Plasto-hydrodynamic investigation of the lubrication and coating of wire using a polymer melt during drawing.

STEVENS, A. J.

Available from Sheffield Hallam University Research Archive (SHURA) at:
http://shura.shu.ac.uk/20402/

This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it.

Published version

Copyright and re-use policy

See http://shura.shu.ac.uk/information.html
COUNCIL FOR NATIONAL ACADEMIC AWARDS

A Plasto-Hydrodynamic Investigation of the Lubrication and Coating of Wire Using a Polymer Melt During Drawing

A Thesis Submitted for the Degree of

MASTER OF PHILOSOPHY

BY

A. J. STEVENS BSc

Department of Mechanical and Production Engineering
Sheffield City Polytechnic

in collaboration with Arthur Lee & Sons Ltd, Sheffield

February 1979
SYNOPSIS

Wire drawing has been the subject of much research and development but there is evidence that conventional methods of lubrication may have reached the limit of development.*

This project investigates the advantages and problems of lubricating the wire drawing operation hydrodynamically using a polymer as the lubricant. The experimental results are compared with results generated by an existing theory and the theory developed in the light of those experimental results. Design equations are suggested based on the modified theory.
ACKNOWLEDGEMENTS

The author wishes to thank Dr. G. R. Symmons, Director of Studies, for suggesting this project and for his very helpful guidance and encouragement.

Sincere thanks are also due to Mr. P. J. Thompson whose timely advice and suggestions were most welcome.

Mr. T. Johnson is thanked for enabling the theoretical results to be displayed graphically by computer.

The technical assistance offered by Mr. R. Teasdale and his staff was much appreciated and particular thanks to Mr. A. Fletcher, Mr. M. Jackson, Mr. B. Macabe, Mr. D. McKay and Mr. R. Wilkinson.

The author wishes to thank the Collaborating Establishment, Arthur Lee and Sons Ltd., Sheffield, for the supplying of wire and dies and to Dr. A. O. Jakubovic, the Technical Director, for his helpful comments.
LIST OF CONTENTS

Title 1
Synopsis 2
Acknowledgements 3
List of Contents 4
Index to Figures 6
Notation 8

CHAPTER I - INTRODUCTION
1.01 Review of Lubrication Techniques in Wire Drawing 9
1.02 Note on Polymer Lubrication 13

CHAPTER II - ANALYSIS OF THE PROCESS
2.01 Introduction 16
2.02 Analysis 17

CHAPTER III - DESIGN AND MANUFACTURE OF TEST APPARATUS
3.01 Design Requirements of Draw Bench 22
3.02 Description of Test Equipment 22
3.03 Design and Manufacture of Die Unit 26

CHAPTER IV - EXPERIMENTAL METHOD
4.01 Introduction 31
4.02 Determination of the Polymer Rheology 31
4.03 Determination of Wire Yield Stress 32
4.04 The Drawing of Wire 32
4.05 Measurement of Coating Thickness 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.01 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>5.02 The Effect on Coating Thickness of Changing Yield Stress of Wire</td>
<td>46</td>
</tr>
<tr>
<td>5.03 The Effect on Coating Thickness of Changing Gap</td>
<td>49</td>
</tr>
<tr>
<td>5.04 The Effect on Coating Thickness of Changing Polymer Viscosity</td>
<td>52</td>
</tr>
<tr>
<td>5.05 The Effect on Coating Thickness of Changing Length of Christopherson Tube</td>
<td>56</td>
</tr>
<tr>
<td>5.06 The Effect on Coating Thickness of Critical Shear Stress of Polymer</td>
<td>58</td>
</tr>
<tr>
<td>5.07 The Effect on Coating Thickness of Changing Wire Diameter</td>
<td>61</td>
</tr>
<tr>
<td>6.01 Estimation of Errors</td>
<td>62</td>
</tr>
<tr>
<td>6.02 Design Method</td>
<td>64</td>
</tr>
<tr>
<td>6.03 Discussion</td>
<td>68</td>
</tr>
<tr>
<td>6.04 Conclusions</td>
<td>71</td>
</tr>
<tr>
<td>6.05 Further Work</td>
<td>71</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>73</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>AP.1 Computer Program to Generate Theoretical Predictions</td>
<td>75</td>
</tr>
<tr>
<td>AP.2 Computer Program to Generate Data for Graphical Display</td>
<td>76</td>
</tr>
<tr>
<td>AP.3 Computer Program to Generate Graphical Display</td>
<td>79</td>
</tr>
<tr>
<td>AP.4 Tabulated Results</td>
<td></td>
</tr>
<tr>
<td>AP.5 List of Courses Attended</td>
<td></td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>General View of Rig</td>
</tr>
<tr>
<td>2</td>
<td>Instrumentation for Drawing Load Measurement</td>
</tr>
<tr>
<td>3</td>
<td>Detailed View of Tachogenerator</td>
</tr>
<tr>
<td>4</td>
<td>Die Unit with Cooling Jacket</td>
</tr>
<tr>
<td>5</td>
<td>Control and Instrument Panel</td>
</tr>
<tr>
<td>6</td>
<td>Section Through the Die Unit</td>
</tr>
<tr>
<td>7</td>
<td>Geometry Considered in the Analysis</td>
</tr>
<tr>
<td>8</td>
<td>Graph of Viscosity v Shear Stress for Polymer WVG 23</td>
</tr>
<tr>
<td>9</td>
<td>Graph Showing Stress/Strain Curves for Test Materials</td>
</tr>
<tr>
<td>10</td>
<td>Flow Diagram of Computer Program to Generate Theoretical Predictions</td>
</tr>
<tr>
<td>11</td>
<td>Copper Wire with Fishscale Coating/Coating Removed</td>
</tr>
<tr>
<td>12</td>
<td>Steel Wire with Fishscale Coating/Coating Removed</td>
</tr>
<tr>
<td>13</td>
<td>A Detailed View Showing Form of Fishscale Coating</td>
</tr>
<tr>
<td>14</td>
<td>Graph Showing Experimental Results and Theoretical Predictions for Changing Yield Stress of Wire</td>
</tr>
<tr>
<td>15</td>
<td>Graph Showing the Effect on Coating Thickness of Changing Yield Stress of Wire</td>
</tr>
</tbody>
</table>
Table of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Graph Showing Experimental Results and Theoretical Predictions for Changing Gap</td>
<td>50</td>
</tr>
<tr>
<td>17</td>
<td>Graph Showing the Effect on Coating Thickness of Changing Gap</td>
<td>51</td>
</tr>
<tr>
<td>18</td>
<td>Graph Showing Coating Thickness v Gap</td>
<td>53</td>
</tr>
<tr>
<td>19</td>
<td>Graph Showing Experimental Results for Changing Temperature/Viscosity</td>
<td>54</td>
</tr>
<tr>
<td>20</td>
<td>Graph Showing Effect on Coating Thickness of Changing Polymer Viscosity</td>
<td>55</td>
</tr>
<tr>
<td>21</td>
<td>Graph Showing the Effect on Coating Thickness of Changing Tube Length</td>
<td>57</td>
</tr>
<tr>
<td>22</td>
<td>Graph Showing the Effect on Coating Thickness of Changing Critical Shear Stress</td>
<td>59</td>
</tr>
<tr>
<td>23</td>
<td>Graph Showing the Effect on Coating Thickness of Changing Wire Diameter</td>
<td>60</td>
</tr>
<tr>
<td>24</td>
<td>Graph Showing Relationship Between Optimum Length and Gap</td>
<td>66</td>
</tr>
<tr>
<td>25</td>
<td>Graph Showing Coating Thickness for Chosen Design Parameters</td>
<td>67</td>
</tr>
<tr>
<td>26</td>
<td>Computer Program to Generate Theoretical Predictions</td>
<td>75</td>
</tr>
<tr>
<td>27</td>
<td>Computer Program to Generate Data for Graphical Display</td>
<td>76</td>
</tr>
<tr>
<td>28</td>
<td>Computer Program to Generate Graphical Display</td>
<td>79</td>
</tr>
</tbody>
</table>
NOTATION

A, B = Constants

h = Radial gap, between the wire and the bore of the tube, unless stated otherwise,

L = Length of Christopherson Tube

p = Pressure

Q = Flow rate per unit circumference

R = Radius of wire at inlet, unless otherwise stated

U = Wire speed

v = Axial flow velocity

y = Distance from surface of wire

z = Axial distance

n = Apparent viscosity

ς = Direct stress in the wire

T = Shear Stress

incident = Distance across the gap

T = Yield stress of the wire

SUPPIXES

C = Critical Value

d = Value after drawing

f = At commencement of flow

z = At the inlet section to the die

max = Maximum value

0 = At the surface of the wire

y = At yield point of wire
CHAPTER I

1. INTRODUCTION

1.01 Review of Lubrication Techniques in Wire Drawing

The wire drawing industry has sought to increase the drawing speed, the reduction in area per die, whilst maintaining product quality in order to reduce production costs. The most successful way of achieving this is by improved lubrication of the operation. Temperature, which is detrimental to the metallurgical structure of the wire, is produced by the work done against friction and the deformation of the wire.

Weistreich\(^1\) demonstrated that the relative importance of the two heat producing factors depends on the die angle used. If the die angle is large then the friction between the wire and the die is small but there is a great deal of redundant deformation, where as a small die angle causes a large friction force, but the redundant deformation produced in the wire is small. The die angle used in industry, therefore, is a compromise designed to give the smallest total heat generation.

If, however, the lubrication is improved and the coefficient of friction reduced then the relative importance of the friction force and the redundant deformation changes and the optimum die angle is reduced. This results in a reduction in heat generated by both friction and redundant deformation.

The most common method of lubricating wire drawing at present, is to coat the wire with a dry sterate or borate soap placed in a hopper in front of the die. Adhesion between
the wire and the soap is improved by pre-coating the wire with a phosphate or oxylate coat to key the soap to the wire surface. Soap lubrication technology has become more sophisticated as new and more specialized soaps are developed. This improvement of soaps has been very successful, but there are indications that soap technology is reaching the limits of its application in modern industry. This is due mainly to the problems of moisture absorbance by the soap which destroys the lubrication properties of soap. More recently there has been a move away from the more complex and expensive soap, and attempts have been made to find suitable general soaps.

