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Abstract

The Shape Control of Plasto-Hydrodvnamically produced Wide Strip

M.R. Stokes

A detailed investigation is carried out for the novel process of Plasto-hydrodynamically 
produced wide strip. In this process the conventional die is replaced by a pressure head 
with a rectangular hole. The internal geometry of the hole is shaped such that a 
convergent fluid flow is produced. This flow causes the production of hydrodynamic 
forces within the pressure head, namely hydrodynamic pressure and surface shear 
stresses. These forces are of sufficient magnitude that plastic deformation is induced 
within the working material.

An in-depth theoretical analysis has been undertaken to establish the relevance of the 
geometrical parameters of the pressure head for the control of deformation performance. 
An extensive study of the solution algorithm for this type of plasto-hydrodynamic 
problem is made and modifications introduced to improve die dynamic response of the 
model. A new non-Newtonian model of the process has been developed using a power 
law type constitutive equation for the fluid behaviour. The modifications to the solution 
algorithm were also included in this new model.

The plasto-hydrodynamic models developed during this work were subjected to 
numerical optimisation. The non-linear pattern search algorithm was utilised for this 
purpose. Correlations between the optimum geometrical form for the pressure head and 
process velocity were established. A study was made of the effect of varying the non- 
Newtonian parameters and the optimum pressure head geometry.

A Computational Fluid Dynamic (CFD) analysis was made of the Hydrostatic 
assumption. This assumption allows major simplifications during the derivation of the 
models of the process. Its validity is established along with the impact of side leakage 
on the pressure field.

An experimental programme was undertaken to provide data to establish a correlation 
between the predictions of process performance and an analysis of the output form of 
the strip produced by the process. The material used for the study was commercially 
available soft copper strip. The maximum reduction in area produced was 12% 
approximately.
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Nomenclature

t Thickness of the strip

W Width of the strip

L Land length in pressure head

h Gap between strip and pressure head land face

V Velocity

P Hydrodynamic pressure

dp/dx Pressure gradient

Pm Hydrodynamic pressure at the step

t  Shear stress

o direct stress

Q Volumetric flow rate

X! Point of initial yielding

K i) Power Law consistency constant

ii) Strain hardening constant 

n i) Power Law consistency index

ii) Strain hardening index 

y Shear rate

fi absolute viscosity

PRA Percentage Reduction in Area

PRW Percentage Reduction in Width

PRT Percentage Reduction in Thickness

m Aspect ratio of the strip

A Constant of integration

B Constant of integration

C Arbitary constant



nD Arbitary constant

R Residual

T Temperature

* Redundant shear strain

G Hessian matrix

M Merit function

Superscripts and Subscripts

1 Inlet land

2 Outlet land

3 Edge face of strip

X Axial direction

y Direction through strip thickness

z Direction across strip width

i in, node

il ith + 1 node

y Yield

yo Original yield

T Transposed matrix

e Plastic strain

sy yield stress in shear

g glass transition

* arbitary point

0 arbitary point



CHAPTER 1

1.0 Introduction

1.1 The Drawing Process

In the drawing process the workpiece is pulled or drawn through a convergent die. 

The shape of the die at the exit determines the final cross-section of the workpiece 

be this circular or rectangular. The technique of drawing or rather wire drawing 

is known to date back to ancient Egypt.

During the drawing process extreme pressure conditions are generated 

causing metal to metal contact and thus friction and die wear. Effective lubrication 

is required to reduce the coefficient of friction with its associated reduction in the 

force and power requirements of the process. Boundary lubrication is the dominant 

regime in the drawing process.

1.2 Strip Drawing

The work carried out specifically on the drawing of rectangular strip will now be 

reviewed.

Various experimental and theoretical studies have been made with a plane 

strain arrangement or assumption. Fukui et al {1) used a parallel die and tapered 

plug arrangement to determine the friction coefficient directly during the strip 

drawing process. With this apparatus various process variables were examined such 

as lubricant type, drawing speed, strip material, and surface finish of both the die 

and work material on the coefficient of friction. The results obtained demonstrated 

that:

i) Increasing drawing velocity results in a reduction in the coefficient of 

friction for low viscosity lubricants or poor lubricity,
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ii) The surface finish of the die/work material greatly influenced the 

value of the coefficient of friction, with a decrease observed with 

increasing roughness of the work material and with smoother die finish.

Lancaster and Rowe (2) studied the effect of lubrication on strip drawing 

using wedge shaped dies. The study consisted of two distinct parts. Firstly, an 

evaluation of a soft solid lubricant that could be carried through the die with the 

work material. It was found that the lubricant film thickness was dependent upon 

the grade of lubricant, surface roughness of the specimen and the geometrical 

configuration of the dies. The volume of the lubricant being carried through the 

dies was found to be strongly dependent on the die angle. Secondly, a comparison 

of experimentally measured coefficient of friction and drawing stress was made with 

existing drawing theories (3,4,5).

Kudo et al (6) carried out drawing tests with sheets of copper and aluminium 

to investigate friction and lubrication in the cold forming process. Experiments 

were performed at velocities ranging from 0.2 to 3000 mm/s using different types 

of lubricants, with tangential and normal loads at the die/material interface being 

measured separately. Published results show the dependence of the coefficient of 

friction on the reduction, velocity and lubricant.

Wilson and Cazeault (7) investigated the effect of various combinations of 

lubricant, die-angle, reduction and velocity on the friction conditions in strip 

drawing using a split die arrangement. They concluded from their results that 

friction was highly sensitive to the die geometry but velocity had little effect.

Rao et al (8) investigated the plane-strain strip drawing process using 

transparent sapphire dies. The use of transparent dies enabled the interface
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displacements to be observed directly and the relative velocities determined. A 

reference collection of experimental data for such parameters as die angle, velocity, 

back tension, interface friction and interface velocity values was utilised. Interface 

velocity measurements were used to provide boundary condition information at the 

tool/workpiece interface. This data was then utilised in various theoretical models, 

to calculate an accurate value of the coefficient of friction rather than an assumed 

value. A numerical analysis was then given (9) with the numerical predictions 

being compared with the experimental data of (8).

The economic viability of industrial processes demands the use of high speed 

drawing techniques; the attention of researchers had been concentrated on the 

drawing of various metallic sections at high velocities. To this end Parsons et al 

(10) presented a paper on the feasibility of high speed impact drawing. A 

theoretical analysis of the process was given, which considered the mechanics of the 

deformation of the bar and the impact dynamics for the process.

Experimental analysis of the high speed drawing of both rectangular and 

tubular sections was performed by Baxter (11). A substantial portion of this work 

related to the drawing of rectangular sections at high velocities through wedge 

shaped dies. Hydrodynamic lubrication was seen to be present in the process at 

high velocities and a theoretical expression was developed to evaluate the film 

thickness in the presence of such a regime.

Extended experiments were made by Devenpeck and Rigo (12), using an 

apparatus which essentially was a combination of a laboratory rolling mill and a 

custom die-block. Test lengths of 1.5 km were produced. The material used was 

tin plated steel strip. Various lubricants were used to study the effect of different 

parameters such as velocity, reduction, cumulative length of strip on the coefficient
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of friction and wear.

1.3 Hydrodynamic Lubrication in Deformation Processes

The wear problems created as a consequence of boundary lubrication present in the 

drawing process stimulated various researchers to consider the possibility of 

promoting full fluid film lubrication (FFFL) as the optimum solution to the 

reduction of friction and wear within the die.

Christopherson and Naylor (13) performed one of the initial studies in the 

promotion of FFFL but with respect to wire drawing. A pressure tube was 

mounted on the input side of the die; which was characterised by two properties. 

Firstly, the clearance between the wire and the internal bore of the tube was small 

so as to maximise the hydrodynamic processes. Secondly, the tube was long 

allowing the build-up of large pressures prior to the die which provides the 

convergent flow required for hydrodynamics. Oil was the drawing lubricant. 

Experimental results demonstrated that hydrodynamic conditions were generated in 

the die under the imposed conditions. A theoretical analysis, assuming isothermal 

conditions, of the pressure tube was given. This analysis was developed further 

with the introduction of a deformation zone, by Tattersal (14) and by Osterle and 

Dixon (15).

Cheng (16) performed a plasto-hydrodynamic analysis of strip rolling 

incorporating thermal, plasticity and lubricant derived phenomena.

Bedi (17) produced an analysis assuming total hydrodynamic lubrication for 

the drawing of wire through a conical die, from which the hydrodynamic film 

thickness and coefficient of friction could be evaluated.

An elasto-plasto-hydrodynamic analysis was presented by Bloor et al (18)
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for the lubrication of strip drawing through wedge shaped dies, with the process 

phenomena being analysed both on entry and exit of the die. It was concluded from 

this analysis that the film thicknesses calculated could be sustained by the drawing 

process.

As a continuation of the work presented by Bloor et al (18), Dowson et al 

(19) using modified geometry presented an elasto-plasto-hydrodynamic analysis of 

the lubrication in the wire drawing process.

An experimental programme of high speed drawing tests was carried out by 

Lancaster (20) to determine the possibility of establishing hydrodynamic lubrication 

using conventional dies as opposed to pressure tubes or compound dies. The 

experiments were performed using aluminium (hard and soft) and low carbon steel 

bars with drawing speeds up to 30 m/s. The drawing lubricants used were 

Polyglycols and Lanoline. The results obtained indicated that a high drawing 

velocity alone is insufficient for the development of hydrodynamic films. However, 

hydrodynamic films can be generated but are dependent upon the lubricant, the 

material properties and die angle.

Avitzur (21) subsequently discussed and specified the required conditions to 

maintain separation between the die and workpiece.

Kudo et al (22) performed an experimental study on cold sheet drawing 

through wedge shaped dies to investigate plasto-hydrodynamic lubrication in 

forming processes. The average coefficient of friction, the lubricant film thickness 

and interface temperatures were calculated from a thermal rigid-plasto- 

hydrodynamic analysis of the process.

Various research workers (Wilson and Mahdavian (23), Dow et al (24), 

Mahdavian and Wilson (25)) have presented theoretical analyses for the

5



hydrodynamic lubrication of rolling and drawing through conventional dies 

including thermal effects.

1.4 The Development of Plasto-hydrodynamic Die-less Drawing

For FFFL to be the dominant regime in the drawing process the lubricant must 

exhibit the following viscosity characteristics:

i) the fluid viscosity should provide for laminar flow within any entry 

pressure tube,

ii) adhesion of the lubricant to the work material should be maintained 

at all times.

The requirement for the above characteristics has led recently to the testing of 

alternative lubricants to those currently in use. Symmons et al (26,27) introduced 

the use of polymer melts during drawing as a lubricating agent. Small scale testing 

of the coating properties of polymer melts when used in the application has also 

been performed.

The lubricant properties of polymer melts was studied by Crampton (28) by 

varying the following process variables: polymer melt temperature, drawing velocity 

and wire material. The system used for the study was essentially the same as the 

apparatus of Christopherson, with the exception that the lubricating agent was a 

polymer melt. Various analytical solutions (29,30) were presented for the process 

in this form; they accounted for the physical phenomena of non-Newtonian flow 

characteristics, strain hardening and strain rate sensitivity of the work material. The 

experimental results of (28) demonstrated that plastic deformation of the wire had 

occurred in the pressure tube prior to the die. Therefore, the function of the die 

was reduced to acting as a seal. Furthermore, it was postulated that the die could
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be replaced with a conical unit in which the smallest bore size would be larger than 

the entry wire diameter and when used in conjunction with a polymer melt 

permanent deformation would be achieved. Hashmi, Symmons and Parvinmehr 

(31-33) then used a unit with a stepped bore such that the smallest bore size was 

larger than the entry diameter of the wire, which produced a reduction in the wire 

diameter. From these findings an innovative metal forming process was 

investigated and patented as ’Plasto-hydrodynamic Die-less drawing’.

In this process the working medium is pulled through a melt chamber 

containing polymer melt then into the stepped bore reduction unit. The stepped 

bore reduction unit is so constructed that the smallest bore is larger than the entry 

size of the working medium and also the larger of the two bore sizes which produce 

the step is placed on the entry side of the unit. The adherence of the polymer to 

the surface of the working material draws the polymer into the reduction unit, hence 

filling the clearances between the stepped bore and the working material. The 

convergent flow so created gives rise to hydrodynamically generated pressures and 

shear stresses. The shear stresses induce a cumulative back stress in the working 

medium as it moves along the reduction unit. At some point the combination of the 

back stress and the applied hydrodynamic pressure exceeds the yield stress of the 

material, and deformation begins. The benefit of this arrangement is that die wear 

is completely eliminated as no metal to metal contact takes place. Various 

analytical and numerical solutions for the process have been presented:

i) Hashmi and Symmons (34-35) for a solid continuum through a 

conical orifice filled with a viscous fluid,

ii) Parvinmehr et al (36) produced a non-Newtonian analysis for the 

process including strain hardening, strain rate sensitivity of the work
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material and a limiting or critical shear stress for the viscous medium,

iii) the process was extended to tube sinking by Panwher et al (37) with 

positive results, an analytical solution for this implementation assuming 

a Newtonian fluid was presented. Later the analysis was modified to 

include non-Newtonian fluid characteristics (Panwher (38)).

Other non-linear effects in the fluid behaviour are the sensitivity to pressure 

and temperature. Symmons et al (39-41) presented various analyses for die-less 

wire drawing including these phenomena, the objective of which was to isolate the 

effect of temperature and pressure on the fluid and thus the performance of the 

process as a whole.

The process was then applied to the reduction of rectangular strip by Memon 

(42). The configuration of the stepped bore was modified to that of a stepped slot; 

only the width faces of the unit were stepped, the gaps on the edge faces being set 

to a similar magnitude as that of the width face gaps. The assumption required for 

this configuration is that the hydrodynamically produced pressure is propagated 

equally around the cross section at any point.

Memon (42) performed an in-depth study of this new application of the 

concept: his objectives were:

i) to assess the effects of the reduction unit geometry on the pressure 

distribution, drawing stress and the overall drawing performance,

ii) to assess the effects of drawing velocity and polymer melt 

temperature on the overall drawing performance,

iii) to develop a mathematical model for the prediction of various 

parameters involved in the process such as pressure distribution,
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initiation of yielding, product size and the drawing stress,

iv) to examine the correlation between experimental and theoretical 

results,

v) to assess the feasibility of the process in comparison with the 

conventional process.

The process proved to be successful in this application, with percentage reductions 

in area in the order of 20%. The modelling of the process was reported by 

Symmons et al (43-45). During this period various reports have been made on the 

continuing development of the process for wire drawing and coating - Symmons et 

al (46-47), Hashmi et al (48) and Panhwar et al (49).

1.5 The Aim and Objectives of the Current Investigation

The aim of the investigation is to determine and assess the deformed shape and 

reduction of rectangular wide strip using a plasto-hydrodynamic drawing process. 

Deformed shape is defined as:

’the distribution of thickness across the width face of the strip and the 

overall reduction in sectional area’.

Furthermore the term ’Shape control’ in the context of this work shall be defined 

as:

’the accurate prediction of the reduction in cross-sectional area’.
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To achieve the stated aim the following objectives have been identified:

i) to analyse the system and produce a predictive mathematical model, 

taking into account the relevant physical phenomena,

ii) to examine in detail all major assumptions in the analysis and their 

validity,

iii) to develop the ability to optimise the internal geometry of the 

stepped bore reduction unit for a specified process velocity as a 

necessary precursor to an economic viability analysis of the process,

iv) to perform experimental trials of a stepped bore reduction unit using 

material of an aspect ratio larger than previously used (ie 16:1),

v) to establish the deformed shape of the material produced by the 

process and compare this with that of the feed stock supplied to the 

process,

vi) to compare experimental results with the predictions of the numerical 

model.

10



CHAPTER 2

2.0 Properties of Experimental Materials

2.1 Rheologv of Polymer Melts

The Newtonian fluids familiar to engineering practitioners will be seen to be merely 

one of many different types of possible fluid behaviour. The working fluid for this 

study is a polymer melt, which exhibits non-Newtonian flow characteristics. When 

a polymer flows, molecules of the melt are subjected to a sliding or shearing action. 

The resistance to this flow is dependent upon the forces or entanglements present 

at the molecular level and the flexibility inherent in the molecular chains of the 

polymer. The magnitude of these phenomena may be altered by various 

environmental factors and the initial choice of polymer which specifies the form of 

the molecular chain. A brief outline of the established theory for these factors is 

now given.

2.1.1 Fluid Classification

Fluids may be separated into two main groups:

i) Time-independent fluids, in which the shear rate (s'1) is an 

arbitrary function of the applied shear stress.

ii) Time-dependent fluids, in which the shear rate / shear stress 

function is dependent upon its shear history.

These groups are considered separately below.

2.1.1.1 Time-independent Fluids

The shear rate / shear strain relationship for time independent fluids is given 

below for the general case.
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Y = /(*) (2.1)

Various flow curves are possible, but four standard forms are defined in 

rheology texts. These are:

i) Newtonian fluids; where the shear strain / shear stress 

relationship is a constant; this is the simplest of all possible 

relationships,

ii) Pseudoplastic fluids; where the shear rate increases at a more 

than linear rate with an increase in shear stress; sometimes referred 

to as shear thinning,

iii) Dilatant fluids; are the opposite of pseudoplastic, where the 

shear rate increases at a less than linear rate with an increase in 

shear stress sometimes referred to as shear thickening, and

iv) Bingham body; a highly idealised material where it is assumed 

that a distinct yield stress is observed after which a constant ratio of 

shear rate / shear stress (ie.Newtonian) is observed.

These basic forms are given graphically in Figure 2.1. Various oils, emulsions, 

suspensions, slurries and pastes can exhibit any one or other of the 

characteristics given above, however, the majority of polymer melts are 

pseudoplastic in their behaviour.

2.1.1.2 Time-dependent Fluids

There are various materials whose viscosity changes with both the rate and time 

of shearing. This may be a reversible process in that the viscosity will recover 

to its initial state if left for a sufficiently long time. Some material processes,
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for example the mastication of rubber, cause irreversible changes due to 

modification of the molecular structure. Fluids which exhibit this decrease in 

shear stress with the duration of an applied constant shear strain rate are 

classified as Thixotropic. A more strict definition is sometimes used where the 

change must also be reversible. The opposite of Thixotropic behaviour is 

negative thixotropy or Rheopectic behaviour, where at any given shear rate the 

shear stress increases and reaches an asymptotic maximum value. The time 

dependent nature of the fluid viscosity can be demonstrated by the use of a 

rotary viscometer, in which the fluid is cycled from rest to some maximum 

shear rate and returned to rest. A plot of shear stress against shear rate then 

reveals a hysteresis loop, the direction of which specifies thixotropic or 

rheopectic behaviour, as shown in Figure 2.2.

2.1.2 Shear Rate Dependent Fluid Behaviour

2.1.2.1 Pseudoplastic Behaviour

Pseudoplastic properties may result from a number of phenomena. Two of the 

most significant are thought to be:

i) Asymmetric particles or molecules are randomly oriented and/or 

extremely entangled initially. Under shear motion the particles (or 

molecules) are oriented and points of entanglement are reduced. At 

extreme shear rates the orientation may become total and at this 

point the fluid behaviour may become near-Newtonian.

ii) Extremely solvated particles / molecules may be present in the 

fluid. Given an increase in the shear rate, solvated layers could be 

sheared away causing the effective size of the particles / molecules
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to be reduced, resulting in decreased interaction of the particles / 

molecules and a consequent reduction in apparent viscosity.

A variety of mathematical models have been proposed in order to describe the 

behaviour of pseudoplastic materials. They have been derived from 

consideration of molecular structure, of differing levels of complexity, or are 

of a completely empirical basis. Skelland (50) reviewed these equations, 

concluding that the mathematics involved in obtaining a solution for anything 

other than the most simple of problems in most cases did not justify the effort 

involved. The equation which has obtained a measure of success in real 

applications is the power law equation. The form of this equation is given 

below.

x = K (  y )B (2 -2 )

2.1.2.2 Dilatant Behaviour

The inverse of pseudoplastic behaviour is dilatant behaviour. Materials with 

dilatant characteristics demonstrate an increase in viscosity with increasing shear 

rate. A classical definition of dilatancy is that of increasing volume with 

increasing shear rate, but the former definition is now the most commonly used. 

Dilatant characteristics are commonly demonstrated by highly concentrated 

suspensions, in particular PVC pastes. The most successful model used for 

dilatant behaviour is also the power law equation (Equation 2.2) as stated 

previously. It is the value of n, the power law index, which determines which 

type of behaviour is modelled. Dilatant behaviour is produced with an index 

greater than one. A power law index of one is equivalent to Newtonian flow
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characteristics. Power law indices less than one produce pseudoplastic 

characteristics.

An overall view of the fluid classification structure discussed in this and the 

previous sections, is given in Figure 2.3.

2.1.3 Temperature Dependent Fluid Behaviour

The dependence of viscosity upon temperature is widely known. For Newtonian 

fluids it is well established that the viscosity temperature relationship may be 

described by an Arrhenius equation of the form:-

j ,  =  A e <2 - 3 >

where A is a constant, E is the activation energy, R is the universal gas constant 

and T is temperature. It has already been stated that polymer melts are 

pseudoplastic in nature; to account for variations found from Equation 2.3 a 

second empirical equation is often used:-

|i = (2-4>

where both a and b are constants. In practice plots of log fi against log T for 

experimental data are curved rather than linear in form. Various attempts have 

been made to obtain a fundamental explanation for the differences in the 

temperature / viscosity relationship between different polymers, the most 

successful of which is the ’free volume theory’. The free volume theory suggests 

that at some critical temperature T0 (approximately 52 °C below the measured 

glass transition temperature Tg) there is no ’free volume’ between the molecules.
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The free volume is postulated to increase linearly with temperature such that at 

the Tg the free volume has a value fg. The expansion coefficient a f is defined by 

the expression below.

It has been postulated that fg has a constant or universal value of 0.025 and a{ has 

a constant or universal value of 0.48.

Williams, Landel and Ferry (51) proposed from Equation 2.4 that the 

viscosity \l of a melt at some temperature T can be related to that at an arbitrary 

temperature Ta by the equation.

(2 .5)

a

C  + T -  Ta

(2 .6)

2

Substitution of Tg for the arbitrary reference temperature yields

8

8
C + T -  T 

2 *

(2 .7)

2

where,

(2 .8)

and
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have been postulated as universal constants. These equations are generally known 

as the WLF (Williams, Landel & Ferry) equations. Small deviations from these 

equations can be found for various polymer melts. However, experimental values 

for the constants which would yield more accurate results can be determined for 

a particular polymer.

2.1.4 Pressure Sensitivity of Polymer Flow

A capillary rheometer consists of a melt chamber with a capillary fixed in one 

end. A piston is used to force the polymer melt from the chamber. The accurate 

measurement of the pressure generated in the melt chamber due to the capillary, 

coupled with the flow rate calculated from the piston speed, enables the shear rate 

and shear stress to be computed, hence forming the characteristic flow curve of 

the polymer melt. The fundamental basis upon which this type of rheometer 

relies is the pressure difference created across the length of the capillary. The 

question as to whether or not the absolute pressure at which this difference occurs 

has an influence on the melt viscosity, will now be addressed.

The WLF equations discussed previously make use of the free volume 

surrounding a molecule as a dependent variable in the relationship of viscosity and 

temperature. Since an increase in pressure will decrease the distance between 

particles or molecules (and hence free volume) it might be expected that an 

increase in pressure will lead to a corresponding increase in viscosity. Westover 

(52) performed the first investigation in this area using a double piston rheometer.
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With this apparatus it is possible to establish flow environments such as those 

shown schematically in Figure 2.4 (it should be noted that only the first case may 

be developed with a conventional rheometer). It was found in the case of 

polystyrene that increasing the pressure from 13.7 MPa to 172 MPa raised the 

apparent viscosity of the melt by 2 orders of magnitude.

Capillary based techniques suffer from the disadvantage that the applied 

shear stress is calculated from the force applied to cause the pressure difference 

which will be effected by the presence of friction between the moving parts, 

hence producing an unavoidable source of error. Semjonov (53) originally, and 

later Cogswell (54), used a pressurised Couette-Hatschek viscometer which does 

not suffer from this problem. With this type of apparatus inner and outer 

concentric cylinders are used, and the void between them is filled with polymer 

melt at a controlled pressure. The inner cylinder is held stationary while the outer 

is rotated thus shearing the melt. The torque induced on the inner cylinder due 

to viscous drag is then measured and interpreted as a shear stress.

Cogswell’s (54) results demonstrated that the flow curves for a given melt 

at varying temperature and pressures were superimposable by a shift at constant 

stress. A reasonable approximation is possible if it is assumed that the change in 

log(/i) is linearly proportional to the temperature or pressure change. It then 

follows that the effect of temperature on viscosity could be equated to the effect 

of pressure on viscosity through a coefficient - (AT/AP)„. The value of this 

constant was found to be reasonably constant with polymer type, given in Table 

2.1. It may also be concluded that a polymer which is sensitive to changes in 

temperature will also be sensitive to changes in pressure.
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Table 2.1 - Temperature-Pressure coefficients at constant viscosity, entropy and 

volume ( C/Nm'2); after Cogswell (54)

Polymer -(At/Ap)„ x  10-7 (A t/A p)s x  10-7 (A t/A p)v x  10*7

PVC 3.1 1.1 16

Nylon 66 3.2 1.2 11

Poly(methyl methacrylate) 3.3 1.2 13

Polystyrene 4 .0 1.5 13

Polyethylene (high-density) 4 .2 1.5 13

Acetal copolymer 5.1 1.4 14

Polyethylene (low  density) 5 .3 1.6 16

Silicone polymer 6 .7 1.9 9

Polypropylene 8.6 2 .2 19

2.2 The Working Fluid

A proprietary grade of Nylon 12 was used as the working fluid throughout the 

duration of this project. The precise grade was Grilamid L25 which is 

manufactured by EMS-CHEMIE AG and supplied by EMS-GRILON Ltd, their 

British subsidiary. Grilamid L25 is an extrusion grade polymer; a typical 

application is the extrusion of rigid tubes. Its flow data was supplied by the 

manufacturers in the form of flow curves for the polymer at three different 

temperatures, see Figure 2.5. This grade of polymer was selected based on two 

important properties after consultation with the manufacturers. Firstly, due to its 

tolerance of extreme shear conditions. No quantifiable data was available as a basis 

for this decision. A qualitative appraisal was made, based on the experience of the 

company in high shear applications. Secondly, the high viscosity of the fluid in the 

projected operational shear rate range (3000-5000 s'1) on the apparatus.
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2.3 Strain Hardening Characteristics of the Strip Material

The stress-strain characteristics of the strip material were investigated by performing 

a number of uniaxial tensile tests. The test samples were fitted with post yield 

strain gauges for use into the plastic strain range. The resultant stress-strain data 

was fitted to a ’power law’ type expression to describe the material behaviour, as 

given below.

0 = 0  + Ken (2.10)y yo

where,

ay0= initial yield stress 
K = strain hardening constant 
n = strain hardening index

Three batches of material were used during the tests, the values obtained for each

batch are given below,

Material 1

<7y0= 74.58 MPa 
K = 585.215 MPa 
n = 0.659983

Material 2

ffyo= 88.49 MPa 
K = 497.262 MPa 
n = 0.595859

Material 3

ay0= 72.1749 MPa 
K = 702.21 MPa 
n = 0.713081

The true stress / true plastic strain curves for this data in given in Figures 2.6, 2.7 

and 2.8 respectively.
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Figure 2.1 - Shear Stress / Shear Rate curves for the four standard Rheological forms

21

Sh
ea

r 
R

at
e



Figure 2.2 - Thixotropic and Rheopetic hysteresis loops
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Figure 2.6 - The yield characteristics of the copper strip (batch 1)
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Figure 2.7 - The yield characteristics of the copper strip (batch 2)
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Figure 2.8 - The yield characteristics of the copper strip (batch 3)
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CHAPTER 3

3.0 Experimental test apparatus design specification

3.1 General description

Previous work by Memon (42) on hydrodynamic strip drawing was mainly at an 

aspect ratio of 8:1 (width/thickness : 12.7mm/1.59mm). With this in mind the 

aspect ratio range of the apparatus for the current body of work was set at 32-16:1.

The prime mover is a Marshall Richards Barco chain driven draw bench with 

a stated load capacity of 40 kN. This is fitted with a variable speed transmission 

with a velocity range of 0.1 to 0.5 m/s. A rail guided unit fitted with a dog clamp 

is drawn over the bench length by a spring loaded hook. The hook is disengaged 

from the chain drive at the end of the draw stroke by two ramps lifting the hook 

from the chain. The plasto-hydrodynamic pressure unit is mounted at the head of 

the draw bench. Only the draw bench has been utilised from the previous work 

performed by Memon (42); a completely new pressure head, meltpot and preheat 

system has been built for the present investigation.

3.2 Plasto-hydrodynamic pressure head

The apparatus consists of a pressure head in which the shaped orifice required by 

the process is formed. At the entrance to the pressure head is a polymer melt 

reservoir, through which the strip passes. Prior to the reservoir is a 5 roll 

straightener; this is to ensure that the material enters the pressure head with an 

acceptable degree of flatness. This assembly is then mounted on the draw bench. 

Plates 3.1 - 3.2 give different views of the assembled experimental apparatus.
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3.1.1 Description of the Pressure Head

The pressure head consists of 6 pieces; a top and bottom plate, 2 shaped pressure 

inserts and 2 spacers, as shown in Figure 3.1. The loads imposed upon the 

pressure head are the hydrodynamic pressures and shear stresses generated by the 

process itself. In the x-direction, the internal forces are carried in double shear 

by the step in the top and bottom plates. In the y-direction, the top and bottom 

plates are held together with 6 retaining bolts. The shear loads, which would tend 

to pull the pressure inserts out of the pressure head in the z-direction, are 

countered by an exit plate secured to the top and bottom plates. A standard 

pressure vessel design factor of 3 has been used throughout the calculations for 

the pressure head.

Sealing of the pressure head is achieved by the steps into the top and 

bottom plates, the steps being precision ground to a transition fit, which together 

with the step acting as a mechanical labyrinth seal, provides sufficient sealing 

with such viscous fluids as polymer melts.

Heat is supplied by 3 electrical strip heaters totalling 2.625 kW of power.
o

This is sufficient to bring the pressure head from ambient temperature to 250 

centigrade in approximately 30 mins. The heaters are controlled by a Eurotherm 

Type 91 PID (proportional, integral, derivative) controller. This particular unit 

allows the terms of the controller algorithm to be tailored to a specific 

application.

Thermal insulation is provided by an enclosure utilising Kaowool ceramic 

fibre board. This material is rated at 0.07 W/m°K.
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3.1.2 Polymer melt reservoir

The polymer melt reservoir consists of a cylindrical body section and an upright 

feed hopper. Both the cylindrical body and hopper section are heated with 

electrical barrel heaters, which are controlled using Eurotherm Type 91 PID 

controllers. The capacity is sufficient for short experimental runs with the facility 

via the hopper for replenishment if required. This reduces the risk of polymer 

degradation due to insufficient throughput which could lead to oxidation of the 

polymer. The melt is further protected by the provision of an inert gas blanket; 

it is possible to pressurise the gas blanket to 6 bar to overcome any possible 

supply problems. Argon is the inert media used for the gas blanket. Meltpot 

details are given in Figure 3.2.

3.1.3 Five roll strip leveller

The material used for the experimental programme is procured in 100 kg coils. 

These coils are then rewound on to a small feed reel for use on the experimental 

apparatus. This leaves the feed stock with an initial curvature and in some 

sections a degree of twisting. The hydro-dynamic process requires great 

dimensional accuracy and, whilst the process will smooth or flatten some 

distortion in the material, by its very nature it will not remove gross distortion. 

To this end a 5 roll leveller is fitted prior to the melt pot.

The leveller consists of five staggered rolls mounted in a carrier block. 

The carrier blocks set the spacing of the rolls, being sandwiched together in a 

stack. The stack of carriers is then mounted in the roller box, and the roller box 

is then mounted on the apparatus base plate, prior to the meltpot. Engineering 

drawings of the assembly are given in Figures 3.3 and 3.4. Plate 3.3 shows the
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assembled leveller with copper strip in place, 

drawing of the apparatus.

Figure 3.5 gives an assembly
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Plate 3.1 - Mounting details of the pressure head and meltpot.
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Plate 3.2 - A view of the process line for the Plasto-hydrodynamic drawing process.
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Plate 3.3 - Internal details of the roller leveller.
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Figure 3.1 - Detailed drawings of the pressure head.
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Figure 3.2 - Detailed drawings of the polymer meltpot.

37



4-

4

to

i J-S : f tKtw
«•«

'BVC i

5 ? f K-i ____1
JL7J-«~ aOS'*’®«H...*

5 5
I ! 
s itn - !it* I s 

y s*

i

li 77*.v r*
‘ 73 J

i» ;F

s

.-f r f  — '  ? ( 7 . * •*-...... c « T —

— <

Figure 3.3 - Detailed drawings of the roller leveller frame.
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Figure 3.4 - Detailed drawings of the leveller roll carriers.
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Figure 3.5 - Assembly drawing of the Plasto-hydrodynamic drawing apparatus.
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CHAPTER 4

4.0 Experimental Results

4.1.1 General Description of Experimental Programme

The experimental programme is designed to investigate the distribution of 

thickness across the width face of the strip and the nominal reduction in area, 

thickness and width of section for material produced by the Plasto-Hydrodynamic 

Drawing (PHD) process. Theoretical work on the numerical optimisation of the 

process described later, indicated that the h3/h2 ratio (see Figure 5.2) affects the 

onset of slip and hence the achievable deformation. The experimental programme 

consisted of three distinct pressure head configurations. The Lj/L^ and hj/h2 

ratios were held constant; the h3/h2 ratio was then set to 5, 3.5 and 2. The melt 

temperature was also varied for each pressure head configuration, the 

temperatures being 235°C, 215°C and 195°C.

Material Details

Commercially available drawn copper tape (annealed or soft condition)

Nominal width 25.4 mm (1 inch)

Nominal thickness 1.58 mm (1/16 inch)

Aspect ratio 16:1 

Pressure Head details

Lj= .159 m L1/L2= 7.95

L^= .020 m

hi= .00025 m h,/h2= 6.25

h2= .00004 m
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4.1.2 Thermal freezing and Preheat

Initial trials with the wide aspect ratio test rig were thought to be encouraging, 

as it was possible at the lowest draw velocity available to fracture the strip 

material; in fact, it was impossible not to fracture the strip material. Intensive 

investigation revealed that the polymer melt, initially at temperatures between 

200°C and 280°C was freezing on the surface of the strip material which was at 

ambient temperature, causing the pressure head to become congested or clogged, 

thus fracturing the strip material.

The problem of thermal freezing was overcome by the installation of a 

preheat furnace prior to entry into the melt pot and pressure head. This consisted 

of a sheet steel box, lined with ceramic fibre. Heat was supplied by a three 

kilowatt heater and a fan unit.

4.2 Definition of Process Performance Indicators

Three performance indicators may be used with PHD, these are Percentage 

Reduction in Thickness (PRT), Percentage Reduction in Width (PRW) and 

Percentage Reduction in Area (PRA). Each of these may be defined as the change 

in an arbitrary variable, expressed as a percentage. The equations for the above 

terms are given below:-

PRT = 1 - *100 (4.1)

PRW =
Wt

*100 (4.2)
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4.3 Experimental Procedures

4.3.1 Operation of the apparatus

The basic operational procedure is as follows:

i) set polymer melt, pressure head and preheat furnace temperatures,

ii) apply inert gas blanket to melt chamber,

iii) when the various components have achieved their set temperature 

a sequence of experimental draws are made for a predetermined 

velocity range,

iv) samples are then removed from the drawn section 1.5 metres from 

the initial point, the purpose of which is to ensure that any transient 

effects in the process have dissipated,

v) the samples are stripped of polymer and measured.

An inert gas blanket was used with the apparatus to prevent oxidisation of the 

polymer. All polymers are susceptible to this problem to a greater or lesser 

degree, particularly all grades of Nylon.

4.3.2 Removal of the polymer coating

Nylon was used throughout the experimental programme due to the generally 

good performance of this polymer group. Unfortunately Nylon produces an 

extremely well adhered coating on the strip material, which when mechanically 

removed resulted in damage to the surface of the strip material. In view of this 

a chemical solvent was used to remove the Nylon coating. The solvent used was
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Meta-Cresol, which is toxic and as such its use must be in accordance with the 

C.O.S.H.H. (Care Of Substances Hazardous to Health) regulations. The 

procedure is given below:-

i) The sample is immersed in the m-cresol until sufficient time has

elapsed to remove the coating.

ii) The sample is then washed in Sodium Hydroxide solution (1.0

M/L) to remove the m-cresol.

iii) The sample is then washed in distilled water.

iv) The sample is then washed in Acetone, and air dried.

4.3.3 Measurement procedures

Three geometrical properties of the experimental samples were measured. Firstly, 

the apparent width and the apparent thickness allowing the percentage reductions 

in width, thickness and area to be calculated. Secondly, the distribution of 

thickness across the width of the sample; this was assessed using a co-ordinate 

measuring machine and the comer radius of the section was assessed using 

enlarged photographs of encapsulated material samples. Thirdly, the comer 

radius of the section was assessed, as the commercially procured feed material had 

a small radius at the comers of the nominally square strip. The procedures used 

for these measurements are detailed below.

4.3.3.1 Measurement of Apparent Width and Thickness

The width of the sample was measured using a 0-25 mm flat anvil micrometer. 

The ratchet was utilised at all times. Three measurements were made, with the 

average being recorded.

44



The thickness of the sample was measured using a 0-25 flat and ball 

micrometer. The ratchet was utilised at all times. Measurements were made 

with the flat of the micrometer facing both sides of the sample, the smallest 

measurement being recorded, as any twisting or bowing of the samples caused 

during handling would tend to increase the measured value.

4.3.3.2 Measurement of the distribution of Thickness

The distribution of Thickness was measured using a Ferranti Metrology Systems 

- Merlin 750. The resolution of the measuring systems is rated at 0.0005 mm, 

with a repeatability of 2.5 microns.

The direct computer control facility of the system was utilised to assess 

the distribution of thickness. The section is mapped along its width by a 

sequence of pinch measurements. The flatness of the section has not been 

assessed as the material twists during handling and this is not considered an 

important parameter for this type of material. The processed material is of 

differing widths as the width is reduced in the process and samples at different 

velocities will have varying amounts of deformation. Because of this the cross- 

section analysis is made about the centre of the width face. This arrangement 

is given schematically in Figure 4.1. Pinch measurements are then made at a 

2 mm spacing, 10 mm either side (above and below) of the centre line. The 

mapping was limited to this range as any further steps in the map would 

approach the comer section of the material with the possible introduction of 

error.

The pseudo code of the computer programme used to assess the 

distribution of cross-section is given overleaf.
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Begin:
place sample in prepared clamp (vertically on its edge)
measure nominal thickness
measure nominal width
calculate nominal centre of section
reset coordinate system to centre of strip
for z = 10 to -10 step -2

measure thickness at z 
output to printer z and thickness

next z
End:

4.3.3.3 Measurement of Cross-section comer radius

To facilitate the examination of the sample comer radius, 5 mm long sections 

were removed from the drawn material. These were then encapsulated in 

Bakelite; a spring clip was used to hold the sections in vertical alignment. 

After encapsulation, the cross-section was revealed by removing the surface 

layer of Bakelite with rotating abrasive media, ranging from 320 to 1000 grit 

size, to produce a polished surface. Each sample was then photographed using 

a stereo-microscope with a 35mm camera attached. Enlargements of the images 

were made and the following procedure was used to assess the comer radius.

