READ(5,*)YB
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL 
PI=3.1415926 
WN=(2.0*PI)/WL
WRITE(6,*)'WIDTH OF BARRIER'
READ(5,*)WTH
WRJTE(6,*)'HEIGHT OF BARRIER'
READ(5,*)HT 
DO 6 M=10.100,1 

N=M 
SUMR=0 
SUMI=0 
DX=WTH/M 
DY=HT/N 
DO 2 J=1.N 

DO 1 I=1.M
XO=XL-I*DX+DX/2.0
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=l.G/(RO*SO)
RL=AK*n*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*(CUST+

+ CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=((DX/2.0)*(DY/2.0))/PI
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

1 CONTINUE
2 CONTINUE 

DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2) 
UBR=((COS(WN*DIB))/DIB)-SUMR 
UBI=((SIN(WN*DIB))/DIB)-SUMI 
EB=UBR**2+UBI**2
DB=-10.0*( ALOG 10(EB*DIB**2))
WRITE(6.4)M

4 FORMAT(’NUMBER OF ELEM ENTS-,13)
WRITE(6.5)DB

5 FORMAT(’ATTENUATION=’.G14.6)



DIMENSION AMP(500),REL(500) 
WRITE(6,*)'SIMILATION OF FRESNEL DIFFRACTION' 
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'SOURCE BARRIER DISTANCE' 
READ(5,*)SP
WRITE(6.*)'RECEIVER BARRIER DISTANCE' 
READ(5,V)RP
WRITE(6,*)'X-COORDINATE FROM LHS OF BARRIER' 
READ(5,*)XL
WRITE(6,*)'ELEMENT SIZE'
READ(5,*)DX
WRITE(6.*)'NUMBER OF ELEMENTS'
READ(5,*)M
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL 
PI=3.1415927 
WN=(2.0*PI)/WL 
PUG=PI*DX**2 
SUMR=0 
SUMI=0 
DO 11=1,M 

XO=XL-I*DX+DX/2.0 
SO=SQRT((SP**2)+(XO**2)) 
RO=SQRT((RP**2)+(XO**2)) 
C=(WN*((RO*SP)+(SO*RP)))/((RO**2)*(SO**2)) 
B=(((RO**2)*SP)+((SO**2)*RP))/((RO**3)*(SO**3)) 
R=WN*(RO+SO)
RL=(B*COS(R))+(C*SIN(R))
UNRL=(B*SIN(R))-(C*COS(R))
SUMR=SUMR+(RL*(2.0*I-1)*PUG)
SUMI=SUMI+(UNRL*(2.0*I-1)*PUG)
AMP(I)=SQRT((SUMR**2)+(SUMI**2))
REL(I)=APM(I)/AMP( 1)
WRITE(6,4)I 

4 FORMAT('ELEMENT NUMBER-,13) 
WRITE(6,3)AMP(I)

3 FORMAT('AMPLITUDE='.G14.6)
WRJTE(6.2)REL( I)

2 FORMAT ('RELATIVE AMPLITUDE^,G 14.6)
1 CONTINUE 
STOP 
END



DIMENSION EA(500),REL(500)
WRITE(6,*)'SIMILATION OF FRAUNHOFER DIFFRACTION' 
WRITE(6,*)'THE DATA IS’
WRITE(6,*)'EXTREME VALUE'

-  READ(5,*)X 
WRITE(6,*)'STEP VALUE’
READ(5,*)Y
WRITE(6,*)'SOURCE-BARRIER DISTANCE’
READ(5,*)SP
WRITE(6,*)'RECEIVER-B ARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'VERTICAL RECEIVER OFFSET 
READ(5,*)Q
WRITE(6,*)'X-COORDINATE FROM LHS OF BARRIER' 
READ(5,*)XL
WRITE(6,*)'Y-COORDINATE FROM TOP OF BARRIER' 
READ(5,*)YB
WRITE(6,*)'HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(5,*)DY
WRITE(6,*)'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,*)M
WRITE(6,*)'NUMBER OF VERTICAL ELEMENTS'
READ(5.*)N
WRITE(6,*)'WAVELENGTH’
READ(5,*)WL 
PI=3.1415926 
WN=(2.0*PI)/WL 
DO 5 K=1,X,Y 

SUMR=0 
SUMI=0 
DO 2 J=1,N 

DO 11=1,M 
XO=XL-I*DX+DX/2.0 
YO=YP-J*DY+DY/2.0 
SO=5QRT((SP**2)+(XO**2)+(YO**2)) 
RO=SQRT((RP**2)+(XO-K)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-K)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK= 1 .()/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK* 

+ (CUST+CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.l)))/

+ (PI*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

1 CONTINUE
2 CONTINUE 

EA(K)=SUMR**2+SUMI**2 
REL(K)=EA(K)/EA(1)
WRITE(6,3)K



3 FORMAT('RECEIVER OFFSET-,14.1) 
WRITE(6,4)REL(K)

4 FORMAT('RELATI VE INTENSITY=',G14.6)
5 CONTINUE 

STOP 
END



WRITE(6,*)'BARRIER IN FREE SPACE-RECEIVER OFFSET' 
WRITE(6,*)'THE DATA IS'
WRITE(6,*)'S0URCE-B ARRIER DISTANCE'
READ(5,*)SP 

-WRITE(6,*)'RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,^HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'X-COORDINATE FROM LHS OF BARRIER’ 
READ(5,*)XL
WRITE(6,*)'Y-COORDINATE FROM TOP OF BARRIER' 
READ(5,*)YB
WRITE(6,*)'HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRITE(6,*)'VERTICAL ELEMENT SIZE'
READ(5,*)DY
WRITE(6,*)'NUMBER OF HORIZONTAL ELEMENTS'
READ(5,*)M
WRITE(6,*)’NUMBER OF VERTICAL ELEMENTS'
READ(5,*)N
WRITE(6,*)'WAVELENGTH'
READ(5,*)WL
WRITE(6,*)'INITIAL VALUE'
READ(5,*)R
WRITE(6,*)'FINAL VALUE'
READ(5,*)S
WRITE(6.*)'STEP VALUE'
READ(5,*)T 
PI=3.1415926 
WN=(2.0*PI)/WL 
DO 5 Q=R,S.T 

SUMR=0 
SUMI=0 
DO 2 J=1,N 

DO 1 I=1,M 
XO=XL-I*DX+DX/2.()
YO=YB-J*DY+DY/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO 
CUSF=RP/RO 
A=(XO/SO)+(XO-P)/RO 
B=( Y 0/S0)+( Y 0-Q)/R0 
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK* 

+ (CUST+CUSF)
FIR=SIN(WN*B*(DY/2.0))*SIN(WN*A*(DX/2.0))/

+ (PI*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUM1+UNRL*FIR

1 CONTINUE
2 CONTINUE 

DIB=SQRT((P**2)+(Q**2)+(RP+SP)**2) 
UBR=((COS(WN*DIB))/DIB)-SUMR



UBI=((SIN(WN*DIB))/DIB)-SUMI
EB=UBR**2+UBI**2
DB=-10.0*(ALOG10(EB*DIB**2))
WRITE(6,3)Q

 3 FORMAT('RECEIVER OFFSET=',GI4.6)
WRITE(6,4)DB

4 FORMAT(’ATTENUATION=',G14.6)
5 CONTINUE 

STOP 
END



WRITE(6,*)'THE DATA IS’
WRITE(6,*)'ENTER SOURCE-BARRIER DISTANCE'
READ(5.*)SP
WRJTE(6,*)'ENTER RECEIVER-BARRIER DISTANCE'
READ(5,*)RP
WRITE(6,*)'ENTER HORIZONTAL RECEIVER OFFSET'
READ(5,*)P
WRITE(6,*)'ENTER X-COORDINATE OF L.H.S. OF BARRIER'
READ(5,*)ZL
WRITE(6,*)'ENTER Y-COORDINATE OF TOP OF BARRIER'
READ(5,*)ZB
WRITE(6,*)'ENTER HORIZONTAL ELEMENT SIZE'
READ(5,*)DX
WRJTE(6,*)'ENTER VERTICAL ELEMENT SIZE’
READ(5,*)DY
WRITE(6,*)'ENTER NUMBER OF HORIZONTAL ELEMENTS’
READ(5,*)M
WRITE(6,*)’ENTER NUMBER OF VERTICAL ELEMENTS'
READ(5,*)N
WRITE(6,*)'ENTER WAVELENGTH'
READ(5,*)WL
WRITE(6,*)'ENTER POSITION OF SOURCE FROM FLOOR'
READ(5,*)Y1
WRITE(6,*)'ENTER RESONANT FREQUENCY'
READ(5,*)W0
WRITE(6.*)’ENTER CHARACTERISTIC ACOUSTIC IMPEDANCE OF MEDIUM’ 
READ(5,*)ROEC
WRITE(6,*)'ENTER MECHANICAL RESISTANCE FACTOR'
READ(5,*)R
WRITE(6,*)'ENTER EFFECTIVE MASS PER UNIT AREA'
READ(5,*)MASS 
WRITE(6,*)'INITIAL VALUE’
READ(5,*)S
WRJTE(6, * /EXTREME VALUE’
READ(5,*)G
WRITE(6,*)'STEP VALUE'
READ(5,*)T
Pl=3.1415926
WN=(2.0*PI)/WL
W=340.0/WL
X=M*DX
WRITE(6J)X

1 FORMAT(5X.’WIDTH OF BARRIER=',G14.6)
Y=N*DY
WRITE(6,2)Y

2 FORMAT(5X.'HEIGHT OF BARRIER-,G14.6)
DO 8 E=S,G,T

WRTIE(6.15)E 
15 FORMAT(5X.'VERTICAL OFFSET='.G 14.6)

CALL BARR1(RP.SP.P.E,ZL,ZB,DX,DY,M,N.PI,WN,SUMC.SUMD)
D3=(Y 1 *(RP+SP))/((2.0* Y 1 )+E)
Q1=E+(2.0*Y1)
ZB1=ZB+(2.0*Y1)
CALL BARR2(RP,SP.Y.P,Q1,ZL,ZB1,DX,DY,M,N.P1,WN.Y1.W,W0.R,

+ MASS,ROEC,SUME,SUMF)
Q2=-(E+(2.0* Y1))
CALL BARR3(RP.SP.Y,P.Q2,E,ZL,ZB,DX,DY,M,N,PI.WN.Yl.W.WO.R,

+ MASS,ROEC.SUMG.SUMH)



Q3=-E
CALL BARR4(RP,SP. Y.P.Q3,E,ZL,ZB 1 ,DX.D Y,M,N,PI. WN. Y J.

+ W,WO,R.MASS,ROEC.SUMJ.SUMK)
W3=(Y 1 *P)/((2.0* Y i j+E)
X01=SQRT((Y1**2)+(D3**2)+(W3**2))
ZO!=SQRT((D3**2)+(W3**2))
V=ASIN(Z01/X01)
CUSSV=COS(V)
CALL REFCO(W,WO,R.MASS,CUSSV,ROEC.CORL,COIM) 
DIB1=SQRT((P**2)+(E**2)+(RP+SP)**2) 
DIB2=SQRT(((2.0*Y1)+E)**2+(P**2)+(RP+SP)**2) 
UBR=(COS(WN*DIB 1 ))/DIB 1 
UBI=(SIN( WN*DIB 1 ))/DIB 1
UBRl=(((GOS(WN*DIB2))*CORL)+((SIN(WN*DIB2))*COIM))/DIB2 
UBIl=(((SIN(WN*DIB2))*CORLM(COS(WN*DIB2))*COIM))/DIB2 
EBR=UBR+UBR 1 
EBI=UBI+UBII
UBR2=EBR-(SUMC+SUME+SUMG+SUMJ)
UBI2=EBI-(SUMD+SUMF+SUMH+SUMK)
dB=10.0*(ALOG10((EBR**2+EBI**2)/(UBR2**2+UBI2**2)))
WRITE(6,7)dB

7 FORMAT(5X.'ATTENUATION-,G14.6)
8 CONTINUE 

STOP 
END

SUBROUTINE BARR1(RP.SP.P,Q.XL,YB.DV.DZ,L,N.P],WN,SUMR.SUMI) 
SUMR=0 
SUMI=0 
DO 4 J=1,N 

DO 3 1=1,L 
XO=XL-I*DV+DV/2.0 
YO=YB-J*DZ+DZ/2.0 
SO=SQRT((SP**2)+(XO**2)+(YO**2)) 
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/

+ (PI*WN**2*A*B)
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

3 CONTINUE
4 CONTINUE 

RETURN 
END

SUBROUTINE BARR2(RP.SP.Y,P,Q,XL,YB,DV.DZ,L,N,PI, WN,Y 1. W, WO, 
+R,MASS,ROEC.SUMR,SUMI)
SUMR=0



SUMI=0 
DO 6 J=1,N 

DO 5 1=1,L
XO=XL-I*DV+DV/2.0
YO=YB-J*DZ+DZ/2.0
SO=SQRT((SP**2)+(XO**2)+(YO**2))
RO=SQRT((RP**2)+(XO-P)**2+(YO-Q)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-Q)/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1,0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/

+ (PI*WN**2*A*B)
Y2=Y-J*DZ+DZ/2.0
D1=(Y1*SP)/(Y1+Y2)
DP=SQRT((XL-(I*DV)+(DV/2.0))**2)
W 1=(DP* Y1)/(Y 1+Y2)
X1=SQRT((Y1**2)+(D 1 **2)+(Wl**2))
Z1=SQRT((D1**2)+(W1**2))
V=ASIN(Z1/X1)
CUSV=COS(V) ■
CORL=(((YV**2HYV0**2))**2+W**2*((R/MASS)**2-(ROEC/