In 1972 Bleir and Finnegan(7) suggested soaps had become too specialized and that economies could be made by reducing the number of soaps used and relying on a few general purpose soaps. Their reasons for this conclusion were, the high cost per unit weight of specialized soaps bought in relatively small quantities, high warehousing costs of carrying a wide variety of soaps and the large percentage of scrap wire produced because of wrong soap. They tested their theory at the Mid-State Steel Wire Company, Florida and found, the mill which used 15 highly specialized lubricants could operate using just 2 general purpose soaps with no loss of product quality and so operate more efficiently.

Even though soaps are used for most of the wire drawn in industry today, the limitations stated above have prompted a great deal of work into new methods of lubricating wire.

One of the most radical approaches to the problem resulted from Atkins(8) research on the friction in electrolytic cells. Farr and Lowe(9) suggested electrochemical
lubrication on wire drawing was possible. Several combinations of electrolyte were tested without success until Atala and Laditan(10) found that an electrolyte consisting of Thioacetamide and Ammonium Molybdate in sulphuric acid produced a satisfactory coating, which was found to be as effective as heavy graphited oil. The system however has problems when the transition to the industrial situation is attempted, in that the time required to coat the wire is in the order of 2 seconds which would necessitate an electrolyte of unmanageable length. This project, therefore, remains in the experimental stage until means of accelerating the deposition process are found.

A method of lubrication first proposed by Christopherson and Naylor(11) in 1955 created a great deal of interest and further development work. They demonstrated that a relatively thick film of oil could be induced hydrodynamically between the wire and the die by passing the wire through a reservoir of oil and long tube with a small clearance immediately preceding, and connected via a seal to the die. Experiments performed showed that hydrodynamic lubrication greatly reduced die wear, but when applied in an industrial situation several problems became apparent. Hydrodynamic lubrication is only possible when the wire is travelling at a velocity sufficient to generate high pressures in the lubricant, and so the lubrication at start-up is dependent on boundary lubrication which is poor when using a mineral oil, due to its low viscosity. The tube clearance required to provide effective hydrodynamic lubrication has to be small (0.03 mm), in the same order of magnitude as the diameter
tolerance of the wire. The length of tube required to generate the pressure in the oil made it cumbersome, and if the tube clearance were to be increased to solve the problem of wire tolerance then the tube has to be even longer. These problems defeated attempts to introduce this method on a wide scale, although modified Christopherson tubes, as they are known, were introduced to improve soap lubrication.

An alternative method of creating thick film lubrication is by using high pressure oil supplied from an external source, usually a pump. This can be supplied to an entry vessel next to the die, such that the high pressure is transmitted to the die. The flow of oil will take the path of least resistance and therefore a seal is required upstream.

Middlemiss\(^{1, 2, 3}\) attempted hydrostatic lubrication by injecting oil under pressure into a special die unit and between two dies.

The first of these achieved a small reduction in area (approximately 3\%) and its principal purpose was to seal the unit against losses in oil pressure. The second die achieved the bulk of the reduction in area, and was lubricated by the establishment of a thick oil film created by the applied oil pressure. The mean die pressure in the seal die was very high due to the very small reduction in area, and so creating lubricating conditions which are more severe than that attempted in one die. As the sealing die is more difficult to lubricate than the main die it is subject to severe wear which cannot be eliminated. Hence, such a double die device is not a practical lubricating system.
1.02 Note on Polymer Lubrication

In recent years polymers have been used for lubrication at metal forming processes, notably extrusion. The properties of polymers differ from traditional lubricants in many ways and so the analysis of the polymer lubrication presents new problems, but these different properties can also offer considerable practical advantages.

When considering a polymer as a lubricant, it is profitable to note the rheological differences between polymers and traditional lubricants and to consider the resulting difference in lubricating properties.

The higher viscosity of polymers is due to the long chain tube molecules which intertwine and so offer a much higher resistance to motion than the relatively short oil molecules. As the shear stress on the polymer molecules increases they become orientated in the direction of flow of the polymer, that is to say disentangled, and so offer less resistance to motion. As with oil, the viscosity of a polymer is reduced as its temperature increases, however the viscosity of a polymer is extremely sensitive to pressure. Westover (13) found that the viscosity of a polymer increases by a factor of between 5 and 100, depending on its molecular weight, when subjected to typical injection moulding pressures.

When subjected to very high shear rates polymers display a further non-newtonian property, known as boundary slip. Boundary slip occurs when the shear force of the molecules in flow on the molecule fixed to the boundary wall, becomes greater than the attraction between the stationary molecule
and the boundary wall. This occurs at a lower shear rate in
polymers with high molecular weight because of the greater
area of contact between the molecules in flow and the
stationary molecule. This phenomenon is also known as melt
fracture.

The problems associated with the oil fed Christopherson
tube are due mainly to the relatively low viscosity of oil.
It is these problems, related to the rheology of the oil
which prompted this research into the use of a polymer melt
in conjunction with a Christopherson tube for lubrication of
wire drawing and to establish the advantages and disadvantages
of this method.

A polymer was chosen because of its high viscosity and
with a view to shortening the tube, increasing the clearance
between the wire and the tube, and improving 'start-up'
lubrication. This is achieved by both lowering the speed
required for hydrodynamic conditions and improving boundary
lubrication when compared to oil. In addition to these
improvements there could be added advantages if a well
adhered coating of polymer can be obtained. This will act
as a protection against corrosion and, possibly as a solid
lubricant during further metal working processes, such as
cold-heading or redrawing.

The object of the research is not to select the most
suitable polymer but to establish the effects on lubrication
and polymer coating of changing physical parameters such as
length and clearance of tube, the yield stress of the wire
and viscosity of polymer melt. These results could be
compared to existing theories so as to be in a position to
CHAPTER II

2. ANALYSIS OF THE PROCESS

2.01 Introduction

The original analysis for hydrodynamic lubrication of wire drawing was developed by Christopherson and Naylor\(^{(11)}\), this was further developed, and applied to polymer flow, by Symmons and Thompson\(^{(12)}\). The following analysis is an extension of Symmons and Thompson's previous work and includes the phenomenon of critical shear stress which was not considered before.

In the following analysis it has been assumed that:

1) The flow characteristics of a polymer melt can be treated as a Newtonian fluid using the concept of apparent viscosity.

2) The apparent viscosity is constant.

3) Flow of the polymer is laminar.

4) Flow is fully developed and steady at all times.

5) Flow of the polymer is axial.

6) Thickness of the polymer layer is small when compared with the dimensions of the Christopherson tube.

7) Pressure in the polymer is uniform in the thickness direction.

As the thickness of the polymer melt layer contained in the Christopherson tube is small compared with the dimensions of the tube the analysis of the flow is carried out in rectangular rather than cylindrical co-ordinates. Combining the equation of equilibrium with the equation for continuity of flow, bearing in mind the above assumptions, gives the following equation of motion.
2*02 Analysis - The equation of motion for a viscous fluid is

\[\sigma_{ij} - 2\nu \frac{\partial u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} \]

From the definition of apparent viscosity we have

\[T = -\frac{a}{t H} \]

Integrating Equation 1 gives

\[-\frac{1}{\nu} \frac{d\sigma}{dx} + A \]

and

\[v = \frac{1}{2\nu} \left(\lambda \rho \frac{d\sigma}{dx} + A \right) + Bz \]

It is known that at the tube bore the velocity of the polymer is zero so this can be used as a boundary condition. If the flow of the polymer is sub-critical then it can be assumed that the velocity of the polymer at the surface of the wire is equal to that of the wire, but if the polymer has reached a critical shear stress then slip will occur. Therefore the only boundary condition which can be used at this stage is to say the shear stress at the wire boundary is equal to \(\sigma \)

When \(3C = 0 \)

\[T = T_{(Jc = 0)} = T_o \]

From Equations 2 and 3

\[A = \frac{\sigma_{ij}}{\nu} T_o \]
When \(\alpha = h \quad \nu = 0 \)

From Equations 3b and 4

\[
o = \frac{1}{2n} \left(\frac{h^2}{2} - T_0 h + B \right)
\]

Combining Equations 3 to 3 gives:

\[
\frac{T(2^n - 1)}{n} - \frac{1}{2^n} \left(h^2 - x^2 \right) \ldots 6
\]

The rate of flow of polymers melt through the die may be obtained by integrating equation 6 thus

\[
Q = \int_0^h \nu \, dx
\]

From Equations 6 and 7

\[
Q = T_0 h \left(\frac{t \times \frac{\nu^2}{2}}{2^n} - \frac{1}{2^n} \left(h x - \frac{x^3}{3} \right) \right)
\]

\[
Q = T_0 h' \left(\frac{1}{3n} \frac{1}{az} \right) \ldots 8
\]

When the polymer is passing through the die the flow can be defined as

\[
Q = h d* u_a
\]

The coating thickness of the polymer on the wire may be expressed thus

\[
h \frac{h}{T} \left(\frac{1}{3n} \frac{1}{az} \right) \ldots 10
\]
From Equation 10 it can be seen that for coating to occur

\[m \ \frac{2 f}{r \rho} \int x^2 dz \]

Melt Flow Criterion

The 'polymer' melt flows between the wire and the drawing die if the melt pressure at the inlet section to the die is equal to the die pressure. The die pressure at the inlet section can be found by applying either the Maxwell-von Mises or Tresca yield criterion thus:

\[Y = p^\prime + \sigma_r \]

Where \(\sigma_r \) is the back stress caused by the viscous drag of the polymer on the wire. Applying the concept of axial equilibrium to the length of wire contained within the Christopherson tube gives:

\[\sigma_1 = T_0 \frac{2L}{R} \]

Combining equations 12 and 13 and using the relationship

\[\frac{r \rho}{p_i} \frac{p_i}{L} \]

then

\[Y = 2T_0 \frac{L}{R} \]

Which enables Equation 11 to be rewritten

\[T_0 \rightarrow (\frac{Y}{R})^2 T_0 \]
Equation 10 when combined with Equation 1a gives:

\[
\begin{align*}
&\text{h_d h T_0 hY 2iT} \\
&\text{U. 2 3L 3R} \\
&\text{... 10}
\end{align*}
\]

