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Abstract

We present results from a computer simulation of an immiscible two component 

fluid, using a Lattice Boltzmann BGK D2Q9 scheme. Each fluid component is 

identified by a colour tag (either red or blue), and the immiscible behaviour arises 

from the implementation of colour segregation imposed on the lattice fluid. For two 

dimensional, microcurrent free planar interfaces between the two immiscible fluids 

we derive expressions for static interfacial tensions and interfacial distributions of 

the two fluids. Extending our analysis to curved interfaces, we propose a scheme for 

incorporating the influence of interfacial microcurrents that is based upon general 

symmetry arguments and is correct to second order in lattice velocity. The analysis 

demonstrates that the interfacial microcurrents have only second order influence 

upon the macroscopic behaviour of the model. We find good agreement between our 

calculations and simulation results based on the microcurrent stream function and 

surface tension results from the pressure tensor or Laplace law.

We examine the tangential stress transmission in the immiscible interface, by the 

investigation of the relationship between fluid shear and fluid viscosity across a plar 

nar symmetric interface. We find comprehensive agreement with theory, for the 

tangential hydrodynamic boundary condition. The examination of normal stress 

transmission in our two dimensional simulation is facilitated from correct behaviour 

of tangential stress. We develop a Fourier analysis technique which allows a quanti­



tative analysis of the anisotropy of the interface. This technique has facilitated the 

development of a further modification to the interface perturbation, which improves 

the macroscopic surface tension isotropy and reduces the magnitude of the parasitic 

microcurrent.

As an application of our model we simulate the induced deformation and burst 

of neutrally buoyant fluid drops subjected to external simple shear and solenoidal 

irrotational flow. Qualitatively the drops are seen to deform and orientate correctly, 

with respect to the external flow. Measuring the dependence of critical shear rate 

for drop rupture on flow parameters, our results validate the method over a range 

of simulation variables. The model’s interfacial tension parameter <7 ,  undeformed 

drop radius R , and BGK relaxation parameter u  are all found to have the correct 

influence upon the burst process as required by hydrodynamic theory. We note that 

the macroscopic surface tension and fluid viscosity are coupled, however this does 

not limit the application of the model.
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Chapter 1

Introduction

In this thesis we present the analysis and application of a newly developed lattice 

Boltzmann BGK model similar to one proposed by Gunstensen et al. [1], for the 

simulation of immiscible two component fluid flow. The development of a com­

putationally efficient technique, for modelling two component flows of engineering 

importance is the long term aim of this research.

The simulation of multi-component flows is a challenging problem with considerable 

technological and theoretical interest. Traditional finite-element and finite-volume 

schemes used in computational fluid dynamics (CFD) [2] struggle to accurately track 

interfaces efficiently. CFD schemes are most suited to tracking single component 

macroscopic variables such as fluid density p, velocity u  and temperature T. Only 

recently have new techniques been developed to examine droplet deformation and 

breakup, employing CFD techniques [3, 4]. The strengths of CFD lie in the macro­
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CHAPTER 1. INTRODUCTION

scopic simulation of single component, turbulent, large eddy and multiphase mixture 

approximation flows, with major applications in aerodynamics.

In Molecular Dynamics simulations of fluids [5], the individual fluid molecules are 

modelled and the interactions between colliding molecules are calculated from New­

tons laws of motion in order to simulate flow. This requires the updating of position 

and velocity for each molecule from their previous positions at small time step inter­

vals. The simulation of several hundred molecules becomes computationally expen­

sive and produces information on a scale of only fractions of a second [6]. This has 

resulted in the development of novel numerical schemes, which bridge the macro­

scopic numerical schemes of CFD and the Molecular Dynamics representations of 

systems. Borrowing ideas from both techniques, to allow the simulation of fluid sys­

tems at a meso-scopic, scale which is both computational efficient for large systems 

and inherently tracks individual particles. These lattice gas and lattice Boltzmann 

models exhibit correct macroscopic hydrodynamic behaviour whilst requiring greatly 

reduced numbers of particles and computer memory. Subsequently, these competi­

tor schemes have been developed and applied to areas where traditional simulation 

techniques have failed. Lattice Boltzmann models are particularly suited to the 

simulation of complex fluid interfaces as they do not explicitly track interfaces, but 

intrinsically track the underlying fluid particles themselves, allowing distinctions to 

be made between different fluid components.

The motivation to use computer simulation as an aid to understanding engineering 

problems and specifically fluid dynamics, is simply that they allow exact results to

2



CHAPTER 1. INTRODUCTION

be calculated. Computer simulation may be used as a testing ground for theories 

and the results may be compared with experiment. Finally and most importantly 

the results are not only of academic interest, but are often technologically useful and 

relevant.

1.1 Aims

In this thesis we develop a new immiscible lattice Boltzmann LBGK scheme to 

simulate immiscible two component fluid flow. The main aims of this research are

• to develop a computationally efficient immiscible two component lattice Boltz­

mann model and undertake appropriate analysis to examine the models surface 

tension.

• to develop a test procedure which may be employed to investigate and test the 

hydrodynamic boundary conditions of our model and other immiscible Lattice 

techniques.

• to apply the model to an industrially relevant engineering application.

1.2 Summary of thesis

In chapter 2 we investigate the single component lattice gas (LG) and lattice Boltz­

mann (LB) models and their extension to model immiscible fluid components. We
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highlight the advantages of the lattice Boltzmann technique for the simulation of 

two component flows and examine the different ways an immiscible interface may 

be generated. The applications of the technique for the study of drop deformation 

and flow in porous media is then examined, to highlight the versatility of the model 

to simulate flows of engineering importance.

In chapter 3 the lattice Boltzmann BGK scheme is introduced and extended to 

simulate two immiscible fluid components. The implementation of the technique 

is described and issues relating to the computational efficiency of the scheme are 

discussed.

In chapter 4 expressions for the static interfacial tension between the immiscible 

fluids in simple plane interfaces are developed. This analysis is then extended to 

incorporate curved interfaces. We compare our calculations with simulation results 

and perform pressure tensor and Laplace law tests to confirm hydrodynamics.

In chapter 5 we examine the tangential and normal stress transmission in the im­

miscible interface, by developing a Fourier based analysis technique. A quantitative 

analysis of the isotropy of the interface is then made. Following this investiga­

tion, we introduce a modification to the interface perturbation, which improves the 

macroscopic surface tension isotropy.

In chapter 6 we simulate an application of the model, to induced droplet defor­

mation and burst under simple shear flows. These results are then compared with 

experiment.

4



Chapter 2

Immiscible lattice fluid models

2.1 Introduction

In this chapter an examination of different immiscible lattice gas (LG) and lattice 

Boltzmann (LB) models is made. All of the techniques are extensions of the origi­

nal lattice gas single component fluid models [7]. The extensions are made through 

the inclusion of a modified collision operation creating surface tension at the inter­

face between fluids of differing species or through a modification of the equilibrium 

distribution function. Athermal and thermal interface generating models are exam­

ined along with benchmark tests and physical applications of these techniques. The 

chapter concludes with a brief look at other numerical schemes used to simulate 

immiscible fluids. The interested reader is also directed to the excellent review by 

Rothman and Zaleski [8], although this review is now some years old.

5



CHAPTER 2. IMMISCIBLE LATTICE FLUID MODELS

2.2 Foundations o f the two component models

Immiscible lattice Boltzmann models have been evolved as algorithmic extensions 

to LG and LB models, developed as novel numerical techniques to investigate in­

compressible fluid flow. Extensive review papers are at present in press [8, 9, 10, 11] 

which examine applications and developments in LG and LB models. We refer read­

ers to these papers and make only a brief introduction of the single component LG

and LB models in this thesis.

2.2.1 The H P P  M odel

Hardy, Pomeau and de Pazzis (HPP) [12, 13] introduced the first lattice gas model.

Idealised particles are restricted to move on a square lattice, whose links connect 

neighbouring sites by unit vectors c* where i = 1..4. Particles propagate at unit 

speed, moving from one lattice site to a neighbouring site in discrete time steps. 

An exclusion principle is applied, permitting only one particle to travel along a link 

with a particular velocity at one time. When particles arrive at a site they are 

collided according to a set of pre-determined collision rules. These collision rules 

are designed to conserve particle number and momentum. It was found that the 

square lattice was not isotropic enough to allow for the simulation of a real fluid, 

this leads to the development of a model using a more isotropic lattice.

6
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2.2.2 The FH P M odel

Frisch, Hasslacher and Pomeau (FHP) [7] introduced in 1986 a lattice gas model 

based on a hexagonal lattice. The FHP model is the simplest lattice gas model, 

that is capable of recovering the continuity and Navier-Stokes equations. Idealised 

particles are propagated and collided on a lattice and an exclusion rule is applied 

preventing simultaneous occupation of any link by more than one particle travelling 

with the same velocity. Each lattice site is connected to its six nearest neighbours by 

unit vectors c, where i — 1..6 and the occupancy of the link is denoted by a six-bit 

state nz (x, t) where rii =  1(0) indicates the presence (or absence) of a particle. Rest 

particles may also be introduced into the model residing on the lattice sites, with a 

velocity Co and they may interact with other particles arriving at that site during 

the collision process.

As time is evolved discretely, the particles move one link in the direction of their 

velocity and collide with incoming particles. Examples of different particle collisions 

on the FHP lattice are shown in Figure 2.1, a full explanation of these collisions 

is given in the figures caption. We note the dynamics of the FHP model are in­

variant under all discrete translations, mirror symmetries and rotations of | .  Both 

deterministic and non-deterministic collision rules are implemented and are designed 

to conserve mass and momentum. The collision rules must be carefully chosen to 

prevent spurious particle conservations [7], for in the case of head-on collisions see 

Figure 2.1 (A), not only particles number is conserved, but the difference in particles 

number in any pair of directions is also conserved.

7
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and

Figure 2.1: Collision rules for FHP models: (A) head-on collision with two possible 
output channels; (B) triple collision; (C) dual of head-on collision; (D) head-on 
collision with spectator; (E) collisions involving a rest particle (represented by a 
circle)

The simplest FHP model FHP-I may be constructed without the inclusion of rest 

particles. The model contains simply head-on collisions of two and three particles 

see Figure 2.1 (A) & (B). The more complex FHP II and FHP III models may 

be constructed which include rest particles and an extended collision set involving 

collisions with upto five particles.

8
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2.2.3 The FCHC M odel

The FHP model was extended to three dimensions by d’Humieres [15]. As there is no 

regular three dimensional lattice with enough symmetry to recover hydrodynamics, a 

face-centred-hypercubic (FCHC) four dimensional lattice is used and projected into 

three dimensions. This produces a multi-speed model and particles may now have a 

velocity of zero (rest), one, or y/2. The propagation of particles is unchanged from 

the FHP model and collisions are again designed to conserve mass and momentum.

2.2.4 Lattice Gas dynamics

The evolution of the lattice gas model is described by the evolution equation

nz(x +  c i, t +  1) =  7i,-(x, t) +  Aj(n) (2.1)

where nz(x +  cx, t  +  1) denotes the time incremented occupancy of link i and Ax(n) 

represents the change in nz(x, t) due to collisions with other particles. Two macro­

scopic variables may be extracted at each lattice site in order to map the lattice gas 

onto hydrodynamics. These are the local fluid density p, and momentum pu.

p(x , t )  =  J 2 ni (x , t )  (2-2)
i

p(x, t) u  =  X )nz(x, t)ci (2.3)
i

The full derivation of the lattice gas model is presented by Frisch et al. [7], to which 

we direct the interested reader. We note however, by performing a Taylor expansion 

of the evolution equation Eq. (2.1) and substituting an equilibrium solution for the

9
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mean population following statistical mechanics, the model may be proved to re­

cover approximately the incompressible Navier- Stokes after performing asymptotic 

expansions and considerable algebra. The equations for lattice gas hydrodynamics 

are only valid for low velocity flows u <C cs the speed of sound in the model, which 

is assumed during the derivation. Frisch considers the lattice fluid density to be a 

constant po in all terms except the pressure term.

dQuQ = 0 (2.4)

dtUa + g(po)updpua =  da \ p -  Pog(po)u2] + v{pQ)dppua (2.5)
Po L J

where pressure p =  pc ,̂ po =  poc  ̂ and p(po) =  \  \rrjf\ and & is the number of link 

directions.

The derived Navier Stokes equations for the lattice gas differ from the standard 

equation by containing a density dependent function g(po) in the advective term, a 

fluid viscosity dependent upon fluid density and finally an additional term in the 

fluid pressure which is density and velocity dependent. Frisch employs a re-scaling 

technique to redefine the pressure and obtain the correct Navier Stokes equation 

where

t* = g(po) t (2.6)

-  5 W  ( 2 - 7 )

1
p

u2
g M

producing the rescaled Navier Stokes equation

(2.8)
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a similar re-scaling technique has also been employed by Wolfram [16] to recover 

correct hydrodynamics.

Lattice gas models are a useful numerical method for the simulation of hydrodynamic 

flows. They allow simple inclusion of solid boundaries, by the introduction of mod­

ified collision rules on designated boundary sites. For example, non-slip boundary 

conditions may be introduced by forcing any particle colliding with a solid boundary 

to be reflected [17]. However the lattice gas possesses a number of problems which 

restrict their use for computing hydrodynamic flows.

Limitations of the lattice gas

The discrete nature of the lattice gas particles results in a high level of statisti­

cal noise, which requires temporal and spatial averaging in order to obtain useful 

statistics. More importantly the lattice gas suffers from a lack of Galilean invariance, 

resulting in the g(po) term in the Navier Stokes equations Eq.(2.5). For a single com­

ponent fluid, the lack of Galilean invariance may be overcome by using a re-scaling 

technique. However, for a multi-component fluid the re-scaling techniques introduce 

a g(p0) term into the diffusion equation [18], preventing the correct modelling of a 

two component system. Setting g(p0) =  1 [18] produces Galilean invariance at only 

one density, preventing the modelling of any density variation between fluid compo­

nents. We note that the necessity of the re-scaling technique limits the application 

of the lattice gas, as a constant density is required due to density dependence of the 

lattice fluid pressure and viscosity.
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2.2.5 The lattice Boltzm ann model

The lattice Boltzmann model [19] has evolved from the lattice gas, in order to more 

successfully simulate fluid behaviour and follows the Boltzmann approximation that 

particles are uncorrelated. In the LB model the boolean particles of the lattice gas 

model are replaced with an ensemble average jV* = <  nz- > mean particle distribution 

(or population) where 0 < N{ < 1. This development overcomes the statistical noise 

present within the lattice gas. The LB scheme may be used in an analogous manner 

to the LG model, however the collision operator still depends on the input and output 

states of the lattice gas. In the case of the FCHC model, the collision operator is 

a 242 x 242 matrix. The size of the matrix can be considerably reduced [20, 21] 

by expanding the particle distribution around the equilibrium particle distribution 

N?9, where

N?q = N t -  N™9 (2.10)

and N?eq is the non-equilibrium distribution and N?9 N™eq. However two more 

computationally efficient lattice Boltzmann schemes exist which we now introduce, 

these are the enhanced collision linearised lattice Boltzmann and the lattice BGK 

schemes.

12
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2.2.6 The Enhanced collision Linearised LB m odel

Higuera et al. [21] develop a collision operator fly which is constructed from con­

servation and lattice isotropy. The evolution equation of the scheme is given by

Ni(x  +  cz, t +  1) =  Ni(x, t) +  % A ^ e9(x, t) (2.11)

The collision operator f l y  represents the change through collisions of i V z  with Nj.  

The isotropy of the hexagonal lattice results in f l y  being solely dependent upon the 

angle between link i and j ,  the angular values being 0°, 60°, 120°, 180°. For a model 

without rest particles f l y  consist of only four terms. The inclusion of rest particles 

introduces two new terms to f l y  to account for the interaction between rest particles 

floo and the interaction between moving and rest particles floj where j  > 0.

The conservation of mass and momentum by the collision process imposes constraints 

on the elements dy, of fly, where a$ denotes the angle between link i and j  giving

6b+ c = 0 (2.12)

GO +  2(260 +  2(2i20 "b a180 =  0 (2.13)

do +  U60 — O120 — Oi80 — o (2-14)

where b is the number of lattice links and c is the link length. The non zero eigen­

values of the hexagonal lattice are

A =  6(ao +  fl6o) +  26 (2.15)

a =  —6(ao +  2<Z6o) — 3 b (2.16)

r  =  - l b  (2.17)

13
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A is the most important eigenvalue as it controls the fluid kinematic viscosity with 

the general form

' ( H )  «C2

D + 2

where 0 > A > — 2 and D  is the dimensionality of the lattice.

2.2.7 Lattice Boltzm ann BG K  model

Qian et al. [23] and Chen et al. [24] introduce the Bhatnagar Gross Krook (BGK) 

[22] based collision operation. By assuming that the particle distribution TV* relaxes 

to an equilibrium value at a constant rate the collision term is given by

Hi =  - ~ W i  -  N fq} (2.19)
T

The evolution of the BGK scheme is given by

7Vt(x +  a , t  +  1) =  (1 -  u)Ni(x, t) + c jN f fa  t) (2.20)

where u  =  £ the reciprocal of the relaxation time. In the BGK model the equilibrium 

distribution N?q has a Maxwell-Boltzmann distribution [25], as it does not employ an 

exclusion rule as seen in the previous lattice models where a Fermi-Dirac distribution 

has been used to simplify particle collisions. The BGK scheme has been shown to 

satisfy the Navier-Stokes equations to second order of approximation. The speed of 

sound cg and kinematic viscosity v are given by

1 1
cs =  —7= , v =  -V3 6

* - 1
IUJ

(2.21)

Qian notes that the physical requirement of a positive viscosity gives the condition for 

numerical stability of 0 < u  < 2. The BGK scheme is shown to be algorithmically

14
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simple and computationally efficient to implement. It is therefore chosen as our 

underlying fluid model with which we will examine interfacial hydrodynamics. A 

fuller derivation of the BGK scheme is given in Chapter 3.

2.3 Two dimensional immiscible models

Rothman and Keller [26] introduce a fundamental extension to the original work 

on lattice gas models by Frisch et al., simulating an immiscible two component 

fluid by evolving red fj(x) and blue 6t (x) coloured particles on a hexagonal lattice. 

The coloured particles are allowed to reside at the same lattice site and follow the 

exclusion principle. The collision of these particles aims to model the short-range 

intermolecular forces that exist in real fluids and which result in drop coalescence 

and cohesion. Neighbouring lattice sites surrounding a colour interface are used to 

influence the evolution of the interface.

A colour field is defined to be a direction weighted sum of differences between the 

number of red and blue particles at a site

f(x) =  £  Ci £[»V(x +  Ci) -  bj(x +  c,)] (2.22)
i j

A local colour flux q(x) is also defined, as the local measure of net momentum 

difference at a site

q[r(x), 6(x)] =  J 2 CiM x ) -  6,(x)] (2.23)
i

At interfacial sites the work W  performed by the colour flux against the colour 

field is then minimised, subject to the constraints of colour, mass and momentum

15



CHAPTER 2. IMMISCIBLE LATTICE FLUID MODELS

conservation. Hence like (unlike) coloured particles feel an attractive (repulsive) 

force.

W(r,b) = -f.q{r,b)  (2.24)

The collision process smooths colour surfaces and produces drop coalescence of like 

coloured particles. The evolution of a periodic lattice containing equal numbers 

of randomly distributed coloured particles, sees the merger of small drops to form 

larger drops, the final equilibrium state is reached when the two colours completely 

separate and produce a plane horizontal interface spanning the lattice.

Rothman uses a Laplace law bubble test to prove qualitatively that the simulation 

produces surface tension. The test was performed by initialising a lattice with a 

fluid drop of radius R  and measuring the change in pressure Ap = P \~ P 2 between 

the fluid drop pressure pi and it’s surrounding fluid pressure P2 and plotting this 

value against the reciprocal radius R  in the range of 16 < R  < 48 where surface 

tension is denoted by a.

Ap =  P i — P2 =  ^  (2.25)

Adler [27] calculates theoretically the surface tension in a Rothman-Keller interface.

The surface tension is calculated as a function of particle density using a Boltzmann

approximation for simple planar interfaces in two dimensions. An investigation of 

interface fluctuations is also conducted. A Boltzmann approximation is made in 

order to estimate the ensemble link density at the interface, it is then compared 

with simulation results. A qualitative fit to the simulation data, shows that the 

Boltzmann approximation allows a good estimate of surface tension to be made.
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The calculations are noted to be useful in determining any anisotropy in the surface 

tension, due to interface geometry. The equilibrium fluctuations (which are absent in 

LB simulations) are found to be in agreement with predictions for classical interfaces. 

This indicates that at equilibrium the interface behaves like a real interface, this 

assumption excludes of course any anisotropy measured in the surface tension due 

to lattice orientation.

Chen et al. [28] introduce a different lattice gas technique to model immiscible fluids. 

They employ a nearest neighbour colour density in order to model the attraction 

between like coloured particles. Coloured particles are collided at an interface in such 

a way as to move particles in the opposite direction to a local coloured hole flux. 

The coloured hole represents a memory of a particle moving in the same direction 

prior to a collision. A local flux G is calculated for the coloured particles and a local 

flux F for the holes

G  =  E ( 2/i -  (2.26)
i

F =  2 ( 2 fi  -  1)(1 -  Ni)a  (2.27)
i

where /,■ =  1 (0) denotes a red (blue) colour tag and iV* =  1 (0) denotes a particle 

(hole) and collisions are chosen to maximise Q =  — F.G '. F  is calculated for the 

input hole state (pre-collision) and G ' is calculated from the output particle state.

Thus, coloured particles move in the direction opposite to the local colour-hole flux,

extending nearest neighbour particle interaction to several lattice lengths. Local 

information is noted to be carried in the collision step, reducing the look-up table 

size in the algorithm and increasing the computational speed. The model is seen to
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exhibit phase separation when evolved from an equal number of randomly initialised 

coloured particles, forming at steady state a stable strip configuration. In the case 

of the simulation of a fluid drop the induced surface tension conforms to a Laplace 

law test. Interestingly an examination of the pressure jump across a circular drop 

interface is seen to produce a broad pressure transition region centrally located 

around the colour interface, of width as 16 lattice sites.

Gunstensen et al. [1, 29] introduce a lattice Boltzmann approach to the simulation 

of multi component flows. The model is an extension of the earlier immiscible 

lattice gas model introduced by Rothman and Keller [26]. A two component fluid is 

simulated by evolving red Ri and blue £ x particle densities on a hexagonal lattice, 

where the total particle density at a site is given by JV< =  Ri +  Bi.

A post collision perturbation is added to collided particle densities to produce a lo­

cally anisotropic fluid pressure near to the immiscible interface so that the Laplace 

formula can be approximately recovered. Like the Rothman model this happens 

at the interface between a designated red and blue fluid. The added perturba­

tion has the physical effect of creating surface tension between the differing fluid 

components, whilst retaining adherence to the Navier-Stokes equations governing 

hydrodynamics in the bulk fluid. Gunstensen uses a Galilean invariant, linearised 

LB scheme as developed by Higuera et al. [20, 21], as the underlying lattice fluid 

model. The immiscible fluid is simulated as red and blue fluid particles and the col­

lision rules are modified to conserve particle colour at a site as well as particle mass 

and momentum. The collision rules re-orientate coloured particles and send them to
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neighbouring sites of the same colour. The perturbation to the densities is followed 

with a recolouring step to increase colour segregation and minimise diffusion at the 

interface.

A fluid interface is located by examining the colour field gradient

M c [R q(x  +  ct) -  B0(x +  Cj)] +  [-Rj(x +  C;) -  B j(x  + c,)] (2.28)

where Mc is the number of rest particles residing at the site. The magnitude of 

the colour gradient |f| is large near to an interface and small in the bulk single 

fluid component. The colour field angle 0/ =  tan~1{fy/ f x) gives the normal to the 

interface and 0* is defined to be the angle subtended from the horizontal by the link 

i. At sites where |f| > e, where e is a small number determining the existence of an 

interface, a perturbation is added to the collided density N-

N? =  at; +  A\f\cos(0i -  Of) (2.29)

where A is a perturbation parameter. Mass moving parallel to the interface is 

depleted by the perturbation and preferentially relocated to perpendicular links. 

The perturbation is of course subject to the constraints of mass, momentum and 

colour conservation at that site. The re-orientation of the mass is followed by a 

recolouring step, which minimises the work W  =  — f  .q performed by the colour flux

q(x) =  £ W ( x )  -  B'{(x))a (2.30)
i

against the colour field direction. This forces coloured densities to move towards 

their own coloured species.
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Gunstensen investigated the behaviour of the surface tension induced in the two 

component model at planar interfaces by making a discrete approximation to the 

mechanical definition of surface tension [30]

/oo
(PN -  PT)dz (2.31)

-oo

where P n  ( P t )  is the normal (tangential) component of pressure and z is the direc­

tion perpendicular to the interface. A plane interface was simulated on a hexagonal 

lattice with interface orientations of angle 0° and 30°. Simulation measurements 

of surface tension were taken and found to agree well with theoretical predictions 

[1]. A Laplace law bubble test was also employed to investigate a static steady state 

drop. The change in pressure Ap between a fluid drop and it’s surrounding fluid was 

measured and plotted against the reciprocal radius R~r of the drop. The internal 

and external drop pressures were calculated as an average of the pressure at 0.7J? 

and 1.3R  respectively. Good agreement with theory was found over a drop radius 

range of 8 < R  < 64 with correct system scaling. The Laplace law examination of a 

static drop fluid interface has become a benchmark test employed by all workers to 

test surface tension.

Grunau et al. [31] expands the immiscible LB model of Gunstensen by simulating 

fluid components with differing viscosities and molecular weights. A single time re­

laxation LB [24] (BGK) scheme is used as the underlying fluid model, as this method 

is more efficient and requires less memory than the linearised scheme previously em­

ployed. The density ratio between the fluid components is implemented through 

the use of different values of red tur and blue tub ensemble averaged rest particles.
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Following [24] the equilibrium distribution N*q is taken as

Ni 9 -  Pk 7 7 ----- •" \  c*u +  \  (c*u )2 “  7 u2 (2.32)L6 +  ra* 3 3 v ' 6

K "  = Pk -  «21 (2.33)Lo +  rrik J

where the k subscript refers to the fluid component colour (red or blue). The scheme 

assumes that the interface is stable and non-separating and the density ratio 7 

between the fluid components is given by

7  =  —  =  (2.34)
Pb 6 + rriB

In order to create a smooth transition in the fluid viscosity across the fluid interface, 

the order parameter is defined

i[> = pR~ pB (2.35)
Pr  + Pb

where ^  =  1 (ip =  — 1) for a pure red (blue) fluid component. Outside an interface 

region the relaxation time of the fluid is t r  ( t b )  for the red (blue) component.

Within a finite region surrounding the interface of width S, the averaged (effective)

relaxation is given by a combination of the two

<  r  > =  (2 36)
t r  +  Tb

Shan and Chen [32] introduce a new lattice Boltzmann model for simulating flows 

with multiple fluid components. This new model differs from previous immiscible 

models as it allows for the incorporation of an extension to allow for thermodynamic 

phase interactions. The nonlocal interactions between different fluid components are 

modelled by introducing a nonlinear interaction potential, of the form

K(x, x') =  Gas(x, x ') r (x ) r (x ' )  (2.37)
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where ip<r =  F a(na) is an effective number density for fluid component a. GW(x, x') 

is a Greens function and is analagous to the surface tension perturbation parameter 

A  used by Gunstensen, which controls the interaction strength

Gaa(x. — x') =  0, |x — x'| > c (2.38)

G W (x -x ')  =  Gaa, | x - x ' |  =  c (2.39)

where c is the lattice constant. The potential’s repulsion and attraction is controlled 

by its sign and the induced momentum change at each site is defined as

— (x) =  -> r(x )  Y  GaS Y  +  Ci)Ci (2.40)
ai a- 1 i

The momentum at each site is redefined to include the addition of the momentum 

change of each fluid component

pff(x)ue5(x) =  p‘r(x)u(x) +  T „^ -(x ) (2.41)

and ueq(x) is substituted into the equilibrium distribution N?q replacing u(x). pcr(x) =  

rr fr f ix )  is the mass density and rrP is the molecular mass of the fluid component a. 

Shan notes that the momentum of the system differs from earlier models [8, 1] as it 

is conserved globally but not locally due to the addition at each site of the momen­

tum derivative. Numerical results are presented for a hexagonal liquid-gas model in 

which the fluid undergoes a first order phase transition, this phase transition occurs 

when ^  goes negative. When the model is used to simulate two component flow, 

the Gaa factor is set to a value large enough to produce negative diffusion, hence 

phase separation. Shan uses the standard Laplace law test to verify the models 

hydrodynamics.
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2.3.1 Thermodynamic interface generation

Swift et al. [33] and Orlandini et al. [34, 35] introduce models for the simulation 

of immiscible fluid components and liquid-gas phases. The interface generation is 

made possible by modifying the equilibrium distribution N ?9 and adding extra terms

N ei q =  N*q +  Facia +  Gapdadp (2.42)

Two distributions JV< and A* are evolved using the BGK scheme where

P = P r  + Pb = Y / Ni(x, t) (2.43)
i

A p = p r - pb = J ^  A i(x, t) (2.44)
t

Suitable modification of co-efficients inside the equilibrium distribution is made to 

ensure mass and momentum conservation from [23] and

Ni 9ciaCip =  Pap +  pUaUp (2.45)
i

^2  A  iqCiaCip =  TAfidap +  A puaup (2.46)
i

where the thermodynamics of the model is governed by the pressure tensor PQp and

chemical potential between the two components A p  and T is the mobility. The free

energy describing two ideal gases, with a repulsive interaction energy is chosen to 

determine the thermodynamic properties of the model, and has the general form

¥(r) =  I  d2r p, Ap) +  |(V p )2 +  |(V A p )2] (2.47)

where T  is the temperature and

tp(T, p, A p) = 7 ^  +  ~ T p + j  (p +  A p) log ( - — - )  + | ( p -  Ap) log ( P gA p)

(2.48)
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A is the interaction strength and k is the interfacial energy. The chemical potential 

and pressure are given by [30]

Ap(T, p, Ap) =  + Tlog ^  j  (2.49)

Pap =  PoSap +  ndapdpp +  KdaApdpAp (2.50)

and

p0 = pT  (pV2p +  ApV2p) -  |  (|Vp |2 +  |AVp|2) (2.51)

2.4 Three dimensional immiscible models

Olson and Rothman [36] introduce a three dimensional immiscible lattice gas model 

for simulating binary fluids. The model uses an FCHC lattice and surface tension 

is activated following Rothman and Keller, through the calculation of a colour field 

f(x) and colour flux q(x). Olson introduces a computationally efficient dumbbell 

scheme in order to calculate the maximisation of the work done by the colour flux 

against the colour field. This maximisation is pre-calculated and stored in look up 

tables, making the scheme computationally efficient. The scheme generates strong 

surface tension with a high degree of isotropy. The model has been applied to 

measurements of the effective viscosity of phase-separating mixtures under going 

simple shear.