It was assumed that the shape of the section comer may be approximated 

by a curve of constant radius. A graphical construction was then made for each 

curve, as shown in Figure 4.2. A radius was then fitted to the comer 

graphically. Any errors incurred by the method will be minimised through the 

applied scaling factor - total magnification used was 70X approximately. Each 

comer of the sample was measured and a mean value for the section comer 

radius was then calculated.
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4.4 Results

The magnitude of the reduction in thickness and width, achieved by the process can 

be seen to agree with the following general statements:

i) reduction is proportional to the draw velocity,

ii) reduction is inversely proportional to the process temperature.

4.4.1 Pressure head build 1 - h,/h? ratio = 5

The maximum percentage reduction in area of 9.2% was achieved with the lowest 

temperature of 195° and at a maximum velocity of 0.447 m/s. The maximum 

percentage reduction in the width and the thickness was also recorded at this 

point, the reductions being 4.15% and 5.27% respectively. The achieved 

deformation is given in tabular form in Tables 4.1, 4.2 and 4.3, and in graphical 

form in Figures 4.3, 4.4 and 4.5.

4.4.2 Pressure head build 2 - h?/h? ratio = 3.5

The maximum percentage reduction for all process indicators was achieved with 

the sequence of draws made at a temperature of 195°, however the wide 

fluctuations in the process performance are indicative of supply problems in the 

polymer melt making interpretation of this data problematic. The achieved 

deformation is given in tabular form in Tables 4.4, 4.5 and 4.6, and in graphical 

form in Figures 4.6, 4.7 and 4.8.

4.4.3 Pressure head build 3 - h3/h» ratio =  2

A maximum percentage reduction in area of 11.59% was achieved at a process 

temperature of 215° and velocity of 0.131 m/s. This was accompanied by a
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percentage reduction in thickness of 7.91 %. Both of these values are outside the 

expected form of the results and will be discussed later. The achieved 

deformation is given in tabular form in Tables 4.7, 4.8 and 4.9, and in graphical 

form in Figures 4.9, 4.10 and 4.11.

Table 4.1 Temperature 235°, h3/h2 ratio =  5

Draw N o Velocity
(m/s)

P .R .A .
(%)

P.R .W .
(%)

P.R .T .
(%)

13.1 0.131 3.59 1.4636 2.1587

13.2 0.195 4 .59 1.9778 2.6666

13.3 0 .297 4.9898 2 .1954 2 .857

13.4 0 .38 5.5109 2.4129 3 .1746

13.5 0 .447 5.4963 2 .3338 3.238

Table 4.2 Temperature 215°, h3/h2 ratio =  5

Draw N o Velocity
(m/s)

P .R .A .
(%)

P.R .W .

(%)

P .R .T .

(%)

14.1 0.131 3.884 1.6218 2 .22

14.2 0.195 5.394 2.215 3 .174

14.3 0 .297 5.933 2.452 3.492

14.4 0.38 6.048 2.5712 3 .492

14.5 0 .447 6.200 2.7294 3 .492
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Table 4.3 Temperature 195°, h3/h2 ratio = 5

Draw N o Velocity P .R .A . P.R .W . P.R .T .

15.1 0.131 5.525 2 .492 3.111

15.2 0.195 7.175 3.243 4.063

15.3 0 .297 8.058 3.718 4 .507

15.4 0 .38 8.627 3.995 4 .825

15.5 0 .447 9.204 4.153 5 .269

Table 4.4 Temperature 235°, h3/h2 ratio =  3.5

Draw N o Velocity P .R .A . P.R .W . P .R .T .

20.1 0.131 6.65158 2.96677 3.79747

20 .2 0 .1616 7.22416 3.24368 4 .11393

20.3 0.195 7.78049 3.44146 4 .49368

20 .4 0.252 8.07694 3.56013 4 .68354

20 .5 0 .297 8.38729 3.75791 4 .81013

2 0 .6 0.349 8.37293 3.67880 4.87342

2 0 .7 0 .38 8.48582 3.79747 4.87342

20 .8 0.411 8.64971 3.77769 5.06329

20 .9 0 .447 8 .33530 3.63924 4 .87342
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Table 4.5 Temperature 215°, h3/h2 ratio = 3.5

Draw N o Velocity P .R .A . P .R .W . P.R .T .

19.1 0.131 7.38451 3.28323 4.24051

19.2 0 .1616 7 .78049 3.44146 4.49368

19.3 0.195 8 .64518 3.83703 5.000

19.4 0 .252 8.43941 3.87659 4.74684

19.5 0 .297 9.87422 4.43038 5.69620

19.6 0 .349 9.48718 4.21282 5.50633

19.7 0 .38 9.58062 4.31171 5.50633

19.8 0.411 9.42207 4.27215 5.37975

19.9 0 .447 9.58062 4.31171 5.50633

Table 4.6 Temperature 195°, h3/h2 ratio = 3.5

Draw N o Velocity P .R .A . P.R .W . P .R .T .

18.2 0.131 9.1135 4 .07437 5.25317

18.3 0.1616 10.51675 4.98418 5.82278

18.4 0 .195 10.98963 4.58861 6.70886

18.5 0.252 7.85266 2.80855 5.18987

18.6 0 .297 14.03374 4.54906 9.93671

18.7 0 .349 4 .76787 2.29430 2 .53165

18.8 0 .38 10.95638 4.74684 6.51899

18.9 0.411 5.40774 2.57121 2.91139



Table 4.7 Temperature 235°, h3/h2 ratio = 2

Draw N o Velocity P .R .A . P .R .W . P.R .T .

21.1 0.131 5.47586 2.45059 3.10127

21.2 0 .1616 6.35078 2.84585 3.60760

21.3 0.195 6.74873 3.00395 3.86076

21 .4 0.252 7.04668 3.12253 4.05063

21 .5 0 .2 9 7 7.12253 3.20158 4.05063

2 1 .6 0 .349 7.93781 3.47826 4.62026

2 1 .7 0 .38 7.76354 3.35968 4.55696

21 .8 0.411 7.86241 3.39920 4.62026

2 1 .9 0 .447 7.86241 3.3992 4 .62026

Table 4.8 Temperature 215°, h3/h2 ratio = 2

Draw N o Velocity P .R .A . P.R .W . P .R .T .

22.1 0.131 11.58765 3.99209 7.91139

22.2 0 .1616 8.262811 3.75494 5.06329

22.3 0 .195 9.75910 4.30830 5.69620

22 .4 0 .252 10.13621 4.38735 6.01266

22 .5 0 .297 9.93141 4.42687 5.75950

22 .6 0 .349 9 .95467 4.38735 5.82278

22 .7 0 .38 9.64258 4.24901 5.63291

22 .8 0.411 9.44209 4.22925 5.44304

22 .9 0 .447 9.40472 4.18972 5.44304



Table 4.9 Temperature 195°, h3/h2 ratio = 2

Draw N o Velocity P .R .A . P.R .W . P.R .T .

23.1 0.131 6.79873 2.15415 4.74684

23.2 0.1616 10.81515 4.4664 6 .64557

23.3 0.195 11.44567 4.62451 7.1519

23.4 0 .252 10.92585 4.58498 6.64557

23.5 0 .297 11.29114 4.78261 6.83545

23 .6 0 .349 10.83712 4.68379 6.45570

23 .7 0 .38 10.64242 4.60474 6.32912

23.8 0.411 10.57258 4.72332 6.13924

23 .9 0 .447 10.32196 4.58498 6.01266

4.4.4 The Deformed Shape of the Processed Material

Referring to Figure 4.9, experiment 23 (195°C) was selected for analysis of 

cross-section and comer section radius. This was due to the generally good 

performance of this experiment, with no indication from the apparent width and 

thickness measurements of supply problems. Two further points were used during 

the analysis, these were one point from experiment 22 and one from experiment 

21, at 0.2 m/s (approx), forming a vertical line on Figure 4.9.

The result of the distribution of cross-section analyses are shown 

graphically in Figures 4.12 and 4.13 respectively.

Plates 4.1 and 4.2 are of the encapsulated sample of the original section 

and plates 4.3 and 4.4 are of the trial draw 23-3. Figure 4.14 graphically 

presents the data for the entire comer radius analysis.

52



Plate 4.1 Original section 1st view

Plate 4.2 Original section 2nd view



Plate 4.3 Trial draw No 23-3 1st view

Plate 4.4 Trial draw No 23-3 2nd view

54



<-----------

< -----------

<-----------

4 ------------

<-----------

4 -----------

4 -----------

Figure 4.1 - Measuring points for the distribution of cross-section analysis.
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Figure 4.2 - Schematic of the method used to measure the section comer radius.
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Figure 4.3 - Percentage Reduction in Area with a h3/h2 ratio of 5.
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Figure 4.4 - Percentage Reduction in Width with a h3/h2 ratio of 5.
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Figure 4.5 - Percentage Reduction in Thickness with a h3/h2 ratio of 5.
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Figure 4.6 - Percentage Reduction in Area with a h3/h2 ratio of 3.5.
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Figure 4.7 - Percentage Reduction in Width with a h3/h2 ratio of 3.5.
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Figure 4.8 - Percentage Reduction in Thickness with a h3/h2 ratio of 3.5.
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Figure 4.9 - Percentage Reduction in Area with a h3/h2 ratio of 2.
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Figure 4.10 - Percentage Reduction in Width with a h3/h2 ratio of 2.
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Figure 4.11 - Percentage Reduction in Thickness with a h3/h2 ratio of 2.
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66

Di
sta

nc
e 

fro
m 

ce
ntr

e 
of 

sec
tio

n 
(m

m
)



cd
C O  C O  C O

O  M  M  M

00

cs

VO 00 in *0tHco 00

(mra) ssoicpiqjL

Figure 4.13 - Distribution of cross-section for a larger range of reduction.
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Figure 4.14 - Scatter plot of the cross-section comer radius against reduction.
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CHAPTER 5

5.0 Numerical Analysis of the Plasto-hydrodynamic drawing of Rectangular stag

5.1 The Form and Solution of Die-less Drawing Models

5.1.1 The Form of Die-less Drawing Models

A review of previously published models for the Plasto-hydrodynamic drawing 

process, finds a common form for their development.

1) Statement of the fundamental fluid equations. For a Newtonian 

analysis the Navier-Stokes equations may be used, but they are invalid 

for non-Newtonian fluids and the linear momentum equation must be 

used. The continuity equation is valid for all fluids and may be used 

as appropriate. A constitutive equation relating the shear stress and 

shear rate must also be selected, based upon the knowledge of the 

behaviour of the fluid.

2) Simplifying assumptions are then applied to the flow equations to 

formulate a specific relationship between the pressure gradient and the 

strain rate. The nature of the assumptions are dictated by the 

geometry of the pressure head and the working fluid to be simulated. 

The shear rate terms will depend upon the constitutive equation 

selected for the model.

3) Mathematical manipulation of the resultant fluid equations coupled 

with consideration of the continuity and equilibrium conditions, will 

allow the determination of the following:

i) the maximum pressure in the inlet section of the 

pressure head if no deformation were to take place,

ii) the point of initial yield within the inlet section,
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iii) the shear stress at the surface of the material to be 

deformed, both prior and post yielding,

iv) the hydrodynamic pressure within the deformation 

zone,

v) the axial stress in the deformation zone,

vi) the changes in the pressure head clearances and hence 

the percentage reduction in section within the deformation 

zone.

5.1.2 The Solution of Die-less Drawing Models

A numerical procedure is used to solve the system of equations to be derived by 

the procedure of development described in the previous section. A deformation 

zone is generated within the pressure head, with the correct combination of 

working fluid and pressure head geometry. The deformation zone is from the 

onset of yielding to the step in the pressure head geometry. The step limits the 

length of the deformation zone, as the pressure gradient will change sign at this 

point, vastly reducing the surface shear stress.

The algorithm facilitates solution for the deformation zone in steps using 

finite difference techniques in their explicit form. The slope of deformation 

dht/dx will be seen to be an unknown quantity in the system of equations. The 

relationship which is used to determine the value of the slope of deformation is 

the Plastic Yield Equation (PYE), the derivation of which is given later.

Pi + o*i * 0yi = 0 Plastic Yield Equation
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The complexity of the expressions for the local pressure, stress in the x direction 

and yield stress terms in the plastic yield equation given previously, is such that 

no amount of manipulation will yield an explicit expression for dhjdx. Recourse 

is then made to iterative techniques. Memon (42) demonstrated that the slope of 

deformation is non-linear, thus an iterative calculation of dh/dx is made at each 

step in the deformation zone. The overall logic of the solution procedure or 

algorithm is given below in pseudo code.

BEGIN: DETERMINE X! the distance to the onset of yielding 
IF (X, > Lj) then QUIT 
DO WHILE .not. end of deformation zone 

ITERATE for dhj/dx using 0=Pi+ a i-ay 
DETERMINE nodal values of system variables 

ENDDO 
QUIT

END:

P 1.0 Pseudo code of the overall solution logic

5.2 The Newtonian Model: derivation and modifications to the modelling of slip 

A Newtonian model of the Plasto-hydrodynamic drawing (PHD) process was 

developed based upon the model presented by Memon (42). The expressions used 

for the terms of the plastic yield equation are those developed by Memon (42) and 

are given below.

p i = pi i + — Ajci_1 ax

CT . =
‘i - 1

w, -  2
2 t ,

+ - Ax +
2x3
W,

- Ax + o x  i-1
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The significant difference in the performance of the two models is accounted for in 

the modification in the way the flow instability of slip is modelled.

5.2.1 The Flow Instability of Slip

Under the action of high shear rates a flow instability termed ’slip’ can be seen 

to occur in the processing of polymer melts. The shear stress at which this flow 

phenomena occurs is termed ’the critical shear stress’. The presence of slip in a 

process may be detected by the occurrence of various faults in the output product. 

Two of the most common faults are: shark skin which forms ridge like structures 

running transversely to the flow direction, and melt fracture which is denoted by 

helical or irregular patterns.

Various studies (55-61) have been published which have attempted to 

identify the parameters governing the onset of melt instability. Whilst no definite 

conclusions have been drawn, the following points have generally been agreed:

i) the onset of slip occurs at some critical shear stress,

ii) the critical shear stress is not greatly affected by changes in 

temperature,

iii) the critical shear stress varies in the range of 0.1 to 1.0 MN/m2 

for most polymers,

iv) slip may be demonstrated by a discontinuity in the slope of the 

shear stress - shear strain curve,

v) the occurrence of slip may be effected by the die entrance shape
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and the die surface finish,

vi) the flow instability occurs when non-Newtonian fluids are 

involved.

5.2.2 The Modelling of Slip

A clearer understanding of the phenomena of slip may be achieved by 

consideration of figure 5.1, which demonstrates the form of the discontinuity in 

the flow curve. Given below are the pressure gradient and shear stress equations 

derived by Memon (42).

Defining n as the instantaneous viscosity, which is the local gradient of the shear 

stress - shear strain rate curve, it can be seen from figure 5.1 that fi falls to zero 

during the period of the instability. Inspection of the above equation for the 

pressure gradient reveals that the velocity component is eliminated, leaving only 

the pressure component. A comparison of the relative magnitudes of the 

remaining terms, demonstrates a 3 orders of magnitude reduction in the pressure 

gradient. As a consequence of this, the pressure gradient yields an extremely 

small increase in pressure from this point forward and thus, to all intents and 

purposes, the pressure gradient may be regarded as zero. Another justification 

for this assumption, is by reference to Memon’s (42) expression for Pm, the
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theoretical maximum pressure that could be generated by this geometry at the 

stated velocity.

Substitution of the zero viscosity condition would render Pm equal to zero, hence 

eliminating the remaining term in the pressure gradient equation.

Application of the zero pressure gradient and viscosity assumptions to the 

expression for shear stress would result in a zero shear stress condition, which is 

inconsistent with the data presented by Tordella (61) and idealised in figure 5. la.

If the shear strain rate is seen to increase and the shear stress remains 

constant then the no-slip condition at the flow boundary used by Newton must 

have been violated. The flow can then be said to be behaving somewhat 

analogous to a pencil rubber when drawn across a table. The material is under 

an imposed constant shear stress, but it is slipping at the interface with the table. 

As such, an assumption of constant shear stress is made after the occurrence of 

the slip phenomena.

The assumptions previously outlined for the modelling of slip, are 

consistent with those put forward by Memon (42), even if their justification is 

not. What then is the modification to the modelling of the slip phenomena? The 

modification to the modelling of slip is not in the flow assumptions made in the 

respective models, but to their implementation in the solution algorithm.
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5.2.3 Modifications to the solution algorithm

Modifications to the algorithm for the solution of the PYE consist of two distinct 

parts. Firstly, the position where the algorithm makes the test for the slip 

condition has been repositioned. Secondly, the form of the test for the condition 

of slip has been altered. The effect of these changes is examined below.

The test for the condition of slip has been moved from prior to the 

solution of the deformation zone, to within the solution of the deformation zone. 

As such, the condition of slip is tested for at every nodal point as the model 

moves forward through the solution region. This will increase the dynamic 

response of the algorithm to the onset of slip, in that it will no longer wait until 

the next velocity in a sequence before using the slip assumptions, but will 

immediately change the assumptions governing the system of equations. A second 

outcome of this change, is that it is no longer possible or desirable to keep the 

pressure distribution constant for all further velocities, a new pressure distribution 

being calculated for each individual execution of the model.

BEGIN: DO FOR specified velocity range
DETERMINE X l the distance to the onset of yielding 
IF (X! > L,) THEN QUIT
I F  ^ w id t h  f a c e  > ^ c r i t ic a l  THEN Slip=.TRUE.
DO WHILE .not. end of deformation zone 

IF .NOT.SLIP THEN
USE no-slip flow assumptions 
ITERATE for dhj/dx using 0 = Pi + Oj - <xy 
DETERMINE nodal values of system variables 

ELSE
ASSUME previous non-slip pressure profile is valid 
USE slip flow assumptions 
ITERATE for dhi/dx using 0 = Pp^ + - ay
DETERMINE nodal values of system variables 

ENDIF 
ENDDO 

ENDDO 
QUIT

END:

P 5.1 Memon’s algorithm for the solution of the Plastic Yield Equation
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The form of the test for slip was extended, rather than modified, to include the 

edge of the strip material. The shear stress on the edge of the material is 

interesting, in that the effective pressure gradient is that of the width face which 

has been propagated round the cross section in accordance with the hydrostatic 

assumption. A detailed analysis of the behaviour of the edge shear stress will be 

given during the following comparison of the various models proposed for the 

process.

BEGIN: GET the entiy velocity for the simulation
DETERMINE the distance to the onset of yielding
IF (Xj > L,) THEN QUIT
DO WHILE .not. end of deformation zone
I ^width face ^critical *GR. Tedgeface > THEN Sfip=.TRUE.
j IF .NOT.SLIP THEN 
| | USE no-slip flow assumptions 
j j ITERATE for dhj/dx using Pt + o- - ay = 0 
j | DETERMINE nodal values of system variables 
j ELSE
| | USE slip flow assumptions 
| | Pi = CONSTANT
j j ITERATE for dhjdx  using CONSTANT + o{ - ay =  0
] j DETERMINE nodal values of system variables
j ENDIF
ENDDO
QUIT

END:

P 5.2 Modified algorithm for the solution of the Plastic Yield Equation
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5.3 The non-Newtonian Model: derivation and assumptions

The non-Newtonian model of the plasto-hydrodynamic process will be developed 

in two stages;

i) the hydrodynamic modelling,

ii) the plastic deformation of the material.

5.3.1 The Hydrodynamic Model

5.3.1.1 General fluid equations

The Navier-Stokes equations may not be used for the derivation of a non- 

Newtonian model as Stokes’ (62) viscosity law, which is the general form of 

Newton’s viscosity law, is used with the Linear Momentum equations for their 

derivation. Thus, we may use only those equations which are valid for all 

fluids. Three equations will be used as the basis for the model and are stated 

below in their incompressible form:

i) Mass conservation or Continuity

—  + —  +. —  
etc dy dz

(5.1)

ii) Conservation of Linear Momentum

(5.2)
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iii) the Power Law constitutive equation

x.. = K  ( Y /  V - * )

where K = consistency index

n = flow behaviour index 

and the fluid is assumed to be isotropic in nature. In double subscript notation; 

the first is defined as the direction of the normal to the plane associated with the 

stress, while the second denotes the coordinate direction of the stress itself. 

Normal stresses have a repeated index, since the stress direction and the normal 

to the plane on which the stress acts are collinear.

The stress terms in equation 5.2 may be replaced by the appropriate 

form of the constitutive equation 5.3:

p .  -  §> ♦ ^ y )  * f o y )  *  = jo . w&\ <5 -4 >
x dx dx  dy dz \ d t  dx dy d z )

p. .  & ♦ f o y )  + f o y )  + f o v )  = j  * + + ^  + w§a  (s.5>
7 dy dx dy dz I #  dx dy d z )

p g  -  + W  + ^ y )  + ^ y )  = J O "  + tt* v  + v dw  + w 3h-'\ (5.6)
1 dz dx dy dz \ d t  dx dy d z )

From standard texts on fluid mechanics; u=V x, v=Vy, w=Vz. Then



Assumptions

i) The flow is steady, laminar and incompressible, and the gap ĥ  does not 

change during the length of Lj (see figure 5.2). Then, restating equation 5.1



but v = w = 0  for steady laminar constrained flow, then

dx

Thus the velocity V, which equals u cannot change in the direction of the flow 

(x), resulting in a constant velocity during L1? assuming no slip,

ii) The width of the material is very large compared to the side gap h3, with all 

derivatives of z being equal to zero, thus

dz

iii) The xz plane is tangential to the earth’s surface, then gravity forces in the 

x and z directions are zero.

Making use of these assumptions and substitution of equations 5 .7 -5 .1 2  into 

5.4 - 5.6, yields:

. t i r Ldp
dx dy

( 5 .1 3 )

dp  A
" PS = 0

dy
( 5 .1 4 )

A  = 0
dz

(5.15)
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Taking equations 5.14 and 5.15 in reverse order. 

For equation 5.15

= 0
dz

If the pressure gradient is zero in the z direction, we therefore have constant 

pressure in the z direction. This condition has been referred to by some 

workers as the hydrostatic assumption.

For equation 5.14

-  p .  = 0  ( 5 .1 4 )
dy

separating variables

f s p  = f - Pgy.dy

integrating

p  = - p  g-y + C ( 5 .1 6 )

Equation 5.16 is the hydrostatic pressure equation. It can be shown that C is 

equal to zero or to atmospheric pressure depending upon whether gauge or
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absolute pressure is required.

This demonstrates that the pressure will vary through the film thickness. 

The maximum value of y = is typically lxlO*4 in magnitude and, therefore 

any pressure generated by hydrostatic effects will be very small in comparison 

to those by hydrodynamic action, and are disregarded.

Equation 5.13 will now be used as the basis of the hydrodynamic model. 

The analysis will initially be for the general case and then be made specific 

for a particular land of the pressure head. Restating equation 5.13

5.3.1.2 The Model

dx dy

t e r ) »
dy dx

integrating w.r.t. y

(5.17)

/d iA  _ (d p  y_ + A \ tln 
^ayj (etc .fiT K )
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int w.r.t. y (function of a linear function rule)

u =

VacArjV" I

dpy_ 
dx K

i+i
+ B (5.18)

Boundary Conditions

i) u=V  @ y=0 (Strip surface)

ii) u=0 @ y=h (Pressure Head surface) 

sub i) in equation 5.18

B  = V  -

[ d x K f i*  I

(5.19)

sub ii) in equation 5.18

0 =

i s
dp h 
d x K

A
K

+ B (5.20)

sub equation 5.19 into equation 5.20

0 =

( 1 0 * ' )

(dph + A fr i _ ( A \^  
\cbciT K  j

+ V (5.21)
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Analysis of equation 5.21 has failed to yield an explicit expression for the 

constant of integration A.

The volumetric flow rate is defined as:

h

Q  = f  u . dy  
o

Q = 1 / dp h   ̂ A \ ± 2 + B h
1 ( A ) '* 2

l ( S j f e W fc r * j  1 ( f i l ’e - K H r
( 5 .2 2 )

We define a function X such that

X(l) = -  + 1 
n

X(2) = -  + 2 
n

X(m) = — + m  
n

giving upon substitution of equation 5.19 in equation 5.22
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m m
(<£A + A )m  .  (A )m  + (v  .  _ _ J _ f A ) X(1)) 
ia**  *J U i  ^ l j xa)w A (5.23)

For steady state flow;

ecoj _ a«?2) _ q
dx dx

hence Q is a constant.

Inspection of equation 5.23 reveals that severe algebraic difficulties prevent 

an explicit expression for the pressure gradient being derived. However, we 

may say that prior to the onset of deformation and after the step, all variables 

in equation 5.23 are constant, x is not included in the expression and that the 

value of the pressure gradient in these areas must also remain constant. In 

view of this we may now use the following:

Pm
L.

(5.24)

J2 L,
Pm

(5.25)

From our assumption of steady state flow, we may also state

Ql =<?2

Q1 -  Q2 = o
(5.26)

The term Q2 in equation 5.26 requires the constants of integration of the 

velocity equation to be evaluated as applied to the second land. Therefore a
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system of three non-linear algebraic equations in three unknowns is formed: 

equation 5.21 being applied to both the first and second lands, with equation 

5.26 utilising equation 5.24 and 5.25 to allow an expression for Pm to be 

developed.

Solution was attempted by the following iterative method. Equation

5.21 was rewritten to equal R1? equation 5.26 was rewritten to equal R2 and

5.21 was applied to the second land and made to equal R3; appropriate values 

for the relevant geometric variables being used. When the equations are 

satisfied then R,, R2 and R3, the residuals, will equal zero:

ifj + = 0

It is possible for an error to occur when a permutation of positive and 

negative residual values cancel each other to produce a false solution to the 

equations. This may be avoided in the following manner; the residuals are 

individually squared and then summed to form equation 5.27 below.

(*if  * (Rif + (R>f -  o (5-27)

When the sum of the squared residuals equals zero or is less than a 

predetermined value of allowable error, then the system of equations is said 

to be satisfied.

The significance of the constant of integration A should be noted at 

this time. It is seen with reference to equation 5.17 that the constant A is the 

shear stress on the width face of the strip.
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5.3.1.2.1 Algebraic problems encountered in Power Law equation solution

Algebraic problems encountered in the solution of the system of equations 

produced by the integration of the velocity equations are of two types:

i) domain errors in evaluation of negative numbers risen to 

fractional powers,

ii) multi-modality of the solution region.

Each of these problems will be discussed in turn.

Both equations 5.21 and 5.23 require the evaluation of the following

term:

Evaluation of such terms is by the use of logarithms, but the shear term in the 

first land opposes motion and is negative. The logarithm of a negative 

quantity is unknown, consequently the evaluation of 5.21 and 5.23 is not 

possible for fractional values of A(n), but only for those values of n which 

result in an integer value of A(n), such as 0.5 and 0.3333.

The form of the system of equations prohibits the use of gradient 

methods for their solution. A direct search method was used in an attempt 

to solve the system of equations. However, the system of equations was 

found to exhibit multiple solutions in three dimensional space. Analysis of 

equation 5.26 failed to identify a method of determining the physically 

realistic solution automatically. A method was then sought to reduce or 

simplify the system of equations.
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5.3.1.2.2 The Reduction of the System of Equations

The dimension of the system of equations may be reduced from three to one 

if an independent expression for either the hydrodynamic pressure gradient 

or the shear stress could be derived. Intensive review of the tribological 

publications relating to the use of power law fluids in all types of bearing 

revealed a solution for the hydrodynamic pressure gradient. The analysis of 

Jianming and Gaobing(6 3 ) utilised a perturbation solution in the optimisation 

of a Rayleigh step bearing using a power law fluid. The following expression 

may be derived from this analysis assuming constant density:

Application of continuity of flow allows the pressure distribution both prior 

to, and after, the onset of deformation to be determined.

5.3.1.2.3 Prediction of Maximum Pressure

Application of continuity with respect to the first and second lands yields:

Qi = Qi

(5 .2 8 )

where

Substitution of equation 5.28 for the land flow rates, and utilisation of 

equation 5.24 and 5.25 yields:
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U K V
YlnK\

( P m V V
n-1

Ulh  + h ' P m )
2  1 2  nK Itf;

n-1

An explicit expression for Pm may be formed by collecting terms and 

rearranging, to give equation 5.29:

Pm ' h r 1
\2 n K U n -1

n+2

Pm  =
6 n K U n( K -\h r h )

n+ 2 hin+2 (5 .2 9 )

It may be seen by inspection, that equation 5.29 will reduce to Memon’s (42) 

Newtonian equation for the maximum pressure on substitution of n = l and 

K = /2.

5.3.1.2.4 Determination of Surface Shear Stress

With Pm known from equation 5.29, equation 5.21 may be solved in 

isolation to yield A, the surface shear stress. The system of equations has 

been reduced to one non-linear equation from three and, therefore, any 

convenient root finding method may now be used for the evaluation of the 

shear stress. A direct search algorithm has been used successfully.

5.3.1.2.5 Prediction of the point of initial Yielding

The principal stresses acting on the strip prior to deformation are
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Substitution of these values into the von-Mises yield criterion, yields, 

i[ (o . + P , f  * ( -P ,  + P , f  * ( -F ,  -  a l f ]  = a ,2
'y

simplification yields,

ax + P  = ay (5 .3 0 )

Assuming that yielding begins at an arbitrary distance X! from the entry of 

the pressure unit, then equilibrium of forces in the x direction will give

axW t = 2  TjFKXj + 2 X3^

2 t j X j  2 t 3X j

° x t ~  + W
(5 .3 1 )

where W and t are the section width and thickness, respectively. Then given 

a linear pressure profile, from equation 5.23



Substitution of equations 5.33 and 5.32 into 5.31 gives

2-CjXj 2 t 3Xj PmXr
——  +  — -—-  +  -------
t  W L,

a.
y

X
2 z i + + Pm

t W Lx

(5 -3 3 )

5.3.1.2.6 Geometric Variables within the deformation zone

After Memon (42), the numerical solution of the model is now achieved using 

finite differences. Assuming a linear deformation profile between nodes, then 

the film thickness hH and h3i at any point may be evaluated by marching 

forward from the point of the onset of deformation, using a difference 

scheme. The implicit and explicit forms are given below:

Implicit form

and

Explicit form



For hj and h3, the film thicknesses:

( 5 - 3 4 )

^3i*l ^3« +
(dh^
\dx A x (5-35)

The deformation may be described by

2— A t (5 .36)
etc

w = w -  2 ^ A *  (5-37)
1+1 * dx

where t and w are the thickness and width dimensions, respectively.

5.3.1.2.7 Prediction of Pressure and Pressure Gradient within the deformation zone 

Equation 5.32 enables the pressure at the boundary of the deformation zone 

to be evaluated. Given a value for the pressure at the boundary of the 

deformation zone, an explicit finite difference relationship may be used to 

evaluate the pressure within as the solution moves forward, as with equations 

5.34 to 5.37. The difference equation for the pressure in the deformation 

zone is given overleaf:
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r,.i = p>+ —  Ax
dx

(5 .3 8 )

An expression is now required for the pressure gradient, not only for the 

evaluation of equation 5.38 but as a precursor for the evaluation of the 

surface shear stresses. Application of continuity with respect to the first land 

and the flow within the deformation zones yields:

Qi = Qi

Substitution of:

i) equation 5.28 for the flow rates,

ii) equation 5.24 for the first land pressure gradient and the 

correct geometric variables yields:

UA  hi3 /„  \ / Ai
12 n K

Pm

\  1

/  t  V1-1

t/, \2 n K
( d p \  K  

la rU w ,

vn—1

An explicit expression for the pressure gradient may be formed by collecting 

terms and rearranging, to yield:

6 n K
n-1

h f

hin+2

6 n K U * -y

Pm

VL.
( 5 .3 9 )

It may be seen by inspection, that equation 5.39 will reduce to Memon’s (42) 

Newtonian equation for the maximum pressure on substitution of n = l  and

K = ii.
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5.3.1.2.8 Determination of Surface Shear Stress within the deformation zone

With the local pressure gradient known from equation 5.39, equation 5.21

Subsequent solution will yield the local surface shear stress. The edge shear 

stress 73 is found by reforming equation 5.40 in terms of the edge clearance 

h3i to yield:

Solution of equation 5.41 will yield the local edge shear stress r3i (constant 

of integration A). Equation 5.41 contains the same pressure gradient term as 

equation 5.40, due to the use of the hydrostatic assumption which imposes a 

constant pressure around the cross-section of the material and, implicitly, a 

constant pressure gradient around the cross-section.

may be reformed in terms of the local geometry to yield:

(5 -4 0 )

(5 .4 1 )



5.3.2 Axial Stress in the Deformation Zone

5.3.2.1 Axial Stress due to Homogeneous Deformation

Referring to figure 5.3, from equilibrium of forces in the x direction

o
* 1*  1

A.+i -  a xA i -  2 P h iW i+iA x  Sinct -  2 P ^ i  t.+iA x  Sinfi -  2 x l u \W l+iA x  Cosa
I i 2 2 2 2 2 2

-  2 x 2l i t . i A x  Cosfi = 0’3i +— i+
2 2

for small values of an arbitrary angle <£, Sin <f> = and Cos 4> — 1.0. The 

axial stress at the i + 1  node may then be found from,

T ~ \ a *iA i+2p i+iW iS _ A x a  +2Pl+ifl+i A*P +^ u . l W i^ A x + 2 x 3i+1ti+iA x ]  (5 .42)
i l .  , L 2 2  2 2  2 2  2 2 J

Equation 5.42 is then the governing equation to evaluate the axial stress in the 

deformation zone due to homogeneous deformation between two adjacent nodes.

5.3.2.2 Axial Stress in the Deformation zone due to Redundant Work

During the PHD process the working material is reduced in cross-sectional area. 

It is assumed that for small steps Ax, this reduction may be approximated by a 

linear profile. The process of deformation will produce internal shear distortion 

of the workpiece in addition to that required to produce the homogeneous 

reduction in area over a step. Energy is required to produce this shear 

deformation and is termed Redundant work, as it makes no useful contribution 

in effecting the desired change of shape. The following analysis for redundant 

work follows that presented by Korber and Eichinger (63) in their refined 

version of Sachs (64) slab analysis of wire drawing. During the PHD process
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the material is sheared on 2 planes, because of this the analysis will be applied 

to both.

Inspection of figure 5.4 reveals that an element distance y from the axis 

of symmetry, Ax long and dy thick, is sheared through an angle <f>. The angle 

<f> varies from zero at the axis to a maximum of dhl/dx or dh3/dx.

Then, applying the analysis across the thickness of the working material

Work done to shear element

WD = Force . Distance

Ax j dy

\  2 /

dh  ̂
dx

given Ogy is the shear yield stress. The total energy required to shear the section 

may be found from

E  =
(2.o^xWi t , dh\ * H )

2
dx

i Sh.
= - . o  .Ax.W , i . f..i .---4 fy dx

Energy required to shear section / unit volume is then
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1 dhlEnergy I Unit Volume = - o „ —  
**  4 dx

Assuming a constant velocity across the section then

Volumetric f lo w  rate o f  m aterial = t^ iW u iV lJt\
2 2 2

then, for the power required for redundant work

i dhi
4 V dx * 2 ,+5 l 2

Remembering that,

Pow er = Force  . Velocity

then, across the thickness

redundant ^ sy

A similar analysis may now be made across the width of the material:

2/ dx

Work done to shear element

WD  = Force . D istance

(5 .4 3 )
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(% *<a) dy( 2 y )

V 2)
dx

>

given asy is the shear yield stress. The total energy required to shear the section 

may be found from

E  =
w , . l  &  

2

• /  ?■**

i= - .a _ . A x M . i  . r  i ^i+- n -f2 obt

Energy required to shear section / unit volume is then

i dthEnergy I Unit Volume = -c r  —
6 4 ^  dx

Assuming a constant velocity across the section then

Volumetric f lo w  rate o f  m aterial = t^ iW i+\ViJf\

then, for the power required for redundant work

i dfh
= 7 < v ir4 y OX 2 2 2

Remembering that,

P ow er = Force . Velocity
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then

(5.44)

Both equation 5.43 and 5.44 were integrated over half the section and should 

be multiplied by a factor of 2. Then, combining equation 5.43 and 5.44 for the 

total redundant work yields:

In PHD the value of the shear strain terms (in brackets) change from node to 

node within the deformation zone. If the current values of the shear strain 

terms are used then an error will result in the computation. The reason for this 

is shown in figure 5.5. After the onset of yielding, the stress due to redundant 

work is evaluated using the angle Bj over the first step. The use of B2 for the 

next step is in error as a part of B2 equal to Bj has already been accounted for. 

To alleviate this problem 6B should be used, giving 6BI=B 1 for the first node, 

and <5B2 = B2 - Bj and so forth throughout the deformation zone. Amending 

equation 5.45 yields:

6
f dhi

+ 6
[ d x t I a*J.

and in nodal form within the deformation zone:
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°total R.W. 2 % o»

( d x ) l dx).
(5.46)

5.3.2.3 Total axial stress in the deformation zone

The total axial stress in the deformation zone may now be found by the 

summation of equations 5.42 and 5.46 below:

o = J - fo  xAi+2Pi+1 W^&xol +2Fi+if.a AxP +2xli+iF^+iAx+2T3|.a fJ.+ iAxl
2 2  2 2  2 2  2 2 J

+ - o 6f * u ] + 4  * s ) |
2 *y I a* J i & j .

(5.47)

5.4 Strain Hardening within the Deformation Zone

The working material is assumed to behave as a rigid plastic material, with non- 

linearly strain hardening characteristics. The strain hardening behaviour is assumed 

to follow a power law form, given below:

a=o + jfiTe" (5-48>y ay

where

cry = current yield stress 

a0y = original yield stress 

K = strain hardening constant 

n = strain hardening index 

The longitudinal strain may be evaluated using the theory of volume constancy:
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+ e2 + e3 = 0

which for PHD becomes:

+ e w + e f = 0

k , l

k J

I
x„V °)

+ In + In 1 = 0

( \ 
x. { W ft \

e = In 1 = -In I 1

W t\ °

This expression may then be substituted into equation 5.48.

5.5 Relationship between dht/dx and dhJdx

A relationship between the ratios of the components of strain increment and that of 

the induced stresses that is applicable to rigid plastic materials, is the Ldvy-Mises 

equations or flow rule, which states:

dc dc dc , _= _ £  = (5-49)
6 6 6 

X y z

or

where

101



0. = o. -  a.

given

0 = ai + °2 + °3 {mean normal strain}

It was previously assumed that at—ax, a2=-P and a3=-P. Consequently dei=deb 

de2=det and de3=dew 

Then from equation 5.49:

det _ dew

' (-r - <g '  (-r - °.)

<fe, = <fe.

^  -  £ 5  (5 .5 0 )

From equations 5.36 and 5.37 at the onset of yielding or any two contiguous steps:

t, = f, -  A i x  <5 -36>
* 1 dx

W. = W. -  2 — A x  ( 5 -3 7 >
1 dx
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then

dh.
d t. = t. -  r, = - 2 — .Ax 

1 * 1 dx

Ax = -
dt.

dhi
~dx

(5 .5 1 )

Again

dh,
dW . = W. -  W< = - 2 — Ax  1 , 1  dx

thus

Ax = -
dW t

~dh3

dx

(5 .5 2 )

Equating 5.51 and 5.52

dt. _ dW . 

l axj  l a r j

dh3 _ dW . dht 

dx d ti dx

From 5.50
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which may be reduced to

dh3 _. W1 dhx 

dx ^  dx

^  = m . - 1
dx dx

where m is the aspect ratio of the strip.