To Calculate \(T_a \) During Sub-Critical Flow

If the polymer is flowing in a sub-critical situation then it can be assumed that there is no slip at the boundary between the polymer and the wire. There, the boundary conditions can be taken to be

When \(X = 0 \) \(v = U \) and \(X = h \) \(v = 0 \)

Referring to equation 3b

\[
B \\
\text{U}
\]

\[
A = \sim h \text{ J1P} \\
U \\
h
\]

\[
f) v \text{ 1 e) P} \text{ (2j1-h) - D} \\
3X \text{ w} \\
\psi \text{ z} \\
\text{h} \\
\text{..... 18}
\]

At the polymer/wire boundary (i.e. \(X = 0 \))

\[
X = 0 \\
I
\]

Substituting from \(t^Y \) \(I \) and \(t^P \) from Equations 2

\[
X = 0 \\
\text{and 13a} \\
\text{respectively gives}
\]
\[
\frac{T_o}{\eta} = \frac{h}{2\eta} \left[\frac{Y}{L} - \frac{2T_o}{R} \right] + \frac{U}{h}
\]

\[
T_o = \frac{(h^2 + U_d \eta L)}{2Lh \left(1 + \frac{h}{R}\right)} \quad 20
\]

A rearrangement of Equation 20 gives an expression to enable the calculation of \(V\) flow and \(V\) crit.

\[
U_d = \frac{T \left(2Lh \left(1 + \frac{h}{R}\right) - L^2Y\right)}{2\eta L} \quad 20a
\]

The above equation in conjunction with equations 14 and 16 can be used to calculate the coating thickness.

\[
T_o \gg \frac{2h}{3} \left(\frac{Y}{L} - \frac{2T_o}{R} \right)
\]

\[
H_d = \frac{h^2}{\eta U_d} \left[\frac{T_o}{2} - \frac{hY}{3L} + \frac{2hT_o}{3R} \right]
\]
CHAPTER III

3. DESIGN AND MANUFACTURE OF TEST APPARATUS

3.01 Design Requirements of Draw Bench

No existing apparatus within the department was suitable to be adopted to satisfy the requirements of this work, therefore the draw bench was purpose built. It was decided that the draw bench should ideally be able to draw a wide range of wire with the speed infinitely variable between 0 and 2.5 m/s. This speed should be rapidly attained after start-up, accurately measured and not adversely affected by a change in torque.

It would be also necessary to measure the drawing force required to pull the wire through the die. The temperatures of the wire, polymer and Christopherson tube must not only be measured but also controlled. The dimensions of the tube itself must be known to within a close tolerance, particularly the diameter.

It was hoped to measure the pressure of the polymer at the die end of the Christopherson tube but this was not possible as the pressure generated at that point would be beyond the range of any existing transducer.

3.02 Description of Test Equipment

The ideal motor to satisfy the design requirements would have been a 15 hp thyristor controlled D.C. motor which would be capable of running at all speeds between zero and full speed but this was not feasible for economic reasons. It was decided, therefore, to use a second-hand 'shraga' motor (BTH 18/4.5 hp VSC) capable of running at
GENERAL VIEW OF RIG WITH SMALL BULL BLOCK

Fig 1a

GENERAL VIEW OF RIG WITH LARGE BULL BLOCK

ELgJLb
INSTRUMENTATION FOR DRAWING LOAD MEASUREMENT

VIEWED FROM BULL BLOCK

-------------------------- fig. 1

DETAILED VIEW OF TACHOGENERATOR

-- fig .3
speeds between full speed and \(\frac{1}{4} \) full speed. This was thought at the time to be adequate but results showed that information was required from tests run at slower than \(\frac{1}{4} \) speed. These results were obtained using a bull block one quarter of the diameter of the original which effectively gave a speed range of \(\frac{1}{16} \) full speed to full speed and this proved to be satisfactory.

The power was passed from the motor to the 305 mm (12") bull block via a flexible tyre coupling (Fenner F80), a 10:1 reduction worm gear (Croft 5" centre, Type No. 41/551/05) and a coupling clutch (Broadbent Type DP 25) which enabled the drum to be engaged when the motor was running at the required speed and so ensured an almost instantaneous build up to full speed.

This was measured using a tachogenerator (servo products Type SA 740A/7) connected to a digital voltmeter. The drawing load was measured by placing strain gauges on the die retaining plate which was designed to flex during drawing. This system was calibrated using static loads to give a direct read out in kN.

The polymer was heated by an electric band heater and the temperature controlled by a thermostat (Thorn 0-200°C temperature controller) and measured by a thermocouple.

The wire to be drawn was stored on a wheel placed in an insulated base and hot air, heated by an industrial air heater (Secomark 3 kW), passed over it. The temperature was controlled and measured by the same method as the polymer.

The Christopherson tube was designed to allow it to be heated or cooled as experiments dictated. The heater and
controller used were the same as for the polymer, but when cooling was required a water jacket was fitted and water circulated from a large tank using a standard washing machine pump. This enabled the Christopherson tube to be kept only 10°C above ambient when separated from the polymer reservoir by a 6 mm asbestos disc.

The components described above were mounted on a solid steel table and the moving parts covered with suitable guards.

3.03 Design and Manufacture of Die Unit

The die unit (Fig. 4 and 6) contains the die, the Christopherson tube and the polymer reservoir. The polymer reservoir through which the wire passes first is approximately 100 mm long by 15 mm diameter, the reservoir being filled through a hole at the top. Consideration was given to automatic methods of feeding the polymer into the reservoir but considering the small quantities involved it was decided to feed the polymer by hand. The reservoir was connected by 3 screws to the Christopherson tube (an insulating disc was placed between the reservoir and the tube when the tube was to be cooled). The Christopherson tube was 60 mm long and between 1.85 mm and 2 mm \(\phi \), depending on the tube in use. The wall of the tube was made thick enough to withstand the high pressures developed by the polymer during drawing. The tube was sealed to the die using a copper Bridgeman seal and held in position by the die block and 3 large screws. The copper was expanded slightly by the pressure generated to create the seal. Eventually after a long series
of tests the seal became extruded through the gap between the end of the tube and the die end and had to be replaced.

The die block and polymer reservoir were machined from mild steel bar. The Christopherson tube was machined from oversized high alloy tool steel BD2(D2) with a composition of

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromium j</td>
<td>12.0%</td>
</tr>
<tr>
<td>Carbon</td>
<td>1-3%</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>1.0%</td>
</tr>
</tbody>
</table>

Problems were experienced drilling a hole less than 2 mm diameter and 60 mm long. The drill tended to 'drift' slightly leaving the exit of the hole up to 1 mm off centre. To combat this the hole was drilled first in the oversized bar and then the outside diameter skimmed using the hole already drilled as a centre. The ends of the tube block were then squared to the newly skimmed outer diameter. The rest of the tube block was then finished in the conventional way. Several blocks were made each with a different tube diameter. The tube material was chosen because it was known to harden in air and not be subject to great distortion. The tube blocks were heated in argon to 1030°C for 2 hours and then cooled in a Jet of argon to prevent surface scaling. The tempering of the block was carried out at 423°C to give a final hardness of around 733 Hv. The dimensions of the tube itself were measured after hardening and tempering using an engineer's microscope.

The seal was machined from copper and annealed. The hardness required to give both a good seal and long service depended on the pressure which had to be sealed and hence the material to be drawn i.e. the higher the yield stress of the wire to be drawn the harder the copper required.
CHAPTER IV

4. EXPERIMENTAL METHOD

4.01 Introduction

The hydrodynamic lubrication of wire drawing depends on so many variables, and the taking of results is so time consuming it was necessary to severely limit the number of variables investigated experimentally. The variables involved are tube length, gap between wire and tube, wire diameter, yield strength of wire, polymer temperature/viscosity, wire temperature, tube temperature and reduction area of the wire.

The variables chosen for investigation were:-

(a) The gap between the wire and the Christopherson tube, which appeared to be the most critical factor.

(b) The yield stress of the wire, to ascertain the range of wire capable of being lubricated by this method.

(c) The temperature/viscosity of the polymer, because it is the viscous property of the polymer which generates the pressure in the tube.

4.02 Determination of the Polymer Rheology

The viscosity of the polymer melt is an important parameter in determining the coating thickness of the polymer on the wire. The polymer viscosity is not only affected by the temperature of the polymer but also the shear stress to which the polymer is subjected. The effects of temperature and shear stress were determined using an extrusion rheometer, which measured the force required to extrude the polymer, held at constant temperature, through
a capillary tube at a range of speeds. From these results the viscosity and shear stress of the polymer were calculated. The test was repeated with the polymer at a different temperature and the result is shown in Fig. 8.

4.03 Determination of Wire Yield Stress

The yield stress of a wire increases during drawing, due to the effects of work hardening. In the preceding analysis a mean value was assumed for the wire yield stress. This value was determined by subjecting a short length of wire \((l=1.5 \, d)\) to a standard compression test and plotting the resulting stress-strain curve. The strain induced in the wire by drawing was calculated from the empirical formula

\[
\varepsilon_D = \ln \left(\frac{A_0}{A} \right) + \frac{2}{3} \alpha
\]

Where
\(A_0\) = Initial wire cross sectional area
\(A\) = Final wire cross sectional area
\(\alpha\) = Semi die angle

The average yield stress of the wire was then calculated using the area under the stress strain curve between 0 and \(\varepsilon_D\) divided by \(\varepsilon_D\). The results of this test for the steel and copper wires used can be seen in Fig. 9.