+ (MASS*CUSV))**2))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(ROEC/(MASS*CUSV)))**2) 

COIM=(2.0*W*((W**2)-(W0**2))*(ROEC/
+ (MASS*CUSV)))/(((W**2)-(\V0**2))**2+W**2*
+ ((R/MASS)+(ROEC/(MASS*CUSV)))**2)

SUMR=SUMR+((RL* CORL)+(UNRL* COIM)) *FIR 
SUMl=SUMI+((UNRL*CORL)-(RL*COIM))*FIR

5 CONTINUE
6 CONTINUE 

RETURN 
END

SUBROUTINE BARR3(RP.SP,Y.P.QZ,Q,XL,YB,DV,DZ,L.N,PI,WN,Y1,W,W0, 
+R,MASS,ROEC.SUMR.SUMI)
SUMR=()
SUMI=0 
DO 10 J=1,N 

DO 9 1=1,L 
XO=XL-I*DV+DV/2.0 
YO=YB-J*DZ+DZ/2.0 
SO=SQRT((SP**2)+(XO**2)+(YO**2)) 
RO=SQRT((RP**2)+(XO-P)**2+(YO-QZ)**2)
CUST=SP/SO
CUSF=RP/RO
A=(XO/SO)+(XO-P)/RO
B=(YO/SO)+(YO-QZ)/RO
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)



RL=AK*^*CUSKnRO*CUST+SO*CUSF)+WN*AK*SENK*
+ (CUST+CUSF)

UNRL=AK**2*SENK*(R0*CUST+S0*CUSF)-WN*AK*CUSK* 
+ (CUST+CUSF)

FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/
+ (PI*WN**2*A*B)

Y2=Y-J*DZ+DZ/2.0 
D3=(Y2*RP)/(Y 1+Y2+Q)
DP=SQRT((XL-(I*DV)+(DV/2.0)+P)**2)
W3=(Y2*DP)/(Y 1+Y2+Q)
X 1=SQRT((Y2 * *2)+(D3 * *2)+( W3 * *2)) 
Z1=SQRT((D3**2)+(W3**2))
V=ASIN(Z1/X1)
CUSV=COS(V)
CORL=(((W**2)-(WO**2))**2+W**2*((R/MASS)**2-(ROEC/

+ (MASS*CUSV))**2))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(R0EC/(MASS*CUSV)))**2)

COIM=(2.0*W*((W**2)-(WO**2))*(ROEC/
+ (MASS*CUSV)))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(R0EC/(MASS*CUSV)))**2)

SUMR=SUMR+((RL*CORL)+(UNRL*COIM))*FIR
SUMI=SUMI+((UNRL*CORL)-(RL*COIM))*FIR

9 CONTINUE
10 CONTINUE 

RETURN 
END

SUBROUTINE BARR4(RP.SP.Y,P,QZ.Q.XL,YB,DV,DZTL.N.PI.WN.Y1, 
+W,W0.R.MASS,ROEC.SUMR.SUMI)
SUMR=0 
SUMI=0 
DO 12 J=1.N 

DO 111=1.L 
XO=XL-I*DV+DV/2.0 
YO=YB-J*DZ+DZ/2.0 
SO=SQRT((SP**2)+(XO**2)+(YO**2)) 
RO=SQRT((RP**2)+(XO-P)**2+(YO-QZ)**2)
CUST=SP/SO 
CUSF=RP/RO 
A=(XO/SO)+(XO-P)/RO 
B=(Y0/S0)+( Y 0-QZ)/R0 
CUSK=COS(WN*(RO+SO))
SENK=SIN(WN*(RO+SO))
AK=1.0/(RO*SO)
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*

+ (CUST+CUSF)
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-WN*AK*CUSK*

+ (CUST+CUSF)
FIR=SIN(WN*B*(DZ/2.0))*SIN(WN*A*(DV/2.0))/

+ (PI*WN**2*A*B)
Y2=Y-J*DZ+DZ/2.0
D1=(Y1*SP)/(Y1+Y2)
DPl=SQRT((XL-(I*DV)+(DV/2.0))**2)
W1 =(DP 1 * Y1)/(Y 1 + Y 2)
X1=SQRT((Y 1 **2)+(D 1 **2)+( W1 **2))
Z1=SQRT((D 1 **2)+(W 1 **2))
V1=ASIN(Z1/X1)
CUSV1=C0S(V1)



CORL1=(((W**2)-(WO**2))**2+W**2*((R/MASS)**2-(ROEC/
+ (MASS*CUSV1))**2))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(ROEC/(MASS*CUS Vl)))**2) 

COIM1=(2.0*W*((W**2)-(WO**2))*(ROEC/
+ (MASS*CUSV1)))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(R0EC/(MASS*CUSV1)))**2)

D3=(Y2*RP)/(Y 1+Y2+Q)
DP2=SQRT((XL-I*DV+DV/2.0+P)**2)
W3=(Y2*DP2)/(Y 1+Y2+Q)
X2=SQRT((Y2**2)+(D3**2)+(W3**2))
Z2=SQRT((D3**2)+(W3**2))
V2=ASIN(Z2/X2)
CUSV2=COS(V2)
C0RL2=((( W* *2)-(W0 * *2))* *2+W* *2*((R/MAS S) * *2-(R0EC/

+ (MASS*CUSV2))**2))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(ROEC/(MASS*CUSV2)))**2) 

COIM2=(2.0*W*((W**2)-(W()**2))*(ROEC/
+ (MASS*CUSV2)))/(((W**2)-(W0**2))**2+W**2*
+ ((R/MASS)+(ROEC/(MASS*CUSV2)))**2)

SUMR=SUMR+(((RL*CORLl*CORL2)+(UNRL*COIMi*CORL2)- 
+ (RL*COIM 1 *C0IM2)+(UNRL*C0RL 1 *C0IM2))*FIR)

SUMI=SUMl+(((UNRL*CORLl*CORL2MRL*COIMl*CORL2)- 
+ (RL*CORL 1 *C0IM2)-(UNRL*C0IM 1 *C0IM2))*FIR)

11 CONTINUE
12 CONTINUE 

RETURN 
END

SUBROUTINE REFCO(W.WO.RMASS,CUSSV,ROEC,CORL,COIM) 
CORL=(((W**2)-(WO**2))**2+W**2*((R/MASS)**2-(ROEC/ 

+(MASS*CUSSV))**2))/(((W**2)-(W0**2))**2+W**2* 
+((R/MASS)+(ROEC/(MASS*CUSSV)))**2) 
COIM=(2.0*W*((W**2)-(WO**2))*(ROEC/ 

+(MASS*CUSSV)))/(((W**2)-(W0**2))**2+W**2* 
+((R/MASS)+(ROEC/(MASS*CUSSV)))**2)
RETURN
END



W RITE( 6 , * )  •AMPLITUDE *
READ( 5 , * ) AMP
W RITE( 6 , * ) • SOURCE-BARRIER D IST A N C E '
READ( 5 , * ) S P

-WRITE ( 6 ,  * > ' RECE IV E R -B A R R IE R  DISTANCE'
READ( 5 , * ) R P
W RITE( 6 ,  * )  'HORIZONTAL RECEIVER OFFSET'
READ( 5 /  * ) P
WRITE ( 6 , * ) • X-COORDINATE FROM L . H . S .  OF BARRIER'
READ( 5 / * ) ZL
W RITE( 6 , * ) ' Y-COORDINATE FROM TOP OF BARRIER'
READ( 5 , * ) ZB
W RITE( 6 ,  * )  'HORIZONTAL ELEMENT S I Z E  OF BARRIER’
READ( 5 , * ) DX
W RITE( 6 / * ) 'VERTICAL ELEMENT S I Z E  OF BARRIER'
READ( 5  # * ) DY
W RITE( 6 ,  * )  'NUMBER OF HORIZONTAL BARRIER ELEMENTS'
READ ( 5  ,  -* ) M
W RITE( 6 , * ) 'NUMBER OF VERTICAL BARRIER ELEMENTS'
R E A D (5 ,  * ) N
WRITE( 6  ,  * )  ’WAVELENGTH'
READ( 5 , * ) WL
WRITE( 6 ,  * )  'X-COORDINATE FROM L . H . S .  OF SPA C E ’
READ( 5 , * ) ZLS
W RITE( 6 ,  * )  'Y-COORDINATE FROM TOP OF SP A C E ’
READ( 5 , * ) ZBS
W RITE( 6 , * ) 'HORIZONTAL ELEMENT S IZ E  OF SPACE'
READ( 5 , * ) DXS
W RITE( 6 , * ) 'VERTICAL ELEMENT S I Z E  OF SPACE'
READ( 5 , * ) DYS
WRITE( 6 ,  * )  'NUMBER OF HORIZONTAL SPACE ELEMENTS’
READ( 5 , *)MS
W RITE( 6 ,  * )  'NUMBER OF VERTICAL SPACE ELEMENTS'
READ( 5  , * ) N S
WRTTETET^ T  ' RESONANT FREQUENCY OF FLOOR'
READ( 5 , *)W0
WRITE( 6 ,  * )  'CHARACTERISTIC ACOUSTIC IMPEDANCE OF FLOOR'
READ( 5 , * ) ROEC
W RITE( 6 , * ) 'MECHANICAL RESISTANCE FACTOR OF FLOOR'
READ( 5 , * ) R
W RITE( 6 , * ) 'EFFECTIVE MASS PER U N IT  AREA OF FLOOR'
READ( 5  , *)M ASS
WRITE( 6 , * ) 'RESONANT FREQUENCY OF C E I L IN G ’
READ( 5 / * ) W05
WRITE( 6 ,  *)  'CHARACTERISTIC ACOUSTIC IMPEDANCE OF C E IL IN G '
READ( 5 / * ) ROEC5
WRITE( 6 ,  * )  'MECHANICAL RESISTANCE FACTOR OF C E I L IN G ’
READ(5  ,  * ) R 5
W RITE( 6 , * ) 'EFFECTIVE MASS PER U N IT  AREA OF C E IL IN G '
READ( 5 , * ) MASS5
WRITE( 6 , * )  'RESONANT FREQUENCY OF RIGHT-HAND WALL’
READ( 5 ,  * )W 01
WRITE( 6 , * )  ' CHARACTERISTIC ACOUSTIC IMPEDANCE OF RIGHT-HAND WALL' 
READ( 5 / * )R O E C l
WRITE ( 6 ,  * )  'MECHANICAL RESISTANCE FACTOR OF RIGHT-HAND WALL’
READ( 5 ,  * ) R l
WRITE ( 6 ,  * )  'EFFECTIVE MASS PER U N IT  AREA OF RIGHT-HAND WALL’
READ( 5 , * )M A SS1
WRITE ( 6 , * )  'RESONANT FREQUENCY OF LEFT-HAND WALL'
READ( 5  / * ) W02
WRITE( 6 # * )  'CHARACTERISTIC ACOUSTIC IMPEDANCE OF LEFT-HAND WALL' 
READ( 5 , * ) ROEC2
WRITE( 6 ,  * )  'MECHANICAL RESISTANCE FACTOR OF LEFT-HAND WALL' 

~READt5-r*fR2---------
WRITE( 6 , * ) 'EFFECTIVE MASS PER U N IT  AREA OF LEFT-HAND WALL'
READ( 5 , *)M ASS2
WRITE( 6 ,  * )  'P O S I T IO N  OF SOURCE FROM FLOOR'
READ( 5 , * ) SPF
WRITE( 6 , * ) 'P O S I T IO N  OF SOURCE FROM C E IL IN G '
READ( 5 , * )S P C
WRITE( 6 ,  * )  'P O S I T IO N  OF SOURCE FROM RIGHT-HAND WALL'
READ(5  # * ) SPR
WRITE( 6 ,  * )  'P O S I T IO N  OF SOURCE FROM LEFT-HAND WALL'
READ( 5 / * ) SPL
WRITE( 6 ,  * )  'GROUND OR ENCLOSURE CONDITIONS'
READ( 5 , * ) GE



W RITE( 6 , * ) ' I N I T I A L  VERTICAL O FFSET'
READ( 5 , * ) S
W RITE( 6 , * ) • EXTREME VERTICAL O F F S E T •
READ( 5 ,  * ) G
W RITE( 6 , * ) ' STEP VALUE OF O FFSET'
READ( 5 , * )  T 
P I = 3 . 1 4 1 5 9 2 6  
W N = ( 2 .0 * P I ) / W L  
W = 3 4 0 .0 /W L  
X=M*DX 
W RITE( 6 , 1 ) X

1  FORMAT(5X,'WIDTH OF B ARRIER=' , G 1 4 - 6 )
Y=N*DY
W RITE( 6 ,  2 ) Y

2 F6RMATT5X7^HE-IQHT OF BARRIER= • ,  G 14  . 6 )
Y l= N S * D Y S
DO 8 E = S ,G , T

WRITE( 6 ,  1 9 )  E
1 9  FORMAT(5X,'VERTICAL OFFSET= ' ,  G 14  . 6 )

CALL BARR1 (R P ,  S P , P , E ,  ZL, ZB, DX, D Y ,M ,N ,  P I ,  WN, SUMC, SUMD)
WRITE( 6 , 2 0 ) SUMC

2 0  FO R M A T (5X ,' SUMC=’ , G 1 4 . 6 )
Q l = E + ( 2 . 0 * S P F )
Z B 1 = Z B + ( 2 . 0 * S P F )
CALL BARR2 (R P , S P ,  Y ,  P ,  Q l ,  ZL, Z B l ,  DX, D Y , M , N , P I ,  WN, SPF,W ,W O, R ,  