5.6 Numerical Solution

All the required relationships have been derived that are required for the modified 

algorithm to be implemented and the deformatiom to be simulated. The FORTRAN 

code for the model produced from these equations is given appendix 1.
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( b )

Figure 5.1 - Schematic diagrams demonstrating the instability of slip.
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\

Figure 5.2 - Geometrical parameter definitions for the Plasto-hydrodynamic pressure 

head.
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ca

Figure 5.3 - Forces acting on an element of length Ax within the deformation zone.
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*

Figure 5.4 - Shear distortion diagrams for the planes used in the Redundant work 

analysis.
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Figure 5.5 - Fundemental definition of 5(B).
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CHAPTER 6

6.0 Numerical Optimisation of the Plasto-hydrodvnamic deformation process

A Plasto-hydrodynamic pressure head is characterised by five geometrical 

parameters, Lj, L2, h^ h2 and h3, the dimensions of the cavity. A consequence of 

the hydrodynamic nature of the process is an extreme sensitivity to the land and side 

clearances, and to a lesser extent the land lengths.

The first analysis of a stepped configuration was by Rayleigh (66), who 

proposed that a linear bearing of this form would yield the maximum load bearing 

capacity assuming an infinite width. More recent work has been concentrated 

within two main areas:

a) the finite width Rayleigh bearing,

b) analyses for non-Newtonian lubricants.

Rohde (67) used a finite element model with an applied numerical 

optimisation algorithm, to modify the standard orthogonal step into a pocket 

configuration, which predicted an increase in bearing capacity. Kettleborough (68, 

69) carried out both experimental and numerical work on pocketed step bearings, 

but no attempt was made to optimise the profile. Non-Newtonian analyses have 

recently been presented for Rayleigh step bearings by Elkouh and Yang (70), Wang 

and Jin (71) and Bourgin and Gay (72), a variety of techniques being utilised for 

the various analyses.

Prior to the work published by Stokes (73) no application of a formal 

optimisation method to plasto-hydrodynamic drawing had been presented. The 

objective of this section is to apply a formal optimisation method to ascertain the 

pressure head geometry, which would produce maximum deformation for a
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specified process velocity.

The following is a brief review of basic optimisation theory as presented by 

Bunday (74).

6.1 Optimisation of a function of one variable

A function f(x) is said to have a local minimum at some point Xq if, for all values 

of x in the surrounding region of Xq, f(x) is at least as large as f(xc). This can 

further be defined as a global minima, if the surrounding region encompasses all 

possible values of x. Figure 6.1 details a function f(x). It has both a local and 

global minima at x<, and x* respectively.

The classical method for the evaluation of xQ and x* is to equations which 

must be satisfied by xD and x \  The function given graphically in figure 6.1 is 

assumed to be continuous. Inspection of the curve for f(x) shows that the derivative 

f  (x) (gradient) is zero at x0 and x*. Then Xq and x* will be solutions of the equation

/'(*)=0 ( 6 1 )

The values xm and xc, at which there is a local maximum and a point of horizontal 

inflexion respectively, also satisfy equation 6.1. Thus satisfaction of equation 6.1 

is not sufficient to prove a minimum, it is only a necessary condition.

Further inspection of figure 6.1 reveals that at x<, and x \  f  (x) changes sign, 

negative to positive. At xm the sign change is reversed, positive to negative, whilst 

at the point of inflexion xc, f  (x) does not change sign. It can be concluded from 

these observations that, at any minima f  (x) is increasing in value, with the rate of 

increase being the second derivative f  ’(x), then
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/"(xJX ) , /" M X ), while f"(xJ<Q

Proof of these conclusions is by Taylor series expansion of f(x) about the point of 

interest x<, (x* or xm), by an arbitrary increment h.

Kx0+h)-fl,x^hf'{xy^f"(xJ+... (6-2)

Inspection of each term in equation 6.2 reveals the following:

i) for Xo to be a minimum the left hand side is non-negative for all 

values of h within the neighbourhood of Xo,

ii) the first term on the right hand side of equation 6.2 contains f(x 0) 

which will be zero at Xq from equation 6.1, thus removing this term, 

ii) the next term contains h2 and f  ’(x^, h2 will be positive for all values 

of h and as such the derivative term must be positive definite.

Then for a minimum

f cgx) (6-3>

Using the same method of analysis, point xm can be shown to be a maximum. To 

establish which point is the global minimum a comparison must be made of f(xQ) 

and f(x).

6.2 Optimisation of a function of n variables 

Given a function of n real variables,
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f(Xl>X?X3>.....

where the co-ordinates (xi,x2,x3,  ,xn) in Euclidean space are denoted by an n

dimensional column vector x, the gradient of the function ( d f / d x u d f / d x 2, . . . , d f / d x n) 

is denoted by Vf(x) or in some texts g(x). The Hessian matrix of f(x) is denoted 

by G(x) and is a symmetric n x n matrix with elements

Again the function f(x) is said to have a local minimum at Xo, and as such f(x) must 

be at least as large as ffo) for all points in the neighbourhood of Xq. For the point 

Xo to be a global minimum x* then, f(x) >  f(x*) for all x.

Equation 6.2 can be generalized using the above definitions to give

=A rG<r>
i

(6-4)

Given a minimum of f(x) at Xq, all of the first partial derivatives df/dxi(i=l...,n) 

must vanish or an appropriate selection of could result in f(Xo+h)-f(Xo) becoming 

negative. Thus a requisite condition for a minimum at Xq is

(6.5)
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i.e. ^  = 0 (i=l ,n) (6.6)
3x,

Then as before, the sign of ffo+ h^X o) is determined by that of the second term

h i TG{x<) h  (6.7)

If G(xc) is positive definite then equation 6.7 is positive for all h. Thus the 

required conditions to specify a minimum are

V fixp) =0, G(x,)  positive definite  (6 -8 )

and for a maximum

G(xm) negative definite ( 6 .9 )

6.3 Methods of solution

Optimisation theory may be initially separated into linear and nonlinear 

programming. Linear programming problems are specified by a linear, multi- 

variable function which is to be maximised or minimised subject to a number of 

linear constraints. Dantzig (75) developed an algorithm to solve this type of 

problem termed the simplex method, which in modified form is the basis of modern 

linear programming theory. Problems that are amenable to solution by linear 

programming include resource allocation problems in government planning, 

production planning and the management of transportation distribution systems.
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In problems where the assumption of linearity cannot be made, nonlinear 

programming techniques must be utilised. Specialised techniques have been 

developed for some problems, but there is no general procedure for nonlinear 

programming. There are two approaches to nonlinear problems; classical and 

numerical, with various subdivisions in the latter.

6.3.1 Classical methods

The Classical method is to form equation 6.6, and then solve for n unknowns in 

n equations, after which equations 6.8 and 6.9 are used to determine whether a 

maximum or minimum has been found. This requires that the function to be 

optimised must be differentiable. The present models of the plasto-hydrodynamic 

drawing process are not closed form, requiring the solution of the Plasto- 

Hydrodynamic Equation (PHE) at each nodal point within the region of 

deformation. For this reason classical methods were deemed unsuitable and a 

numerical approach was pursued.

6.3.2 Numerical methods

Numerical methods have two major subdivisions, unconstrained and constrained 

optimisation; either class of problem may be solved by direct search or gradient 

algorithms.

A function is said to be unconstrained if there are no bounds placed upon 

the possible values which any of the function variables may take. The inverse 

defines a constrained function; a possible example would be the optimisation of 

the stresses in a hollow drive shaft with the outside and internal diameters as 

variables. It would be nonsense for the internal diameter of the shaft to be larger
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than the outside diameter.

A direct search method uses repeated evaluations of the function to directly 

search for the minimum. Various methods have been developed to solve multi

dimensional problems, examples of which are the Simplex method by Nelder and 

Mead (76) and the pattern based method of Hooke and Jeeves (77).

A gradient method uses the gradient of the function as well as the function 

value to search for the minimum. Various methods have been developed for 

multi-dimensional problems, examples of which are the convergent descent 

method by Fletcher and Powell (78), also the method of conjugate gradients by 

Fletcher and Reeves (79).

Note that both categories do search for the minimum and as such are 

search methods. Hooke and Jeeves (77) stated that the advantages of direct search 

methods over classical are:

(a) They can produce solutions to problems which have been 

unsuccessfully attempted by classical methods.

(b) They provide faster solutions for some problems that are solvable 

by classical methods.

(c) They are well adapted to use on electronic computers, since they 

tend to use repeated identical arithmetic operations with a simple 

logic. Classical methods, developed for human use, often stress 

minimisation of arithmetic by increased sophistication of logic.

(d) They provide an approximate solution, improving all the while, at 

all stages of the calculation. This feature can be important when a 

tentative solution is needed before the calculations are completed.

(e) They require (or permit) different kinds of assumptions about the
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functions involved in various problems, and thus suggest new 

classifications of functions which may repay study.

Two points should be noted when using numerical methods. Firstly, all 

algorithms have a termination criteria or accuracy attached to their use. 

Secondly, an assumption of uni-modality is made by the methods. A function is 

uni-modal if it has only one and thus a global minimum. A function with 

multiple local minima is said to be multi-modal.

6.4 The Merit function

The merit function is an equation, expression or model of a process that is to be 

subjected to optimisation. The function gives a quantitative result to a particular 

choice of values for an n dimensional argument vector. The general form of such 

a function is

M  = M (xv  *2, Xy  . . . x j

The merit function in this case is the plasto-hydrodynamic model in whatever form.

6.5 Choice of solution algorithm

The choice of solution algorithm was influenced by the merit function. The plasto- 

hydrodynamic model is not differentiable in its present form, consequently a direct 

search method was selected. The method chosen for the optimisation was the 

pattern search method of Hooke and Jeeves (77). Selection was also influenced by 

the following:

i) published data for the method demonstrates the method’s effectiveness
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for multi-dimensional problems,

ii) the logic of the algorithm is relatively uncomplicated, thus aiding the 

accurate production of the required FORTRAN code for the study.

6.5.1 The Pattern search method of Hooke and Jeeves (771

The Pattern search method moves through n dimensional Euclidean space towards 

the function minimum, by separating the movement and the evaluation of 

direction into two separate processes. These are: i) Local Explorations, ii) 

Pattern Moves.

Local Explorations are made about the current position vector. This is 

achieved by incrementing the first term in the position vector by the amount held 

in the search step length vector, and evaluating the function value. If the returned 

value is an improvement upon the current function value, then the direction of this 

change is saved in the pattern vector. If an improvement is not gained, the term 

is then decremented and tested again. Should this also fail to yield an 

improvement, then no change is made to the pattern vector. This process is 

continued until all terms in the position vector have been tested. The result is a 

vector holding the ’pattern’ which has yielded an improved function value.

The logic of the method then states that, since this direction or pattern has 

yielded an improved function value, it would be reasonable to keep moving in this 

direction through space. This is achieved by a Pattern Move.

A Pattern Move relocates the current position vector twice the length of 

the search step length vector, and a Local Exploration is made. If an 

improvement is found, then the new position is adopted and the process begins 

again. If the move failed to find an improvement, then the search step length
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vector used in the Local Exploration is reduced and a new exploration is made 

about the current position. This reduction continues until the size of the 

Euclidean vector formed by the search step length vector falls below a present 

minimum, thus stopping the process. The overall logic of the method is given 

below.

The overall logic of the Pattern search method 

Begin:
Choose an initial base point {where b is a positional vector, i = 1,2— n} 
Choose a search step length hi for each variable Xj 
1: Explore region about bt 
IF {Exploration yields an improvement} THEN 

2: Set new base point bi=bi+i 
Make a pattern move forming Pj 
Explore region about Pi
IF {Exploration yields an improvement} THEN 

goto 2
ELSE

Decrease step length 
goto 1 

ENDIF
ELSE

IF {Search Step less than minimum} THEN 
STOP

ELSE
Decrease step length 
goto 1 

ENDIF 
ENDIF

End:

The logic for an exploration about an arbitrary point is detailed overleaf followed 

by equation of the Pattern Move, these procedures being the fundamental units of 

the method.
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Logic for a Local Exploration about a point in n-dimensional space

Begin:
DO for all dimensions
Increase coordinate by step length h{
IF (function reduced) THEN

Retain new coordinate in bi+1 
Retain new function value

ELSE
Decrease coordinate by step length hj 
IF (function reduced) THEN

Retain new coordinate in bi+i 
Retain new function value

ELSE
Keep original coordinate value in bi+1 
Keep original coordinate value 

ENDIF 
ENDIF 
ENDDO

End:

The equation of a Pattern Move

P t = b t + 2  ( b ^ - b )

6.5.2 Optimisation code testing

The logic given above was coded into a FORTRAN subroutine. Before 

application of the code to the plasto-hydrodynamic model the correctness of the 

code was tested by the use of Rosenbrock’s (80) parabolic valley function, below

f ( x lr)c2) = 100(x2 -Xj2) 2 + ( l - x {)2 R osenbrock 's jun c tio n

which has a global minimum at x = (l,l) . The form of the function is given 

graphically in figure 6.2. The optimisation code successfully found the minimum 

in 30 iterations, which is comparable to that taken by the conjugate gradient
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method of Fletcher and Reeves.

6.6 The Optimisation procedure

The optimisation program allows the specification of an array of start points and the 

entry velocity for the optimisation process. Multiple applications of the 

optimisation process are made on the merit function to establish confidence in the 

result, as it is possible for the shape of the n-dimensional surface to have local 

minimums, and/or the optimisation algorithm to detect false minimums, because of 

badly chosen search step lengths/initial positions. The procedure was then to start 

the process away from any expected optimum point, in an attempt to force the 

algorithm to find its own optimum. The start point, end point and the percentage 

reduction in area achieved at the end point, were saved to a data file for later 

evaluation.

6.7 The merit functions and optimisation programme

As stated previously, five dimensions are required to define the geometry of plasto- 

hydrodynamic pressure head, L1? L2, h1? h2 and h3, which form a 5 dimension 

problem. The order of the problem was reduced from 5 to 3 by the use of ratios. 

Defined thus,

x2=h!/h2 

x3= h3/h2

given that the overall length of the pressure head and the clearance h2 were held 

constant.
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The material and fluid properties are declared as constants in the code and 

are for pure copper strip and a generic form of polyethylene. The material property 

values used for the non-Newtonian merit function are essentially the same as that 

for the Newtonian, except for the following differences:

i) the Newtonian viscosity constant is not used, instead the power law 

constant and power law index are utilised by the function,

ii) strain rate sensitivity is not included in the power law model and as 

such the strain rate sensitivity data is not applicable.

The data used by both merit functions is given in table 6.1.

6.7.1 The Plasto-hydrodynamic Newtonian merit function

The model used for the Newtonian merit function is that described in section 5.2, 

using the equations developed by Memon (42) and the modifications to the 

solution algorithm presented in chapter 5. A full listing of the FORTRAN code 

for the Newtonian optimisation program is given in appendix 2.1.

6.7.2 The Plasto-hydrodynamic non-Newtonian (Power Law! merit function

The non-Newtonian merit function uses the non-Newtonian (power law) model 

developed in chapter 5. A full listing of the FORTRAN code for the non- 

Newtonian optimisation program is given in appendix 2.2.
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6.7.3 The Optimisation Programme

The optimisation programme consisted of three sections:-

Multi point optimisation sequences using the Newtonian merit function 

were made to determine the effect of the velocity on the optimum pressure head 

geometry. The sequences explored the velocity range of 0.1 - 0.4 m/s in steps 

of 0.05 m/s.

The velocity range specified above was repeated using the non-Newtonian 

merit function. This was in order to establish a correlation between the non- 

Newtonian merit function, simulating a Newtonian fluid (n= l), and the 

Newtonian merit function.

Finally, the effect of non-Newtonian fluid behaviour on the optimum 

pressure head geometry was assessed, by repeating the multi point optimisation 

sequence over the same velocity range as the Newtonian and correlation 

sequences.

Figure 6.3 shows in 3 dimensional space a sample array of start points and 

end points of a typical analysis as a scatter diagram. The space shown may be 

considered to be a scalar field, in that each point in space has an associated 

magnitude but no direction. This is analogous to the temperature distribution in 

a three dimensional body. Although this representation is accurate, a clearer 

understanding is gained from orthogonal views of such space and these are used 

later.
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6.8 Optimisation Results

6.8.1 Newtonian model optimisation results

Figures 6.4 - 6.10 give 3 orthogonal views of a 3D scatter plot of start/end points 

for each entry velocity. The mean value for each variable at each velocity step 

is given in table 6.2 and is presented graphically in figure 6.11. Table 6.3 gives 

the standard deviation of each variable at each velocity step and is shown 

graphically in figure 6.12.

6.8.2 Non-Newtonian optimisation Results

6.8.2.1 Correlation between the Power Law and Newtonian merit functions

The results of the power law Newtonian (n= l) sequence are presented in 

tabular form in tables 6.4 (mean value) and 6.5 (standard deviation). Graphical 

interpretations of the data are given in figures 6.13 - 6.19. Graphical 

summaries are given in figures 6.20 (mean values) and 6.21 (standard 

deviations).

6.8.2.2 Effect of Non-Newtonian fluid behaviour

The results of the power law non-Newtonian sequence are presented in tabular 

form in tables 6.6 (mean value) and 6.7 (standard deviation). Graphical 

interpretations of the data are given in figures 6.22 - 6.28. Graphical 

summaries are given in figures 6.29 (mean values) and 6.30 (standard 

deviations).
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Table 6.1 Merit function material properties

Merit Function Material 
Properties

Newtonian
f(x)

Non-Newtonian
f(x)

Viscosity N /s 120 n/a

Power Law consistency constant n/a 120 or 25000

Power Law index n/a 1 or 0.33333

Critical Shear Stress M N/m 2 0.32 0.32

Yield Stress M N /m 2 70 70

Strain Hardening index 0.6 0.6

Strain Hardening constant 600 600

Strain Rate Sensitivity constant 3 .8 n/a

Strain Rate Sensitivity index 55000 n/a

Width mm 25 .4 25 .4

Thickness mm 1.59 1.59

Overall length mm 180 180

h2 step land clearance mm 0.02 0.02

Table 6.2 Mean function values for Newtonian optimisation sequences

Mean values o f merit function variables

Velocity Li/La h,/h2 h3/h2 P .R .A .

0.1 25.0865 5.1245 1.001 9.83449

0.15 21.4429 7.24625 1.559 9.34354

0.2 17.6084 8.8453 2.160 8.90071

0.25 28.3665 10.4587 2 .778 8.7391

0 .3 28.8697 12.0142 3.428 8.32282

0.35 38.338 13.4056 4 .130 7.96573

0 .4 65.4311 14.9782 4 .80 7.70613
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Table 6.3 Standard deviations for the Newtonian optimisation sequences

Standard deviations o f  merit function variables

Velocity L ,/L* h,/h2 h3/h2 P .R .A .

0.1 10.8445 0.257952 0.00351355 0.104956

0.15 6.2183 0.153191 0.00790158 0.2000089

0.2 7.81611 0.105956 0.0100012 0.236915

0.25 7.87859 0.125471 0.0151068 0.089066

0 .3 11.4469 0.0866103 0.0152876 0.116584

0.35 15.7719 0.134531 0.0314687 0.141113

0 .4 8.51273 0.0847327 0.0212222 0.0282338

Table 6.4 Mean function values for the Non-Newtonian correlation data

Mean values o f  merit function variables

Velocity Li/La V h 2 h3/h2 P .R .A .

0.1 34.4889 5.00129 1.26549 10.0933

0.15 29.3642 7.13631 1.60948 9.9352

0.2 30.9082 8.90088 2.18583 9.56429

0.25 28.0797 10.7461 2.78307 9.20269

0.3 24.0943 12.1949 3.4213 8.87311

0.35 37.8673 13.7368 4.07202 8.5223

0 .4 51.0822 15.2387 4.77531 8.14635
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Table 6.5 Standard deviations for the Non-Newtonian correlation data

Standard deviations o f  merit function variables

Velocity Ll/L2 h,/h2 h3/h2 P .R .A .

0.1 11.9737 0.293287 0.663519 0.37274

0.15 8.71265 0.259069 0.0222441 0.0689366

0.2 4.00317 0.268701 0.0234229 0.0425776

0.25 10.3344 0.25081 0.0450921 0.149206

0.3 7.61495 0.210057 0.0345471 0.0523116

0.35 13.5388 0.172893 0.0393446 0.0820465

0 .4 19.8696 0.0804685 0.0266115 0.090566

Table 6.6 Mean function values for the Non-Newtonian optimisation sequences

Mean values o f  merit function variables

Velocity U I U V h j h3/h2 P .R .A .

0:1 22.0193 6.72982 1.57173 10.2524

0.15 24.0063 8.89162 2.75772 9.55771

0.2 23.1096 11.1 4.79335 8.30515

0.25 27.922 13.4764 7.07218 6.68342

0.3 40.0581 16.1862 8.40996 5.22493

0.35 47.2365 19.1433 9.98123 4.1191

0 .4 55.2568 22.0437 12.8215 3.36849
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Table 6.7 Standard deviations for the Non-Newtonian optimisation sequences

Standard deviations o f  merit function variables

Velocity L  ,/La hj/hj h3/h2 P .R .A .

0.1 4.32386 0.428734 0.0367016 0.0777017

0.15 6.81155 0.29614 0.078876 0.102866

0.2 3.17104 0.137886 0.521752 0.172934

0.25 3.85538 0.256771 0.934669 0.253306

0.3 8.51912 0.423074 0.992194 0.264345

0.35 7.16997 0.525901 1.54599 0.243374

0 .4 8.65922 0 .546227 4.08478 0 .185862
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Figure 6.1 - Local and global minima for an arbitary function f(x).
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Figure 6.2 - Rosenbrock’s parabolic valley function: a) surface plot, b) topological plot.
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Figure 6.7 - Orthogonal views of the 3 dimensional scatter plot produced by the 

optimisation sequence for an entry velocity of 0.25 m/s.
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Figure 6.9 - Orthogonal views of the 3 dimensional scatter plot produced by the 

optimisation sequence for an entry velocity of 0.35 m/s.
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Figure 6.14 - Orthogonal views of the 3 dimensional scatter plot produced by the

optimisation sequence for an entry velocity of 0.15 m/s.
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Figure 6.15 - Orthogonal views of the 3 dimensional scatter plot produced by the

optimisation sequence for an entry velocity of 0.2 m/s.
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Figure 6.17 - Orthogonal views of the 3 dimensional scatter plot produced by the

optimisation sequence for an entry velocity of 0.3 m/s.
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Figure 6.23 - Orthogonal views of the 3 dimensional scatter plot produced by the

optimisation sequence for an entry velocity of 0.15 m/s.
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h
l/

h
2



o

NO

«

r HrH 00

ZM/W

S

Ot-
00a -

o
ij

5

otHr H
rH Ox vo00

zq/iq ct/ ct

Figure 6.26 - Orthogonal views of the 3 dimensional scatter plot produced by the

optimisation sequence for an entry velocity of 0.3 m/s.
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optimisation sequence for an entry velocity of 0.35 m/s.
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CHAPTER 7

7.0 The Validity of the Hydrostatic Assumption

The Hydrostatic assumption was stated in chapter 5 as;

the width o f the material is very large compared to the side clearance 

h3, with all derivatives o fz  being equal to zero, thus

dz

This is a very succinct way of stating arguably the most important assumption made 

in the modelling of Plasto-hydrodynamic drawing of rectangular sections. This may 

now be expanded. For a wide rectangular section placed within a convergent flow, 

hydrodynamic pressures and flows will be generated; a simple case widely described 

in tribological texts is that of a linear Rayleigh pad bearing. Two major phenomena 

are usually demonstrated by various means. Firstly, the maximum pressure 

generated in the bearing is at the step change in section. Secondly, the pressure 

reduces towards the edge of the bearing due to leakage, as shown in figure 7.1. 

The hydrostatic assumption then states that if the section is enclosed, and the 

clearance between the enclosure and section is very small in comparison with the 

width of the section, then the leakage flow will be negligible compared to the 

convergent flow, and hydrodynamic pressure loss across the face of the strip will 

be negligible and is assumed to be zero. With this assumption the pressure field 

around any arbitrary cross section becomes constant, as the pressure derivative in 

the z direction is zero. The significance of this result is that the fluid modelling 

within the overall plasto-hydrodynamic model is reduced by one dimension, ie 3D



to 2D.

The dimension of the fluid model is then further reduced during the 

integration of the fluid equations; this is achieved by specifying that the point of 

interest is at y=0 (surface of material). The dimension of the fluid modelling is 

thus reduced from 2D to ID.

7.1 The Computational Fluid Dynamic Analysis

The validity of the hydrostatic assumption was examined by means of a series of 3- 

dimensional fluid models. The models were developed and solved using a 

commercially available software package called FLUENT. This package allows the 

analysis of complex 3D problems using a wide variety of boundary conditions and 

solution algorithms.

For this analysis it was required to solve the incompressible form of the 

Navier-Stokes equations, given below in vector form,

p £ Z  = pB  + ( -V p  + jiV2 V ) Navier-Stokes Eqns

The FLUENT system will not solve any form of the governing equation for plastic 

deformation. It was then decided to ignore plastic deformation of the material. 

This was justified by using a geometrical configuration for the pressure head and 

material velocity that, according to the present model, would only just meet the 

criteria for plastic deformation. This point must be passed through during 

acceleration to higher process velocities at the start up of the process, and may be 

considered a valid point for analysis. The validity of the assumption after 

substantial deformation has taken place is more uncertain and will not be addressed
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at this time.

Two questions may then be posed:-

i) What effect does the aspect ratio of the working material have on the 

pressure field?

ii) If the assumption is valid, at what proportion of the velocity required 

for deformation will the pressure field meet the hydrostatic assumption?

7.1.1 The Model Geometry

Five models were used to address these questions - their functional relations are 

shown in figure 7.2. The geometry used for the models is given below:

LI = 50 mm L1/L2 ratio = 5:1

L2 = 10 mm

ht = 0.4 mm h ^  ratio = 2:1

h2 = 0.2 mm

h3 = 0.2 mm h3/h2 ratio = 1:1

A plasto-hydrodynamic pressure head is symmetrical about two perpendicular 

planes, and as such a quarter section mesh was used to limit the number of 

computational cells below an upper bound of 50000. The planes of symmetry are 

shown in figure 7.3, with figures 7.4 and 7.5 showing details of the finished 

mesh used for the analysis.

This geometry was given to the numerical model of the plasto- 

hydrodynamic drawing process, and the velocity required to initiate deformation 

calculated. This was then used in the CFD models to ascertain the effect of the 

aspect ratio. The 16:1 aspect ratio model was then used at two lower velocities
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to establish the velocity limits of the hydrostatic assumption, these being 2/3 V 

and 1/3 V. The initial velocity and viscosity used for the study were V=0.5 m/s 

and /x=180 Pa.s.

7.1.2 Boundary Conditions

Inspection of the inlet and outlet regions of the model reveals that the velocity 

profiles were unknown, but that ambient pressure is felt in these regions. A 

technique referred to as ’link cutting’ is available within the FLUENT system. 

‘Link cutting’ enables the solver to isolate contiguous cells during the iteration 

process, such that the velocity of the inlet and outlet cells was not used during the 

solution of the internal region of the model. A pressure boundary was applied to 

the inlet and outlet regions, thereby sufficiently specifying the bounds of the 

problem for computation.

7.1.3 Model Convergence

The models used were found to have an extremely slow convergence. Typically, 

in excess of 120,000 iterations were required for solution, even though the 

equations are well posed; the models are incompressible, laminar and steady-state. 

This may be attributable to two factors:

i) the large number of computational cells,

ii) the hydrodynamic nature of the problem.

For two reasons each model uses 14,625 computational cells. Firstly, the 

high shear rates in the pressure head clearances require a minimum of five cells 

perpendicular to the nominal direction of fluid flow. Early models with 3 cells
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(recommended initial number) would not converge to the required accuracy. 

Secondly, as the aspect ratio of the pressure head clearances is very high (wide, 

long and extremely thin), to maintain an aspect ratio of less than five for the 

computational cells required a large number of cells in the width and length 

dimensions of the model.

Inspection of the Navier-Stokes equations given in section 7.1 reveals that 

the pressure is not explicitly included, but only the pressure gradient. This fact 

causes many complications in the solution of fluid problems; the description of 

which is beyond the scope of this text. It was noted that during the iteration of 

the equations a narrow band of high pressure is formed in the front, and at the 

centre, of the step. This was then slowly propagated outwards towards the edges 

of the model. The rate of propagation was extremely slow and is thought to be 

a consequence of the lack of an explicit pressure term.

7.2 Results

7.2.1 The effect of the aspect ratio on the hydrostatic assumption

The overall form of the pressure field at the surface of the strip, may be shown 

as a surface. This requires that the data be processed in the following manner: 

The x coordinate represents the distance into the pressure head from the entry. 

The y coordinate is the distance around the periphery of the strip material, with 

the origin located at the centre of the width face. This processing effectively 

flattens or maps the surface of the material onto a plane as shown in figure 7.6. 

The pressure magnitude is now indicated by the height of the surface at any x,y 

location. The pressure fields for the 8:1, 16:1 and 32:1 aspect ratio models are 

given in figures 7.7, 7.8 and 7.9 respectively. Figures 7.10 - 7.12 show various
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comparisons of the CFD computed pressure fields and pressure field given by 

Rayleigh (66), which is denoted as the ’theoretical’ curve on the figures in 

question. Figure 7.10 gives pressure profiles for the length of the pressure head, 

located at the plane of symmetry (centre of width face) for all three models. 

Figure 7.11 gives the pressure distribution in front of the step for all three 

models. Figure 7.12 gives the pressure distribution in front of the step for the 

16:1 aspect ratio model at the velocities specified in section 7.1.1.

The relevance of this data to the modelling of the PHD process will be 

examined in detail in the following chapter.
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The Onset of Deformation

16:1 32:1

16:1

16:1

Figure 7.2 - Schematic giving the functional relations of the CFD models.



Figure 7.3 - End view of a pressure head demonstrating available planes of symmetry.
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'(a)

(b)

Figure 7.4 - Representative views of meshes used in CFD analyses: a) section on A-A,

b) upper left quadrant of figure 7.3.



Figure 7.5 - Magnified view of comer section of mesh, revealing details of non-uniform

mesh.
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Figure 7.10 - Pressure profiles over the length of the 8:1, 16:1 and 32:1 models.

174

Po
sit

ion
 

in 
Pr

es
su

re 
He

ad
 

(m
)



5.
4E

+0
07

Put

VC5<L>f—tO<u
< <

o
ooo o

&
&<urO
C l,‘C
0 L »Ph
’O
no
c9
4)U

+
g
»n

+
Woo
Tf

+ + +
gtJ-

+ 4*
Woo
to

( b j )  9 jnSS3J(I

Figure 7.11 - Pressure profiles across the face of the step for the 8:1, 16:1 and 32:1 

aspect ratio models.

175



6E
+0

07
o

d<L>dO)CD

<D

©

o

o

> > >

so o ©

+ + + + +

(ba) amssajj

Figure 7.12 - Pressure profiles in front of the step for the 16:1 model at strip velocities 

of 0.5, 0.333 and 0.1666 m/s.

176

Di
sta

nc
e 

aro
un

d 
Pe

rip
he

ry
 

(m
)



CHAPTER 8

8.0 Discussion

The present work investigates the deformed shape of wide strip produced by the 

plasto-hydrodynamic drawing process. The work consists of two main themes: 

Firstly, an in-depth theoretical analysis of the process parameters and the 

computational methods used therein; this is required for predictive control of the 

process. Secondly, an experimental programme was undertaken to ascertain the 

performance of the process with wide strip. The results of the theoretical and 

experimental analyses will be discussed and their outcomes compared.

8.1 Theoretical ..Modelling

Deformation induced by a plasto-hydrodynamic process on any arbitrary section is 

controlled by the working fluids temperature, exit velocity and the geometry of the 

pressure head assembly. Control of the process may then take one of two forms: 

Firstly, each material size may undergo extensive testing to determine 

deformation performance; all thermal parameters and process velocities must be 

accurately controlled and be repeatable. The disadvantage with this form of control 

is that any variation in supplied materials or process parameters requires further 

experimental work before control is regained.

Secondly, predictive control may be achieved by the use of a mathematical 

model which would take into account any changes in the process parameters, and 

thus allow control of the process to be regained immediately. The disadvantage of 

this method is that it presumes that all significant physical phenomena may be 

accurately incorporated in any mathematical model.
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In this work four areas of theoretical analysis have been addressed with 

regard to the mathematical modelling of the plasto-hydrodynamic drawing of wide 

strip. These are:

i) computational methods,

ii) a non-Newtonian model,

iii) a Computational Fluid Dynamic analysis of the hydrostatic 

assumption,

iv) numerical optimisation of the plasto-hydrodynamic drawing process.

8.1.1 Computational Methods

In section 5.2, a new computational algorithm was developed and applied to 

existing equations to form a new Newtonian model of the plasto-hydrodynamic 

drawing process. The ramifications of the assumptions made will now be further 

examined.

8.1.1.1 The Onset of Slip

Figure 8.1 shows 6 shear stress curves, three t { and their corresponding r3 

curves. It is seen that the value of t x gradually reduces within the deformation 

zone until slip is detected on the edge face, and all shear stresses are then 

assumed equal to the critical shear stress The value of the edge shear 

stress r3 is seen to rise from an initial value until violation of the slip condition. 

This behaviour has been consistently observed with both the Newtonian and 

Power Law models; for this reason the violation of the limiting critical shear 

stress by r3 has been identified as the cause of the onset of slip. At this point 

it should be noted that, due to the iterative nature of the power law solution,
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it is not possible to compute the component parts of the shear stress term, and 

as such the rest of this section will utilise the Newtonian model for the purpose 

of explanation. To understand the impact of any parameter on the process the 

effect of that parameter on r3 must be understood. The behaviour of r3 is seen 

to be of a complex nature. Figures 8.2, 8.3, and 8.4 show the effect on r3 of 

increasing velocity, at h3/h2 ratios of 5, 3, and 1 respectively. It is seen that 

for a large h3/h2 ratio of (5), t3 consistently increases from an initial value 

during the deformation zone. Examination of figure 8.3 reveals that t3 falls 

slightly before rising towards Figure 8.4 demonstrates that at small h3/h2 

ratios, r3 falls rapidly from a high initial value by approximately 50% of this 

value before rising towards t^ .  The cause of this variation is examined below.

The hydrostatic assumption forces the pressure gradient developed on the 

width face to be propagated around the section to its edge. This means that the 

pressure gradient felt on the edge face has no direct mathematical relationship 

to the side clearance h3. This is evident in Memon’s (42) equation for the edge 

shear stress given below as equation 8.1.

Equation 8.1 can be seen to consist of two terms: Firstly, a pressure driven 

term containing the pressure gradient, which is effectively scaled by the side 

clearance. This term will increase in direct proportion to h3. Secondly, a 

velocity driven term scaled by fi but whose initial magnitude will depend upon 

the quotient of V (local velocity) and h3. After this point the magnitude will 

depend upon the relative rates of change of V and h3. An expression for the

(8.1)
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relative change of V and h3 is not clearly discernible. However, a review of 

the performance of both terms may be made by separating r3 into its component 

parts and plotting them against pressure head position. This is shown for a 

velocity of 0.1 m/s, at aspect ratios of 5, 3, and 1 in figures 8.5, 8.6, and 8.7. 

It is seen that the initial value of the velocity term is inversely proportional to 

h3. The rate of increase of h3 is seen to be greater than that of V, denoted by 

a fall in magnitude after the initial point. The pressure term is generally 

dominant in the creation of r3.

8.1.1.2 The Solution of Equations within the Slip Regime

It was previously stated that at some predetermined value of shear stress 

slip will occur at the boundary of the working fluid. As a consequence of this, 

a constant shear stress will be felt for any increase in the shear rate. This 

directly affects the calculated pressure field, as it was shown in section 5.2.2 

that beyond this point the pressure gradient must effectively be zero. This 

causes the Plastic-yield equation (PYE) to effectively be modified, from

p  + a  -  n = 0  PYE before slip
x  y

to

c  + ax -  ay = 0 PYE after slip

where C is a constant and is equal to the pressure at the onset of slip. During 

the iterative solution of the equation after the onset of slip, it is seen that any 

change in <rx can only be balanced by a change in ay alone and not oy and
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pressure as before the onset of slip. This will change the dynamic response of 

the equations to further deformation. This change in response is found in the 

thickness curve for the deformation zone. Figure 8.8 demonstrates the change 

in the slope at the onset of slip for different velocities.

Figure 8.9 shows the percentage reduction in area for each curve in 

figure 8.8, plotted against entry velocity. A distinctive bell shape is seen in the 

performance of the process. The mechanism for the formation of this 

performance curve may now be discerned. Process performance is seen to 

initially increase with velocity. The critical shear stress is exceeded at higher 

velocities causing a degradation in draw performance. As the process velocity 

rises, the loss in performance increases due to the earlier introduction of slip; 

thus forming the bell shaped performance curve. This form of performance 

curve is only produced by models employing this treatment of slip; previous 

models show a flat response after the onset of slip.

8.1.2 The non-Newtonian Model

A new non-Newtonian model of the plasto-hydrodynamic process was developed 

in chapter 5. The impact of various assumptions and model parameters will now 

be examined further.

8.1.2.1 Laminar flow

For the assumption of laminar flow to be valid, the Reynold’s number (Re) for 

the internal flow in the pressure head must be below the critical Reynold’s 

number, which is normally assumed to be 2300. For internal flows, Reynold’s 

number is calculated from the following expression:
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where

p = Density 

V = Velocity

D = Characteristic dimension 

li -  Viscosity

The Re will now be calculated for the pressure head geometry used during this 

study, using generic worst case material properties.

Polymer properties 

fj, = 100 Pa.s 

p =  1200 Kg/mA 3

Characteristic dimensions 

hj = 0.2 mm 

h2 = 0.04 mm 

h3 =  0.04 - 0.2 mm 

W =  25.4 mm

The maximum velocity of the current test apparatus is 0.5 m/s. Substitution of 

these values into the expression for Re number yields a Re number range of 2.4 

x lO'4 to 0.147. The extremely low values are a consequence of the thin film 

like dimensions of the pressure head and the high viscosity of the fluid.
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Therefore, the assumption of laminar flow is seen to be valid.

8.1.2.2 Isothermal Conditions

It was assumed during the derivation of the non-Newtonian model, that 

isothermal conditions exist. However, the process generates heat internally, 

due to viscous dissipation in the fluid and the plastic deformation of the strip. 

This omission will introduce some error into the solution of the equations. 

However, the pressures generated are extremely high, which will cause an 

increase in viscosity. The effect of these unaccounted for phenomena are 

contrary in nature, and some degree of cancelling will occur.

8.1.2.3 The General Form of the Power Law constitutive equation

The non-Newtonian model developed in chapter 5, utilised the Power Law (PL) 

model of shear rate dependent behaviour. The form of PL used was given in 

equation 5.3, and is repeated below:

■ w  (5-3)

The type of behaviour the PL describes is dependent upon the value of n, the 

consistency index. Three regimes may be identified:

i) n <  1, represents pseudoplastic or shear thinning behaviour;

ii) n = l ,  at this point the PL reduces to the Newtonian case;

iii) n > 1, this case represents dilatant or shear thickening behaviour. 

Whilst the PL may be applied to a wide range of fluids, there are various 

limitations associated with its use which are examined below.

The PL has no physical theory for its derivation. In essence it is a
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curve fit to the shear stress - shear strain rate curve. As such its accuracy is 

dependent upon the data of the fluid’s behaviour; ideally such data should 

encompass the operating range of the model.