4.04 Drawing of Wire

The wire to be drawn was cleaned by one of two methods. The stainless steel and copper wires were degreased using trichloroethylene and the steel wire by immersion in 50% hydrochloric acid.
GRAPH SHOWING STRESS/STRAIN CURVES FOR TEST MATERIALS
The wire was then swaged and fed through the polymer reservoir, Christopherson tube and die and fastened to the bull block. The polymer was loaded into the polymer reservoir, heated to the required temperature and held at that temperature thermostatically. The temperature of the tube was noted and when this reached a steady state the apparatus was deemed ready for drawing, this usually took around 20 minutes. The clutch was disengaged, the motor started and adjusted to the approximate drawing speed by changing the position of the commutator brushes. This speed was checked using a hand held tacho generator. When the motor was running at approximately the desired speed, the clutch was engaged and the speed was then measured more accurately using the tacho generator and digital voltmeter described earlier. The drawing load was also noted at this point. Both the speed and the wire load were constantly checked for signs of variation, but none were detected. When approximately 15 metres of wire had been drawn, the clutch was disengaged and the drawn wire was removed from the drum. The first 5 metres of wire was discarded, leaving the wire which was representative of the steady state drawing. This was coiled and labelled for later analysis. The wire protruding from the die was reconnected to the bull block, the motor speed changed and the operation repeated. This method was adopted because of the problems involved in threading a swaged wire through the loaded polymer reservoir, the tube and the die. These were full of partly solidified polymer transported there in the wake of the previous pull. The alternative was to strip down the die unit
and remove the offending polymer, but it was not feasible to do this after every pull and so whenever possible three or four readings were taken between stripping down the die unit.

In addition to changing the parameters mentioned above, a limited number of tests were carried out with the wire raised above room temperature. This improved adhesion between the polymer coat and the wire but greatly reduced the coating thickness. Attempts were made to counteract this by cooling the Christopherson tube but this led to the polymer solidifying in the tube before drawing commenced. As heating the wire is not desirable in industry for metallurgical reasons, and the inordinate length of time taken to perform these tests it was decided not to pursue this line of investigation.

4.05 Measurement of Coating Thickness

Several methods of measuring the coating thickness of the polymer on the wire were considered, but because of the very thin coating (10^{-4} m) and the small diameter of the wire, most of the usual methods were unsuitable. Attempts were made to measure the coat thickness by means of a comparitor. This involved fixing the wire into a specially machined jig, taking a reading using the comparitor, removing the wire from the jig, stripping the polymer coating from the wire, replacing the wire on the jig and taking a further reading. The results from this method were very erratic due to the difficulty experienced in ascertaining the greatest reading on the comparitor as the small diameter
wire was passed beneath it. It was not possible to pass the wire under the comparitor repeatedly and take the maximum reading as the comparitor progressively destroyed the polymer coating due to the rubbing action involved.

The possibility of using the magnetic method was investigated. This is used to test paint thickness on steel by measuring the force required to separate a magnet from the wire. Again the small diameter of the wire made the area of contact very small which made this method unreliable.

Commercially produced instruments are available for measuring coating thicknesses using ultra-sonic techniques, but the models designed to measure coatings on wire less than 2 mm diameter were prohibitively expensive.

It was decided, therefore, to measure the average coating thickness over a short length by a weight loss method. This method proved to be successful giving a high degree of consistency. To demonstrate this, a sample of coated wire 250 mm long was cut into 5 pieces approximately equal in length. Each piece was weighed using an electronic balance, reading to 0.0001 gm, stripped of its coating, reweighed and its length measured using an engineer's microscope. When these results were placed in the simple formula.

\[
\text{Coat Thickness} = \frac{W_L}{\pi \times D \times L \times \rho}
\]

Where
\[W_L = \text{Weight Loss}\]
\[D = \text{Wire Diameter}\]
\[L = \text{Sample Length}\]
\[\rho = \text{Density of Polymer}\]

the results showed very good repeatability. For example,
when the resulting average thickness was 0.04 mm all the results were within the range ± 0.002 mm or ± 5.0% which compared with the errors involved in measuring such parameters as h and To this is very small, and does not significantly increase the overall error. This method had the added advantage of giving an average reading when the polymer coating was uneven or 'fish scaled'. Once this method had proved to be adequate, it was applied to all test pieces with samples being taken from five different points along the wire.
CHAPTER V

5. COMPARISON OF THEORETICAL AND EXPERIMENTAL RESULTS

5.01 Introduction

The theoretical results were calculated using equations 14, 20, 20a and the computer program, (see Appendix I), the flow diagram of which can be seen in Fig. 10.

From the input parameters the shear stress (T_flow) which must be developed to generate sufficient pressure to cause the polymer to flow between the wire and the die was calculated. This value was checked against the critical shear stress of the polymer to check the flow was possible.

The velocity at which flow commenced was calculated from equation 20a with T equal to T_flow. The same equation was used to calculate the oil velocity for maximum coating thickness (with T = T_c) V_crit. The shear stress and coating thickness were then calculated for the velocities between V_flow and V_crit, using equations 14 and 20 respectively. The coating thicknesses for velocities greater than the critical velocity were calculated by setting the shear stress equal to T_c and using equation 20 again. The calculation ended when the velocity was equal to three times the critical velocity.

This simple program was later modified to generate data to be stored on a data file in suitable form for use with the advanced graphing facility of the computer (See Appendix II). The graphing program was designed to produce theoretical curves, from the data stored on the data file, to cover the range of velocities at which the experimental work was performed.
FLOW DIAGRAM OF COMPUTER PROGRAM TO GENERATE THEORETICAL PREDICTIONS
\[V = V + \left(V_{\text{crit}} - V_{\text{flow}} \right) / 5.0 \]

IF

\[V < V_{\text{crit}} \]

NO

\[T = T_{\text{crit}} \]

IF

\[V < V_{\text{crit}} \times 3 \]

YES

NO

END

Fig 10 cont.
The parameters used for all theoretical graphs were, unless stated otherwise:

\[
\begin{align*}
\text{Gap (h)} & = 0.1 \text{ mm} \\
\text{Wire Radius (R)} & = 0.825 \text{ mm} \\
\text{Wire Yield Stress (Y)} & = 245 \text{ MN/m}^2 \\
\text{Tube Length (L)} & = 60 \text{ mm} \\
\text{Polymer Viscosity (n)} & = 50 \text{ Ns/m}^2 \\
\text{Critical Shear Stress (Tc)} & = 0.6 \times 10^6 \text{ N/m}^2
\end{align*}
\]

These values can be considered 'typical' and were also used when estimating the experimental error (see Chapter 6.01). To aid comparison between the effects of changing various parameters the same graph axes were used throughout.

Assumptions were made, further to those already described in Chapter II, when calculating the theoretical results explained above.

Firstly the viscosity was assumed to be constant when in fact it is reduced by shear stress and increased by pressure. The effect of shear stress on viscosity can be measured (see Fig. 8) and a mean value may be assumed. It is impossible, however, to measure the combined effect of both high shear stress and high pressure although there is reason to believe they may, to some extent, cancel each other out. This problem is discussed more fully later.

It was also assumed that the transition from no slip to total slip takes place instantaneously at the velocity \(V_c \) when in practice it is more likely to take place over a small range of velocities. This gives the theoretical graphs a sharp peak where as the effect of the slip taking place over a range of velocity would be to "round-off" this peak.
The polymer flow in the Christopherson tube was divided into three phases depending on the wire speed. At very small wire speeds insufficient pressure is developed in the melt to overcome the die pressure and so the wire is not coated. As the drawing speed is increased laminar flow occurs with normal boundary adherence between the polymer and the wire. Over this range of speeds the shear stress is rising with increased wire speed but is still below \(T_c \). This means that the wire is covered with a coating of increasing thickness. When the shear stress in the polymer reaches the critical values \(T_c \) the maximum flow rate of polymer through the die is also attained, hence any further increase in wire speed can only reduce the coating thickness.

The experimental results show a reasonable agreement with the theoretical predictions considering the experimental error involved.

It was noted that when the wire speed was in the lower end of the critical flow range, the flow of the polymer was prone to discontinuity causing defects in the coating, which have the appearance of either fishscale or bamboo (see Figs. 11 and 12). This was probably due to melt fracture of the polymer. This is caused by the drag force on the polymer molecule becoming greater than its adhesion to the wire. The drag force is approximately proportional to the shear stress in the melt and the length of the polymer molecule concerned. There is, at present, no explanation as to why the coating should become smooth again but the same observation was made when polymers were extruded at very high shear rates by Du Pont (U.S.P. 2, 991, 508 (1961)). It was
COPPER WIRE WITH FISHSCALE COATING/COATING REMOVED

\[v = 0.98 \text{ m/s} \]

STEEL WIRE WITH FISHSCALE COATING/COATING REMOVED

\[V = 0.5 \text{ m/s} \]

Fig 12
Direction of Drawing
also noted that when the 'fishscaling' was particularly heavy on the softer copper wire, the wire itself was hammered into an uneven surface, which must have occurred in the Christopherson tube as a result of the pressure pulsating above the yield stress of the wire.

The drawing load was measured in all tests, but it was found that provided the polymer was lubricating the wire, the drawing load was not affected by the coating thickness.

Although it has been shown possible to coat wire with a polymer over a wide range of speeds, a well adhered coating was not achieved. It was not possible to measure the force required to remove the coatings from the wire. It was decided, to define a well adhered coat as one which would remain adhered to the wire and lubricate it during a further 25% reduction in area. All the wire drawn failed this test. Subjectively it was noted that the 'fishscale' coating appeared better adhered than those coatings applied at high drawing speed. These fishscale coatings were particularly well adhered to the steel wire. The adhesion between the wire and the polymer coating was improved when the wire was drawn at an elevated temperature, but this still was not sufficiently strong to pass the test described above.

5.02 The Effect on Coating Thickness of Changing Yield Stress of Wire

Figs. 14 and 15 show the effect of changing wire yield stress on coating thickness. It can be seen that the maximum coating thickness that can be obtained was very sensitive to the yield stress of the wire and was reduced as the yield stress increased until no coating was possible.
Theoretical graph showing the effect on coating thickness

Velocity < n < S
The higher yield stresses also reduced the region of laminar flow by both increasing the velocity at which flow occurred and reducing the velocity at which the critical shear stress required in the polymer was reached.

The experimental results support the theoretical predictions with regard to the reduction of coating thickness with increasing yield stress, especially when it is noted that no coating was achieved with wires of yield stresses greater than 800 N/mm².