+ MASS, ROEC, SUME,SUMF)
WRITE( 6 , 2 1 ) SOME

2 1  FORMAT( 5 X , ' S U M E = ' , G 1 4 . 6 )
Q 2 = - ( E + ( 2 . 0 * S P F ) )
CALLBARR3 (RP, S P ,  Y ,  P ,  Q2 , E ,  ZL, ZB , DX, DY, M ,N ,  P I ,  WN, S P F ,  W, WO, R,  

+ MASS, ROEC, SUMG,SUMH)
WRITE( 6 , 2 2 ) SUMG

2 2  FORMAT(5X, ' SUMG=' , G 1 4 . 6 )
Q3 = -E
CALL BARR4 (R P , S P ,  Y ,  P ,  Q3 ,  E ,  ZL, Z B l ,  DX, D Y ,M ,N ,  P I ,  WN, S P F ,  W, WO, 

+ R ,M A SS, ROEC, SUMJ, SUMK)
WRITE( 6 , 2 3 ) SUMJ

2 3  FO R M A T (5X,' SUMJ=' , G 1 4 . 6 )
Q 4 = - ( ( 2  - 0 * S P C ) - E )
Z B 2 = Z B - ( 2 . 0*SP C )
CALL BAR2A ( RP, S P , Y ,  P , Q4 ,  ZL, ZB2 ,  DX, DY, M, N ,  P I ,  WN, S P F ,  S P C , W,

+ W 0 5 ,R 5 ,M A S S 5 ,R O E C 5 ,  SU M El,  SUMF1)
WRITE( 6 , 2 4 ) SUMEl

2 4  —  FGRMAT-(-SXy 1SUME1=' ,  G 1 4 . 6 )
Q 5 = ( ( 2 . 0 * S P C ) - E )
CALL BAR3A(RP, S P ,  Y ,  P , Q 5 ,  E ,  ZL, Z B , DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SP C , W,

+ W 0 5 ,R 5 ,M A S S 5 ,R O E C 5 ,  SUMGl, SUMHl)
WRITE( 6 , 2 5 ) SUMGl

2 5  FORMAT( 5 X , ' S U M G 1 = ' , G 1 4 . 6 )
Q 6 = -E
CALL BAR4A(RP, S P ,  Y ,  P ,  Q 6 ,  E ,  ZL, ZB2 ,  DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SP C , W, 

+ W 0 5 ,R 5 ,M A S S 5 ,R O E C 5 ,  S U M J l ,  SUMK1)
W R I T E ( 6 ,2 6 )  SUMJl

2 6  FORMAT( 5 X ,  ' SU M J1=' , G 1 4 . 6 )
CALL BARR1 (R P ,  S P ,  P ,  E ,  Z L S ,  Z B S ,  D X S,  D Y S ,M S ,N S ,  P I ,  WN, SUML, SUMM) 
WRITE( 6 , 2 7 ) SUML

2 7  F O R M A T (5 X , 'S U M L = ' ,G 1 4 .6 )
Z B 3 = Z B S + ( 2 .0 * S P F )
CALL BARR2 ( RP ,  SP ,  Y l ,  P ,  Q l ,  ZLS ,  ZB3 ,  DXS ,  DYS ,  MS ,  NS ,  P I ,  WN, SPF ,  W, 

+ WO, R ,M ASS, ROEC, SUMN, SUMP)
WRITE( 6 , 2 8 ) SUMN

2 8  FORMAT( 5 X , ’ S U M N = ' ,G 1 4 .6 )
CALL BARR3 (R P , S P ,  Y l ,  P ,  Q2 ,  E ,  Z L S ,  Z B S ,  D X S, D Y S ,M S ,N S ,  P I ,  WN, S P F ,  

+ W, WO, R,MASS,ROEC, SUMQ,SUMR)
WRITE( 6 , 2 9 ) SUMQ

2 9  FORMAT( 5 X , ' S U M Q = ' , G 1 4 . 6 )
CALL BARR4 (R P , S P ,  Y l ,  P ,  Q3 ,  E ,  Z L S ,  ZB3 , DX S, DYS, M S ,N S ,  P I ,  WN, S P F ,  

+ W, WO, R,MASS, ROEC, SUMS, SUMT)
WRITE( 6 , 3 0 ) SUMS

3 0  FORMAT( 5 X , ' S U M S = ' , G 1 4 . 6 )
I F  ( G E . E Q . 1 . 0 )  GO TO 7 0  
Z B 4 = Z B S - ( 2 . 0*SP C )

 C A L L _ B A R 2 A ( R P ,S P , Y 1 , P , Q 4 , Z L S , Z B 4 ,D X S ,D Y S , M S ,N S ,P I , W N , S P F ,
+ SP C , W, W05 ,  R5 ,  MASS5 ,  ROEC5 ,  SUMN1,  S U M P l)

WRITE( 6 , 3 1 ) SUMNl
3 1  FO RM AT(5X,' SUMN1=' , G 1 4 . 6 )
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CALL B A R 3 A ( R P , S P , Y 1 , P , Q 5 , E , Z L S , Z B S , D X S , D Y S , M S , N S , P I , W N , S P F ,  
S P C ,W ,W 0 5 ,R 5 ,  MASS5 , ROEC5 ,  SUMQl,  SUM Rl)
WRITE( 6 , 3 2 ) SUMQl  
F O R M A T (5X /' S U M Q l= ' , G 1 4 . 6 )
CALL B A R 4A (R P / S P , Y 1 , P , Q 6 , E ,  Z L S ,  Z B 4 , D X S ,D Y S , M S ,N S ,P I , W N ,  S P F ,  
SPC, W, W05 ,  R 5 ,  M ASS5,  ROEC5,  S U H S 1 ,  SU M T l)
WRITE( 6 , 3 3 ) SUMS1 
F O R M A T (5X ,' S U M S 1=• , G 1 4 . 6 )
EBR=SUML+SUMN+SUMQ+SUMS+SUMNl+SUMQl+SUMSl  
EBI=SUMM+SUMP+SUMR+SUMT+SUMPl+SUMRl+SUMTl  
UBR=EBR- (SUMC+SUME+SUMG+SUMJ+SUME1+SUMG1+SUMJ1)
U B I = E B I -  (SUMD+SUMF+SUMH+SUMK+SUMF1+SUMH1+SUMK1) 
d B = 1 0 . 0 * (A L O G lO ( ( E B R * * 2 + E B I * * 2 ) / ( U B R * * 2 + U B I * * 2 ) ) )
WRITE( 6 , 7 ) dB
F O R M A T (5X ,'IN SE R T IO N  LOSS FOR SINGLE REFLECTIO NS=' , G 1 4 . 6 )  
A I l = S Q R T ( ( (S U M L -S U M C )* * 2 )+ ( (S U M M -S U M D )* * 2 ) )
A I2=SQ R T ( ( ( (SUMN-SUME) + (SUMQ-SUMG) + (SUMS-SUMJ) ) * * 2 ) +
( ( (SUMP-SUMF) + (SUMR-SUMH) + (SUMT-SUMK)) * * 2 ) )

A I3 = S Q R T ( ( ( (S U M N l-S U M E l)  + (SUMQ1-SUMG1) + (SU M S1-SU M J1) ) **2  ) +
( ( (SUMPl-STJMFl) + (S U M R l-S U M H l)  + (SU M T l-SU M K l)  ) * * 2 )  ) 

A SI1=SQ R T (SU M L **2+SU M M **2)
A S I2 = S Q R T ( ( (SUMN+SUMQ+SUMS) * * 2 )  + ( (SUMP+SUMR+SUMT) * * 2 )  ) 
A S I3 = S Q R T (  ( (SUMN1+SUMQ1+SUMS1) **2  ) +  ( (SUMP1+SUMR1+SUMT1) * * 2 )  ) 

— E B H =A SX 1± A SI2+A SI3  
U B H = A I1 + A I2 + A I3
d B B = 1 0 .0 * ( A L O G l O ( ( E B H * * 2 ) / (U B H * * 2 ) ) )
WRITE( 6  ,  1 1 ) dBB
FORMAT(5X, * INSERTION LO SS S I N G L E 2 = • , G 1 4 . 6 )
Z B 5 = - ( ( 2 . 0 * ( S P F + S P C ) ) - Z B )
Q 7 = - ( 2 . 0 * ( S P F + S P C ) ) +E
CALL B A R 2 B ( R P ,S P ,Y ,  P , Q 7 , Z L , Z B 5 , D X , D Y , M , N , P I , W N , S P F , S P C ,
W, WO, R ,M A SS, ROEC, WO 5 , R 5 , M ASS5, ROEC5, SUME2, SUMF2)
WRITE( 6 , 5 5 ) SUME2 
F O R M A T (5X ,• SUM E2=* , G 1 4 . 6 )
Q 8 = ( 2 . 0 * ( S P F + S P C ) ) +E
CALL BAR3B (R P ,  S P ,  Y ,  P ,  Q 8 ,  E ,  ZL, ZB, DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SPC,
W, W0, R ,M A S S ,R O E C ,W 0 5 , R 5 , M A SS5, ROEC5, SUMG2, SUMH2)
WRITE( 6 , 5 6 ) SUMG2
F O R M A T (5X ,' SUMG2=• , G 1 4 . 6 )
Q9=E
CALL BAR4B (R P ,  S P ,  Y ,  P ,  Q9 , E ,  Z L , ZB5 ,  DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SPC,
W, W0, R ,M A SS, ROEC, W0 5 ,  R 5 , M ASS5, ROEC5, SUM J2, SUMK2)
WRITE( 6 , 5 7 ) SUMJ2
F O R M A T (5X,• SU M J 2 = ' , G 1 4 . 6 )
Z B 6 = ( 2 . 0 * ( S P F + S P C ) ) +ZB 
Q 1 0 = ( 2 . 0 * ( S P F + S P C ) ) +E
CALL BAR2C (R P ,  S P ,  Y ,  P ,  Q 1 0 ,  Z L , Z B 6 ,  DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SPC,
W, W0 , R ,  MASS,  ROEC, W05 ,  R5 ,  M ASS5, ROEC5 ,  SUME3 ,  SUMF3 )
WRITE( 6 , 5 8 ) SUME3 
F OR M A T(5X,' SUME3=' , G 1 4 . 6 )
Q l l = - ( ( 2 . 0 * ( S P F + S P C ) ) - E )
CALL BAR3C (R P ,  S P ,  Y ,  P ,  Q l l ,  E ,  ZL, Z B , DX, D Y ,M ,N ,  P I ,  WN, S P F ,  SPC,

__ W, WO, R ,M A SS, ROEC, W05 ,  R5 , M ASS5,  ROEC5,  SUMG3 ,  SUMH3 )
W RITE(6,59TSUM G3
FORMAT ( 5 X ,  ’ SXJMG3= • ,  G 1 4 . 6 )
Q12=Q
CALL BAR4C (R P ,  S P ,  Y ,  P ,  Q 12  ,  E ,  ZL, Z B 6 ,  DX, D Y ,M ,N ,  P I ,W N ,  S P F ,  SPC,
W,WO, R ,M A SS, ROEC, W 05 , R 5 , M ASS5, ROEC5, SUMJ3, SUMK3)
WRITE( 6 ,  6 0 ) SUMJ3 
F OR M A T(5X,' SU M J 3 = ' , G 1 4 . 6 )
CALL BAR2B (R P ,  S P ,  Y l ,  P ,  Q7 ,  Z L S ,  Z B 5 ,  DXS, D Y S ,M S ,N S ,  P I ,  WN, S P F ,
SPC ,  W, WO ,  R ,  MASS ,  ROEC, WO 5  ,  R5  ,  MASS5 ,  ROEC5 ,  SUMN2 ,  SUMP2 )
WRITE( 6 , 6 1 ) SUMN2 
F O RM AT(5X,' SUMN2=’ , G 1 4 . 6 )
CALL B A R 3 B ( R P , S P , Y l , P , Q 8 , E , Z L S , Z B S , D X S , D Y S , M S , N S , P I , W N ,
S P F ,  SPC, W, WO, R ,M A SS,  ROEC, W 05 ,  R 5 ,  M ASS5, ROEC5 ,  SUMQ2 ,  SUMR2)
WRITE ( 6 , 6 2 )  SUMQ2
FORMAT ( 5 X ,  ’ SUMQ2= ' ,  G 14  . 6 )
CALL BAR4B (R P ,  S P ,  Y l ,  P ,  Q9 ,  E ,  Z L S , Z B 5 ,  DXS, D Y S ,M S ,N S ,  P I ,  WN,
S P F , SPC, W, WO, R , MASS, ROEC, W 05,  R 5 ,  M ASS5, ROEC5 ,  SUMS2 ,  SUMT2)
WRITE( 6 ,  6 3 ) SUMS2
FORM AT(5X,’ SU M S2=' , G 1 4 . 6 )
CALL B AR2C(RP, S P , Y l ,  P , Q 1 0 , Z L S , Z B 6 , D X S , D Y S , M S , N S , P I , W N , S P F ,  
SPC, W,WO, R ,M A SS, ROEC, WO5 , R 5 , M ASS5,R OEC 5, SUMN3 ,  SUMP3)
WRITE ( 6 ,  6 4 )  SUMN3
FORM AT(5X,' SUMN3=’ , G 1 4 . 6 )