Martys [37] adopts the segregation rule developed by Shan and Chen et al. [32] and 

uses a single time relaxation scheme (LBGK) in D3Q19 space, as the underlying 

lattice fluid model. A gravity force is added to the lattice fluid, and tested by
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simulating Poiseuille flow driven by a constant gravitational field. A constant body 

force such as gravity is introduced by modifying the fluid momentum giving

p V (x ) =  pff(x)[u(x) +  T„g} (2.52)

where g is the gravitational constant (or body force). The Poiseuille flow test pro­

duces a parabolic flow profile along the channel, when bounce-back boundary con­

ditions are used at the channel edges, producing zero velocity at the channel walls. 

However, these boundary conditions must be carefully implemented to produce at 

solution of required accuracy [38]. Martys further studies the interaction between 

wetting and non-wetting fluids and solid boundaries, by studying multicomponent 

flow in porous media, further explanation of this application is left to the end of 

this chapter. The Shan and Chen model has also been used for further studies of 

diffusion by Shan et al. [39] and liquid-gas phase transitions [40].

2.5 Physical applications

Immiscible LB models have been used to simulate a wide range of complex interfaces 

such as domain growth in spinodal decomposition in binary fluids [31, 41] and lamel­

lar fluids [34, 42]. We now highlight in more detail two areas of current engineering 

research interest centred on immiscible fluid, these are drop deformation and flow 

in porous media.
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2.5.1 Drop deformation

Halliday and Care [43] investigated the steady state hydrodynamics of an immisci­

ble drop deformed under simple shear flow by using the interface segregation rule 

developed by Gunstensen. They found at moderate shears that the drops elongated 

and orientate to the flow as seen by experiment, implying qualitatively realistic in­

compressible hydrodynamic behaviour. Drops are seen to deform under shear with 

the expected functional dependence upon the far field shear rate and surface ten­

sion, and obey Laplace law. They also note that the segregation method induces 

microcurrents close to the interface, the magnitude of these microcurrents is noted 

to be small, compared with the shear rates employed to deform the drops. It is 

noted that correct hydrodynamic behaviour is expected from the drops when the 

fluid shear is greater than flow induced by these microcurrents, thus restricting the 

lower limit of shear rate which may be investigated.

Wagner and Yeomans [45] use a variant of Swifts thermal LB developed by Orlan- 

dini [35], to investigate the effects of shear flow on an equilibrium droplet in a phase 

separated binary mixture. Drops were deformed under a simple shear flow and seen 

to elongate and orientate at an angle a  to the flow. Under moderate shear, the 

drop deformation was seen to be proportional to induced shear rate. The fluid shear 

was implemented in two different ways to access the effect of periodic drop images 

upon deformation. In the first method the top and bottom of the lattice were con­

strained to induce the shear, whilst lattice side edges employed periodic boundary 

conditions. This scheme effectively produces the simulation of an infinite line of fluid
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drops, allowing the transmission of a drop wake across the periodic boundary. In the 

second scheme all boundary edge sites were constrained to produce the shear flow 

by modifying the equilibrium particle distribution and explicitly setting the velocity. 

Close quantitative and excellent qualitative agreement was found between the two 

schemes.

Schelkle [46] employs the Shan and Chen model [32] to investigate droplet-droplet 

collisions in 3D. Flows are characterised by a Weber number We — p(2u)2d/cr 

where d is the drop diameter and u is the initial drop velocity. A dimensionless 

impact parameter B  — bjd is also used to represent the excentricity of collisions, 

where B  = 0 for central collisions and 0 < B < 1 for non-central collisions and b 

is a collision parameter. Central and non-central collisions between two fluid drops 

are investigated at low velocity u =  0.15 units per time step. At B  = 0.33 drops are 

seen to coalesce on impact producing a torus-like single droplet with a thin surface 

in its centre. The surface tension of the drop is seen to collapse this configuration 

to a peanut-shaped structure, which is seen to oscillate and rotate around the drops 

centre of gravity. The drop viscosity is noted to damp this oscillation finally pro­

ducing a spherical droplet. At B  — 0.47 above a critical value B* =  0.4 which is 

confirmed by experiment, the drop coalescence after collision is seen to neck and 

burst into two drops of equal size and produce a small satellite drop at the centre 

of gravity.
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2.5.2 Flow in porous media

Gunstensen [1] reported an application of his model to two component flow in porous 

media. A lattice was initialised with impermeable blocks of square side length in 

the range 4 to 12 lattice units, creating a series of channels along the lattice. Non 

slip “bounce-back” boundary conditions were applied to all solid boundaries, with 

periodic boundary conditions used at two opposite boundaries allowing flow to be 

induced by creating a pressure difference across the length of the lattice. The min­

imum channel width was set to 6 lattice sites wide and filled with a red coloured 

wetting red fluid which was invaded by the introduction of a blue fluid. Pockets 

of trapped red fluid were produced as capillary effects prevented the invading blue 

fluid from entering the narrowest channels. A time evolution produces a qualitar* 

tively realistic flow and Gunstensen notes that the lattice Boltzmann scheme is ten 

times faster than the immiscible lattice gas, as it requires no averaging to obtain 

statistics. The model has also been extended to simulate three component flow in 

porous media [29].

Martys [37] models the fluid-wall interaction by introducing an interaction force 

where s =  0 or s = 1 for a pore or a solid respectively.

F (x ) =  - ^ ( x )  G fs(x  +  Ci)Ci (2.53)
i

Adjustment of the interaction strength Gf to a positive value for non-wetting fluids 

or negative for a wetting fluid, allows the fluid-wall wetting to be controlled. The 

wetting angle 0 of the fluid may be controlled by adjusting the interaction strength 

Gfj where 0 is defined as the angle made at the point of fluid-solid interface. The
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porous media simulated was derived from experimental studies of a Fontainebleau 

sandstone. Two different types of flow were examined using the model, in. the first an 

invading non-wetting fluid is introduced to the porous media displacing a wetting 

fluid. Quasi-periodic boundary conditions were implemented in the direction of 

the induced flow, recolouring particles as they re-enter the system as the correct 

invading fluid, conserving momentum and system volume. In the second case, a 

wetting invading fluid is used to displace a non-wetting fluid. For non-wetting 

invasion, the invading fluid pushes out the wetting fluid by entering pores and filling 

the cavity in an analagous manner to an expanding balloon. Thus the wetting fluid is 

pushed out of the pore except near to the solid surface. The invasion of the wetting 

fluid is seen to trap the non-wetting fluid preventing it’s escape through smaller 

pores. The collected results for these simulations are consistent with experiment.

2.6 Other immiscible models

Coveney and Novik [47] investigate immiscible fluids by using Dissipative Particle 

Dynamics [48] (DPD) as the underlying fluid model. The DPD scheme is as an 

off-lattice meso-scale modelling technique, maintaining the discrete time-stepping 

element and evolution of particle densities in the same way as the lattice Boltzmann 

scheme. This greatly accelerates the algorithm compared with more traditional 

Molecular Dynamics (MD) techniques [5]. The extension of DPD to model two 

component flow is made in an analagous manner to the LB scheme, by introducing 

a colour tag to distinguish particles of different components. Identically coloured
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particles are then modelled using the same interaction, whilst the mean and vari­

ance of the random variable 11# controlling particle interaction is increased when 

differently coloured particles interact. The model was found to obey Laplace law 

for simple two dimensional bubble experiments, confirming the existence of surface 

tension between fluid components.

Lafaurie et al. [3] model surface tension in 2D and 3D flows using a traditional 

computational fluid dynamics (CFD) volume of fluid method (VOF). Surface ten­

sion is introduced as a correction to the momentum stress tensor. The correction 

is constructed from local gradients of the volume fraction, producing an anisotropic 

pressure at the fluid interface between differing components, this method was in­

spired by the interface generating techniques developed by Gunstensen et al. [1]. 

The fluid interface is evolved by using a combination of upwind and downwind flux­

ing schemes, the choice of which is dependent upon the interface orientation with 

respect to the direction of flow. The downwind scheme is employed when the in­

terface is perpendicular to the direction of the flow, whilst the upwind scheme is 

implemented when the interface is parallel to the flow. This choice is made due to 

the differing effects the fluxing schemes have upon the stability of the interface.

The interface is located by using a volume fraction function C  where C  =  1 (0) 

inside fluid 1 (inside fluid 2). The upwind scheme produces a stable but diffusive 

interface, whilst the downwind scheme is known to be unstable, but is good at 

interface tracking. The tracking schemes are chosen by the calculation of Ok — 

acos(nk), where n* is the local approximation to the interface normal n  =  y#K§y
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and V hC  is a finite difference approximation to the volume fraction gradient. The 

upwind (downwind) scheme is implemented when 9C < 9k (9C > 9k), where 9C is the 

critical angle between the horizontal axis and the interface normal. Simulations of 

droplet-droplet collisions in 2D and 3D were performed and Laplace law was verified 

for the model. Algorithm tests show evidence of parasite currents (microcurrents), 

which are found to scale with surface tension in the same way as [29].

Zaleski et al. [4] study the breakup of 2D liquid patches in a surrounding gas envi­

ronment using a similar VOF method [3], at moderate Reynolds number Re =  1000. 

The simulations were used to examine the nonlinear relationship between the de­

forming drop and the induced droplet wake.

2.7 Summary

Algorithmically the simplest and most robust of the LB methods is the lattice Boltz­

mann BGK method, which has isotropy and Galilean invariance directly embedded 

into a technique benefiting from a simple collision step. The BGK scheme has suc­

cessfully been shown to recover single phase hydrodynamics. For these reasons we 

construct a new two component immiscible lattice Boltzmann (BGK) model based 

upon a particular variant (D2Q9) of the BGK scheme and incorporating an extension 

of a simple and computationally efficient interface segregation technique developed 

by Gunstensen [1]. The Gunstensen interface is chosen due to it’s singular nature, 

making it appropriate for the simulation of two component hydrodynamics. The
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thermodynamic interface of Orlandini et a I. , produces a broad non-singular in­

terface, which is unsuited to the simulation of small radii drops. The Shan and 

Chen interface whilst being singular, requires the fluid components to be slightly 

immiscible for the scheme to be numerically stable. We note this is only a slight 

problem and at the time this research was started neither the Gunstensen or Shan 

and Chen interfaces provided any known distinct advantages over each other. The 

Gunstensen interface was therefore chosen as it could properly simulate completely 

immiscible fluid components. Immiscible lattice Boltzmann models have previously 

been applied to applications such as droplets under shear to demonstrate qualita­

tively correct steady-state interfacial hydrodynamic boundary conditions [43].

32



Chapter 3

Lattice BGK Scheme

3.1 Introduction

In this chapter the lattice BGK (LBGK) D2Q9 scheme is firstly introduced and 

then modified to produce our two-component immiscible LBGK model. The single­

component LBGK scheme is based upon the BGK simplification of the Boltzmann 

equation, constrained to lie upon a discrete lattice. The LBGK scheme may be 

viewed as an alternative to lattice gas (LG) model [7] and a simplification of the 

linearised lattice Boltzmann (LLB) [20, 21] method. We follow the method of Hou et 

al. [49] to derive the macrodynamical governing equations, summarising the main 

results in this chapter.
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Figure 3.1: Schematic representation of the D2Q9 lattice

3.2 Discrete velocity LBGK D2Q9 scheme

The LBGK D2Q9 scheme employs a discrete underlying square orthogonal lattice 

with unit lattice spacing. Each lattice node is connected to its nearest neighbours 

by eight lattice link directions (velocities) cx- where i =  1..9 (where i =  9 is a 

stationary rest link) see Figure 3.1. The lattice links are populated by particle 

distributions which reside on the lattice nodes at integer times, and stream from 

node to node along the lattice links in unit time steps. The D2Q9 lattice contains 

particle distributions that move at two different speeds along the unit length links 

c = 1 and along the longer c =  y/2 diagonal links. The lattice also contains rest 

particles that reside on the lattice nodes. The particle distributions residing on 

the lattice may be loosely thought of as ensemble averages of the discrete boolean 

particles of the LG.

The occupation of the lattice links by particle distributions is represented by the 

particle distribution function N{(x,t). The distribution function may be thought of
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as the probability of finding a “particle” at position x at time t  and link i. Two 

macroscopic quantities may be extracted at each node in the form of a lattice density 

p and momentum pu.

■ ■ p = '£ N f a t )  (3.1)
i

pu = J 2 Ni(x,t)Ci (3.2)
i

3.2.1 Lattice evolution equation

The evolution of the LBGK scheme may be expressed in the Boltzmann form with a 

collision term replaced by a single-time relaxation towards an equilibrium population 

denoted by N?q

+ ci.VNi = - - ( N i  -  N ? )  (3.3)
at t

The left hand side of Eq. (3.3) represents the propagation of the particles and the 

right hand side represents the collision between particles as they propagate from 

node to node. The discrete Boltzmann equation describes the microscopic scale flow 

of link densities and allows the derivation of the Navier-Stokes equations governing 

fluid flow at macroscopic scales. This derivation requires averaging over the discrete 

velocities, and the use of the Chapman-Enskog multiscale expansion.

Particle distributions are relaxed towards an equilibrium distribution by performing 

a collision process employing mass, momentum and energy conservation, mimick­

ing an ideal particle collision. The evolution of this process is termed the lattice
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evolution equation and is defined as

N i(x  + C i , t + 1) = N i(x , t )  + Qi (3.4)

where is a collision operator representing the rate of change of the particle distri­

bution due to collisions. According to Bhatnagar, Gross and Krook (BGK) [22] the

collision operator is simplified by using the single time relaxation approximation

N i(x  + Ci,t+1) — N i ( x , t) =  ——(iVj(x,t) -  N - 9( x , t)) (3.5)
T

where r  is the single relaxation time which controls the rate of approach to equi­

librium. The BGK relaxation parameter is the simplest collision operator that can 

produce Navier-Stokes behaviour in the subsonic limit.

3.2.2 Chapm an-Enskog expansion

The Ghapman-Enskog expansion is used to derive a set of partial differential equar 

tions in terms of mass p and momentum pu, that describe the lattice fluid in the 

limit of A# and 5 tending to zero, where 6 is the small lattice time unit and A x  is 

the small lattice distance. The expansion assumes that A x / 5 =  c is a constant, and 

that the ratio of V/c  is small where V  is the macroscopic velocity of the fluid. The 

expansion recovers the mass continuity equation and the Navier-Stokes equations.

Link densities A,- may be written as the sum of contributions on increasing length 

scales, each contribution being labelled by analogy with a power series using higher 

orders of 5.

Ni =  JV? +  SN} +  62N?  + ... (3.6)
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The small lattice time unit <5 may be thought of as a small Knudsen number (the 

ratio of mean free path to the characteristic flow length). This assumes of course 

that the mean free path is the same order as 5. The shortest scale in the expansion 

is of order =  1 and is the same scale as the equilibrium distribution. In the 

equilibrium distribution gradients are considered negligible and significant gradients 

are considered to occur in lattice quantities of 0(6) and above, these gradients are 

relaxed towards equilibrium by the collision process.

3.2.3 Equilibrium particle distribution

The equilibrium particle distribution N-® which will be referred to as N?q from now 

on, is the link density of a uniformly translating lattice fluid. Thus no gradients of 

any variable are contained within the distribution. The equilibrium particle distri­

bution is therefore only a function of velocity u  and link direction cz. The general 

form of N?q is therefore taken as

jV/9(x, t) =  A  +  B(  Cj.u) +  C(Ci.u)2 +  Du2 (3.7)

where A ,B ,C  and D  are coefficients yet to be determined, which are dependent 

upon the speed of the lattice link and node density p. The general form of N?9 has 

the appearance of a velocity expansion to 0 (u 2).
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3.2.4 Isotropy

The D2Q9 scheme requires the symmetric tensors of even order to be known for the 

derivation of the macrodynamical equations. The odd order tensors are known to 

equal zero. The reader may satisfy themselves by considering the simplest case of 

an odd order tensor - the first order tensor

5 > «  =  °  (3-8)
i

summation of the x and y components of this tensor may be easily calculated see 

Appendix A Figure A.I. Calculation of the second and fourth order tensors only 

is required, as for the present model there is no requirement for isotropy of tensors 

above fourth order.

= 2c26ap (3.9)
i

)  ] CiaCipCijCifi — 2Sa0y§ for £7 — 1 (3.10)
i

— QfiaP'yS for (T — 2

where a is the square modulus of the link velocity, Sap7s =  1 for a  =  ft =  7  =  8, 

and 0 otherwise and I ^^£^55 I •

3.2.5 Conservation laws

Before establishing the macrodynamical equations for the LBGK scheme, consider­

ation of the higher-order contributions to the link density is required. Constraints 

are imposed to prevent the non-equilibrium distributions (i.e. orders n > 1), con-
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tributing to the macroscopic variables p and pu.

p =  £ a ?*(M) (3-11)
i

pu =  £ ^ r ( x , i ) c i (3.12)
i

for n > 1.

X X ( M )  =  0 (3.13)
I

^ A ^ (x ,t)C i =  0 (3.14)
i

Thus constraints are imposed on the constants A, B ,C ,  and D allowing the determi­

nation of relations between our unknown coefficients. For example the local density 

may be evaluated by the summation of N?9(x,t) over i giving the relation

Aq -f- 4Ai +  4 A 2 — p (3.15)

where A$, A\ and A 2 are the associated values of A  for the different speed links.

3.3 Macrodynamical governing equations

The macrodynamical governing equations are derived by firstly performing a Taylor 

expansion up to second-order 0(62) of the evolution equation

Nj(x  +  5cu t  + 5) — N f a  t) = —i(JV,(x, t) -  7Vf(x, t)) (3.16)
T

where 5 is the small lattice time unit, giving the form
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Expanding the particle distribution about N?q

Ni = N?q + SNl +  S2N f + ... (3.18)

To examine gradients on different time scales, to and t\ are introduced as =  t  and 

t\ =  6t

di = d i ^ + s m T +  "‘ 3̂'19^

We now consider the basic conservation equations correct to 0(6) and 0(62). Sub­

stituting Eqs. (3.18) and (3.19) into Eq. (3.17), and evaluating to order 0(6)

(d la +  CiQ9a)iV?9 =  - - N ^  (3.20)
T

Evaluating to order 0(62) gives

dt.N f1 +  ( l  -  (dta +  * ada)N V  =  - I jV « 1 (3.21)

3.3.1 Mass conservation

Summing Eq. (3.20) over i we may write the continuity equation to 0(6)

d t o P + d a (pua ) =  0 (3.22)

Summing Eq. (3.21) over i , obtains equations correct to 0(62)

dtiP =  0 (3.23)
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3.3.2 M om entum  conservation

Multiplying Eq. (3.20) by c*Q and summing over i yields the following conservation 

of momentum equation,

dtx (pua) +  d j l %  =  0 (3.24)

where is termed the momentum flux tensor given by

n ê  = Y , Nt qCiaCiP (3.25)
i

The correct form of the continuity equation is recovered if we add Eq. (3.21) to 5x  

Eq. (3.24) and recombine the time derivatives using Eq. (3.18), to give

dtp + dQ(pua) = 0 (3.26)

The momentum flux tensor term 11®̂ , may be evaluated by substituting into its 

definition the general form for the equilibrium distribution Eq. (3.7) and using the 

isotropy relations of Eqs. (3.9,3.10) 11®̂  becomes

R-ap =  c2spSap +  puaup (3.27)

If Eq. (3.27) is substituted back into Eq. (3.22) the Euler equation is recovered to

0(S),

dtopUa +  dppuaup =  - d Qp (3.28)

where the pressure p =  c*p. Summing Eq. (3.21) over i, obtains equations correct 

to 0(S2)

dta(pua) + d a ( l -  n «  =  0 (3.29)
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The non-equilibrium momentum flux term must also be evaluated to enable the 

0(52) equations to be fully derived. Substituting for N j1̂ in the definition of 

and using a rearranged form of Eq. (3.19) and then a further substitution for N*9 is 

needed using Eq. (3.7). After considering isotropy and removing the non-isotropic 

term by selecting suitable values for coefficients, can now be written

ttW =  —r ̂ aft ( |  -  4 )  d7(puy)Sap +  ^d a(pvfi) +  ^d a(puff)

- u adti(c]p) -  upda{<?sp) -  dyipUaUpUj)] (3.30)

By combining Eq. (3.28) with Sx Eq. (3.25), substituting for and selecting a 

speed of sound,

<?, = 1 (3.31)

gives the momentum equation

dt{pua) +  dp(puaup) =  - da(c2p) +  ~  dp(dapup +  dppua)

- Sdp djipUaUpUj) +  0(S2). (3.32)

3.4 Mapping onto incompressible hydrodynamics

The adherence of the LBGK scheme to incompressible hydrodynamics may be seen 

by mapping Eq. (3.26) and Eq. (3.32) onto the incompressible Continuity and 

Navier-Stokes equations respectively. The recovery of the Navier-Stokes equations 

relies upon the assumption that variations in the lattice density p are small and thus 

may be neglected in all but the pressure term, where p oc p. For an incompressible
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fluid in two dimensions the Navier-Stokes equations are given by

d a u a  =  0 (3.33)

d t ( p U a )  +  d p { p U a Up)  =  - d ap + v d p ( d a p u p  +  d p p u a ) (3.34)

where u is the real measurable fluid velocity. The third term of Eq. (3.32) is a

nonlinear error term which is omitted. This allows the identification the kinematic

viscosity v and the pressure p terms as

-2t -  tv =  S (3.35)

P =  §  ■ (3-36)

If the equations with terms in 5 are written in lattice units the S’s disappear. The 

lattice continuity equation also holds for incompressible flow if dpp may be assumed 

small. Therefore simulations at low Mach numbers M  =  -r are required in order toCB

minimise compressibility effects, where v is a characteristic flow velocity.

3.4.1 Reynolds Num ber Re

A particular flow may be characterised by a dimensionless quantity called the Reynolds 

number

Re = —  (3.37)
V

where the fluid viscosity is given by v and JJ and I are characteristic velocity and 

length scales of the flow respectively. The choice of U and I is dependent upon the 

system under study, in a single component channel flow U is often taken as the
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average system velocity and I is taken as the channel width. In two component flow 

I is often taken as a fluid drop diameter.

3.5 Summary of the LBGK D2Q9 scheme

The LBGK evolution equation may be written following Qian et al. [23] where the 

collision term is replaced by a relaxation process in the form

Ni(x +  cz, t  +  1) =  (1 -  cj)Ni(x, t) +  wN°q(x, t) (3.38)

where u  =  The general form of the equilibrium distribution N?q is given by

CiaUa UaUp ICiaCip -
1 H-----~---- 1   1 n  n---- O.

2cl  \  ct
aP (3.39)

where c2 is the speed of sound and a  and (3 represent the Cartesian coordinates of 

the underlying lattice. The equilibrium distribution N?q for the D2Q9 scheme is 

given by

N-'q(x,t) = tap 1 +  3uCj +  ^(ucx)2 -  | u 2 (3.40)

the index a is the square modulus of the particle’s velocity and the ta values are 

given by ( see Figure 3.1 for i indexing )

to =  -  for i= 9

ti =  ^ for i=2,4,6,8

h  =  ^  for i=l,3,5,7ob

(3.41)

The shear viscosity of the fluid is given by
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The value of the relaxation parameter u  is chosen to lie in the range 0 < u  < 2, 

from the stability properties used in computational fluid dynamics (CFD) and the 

requirement for a positive viscosity. The LBGK schemes may be derived for other 

two and three dimensional geometries such as the hexagonal FHP (D2Q7) 7-speed 

model. All of the LBGK models share the same evolution equation and the general 

form of the equilibrium distribution N?q. However the ta values differ for each model 

and in the case of the D2Q7 LBGK scheme the speed of sound is given by c% =

3.6 Two component LBGK model

In the two component LBGK model [1] densities which populate the lattice are 

designated either red or blue, Ri(x,t)  (B i(x ,t)) denoting the red (blue) density at 

position x, time t  moving in direction i. Multi-component fluid behaviour arises 

when segregation is imposed upon such densities by a generalisation of the BGK 

collision to three steps.

Firstly the usual BGK collision step re-distributes achromatic density

Ni  (x, t) = Ri  (x, t) +  Bi (x, t) (3.43)

to links using the scalar collision operator a;, which controls fluid shear viscosity 

through [23]
1 r 9  i

(3.44)
1

" =  6 * - 1Ltd

in the case of different fluid viscosities between red and blue fluid components an
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effective viscosity ve/ f  is calculated at interfacial sites

Ve f f  =  —  pr +  —  vB (3.45)
P P

where pR (pB) denotes the red (blue) density at a site. In the second collision step 

the local lattice fluid pressure tensor Pap(x,t), is approximated [1] by

Pap (x, t) = J2  Ni (x, t)ciaCip (3.46)
i

and is rendered anisotropic at interfacial sites by accumulating (denuding) density 

on links perpendicular (parallel) to an interface tangent. (The interfacial sites are 

those which include non-zero densities of both colours.) The motivation for this step 

is found by reference to the parent lattice gas techniques [26] and is a process not 

without foundation in hydrodynamics [30]. To achieve this redistribution we follow 

Gunstensen et al [1], and adjust 7Vx(x,£) at mixed nodes by applying a density and 

momentum conserving perturbation of the form

AiVj(x, t) =  crC(x, t)cos(2(9f(x) — Qi)) (3-47)

where a is a surface tension parameter controlling the amplitude of perturbations, 

angle 0* is the angular orientation of link % and 9f(x,t)  is the direction of a colour 

field f  (x,i), defined by:-

f  (x , t) =  Y ^ ( R j ( x  +  Cj, t) -  B j ( x  +  c z-, t))ci (3.48)
ij

We have also introduced into Eq. (3.47) a concentration factor C(x, t)

pR(x,t) -  pB(x,t)
C(x, t) =  1

pR{x, t ) + p B{x,t)
(3.49)
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where pB(x,t) (pB(x}t)) denote the total of the red (blue) densities at the site. 

The incorporation of concentration factor Eq. (3.49) into the perturbation makes 

evolution outside the interfacial region exactly the same as in the single component 

fluid and removes the possibility of surface tension being activated by one-colour 

density gradients, which may occur close to an interface.

In a third and final step, nodal colour pB{x, i), pR(x,t), is allocated to link densities 

in that distribution which maximises the work done by colour flux q(x, t)

q(x, t) =  X )(^ (x , t) ~  #z(x, t))Ci (3.50)
i

against the colour field direction of f  (x,£) [1]. Clearly to achieve maximum seg­

regation as much red (blue) as possible should colour the density on the link cj  of 

largest (smallest) projection onto the direction of f(x ,t). As the multi-speed nature 

of our lattice affects any prioritisation of links for colour allocation, an unambiguous 

hierarchy for red population of links i =  1..9 requires that f  (x,t) be resolved into 

the 16 angular intervals identified in Figure 3.2. Rothman and Keller [26] employed 

a finer discretisation for the hexagonal lattice of 36 intervals, however, we employ 

a more simplistic discretisation which takes account of the difference in equilibrium 

density capacity and length of neighbouring links. Biasing allocation towards the 

lower capacity links, we may produce a computationally efficient reallocation table 

with a minimum number of members. Our scheme although coarse at the initial 

stages of interface evolution, biases allocation in such a way to increase the speed of 

approach to equilibrium by aligning the colour field more closely to the colour flux 

and preventing the colour field oscillating around the colour flux.
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4

5

Figure 3.2: Index of the angular colour segment intervals at each interfacial site.

If f(x,£) is found to lie in angular interval Segment — 1, the priority of allocation 

of red density in descending order is i =  3 ,4 ,5 ,2 ,9 ,6 ,1,8,7. The need to resolve 

f(x ,t) into 16 intervals emerges as one attempts to determine which of links i =  2 

or i =  5 is third most favourable for red occupation, for such prioritisation can be 

made only after determining the direction onto which short link 2 and long link 5 

have equal projection. The latter is specified by angle p  =  26.56°. Symmetry then 

requires that the positive quadrant is resolved into the four angular intervals shown 

(Figure 3.2).

Note that link i =  9 (rest) will always have priority 5. The propagate step in which 

all densities are translated by the appropriate velocity vector is carried-out in the 

usual way on each red and blue density.

1 2

8

x 14

61
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3.6.1 Com putational efficiency

As the LBGK is an iterative scheme we may improve the computational efficiency 

by careful consideration of the program algorithm and the use of pre-calculation 

and look up tables. At each iteration, particles are propagated along the lattice and 

this streaming may be pre-computed to store the iterated position of each particle 

as Ni(x, t) Ni(x+Ci,t+1). This may be achieved by storing in a two dimensional 

integer array, the new position of all particles in the system with respect to their 

present position and velocity. In the same way, a colour heirachy table is calculated 

and stored to reallocate colour and reduce diffusion, after the interface perturbation 

has been induced at interfacial sites see Appendix A. Figure A.2.

The calculation of the colour field and the colour flux both rely on the calculation of 

the difference between red and blue coloured densities at interfacial sites. By storing 

the coloured densities at each site in two separate memory arrays, the first we denote 

N  =  Ri +  Bi stores the total mass on a link and the second R B D iff=  Ri — Bi the 

difference between red and blue density on a link, we may also improve the speed 

the algorithm calculates the colour field and colour flux.