5.03 The Effect on Coating Thickness of Changing Gap

Figs. 16 and 17 show the theoretical predictions and experimental results when the gap between the wire and the Christopherson tube was changed with everything else remaining constant. The theory predicts that an increase in gap will give, in the critical region, an increase in coating thickness. This is confirmed by the experimental results, although the theory underestimates the coating thickness achieved by as much as 50%. If, however, the length of the tube is kept constant and the gap is increased beyond 0.14 mm a maximum is reached and any further increase in gap reduces the coating thickness until no coating is possible.

Fig. 18 shows the maximum coating thickness, for a given wire strength and tube length, plotted against gap. The optimum gap is smaller than that which gives the maximum coating, because in this region the coating thickness is less sensitive to a change in gap. If the gap is chosen to give maximum coating thickness, then a slight increase in gap size, such as could be caused by a change in wire diameter within tolerance, could reduce the coating thickness drastically.
GRAPH SHOWING EXPERIMENTAL RESULTS AND THEORETICAL PREDICTIONS FOR CHANGING GAP

Fig 16

$Y = 245 \times 10^6 \text{N/m}^2$

$R = 0.325 \text{mm}$ $\theta = 160^\circ \text{C}$

$L = 60 \text{mm}$ $T = 0.6 \times 10^6 \text{N/m}^2$

$\h = 0.175 \text{mm}$

$\h = 0.102 \text{mm}$

VELOCITY (m/s)
GRAPH SHOWING THE EFFECT ON COATING THICKNESS OF CHANGING GAP

Fig. 17
The Effect on Coating Thickness of Changing Polymer Viscosity

(Viscosity was assumed to be affected only by temperature when calculating the theoretical results but it is also affected by pressure and shear rate.)

The viscosity of a polymer is reduced as temperature rises and is described by the empirical formula

where $\theta =$ absolute temperature

and a & b are material constants

For a polyethylene such as WVG 23 a rise in temperature of 80°C will reduce it’s viscosity by 60%.

Viscosity increases with increasing pressure. For example Westover found that by raising the pressure of a polymer from 13 m/ m^2 to 172 m/ m^2, the viscosity of a polymer can be increased by a factor of between 5 and 100 depending on the molecular weight of the polymer. The higher the molecular weight, the greater the increase in viscosity. WVG 23, the polymer used in the tests, has a relatively low molecular weight, but the pressure developed was in the order of 600 MN/MP so the viscosity magnification factor was probably in the region of 20 – 30.

The effects of shear stress on viscosity can be seen in Fig. 8. High shear stresses greatly reduce the viscosity of a polymer, so much so that without the effect of pressure the viscosity of WVG 23 at the shear rates would be of the order of 2 Ns/mP.

GRAPH SHOWING COATING THICKNESS vs GAP

GAP (mm)
GRAPH SHOWING EXPERIMENTAL RESULTS FOR CHANGING TEMPERATURE/VISCOSITY

Fig 19

\[Y = 2.45 \times 10^8 \text{N/m}^2 \]
\[R = 0.825 \text{mm} \]
\[L = 60.0 \text{mm} \]
GRAPH SHOWING THE EFFECT ON COATING THICKNESS OF CHANGING VISCOSITY

Fig. 20
The effect of the three factors, described above, on the polymer used in the test cannot, therefore, be calculated accurately, but can only be estimated.

The theoretical predictions (Figs. 18 and 19) suggest that in the critical region of flow, the coating thickness should decrease as the viscosity of the polymer increases, but the experimental results appear to contradict this. However, the experimental results show only a small difference in coating thickness between 135°C and 180°C and considering the experimental error involved, approximately 13%, it is reasonable to suggest there was very little change. Theory predicts a small change in coating thickness with viscosity at high viscosities. As the pressure increases the viscosity by such a large factor, it is probable that the viscosity is much higher than the 50 Ns/m² used in the theoretical calculations and so would explain the apparent paradox. The hypothesis that the viscosity is much higher than assumed here is supported by the fact that the transition from no flow to critical flow is very rapid, which is predicted by the theory when the viscosity is high.

5.05 The Effect on Coating Thickness of Changing Length of Christopherson Tube

Fig. 21 shows the effect of changing length of the Christopherson tube. It can be seen from a re-arrangement of equation 15 that for coating to occur

\[L = \frac{2hY}{3 \text{ Tc} \left(1 + \frac{4}{3} \frac{h}{R}\right)} \]
Figure 24

Graph showing the effect on coating thickness of changing tube length.
For the parameters used to produce Fig. 21 the minimum length required to produce a coating is 24 mm. Therefore the line showing the results when a 50 mm tube was used is approximately twice the minimum tube length required to allow coating. This length of tube generates an adequate coating but any further increase produces very little return in terms of an increase in coating thickness. For example a five fold increase in tube length only produces a 25% increase in coating thickness at the critical point. It would appear, therefore, that the optimum tube length is approximately twice the minimum length which will produce a coating. It should be noted at this point that the minimum, and hence the optimum tube length required, is increased as gap between the wire and the tube is increased. Therefore a balance must be struck between the gap size and the tube length. This will be discussed later when the design of Christopherson tubes is considered.

5.06 The Effect of Coating Thickness of Changing Critical Shear Stress of Polymer

Fig. 22 shows the effect on coat thickness of changing the critical shear stress of a polymer. Increasing the critical shear stress of the polymer has the effect of prolonging the sub-critical region, and so increases the coating thickness in the critical region. A polymer with a high critical shear stress allows wire of a high yield stress to be drawn, because this allows the greater flow stress to be achieved before slip occurs.

The critical shear stress is affected by the molecular weight of the polymer, as discussed in the introduction.
GRAPH SHOWING THE EFFECT ON COATING THICKNESS OF CHANGING CRITICAL SHEAR STRESS

Fig 22
GRAPH SHOWING THE EFFECT ON COATING THICKNESS
OF CHANGING WIRE DIAMETER

Fig 23
The higher the molecular weight of the polymer, the lower its critical shear stress. The critical shear stress for most polymers lie in the region of 0.4 to 1.0 \times 10^6 \text{ N/m}^2.

5.07 The Effect on Coating Thickness of Changing Wire Diameter

Fig. 23 shows the effect of changing the wire diameter was very small and so this process should be equally successful on wire of any diameter. The only limits on the diameter result from

a) The wider tolerances found on larger diameter wires

b) The length of tube which can be achieved when using small diameter wire because of the high depth to diameter ratio required in the Christopherson tube.
CHAPTER VI

6. SUMMARY

6.01 Estimation of Errors

The experimental errors arise from the slight inaccuracies in the measurement of the many variables upon which the coating thickness is dependent. It will be shown that the error in measuring the gap between the wire and the Christopherson tube and the estimation of the critical shear stress of the polymer are the dominant factors in the overall error.

When calculating the experimental errors, 'typical average' values of the variables will be used.

The tolerance of the wire diameter as given in BS was ± 0.0125 mm ($0.005"$) and a similar tolerance was assumed for the bore of the Christopherson tube giving an error of 8.7% on a nominal radial clearance of 0.1 mm.

The yield stress of the wire used was measured as described earlier with an estimated error of ± 5 N/mm2 or approximately $\pm 2\%$.

The drawing speed was measured using a tachogenerator and a digital voltmeter. From the suppliers specification an error of $\pm 2\%$ was estimated. The error in the measurement of the length of the tube was very small, in the order of 0.1%.

The critical shear stress of the polymer used was estimated, from the extrusion rheometer tests described earlier, to be 0.6×10^6 N/m2, $\pm 8\%$.

It was not possible to measure the viscosity of the polymer at the pressures generated by the system. The value
used in the calculations was chosen arbitrarily and so it is impossible to assign an error to this variable.

The equation predicting coating thickness has 3 terms

$$CT = \frac{\mu_1}{2} \times h^2 + \frac{2hT}{3L} + \frac{3 \nu r}{3L}$$

Let

$$2\eta_1 V$$

$$iA \quad ill \quad il \quad c\nu \quad A \quad h \quad I \quad ft \quad V$$

hence percentage error = 12%

Let B

$$Xh^2$$

Let $B = \frac{3}{V^B}$

$$[B \quad iX \quad 2\eta h \quad \eta l]$$

$$B \quad X \quad h \quad L$$

hence % error = 17*5%

Let C =

$$3n \quad VB$$

$$Sc \quad 2/A \quad ^{\wedge} \quad j\epsilon(\quad JV \quad /\eta_1-$$

$$c \quad h \quad T \quad n \quad V \quad H$$

hence percentage error = 19*28%

To find total percentage error using 'typical average' values

$$E = I \times (1 \times 12)^2 + (0.26 \times 17-5)^2 + (0.16 \times 19-28)^2$$

Total error +13%
It can be seen from the above calculations that the low degree of accuracy achieved in this experiment is due to the problems associated with maintaining the small gap between the wire and the Christopherson tube constant. It would however be difficult to improve on the accuracy as the gap is dependent on the wire diameter and the tube bore. The wire diameter is only limited to ± 0.0125 mm (± .0005") and the hole drilled to create the Christopherson tube is 60 mm long and less than 2 mm diameter and so is difficult to control in manufacture.

6.02 Rationalisation of Theoretical Equations to Facilitate the Design of a Christopherson Tube

Design of a Christopherson Tube can be a long involved process because of the problems caused by parameters being interdependent. But, if certain simplifications are made then the design procedure can be shortened greatly. These simplifications are the result of the following observations:

1) The diameter of the wire has very little effect on the coating thickness and can be ignored. (See Fig. 23)

2) Provided the length of the tube is more than twice the minimum length required the actual magnitude does not greatly effect the coating thickness (See Fig. 21).

3) The optimum length is approximately equal to twice the minimum length. At this optimum length the gap can change slightly (i.e. due to a change in wire diameter) without a drastic change in coating thickness.

4) Most polymers have a critical shear stress in the order of 0.6 x 10^6 N/m². If a polymer has a significantly different critical shear stress, then this can be
accommodated by a simple multiplication factor when the final length has been calculated. (A polymer with a lower critical shear stress will require a longer tube).

5) The minimum radial gap of practical use is 0.05 mm. If a smaller gap is used the wire tolerance becomes significant. Generally speaking a larger gap is preferred provided the length of tube required can be accommodated.