CALL BAR3C (R P ,  S P ,  Y l ,  P ,  Q l l ,  E ,  Z L S ,  Z B S ,  DXS, D Y S, M S ,N S ,  P I ,  WN,
+ SP F  , SPC , W, WO , R ,  MASS , ROEC , W05 , R5 ,  MASS5 ,  ROEC5 ,  SDMQ3 ,  SUMR3)

WRITE( 6 , 6 5 ) SUMQ3
I---------- EQRMAT ( 5 X . ^SUMQ3= • ,  G14 .  6 )

CALL BAR4C (R P ,  S P ,  Y l ,  P ,  Q12 ,  E ,  Z L S ,  Z B 6 ,  DX S, D Y S ,M S ,N S ,  P I ,  WN,
S P F , S P C , W, WO ,  R ,  MASS, ROEC,  W05 , R 5 ,  MASS5 ,  ROEC5 ,  SUMS3 ,  SUMT3 )
WRITE ( 6 ,  6 6 )  SUMS3 
FORMAT(5X, ' SUMS3= ' ,  G14 .  6 )
EBR1=EBR+SXJMN2+SUMQ2+SUMS2+SUMN3+SUMQ3+SDMS3 
EBI1=EBI+SUMP2+SUMR2+SUMT2+ SUMP 3 +SUMR3+SUMT3 
UB R 1=E B R 1- ( SUMC+SUME+SUMG+SUMJ+SUME1+SUMG1+SUMJ1+
SUME2+SUM2+SUMJ2+SUME3 +SUMG3+SUMJ3 )
U B I 1 = E B I 1 -  (SUMD+SUMF+SUMH+SUMK+SUMF1+SUMH1+SUMK1+
SUMF2+SUMH2+SUMK2+SUMF3+SUMH3 +SUMK3 )
d B l = 1 0  .  0 *  (ALOGlO ( ( E B R 1 * * 2 + E B I 1 * * 2  ) /  ( U B R 1 * * 2 + U B I 1 * * 2  ) ) )
WRITE( 6 , 9 ) d B l
FORMAT(5X, ' IN SE R T IO N  LOSS FOR M OLTI-REFLECTION S::' , G 14  . 6 )  
A I4 = S Q R T (  ( (  (SUMN2-SUME2) + (SUMQ2-SUMG2) + (SU M S 2 -SU M J 2 )  ) * * 2 )  +
( ( (SUM P2-SUM F2) + (SUMR2-SDMH2) + (SUMT2-SUMK2) ) * * 2 )  )

A I5 = S Q R T (  ( ( (SUMN3-SUME3) + (SUMQ3-SUMG3) + (SU M S 3 -SU M J 3 )  ) * * 2 )  +
( ( (SUM P3-SUM F3) + (SUMR3-SUMH3) + (SDMT3-SDMK3) ) * * 2 )  )

A S I4 = S Q R T (  ( (SUMN2+SUMQ2+SUMS2) * * 2 )  + ( (SUMP2+SUMR2 +
SU M T2)* * 2 ) )
A S I5 = S Q R T (  ( (SUMN3+SUMQ3+SUMS3) * * 2 )  + ( (STJMP3+SUMR3+
SU M T 3)* * 2 ) )
EB H 1=E B H +A SI4+A S I5  
UBH1=UBH+AI4 +A I 5
d B B l = 1 0 . 0 * (ALO G lO ( (E B H 1 * * 2 ) / ( U B H 1 * * 2 ) ) )
WRITE( 6 , 1 2 ) d B B l
FORMAT( 5 X ,  ' INSERTION LOSS MULTI2 = ' , G 1 4 . 6 )
P 7 = - ( ( 2 . 0 * S P R ) - P )
Z L 3 = Z L + ( 2 .0 * S P R )
CALL B AR2D(RP, S P ,  P7 , E ,  Z L 3 ,  ZB, DX, D Y ,M ,N ,  P I ,  WN, SP R ,W , W 01,

+ " ’ ~ R lT H A 5 S l7 R O E C l,S U M E 4 ,S U M F 4 )
WRITE( 6 , 7 2 ) SUME4

7 2  FO R M A T (5X ,' SUM E4=' , G 1 4 . 6 )
P 8 = ( ( 2 . 0 * S P R ) - P )
CALL B AR3D(RP, S P ,  P 8 ,  P ,  E ,  ZL, ZB, DX, D Y ,M ,N ,  P I ,  WN, S P R ,  W, W 01,

+ R l , MASS1, RO ECl, SUMG4, SUMH4)
WRITE( 6 , 7 3 ) SUMG4

7 3  FORMAT( 5 X , ' S U M G 4 = ' , G 1 4 . 6 )
P 9 = - P
CALL BAR 4D(RP, S P ,  P 9 , P , E ,  Z L 3 ,  ZB, DX, D Y ,M ,N ,  P I ,  WN, S P R ,  W, W01,

+ R l ,M A S S l ,R O E C l,S U M J 4 ,S U M K 4 )
WRITE( 6 , 7 4 ) SUMJ4

7 4  FORMAT( 5 X , ' SUMJ4 = ' , G 1 4 . 6 )
P 1 0 = ( 2 . 0 * S P L ) + P
Z L 4 = - ( ( 2 . 0 * S P L ) - Z L )
CALL BAR2E (R P , S P ,  P 1 0 ,  E ,  Z L 4 ,  ZB, DX, D Y ,M ,N ,  P I ,  WN, S P L ,  W, W02 ,

+ R 2 , MASS2, ROEC2, SUME5, SUMF5)
W R I T E (6 ,7 5 )S U M E 5

7 5  FO R M A T (5X,' SUME5=' , G 1 4 . 6 )
P l l = - ( ( 2 . 0 * S P L ) + P )
CALL BAR3E (R P ,  S P ,  P l l ,  P , E ,  ZL, ZB, D X ,D Y ,M ,N ,  P I , W N ,  S P L ,W ,W 0 2 ,

+ R 2 , M ASS2, ROEC2, SUMG5, SUMH5)
WRITE( 6 , 7 6 ) SUMG5

7 6  FORMAT( 5 X , , S U M G 5 = ' , G 1 4 . 6 )
P 1 2 = - P
CALL BAR4E (R P , S P ,  P 1 2  ,  P ,  E ,  Z L 4 ,  Z B ,  DX, D Y ,M ,N ,  P I ,  WN, S P L ,  W, W02,

+ R 2 , MASS2, ROEC2, SUMJ5 , SUMK5)
W R I T E (6 ,7 7 )S U M J 5

7 7  F O R M A T ( 5 X , 'S U M J 5 = ' ,G 1 4 .6 )
Z t5 = Z L S + 4 2 ^ 0 * S P R )
CALL B A R 2 D ( R P ,S P , P 7 , E , Z L 5 ,Z B S ,D X S , D Y S ,M S , N S ,P I , W N ,S P R ,W , W 0 1 ,

+ R l ,M A S S l ,R O E C l,S U M N 4 ,S U M P 4 )
WRITE( 6 , 7 8 ) SUMN4

7 8  FORMAT( 5 X , ’ S U M N 4 = ' ,G 1 4 . 6 )
CALL B AR3D(RP, S P ,  P 8 ,  P , E ,  Z L S , Z B S ,  D X S, D Y S,M S ,  N S ,  P I ,  WN, SP R , W, W 01,  

+ R l ,  MASS1, RO ECl, STJMQ4 ,  SUMR4 )
WRITE( 6 , 7 9 ) SUMQ4

7 9  FORMAT( 5 X , ’ S U M Q 4 = ' , G 1 4 . 6 )
CALL BAR4D(RP, S P ,  P 9 ,  P ,  E ,  Z L 5 ,  Z B S ,  D X S, D Y S,M S , N S ,  P I ,  WN, SP R , W, W 01,  

+ R l , MASS1, RO ECl, SUMS4, SUMT4)
WRITE( 6 , 8 0 ) SUMS4

8 0  FORMAT( 5 X , ' S U M S 4 = ' , G 1 4 . 6 )
Z L 6 = - ( ( 2 . 0 * S P L ) - Z L S )
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CALL B A R 2 E ( R P , S P , P 1 0 , E , Z L 6 , Z B S , D X S , D Y S , M S , N S , P I , W N , S P L ,  W ,W 02, 
+ R 2 / HASS2 , ROEC2, SUMN5, SUMP5 )

WRITE( 6 , 8 1 ) SUMN5
8 1  FORMAT( 5 X , ’ SUMN5=’ , G 1 4 . 6 )

CALL B A R 3 E ( R P , S P , P l l , P , E , Z L S , Z B S , D X S #  D Y S ,M S ,N S ,P I # W N ,S P L ,  W,
+ W 02, R 2 , M ASS2, ROEC2, SUMQ5, SUMR5) ..........................

WRITE( 6 ,  8 2 ) SUMQ5
8 2  F O R M A T (5X ,' SUMQ5=' , G 1 4 . 6 )

CALL B A R 4 E ( R P , S P , P 1 2 , P , E , Z L 6 , Z B S , D X S , D Y S , M S , N S , P I , W N , S P L , W ,
+ W 0 2 ,R 2 ,M A S S 2 ,R O E C 2 ,S U M S 5 ,S U M T 5 )

WRITE( 6 ,  8 3 ) SUMS5
8 3  FORMAT(5X, ' S D M S 5=' ,  G 1 4 - 6 )

A I6 = S Q R T (  ( ( (SUMN4-SUME4) + (SUMQ4-SUMG4) + (SU M S 4 -S U M J 4 ) ) * * 2 )  +
+ TrTSBMP4—SUMF4) + ( SUMR4- SUMH4) + ( SUMT4- SUMK4) ) * * 2 ) )

A I7 = S Q R T ( ( ( (SUMN5-SUME5) + (SUMQ5-SUMG5) + (SU M S5-SU M J5) ) * * 2 ) +
+ ( ( (SUMP5-SUMF5) + (SUMR5-SUMH5) + (SUMT5-SUMK5) ) * * 2 )  )

A S I6 = S Q R T (  ( (SUMN4+SUMQ4+SUMS4) * * 2 )  + ( (SDMP4+SDMR4+SUMT4) * * 2 )  ) 
A S I7 = S Q R T (  ( (SUMN5+SUMQ5+SUMS5) * * 2 )  + ( (SUMP5+SUMR5+SUMT5) * * 2 )  ) 
EBH2 =E BH+AS16 + A S17  
UBH2 =U BH +AI6 + A I7
d B B 2 = 1 0 .0 * ( A L O G l O ( ( E B H 2 * * 2 ) / ( U B H 2 * * 2 ) ) )
WRITE( 6 , 9 5 ) dBB2

9 5  FORMAT ( 5 X ,  ’ IN SERT IO N LOSS FOR E N C L O S U R E G 1 4  . 6 )
7 0  A I 1 = S Q R T ( ( (SUML-SUM C)* * 2 )  + ( (SUMM-SUMD) * * 2 ) )

A I2 = S Q R T (  ( ( (STJMN-SUME) + (SUMQ-SUMG) +  (SUMS-SUM J) ) * * 2 )  +
+ ( ( (SUMP-SUMF) + (SUMR-SUMH) + (SUM T-SUM K)) * * 2 ) )

A S I l = S Q R T ( SUML* * 2 +SUMM* *2 )
A S I 2 = S Q R T ( ( (SUMN+SUMQ+SUMS)* * 2 ) + ( (SUMP+SUMR+SUMT)* * 2 ) )
E E B H =A SI1+ A S I2
U U B H =AI1+AI2
d d B H = 1 0 . 0 * (A L O G lO ( (E E B H * * 2 ) / (U U B H * * 2 ) ) )
WRITE( 6 , 7 1 ) ddBH

7 1  FORMAT ( 5 X ,  ’ INSERTION LOSS FOR GROUND CONDITIONS ' ,  G14 . 6)
8 CONTINUE

STOP
END

SUBROUTINE BARR1 (R P ,  S P ,  P ,  Q, XL, YB, DV, DZ, L , N ,  P I ,  WN, SUMR, SUMI)
SUMR=0 
SUMI=0  
DO 4  J = 1 , N

DO 3 1 = 1 , L
    0

Y O = Y B -J * D Z + D Z /2 . 0
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
R O = S Q R T ((R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) / R O  
B = ( Y O / S O ) + (Y O -Q ) /R O  
CUSK=COS(W N*(RO+SO))
S E N K = SIN (W N *(R O + SO ))
A K = 1 . 0 / (RO*SO)
RL=AK* *2  *CUSK*(RO*CUST+SO*CUSF)+W N*AK*SENK*(CUST+CUSF)  
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-W N*AK*CUSK*

+ (CUST+CUSF)
F IR = S IN (W N * B *  ( D Z / 2  . 0 )  ) * S IN (W N * A *  ( D V /2  . 0 )  ) /

+  (P I* W N * * 2 * A * B )
SUMR=SUMR+RL*FIR
SUMI=SUMI+UNRL*FIR

3 CONTINUE
4  CONTINUE 

RETURN 
END

SUBROUTINE BARR2 (R P ,  S P ,  Y ,  P ,  Q, XL, Y B , DV, DZ, L , N ,  P I ,  WN, S P F ,  W, W0,
+ R , MASS, ROEC, SUMR, SUMI)

SUMR=0 
SUMI=0  
DO 6 J = 1 , N

DO 5 1 = 1 , L
 -------- - XQ=XL-I * D V + D V / 2 . 0

Y O = Y B -J * D Z + D Z /2 . 0
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
R O = S Q R T ((R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST = SP /S O



CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O + SO ))
A K = 1 .0 / ( R O * S O )
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0  
D l = ( S P F * S P ) / ( S P F + Y 2 )
DP=SQRT( (X I i - I * D V + D V /2  - 0 )  * * 2 )
W l = ( D P * S P F ) / (S P F + Y 2 )
X 1 = S Q R T ( ( S P F * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z 1 = S Q R T ( ( D 1 * * 2 ) + ( W 1 * * 2 ) )
V = A S I N ( Z 1 / X 1 )
CUSV=COS (V)
CORIi=( ( (W **2) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *  ( (R /M A SS) * * 2 -  (ROEC/

+ (M ASS*CUSV)) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A S S * C U S V )) ) * * 2 )

---------------------- COtIM=r (.2 . 0*W* ( (W **2)  -  (WO* * 2 )  ) * (R O E C /
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )

SUMR=SUMR+ ( (RL*CORL) -  (UNRL*COIM) ) * F IR  
SUMI=SUMI+ ( (RIi*COIM) + (UNRL*CORL) ) * F IR

5 CONTINUE
6 CONTINUE 

RETURN 
END

SUBROUTINE BARR3 (R P ,  S P ,  Y ,  P ,  QZ, Q, XL, YB, DV, D Z , L , N ,  P I ,W N ,  S P F ,  W, WO, 
+R ,M A S S, ROEC, SUMR, SUMI)

STJMR=0 
SUMI=0  
DO 1 0  J = 1 , N

DO 9 1 = 1 , L
X O = X L -I* D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2 . 0  
S O = S Q R T ( ( S P * * 2 ) + (X O * * 2 ) + ( Y O * * 2 ) )
R O = S Q R T ((R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q Z ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A= (XO /SO ) + (X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(WN*(RO+SO))
SE N K =SIN (W N *(R O +SO ))
A K = 1 - 0 / ( R O * S O )
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+W N*AK*SENK*(CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

_ + -   (CUST+CUSF)
F IR = SIN (W N * B *  (D Z /2  . 0 )  ) * SIN (W N *A * (D V /2  . 0 )  ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0  
D 3 = ( Y 2 * R P ) / (SP F +Y 2+Q )
DP=SQRT( ( X L - ( I * D V ) + ( D V / 2 . 0 ) + P ) * * 2 )
W 3 = ( Y 2 * D P ) / (SP F +Y 2+Q )
X 1=SQ RT( ( Y2 * * 2 )  + ( D3 * * 2 )  + ( W3 *  * 2 ) )
Z 1 = S Q R T ( ( W 3 * * 2 ) + ( D 3 * * 2 ) )
V = A S IN  ( Z l / X l )
CUSV=COS (V)
CORL= ( ( (W **2) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *  ( (R /M A SS) * * 2 -  (ROEC/

+ (MASS*CUSV) ) * * 2 )  ) /  ( ( (W **2)  -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )

C O IM = -( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )

SUMR=SUMR+ ( (RL*CORL) -  (UNRL*COIM) ) * F IR  
SUMI=SUMI+ ( (RL*COIM) + (UNRL*CORL) ) * F IR  

9 CONTINUE
1 0  CONTINUE 

RETURN 
END

SUBROUTINE BARR4 ( RP , S P , Y ,  P ,  QZ, Q, X L , YB,  DV, DZ,  L ,  N ,  P I ,  WN, S P F ,  W, W0,



+ R , MASS, ROEC, SUMR, SUMI)
SUMR=0

— -SUMI=lO_____________
DO 1 2  J = 1 , N

DO 1 1  1 = 1 , L
X O = X L -I* D V + D V /2  . 0  
Y O = Y B - J * D Z + D Z /2 . 0  
SO=SQRT( ( S P  * * 2 )  + (XO* * 2 )  + ( YO* * 2 ) )
R O = S Q R T ((R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q Z ) * * 2 )
C U S T = S P /S O  
CUSF=RP/RO  
A = ( X O / S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(WN*(RO+SO) )
SENK=SIN(W N* (RO+SO) )
A K = 1 . 0 / ( R O * S O )
RL=AK** 2  *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AX*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0  
D l = ( S P F * S P ) / (S P F + Y 2 )
D P 1 = S Q R T ( ( X L - ( I * D V )  + ( D V / 2 - 0 ) ) * * 2 )
W l = ( D P 1 * S P F ) / ( S P F + Y 2 )
X 1 = S Q R T ( ( S P F * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z 1 = S Q R T ( ( D 1 * * 2 ) + ( W 1 * * 2 ) )
V 1 = A S I N ( Z 1 / X 1 )
C U S V l= C O S ( V l )
C O R L l = ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ ( M A S S * C U S V 1 ) ) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
_ + .____  ( (R /M A SS) + (ROEC/ (M ASS*CUSVl) ) ) * * 2 )

5QTM3r=-(2  . 0 * W * (  ( W * * 2 ) -  (W 0 * * 2 )  ) * (R O E C /
+ (M A S S * C U S V 1 )) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A SS) + ( R O E C /(M A S S * C U S V l) ) ) * * 2 )

D 3 = ( Y 2 * R P ) / (SPF+Y2+Q )
D P 2 = S Q R T ( ( X L - I * D V + D V /2 - 0 + P ) * * 2 )
W 3 = ( Y 2 * D P 2 ) / (SPF+Y2+Q )
X 2 = S Q R T ( ( Y 2 * * 2 ) + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 2 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V 2 = A S I N ( Z 2 / X 2 )
C U SV 2=C O S(V 2)
CORL2= ( ( ( W * * 2 ) - (WO* * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ (M ASS*CUSV2) ) * * 2 ) ) / ( ( ( W * * 2 ) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M ASS) + (ROEC/ (MASS*CUSV2 ) ) ) * * 2 )

CO IM 2=- ( 2  .  0*W* ( (W **2) -  (W 0 * * 2 )  ) * (ROEC/
+ (MASS*CUSV2) ) ) /  ( ( (W **2) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M A SS) + (RO EC/(M ASS*CUSV2) ) ) * * 2 )

SUMR=SUMR+ ( ( (RL*CORLl*CORL2) -  (UNRL*COIMl*CORL2) -  
+ (RL*COIMl*COIM2 ) -  (UNRL*CORLl*COIM2 ) ) * F I R )

SUMI=SUMI+ ( ( (RL*CORLl*COIM2) -  (UNRL*COIM l*COIM 2) + 
+  (RL*COIMl*CORL2) + (UNRL*CORLl*COIM2 ) ) * F I R )

1 1  CONTINUE
1 2  CONTINUE 

RETURN 
END

SUBROUTINE B A R 2A (R P ,  S P ,  Y ,  P ,  Q ,X L ,  YB, DV, DZ, L , N ,  P I ,  WN, S P F ,  SP C , W, WO, 
+R ,M ASS,RO EC, SUMR, SUMI)

SUMR=0
 SUMI=0

DO~13.-̂ T=r±rN-------
DO 1 3  1 = 1 , L

X O = X L -I* D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2 . 0  
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
R O = S Q R T ( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O -P ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O +SO ))
A K = 1 . 0 / ( R O * S O )
RL=AK**2  *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK* * 2  *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*



+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2 * A * B )
D P = S Q R T ( ( X L - ( I * D V ) + ( D V / 2 . 0 ) ) * * 2 )
Y 2 = Y - J * D Z + D Z / 2 . 0
D l = ( S P * S P C ) / ( ( 2 . 0 * S P C ) + S P F - Y 2 )
W l = ( D P * S P C ) / ( ( 2 . 0 * S P C ) + S P F - Y 2 )
X 1 = S Q R T ( ( S P C * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z l = S Q R T ( ( D 1 * * 2 ) + ( W 1 * * 2 ) )
V = A S I N ( Z 1 / X 1 )
CUSV=COS(V)
C O R L = (( ( W * * 2 ) - (WO?* 2 ) ) * * 2 + W * * 2 * ( ( R / H A S S ) * * 2 - (ROEC/

+ (HKSS*CUSV) ) * * 2 )  ) /  ( ( (W * * 2 )  -  ( W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( ( R / H A S S ) + (R O E C /(M A S S * C U S V )) ) * * 2 )

C O IM = -( 2  - 0 * W * ( (W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A S S * C U S V )) ) * * 2 )

SUMR=SUMR+( (RL *C O R L )- (UNRL*COIM )) * F IR  
SU M I=SUM I+( (UNRL*CORL)+ (R L *C O IM )) * F IR  

1 3  CONTINUE
1 4  CONTINUE 

RETURN 
END

SUBROUTINE BAR3A (R P ,  S P ,  Y ,  P ,  QZ, Q ,X L ,  Y B , DV, DZ, L , N ,  P I ,  WN, S P F ,  SPC,  
+W, WO ,  R ,  MASS ,  ROEC ,  SUMR, SUMI)

SUMR=0 
SUMI=0  
DO 1 6  J = 1 , N

DO 1 5  1 = 1 , L
X O = X L -I * D V + D V /2 - 0 
Y O = Y B -J * D Z + D Z /2 - 0 
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + (Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q Z ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O + SO ))
A K = 1 . 0 / ( R O * S O )

~  -----------—RL=AK-** 2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2  *A *B )
Y 2 = Y - J * D Z + D Z / 2 . 0
D P = S Q R T ( ( X L - ( I * D V ) + ( D V / 2 . 0 ) + P ) * * 2 )
D 3 = ( R P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F - Q - Y 2 )
W 3 = ( D P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F - Q - Y 2 )
X 1 = S Q R T ( ( S P C - Q ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 1 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V = A S I N ( Z 1 / X 1 )
CUSV=COS (V)
CORL=( ( (W * * 2 ) - (W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ ( M A S S * C U S V ) ) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S )+ (R O E C /(M A SS * C U S V )) ) * * 2 )

C O IM = -( 2 . 0 * W * ( (W * * 2 ) - ( W 0 * * 2 ) ) + (ROEC/
+ (M ASS*CUSV)) ) / ( ( (W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2  *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )

SUMR=SUMR+( (RL*CORL)- (UNRL*COIM)) * F IR  
SU M I=SUM I+( (UNRL*CORL)+ (R L *C O IM )) * F IR  

1 5  CONTINUE
1 6  CONTINUE 

RETURN 
END

SUBROUTINE B A R 4 A ( R P ,S P , Y , P , Q Z ,Q ,X L ,Y B ,D V ,D Z ,  L , N ,  P I , W N ,S P F , S P C ,  
+W ,W 0,R ,M ASS,RO E C,SUM R,SUM I)

SUMR=0
 SUMI=Q __________

DO 1 8  J = 1 , N
DO 1 7  1 = 1 , L

X O = X L -I* D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2  - 0 
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )



R O = S Q R T ( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q Z ) * * 2 )
C U S T = S P /S O  
CUSF=RP/RO  
A = ( X O / S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK =C OS(W N*(RO +SO))
SEN K=SIN(W N*(R O+SO ) )
A K = 1 . 0 / ( R O * S O )
R L =AK **2*CUSK * (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRI»=AK**2 *SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F IR = S I N (W N * B *  ( D Z / 2  . 0 )  ) *SIN (W N *A * (D V /2  .  0 )  ) /

+ ( P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 - 0
D P 1 = S Q R T ( ( X L - ( I * D V ) + ( D V / 2 . 0 ) ) * * 2 )
D l = ( S P * S P C ) / ( ( 2 . 0 * S P C ) + S P F - Y 2 )
W l = ( D P l * S P C ) / ( ( 2 . 0 * S P C ) + S P F - Y 2 )
X 1 = S Q R T ( ( S P C * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z 1 = S Q R T ( ( D l * * 2 ) + ( W l * * 2 ) )
V 1 = A S I N ( Z 1 / X 1 )
C U S V l= C O S ( V l )

-------------- ------ COR Til - 1 (  (W * * 2 )  -  (W 0 * * 2 )  ) * * 2 + W * * 2 *  ( (R /M A SS) * * 2 -  (ROEC/
+ (M ASS*CUSV1) ) * * 2 ) )  /  ( ( (W * * 2 ) -  ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A S S * C U S V 1 )) ) * * 2 )

C O I M l = - ( 2 . 0 * W * ( ( W * * 2 ) - (WO* * 2 ) ) * (ROEC/
+ (M A S S * C U S V 1 )) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M ASS) + (RO E C/(M ASS*CUSV1) ) ) *  * 2 )

D P 2=SQ R T ( ( X L - I * D V + D V / 2 . 0 + P ) * * 2 )
D 3 = ( R P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F - Q - Y 2 )
W 3 = ( D P 2 * ( S P C - Q ) ) / ( ( 2  - 0 * S P C ) + S P F - Q - Y 2 )
X 2 = S Q R T ( ( S P C - Q ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 2 = S Q R T ( ( D3 * * 2 )  + ( W3 * * 2 ) )
V 2 = A S I N ( Z 2 / X 2 )
C U S V 2 = C O S (V 2 )
CORL2 = ( ( ( W * * 2 ) - (W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ (M A S S * C U S V 2 )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A S S * C U S V 2 )) ) * * 2 )

C O I M 2 = - ( 2 . 0 * W * ( (W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M ASS*CUSV2) ) ) / ( ( (W * * 2 ) - (WO* * 2 ) ) * * 2 + W * * 2  *
+ ( (R /M A S S ) + (RO E C/(M ASS*CUSV2) ) ) * * 2 )

SUMR=SUMR+( ( (RL *C O R L l*C O R L 2)- (UNRL*COIMl*CORL2) -  
+ (R L * C O IM l* C O IM 2 )- (UNRL*CORLl*COIM2) ) * F I R )