3.6.2 Algorithm  Summary

After the system has been initialised to the required initial colour configuration 

required to perform a particular simulation (e.g. a red drop in a supporting blue 

fluid to allow the deformation of the drop with respect to an external far field shear),
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the following steps are iterated at each discrete time step to evolve and perform the 

simulation.

•  Calculate A^(x, t) =  R i(x , t) +  J5j(x, t)

•  Calculate p and u

• Colour Blind Collide

•  Calculate colour field f(x, t)

• Calculate concentration factor C(x, t )

• Perturb interface ANi(x,t)  =  crC(x,t)cos(2(0f(x) — 0,))

• Calculate colour flux q(x, t )

• Recolour densities to minimise diffusion

• Induce required external flow

• Propagate particles
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Chapter 4

Calculation of macroscopic surface 

tension

4.1 Introduction

In this chapter analysis of our interface generating algorithm is introduced and we 

examine the effect of the inclusion of a colour concentration factor into our interface 

perturbation scheme. Expressions for the macroscopic surface tension E and inter­

facial colour distributions are derived for steady-state static plane interfaces using 

lattice symmetry arguments and the mechanical definition of surface tension. This 

analysis is then extended to incorporate curved interfaces by including contribu­

tions from the interfacial microcurrent. Comparison is then made with simulation, 

by performing Laplace law simulations and investigating the microcurrent stream
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function.

4.2 Effect of the enhanced interface perturbation

We employ a modified version of the perturbation scheme used by Gunstensen et al. 

to segregate two fluid components, by incorporating a newly introduced concentrar 

tion factor C(x, t) given by

Piifct)  -  pBf a t )C(x, t) =  1 — (4.1)
pR(x, t) + pB(x, t)

where pR (pB) is the red (blue) density at a site, giving the interfacial perturbation 

the form

ANi(x, t) =  aC(x, t)cos(2(9f(x) -  Oi)) (4.2)

where A TV* is the collided link distribution, a is the surface tension parameter, Of 

is the colour field angle and Oi is the angle subtended to the horizontal by link i. 

The introduction of the concentration factor Eq. (4.1) has the effect of making the 

evolution of the lattice fluid outside the interfacial (mixed-colour) region exactly 

the same as that of a single component LBGK fluid. Thus surface tension may 

not be activated by local one colour density gradients that are known to surround 

curved interfaces, as C(x, t) =  0 for all pure sites. This is an improvement to the 

original scheme introduced by Gunstensen et al where the interfacial perturbation 

was activated on all sites when f  > e, where the value of e denoted the presence of an 

interface and had to be manually set. The concentration factor scales the strength of 

the interface perturbation with respect to the ratio of colour mixing at an interfacial
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site. The maximum perturbation is induced when pR =  pB at a 50 : 50 red:blue

mixed site and the minimum perturbation is induced when pR pB and pB > 0 or

Pb P r  and pR > 0. Therefore our new perturbation scheme reduces interfacial

effects in the bulk pure fluid components and narrows the interface width.
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<§ 0.599985
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Figure 4.1: Radial pressure (green points denoted P) and colour transition (blue line 
denoted C) examination of the Gunstensen drop interface.

A study of the effect of the concentration factor on the interface width may be easily 

performed through an examination of the static pressure radial variation from the 

centre of a steady state fluid drop. Examination of the pressure change from the 

drop centre across the interface and into the supporting fluid is shown in Figure 4.1. 

This data was collected on a 150 x 150 lattice with a drop of initial radius R  — 40 

centrally located on the lattice and with drop simulation parameters a — 0.0075 

and u  =  1.5. The static pressure (green points) are calculated at each site directly
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Figure 4.2: Radial pressure (green points) and colour transition (blue line) exami­
nation across the modified interface, which includes the colour concentration factor 
C(x,i).
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from the local site density where p = p/3. A pressure jump is observed as we cross 

the drop interface and leave the higher pressure drop and enter the lower pressure 

surrounding fluid, as predicted by Laplace law. Accompanying the pressure jump is a 

pressure instability region centrally located around a step function colour transition 

(the colour interface) between the two fluid components (blue line), where the step 

function has the value 1 in the drop and -1 in the supporting fluid.

The interface perturbation of Gunstensen is seen to produce a pressure instabil­

ity which extends approximately 15 lattice units into the pure red fluid drop (see 

Figure 4.1) before the pressure settles to an equilibrium value. The width of the 

pressure instability region may be measured by introducing an instability factor

HT =  (4.3)
|ZL|sfabZe

where \r\stabie is the maximum radial distance from the drop centre where the drop 

pressure remains constant, therefore for the Gunstensen interface Ht  «  1.6.

Inclusion of the concentration factor C (x,t) in our enhanced interface perturbation 

is seen to reduce the width of this pressure instability to approximately 5 lattice units 

into the fluid drop. A substantial reduction in the instability within the supporting 

fluid see Figure 4.2 is also seen, reducing Ht  «  1.14. This value is considerably closer 

to the ideal and unrealisable value of HT =  1 (indicating no pressure instability). 

The physical width (in lattice units) of the pressure instability region is of particular 

importance when considering applications of the model to real physical systems such 

as drop coalescence and breakup. A reduction in the instability will result in closer 

adherence to continuum hydrodynamics.
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z

Interface

Figure 4.3: Co-ordinate system used in the region of a planar interface.

4.3 Analysis of the model

Throughout this analysis it is assumed that the interface is sufficiently flat for the 

mechanical definition of surface tension £  [30], to be given by

/oo
(PN(w) -  PT(w))dw (4.4)

-oo

where w measures the distance perpendicular to the plane of the interface see Fig­

ure 4.3 i.e. assuming that Pn (w) —> Pt {w) Quickly, as w increases. We make the 

assumption, that the principal modification that is required to account for inter­

facial curvature, is the inclusion of the microcurrent. The structure of the steady- 

state interface is considered and therefore the omission of time t from all variables 

throughout the analysis is made.

Consider a steady-state planar interface parallel with a lattice link direction Cj. The 

interface has sufficient transitional symmetry (parallel to the interface) to produce

56



CHAPTER 4. CALCULATION OF MACROSCOPIC SURFACE TENSION

a constant colour gradient f(x ,i) between adjacent interfacial sites. The calcula- 

tion of f  (x,t) provides the interfacial normal and the direction of the integration in 

Eq. (4.4). This direction is denoted by constant angle 9 subtended at the horizontal 

y-axis see Figure 4.3. These assumptions are justified by such a situation being read­

ily realisable in appropriately initialised LB simulations. It is noted that interfacial 

fluctuations are present in immiscible lattice gas (ILG) interfaces [27]. However, 

calculations founded on similar assumptions performed using the Boltzmann ap­

proximation [7] to the ILG, may be employed to calculate surface tension from a 

prediction of the structure of the ensemble-average interface at steady-state [27].

The local lattice fluid pressure tensor Pap(x,t), is approximated by

Pap (x, t) = J2 Ni (x, t)ciaCiP (4.5)
i

Pressure tensor contractions, analogous to those in Eq. (4.4), are obtained using Eq. 

(4.5) as

Pn (x ) = Y ,  Ni(?iN (4.6)
i

Pt (x ) = J 2 N ^ t  (4.7)
i

where CiT (cin) denotes the component of cz tangential (normal) to the interface

C{n(x) =  |ci|cos(0i -  6) C jr (x )  =  |cz|sm(0z- -  6) (4.8)

Following reference [1] Eq. (4.4) is considered as an average over Mo adjacent long

integration lines, then cast as a discrete summation over lattice nodes in the area A 

of the interface

£  =  [  (Pn M  -  PT(w))dw -4 X) ]£  W<(x)0i(x) (4.9)
J w = - o o  M 0 x € A  i
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in which the summation on lattice site x is over all x € A  and we have introduced 

following Eq. (4.8), and the notation of reference [1]

Ui(x) = (.c2iN -  c-T) =  c?cos(2(9i -  9)) (4 .1 0 )

Note that whilst the factor cos(9)/Mo in Eq. (4.9) is independent of 9 (Section 4.5), 

it is retained for the sake of compatibility with [1]. iVt (x) separates, for D2Q9, into 

equilibrium and non-equilibrium components [23]

Njieq(x) = Ni( x ) - N ^ q(x) (4.11)

/  3 9 \
=  f 1 4" 3waCja "^UoiUa -f* —Ua UpCia Cip)  (4 .1 2 )

t i =  (1/36)p i =  1 ,3 ,5 ,7 (4.13)

t i =  (1/9 )p i — 2 ,4 ,6 ,8 

t{ =  (4/9)p i =  9

We note that the x dependence of iV?9(u) arises only through the x  dependence 

of the velocity field, whilst N?eq depends on x through both the velocity and its 

gradients. Using Eq. (4.11), we may write Eq. (4.9) as

2  =  +  (4-i4)
M 0 x i M 0 x  i

these two contributions we proceed to treat separately, using Eqs. (4.10, 4.12, 4.13). 

Considering firstly the summation of the expanded equilibrium component

=  i -  \ u aua (4-15)
X  i L z  J x t

9
4S u a £ £  t{Ui(x)c*a -f- Ua Up  ^   ̂^   ̂tiUi(x.)ciaCifi

x i ^  x i
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The summation may be further simplified by considering links with odd and even 

link index i separately in the form

= £  t/.(x)c,a +  £ ^  E  Ui(x)cia (4.16)
X i x OQ i=0dd X y i=even

For any colour-field direction

E £ W ( * ) = 0  (4.17)
X  i

therefore we may eliminate the first term in Eq. (4.15) and using the components of 

Cj in Appendix A Figure A.l it may be easily proved that

53 53 tiUi(x)cia =  o (4.18)
x i

Thus only consideration of the contribution from the third term on the rhs of

Eq. (4.15) is required in order to close the expression for the equilibrium term.

Proceeding in an analagous manner resolves terms of the form

£ £ *  Ui(x)ciXCiX =  ^pcos(29) (4.19)
x i »

53 13 tiUi(x)ciyCiy =  -\pcos{29) (4.20)
x i y

5313  tiUi{x)ciXCiy =  5 313  UUi^CiyCix =  ^psin{29) (4.21)
x i x i y

Combining terms

5 3 1 3 N i9(u)Ui(x) =  (u2x -  u fj pcos(29) +  uxuy2psin(29) (4.22)
X  i

and introducing 9u(x) such that

ux =  ucos(9u(x)) uy = usin(9u(x.)) (4.23)
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the summation simplifies to

£  £  N f 1 (u)I7<(x) =  E  pn2cos(2(0„(x) -  §)) (4.24)
x i x

To deal with the second (non-equilibrium) term on the right hand side of Eq. (4.14)

we follow Gunstensen et al and appeal to the lattice Boltzmann equation for the

BGK algorithm, appropriately modified to account for the presence of interfacial 

achromatic density perturbations and adapted to the steady state [1]

Ni(x +  Cj) =  Ni{x) -  wiV”e9(x) +  ANi(x) (4.25)

Noting, for a closed lattice employing suitable boundary conditions X)x Az(x +  cz) =  

X)x iVz(x), and using our interfacial perturbation AiVz(x,£) =  aC{x.,t)cos(2(0f(x) — 

Oi)) after some algebra we may write the non-equilibrium term as

53 53 n™ W  (x) = £53 c(x) 53 cosm -  omw  (4.26)
x i W x i

=  ^ (6 -2cos(40))53C (x) 
u  x

which we note has the expected four-fold rotational symmetry. All of our calculations 

were checked using the computer algebra package Mathematica. Combining Eqs. 

(4.24, 4.26) into Eq. (4.14) yields an expression for macroscopic surface tension

2(<r,« ) = E  Pu2c°s (2(#u(x) -  B)) +  ~  2cos(40))EC (x) (4.27)

Reminding the reaxler that cos(6)/M0 term is independent of 0 we remark that 

Eq. (4.27) for £(a, u) is correct to all orders of fluid velocity. The second term on 

the rhs is straightforward to evaluate if we remember that C(x) =  0 at pure, non­

interfacial sites. No simplification, is however evident in the first term of Eq. (4.27)
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and the positional summation must be evaluated over all interfacial sites where 

x E A. This leading order term in u  makes only a small contribution to E (cr,u) 

at practical values of a (see Section 4.7). In this regime E(cr,a;) ~  er/o; where the 

relaxation parameter u  determines the lattice fluid kinematic viscosity v through 

Eq. (4.28).
1 rO i

(4.28)
1

V ~  6 l - ilU

To the same order of approximation, Gunstensen et al. reported analogous depen­

dence of their E upon the their LBILG collision parameter A-1 , where A is the 

eigenvalue of the LBILG collision matrix which determines the simulated fluid kine­

matic viscosity.

4.4 Surface tension in plane interfaces

Throughout the following analysis, we consider the microcurrent to be an interfacial 

effect resulting in mass flux across a line parallel to a static interface. We do not 

consider further microcurrents1 defined in alternative terms, which produce no mass

flux on mesoscopic length scales and have no physical influence on surface tension.

1We note there are two other possible definitions of microcurrents. Firstly the velocity at a site 
may be non-zero, but the flux along any link is zero. Secondly the flux along links may be non-zero, 
but the mass flux across a line parallel to the interface at the mesoscopic level is zero. Both these 
other microcurrents may be measured, but have no physical influence on surface tension, however 
they do occur at the flat interface.
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4.4.1 Plane interface parallel to  z-axis

Consider a steady-state planar interface parallel to the short lattice links along 

the z-axis direction in which colour is symmetrically separated (Figure 4.4), thus 

cos (9) =  1. Translational symmetry along the z-axis implies an absence of any 

microcurrent and a colour gradient f(x) =  f (y )y. The stability of the LB method 

in principle produces a steady state interface which is free from fluctuations in the 

colour field. The direction of the colour field was measured from simulation and 

showed no measurable departure from this assumption.

Interface

Z

y  = yo + ly  = yo 

► Y

Figure 4.4: Symmetry of populations in a vertical interface. This figure shows a 
lattice excerpt containing several mixed nodes of which two have been highlighted 
(open circles) in an interface centred on the dashed line. Nodes to the left are 
predominantly red (pR ps) whilst, in the stable interface, those to the right are 
predominantly blue (pB Pr )• Note that colour populations in nodes A and B are 
equivalent under colour reversal and rotation through 180°.

Consider a stable two site thick interface parallel to the z-axis and located centrally
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between two adjacent sites, say y == y^  y = yo +  1, and a colour distribution 

symmetrical under colour reversal, corresponding to a concentration given by

C(x) =  C(S(y - y 0) + S ( y - y 0 -  1)) (4.29)

where C(x) is a colour concentration constant see Figure 4.4. If there are no mi­

crocurrents, u  =  0 everywhere and the expression for the surface tension reduces 

to

S(<t,(j) =  Z  ( %  -  2/o) +  %  -  2/o -  1)) =  SaCJ ^  (4.30)

At steady-state, the colour content of each node is constant between successive 

steps, and links connecting two mixed sites should contain at each end, counter- 

propagating equal densities of each colour. It is further assumed that achromatic 

link densities depart only negligibly from their rest equilibrium values £*, allowing 

the value of the C(x) in Eq. (4.29) to be calculated.

Each interfacial site (open circles) connects to three other mixed nodes and three 

monochromatic sites (filled circles) in the y direction and with two equivalent sites 

in the z direction (Figure 4.4). Making the assumption that sites are pure red for 

y <?/o and pure blue for y > y0 +1 . For diagonal, “speed 2”, links i =  3,5 in y =  yo 

interacting with links i =  7,1 in y =  yo +  1

Rs(yo,z) =  B3(y0,z)  =  Rf,{y0,z) =  B s(y0,z) = i t ,  =  ^ p 0 

Ri(Vo + 1, *) = Bi{yo + 1  ,z) = #7 (2 /0  +  1 , 2 )  =  #7 (2 /0  + 1, 2 )  =  i f i  =  j^po 

and similarly for speed 1 link i =  4 in y =  yQ interacting with link i =  8 in y =  yo +1

#4(2/0, 2) =  #4(2/0, 2) =  1*2 =  JnPO
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R&(yo +  1, z) =  Bs(Vo +  1, z) =  jgpo

where po is the achromatic density of the interfacial lattice site and we have used 

identities Eq. (4.13). Using this information the colour density of the nodes in y = yo 

may be calculated

P b (Vo , z )  =  £ 3 ( ? / o ,  2 ) + £ 4 ( 2 / 0 , 2 ) + £ 5 ( 2 / 0 , 2 )

-  (
P r (Vo , z )  =

1 1 1 \  1 
72 +  18 +  72 J Po “  12Po 

1 11
Po “  1 2 Po =  1 2 Po

from Eq. (4.31), C(x) =  |  .

C(x) =  1 p * (x )  -  P fl(x) (4.31)
Piz(x) +  pB(x)

The value of C(x) =  | ,  on insertion into Eq. (4.30), gives, a macroscopic surface 

tension E for a horizontal interface parallel to the short D2Q9 lattice link of

E(ct, cj)
4cr
3a;

(4.32)

4.4.2 Plane diagonal interface

For a steady-state two site thick diagonal plane interface separated in a line par­

allel to the longer lattice links Figure 4.5, two different (but simply related) cross­

interface density profiles occur. The macroscopic surface tension can be calculated 

with a small modification which arises as a result of the loss of full translational 

symmetry along the interfacial line. In the simplest case of an interface consti­

tuted by mixed sites A, B  (open circles) in adjacent sections aa\ bb' (Figure 4.5
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defined by the lightly dotted sections) densities at A , {Ri(A),  Bi(A)} ,  and those 

at B,  {R i(B),  are equivalent under combined colour reversal and a 2-fold

rotation.
, Interfacea ... b

b

Z

b ’ a ’
-----------------► Y

Figure 4.5: Populations in a diagonal interface. This figure shows a lattice excerpt 
containing several mixed nodes of which three have been highlighted (open circles) 
in the interface centred on the dashed line. Nodes above the dashed line are predom­
inantly red (pR Pb) whilst, in the stable interface, those below are predominantly 
blue (pB Pr )- Populations in nodes A and B are again equivalent under colour 
reversal and rotation through 180°.

If the achromatic densities are again assumed to depart negligibly from their rest 

equilibrium values £*, the simplest distribution of colour through the interface may 

be deduced. For links in the only (mainly red) mixed node in section aa', connecting 

to the mixed mainly blue node in two bbf sections, post-collision densities are

RtlA) = B,{A) =  ^ ( 4 )  =  B 6(A) = l~ h  =  ^ P o  (4.33)
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whilst, for link i =  5 in section aa' connecting to a pure blue node

Rs(A) =  0 BS(A) = L = (4.34)

where we have again used identities Eq. (4.13). Densities for the mixed B  node are 

easily obtained from the symmetry arguments already rehearsed. The colour density 

of the mixed nodes in the diagonal interface is therefore

Pb {A) = B5(A) +  B±{A) +  B6(A) =  4- — +  —^ po =  —  po (4.35)

Pr (A )  =  po -  — po = — po (4.36)

from Eq. (4.31) C(x) =  ^  for both the A  and B  mixed sites. Setting 9 = 45°, 

and noting that there is an A and a B  mixed site on any horizontal line crossing a 

diagonal interface, it follows from Eq. (4.27) that the macroscopic surface tension is

s a b  (4'S7>

4.4.3 Single site interface

A simple single site plane interface which intersects a lattice node parallel to lattice 

link directions may take two basic configurations. In the first the interface is parallel 

to the z-axis and in the second the interface is parallel with a diagonal link see 

Figure 4.6. Considering firstly a simple plane interface parallel to the z-axis. Nodes 

to the left of the dashed line are considered to be predominantly red ( p R  p B ) 

whilst, in the stable interface, those to the right are predominantly blue (ps  >  Pr ) 

along with the links parallel to the interface and the rest link. Considering the total
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Interface

Z
A

Interface

Figure 4.6: Populations in a single site interface. This figure shows a lattice excerpt 
of a single site interface (open circles), the interface (dashed line) is parallel but 
not centred on the link directions. In each case links parallel to the interface and 
stationary links are considered to contain blue density.

red density at node A  for this geometry

P r ( A )  = R y ( A )  + i?s(̂ 4 ) + R i ( A )  — + -  + —  ̂po = -

P b ( A )  = po -  - p o  — - p o  

from Eq. (4.31), C(x) =  \  giving a macroscopic surface tension

Po

E(cr, u) =
4 a  

3a;

(4.38)

(4.39)

(4.40)

Following similar analysis once more for an interface diagonally intersecting a lattice 

node, by considering sites above the interface to be coloured predominantly red and 

below the interface to be blue. The colour concentration C'(x) =  \  may be calcu­

lated, this assumes of course that links parallel to the interface are again coloured 

blue, and we note that 6 =  45°. The macroscopic surface tension of the interface
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may then be calculated as

E(a,u;) =  -  J -  (4.41)

The preceding analysis of flat interfaces between static fluids neglects perturbation- 

induced departures from equilibrium rest density, the validity of which assumption 

increases with decreasing perturbation amplitude cr, and is supported from the re­

sults of the next section. It should be noted that this assumption implicitly restricts 

the principal analytical results of this section (Eqs. (4.32, 4.37, 4.40, 4.41)) to apply 

when the induced macroscopic surface tension is small. Note also that due to the 

absence of local curvature in the interface no density (pressure) change between the 

bulk fluids separated by the interface is to be expected. We now consider the effect 

of microcurrents which are precluded by symmetry in planar interfaces.

4.5 Surface tension in Curved Interfaces

Microcurrents are induced close to an interface, by the segregating effect of the 

surface tension rule [29, 43]; only in the presence of suitable symmetry, such as the 

cases considered in Section 4.4, will the microcurrents be absent. The presence of 

interfacial curvature and a gradient in the colour field, make it impossible to argue 

on general grounds that an interfacial microcurrent should be absent from the rest 

interface. The influence of the microcurrent is felt principally through the first term 

in Eq. (4.27), the only term containing a velocity component. The magnitude of the 

microcurrent velocity close to the interface has been observed to scale with increased
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a [29, 43] and to be of the form

u  =  u (x )cr (4.42)

For circular interfaces in two dimensional simulations of static steady-state red fluid 

drops, the interfacial microcurrent pattern must conform with the rotational symme­

try of the underlying lattice and two complementary, counter-rotating microcurrent 

cells must occupy any lattice quadrant Figure 4.7, the maximum velocity in each 

occurring close to the generating interface Figure 4.9. In fact the maximum value of 

the surface tension inducing perturbation occurs for the maximum value of £/*(x) in 

Eq. (4.10) at 9 =  45°, accounting for the fact that the microcurrent circulation close 

to the interface is radial along the diagonal bisectors of each quadrant (Figure 4.8). 

Moreover, on grounds of lattice symmetry and hydrodynamics which govern the mi­

crocurrent, the extent of a microcurrent cell is determined by lattice extremities and 

drop radius R. The microcurrent flow outside the interface is approximated by a 

uniform rotation such that the outermost streamline touches the interface and has a 

velocity determined principally by the interface perturbation parameter a  Eq. (4.42). 

We then write the microcurrent velocity field, u(x) =  u(r, |r|/i?) in Eq. (4.27) and 

note that u(r, |r|/i2) must have the four fold rotational symmetry of the lattice. 

Hence Eq. (4.27) becomes

S  =  a  i? )  Pcos(2(fl«(x ) “  ®)) (443)

+£S ? (6“2cos(4̂))? <7(x)
This result of course, applies only to the D2Q9 BGK model through the assumed 

form of the equilibrium distribution function defined in Eqs. (4.12, 4.13). The extent
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Figure 4.7: Stream function for steady circulation pattern developed by drop of 
radius R  =  13 lattice units placed centrally on a square 150 x 150 lattice. The flow 
pattern is observed to be stable after approximately 4000 time steps. The results 
were obtained for the same simulation parameters as Figure 4.12.
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Figure 4.8: Magnification of the stream function in the right hand upper quadrant 
of the lattice.
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0.03 (a = 0.001) 
(a = 0.005) 
(a = 0.01)

0.02 -

o
a>
4)6uQ

I  0.01-

2.5 3 40 0.5 1.5 2 3.51
Normalised Radius I r I / R

Figure 4.9: Variation of |u|, microcurrent flow speed measured in units of lattice 
spacing per time step, against normalised distance from the drop centre, \r \ /R  for 
several values of parameter a  (see key) and u) = 1.5. Note the approximately linear 
trend in peak flow activity with <7, which occurs close to the interface (this trend is 
confirmed when compared microcurrent data with higher values of cr, these values 
are not shown as they are not practical values of cr).
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of the anisotropy of the second term (Eq. (4.43)) and its influence on the surface 

tension may be determined only after the concentration factor C(x) is calculated. To 

interpret Eq. (4.43) in the presence of curvature, we consider an interfacial element 

of length RAO from a large circular drop of radius R , subtending a small angle 

AO at the drop centre. This element we assume to be locally flat and contained 

within an area defined by M 0 long horizontal lattice lines where z  =  const. Then 

Mq =  RA0cos(0), implying cos(0)/Mq  =  1/RAO. The magnitude of the positional 

summation in the second term of Eq. (4.43) is proportional to RAO, and a form 

cr&2/k> is assumed. Considering the first term, we take the microcurrent activity to 

decay rapidly away from the interface, this assumption is supported by simulation 

see Figure 4.9 and this will yield finite contributions to the first summation only 

from a number of sites proportional in number to the RAO and the velocity at all of 

these sites we take to be determined principally by a from Eq. (4.42). The positional 

summation in the first term in Eq. (4.43) will therefore also be proportional to RAO 

and we assume a form a2ki for this term. This allows us to predict the general form 

for the interfacial tension of a drop to be

for small values of the interfacial perturbation parameter cr, the dominant contribu­

tion is obviously from the second term component

u
(4.44)

£(cr,u;) =  —k2U)
(4.45)
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4.6 Simulation

Plane symmetric two-site thick interfaces were simulated employing periodic bound­

ary conditions (retained for all simulations) to all edge sites on a square lattice, 

effectively producing an interface of infinite length. A suitable simulation box size 

and equilibration time were determined on the basis of stability. For all simulations, 

sites were initialised to achromatic local density of po =  1.8, resulting in rest equi­

librium link densities of 0.8, 0.18 and 0.045 for speed 0, 1 and 2 links respectively, 

initial colour being allocated so as to produce a particular interface geometry.

Results were obtained for plane, y =  constant, interfaces on a 120 x 120 lattice 

containing a red vertical layer sandwiched between two blue fluids of equal viscosity. 

The initial interface lying between consecutive y-planes of nodes and the red layer 

defined by P r ( x )  =  1.8, Ab (x ) =  0, 39 < y < 81. The diagonal interface was 

constructed by initialising as red those nodes with y co-ordinates such that z — 26 < 

y <  ^ +  26, with the periodic images of this red layer incorporated in the lattice 

corners Figure 4.10. An equilibration time of 15,000 iterations was allowed for both 

plane interface orientations and the steady-state density distribution was measured 

through the interfacial region. Also measured through the interface was the quantity 

(PN — PT), using Eqs. (4.6, 4.7). These measurements in conjunction with a simple 

discrete approximation to the mechanical definition Eq. (4.4) allowed the planar 

interfacial tension to be evaluated.

Links within a circular, central portion of radius R  defined from the centre of the
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D

D

D D

Figure 4.10: Initial distribution of colour for the simulation of a diagonal interface 
on the square D2Q9 lattice showing the periodic images of the red diagonal layer in 
the box corners. Regions marked R (B) correspond to red (blue) mass.

lattice of an otherwise blue 150 x 150 lattice, were initialised red to form a circular 

drop. Different combinations of surface tension perturbation parameter a and BGK 

collision parameter uj were chosen to generate stable drops with the values of uj now 

being chosen so as best to recover classical hydrodynamic behaviour [44]. Laplace 

law measurements were made on these drops to obtain surface tensions E(<7, u) from 

the gradient of pressure difference Ap =  Ap/3 [23] as a function of 1/R  for drops 

with a radius in the range 15 < R  < 40. The steady-state value of R  was obtained 

from the drop inertia tensor [43].

In order to observe the influence of microcurrent activity from circular interfaces the 

stream function

•>l>(y,z)= f  uv(y,z!)dz' (4.46)
Jz'=0

was calculated from the velocity field along with the corresponding pressure (lattice 

density) field. The variation with normalised distance from the drop centre f  =  r /R , 

of velocity modulus averaged over an annular lattice sample concentric with the drop
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centre, radius f , yields a quantitative measure of microcurrent activity and a test of 

the assumptions made in deriving Eq. (4.44).

4.7 Results

The measured values of surface tension were obtained directly from a trapezium rule 

approximation to Eq. (4.4)

E (P W(1) -  Pr(l) +  Pif( 1 +  C,) -  PT( 1 +  C ,))
L 1

(4.47)

where 1 denotes the position on a lattice line perpendicular to the interface and 

we use Eqs. (4.6, 4.7) to obtain P n ( 1 ) ,P t {1)- The table in Figure 4.11 shows the 

close agreement between calculated and measured interfacial quantities for both 

orientations of the two sites thick planar interface considered.

Interface
Orientation

Calculated 
E(cr, u)

Measured
E(cr,o;)

Calculated
C(x)

Measured
C (x )

Horizontal 7.33 x 10~3 7.37 x n r 3 0.166 0.15
Diagonal 1.73 x n r 3 1.73 x 1(H 0.28 0.28

Figure 4.11: Calculated and measured values of mechanical surface tension for the 
two-site thick interface. Calculated values derived from Eqs. (4.32, 4.37). For the 
planar horizontal interface (cr,co) =  (5 x 10“3, 0.91), whilst for the planar diagonal 
interfaces simulated (cr,cj) =  (5 x 10“4,0.91).