6) The length of tube is limited when drawing small diameter wire by the ratio of tube length to diameter which can be achieved when drilling the Christopherson tube.

Using the assumptions stated above and rearranging equation 15 and substituting

\[L_{OPT} = 2 L_{MIN} \]

The equation becomes

\[L_{OPT} = \frac{4hY}{3Tc \left(1 + \frac{4}{3} \frac{h}{R}\right)} \]

This is shown graphically in Fig. 24.

Suggested Design Procedure

1) Estimate the maximum length of tube which can be used. This is limited by
 a) The space available in the die unit.
 b) The length of hole which can be drilled at the diameter required

2) From Fig. 24 read off the gap required using the length calculated in (1) and the yield stress of the wire to be drawn.
GRAPH SHOWING COATING THICKNESS v VELOCITY

CHosen Design PARAMETERS

Fig 25
3) Check the parameters chosen by plotting the coating thickness v velocity characteristics using Equation 16 -

Example

Wire to be drawn
\[Y = 600 \text{ N/mm}^2 \]
\[D = 6 \text{ mm} \]

Maximum \(\frac{L}{D} = 20:1 \)

\[\therefore 1) \text{ Maximum length} = 120 \text{ mm} \text{ (assuming no space restriction)} \]
\[2) \text{ From Fig. 24 gap required} = 0.09 \text{ mm} \]
\[3) \text{ Fig. 25 shows plot of coat thickness v velocity for parameters chosen.} \]

6.03 Discussion

After initial problems with sealing the Christopherson tube to the die and attempting to draw wire with a yield stress too high for the tube configuration used, the experimental apparatus operated very successfully. It was found that the heat treatment of the copper seal required for both complete sealing and maximum life was dependent on the wire being drawn. The harder the wire being drawn, the harder the seal needed to be.

It can be seen from the discussion of experimental errors, the greatest error arises from the estimation of the gap between the wire and the Christopherson tube. As this is dependent on the wire diameter, it is almost impossible to estimate, unless wire with a very close tolerance is drawn especially for the tests.
The other unknowns in the tests are the viscosity of the polymer, taking into account temperature, shear rate and the pressure generated at the end of the Christopherson tube.

The pressure can be measured when the material being drawn has a relatively low yield stress, such as copper, but when higher yield stress material is drawn then it is not possible to obtain a transducer to withstand such a pressure.

The effect on viscosity of changing temperature and shear rate was measured, see Fig. 8, although this was not used when calculating the theoretical prediction. If this were to be included, it would have the effect of reducing the range of the sub-critical flow because of the much higher viscosities at the lower shear rates, which the practical results suggest.

Experimental work on the viscosity of polymers suggest that the extremely high pressure developed in the tube is the dominant factor in determining the viscosity of the polymer, although to check this would require the use of a double piston rheometer (Westover 13).

Although the tests show it to be possible to lubricate and coat the wire, the coating produced was poorly adhered to the wire. The adherence was improved slightly when the wire was heated before drawing, but this reduced the coating thickness. Heating the wire would not be acceptable in industry where research is directed towards keeping the wire cool. The only way open appears to be investigation into the possibilities of applying a 'keying' agent in the same way as soap is 'keyed' to the wire. As the critical shear stress of the polymer/wire boundary is affected by the surface properties
of the wire, it is possible that such a coating could increase the critical shear stress and so make the system more versatile.

The theoretical predictions in general, underestimate the coating thickness by about 20%, this can be partly explained by the experimental error. The remainder is probably due to the arbitrary choice of a fixed value for the polymer viscosity, when in fact the viscosity changes constantly as described earlier.

The 'fishscale' coating is an interesting phenomena which can only be partially explained. The effects are caused by the pulsating flow of the melt through the die, induced by stick-slip motion of the melt in the Christopherson tube. This is probably caused by a periodic variation on the degree of slip, (melt fracture) initiated at the inlet to the Christopherson tube. It is not possible to determine if this is the case, but from the similarity in appearance of the defective coat to defects occurring in other polymer melt processes, see Ref. 13, melt fracture appears to be the likely cause. When the defect occurs a corresponding variation in the wire diameter is observed, particularly with the softer copper wire (see Fig. 11).

At higher drawing speeds the coating becomes smooth again. A similar effect was noted by Du Ponts but no explanation was offered. This effect could be caused by the polymer slipping completely at the higher shear rate.

The lengths of wire drawn in these tests were very short by industrial standards and so it was not possible to check the thermal stability of the system. If long runs are to be tested,
then improvements must be made to the polymer feed system and methods used in the injection moulding industry should be considered.

6.04 Conclusions

The work undertaken has demonstrated that it is possible to lubricate and coat wire using a polymer melt during drawing. The limits of the relevant parameters have been defined.

The polymer coatings were not sufficiently well adhered to lubricate a further reduction of Che wire

A theory has been developed, to predict the coating thickness of the polymer on the wire incorporating the phenomenon of critical shear stress and assuming a constant polymer viscosity.

The theory underestimates the coating thickness which is produced but, nevertheless, provides a method of optimising the Christopherson tube dimensions.

The polymer coating is uneven at speeds slightly above the critical speed. This 'bambooing' or fishscaling is probably due to melt fracture of the polymer.

6.03 Further Work

Although it has been shown that wire can be lubricated and coated during the drawing process and the theory outlined in this study gives a reasonable estimate of the coating thickness achieved both the theory and the practical problems require further development.
The present theory assumes a constant viscosity whereas in practice this is affected by shear rate, temperature and pressure. Refinements of the theory in these areas should be useful.

From the practical application side of the research, the biggest problem appears to be lack of bonding between the polymer and the wire and a study of the mechanism of bonding between metals and polymers should be made.

If polymer lubrication is to be used commercially, the feed mechanism of the polymer will have to be developed, possibly employing the screw system, at present used on injection moulding machines. In an industrial situation, the thermal stability of the system will become important and must be understood. If these problems can be overcome the polymer lubrication of wire drawing could become commercially viable.
REFERENCES

1. J. G. WISTREICH
 Investigation of Wire Drawing Mechanics

2. A. MIDDLEMISS AND D. P. HAGUE
 Torsional Ductility in Carbon Steel Wire
 - Part 1 Wire Industry, June 1973

3. A. MIDDLEMISS AND D. P. HAGUE
 Torsional Ductility in Carbon Steel Wire
 - Part 2 Wire Industry, July 1973

4. A. MIDDLEMISS AND D. P. HAGUE
 Torsional Ductility in Carbon Steel Wire
 - Part 3 Wire Industry, August 1973

5. G. M. STURGEON
 The Cooling of Wire During Drawing
 - BISRA Report MW/D/52/61

6. A. MIDDLEMISS
 Interpass Cooling of Wire During Drawing
 MW/D/2/69 and MW/D/3/70

7. E. BLEIR AND T. F. FINNEGAN
 Lubrication - Must it be so Complicated?
 Wire and Wire Products, February 1973

8. D. R. ATKINS
 Friction in Electrolytic Cells
 PhD Dissertation, Birmingham, 1970
 ASLE Trans 14, 248-253, 1971

10. H. P. ATALA AND G. O. A. LADITAN
 Electrochemical Lubrication in Wire Drawing
 - Wire Industry 1072

11. D. G. CHRISTOPHERSON AND H. NAYLOR
 Promotion of Fluid Lubrication in Wire Drawing

12. P. J. THOMPSON AND G. R. SYMMONS
 A Plasto Hydrodynamic Analysis of the Lubrication of
 Wire Using a Polymer Melt.

13. R. F. WESTOVER
 Polymer Engineering Science 6, 83 (1966)

14. J. A. BRYDSON
 Flow Properties of Polymer Melts
 Iliffe Books

15. P. J. THOMPSON, G. R. SYMMONS AND A. J. STEVENS
 The Hydrodynamic Lubrication and Coating of Wire
 Using a Polymer Melt During the Wire Drawing
 Operation.
 Paper Presented at the Internation Wire and
 Machinery Association at Brussels (October 1977)
LOAD VBASIC
10 PRINT 'GAP', 'WIRE RAD', 'YIELD'
20 INPUT H, R, Y
30 PRINT 'LENGTH', 'TORR CRIT', 'VISCOsITY'
40 INPUT L, T, P.
50 TI=(2*H+Y)/(3*L*(1+(4*H)/(3*Y)))
60 VI=TI*T P COTO 500
70 V1=(2*L*Y*TI*(1+H/T)-4*P*Y)/(2*V*L)
80 VP=(2*L*Y*TI*(1+H/T)-4*P*Y)/(2*V*L)
100 PRINT 'FLO', 'CRIT'
110 PRINT H1, P1
120 PRINT 'VelOCITY', 'COAT THICKNESS', '1000'
130 V=1
140 L=V+(V-P-V)/5.0
150 T=(4*P*Y+2*V*L)/(2*L*H*(1+H/T))
160 C=(V+P*Y+V*L)/(4*P*Y)/(3*L)+(2*H*V)/(3*H))
170 PRINT V, C, 1
180 IF \(V < (V-P-V)/5.0 \) GOTO 140
190 T=1
200 IF \(V < (V-P-V)/5.0 \) GOTO 160
210 COTO 999
220 PRINT T
500 PRINT 'NO COATING POSSIBLE'
990 END
COMPUTER PROGRAM TO GENERATE DATA
FOR GRAPHICAL DISPLAY