SU M I=SU M I+( ( (RL*CORLl*COIM2) - (UNRL*COIMl*COIM2 ) + 
+ (R L *C O IM l*C O R L 2)+ (U N R L *C O R L l*C O IM 2)) *FXR)

1 7  CONTINUE
1 8  CONTINUE 

RETURN 
END

SUBROUTINE BAR2B ( R P ,  S P ,  Y / P / Q/ XL, Y B , D V , D Z , L , N ,  P I ,W N ,  S P F ,  SP C ,  
~-+W-W0 . R . M A S S . ROEC, W 0 5 , R5 ,  MASS5 ,  ROEC5 ,  SUMR, SUMI)

SUMR=0 
3UMI=0  
DO 4 1  J = 1 , N

DO 4 0  1 = 1 , L
XO =X L -I*DV +D V/ 2 . 0  
Y O = Y B -J * D Z + D Z /2 - 0  
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(W N*(RO+SO))
SENK=SIN(W N* (RO+SO) )
A K = 1 . 0 / (RO*SO)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF)+WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (PI*W N*A *B)
Y 2 = Y - J * D Z + D Z / 2 . 0
D l = ( S P * S P F ) / ( ( 3 . 0 * S P F ) + ( 2 . 0 * S P C ) - Y 2 )
DP=SQRT( ( X L - I * D V + D V / 2 . 0 ) * * 2 )
W 1 = ( D P * S P F ) / ( ( 3 . 0 * S P F ) + ( 2 . 0 * S P C ) - Y 2 )
X1=SQ RT( ( S P F * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )



Z 1 = SQ R T ( ( D l * * 2 ) + ( W l * * 2 ) )
---------------- -------- V = A S I N ( Z 1 / X 1 )

CUSV=COS(V)
CORIil= { ( ( W * * 2 ) -  ( W 0 * * 2 ) ) * * 2 + W * * 2 *  ( (R /M A SS) * * 2 - (ROEC/

+ (M ASS*CUSV)) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A S S * C U S V )) ) * * 2 )

C O I M l = - ( 2 .  0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ ( M A S S * C U S V ) ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A S S * C U S V )) ) * *2 )

CORIi2= ( (  ( W * * 2 ) -  ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( (R 5 /M A S S 5 )  * * 2 - (ROEC5/  
+ (M A SS 5*C U S V )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) ** 2 )

C O I M 2 = - (2  .  0 * W * ( (W * * 2 ) - ( W 0 5 * * 2 ) ) * (RO EC5/
+ (M A SS 5*C U S V )) ) / ( ( (W **2)  - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5/ (M A SS 5*C U S V )) ) * * 2 )

SUMR=SUMR+(( (RIi*CORLl*CORIi2) -  (UNRL*COIMl*CORL2 ) -  
+ (RL*COIMl*COIM2 ) -  (UNRL*CORI,l*COIM2 ) ) * F I R )

SUMI=SUMI+ ( ( (RL*C OR Ll*C OIM 2) -  (UNRL*COIMl*COIM2) +
+ (RL*C O IM l*CO RL2) + (UNRL*CORLl*COIM2) ) * F I R )

4 0  CONTINUE
4 1  CONTINUE 

RETURN 
END

SUBROUTINE BAR3B (R P ,  S P ,  Y ,  P ,  QZ, Q, XL , YB, DV, D Z , D , N ,  P I ,  WN, S P F ,  SPC,  
+W,WO, R ,M A S S , ROEC, WO 5 , R 5 , M ASS5, R E C 5,SU M R ,SU M I)

SUMR=0 
SUMI=0  
DO 4 3  J = 1 , N

DO 4 2  1 = 1 , L
---------------XO =X L-I * D V + D V / 2 . 0

Y O = Y B -J * D Z + D Z /2 . 0
SO=SQRT( ( S P * * 2 ) + (X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + (Y O -Q Z )**2 )
CU ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) / R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O + SO ))
A K = 1 . 0 / ( R O * S O )
RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+W N*AK*SENK*(CUST+CUSF)  
UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-W N*AK*CUSK*

+ (CUST+CUSF)
F IR = S IN (W N * B *  ( D Z / 2  . 0 )  ) *SIN (W N *A * (D V /2  . 0 )  ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 - 0
D 3 = ( R P * ( S P F + Q ) ) / ( ( 3 . 0 * S P F ) + ( 2 . 0 * S P C ) + Q - Y 2 )
D P = S Q R T ( ( X L - I * D V + D V /2 . 0 + P ) * * 2 )
W 3 = ( D P * ( S P F + Q ) ) / ( ( 3 . 0 * S P F ) + ( 2 . 0 * S P C ) + Q - Y 2 )
X 3 = S Q R T ( ( S P F + Q ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 3 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V = A S I N ( Z 3 / X 3 )
CUSV=COS(V)
C O R L l= ( ( (W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+  (M ASS*CUSV)) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M ASS) + (ROEC/ (MASS*CUSV) ) ) * * 2 )

C O I M l = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *

_ +  ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )
 C O R E * = H ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (ROEC/

+ (M A SS5*C U SV )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 /M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) * * 2 )

C O I M 2 = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * (ROEC5/
+ (M A SS5*C U SV )) ) / ( ( ( W * * 2 ) - ( W 0 S * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 /M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) * * 2 )

SUMR= SUMR + ( ( (RL*CORLl*CORIi2 ) -  (UNRL*COIMl*CORL2 ) -  
+ (UNRD*CORIil*COIM2) -  (RD*COIMl*COIM2) ) * F I R )

SUM I = SUM I  + ( ( (UNRL*CORLl*CORL2) + (RL*COIMl*CORL2) +
+ (RL*CORLl*COIM 2) - (UNRL*COIMl*COIM2) ) * F IR )

4 2  CONTINUE
4 3  CONTINUE 

RETURN
END



SUBROUTINE B A R 4 B ( R P , S P , Y , P , Q Z , Q , X L , Y B , D V , D Z , L , N ,  P I , W N , S P F , S P C ,  
+W, WO , R ,  MASS, ROEC,  W 0 5 , R5 , MASS5 ,  ROEC5 ,  SUMR, SUMI)

SUMR=0 
SUMI=0  
DO 4 5  J = 1 , N

DO 4 4  1 = 1 , L
X O = X L - I * D V + D V /2 . 0  
YO=YB-«T*DZ+DZ/2 . 0
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + (Y O -Q Z )* * 2 )
C U S T = S P /S O  
CU 5FSRP/R O  
A = ( X O / S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(WN*(RO+SO) )
SEN K=SIN(W N*(R O+SO ) )
A K = 1 . 0 / ( R O * S O )

- RL=AK* * 2  *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UN RL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F IR = S I N (W N * B *  (D Z /2  . 0 )  ) *SIN (W N *A * (D V /2  - 0 )  ) /

+ (P I * W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0
D l = ( S P * S P F ) / ( ( 3 . 0 * S P F ) + ( 2 . 0 * S P C ) - Y 2 )
D P 1 = S Q R T ( ( X L - I * D V + D V / 2 . 0 ) * * 2 )
W l = ( D P 1 * S P F ) /  ( ( 3 . 0 * S P F )  + ( 2 . 0 * S P C ) - Y 2 )
X 1 = S Q R T ( ( S P F * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z l= S Q R T ( ( D l * * 2 ) + ( W l * * 2 ) )
V 1 = A S I N ( Z 1 / X 1 )
C U S V l= C O S ( V l )
C O R L l = ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (M A SS *C U S V l) ) * * 2 ) ) / ( ( (W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M ASS) + (ROEC/ ( M A S S * C U S V 1 )))  * * 2 )

C O IM l= -  (2  . 0*W* ( (W**2 ) -  (W 0 * * 2 )  ) * (ROEC/
+ (M A SS*C U SV l)  ) ) /  ( ( (W**2 ) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( ( R /M A S S ) + (R O E C /(M A SS * C U S V 1 )) ) * * 2 )

CORL2 = ( ( ( W * * 2 ) - (W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (ROEC5/  
+ ( M A S S 5 * C U S V l ) ) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V 1 )) ) * * 2 )

C O I M 2 = - ( 2 - 0 * W * (  (W **2) - ( W 0 5 * * 2 ) ) * (ROEC5/
+ ------------------(M A6S5*C USV 1) ) ) /  ( ( (W **2) -  (W 0 5 * * 2 )  ) * * 2 + W * * 2 *
+ ( ( R 5 /M A S S 5 )  + (ROEC5/ (M ASS5*CUSV1) ) ) * * 2 )

D 3 = ( R P * ( S P F + Q )  ) /  ( ( 3 . 0 * S P F )  + ( 2 . 0 * S P C ) + Q - Y 2 )
D P 2=SQ R T ( ( X L - I * D V + D V / 2 . 0 + P ) * * 2 )
W 3=(D P2 * ( S P F + Q ) ) / ( ( 3 . 0 * S P F )  + ( 2 . 0 * S P C ) + Q - Y 2 )
X 3 = S Q R T ( ( S P F + Q ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 3 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V 2 = A S I N ( Z 3 / X 3 )
C U S V 2 = C O S (V 2 )
CORL3= ( ( (W * * 2 )  -  (W 0**2)  ) * * 2 + W * * 2 *  ( (R /M A SS) * * 2 -  (ROEC/

+ (M ASS*CUSV2) ) * * 2 ) )  /  ( (  (W * * 2 )  -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M A SS) + (ROEC/ (MASS*CUSV2 ) ) ) * * 2 )

CO IM 3=- ( 2  . 0*W* ( (W **2) -  (W 0 * * 2 )  ) * (ROEC/
+ (M ASS*CUSV2) ) ) /  ( (  (W **2) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M A SS) + (ROEC/ (MASS*CUSV2) ) ) * * 2 )

CO RL4=( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (ROEC5/  
+ (M A S S 5 * C U S V 2 )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R 5 /M A S S 5 )  + (R O E C 5 /(M A S S 5 * C U S V 2 )) ) * * 2 )

C O IM 4 = - ( 2 . 0*W* ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * (ROEC5/
+ (M A SS5*C U SV 2) ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R 5 /M A S S 5 )  + (ROEC5/ (MASS5*CUSV2) ) ) * * 2 )

SUMR=SUMR+ ( ( (RL*CORLl*CORL2*CORL3*CORL4) -  (UNRL*COIMl*
+ CORL2 *CORL3 *CORL4 ) -  (UNRL*CORLl*CORL3*CORL4*COIM2) -
+ (RL*COIMl*COIM2*CORL3*CORL4) -  (UNRL*CORLl*CORL2*CORL4*
+ COIM3) -  (RL*COIMl*COIM3*CORL2*CORL4) -  (RL*CORLl*CORL4*
+ COIM2*COIM3) + (UNRL*COIMl*COIM2*COIM3*CORL4) -  (RL*CORLl*
+ CORL2 *COIM3 *COIM4) + (UNRL*COIMl*COIM3 *COIM4 *CORL2 ) +
+ (UNRL*CORLl*COIM2*COIM3*COIM4) + (RL*COIMl*COIM2*COIM3*
+ COIM4) -  (UNRL*CORLl*CORL2*CORL3*COIM4) -  (RL*COIM l*COIM 4*

- + - --------------- CORL2*CORL3 ) -  (RL*CORLl*CORL3*COIM2*COIM4) + (UNRL*COIMl*
+ COIM2 *COIM4 *CORL3 ) ) * F IR )

SUMI=SUMI+ ( ( (RL*CORLl*CORL2*CORL3*COIM4) -  (UNRL*COIMl*
+ COIM4*CORD2 *CORL3 ) -  (UNRL*CORLl*CORL3*COIM2 *COIM4) -
+ (RL*COIMl*COIM2*COIM4*CORL3) -  (UNRL*CORLl*CORL2*COIM3*
+ COIM4 ) -  ( RL*COIM l *COIM3 *COIM4 *CORL2 ) -  (RL*CORLl*COIM2 *
+ COIM3 *COIM4 ) + (UNRL*COIMl*COIM2 *COIM3 *COIM4 ) + (RL*CORLl*



+ CORL2 *CORL4 *COIM3 ) -  (UNRL*C0RL2 *CORL4 *C O IM l *COIM3 ) -
+ (UNRL*CORLl*CORL4*COIM2*COIM4) -  (RL*CORL4*COIM l*COIM2*
+ COIM3 ) + (UNRL*CORLl*CORL2 *CORL3 *CORL4 ) + ( RL*CORL2 *
+ CORL3 *CORL4 * C O IM l) + (RL*CORLl*CORL3 *CORL4 *COIM2 ) -
+ (UNRL*CORL3*CORL4*COIMl*COIM2) ) * F IR )

4 4  CONTINUE
4 5  CONTINUE 

RETURN 
END

SUBROUTINE B A R 2 C ( R P ,S P , Y ,  P , Q , X L , Y B , D V , D Z , L , N , P I , W N , S P F , S P C ,
+W,WO, R ,M A S S ,R O E C ,W 0 5 , R 5 ,  MASS5 , ROEC5, SUMR,SUMI)

SUMR=0 
SUMI=0  
DO 4 7  J = 1 , N

DO 4 6  1 = 1 , L
- X O = X L - I * D V + D V /2 . 0  

Y O = Y B - J * D Z + D Z /2 . 0  
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
R O « S Q R T ( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) / R O  
B = ( Y O / S O ) + ( Y O -Q ) /R O  
CUSK =COS(W N*(RO +SO))
S E N K = S IN (W N * (R O + S O ))
A K = 1 - 0 / (RO*SO)
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z / 2 . 0 ) ) * S I N ( W N * A * ( D V / 2 - 0 ) ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0
D l = ( S P * S P C ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 )
DP=SQRT( ( X L - I * D V + D V / 2 - 0 ) * * 2 )
W l = ( D P * S P C ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 )
X l= S Q R T ( ( S P C * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z l= S Q R T ( ( D l * * 2 ) + ( W l * * 2 ) )
V = A S I N ( Z 1 / X 1 )
CUSV=COS(V)
C O R L l = ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ (M ASS*CUSV)) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A SS *C U S V )) ) * * 2 )