Figure 4.12 shows on the same axes, normalised variation of colour and pressure 

tensor contraction ( P j v ( 1)  — FtO)) through the vertical interface described in Sec­

tion 4.3 with S  measured in lattice units. For the corresponding case of a diagonal 

interface (Figure 4.13 and Figure 4.14) colour is not, as expected, symmetrically dis-
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0.2

0

- 0.2
93 4 5 6 82 71
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Figure 4.12: Normalised variations across a vertical interface. The dotted (dashed) 
line connects calculated blue (red) densities and symbols mark corresponding mea­
sured values. The solid line corresponds to the value of (PN — PT).

tributed about the maximum value of (Pn { 1) — FT (l))] Figure 4.13 and Figure 4.14 

represent sections of the interface along adjacent diagonals (Figure 4.5) which are 

inter-related by a rotation of n  radians and a colour reversal. Parameter S  is re­

lated to co-ordinate y through S  =  y/2y. For the results of Figure 4.12, Figure 4.13, 

Figure 4.14 the BGK collision parameter u  — 0.91 was used in conjunction with 

surface tension perturbations a = 0.005 (Figure 4.12) and cr =  0.0005 (Figure 4.13 

and Figure 4.14).

Figure 4.7 shows the microcurrent structure generated at the surface of a red fluid 

drop through the stream function z) calculated by a process of numerical in­

tegration after Eq. (4.46). The microcurrents are seen to be consistent with the
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0.4 -

- 0.2
1614 15 1817
S

Figure 4.13: Normalised variations across a diagonal interface sampled along aa’ 
(Figure 4.5), lines connect calculated points, whilst symbols show results obtained 
from simulation. The solid line corresponds to the value of (P ^  — Pr).
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1.2
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x (RhoR)1

0.8

0.6

0.4

0.2

0

- 0.2
13 14 15 16 17

S

Figure 4.14: Normalised variations across a diagonal interface, sampled along bb’ 
(Figure 4.5). The solid line corresponds to the value of (Pm — Pt )-

symmetry of the underlying lattice and the maximum perturbation.

The range of influence of the microcurrent for a periodically bounded drop on a 

150 x 150 lattice is shown in Figure 4.9 which charts the variation of the flow speed 

|u|, against normalised distance from the drop centre, \r \ /R  for several values of 

<r. As a quantitative assessment we note that Eq. (4.44) predicts that a graph of 

E(a,co)/cr against 1/co will have an ordinal intercept (gradient) from which constant 

k\  (^ 2) may be inferred. Accordingly (Figure 4.15) E(g ,uo) / ( j  was obtained from 

Laplace Law, (see Section 4.6) applied to drops with 0.5 <  co <  2.0 and a  =  0.025. 

With the latter value of perturbation parameter the number of data points necessary 

reliably to apply linear regression entails significant processing but yields values of 

hi = 30.551 ±  0.024 and &2 =  1.259 ±  0.031. Hence, for a  =  0.025, the microcurrent
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Figure 4.15: Plot of E(cr,o;)/cr (measured in lattice units) against (dimensionless) 
1/u  for 0.5 < oj < 2.0. The former were obtained from Laplace’s Law applied to 
drops with a — 0.025 and 15 < R  < 40 on a 150x150 lattice. The ordinal intercept 
and gradient, obtained from linear regression, were found to be uk\ =  0.764 ±  0.031 
and &2 =  1.259 ±  0.024 respectively.

contribution to the macroscopic surface tension in our model is seen to approximate 

to that arising from the second term in Eq. (4.44) and we infer an estimated upper 

limit for o of a «  0.025 to minimise the effect of the microcurrent. For the present 

model under study (u) =  1.5), the influence of a microcurrent upon the macroscopic 

surface tension is of decreasing importance at perturbation parameter a <  0.025.

Figure 4.16 is plotted from values in the range 0.001 < cr < 0.0125, well below 

the upper a limit and shows results for surface tension E(a,u) for 1.5 < u) < 1.9 

against o /u . The surface tension results are derived from Laplace law measurements 

described earlier. The continuous line represents a linear regression fit to this data

0.25 0.5
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o.i
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0.06 -

0.04 -

0.02 -

0.02 0.040.005 0.01 0.015 0.025 0.03 0.0350
a /co

Figure 4.16: Simulational measurements of Laplace law surface tension £(cr, u) (mea­
sured in lattice units) for 0.001 < a < 0.0125,1 .5 < a J< 1 .9 a s a  function of quotient 
£ (where o and u  are dimensionless). The continuous line is a linear regression fit 
to the data.
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and although unconstrained to pass though the origin, the fit generates an intercept 

which lies well within one standard deviation of zero and a gradient which may be 

used with a set a to confirm &2> Eq. (4.45).

Obtained from Eq. (4.27), Eq. (4.32) is valid for a flat horizontal interface at rest. 

Based as it is on the mechanical definition of surface tension [30], Eq. (4.27) we 

interpret only with respect to equilibrium (rest) fluids and the velocity dependence 

entailed in its first term, should be regarded as arising only from the microcurrent 

activity. Nevertheless a useful check on Eq. (4.27) may be performed by applying a 

uniform shear of increasing rate parallel to the flat vertical layer —10 < y < 10 on 

a 60 x 60 lattice ( see discussion above and Figure 4.4), the shears being generated 

in the usual manner [43]. Setting 9 =  0, 0u(x) =  7r/2, for small a we may omit the 

second term from Eq. (4.27) and

y=20
£ ( < 7 , w ) « ——  X > 2 =  - P  u ( y f  (4.48)

Mo *  „= _ io

Figure 4.17 shows the results of plotting £(cr,o;), obtained from Eq. (4.47), as or­

dinate against summation So =  Z)y -̂°io u G/)2j obtained for a small range of shear 

rates, as abscissa, with the expected linear trend emerging. At small shear rates 

the first term in Eq. (4.27) becomes positive and contributes to the magnitude of 

£(cr,a;). We do not claim Figure 4.17 represents more than a interesting property of 

Eq. (4.27) and Eq. (4.43) resting on definitions in which a static interface is implicit

[30]-
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Figure 4.17: E(cr,o;) (measured in lattice units obtained from Eq. (4.47)) as ordinate 
against summation 5o =  ICyl-io u (2/)2 (dimensions of lattice units squared) for 
a vertical interface exposed to a uniform shears parallel to the vertical interface 
—1 0 < 2/<10  placed on a 60 x 60 lattice.
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4.8 Conclusions

In this chapter our two component fluid model based upon a D2Q9 lattice BGK 

scheme has been introduced and investigated. Simulation measurements of sur­

face tension and cross-interfacial colour distributions for this model are in good 

agreement with those values calculated from analysis of the algorithm Figure 4.11, 

for both two site thick plane horizontal and diagonal, microcurrent-free interfacial 

orientations. The difference between the two expressions suggests an orientational 

dependent anisotropy in the model’s surface tension, which is investigated in detail 

in the next chapter. The structure of interfacial microcurrent circulation generated 

by circular drops has been deduced and compared with simulation. These mear 

surements demonstrate that developed theory successfully accounts for the broad 

structure of the microcurrent flow field. The analysis has allowed the development 

of an expression for the surface tension of a drop, demonstrating that the microcur­

rent velocity field might be expected directly to influence the model’s surface tension. 

For small values of parameter a the corrections are only found to be second order 

in a and this is substantiated by simulation.

Any attempt quantitatively to assess the approximate theory of microcurrent con­

tribution will require substantial quantities of data, and should be undertaken only 

after a more rigourous analysis of the contribution of the first term in Eq. (4.44). 

The undertaking would be facilitated by a calculation of the steady microcurrent 

flow field as an approximate or numerical solution of the equations of creeping flow, 

which should fully account for the microcurrent structure. Although our general
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arguments yield a qualitative insight into the origin of the microcurrent, such a cal­

culation would provide the most useful check on our understanding of this parasitic 

phenomenon.
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Chapter 5

Hydrodynamic stress transmission

5.1 Introduction

The aim of this chapter is to examine more fully than previous researchers, the extent 

to which the tangential and normal boundary conditions are upheld in the immiscible 

LBGK interface. We then introduce modifications to the interface perturbation, 

which we will show improve the hydrodynamic behaviour of the interface.

Previously researchers have qualitatively examined interfacial behaviour only through 

static Laplace law calculations, or through the integration of the pressure tensor [1]. 

This has left the macroscopic hydrodynamics of the interface un-addressed until now. 

In continuum hydrodynamics the interface between two immiscible fluids is governed 

by the hydrodynamic boundary conditions for tangential stress transmission

-  v'aptfl =  0 (5' 1)
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and normal stress transmission

-  °*/3n 0  = S  ( j £  + -j^) na (5.2)

where S is the macroscopic surface tension, crQp is the stress tensor and cr'ap is the
A

viscous stress tensor. The normal and tangent to the interface are given by n  and t  

respectively, where R\ and R 2 are the interface’s two principle radii of curvature [14]. 

We note that the two dimensional static Laplace law S =  ^  which has been used 

as a benchmark surface tension test, is a simplified case of Eq. (5.2) and that the 

full tangential relation Eq. (5.1) has not yet been directly assessed for the LBGK 

interface.

In this chapter we firstly examine the tangential boundary condition in section 5.2 

and having established that the interface exhibits appropriate hydrodynamic be­

haviour we proceed to assess the normal stress behaviour in section 5.3. To facilitate 

the latter it will be necessary to develop accurate means by which the local radius 

of curvature may be assessed. Results from these investigations motivate further 

algorithmic extensions designed to improve the hydrodynamics and isotropy of the 

immiscible interface. It is appropriate to point-out that the investigative meth­

ods employed to examine the interface in sections 5.2 and 5.3 are relevant to other 

interface generating techniques [32, 45].
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5.2 Tangential stress examination

In this section the tangential stress condition Eq. (5.1) is assessed as it applies to our

interface separating a blue-red-blue planar sandwich layer system see Figure 5.1. 

This system is sheared in a direction parallel to the coloured layers at the top and 

bottom of the lattice in the the y-direction. For this system hydrodynamic theory 

predicts a linear relation between shear stress and velocity gradient in the bulk fluids

where v is the fluid shear viscosity and 7  is the fluid shear rate. For blue and red 

fluid layers with different viscosities Eq. (5.4) also holds

separated components should match at the interface.

The transmission of tangential stress by the interface was assessed through Eq. (5.4), 

by examining the measured ratio between the separated fluids’ different shear rates 

and comparing this with their set viscosities. With periodic boundary conditions 

implemented on the vertical walls, horizontal shear was induced on the system of 

Figure 5.1 by adding a positive y-direction (negative y-direction) velocity compo­

nent to the top (bottom) horizontal layer of lattice sites at each lattice update, using 

a link density force increment [43] (Note, that care should be exercised to apply this 

pertubative step directly before the lattice is propagated and that the caption of

of

(5.3)

7R VR  — I b Vb (5.4)

where the subscripts refer to the fluid colour. Finally of course, the velocities of the
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Figure 5.1 gives more detail). This lattice-edge closure process produces a lattice 

fluid shear rate proportional in size to the forcing increment [43].

Z
/N

B

R

B

-------------> Y

Figure 5.1: Schematic lattice configuration for tangential stress examination. Pe­
riodic conditions were used to close all lattice boundaries, with horizontal forcing 
applied along sites in the lines z =  2, 58

The red /  blue layers were set to a different viscosity through the BGK relaxation 

parameter w in the obvious manner, with the mixed sites occuring at the singular 

dividing interfaces controlled through an effective average relaxation parameter

=  W R  +  UBPB (5 5)
f f  PR +  PB

The system of Figure 5.1 was evolved on a 90 x 60 lattice, with a lower blue layer 

of height 1 < 2 < 20 a red layer of height 21 < z  < 40 and an upper blue layer of 

41 < z < 60. Initialised with a range of viscosity ratios red : blue of 1.5 : 1, 2.5 : 1 

and 3.5 : 1, the mean (y-averaged) shear was measured in each horizontal fluid layer 

(in lattice units) . With the two colours set to a different viscosity the sandwich of 

Figure 5.1 was sheared.

As we would expect a typical variation of the y-averaged velocity with distance z 

across the differing layers, shown in Figure 5.2 displays the expected trend and the
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Figure 5.2: Variation in mean flow velocity |u| against z for viscosity ratios of 1.5 : 
1, 2.5 : 1 and 3.5 : 1

(fully) tangential velocity is clearly continuous across the interface. For the data of 

Figure 5.2, the 1.5 : 1 viscosity ratio is represented by the green points and the 2.5 

: 1 and 3.5 : 1 viscosity ratio data by the blue and red points respectively. Separate 

fits to data from the red /  blue layers (with sites within two lattice spacings of a 

red-blue interface excluded from the regression) established the corresponding red /  

blue fluid shear rates. The ratio of the shear rates was determined and is presented 

in the table in Figure 5.3 correlating very well with the red /  blue fluid viscosity 

ratio. Figure 5.4 plots these two ratios, and regression to this data was found to 

give a clear linear relationship, the fit giving a gradient of m  = 0.991 ±0.021 and an 

ordinal-intercept of c — 0.001 ±  0.064, in excellent agreement with the theoretical

****vXxX++

w
 ** ....Xx*

++++ xX**xXX,

-A*

<xxx*xx

, ++++
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Viscosity ratio Velocity gradient ratio
1 : 1.5 1 : 1.505 ±  0.0005
1 : 2.5 1 : 2.513 ±  0.0005
1 : 3.5 1 : 3.522 db 0.0005

Figure 5.3: Comparison of viscosity ratios with measured velocity gradient ratios

n
2.5 -

0.5 -

3.5 4 4.5 51.5 2 2.5 30 0.5 1

Figure 5.4: Variation between 7h/7b against vB/v R

relationship

I r U b  =  V r / v b  (5.6)

derived from Eq. (5.4). For the data in this study a surface tension parameter of 

a =  0.0125 was used, with a forcing increment of 0.02, the viscosity ranges were 

uR =  0.029412 (corresponds to a relaxation parameter of u  = 1.7) and 0.014076 < 

vB < 0.147059, (1.1 < w < 1.7).
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This first qualitative assessment of the LBGK interface supports, quantitatively 

correct hydro dynamical behaviour (as opposed to the hydrostatics measured by pre­

vious workers). Considerations of tangential stress transmission do not, however, 

quantitatively assess any correspondence between the surface tension measured in 

static Laplace Law tests and that surface tension which governs the dynamic re­

sponse of the interface. This requires the investigation of the normal stress condi­

tion. We suggest that on the strength of the results presented in this section it is safe 

to conclude that tangential stresses are correctly handled by the LBGK interface. 

This assumption will assist our analysis of the normal stress behaviour, investigated 

in the next section.

5.3 Normal stress transmission

Consider a neutrally buoyant red fluid drop in a surrounding blue fluid of equal 

viscosity, deformed by a far-field shear flow. In two dimensions the drop deformation 

may be characterised by a single local radius of curvature R(6). The situation is 

represented in Figure 5.5, in which the unit normal and (single) unit tangent at the 

red /  blue interface must be related through

Tty   t g  Tig —  t y  (5.7)

Writing the stress tensor as crap =  — p8ap +  a 'a/3, using Eq. (5.7) and some algebra, 

we may combine the normal and tangential boundary condition equations Eq. (5.2)
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Blue a n (9)

t(0)

Interface

C.O.M.
Figure 5.5: Schematic of the unit normal and tangent vectors for our 2D system, 
drawn at a site on the drop interface characterised by 9. R(9) represents the local 
radius of curvature of the interface.

and Eq. (5.1) into a single form

the result Ap(9) =  ^ j .  However, local behaviour is further complicated by the 

anisotropy of the LBGK interfacial tension already discussed in chapter 4. It has 

been shown that interfacial tension varies with orientation relative to the underlying 

D2Q9 lattice and 9, so that variation in the macroscopic surface tension parameter 

E with 9 has to be admitted and

pR(0) -  pB(d) + 2uR(dsu f  +  dzuR) -  2vB(dyuB +  dzu f)  =  (5.8)

in which all derivatives are evaluated at the location of the interface.

In the case of equal viscosity between the drop and the supporting fluid (vR = vB) 

and assuming a non-separating interface {uB =  uB) we obtain from the last equation

(5.9)

this result is true in 2D only and assumes tangential stress continuity (section 5.2).

The local normal stress condition Eq. (5.9) appears as a pseudo-Laplace law or more
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specifically in what we term a local Laplace Law form. The hydrostatic pressure 

difference Ap(9) and radius of curvature R(9), are obtained at a particular angular 

position 0 on the interface (Figure 5.5). Thus, by measuring the local radius of 

curvature and pressure difference, and using the theory of chapter 4 to account for 

the angular variation of macroscopic surface tension, the extent to which Eq. (5.2) 

is valid for our interface may be assessed through Eq. (5.9). Our examination of 

the transmission of normal stress across a red /  blue interface therefore proceeds by 

devising the means by which the radius of curvature measurements may be performed 

on a steady-state deformed fluid drop.

5.3.1 Radius of curvature measurement

The local radius of curvature R(6) of the drop is needed for most lattice sites located 

on the drop interface. Drops are initialised centrally upon the lattice and sheared 

in the usual manner, to produce steady-state deformation. To determine R(6), the 

lattice is initially scanned and the centre of mass of the fluid droplet located by 

calculating the moments of drop mass [43]. The coordinates {y^z) of each interface 

(mixed colour) site, relative to the drop centre, are then used to calculate the angle 

0 (Figure 1.5). The unit normal vector n  at position 9 we calculate using simple 

differential geometry and the Frenet-Serret formula [50]

^  =  nn (5.10)

where t  is the unit tangent vector, s is length along the interface and k is the 

interface curvature; the radius of curvature R(9) =  kT1. For our two dimensional
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study hy =  —tz and nz =  ty and we may substitute components of the unit normal 

with the unit tangent components and consider the unit normal (to the interface) 

in terms of components of the associated tangent. Expanding Eq. (5.10) in terms of 

subtended angle Q
dt. rf+ rift

(5.11)
dt _  dtdQ 
ds dO ds

in which

dQ
ds

dy
d9 ♦(S J

12 dO
dr

(5.12)

Appealing to the definition of the unit tangent vector t

dr
t  =

ds
(5.13)

we may rewrite Eq. (5.11) using Eqs. (5.12,5.13) as

drdt
ds dO

1 d dr 
ddds

(5.14)

dr _1 d 'dr dr - r

dO dQ dO dQ

Performing the differentiations in Eq. (5.14), we calculate the y and £ components 

of the tangent vector to be

dty dr -2 'd2y dy dr
ds dQ dO2 dO dQ

diz _ dr -2 d2z dz dr
ds dQ Iff2 ~ d 0 dQ

- 2

- 2

f d 2ydy  d?zdz\
\ j w l 9 + lW d0)

fdPydy d?zdz\ 
\d8*ffl + d P M )

(5.15)

(5.16)

From Eq. (5.10), the radius of curvature R{9) can now be written in terms of the y 

and z  components of the unit tangent
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in which the terms in square brackets may be replaced using Eq. (5.15) and Eq. (5.16). 

We now consider the interface site coordinates (y , z) as functions of a continuous 6 

and write each of y and z in terms of their associated Fourier series (of period 7r), 

using primes to distinguish different Fourier components of the y and 2 coordinates

y{0) «  ^  +  53 [ansin{n9) +  bncos(nO)] (5.18)
^ n

Z(P) w +  53 lans n̂ (n^) +  b'ncos(n9)] (5.19)
2 n

This allows the derivatives like e.g. —  found in Eq. (5.15) to be written in terms 

of amplitudes ao, an, bn, a a ' n and b'n. Fourier amplitudes a0> o,n and bn etc. may, 

in turn be approximated at a given (measured) y(0) by numerical integration

ao = -  T  y { 9 ) d 9 ^ - '£ y { 9 i)A9i (5.20)
7T J-TT  7T

1 /*7r 1
an =  — / y(9)sin(n9)dQ & —y2y(6i)sin(n9i)A0i (5.21)

7T J-TT 7r

bn =  -  [  y(9)cos(n6)d0 & -y)y(0i)cos(n9i)A0i (5.22)
7r «/—7r 7T

=  (5.23)

where A9t is the (small but irregular) angular interval between neighbouring inter­

facial sites. The local radius of curvature, at given 9 was thus determined, from a fit 

to the whole drop interface using equations Eq. (5.17). As a check, the co-ordinates 

(y{9), z{9)) were similarly obtained from Fourier components Eqs. (5.18,5.19). Fig­

ure 5.6 shows the position of an (un-sheared) predicted interface (blue line), for a 

drop of undeformed radius R  =  40, a =  0.005 and u  — 1.5, overlaid with the actual 

discrete measured interfacial sites (green points). Figure 5.7 shows similar results for 

a moderately deformed drop with the same simulation parameters. By a process of
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trial and error, it was found that retaining the first ten Fourier harmonics (n =  10) 

was sufficient to obtain excellent agreement between the measured and predicted 

drop interface, allowing us to invest considerable confidence in the robustness and 

accuracy of our local radius of curvature measurements.

Figure 5.8 shows the calculated radius of curvature R(0) obtained by our Fourier 

fitting technique, for the drop in Figure 5.6 with an originally undeformed radius 

of R  =  40 lattice units. The drop is seen to exhibit (approximately) the expected 

periodic trend with repeated local structure over intervals — 7r < 6 < 0 and 0 < 

0 < 7r. The discrete nature of the simulation and interface is however evident, as 

the two halves of the drop are seen to have evolved in a slightly different manner, 

which asymmetry is attributable to the fact that the interface is predominately 

singular. For completeness, the mean value of the collected radius data gives a value 

of R  = 40.236 and it is appropriate again to emphasise that after Figure 5.6, the 

reconstruction of the drop interface using the discrete Fourier series validates the 

radius of curvature results obtained by this method.

5.3.2 Pressure “jum p” calculation

The pressure jump across the interface Ap(0), should clearly be measured as close 

as possible to the colour interface, but (we suggest) outside of the region about 

the interface in which the pressure oscillates (see chapter 4). By shrinking and 

expanding the Fourier fit to the interface, by (say) «  10 lattice sites it is possible to 

find a pair of contours concentric and locally parallel with the interface, these points
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Figure 5.6: Simulated interface data for an un-sheared drop, superposed with the 
discrete Fourier fit to the interface for a drop with R  =  40, a  =  0.005 and uj — 1.5.
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Figure 5.7: Simulated interface data for a sheared drop, superposed with the discrete 
Fourier fit to the interface for a drop with R  =  40, a =  0.005 and u  =  1.5.
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Figure 5.8: Radius of curvature R(6) against 0 for the undeformed drop of Figure 5.6.

are characterised by the interface angle 9 Figure 5.9. Density (pressure) measured at 

points identified using this method are inevitably off-lattice, necessitating the use of 

linear interpolation between lattice nodes in order to infer pressures at these points 

and hence a pressure jump. The decision to avoid the region of the lattice in which 

the density is influenced unphysically by the interface means that what is measured 

in this way is only approximately a normal pressure jump.

Figure 5.10 shows the measured pressures in the fluid drop (green points) and the 

supporting fluid (blue points) with respect to angle 0. Both sets of data show 

broadly the same periodic fluctuations with loosely coinciding local maxima and 

minima. The average pressure outside the drop is p  «  0.6, calculated from the local 

density which corresponds to the initial site density p — 1.8. The drop pressure
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Figure 5.9: Schematic representation of the location of pressure measurement.
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Figure 5.10: Variation of static fluid pressure p with rotational angle 9 for the 
undeformed drop of Figure 5.6.
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data is seen to exhibit a far flatter overall profile, which does not correspond as 

correctly as the external pressure to the drop radius of curvature. Note also the 

correct hydrodynamical correspondence between the minimum pressure difference 

at intervals of (where n  is an odd integer), which corresponds with the local 

maximum radius of curvature in Figure 5.8.

5.3.3 Numerical calculation of surface tension

0.011

0.01
++

0.009

0.008

0.007

0.006 n+

0.005

■2 0 3■3 21 1
e

Figure 5.11: Variation of macroscopic surface tension £(0) with rotational angle 9 
for the undeformed drop of Figure 5.6.

The local Laplace law macroscopic surface tension E (9) is shown in Figure 5.11 

and is seen to display the correct qualitative periodic structure expected as E(0) 

is known to be anisotropic. The data reflects the angular dependence implicit in 

R(9) and p(9) and was extracted from a simulation of a static (un-sheared) drop
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(see Figure 5.6) initialised on a 150 x 150 lattice, we remind the reader of the drop 

simulation parameters of R  =  40, a =  0.005 and u  =  1.5. The minimum (maximum) 

value of surface tension £(0) is observed to be £(0)mtn «  0.005 (£(0)ma® «  0.011). 

The degree of drop surface tension anisotropy may be quantified by introducing an 

anisotropy factor

= S H  <5-24)"Vy )m in

for the data shown in Figure 5.11 A a «  2.2. This value arises in part as a result of 

a tendency of the interface to adhere to lattice directions. Calculations in the last 

chapter have already shown that the macroscopic surface tension depends upon the 

orientation of the interface. Similar dependence of surface tension upon interface 

orientation is apparent from local Laplace Law calculations Figure 5.11.

A close examination of the interface’s constitution reveals it to be highly singular, 

and except at a few isolated positions the drop interface does not exhibit the struc­

ture considered in the theory of the last chapter. This of course is unsurprising, 

for the cases considered in the last chapter were planar symmetric interfaces pos­

sessing an infinite radius of curvature and, as such were constrained to allow no 

density (pressure) gradient or microcurrent. Whilst the drop interface does exhibit 

a tendency to adhere to the lattice effectively lying parallel to lattice directions, at 

no point do we expect there to occur zero pressure across the interface, or infinite 

radius of curvature. Thus the quantitative structure exhibited by Figure 5.11 can­

not be mapped directly to our earlier developed theory. Qualitatively we expect to 

see evidence of surface tension anisotropy, which is clearly evident with the correct
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period.

A standard Laplace formula measurement to obtain the macroscopic surface tension 

was performed by calculating the mean static pressure inside the drop Pr up to a 

radius of r  < 32 lattice units from the drop centre and the external mean pressure 

Pb  was calculated at a radius r  > 48. The radius of the drop was taken as the 

initialised drop radius R  =  40

E = R ( pr - P b ) (5.25)

For the same drop the standard Laplace surface tension £  =  0.00772 was measured, 

this value lies in the centre of the local macroscopic surface tension data Figure 5.11 

and differs by only a small amount from the mean simulated surface tension £(0) =  

0.00797, thus £  «  £(0) and is in good quantitative agreement as we would expect.

If we repeat the study for a moderately deformed drop see Figure 5.7 using the same 

simulation parameters, as the drop deforms it produces larger spikes in the radius 

of curvature measurement Figure 5.12. These spikes correspond with the flattening 

of the interface, and are a real artifact of the discrete nature of the lattice. However 

even though the radius of curvature spikes are considerably greater for the deformed 

drop the surface tension is qualitatively the same Figure 5.13, with a mean value of 

E(0) =  0.00781, approximately the same as the undeformed drop.

Qualitatively the static and moderately deformed drops show the correct surface 

tension structure, however they show quantitatively different details from our devel­

oped theory. The closed drop is made up of vertical /  horizontal and 45° orientated
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Figure 5.12: Radius of curvature R(9) against 6 for a moderately deformed drop.

interface segments, thus we expect a surface tension value to be approximately in 

the middle of this range. For our interface to support “correct” hydrodynamical 

boundary conditions the local surface tension would ideally produce a flat profile, 

with no oscillation. This profile would be derived from a constant radius of curva­

ture and pressure difference across the interface for an undeformed drop. A constant 

radius of curvature and pressure difference is unattainable in our simulation due to 

the discrete nature of the lattice, however we may endeavour to reduce the surface 

tension anisotropy by reducing the amplitude of oscillation in Figure 5.11 by modi­

fication of the interface segregation rule. As the oscillation is reduced the interfacial 

boundary conditions will become more hydrodynamic and produce a closer mapping 

to Laplace law. We will now attempt to tune our model to reduce anisotropy and
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Figure 5.13: Variation of macroscopic surface tension E(0) with rotational angle 9 
for a moderately deformed drop (see corresponding radius of curvature data).

try to make the pressure map more closely to the radius of curvature.

5.4 Surface tension with improved isotropy

A further modification is required to our interface segregation rule in order to im­

prove the mapping of the static pressure to the drop radius of curvature and most 

importantly reduce the surface tension anisotropy of the interface A a. To improve 

the interface isotropy we aim to decrease E(9)max, we note that approximately the 

same result may achieved by increasing E (0)m*n or by using a combination of the 

two approaches. This final modification to the segregation rule results in the general
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form

A7Vt(x,£) =  a g(9)C(x,t) cos(2(9f(x) — ft)) (5.26)

where g{9) is a newly introduced angular function increasing surface tension isotropy 

and all other terms have their usual meaning. The g(9) term may take many forms 

however we choose the simple computational efficient form

g(9) =  [l +  k cos2(20/(x))] (5.27)

where A; is a negative real number in the range of — 1 < k < 0 and the only tunable 

variable in this newly introduced parameter.

5.4.1 Optimisation of isotropy

To improve the surface tension isotropy of the drop interface, optimisation of the 

factor k in our newly developed interface perturbation is required, as we aim to 

decrease E(0)maz. An approximate optimum value of k may be predicted by consid­

ering the initial anisotropy factor value of the unmodified perturbation scheme where 

Ag. «  2.2. Consider the macroscopic surface tension E (9) scaled with the newly in­

troduced factor g(9), where E(0)maz =  E(0) and E(0)min =  E ( |)  see Figure 5.11, to 

give

E(0) <7(0) =  E (J )  tf( J )  (5.28)

rearranging Eq. (5.28) and using equation Eq. (5.24), we may write the anisotropy 

factor as
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Using the general form of the angular function g{0) — [1 +  k cos2(26/(x))], it implies 

#(0 ) =  1 4 ■ k and g{\)  — 1 therefore

A, 0(f) 1
(5.30)

0(0) 1 +  k

giving an approximate value of minimum surface tension anisotropy at k — —0.52. 

This approximate value is confirmed by simulation Figure 5.14. The continuous line 

is a quadratic fit to the data of the form ax2 4  bx 4  c where a =  9.525, b = 9.714 

and c =  4.296.