The PL equation is not dimensionally stable, as any change in n the 

consistency index, will change the units of K, the consistency constant.

Problems may be encountered in computations that reach zero shear 

rate. Zero risen to a power is zero, but a computer would normally use 

logarithms to make the calculation, causing an error at zero shear rate.

8.1.2.4 The effects and limitations of the Power Law equation on model performance 

The power law model utilises two parameters to describe fluid behaviour. 

These are n, the consistency index and K, the consistency constant, as described 

previously. The effect and limits of these parameters on model performance 

will now be examined.

8.1.2.4.1 The limitations of the consistency index n

In section 5.3.1.2.1 algebraic problems encountered in the solution of the 

power law flow equation were discussed. A restriction was placed upon the 

X function, such that an integer must be returned for a specific value of n. 

A further more subtle restriction will now be discussed. Restating equation 

5.21 below:

( 5 .2 1 )
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This equation may be rewritten in the following form

- t e - r - ( d -

where

c ‘ = (!)« '»

c . . 2 *
d x K

The terms within the square brackets will now be examined assuming an 

integer value of the k function. The first term would expand to form a 1/n 

+ 1 order polynomial equation. By inspection, it may be seen that the 

polynomial equation would contain as its first term a term equal to the second 

term in the square brackets, but opposite in sign. This would reduce the 

order of the polynomial formed by 1 to 1/n. As an example, assume n=0.5 

then equation 5.21 may be expanded to yield;

0 = x 2 + c ^ x  + K*
c 2

Cf2

Then forming the components of the discriminant of a quadratic equation a, 

b and c:
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0 = 1

b  = C2 K

Substitution of representative values for terms in the above equations, yields 

the following comparison of magnitudes:

a = 1 x 10° 

b = 1 x 105 

c =  1 x 1014

It can be seen from the values above, that the roots of equation 5.21 for 

n=0.5 will be a complex conjugate pair, and that the power law model in its 

present form is unstable with this value of n, as the shear stress is 

indeterminable.

The theory of equations states that only odd integer polynomial 

equations are guaranteed to have at least one real root. With this in mind, 

a 1/n range of 1 to 7 was explored with the model to determine the limits of 

its stability. The pressure head geometry is that given in table 6.1 with the 

following exceptions:

i) Tea = 0.5 MN/m2,

ii) the velocity was held constant at 0.15 m/s,

iii) the power law index and constant were modified, as denoted

in the tabulated results.
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Table 8.1 below, gives the results for the range of 1/n values studied, and the 

PRA predicted, with the power law constant and index utilised.

Table 8.1 Results of stability survey for the power law model

1/n n K P.R.A.

1 1.0 120 14.186

2 0.5 UNSTABLE ******

3 0.3333 25000 13.493

4 0.25 UNSTABLE ******

5 0.2 UNSTABLE ******

6 0.1666667 107500 11.637

7 0.1428571 160000 13.523

No attempt was made to achieve maximum predicted PRA during the survey, 

only an attempt to predict reasonable deformation performance. The points 

of instability found during the survey are seen to be scattered among odd and 

even 1/n values. The following points should be noted that, in the case of 

1/n = 5:

i) the program will only seek to establish roots in a physically 

realistic range,

ii) although the range was extended for the survey this does not 

preclude a real root at some physically unrealistic point beyond 

the range of the algorithm.

To clarify the behaviour of the polynomials formed at various 1/n values, the 

error associated with the solution of the equation 5.21 for t 1 prior to 

deformation is given graphically in figure 8.10. It is seen that the 1/n values 

which are stable show a linear or nominally cubic form to their residual
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curves, whilst the unstable 1/n values show a nominally quadratic form to 

their residual curves. The residuals curves should then enable other 1/n 

values than those studied to be assessed for stability.

The limitation on the value of n, the consistency index, is seen to be 

not only those values n which produce an integer value of the X function but, 

also those values which produce stable integer values of the X function.

8.1.2.4.2 The effect of the consistency constant K

An arbitrary value of n=0.3333, with a fixed velocity of 0.15 m/s, was used 

to determine the effect of the consistency constant, K. The consistency 

constant K was then varied through the range 12000 - 34000. The predicted 

deformation is shown graphically in figure 8.11. It is seen that the 

consistency constant K has a direct scaling effect on the predicted deformation 

performance until the onset of slip, where the performance is seen to reach 

a plateau. This form of response to the value of K is reasonable on 

inspection equation 5.3.

8.1.2.5 Redundant Work within the Plasto-hydrodynamic model

In any reduction process that produces a convergent flow of material, a degree 

of internal shear distortion will be induced. The energy to effect this distortion 

is termed Redundant Work. In section 5.3.2.2, an attempt was made to 

quantify the increase in axial stress that the inclusion of this phenomena would 

produce. The analysis proved to be unstable in practice, with the central region 

of the performance either crashing the program or entering into an endless loop. 

Figure 8.12 shows a comparison of the PL model with, and without, redundant
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work activated. It is seen that, prior to the unstable region both curves are in 

close agreement and after, the analysis with redundant work decays rapidly 

from a higher initial predicted performance. The instability in the analysis 

could not be eliminated, even after extensive review and numerical 

investigation.

It is the view of the author, that the instability is due to a combination 

of two factors. Firstly, the analysis over-predicts the deformation during the 

early part of the deformation zone, and thus moves the solution into an unstable 

region where no sensible solution to the plastic-yield equation (PYE) may be 

found. Possible indications of this are given in figure 8.12. Intuitively one 

would conclude that the inclusion of redundant work would produce a higher 

stress for a specified value of b, the slope of deformation. This would then 

produce lower levels of deformation, as the PYE would be satisfied with this 

lower slope. This is seen not to be so from figure 8.12. Secondly, during the 

derivation of the expression for the axial stress it is assumed that ax = ax and 

o2 = o3 — Pressure. From fundamental definitions, there is zero shear stress 

on a plane of principal stress. However, the plasto-hydrodynamic process 

depends upon there being a large shear stress at the surface of the material, 

where this said principal stress is acting. To compound this, the presence of 

shear distortion or shear strain, which varies across the section, has previously 

been admitted to. This implies not only a vaiying state of stress and strain but 

of yield stress across the section. A possible solution to these dilemmas would 

be a three dimensional plasticity model of the section, with the PL model being 

used to calculate the boundary conditions.

It was decided that such an undertaking was beyond the remit of the
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current work.

8.1.2.6 The effect of ht/h? ratio on t j

Until now this discussion has concentrated on the dominant role of r3 in the 

onset of slip and its influence on the process performance. However, due to 

the aspect ratio of the material, and hence the greater area upon which rx acts, 

this term will be dominant in the creation of ax.

Figure 8.13 shows t x over the length of the deformation zone for a h^ha 

range of 6-10. It is seen that the level of stress is inversely proportional to the 

h jh 2 ratio.

8.1.3 A Computational Fluid Dynamic Analysis of the Hydrostatic Assumption

In section 7.1 the following two questions were put forward for solution by 

Computational Fluid Dynamic (CFD) analysis:

i) what effect does the aspect ratio of the working material have on 

the pressure field?

ii) if the hydrostatic assumption (HA) is valid, at what proportion of 

the velocity required for deformation will the pressure field meet the 

HA?

The results of these analyses will now be discussed.

8.1.3.1 The effect of aspect ratio on the pressure field prior to deformation

The pressure fields given in figures 7.7, 7.8 and 7.9 are for aspect ratios of 

8:1, 16:1 and 32:1, and demonstrate the following points:

Firstly, the general form of the pressure fields are consistent with the
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analysis of Rayleigh (66), in that the pressure gradients of the two lands are 

linear in form. This is emphasised again in figure 7.10 where the pressure 

profile for the longitudinal plane of symmetry is given. It may also be seen 

that all the pressure gradients are lower than those predicted by the analytical 

model. The degree of error is reduced with increasing aspect ratio. A possible 

reason for the observed loss in predicted pressure but not of form, is that the 

side clearance allows fluid to be bled away from the step thus reducing the 

overall pressure, but the volume of fluid lost is insufficient to cause gross 

disruption of the normal hydrodynamic flow pattern. Figure 8.14 shows the 

velocity vectors for the 32:1 model in cross section. This demonstrates the 

fluid flow towards the edge of the strip material, and the localisation of the 

disruption within the general flow pattern.

Secondly, there is a small zone of low pressure at the edge of the strip 

adjacent to the step. Figure 7.11 gives the pressure profiles of the different 

aspect ratio models immediately before the step. The reduction in pressure at 

the longitudinal plane of symmetry is again seen. A gradual reduction in 

pressure is seen across the face of the strip, with the pressure loss increasing 

rapidly as the edge of the strip is approached. It is seen that for the majority 

of the strip face the HA is reasonable.

The overall reduction in pressure is seen as the most important of the 

two phenomena described. The losses at the longitudinal plane of symmetry are 

14.79%, 12.16% and 10.77% for the 8:1, 16:1 and 32:1 models respectively. 

The hydrodynamic pressure is one of the three terms in the Plastic-yield 

Equation (PYE) and as such, errors of this magnitude will have a significant 

effect on the predicted performance.
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8.1.3.2 The effect of velocity on the accuracy of the Hydrostatic Assumption 

Figure 7.12 shows pressure profiles immediately in front of the step for the 

16:1 ratio model at three different velocities, 0.5 m/s, 0.333 m/s and 0.166 

m/s. The reduction in the overall predicted pressure discussed above is seen to 

be present at reduced velocities. It is seen that the variation in pressure at the 

edge of the strip adjacent to the step is reduced at lower velocities. The 

reduction in the pressure variation across the face of the strip indicates that the 

HA is reasonable for all velocities, and not just the extreme conditions at the 

point of yielding.

8.1.3.3 Comparison of CFD analysis with previously published results

Prior to the current work, details of initial CFD based studies into the HA were 

published (Stokes (81), appendix 3). Differences in model performance are 

seen between the two sets of models. A distinct drop in the predicted pressure 

field is seen to occur near the edge of the strip in the initial studies, which is 

contrary to the predictions of the current study. Comparison of figure 7.4b 

with its equivalent shown in appendix 3, reveals a greatly improved graduation 

in the grid spacing across the width of the strip for the current analyses. The 

change in model performance is attributed to this smoothing of the grid 

structure and its inherent increase in accuracy.
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8.1.4 Numerical Optimisation of the Plasto-hydrodynamic Drawing Process

The numerical optimisation of the Plasto-hydrodynamic drawing process consists 

of two distinct parts.

Firstly, the Newtonian optimisation, coupled with an equivalent 

optimisation sequence with the power law model simulating Newtonian flow 

characteristics (n= l).

Secondly, an optimisation sequence with a power law index (n) of 

0.33333 and power law constant (K) of 25000. Fluids with these power law 

parameters equate to a generic Nylon 12 at shear strain rates of 1 x 103, above 

which is the estimated operating range of the PHD process.

8.1.4.1 Newtonian Optimisation

The results of the numerical optimisation of the Newtonian plasto-hydrodynamic 

model demonstrate the following:

i) the optimum hj/h2 ratio is a linear function of velocity,

ii) the optimum h3/h2 ratio is a linear function of velocity,

iii) the optimum IVL2 ratio fluctuates with velocity - the standard 

deviations of the samples are very large compared to those of the 

other ratios thus preventing a correlation being made,

iv) the overall peak performance of the process is seen to reduce 

with velocity.

8.1.4.2 The equivalent Non-Newtonian Optimisation

The results of the numerical optimisation of the non-Newtonian plasto- 

hydrodynamic model emulating a Newtonian fluid (figures 6.20 and 6.21)
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demonstrate the same general features as described for the Newtonian model 

above.

8.1.4.3 Comparison of Newtonian and equivalent optimisation sequences

A comparison of the predicted pressure head geometrical ratios for the 

Newtonian and the non-Newtonian equivalent optimisation sequences is made 

graphically in figures 8.15 and 8.16. A plot of the land length ratio is not 

included, due to the excessive amount of scatter. It is seen from figure 8.15 

that the models agree to within 0.5 (dimensionless units) approximately for the 

optimum hi/h2 ratio. The agreement of the two models is even greater for h3/h2 

ratio, within 0.25 approximately. Figure 8.17 shows a comparison of the mean 

Percentage Reduction in Area (PRA) for the two models - a constant difference 

of 1.0% PRA, approximately, is seen. The differences between the two models 

may be explained by consideration of two groups of factors.

Firstly, the power law model omits strain rate sensitivity from its 

formulation. Published data by Hashmi (82) demonstrated that the effect of this 

phenomena was small in this type of problem and, as previously described, the 

phenomena of redundant work was incorporated in an attempt to improve the 

plasticity modelling. With the problems encountered during the modelling of 

redundant work, the power law merit function contains neither redundant work 

nor strain rate sensitivity in its formulation.

Secondly, the power law merit function uses linearly interpolated mid

point values when calculating the axial stress ax during the solution of the 

equation system. In contrast to this, the Newtonian merit function derived from 

Memon’s (42) discretisation scheme with the new algorithm, uses the value of
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the current node over the entire step.

The differences in the performance of the two merit functions can then 

be attributed to these variations in formulation.

8.1.4.4 The Effect of non-Newtonian fluid behaviour

The results of the numerical optimisation sequence of the power law model 

using the fluid parameters of a generic Nylon 12 are given graphically in figure 

6.29, and demonstrate the following:

i) the optimum hj/l^ ratio is a linear function of velocity,

ii) the optimum h3/h2 ratio is a linear function of velocity,

iii) the optimum IVL2 ratio fluctuates with velocity; the standard 

deviations of the samples are veiy large compared to those of the 

other ratios thus preventing a correlation being made,

iv) the overall peak performance of the process is seen to reduce 

with velocity, and at a greater rate than that of the 

Newtonian/equivalent optimisation sequences.

The increased rate of reduction in drawing performance is thought to be a 

consequence of the shear thinning behaviour of the fluid. A detailed analysis 

of the shear stresses and, in particular the exact effect of the velocity 

component, is not possible due to the use of the iterative solution method 

required for their computation.
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8.1.4.5 The use of Surfaces in the visualisation of System performance

During the derivation of the merit functions, ratios were used to reduce the 

problem to 3 dimensions. A series of performance surfaces may be generated 

by holding the h3/h2 ratio constant, giving x, y equal to W I^, hj/l^ respectively 

and z equal to PRA. Then, by varying the h3/h2 ratio by small increments 

about the optimum value for a specified process velocity, a sequence of 

performance surfaces may be built up demonstrating the development of the 

merit function’s performance in three dimensional space. Figures 8.18 to 8.21 

give the performance surface development of the modified Newtonian model at 

a velocity of 0.2 m/s for h3/h2 ratios of 1.5, 2.0, 2.16 (the optimum) and 2.5 

respectively.

The major topological feature of the performance surfaces is a ridge 

form lying parallel to the W L 2 axis with a step in the region of the origin. The 

position of this ridge explains the apparent insensitivity of both merit functions 

to Lj/I^ ratio, in that above a value of approximately 8 the ridge appears 

essentially flat. The formation of the ridge may be explained as the sum of two 

competing phenomena. Firstly, it was shown in section 8.1.2.6 that Ti is 

inversely proportional to hx/h2 ratio, producing increasing PRA. Secondly, at 

some point the critical shear stress will be exceeded, thus causing the onset 

of slip and its associated loss of performance. Reducing h1/h2 ratio further will 

introduce slip into the calculation at an earlier point. This will increase the 

effect of slip and reduce the performance to a greater and greater extent.

The step close to the origin at small values of W L 2 and hx/h2 ratio was 

found to be formed as a consequence of slip being present throughout the 

deformation zone.
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Detailed inspection of figure 8.20 for example, reveals small scale 

ridging of the surface between the origin and a ht/h2 ratio of 8 (approximately); 

figure 8.22 gives an alternate view of the surface shown in figure 8.20. From 

table 6.4 we see that the optimum value of ratio is within the region 

affected by slip - an explanation for the large scatter of the Lj/l^ predictions is 

now possible. Figure 8.23 shows a cross-section at h1/h2 equal to 9 of the 

surface given in figure 8.20, giving more detail of the ridging. It is shown that 

in the region of the optimum (PRA) the surface is multi-modal, in that it 

contains many local optima of which only one may be the global optimum. 

This violates a fundamental assumption made during the derivation of all 

numerical optimisation procedures, that of uni-modality. The program can then 

be assumed to have fallen into a ridge leading to a local optimum and have been 

unable to escape. This would be possible towards the end of the search when 

the search step would be small (less than the ridge width). The distribution of 

the W L2 ratio would then be a function of the distribution of the local maxima 

of the surface.

The exact causal mechanism for the production of the small scale surface 

ridging is as yet unknown, but it can be postulated that it is a consequence of 

the dynamical interaction of the plasto-hydrodynamic deformation process and 

the non-linear phenomena of slip.

A review of figures 8.18 to 8.21 gives the development of the 

performance surface with increasing h3/h2 ratio. It is observed that the height 

of the ridge increases up to its optimum as predicted by the optimisation 

sequences, and that the width of the ridge also increases with increasing h3/h2 

ratio.
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It can be seen that the technique of using sequences of performance 

surfaces yields a much improved picture of pressure head performance.

8.2 Experimental Results

8.2.1 The Overall Reduction in Cross Section

In section 8.1.1.1 the theoretical reasoning behind the controlling effect of h3/h2 

ratio on the deformation process was discussed; a prior indication of the 

importance of this was given in the work on numerical optimisation in chapter 6. 

The experimental programme was then designed to test the validity of this 

analysis. Three differing pressure head configurations were used, combined with 

three polymer melt temperatures to produce sufficient data for reasonable study.

Figures 4 .3 -4 .11  show the experimental results in a form that clearly 

shows the effect of temperature. It is seen that the process performance is 

inversely proportional to temperature in all experimental conditions used for this 

study.

Figures 8.24- 8.32 show the experimental data recast to show the effect 

of h3/h2 ratio on process performance. The plots are at constant temperature and 

varying h3/h2 ratio.

Figures 8.24 - 8.26 are for a temperature of 195°C; they show PRA, 

PRW and PRT respectively. The plots of the data for the h3/h2 equal to 3.5 show 

great fluctuations in magnitude. No evidence can be found to explain the 

variations in performance. Two possible explanations are;

i) the polymer suffered from thermal degradation; this is unlikely as 

after each rebuilding of the pressure head for a new configuration, 

fresh polymer was used and then protected by an inert gas blanket at
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all times,

ii) the strip material varied in quality over the length of the batch. 

Unfortunately the fluctuations in the experimental data were not discovered until 

after the configuration of the pressure head had been changed by precision 

grinding of the pressure head inserts.

However, reviewing figures 8.24 - 8.26 shows that the trace for a h3/h2 

ratio of 2 consistently produces the greater reductions, and that the trace for a 

h3/h2 ratio of 5 consistently produces the lowest performance. This correlation 

is only possible if one ignores some of the greater fluctuations in the h3/h2 ratio 

of 3.5 data.

Figures 8.27 - 8.29 are for a temperature of 215°C; they show PRA, 

PRW and PRT respectively. A much better correlation with the theoretical 

prediction of the controlling effect of h3/h2 ratio is seen.

Figures 8.30 - 8.32 are for a temperature of 235°C; they show PRA, 

PRW and PRT respectively. The traces for all the performance indicators show 

the greatest performance with a h3/h2 ratio of 3.5 not of 2, and the lowest 

performance with a h3/h2 of 5. The experimental data for the different ratios were 

achieved using different batches of material. These were: 

h3/h2= 5 batch 1, oyo=74.58 MPa,

h3/h2= 3.5 batch 2, ayo= 88.49 MPa,

h3/h2= 2 batch 3, ayo= 72.17 MPa.

This would not explain the form of these results. No fluctuations are seen 

and the data is reasonably smooth.
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8.2.2 Results for the Distribution of Cross Section

The results for the analysis of Cross Section were shown graphically in figure 

4.12. The performance of the sample plotted against velocity is given in figure 

4.11 and is denoted as experiment 23. A vertical section through figure 4.11 was 

made at a velocity of 0.2 m/s (approximately) and analysed, the results of which 

are given graphically in figure 4.13. It is seen from figure 4.12 and figure 4.13, 

that the original section has an hourglass form (approximately). This form is seen 

to be preserved with all the levels of deformation achieved. It is seen from the 

results that the quality of form of the feed stock determines that of the output, and 

no smoothing is incurred during deformation by the plasto-hydrodynamic drawing 

process.

8.2.3 Results for the Reduction of section comer radius

Plates 4.1 - 4.4 show representative samples of the section comer radius. A 

graphical method was used to assess the reduction in comer radius with overall 

deformation. The results of this analysis are shown in figure 4.14. Inspection 

of figure 4.14 shows a large variation in the achieved comer radius for a specified 

reduction. The precise form of any relationship between comer radius and 

reduction may not be identified, other than to state that the comer radius of the 

output product is reduced during plasto-hydrodynamic drawing.
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8.3 Comparison of Experimental Results and Mode} Predictions

8.3.1 Selection of experimental data

From the results given in chapter 4 the experimental data at 235 °C has been 

selected for direct comparison with the power law model. This is due to the low 

level of scatter exhibited by the data at this temperature.

8.3.2 Selection of material properties utilised in the power law model

The material properties of the strip material are those found in chapter 2. The 

usage of each batch of material was as follows:

i) batch 1 was used at a h3/h2 of 5

ii) batch 2 was used at a h3/h2 of 3.5

iii) batch 3 was used at a h3/h2 of 2

The property values of the relevant batch were utilised in the comparison.

The fluid parameters for the power law were fitted to the data supplied by 

the manufactures, which resulted in the following values:

i) consistency constant, K = 32000

ii) consistency index, n = 0.33333

A graphical representation of the resultant fluid properties and the manufactures’ 

data is given in figure 8.33.

8.3.3 The value of the Critical Shear Stress

The viscosity data provided by EMS-Grilon for the Grilamid L25 was insufficient 

to identify the critical shear stress of the polymer. The value of is highly 

subjective for most polymers, with published values only available for those that 

are unsuitable for the plasto-hydrodynamic process. To avoid the use of a single
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subjective value for the selected experimental data is compared witn me 

power law model with three different values of these being 0.4 MN/m2, 0.5 

MN/m2 and 0.6 MN/m2.

8.3.4 Analysis of Experimental and Simulated drawing performance

The experimental results at 235 °C and the predictions of the power law model are 

given graphically in figures 8.34 - 8.36 for h3/h2 ratios of 5, 3.5 and 2, 

respectively.

The distinctive bell shaped curve shown previously is seen to be absent 

from the experimental results, with a nominally linear increase in drawing 

performance with increasing velocity. This form of drawing performance is 

comparable to that shown by the power law model when the pressure head is 

slipping over its entire length.

The predictions of the power law model at each value will now be 

examined:

i) Tcnt — 0.4 MN/m2; the curves of predicted performance at all h3/h2 

ratios are in the slip condition over the entire length of the 

deformation zone. They show a good correlation in form with the 

experimental data, but the error in predicted performance varies from 

5% to 50%.

ii) Tcnt =  0.5 MN/m2; the curves of predicted performance show a 

good correlation in form where the model is entirely in the slip 

condition. The ranges where the model is not in the slip condition 

produce a poor correlation in both form and the level of predicted 

performance.
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iii) 7,^ = 0.6 MN/m2, at this elevated levei 01 cnutai sn u u  auvo j uiv 

power law model is only in slip over the entire length of the 

deformation at two places in the simulated range. The shape of the 

performance curve over the remainder of the simulated range shows 

the righthand portion of a bell shaped curve. The model greatly over

predicts the drawing performance in the bell shaped or non-slip range 

of the simulation.

8.3.5 Summary of the comparison between experimental and theoretical data

The model predictions with equal to, 0.4 MN/m2 show the closest correlation 

to the experimental data. The predicted PRA is seen to increase in a nominally 

linear form with velocity. The level of performance is consistently under- 

predicted by the power law model and a lack of sensitivity to changes in h3/h2 

ratio is also demonstrated by the power law model.
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Figure 8.1 - Sample shear stress plots, giving t x and r3.
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Figure 8.2 - Effect of h3/h2 ratio on r3, h3/h2 ratio =  5.
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Figure 8.3 - Effect of h3/h2 ratio on t3, h3/h2 ratio =  3.
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Figure 8.4 - Effect of h3/h2 ratio on r3, h3/h2 ratio = 1.
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Figure 8.5 - Shear stress (r3) components for a h3/h2 ratio of 5 at a velocity of 0.1 m/s.
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Figure 8.6 - Shear stress (r3) components for a h3/h2 ratio of 3 at a velocity of 0.1 m/s.
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Figure 8.7 - Shear stress (r3) components for a h3/h2 ratio of 1 at a velocity of 0.1 m/s.
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Figure 8.14 - End view of the 32:1 model showing the v and w components of the 

velocity field in vector form.
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Figure 8.16 - A comparison of the predicted optimum h3/h2 ratio for the Newtonian and

non-Newtonian (n= 1.0) merit functions.
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Figure 8.17 - A comparison of the predicted P.R.A. ratio for the Newtonian and

non-Newtonian (n=1.0) merit functions.
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Figure 8.23 - Cross-section of figure 8.20 at hj/h2 ratio = 9.
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Figure 8.24 - Percentage Reduction in Area for various h3/h2 ratio at 195 °C.
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Figure 8.25 - Percentage Reduction in Width for various h3/h2 ratio at 195°C.
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Figure 8.26 - Percentage Reduction in Thickness for various h3/h2 ratio at 195 C.
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Figure 8.27 - Percentage Reduction in Area for various h3/h2 ratio at 215°C.
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Figure 8.28 - Percentage Reduction in Width for various h3/h2 ratio at 215°C.
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Figure 8.29 - Percentage Reduction in Thickness for various h3/h2 ratio at 215 C.
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Figure 8.30 - Percentage Reduction in Area for various h3/h2 ratio at 235°C.
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Figure 8.31 - Percentage Reduction in Width for various h3/h2 ratio at 235°C.
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Figure 8.32 - Percentage Reduction in Thickness for various h3/h2 ratio at 235°C.
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Figure 8.33 - Manufactures viscosity data for Grilamid L25 and curve fitted power law 

approximation.
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with a h3/h2 ratio of 5.
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Figure 8.35 - Comparison of experimental and power law model predicted performance

with a h3/h2 ratio of 3.5.

238

En
try

 
Ve

loc
ity

 
m

/s



m
o

a a a

^■invc 
© o  ©

i.... . ..

©
oNO

t H ©rH CS00

Baiy m uotpnps'jj oSbjuomsj

Figure 8.36 - Comparison of experimental and power law model predicted performance

with a h3/h2 ratio of 2.
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CHAPTER 9 

9.0 Conclusions

The current work has addressed various issues with regards to the Plasto- 

hydrodynamic drawing process for rectangular strips; because of this the conclusions 

will be drawn for each issue separately.

9.1 Experimental

Wide copper strip (16-1 aspect ratio) has been successfully reduced using the plasto- 

hydrodynamic process, the working fluid being Grilamid L25.

An analysis was conducted of the output shape of the drawn material. It was 

found that the shape of the cross-section of the feed material was preserved with all 

levels of deformation achieved, and that no smoothing is incurred during the 

deformation process.

The comer radius of the section was also analysed using a graphical method; 

the data was highly scattered and no correlation could be made with reduction other 

than to say the comer radius is reduced in the plasto-hydrodynamic process.

9.2 Mathematical Modelling

A new treatment of the modelling of the condition of slip was introduced with 

modifications to the solution algorithm, an improved dynamic response to the slip 

condition was then demonstrated.

A new non-Newtonian model of the plasto-hydrodynamic process has been 

developed. It utilises a constitutive equation of the power law form, which allows 

greater flexibility in the range of non-Newtonian fluids which may be modelled. 

It has been demonstrated that the dominant term in the onset of slip is the edge
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shear stress r3. This term consists of pressure and velocity driven components. The 

pressure driven component is proven to be dominant in the creation of 73, and hence 

the onset of slip. A comparison of the experimental data and the model showed the 

following: i) a good correlation in the form of the model prediction and the 

experimental data, ii) the model under-predicts the performance of the process.

9.3 Computational Fluid Dynamic analysis of the Hydrostatic assumption

A Computational Fluid Dynamic (CFD) analysis was made of a plasto- 

hydrodynamic pressure head at various aspect ratios and velocities. The pressure 

fields were compared with the hydrostatic assumption. It was found that: i) the 

hydrostatic assumption is reasonable for all aspect ratio and velocities, ii) a reduced 

overall pressure from that predicted by the theoretical analysis was found and 

identified as a significant mechanism for error, and iii) the reduction in overall 

pressure is shown to be inversely proportional to the aspect ratio of the material.

9.4 Numerical Optimisation

The technique of Numerical Optimisation has been successfully applied to both 

Newtonian and non-Newtonian models of the plasto-hydrodynamic drawing process. 

A good correlation between the Newtonian and the non-Newtonian model simulating 

Newtonian conditions is demonstrated providing an increased confidence in the 

accurate coding of the two mathematical models. The optimum hi/hz and h3/h2 

ratios are shown to be proportional to velocity and a linear function of velocity. A 

mechanism for the insensitivity of the system to the land ratio LVLz was identified, 

using sequences of performance surfaces to show the performance of the system in 

3 dimensional space.
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9.5 Suggestions for further work

The plasto-hydrodynamic drawing process has been proven to be successful in the 

deformation of rectangular section material. Improvements have been introduced 

to the solution algorithm for models of the process, and a new non-Newtonian 

model has been produced of the process. However, the current work has revealed 

two main issues for further work.

Firstly, experimental data shows the importance of h3/h2 ratio on the 

performance of the process. The model does not exhibit the same degree of 

sensitivity to h3/h2 ratio as the experimental data. The CFD analysis predicted 

lower overall pressures in the pressure head, which will have a significant impact 

on the plasto-hydrodynamic equation. Leakage of fluid away from the step through 

the side clearance has been identified as a possible source of the reduction in overall 

pressure in the pressure head. The volume of this flow would logically depend 

upon the side clearance, and hence the h3/h2 ratio. An attempt should be made to 

include the effect of any such leakage on the overall pressure within the 

mathematical model of the process, coupled with an experimental programme with 

differing aspect ratio and h3/h2 ratio to provide data to assess the accuracy of the 

predictions.

Secondly, an attempt was made to introduce an expression for the redundant 

work induced during the deformation process. The analysis proved to be unstable 

in areas of high reduction, on the performance curve. This instability was attributed 

to two factors: i) the over prediction of deformation performance when not in a 

condition of total slip in the pressure head, placing the model in an unstable region, 

and ii) the inability of the hardening law to allow for differential hardening across 

the section. A programme could then be instigated to develop a 3 dimensional 

plasticity model of the process, using the present model as the boundary of the 

solution of the plasticity equations.
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Appendix 1

It should be noted that within the following FORTRAN code, calls are made to various 
graphical subroutines from the Extend Graphics Library. Due to copyright restrictions 
further details cannot be given in this work. Information on the form and scope of the 
library may be obtained from the manufacturers.

Design Decisions Inc 
P.O. Box 12884 
Pittsburgh 
Pennsylvania 15241 
(415) 941-4525
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c NUMERICAL MODEL MENU SYSTEM MOD6
c
c M M ooo DDDD 6666
c MM MM o  o D D 6c M  M H o  o D D 66666
c M H M o  o D D 6 6
c M  M ooo DDDD 6666 M.R. STOKES

REAL*8 H I ,H 2 ,H 3 ,L X ,L 2 ,VI S ,Y S ,K ,H ,W ,T ,TAUCRX,VEL,PRT,PRW,PR A ,N K , 
&T1,VEXE ,OTEMP,DIA,PLC, PLI,DFINAL 
LOGICAL FL1/SLIP,EFLAG 
SLIP-.FALSE.
FL1-.FALSE.
EFLAG-.FALSE.

C GET DEFAULTS FROM DISC 
C

OPEN( 7 ,FILE-'DEFAULT.DAT')READ(7,*) HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,NN,T1,VEL,OTEMP, 
&DIA,PL C ,PLI 
CLOSE(7)

CC CLEAR SCREEN 
C CALL SETCRT( 3 )

CALL CLEARS(0,23)
1 CALL CLS

CC DISPLAY MENU 
C WRITE(6,170)
170 FORMAT(36( '*' ), 2X,'MENU',2X,36('*'))WRITE(6,180)
180 FORMAT(4X,'l CHANGE SET PARAMETERS',14X,'6 NEWTONIAN WIRE')

WRITE(6,190)
190 FORMAT( 4 X , ' 2 NEWTONIAN STRIP',20X,'7 NON NEWTONIAN WIRE')

WRITE(6,200)
200 FORMAT(4X,'3 NON NEWTONIAN STRIP',16X,'8')WRITE( 6 ,210)
210 FORMAT(4X, '4',39X,'9 DATA FILE')

WRITE(6,220)
220 F0RHAT(4X,'5',39X,'10 EXIT')

WRITE(6,230)
230 FORHAT(79('*'))

WRITE(6,240)
240 FORHAT(32X,'MODEL PARAMETERS')

WRITE( 6 ,230)

SIG yield-',F12.0)
STRAIN RATE CONST-',F 8 .O )

C PARAMTER DISPLAY 
C WRITE(6,100) L I ,YS 

lOO FORMAT(4X,'1 L1-',F6.4,23X,'10
WRITE ( 6 , H O  ) L2 ,NN 

llO FORMAT( 4 X , ' 2 L2-',F6.4,23X,'11WRITE(6,115) T1 
115 FORMAT(41X,'12 STRAIN RATE INDEX-',F5.2)

WRITE(6,117)H1,K
117 FORHAT(4X ,'3 HI - ',F 7 .6,22X,'13 STRAIN HARD-G CONST',F11.O)

WRITE(6,120)H2,N
120 FORMAT(4X ,'4 H2 - ',F 7 .6,22X,'14 STRAIN HARD-G INDEX',F7.4)

WRITE(6,130)H3 
130 FORMAT(4X ,'5 H3-',F7.6)WRITE(6,140)VIS 
140 FORMAT(4IX,'15 INITIAL VISCOSITY-',F9.4)

WRITE(6,145) W,PLC 
145 FORMAT(4X ,'6 WIDTH-',F7.4,19X,'16 POWER LAW CONST-',F 7 .3)

WRITE(6,150) T,PLI 
ISO FORMAT(4X,'7 THICKNESS-',F7.5,15X,'17 POWER LAW INDEX-',F 7 .3)

WRITE(6,160) DIA,OTEHP 
160 FORMAT(4X,'8 DIAMETER-',F 7 .5,16X,'18 INITIAL TEMP-',F5.1)

WRITE(6,163) TAUCRI 
163 FORHAT(41X,'19 CRITICAL SHEAR STRESS-',F9.0)

WRITE(6,165) VEL 
165 FORMAT(4X,'9 INITIAL VELOCITY-',F 7 .3)

WRITE(6,230)‘
WRITE(6,*)' 'WRITE(6,*)'ENTER OPTION REQUIRED'
READ(5,*) IOPT

C
C TAKE ACTION ON IOPT

IF(IOPT.EQ.l) CALL DEFAULTS(HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI 
&, NN , T 1 , VEL , OTEMP , DIA , PLC , PL I )

I F (IOPT.E Q .2) THENCALL SOLVE(Hl,H2,H3,Ll,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT,PRA,PRW 
&,T1,NN,VEXE,FL1,SLIP)

IF(FLl) THEN 
CLOSE(1)
CLOSE(2)CLOSE(3)
CLOSE(4)
CLOSE(7)
FL1-.FALSE.ENDIF

CALL OUTPUT(HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT 
&,PRA,PRW,T1,NN,VEXE,SLIP)
ENDIF

I F (IOPT.E Q .3) THEN
CALL PLAW(W,T,HI,H2,H3,LI,L2,YS,VEL,PLC,PLI,TAUCRI,FL1,N,

&K,PRT,PRW,PRA,VEXE)
CALL ENDPLT(1,1)
CALL GSTOP(3,23)
CALL CLS
WRITE(6,*) ' PRT- ',PRT WRITE(6,*) ' PRW- ',PRW 
WRITE(6,*) ' PRA- ',PRA 
WRITE(6,*) ' VEXE- ',VEXE 
READ(5,*)



FUNCTION NOT AVAILABLE'

FUNCTION NOT AVAILABLE'

IF (IOPT.E Q .4) THEN 
CALL CLS 
WRITE( 6 , * )'
DO 4 1-1,10

WRITE(6,*) ' ' 
CONTINUE 

READ( * , * )ENDIF

IF(IOPT.EQ.5) 
CALL CLS 
WRITE(6,*)' 
DO 5 1-1,10 

WRITE(6,*) 
CONTINUE 

READ(*,*) ENDIF

IF(IOPT.EQ.6) THEN
CALL NEWWIRE (LI,L2,H1,H2,DIA,VIS,VEL,YS,TAUCRI,NN,T1,K,N,SLIP, &VEXE,DFINAL,FL1,PRA,EFLAG)
IF(FLl) THEN 
CLOSE(1)
CLOSE(2)
CLOSE(3)CLOSE(4)
CLOSE(7)
FL1-.FALSE.

ENDIF
IF (.NOT.EFLAG) CALL OUT6(Hl,H2,LI,L2,VIS,YS,K,N,TAUCRI,VEL, &DFINAL,PRA,T 1 ,N N ,VEXE,SLIP,D IA)

I F (IOPT.E Q .7) CALL CLS 
WRITE(6,*)' DO 7 1-1,10 

WRITE(6,*) CONTINUE 
READ(*,*) ENDIF

I F (IOPT.E Q .8) 
CALL CLS 
WRITE(6,*)' 
DO 8 1-1,10 

WRITE(6,*) CONTINUE 
READ(*,*) 
ENDIF

FUNCTION NOT AVAILABLE'

FUNCTION NOT AVAILABLE'

I F (IOPT.E Q .9) CALL TECHFILE(FL1)

IF(IOPT.EQ.IO) THEN 
CALL CLSSTOP 'HAVE A NICE DAY' 

ENDIF 
GOTO 1
END

C*********************************************C
C CLS C
C*********************************************C

SUBROUTINE CLS 
DO 2 1-1,25 
WRITE(6,*)' '

2 CONTINUE 
RETURN 
END

SUBROUTINE DEFAULTS(H1,H2,H3,L1,L2,VIS,YS,K,N,W,T,TAUCRI,NN,T1,VEL 
&,OTEMP,DIA,PLC,PLI)REAL*8 H I ,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,NN,T1,VEL,OTEMP,DIA, 
&PLC,PLI

C
1 CALL CLS

CC PARAMTER DISPLAY 
C WRITE(6,230)
230 FORMAT(79('*'))WRITE(6,240)
240 FORMAT(30X,'EDIT MODEL PARAMETERS')

WRITE(6,230)
WRITE(6,lO O ) L1,YS lOO FORHAT(4X,'1 L1-',F6.4,23X,'10 SIG yield-',F12.0)
WRITE(6,110)L2,NN llO FORHAT(4X ,'2 L2-',F6.4 ,23X,'11 STRAIN RATE CONST-',F8.0)
WRITE(6,115) T1 115 FORMAT(4IX,'12 STRAIN RATE INDEX-',F5.2)
WRITE(6,117)H1,K

117 FORMAT(4X,'3 HI-',F7.6,22X,'13 STRAIN HARD-G CONST',FH.O)
WRITE(6,120)H2,N120 FORMAT(4X ,'4 H2-',F7.6,22X,'14 STRAIN HARD-G INDEX',F7.4)
WRITE(6,130)H3
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130 FORMAT(4X,'5 H3«',F7.6)
WRITE(6,140)VIS

140 FORMAT(41X,'15 INITIAL VISCOSITY-',F9.4)
WRITE(6,145) W,PLC

145 FORMATS4X,'6 WIDTH-',F7.4 ,19X,'16 POWER LAW CONST-',F7 .3)
WRITE(6,150) T,PLI

150 FORMAT(4X,'7 THICKNESS-',F 7 .5,15X,'17 POWER LAW INDEX-',F7.3)
WRITE(6,160) DIA,OTEMP

160 FORMAT(4X ,'8 DIAMETER-',F7.5,16X,'18 INITIAL TEMP=',F5.1)
WRITE(6,163) TAOCRI

163 FORMAT(41X,'19 CRITICAL SHEAR STRESS-',F9.O)
WRITE(6,165) VEL

165 FORMAT(4X,'9 INITIAL VELOCITY-',F 7 .3)
WRITE(6,230)
WRITE(6,*)' '

C
C
C

WRITE(6,*)' '
WRITE(6,*)' '
WRITE(6,*)' '
WRITE(6,*)'SELECT #ITEM TO BE CHANGED(ENTER 20 TO EXIT)'
READ(5,*)IOPT

C
C
C

I F (IOPT.EQ .20) THEN 
OPEN(7,FILE-'DEFAULT.DAT')WRITE(7,*) HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,NN,T1,VEL,OTEMP, 

&DIA,PL C ,PLI 
CLOSE(7)
RETURNENDIF

IF(IOPT.EQ.l) THEN 
WRITE(0,116)
READ(0,*) LI 
Ll-Ll/lOOO.ENDIF

116 FORHAT (IX,'ENTER LI IN Min')
C

IF(IOPT.E Q .2) THEN 
WRITE(6,111)
READ(5,*)L2 L2-L2/1000.