Fig 27

\begin{verbatim}
COMMON /
1/DATE,E1/6,E,H,1,Y,V,E
1/VLIST/VEL(70),COAT(70)
1/DATIV(VLAR,VAR,TVAR,YVAR,VAL)
1/SC/VH,T1,IEER,
FEAT(5,19) C,1,F,1,Y,V,E
JH=0
WRITE(6,20)
100 JH=JH+1.
 DO 21 J=1,6
 READ(9,22) VAR,VARNUM,
22 FORMAT(A1,G12.0Y
 CALL SELECT(VAR,VARNUM)
 IF(IEER.EQ.1),J=J-1.
 IF(IFM.EQ.1) GO TO 21
 WRITE(.4,F9.3) VAR
21 CONTINUE
 WRITE(.4,F9.3) VAR
 WRITE(6,23) VAR
 CALL DATEPV
 IF(11.EQ.1,7AT) GO TO 501.
 KPHI=3*((KHI-1)/3)
 WRITE(6,11) (VEL(I),I=1,KPHI,3)
 WRITE(6,11) (COAT(I),I=1,KPHI,3)
 WRITE(.4,F9.3)
 FEAT(9,40) IGO
 IF(IFM.EQ.1) GO TO 500.
 JHJP=JHJP+1.
 WRITE(1,JHJP) (VEL(I),I=1,KPHI)
 WRITE(1,JHJP) (COAT(I),I=1,KPHI)
 KEND(JHJ)=KPHI
 IF(JHJ.LT.5) GO TO 501
 WRITE(.301)
 GO TO 999.
500 JHJ=JHJ+1.
501 WRITE(6,302)
 READ(9,40) IAG
 IF(IAG.EQ.1) GO TO 999.
 WRITE(6,300)
 GO TO 100.
999 CONTINUE
 WRITE(1,JHJ) (KEND(I),I=1,JHJ)
 STOP
\end{verbatim}
on FORM T
77 Fig 27 cont

on FORM A " TieMTI FTERS '/Io y.' GAR'.
lay. 'P, ; P y, +rjv mGV-t i y, T S / I O X, * TPF, RAItUS'.
0 / P y, / M E Py - l a l, CRIT M ' /1 ' /lox, 'YIELD',
3IPX. 'YS IPX ' W SGOST1YS 5X ' "/ / / ' TO IMPUT',
A' TYPF 1 HF Fa/-pyjier ! E MI T U ER OFF01EI EY '
S'Ttsp I or UF. '" a TYPICAL t pyv! IS AS F O LLO W S: '
/ / ' ? / T n, [F -] / 1 7 = ' (0 . 1 OPE- a / ' C ',
7' IMPUT IS TM FREE-FORMAT) '/ ' IMPUT VALUES '/

11 FORMAT (IP(FI.P. A)
70 1 FORMAT C - YOU! data FILE IS. FULL! EXECUTION EMIS")
POP FORMAT C ' TYPE 0 TO EMD DATA GEMEEATION- TYPE T TO COMFTMOE')
700 FORMAT C ' IMPUT YOUR VARIABLES TO EMD TYPE 'E ' ')
A1 FORMAT C. ' IF YOU WANT THIS DATA SET STORED TYPE 0 /
1' ' TYPE ! TO CHANCE PARAMETERS AND RECALCULATE (DATA MOTS
P ' STOKER) '/ ' CLEAR THE SCHEM IF ON GRAPHICS TEAM \JAL')
.
10 FORMAT 7A])
P3 FORMAC // / P1X, ' GAP = ', rnx> 1PEI P (zp!X,
1' LEMGTU = ', 7 X 1PEI ? (/P1X, ' iw RE RAT I US'
P = S PX > 1PEP f f/p !nx ' 10RR CRIT = ', a y.
01PEI.P- f /P1X ' YIELD = ', S X. 1PEI.P.f / PIX ' ' Viscosity S
A ' = ', 4 X 1PEI P. f// /)
zn FORMAT / I 1)
EMD
.

SURE OUT! ME DAT GEM
PEAL L VAR
comom m
1 / VARTp / VELC 70> ,'CAOTC 70)
1/ PATE M /GVAP, tJ VaF, E vA R, T VAR, Y VaF VVAR:
1/ V M I SG / XT M, ')', TFER
TJ = - C P * GIA FXY VAR) / C3 * LVAR* C 1. +C A. * GVAR) /
ICG. * P V A R))
IFCTJ, . GT. 1VAR) GO TO 50
VI = CP. * LVAR* GVAE* 1 ' C 1. +GVAR / RVAR) - GVAR* CHAR* YVAR)
1 n. P. * W AR*L VAR)
VP = CP. * LVAR* GVAE* 1 VAPP C 1. +GVAR / EVAR)
LI GVAR* GVAI* YVAI ./ CP. * VVAR / LVAR)
LPT TEC SPA) I D VP
1 = 1
VELCI) = VI
COATCI) = 0*0
UIMC = C V P - VI / 3 0 * 0
.
1zo
1 = 1+i
VELCI) = VELCI - 1) + UT MC
TORP = CGVAF*GVAE*YVAR+P. * VELC 1) * VVAE* LVAR) /
PC P. * L VAMF G V A R * C I. + GVAR / RVAR))
COAT Cl) = CGVAR* GVAR / C W A R* VELC 1))) CT op:p. / P. -
TFC C V P - VELC I)). GT. 0.0001) GO TO 100
T0PE = TVAR
1MTI = 1
VIMC = CP. 5 - VELC I MTI)) / 30. 0
ifn
KH = KK+1
VELC K K) = VEL C K K - 1) + VI MC
COAT C K K) = C GVAR* GVAR / C W A R* VELC K K) >) C TORI /P'.
1 ' c YVAE* GVAE) / (3 * LVAR) + CP. * H VVAR* T0RE) /
PEP I *E PILE 1(11, PR 0, LJT 1)
DIME 9SI 39 LAPIC ?3, LAE 2(15) , VELC70 >, COAT(70), LAP3C3
DATA LAP!/67,79,65,34, 73, 73, 71, 32, 84, 72, 73, 67, 75,
173, 69, 33, 33 /'
DATa LAPP/36, 69, 76 79, 67, 73, 34, 39, 32, 32, 40, 1no,
147, 115, 61/
DA1 a Lap 3/4n, io9, 61/
EEAD(1 91) . JP1 $F, (KE9DC1) , I = 1 , JPI M)
XEM = KE9DC1)
PEADC 1 ' 2) (D E L (I) , 1 = 1 , KE9)
I: EAPC 1 ' 3) CO0ATC I), 1 = 1 , KE9)
CALL DTITT Cl l ,0)
CALL EI'JITT
CALL SLIMX Cl0n, 1000)
CALL SLIMY Cl 25, 740)
CALL D LIMX(0 0 2, 5)
CALL PLIMY(0,0,8*OE-5)
CALL 90TA1E (ABO, 40, 15, L A B 2)
xCAL L 90TA TP(5, 199, 3, LAP3)
Ca L1 0 vABC SC 13, 620)
Ca TL VLAPEL C17, Lap 1)
CALL MPT5C ME9)
CALL CMECK CVEL, C 0a I)
CALL D S^L.A.YC DEL, COAT)
DO 20 J = 2 , JPI 9
TPT92 = 2 J
JP 9PP1 = JP I 92+1
T1-19=KE9DC J)
Ca t.t. A9MODE
PEA.rci LJp T\TP) r VELC I), I = 1 , Tp I \T)
PEADC 1 *-9PMPP 1) CCOATCT), I = 1 , I PI 9)
CALL 9PI SC TP I 9)
CALL CPL0TC DEL, COA l)
Summary
CALL TIMPUTC IT)
CALL FI 9ITT CO, 70 0)
STOP
APPENDIX 4

RESULTS OF VISCOSITY VS SHEAR STRESS

PQR POLYMER WVG23 AT 250°C

<table>
<thead>
<tr>
<th>Shear Stress (N/m² x 10^3)</th>
<th>Viscosity (Ns/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.21</td>
<td>8.51</td>
</tr>
<tr>
<td>2.53</td>
<td>8.47</td>
</tr>
<tr>
<td>3.04</td>
<td>8.63</td>
</tr>
<tr>
<td>3.82</td>
<td>8.38</td>
</tr>
<tr>
<td>4.72</td>
<td>8.42</td>
</tr>
<tr>
<td>5.80</td>
<td>8.59</td>
</tr>
<tr>
<td>9.35</td>
<td>8.46</td>
</tr>
<tr>
<td>12.00</td>
<td>8.54</td>
</tr>
<tr>
<td>18.30</td>
<td>8.43</td>
</tr>
<tr>
<td>21.70</td>
<td>8.29</td>
</tr>
<tr>
<td>28.50</td>
<td>7.68</td>
</tr>
<tr>
<td>36.40</td>
<td>7.31</td>
</tr>
<tr>
<td>51.00</td>
<td>6.87</td>
</tr>
<tr>
<td>62.30</td>
<td>6.53</td>
</tr>
<tr>
<td>68.60</td>
<td>6.08</td>
</tr>
<tr>
<td>72.10</td>
<td>5.54</td>
</tr>
<tr>
<td>91.30</td>
<td>4.82</td>
</tr>
<tr>
<td>105.00</td>
<td>4.71</td>
</tr>
<tr>
<td>120.00</td>
<td>4.50</td>
</tr>
<tr>
<td>129.00</td>
<td>4.06</td>
</tr>
<tr>
<td>141.00</td>
<td>3.78</td>
</tr>
<tr>
<td>152.00</td>
<td>3.83</td>
</tr>
</tbody>
</table>
RESULTS of VISCOSITY v SHEAR STRESS
EOR POLYMER WYG25 at 150°C

<table>
<thead>
<tr>
<th>Shear Stress (N/m² x 10⁵)</th>
<th>Viscosity (Ns/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5</td>
<td>97.1</td>
</tr>
<tr>
<td>6.1</td>
<td>93.7</td>
</tr>
<tr>
<td>1.10</td>
<td>89.3</td>
</tr>
<tr>
<td>1.31</td>
<td>90.8</td>
</tr>
<tr>
<td>15.5</td>
<td>83.7</td>
</tr>
<tr>
<td>17.6</td>
<td>82.6</td>
</tr>
<tr>
<td>20.9</td>
<td>78.2</td>
</tr>
<tr>
<td>29.0</td>
<td>71.8</td>
</tr>
<tr>
<td>36.1</td>
<td>64.7</td>
</tr>
<tr>
<td>41.3</td>
<td>39.3</td>
</tr>
<tr>
<td>33.3</td>
<td>34.2</td>
</tr>
<tr>
<td>76.0</td>
<td>47.1</td>
</tr>
<tr>
<td>92.0</td>
<td>37.9</td>
</tr>
<tr>
<td>110.0</td>
<td>33.5</td>
</tr>
<tr>
<td>130.0</td>
<td>28.4</td>
</tr>
<tr>
<td>160.0</td>
<td>22.6</td>
</tr>
<tr>
<td>180.0</td>
<td>19.8</td>
</tr>
<tr>
<td>220.0</td>
<td>17.3</td>
</tr>
<tr>
<td>240.0</td>
<td>13.7</td>
</tr>
<tr>
<td>310.0</td>
<td>12.8</td>
</tr>
<tr>
<td>330.0</td>
<td>8.01</td>
</tr>
<tr>
<td>370.0</td>
<td>7.63</td>
</tr>
</tbody>
</table>
RESULTS of STRESS/STRAIN COMPRESSION TEST