1.94

1.92

<
1.86

1.84

1.82

-0.45- 0.6 -0.55 -0.5

Figure 5.14: Variation of drop anisotropy A a with perturbation factor k

The inclusion of this new cosine squared term has the effect of adding an oscillatory 

factor to the interfacial perturbation which makes the pressure adhere more closely 

to the local variation in the drop radius of curvature Figure 5.15. Comparison with 

Figure 5.10 shows a major improvement in the correspondence between the local
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Figure 5.15: Variation of static fluid pressure p with rotational angle 9. The green 
points indicate the internal pressure of the drop and the blue points indicate the 
external supporting fluid pressure.
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Figure 5.16: Variation of radius of curvature R(9) with rotational angle 9.

maxima and minima of the red and blue fluid pressures. The flatter profile of the 

higher fluid drop pressure (green points) Figure 5.10 has been transformed. The 

closer mapping of the pressure to the local radius of curvature has the effect of 

squeezing the interface and thus increasing the periodicity of the the local radius of 

curvature Figure 5.16. The effect of the new perturbation on the anisotropy of the 

drop surface tension is seen in a reduction of the amplitude in the local Laplace law 

surface tension Figure 5.17, compared with Figure 5.11 the anisotropy of the surface 

is seen to reduce to A a & 1.88 with k = —0.52 we note that the same simulation 

parameters of R  =  40, a — 0.005 and uj =  1.5 are used. A statistical comparison 

of the variance and the standard deviation of the improved isotropy interface with 

the unmodified interface is presented in the table in Figure 5.18 and shows a re-
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Figure 5.17: Variation of macroscopic surface tension E with rotational angle 0.

duction in the standard deviation of the surface tension and an improvement in the 

hydrodynamics of the interface.

Interface type mean E (9) Variance Standard Deviation
Unmodified interface 7.97 x 1(T3 3.14 x 1(T6 1.77 x 10~3

Improved isotropy interface 6.49 x 10“3 1.32 x 1<T6 1.15 x 1CT3

Figure 5.18: Comparison of the variance and standard deviation in the the local 
Laplace law surface tension E(0) between the unmodified and improved isotropy 
interface.
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Figure 5.19: Variation of |u|, microcurrent flow speed measured in units of lattice 
spacing per time step, against normalised distance from the drop centre, \r\/R  at a = 
0.005 for the unmodified interface (green line) and the improved isotropy interface 
(blue line) at k = —0.524.
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5.4.2 Microcurrent reduction

Figure 5.19 shows the variation of microcurrent flow speed |u| measured in units 

of lattice spacing per time step, against normalised distance from the drop centre 

\r\/R  for our steady-state drop. The green line shows the magnitude of microcur­

rent using the unmodified interface perturbation, the blue line with lower maxima 

shows the magnitude of microcurrent activity using the new interface perturba­

tion at k = —0.52. Note the approximately linear trend in peak flow activity at 

the interface. The maximum value of |u |maa; is seen to be reduced by approxi­

mately one third. Comparisons by other workers of the microcurrents induced in 

Rothman-Keller derivative interfaces compared with Shan-Chen type interfaces [28] 

have shown that |u |mox is twice as large in the Rothman-Keller interface at the 

same interface perturbation parameter a [51]. Thus the reduction in magnitude of 

the microcurrent produces a maximum velocity which is of the same order as the 

Shan-Chen interface.
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5.5 Conclusions

Simulation measurements of the transmission by the immiscible fluid interface of 

tangential stress, by the investigation of the relationship between fluid shear and 

fluid viscosity in planar symmetric (blue-red-blue) interfaces shows comprehensive 

agreement with theory.

The examination of normal stress transmission in a simulation by substitution of the 

tangential stress components, has allowed the development of an Fourier interface 

investigation technique. This technique makes no predetermined assumption about 

the shape of the fluid drop, thus all analysis is based solely upon the discrete singular 

nature of the interface. This has allowed a quantitative analysis of the anisotropy of 

the macroscopic drop surface tension to be made for static and moderately deformed 

drops. It has also facilitated the development of an new computationally efficient 

interface perturbation technique with improved macroscopic surface tension isotropy. 

However, this improvement is not as large as might have been hoped.

The local radius of curvature measurement for the modified scheme Figure 5.16, 

is dependent upon the interface adhering to the lattice. Thus the geometrically 

improved isotropy drop gives the best attainable radius of curvature for the lattice 

shape. Qualitatively Figure 5.16 contains the same structure as the initialised un­

evolved drop Figure 5.20. Thus Figure 5.20 is an illustration of how circular a drop 

can be made on the lattice, without further modification to our model, due to lattice 

pixelation effects. We note that pixelation errors may be reduced by simulating
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Figure 5.20: Variation of radius of curvature R(9) with rotational angle 9 for an 
unevoled drop.

drops with a radius R  > 10 lattice units. Finally, our newly developed interface 

generation scheme benefits from increased adherence of drop pressure to the local 

radius of curvature and a reduction in the magnitude of the microcurrent by one 

third is seen.
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Chapter 6

Induced drop deformation and 

burst

6.1 Introduction

As an application of our newly developed model we examine the deformation and 

burst of neutrally buoyant immiscible fluid drops subjected to a simple hydrody­

namic shears. Measuring the dependence of critical shear rate % for drop rupture 

on flow parameters, we aim to validate the model over a range of simulation variables. 

Investigation of the model’s interfacial surface tension parameter cr, drop radius R  

and relaxation parameter u  and their effect upon the burst process is required in 

order to confirm the model exhibits the correct qualitative theoretical and exper­

imental hydrodynamic behaviour. We employ the interface perturbation used in
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chapter 4, to generate the interface between our immiscible fluid components. This 

is equivalent to our improved isotropy interface with parameter k =  0, as issues 

relating to isotropy are not concerns we wish to address in this chapter.

Drop deformation was first investigated experimentally by Taylor [52] and by Rum- 

scheidt and Mason [53] for simple shear and plane hyperbolic flows. Fluid drops 

were deformed under shears by using Couette device and a four-roller apparatus 

respectively to induce external flows. Theoretical [54, 55] and numerical simulation 

results [43, 45] have been obtained for two dimensional drop deformations. Exper­

imental, theoretical and numerical results [56, 57, 58] have been obtained for three 

dimensional systems. These results include the examination of large drop deformar 

tions and provide results for drops deformed in surrounding fluids of equal viscosity.

6.2 Theory of drop deformation

Drop deformation may be characterised in a dimensionless form by defining a drop 

deformation parameter Z), where D  lies in the range of 0 < D < 1. Following Taylor

<6 1 »Cl -f" 0

where a and b are the maximum and minimum distances measured from the drop 

centre to a point on the drop surface see Figure 6.1. For a spherical drop a =  b and 

D  =  0, whilst for a long thin drop D —> 1.

Taylor first approximated the radius of a fluid drop which would resist the viscous
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stresses of a supporting fluid in shear in the small deformation regime (D «C 1) as

_  SS(ti +  tf) , .
7c(19t?' +  16ij)ij '  1

where r] (rf) is the suspending (drop) fluid shear viscosity and E is the macroscopic 

surface tension parameter. Thus Taylor’s estimate Eq. (6.2), only indicates the 

conditions above which marked deviations from a spherical shape occur. Therefore

Eq. (6.2) is taken as a comparison with theory, and the functional form for the

critical shear rate % at rupture is given by

7c =  (6 -3 )

where is a function of the viscosity ratio <j> =  tj/ tj'. Assuming that Eq. (6.3) is 

accurate, the dependence of % may be rewritten by substituting for the kinematic 

viscosity
1 r9

(6 .4 )
1

V ~  6 * - 1
_£J

where v =  77/p  and the macroscopic surface tension parameter is approximated by 

E(cr, cu) ~  a/co giving

7e ~  ^ g ( p A )  ( j Z - )  (6.5)

and all other parameters have their usual meaning. The need for a determination 

of g(p, (ft) may be avoided by constraining rj =  ??', thus making the two fluids the 

same viscosity and hence the viscosity ratio <j> =  1 (i.e. both fluids are relaxed using 

the same u) in all the simulations. This allows Eq. (6.5) to be used to examine the 

relationship between the critical shear rate j c and the surface tension parameter a 

and reciprocal drop radius Rearrangement and expansion of Eq. (6.5) to examine
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the variation of 4- with cj, is noted to give a predicted gradient /  intercept ratio 

m /c  =  —0.5 see Eq. (6.6).

1 2 R u R
7c ag{p, (ft) crg(p, (ft)

(6.6)

6.3 Experimentally observed drop deformations

In order to examine the ratio of flow forces attempting to deform and burst the drop 

to the surface tension we may define a Capillary number Ca [56]

C a = ^  (6.7)
(T

The capillary number is important when we wish to quantify the type of flow that is 

deforming a drop, once this is known along with the viscosity ratio 4> we may predict 

the expected deformation or burst of the drop.

In a weak simple shear flow {Ca < 1 )  and (j> =  1 an initially circular drop is seen to 

deform to an elliptical shape, its principle axis is seen to orientate at an angle a  to 

the direction of the flow Figure 6.1 [56]. As the flow rate is increased the drop shape 

elongates further, and an initial change in a  is seen, the drop undergoes an initial 

rotation as the shear rate is increased initially reducing a. Under moderate shears 

the drop equilibrates itself to the increased external flow and a  is seen to return to 

a  «  An oscillation in the deformation parameter D  and orientation angle a  is 

seen as a result of this re-equilibration. As the drop is subjected to higher shear 

rates its shape is seen to deform further into an elongated “S ” shape, as the drop 

necks it is seen to burst.
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Figure 6.1: Schematic of drop deformation under a simple shear flow, the large 
arrows indicate the deforming flow direction.

Figure 6.2: Schematic of drop deformation under an irrotational shear flow, the large 
arrows indicate the deforming flow direction.

In solenodial irrotational (plane hyperbolic) flow at small Ca and (j> =  1 an initially 

spherical drop is seen to deform to an elliptical shape, its principle axis is seen to 

orientate with the lattice y-direction Figure 6.2. If the flow rate is increased the 

drop is seen to deform further until a critical shear rate is reached and the drop will 

burst.
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6.4 Simulation

In the simple shear flow examination of suspended fluid drops, a line of equally 

spaced neutrally buoyant red component fluid drops were simulated suspended in 

a supporting blue fluid of equal viscosity. This was achieved by simulating a drop 

located centrally on a 90 x 60 lattice, subjected to a uniform y-direction shear (see 

Figure 6.1) and employing periodic boundary conditions on the lattice edge sites. 

The hydrodynamic shear was induced in the far field of the drop by adding a uniform 

velocity to boundary links. Positive y-direction velocity was added to the top of the 

lattice, whilst negative y-direction velocity was added to the bottom of the lattice of 

the suspending blue fluid. This velocity increment was added at each update of the 

lattice after the collision step (pre-propagate) allowing the advection of the lattice 

to propagate the shear flow.

The implementation of this scheme produces a shear field within the suspending 

fluid, which is proportional to the forcing increment. It must be noted that the 

presence of the suspended drop will distort the shear field, however the size of the 

drop is sufficiently small to produce a negligible effect, allowing a steady state far field 

shear rate 7  to be accurately measured. The simulated shear rate 7  was measured 

as the mean value of dzuy over a horizontal layer six sites deep and centred a fixed 

vertical distance of 25 lattice units from the undeformed drop centre. The shear rate 

was found to be constant over much of the suspending fluid, and also independent 

of system and drop size.
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Irrotational solenoidal flow in 2D or axisymmetric flow may be described around a 

stagnation point O (where the fluid velocity u  =  0), by the motion of the fluid in 

terms of a stream function if) [59]. In the case of 2D flow, with axes parallel to the 

principle axes of the rate of strain tensor G at the stagnation point O ,

G = \h {y 2 -  z2) (6.8)

ip(y, z ) =  hyz (6.9)

where h is a constant, making G analogous to 7  as a measurement of the induced 

flow potential. The streamlines around O are rectangular hyperbolae, all of which 

asymptote to the two orthogonal directions of the streamline through O. The flow 

potential was calculated for each of the lattice boundary sites and scaled using the 

parameter h. A scaling of the flow potential to less than 10% of the mean link 

density p, was used to prevent spurious physical effects from being introduced into 

the system and creating subcritical burst [56]. The boundary sites were then re­

allocated an equilibrium density through Eq. (6.10) to simulate the effect of the 

flow field.

A^9(x, t) = Up 1 +  3uCj +  j(u c j )2 -  ^ u 2 (6.10)

This was achieved by setting the velocity components u of the equilibrium distri­

bution, to the pre-calculated velocity, before the lattice was propagated. Imple­

mentation of this method initially affects the system’s global mass and momentum, 

however these parameters are effectively reset to new conserved values after several 

updates of the lattice. Effectively an inverse mapping of the equilibrium distribution 

for the lattice edge sites will provide a slightly modified density compared to the
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bulk system, however this effect is negligible due to the system size.

Droplet burst in each flow regime was established by increasing the shear flow and 

allowing the system to equilibrate, then examining the closing configuration of the 

system by inspection. If drop burst had occured the shear rate was halved, and 

the previous drop configuration reloaded and the simulation was repeated. This 

methodology was employed to prevent non-equilibrium effects from inducing drop 

rupture and allowed the isolation of the shear rate to a degree of accuracy defined 

by the simulator.

6.5 Drop deformation measurement

The drop deformation measurement was made by assuming that in the low defor­

mation regime, the drop shape may be approximated by an ellipse. This assumption 

is verified by Halliday and Care [43] who used a grid search optimised fit of a de­

formed drop and found good agreement compared to a rotated ellipse. The drop 

symmetry axes (along a and b) of the drop coincide with the principal axes of the 

inertia tensor I (leading diagonal terms), with the smallest moment corresponding 

to the semi-major axis of the ellipsoid. The drop centre of mass was calculated by 

considering moments about the origin of the lab frame co-ordinates and components

I ap =  5 3  p f f i a p  ~  VaVp) (6 .1 1 )
aP

of the inertia tensor I [60] were calculated, where r =  ^ { y 2 +  z2). An orthogo­

nal transformation on I provides the drop’s principle moments of inertia from the
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eigenvalues of the calculated secular equation of the matrix. In two dimensions the 

secular equation has two roots, with two corresponding eigenvectors. The lab frame 

orientations of the drop semimajor and semiminor axes were then obtained from the 

direction cosines of the principle axes of I. The traceless inertia tensor was evaluated 

from

I -  | i r ( I ) l22 (6.12)

where I22 is the unit two-dimensional matrix. Diagonal elements of Eq. (6.12), are 

given by the order parameter

D = ± \ { I y - I z) (6.13)

where Iy and Iz are the principle moments corresponding to rotation about the 

semiminor and semimajor axes respectively. As the eccentricity of the drop increases 

so does the value of the deformation parameter D, for a circular undeformed drop 

the quantity is zero. The angle between the semimajor axes and the y-axes of the 

lattice termed a  is used to quantify the orientation of the drop to the induced shear 

flow.

6.6 Shear flow results

Induced drop deformation by a far-field shear was studied for a series of drops of

radius R  =  13 on a 90 x 60 lattice, unless otherwise stated. In the Figures 6.3...6.6

the progressive deformation of an originally circular suspended red fluid drop is 

illustrated. The successive frames illustrate the departure of the drop from it’s
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original circular shape before a critical shear rate 7 C is reached and the drop bursts. 

Under moderate shear the drop is seen to assume an ellipsoidal shape and orientate 

at an angle of a  «  45° to the direction of the flow. As the shear rate is increased 

the drop shape is seen to elongate further, until a critical shear rate 7c is reached 

the drop is seen to “neck” and rupture into two separate drops. After the drop has 

burst the surface tension is seen to restore the circular shape of the smaller drops.

N
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Figure 6.3: Frame (a) 7  =  3.25 x 10-3.

The variation of the drop orientation angle a  with the shear rate 7  for a drop 

with an originally undeformed radius R  =  13, relaxation parameter u  =  0.91 and 

a surface tension a = 0.0075 is shown in Figure 6.7. The fit through the data 

is of the functional form a  = A(7C — 7 )*, with an optimum fit being found for 

A = 3.2, k, = 0.27 and j c = 0.0057. The angular dependence of a  is seen to be linear
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Figure 6.4: Frame (b) 7  =  3.45 x 10 3.
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Figure 6.5: Frame (c) 7  =  3.6 x 10 3.
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Figure 6 .6 : Frame (d) 7  =  3.7 x 10 3.

at low shear rates well below the j c. In this regime our ellipsoidal approximation to 

the interface is accurate, however as the deformation increases our approximation 

to the interface becomes invalid due to the large distortions in the drop shape. The 

intersection of the fit to the data and the abscissa may be used as an estimate of 

7o however the critical shear rate was not measured in this way, but as described 

earlier by inspection.

Figure 6.8 shows the proportional relationship between the critical shear rate yc and 

the surface tension parameter a in the range of 0.002 <  a  <  0.015. The continuous 

line represents a linear regression fit to the data with a gradient of 0.496 ±  0.015 

with an ordinal intercept of —12.01 x 10~5±  8.049 x 10~5. The relationship between 

7C and the reciprocal radius T is shown in Figure 6.9. A surface tension a  =  0.0075
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Figure 6.7: Variation of drop orientation angle a  with shear rate 7 .

was used, whilst the lattice was scaled to keep the same aspect ratio. The data 

was collected over a drop radius range 10 < R  < 20 on lattice sizes ranging from 

76x56 140x92, and with a lattice relaxation parameter u) = 0.91. The continuous

line is a linear regression fit to the data with a gradient of 0.051 ±  0.001 with an 

ordinal intercept of 29.174 x 10~5 ±  6.337 x 10~5.

Figure 6.10 shows the variation of reciprocal critical shear rate 4- with the lattice 

relaxation parameter cj at a — 0.0075. A range of equal red and blue fluid BGK 

relaxation parameters in the range 0.7 < uj < 1.4 were investigated, maintaining 

the viscosity ratio <j> = 1. The dotted line represents a fit through the centre of the 

data with a gradient /  intercept ratio of m /c  = —0.5 as predicted by our analysis, 

a linear regression fit to the data (solid line) obtains a gradient /  intercept ratio of
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Figure 6 .8 : Variation in % with interface perturbation parameter cr. The straight 
line represents a least squares fit to the data.
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Figure 6.9: Dependence of 7C on reciprocal drop radius -h. The straight line repre­
sents a least squares fit to the data.
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m /c  =  —0.425. The difference between the measured and theoretical values of the 

gradient /  intercept ratio may be explained by careful consideration of Figure 4.15. 

We see from this figure that the macroscopic surface tension E takes the general 

form

mu . „
E =  b ac (6-14)

U)

where the gradient is given by m  and c is the ordinal intercept. Re-arranging Eq.

(6.14) and letting k' =  ^  we may write

1 + o )k'E =  mo-

letting

u
(6.15)

a/ =
U)

.1 +  k'u.

gives the surface tension the functional form

(6.16)

E =  ^  (6.17)
u r

where a/ may be termed an effective relation parameter. The simplification used 

for E ~  cr/w in Eq. (6.5), compared with the measured form in Eq. (6.17) may be 

used to explain the differences found between the measured and theoretical ratios. 

Additionally, Taylor’s theoretical prediction of burst Eq. (6.2), is also approximate.

The streamlines around the drop are shown in Figure 6.11 and a stable shear is seen 

in the drop far field. The decreasing distance between streamlines at the top and 

bottom of the lattice, indicates the associated increase in velocity and agrees well 

with theory. The presence of the drop is seen to induce a small distortion to the 

velocity field, indicated by the oscillation in the streamlines towards the centre of 

the lattice.
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Figure 6.10: Dependence of 1/%  with BGK relaxation parameter u . The dotted 
line represents a fit through the centre of the data with a gradient /  intercept ratio 
of m /c  =  —0.5 and the solid line represents a linear regression fit to the data  with 
a gradient /  intercept ratio of m /c  =  —0.425.
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Figure 6.11: Streamlines around a moderately deformed drop with simulation pa­
rameters of a = 0.0075, uj =  0.91 and R  = 13.

132



CHAPTER 6. INDUCED DROP DEFORMATION AND BURST

6.7 Solenoidal irrotational flow results

Figures 6.12...6.17 illustrates the progressive deformation of an originally circular 

suspended red fluid drop under a solenoidal irrotational flow field. The successive 

frames illustrate the departure of the drop from it’s original shape until burst. Drops 

with an undeformed radius R  =  13 and a surface tension parameter a =  0.0075 and 

relaxation parameter u  =  0.91 were evolved on a 120 x 60 lattice, unless otherwise 

stated. The flow field causes the drops to deform into an elliptical shape with the 

drop semi-major axes parallel with the lattice y direction. As the magnitude of the 

flow field is increased the drop is seen to compress further in the z direction whilst 

elongating in the y direction, until the drop necks and finally bursts. Once the drop 

has burst into two separate drops of approximately equal size, the surface tension 

of the smaller drops drives their shape to a more circular configuration. Figure 6.17 

shows the closing configuration of the drops as they approach the simulation box 

walls at a simulation interval of 20000 steps after burst. The drops have not had 

time to fully return to a circular shape and as they are driven to the boundaries they 

distort. We note with a simulation box on infinite length, as the simulation advances 

the drops would regain their circular shape, whilst drifting apart indefinitely.

The linear relationship between the critical solenodial flow potential Gc with surface 

tension parameter a in the range 0.005 < a < 0.015 is shown in Figure 6.18. Gc 

is noted to be analagous to the critical shear rate 7C, used in the simple shear flow 

simulations. The continuous line is a linear regression fit to the data with a gradient 

of 0.057 ±  2.234 x 10"4 with an ordinal intercept of 5.2 x 10-5 db 2.369 x 10-6.
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Figure 6 .12: Frame (a) G =  3.55 x 10 4.
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Figure 6.13: Frame (b) G — 3.9 x 10-4.
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Figure 6.14: Frame (c) G =  4.45 x 10 4.
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Figure 6.15: Frame (d) G =  4.6 x 10 4.
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Figure 6.16: Frame (e) G =  4.8 x 10 4.
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Figure 6.17: Frame (f) G =  4.8 x 10 4.
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Figure 6.18: Variation in Gc with interface perturbation parameter cr. The straight 
line represents a least squares fit to the data.

Figure 6.19 shows the variation of critical solenodial flow potential Gc with reciprocal 

radius A surface tension parameter of a — 0.0075 was used, whilst the lattice 

was scaled to keep the same aspect ratio. The data was collected over a drop radius 

range 10 < R  <  20 on lattice sizes from 92 x 46 —»• 186 x 94. The continuous line 

is a linear regression fit to the data with a gradient of 6.570 x 10-3  ±  9.942 x 10-5  

with an ordinal intercept of —1.981 x 10~5 dt 7.212 x 10~6.

The variation in reciprocal critical shear rate with the lattice relaxation parameter 

uj at a = 0.0075 is shown in Figure 6.20. A range of equal red and blue fluid BGK 

relaxation parameters in the range 0.7 < u  < 1.5 were investigated, maintaining the 

viscosity ratio (j> — 1. The continuous line represents a fit through the centre of the 

data with a gradient /  intercept ratio of m /c  = —0.5 as predicted by our analysis,
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Figure 6.19: Variation in Gc with reciprocal drop radius The straight line repre­
sents a least squares fit to the data.

the dotted line represents a linear regression fit to the data and obtains a gradient 

/  intercept ratio of m /c  — —0.413.

Figure 6.21 depicts the streamlines around the elliptically deformed drop of Figure 

6.13 and shows good agreement with theory in the drop far-field.
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Figure 6.20: Variation of 1 /G c with BGK relaxation parameter u;. The continuous 
line represents a fit through the centre of the data with a gradient /  intercept ratio 
of m jc  — —0.5 and the dotted line represents a linear regression fit to the data and 
obtains a gradient /  intercept ratio of m jc  — —0.413.
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Figure 6.21: Streamlines around a moderately deformed drop (see Figure 6.13) with 
simulation parameters a =  0.0075, u  =  0.91 and R  =  13.
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6.8 Conclusions

In this chapter our model has been used to simulate the deformation and burst of 

neutrally buoyant immiscible fluid drops of different radii R, surface tension a and 

BGK relaxation parameter u. The model allows the simulator to set the kinematic 

viscosity v and the viscosity ratio </>, and adjust the macroscopic surface tension 

parameter £  through a. We may implement with relative ease, different boundary 

conditions in order to simulate simple shear flows and capture the correct hydrody­

namics of ruptured liquid drops. As predicted by theory drop burst occurs at higher 

shear rates, than analogous irrotational solenoidal flow fields in our simulations.

Under shear flow drops exhibit qualitatively the correct deformation with the semi­

major axis orientating at 45° to the induced flow. The dependence of measured 

critical shear rate % for drop burst upon all independent simulation parameters is 

in good agreement with hydrodynamic theory. The proportional dependence of the 

critical shear rate % upon the surface tension parameter a and reciprocal drop ra­

dius as predicted by theory is found. However an extra complexity in the relation 

between the reciprocal critical shear rate % and relaxation parameter u, beyond 

0(1) in velocity is seen.

Under irrotational solenoidal flow, drops again exhibit qualitatively correct defor­

mation, with the semimajor axis parallel to the horizontal y axis. Again a linear 

relation is found between the flow field potential Gc and a and A similar relation 

between the reciprocal critical shear and the relaxation parameter a;, is found for
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the irrotational solenoidal flow field compared with the simple shear simulations.

The dependence of reciprocal critical shear rate upon BGK relaxation parameter 

u , for both types of flow suggests that the relaxation parameter may be analysed 

in terms of an effective relaxation parameter of the form u ' =  p u. However, due 

to the excellent agreement between the critical shear rate and the other simulation 

parameters such a line of inquiry would require cautious investigation.
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Chapter 7

Conclusions and Future Work

7.1 Summary

In this thesis, we have developed theory which is used to calculate the surface tension 

induced in static plane interfaces in a two component LBGK fluid. This analysis 

is based upon the examination of the microscopic collisions in the model and the 

obtained results compared well with simulation measurements. We extend our anal­

ysis to curved interfaces and propose a scheme for incorporating the influence of 

the interfacial microcurrent, which is based upon arguments of lattice symmetry. 

We find good agreement between theory and simulation results, based upon the 

microcurrent stream function and the surface tension calculated from the pressure 

tensor and Laplace law. These results reveal that the surface tension in our model 

is anisotropic, and dependent upon lattice link orientation, which we proceed to
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investigate further

The results of chapter 5 convincingly prove that the transmission of tangential stress 

by the interface separating the immiscible fluid components shows comprehensive 

agreement with theory. The examination of normal stress transmission in two di­

mensional by substitution of the tangential stress components, has allowed us to 

develop a Fourier based interface investigation technique. By making no predeter­

mined assumption about the interface shape, we are able to base our analysis solely 

upon the discrete singular nature of the interface. This has allowed a quantitative 

analysis of the anisotropy of macroscopic drop surface tension to be made, for static 

and moderately deformed drops. It has also facilitated the development of a new in­

terface perturbation technique with improved macroscopic surface tension isotropy, 

and a reduced microcurrent.

Finally, we describe in chapter 6 the results of an application of our model to the 

deformation and burst of neutrally buoyant drops subjected to simple external flows. 

Under simple shear and irrotational flows, drops are seen to exhibit qualitatively the 

correct deformation and orientation to the external flows. The relationship between 

the measured critical shear rates for drop burst upon all simulation parameters is in 

good agreement with hydrodynamic theory. The dependence of reciprocal critical 

shear rate for drop burst upon BGK relaxation parameter u  for both types of flow 

suggests that the model may need to be analysed in terms of an effective relaxation 

parameter of the form u ' =  p u). However, the excellent agreement found between 

the other simulation parameters would restrict this line of investigation and effect
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our calculated value of macroscopic surface tension E ~

7.2 Future work

It is perhaps the case that by liberating the interface from the lattice we may increase 

the isotropy of both drop shape and surface tension. Examination of the interface 

geometry for both static and deformed drops shows clear evidence of preferential 

interface orientation parallel to lattice link directions. This may we suggest be 

attributed to the highly singular nature of the drop interface. However the interface 

may be liberated from the underlying lattice, by performing a modification to the 

interfacial link densities after they have been re-allocated to the lattice via the 

re-colour procedure. The idea behind this modification is probably best explained 

through the use of the following example. Consider the interfacial site depicted in 

Figure 7.1, we see the allocation of the red density (red circles) at a particular site 

and the superposing of the calculated colour field f(x, t) and colour flux q(x, t), for 

this particular allocation. The colour flux is observed to be below the colour field, 

and requires rotation in the anti-clockwise direction in order to lie exactly along 

the colour field direction f(x ,t) to maximise the colour flux along the colour field 

direction.

In this particular case the first lattice link to be allocated red density was the i — 3 

link (first link to be allocated in the precalculated re-colour hierarchy). Starting 

from this link we may move clockwise to identify a source link, the source link is
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Figure 7.1: Schematic representation of the identification of source and drain links

defined as the last link in a clockwise direction from i =  3 (in this example) which 

contains some red density, the source link in our example is link i = 5. This process 

may be repeated in the anti-clockwise direction to find the first link which does not 

contain a completely full allocation of red density, this link is then termed the drain. 

In this particular example link i = 2 is completely full (filled circle) so the next link 

to be allocated red density in this direction is link i — 1 (unfilled circle). This scheme 

may simply be reversed to locate a source and drain link for cases where the colour 

flux angle is greater than the colour angle. The physical effect of interface liberation 

on the isotropy of the drop may be examined through the harmonics of our developed 

Fourier fitting procedure to the interface. An improvement in the isotropy of the 

drop shape would be evident by a reduction in magnitude of higher order harmonic 

components of our discrete approximation (the fit) to the drop interface. We note 

as the fit to the interface is performed in two parts (firstly a fit to the y  then z  

co-ordinate data), consideration of the harmonics of the y and z  co-ordinates fits 

separately would be required. By considering the sum of the Fourier components
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Fn = ^ (a\ ) against n the harmonic number, we may examine the magnitude of

the harmonics for systems with and without this modification and thus the associated 

improvement in isotropy.

Our Fourier based interface investigation technique makes no predetermined assump­

tions about the immiscible interface, thus, it may be employed to investigate other 

interface generation models such as the Shan and Chen type interface [32]. We sug­

gest that a comparison of our improved isotropy interface (of chapter 5) with other 

models, by measuring the magnitude of the microcurrent and the isotropy of the 

surface tension would allow questions relating to the hydrodynamic boundary con­

ditions of immiscible lattice Boltzmann models to be addressed. This would allow 

the identification of the most hydrodynamic interface generating technique.