ENDIF
111 FORMAT(IX,'ENTER L2 IN MB')

C
I F (IOPT.E Q .3)THEN 
WRITE(0,101)READ(0,*) HI 
Hl-Hl/lOOO.ENDIF

101 FORMAT(IX,'ENTER HI IN m m ')
C

IF (IOPT.E Q .4) THEN WRITE(6,102)
READ(5,*)H2 
H2-H2/1000.

ENDIF102 FORMAT(IX,'ENTER H2 IN MB')
C

IF (IOPT.EQ.5) THEN 
WRITE(6,103)
READ(5,*) H3 
H3-H3/1000.

ENDIF
103 FORMAT(IX,'ENTER H3 IN MB')

C
IF(IOPT.E Q .6) THEN WRITE(6,155)
READ(5,*) W 
W-W/IOOO 

ENDIF
155 FORMAT(IX,'ENTER INITIAL WIDTH IN MM')

C IF (IOPT.E Q .7) THEN 
WRITE(6,151)
READ(5,*) T 
T-T/IOOO 

ENDIF
151 FORMAT(IX,'ENTER INITIAL THICKNESS IN MM')C

IF (IOPT.E Q .8) THEN 
WRITE(6,42)
READ(5,*) DIA DIA—DIA/IOOO 

ENDIF42 FORMAT (IX,'ENTER INITIAL DIAMETER IN MM')
C

IF(IOPT.E Q .9) THEN 
WRITE(6,170)
READ(5,*) VEL 

ENDIF170 FORHAT(IX,'ENTER VELOCITY OF MATERIAL M/S ')
C

IF(IOPT.E Q .lO) THEN 
WRITE(6,135)READ(5,*) YS 
YS—YS*1000000 

ENDIF
135 FORMAT(IX,'ENTER YIELD STRESS HN/HA2' )C

IF (IOPT.E Q .11) THEN 
WRITE(6,365)
READ(5,*) NN 

ENDIF
365 FORMAT(IX,'ENTER STRAIN RATE CONSTANT ')

C
IF(IOPT.EQ.12) THEN 
WRITE(6,161)
READ(5,*) T1 ENDIF

161 FORHAT(IX,'ENTER STRAIN RATE INDEX ')C
IF(IOPT.E Q .13) THEN
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WRITE(6,345)
READ(5,*) K 
K-K*1000000 

ENDIF
345 FORMAT(IX,'ENTER STRAIN HARDENING CONSTANT ( HN/M~2) ')

C
IF(IOPT.EQ.14) THEN 
WRITE(6,X41)
READ(5,*) N ENDIF

141 FORHAT(IX,'ENTER STRAIN HARDENING INDEX')
C

I F (IOPT.E Q .15) THEN 
WRITE(6,125)
READ(5,*) VIS 

ENDIF
125 FORMAT(IX,'ENTER VISCOSITY IN NS/H~2 ')

C
IF (IOPT.E Q .16) THEN 

WRITE(6,152)
READ(5,*) PLC 

ENDIF
152 FORMAT(lX,'ENTER THE POWER LAW CONSTANT TERM ')

C
IF (IOPT.E Q •17) THEN WRITE(5,153)

READ(5,*) PLI ENDIF
153 FORHAT(lX,'ENTER THE POWER LAW INDEX TERM ')C

IF (IOPT.E Q .18) THEN 
WRITE(6,154)
READ(5,*) OTEHP 

ENDIF
154 FORMAT(IX,'ENTER ORIGINAL TEHPERATURE ')

C
IF (IOPT.E Q .19) THEN 
WRITE(6,121)READ(5,*) TAOCRI 
TAUCRI-TAUCRI*1000000 

ENDIF
121 FORMAT(IX,'ENTER CRITICAL SHEAR MN/M^2')

C
GOTO 1 END

SUBROUTINE TECHFILE(FL1)
LOGICAL FL1CHARACTER FCODE*3,FNAME*12

C DO 11 1-1,24 
WRITE(6,*)' '

11 CONTINUE
lO WRITE(6,*)'ENTER A 3 CHARCTER CODE TO IDENTIFY MODEL RUN (ENCLOSE 

&IN SINGLE QUOTES)'
READ(5,*,ERR—lO) FCODE FNAME-FCODE//'PABS.TX T '
OPEN(1,FILE-FNAME)
FNAME-FCODE//'PGRAD.TX T '
OPEN(2,FILE-FNAME)
FNAME-FCODE//'TDEFO.TXT'
OPEN(3,FILE-FNAME)
FNAME-FCODE//'YDOT.TXT'
OPEN(4,FILE-FNAME)
FNAME-FCODE//'.DO C '
OPEN(7,FILE-FNAME)WRITE(7,100)
FL1— .TRUE.

C
lOO FORMAT(2X,'X',11X,'TI',11X,'WI',lOX,'TAU1I',8X,'YDOT1',8X,'TAU3I' 

&,8X,'YDOT2',8X,'PI',10X,'DPDXI',9X,'YI1',9X,'SIGXI',10X,'RS',10X, 
& 'SIGRW',lOX,'B')

C
RETURN
END

OUTPUT SUBROUTINE CC
OUTPUTS GENERAL DATA TO SCREEN CC

SUBROUTINE OUTPUT(Hl,H2,H3,Ll,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT 
&,PRA,PRW,T1,NN,VEXE,SLIP)REAL*8 HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT,PRW,PRA,T1, 
&NN,VEXE 
LOGICAL SLIP
WRITE(0,100)
WRITE(0,110) HI 
WRITE(0,120) H2 
WRITE(0,130) H3 
WRITE(0,140) LI 
WRITE(0,150) L2 
WRITE(0,160)
WRITE(O ,170) W 
WRITE(0,180) T 
WRITE(0,190) YS 
WRITE(O ,200) K 
WRITE(O ,210) N WRITE(0,300) NN 
WRITE(0,310) Tl 
READ(O ,*)
WRITE(0,220)WRITE(0,230) VIS 
WRITE(0,240) TAUCRI WRITE(0,250)
WRITE(O,*)IF(SLIP) WRITE(O,*) ' SLIP PRESENT IN PRESSURE HEAD'
WRITE(0,260) VEL
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WRITE( O ,350) VEXE 
WRITE(0,270) PRW 
WRITE(0,280) PRT 
WRITE (0,290) PRA.
WRITE(0,*)
WRITE(O,*)
READ(5,*)

lOO FORMAT(' DIE GEOMETRY')
H O  FORMAT( / ' HI—  ',F8.6)
120 FORMAT(' H2—  ',F8.6)130 FORMAT(' H3—  ',F8.6)
140 FORMAT( ' LI—  ',F8.6)
150 FORMAT(' L2—  ',F8.6)
160 FORMAT( / ' STRIP DATA')170 FORHAT(/' INITIAL WIDTH —  ',F8.6)
180 FORHAT(' INITIAL THICKNESS —  ',F8.6)
190 FORMAT(' YIELD STRESS —  ',F10.1)
200 FORMAT(' STRAIN HARDENING CONSTANT —  ',F12.0)
210 FORMAT(' STRAIN HARDENING INDEX —  ',F8.6)
220 FORMAT(/' POLYMER MELT DATA')230 FORMAT(/' INITIAL VISCOSITY —  ',F8.2)
240 FORMAT(' CRITICAL SHEAR STRESS —  ',F12.2)
250 FORMAT(/' REDUCTION DATA')
260 FORHAT(/' STRIP VELOCITY —  ',F8.4)350 FORMAT(' STRIP EXIT VELOCITY — ',F8.4)
270 FORHAT(' PERCENTAGE REDUCTION WIDTH —  ',F9.6)280 FORMAT(' PERCENTAGE REDUCTION THICKNESS —  ',F9.6) 
290 FORMAT(' PERCENTAGE REDUCTION AREA —  ',F9.6)
300 FORMAT(' STRAIN RATE SENSITIVITY CONSTANT —  ',F9.2) 
310 FORMAT(' STRAIN RATE SENSITIVITY INDEX —  ',F9.4)

RETURN
END

OUTPUT SUBROUTINE FOR WIRE MODELS C
C

OUTPUTS GENERAL DATA TO SCREEN C
C

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * , 1 ,  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c

SUBROUTINE OUT6(H1,H2,L1,L2,VIS,YS,K,N,TAUCRI,VEL,DFINAL 
&,PRA,T1,NN,VEXE,SLIP,DORG)
REAL*8 HI,H2,LI,L2,VIS,YS,K,N,TAUCRI,VEL,DFINAL 

&,PRA,T1,NN,VEXE,DORG
LOGICAL SLIP
WRITE(0,100)
WRITE(0,110) HI 
WRITE(0,120) H2 
WRITE(0,140) LI 
WRITE(0,150) L2 WRITE(0,190) YS 
WRITE(O ,200) K WRITE(0,210) N 
WRITE(0,300) NN 
WRITE(0,310) T1 
WRITE(0,220)WRITE(0,230) VIS 
WRITE(0,240) TAUCRI 
READ(0,*)
WRITE(O,*)IF(SLIP) WRITE(O,*) ' SLIP PRESENT IN PRESSURE HEAD' 
WRITE(0,260) VEL WRITE(0,350) VEXE 
WRITE(0,160)
WRITE(0,170) DORG 
WRITE(0,180) DFINAL WRITE(0,290) PRA 
WRITE(O ,*)WRITE(O,*)
READ(5,*)

lOO FORMAT(' DIE GEOMETRY') llO FORMAT(/' HI—  ',F8.6)
120 FORMAT(' H2—  ',F8.6)
130 FORMAT( ' H3—  ',F8.6)
140 FORMAT(' LI—  ',F8.6)
150 FORMAT(' L2—  ',F8.6)
160 FORMAT(/' WIRE DATA')170 FORMAT(' ORIGINAL DIA — ',F10.6)
180 FORMAT(' FINAL DIA — ',F10.6)
190 FORHAT(' YIELD STRESS —  ',F10.1)
200 FORMAT(' STRAIN HARDENING CONSTANT —  ',F12.0)210 FORMAT(' STRAIN HARDENING INDEX —  ',F8.6)
220 FORMAT(/' FLUID DATA')230 FORMAT(/' INITIAL VISCOSITY —  ',F8.2)
240 FORMAT(' CRITICAL SHEAR STRESS —  ',F12.2)
260 FORMAT(/' STRIP VELOCITY —  ',F8.4)
350 FORMAT(' STRIP EXIT VELOCITY — ',F8.4)290 FORMAT(' PERCENTAGE REDUCTION AREA —  ',F9.6)
300 FORMAT(' STRAIN RATE SENSITIVITY CONSTANT —  ',F9.2)
310 FORMAT(' STRAIN RATE SENSITIVITY INDEX —  ',F9.4)

RETURN

>********************************************************************C
SOLVE - SOLVES THE GOVERNING EQUATIONS OF DEFORMATION FOR THE C

DEFORMATION ZONE, THIS IS ACCOMPLISHED USING A FINITE C
DIFFERENCE FORMULATION, A LINEAR DEFORMATION PROFILE IS C
ASSUMED BETWEEN THE SOLUTION POINTS, VARIABLES HAVE THE C
SAME MEANING AS DEFINED PREVIOUSLY C

SUBROUTINE SOLVE (HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT, 
&PRA,PRW,T1,NN,VEXE,FL1,SLIP)
REAL*8 HI,H2,H3,LI,L2,VIS,YS,K,N,W,T,TAUCRI,VEL,PRT,PRW,PRA,AI,All

Al-6



6,BO,RO,B,Tl,NN,BB,DPDXI,DX,HI,HIl,HI2,PI,PIl,PM6,SI,SIGXI,SIGXI1,TAU1,TAU3,TAUI,TAUI2,TI,TI1,VI,VI1,WI,WI1,
6X1,YI,HI21,RES,XP,EDOT,AO,STEP,VEXE,NSTEP,YDOTl,YDOT2,
6TAUI1,TAUI21 
LOGICAL SLIP,FL1,SFLAG 
REAL*4 SXP,PLOTT

C
SLIP-.FALSE.
SFLAG-.FALSE.PM— ((6.*VIS*VEL*(HI—H 2 ))/(((Hl**3.)/Ll)+((H2**3.)/L2)))
TAUI— ((H1*PH)/(2.*L1))-(VIS*VEL/Hl)
TAU3— ( (H3*PH)/(2.*L1) )-(VIS*VEL/H3)

C IF((TAD1.GE.TAUCRI).OR.(TAU3.G E .TAUCRI)) THEN 
TAU1-TADCRI 
TAU3—TAUCRI 

ENDIF
TAUI1-TAU1 
TAUI21—TAU3XI—YS/((PM/LI)+(2.*DABS(TAU1)/T)+(2.*DABS(TAU3)/W ))

C IF(Xl.GT.Ll) THEN 
WRITE(0,100)READ(0,*)
RETURN

ENDIF
CC INITIALLY CALCULATE THE START CONDITIONS AT X-Xl POINT OF DEFORMATION 
C PI1— (PH/Ll)*X1

Til—T
WI1-W
VII—VELHI1-H1
HI21-H3
DPDXI—PH/Ll
SIGXI1-(2*DABS(TAU1)*X1/T)+(2*DABS(TAU3)*X1/W)
XP-X1

C WRITE(O,*) ' ENTER NOMINAL STEP SIZE IN BB'
READ(0,*) DX 
DX—DX/IOOO.
NSTEP-INT(((LI—XI)/DX)+0.5)
D X - (LI—XI)/NSTEP
WRITE( O , * ) ' DX IN METRES - ',DXC

C  CALL PLOTTING ROUTINE 
C

CALL PLOT1 
IF(FLl) THEN

WRITE(7,*)' MAXIMUM PRESSURE - ',PM 
WRITE( 7 , * ) ' XI - ',X1
WRITE(7,*)' CALCULATED STEP SIZE -',DX 
WRITE(7,*)
WRITE(7,140)

ENDIF
CC SOLVING EQUATIONS
CC

XPD-O.ODO lO ISTEP-1,NSTEP,1
CC INCREMENT X VARIABLE XP 
C XP-XP+DX 

XPD— XPD+DX
C
C  FIND B  SLOPE OF DEFLECTION 
C

21 BO-O.OSTEP-.05 
20 BO-BO+STEPRO«RES(BO,Hl,HIl,HI21,Ll,VIS,YS,W,T,WIl,VIl,PM,PIl,DX,VEL,N,K, 

6SIGXI1,T 1 ,N N ,Ti l ,SLIP,DPDXI,TAUI1,TAUI21)
IF (DABS(RO ) .L E .500) GOTO 30 
IF(RO.LE.O.O) THEN BO-BO-STEP 

STEP—STEP/2.
ENDIF 
GOTO 20 30 B-BO

CC HENCE, HAVING FOUND B  CALCULATE STRESSES,PRESURES,ETC OF NEXT STEP 
C

IF(.NOT.SLIP) THEN TI—Til—B*DX 
HI—HIl+O.5*B*DX 
BB—W*B/T
HI2-HI21+0.5*BB*DX WI—WI1—BB*DX
VI-VII*((WI1*TI1)/(WI*TI))DPDXI-(1/HI**3)*((PH*(Hl**3)/LI)+6*VIS*(VI*HI-VEL*H1))
TAUI—— (HI*DPDXI/2. )-VIS*VI/HI 
TAUI2— (HI2*DPDXI/2.)-VIS*VI/HI2

CC TEST FOR CONDITION OF SLIP 
C IF((DABS(TAUI).GE.TAUCRI).OR.(DABS(TAUI2).GE.TAUCRI)) THEN 

SLIP-.TRUE.
SFLAG-.TRUE.
GOTO 21 

ENDIF 
AO-T*W 
All—TI1*WI1 
AI—TI*WI
EDOT— (VI/DX)*DLOG((AI1/AI))
SI—l+((EDOT/NN))**(1/T1)YI-SI*(YS+(K*(DLOG((AO/AI)))**N))
SIGXI-((TI1/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

6)*DX/WI)+SIGXI1 
PI-(DPDXI*DX)+PI1

C
C SAVE NEW VALUES TO 1-1 STEP 
C

PI1-PI
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TI1-TI 
WI1-WI 
TAUI1-TAUI TAUI21-TAUI2
VI1-VI 
HI1-HI 
HI21-HI2 SIGXI1-SIGXI 

ELSE TI-TI1-B*DX 
HI-HIl+O.5*B*DX 
BB-W*B/T
HI2-HI21+0.5*BB*DX WI-WI1-BB*DX
VI-VI1*((WI1*TI1)/(WI*TI))
AO-T*W
AI1-TI1*WI1AI-TI*WI
EDOT-(VI/DX)*DLOG((AI1/AI))
SI-1+((EDOT/NN))**(1/T1)
YI-SI*(YS+(K*(DLOG((AO/AI)))**N))
TAUI-TAUI1
TAUI2-TAUI21SIGXI-((TI1/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-PII 
DPDXI—O .O

CC SAVE NEW VALUES TO I-X STEP 
C TI1-TI 

WI1-WI
VI1-VI 
HI1-HI 
HI21-HI2 
SIGXI1—SIGXI 
PI1-PI 
SLIP-.FALSE.

C
ENDIF

C
IF(FLl) THEN 
WRITE(1,125) XP,PI 
WRITE( 2 ,125) XP,DPDXI WRITE(3,125) XP,TI 
YDOT1-(TAUI/VIS)
YDOT2-(TAUI2/VIS)
WRITE(4,125) XP,YDOT1WRITE(7,130) (XP*1000),TAUI,YDOT1,TAUI2,YDOT2,P I ,Y I ,SIGXI,B 

ENDIF
C 125 FORMAT(IX,E16.8,2X,',',2X,E20.8)

130 FORMAT(/,F10.6,8(IX,ElO.4))
140 FORMAT ( '  MM TAUI (VI1/HI1) TAUI2 (VI1/HI2)& PI YI SIGXI B ')

CC WRITE(0,*) ISTEP,XP
PLOTT—SNGL(PI*100/PM)
SXP-SNGL(lOO.*XPD/(LI—X I ))
CALL PLTSYH(1,1,SXP,PLOTT,0.01,0.01,1)
PLOTT-ABS(SNGL(lOO.*TAUI/TAUCRI))
CALL PLTSYM(2,5,SXP,PLOTT,O .O l ,O .O l ,2)
PLOTT-ABS(SNGL(lOO.*TAUI2/TAUCRI))
CALL PLTSYM(2,2,SXP,PLOTT,O .O l ,O .O l ,5)
PLOTT-SNGL(lOO.*TI/T)
CALL PLTSYM(3,3,SXP,PLOTT,0.Ol,O.Ol,3)PLOTT-SNGL(50.*WI/W)
CALL PLTSYM(3,3,SXP,PLOTT,0.01,0.O l ,6)
PLOTT-SNGL(lO*YI/Y S )
CALL PLTSYM(4,4,SXP,PLOTT,O .O l ,0.01,4) 

lO CONTINUE
C PRT— (1— (TI/T))*100

PRW-(1-(WI/W))*100
PRA— (1— ((WI*TI)/(W* T )))*100
VEXE—VI

C
IF(FLl) THEN 
WRITE(7,*)
WRITE(7,*)
WRITE(7,*)
WRITE(7,*) ' INITIAL VELOCITY - ',VELwrite(7,*) * Exit velocity - ',vexe
WRITE(7,*) ' FINAL THICKNESS - ',TI 
WRITE(7,*) ' FINAL WIDTH - ',WI 

ENDIF
C lOO FORMAT(****** XI IS GREATER THAN LI *****')
C IF(SFLAG) SLIP-.TRUE.

CALL ENDPLT(1,1)
CALL GSTOP(3,23)
RETURN
END

C**********************************************************************C
C RESldnals RETURN THE VALUE OF THE RESIDUALS FOR THE GIVEN VALUE OF B  C 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0  REAL*8 FUNCTION RES(B,Hl,HIl,HI21,Ll,VIS,YS,WO,TO,WIl,VIl,PM,PIl, 

&DX,VEL,N,K,SIGXI1,T1,NN,Til,SLIP,DPDXI,TAUI1,TAUI21)REAL*8 B,HIl,HI2,Ll,VIS,YS,WO,TO,WIl,VIl,PM,PIl,DX,AI,AIl,K,N,NN 
&,PI,SI,SIGXI,SIGXI1,T1,TAUI,TAUI2,TI,VEL,VI,WI,YI,HI,TI1,H1,HI21 
&,DPDXI,B B ,EDOT,A O ,TAUI1,TAUI21 
LOGICAL SLIP

C
IF(.NOT.SLIP) THEN TI—Til—B*DX 
HI-HIl+O.5*B*DX BB—WO*B/TO 
HI2-HI21+0.5*BB*DX 
WI—WI1—BB*DX
VI-VI1*((WI1*TI1)/(WI*TI))DPDXI-(1/HI**3)*((PH*(Hl**3)/LI)+6*VIS*(VI*HI-VEL*H1))
TAUI—  (HI*DPDXI/2 ) -VIS*VI/HI
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TAUI 2—  ( HI 2*DPDXI /2 ) -VIS* VI /HI2
AO-TO*WO
AI1-TI1*WI1
AI-TI*WI
EDOT-(VI/DX)*DLOG((AIX/AI))
SI-l+((EDOT/HN))**(1/T1)
YI-SI*(YS+(K*(DLOG((AO/AI)))**N))SIGXI-((Til/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
P I-< DPDXI*DX)+PI1 

ELSE TI—Til—B*DX 
HI—HIl+O.5*B*DX 
BB—WO*B/TO 
HI2-HI21+0.5*BB*DX 
WI—WI1—BB*DX
VI-VII*((WI1*TI1)/(WI*TI))
TAUI—TAUI1 
TAUI2—TAUI21 
AO—TO*WO 
All—TI1*WI1 AI—TI*WI
EDOT— (VI/DX)*DLOG((AI1/AI))
SI=l+((EDOT/HN))**(1/T1)
YI—SI*(YS+(K * (DLOG((AO/AI)))**N))SIGXI-((TI1/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-PI1

C
ENDIF

C RES—PI+SIGXI—YI 
C WRITE(6,142)RES,PI,SIGXI,YI,B,0.0
C WRITE(6,142)HI,TI,WI,HI2,DPDXI,DX
C READ(5,*)

142 FORMAT(6(IX,E12.5))
C RETURN

END

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C
C  P L A W  -  S O L V E S  T H E  G O V E R N I N G  E Q U A T I O N S  O F  D E F O R M A T I O N  F O R  T H E  C
C  D E F O R M A T I O N  Z O N E ,  T H I S  I S  A C C O M P L I S H E D  U S I N G  A  F I N I T E  C
C  D I F F E R E N C E  F O R M U L A T I O N ,  A  L I N E A R  D E F O R M A T I O N  P R O F I L E  I S  C
C  A S S U M E D  B E T W E E N  T H E  S O L U T I O N  P O I N T S ,  V A R I A B L E S  H A V E  T H E  C
C  S A M E  M E A N I N G  A S  D E F I N E D  P R E V I O U S L Y  C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * C

SUBROUTINE PLAW(W,T,HI,H2,H3,LI,L2,YS,VEL,PLK,PLN,TAUCRI,FL1,SHI, 
&SHK,PR T ,PRW,PRA,VEXE)
REAL*8 W,T,HI,H2,H3,LI,L2,YS,VEL,PLK,PLN,TAUCRI,SHI,SHK,PRT 

&,PRW,PRA,VEXE,TAU105,TAU305,HI1,SLOPE,R 1 ,R 2 ,D B ,XI,P I1,
&PLRES,B,HI,H2I,DX,PI,PH,J1,SIGXI,H,TF,P,RLAM,DPDXI1,B1,B2,
&BOLD,T I ,W I ,TAU1I,TAU3I,V05,TAUI,TAU3,DPDX,SIGRW,M ,Til,VI I ,WI1 
&,YI1,AR,TAUI21,DELB,Z,VI,DPDXI,TAUI1,RS,XP,XPD,BOOLD,
&YDOT1,YDOT2,H2I1,SIGXI1,PI05,TS 
LOGICAL SLIP,SFLAG,FL1 
INTEGER*2 ISTEP,NSTEP 
CHARACTER*80 CAP

C
SLIP-.FALSE.SFLAG-.FALSE.

C*****************************************C 
C ITERATE FOR TAUI AND TAU3 Cc* ****************************************c c

PH-6*PLK*PLN*(H1-H2)*VEL**PLNPM—PM/((((H2)**(2+PLN))/L2)+(((H1)**(2+PLN))/Ll))
DPDX—PH/Ll

C
CC WRITE(6,*) ' PM DPDX '
C WRITE(6,*) PM,DPDX
C READ(5,*)
C OPEN(4,FILE-'N7.DAT')
C WRITE(4,*) ' TAU Rl'
C DO 1107 Bl— 1000000,1000000, 25000
C Rl—T S (B l ,DPDX,HI,VEL)
C  WRITE(4,*) Bl, RlC WRITE(6,*) Bl, Rl
C 1107 CONTINUE C CLOSE(4)
C READ(5,*)
C CALL SHEAR(TAUI,DPDX,HI,VEL)CALL SHEAR(TAU3,DPDX,H3,VEL)
C I F((TAUI.GE.TAUCRI).OR.(TAU3.G E .TAUCRI)) THEN 

TAUI—TAUCRI 
TAU3-TAUCRI 

ENDIFTAUI1—TAUI 
TAUI21—TAU3C* ********************************************************C

C CALCULATE XI THE DISTANCE TO THE ONSET OF DEFORMATION C C* ********************************************************C
XI—YS/((PM/L1)+(2.*DABS(TAU1)/T)+(2.*DABS(TAU3)/W))

C WRITE(6,*) ' XI - ',X1
IF(Xl.GT.Ll) THENWRITE(O,*)' XI >> LI ****** ERROR'

READ(0,*)RETURN
ENDIF

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c
C CALCULATE THE INITIAL CONDITIONS AT X-Xl ONSET OF DEFORMATION C C*****************************************************************C

PI— (PM/Ll)*X1
TI—T
WI-W
VI—VEL
HI—HIH2I-H3
DPDX—PH/LlSIGXI-(2*DABS(TAUI)*X1/T)+(2*DABS(TAU3)*X1/W)
XP-X1C
IRW-0
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WRITE(6,*) 'INCLUDE REDUNDANT WORK 1-YES O-NO' 
READ( 5 , * ) IRW

C WRITE(6,*) 'DO YOU REQUIRE TRACE OUTPUT TO PRINTER 1-YES O-NO'
C READ( 5 , * ) ITRA
C I F (ITRA.EQ.1.0) THEN
C WRITE(6,*) 'WHAT STEP FOR DETAILED RESIDUAL REPORTING '
C READ(5,*) NTRA
C ENDIF
C ITRA-O

NTRA-OC
WRITE(6,*) ' Enter Nominal step size in mm '
READ(5,*>) DX 
DX—DX/IOOO.
NSTEP—INT( ( (LI—XI )/DX)+0.5)
DX - (Ll-Xl)/NSTEP
WRITE(6, * ) ' DX IN METRES - ',DX 
M-W/Tc* * *************** ********c

C CALL PLOTTING ROUTINE CQ4r *************** *********£
CALL PLOT1 IF(FLl) THEN

WRITE( 7 , * ) ' MAXIMUM PRESSURE - ',PH 
WRITE(7,*)' XI - ',X1
WRITE( 7 , * ) ' CALCULATED STEP SIZE «',DX 
WRITE(7,*)

ENDIFCAP-'POWER LAW SIMULATION'
CALL PLTSTG(2,0,50.,110.,0.0,2,1,CAP,21)

C CALL KEY
IF(ITRA.EQ.l) THEN OPEN(8,FILE-'LPT1')

WRITE( 8 ,*) ' XP TI TAU1I TAU3I PI& DPDXI1 YI1 SIGXI RS SIGRW B  dB'
ENDIFC************************C

C SOLVING EQUATIONS CC************************C 
XPD-O.O
DO lO ISTEP-1,NSTEP,1 

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * o  
C INCREMENT X VARIABLE XP C 
C*******************************C 

XP-XP+DX 
XPD—XPD+DX q*** * * * * * * * * * * * * * * * * * * * * * * * * * * * 0  

C FIND SLOPE OF DEFLECTION C C******************************C 
21 Bl—IE—9 

B2-2E-4 
DB-2.5E-6Rl-PLRES(Bl,Hl,HI,H2I,PLK,PLN,VEL,W,T,DX,BOLD,PI,PM,SHI,SHK,Jl,Ll, 

&SIGXI,YS ,T I ,W I ,SLIP,TAUII,TAU3I,IRW,IMON)R2—PLRES(B2,H1,HI,H2I,PLK,PLN,VE L ,W,T,DX,BOLD,PI,PM,SHI,SHK,J1,L1, 
&SIGXI,Y S ,T I ,W I ,SLIP,TAU1I,TAU3I,IRW,IMON)

20 CONTINUE
IF(DABS(R1).LE.20000) THEN 

B—Bl 
GOTO 30 

ENDIF
IF(DABS(R 2 ).L E .20000) THEN 

B—B2 
GOTO 30 

ENDIF
C
C GET SIGNS OF SEARCH POINTS 
C IF(Rl.GE.O.O) THEN 

ISR1-1 
ELSE 
ISRl-O 

ENDIF
IF(R2.GE.O.O) THEN ISR2-1 
ELSE ISR2-0 
ENDIF

C
C MAIN LOOP 
C

IF (ISR1.E Q .ISR2) THENSLOPE-((R2-R1)/(B2-B1))
IF (SLOPE.G T .0.0) THEN

IF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN 
B l —Bl—DBIF (B l .L E .0.0) THEN 
B1-B1+DB 
DB—DB/2 
GOTO 20 ENDIF 

ELSE
B2—B2+DB 

ENDIF ELSE
IF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN B2-B2+DB 
ELSEBl—Bl—DB

IF(Bl.LE.O.O) THEN 
B1-B1+DB 
DB-DB/2 
GOTO 20 

ENDIF 
ENDIF 

ENDIF ELSE
IF(DABS(R1).GE.DABS(R2)) THEN 

B1-B1+(DABS(B1-B2))/2 
ELSEB2-B2-(DABS(B1-B2))/2 
ENDIF
DB-DABS(B2-B1)/3 

ENDIFRl—PLRES(Bl,Hl,HI,H2I,PLK,PLN,VEL,W,T,DX,BOLD,PI,PM,SHI,SHK,Jl,Ll, 
&SIGXI,YS,TI,WI,SLIP,TAU1I,TAU3I,IRW,IMON)



R2-PLRES(B2,Hl,HI/H2I,PLK,PLN,VEL,W,T,DX,BOLD,PI,PM,SHI,SHK,Jl,Ll, 
&SIGXI,YS ,TI ,W I ,SLIP,TAUII,TAU3I, IRW ,IHOH)
GOTO 20 30 CONTINUE

C HENCE HAVING FOUND B, EVALUATE SIG'S AND PRESSURES OF N+l STEP C 
C* ****************************************************************C 

IF(.NOT.SLIP) THEN
C

HI1-H(HI,B,DX)
H2I1-H(H2I,B*M,DX )
TI1-TF(TI,B,DX)
WI1-TF(W I ,B* H ,D X )
AR-W*T/(WI1*TI1)
VI1-VEL*ARV05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.))

C * * * * * * * * * * * * * * * * * * * * * *G 
C FOR THE PRESSURES C 
C**********************C

DPDXI1-(6*PLN*PLK*(VII/HI1)**(PLN-1))/(HIl**3)
DPDXI1«DPDXI1*((VIl*HIl-VEL*Hl)+((PM*H1**(2+PLN))/ 

&(6*L1*PLN*PLK*VEL**(PLN-1))))
PI1-P(PI,DPDXI1, DX )PI05-P(PI,DPDXIl,DX/2)

C***************************c 
C FOR MATERIAL PROPERTIES C c***************************c

YI1-VS+SHK*((DLOG(A R )**SHI)) 
c***********************c 
C FOR THE STRESSES C
C***********************c

CALL SHEAR(TAU105,DPDXI1,H(HI,B,DX/2-O),V05)
CALL SHEAR(TAU305,DPDXI1,H(H2I,B,DX/2.O),V05)

C WRITE(6,*) 'HI- ',H1C WRITE(6,*) 'HI- ',H(HI,B,DX/2.O )
C WRITE(6,*) 'HI2- ',H(H2I,B,DX/2.0)
C WRITE(6,*) 'PM- ', PM
C WRITE(6,*) 'LI- ',L1C WRITE(6,*) 'VEL- ',VEL
C WRITE(6,*) 'VII- ',VI1
C WRITE( 6 , * ) 'V05- ',V05
C WRITE(6,*) 'PLK— ',PLK
C WRITE(6,*) 'PLN— ',PLN
C WRITE(6,*) 'DPDXI1- ',DPDXI1C WRITE(6,*) 'TAU105— ',TAU105
C WRITE(6,*) 'TAU305- ',TAU305
C READ(5,*)

IF ((DABS(TAUX05).G E .TAUCRI).O R .(DABS(TAU305).G E .TAUCRI)) THEN 
SLIP-.TRUE.SFLAG-.TRUE.
TAU31-TAUCRI 
TAUII—TAUCRI 
GOTO 21 ENDIF

RS-DABS(BOOLD-B)*(1+M)
SIGXI1-(SIGXI*WI*TI/(WI1*TI1) ) + ( 2 .0*PI05*DX*DTAN(B)/Til)+

6(2.O*PI05*DX*DTAN(H*B)/WI1)+(2.0*DABS(TAU105)*DX/TI1)+
&(2*DABS(TAU305)*DX/WI1)
SIGRW—YIl*RS/4-OIF (IRW.EQ.1) SIGXI1-SIGXI1+SIGRW 

C***********************************C 
C SAVE NEW VALUES TO THE ith STEP C 

dr******* ************ *r*********C
p i -p i i
TI—TilWI-WI1
VI-VI1
VI-VI1
HI-HI1H2I-H2I1
SIGXI—SIGXI1
TAUII—TAU105
TAU3I—TAU305DELB-B-BOOLD
BOOLD-BC

ELSE
C

HI1—H(HI,B,DX)
H2I1—H(H2I,B*M,DX)
Til—TF(TI,B,DX)WI1-TF(WI,B*H,DX)
AR—W*T/(WI1*TI1)
VI1—VEL*AR
V05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.))

C FOR THE PRESSURES C c**********************c
Z —RLAM(PL N ,DBLE(2.0))
PI1-PI
PI05-PI

o***************************c
C FOR MATERIAL PROPERTIES C 
C***************************C

YI1-YS+SHK*((DLOG(AR)**SHI>)c***********************c
C FOR THE STRESSES CC***********************o

TAU105—TAUII 
TAU305—TAU3I 
RS-DABS(BOOLD-B)*(1+M)

C SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*DTAN(B)/Til)+
C 6(2.0*PI05*DX*DTAN(M*B)/WI1)+(2.0*DABS(TAU105)*DX/TI1)+
C &(2*DABS(TAU305)*DX/WI1)

SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*DTAN(B)/Til)+
6(2.0*PI05*DX*DTAN(H*B)/WI1)+(2.0*DABS(TAU105)*DX/TI1)+
&(2*DABS(TAU305)*DX/WI1)

SIGRW—YIl*RS/4.O
C
C INCLUDE THIS TERM FOR REDUNDENT WORK C

IF(IRW.EQ.l) SIGXI1—SIGXI1+SIGRW 
C SAVE NEW VALUES TO THE 1th STEP C
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PI-PI1
DPDXIl-O.O
TI-TI1
WI-WI1VI-VI1
VI-VI1
HI-HI1
H2I-H2I1
SIGXI-SIGXI1
SLIP-.FALSE.
DELB-B-BOOLD
BOOLD-B

C
ENDIF

C OPTIONAL DATA FILE CODE C c*************************c
IF(FLl) THEN WRITE(1,125) XP,PI 
WRITE(2,125) XP,DPDXII 
WRITE(3,125) XP,TI 
YDOTl-O.O YDOT2-0.0
WRITE(4,125) XP,TAUIIWRITE(7,130) XP,T I ,W I ,TAUII,YDOT1,TAU3I,YDOT2,P I ,DPDXI1,

&YI1,SIGXI,RS,SIGRW,B 
ENDIF

C IF(ITRA.EQ.l) THEN
WRITE(8,150) ISTEP,TI,TAUII,TAU3I,PI,DPDXI1,YI1,SIGXI,RS,SIGRW,B 

&,DELB 
ENDIF

C
PLOTT-SNGL(PI*50/PM)
SXP—SNGL(l OO.* XPD/(Ll-Xl))
CALL PLTSYH(1,1,SXP,PLOTT,0.001,0.001,1)PLOTT-ABS(SNGL(lO O .*TAU1I/TAUCRI))
CALL PLTSYM(2,5,SXP,PLOTT,0.001,0.001,2)
PLOTT-ABS(SNGL(lO O .*TAU3I/TAUCRI))
CALL PLTSYM(2,2,SXP,PLOTT,0.001,0.001,3)
PLOTT-SNGL(lOO.*TI/T)
CALL PLTSYH(3,3,SXP,PLOTT,0.001,0.001,4)
IF(ISTEP.E Q .1) DPDXI—DPDXI1 
IF (DPDXI.EQ.0.0) DPDXI—1.O 
PLOTT-SNGL(50.*DPDXI1/DPDX1)
CALL PLTSYH(3,3,SXP,PLOTT,0.001,0.001,13)
PLOTT-SNGL(10*YI1/YS)
CALL PLTSYM(4,4,SXP,PLOTT,0.001,0.001,14)

C
lO CONTINUE

C
PRT-(1-(TI/T))*100 PRW-(1-(WI/W))*100 
PRA— (1— ((WI*TI)/(W*T)))*100 VEXE—VI

C I F (ITRA.E Q .1) CLOSE(8)
RETURNlOO FORHAT(3(IX,ElO.4),2(FIO.O ) ,2(IX,L4))

125 FORHAT(I X ,E12.6,',',IX ,E12.6)
130 FORHAT(F 7 .6,IX,13(I X ,ElO.4))
150 FORHAT(14,11(IX,ElO.4))

END

C POWER LAW RESIDUAL FUNCTION C
REAL*8 FUNCTION PLRES(B,Hl,HI,H2I,PLK,PLN,VEL,W,T,DX,BO,PI,PH, 

&SHI,SHK,J 1 ,LI ,SIGXI,Y S ,T I ,W I ,SLIP,TAUII,TAU3I,IRW,IMON)
REAL*8 H,TF,P,H,H2I1,TI1,WI1,B,H1,HI,PLK,PLN,VI1,TAU105,&TAU305,W,T,DX,AR,VEL,Z,DPDXI1,PI05,PI1,RLAH,TI,WI,H2I,P I ,V05, 

&YI1,PH,Jl,LI,SIGXI,HI1,BO,YS,RS,SIGXI1,SHI,SHK,SIGRW,TAUII,TAU3I 
LOGICAL SLIP

C
M-W/T

C IF(.NOT.SLIP) THEN 
HI1—H(HI,B,DX)
H2I1-H(H2 I ,B*H,D X )
Til—TF(TI,B,DX)
WI1-TF(WI,B*H,D X )
AR«W*T/(WI1*TI1)VII—VEL*AR
V05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.))C**r ************* *******0

C FOR THE PRESSURES C C**********************C
Z-RLAH(PLN,DBLE(2.0))
DPDXI1— (6*PLN*PLK*(VII/HI1)**(PLN-1))/(HI1**3)
DPDXI1—DPDXI1*((VI1*HI1—VEL*H1)+((PM*H1**(2+PLN))/

& (6*L1*PLN*PLK*VEL**(PLN-1))))
PI1—P(PI,DPDXI1,DX)
PI05—P(PI,DPDXIl,DX/2)

C * + + * * * * * * * * * * * * * * * * * * *
C FOR HATERIAL PROPERTIES C
c***************************cYI1-YS+SHK*((DLOG(AR)**SHI))
C***********************C
C FOR THE STRESSES CC***********************C

CALL SHEAR(TAU105,DPDXI1,H(HI,B,DX/2.0),V05)
CALL SHEAR(TAU305,DPDXI1,H(H2I,B,DX/2.O ),V05)

C
RS-DABS(BO-B)*(1+H)
SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*DTAN(B)/Til)+

&(2.0*PI05*DX*DTAN(M*B)/WI1)+(2.0*DABS(TAU105)*DX/TI1)+
&(2*DABS(TAU305)*DX/WI1)

SIGRW—YIl*RS/4.OIF (IRW.E Q .1.O ) SIGXI1—SIGXI1+SIGRW
C ELSE
C HI1—H(HI,B,DX)

H2I1—H(H2I,B*H,DX)
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TI1-TF(TI,B,DX)WI1-TF(W I ,B*H, DX )
AR-W*T/(WI1*TI1)
VI1-VEL*AR
V05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.))