C O I M l = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (R O E C /
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S )+ ( R O E C /( M A S S * C U S V ) ) ) * * 2 )

CORL2 = ( ( (W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (ROEC5/  
+ (M A SS5*C U SV )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *

— A------------------ ( (R 5 /M A S S 5 )  + (R O E C 5/ (MASS5*CUSV) ) ) * * 2 )
COIM2= - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * (R O E C 5 /

+ (M A SS5*C U SV )) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) * * 2 )

SUMR=SUMR+ ( ( (RL*CORLl*CORL2) -  (UNRL*COIMl*CORL2 ) -  
+ (UNRL*CORLl*COIM2 ) - (R L *C O IM l*C O IM 2)) * F I R )

SUMI=SUMI+ ( ( (UNRL*CORLl*CORL2 ) + (RL*COIMl*CORL2 ) +
+ (RL*CORLl*COIM 2) -  (UNRL*COIMl*COIM2) ) * F I R )

4 6  CONTINUE
4 7  CONTINUE 

RETURN 
END

SUBROUTINE B A R 3 C ( R P , S P , Y , P , Q Z , Q , X L , Y B , D V , D Z , L , N , P I , W N , S P F , S P C ,  
+W, W0 ,  R ,  MASS, ROEC, W05 ,  R5 ,  MASS5 ,  ROEC5 ,  SUMR, SUM I)

SUMR=0 
SUMI=0  
DO 4 9  J = 1 , N

DO 4 8  1 = 1 , L
X O = X L -I* D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2 - 0 
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + (Y O -Q Z )* * 2 )
C U ST =SP /SO  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) / R O



-------------------- B = 4 X O /S O ) + (YO-QZ) /RO
CUSK=COS(WN*(RO+SO) )
SENK=SIN(W N* (RO+SO) )
A K = 1 . 0 / (RO*SO)
RL=AK **2*CUSK *(RO *CUST+SO*CUSF)+W N*AK *SENK *(CUST+CUSF)  
UNRL=AK**2 *SENK*(RO*CUST+SO*CUSF)-W N*AK*CUSK*

+ (CUST+CUSF)
FIR=SX N (W N *B * (D Z /2  . 0 )  ) *SIN (W N *A * ( D V /2  . 0 )  ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0
D 3 = ( R P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 - Q )
D P = S Q R T ( ( X L - I * D V + D V /2 . 0 + P ) * * 2 )
W 3 = ( D P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 - Q )
X 3 = S Q R T ( ( S P C - Q ) * * 2 + ( D 3 * * 2 ) + (W3* * 2 ) )
Z 3 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V = A S I N ( Z 3 / X 3 )
CUSV=COS (V )

- C O R L l = ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/
+ (M A SS*C U SV )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S ) + (R O E C /(M A SS *C U S V )) ) * * 2 )

C O I M l = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) + (ROEC/
+ (M A SS*C U SV )) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S ) + (R O E C /(M A SS *C U S V )) ) * * 2 )

CORL2 = ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (RO EC5/  
+ (M A SS 5 * C U S V )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) * * 2 )

COIM2 = - (2  - 0 * W * ( ( W * * 2 ) - ( W 0 5 * * 2 ) )  + (RO EC5/
+ (MASS5 * C U S V )) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 /(M A S S 5 * C U S V )) ) * * 2 )

---------------SUMR=SUMR+( ( (RL*CORLl*CORL2) - (UNRL*COIMl*CORL2) -
+ (UNRL*CORIil*COIM2 ) -  (RL*COIMl*COIM2 ) ) * F I R )

SUMI= SUMI+ ( ( (UNRL*CORLl*CORL2 ) + (RL*C OIM l*CO RL2) +
+ (RL*CORLl*COIM2 ) -  (UNRL*COIMl*COIM2) ) * F I R )

4 8  CONTINUE
4 9  CONTINUE 

RETURN 
END

SUBROUTINE B A R 4 C ( R P ,S P , Y , P , Q Z ,Q ,X L ,  Y B ,D V ,D Z ,  L ,  N , P I , W N , S P F , S P C ,  
+W, WO , R ,  MASS, ROEC, W 0 5 , R5 , MASS5 ,  ROEC5 , SUMR, SUMI)

SUMR=0 
SUM I=0  
DO 5 1  J = 1 , N

DO 5 0  1 = 1 , L
X O = X L -I* D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2 . 0  
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O -Q Z )* * 2 )
C U ST = SP /S O  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) /R O  
B = ( Y O / S O ) + (Y O -Q Z )/R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O + SO ))
A K = 1 - 0 / (RO*SO)
RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

.+ ____  (CUST+CUSF)
~ F I K = S I N(W N*B* (D Z /2  .  0 )  ) *SIN(W N*A * (D V /2  - 0 )  ) /

+ (P I* W N * * 2 * A * B )
Y 2 = Y - J * D Z + D Z / 2 . 0
D l = ( S P * S P C ) / ( ( 2 . 0 * S P C )+ S P F + Y 2 )
D P1=SQ RT ( ( X L - I * D V + D V / 2 . 0 ) * * 2 )
W l = ( D P 1 * S P C ) /  ( ( 2 . 0 * S P C ) + S P F + Y 2 )
X 1 = S Q R T ( ( S P C * * 2 ) + ( D 1 * * 2 ) + ( W 1 * * 2 ) )
Z 1 = S Q R T ( ( D l * * 2 ) + ( W l * * 2 ) )
V 1 = A S I N ( Z l / X l )
C U S V l= C O S (V l)
C O R L l= ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (M A SS *C U S V 1)) * * 2 ) ) / ( ( ( W * * 2 ) - (W 0** 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A S S * C U S V l) ) ) * * 2 )

C O I M l = - ( 2 . 0*W* ( ( W * * 2 ) - (W 0 * * 2 ) ) * (ROEC/
+ (M A SS *C U S V 1)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V 1)) ) * * 2 )

CORL2=( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 * ( ( R 5 / M A S S 5 ) * * 2 - (RO EC5/



+ (M A S S 5 * C U S V 1 ) ) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + ( R O E C 5 / (M A S S 5 * C U S V 1 ) ) ) * * 2 )

C O I M 2 = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * (RO EC5/
+ (M A S S 5 * C U S V 1 )) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 /M A S S 5 )  + (R O E C 5/ (M ASS5*CUSV1) ) ) * * 2  )

D 3 = ( R P * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 - Q )
D P 2 = S Q R T ( ( X L - I * D V + D V / 2 . 0 + P ) * * 2 )
W 3 = ( D P 2 * ( S P C - Q ) ) / ( ( 2 . 0 * S P C ) + S P F + Y 2 - Q )
X 3 = S Q R T ( ( S P C - Q ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )

----------- Z3=SQRT ( ( D3 * * 2 )  + (W3 * * 2 ) )
V 2 = A S I N ( Z 3 / X 3 )
C U SV 2= C O S(V 2)
CORI»3 = ( ( ( W * * 2 ) -  (WO* * 2 )  ) * * 2 + W * * 2 *  ( (R /H A S S )  * * 2 -  (ROEC/

+ (M A S S * C U S V 2 )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S ) + (R O E C /(M A SS *C U S V 2) ) ) * * 2 )

C O I M 3 = - ( 2 .  0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M A S S * C U S V 2 )) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ . ( (R /M A SS )  + (R O E C /(M A SS*C U SV 2) ) )  * * 2 )

CORL4= ( ( (W * * 2 )  -  ( W 0 5 * * 2 )  ) * * 2 + W * * 2 *  ( ( R 5 /M A S S 5 )  * * 2 -  (ROEC5/  
+ (MASS5 *C U SV 2) ) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 / (M A S S 5 * C U S V 2 ) ) ) * * 2 )

C O I M 4 = - ( 2  - 0 * W * ( (W * * 2 ) - ( W 0 5 * * 2 ) ) * (RO EC5/
+ (M A S S 5 * C U S V 2 )) ) / ( ( ( W * * 2 ) - ( W 0 5 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R 5 / M A S S 5 ) + (R O E C 5 / (M A S S 5 * C U S V 2 ) ) ) * * 2 )

SUMR= SUMR + ( ( (RL*CORLl*CORL2*CORL3*CORL4)-  (UNRL*COIMl*
+ CORL2 *CORL3 *CORL4 ) -  (UNRL*CORLl*CORL3 *CORL4 *COIM2 ) -
+ (RL*COIMl*COIM 2*CORL3*CORL4) -  (UNRL*CORLl*CORL2*CORL4*
+ COIM3) -  (RIi*COXMl*COIM3*CORL2*CORL4) -  (RL*CORLl*CORL4*
+ COIM2 *COIM3 ) + (UNRL*COIMl*COIM2*COIM3 *CORL4) -  (RL*CORLl*
+ CORL2 *COIM3 *COIM4 ) + (UNRL*COIMl*COIM3 *COIM4*CORL2 ) +
+ (UNRL*CORLl*COIM2 *COIM3 *COIM4 ) + (RL*COIMl*COIM2 *COIM3 *
+ COIM4) -  (UNRL*CORLl*CORL2*CORL3*COIM4) -  (RL*COIMl*COIM 4*
+ CORL2 *CORL3 ) -  (RL*CORLl*CORL3*COIM2*COIM4) + (UNRL*COIMl*
+ COIM2 *COIM4 *CORL3) ) * F I R )

SUMI=SUMI+ ( ( (RL*CORIil*CORL2*CORL3*COl4) -  (UNRL*COIMl*
+ COIM4 *CORL2 *CORL3 ) -  (UNRL*CORLl*CORL3 *COIM2 *COIM4 ) -
+ ( RLi*COIMl *COIM2 *COIM4 *CORI«3 ) -  (UNRIi*CORIj1*CORL2*COIM3*
+ COIM4) -  (RL*COIMl*COIM3*COIM4*CORL2) -  (RI/*CORLl*COIM2*
+ COIM3 *COIM4 ) + (UNRIi*COIMl*COIM2*COIM3*COIM4) + (RL*CORLl*
+ CORfj2-*eORL4 *COIM3 ) -  (UNRIi*CORL2 *CORL4 *COIMl*COIM3 ) -
+ (UNRIi*CORLl*CORL4*COIM2*COIM3) -  (RL*CORL4*COIMl*COIM2 *
+ COIM3 ) + (UNRL*CORIil*CORL2 *CORL3 *CORL4 ) + (RL*CORL2 *CORL3 *
+ CORL4 * C O IM l) + (RL*CORLl*CORL3*CORL4*COIM2) -  (UNRL*CORI,3*
+ CORIi4*COIMl*COIM2) ) * F IR )

5 0  CONTINUE
5 1  CONTINUE 

RETURN 
END

SUBROUTINE BAR2D ( R P , S P ,  P , Q , XL, YB, DV, DZ,  L , N ,  P I ,  WN, SP R ,  W, WO, R,MASS,  
+ROEC,SUM R,SUM I)

SUMR=0 
SUMI=0  
DO 8 0  J = 1 , N

DO 7 9  1 = 1 , L
X O = X L - I * D V + D V /2 . 0  
Y O = Y B - J * D Z + D Z /2 . 0  
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + (Y O - Q ) * * 2 )
C U ST = SP /S O  
CUSF=RP/ RO 
A = ( X O /S O ) + ( X O - P ) / R O  
B = ( Y O / S O ) + (Y O -Q ) /R O  
CUSK =COS(W N*(RO +SO))
SE N K = S IN ( W N *(R O +SO ))
A K = 1 . 0 / (RO*SO)
RL=AK**2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

----------------- (CUST+CUSF )
F IR = S IN (W N * B *  ( D Z /2  . 0 )  ) *SIN(W N*A * (D V /2  . 0 )  ) /

+ (P I* W N * * 2  *A *B )
X 2 = X L - S P R - I * D V + D V /2 . 0  
Y 2 = S Q R T ( ( Y B - J * D Z + D Z / 2 . 0 ) * * 2 )
D l = ( S P R * S P ) / (X 2+ SP R )
W l = ( S P R * Y 2 ) / (X 2+ SP R )
X 1 = S Q R T ( ( S P R * * 2 )  + ( D l * * 2 ) + ( W l * * 2 )  )



Z l = S Q R T ( ( D 1 * * 2 ) + ( W 1 * * 2 ) )
V = A S I N ( Z l / X l )
CUSV=COS(V)
CO RL=( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (M A SS *C U S V )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R / M A S S ) + (R O E C /(M A SS *C U S V )) ) * * 2 )

C O I M = - ( 2 . 0 * W * ( (W **2)  - ( W 0 * * 2 ) ) * (ROEC/
+ (MASS*CUSV) ) ) /  ( ( ( W * * 2 ) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( ( R / M A S S ) + (R O E C /( M A S S * C U S V ) ) ) * * 2 )

SUMR=SUMR+( (RL*CORL) + (UNRL*COIM)) * F IR  
SUMI=SUMI+ ( (UNRL*CORLi) -  (RL*COIM) ) * F IR

7 9  CONTINUE
8 0  CONTINUE 

RETURN 
END

SUBROUTINE B A R 3 D (R P ,  S P ,  P Z ,  P ,  Q, XL, YB, DV, DZ, L , N ,  P I ,W N ,  SP R ,  W, WO, 
+R ,M ASS,RO EC, SUMR, SUMI)