An important and obvious extension to this research is the expansion of our model to 

three dimensions 3D. This will allow the effect of the second radius of curvature upon 

the burst process to be fully assessed in the case of induced drop burst, and allow the 

simulation of real world applications. The BGK model may be easily implemented in 

three dimensions using the D3Q19 scheme [23], which is based upon a cubic lattice. 

Interface generation in three dimensions would require the development of a modified 

interface perturbation scheme, based upon the discretisation of a unit sphere. The 

discretisation may be made to any required limit of accuracy, and such schemes have 

already been implemented in three dimensions for LG simulations [36]. We note 

however, the computational expense of moving to three dimensions will probably 

require the use of parallel computation, in order to simulate systems large enough to
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perform realistic simulations of physical processes. Parallel development is facilitated 

by the inherently parallel nature of the LB scheme, and the current development 

of lattice models on massively parallel machines [61]. We note that a parallel 

model may be easily developed from our existing codes and quickly parallelised for 

computation on a shared memory computer, such as the Silicon Graphics 0rigin2000. 

By using the fork-join parallelisation technique employed by OpenMP [62], compiler 

directives may be simply introduced into the code to parallelise individual routines 

and loops.

The development of a three dimensional model would be further facilitated by 

employing the Shan and Chen interface technique as this scheme requires no re­

colouring technique to be devised and has been shown recently [51] to produce a 

more hydrodynamic interface. A further extension may be made to allow the simu­

lation of fluid components with differing densities. This may be achieved by following 

Shan and Chen [32] (see chapter 2), and introducing a scaling factor determining 

the molecular mass of a particular fluid component.

The investigation of new hydrodynamic models such as immiscible Dissipative Par­

ticle Dynamics techniques [47], that allow the examination of immiscible fluids at 

the same mesoscopic length scales as LB models also warrant further examination. 

This technique allows the modelling of complex multi-component fluids and as the 

fluid particles are unrestricted to lie upon a discrete lattice, the transition from two 

dimensions to three dimensions is greatly simplified. As the models are off-lattice 

they will not suffer as greatly from problems related to anisotropy.
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7.3 Conclusion

In conclusion we have developed a new two component fluid model based upon a 

D2Q9 lattice BGK scheme. The model has been used to simulate the deformation 

and burst of neutrally buoyant immiscible fluid drops of different radii R, surface 

tension a and BGK relaxation parameter u. The model allows the simulator to 

set the kinematic viscosity v and the viscosity ratio <j>, and adjust the macroscopic 

surface tension parameter E through a. Our model allows the implementation, with 

relative ease of a range of boundary conditions in order to simulate simple shear 

flows and solid boundaries. The potential for further development of this technique 

to simulate industrially relevant systems is wide ranging. This work has shown for 

the first time that hydrodynamic stresses are transmitted correctly by an immiscible 

Lattice Boltzmann BGK interface and this will hopefully inspire greater interest in 

the development of this type of fluid modelling technique in both academia and 

industry.
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Appendix A

A .l  Lattice link vector index

i Cix Ciy Oi cos(29i)
1 -1 1 2 135 0
2 0 1 1 90 -1
3 1 1 2 45 0
4 1 0 1 0 1
5 1 -1 2 -45 0
6 0 -1 1 -90 -1
7 -1 -1 2 -135 0
8 -1 0 1 180 1

9 (rest) NA NA 0 NA NA

Figure A.l: Lattice link vector index, length and orientation
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APPENDIX A.

A. 2 Colour Field Hierarchy Table

Hierarchy Order 1 2 3 4 5 6 7 8 9
Segment 1 3 4 5 2 9 6 1 8 7
Segment 2 3 4 2 5 9 1 6 8 7
Segment 3 3 2 4 1 9 5 8 6 7
Segment 4 3 2 1 4 9 8 5 6 7
Segment 5 1 2 3 8 9 4 7 6 5
Segment 6 1 2 8 3 9 7 4 6 5
Segment 7 1 8 2 7 9 3 6 4 5
Segment 8 1 8 7 2 9 6 3 4 5
Segment 9 7 8 1 6 9 2 5 4 3
Segment 10 7 8 6 1 9 5 2 4 3
Segment 11 7 6 8 5 9 1 4 2 3
Segment 12 7 6 5 8 9 4 1 2 3
Segment 13 5 6 7 4 9 8 3 2 1
Segment 14 5 6 4 7 9 3 8 2 1
Segment 15 5 4 6 3 9 7 2 8 1
Segment 16 5 4 3 6 9 2 7 8 1

Figure A.2: Colour Field Hierarchy Table

The colour field hierarchy table contains the order which links are allocated red 

density in the re-colour procedure. Consider the allocation required when the colour 

field intersects Segment 2. Red density is firstly allocated to link i =  3, then % — 4, 

2 =  2 and so on down the hierarchy, the final link to be allocated is diametrically 

opposite the first link 2 =  7. Note the stationary link 2 =  9 is chosen to lie in the 

middle of the hierarchy.
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v i  ̂ Induced burst of fluid drops in a two-component lattice Bhatnager-Gross-Krook fluid
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We describe a two-dimensional simulation of burst in neutrally buoyant drops subject to shear using a 
two-component, two-speed lattice Bhatnager-Gross-Krook (BGK) fluid. Measuring the dependence of critical 
shear rate for drop rupture on flow parameters, our results validate the method over a range of simulation 
variables. The model’s interfacial tension parameter <x, undeformed drop radius, and BGK relaxation parameter 
<t> are all found to have the correct influence upon the process of burst required by simple hydrodynamic 
theory. Within the model, the macroscopic surface tension and fluid viscosity are coupled; however, this does 
not limit the application of the technique. [S1063-651X(96)11008-4]

PACS number(s): 47.55.Dz, 05.50.+q

The mechanical formation of emulsions from multicom­
ponent immiscible fluid mixtures is a complex problem of 
considerable technological and theoretical interest. Advec- 
tion of suspended drops and marked departures in shape be­
fore burst reduce the utility of traditional numerical methods. 
However, competitor lattice Boltzmann (LB) techniques al­
low the simulator to calculate the flow of a viscous incom­
pressible fluid by solving the dynamics of colliding and 
propagating prototype particles on a regular lattice using a 
Boltzmann type equation [1]. The simplest and probably 
most tractable lattice Boltzmann variant derives its inspira­
tion from the work of Bhatnagar, Gross, and Krook on the 
Boltzmann equation of statistical physics [2]. The appropri­
ately named lattice BGK method [3-5], then, incorporates 
both isotropy and Galilean invariance directly into a model 
that has the advantage of simple collision step and that has 
been shown to recover single phase hydrodynamics [3-5].

Two-dimensional lattice Boltzmann immiscible lattice gas 
(LBILG) techniques [6] have been applied to droplets under 
shear to demonstrate qualitatively correct steady-state inter­
facial hydrodynamic boundary conditions [7] and, in three 
dimensions, to sheared phase separation [8]. The growing 
literature on this method has been recently reviewed by 
Rothmann and Zaleski [9].
> Here we report on simulations using a LBILG BGK algo­
rithm enhanced to contain different species and an interface, 
with advantages similar to the model in [7], applying the 
©ethod to the simulation of burst in an infinite, equispaced 
line of neutrally buoyant red fluid component drops sus­
pended along the x axis, within a blue component, the flow 
® the far field of which is a uniform shear of rate y [10].
.-• As we have commented, an attractive feature of the BGK 
approach is its simple collision step with a scalar collision 
operator co controlling the simulated fluid kinematic viscos­
ity through [4]

V= 6
2
- - 1co

*3-*51X/96/54(3)/2573(4)/$10.00

(1)
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Designated D2Q9 [4], our lattice BGK algorithm uses a 
square lattice with links c, to both nearest and next-nearest 
neighbors. As such we use a two-speed lattice, the multi­
speed nature of which requires careful consideration when 
incorporating algorithmic extensions designed to separate 
red and blue densities R fx j) ,  Bfx,t) [6]. As a measure of 
local gradient in the color distribution, a local “color field” 
f(x,r) is calculated using direction-weighted contributions of 
chromatic link densities from f(x,/) = S (;[/?y(x+c / , 0  
-Byfx+c, ,r)]c, [6,7]. The BGK collision step redistributes 
achromatic density Nj(x,t) = Ri(x,t) + Bj(x,t) to links ac­
cording to the local flow conditions. The tendency of an 
equivalent automaton color segregation algorithm [11] to ac­
cumulate (denude) density on links perpendicular (parallel) 
to an interface line is introduced at this stage, after Gun- 
stensen et al. [6], by applying perturbations to link densities 
with reference to the direction of f(x,r), the amplitude of 
these perturbations having a linear dependence on a “surface 
tension” parameter cr [7]. However, it should be noted that 
Gunstensen et al. use a linearized lattice Boltzmann scheme 
rather than the BGK method described in this work. Color is 
allocated to collided, perturbed link densities in that distribu­
tion which maximizes the work done by a color flux in the 
direction of the color field [6,7]. Essentially, all that is nec­
essary to achieve such an allocation is that as much red 
(blue) as possible should color the density on the link cf- of 
largest (smallest) projection onto the direction of f(x,r).

For a surface tension algorithm such as ours, it may be 
shown [10,11] that the form of the macroscopic surface ten­
sion £  takes the form

X((t,oo)~<j Ico, (2)

where co determines lattice fluid kinematic viscosity as given 
in Eq. (1). Other LBILG’s exhibit similar dependence of 2  
upon collision parameters and hence viscosity. In [6], £  is 
shown to depend directly upon \ _1 where \  is that eigen­
value of the collision matrix which determines the simulated 
fluid kinematic viscosity through v= —|(2 \ -1  + 1 ). The de-
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pendence of 2  upon a collision parameter in an LB fluid has 
important consequences to which we shall return.

Having initialized links within a circular central portion of 
lattice with red density to form a drop, a shear in the x 
direction was applied in its far field to the outlying blue fluid 
by perturbing appropriate lattice-edge link densities [7]. The 
observed shear rate y generated by this perturbation was 
measured as the mean value of dvx/dy over a horizontal 
layer 6 sites deep, always centered a fixed vertical distance 
from the axis of the line of undeformed drops. A position for 
this layer, sufficiently far from the axis to render the mea­
sured shear rate sensibly independent of system and drop 
size, was easy to establish for y  was observed to be constant 
over much of the blue fluid.

For the large distortions encountered in this work, ap­
proximate theories cease to apply and we here characterize 
drop shape and orientation only in terms of a , the largest 
distance from the center of mass O to any point A on the 
perimeter (defined by mixed color sites) and drop orientation 
a, the angle subtended at the horizontal by OA.

All results derive from steady-state drops with unde­
formed radii R: 1 0 < # < 2 0  lattice spacings, each evolved 
(collided, streamed) for 20 000 lattice updates, over which 
site density was initialized to 1.8 and unless otherwise stated, 
results relate to lattices of 90X60. Sizes of up to 140X93 
were used to minimize size effects and to facilitate compari­
sons between drops of different initial radii, when overall 
lattice proportions were scaled with the initial radius. The 
range of surface tension parameter a  was determined by re­
quiring the interfacial density perturbations be less than 10% 
of a typical nonzero velocity link density. The range of pa­
rameter co was determined from considerations of equilibra­
tion time and stability [4].

Figure 1 illustrates a progressive drop distortion with in­
creasing applied shear, the constant direction of which is 
indicated by the arrows in frame 1(a). The sequence demon­
strates progressively greater departure from an initially ellip­
soidal shape well before a critical shear rate yc is reached, 
where rupture into two or more drops occurs depending on 
conditions. yc was measured by increasing the perturbations 
applied to lattice-edge densities (throughout, these remained 
< 10% of unforced values), allowing stabilization and mea­
suring the resulting blue fluid shear rate while observing the 
final configuration of the drop(s). In this way one can deter­
mine, to any required accuracy, the value of y at which 
rupture occurs, and its associated error, by extrapolating the 
(linear) graph of applied y against lattice-edge perturbation 
beyond the last observed y admitting of a whole drop. Note 
that yc was obtained, as for all data, at a fixed distance from 
the drop, in a horizontal layer of sites 25 lattice units off 
center.

According to approximate theory [7,12] the drop orienta­
tion a increases linearly in small applied shear. In a typical 
variation between a and y, Fig. 2 shows this linear regime in 
our data when y  is well away from the critical value. It is 
tempting to associate the point at which a curve of the form 
a = A (y — yc)K fitted through these data cuts the abscissa 
with the critical shear rate yc and, within the limits of obser­
vational accuracy, this did appear to be the case. However,

the latter quantity, as recorded in Figs. 3-5, was. actually 
determined as discussed above.

Taylor [13] first approximated, in the surface tension 
(small deformation) regime, a maximum stable radius R for 
drops suspended in shear fields, which may withstand the 
disruptive viscous stresses of the shearing fluid,

R =
8 2 (7 7 +  7]')

yc(\9rj' + 1677) ’ (3)

with 77 ( 77') the suspending (drop) fluid shear viscosity. In 
our results (e.g., Fig. 1) even drops with large surface ten­
sions depart markedly from a spherical form before burst. 
Strictly, Taylor’s estimate (3) only indicates the conditions 
under which marked deviations from a spherical shape occur. 
However, when one considers that the only adimensional 
quantities that can be constructed with the parameters of the 
problem are a capillary number 2 /#  77%. and viscosity ratio 
<f>= 77/ 77' it becomes clear that, at least, the general form of 
the last equation is valid as a means for predicting yc in 
terms of the present flow’s parameters. Equation (3) is there­
fore taken as a basis for comparison with theory and by 
rearranging it we obtain a functional form for the critical 
shear rate yc at a rupture of

(4)

where /  is a function of only cf) and which, on the basis of 
Taylor’s approximation [Eq. (3)], would be of the form 
/(</>) = (a + bcf))/(c + d(f>). We assume that (4) applies to our 
model and, substituting from (1) and (2), we take the depen­
dence of yc upon simulation parameters co, cf), and a  for this 
lattice BGK fluid to be of the form

(51

where p denotes lattice density and g(p,</>) may be related to 
/(</>) by using (4) and the relation v= rjtp. The need for a 
specific determination of the function g(p,cf>) may be 
avoided by restricting the BGK parameter co to take the same 
value in both fluids and hence <£=1 in all our results.

Figures 3 and 4 exhibit the proportional dependence of 
yc upon independent parameter a  and l/R as predicted by
(5), for simulations in which the BGK relaxation parameter 
for both fluids is held fixed at co = 0.91. For Fig. 3, the un­
deformed drop radius was maintained constant at R= 13. In 
the case of Fig. 4 the surface tension parameter was fixed at 
cr=0.0075, and the lattice size was scaled to maintain a con­
stant proportion between drop radius R and the linear lattice 
dimension.

Figure 5 shows the variation in l/yc with the BGK relax­
ation parameter co for fixed interfacial perturbation parameter 
cr= 0.0075 and undeformed radius #= 13 . yc was obtained 
for a range of equal red and blue fluid BGK relaxation pa­
rameters 0.7< co< 1.4, thereby maintaining the viscosity ra­
tio cf) constant. Collision parameter co influences the model s 
macroscopic surface tension through (2) and hence (5). This 
latter equation predicts a linear dependence of \lyc upon 
co, other parameters being constant, and Fig. 5 provides sup-
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, FIG. 1. Contour plots of constant red density depict a selection 
four configurations [(a)-(d)] in the progressive deformation and 
entual burst of a drop of original radius R= 13 lattice spacings in 

' 'plied shear fields of 3.270X10-3, 3.503X10-3, 3.569X 10-3, 
,Ji3.500X 10“3 (time steps)-1, on a lattice of 90X60. The BGK 
, taxation parameter in use for these data was co = 0.91 and the 
.fcrfacial tension perturbation parameter was a= 0.0075.
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FIG. 2. A typical variation of a with y for a drop with unde­
formed radius R= 13. cu = 0.91 for both fluids and cr=0.0075 on a 
lattice of xv dimension of 90X60. The line fitted through this data 
is a=A(y— yc)K. Optimum fit is obtained with the parameters 
A = 3.2. A'= 0.27. yc = 0.0057.

port for this prediction. The recorded values of \/yc lie ap­
proximately on a line of best fit with gradient to intercept 
with a ratio of -0.41 against the predicted ratio —0.5 and 
this perhaps suggests that the model may need to be analyzed 
in terms of an effective relaxation parameter, possibly of the 
form co' =kco. Caution needs to be exercised, however, bear­
ing in mind the excellent agreement with the simulation of 
Eq. (1) [4] and also the effect of such a modification upon 
macroscopic surface tension, through (2).

It is known [12] that high viscosity drops may be broken 
(after long times) by solenoidal (irrotational) flows but are 
invulnerable to flows with high vorticitv. The range of our 
simulated fluids' kinematic viscosities was restricted and for 
larger values of the latter parameter ( v>  1. corresponding to 
a; <0.29) the drop did not rupture w'ith the simulationally 
accessible applied (nonsolenoidal) shears, instead appearing 
to align indefinitely to the horizontal.

In conclusion, using a lattice Boltzmann fluid we have 
simulated rupture in neutrally buoyant, immiscible fluid
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FIG. 3. Variation in yc, with interface perturbation parameter 
cr in the range 0.002<<x<0.016 with a; = 0.9 in both fluids. All 
data were obtained from a drop of constant undeformed radius R of 
13 lattice units on a lattice of xy dimension 90X60. The solid line 
represents a straight-line least squares fit with an ordinal intercept 
of 9.5X10-5.
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FIG. 4. Dependence of yL. on reciprocal drop radius R with 
10SSRSS20 (lattices 76X 56-140X 92) for a drop with fixed surface 
tension parameter cr = 0.0075. and a> = 0.91 in both fluids. The solid 
line represents the least squares fit to the data with an ordinal inter­
cept of —2.3X 10“J (time steps)-1.

drops of various undeformed radii R. surface tension cr, and 
BGK relaxation co parameters. The dependence of macro­
scopic surface tension 2 , upon a and co does not impinge 
upon useful application of the method since a simulator may 
fix p, (b (via io. co'). and thereafter adjust 1 through a. 
However, the data of Fig. 5 suggest a possible need to refine 
our present understanding of the interplay between <x and 
BGK relaxation parameter cu beyond first order in velocity.
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We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann 
models of immiscible fluids, may be extended to a two component, two-speed two-dimensional (D2), nine-link 
(Q9) lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between 
the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the 
two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of 
interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in 
lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence 
upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation 
results based on the microcurrent stream function and surface tension results from the pressure tensor or 
Laplace law. [S1063-651X(98)03801-X]

PACS number(s): 47.1 l.+j, 47.55.Dz, 47.55.Kf, 68.10.—m

I. INTRODUCTION

Formation of emulsions from multicomponent immiscible 
fluid mixtures is a complex problem of considerable techno­
logical and theoretical importance. The utility of traditional 
numerical methods is inhibited by advection of suspended 
drops and marked departures in shape before burst. As a 
result, there is increasing interest in the study of rheological 
problems by lattice Boltzmann [1-5] and, most recently, dis­
sipative particle dynamics technique [6].

Of the one-component lattice Boltzmann schemes avail­
able, that which is algorithmically the simplest draws its in­
spiration from the work of Bhatnagar, Gross, and Krook on 
the Boltzmann equation of statistical physics. The epony­
mous lattice Bhatnagar-Gross-Krook (BGK) scheme has 
isotropy and Galilean invariance directly embedded into a 
technique that benefits from a simple collision step and has 
been shown to recover single-phase hydrodynamics [4,5]. 
For these reasons we construct the two-component lattice 
Boltzmann immiscible lattice-gas (LBILG) model described 
in Sec. n  upon a particular variant of the BGK scheme and 
not the linearized lattice Boltzmann algorithm of previous 
work [7]. The variant used is two-dimensional with nine lat­
tice links and is thus designated D2Q9. [5]

Multicomponent immiscible lattice Boltzmann techniques 
allow one to calculate flows of viscous incompressible fluid 
mixtures by solving the dynamics of colliding and propagat­
ing particles on a regular lattice using a Boltzmann-type 
equation [1-3] subject to the additional influence of a color- 
based segregation rule. Recently, the method has been used 
to simulate deformation and burst in droplets under shear in 
two dimensions [8,9] and sheared phase separation in three 
dimensions [10]. The growing literature on the method has 
been reviewed by Rothmann and Zaleski [11].

It has been argued that small-scale fluid velocity circula­
tions, induced at an interface by the phase segregation rules, 
are endemic in LBILG simulations [8], The influence of such 
microcurrents upon the macroscopic behaviour of LBILG

fluids is therefore of interest. In this paper an analysis similar 
to that of Gunstensen et al. [7,8] is applied to calculate the 
tension in the interface generated between two D2Q9 BGK 
fluids.

The model is presented in Sec. II. In Sec. in  we present 
the analysis of the static properties of two prototypical 
LBILG BGK based interfaces. The results are used to predict 
surface tension (a) in a plane interface from which symmetry 
precludes any microcurrent (Sec. IV) and (b) in interfaces 
where these circulations are present (Sec. V). For clarity, all 
possible commonality with the work of Gunstensen et al. is 
maintained. In Sec. VI we present details of simulations of 
our D2Q9 scheme, which are used to obtain mechanical and 
Laplace law surface tension measurements. The results and 
conclusions are presented in Sec. VII and VUE, respectively.

n. MODEL

Our model is a BGK scheme similar to that used in [7] but 
based on a square lattice that supports link density propaga­
tion at two speeds and designated D2Q9. Figure 1 and Table 
I serve to define the nine D2Q9 lattice velocities (links) cj 
and the associated indexing used in this work; we note that 
C9 is a rest direction. The densities that populate the lattice 
are designated red or blue, Rfx,t) [£,(x,r)] denoting the red 
[blue] density at position x, time t moving in direction i. 
Multi-component fluid behavior arises when segregation is 
imposed upon such densities by a generalization of the BGK 
collision to three steps.

First, the usual BGK collision step redistributes achro­
matic density

N iix^^R fx^+ B fx ,!)  (1)

to links using the scalar collision operator to., which controls 
fluid shear viscosity through [4,5]

1063-65 lX/98/57( l)/514(10)/$ 15.00 57 514 © 1998 The American Physical Society
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FIG. 1. Lattice link vectors (bold lines) used in the lattice BGK 
model for the reported simulations. Links indexed by odd values of 
i subtend an angle of 45° to the horizontal. The angle /?= 26.56°. 
The angular intervals into which the color field direction must be 
resolved in order to produce an unambiguous prioritization of link 
directions are each delimited by one solid and one dashed line.
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In the second collision step the local lattice fluid pressure 
tensor Pâ (x,t), approximated [1,7] by

P a p i s t )  =  '2i N i ( x , t ) c iac ifi, (3)

is rendered anisotropic at interfacial sites by accumulating 
(denuding) density on links perpendicular (parallel) to an 
interface tangent. (The interfacial sites are those that include 
nonzero densities of both colors.) The motivation for this 
step is found by reference to the parent lattice-gas techniques 
(see, e.g., the work of Rothmann and Keller [7]) and is a 
process not without foundation in hydrodynamics [12]. To 
achieve this redistribution we follow Gunstensen et al and 
adjust Ni(x,t) at mixed nodes by applying a density and 
momentum conserving perturbation

A Ni(x,t) = aC(x, f)cos{2[ dfix) — #,]}, (4)

TABLE I. Angular orientations and components of the D2Q9 
lattice velocity vectors. NA denotes not applicable.

i Ci x Cjy c* 0; cos(2$)

1 - 1 1 2 135 0
2 0 1 1 90 - 1
3 1 1 2 45 0
4 1 0 1 0 1
5 1 - 1 2 -45 0
6 0 - 1 1 -90 - 1
7 - 1 - 1 2 -135 0
8 - 1 0 1 180 1
9 (rest) NA NA 0 NA NA

where a  is a surface tension parameter controlling the am­
plitude of perturbations, angle is the angular orientation of 
link i (Fig. 1), and dfix,t) is the direction of a color field 
f(x,t), defined by

/(x,*) = 2  [K/(x+cf , t ) - B j ( x + C i  ,f)]c/,
i j

(5)

where the underline denotes a vector quantity. We have also 
introduced into Eq. (4) a concentration factor C(x,t),

C(x,r) = 1 —
pR(x ,t ) -p B(x,t)
pR(x,t)+pB(x,t) (6)

where pR(x,t) [/?B(x,f)] denote the total of the red [blue] 
densities at the node with position x. The incorporation of 
the concentration factor (6) into the perturbation makes evo­
lution outside the interfacial region exactly the same as in the 
monophasic model and removes the possibility of surface 
tension being activated by one-color density gradients, as is 
the case in the “classical” immiscible lattice gas (ILG), 
where the presence of an interface induces changes that may 
be “felt,” in the case of interactions between droplets, at 
distances of several lattice units. Thus the range of interac­
tions is likely to be reduced by the use of the rules encapsu­
lated in Eqs. (4)-(6), which may prove advantageous for 
certain applications.

In the third and final step, nodal color pB(x,t), pR(x,t) is 
allocated to link densities in that distribution which maxi­
mizes the work done by color flux q(x,t)=1ii[Ri(x,t) 
— Bj(x,t)]Cj against the direction of f(x,t) [7]. Clearly, to 
achieve maximum segregation as much red (blue) as possible 
should color the density on the link cj of largest (smallest) 
projection onto the direction of f(x,t). As the multi-speed 
nature of our lattice affects any prioritization of links for 
color allocation, an unambiguous hierarchy for red popula­
tion of links 1-9 requires that/(x,r) be resolved into the 16 
angular intervals identified in Fig. 1. Then, for example, the 
prioritization of links 1-9 that results when/(x,r) is found 
to lie in angular interval /? is, in descending order, i 
= 3,4,5,2,9,6 ,1,8,7. The need to resolve /(x , t) into 16 inter­
vals emerges as one attempts to determine which of links i 
= 2 or 5 is third most favorable for red occupation, for such 
prioritization can be made only after determining the direc­
tion onto which short link 2 and long link 5 have equal 
projection. The latter is specified by the angle (3= 26.56°. 
Symmetry then requires that the positive quadrant is resolved 
into the four angular intervals shown (Fig. 1). Note that link 
/= 9  (rest) will always have priority 5. The propagate step in 
which all densities are translated by the appropriate velocity 
vector is carried out in the usual way on each red and blue 
density.

In an immiscible lattice-gas cellular automaton [7], the 
color field cannot influence the outcome of monochromatic 
collisions. Thus sites of high average color purity are rela­
tively unaffected by the presence of a color field. It is this 
fact and the need to promote a tractable model that motivate 
our inclusion into the perturbation of the additional factor 
C(x,r).
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FIG. 2. Coordinate system used in the region of a planar inter­
face.

HI. ANALYSIS OF THE MODEL

Throughout we assume there to be sufficient local flatness 
for the mechanical definition of surface tension [12]:

= rJ —C
[PN(w) — PT(w)]dw (7)

to be applicable, where w measures distance normal to the 
plane of the interface (Fig. 2), i.e., we assume that 
Pn(w)—>Pt(w) quickly, as w increases. We postulate that 
the principal modification necessary to account for interfacial 
curvature derives solely from the phenomenological inclu­
sion of the microcurrent. We consider the structure of the 
steady-state interface and therefore omit the time t from all 
quantities throughout the following analysis.

Consider a stable planar interface, separated about a well- 
defined line, a situation, if that line is appropriately selected 
(parallel with a lattice link direction c,), has sufficient tran­
sitional symmetry (parallel to the interface) to preclude 
variation between adjacent interfacial sites’ color gradient 
/(x,r). The latter [coinciding with the interfacial normal and 
thereby the direction of the contour of integration in Eq. (7)] 
may therefore be characterized by the constant angle 6 sub­
tended at the horizontal y axis (Fig. 2). These assumptions 
are justified by such a situation being readily realizable in 
appropriately initialized lattice Boltzmann (LB) simulations 
[7], but note that interfacial fluctuations (indigenous in any 
class of direct simulation employing discrete particles) are 
present in the parent ILG technique [13,14]. However, even 
in the context of the ILG, a calculation, founded on assump­
tions similar to ours and performed within the Boltzmann 
approximation [1], may be employed to calculate surface 
tension from a prediction of the structure of the ensemble- 
average interface at steady state [14]. Adler, d’Humieres, and 
Rothman also demonstrate [14] that ILG interface fluctua­
tions broadly obey classical statistics, but, importantly for 
the present work, similar fluctuations in the interfacial be­
havior of lattice BGK (LBGK) interfaces are not observed 
for the cases we consider here. We return to this point in Sec. 
IV. Although some similar effect might be inserted deliber­
ately, the absence of such fluctuations from LBGK calcula­
tions is what originally motivated the model [7].

Pressure tensor contractions, analogous to those in Eq. 
(7), are obtained using Eq. (3) as usual:

2/V’ (8)

Pr(x) =  2  NiC]T, (9)

where ciT (ciN) denotes that component of cf tangential (nor­
mal) to flie interface:

c,w(x) = |cf|cos( Q -  0), ciT(x) =  |c,|sin( 0 -  0). (10)

Following Ref. [7], Eq. (7) is considered as an average over 
M0 adjacent, long integration lines z=const and then cast as 
a discrete summation over lattice nodes in the area A so- 
defined (Fig. 2):

2  = | [PN(w)—PT(w)]dw
J IV =  — co

cos( 0)
M0  x e / l  i

(ID

in which the summation on x is over all x e  A and we have 
introduced, following Eq. (10) and the notation of Ref. [7],

y,(x)Ea(c?(V“ C,27.) = C-COS[2( (?;-»)]. (12)

Note that while it is independent of 0  (Sec. V), the factor 
cos(0)/Mq  in Eq. (11) is retained for the sake of compatibility 
with the work of Ref. [7]. iV;(x) devolves, for D2Q9, into 
equilibrium and nonequilibrium parts [4,5]:

^ oneq(x)=iV;( x ) - ^ q( u), (13)

N/q(u) =r;(l +2uacia- \ u aua+ l u aUpCiaCip), (14)

t= \
36 P’ i =  1,3,5,7

z = 2,4,6,8 
i = 9.