£ d r  dr dr dr dr dr dr *  dr d r *  dr * d r  dr dr dr dr dr dr dr d r £

C  FOR THE PRESSURES C C**********************C
PI1-PI
PI05-PI

C***************************C
C  FOR MATERIAL PROPERTIES C 
C***************************C

YIl«YS+SHK*((DLOG(AR)**SHI)) 
c***********************C 
C  FOR THE STRESSES C
C***********************C 

TAU105-TAU1I 
TAU305-TAU3I 
RS-DABS(BO-B)*(1+H)
SIGXII-(SIGXI*WI*TI/(WI1*TIX))+(2.0*PI05*DX*DTAN(B)/Til)+

&(2.0*PI05*DX*DTAN(H*B)/WI1)+(2.0*DABS(TAU105)*DX/TI1)+
&(2*DABS(TAU305)*DX/WI1)

SIGRW-YIl*RS/2.O
I F (IRW.E Q .1.O ) SIGXII—SIGXI1+SIGRW

C
ENDIFC*****************************C 

C  SET FUNCTION RETURN VALUE C 
C*****************************C
C WRITE (6,*) ' P  SIG Y'
C WRITE(6,*)PI1,SIGXII,YI1

PLRES—PI1+SIGXI1—YI1 C WRITE(6,*) B,PLRES
CC WRITE(6,*) 'RES PI1, SIGXII, YI1, B  ,:

IF(IHON.EQ.l) WRITE(6,101) PLRES,PI1,SIGXII,YI1,B,SIGRW,SLIP 
C WRITE(6,lOl) HI1,TI1,WI1,H2I1,DPDXI1,DX
C lOl FORMAT(6(I X ,Ell.5),L4)
C RETURN

END

C********************************************************************C
C SHEAR - SHEAR SUBROUTINE ITERATIVE FINDS THE REQUIRED SHEAR STRESS C 
C  DURING SOLUTION OF THE PLASTO-HYDRODYNAMIC DRAWING OF C
C RECTANGULAR SECTIONS CC ********************************************************************C 

SUBROUTINE SHEAR(T,DPDX,HA,V)
IHPLICIT DOUBLE PRECISION (A-Z)

C  WRITE(6,*) ' OPENING FILE'
C OPEN(3,FILE— 'TS.DAT')C DO 1919 Bl— 1000000,1000000,20000
C R—TS ( B l , I’M )
C WRITE(3,*) B1,R
C 1919 CONTINUE 
C CLOSE(3)
C WRITE(6,*) ' CLOSING FILE'

Bl— 300000 
B2— 200000 
DB—25000 ERR-O.005
Rl-TS(B l ,DPDX,H A ,V )
R2-TS(B 2 ,DPDX,H A ,V )

22 IF(DABS(R1).LE.ERR) THEN 
T—Bl 
GOTO 33 ENDIF

IF(DABS(R2).LE.ERR) THEN 
T-B2 
GOTO 33 

ENDIF
CC GET SIGNS OF SEARCH POINTS 
C

I F (R l .G E .0.0) THEN 
ISR1-1 ELSE 
ISRl-O 

ENDIF
IF(R2.GE.O.O) THEN 
ISR2-1 

ELSE ISR2-0 
ENDIF

C
C MAIN LOOP C

I F (ISR1.E Q .ISR2) THENSLOPE-((R2-R1)/(B2-B1))
I F (SLOPE.GT.0.0) THENIF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN 

Bl—Bl—DB 
ELSE

B2-B2+DBENDIF
IF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN 

B2—B2+DB ELSE
Bl—Bl—DB 

ENDIF 
ENDIF 

ELSE
IF(DABS(R1).GE.DABS(R2)) THEN 

B1-B1+(DABS(B1-B2))/2 
ELSE

B2-B2-(DABS(B1-B2))/2 
ENDIF
DB-DABS(B2-B1)/3 

ENDIF
Rl-TS(B l ,DPDX,H A ,V )
R2-TS(B 2 ,DPDX,HA,V )
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GOTO 22 
33 CONTINUE 

RETURN END

C******************************C 
C SHEAR FUNCTION T Cc******************************c

REAL*8 FUNCTION TS(A,DPDX,HA,V)
IMPLICIT DOUBLE PRECISION (A-Z)
COMMON /F1C/ W,T,H1,H2,H3,L1,L2,VEL,PLK,PLN

C
Cl-DPDX*(X/PLK)
C2-A/PLK
C3-C1*HA+C2C
TEMP— (C3**RLAM(PLN,DBLE(1•O) ))— <C2**RLAH(PLN/DBLE(1.0))) 
TS— (TEHP/(C1*RLAM(PLN,DBLE(1.0)))) + V

C
RETURN
END

C GAP FUNCTION Cc*****************************cREAL*8 FUNCTION H(HN,SLOPE,DELX) 
REAL*8 HN,SLOPE,DELX
H —HN+SLOPE*DELX
RETURN
END

*̂**********************0
C THICKNESS FUNCTION Cc***********************c

REAL*8 FUNCTION TF(TN,SLOPE,DELX) 
REAL*8 TN,SLOPE,DELX

C TF-TN-2.0*SLOPE*DELX
C RETURN

END

C**********************C
C PRESSURE FUNCTION C C******k***************C

REAL*8 FUNCTION P (P N ,DPDX,DELX)
REAL*8 PN,DPDX,DELX

C P-PN+DPDX*DELX
C RETURN

END
C******************************C
C LAMDA FUNCTION C
C******************************C

REAL*8 FUNCTION RLAM(N,M)
REAL*8 N,M

C
RLAH—DFLOAT(IDINT((1.O /N)+DFLOAT(H )))

C
RETURN
END

C*******************************C
C JAY SUBROUTINE CC*******************************C

SUBROUTINE JAY(J,N)
REAL*8 A,B,J,N,R1,R2,RLAM

C R1-RLAM(N,DFLOAT(1.0))
R2-RLAM(N,DFLOAT(2.0))A —1/(R1*R2)
B=1/(R1*2.0)
J-A-B

C RETURN
END

C************************************************C
C PLOT1 - GRAPH INITIALISATION C
C C
C STARTS USER GRAPHICS MODE C
C STARTS A NEWPLOT CC VGA MODE 18 C
C  X AND Y POINTS ARE NORMALIZED TO A RANGE CC 0-1.0 Cc************************************************c

SUBROUTINE PLOT1 
IMPLICIT INTEGER*2 (I-N)DIMENSION IERR(2)
CHARACTER*8 SAV,DXF CHARACTER*80 CAP

C IDEV-1
MODE-18
IPORT-O
IUNIT-O
VHR-l.O
SAV-' '
DXF— ' '
IERR(l)—O 
IERR(2)-0
CALL GSTART(IDEV,MODE,IPORT,IUNIT,VH R ,SAV,DXF,IER) 
CALL NEWPLT(0,1,-30.0,130.0,-80.0,120.0)

CC  DRAW GRID 
C



CALL PLTDSH(1,1,0.,O .,lOO.,O ., 7 )
CALL PLTDSH(1,1,0.,0.,0.,100.,7)
CALL PLTDSH(1,1,100.,0.,100.,100.,7)
CALL PLTDSH(1,1,100.,100.,0.,100.,7)
CALL PLTDSH(1,50,0.0,25.0,100.0,25.0,7) 
CALL PLTDSH(1,50,0.0,50.0,100.0,50.0,7) 
CALL PLTDSH(1,50,0.0,75.0,100.0,75.0,7) 
CALL PLTDSH(1,50,25.0,0.,25.0,100.,7)
CALL PLTDSH(1,50,50.0,0.,50.,100.,7)CALL PLTDSH(1,50,75.0,0.,75.,100.,7)

C
C DRAW CAPTIONS 
C CAP-'O.O'

CALL PLTSTG(2,1,-5.,-2.5,0.0,15,0,CAP,3) 
CAP-'25'
CALL PLTSTG(2,l,-3.,26.,0.0,15,0,CAP,2) 
CALL PLTSTG(2,1,25.0,-3.,0.0,15,0,CAP,2) 
CAP— ' 50'
CALL PLTSTG(2,1,—3.,51.,0.0,15,0,CAP,2) 
CALL PLTSTG(2,1,50.0,-3.,0.0,15,0,CAP,2) 
CAP-'75'
CALL PLTSTG(2,1,—3.,76.,0.0,15,0,CAP,2) CALL PLTSTG(2,1,75.,-3.,0.0,15,0,CAP,2) 
CAP-'lOO'CALL PLTSTG(2,1,—3.,lO O .,0.0,15,0,CAP,3) 
CALL PLTSTG(2,1,100.,-3.,0.0,15,0,CAP,3)

C
C DRAW LABELS 
C

CAP-'Dinensionless Scale'
CALL PLTSTG(2,1,-15.0,50.,90.0,2,0,CAP,19) 
CAP-' Deformation Zone '
CALL PLTSTG(2,0,50.0,-15.,0.0,2,0,CAP,19)

C RETORN
END
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Appendix 2

It should be noted that within the following FORTRAN code, calls are made to various 
graphical subroutines from the Extend Graphics Library. Due to copyright restrictions 
further details cannot be given in this work. Information on the form and scope of the 
library may be obtained from the manufacturers.

Design Decisions Inc 
P.O. Box 12884 
Pittsburgh 
Pennsylvania 15241 
(415) 941-4525
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2.1 Newtonian Optimisation code

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
C OPTIMISATION TWO - PLASTO HYDRO-DYNAMICS 
C
C X(1)-L1
C X(2)-Hl/h2
C X(3)-H3/h2

PROGRAM OPT2
IMPLICIT DOUBLE PRECISION (A-Z)
DIMENSION X(3),H<3),P(3),BT<3),ROW<100)
INTEGER N 
CHARACTER LIN 
CHARACTER*25 FILNAM 
COMMON VEL C* **************************C 

C INITIALISE VARIABLES C
C***************************C 

N-3
LIN-'-'
DO IO 1-1 ,N 
P(I)-0 

IO CONTINUEc*****************************c
C MENU SYSTEM Cc*****************************c

1 CALL CLS 
CALL HEADER
WRITE(6,*) '1# MULTI START OPTIMISATION SEQUENCE
WRITE(6 #* ) '2# SINGLE OPTIMISATION '
WRITE(6,*) '3# SURFACE GENERATION '
WRITE(6,*) '4# EXIT'
CALL BLANK(3)WRITE(6,*) ' ENTER OPTION REQUIRED '
READ(5,*) MOPTIF((MOPT.GT.4).OR.(MOPT.LT.1)) GOTO 1

C MULTI START OPT CODE BLOCK C
C*************************************************************C

IF(MOPT.EQ.l) THEN
C 2 CALL HEADER

WRITE(6,*) '1# L1/L2- ',X1L,' TO ',X1T,' IN ',X1NSTEP
WRITE( 6 , * ) '2# H1/H2- ',X2L,' TO ',X2T,' IN ',X2NSTEP
WRITE(6,*) '3# H3/H2- ',X3L,' TO ',X3T,' IN ',X3NSTEP
WRITE(6/*) '4# PROPORTION OF H(l) AS SEARCH VECTOR ' ,H1T
WRITE(6,*) '5# PROPORTION OF H(2) AS SEARCH VECTOR ',H2TWRITE(6,*) '6# PROPORTION OF H<3) AS SEARCH VECTOR ',H3T
WRITE(6,*) '7# MINIMUM SIZE OF EUCLIDEAN SEARCH VECTOR',HINSTEP
WRITE(6,*) ' '
WRITE(6,*) '8# RUN'CALL BLANK(I O )

11 WRITE(6,*) ' ENTER OPTION REQUIRED '
READ( 5 , * ) IOPT

C IF(IOPT.EQ.42) GOTO 1
IF((IOPT.GT.8).OR.(IOPT.LT.l)) GOTO 11

C
C IF (IOPT.EQ.1) THEN 

WRITE(6,*) ' ENTER INITIAL L1/L2 RATIO '
READ(5,*) X1L
WRITE(6,*) ' ENTER FINAL L1/L2 RATIO '
READ(5/*) X1T
WRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) XINSTEP 
X1STEP**( X1T—X1L) /X1NSTEP END IF

C
C

IF(IOPT.EQ.2) THEN WRITE(6,*) ' ENTER INITIAL H1/H2 RATIO '
READ(5,*) X2LWRITE(6,*) ' ENTER FINAL H1/H2 RATIO '
READ(5,*) X2TWRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) X2NSTEP 
X2STEP“ (X2T—X2L)/X2NSTEP 

ENDIF
C
C

I F (IOPT.E Q .3) THEN 
WRITE(6,*) ' ENTER INITIAL H3/H2 RATIO '
READ(5,*) X3L
WRITE(6,*) ' ENTER FINAL H3/H2 RATIO '
READ<5,*) X3T
WRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) X3NSTEP 
X3STEP” (X3T-X3L)/X3NSTEP 

ENDIF
CC

IF(IOPT.EQ.4) THEN WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(l) {L1/L2}' 
READ(5,*) HIT 

ENDIF
CC

IF (IOPT.E Q .5) THEN WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(2) {H1/H2}'
READ(5,*) H2T 

ENDIF
C
C

IF (IOPT.E Q .6) THEN WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(3) {H3/H2} ' 
READ(5,*) H3T ENDIF

C
C

IF (IOPT.EQ.7) THEN 42 WRITE(6,*) 'ENTER MINIMUH SIZE OF SEARCH VECTOR '
READ(5,*) MINSTEP

nn
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IF (MINSTEP.L E .O ) THENWRITE(6,*) ' INVALID SEARCH VECTOR HINIHUH '
GOTO 42 

ENDIF 
ENDIF
IF(IOPT.E Q . 8 ) GOTO 12 
GOTO 2 
CALL CLS
WRITE(6,*) 'Enter file name for data {enclose In single quotes}' 
READ( 5 , * ) FILNAH
OPEN( 3 ,FILE—FILNAM) t

WRITE(6,*) 'ENTER VELOCITY FOR OPTIMISATION '
READ( 5 , * ) VEL

WRITE(3,*) 'FILE - ',FILNAM 
WRITE (3,*)
WRITE(3, * ) 'PARAMETERS'
WRITE (3,*)WRITE(3,*) 'MINIMUM SEARCH VECTOR- ',MINSTEP 
WRITE( 3 , * ) 'L1/L2- ',X1L,' TO ',X1T,' IN ',X1NSTEP
WRITE(3,*) 'H1/H2- ',X2L,' TO ',X2T,' IN ',X2NSTEP
WRITE(3, * ) 'H3/H2- ',X3L,' TO ',X3T,' IN ',X3NSTEPWRITE(3,*) 'PROPORTION SEARCH VECTOR H(l) ' ,H1T
WRITE(3, * ) 'PROPORTION SEARCH VECTOR H(2) ' ,H2T
WRITE(3,*) 'PROPORTION SEARCH VECTOR H(3) ',H3TU P T T P M  / /
WRITE(3*100) 'VEL- ',VEL 
WRITE(3,1010)WRITE(3,*) 'L1/L2 H1/H2 H3/H2 | L1/L2 H1/H2

&H3/H2 HERIT'
WRITE(3,1010)

1010 FORMAT(79('— '))
C

DO 15 XI—X1L,X1T,X1STEP 
DO 16 X2—X2L,X2T,X2STEP 
DO 17 X3—X3L,X3T,X3STEP

C
X(1)-X1 
X(2)-X2 
X (3)—X3

C
H(1)«H1T*X1 H(2)«H2T*X2 
H(3)—H3T*X3C
CALL H«T(X,BT,H,N,P,MINSTEP,FUNVAL)

C
WRITE(3,110) XI,X2,X3,X(1),X(2),X(3),FUNVAL

C
C SCREEN ECHO 
C

WRITE(6,110) XI,X2,X3,X(1),X(2),X(3),FUNVAL 
17 CONTINUE 
16 CONTINUE 15 CONTINUE

C
lOO FORMAT(IX,A5,E13.7)
H O  FORMAT( 7 (IX , FIO . 6 ) )

CLOSE(3)
CC

CALL CLS
WRITE(6,*) 'OPTIMISATION SEQUENCE COHPLETED {press ret}'
READ(5,*)ENDIF

C****************************************************************C
c c
c SINGLE START CODE BLOCK CC C
c****************************************************************c

I F (MOP T .E Q .2) THEN 
4 CALL CLSCALL HEADER

WRITE(6,*) '1# L1/L2- ',X1LWRITE(6,*) '2# H1/H2- ',X2L
WRITE(6,*) '3# H3/H2- ',X3LWRITE(6,*) '4# SEARCH VECTOR H(l) ',H1T
WRITE(6,*) '5# SEARCH VECTOR H(2) ',H2T
WRITE(6,*) '6# SEARCH VECTOR H(3) ',H3T
WRITE(6,*) '7# SIZE OF MINIMUM SEARCH VECTOR',MINSTEP
WRITE(6,*) ' '
WRITE(6,*) '8# RUN'CALL BLANK(IO)

14 WRITE(6,*) ' ENTER OPTION REQUIRED '
READ(5,*) IOPT
IF(IOPT.EQ.42) GOTO 1
IF((IOPT.GT.8).OR.(IOPT.LT.l)) GOTO 14

IF(IOPT.EQ.1) THEN 
WRITE(6,*) ' ENTER INITIAL L1/L2 RATIO '
READ(5,*) X1L

ENDIF

IF (IOPT.EQ.2) THEN 
WRITE(6,*) ' ENTER INITIAL H1/H2 RATIO '
READ(5,*) X2L

ENDIF

IF (IOPT.E Q .3) THEN 
WRITE(6,*) ' ENTER INITIAL H3/H2 RATIO '
READ(5,*) X3L

ENDIF

IF (IOPT.E Q .4) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(l) {L1/L2}' 
READ(5,*) HIT

ENDIF
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I F (IOPT.E Q .5) THEN WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(2) {Hl/H2>' 
READ(5,*) H2T 

ENDIF

IF(IOPT.EQ.6) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(3) {H3/H2}' 
READ(5,*) H3T 

ENDIF
I F (IOPT.EQ.7) THEN 
WRITE(6,*) 'ENTER MINIMUM SIZE OF SEARCH VECTOR '

READ(5,*) MINSTEP 
IF (MINSTEP.L E .O ) THENWRITE(6,*) ' INVALID SEARCH VECTOR MINIMUM '

GOTO 43 
ENDIF 

ENDIF

IF(IOPT.E Q . 8 ) GOTO 25 
GOTO 4 
CALL CLS
WRITE(6,*) 'ENTER VELOCITY FOR OPTIMISATION 'READ(5,*) VEL

WRITE(6,*) 'PARAMETERS'WRITE (6,*)
WRITE(6,*) 'MIN STEP- ',HINSTEP 
WRITE(6,*) 'LX/L2- ',XXL 
WRITE(6,*) 'HX/H2- ',X2L 
WRITE(6,*) 'H3/H2- ',X3L
WRITE(6,*) 'PROPORTION OF SEARCH VECTOR H(I) ' ,HXTWRITE(6,*) 'PROPORTION OF SEARCH VECTOR H(2) ',H2T
WRITE(6,*) 'PROPORTION OF SEARCH VECTOR H(3) ',H3TWRITE(6,*) ' '
WRITE(6,lOO) 'VEL- ',VEL 
WRITE(6,*)
WRITE(6,*) ' X(X) X(2) X(3) | ME!
WRITE( 6 , * ) ' ■
X(X)—XXL 
X(2)-X2L 
X( 3)—X3L
H (X )—HXT*X(X )
H (2)—H2T*X(2)
H(3)—H3T*X(3)
CALL HJ(X,BT,H,N,P,MINSTEP,FUNVAL)
CALL BLANK(3)
WRITE(6,XXO) XXL,X2L,X3L,X(X),X(2),X(3),FUNVAL 
CALL BLANK(3)
WRITE(6,*) 'OPTIMISATION SEQUENCE COMPLETED {press ret}' 
READ(5,*)

C SURFACE GENERATION CODE BLOCK 
C
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

IF(MOPT.E Q .3) THEN 
72 CALL HEADERWRITE(6,79X) XXL,XXT,XXNSTEP

WRITE(6,792) X2L,X2T,X2NSTEP
WRITE(6,793) X3L
WRITE(6,*) ' 'WRITE(6,*) '4# RUN'
CALL BLANK(XO)79X FORMAT(' X# LX/L2-',FX2.4,' TO ',FX2.4,' IN ',F8.3)

792 FORMAT(' 2# HX/H2-',FX2.4,' TO ',FX2.4,' IN ',F8.3)
793 FORHAT(' 3# CONSTANT VALUE OF H3/H2 RATIO- ',FX2.6)

7XX WRITE(6,*) ' ENTER OPTION REQUIRED 'READ(5,*) IOPT
I F (IOPT.EQ.42) GOTO X
IF((IOPT.GT.4).OR.(IOPT.LT.X)) GOTO 7XX

IF(IOPT.EQ.X) THEN 
WRITE(6,*) ' ENTER INITIAL LX/L2 RATIO 
READ(5,*) XXL
WRITE(6,*) ' ENTER FINAL LX/L2 RATIO ' READ(5,*) XXT
WRITE(6,*) ' ENTER NUMBER OF STEPS ' READ(5,*) XXNSTEP 
XXSTEP— (XXT-XXL)/XXNSTEP 

ENDIF

IF(IOPT.EQ.2) THEN 
WRITE(6,*) ' ENTER INITIAL HX/H2 RATIO 
READ(5,*) X2L
WRITE(6,*) ' ENTER FINAL HX/H2 RATIO ' 
READ(5,*) X2TWRITE(6,*) ' ENTER NUMBER OF STEPS ' 
READ(5,*) X2NSTEP 
X2STEP-(X2T-X2L)/X2NSTEP 

ENDIF

IF(IOPT.EQ.3) THEN 
WRITE(6,*) ' ENTER CONSTANT VALUE FOR H3/H2 RATIO 
READ(5,*) X3L 

ENDIF

I F (IOPT.E Q .4) 
GOTO 7X2
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ENDIF
C

GOTO 72
C

712 CALL CLSWRITE(6,*) 'Enter file name for data {enclose In single quotes}' 
READ(5,*) FILNAH 
OPEN( 3 ,FILE“FILNAH)
CALL CLS

C
C WRITE(6, * ) 'ENTER VELOCITY FOR OPTIMISATION '

READ(5,*) VEL 
CALL CLS 
CALL HEADER

CC
X3-X3L

C
COUNT-O.ODO 799 Z XN—X2L,X2T,X2STEP 
COUNT-COUNT+1 
R OW(CODNT)-ZXN 

799 CONTINUE
C

WRITE(3,718) IDINT(X1NSTEP+2),IDINT(COUNT+1)718 FORMAT(14,2X,14)
WRITE(3,717) O.O,(ROW(ZXN),ZXN-1,COUNT,1)

C
DO 715 XI—X1L,X1T,X1STEP 

C2-0
DO 716 X2—X2L,X2T,X2STEP

C
X(1)=X1 X (2)—X2 
X (3)—X3FUNVAL-MERIT(X )
C2-C2+1ROW(C2)-DABS(FUNVAL)

C
716 CONTINUE

WRITE(3,717) XI,(ROW(ZXN),ZXN-1,COUNT,1)
717 FORMAT(F10.6,100(2X,F10.6))
715 CONTINUE

C
CLOSE(3)

C
C

CALL CLS
WRITE(6,*) 'SURFACE GENERATION COMPLETED {press ret}'READ(5,*)

C
ENDIF

C IF(HOPT.EQ.4) THEN 
CALL CLS
STOP 'HAVE A NICE DAY'

ENDIFC
GOTO 1 
END

C**********************C
C CLEAR SCREEN C

SUBROUTINE CLS DO IO 1-1,28 
WRITE(6,*) ' '

IO CONTINUE 
RETURN 
END

C**************************************C
C WRITES THE HEADER TITLE C
C**************************************C

SUBROUTINE HEADER
C WRITE(6,*) '****************************************************' 

WRITE(6,*) 'NEWTONIAN HYDRO-DYNAMIC DRAWING OPTIMISATION PROG' WRITE(6,*) '****************************************************' 
 ̂ W RITE(6,*) ' '

C
RETURN
END

C**************************************C
C BLANK - GENERATES N BLANK LINES CC**************************************C

SUBROUTINE BLANK(N)INTEGER N,I
C DO IO I—1 ,N

WRITE(6,*) ' '
IO CONTINUE 

RETURN 
END
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C**********************************************************************C
C MERIT - SOLVES THE GOVERNING EQUATIONS OF DEFORHATION FOR THE C
C DEFORHATION ZONE, THIS IS ACCOMPLISHED USING A FINITE C
C DIFFERENCE FORMULATION, A  LINEAR DEFORMATION PROFILE IS C
C ASSUMED BETWEEN THE SOLUTION POINTS, VARIABLES HAVE THE CC SAME MEANING AS DEFINED IN THE MOD6 MODELLING SYSTEM C
C VARIABLES HAVE BEEN REMOVED FROM THE NMF5 VER TO AID C
C MERIT FUNCTION CODING C
C**********************************************************************C

DOUBLE PRECISION FUNCTION HERIT(X)
IMPLICIT DOUBLE PRECISION (A-Z)
LOGICAL SLIP,SFLAG 
INTEGER ITERNUM,IMINIT 
DIHENSION X(3)
COMMON VELC

C CONSTANTS 
C

OL—0.1785 H2-0.00004 
ONEPART-OL/(X (1)+1)
Ll-X(1)*ONEPART 
L2-0.1785-L1 
H1-X(2)*H2 
H3—X (3)*H2IF((Ll.LE.O).OR.(L2.LE.O).OR.(Hl.LE.O).OR.(H3.LE.O)) THEN 

HERIT-O.O 
SLIP-.TRUE.
WRITE(6,200) X(l),X(2),X(3),HERIT,SLIP 
RETURN 

ENDIFC
VIS—120 YS—70000000 
K —600000000 N-O.6 
W —0.0253 
T-O.001575 
TAUCRI—320000 
Tl-3.8 
NN—55000C
SLIP-.FALSE.
SFLAG— . FALSE .
PH-((6.*VIS*VEL*(H1-H2))/(((Hl**3.)/Ll)+((H2**3.)/L2)))
TAU1— ((H1*PH)/(2.*L1))-(VIS*VEL/Hl)
TAU3—  ( ( H3*PM ) / ( 2 . *L1) ) - ( VIS*VEL/H3 )C
I F ((TAU1.GE.TAUCRI).OR.(TAU3.G E .TAUCRI)) THEN 

TAU1—TAUCRI 
TAU3—TAUCRI ENDIF

XI—YS/((PM/LI)+(2.*DABS(TAU1)/T )+(2.*DABS(TAH3)/W))
C

IF(Xl.GT.Ll) THEN MERIT-0.O
WRITE(6,200) X(l),X(2),X(3),MERIT,SLIP RETURN 

ENDIF
C
C INITIALLY CALCULATE THE START CONDITIONS AT X-Xl POINT OF DEFORMATION 
C

PI1— (PH/Ll)*X1
Til—T
WI1-W
VII—VEL
HI1-H1HI21-H3
DPDXI-PM/L1SIGXI1-(2*DABS(TAU1)*X1/T)+(2*DABS(TAU3)*X1/W)
XP-X1C
DX—0.002
NSTEP-INT ( ( ( LI—XI ) /DX ) +0 . 5 )
DX-(LI—XI)/NSTEP

C
C SOLVING EQUATIONS 
C

DO IO ISTEP-1,NSTEP,1C
C INCREMENT X VARIABLE XP 
C

XP-XP+DX
C
C FIND B  SLOPE OF DEFLECTION C

21 BO—O .OITERNUH-O 
STEP-.1 20 BO-BO+STEP
RO—RES(BO,HI,HI1,HI21,L1,VIS,YS,W,T,W I1,VII,PM,PI1,DX,VEL,N,K, 

&SIGXI1,T 1 ,N N , Til, SLIP , TAUCRI, DPDXI)
ITERNUM—ITERNUH+1 IF (ITERNUM.EQ.500) THEN 

MERIT—O .O WRITE(6,210)
RETURN

ENDIF
C I F (DABS(RO).LE.5000) GOTO 30 

IF (R O .L E .0.0) THEN BO-BO-STEP 
STEP—STEP/IO.

ENDIF 
GOTO 20 30 B-BO

C
C HENCE, HAVING FOUND B CALCULATE STRESSES,PRESURES,ETC OF NEXT STEP 
C

I F (.NOT.SLIP) THEN 
TI-TI1—B*DX 
HI—HIl+O.5*B*DX 
BB—W*B/T
HI2-HI21+0.5*BB*DX 
WI—WI1—BB*DX
VI-VI1*((WI1*TI1)/(WI*TI))



DPDXI-(1/HI**3)*((PM*(Hl**3)/LI)+6*VIS*(VI*HI-VEL*H1))
TAUI— (HI*DPDXI/2.)-VIS*VI/HI 
TAUI2—  (HI2*DPDXI/2.)-VIS*VI/HI2

C
C TEST FOR CONDITION OF SLIP 
C IF((DABS(TAUI).G E .TAUCRI).O R .(DABS(TAUI2).GE.TAUCRI)) THEN 

SLIP-.TRUE.
SFLAG-.TRUE.
GOTO 21 

ENDIF 
AO—T*W 
All—TI1*WI1 
AI—TI*WI
EDOT— (VI/DX)*DLOG((AI1/AI))
SI—l+((EDOT/NN))**(1/T1)
YI-SI*(YS+(K*(DLOG((AO/AI)))**N))SIGXI-((Til/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-(DPDXI*DX)+PI1

CC SAVE NEW VALUES TO 1-1 STEP 
C

PI1-PI 
Til—TI WI1-WI
VI1-VI HI1-HI 
HI21-HI2 SIGXI1—SIGXI 

ELSE 
TI—Til—B*DX 
HI-HIl+O.5*B*DX BB—W*B/T
HI2-HI21+0.5*BB*DX 
WI—WI1—BB*DX
VI-VI1*((WI1*TI1)/(WI*TI))
AO—T*W
All—TI1*WI1 
AI—TI*WI
EDOT— (VI/DX)*DLOG((AI1/AI))
SI-1+((EDOT/NN))**(1/TI)
YI—SI*(YS+(K*(DLOG((AO/AI)))**N))
TAUI—TAUCRI 
TAUI2—TAUCRISIGXI-((Til/TI)+(WI1/WI)—2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-PI1 
DPDXI—O .O

CC SAVE NEW VALUES TO 1-1 STEP 
C

Til—TI 
WI1-WI
VII-VI 
HI1-HI HI21-HI2 
SIGXI1—SIGXI 
PI1-PI 
SLIP-.FALSE.

C
ENDIF

C
IO CONTINUE

C
MINIT— ((l-((WI*TI)/(W*T)))*100)IMINIT—IDINT(HINIT*1E8)
HERIT— l*DFLOAT( IMINIT/1E8)WRITE(6,200) X(1),X(2),X(3),MERIT,SFLAG

C 200 FORMAT(4(E19.12),L3)
210 FORMAT(* **** ITERATION LIMIT EXCEEDED ****')

CC lOO FORMAT(****** XI IS GREATER THAN LI *****')
C

RETURNEND

C**********************************************************************C
C RESlduals RETURN THE VALUE OF THE RESIDUALS FOR THE GIVEN VALUE OF B  C

DOUBLE PRECISION FUNCTION RES(B,Hl,HIl,HI21,Ll,VIS,YS,WO,TO,WIl, 
&VI1,PM,PI1,DX,VEL,N,K,SIGXI1,T1,NN,Til,SLIP,TAUCRI,DPDXI)
IMPLICIT DOUBLE PRECISION (A-Z)
LOGICAL SLIP

C
IF(.NOT.SLIP) THEN 
TI-TI1—B*DX 
HI—HIl+O.5*B*DX 
BB—WO*B/TO 
HI2—HI21+0.5*BB*DX WI—WI1—BB*DX
VI-VI1*((WI1*TI1)/(WI*TI))DPDXI— (1/HI**3)*((PM*(Hl**3)/LI)+6*VIS*(VI*HI—VEL*H1))
TAUI—  (HI*DPDXI/2 ) -VIS*VI/HI TAUI2— (HI2*DPDXI/2)-VIS*VI/HI2 
AO—TO*WO All—TI1*WI1 
AI—TI*WIEDOT— (VI/DX)*DIjOG( (AI1/AI) )
SI-l+((EDOT/NN))**(1/T1)
YI-SI*(YS+(K*(DLOG((AO/AI)))**N))
SIGXI-((TIl/TI)+(WI1/WI)-2)*YI+(2*DABS(TAUI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-(DPDXI*DX)+PI1 

ELSE 
TI—Til—B*DX HI—HIl+O.5*B*DX 
BB—WO*B/TO 
HI2-HI21+0.5*BB*DX 
WI—WI1—BB*DXVI-VI1*((WI1*TI1)/(WI*TI))
TAUI—TAUCRI TAUI2—TAUCRI 
AO—TO*WO
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AI1-TI1*WI1AI-TI*WI
EDOT— (VI/DX)*DLOG((AI1/AI))
SI-l+((EDOT/NN))**(1/T1)
YI—SI*(YS+(K*(DLOG((AO/AI)))**N))SIGXI-((Til/TI)+(WI1/WI)-2)*YI+(2*DABS(TADI)*DX/TI)+(2*DABS(TAUI2 

&)*DX/WI)+SIGXI1 
PI-PI1

C
ENDIF

C
RES-PI+SIGXI-YI

C
RETURN
END

C**********************************************************************C 
C HOOKE AND JEEVES (OPTIMISATION} C
C MULTIVARIATE DIRECT SEARCH METHOD CC Cc**********************************************************************c

SUBROUTINE HJ(B,BT,H,N,P,HINSTEP,FUNVAL)
IMPLICIT DOUBLE PRECISION (A-Z)INTEGER N,I
DIMENSION B(N),H(N),P(N),BT(N)

C
BASVAL-HERIT(B)
FMIN—BASVAL 

IO CALL EXPLO(B,H,BT,N,FMIN,BASVAL)
C

I F (FMIN.LT.BASVAL) THEN
C
C SET BASE SWOPS B2 FOR BASE POINT AND FMIN FOR BASVAL, IF SUCESS
C PATCALC CALULATES THE POSTION OF THE THE PATTERN MOVE
C 20 CALL PATCALC(B,P,N,BT)

CALL SETBASE(B,BT,N,BASVAL,FMIN)
CALL EXPLO(P,H,BT,N,FMIN,BASVAL)
I F (FMIN.LT.BASVAL) THEN GOTO 20 
ELSE

CALL DECH(H,N)
GOTO IO ENDIF

C ELSE
C ERRVEC-O.O 

DO 45 I—1,N ERRVEC-H(I )*H (I )+ERRVEC 
45 CONTINUEERRVEC—DSQRT(ERRVEC)

IF(ERRVEC.LT.MINSTEP) THEN 
FUNVAL-FMIN 
RETURN ELSE
CALL DECH(H ,N )
GOTO IO 
ENDIF 

ENDIF
C END
C *********************************************************************C
C EXPLORATORY HOVE SUBROUTINE C
C ARGS B-BASE POINT VECTOR C
C N-DIMENSION OF VECTORS CC H-STEP LENGTH VECTOR C
C BT-BASE POINT TEMPORARY VECTOR C
C FMIN—FUNCTION MINIMUH C
C  FBASE—FUNCTION VALUE AT BASE POINT CC*********************************************************************C

SUBROUTINE EXPLO(B,H,BT,N,FMIN,FBASE) 
IMPLICIT DOUBLE PRECISION (A-Z) 
INTEGER N,K
DIMENSION B(N),H(N),BT(N)

C FMIN—FBASE 
BLANK-1.O
CALL SETBASE(BT,B,N,BLANK,BLANK)
DO IO K—1,N BT(K)=B(K)+H(K)
FVAL—MERIT ( BT )IF(FVAL.GE.FMIN) THEN 
BT(K)-B(K)-H(K)
FVAL—MERIT(B T )
I F (FVAL.GE.FMIN) THEN BT(K)-B(K)
ELSEFMIN—FVAL 
ENDIF 

ELSE 
FMIN—FVAL 

ENDIF 
IO CONTINUE 

RETURN 
END

C**********************************************************************C
C DECREMENT STEP VECTOR Cc**********************************************************************c

SUBROUTINE DECH(H ,N )
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER N,I 
DIMENSION H(N)

C
DO IO I—1,N

H( I )—O .5*H(I)
IO CONTINUE

C
RETURN
END



C**********************************************************************C 
C CALCULATES C
C P » B + 2(B — B  ) C
C i i i+1 i Cc**********************************************************************c

SUBROUTINE PATCALC(B,P,N,BT)
IHPLICIT DOUBLE PRECISION (A-Z)
INTEGER N,IDIMENSION B(N)/P(N),BT(N)

C
DO IO 1*1,N

P(I)-2*BT(I)-B(I)IO CONTINUE 
RETURN 
END

C**********************************************************************C
C SET BASE SHOPS B2 IN TO B, AND FMIN INTO BASVAL Cc**********************************************************************c

SUBROUTINE SETBASE(B,BT,N,BASVAL,FHIN)
IMPLICIT DOUBLE PRECISION (A-Z)
INTEGER N,I DIMENSION B(N),B T (N )
BASVAL—FMIN
DO IO I-1,N 