COPPER

<table>
<thead>
<tr>
<th>Strain</th>
<th>Stress N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.015</td>
<td>100</td>
</tr>
<tr>
<td>0.025</td>
<td>110</td>
</tr>
<tr>
<td>0.040</td>
<td>130</td>
</tr>
<tr>
<td>0.040</td>
<td>150</td>
</tr>
<tr>
<td>0.060</td>
<td>155</td>
</tr>
<tr>
<td>0.070</td>
<td>165</td>
</tr>
<tr>
<td>0.070</td>
<td>185</td>
</tr>
<tr>
<td>0.090</td>
<td>190</td>
</tr>
<tr>
<td>0.105</td>
<td>205</td>
</tr>
<tr>
<td>0.125</td>
<td>210</td>
</tr>
<tr>
<td>0.135</td>
<td>230</td>
</tr>
<tr>
<td>0.165</td>
<td>230</td>
</tr>
<tr>
<td>0.185</td>
<td>245</td>
</tr>
<tr>
<td>0.210</td>
<td>265</td>
</tr>
<tr>
<td>0.235</td>
<td>260</td>
</tr>
<tr>
<td>0.255</td>
<td>260</td>
</tr>
<tr>
<td>0.255</td>
<td>280</td>
</tr>
<tr>
<td>0.275</td>
<td>275</td>
</tr>
<tr>
<td>0.290</td>
<td>280</td>
</tr>
<tr>
<td>0.305</td>
<td>290</td>
</tr>
<tr>
<td>0.320</td>
<td>295</td>
</tr>
<tr>
<td>0.340</td>
<td>290</td>
</tr>
<tr>
<td>0.370</td>
<td>300</td>
</tr>
<tr>
<td>0.395</td>
<td>315</td>
</tr>
<tr>
<td>0.415</td>
<td>310</td>
</tr>
<tr>
<td>0.435</td>
<td>320</td>
</tr>
<tr>
<td>0.470</td>
<td>315</td>
</tr>
<tr>
<td>0.480</td>
<td>325</td>
</tr>
<tr>
<td>0.500</td>
<td>330</td>
</tr>
<tr>
<td>0.530</td>
<td>335</td>
</tr>
</tbody>
</table>
Results of Stress/Strain Compression Test

Steel

<table>
<thead>
<tr>
<th>Strain</th>
<th>Stress N/mm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>169</td>
</tr>
<tr>
<td>0.015</td>
<td>220</td>
</tr>
<tr>
<td>0.030</td>
<td>280</td>
</tr>
<tr>
<td>0.020</td>
<td>320</td>
</tr>
<tr>
<td>0.035</td>
<td>365</td>
</tr>
<tr>
<td>0.060</td>
<td>440</td>
</tr>
<tr>
<td>0.085</td>
<td>479</td>
</tr>
<tr>
<td>0.085</td>
<td>475</td>
</tr>
<tr>
<td>0.110</td>
<td>500</td>
</tr>
<tr>
<td>0.110</td>
<td>530</td>
</tr>
<tr>
<td>0.130</td>
<td>550</td>
</tr>
<tr>
<td>0.150</td>
<td>585</td>
</tr>
<tr>
<td>0.175</td>
<td>625</td>
</tr>
<tr>
<td>0.210</td>
<td>705</td>
</tr>
<tr>
<td>0.240</td>
<td>710</td>
</tr>
<tr>
<td>0.270</td>
<td>790</td>
</tr>
<tr>
<td>0.310</td>
<td>810</td>
</tr>
<tr>
<td>0.350</td>
<td>840</td>
</tr>
<tr>
<td>0.389</td>
<td>885</td>
</tr>
<tr>
<td>0.445</td>
<td>920</td>
</tr>
<tr>
<td>0.495</td>
<td>950</td>
</tr>
<tr>
<td>0.535</td>
<td>985</td>
</tr>
</tbody>
</table>
RESULTS OF CHANGING YIELD STRESS ON COAT THICKNESS

\[h = 0.102 \text{ mm} \]
\[R = 0.825 \text{ mm} \]
\[L = 60.00 \text{ mm} \]

\[n = 50 \text{ Ns/m}^2 \]
\[T = 0.6 \times 10^6 \text{ N/m}^2 \]

When \(Y = 245 \times 10^6 \text{ N/m}^2 \)

<table>
<thead>
<tr>
<th>Velocity m/s</th>
<th>Coating Thickness mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td>0.000</td>
</tr>
<tr>
<td>0.08</td>
<td>0.080</td>
</tr>
<tr>
<td>0.15</td>
<td>0.082</td>
</tr>
<tr>
<td>0.17</td>
<td>0.084</td>
</tr>
<tr>
<td>0.17</td>
<td>0.085</td>
</tr>
<tr>
<td>0.25</td>
<td>0.085</td>
</tr>
<tr>
<td>0.33</td>
<td>0.083</td>
</tr>
<tr>
<td>0.35</td>
<td>0.079</td>
</tr>
<tr>
<td>0.40</td>
<td>0.078</td>
</tr>
<tr>
<td>0.41</td>
<td>0.073</td>
</tr>
<tr>
<td>0.55</td>
<td>0.062</td>
</tr>
<tr>
<td>0.67</td>
<td>0.061</td>
</tr>
<tr>
<td>0.85</td>
<td>0.062</td>
</tr>
<tr>
<td>0.97</td>
<td>0.058</td>
</tr>
<tr>
<td>1.28</td>
<td>0.046</td>
</tr>
<tr>
<td>1.75</td>
<td>0.044</td>
</tr>
<tr>
<td>1.95</td>
<td>0.044</td>
</tr>
<tr>
<td>2.03</td>
<td>0.044</td>
</tr>
<tr>
<td>2.33</td>
<td>0.041</td>
</tr>
</tbody>
</table>
When $Y = 551 \times 10^6 \text{ N/m}^2$

<table>
<thead>
<tr>
<th>Velocity m/s</th>
<th>Coating Thickness mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>0.010</td>
</tr>
<tr>
<td>0.20</td>
<td>0.013</td>
</tr>
<tr>
<td>0.28</td>
<td>0.009</td>
</tr>
<tr>
<td>0.33</td>
<td>0.018</td>
</tr>
<tr>
<td>0.40</td>
<td>0.032</td>
</tr>
<tr>
<td>0.45</td>
<td>0.030</td>
</tr>
<tr>
<td>0.45</td>
<td>0.024</td>
</tr>
<tr>
<td>0.55</td>
<td>0.010</td>
</tr>
<tr>
<td>0.60</td>
<td>0.011</td>
</tr>
<tr>
<td>0.65</td>
<td>0.011</td>
</tr>
<tr>
<td>0.73</td>
<td>0.010</td>
</tr>
<tr>
<td>0.93</td>
<td>0.012</td>
</tr>
<tr>
<td>1.58</td>
<td>0.011</td>
</tr>
<tr>
<td>1.67</td>
<td>0.011</td>
</tr>
<tr>
<td>1.77</td>
<td>0.010</td>
</tr>
<tr>
<td>1.98</td>
<td>0.011</td>
</tr>
<tr>
<td>2.18</td>
<td>0.009</td>
</tr>
<tr>
<td>2.40</td>
<td>0.009</td>
</tr>
</tbody>
</table>
RESULTS OF CHANGING GAP ON COATING THICKNESS

\[
Y = 245 \times 10^6 \text{ N/}\text{m}^2 \\
R = 0.825 \text{ mm} \\
L = 60.0 \text{ mm} \\
0 = 160^\circ \text{C} \\
T = 0.6 \times 10^6 \text{ N/}\text{m}^2
\]

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Coating Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>0.073</td>
</tr>
<tr>
<td>0.25</td>
<td>0.077</td>
</tr>
<tr>
<td>0.29</td>
<td>0.071</td>
</tr>
<tr>
<td>0.38</td>
<td>0.069</td>
</tr>
<tr>
<td>0.52</td>
<td>0.066</td>
</tr>
<tr>
<td>0.60</td>
<td>0.065</td>
</tr>
<tr>
<td>0.61</td>
<td>0.059</td>
</tr>
<tr>
<td>0.73</td>
<td>0.057</td>
</tr>
<tr>
<td>0.95</td>
<td>0.049</td>
</tr>
<tr>
<td>1.05</td>
<td>0.047</td>
</tr>
<tr>
<td>1.25</td>
<td>0.042</td>
</tr>
<tr>
<td>1.43</td>
<td>0.038</td>
</tr>
<tr>
<td>1.63</td>
<td>0.041</td>
</tr>
<tr>
<td>1.90</td>
<td>0.036</td>
</tr>
<tr>
<td>2.12</td>
<td>0.036</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Coating Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.61</td>
<td>0.079</td>
</tr>
<tr>
<td>0.73</td>
<td>0.076</td>
</tr>
<tr>
<td>0.80</td>
<td>0.070</td>
</tr>
<tr>
<td>1.02</td>
<td>0.063</td>
</tr>
<tr>
<td>1.37</td>
<td>0.062</td>
</tr>
<tr>
<td>1.42</td>
<td>0.058</td>
</tr>
<tr>
<td>1.64</td>
<td>0.054</td>
</tr>
<tr>
<td>1.83</td>
<td>0.053</td>
</tr>
<tr>
<td>2.20</td>
<td>0.044</td>
</tr>
</tbody>
</table>
LIST OF COURSES ATTENDED

1) Final year lectures in Metal Forming, Sheffield City Polytechnic. October 1975 - March 1976

2) Basic Lubrication Theory and Application, Imperial College, London. June 1st to 5th, 1976