9 Pi
4

. 9 P*

(15)

We note that the x dependence of Ajfq(u ) arises only through 
the x dependence of the velocity field; however, V"oneq will 
depend upon x through both the velocity and its gradients. 
Using Eqs. (12) and (13), Eq. (11) may be rewritten as

i — S S W i W
0  x  i

+ ^ E E w r " ( x ) £ / , ( x ) ,  (16)

the two contributions to which we proceed to treat sepa­
rately. Using Eqs. (14) and (15), we find by evaluation with 
a standard computer algebra package, and confirmed by di­
rect evaluation, that
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2  2  N-q(u)£/;(x) =  ]S /3w2c o s{2 [  0u{x) — 0]}, (17)
x  i x

where we have introduced 0u(x) such that

ux=u cos[0„(x)], uy=u  sin[<9w(x)]

and we have used the components of c, defined in Table I. 
To deal with the second term on the right-hand side of Eq. 
(16) we follow Gunstensen et al. and appeal to the lattice 
Boltzmann equation for the BGK algorithm, appropriately 
modified to account for the presence of interfacial achro­
matic density perturbations and adapted to the steady state
m

Nt( x+ c ,•) = N{(x) — a>N™neq(x) + A//,(x). (18)

Noting, for a closed lattice, that X,xN i(x+ ct) ̂ X^N^x) and 
using Eq. (4), one obtains after some algebra

Interface

2  2  /V” neq(x)i/,-=^ 2  COO2  cos[2(el-0 )W ,

= — [6 —2 cos(4 0 )]2  c(x), (19)

which we note has the expected fourfold rotational symme­
try. Incorporating Eqs. (17) and (19) into Eq. (16) yields an 
expression for macroscopic surface tension:

cos(0) ^  _
%(or,co)= ———  2j pu2cos{2[0u(x )-  0]}

+

M0

cr CO S( 0) 
M (\Co [6 -2 c o s (4 0 ) ]2  C(x). (20)

Reminding the reader that cos(0)/Mo is independent of 0, we 
remark that Eq. (20) for 2(cr,a>) is correct to all orders of 
fluid velocity. The second term on its right-hand side is rela­
tively straightforward to evaluate if we remember that C(x) 
vanishes at pure, noninteifacial sites. No simplification is 
evident in the first term of Eq. (20), however, and the posi­
tional summation must be evaluated over all x e A . Notwith­
standing, to leading order in u its contribution to X(cr,co) at 
practical values of cr (see Sec. VII) is small. In this regime, 
therefore, X(cr,co)~ crlaj, where we recall that oj determines 
lattice fluid kinematic viscosity through Eq. (2). To the same 
order of approximation, Gunstensen et al. reported an analo­
gous dependence of their X upon their LBILG collision pa­
rameter X “ 1, where X is the eigenvalue of the LBILG colli­
sion matrix that determines the simulated fluid kinematic 
viscosity.

IV. SURFACE TENSION IN PLANE INTERFACES

A. Plane interface parallel to the z axis
Throughout this and subsequent sections we take a mi­

crocurrent to be an interfacial effect resulting in a nonzero 
mass flux across a line parallel to a static interface and we do 
not consider further microcurrents defined in alternative 
terms, which produce no mass flux on mesoscopic length

T
i

y = y* y = + 1

FIG. 3. Symmetry of populations in a vertical interface. This 
figure shows a lattice excerpt containing several mixed nodes of 
which two have been highlighted (open circles) in an interface cen­
tered on the dashed line. Nodes to the left are predominantly red 
(Pr>Pb) while, in the stable interface, those to the right are pre­
dominantly blue (Pb>Pr). Note that color populations in nodes A 
and B are equivalent under color reversal and rotation through 180°. 
The dotted line indicates the initial interface.

scales and have no physical influence on surface tension. 
Consider a steady-state planar interface parallel to short lat­
tice links along the z  axis in which color is symmetrically 
separated (Fig. 3), so cos(0)=l. Translational symmetry 
along the z  axis implies an absence of any microcurrent and 
a color gradient/(x)=/(y)y. It is appropriately illustrative 
of the notable stability of the LB techniques in general that 
the direction of the color field in the final steady state is free 
of any fluctuations. For purposes of verification, the direction 
of the color field measured from simulation showed no mea­
surable departure from this assumption. Note, however, that 
even for the plane geometries considered here, cellular au­
tomata based ILG simulations would contain fluctuating in­
terfaces, even at “steady state.”

For these initial lattices, we consider that the stable inter­
face cannot be centered on a single layer and will require a 
minimum thickness of two layers, say, y = y 0 and y 0+ a n d  
a color distribution symmetrical under color reversal, corre­
sponding to a concentration given by

C(x) = C(<5(y->'o) +  8{y - y 0- 1)), (21)

where C is a constant. If there are no microcurrents, u = 0  
everywhere and the expression for the surface tension re­
duces to

X(cr,co) =
4 aC
MqO) 2=i,...,Af0 yy

8 crC

l%y-yo)+s(y-yo-i-)]

(22)
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At steady state, when the color content of each node must be 
constant between successive steps, links connecting two 
mixed sites should contain, at each end, counter-propagating 
equal densities of each color. If it is further assumed that 
achromatic link densities depart only negligibly from their 
rest equilibrium values t-t , the value of the constant C in Eq. 
(21) may be calculated.

Each interfacial site connects to three other mixed nodes 
and three monochromatic sites in the y direction and with 
two equivalent sites in the z direction (Fig. 3). We assume in 
the following that the sites are pure red for y < y 0 and pure 
blue for y>yo+ 1- F°r diagonal, “speed 2,” links z = 3,5 in 
y=yo  interacting with links z = 7,l in y = y 0+ l:

Rsiyo.z)=B3(y0 ,z)=R5(y0 ,z)—B5(y0 ,z) = b i  = TiPa,

Riiyo+ i ,z )= £ i(y 0+ 1»z)=/?7(yo+ *>*) z=Bi(yo+  i»z)
— JU — X „
~  2 M — 7 2 A ) ’

and similarly for the speed 1 link i —4 in y = y 0 interacting 
with link z = 8 in y = y o + 1 :

.z )=■5 4(To »z) = i h = Ts Po.

^s(yo+ l^ ) = 5 8(y0+ l,z) = tsPo*

where p 0 is the achromatic density of the interfacial lattice 
node and we have used identities (15). With this information 
the color density of the nodes in y = y 0 may be calculated:

PB(yo ,z) =B3(y0 ,z) + B4(y0 ,z) + B5(y0 ,z) 

=  (  1 2  72 18 )P0 =  V 2  PO ■>

PR(yQiZ) = pQ~T2PO~ 12 PO’

whence, from Eq. (6), C=£.  This value for C, on insertion 
into Eq. (22), gives, for our model of a horizontal interface 
parallel to the short D2Q9 lattice links, a macroscopic sur­
face tension

Interface

4 cr 
3 (o' (23)

B. Plane diagonal interface
For a steady diagonal plane interface separated in a line 

parallel to the longer lattice links (Fig. 4) two different (but 
simply related) cross-interface density profiles occur. How­
ever, the macroscopic surface tension can be calculated with 
a small modification. In the simplest case of an interface 
constituted by mixed sites A,B in adjacent sections aa',bb' 
(Fig. 4) densities at A, {/?/(A),5,(A)}, and those at B, 
{Ri(B),Bi(B)}, are equivalent under combined color rever­
sal and a two-fold rotation. If the achromatic densities are 
again assumed to depart negligibly from their rest equilib­
rium values t j , the simplest distribution of color through this 
diagonal interface may be deduced. For links in the only 
(mainly red) mixed node in section aa' (Fig. 4), connecting 
to the mixed mainly blue node in two bb' sections, postcol­
lision densities are

b'
(a)

FIG. 4. (a) Populations in a diagonal interface. This figure 
shows a lattice excerpt containing several mixed nodes of which 
three have been highlighted (open circles) in the interface centered 
on the dashed line. Nodes above the dashed line are predominantly 
red (Pr>Pb), while, in the stable interface, those below are pre­
dominantly blue (Pb^Pr)- Populations in nodes A and B are again 
equivalent under color reversal and rotation through 180°. (b) Initial 
distribution of color for the simulation of a diagonal interface on the 
square D2Q9 lattice showing the periodic images of the red diago­
nal layer in the box comers. Regions marked R (B) correspond to 
red (bluef mass. Distance D = 27 lattice units.

R4(A)=B4(A)=R6(A) = B6(A) = y 2 = ifPo, (24)

while for link 5 in section aa' connecting to a pure blue 
node

Rs(A) — 0, B5(A) — t l — 26po, (25)

where we have again used identities (15). Densities for the 
mixed B node are easily obtained from the symmetry argu­
ments already rehearsed. The color density of the mixed 
nodes in the diagonal interface is therefore

P b ( A )  = b s ( A) +B4( A ) + B 6(A) =  ( j s +  Tg +  n  )po=:k p 0 ’
(26)

Pr(A)—Pq 2(,PQ— 36 A) > (27)

whence, from Eq. (6), C=-j| for both the A and B mixed 
sites. Setting <9=45° and noting that there is an A and a B
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mixed site on any horizontal line crossing a diagonal inter­
face, it follows from Eq. (20) that the macroscopic surface 
tension is

40 cr
2 (<r,<») = — — . (28)

9 y/2(o

The preceding analysis of flat interfaces between static fluids 
neglects perturbation-induced departures from equilibrium 
rest density, the validity of which assumption increases with 
decreasing perturbation amplitude cr and is supported from 
the results of Sec. V. It should be noted that this assumption 
implicitly restricts the principal analytical results of this sec­
tion [Eqs. (23) and (28)] to apply when the induced macro­
scopic surface tension is small. Note also that due to the 
absence of local curvature in the interface no density (pres­
sure) change between the bulk fluids separated by the inter­
face is to be expected. Moreover, the fact that, for the present 
model in the case of, e.g., the vertical interface along the z 
direction, the population of link 4 may, on general grounds, 
be different from that of links 3 and 5 allows for density to 
be constant through the interface. We now consider the effect 
of microcurrents that are precluded by symmetry in planar 
interfaces.

V. SURFACE TENSION IN CURVED INTERFACES

Microcurrents are normally induced close to an interface 
by the segregating effect of the surface tension rule [8,9,15]; 
only in the presence of suitable symmetry, such as the cases 
considered in Sec. IV, will the microcurrents be absent. The 
presence of interfacial curvature and a gradient in the color 
field mean makes it impossible to argue on general grounds 
that an interfacial microcurrent should be absent from the 
rest interface. Its influence will be felt principally through 
the first term in Eq. (20). The magnitude of the microcurrent 
velocity close to the interface has been observed [8,15] to be 
of the form

u — u(x)cr. (29)

For circular interfaces in two-dimensional simulations of 
static (say) red drops, the interfacial microcurrent pattern 
must conform with the rotational symmetry of the underlying 
lattice and two complementary, counterrotating microcurrent 
cells must occupy any lattice quadrant, the maximum veloc­
ity in each occurring close to the generating interface (Fig. 
6). In fact, the maximum value of the surface tension induc­
ing perturbation occurs for the maximum value of I/,- in Eq.
(12) at #=45°, accounting for the fact that the microcurrent 
circulation close to the interface is radial along the diagonal 
bisectors of each quadrant (Fig. 6). Moreover, on grounds of 
lattice symmetry and hydrodynamics (which must ultimately 
govern the microcurrent), one expects the extent of a mi­
crocurrent cell to be determined by lattice extremities and 
drop radius R. We approximate the flow in a microcurrent 
cell outside the interface with a uniform rotation such that its 
outermost streamline touches the interface and has a velocity 
determined principally by cr. We then write the microcurrent 
velocity field u(x) = u(r,\r\/R) in Eq. (25) and note that

u(fJd /^ ) must have the fourfold rotational symmetry of the 
lattice. Hence Eq. (20) becomes

<72C0S( 0) _
2 =  — —-----2  u(r,\r\/R)2p cos{2[0„(x)— 0]}2̂ 0 X

cr cos( 0) _  „
+  t 6 ~ 2 cos(4 C(x). (30)M q CO x

This result, it should be noted, applies only to the D2Q9 
BGK model through the assumed form of the equilibrium 
distribution function defined in Eqs. (14) and (15) and intro­
duced by Qian, d’Humieres, and Lallemand [5]. Clearly, the 
potential for anisotropy entailed in the second term therefore 
applies only to the model under consideration here and the 
actual extent of any anisotropy in surface tension may be 
determined only after C(x) is known. To interpret Eq. (30) 
in the presence of curvature, we consider an interfacial ele­
ment of length RAO from a large circular drop of radius R, 
subtending a small angle A <9 at the drop center. This element 
we assume to be locally flat and contained within an area 
defined by M0 long horizontal lattice lines z —const. Then 
M q = R A 0  c o s ( 0 ,  whence cos(0)/Mo= 1/RA0. The magni­
tude of the positional summation in the second term of Eq. 
(30) will be proportional to RAO and a form crk2l co is as­
sumed. With respect to the first term, we take the microcur­
rent activity to decay rapidly away from the interface (an 
assumption supported by the results of Fig. 7) and this will 
yield finite contributions to the first summation only from a 
number of sites proportional in number to the R A 0 and the 
velocity at all of these sites we take to be determined prin­
cipally by a. The positional summation in the first term in 
Eq. (30) will therefore also be proportional to R A 0 and we 
assume a form crk{. For the interfacial tension of a drop we 
therefore find

2(<r,^) =  cr2A:IH— k2, (31)co

in which for small values of the perturbation parameter cr, 
the dominant contribution is from the second term and hence

%(cr,co)= — k2. (32)

VI. SIMULATION

In order to make a comparison with the calculations for 
plane interfaces we construct an effectively infinite system 
and thus periodic boundaries were used all around a square 
lattice and retained for all other simulations reported here. A 
suitable box size and equilibration time were determined on 
the basis of stability. For all the data presented, sites were 
initialized to achromatic density /?0= 1.8 with rest equilib­
rium link densities of 0.8, 0.18, and 0.045 for speed 0, 1, and 
2 links, respectively, the initial color being allocated so as to 
produce a particular interface configuration.

Results were obtained for plane, y = const, interfaces on a 
120X 120 lattice containing a red vertical layer sandwiched 
between two blue fluids. The initial interface lay between 
consecutive y planes of nodes and the red layer was defined
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TABLE II. Calculated and measured values of the Laplace law 
surface tension. Calculated values are derived from Eqs. (23) and 
(28). For the planar horizontal interface (cr, 6j) = (5 X 10~3,0.91), 
while for the planar diagonal interfaces simulated (cr,eo)= 
(5X10"4,0.91).

Interface Calculated Measured Calculated Measured
orientation 1(0-,ai) S(<r,6j) C C

horizontal 7.33 X 10' 3 7.37 X 10"3 0.166 0.15
diagonal 1.73X10"3 1.73X 10~3 0.28 0.28

by /o^(x,y) = 1.8 and 0, 39<y<81. The diagonal interface 
was constructed by initializing as red those nodes which lay 
on the lattice of Fig. 4(b) with y coordinates such that 
z~  26^y=^z + 26, with the periodic images of this red layer 
incorporated in the lattice corners [Fig. 4(b)]. An equilibra­
tion time of 15 000 updates was allowed for both plane in­
terface orientations and the steady-state density distribution 
was measured through the interfacial region. Also measured 
through the interface was quantity PN—PT, using Eqs. (8) 
and (9). These measurements, in conjunction with a simple 
discrete approximation to the mechanical definition (7), al­
lowed the planar interfacial tension to be evaluated.

Links within a circular, central portion of radius R of an 
otherwise blue 150X 150 lattice were initialized red to form a 
circular drop. Different combinations of surface tension per­
turbation parameter a  and BGK collision parameter to were 
used to generate stable drops with the values of to now being 
chosen so as best to recover classical hydrodynamic behavior 
[16]. Laplace law measurements were used upon these drops 
to obtain surface tension X(cr,cd) from the gradient of pres­
sure difference Ap = Apl3 [4,5] as a function of l/R for 15 
< R < 40. The steady-state value of R was obtained from the 
drop inertia tensor [8].

In order to observe the influence of microcurrent activity 
from circular interfaces the stream function

tf(x,y) = f* yu (x,y')dy' (33)
J y  =  0

was calculated from the velocity field along with the corre­
sponding pressure (lattice density) field. The variation with 
normalized distance from the drop center F= r/R, of velocity 
modulus averaged over an annular lattice sample concentric 
with the drop center, radius F, yields a quantitative measure 
of microcurrent activity and a test of the assumptions made 
in deriving Eq. (31).

VH. RESULTS

Consistent with the assumptions made in Sec. II, quies­
cent color mixing in appropriately initialized plane interfaces 
was confined to layers of two sites. Table II shows the close 
agreement between calculated and measured interfacial 
quantities for both cases of planar interface considered. The 
measured values of surface tension were obtained directly 
from a trapezium rule approximation to Eq. (7):

12  IP M -PM + Pdl+ C i)

(34)

where I denotes position on a lattice line perpendicular to the 
interface and we use Eqs. (8) and (9) to obtain Pn(1),Pt(1).

Figure 5(a) shows, on the same axes, normalized variation 
of color and pressure tensor contraction [F^(/) —P^/)] 
through the vertical interface described in Sec. HI. For the 
corresponding case of a diagonal interface [Figs. 5(b) and 
5(c)] color is not, as expected, symmetrically distributed 
about the maximum value of PN(l) — PT(l); Figs. 5(b) and 
5(c) represent sections of the interface along adjacent diago­
nals (Fig. 4) that are interrelated by a rotation of ir radians 
and a color reversal. For the results of Fig. 5 the BGK col­
lision parameter <u=0.91 was used in conjunction with sur­
face tension perturbations cr= 0.005 [Fig. 5(a)] and 
o'— 0.0005 [Figs. 5(b) and 5(c)].

Figure 6 shows the microcurrent structure generated at the 
surface of a red drop through the stream function ip(x,y) 
calculated by a process of numerical integration after Eq.
(33). The microcurrents are seen to be consistent with the 
symmetry of the underlying lattice and the maximum pertur­
bation. The range of influence of the microcurrent for a pe­
riodically bounded drop on a 150X150 lattice is shown in 
Fig. 7, which charts the variation of |u|, flow speed, against 
normalized distance form the drop center |r|//? for several 
values of parameter a. As a quantitative assessment we note 
that Eq. (31) predicts that a graph of S(or,^)/<r against l/to 
will have an ordinal intercept (gradient) from which constant 
kx (k2) may be inferred. Accordingly (Fig. 8), 'Z(cr,eo)/o- 
was obtained from Laplace’s law (see Sec. VI) applied to 
drops with 0.5 co  ̂2.0 and o'— 0.025. With the latter value 
of perturbation parameter the number of data points neces­
sary to apply linear regression reliably entails significant pro­
cessing, but yields values of 30.55 and 1.26 for k\ and k2. 
Hence, for cr= 0.025, the microcurrent contribution to the 
macroscopic surface tension in our model is seen to approxi­
mate to that arising from the second term in Eq. (31) and we 
infer an estimated upper limit cr=s 0.025 such that, for the 
particular model of the present study, the influence of a mi­
crocurrent upon the macroscopic surface tension is of de­
creasing importance.

Figure 9 concentrates upon values of 0.001=s 0.0125,
well below this upper limit, and shows results for surface 
tension 2(cr,cy) for 1.5^ 1.9 plotted against the quotient
at to’, these results for the surface tension are derived from 
Laplace law measurements described above. The continuous 
line represents a linear regression fit to this data and although 
unconstrained to pass through the origin, the fit generates an 
intercept that lies well within one standard deviation of zero 
and a gradient that identifies k2 [Eq. (32)]. Obtained from 
Eq. (20), Eq. (23) is valid for a flat horizontal interface at 
rest. Based as it is on the mechanical definition of surface 
tension [12] [Eq. (20)], we interpret only with respect to 
equilibrium (rest) fluids and the velocity dependence entailed 
in its first term, we suggest, should be regarded as arising 
only from that flow present in a rest simulation: the mi-
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FIG. 5. (a) Normalized variations across a vertical interface, 
with S measured in lattice units. The dotted (dashed) line connects 
calculated blue (red) densities and symbols mark corresponding 
measured values. The solid line corresponds to the value of PN 
— PT. The achromatic density in use was /?0=1.8, a>= 0.91, and 
a— 0.005. (b) Normalized variations across a diagonal interface,
sampled along aa' (Fig. 4). The parameter s is related to the coor­
dinate y through s — Vly. After (a) lines connect calculated points 
and symbols show results obtained from simulation. The solid line 
corresponds to the value of PN—PT. The achromatic density in use 
was po —1.8, a)—0.91, and <x=0.005. As expected, this plot does 
not show the same color-reversal symmetry as in the case of (a); 
instead the color distribution is related to that displayed in (c); See 
Sec. IV B. (c) Normalized variations across a diagonal interface, 
sampled along bb' (Fig. 4). Other parameters are the same as in (b).
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FIG. 6. Stream function for steady circulation pattern developed 
by a drop of radius 40 lattice units placed centrally on a square 
lattice. The flow pattern is observed to be stable after approximately 
4000 time steps. The results were obtained for the same simulation 
parameters as Fig. 5(a).

crocurrent. Nevertheless, a useful check on Eq. (20) may be 
performed by applying a uniform shear of increasing rate 
parallel to the flat vertical layer — lO^y^lO on a 60X60 
lattice (see the discussion above and Fig. 3), the shears being 
generated in the usual manner [8,9]. Setting 6—0 and 
6 u( x ) =  tt/2  for small cr, we may omit the second term from 
Eq. (20) and

>- = 20
£(<r,a> )~-—  2  U2= ~ p  2  u(y)2. (35)

M  o x > - = - 1 0

Figure 10 shows the results of plotting X(cr,<y), obtained 
from Eq. (34), as the ordinate against summation S0 
=  2 ^ i° 10u(y)2, obtained for a small range of shear rates, as 
the abscissa, with the expected linear trend emerging. At
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FIG. 7. Variation of |u|, microcurrent flow speed measured in 
units of lattice spacing per time step, against normalized distance 
from the drop center |r|/7? for several values of parameter a  (see 
key). Note the approximately linear trend in peak flow activity with 
<r, which occurs close to the interface.

smaller shear rates the (constant, positive) contribution of the 
first term in Eq. (20) begins to become apparent. It is impor­
tant to note that, for the reasons set out above, we do not 
claim that Fig. 10 represents more than an interesting prop­
erty of Eq. (20), Eqs. (20) and (30) resting on definitions in 
which a static interface is implicit [12].

Vffl. CONCLUSIONS

We have presented a method by which the interface gen­
erating algorithm of Gunstensen et al., itself an extension of 
the automaton-based algorithm of Rothman and Keller [7], 
may be successfully extended to a D2Q9 lattice BGK 
scheme and generalized to promote both tractability and cor­
respondence with the progenitor, cellular automaton tech­
nique. As Table II shows, simulation measurements of sur-

1 - 

0.5 -

0 •)-------1-------1-------1-------1-------1-------1-------1-------1—
0 0.25 0 3  0.75 1 1.25 1.5 1.75 21/(0

FIG. 8. Simulational measurements of the Laplace law surface 
tension %{cr,to) (measured in lattice units) for 0.001<<r<0.0125, 
1.5=£<y=S 1.9 as a function of quotient crla) (where a  and co are 
dimensionless). The continuous line is a linear regression fit to the 
data.
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FIG. 9. Plot of 2 {(r,(o)/(T (measured in lattice units) against 
(dimensionless) It a) for 0.5<6><2.0. The former were obtained 
from Laplace’s law applied to drops with rr= 0.025 and 15</? 
<40 on a 150X150 lattice.

face tension and cross-interfacial color distributions for this 
model are in good agreement with those values calculated 
from analysis of our algorithm, for both plane horizontal and 
diagonal microcurrent-free interfacial orientations. The dif­
ference between the two expressions suggests an 
orientational-dependent anisotropy in the model’s surface 
tension and the effect of this upon shape in drops simulated 
by this method is currently under study. We have deduced, 
on general grounds, the structure of the microcurrent circu­
lation generated by circular drops and compared these with 
measurements. These measurements demonstrate that the 
simple theory successfully accounts for the broad structure of 
the microcurrent flow field. The analysis allows us to de­
velop an expression [Eq. (31)] for the surface tension of a 
drop and this expression demonstrates that the microcurrent 
velocity field might be expected directly to influence the 
model’s surface tension. For small values of parameter *7-the 
corrections are only found to be second order in cr and this is

0.5

•0.5 -

-2.5 -

-3.5
0.6670.664 0.665 0.666So

FIG. 10. 2(*r,(y) [measured in lattice units obtained from Eq. 
(34)] as ordinate against summation 5'0=2^?°10u(y)2 (dimensions 
of lattice units squared) for a vertical interface exposed to a uniform 
shears parallel to the vertical interface — 10<y< 10  placed on a 
90X 60 lattice.
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substantiated by the measurements summarized in Fig. 9. 
Any attempt quantitatively to assess the approximate theory 
of microcurrent contribution presented here will require sub­
stantial quantities of data and should be undertaken only af­
ter a more rigorous analysis o f the contribution of the first 
term in Eq. (31). The undertaking would be facilitated by a 
calculation of the steady microcurrent flow field as an ap­

proximate or numerical solution of the equations o f  creeping 
flow, which should fully account for the microcurrent struc­
ture. Although our general arguments yield a qualitative in­
sight into the origin of the microcurrent, such a calculation 
would provide the most useful check on our understanding of 
this phenomenon and hence upon the ability of the method in 
the area of its most important potential application.
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We consider the most appropriate way to assess the interfacial tension locally, on a meso-scale, in one 
particular class of diphasic lattice Bhatnagar Gross Kroolc fluid, in which the interface is supported by a 
simple segregation algorithm. Our investigative methodology and observations will support similar analysis of 
other lattice Boltzmann models containing discrete interfaces. By assessing the performance of a lattice 
fluid/fluid interface against the most general hydrodynamic boundary conditions, we measure an orientational 
dependence in the model’s surface tension. In attempting to assess this anisotropy, which must obstruct the 
performance of the model and others similarly conceived, we devise a simple correction to the segregation 
algorithm. The useful result provides a platform for future work.

1 Introduction

Given their physical and practical significance, it is unfor­
tunate that traditional numerical methods find difficulty in 
simulating diphasic fluids: two-component immiscible fluid 
mixtures. The past decade has, however, seen increasing inter­
est in the study of rheological problems using better-adapted, 
novel techniques. Lattice Boltzmann (LB) simulation is one 
such method with acknowledged advantages making LB a 
very useful tool for simulating (amongst other things) diphasic 
fluids, particularly at the meso-scale.

Currently several diphasic LB-based methods exist, each 
employing a different algorithm to segregate the simulated 
fluids (see below). Here we attempt fundamentally to assess 
the hydrodynamics of a diphasic LB as it might be used to 
simulate multi-component flow: that is, in the narrow inter­
face limit. Therefore, whilst the most recent segregation algo­
rithms capture, for instance, phase separation kinetics,1 for 
present purposes an adaptation2 of a much earlier, minimal 
segregation algorithm due to Gunstensen3 is used. This algo­
rithm is nevertheless capable of producing the narrow inter­
facial region germane to applications in multi-component flow 
simulation. Moreover the particular LB model is ancillary: 
our methodology might be applied to assess the hydrody­
namics of any diphasic LB simulation.

Key developments in the monophasic LB method and its 
additional segregation rides for immiscible fluids are contained 
in refs. 1 and 3-12. Of all monophasic LB schemes, the sim­
plest (Qian et al,11) is inspired by the work of Bhatnagar, 
Gross and Krook on the Boltzmann equation. The epon­
ymous lattice BGK (LBGK) scheme designated D2Q911 is the 
core model for our diphasic LBGK, outlined in Section 2 (see 
also ref. 2). Diphasic lattice Boltzmann techniques allow one 
to calculate flows of immiscible fluid mixtures by augmenting 
the core lattice Boltzmann algorithm with an additional segre­
gation rule which acts between the separated fluids, which are 
traditionally designated red and blue. These rules differ con­

siderably: in Shan and Chen,12 Gunstensen et al.3 and Swift et 
al.1 the interface is maintained in rather different ways and 
each of these extensions to the core LB method have been 
used to simulate a range of problems: Laplace Law behav­
iour,3 deformation and burst in droplets under shear in two 
dimensions,13,14 sheared phase separation in three dimensions 
and as a vehicle to study the kinetics of phase separa- 
tion.1,15,16 The growing literature on the method has been 
reviewed by Rothman and Zaleski.17 Our particular model is 
defined in Section 2).

Broadly, the results from the different segregation algo­
rithms are consistent with what is observed in the correspond­
ing physical system. However, the extent to which any of the 
above methods are hydrodynamic at the meso-scale (in the 
sense that each should generate a surface of separation con­
forming with the boundary conditions obtaining at the 
deformable interface of tension between two viscous fluids18 
has not, to our knowledge, been assessed. Researchers have, 
for example, measured diphasic LBs’- interfacial properties 
macroscopically, by considering certain interfacial configu­
rations (shapes), then comparing with known results from 
hydrodynamics: so the most direct measurements of a model’s 
interfacial tension are from Laplace Law results applied to 
(assumed) circular drops, or from the pressure tensor defini­
tion of surface tension on planar interfaces, see for example 
refs. 3 and 13 and references therein. The meso-scale hydrody­
namics of the interface remains uninvestigated.