SUMR=0
~SUMI=0  ---------
DO 8 2  J = 1 , N

DO 8 1  1 = 1 , L
X O = X L - I * D V + D V /2 . 0  
Y O = Y B - J * D Z + D Z /2 - 0 
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P Z ) * * 2 + ( Y O - Q ) **2)
C U S T = S P /S O  
CU SF=RP/RO  
A = ( X O / S O ) + ( X O -P Z ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(WN*(RO+SO) )
SE N K = SIN  (WN* (RO+SO) )
A K = 1 . 0 / (RO*SO)
RD=AK* * 2  *CUSK*(RO*CUST+SO*CUSF)+WN*AK*SENK*(CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F IR = S I N (W N * B *  ( D Z /2  . 0 )  ) *SIN (W N *A * (D V /2  . 0 )  ) /

+ (P I* W N * * 2 * A * B )
X 2 = X L + S P R - I * D V + D V /2 . 0  
Y 2 = S Q R T ( ( Y B - Q - J * D Z + D Z / 2 . 0 ) * * 2 )
D 2 = ( R P * ( S P R - P ) ) / ( X 2 + S P R -P )
W 2 = ( Y 2 * ( S P R - P ) ) / (X 2 + S P R -P )
X 1 = S Q R T ( ( S P R - P ) * * 2 + ( D 2 * * 2 ) + ( W 2 * * 2 ) )
Z 1 = S Q R T ( ( D 2 * * 2 ) + ( W 2 * * 2 ) )
V = A S I N ( Z l / X l )
CUSV=COS (V)
C O R L = (( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ (M A SS *C U S V )) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
— ------------------ ( (R/M AS S )  + (ROEC/ (MASS*CUSV) ) ) * * 2 )

CO IM =- ( 2  - 0*W* ( (W **2) -  (W 0 * * 2 )  ) * (ROEC/
+ (MASS*CUSV) ) ) /  ( ( (W **2) -  (W 0 * * 2 )  ) * * 2 + W * * 2 *
+ ( (R /M A S S )  + (R O E C /(M A SS*C U SV )) ) * * 2 )

SUMR=SUMR+ ( (RD*CORL) + (UNRL*COIM) ) * F IR  
SUMI=SUMI+ ( (UNRL*CORL) -  (RL*COIM) ) * F IR

8 1  CONTINUE
8 2  CONTINUE 

RETURN 
END

SUBROUTINE BAR4D (R P ,  S P ,  P Z ,  P ,  Q, XL, YB, DV, DZ, L , N ,  P I ,  WN, SP R , W, W0, 
+R ,M ASS,RO EC, SUMR, SUMI)

SUMR=0 
SUMI=0  
DO 8 4  J = 1 , N

DO 8 3  1 = 1 , L
X O = X L - I * D V + D V /2 . 0  
Y O = Y B - J * D Z + D Z /2 . 0  
SO =SQ RT( ( S P * * 2 ) + (X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P Z ) * * 2 + ( Y O - Q ) * * 2 )
C U S T = S P /S O  
CUSF=RP/RO  
A = ( X O / S O ) + ( X O -P Z ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(W N*(RO+SO))
SENK=SIN(W N* (RO+SO) )
A K = 1 . 0 / (RO*SO)



RL=AK **2*CUSK *(RO *CUST+SO*CUSF)+W N*AK *SENK *(CUST+CUSF)  
UN RL=A K**2*SENK*(RO*CUST+SO*CUSF)-W N*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z / 2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2 * A * B )
X 2 = X L - S P R - I * D V + D V / 2 . 0  
Y 2 = S Q R T ( ( Y B - J * D Z + D Z / 2 . 0 ) * * 2 )
D l = ( S P R * S P ) / (X 2 + S P R )
W 1 = ( S P R * Y 2 ) / (X 2 + S P R )
X 1=SQ R T ( ( S P R * * 2 ) + ( D l * * 2 ) + ( W l * * 2 ) )
Z 1 = S Q R T ( ( D l * * 2 ) + ( W 1 * * 2 ) )
V 1 = A S I N ( Z l / X l )
C U S V l= C O S (V l)
C O R L l= ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (M A SS *C U S V 1)) * * 2 ) ) / ( ( ( W * * 2 ) - (WO* * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + (R O E C /(M A S S * C U S V 1 )) ) * * 2 )

C O I M l = - ( 2 . 0 * W * ( (W * * 2 ) - (WO* * 2 ) ) * (ROEC/
+ - ( M A S S * C U S V 1 ) ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S ) + ( R O E C /(M A S S * C U S V l) ) ) * * 2 )

Y 3 = S Q R T ( ( Y B - Q - J * D Z + D Z / 2 - 0 ) * * 2 )
D 3 = ( R P * ( S P R - P ) ) / ( X 2 + S P R - P )
W 3 = ( Y 3 * ( S P R - P ) ) / ( X 2 + S P R - P )
X 3 = S Q R T ( ( S P R - P ) * * 2 + ( D 3 * * 2 ) + ( W 3 * * 2 ) )
Z 3 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V 2 = A S I N ( Z 3 / X 3 )
C U SV 2= C O S(V 2)
CORL2=( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (M A SS*C U SV 2)) * * 2 ) ) / ( ( (W **2) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
  ------------------- ( (R/MAS S )  + (ROEC/ (MASS*CUSV2) ) ) * * 2 )

C O I M 2 = - ( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M A SS*C U SV 2)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( ( R /M A S S )+ (R O E C /(M A SS *C U S V 2) ) ) * * 2 )

SUMR=SUMR+( ( (RL*C OR Ll*C OR L2) - (UNRL*COIMl*CORL2) -  
+ (R L *C O IM l*C O IM 2) -  (UNRIi*CORLl*COIM2 ) ) * F IR )

SUMI=SUMI+ ( ( (R L *C O R L l*C O IM 2)-  (UNRIi*COIMl*COIM2 ) + 
+ (RL*C OIM l*CO RL2) + (UNRL*CORLl*COIM2) ) * F I R )

8 3  CONTINUE
8 4  CONTINUE 

RETURN 
END

SUBROUTINE BA R 2E ( R P , S P , P , Q ,X L ,Y B , D V ,D Z , L , N , P I , W N ,SPL ,W , WO,
+R ,M ASS,RO E C,SUM R,SUM I)

SUMR=0 
SUMI=0  
DO 8 6  J = 1 , N

DO 8 5  1 = 1 , L
X O = X L -I * D V + D V /2 . 0  
Y O = Y B -J * D Z + D Z /2 . 0  
SO=SQRT( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P ) * * 2 + ( Y O - Q ) * * 2 )
C U ST =SP /SO  
CUSF=RP/RO  
A = ( X O /S O ) + ( X O - P ) /R O  
E = ( Y O / S O ) + (Y O -Q ) /R O  
CUSK=COS(W N*(RO+SO))
SE N K = SIN (W N *(R O + SO ))

_________  A K = 1 . 0 / ( R O * S O )
~  RL=AK**2*CUSK*(RO*CUST+SO*CUSF)+W N*AK*SENK*(CUST+CUSF)  

UNRL=AK**2*SENK*(RO*CUST+SO*CUSF)-W N*AK*CUSK*
+ (CUST+CUSF)

F I R = S I N ( W N * B * ( D Z /2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /
+ (P I* W N * * 2 * A * B )

X 3 = S P L - X L + I * D V - D V / 2 . 0  
Y 3 = S Q R T ( ( Y B - J * D Z + D Z /2 . 0 ) * * 2 )
D l = ( S P L * S P ) / (X 3 + S P L )
W l = ( S P L * Y 3 ) / (X 3 + S S P L )
X l = S Q R T ( ( S P L * * 2 ) + ( D 1 * * 2 ) + ( W l * * 2 ) )
Z l= S Q R T ( ( D l * * 2 ) + ( W l * * 2 ) )
V = A S I N ( Z l / X l )
CUSV=COS(V)
C O R L = (( (W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R / M A S S ) * * 2 - (ROEC/

+ (M ASS*CUSV)) * * 2 ) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *
+ ( (R /M A S S )+ (R O E C /(M A SS *C U S V )) ) * * 2 )

C O IM = -( 2 . 0 * W * ( ( W * * 2 ) - ( W 0 * * 2 ) ) * (ROEC/
+ (M ASS*CUSV)) ) / ( ( ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 *



+ ( ( R / H A S S ) + (R O E C /(M A S S * C U S V )) ) * * 2 )
SUMR=SUMR+ ( (RL*CORL) + (UNRL*COIM) ) * F IR  
SUMI= SUMI+ ( (UNRD*CORB) -  (RL*COIM) ) * F IR

8 5  CONTINUE
8 6  CONTINUE 

RETURN 
END

 SUBROUTINE BAR3E ( R P . S P , P Z , P ,  Q, XL, YB, DV, DZ, L , N ,  P I ,  WN, S P L ,  W, WO,
+R ,M A S S, ROEC, SUM R,SUM I)

SUMR=0 
SUMI=0  
DO 8 8  J = 1 , N

DO 87  1 = 1 ,  L
X O = X L - I * D V + D V /2 . 0  
YO =Y B -J*D Z + D Z / 2 . 0  
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )

. R O = S Q R T ( ( R P * * 2 ) + ( X O - P Z ) * * 2 + ( Y O - Q ) * * 2 )
C U S T = S P /S O
CUSF=RP/RO
A = ( X O / S O ) + ( X O - P Z ) /R O  
B = ( Y O / S O ) + ( Y O -Q ) /R O  
CUSK =C OS(W N*(RO +SO))
S E N K = S IN (W N * (R O + S O ))
A K = 1 . 0 / (RO*SO)
RL=AK* * 2 *CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRIi=AK**2 *SENK* (RO*CUST+SO*CUF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z / 2 . 0 ) ) * S I N ( W N * A * ( D V /2 . 0 ) ) /

+ ( P I* W N * * 2 * A * B )
X 3 = S P L - X L + I * D V - D V / 2 . 0  
Y 3 = S Q R T ( ( Y B - J * D Z + D Z / 2 . 0 - Q ) * * 2 )
D 3 = ( R P * ( S P L + P ) ) / (X 3 + SP L + P )
W 3 = ( Y 3 * ( S P L + P ) ) / (X 3+ SP L +P )
X 1 = S Q R T ( ( S P L + P ) * * 2 + ( D 3 * * 2 )  + (W 3 * * 2 )  )
Z 1 = S Q R T ( ( D 3 * * 2 ) + ( W 3 * * 2 ) )
V = A S I N ( Z l / X l )

  __ CUSV=COS(V)
CORDsi t ( W * * 2 ) - ( W 0 * * 2 ) ) * * 2 + W * * 2 * ( ( R /M A S S ) * * 2 - (ROEC/

+ (MASS*CUSV))* * 2 ) )/ ((( W * * 2 )- ( W 0 * * 2 ))* * 2 + W * * 2 *
+ ((R/MASS)+ (ROEC/(MASS*CUSV)))* * 2 )

COIM=- ( 2 . 0 * W * ( (W * * 2 ) - (WO * * 2 ) )*(ROEC/
+ (MASS*CUSV)))/(( ( W * * 2 )- ( W 0 * * 2 ))* * 2 + W * * 2 *
+ ( (R/MASS) + (ROEC/ (MASS*CUSV) ) ) * * 2 )

SUMR= SUMR+ ( (RL*CORL) + (UNRL*COIM) ) *FIR 
SUMI=SUMI + ( (UNRL*CORL) - (RL*COIM) ) *FIR 

8 7  CONTINUE
8 8  CONTINUE 

RETURN 
END

SUBROUTINE BAR4E ( R P ,  S P ,  P Z ,  P ,  Q ,X L ,  Y B ,D V , D Z , L , N ,  P I ,  WN, S P L ,  W, WO, 
+R , MASS,  ROEC , SUMR, SU M I)

SUMR=0 
SUMI=0  
DO 9 0  J = 1 , N

DO 8 9  1 = 1 ,  L
X O = X L - I * D V + D V /2 . 0  
Y O = Y B - J * D Z + D Z /2 . 0  
S O = S Q R T ( ( S P * * 2 ) + ( X O * * 2 ) + ( Y O * * 2 ) )
RO=SQRT( ( R P * * 2 ) + ( X O - P Z ) * * 2 + ( Y O -Q )* * 2 )
C U ST = SP /S O
CUSF=RP/RO
A = ( X O /S O ) + ( X O -P Z ) /R O  
B = ( Y O / S O ) + (Y O -Q )/R O  
CUSK=COS(W N*(RO+SO))
SENK=SIN(W N*(RO+SO ) )
A K = 1 -0 / . (R O * S O )
RL=AK**2*CUSK* (RO*CUST+SO*CUSF) +WN*AK*SENK* (CUST+CUSF)  
UNRL=AK**2*SENK* (RO*CUST+SO*CUSF) -WN*AK*CUSK*

+ (CUST+CUSF)
F I R = S I N ( W N * B * ( D Z / 2 . 0 ) ) * S I N ( W N * A * ( D V / 2 . 0 ) ) /

+ (P I* W N * * 2  *A *B )
X 2 = S P L - X L + I * D V + D V /2 . 0  
Y 2 = S Q R T ( ( Y B - J * D Z + D Z / 2 . 0 ) * * 2 )
D 1 = ( S P L * S P ) / ( X 2 + S P L )