B(I)«BT(I) IO CONTINUE
RETURN
END

2.2 Non-Newtonian Optimisation code

c**********************************************************************c
C OPTIMISATION THREE - PLASTO HYDRO-DYNAMICS C
C
C  X(1)-L1
C  X(2)-Hl/fa2 C
C X(3)«H3/b2 Cc**********************************************************************c

PROGRAM OPT2 IMPLICIT REAL (A-Z)
DIMENSION X(3),H(3),P( 3) ,BT(3 ) ,ROW(100)
INTEGER N 
CHARACTER LIN CHARACTER*25 FILNAM 
COMMON VEL,PLN 

C  4r * * * * * * * * * *  4r *  * * * * * *  * £

C INITIALISE VARIABLES C
C***************************C

N-3LIN-'-'
DO IO I—1 ,N 
P(I)—O 

IO CONTINUE 
C X(l)-15
C X (2)—8C X(3)—6
C H(l)—1.5C H(2)»0.8
C H(3)—O .6
C MINSTEP—O .Ol
C VEL—0.15C PLN-1.O
C GOTO 777c*****************************c
C MENU SYSTEH Cc*****************************c

1 CALL CLS 
CALL HEADER
WRITE(6,*) '1# MULTI START OPTIMISATION SEQUENCE '
WRITE(6,*) '2# SINGLE OPTIMISATION '
WRITE(6,*) '3# SURFACE GENERATION 'WRITE(6,*) '4# EXIT'
CALL BLANK(3)WRITE(6,*) ' ENTER OPTION REQUIRED '
READ(5,*) MOPTIF((MOPT.GT.4).OR.(HOPT.LT.l)) GOTO 1 C*************************************************************C 

C MULTI START OPT CODE BLOCK CC*************************************************************C
IF (HOPT.E Q .1) THEN

C 2 CALL HEADER
WRITE(6,*) '1# L1/L2- ',X1L,' TO '#X1T,' IN ',X1NSTEPWRITE(€,*) '2# H1/H2- ',X2L,' TO ',X2T,' IN ',X2NSTEP
WRITE(6,*) '3# H3/H2- ',X3L,' TO ',X3T,' IN ',X3NSTEP
WRITE(6,*) '4# PROPORTION OF H(l) AS SEARCH VECTOR ',H1T
WRITE(6,*) '5# PROPORTION OF H(2) AS SEARCH VECTOR ',H2T
WRITE(6,*) '6# PROPORTION OF H(3) AS SEARCH VECTOR ',H3T
WRITE(6,*) '7# MINIMUM SIZE OF EUCLIDEAN SEARCH VECTOR',MINSTEP
WRITE(6,*) ' '
WRITE(6,*) '8# RUN'CALL BLANK(IO)

11 WRITE(6,*) ' ENTER OPTION REQUIRED 'READ(5,*) IOPT
C

IF(IOPT.EQ.42) GOTO 1
IF((IOPT.GT.8).OR.(IOPT.LT.l)) GOTO 11

I F (IOPT.E Q .1) THEN 
WRITE(6,*) ' ENTER INITIAL L1/L2 RATIO 
READ(5,*) X1L
WRITE(6,*) ' ENTER FINAL L1/L2 RATIO ' 
READ(5,*) X1T
WRITE(6,*) ' ENTER NUMBER OF STEPS '
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READ(5,*) XINSTEP X1STEP-(X1T-X1L)/X1NSTEP 
ENDIF

IF(IOPT.EQ.2) THEN 
WRITE(6,*) ' ENTER INITIAL H1/H2 RATIO '
READ(5,*) X2L
WRITE(6,*) ' ENTER FINAL H1/H2 RATIO '
READ(5,*) X2T
WRITE(6,*) ' ENTER NUHBER OF STEPS '
READ(5,*) X2NSTEP 
X2STEP-(X2T-X2L)/X2NSTEP 

ENDIF

IF(IOPT.E Q .3) THEN WRITE(6,*) ' ENTER INITIAL H3/H2 RATIO '
READ(5,*) X3LWRITE(6,*) ' ENTER FINAL H3/H2 RATIO '
READ(5,*) X3TWRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) X3NSTEP X3STEP-(X3T-X3L)/X3NSTEP 

ENDIF

I F (IOPT.E Q . 4 ) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(l) {L1/L2}' 
READ(5,*) HIT 

ENDIF

IF(IOPT.EQ.5) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(2) {H1/H2}' 
READ(5,*) H2T 

ENDIF

IF (IOPT.EQ.6) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(3) {H3/H2} ' 
READ(5,*) H3T 

ENDIF

IF (IOPT.E Q .7) THEN 
WRITE( 6, *) 'ENTER MINIMUM SIZE OF SEARCH VECTOR '
READ(5,*) MINSTEP 
IF (MINSTEP.LE.O) THEN

WRITE(6,*) ' INVALID SEARCH VECTOR MINIMUM '
GOTO 42 

ENDIF 
ENDIFIF (IOPT.E Q .8) GOTO 12 
GOTO 2 
CALL CLS
WRITE(6,*) 'Enter file name for data {enclose In single quotes}' 
READ(5,*) FILNAM 
OPEN( 3 ,FILE—FILNAM)

WRITE(6,*) 'ENTER VELOCITY FOR OPTIMISATION '
R E A D ( 5 , * )  VEL 

C W R I T E (6,*) ' E N T E R  N O N - N E W T O N I A N  I N D E X  '
C READ(5,*) PLN
C
C

PLN-O.33333WRITE(3,*) 'FILE - ',FILNAM 
WRITE (3,*)
WRITE(3, * ) 'PARAMETERS'
WRITE (3,*)WRITE(3,*) 'MINIMUM SEARCH VECTOR- ',MINSTEP 
WRITE(3, * ) 'L1/L2- ',X1L,' TO ',X1T,' IN ',X1NSTEP
WRITE(3, *) 'H1/H2- ',X2L,' TO ',X2T,' IN ',X2NSTEP
WRITE(3,*) 'H3/H2— ',X3L,' TO ',X3T,' IN ',X3NSTEP
WRITE(3,*) 'PROPORTION SEARCH VECTOR H(l) ',H1T
WRITE(3,*) 'PROPORTION SEARCH VECTOR H(2) ',H2TWRITE(3,*) 'PROPORTION SEARCH VECTOR H<3) ',H3T
WRITE(3,*) ' 'WRITE(3,100) 'VEL- ',VEL 
WRITE(3,lOO) 'PLN= ',PLN 
WRITE(3,1010)
WRITE(3,*) 'L1/L2 H1/H2 H3/H2 | L1/L2 H1/H2

&H3/H2 MERIT'
WRITE(3,1010)

1010 FORMAT(79('— '))
C DO 15 XI—X1L,X1T,X1STEP 

DO 16 X2—X2L,X2T,X2STEP DO 17 X3—X3L,X3T,X3STEP
C X(1)-X1 

X(2)-X2 
X (3)—X3

C H (1)—HIT* XI 
H (2)—H2T*X2 
H (3)—H3T*X3

C CALL HJ(X,BT,H,N,P,MINSTEP,FUNVAL)
CC IF (EMODE.EQ .2.) THENC WRITE(3,*) '******* SEARCH VECTOR EXCESS DETECTED *******'
C WRITE(6,*) '******* SEARCH VECTOR EXCESS DETECTED *******'
C EMODE—1 .O
C ENDIF
C WRITE(3,110) XI,X2,X3,X(1),X(2),X(3),FUNVAL
CC SCREEN ECHO 
C WRITE(6,H O ) XI,X2 ,X3,X(1),X(2),X(3),FUNVAL 

17 CONTINUE



16 CONTINUE 
15 CONTINUE

C lOO FORMAT(IX,A5,E13. 7 )
H O  FORMAT (7 (IX , FIO . 6 ) )

CLOSE(3)
CC

CALL CLSWRITE(6# *) 'OPTIMISATION SEQUENCE COHPLETED {press ret}' 
READ(5,*)
ENDIF

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *c
C SINGLE START CODE BLOCK 
CC**************************************************************

IF(MOPT.E Q .2) THEN 
4 CALL CLS

CALL HEADER
WRITE(6#* ) '1# L1/L2- ',X1LWRITE(6,*) '2# H1/H2- ',X2L
WRITE( 6 , * ) '3# H3/H2- ',X3LWRITE(6,*) '4# SEARCH VECTOR H(l) ',H1T
WRITE(6,*) '5# SEARCH VECTOR H(2) ' ,H2T
WRITE(6,*) '6# SEARCH VECTOR H(3) ' ,H3T
WRITE( 6 , * ) '7# SIZE OF MINIMUM SEARCH VECTOR',MINSTEP
WRITE(6,*) ' '
WRITE( 6 , * ) '8# RUN'CALL BLANK(I O )

14 WRITE(6,*) ' ENTER OPTION REQUIRED '
READ(5,*) IOPT

C IF (lOPT.E Q .42) GOTO 1
IF((IOPT.GT.8).OR.(IOPT.LT.l)) GOTO 14

IF (IOPT.E Q .1) THEN 
WRITE(6,*) ' ENTER INITIAL L1/L2 RATIO '
READ(5,*) X1L 

ENDIF

I F (IOPT.E Q .2) THEN 
WRITE(6,*) ' ENTER INITIAL H1/H2 RATIO '
READ(5,*) X2L 

ENDIF

IF(IOPT.E Q .3) THEN 
WRITE(6,*) ' ENTER INITIAL H3/H2 RATIO '
READ(5,*) X3L 

ENDIF

IF(IOPT.E Q .4) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(l) {L1/L2}' 
READ( 5 , * ) HIT 

ENDIF

IF (IOPT.EQ.5) THEN 
WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(2) {H1/H2}' 
READ(5,*) H2T 

ENDIF

IF(IOPT.E Q .6) THEN WRITE(6,*) 'ENTER PROPORTION FOR SEARCH VECTOR X(3) {H3/H2}' 
READ( 5 , * ) H3T 

ENDIF
IF (IOPT.E Q .7) THEN 43 WRITE(6,*) 'ENTER MINIMUM SIZE OF SEARCH VECTOR '
READ(5,*) MINSTEP IF (MINSTEP.LE.O) THEN

WRITE(6,*) ' INVALID SEARCH VECTOR MINIMUH '
GOTO 43 

ENDIF 
ENDIF

IF(IOPT.EQ.8) GOTO 25 
GOTO 4

C

25 CALL CLSWRITE(6,*) 'ENTER VELOCITY FOR OPTIMISATION 
READ(5,*) VEL 
PLN-O.3333333 

C WRITE(6,*) 'ENTER NON-NEWTONIAN INDEX '
C READ(5,*) PLN
C 
C

WRITE(6 , * )WRITE( 6 , * )
WRITE(6,*) 'HIN STEP- ',MINSTEP WRITE(6,*) 'L1/L2- ',X1L 
WRITE(6,*> 'H1/H2- ',X2L 
WRITE(6,*) 'H3/H2- ',X3L
WRITE(6,*) 'PROPORTION OF SEARCH VECTOR H(l) ',H1T
WRITE( 6 , * ) 'PROPORTION OF SEARCH VECTOR H(2) ',H2T
WRITE(6/*) 'PROPORTION OF SEARCH VECTOR H(3) ',H3T
WRITE(6,*) ' '
WRITE(6,100) 'VEL- ',VEL WRITE(6,lOO) 'PLN- ',PLN
WRITE ( 6 — — — —
WRITE(6,*) ' X(l) X (2) X(3) | MERIT
WRITE(6,*)

C
X(l)—X1L 
X(2)-X2L 
X(3)—X3L

C
H(1)-H1T*X(1)
H ( 2 )—H2T*X(2)
H (3)—H3T* X (3)

00
 
0



WRITE(6 , * ) X(l),X(2),X(3)
WRITE(6,*) H(I),H(2),H(3)
WRITE(6, * ) BT(1),BT(2),BT(3)
WRITE(6,*) P(1),P(2),P(3)
WRITE(6,*) N,MINSTEP 
WRITE(6,*) VEL,PLN 
READ(5,*)
WRITE(6,*) 'CALLING HJMAIN'
CALL HJ(X,BT,H,N,P,MINSTEP,FUNVAL)
CALL BLANK(3)WRITE(6,llO) XXL,X2L,X3L,X(1),X(2) ,X(3),FUNVAL 
CALL BLANK(3)C
WRITE(6,*) 'OPTIMISATION SEQUENCE COMPLETED {press ret}'
READ(5,*)

C
ENDIF

CC**********************************************************************C
C SURFACE GENERATION CODE BLOCK C
C <c**********************************************************************c 

I F (MOPT.E Q .3) THEN 
72 CALL HEADERWRITE(6,791) X1L,X1T,X1NSTEP

WRITE(6,792) X2L,X2T,X2NSTEP
WRITE(6,793) X3L
WRITE(6,*) ' 'WRITE(6,*) '4# RUN'
CALL BLANK(IO)791 FORMAT(' 1# L1/L2-',F12.4,' TO ',F12.4,' IN ',F8.3)

792 FORMAT(' 2# H1/H2-',F12.4,' TO ',F12.4,' IN ',F8.3)
793 FORMAT(' 3# CONSTANT VALUE OF H3/H2 RATIO- ',F12.6)

711 WRITE(6,*) ' ENTER OPTION REQUIRED 'R£AD(5,*) IOPT
C

I F (IOPT.EQ >42) GOTO 1
IF((IOPT-GT.4) .OR.(IOPT.LT.1)) GOTO 711

C
C

IF(IOPT.EQ.l) THEN 
WRITE(6,*) ' ENTER INITIAL L1/L2 RATIO '
READ(5,*) X1L
WRITE(6,*) ' ENTER FINAL L1/L2 RATIO '
READ(5,*) X1T
WRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) X1NSTEP 
X1STEP— (X1T-X1L)/X1NSTEP 

ENDIF
Cc

I F (IOPT.EQ.2) THEN WRITE(6,*) ' ENTER INITIAL H1/H2 RATIO '
READ(5,*) X2LWRITE(6,*) ' ENTER FINAL H1/H2 RATIO '
READ(5,*) X2T
WRITE(6,*) ' ENTER NUMBER OF STEPS '
READ(5,*) X2NSTEP 
X2STEP-(X2T-X2L)/X2NSTEP 

ENDIF
C
C

I F (IOPT.E Q .3) THEN 
WRITE(6,*) ' ENTER CONSTANT VALUE FOR H3/H2 RATIO '
READ(5,*) X3L 

ENDIF
C
C

I F (IOPT.E Q .4) THEN 
GOTO 712 

ENDIF
C GOTO 72
C

712 CALL CLS
WRITE(6,*) 'Enter file name for data {enclose In single quotes}' 
READ(5,*) FILNAM 
OPEN(3,FILE—FILNAM)
CALL CLS

C
C

WRITE(6,*) 'ENTER VELOCITY FOR OPTIMISATION 'READ(5,*) VEL
WRITE(6,*) 'ENTER NON-NEWTONIAN INDEX 'READ(5,*) PLN

C CALL CLS 
CALL HEADERCc
X3-X3L

C
COUNT—0.0
DO 799 ZXN—X2L,X2T,X2STEP 
COUNT—COUNT+1 
RO W (COUNT)-ZXN 799 CONTINUE
WRITE(3,718) IDINT(X1NSTEP+2),IDINT(COUNT+1)
FORMAT(14,2 X ,14)
WRITE(3,717) 0.0,(ROW(ZXN),ZXN-1,COUNT,1)
DO 715 XI—X1L,X1T,X1STEP 

C2-0
DO 716 X2—X2L,X2T,X2STEP

X(1)-X1 
X(2)-X2 
X (3)—X3
FUNVAL—MERIT(X )
R O W (C 2 )-DABS(FUNVAL)

C
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c
WRITE(3,717) XI,(ROW(ZXM),ZXN-1,COUNT,1)

717 FORMAT(FIO. 6 ,lOO( 2X ,FIO. 6 ) )
715 CONTINUE

CLOSE( 3 )

CALL CLS
WRITE(6,*) ' SURFACE GENERATION COMPLETED {press ret}' 
READ(5,*)

ENDIF
IF(MOPT.EQ.4) THEN 
CALL CLS
STOP 'HAVE A NICE DAY' 

ENDIF
GOTO 1 
END

C CLEAR SCREEN CC* **********
SUBROUTINE CLS 
DO IO 1-1,28 
WRITE(6,*) ' '

IO CONTINUE 
RETURN 
END

WRITES THE HEADER TITLE 
SUBROUTINE HEADER
WRITE(6,*) 
WRITE(6,*) 
WRITE(6,*) 
WRITE(6,*)

* ************************************ 
'POWER LAW - MODEL OPTIMISATION PROG' *************************************

RETURN

C  BLANK - GENERATES N  BLANK LINES Cc**************************************c
SUBROUTINE BLANK(N)
INTEGER N,I

C DO IO I—1,N
WRITE(6,*) ' '

IO CONTINUE 
RETURN 
END

C PLAW - SOLVES THE GOVERNING EQUATIONS OF DEFORMATION FOR THE 
C DEFORMATION ZONE, THIS IS ACCOMPLISHED USING A FINITE
C DIFFERENCE FORMULATION, A LINEAR DEFORHATION PROFILE ISC  ASSUMED BETWEEN THE SOLUTION POINTS, VARIABLES HAVE THE
C SAME MEANING AS DEFINED PREVIOUSLY

REAL FUNCTION MERIT(X)
IMPLICIT REAL (A-Z)
LOGICAL SLIP,SFLAG 
INTEGER IMINIT,ISTEP 
DIMENSION X(3)
COMMON VEL,PLN
COMMON /F1C/ W,T,H1,H2,H3,L1,L2,PLK 
SLIP-.FALSE.

C
C CONSTANTS 
C OL-O.1785 

H2-0.00004 
ONEPART-OL/(X (1)+1)
LI—X (1)*ONEPART 
L2—0.1785—LI 
HI—X(2)*H2 
H3-X(3)*H2
IF((Ll.LE.O).OR.(L2.LE.O).OR.(Hl.LE.O).OR.(H3.LE.(1*H2))) THEN 

HERIT-O.O
WRITE(6,200) X(l),X(2),X(3),MERIT,SLIP 
RETURN 

ENDIF
C VIS—120 

YS—70000000 
SHK—600000000 SHI—0.6 
W-0.0253 
T-O.001575 
TAUCRI—320000 
PLK—25000 

C PLK—120C  PLN—1.O
C ITERATE FOR TAUI AND TAU3 C
C*A***************************************Cc

PM-6*PLK*PLN*(H1-H2)*VEL**PLNPH—PM/((((H2)**(2+PLN))/L2)+(((HI)**(2+PLN))/LI))
C

DPDX-PM/L1
CALL SHEAR(TAUI,DPDX,HI,VEL)CALL SHEAR(TAU3,DPDX,H3,VEL)

C
I F ((TAUI.GE.TAUCRI).O R .(TAU3.G E .TAUCRI)) THEN 

TAUI—TAUCRI

oooooo



TAU3-TAUCRI 
SLIP-.TRUE.

ENDIFTAUI1-TAU1 
TAOI21—TAU3C*********************************************************C

C CALCULATE XI THE DISTANCE TO THE ONSET OF DEFORMATION C C*********************************************************C
XI—YS/((PM/LI)+(2.*ABS(TAUX)/T)+(2.*ABS(TAU3)/W))
IF(Xl.GT.LI) THEN

WRITE( O , * ) ' XI >> LI ****** ERROR'
MERIT—0.0 
RETURN 

ENDIFC*****************************************************************C
C CALCULATE THE INITIAL CONDITIONS AT X-Xl ONSET OF DEFORMATION C

PI - (PH/Ll)*X1
TI—T
WI-W
VI—VEL
HI—HI
H2I-H3DPDX—PM/LI
SIGXI-(2*ABS(TAUI)*X1/T)+(2*ABS(TAU3)*X1/W)
XP-X1

C IRW-O 
DX—2.0 DX—DX/IOOO.
NSTEP—INT( ( (LI—XI) /DX)+0. 5)
DX - (LI—XI)/NSTEP 
H-W/T

C SOLVING EQUATIONS C
C************************C 

XPD-O.O
DO IO ISTEP-1,NSTEP,1 c* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c  

C INCREMENT X VARIABLE XP C 
C*******************************C 

XP-XP+DX 
XPD— XPD+DX C******************************C 

C FIND SLOPE OF DEFLECTION C C******************************C 
21 B1-1E-9B2-2E-4 

DB-1E-5Rl—PLRES(B1,HI,HI,H2I,PLK,PLN,VEL,W,T,DX,BOLD,PI,PM,SHI,SHK,J1,L1, 
&SIGXI,Y S ,T I ,W I ,SLIP,TAUII,TAU3I)R2—PLRES(B2,H1,HI,H2I ,PLK,PLN,VEL,W,T,DX,BOLD,PI ,PM,SHI ,SHK, J1 ,L1, 
&SIGXI,YS,TI,WI,SLIP,TAUII,TAU3I)

20 CONTINUE
IF(ABS(R1).LE.20000) THEN 

B-BI 
GOTO 30 

ENDIF
IF(ABS(R2).LE.20000) THEN 

B-B2 
GOTO 30 

ENDIF
CC GET SIGNS OF SEARCH POINTS 
C IF(RX.GE.O.O) THEN 

ISR1-1 
ELSE 
ISRl-O 

ENDIF
IF (R 2 .G E .0.0) THEN 
ISR2-X 

ELSE 
ISR2-0 

ENDIFC
C MAIN LOOP C

IF (ISR1.E Q .ISR2) THEN
SLOPE-((R2-RX)/(B2-B1))
IF (SLOPE.G T .0.0) THEN

IF ((ISR1.E Q .1).AND.(ISR2.EQ.1)) THEN 
BX-B1-DBIF(Bl.LE.O.O) THEN 
B1-B1+DB 
DB—DB/2 
GOTO 20 

ENDIF 
ELSE

B2—B2+DB 
ENDIF 

ELSE
IF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN 

B2—B2+DB 
ELSE
B1-B1-DB
IF(Bl.LE.O.O) THEN 
Bl—Bl+DB 
DB—DB/2 GOTO 20 

ENDIF ENDIF 
ENDIF ELSE
IF(ABS(R1).GE.ABS(R2)) THEN 

B1-B1+(AB S (B1-B2))/2 
ELSEB2-B2-(ABS(B1-B2))/2 
ENDIFDB—ABS(B2-B1)/3 

ENDIF
RI—PLRES(B l ,HI,HI,H2I,PLK,PLN,VE L ,W ,T ,D X ,BOLD,P I ,P H ,SHI,SHK, J1 , L I , 

&SIGXI,Y S ,T I ,W I ,SLIP,TAUII,TAU3I)
R2—PLRES(B2,H1,HI,H2I,PLK,PLN,VEL,W,T,DX,BOLD,PI,PM,SHI,SHK, J1 ,L1, 

&SIGXI,Y S ,T I ,W I ,SLIP,TAU1I,TAU3I)
GOTO 20 

30 CONTINUE



C HENCE HAVING FOUND B, EVALUATE SIG'S AND PRESSURES OF N+l STEP 
C ******

IF(.NOT.SLIP) THEN
C

HI1-H(HI,B,DX)
H2I1«H(H2I,B*M,DX)
TI1-TF(TI,B,DX)
WI1-TF(WI,B*H,DX)
AR-W*T/ ( WI1*TI1)
VI1-VEL*ARV05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.)) 

£ * * * * * * * * * * * * * * * * * * * * * * £
C FOR THE PRESSURES C 
C*****************DPDXtl-(6 *PLN*PLK*(VII/HI1)**(PLN-1))/(HI1**3) 

DPDXI1-DPDXI1*((VIl*HIX-VEL*Hl)+((PH*H1**(2+PLN))/
& (6*L1*PLN*PLK*VEL**(PLN-I))))

PI1-P(PI,DPDXI1,DX)PI05-P(P I ,DPDXI1,DX/2)
C***************************C 
C FOR MATERIAL PROPERTIES C 
C***************************C

YI1-YS+SHK*((LOG(AR)**SHI))c***********************c
C FOR THE STRESSES C
C***********************CCALL SHEAR(TAU105,DPDXI1,H(HI,B,DX/2.O),V05)

CALL SHEAR(TAU305,DPDXIl,H(H2I,B,DX/2.0),V05)
C

IF((ABS(TAU105).GE.TAUCRI).OR.(ABS(TAU305).GE.TAUCRI)) THEN 
SLIP-.TRUE.
TAU3I—TAUCRI TAUII—TAUCRI 
GOTO 21 

ENDIF
RS-ABS(BOOLD-B)*(1+ M )SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*TAN(B)/Til)+

&(2.0*PI05*DX*TAN(M*B)/WI1)+(2.0*ABS(TAU105)*DX/TI1)+
&(2*ABS(TAU305)*DX/WI1)
SIGRW—YIl*RS/4.O
IF(IRW.EQ.l) SIGXI1—SIGXI1+SIGRW 

c*********************************
C SAVE NEW VALUES TO THE 1th STEP C 
c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

PI-PI1
TI—TilWI-WI1
VI-VI1
VI-VI1
HI-HI1
H2I-H2I1
SIGXI—SIGXI1TAUII—TAU105
TAU3I—TAU305
DELB-B-BOOLD
BOOLD-B

C
ELSEC
HI1-H(HI,B,DX)H2I1—H(H2I,B*H,DX)
Til—TF(TI,B,DX)
WI1-TF(WI,B*H/DX)
AR-W*T/(WI1*TI1)VII—VEL*AR
V05—VEL*W*T/(TF(WI,B*H,DX/2.)*TF(TI,B,DX/2.))

C**********************C 
C FOR THE PRESSURES C C**********************C 

Z—RLAM(PLN/2.0)
PI1-PI
PI05-PIc***************************0

C FOR MATERIAL PROPERTIES C C***************************C
YI1-YS+SHK*((LOG(A R )**SHI))

G * * * * * * * * * * * * * * * * * * * ****C
C FOR THE STRESSES C

TAU105—TAUII TAU305—TAU3I 
RS-ABS(BOOLD-B)*(1+M)C  SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*TAN(B )/Til)+

C &(2.0*PI05*DX*TAN(M*B)/WI1)+(2.0*ABS(TAU105)*DX/TI1)+
C  &(2*ABS(TA0305)*DX/WI1)

SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*TAN(B)/Til)+&(2.0*PI05*DX*TAN(H*B)/WI1)+(2.0*ABS(TAU105)*DX/TI1)+
&(2*AB S (TAU305)*DX/WI1)

SIGRW—YIl*RS/4.OC
C  INCLUDE THIS TERM FOR REDUNDENT WORK 
C IF(IRW.EQ.l) SIGXI1—SIGXI1+SIGRW
C SAVE NEW VALUES TO THE 1th STEP C

PI-PI1 DPDXIl-O.O 
TI—Til 
WI-WI1
VI-VI1
VI-VII 
HI-HI1 
H2I-H2I1 
SIGXI—SIGXI1 

C SLIP-.FALSE.
DELB-B-BOOLD
BOOLD-B

C ENDIF
C

IO CONTINUE
C HINIT— ((1— (<WI*TI)/(W*T)))*100)

IMINIT-INT ( HINIT*1E6 )

on



MERIT— l*FLOAT (IMINIT/IE6 )WRITE( 6 ,200) X(l),X(2),X(3),MERIT,SLIP
C RETURN
CC lOO FORMAT(3(IX,EIO.4),2(FIO.O ) ,2(IX,L4)) 

125 FORMAT(I X ,E 1 2 1 X , E 1 2 . 6 )130 FORMAT(F 7 .6,IX,13(1X,E10.4))
150 FORMAT(14,11(1X,E10.4))
200 FORMAT(4(E19.12),L3 )

END

C******************************************************************C
C POWER LAW RESIDUAL FUNCTION C
C******************************************************************C

REAL FUNCTION PLRES(B,H1,HI,H2I,PLK,PLN,VEL,W,T,DX,BO,PI,PM,
&SHI,SHK,J 1 ,L I ,SIGXI,Y S ,T I ,W I ,SLIP,TAUII,TAU3I)REAL H,TF,P,M,H2I1,TI1,WI1,B,H1,H I ,PLK,PLN,VII,TAU105,
&TAU305,W, T ,DX ,A R ,VEL,Z,DPDXI1,PI05,PI1,RLAM,TI,WI,H2I,P I ,V05, 
&YI1,PM,Jl,LI,SIGXI,HI1,BO,YS,RS,SIGXI1,SHI,SHK,SIGRW,TAUII,TAU3I 
LOGICAL SLIPC
H-W/TC
IF(.NOT.SLIP) THEN HI1-H(HI,B,DX)
H2I1-H(H2I,B*H,DX)
TI1-TF(TI,B,DX)
WI1-TF(W I ,B* M ,D X )AR-W*T/(WI1*TI1)
VI1-VEL*ARV05«VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.)) 

C**********************C 
C FOR THE PRESSURES C 
C**********************C Z-RLAM(PLN,2.0)

DPDXI1-(6*PLN*PLK*(VII/HI1)* *(PLN-1))/(HI1* *3)DPDXI1-DPDXI1*((VIl*HIl-VEL*Hl)+((PM*H1**(2+PLN))/
& (6*L1*PLN*PLK*VEL**(PLN-1))))

PI1-P(P I ,DPDXI1,D X )
PI05-P(P I ,DPDXI1,DX/2)

C FOR MATERIAL PROPERTIES C
YI1«YS+SHK*<(LOG(AR)**SHI)>C***********************C 

C FOR THE STRESSES C
C***********************G

CALL SHEAR(TAU105,DPDXIl,H(HI,B,DX/2.0),V05)CALL SHEAR(TAU305,DPDXI1,H(H2I,B,DX/2.O ),V05)
C RS-ABS(BO-B)*(1+H )

SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*TAN(B)/Til)+6(2.0*PI05*DX*TAN(H*B)/WI1)+(2.0*ABS(TAU105)*DX/TI1)+
&(2*AB S (TAU305)*DX/WI1)

SIGRW-YIl*RS/4.O 
C IF(IRW.EQ.l.O) SIGXI1-SIGXI1+SIGRW
C

ELSE
C

HI1-H(HI,B,DX)
H2I1-H(H2 I ,B*M,D X )
TI1-TF(TI,B,DX)
WI1-TF(W I ,B *M,D X )
AR-W*T/(WI1*TI1)
VI1-VEL*AR
V05-VEL*W*T/(TF(WI,B*M,DX/2.)*TF(TI,B,DX/2.))C**********************c 

C FOR THE PRESSURES C c****-******************c 
PI1-PI 
PI05-PI

o***************************c
C FOR MATERIAL PROPERTIES C 
c***************************cYIl-YS+SHK*(<LOG(AR)**SHI))
C***********************C 
C FOR THE STRESSES Cc***********************c 

TAU105-TAU1I 
TAU305-TAU3I 
RS-ABS(BO-B)*(1+M)
SIGXI1-(SIGXI*WI*TI/(WI1*TI1))+(2.0*PI05*DX*TAN(B)/Til)+

&(2.0*PI05*DX*TAN(H*B)/WI1)+(2.0*ABS(TAU105)*DX/TI1)+
&(2*ABS(TAU305)*DX/WI1)SIGRW-YIl*RS/2.O 

C IF(IRW.EQ.l.O) SIGXI1-SIGXI1+SIGRW
C

ENDIFC*****************************c
C SET FUNCTION RETURN VALUE C o*****************************c

PLRES-PI1+SIGXI1-YI1
C

RETURN
END

C*******************************************************************'
C SHEAR - SHEAR SUBROUTINE ITERATIVE FINDS THE REQUIRED SHEAR STRESS 
C DURING SOLUTION OF THE PLASTO-HYDRODYNAHIC DRAWING OF
C RECTANGULAR SECTIONS
C********************************************************************

SUBROUTINE SHEAR(T,DPDX,HA,V)
IMPLICIT REAL (A-Z)

C WRITE(6,*) ' OPENING FILE'
C OPEN(3,FILE-'T S .DAT *)
C DO 1919 Bl— 1000000,1000000,20000
C R-TS(B1,PM)
C WRITE(3,*) B1,R
C  1919 CONTINUE 
C CLOSE(3)
C WRITE(6,*) * CLOSING FILE'

a
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Bl— 300000 B2— 200000 
DB-25000 ERR-0.005
Rl-TS(B l ,DPDX,H A ,V )
R2-TS(B 2 ,DPDX,H A ,V )

22 IF(ABS(R1).LE.ERR) THEN 
T-Bl 
GOTO 33 

ENDIF
IF(ABS(R2).LE.ERR) THEN 

T-B2 
GOTO 33 

ENDIF
CC GET SIGNS OF SEARCH POINTS 
C IF(Rl.GE.O.O) THEN 

ISR1-1 
ELSE 
ISRl-O 

ENDIF
IF(R2.GE.O.O) THEN 
ISR2-1 

ELSE 
ISR2-0 

ENDIFC
C MAIN LOOP 
C

IF (ISR1.EQ .ISR2) THEN
SLOPE-((R2-R1)/(B2-B1))
IF (SLOPE.G T .0.0) THENIF((ISR1.EQ.1).AND.(ISR2.EQ.1)) THEN 

Bl—Bl—DB 
ELSE

B2-B2+DBENDIF
IF((ISR1.EQ.1 ) .AND.(ISR2.EQ.1)) THEN 

B2-B2+DB 
ELSE

Bl—Bl—DB 
ENDIF 

ENDIF 
ELSE

IF(ABS(R1).GE.ABS(R2)) THEN 
Bl—B1+ ( ABS ( Bl—B2 ) ) /2 

ELSEB2-B2-(AB S (B1-B2))/2 
ENDIF
DB-ABS(B2-B1)/3 

ENDIFRl-TS(Bl,DPDX,HA,V)
R2-TS(B2,DPDX,HA,V)
GOTO 22 

33 CONTINUE 
RETURN 
END

C******************************C 
C SHEAR FUNCTION T CC******************************c

REAL FUNCTION TS(A,DPDX,HA/V)
IMPLICIT REAL (A-Z)
COMMON VEL,PLN
COMMON /F1C/ W,T,H1,H2,H3,L1,L2,PLK

C
Cl—DPDX*(1/PLK)C2-A/PLK
C3-C1*HA+C2

C TEMP— (C3**RLAH(PLN,1.0))— (C2**RLAM(PLN,1.0)) 
TS— (TEMP/(C1*RLAM(PLN,1.0))) + V

C RETURN
END

C*****************************C
C GAP FUNCTION CC*****************************C

REAL FUNCTION H(HN,SLOPE,DELX)
REAL HN,SLOPE,DELX
H—HN+SLOPE*DELX
RETURN
END

C***********************C
C THICKNESS FUNCTION CC***********************C

REAL FUNCTION T F (T N ,SLOPE,DELX) 
REAL TN,&LOPE,DELX

C TF—TN—2.0*SLOPE*DELX
C RETURN

END

C PRESSURE FUNCTION C
REAL FUNCTION P (P N ,DPDX,DELX) 
REAL PN,DPDX,DELX

C P —PN+DPDX*DELX
C

RETURN
END

C******************************C 
C LAMDA FUNCTION Cc******************************c
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REAL FUNCTION RLAM( N , M )
REAL N,H

C RLAM-FLOAT(INT((1.O/N)+FLOAT(M )))
C

RETURN
END

C*******************************C
C JAY SUBROUTINE C
C*******************************C

SUBROUTINE JAY(J,N)
REAL A,B,J,N,R1,R2,RLAMC
R1-RLAH(N,FLOAT(1.0))
R2-RLAH(N,FLOAT(2.0))
A-1/(R1*R2)B-1/(R1*2.0)
J-A-B

C
RETURNEND

C******************************************************************’
C HOOKE AND JEEVES {OPTIMISATION}C  MULTIVARIATE DIRECT SEARCH METHOD 
CC******************************************************************’

SUBROUTINE HJ(B,BT,H,N,P,MINSTEP,FUNVAL)
IMPLICIT REAL (A-Z)
INTEGER N,IDIMENSION B(N),H(N),P(N),BT(N)

C
BASVAL-MERIT(B )
FMIN-BASVAL IO CALL EXPLO(B,H,BT,N,FMIN,BASVAL)

C
I F (FMIN.LT.BASVAL) THEN

C
C  SET BASE SWOPS B2 FOR BASE POINT AND FMIN FOR BASVAL, IF SUCESS
C PATCALC CALULATES THE POSTION OF THE THE PATTERN HOVEC

20 CALL PATCALC(B,P,N,BT)CALL SETBASE(B,BT,N,BASVAL,FMIN)
CALL EXPLO(P,H,BT,N,FMIN,BASVAL)
IF(FMIN.LT.BASVAL) THEN 

GOTO 20 
ELSE

CALL DECH(H,N)
GOTO IO 

ENDIF
C

ELSEC
ERRVEC-O.O 
DO 45 I-1,N 
ERRVEC-H(I )*H (I )+ERRVEC 45 CONTINUE

ERRVEC-DSQRT(ERRVEC)IF (ERRVEC.LT.HINSTEP) THEN 
FUNVAL-FMIN 
RETURN 

ELSECALL DECH(H,N)
GOTO 10 

ENDIF 
ENDIFC
END

C*********************************************************************C
C EXPLORATORY HOVE SUBROUTINE C
C ARGS B-BASE POINT VECTOR C
C N —DIMENSION OF VECTORS C
C  H-STEP LENGTH VECTOR C
C BT-BASE POINT TEMPORARY VECTOR C
C FMIN—FUNCTION MINIMUM C
C FBASE—FUNCTION VALUE AT BASE POINT Cc*********************************************************************c

SUBROUTINE EXPLO(B,H,BT,N,FMIN,FBASE) 
IMPLICIT REAL (A-Z)
INTEGER N,K
DIMENSION B(N),H(N),BT(N)

C
FMIN—FBASE 
BLANK-1.O
CALL SETBASE(BT,B,N,BLANK,BLANK)
DO IO K—1,N

B T (K )—B (K )+H (K )FVAL—HERIT(B T )
IF (FVAL.GE.FMIN) THEN 

BT(K)-B(K)-H(K)
FVAL—HERIT(B T )IF (FVAL.GE.FMIN) THEN 

BT(K)-B(K)ELSE
FHIN-FVAL

ENDIF
ELSEFHIN-FVAL 
ENDIF 

IO CONTINUE 
RETURN 
END

C*************************
C DECREMENT STEP VECTOR C*************************

SUBROUTINE DECH(H ,N ) 
IMPLICIT REAL (A-Z) 
INTEGER N,I 
DIMENSION H(N)

C

oo
nn
 o



n
o

n
 

o 
o

o
n

n
 

n

do 10 I-1,N
H(I)-0.5*H(I) 

IO CONTINUE
C

RETURN
END

CALCULATES C
P - B + 2 (B - B ) C
i 1 1+1 1 C

SUBROUTINE PATCALC(B,P,N,BT)
IMPLICIT REAL (A-Z)
INTEGER N,IDIMENSION B(N),P(N),BT(N)
DO XO 1-1,N

P(I)-2*BT(I)-B(I)IO CONTINUE 
RETURN END

SET BASE SWOPS B2 IN TO B, AND FMIN INTO BASVAL C
SUBROUTINE SETBASE(B,BT,N,BASVAL,FMIN)
IMPLICIT REAL (A-Z)
INTEGER N,I 
DIMENSION B(N),BT(N)
BASVAL—FMIN
DO IO I-1,N 

B(I)-BT(I) IO CONTINUE
RETURN
END

A2-19



Numerical M ethods in Industrial Forming Processes. Chenot. Wood & Zienkiewicz (eds)
S 1992 Balkema. Rotterdam. ISBN 9 0 5 4 1 0 0 8 7  7

A computer model for plasto-hydrodynamic drawing of narrow strips 
under flow instabilities

M .R. Stokes & G.R.Symm ons
School o f  Engineering, Sheffield C ity  P olytechnic, U K

ABSTRACT: Plasto-hydrodynamic drawing of circular cross-section wire has been modelled
previously. In this technique the deformation to the wire is caused by the combined 
effect of axial pull and radial pressure generated due to the hydrodynamic action of the 
viscous fluid. The extent of deformation is such that for a moderately vicous fluid with 
Newtonian characteristics fracture of the wire is predicted at drawing speeds in excess 
of about 5m/s even though the smallest bore size of the hydrodynamic pressure unit is 
larger than the undeformed diameter of the wire. In this study a finite difference 
computer model has been developed for predicting the reduction in area of a rectangular 
cross-section narrow strip pulled through a unit having a stepped rectangular cavity 
which is filled with a viscous Newtonian fluid; the smallest section of the stepped 
cavity being greater than the section of the undeformed strip. Emphasis, has been placed 
on the modelling of flow instabilities which occur at the elevated shear rates generated 
by the process and their effects on the deformation profile in the unit.
Key Words Strip drawing, plasto-hydrodynamics, Flow Instabilities, Finite difference, 
Reduction in area, Melt Fracture.