We show here, for example, that Laplace Law behaviour 
emerges as an average from richer interfacial conditions. 
Moreover, we observe that a diphasic segregation algorithm 
in the narrow interface limit will tend to generate an aniso­
tropic surface in consequence of the underlying lattice (see 
also ref. 2). This anisotropy does not preclude static Laplace 
law behaviour, or qualitatively correct hydrodynamics in 
respect of e.g., sheared drop burst: interfacial behaviour is 
useful and passes a first macroscopic test. But issues of anisot­
ropy in the surface tension, and the quality of the interfacial 
behaviour on the meso-scale are clearly relevant.
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At their most general, the hydrodynamic boundary condi­
tions for normal and tangential stress transmission, on the 
meso-scale at the isothermal interface between two immiscible 
fluids without gradients in the interfacial tension are:18,19

Ri
-f\nxRJ (1) 

(2)
Here 2 is the macroscopic surface tension, axP is the stress 
tensor, <Pap is the viscous stress tensor18 and the normal and 
tangent to the interface are represented by h and i  respec­
tively. Rx and R2 are the principle radii of curvature of the 
interface.18

The two dimensional Laplace law Z = Ap/R is a special 
case of eqn. (1) for zero flow. Whilst the Laplace law has been 
widely used to characterise multiphasic LBGKs, we suggest 
that it is the extent to which the more general condition of 
eqn. (1) is represented in diphasic LBGK hydrodynamics that 
is the significant measure. Moreover eqn. (1) applies locally, to 
all interfacial elements in all cases (hence our designation 
mesoscopic) unlike the Laplace Law, which applies to a partic­
ular (zero-flow) situation. Indeed the correspondence between 
the surface, tension known from static Laplace Law tests and 
that surface tension which governs the meso-scale dynamic 
response of the interface [in eqn. (1)] remains to be assessed in 
a direct investigation of the normal stress condition.

In any diphasic LBGK fluid, a closed narrow interface 
maintaining a pressure difference might well have properties 
different from a simple planar interface but those properties 
should depend only upon the local orientation of the interface 
with respect to the lattice and not (e.g.) upon the flow field or 
its derivatives. Thus a meso-scale surface tension, assessed 
through conditions eqns. (1) and (2) is, we suggest, the most 
significant interfacial parameter. The need for some re­
appraisal is further underlined by the results of previous study 
on macroscopic surface tension in our diphasic LBGK, 
reported in ref. 2 in which expressions for pressure tensor 
surface tension, for the two possible stable planar interface 
orientations, available to the lattice fluid in D2Q9 were 
derived. These expressions predict an anisotropy which is in 
good agreement with values measured from simulation and 
interface anisotropy and probably affects hydrodynamics on 
the mesoscale.

In this paper, then, we examine with a generally applicable 
methodology the extent to which general hydrodynamic condi­
tions eqns. (1) and (2) are modelled by one particular deriv­
ative of the Gunstensen (Rothman-Keller) interface. As a 
by-product we indicate briefly some modifications which may 
improve the hydrodynamic properties of the Gunstensen-type 
diphasic LBGKs.

In Section we define our particular LBGK model, then 
(Section 3) examine, with a general method, the tangential 
properties of its interface, against the criterion of eqn. (2). Next 
we assess normal stress behaviour (Section 4).

Generally, in two dimensions, eqns. (1) and (2) may be re­
phrased into a statement of interfacial hydrodynamics better 
suited to direct assessment (Section 4). Section 4 also contains 
an account of one means by which meso-scale measures of any 
LBGK interface may be made. That is, the investigative 
methods developed in Sections 3 and especially 4 apply to 
other LBGK interface generating techniques.12,14 

We present our conclusions in Section 5.

Our model uses a core LBGK scheme on the square lattice 
designated D2Q9: Table 1 of ref. 2 defines its 9 velocities (cj, 
i — 1 • • • 9 (links). The density at position x, time t is desig­
nated red or blue, and denoted Rt(x, t), Bt(x, t).

Multi-component behaviour arises as colour segregation 
is imposed by a generalisation of the core LBGK collision 
step11 which re-allocates colour to the (net) link density 
Nt(x, t) = Rt(x, t + Bt(x, t), which is itself perturbed so 
as directly to insert anisotropy into the pressure tensor 
Pap(x, t) = ZiNi(x, t)ciacip.

We use an interface-generating perturbation modified from 
Gunstensen et al.3 which narrows the interface width, activat­
ing this surface tension generating perturbation only on sites 
occupied by two colours :2

AN&z, t) = crC(x, t)cos[2(0/  — 0;)] (3)
Here a is the surface tension parameter controlling the pertur­
bation amplitude, di is the angular orientation of link identi­
fied in the subscript and df(x, t) is the direction of a local 
colour gradient f(x, t):

/(*» 0 = X (Rj(x  + ci . *) -  BP  + c£> 0)cf (4)
i,j

and the factor C(x, t) is a weighting concentration factor:

C (x, t) =  1 -
pB(x, t) -  pR(x, t)
pB(x, t) + pK(x, t) (5)

the role of which is hot without foundation- in 
hydrodynamics2,20 and in parent lattice gas techniques.21 A 
fuller account of our particular interfacial perturbation is con­
tained in ref. 2.

It is appropriate to comment that the interface created after 
the manner just discussed has, as one expects, a minimum 
“energy” when aligned parallel with lattice velocity vectors. 
Any modification to an interfacial perturbation with the 
general form of eqn. (3) is unlikely to influence this tendency, 
which is the most significant cause of anisotropy in this 
model’s interfacial tension.

3 Taragesitial s’lress condition
In this section we assess the tangential stress condition eqn (2) 
as it applies to our LBGK interfaces separating a blue/red/ 
blue planar sandwich system (see Fig. 1) which is sheared in 
the the y-direction.

For this situation, hydrodynamics predicts a linear relation 
between shear stress and velocity gradient in the bulk of the 
separated fluids. Defining shear rate y in the usual manner:

dlly
h ' 1 (6)

it is easy to show that, for separated, sheared blue and red 
fluids with different viscosities

(R ,,Ry“v yV (7)
where superscripts refer to the fluid colour in the obvious 
manner, symbol v is fluid shear viscosity and y the fluid shear

R

 > y
Fig. 1 Schematic of the lattice configuration for tangential stress 
examination. Periodic conditions were used to close all lattice bound­
aries, with horizontal forcing (Section 1.2) applied along sites in  the 
lines at the top (bottom) of the top (bottom) blue layer.
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Fig. 2 Variation in v-averaged flow velocity \u\ against z for vis­
cosity ratios o f 1.5 :1, 2.5 :1 and 3.5 :1.

rate. In addition to eqn. (7) the velocities of the separated red 
and blue components should match at the interface.

The transmission of tangential stress by our interface was 
assessed through eqn. (7), by examining the measured ratio 
between the separated fluids’ different shear rates and compar­
ing this with their set viscosities.

With periodic boundary conditions implemented in the y- 
direction a horizontal (shearing) flow was induced on the 
system of Fig. 1 by simply incrementing link densities to 
favour horizontal mass flux in opposite directions at the top 
and bottom of the lattice at each time step. This particular 
lattice-edge closure rule easily produces a lattice fluid shear 
rate controlled through the size to the forcing density 
increment (see e.g. ref. 22 for discussion).

The red/blue layers were set to different viscosities through 
the BGK relaxation parameter <o, the viscosity of mixed sites 
being controlled through an effective average relaxation 
parameter:

At the shear rates used all our horizontal planar interfaces 
were observed to remain singular (one site thick). With a shear 
directed parallel to the interface, population of links by colour 
mass in the interfacial node was observed to be qualitatively 
similar with the static interfaces reported in ref. 2.

The sandwich system of Fig. 1 was evolved on a 90 x 60 
lattice. Each layer ...was of approximately equal thickness. 
Layers were initialised with a viscosity ratio red: blue of
1.5 :1, 2.5:1 and 3.5 :1. The 2-averaged shear rate was then 
measured in each horizontal fluid layer (in lattice units). Fig. 2, 
displays the result. It is important to note that the (fully) 
tangential velocity is clearly continuous across the interface, 
meeting the hydrodynamic condition of continuity of tangen­
tial velocity across an interface.

Separate fits to data from the rea/blue layers established 
individual red/blue shear rates. These ratios correlate very 
well with the set ratios of red/blue fluid viscosity, as is clear 
from Table 1 which shows red/blue shear rate ratio against 
viscosity ratio. Regression to the data of Fig. 3 was found to

Table 1 Comparison of viscosity ratios with measured velocity gra­
dient ratios

Viscosity ratio Velocity gradient ratio

1:1.5 1:1.505
1 :2.5 1:2.513
1:3.5 . . 1:3.522

43 -

m
2.5 -tr

0.5 -

1 1.5 2 2.5 3 3.5 4 4.5 50
yBf y R

Fig. 3 Variation between yR/yB against vB/vR.

lend good support to the expected relationship:
y*/f = v7v® (9)

derived from eqn. (7). For the data in this study a surface 
tension parameter of a = 0.0125 was used, with a shear 
forcing density increment of 0.02,22 the viscosity ranges were 
vR = 0.0294 (corresponding to a relaxation parameter of 
coR = 1.7) and 0.0140 ^ vB 0.1471 (1.1 < wB ^ 1.7).

Clearly, these results support the conclusion that tangential 
stresses are correctly handled by our LBGK interface. This 
observation assists the analysis of the normal stress behaviour, 
investigated in the next section.

4 Normal stress condition
Consider a red drop in the y-z plane surrounded by a blue 
fluid of equal density and viscosity, deformed by a flow, which 
in the blue far-field approximates to a shear. A point on the 
interface is specified byr radial distance r and polar angle 6. In 
two dimensions the drop deformation may be characterised 
by a single local radius of curvature R{9). The relevant quan­
tities are represented in Fig. 4, in which the unit normal, n, 
and (single) unit tangent, t at the red/blue interface must be 
related through:

hy ^ —tz ft. = ty (10)
When working in two dimensions it is possible to combine 

normal and tangential boundary conditions eqns. (1) and (2) 
into a more convenient form.

Using an obvious notation in which, e.g., internal (red) 
velocity close to the interface is expressed vR, the normal con­
traction of eqn. (1) may be written:

pR- p B + ofpnanp- o f pnanp = - ^  (11)

where we have used the relationship cap = p8ap + <r'aP between 
stress and viscous stress.18 The analogous tangential contrac­
tion of eqn. (2) may be added to eqn. (11) and, on appeal to

Blue

Red
R{ef} Interface

= 0M.
Fig. 4 Schematic of the unit normal and tangent vectors, drawn at a 
site on a discrete LBGK interface position characterised by angle 9. 
R(9) represents the local radius of curvature of the interface.

Phys. Chem. Chem. Phys., 1999, 1, 2183-2190 2185



the identities of eqn. (10), there results a modified statement of 
the normal stress condition, valid for two-dimensional situ­
ations: -

pR(6) -  pB(6) + 2vR(3y uB + dz t£) -  2vB(5y uB + dz uB) =
K(V)

(12)

in which all derivatives and the hydrostatic pressures are 
evaluated approaching that interfacial location specified by 
the polar angle 9 . Having already assumed incompressible 
flow, the separate divergences in eqn. (12) each vanish and for 
a two-dimensional fluid at the meso-scale:

Ap(9) =
m '

A p(9)=pR(9)-pB (13)

in which, recall R(6) is the local radius of curvature of the 
interface. So, in two dimensions the usual interfacial condi­
tions are re-phrased into eqn. (13) and tangential stress eqn. 
(12). Looking back at eqn. (13) we can say that an LBGK 
model has “physical” hydrodynamics if the measured pressure 
difference divided by the local radius of curvature gives the 
same number at all interfacial positions 9.

The results of Section 3 clearly imply that tangential stress 
conditions eqn. (2) are met. To test the normal stress behav­
iour therefore, we can assess the extent to which diphasic 
LBGKs are described by eqn. (13).

From calculation on a flat interface, it has been shown that 
the surface tension of our particular diphasic LBGK varies 
with the interface’s orientation relative to the underlying 
D2Q9 lattice.9 And in the narrow interface limit any diphasic 
LBGK’s meso-scale interfacial hydrodynamics might be also 
be complicated by anisotropy. In applying eqn. (13) then, the 
factor E is assumed to have angular variation and we write:

AP(<» = ^  
^ ' R(9) (14)

Note we propose eqn. (14) for 2D only, and then only when 
tangential stress continuity (Section 3) has been verified. Also, 
the angular variation of property 1(9) is an artifact of the par­
ticular model in use and of less interest than any method 
which may limit its amplitude. Indeed if 1(9) is made indepen­
dent of 9, the hydrodynamics of the technique improves.

Further to assess any two-dimensional diphasic LBGK’s 
hydrodynamics through compliance with eqn. (14), the pres­
sure difference Ap(9) and local radius of curvature R(9) must 
be obtained for a general angular position 9 on the interface 
(Fig. 4). Our examination of the transmission of normal stress 
across a red/blue interface therefore proceeds by describing 
the means by which radius of curvature and pressure jump 
measurements may be performed on the steady-state of a well- 
deformed drop.

4.1 Radius of curvature measurements

Take a red drop sheared to a steady-state deformation in a 
blue fluid (see ref. 22). To determine R(9), the centre of red 
mass is first located from moments of red mass.22 The coordi­
nates (y, z) of each interface (mixed colour) site, relative to the 
drop centre may then be used to calculate the polar angle 9 
subtended by the radius vector (Fig. 4). The interfacial unit 
normal vector n at position 9 can be calculated using a 
Frenet-Serret formula23

d t— = xn as (15)

where i  is the unit tangent vector, s is arc length and x such 
that x~x = R(9). From eqn. (15), the radius of curvature R(9~) 
can now be written in terms of the y and z components of the 
unit tangent:

1
m

df
ds $ Y +

d£ .\2
as

1/2

(16)

in which the square bracket terms must now be written as 
0-derivatives. Write

df
ds

df d9 
dd ds

d dr
d0 ds (17)

where 9 is the polar angle, and we have used the definition of 
the unit tangent t:

Noting that:

dr -i
d0

„ dr
t = ds

Ŷ+(-Yd9) \ddj  J
- 1/2

(18)

(19)

We may rewrite eqn. (17) using eqns. (18) and (19) as:

df
ds

dr
09

1 d dr 
d 9 ds

= dr 
d0

i dr
09

dr
d0

-i~
(20)

Performing the differentiations in eqn. (20) we obtain, for the y 
and z components of the unit tangent vector, at an interfacial 
location specified by 9

d£ 
ds

df.
ds

dr — 2 d2y dy dr
09 _d92 ~d9 09

dr - 2 d2z dz dr
09 J92 ~d9 09

'Vd2y dy d2z dz 
Vd̂ 2 09 + dfl2 d0

(21)

2 ̂ d2y dy d2z dz
d92 d9 + 092 d6)] (22)

The local radius of curvature around a site specified by 9 is 
thus obtained from eqn. (23) (reproduced below) using eqns. 
(21) and (22) (above) for the s-derivatives of the y and z com­
ponents of the unit tangent.

1
R(9) -[(■

d^v /df,v
ds j  I ds

1/2

(23)

To obtain approximations for the derivatives in eqn. (21), 
consider the interface site coordinates (y, z) to be functions of 
9 and write their respective Fourier sine/cosine series repre­
sentations, each with period it:

y(0) «  y  + £  £fl» sin(n0) + bn CCSM  (24)

z(0) ~  -f  + X K  sin(7i0) -f b'n cos(n0)] (25)
tl

Clearly, derivatives like the d2z/d02 occurring in eqn. (21) may 
now be written explicitly in terms of a0, an, a’0, a'n and b'n and 
in turn Fourier amplitudes a0, an and bn etc. may be approx-
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ixnated at given (measured) 8 by numerical integration:

a0 = ~ f # )  « -  2  y ( A0i ‘ (26)

a„ = ~ \  y(9)sm(n9) d8 w -  £  y(0,.)sin(n0f) A0f (27)
7t 71

y(0)cos(n0) d0 «  -  Y y^jcosK-) (28)
ft

A0f = 10, (29)

where A0; is the (small but irregular) angular interval between 
neighbouring interfacial sites.

The local radius of curvature, at given 6 was thus deter­
mined, from a fit to the whole drop interface using eqns. (21)- 
(23) with the appropriate derivatives obtained from the 
Fourier components given in (e.g.) eqn. (26). As a check, raw 
co-ordinates (y, z) were obtained from the Fourier com­
ponents identified in eqn. (26). Fig. 5 displays results for a 
deformed drop (undeformed radius R = 40, a = 0.005 and 
co = 1.5). By trial and error, fifteen Fourier harmonics (n <15) 
were found to be sufficient to obtain good agreement between 
measured and interpolated interface positions.

Fig. 6 graphs the radius of curvature R(9) measured for 
an undeformed drop, which, despite some asymmetry 
(attributable to the fact that the interface is narrow), exhibits 
periodicity (over intervals — it < 8 ^ 0 and 0 ^ 9 ^ n). The 
mean value of the collected radius data gives a value of 
R = 40.236.

4.2 Pressure‘jump’measurements
Fig. 7 plots pressure (density) and colour against horizontal 
distance from an undeformed drop centre. Clearly pressure 
oscillates close to a sharp colour interface, which oscillation, 
on the meso-scale, must be regarded as an artifact of a 
Gunstensen-type interface. Other diphasic LBGK algorithms 
also show variation in density across the interfacial region. 
What is essentially microscopic physics presenting at the 
mesoscale is an acknowledged aspect of LBGK simulation in 
general. Here, to measure a hydrodynamic pressure jump (in a 
way which will generalise to any diphasic LBGK) we measure

50
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Fig. 5 Simulated interface data (4-) for a sheared drop, superposed 
over the discrete Fourier fit to the interface for a drop with R  =  40 , 

=  0.005 and co =  1.5, (solid line).

46
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Fig. 6 Radius of curvature R(0) against 9 for the undeformed drop.

Ap(8) between two points in the separated liquids which lie as 
close as possible to the colour interface, are characterised by 
the same 8, but which lie outside the region in which pressure 
is influenced by the particular segregation algorithm in use.

Shrinking/expanding the Fourier fit to. the interface, by 5 
lattice sites (a model-dependent number, small compared with 
simulation length scales, conditioned by the minimum simu­
lated drop radius) one finds a pair of contours, concentric and 
locally parallel with the sharp colour interface. One point on 
each contour may be identified by a value of 8 characterising 
some interfacial node. The two points inevitably lie off-lattice 
so interpolation between nodes was used to infer red (blue) 
pressure p(R) [p(B)] and hence hydrostatic pressure jump at 
polar angle 8. Fig. 8 shows the variation of p(R) and p(B) with 
polar angle 8. Both sets of data show similar periodic fluctua­
tions. The mean pressure outside the drop is p «  0.6 (local 
density p/3) resulting from an initial value p — 1.8. The data of 
Fig. 8 were extracted from a static drop on a 150 x 150 lattice 
with initial radius R = 40, co = 1.5 and interfacial c = 0.005. 
Internal pressure data exhibits the flattest profile, and does 
not correlate to the drop radius of curvature as well as the 
external pressure variation.

4.3 Measurements of meso-scale surface tension
After the discussions of the last two sections we are now in a 
position to evaluate R(9) and Ap(8) for drops of any shape, 
and therefore obtain a meso-scale surface tension for our 
model from eqn. (14).
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Fig. 7 Pressure and colour interface location as a function of nor­
malised distance from the drop centre. Note that the colour interface 
is narrow (“singular”), whilst there is a clear oscillation in the pressure 
close to the interface, especially inside, in the red fluid.
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Fig. 10 Radius of curvature R(9) against 9 for the deformed drop o f  
Fig. 5.

Mesoscopic surface tension 2(0), when plotted against polar 
angle 0 (Fig. 9: simulation details as in Fig. 8), has periodic 
structure consistent with the D2Q9 lattice and confirms that 
the mesoscopic surface tension 2(0), defined through eqn. (14) 
is anisotropic. With a minimum (maximum) value of 2(0), 
2(0)min x  0.005 (2(0)max «  0.011), the degree of surface tension 
anisotropy may be quantified by anisotropy factor:

using:

m (30)

for the data of Fig. 9, Aa «  2.3. Note, a single parameter such 
as Aa cannot resolve all issues of interface anisotropy: there is 
in any sharp interface a tendency to adhere to lattice direc­
tions (observed in a correlation between measured surface 
tension and the direction of the interfacial tangent). However, 
whilst a close examination of the interface’s constitution 
reveals it is mostly single site, its colour structure cannot be 
compared with that considered in ref. 2, which treats highly 
uniform, symmetric, planar interfaces with symmetric colour 
distribution and no density gradient or microcurrent.2 Whilst 
the drop interface does tend to attach to the lattice (lying 
parallel to lattice directions) nowhere do we expect there to 
occur a zero pressure jump or a constant radius of curvature, 
so the variation observed in Fig. 9 is not covered by theory.2

A standard Laplace formula measurement of macroscopic 
surface tension is obtained from the mean static pressure 
inside the drop pR (over a radius of r < 32 lattice units from 
the drop centre), the external mean pressure pB (over nodes at 
radius r > 48: as is customary in the literature) and the radius 
of the drop (taken as the initialised radius of 40 lattice units)

2  = f?(p-R- p - B) (31)
For the same drop, standard Laplace surface tension 
2 — 0.00772 is recorded, the value of which is close to the 
mean mesoscopic surface tension, 2(0) = 0.00797, obtained 
from the data in Fig. 9. The usual Laplace Law surface 
tension is approximately the average of the local meso-scale 
surface tension data.

With a deformed (sheared) drop we notice strong local peaks 
in the radius of curvature (Fig. 10), corresponding with loca­
tions where the interface becomes tangent to lattice links, 
equivalent to a tendency of the interface to attach to D2Q9 
lattice-link directions. With a narrow interface, curvature 
spikes are an artifact of the lattice: the former is inclined to 
align locally parallel with lattice link directions. Though the 
radius of curvature spikes are more apparent in the meso- 
scale data for a sheared drop, the underlying angular variation 
in surface tension (Fig. 11) is very similar to that obtained in 
static tests (Figs. 8 and 9).

Deformation changes the populations of different interfacial 
sites and the drop elongates along directions parallel to diago­
nal D2Q9 lines, with increasing applied shear. This process is 
clear from comparison of Figs. 9 and 11: equivalent stationary 
values of mesoscopic surface tension occur at angular posi­
tions 0 which are slightly offset as a result of shape changes. 
For example, the same maximum value of mesoscopic surface 
tension occurs when the interface is parallel to the short links 
in the 2-direction, around 0 = 0 rad in an undeformed drop
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Fig. 9 Variation of macroscopic surface tension 2(0) with rotational 
angle 0.

Fig. 11 Variation of macroscopic surface tension 2(0) with rotation­
al angle 9 for a deformed drop (corresponding radius of curvature 
data is in Fig. 10).
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(Fig. 9) and around polar angle 0 «  —0.15 rad (Fig. 11) in a 
deformed, sheared drop.

That the absolute shape of the drop does not influence the 
range of observed mesoscopic surface tensions or the inter­
facial orientations (relative to the lattice) at which the station­
ary values of surface tension are recorded leads us to the con­
clusion that, for our Gunstensen-type model, meso-scale 
surface tension anisotropy is primarily determined by local 
interfacial orientation, not by macroscopic detail (overall drop 
shape) and it should be possible to modify the mesoscopic 
surface tension behaviour using a local rule, that is, without 
recourse to details of the drop shape (e.g. radius of curvature).

Qualitatively then, static and deformed drops simulated 
using our diphasic LBGK model show a surface tension struc­
ture generally consistent with the lattice symmetry and 
“usual” macroscopic Laplace Law surface tension. Of course, 
for an LBGK interface to support hydro dynamical boundary 
conditions the meso-scale surface tension should produce flat 
profiles in Figs. 9 and 11. By modifying a model’s interfacial 
segregation rule one might improve the isotropy of meso-scale 
surface tension and hence make the LBGK model’s interfacial 
boundary conditions conform better with the defining eqns. 
(1) and (2).

Now, pressure tensor calculations appear to be a qualit­
atively correct description of the meso-scale surface tension of 
drops, so we write r

m (32)

where a(co) is the surface tension perturbation amplitude 
(LBGK relaxation parameter).

To improve meso-scale surface tension anisotropy in any 
LBGK model, one can vary o to compete with the measured 
meso-scale interfacial tension. The detail of the following dis­
cussion depends upon the particular model of our study but 
the general methodology can be applied to any LBGK inter­
face generating rule through its interface parameter.

Meso-scale surface tension should depend only upon the 
local interface orientation on the lattice. So taking the local 
colour field direction Of (or, in other models, the density 
gradient) to lie perpendicular to the local interface tangent, 
one can parametrise interface orientation on the lattice using 
9f , hence decrease E(0)max and increase E(0)min by contriving 
Of dependence in perturbation amplitude cr:

ANt(x, t) = ag(0f)C(x, f)cos[2(0/ (r) -  6if] (33)
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Fig. 12 Variation of drop anisotropy factor A a with parameter k, 
close to the minimum in A a. The continuous line fit has the form 
ax~ +  bx  -f- c for a =  9.525, 0 =  9.714 and c =  4.296. Outside the 
"ange shown anisotropy increases monotonicallv.
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Fig. 13 Variation of static fluid pressure p with rotational angle 
close to the interface (but see Fig. 8).

where factor g(0f) = g(0f + tz/2) promotes surface tension iso­
tropy. For our particular interface we may choose

g(6r) = {1 + fecos2[ 2 ^ } (34)
in which k is a real parameter —1 < k ^ 0 (see Figs. 10 and 
11) which may be optimised by considering undeformed 
drops, for which 0f «  0, the polar angle of an interfacial 
length element. Considering eqns. (33) and (34):

1(0)' »  g(0)I(0) (35)
where 1(0)' [2(0)] is the meso-scale surface tension, at polar 
angle 0 from the modified (original) model. From Fig. 9 
T(0)max = L(0), Z(0)miD — Z(rJ4) so stating interfacial isotropy 
as T(0)' == Z(n/4)' use eqn. (35) and definition eqn. (34) to 
obtain:

=
1fffo/4)  ____

9(0) 1 + k (36)

where we have used e.g. g(0) = 1 + k . Using a measured value 
of 2.3 for Aa we estimate k = —0.52 , which is supported by 
simulation (Fig. 12). Comparing Figs. 13 and 8, we note better 
correlation between pressures on the red and blue sides of our 
interface, which acts qualitatively to adjust interfacial tension 
as desired. But the radius of curvature has an essentially 
unchanged angular variation (from Fig. 10) so Fig. 13 shows 
only limited reduction of the amplitude of the variation of 
surface tension, compared with the unmodified algorithm (Fig. 
9). Figs. 12-14 were obtained for. an undeformed drop of 
initial radius R = 40 on lattices of edge 150 x 150 with 
o = 0.005 and co = 1.5.
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Fig. 24 Variation of macroscopic surface tension Z(6) with rotation­
al angle 0.
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Fig. 15 Variation of |« |,  microcurrent flow speed measured in units 
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drop centre, | r \/R at a  =  0.005 for the unmodified interface (solid line) 
and the modified interface (broken line) at k =  —0.524

Fig. 15 show s the spatial variation o f microcurrent speed, 
\u \ for our steady-state drop. The solid  line show s the 
angular-averaged m agnitude o f m icrocurrent velocity using 
the unm odified interface perturbation, the broken line with 
lower m axim a show s the m agnitude o f  m icrocurrent activity  
using the new algorithm  at k — —0.52. Com parisons 
between microcurrents induced in G u n sten sen-R oth m an- 
K eller derivative and e.g. Shan-C hen interfaces24 show  | u |max 
is twice as large in the former for similar interface pertur­
bation parameters a .25 H ow ever a sim ilar process o f  cali­
bration on a Sh an-C hen type m odel should  be 
straightforward, and w ould  enable that m odel further to 
reduce microcurrent intensity.

5 Condosdoos
U sin g  as a vehicle a m inim alist segregation algorithm , after 
G unstensen e t al.,3 im plem ented over a D 2Q 9 L B G K  algo­
rithm, we have highlighted the need locally  to  evaluate the 
surface tension in any diphasic L B G K , used in the lim it o f  
narrow interfaces for sim ulations in w hich interfacial hydrody­
nam ics is im portant.

T o assist an analysis we have developed the m eans by 
which the general hydrodynam ics o f  the interface m ay be 
quantified in tw o-dim ensional L B G K  sim ulations and we 
have presented a m ethod by which the parameters [local 
interfacial curvature, pressure difference (see below )] m ay be 
obtained for discrete m odels. From  this platform  w e have 
measured, at the m eso-scale, the anisotropy inherent in our 
class o f L B G K  interface from a consideration o f stresses 
across the interface.

Assessing the transm ission o f tangential stresses across 
planar interfaces in our L B G K  m odel, via sim ulation m ea­
surements o f  the relationship between the separated fluid  
shear rates and viscosities, we obtain good  hydrodynam ics 
(velocity and stress continuity). The exam ination o f norm al 
stress transm ission was supported by a Fourier interface 
investigation technique developed in Section 4, which is quite 
general in tw o dim ensions and m akes no assum ptions about 
the shape o f the fluid drop.

W e illustrate how  a sim ple m odification to an interfacial 
algorithm  can be used to im prove interface properties [eqn.
(34)] by adding a com pensating oscillation in the interfacial 
parameter which m akes a drop’s internal and external pres­
sures correlate w ith local interface orientation relative to the 
lattice. But unlike pressure, the interface’s local radius o f  cur­
vature is, we suggest, influenced by the tendency o f the inter­
face to adhere to lattice directions, which is probably

inevitable in an y  narrow interface. A  diphasic L B G K  density  
perturbation can, on general grounds, do little to adjust this. 
H ow ever we d o  produce a reduction in the m agnitude o f  the  
microcurrent.

T he local radius o f curvature m easurement in Fig. 10 is  
dom inated by the interface’s tendency to adhere to  the lattice. 
Probably it represents the best attainable (m ost isotropic) 
radius o f curvature variation for a drop resolved on a D 2Q 9  
lattice as Fig. 10 was found to contain similar structure to an  
initialised unevolved  drop: Fig. 10 shows how  circular h single­
site interface drop  can be m ade on the lattice. Pressure differ­
ences do not appear to  drive radius of curvature and we 
suggest that the interface in all classes o f LB G K  interface (and 
thereby radius o f  curvature) needs to  be liberated from  the 
lattice to a llow  the shape o f the interface, as it were, more 
scope to adapt to  local flow  conditions. One m eans to achieve  
this m ight be to  ensure that the colour field always lies norm al 
to interface i.e. that the interface always lies perpendicular to  
the local co lou r  gradient and that the segregating colour  
fluxes always direct a long  the colour field (in the present 
m odel segregating colour is allocated according to  a tractable  
rule which does not ensure that the flux lies perpendicular to  
the interface).
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