1 INTRODUCTION
A novel technique of wire drawing has been 
invented in which no conventional 
reduction dies are used and polymer melts 
are introduced as the lubricant in the 
drawing process. The main feature of this 
technique is that the conventional dies 
are replaced by a pressure cylinder which 
has an internal bore shaped such that 
hydrodynamic pressure is generated in the 
polymer melt surrounding the wire. The 
minimum internal bore size in the pressure 
cylinder is greater than the incoming wire 
diameter so no metal to metal contact 
takes place and there is no need to 
initially prepare the wire as in 
conventional wire drawing. The pulling 
action of the wire through the bore filled 
with the polymer melt gives rise to drag 
forces and generates hydrodynamic 
pressure. The combined effect of the 
imposed back stress and hydrodynamic 
pressure can be sufficient to deform the 
wire with selected sizes of orifice in the 
pressure chamber and speed of drawing. 
Wire deformations by this novel process 
can be varied by change of drawing speed 
competing with similar percentage

reductions in area per pass as with 
conventional die drawing but offering a 
more simple flexible output system with no 
pre-process preparation of the wire.
A number of analytical models have been 

previously developed in relation to wire 
drawing and tube sinking. By using a 
polymer melt as the working fluid, the 
deformed wire is polymer coated. The 
choice ' of polymer used determines the 
types .of coating produced whether an 
adhered coat or easily removed coat to 
suit product requirements. The coatings 
produced on the wire can be used for 
surface protection against corrosion, 
electrical insulation or as a preparatory 
coating for further processing. The 
thickness of the polymer coat on the wire 
depends upon the outlet sizes of orifice 
in the pressure unit. Hence the new 
process can be designed to suit a variety 
of wire deformation rates and polymer 
coating thickness on the wire for a 
variety of materials and polymers.
Recent research studies have 

concentrated on applying the die-less 
drawing process to strip. The above 
attributes for wire and tube have been 
applied to the deformation and polymer
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coating of strip. Closed form analytical 
models have been presented for strip 
drawing (1,2). A numerical solution has 
been developed for strip drawing (3) using 
a reduction unit with a rectangular slot 
of stepped geometry indicating that a 
reduction in area of the strip in excess 
of 30% could be achieved in a single pass.

point distant from the entry point. 
The equilibrium of forces in x-direction 
at this point gives.

Jx ~ -^1^1 + ^3-1
t x w x

Also p^ » Pro XI 
LI

(2)

(3)

2 PRESENT INVESTIGATION
A new numerical solution for strip drawing 
is presented using a finite difference 
method as in (3) and similar model logic 
and solution of the plasto-hydrodynamic 
conditions for the stable flow conditions 
of the working fluid. However, the 
numerical solution includes a more 
realistic treatment of the condition where 
flow instabilities occur. It has been 
demonstrated that melt fracture takes 
place at certain critical shear stress in 
the fluid gaps that are often used in the 
die-less process to produce high pressure 
and shear stress. Hence the critical 
shear stress condition of melt fracture is 
often met. The previous numerical
solution (1) assumed that once the onset 
of slip at the boundary was reached, the 
fluid pressure profile remained constant 
for all further increased velocities. In 
the present solution, slip is tested for 
each nodal point, such that, if slip is 
detected at some position in the 
deformation region, then the remaining 
nodal points are calculated using the slip 
condition.

3 ANALYSIS
The schematic diagram of the process is 
shown in Fig 1. To formulate expressions 
the following assumptions were made.

i) the dominant flow is axial and 
laminar
ii) the fluid pressure acts equally on 

both faces of the strip
iii) the pressure medium behaves like a 

Newtonian fluid
iv) isothermal conditions exist

3.1 Onset of plastic yielding of strip
Applying Von Mises Yield criteria, we 
derive the plasto-hydrodynamic governing 
equation

Pi + axl YX (1)

Substituting value of and ax into 
equation (1) and simplifying we obtain,

A 1= + 2r̂  + 2tj 1
1*1 w.

(4)

3.2 Axial stress and hydrodynamic pressure 
in the deformation zone.
Consider two points in deformation zone at 
a distance *dx' apart, (Fig 2), assuming 
that deformation between these points 
takes place linearly so that,

dt
dx
dW
dx

Constant

Constant b*

(5)

(6)

Expressing equations (5) and (6) in finite 
difference form we get,

11 = t. - b x'i " i-1
Wi = wi-l ~ b *x

(7)
(8)

Also from Figure 2 we have, dh = Jjdt and 
dh* = JjdW, which in finite difference form 
gives

1*2 = ^i_2 + *jb

hi* = hi-i = hb*
(9)

(10)

By considering the continuity of flow of 
metal, the current velocity is given by,
V. Vi.-^izl ti=i) 

W.t,
( I D

And using Levy-Mises flow rule it can be 
shown that
dW = dt and b* = mb 
W. t.

(12)

where m

Now let the deformation take place at a The force equilibrium in x-direction for a
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small element, Fig 2, in deformation zone 
gives,

do dtiyL - dWiyi - ricotedti 
fci wi tL

- t * cot/3 dW^ 
W.

(tirl + Wirl - 2)yL 
t. Wj_

(13)

+ 2t  ̂x + 2t  ̂x + 
t. W.

(14)
i-1

Equation (14) is an expression to
determine the axial stress in the
deformation zone. The shear stress terms 
are given by,

-iliP'i - tiZ.L 
2 h.

V  = i.P' i "2 h.

(15)

(16)

The flow of polymer melt in the 
deformation zone will be given by,

Qi - ~ hf- (dp) + Villi. 
12 ft (dx)i 2

(17)

And the continuity of the fluid flow will 
give,

Qi = Qi (18)
The equation (18) on simplification gives,
P -  1 [PffihJ + 6ji(Viihi - Vhi)] (19) 

h, LI
and

Pi-1 + Pi’ x (20)
The equation (19) gives the pressure p̂ , 
at any point in the deformation zone.

3.3 Percentage reduction in strip
size
The stress-strain relationship of the 
strip material is given by

Therefore,
+ Ke

yL = Yl + K(ln(Witi)]n (21)
H ^ i

Now the mean strain rate over a small 
distance may be defined by

i-1
1 f 1xi - xi-l Jai

1 fai - da.l
x J, a dt'

£. dx

dx
i-1

thus

A flow rule of the form,

s - Zd - 1 +(£») 1/T1
ya N

y^ = dynamic yield stress 
N and T. are constants

( 2 2 )

where

In finite difference form notation the 
above equation takes the form,

s i " 1 + <^n> 1/T1 N
Combining this with equation (21) gives,
Yi - Si[y1 + KtlntW^)}*1] (23)

Equation (23) gives the current yield 
stress of the strip material in the 
deformation zone. Once the plastic 
yielding is predicted to commence, further 
permanent deformation should continue to 
take place as along

Pi > ^i (24)
The procedure thus involved determination 
of the point by using equations
(1),(2), and (3) simultaneously. Once the 
position of onset is determined then the 
equations in deformation zone were solved 
by finite difference technique from a 
point i = X^to a point i = L^-X^. For any 
arbitrary value of b, the equation (24) is 
solved by iteration in conjunction with 
equations (14), (18), (23) for a small
distance x. After determining the value 
of slope b, the current thickness and the 
width of the strip may be calculated by 
using equation (7) and (8). The procedure 
is repeated in suitable steps up to the 
step where i = L^ “ and at that the 
values of t^ and will give the final 
dimensions of the 3trip. The percentage 
reduction in area of the strip can then be 
calculated by,
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PRA = (1 - Wifci ) x 10 (25)

3.4 Condition of slip
Flow instabilities of the pressure medium 
can take place in the process when high 
shear of the fluid occurs. Under these 
circumstances, melt fracture of the 
polymer melt causes slip at the strip 
boundary with a loss of performance. 
Since these flow instabilities are prone 
at typical practical drawing speeds, the 
numerical model needs to include this 
effect to give realistic process 
performance predictions.
The numerical method tests the shear 

stress condition for both faces of the 
strip against a critical shear stress of 
0.28 MNm~ for polymer melts. If at any 
point, in the first land, slip is 
initiated then this will cause a local 
discontinuity causing the slip condition 
to be propagated around the strip section. 
The changes made i the numerical model, 
improve the accuracy of process 
performance prediction.

can be seen in the calculated deformation 
profile, fig 3. At 0.16m/s slip does not 
occur and with deformation performance, 
then as the velocity increases through 
0.18, 0.19, and 0.2 m/s a distinct in the 
profile occurs at the onset of slip. This 
change accounts for fall off in 
performance for the process after 
arbitrary peak has been achieved, giving 
the destinctive shapes shown in Fig 6, 7, 
and 8.

4.2 Effect of land length ratio's
Fig 4 shows percentage reduction in area 
(PRA) against entry velocity for various 
L1/L2 ratio. The drawing performance is 
seen to improve with an increase in L1/L2 
ratio from 3.5 PRA (Ll/L2=l) to 11.16 PRA 
(Ll/L2=59). The entry velocity for peak 
PRA can be seen to decrease from 0.2m/s 
(Ll/L2=l) to 0.15m/s approx (1.1/1.2=59) 
with increasing L1/L2 ratio. Fig 5 shows 
peak PRA for L1/L2 ratio, this 
demonstrates that increasing L1/L2 ratio 
above 20 produces diminishing returns with 
virtually no increase above 50.

4 COMPUTER RESULTS AND DISCUSSION
Theoretical results were obtained by using 
the described plasto-hydrodynamic analysis 
including the effects of flow 
instabilities caused by slip. Computer 
results from the model were used to 
investigate:
i) effect of slip on deformation process
ii) effect of land length ratios given a 

constant overall length on percentage 
reduction in area

iii) effect of gap ratios for three 
different side gap values on percentage 
reduction in area

iv) effect of side gap value for various 
gap ratios on the peak deformation 
performance

4.1 Effect of slip on deformation
Once slip has been initiated it is assumed 
that a dynamic equilibrium is achieved, 
such that the pressure gradient falls to 
zero and the pressure remains constant at 
the value at slip initiation. This 
effectively changes the plasto- 
hydrodynamic equation to

ox - Y + Constant = 0 
the effect of this in the solution for B

4.3 Effect of hl/h2 ratio on deformation 
performance
Fig shows drawing performance against 
entry velocity for various hl/h2 ratio,
given h3 is constant at 0.0001m. Peak
performance is seen to decrease with
increasing hl/h2 ratio, while the velocity 
at which peak performance is attained 
increases with increasing hl/h2 ratio.
Fig 7 shows drawing performance against 

entry velocity for various hl/h2 ratio,
given h3 is constant at 0.0003m. Peak
performance is seen to decrease from
12.37241 PRA (hl/h2=5) to 10.237051 PRA 
(hl/h2=25) with increasing hl/h2 ratio, 
while the velocity at which peak
performance is attained increases from 
0.035m/s (hl/h2=5) to 0.3375m/s (hl/h2=25) 
for increasing hl/h2 ratio.

4.4 Effect of h3 gap on deformation
performance
Fig 9 shows the effect of h3 on peak 
performance for various hl/h2 ratio. It 
may be seen that for decreasing h3 the 
peak performance increases. All values 
of h3 show a decrease in peak performance 
with increasing hl/h2 ratio,

h3=0.0005m decrease of 6.006% 
h3=0.0003m decrease of 17.25% 
h3=0.0001m decrease of 74.46%
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with h3 equal to 0.0001m showing a much 
larger decrease than 0.0003m or 0.0005m.

5.0 CONCLUSIONS
The modification made to the modelling of 
slip directly effects the predicted 
drawing performance of the process.
The form of drawing performance so 

predicted qualitively agrees with 
previously published experimental data 
(4).
Whilst quantitative predictions cannot 

accurately be made this modification is an 
important step towards successful 
modelling of the process.

.go iso

Pp

t+dt
xp COS

I I o u t l e t !
DEFORMATION ZONE

INLET ZONE Pp SIN
ZONE

(a) SCHEMATIC DIAGRAM OF THE PROCESS
(b) ASSUMED ZONES FOR THE ANALYSIS
(C) STRESSES ACTING ON A SMALL ELEMENT OF THE STRIP

Fig 1 Geometric details of process 
pressure head.

Fig. 3 deformation profiles for the 
slip region at various velocities.
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Fig. 4 Drawing performance for various 
L1/L2 ratio against velocity
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u
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Fig. 2 Stresses acting on a small element.
Fig. 5 Peak percentage reduction area for 
various L1/L2 ratio

185



20

13

10

s

0 .3.20.0 ,4.1
Z H  T n r V E L O C I T Y  (N/6)

Fig. 6 Drawing performance for various 
hl/h2 ratio : h3=0.0001m
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Fig. 9 Effect of h3 on drawing
performance against hl/h2 ratio
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Fig. 7 Drawing performance for various 
hl/h2 ratio : h3=0.0003m
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Fig. 8 Drawing performance for various 
hl/h2 ratio : h3=0.0005m
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A 3D computational fluid dynamic analysis of the pressure distribution in the plasto- 
hvdrodvnamic drawing of rectangular sections

M.R. Stokes and G.R. Symmons 
School of Engineering, Sheffield Hallam University,

Sheffield, UK

Abstract

The process of plasto-hydrodynamic (PH) drawing has previously been modelled for the 
deformation of circular and rectangular section materials using a polymer melt as a 
pressure medium. A 3D computational fluid dynamic model with a geometrical 
configuration analogous to that of a PH pressure head has now been used to examine the 
pressure distribution around the strip. The computed pressure field is compared with 
that assumed in the previous models and conclusions drawn as to its possible impact on 
future models and practical consequences for the drawing of strip.

Kev Words Strip drawing, plasto-hydrodynamics, Finite difference, Computational fluid 
dynamic.

1.0 INTRODUCTION

A novel technique of wire drawing has been invented in which no conventional reduction 
dies are used and polymer melts are introduced as the lubricant in the drawing process. 
The main feature of this technique is that the conventional dies are replaced by a 
pressure unit which has an internal bore shaped such that hydrodynamic pressure is 
generated in the polymer melt surrounding the wire. The minimum internal bore size 
in the pressure cylinder is greater than the incoming wire diameter so no metal to metal 
contact takes place and there is no need to initially prepare the wire as in conventional 
drawing. The pulling action of the wire through the bore filled with polymer melt gives 
rise to drag forces and generates hydrodynamic pressure. The combined effect of the
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imposed back stress and hydrodynamic pressure can be sufficient to deform the wire 
with selected sizes of orifice in the pressure unit and speed of drawing. Wire 
deformations by this novel process can be varied by change of drawing speed competing 
with similar percentage reductions in area per pass as with conventional die drawing but 
offering a more simple flexible output system with no pre-process preparation of the 
wire.

By using a polymer melt as the working fluid, the deformed wire is polymer coated. 
The choice of polymer used determines the types of coating produced whether an 
adhered coat or easily removed coat to suit requirements. The coatings produced on the 
wire can be used for surface protection against corrosion, electrical insulation or a 
preparatory coating for further processing. The thickness of the polymer coat on the 
wire depends upon the outlet sizes of orifice in the pressure unit. Hence the new 
process can be designed to suit a variety of deformation rates and polymer coating 
thickness on the wire for a variety of materials and polymers.

A number analytical models have been previously developed in relation to wire drawing 
and tube sinking notably Parvinmehr(1983) and Panhwar(1986). Recent research studies 
have concentrated on applying the die-less drawing process and analysis to rectangular 
strip. The progress of which has been reported by Symmons (1989, 1988).

2.0 PRESENT INVESTIGATION

A review is given of a numerical solution for plasto-hydrodynamic strip drawing using 
a finite difference method as proposed by Parvinmehr (1983) , with the boundary 
conditions and assumptions proposed by Memon (1988) and modifications made by 
Stokes (1992) for the treatment of melt instabilities.

An in depth examination will be made of a primary simplifying assumptions used in the 
derivation of the current model, this being that the fluid pressure acts equally on both 
faces of the strip. This assumption allows the dimension of the fluid model to be 
reduced from 3 to 2, with its inherent reduction in complexity.

The examination will take the form of a 3 dimensional computational fluid dynamic 
model duplicating the internal geometry of a pressure unit prior to the onset of 
deformation. Two models are used representing pressure units with strip aspect ratios 
of approximately 16:1 and 32:1.

3.0 ANALYSIS

The internal geometry of a plasto-hydrodynamic pressure unit is given schematically in 
figure 1. The following simplifying assumptions were made in the derivation of the 
model.
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i) the dominant flow is axial and laminar
ii) the fluid pressure acts equally on both faces of the strip
iii) the pressure medium behaves like a Newtonian fluid
iv) isothermal conditions exist

3.1 Onset of plastic yielding of strip

Application of assumptions (i) and (ii) to Von Mises yield criterion allows the derivation 
of the plasto-hydrodynamic governing equation.

p i * a xi - 0,1 (!)

Let Xj denote the distance from entry into the pressure head and the onset of 
deformation. Equilibrium of forces acting on the strip in the x-direction yields,

2 t ,x , 2 t o :.
„  -  — —  +  — (2)

h

Also, assuming a linear profile for constant h

. a , \ 1 /
(3)

Substitution of equations 2 and 3 into equation 1 and simplifying gives an expression for 
the distance to yielding,

- 7
V

« + + Ini'
(4)

w .

3.2 Axial stress and hvdrodvnamic pressure in the deformation zone

Given two contiguous nodes within the deformation zone at a distance ’dx’ apart, figure 
2, assuming linear deformation between these nodes then,

—  -  Constant -  b (5) 
dx

—  -  Constant -  b* (6) 
dx
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Equations 5 and 6 are then placed in finite difference form to give,

tt -  fM -  bVx 
wi -  -  b*Vx

(7)
(8)

From consideration of continuity the current velocity is given by

V  -  Vi ri- 1 w i.
\ 1 1 /

(9)

and using Levy- Mises flow rule it can be shown that

dW _dt_
W. " t.< *

b* -  mb

w ,
where m -------

(10)

Applying equilibrium of forces in the x-direction for a small element, figure 2, in the 
deformation zone yields in difference form,

a  -
f t  W N 

l i z l  + i_1 Yt * +
2 t  j c  __ + a

x , - l (11)

Equation 11 is an expression to determine the axial stress in the deformation zone. The 
shear stress terms are given by,
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Assuming a steady-state condition with consideration of continuity the following 
expression for the pressure gradient in the deformation zone may be derived,

3

Equation 15 allows the evaluation of the hydrodynamic pressure within the deformation 
zone

3.3 Plasticity considerations

The working material is assumed to be rigid plastic and straining hardening according 
to the function below,

(14)

and

(15)

Yi -  Y0 + k z n (16)

in difference form for the i  ̂point in the deformation zone,

(17)

Previously Hashmi (1981) presented an extension to the hardening law so as to include 
strain rate sensitivity Sj, which when combined with equation 17 yields,
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Equation 18 evaluates the current yield stress of the strip material in the deformation 
zone. Once deformation occurs, it should continue whilst the plasto-hydrodynamic 
equation is satisfied, that is,

P, * 0ti > Y, (19)
3.4 Solution procedure 

The solution procedure is then;

1) Determine the position of initial yielding
2) Solve the plasto-hydrodynamic equation iteratively for the slope of deformation b 
at the current node.
3) Determine the process conditions for the current node using the result of two..
4) Move through the calculated deformation zone repeating step 2 and 3.

4 COMPUTATIONAL FLUID DYNAMIC MODEL

The Computational Fluid Dynamic (CFD) models were generated using Fluent, a 
commercially available CFD modelling system. This system allows the analysis of 
complex 3 dimensional problems using a wide variety of boundary conditions and 
solution algorithms. The hardware platform used, was a 486 based IBM compatible 
computer.

The system in this case was required to solve the incompressible form of the Navier- 
Stokes equations, given below in vector form,

p ^  - pfl + (-V/7 + pV 2̂  (20)

The SIMPLE algorithm as outlined by Patankar (1980) was used to solve for the 
pressure and velocity fields. The results of which are given in section 5.

4.1 The model

Inspection of figure 1 reveals that a plasto-hydrodynamic pressure head has two planes 
of symmetry, these were used in defining the problem to reduce the number of nodes 
required. Figure 3 gives sectional views of one of the meshes used for the analysis, they 
essentially differ only in the width dimension so as to achieve the required aspect ratio. 
Graduated mesh spacing was used to attain an as accurate a solution as possible.
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5 COMPUTER RESULTS AND DISCUSSION

7

The pressure fields generated by the models are shown in figures 4 and 5 as a 3 
dimensional surface, the height of which specifies the pressure acting on the strip 
surface. It should be noted that for the presentation of this data, the edge face section 
of the pressure field has been moved through 90 degrees to form a single view. The 
change in the form of the peak pressure denotes the edge of the strip and the beginning 
of the edge face.

It may be seen that the general form of the pressure fields generated by the models 
agrees with the assumption made in equation 3, that of a linear pressure profile in the 
x direction, ie.

dp _ 
dx

( P \

J-i,
-  Constant

The assumption of pressure propagation around the periphery of the strip is in error as 
the form of the pressure field varies in the z {width} direction. The percentage pressure 
difference between the centre of the width face and the centre of the edge face is shown 
in figure 6.

A peak pressure difference of 9.2% was calculated by the 16:1 ratio model and occurs 
at the step {x=0.05m}. Changes in pressure are restricted to the immediate area of the 
step and in to the second land. The model assumes that no deformation takes place in 
the second land as the direction of the pressure gradient is reversed thus greatly reducing 
the shear stress generated and effectively halting deformation. Accordingly for the 16:1 
model the remaining error may be within reasonable bounds, as deformation may be 
initiated as early as 30 % of overall Lt length and as such its effect should be minimised 
to some degree.

A peak pressure difference of 9.9% was calculated by the 32:1 ratio model and occurs 
at the step {x=0.05m}. The pressure difference is more general in nature, not restricted 
to the second land and step region of the pressure unit as with the 16:1 ratio model. 
Correspondingly the effect of this more general error along the pressure unit should be 
much greater, although by how much is not quantifiable with the current model.

Both models are incapable of quantifying the effect of the pressure loss on deformation 
performance as they are fluid models of the instant before deformation begins and 
propagates back along the pressure unit with increasing draw velocity. The testing of 
this point is considered valid as all successful experiments using this technique must pass 
through this point and can only succeed if reasonable negotiated.
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6 CONCLUSIONS

The plasto-hydrodynamic drawing process has been successfully modelled at the instant 
before the onset of deformation.

The assumption of a linear pressure profile in the x direction for both of the pressure 
unit lands is shown to be accurate.

The assumption of pressure propagation appears to be an accurate assumption for strip 
aspect ratios up to 16:1. The accuracy of the pressure propagation assumption for aspect 
ratios above 16:1 is questioned qualitatively, with no quantifiable data available for 
drawing performance.

FIGURES
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Figure 1 - Schematic diagram of a plasto-hydrodynamic pressure unit
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Figure 2 - Strip element within the deformation zone
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Figure 3 - Example computational mesh, 16:1 ratio model multiple cross sections.
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Figure 6 - Pressure change over propagation length against pressure head position
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Numerical optimisation of the nlasto-hvdrodvnamic drawing of narrow strips

M.R. Stokes and G.R. Symmons

School of Engineering, Sheffield Hallam University, UK

ABSTRACT ,

Initial developments in plasto-hydrodynamic drawing were for circular cross section wires, which has 
previously been modelled. In this process the deformation of the wire is achieved by pulling the wire through 
a stepped cavity filled with a viscous fluid. Hydrodynamic action generates surface shears and compressive 
stresses in the material o f sufficient magnitude to produce plastic deformation, even though the smallest bore 
size of the hydrodynamic pressure head is larger than the undeformed diameter o f the wire. Both process and 
model have been extended to a rectangular section strip the results of which have previously been published.

In this study a finite difference computer model o f the process has been submitted to the process o f numerical 
multi-dimensional optimisation. The Newtonian, strain hardening, computer model of the process is formed 
into a merit function, the order of the optimisation problem is seen to be reduced by the use o f ratio’s. This 
function was then supplied to the optimisation code. The optimisation code uses the direct search algorithm 
of Hooke and Jeeves [1]. This method uses a pattern vector in n-dimensional Euclidean space to explore the 
local region about the current search point before moving in the direction of the computed pattern vector. The 
method has been proven to have good valley following properties. Multiple applications o f the optimisation 
code were made from different initial points in space to overcome any occurrence of multi-modality, which 
was speculated upon by Rohde [2] in his study of optimum step profiles for stepped slider bearing profiles.

Emphasis has been placed on the geometrical configuration o f the stepped cavity. The fluid properties are 
approximately those of a generic form of polyethylene, with strip properties o f commercially available soft 
copper, fluid and material properties were constant throughout the study. The results show significantly 
different optimum cavity configurations and performance surfaces for different velocities.

1. INTRODUCTION

The stepped cavity used in the plasto-hydrodynamic strip process may be described by 5 parameters, L,,!^  
the land lengths and h,,h2 first and second land clearances and h3 the side clearance, these are shown in Fig. 
1. The motion of the strip generates surface shear stresses and hydrodynamic pressures of sufficient magnitude 
to induce plastic deformation in the strip material. A consequence of the hydrodynamic nature of the process 
is its extreme sensitivity to the land and side clearances, and to a lesser extent on the land lengths.

The first analysis of a stepped configuration was by Rayleigh [3], who proposed that a linear bearing of this 
form would yield the maximum load bearing capacity assuming an infinite width. More recent work has been 
concentrated within two main areas

a) the finite width Rayleigh bearing
b) analyses for non-Newtonian lubricants



Rohde [2] used a finite element model with an applied numerical optimisation algorithm to modify the 
standard orthogonal step into a pocket configuration which predicted an increase in bearing capacity. 
Kettleborough [4,5] carried out both experimental and numerical work on pocketed step bearing but no attempt 
was made to optimise the profile. Non-Newtonian analyses have recently been presented for Rayleigh step 
bearings by Elkouh and Yang [6], Wang and Jin [7] and Bourgin and Gay [8]. A variety of techniques being 
utilised for the various analyses.

No application of a formal optimisation method to plasto-hydrodynamic drawing has yet been presented. The 
object of the following work was then to ascertain the optimum geometry o f the pressure head which would 
produce maximum deformation, for a specified process velocity. This being the most important factor as to 
whether or not the process could be economically viable.

2.0 METHODS OF SOLUTION

Optimisation theory maybe initially separated into linear and nonlinear programming. Linear programming 
problems are specified by a linear, multi-variate function which is to be maximised or minimised subject to 
a number of linear constraints. Dantzig [9] developed an algorithm to solve this type o f problem, which in 
modified form is the basis of modern linear programming theory. Problems that are amenable to solution by 
linear programming include resource allocation problems in government planning, production planning and the 
management of transportation distribution systems.

In problems where the assumption o f linearity cannot be made nonlinear programming techniques must be 
utilised. Specialised techniques have been developed for some problems but there is no general procedure for 
nonlinear programming. There are 2 approaches to nonlinear problems classical and numerical.

2.1 Classical methods
The Classical method is to derive expressions for the first and second derivatives o f the function and to solve 

for n unknowns in n equations given the constraints associated with minimisation and maximisation. This 
requires that the function to be optimised must be differentiable. The present models of the plasto- 
hydrodynamic drawing process are not o f closed form, requiring the solution of the plasto-hydrodynamic 
equation (PHE) at each nodal point within the region of deformation. For this reason classical methods were 
deemed unsuitable and a numerical approach pursued.

2.2 Numerical methods
Numerical methods are have two major subdivisions, unconstrained or constrained optimisation and direct 

search or gradient algorithms, the latter occurs in both of the former.
A function is said to be unconstrained if  the are no bounds placed upon the possible values which any of the 

function variables may take. The inverse defines a constrained function, a possible example would be the 
optimisation of a hollow shaft with the outside and internal diameters as variables. It would be nonsense for 
the internal diameter of the shaft to be larger than the outside diameter.

A direct search method uses repeated evaluations of the function to directly search for the minimum. Various 
methods have been developed to solve multi-dimensional problems examples o f which are the Simplex method 
by Nelder and Mead [10] and the pattern based method of Hooke and Jeeves [1].

A gradient method uses the gradient of the function as well as the function value to search for the minimum. 
Various methods have been developed for multi-dimensional problems examples o f which are the convergent 
decent method by Fletcher and Powell [11] also the method of conjugate gradients by Fletcher and Reeves [12].

Note that both categories do search for the minimum and as such are search methods. Hooke and Jeeves [1] 
stated that the advantages of direct search methods over classical are:

a) They can produce solutions to problems which have been unsuccessfully attempted by classical 
methods.
b) They provide faster solutions for some problems that are solvable by classical methods.
c) They are well adapted to use on electronic computers, since they tend to use repeated identical 
arithmetic operations with a simple logic. Classical methods, developed for human use, often stress 
minimisation of arithmetic by increased sophistication of logic.



d) They provide an approximate solution, improving all the while, at all stages o f the calculation. This 
feature can be important when a tentative solution is needed before the calculations are completed.
e) They require (or permit) different kinds of assumptions about the functions involved in various 
problems, and thus suggest new classifications of functions which may repay study.

Other points of note in the use of numerical methods are, they have a termination criteria or accuracy 
attached to their use. An assumption of uni-modality is made by the methods. A function is uni-modal if  it 
has only one and thus a global optima. A function with multiple local optima is said to be multi-modal.

2.3 Choice o f solution algorithm
The choice of solution algorithm was influenced by the merit function. In that the plasto-hydrodynamic 

model is not differentiable in its present form, consequently a direct search method was selected. The method 
chosen for the optimisation was the pattern search method of Hooke and Jeeves, selection was based on two 
factors,

i) published data for the method demonstrates the methods effectiveness for multi-dimensional problems
ii) the algorithm is computationally robust in operation

2.4 Optimisation code testing
The algorithm was coded into a suitable FORTRAN subroutine. Before application of the code to the plasto- 

hydrodynamic model the correctness of the code was tested by the use o f Rosenbrock’s [13] parabolic valley 
function, below

f ix ĵ c2) -  100(x2-Xj2)2 + (I -* ,)2 Rosenbrock's function

which has a global minimum at x =(1 ,1), the form of the function is given graphically in Fig. 2. The 
optimisation code successfully found the function minimum in 34 iterations which is comparable to that taken 
by the conjugate gradient method of Fletcher and Reeves [12].

2.5 The plasto-hydrodynamic merit function
The merit function is an equation, expression or model of a process that is to be subjected to optimisation. 

It gives a quantitative result to a particular choice of values for an n dimensional function, o f the form

M  -  M(xv  x2, xy  . . . x„)

The merit function in this case is the plasto-hydrodynamic model. The model used in the merit function is 
that presented by Stokes and Symmons [14]. The material and fluid properties are declared as constants in the 
optimisation process and are those o f pure copper and a generic form of polyethylene, these are detailed in 
table 1. Five dimensions are required to define a pressure head geometry Llt L ,̂ hj, h2 and h3 which forms 
a 5 dimension problem. The order of the problem was reduced to a 3 dimension problem by the use o f ratios, 
defined as,

Xj = Lj/L2
x2=h,/h2
x3=h3/h2

given that the overall length of the pressure head and the clearance h2 were held constant.

2.6 The optimisation procedure
The optimisation program allows the specification of an array of start points and the entry velocity for the 

drawing process. Multiple applications of the optimisation process are made on the merit function to establish 
confidence in the result, as it is possible for the shape of the n-dimensional surface to have local minima and/or 
the optimisation algorithm to detect false minima because of badly chosen search step lengths/initial positions. 
The procedure was then to start the process away from any expected optimum point in an attempt to force the 
algorithm to find its own optimum. The start point, end point and the percentage reduction in area achieved



at the end point were saved to a data file for later evaluation.

3.0 RESULTS - NEWTONIAN MODEL OPTIMISATION PREDICTIONS

Fig. 3 is a representative sample o f the numerical predictions produced by each application of the optimisation 
procedure, showing an array o f start points and a scattered distribution of end points in 3 dimensional space. 
Fig. 4 gives 3 orthogonal views of figure 3 allowing a more detailed view o f the optimisation results scatter 
to be obtained. The format o f the present work does not allow the presentation of all seven scatter plots in 
graphical form. Table 2 details the calculated mean values o f merit function variables and results for each 
velocity. Table 3 details the standard deviation of merit function variables and P.R. A. for each velocity. Data 
from Tables 2 and 3 are shown graphically in Fig. 5 and Fig. 6 respectively.

4.0 DISCUSSION

4.1 Predicted pressure head clearance ratio
The optimum value of hj/h2, h3/h2 ratio and PRA can be seen to follow an essentially linear relationship with 

respect to velocity, Fig. 5. With standard deviations typically between 0.366% and 5.03% of the mean value, 
it is felt that the parameter values found by the process are realistic.

4.2 Predicted pressure head land length ratio
Optimum values for L,/L2 ratio vary in an almost exponential manner, however standard deviations are 

between 13% and 44% of the calculated optimum, with scatter o f this magnitude it is probable that the 
underlying form has been swamped and as such no conclusions should be drawn from the shape o f the curve. 
Further investigations were carried out to account for this large variation.

A series of performance surfaces were generated by holding the h3/h2 ratio constant, giving x, y equal to 
L/L^, h,/h2 respectively and z equal to PRA. The h3/h2 ratio was then varied by small increments about the 
optimum such that a sequence of surfaces illustrating the development of the merit function in 3 dimensional 
space was formed. An example of a performance surface is shown in Fig. 7. The performance surface is for 
an exit velocity of 0.15 m/s and a constant h3 value o f 1.559 which is the calculated optimum value at that 
velocity.

Major characteristics of the surface are a ridge form lying parallel to the L,/Lj axis with a step in the region 
of the origin. The ridge form may logically be explained by the application of two competing phenomenon. 
Firstly it has been shown previously (Stokes and Symmons [14]) that shear stress and hence applied drawing 
load is inversely proportional to h,/h2 ratio giving increasing PRA. Secondly after a specified value of shear 
stress slip is assumed to have been initiated, this causes the slope of deformation to be reduced (Stokes and 
Symmons [14]). Reducing hj/h2 ratio will introduce this effect earlier in the deformation region of the pressure 
head reducing PRA. The step close to the origin at small values o f h,/h2 and L,/L2 ratio was found to be 
formed as a consequence of slip being present over the entire length of the deformation zone in the pressure 
head.

Close inspection of Fig. 7 reveals small scale ridging of the surface between the origin and an h,/h2 ratio of
7.5 (approx), cross-sections of the surface were taken at various values of L ,/^  ratio and are given in Fig. 
8. The small scale ridging is restricted to those areas of the performance surface where slip is present, h,/h2 
ratio less than 7.5 approx. Further cross-sections of the surface were taken parallel to the L ,/^  axis, Fig. 9. 
It can be seen that the optimum point of the surface is within the region effected by slip, an explanation for 
the large scatter of the L,/!^ predictions is now possible. The cross-section through the optimum point of the 
surface reveals that in the L,/!^ axis the surface is multi-modal in that it contains many local optima of which 
one is the global optimum. This violates a fundamental assumption made in all optimisation procedures that 
of uni-modality, the program can the be assumed to have fallen into a ridge leading to a local optimum and 
have been unable to escape hence introducing the scatter into the Lj/Lj axis. This could occur towards the end 
of the search procedure when the search step is reducing.

The mechanism by which the surface ridging is formed is as yet unknown, but it can be postulated that it is 
a consequence of the dynamical interaction of the phenomenon being modelled, namely hydrodynamic



deformation and the non-linear slip mechanism.

4.3 Predicted optimum percentage reduction in area 
Inspection of Fig. 5 reveals that the optimum percentage reduction in area decreases with increasing entry 

velocity. The model used in the optimisation procedure takes into account the strain rate sensitivity of the 
material during calculation of post yield properties using the method given by Symmons et al [15]. Hence the 
increase of yield stress is not only a function of strip reduction but also a function of entry velocity, the two 
being compounded. The reduction in drawing performance with velocity can then be attributed to the velocity 
dependant hardening of the strip material.

5 .0 CONCLUSIONS

In.light of the work presented, it is possible to draw the following conclusions:
a) The plasto-hydrodynamic process has been successfully optimised to within the limits of experimental

error.
b) The pressure head gap ratios have been shown to have a linear relationship with respect to entry 

velocity as demonstrated in Fig. 5.
c) The plasto-hydrodynamic process has been found to be multi-modal at a scale an order o f magnitude 

less than the gross form of the performance surface.
d) A useful technique has been developed for use in the design of future plasto-hydrodynamic systems.

TABLES 

Table 1

Fluid properties

Viscosity 120 Ns/m2
Critical shear stress =  0.32 MN/m2

Strip properties

Yield stress =  70 MN/m2 
Strain hardening Constant K =  600 MN/m2 
Strain hardening Index n =  0.6  
Strain rate sensitivity constant T =  3.8  
Strain rate sensitivity index nn =  55000 
Width =  25.4 mm , Thickness — 1.59 mm



Table 2

Mean values of merit function variables

Velocity Lj/I^ h,/h2 h3/h2 P.R.A.

0.1 25.0865 5.1245 1.001 9.83449

0.15 21.4429 7.24625 1.559 9.34354

0.2 17.6084 8.8453 2.160 8.90071

0.25 28.3665 10.4587 2.778 8.7391

0.3 28.8697 12.0142 3.428 8.32282

0.35 38.338 13.4056 4.130 7.96573

0.4 65.4311 14.9782 4.80 7.70613

Table 3

Standard deviations of merit function variables

Velocity L./L, h,/h2 h3/h2 P.R.A.

0.1 10.8445 0.257952 0.00351355 0.104956

0.15 6.2183 0.153191 0.00790158 0.2000089

0.2 7.81611 0.105956 0.0100012 0.236915

0.25 7.87859 0.125471 0.0151068 0.089066

0.3 11.4469 0.0866103 0.0152876 0.116584

0.35 15.7719 0.134531 0.0314687 0.141113

0.4 8.51273 0.0847327 0.0212222 0.0282338
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Figure 1 Schematic views o f a plasto-hydrodynamic pressure head
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Figure 2 Parabolic valley produced by Rosenbrock’s function
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Figure 3 Scatter plot of start and finish points of a multi start optimisation sequence
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Figure 4 Orthogonal view of a multi start optimisation sequence
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Figure 5 Mean values of optimisation results for a range of entry velocities
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Figure 6 Standard deviations of optimisation results for a range of entry velocities



Figure 7 Example performance surface, entry velocity 0.15 m/s
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Figure 8 Performance surface cross-sections of constant L,/L2 ratio
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Figure 9 Performance surface cross-sections of constant h,/h2 ratio
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